

COMPARATIVE ZOOLOGY,

STRUCTURAL AND SYSTEMATIC.

FOR USE IN SCHOOLS AND COLLEGES.

By JAMES ORTON, Рh.D.,

PROFESSOR OF NATCRAL HISTORY IN VASBAI COLIEGE: CORLESPONIING MEMBER OF THE AOADEMY OF NATURAS BCLENOES, PHLLA1FFLPHLA, AN1) OF THE

LICEUM OF NATURAL HISTORY, NEW YORK; AUTHOR
OF "THE ANDES AND THE AMAZON," ETC.
"The education of a nuturalist now consists chiefly in leurning how to compare."-Agassiz.

NEW YORK:

HARPER \& BROTHERS, lUBLISHERS, FRANKLIN SQUARE.
1880.

Entered according to Act of Congress, in the year 1876 , by HARPER \& BROTHERS,

In the Office of the Librarian of Congress, at Washington

PREF ACE.

The distinctive character of this work consists in the treatment of the whole Animal Kingdom as a mit; in the comparative study of the development and rariations of organs and their functions, from the simplest to the most complex state; in withholding Systematic Zoology until the student has mastered those structural affinitics upon which true classification is founded; and in being fitted for High Schools and Mixed Schools by its language and illnstrations, yet going far enongh to constitute a complete grammar of the science for the under-graduate conrse of any College.

It is designed solely as a mannal for instruction. It is not a work of reference, nor a treatise. So far as a book is encyclopediac, it is mufit for a text-book. This is prepared on the principle of "jnst enongh, and no more." It aims to present clearly, and in a somewhat new form, the established facts and principles of Zoology. All theoretical and debatable points, and every fact or statement, howe ver valuable, which is not absolutely necessary to a clear and adequate conception of the leading principles, are omitted. It is written in the light of the most recent phase of the science, but not in the interest of any particnlar theory. To have given an exhanstive survey of animal life would not only have been undesirable, but impossible. Even Cuvier's great work must be supplemented by museums,
monographs, and microscopes. Natural Iistory has ontgrown the limits of a single book. Trial has proved the folly of giving the student so many things to learn that he has no time to understand, and the error of condemning the student to expend his strength upon the details of classification, which may change in the coming decade, instead of upon structure, which is permanent. Of course, specialists will miss many things, and find abundant room for criticism in what they regard as deficiencies; but the work should be judged by what it does contain, rather than liy what it does not.

What is claimed, in the langnage of insentors, is the selection and arrangement of essential principles and typi cal illustrations from the stand-point of the teacher. The synthetic method is employed, as being the most natural: to begin with complex Man, instead of the simplest forms, would give a false idea. Man is not a model, but a monstrosity, the most modified of Vertebrates. But these outlines must be filled up, on the part of the teacher, by lectures, and by the exhibition of specimens, and, on the part of the student, by observation (noting, above all, the characteristic habits of animals), and by personal work with the knife and microscope. No text-book can take the place of nature, or supersede oral instruction from a competent teacher.

Suggestions and corrections from naturalists and teachers will be thankfully received.

In a work of this character, which is but a compend of the labors of all naturalists, it would be superfluons to make acknowledgments. The works referred to on page 355 have been specially consulted.

CONTENTS.

INTRODUCTION. PAGE
Definition of Zoology, and its Place among the Sciences. 11
Historical Sketch 14
PART I.-STRUCTURAL ZOOLOGY.
CIIAPTER I.
Minerals and Organized Bodies distinguished 19
CHAPTER II.
Plants and Animals distinguished, 21
CHAPTER III.
Relation between Minerals, Plants, and Animals 27
CHAPTER IV.
Natcre of Life. 28
CIIAPTER V.
Organization 30

1. Cells 31
2. Tissues 32
3. Organs, and their Functions 41
CHAPTER VI.
Netrition 44
CIIAPTER VII.
The Food of Animals 46
CHAPTER VIII. PAGE
How Animals Eat 49
4. The Prehension of Food 49
5. The Mouths of Animals 54
6. The Teeth of Animals 62
7. Deglutition, or how Animals swallow 71
CHAPTER IX.
The Alimentary Canal. 73
CHAPTER X.
How Animals Digest. 90
CHAPTER XI.
The Absorbent System. 93
CHAPTER XII.
The Blood of Animals. 96
CHAPTER XIII.
The Circulation of the Blood, 102
CHAPTER XIV.
How Axhmals Breathe. 110
CHAPTER XV.
Secretion and Excretion. 120
CHAPTER XVI.
The Sikin and Sifeleton 125
CHAPTER XVII.
How Animals Move. 152
8. Musele 152
9. Locomotion. 155
CHAPTER XVIII.
Tile Nervous System 164
10. The Senses. 173
11. Instinct and Intelligence. 181
12. The Voices of Auimals. 185

CONTENTS.
CIIAPTER XIX. PAGE
Reprodection 188
CHAP'TER XX.
Development. 193

1. Metamorphosis 203
2. Alternate Generation. 206
3. Growth and Repair. 207
4. Likeness and Variation. 209
5. Humology, Analogy, and Correlation. 211
6. Relations of Number, Size, Form, and Rank. 214
7. Thie struggle for Life 219
PART II.-SYSTEMATIC ZOOLOGY.
CIIAPTER XXI.
The Classification of Animals 223
Protozoans 231
Colenterates. 237
Eehinoderms 247
Mollusks 254
Articnlates. 269
Vertebrates. 295
CHAPTER XXII.
Systematic Arrangement of Representative Forms 349
CHAPTER XXIII.
The Distribetion of Animals 357
NOTES 367
TIIE NATURALIST'S LIBRARY 385
INDEX 387

- INTR0DUCTION.

1. Definition of Zoology, and its Place among the Sciences.-The province of Natural INistory is to describe, compare, and elassify natural objects. These objects have been divided into the "organie" and the "inorganic," or those which are, and those which are not, the products of life. Biology is the seience of the former, and Mineralogy the science of the latter. Biology again separates into Botamy, or the Nitural Listory of Plants, and Zoology, or the Natural History of Animals; while Mineralogy divides into Mineralog! proper, the science of mineral species, and Litholoyy, the science of mineral aggregates or rocks. Geology is that comprehensive knowledge of the earth's structure and development which rests on the whole doctrine of Natural History.

If we examine a picee of chalk, and determine its physical and chemical characters, its mode of occurrence and its nses, so as to distinguish it from all other forms of matter, we have its Mineralogy. But chalk occurs in vast natmral beds: the examination of these masses-their origin, structure, position, and relation to other rocks - is the work of the Lithologist. Further, we observe that while chalk and marble are chemically alike, they widely differ in another respect. Grinding a picee of chalk so thin that we can see through it, and putting it under a microscope, we find imbedded in it inmmerable bodies, about the hundredth of an inch in diameter, having a well-defined, symmetrical shape, and chambered like a Nautilus. We can not say these are accidental aggregations, nor are they crystals: if the oyster-shell is formed by an Oyster, these also must be the products of life. Indeed, the dredge brings up similar microscopic skeletons from the bottom of the Atlantic. So we conclude that chalk is but the dried mud of an ancient
sea, the cemetery of comntless anmalenles that lived and died long ago. The consideration of their fossil remains belongs to Paleontology, or that part of Biology which deseribes the relics of extinct forms of life. To study the stratigraphical position of the chalk-bed, and by the aid of its Paleontology to determine its age and part in the world's history, is the business of Geology.

Of all the sciences, Zoology is the most extensive. Its field is a world of varied forms-hundreds of thousands in number. To determine their origin and development, their structure, habits, distribution, and mutual relations, is the work of the Zoologist. But so many and far-reaching are the aspects under which the animal creation may be contemplated, that the general science is beyond the grasp of any single person. Special departments have, therefore, arisen; and Zoology, in its comprehensive sense, is the combined result of the labors of many workers, each in his own line of research.

Structural Zoology treats of the organization of animals. There are two main branches: Automy, which considers the constitution and construction of the animal frame; and Physiology, which is the study of the apparatus in action. The former is separated into Embryology, or an account of the successive modifications through which an animal passes in its development from the egg to the adnlt state ; and Morphology, which includes all inquiries concerning the form of mature animals, or the form and arrangement of their org:ms. The microscopical examination of any part, especially the tissues, belongs to Histology. Comparative Zoology is the comparison of the anatomy and physiology of all animals, existing and extinct, to discover the fundamental likeness underneath the superficial differences, and to trace the adaptation of organs to the habits and spheres of life. It is this comparative science which has led to such grand generalizations as the unity of structure amidst the diversity of form in the animal creation, and by revealing the degrees of affinity between species has enabled us to classify them in natural groups, and thus laid the foundation of Systematic Zoology. When the study of structure is limited to a particular class or species of animals, or to a particular organ or part, monographic sciences are created, as Ornithotomy, or anatomy of birds;

Osteology, or the science of bones; and Odontography, or the natural history of teeth.

Systematic Zoology is the classification of ammals, or the study of amimals, as to their kinds, giving to each a distinctive name and description. The systematic knowledge of the sev. eral classes, as Insects, Reptiles, and Birds, has given rise to subordinate sciences, like Entomology, Herpetology, and Ornithologg. ${ }^{\text {* }}$ *

Distributive Zoology is the knowledge of the successive appearance of animals in the order of time (Paleontology in part), and of the geographical and physical distribntion of animals, living or extinct, over the surface of the earth.

Theoretical Zoology includes those provisional modes of grouping facts, and interpreting them, which still stand waiting at the gate of science. They may be true, but we can not say that they are true. The evidence is incomplete. Such are the theories which attempt to explain the origin of life and the origin of species.

Suppose we wish to understand all about the Horse. Our first object is to study its structure. The whole body is inclosed within a hide, a skin covered with hair; and if this hide be taken off, we find a great mass of flesh or muscle, the substance which, by its power of contraction, enables the animal to move. On removing this, we have a series of bones, bound together with ligaments, and forming the skeleton. Pursuing our researches, we find within this frame-work two main cavities: one, beginning in the skull and rmming through the spine, containing the brain and spinal marrow; the other, commencing with the mouth, contains the gullet, stomach, intestines, and the rest of the apparatus for digestion, and also the heart and lungs. Examinations of this character would give us the Anatomy of the Horse, or, more precisely, IIippotomy. The study of the bones alone would be its Osteology; the knowledge of the nerves would belong to Neurotomy. If we examined, under the microscope, the minute structure of the hair, skin, flesh, blood, and bone, we would learn its Mistology. The consideration of the manifold changes undergone in developing from the egg to the full-

[^0]grown animal, would be the Embryology of the Horse; and its Morphology, the special study of the form of the adult animal and of its internal organs.

Thus far we have been looking, as it were, at a steamengine, with the fires out, and nothing in the boiler; but the body of the living IIorse is a beantifully formed, active machine, and every part has its different work to do in the working of that machine, which is what we eall its life. The science of such operations as the grinding of the food in the complex mill of the month; its digestion in the laboratory of the stomach; the pumping of the blood through a vast system of pipes over the whole body; its purification in the longs; the process of growth, waste, and repair; and that wondrons telegraph, the brain, receiving impressions, and sending messages to the muscles, by which the animal is endowed with voluntary locomotion-this is Plysioloyy. But Horses are not the only living ereatures in the world; and if we compare the structures of varions animals, as the Horse, Zebra, Dog, Monkey, Eagle, and Codfish, we shall find more or less resemblances and differences, enongh to enable us to classify them, and give to each a description which will distinguish it from all others. This is the work of Systematic Zoology. Moreover, the Horses now living are not the only kinds that have ever lived; for the examination of the earth's crust-the great burial-ground of past ages-reveals the bones of numerons horse-like animals: the study of this pre-adamite race belongs to Paleontology. The chronological and geographical distribution of species is the department of Distrilutive Zoology. Specnlations about the origin of the modern Horse, whether by special ereation, or by development from some allied form now extinct, are kept aloof from demonstrative science, inder the head of Theoretical Zoology.
2. History.-The Greek philosopher Aristotle (b.c. 384322) is ealled the "Fether of Zeology." Certainly, he is the only great representative in ancient times, though his frequent allusions to familiar works on anatomy show that something had been done before him. His "History of Animals," in nine books, displays a wonderful knowledge of external and internal structure, habits, instincts, and uses. His deseriptions are incomplete, but generally exact, so far as they go.

Alexander, it is said, gave him nine hundred talents to collect materials, and put at his disposal several thousand men, for hunting specimens and procuring information.

The Romans accomplished little in natural science, though their military expeditions furnished unrivaled opportunities. Nearly three centuries and a half after Aristotle, Pliny (A.1). $23-79$) wrote his "Natural History." He was a voluminous compiler, not an observer: he added hardly one new fact. He states that his work was extracted from over two thousand volumes, most of which are now lost.

During the Middle Ages, Natural Itistory was studied in the books of the ancients; and at the close of the fifteenth century it was found where Pliny had left it, with the addition of many vague hypotheses and silly fancies. Albertus Magnus, of the thirteenth century, and Conrad Gesner and Aldrovandus, of the sixteenth, were yoluminous writers, not naturalists. In the latter half of the sixteenth century, men began to observe nature for themselves. The earliest noteworthy researches were made on Fishes, by Rondelet (15071566) and Belon (1517-1564), of France, and Salviani (15141572), of Italy. They were followed by valuable observations upon Insects, by Redi (1626-1698), of Italy, and Swammerdam (1637-1680), of Holland; and toward the end of the same century, the Dutch naturalist, Leeuwenhocek (16321723), opened a new world of life by the use of the microscope.

But there was no real advance of Systematic Zoology till the advent of the illustrions John Ray (1628-1705), of England. His "Synopsis," published in 1693 , contained the first attempt to classify animals according to structure. Ray was the forerunner of "the immortal swede," Limmens (17071778), "the great framer of precise and definite ideas of natural objects, and terse teacher of the briefest and clearest expressions of their differences." His chief merit was in defining generic gromps, and inventing specific names. ${ }^{2}$ Scarcely less important, however, was the impulse which he gave to the pursuit of Natural History. The spirit of inquiry, which his genius infused among the great, produced voyages of research, which led to the formation of national museums. The first expedition was sent forth by George III. of England, in
1765. Réaumur (1683-1757) made the earliest zoological collection in France ; and the West Iudian collections of Sir ILans Sloane ($1660-1752$) were the nuclens of the British Museum. The accmmulation of specimens suggested comparisons, which eventnally resulted in the highest advance of the science.

The brilliant style of Buffon (1707-1788) made Zoology popular not only in France, but throughout Europe. While the genius of Limmeus led to classification, that of Buffon lay in description. He was the first to call attention to the subject of Distribution. Lamarck (1745-1829), of Paris, was the next great light. The publication of his "Animanx sans Vertèbres," in 1801, was an epoch in the history of the loweranimals. He was also the first prominent adrocate of the transmutation of species.

But the brightest luminary in Zoology was George Cuvier (1769-1832), a German, born on French soil. Before his time, "there was no great principle of elassification. Facts were accumulated, and more or less systematized, but they were not yet arranged according to law; the principle was still wanting by which to generalize them and give meaning and vitality to the whole." It was Cuvier who found the key. He was the first to so interpret structure as to be able from the inspection of one bone to reconstruct the entire animal, and assign its position. His anatomical inrestigations revealed the natural affinities of animals, and led to the grand generalization, that the most comprehensive groups in the kingdom were based, not on special characters, but on different plans of structure. Palissy had long ago (1580) asserted that petrified shells were of animal origin; but the publication of Cuvier's "Memoir on Fossil Elephants," in 1800, was the begiming of those profound researches on the remains of ancient life which ereated Palcontology. The discovery of the true relation between all animals, living and extinct, opened a boundless field of inquiry; and from that day the advance of Zoology has been unparalleled. Special studies of particular parts or classes of animals have so rapidly developed, that the history of Zoology during the last fifty years is the history of many sciences. ${ }^{3}$

PARTI.

STRUCTURAL ZOOLOGY.

2

The first thing to be determined about a new specimen is not its name, but its most prominent character. Until you know an animal, care not for its name.-Agassiz.

The great benefit which a scientific education bestows, whether as training or as knowledge, is dependent upon the extent to which the mind of the student is brought into inmediate contact with facts-upon the degree to which he learns the habit of appealing directly to Nature.-Huxley.

COMPARATIVE ZOOLOGY.

CHAPTER I.

MINERALS AND ORGANIZED BODIES DISTINGUISHED.

Nature may be separated into two great kingdomsthat of mere dead matter, and that of matter under the influence of life. ${ }^{4}$ These differ in the following points:
(1) Composition.-Fewer elements are used in the organic world than in the mineral. Over sixty are found in the latter, while four or five make up the former. Organic bodies lave a striking uniformity of composition: the majority being ternary compounds, consisting of carbon, hydrogen, and oxygen; or quaternary, adding nitrogen; while a few only contain also sulphur or iron. But minerals exhibit a greater variety in their constitution, being made of one element alone, or two or more. In organic substances each ingredient is eqnally united with all the rest, while mineral compounds can be resolved into binary combinations. Thus, fibrine, which is composed of carbon, hydrogen, oxygen, and nitrogen, is called a quaternary compound ; and carbonate of ammonia, made of the same materials, is considered a binary union of two other linary compounds, carbonic acid and ammonia. But this distinction is shaken by the probability that binary principles exist in living bodies. It is true, however, that the constitution of organic substances is more complex than that of minerals; for, though composed of few elements,
a large number of atoms of those elements enter into combination. Thus, one molecule of fibrine contains 216 atoms of carbon, 169 of hydrogen, 68 of oxygen, 27 of nitrogen, and 2 of sulphur. Organic molecules are therefore larger than the moleenles of minerals. Furthermore, combinations formed under the intluence of life are invariably characterized by the presence of carbon and water. An animal always contains a mixture of solids, liquids, and gases.
(2) Structure. - A mineral is homogeneous, while an organized body is heterogeneous; i.e., it is composed of different parts, called tissues and organs, having pecnliar uses and definite relations to one another. The tissnes and organs, again, are heterogeneous, consisting mainly of microscopic cells, a structure developed only by vital action. All the parts of an organism are mutually dependent, and reciprocally means and ends, while each part of a mineral exists for itself. The smallest fragment of marble is as much marble as a mountain-mass; but the fragment of a plant or animal is not an individual. The particles of a mineral are held together by cohesion; the exact nature of the force, commonly called "life," which presides over an organized body remains to be discovered.
(3) Size and Shape. - Living bodies gradually acquire determinate dimensions; so do minerals in their perfect or crystal condition. But unerystallized, inorganic bodies have an indefinite bulk. Most minerals are amorphous; crystals have regular forms, bommded, as a rule, by plane surfaces and straight lines; plants and animals are circumscribed by curved surfaces, but never assume aecurate geometrical forms. ${ }^{6}$
(4) Phenomena.-Minerals remain internally at rest, and increase by external additions. In contrast, organisms are all in motion: they are constantly in a state of composition and decomposition, incorporating foreign particles and
giving ont their own. Organized bodies, moreover, pass through a cycle of changes-growth, development, and reproduction. Of more complex constitution, they are more unstable, and are more liable to decomposition than most inorganic compounds. The action of heat is invariably destructive. At the end of a certain period, fixed for each species, living bodies infallibly perish.

CHAPTER II.

PLANTS AND ANIMALS DISTINGUISHED.
It may seem an easy matter to draw a line between plants and animals. Who can not tell a Cow from a Cabbage? Who would confound a Coral with a Mushroom? Yet it is impossible to assign any absolute, distinctive character which will divide the one mode of life from the other. The difficulty of defining an animal increases with our knowledge of its nature. Linnæus defined it in three words; a century later, Owen declared that a definition of plants which would exclude all animals, or of animals which would not let in a single plant, was impossible. Each different character used in drawing the boundary will bisect the debatable ground in a different latitude of the organic world. Between the higher animals and higher plants the difference is apparent; but when we reflect how many characters the two have in common, and especially when we descend to the lower and minuter forms, we discover that the two "kingdoms" tonch, and eren dissolve into, each other. This borderland has been as hotly contested among naturalists as many a disputed frontier between adjacent nations. Its inhabitants have been taken and retaken several times by
botanists and zoologists; for they have characters that lead on the one side to plants, and on the other to animals. To solve the difficulty, some eminent naturalists, as Häckel and Owen, propuse a fourth "kingdom," to receive those living beings which are organic, but not distinctively regetal or auimal. But a greater difficulty arises in attempting to fix its precise limits.

The drift of modern research points to this: that there are but two kingdoms of nature, the mineral and the organized, and these closely linked together; that the latter must be taken as one whole, from which two great branches rise and diverge. "There is at bottom but one life, which is the whole life of some creatures, and the common basis of the life of all; a life of simplest moving and feeling, of feeding and breathing, of producing its kind and lasting its day; a life which, so far as we at present know, has no need of such parts as we call organs. Upon this general foundation are built mp the manifold special characters of animal and regetable existence; but the tendency, the endeavor, so to speak, of the plant is one, of the animal is another, and the unlikeness between them widens the higher the building is earried up. As we pass along the series of either [branch] from low to high, the plant becomes more regetative, the animal more animal." ${ }^{\circ}$

In general, we may say that a rooted organism, retaining carbon and exhaling oxygen, feeding on mineral matter by absorption, and haring cellulose tissnes, is a plant; that an irritable or locomotive organism, retaining oxygen and exhaling carbonic acid, feeding on organic matter by a mouth and stomach, and having albuminons tissnes, is an animal. But Nature knows no such line of demarkation; for it is bridged at numerous points.
(1) Origin.-Both branches of the tree of life start alike: the lowest of plants and animals, as Protococcus and Gregarina, consist of a single cell. In fact, the eycle of life in
all living beings, high or low, begins in a small round det of matter-in plants called an ovule, in animals, an ovim. This cell, or dot, contains a fluid, called protoplasm, identical in composition and in function. In the very simplest forms the protoplasm is not inclosed by a membrane; but generally there is a cell-wall. In plants, with few exceptions, this wall is of cellulose, or something akin to starch; in animals, with few exceptions, the wall is a pellicle of firmer protoplasm, i.e., albuminous.
(2) Composition.-Modern research has broken down the partition between plants and animals, so far as chemical nature is concerned. The vegetable fabric and secretions may be ternary or binary compounds; but the essential living parts of plants, like animals, are quaternary, consisting of four elements-carbon, hydrogen, oxygen, and nitrogen. Cellulose (woody fibre), starch, and chlorophyl (green coloring matter) are eminently vegetable products, but not distinctive ; for celluluse is wanting in some plants, as Fungi, and present in some animals, as Tunicates; starch, under the name of glycogen, is found in the liser and brains of Mammals, and chlorophyl gives color to the fresh-water Polyp. Still, it holds good, generally, that plants consist mainly of cellulose, dextrine, and starch; while animals are mainly made up of albumen, fibrine, and gelatine ; that nitrogen is more abundant in animal tissues, while in plants carbon is predominant.
(3) Form.- No outline can be drawn which shall be common to all animals or all plants. The lowest members of both have no fixed shape. The seeds of Conferree can hardly be distinguished from animaleules; the compound animals, Sea-mat and Sea-moss (Polyzoa), are often taken for sea-weeds; the trees mimic the branching Coral, and the Coral buds and blossoms like the Rose. The ideal form of a plant--trunk, branches, twigs, special organs -is a form natural to all living matter enjoying rapid
growth. Ascending the scale of animal creation, we find the primitive form gradually obscured by new and powerful molding influences.
(4) Structure.-A plant is the multiplication of the unit -a cell with a cellulose wall. Some simple animals have a similar cellular structure, and all animal tissues, while forming, are cellular. But this character, which is permanent in plants, is generally transitory in animals. Their tissues are composed of little plates, or laminæ, intersecting each other in such a way as to constitute spongy masses, or membranes, which are not made up of cells independent of each other, as in vegetables. Excepting the very lowest forms, animals are more composite than plants, $i . e$., their organs are more complex and numerons, and more specially devoted to particular purposes. Repetition of similar parts is a characteristic of plants ; of animals, it is differentiation. Most animals, moreover, hare fore-and-aft polarity; in contrast, plants are up-and-down structures, though, in this respect, they are imitated by radiated animals, like the Star-fish.
(5) Physiology.-In their modes of nutrition, plants and animals stand widest apart. Yet "the difference" (says Owen) "is, at most, one of form and proportion of the internal cavities, and of their external openings: they are the same as to function." As a rule, plants absorb and assimilate food by the external surface, which is therefore greatly extended by leaves and roots. As a rule, animals receive nourishment throngh a mouth into an internal permanent or temporary stomach. But there are certain molds which seem to swallow their food, ${ }^{7}$ and Tapeworms have neither mouth nor stomach.

A plant in the seed and an animal in the egg exist in similar conditions: in both cases a mass of organic matter accompanies the germ. When this supply of food is exhansted, both seek nourishment from without. But here
analogy ends: the plant feeds on mineral matter, the animal on organic. The former only has the power to convert the inorganic elements (carbon, oxygen, hydrogen, and nitrogen) into organic substance; the latter is dependent upon the organic substance thus prepared. But the Fungi also live on organic compounds (in a state of decomposition); and it is probable that some animals have the power of elaborating tissue directly from the mineral kingdom. The materials of nutrition are absorbed by all living bodies in a fluid state: the food of plants is gaseous or liquid; that of animals is received in a form more or less solid, but afterward dissolved. While the absorbents of plants (roots and leaves) are extemal, those of animals are distributed along the walls of a digestive cavity. Plants exhale less water, and animals more water, than they imbibe.

In general, plants receive nourishment to grow, animals to repair waste. The fabric of the former, once completed, remains unchanged; while the tissues of the latter require constant renewal. Plants are continually receiving additional members; animals are born perfect. In other words: in the nutrition of the former, addition is the prominent idea; in the latter, substitution. In the former, the result is a straggling outline, with almost unlimited growth ; in the latter, a finished, compact form. ${ }^{8}$

Plants decompose, and animals recompose, carbonic acid; the one yielding the oxygen and fixing the carbon, the other exhaling carbonic acid and retaining some oxygen. Animals, therefore, inspire what plants set free: the food of the former undergoes oxidation ; that of the latter, deoxidation. This chemical antagonism, howerer, will not serve as a rigorous definition. Mushrooms and leafless parasites, all plants in the dark, germinating seeds and opening flowers, give off carbonic acid. ${ }^{.}$Every plant begins life as an animal-a consumer, not producer: not till
the young sloot rises abore the soil, and unfolds itself to the light of the sun, at the touch of whose mystic rays chlorophyl is created, does real, constructive regetation begin; then its mode of life is reversed - carbon is retained and oxygen set free.

Most plants, and many animals, multiply by budding and division; on both we practice grafting; in both the cycle of life comes romnd again to the ovnle or orum. Do annuals flower but to die? Insects lay their eggs in their old age. But in all cases of true orulation, the animal embryo absorbs its yolk from the inside, while that of a seed is itself surrounded by the albumen.

Animals generally possess sensation, consciousness, and volition. Yet volition is wanting in some lower forms; and many plants show excitability, if not sensibility. For aught we know, irritability is the birthright of all living matter. In plants, the protoplasm is scattered and buried in rigid strnctnres: feeling is, therefore, dull. In animals, the protoplasm is concentrated into special organs, and so feeling, like electricity rammed into Leyden jars, goes off with a flash. ${ }^{10}$

The self-motion of animals and the rooted state of plants is a very general distinction; but it fails where we need it most. It is a characteristic of living things to move. The protoplasm of all organisms is unceasingly active. ${ }^{11}$ Besides this internal morement, myriads of plants, as well as animals, are locomotive. Rambling Diatoms, writhing Oscillaria, and the agile spores of Cryptogams crowd our waters, their instruments of motion (cilia) being of the very same character as in microscopic animals; while Sponges, Corals, Oysters, and Barnacles are stationary. A contractile vesicle is not exclusively an animal property, for the fresh-water Volvox and Gonium have it. The act of muscular contraction in the highest animal is due to the same kind of change in the form of the cells of
the ultimate fibrille, as that which produces the sensible motions of plants. The ciliary movements of animalenles and of microscopic plants are precisely similar, and in neither case indicate consciousness or self-determining power.

Plants, as well as animals, need a season of repose. Both have their epidemics. On both, narcotic and acrid poisons produce analogons results. Both have circulatory systems. Are some animals warm-blooded? In germination and flowering, plants evolse heat-the stamens of the Arum, e. g., showing a rise of 20°. In a sense, an Oak has just as much heat as an Elephant, only the miserly tree locks up the sunlight in solid carbon.

At present, any boundary of the Animal Kingdom is arbitrary. "Probably life is essentially the same in the two kingdoms; and to regetable life, faculties are superadded in the lower animals, some of which are, here and there, not indistinctly foreshadowed in plants." "It must be said that there are organisms which at one period of their life exhibit an aggregate of phenomena such as to justify us in speaking of them as animals, while at another they appear to be as distinctly regetable." ${ }^{12}$

CHAPTER III.

RELATION BETWEEN MNERALS, PLANTS, AND ANTMALS.

There are no independent members of creation: all things touch upon one another. The matter of the living world is identical with that of the inorganic. The plant, feeding on the minerals, carbonic acid, water, and ammonia, builds them up into complex, organic compouncls, as starch, sugar, gum, cellulose, albumen, fibrinc, cuseine,
and gluten. When the plant is eaten by the animal, the ternary products, as starch, sugar, gum, and cellulose, are simply carried by the blood to the lungs, and decomposed by oxidation back to carbonic acid and water, in which process heat is generated. The other vegetable products, as albumen, etc., containing nitrogen, go to sustain the animal, forming blood, muscle, cartilage, etc. These, giving way to fresh material (for there is constant renewal), are resolved into carbonic acid, water, and ammonia, and returned to the earth and air through the kidneys. Both plant and animal end their life by going back to the mineral world: and thus the circle is complete-from dust to dust. Carbonate of ammonia and water, a blade of grass and a horse, are but the same elements differently combined and arranged. Plants compress the forces of inorganic nature into chemical compounds; animals liberate them. Plants produce; animals consume. The work of plants is synthesis, a building-np; the work of animals is analysis, or destruction. The tendency in plants is deoxidation; the tendency in animals is oxidation. Withont plants, animals would perish; without animals, plants had no need to be. ${ }^{13}$

CHAPTER IV.

LIFE.

An impenetrable veil hides the nature of life. We know nothing of it except by the phenomena it manifests; and as these manifestations differ from those of any known physical force, they have been attributed to a "special principle." But the existence of this assumer canse has never been demonstrated. The biologist can
take no cognizance of an independent principle whose mysterions union with the body canses it to live, and whose separation leares it to die. In the modern view, life is a system of functions, or the sum total of living phenomena. Many of these phenomena are evidently manifestations of the common force of nature, acting either mechanically, chemically, electrically, or osmotically.

Still, the combination of elements into organic cells, the arrangement of these cells into tissues, the grouping of these tissnes into organs, and the marshaling of these organs into plans of structure, call for some further shaping, controlling power to effect such wonderful co-ordination. Moreover, the manifestation of feeling and conscionsness is a mystery which no physical hypothesis has cleared up. The simplest rital phenomenon has in it something over and above the known forces of the laboratory. ${ }^{14}$

Life is exhibited only under certain conditions. One condition is the presence of a physical basis called protoplasm. This substance is found in all living bodies, and, so far as we know, is identical in all - a viscid, transparent, homogeneons, minutely granular, albuminoid matter. Life is inseparable from this protoplasm; but it is dormant unless excited by some external stimulants, such as heat, light, electricity, food, water, and oxygen. Thus, a certain temperature is essential to growth and motion ; taste is induced by chemical action, and sight by luminous vibrations.

The essential manifestations of animal life may be reduced to three: contractility, or the property possessed by certain parts of the body, especially the muscular fibres, of shortening themselves ; sensibility, or the peculiar power, confined to nervous matter, of receiving and transmitting impressions; and the power of assimilating food. All
animals more, feel, and grow. But some of the lowest forms are without the slightest trace of organs; they seem to be as perfectly homogeneons and structureless as a drop of jelly. They could not be more simple. They are devoid of museles, nerves, and stomach ; yet they have all the fundamental attributes of life-moving, feeling, and eating. It has been supposed that the muscular and nervous matter is diffused in a molecular form; but all we can say is, that the highest power of the microscope reveals no organized structure whatever, i.e., there are no parts set apart for a particular purpose; but a fragment is as good as the whole to perform all the functions of life. The animal series, therefore, begins with forms that feel without nerves, move without museles, and digest withont a stomach: in other words, life is the cause of organization, not the result of $i t$. Animals do not live because they are organized, but are organized because they are alive.

CHAPTER V.

ORGANIZATION.

We have seen that the simplest life is a formless speck of protoplasm, without distinctions of structure, and therefore without distinctions of function, all parts serving all purposes - mouth, stomach, limb, and lung-indiscriminately. There is no separate digestive cavity, no separate respiratory, muscular, or nervons systems. Every part will successively feed, feel, move, and breathe. Just as in the earliest state of society, all do every thing, each does all. Every man is his own tailor, architect, and lawyer. But in the progress of social derelopment the principle of the dirision of labor emerges. First comes a distinction
between the governing and governed classes ; then follow and multiply the various civil, military, ecclesiastical, and industrial occupations.

In like manner, as we advance in the animal series, we find the body more and more heterogeneons and complex by a process of differentiation, i. e., setting apart certain portions of the body for special duty. In the lowest forms, the work of life is carried on by very simple apparatus. ${ }^{15}$ But in the higher organisms, every function is performed by a special organ. For example, contractility, at first the property of the entire animal, becomes centred in muscular tissue ; respiration, which in simple beings is effected by the whole surface, is specialized in lungs or gills; sensibility, from being common to the whole organism, is handed over to the nerves. An animal, then, whose body, instead of being uniform throughout, is made up of different parts for the performance of particular functions, is said to be organized. And the term is as applicable to the slightly differentiated cell as to complex Man. Organization is expressed by single cells, or by their combination into tissues and organs.

1. Cells.-A cell is the simplest form of organized life. In general, it is a microscopic globule, consisting of a delicate membrane inclosing a minute portion of protoplasm. The rery simplest kinds are without granules or signs of circulation ; but usually the protoplasm is granular, and contains a defined separate mass called the nucleus, within which are sometimes seen one or two, rarely more, dark, round specks, named nucleoli. The enveloping membrane is

Fig. 1.-Parts of a Cell: a, v, y, cell-wall; p, nucleus; w, nucleolus. extremely thin and transparent, structureless and minutely perforated: it is only an excretion of dead matter acting as a boundary to the cell-contents. ${ }^{10}$ The nucleus is gen-
erally attached to the inside of the membrane, and is the centre of activity.

Cells vary greatly in size, but are generally invisible to the naked eye, ranging from $\frac{1}{500}$ to $\frac{1}{10000}$ of an inch in diameter. About 4000 of the smallest would be necessary to cover the dot of this letter i. The natural form of isolated cells is spherical; but when they crowd each other, as seen in bone, cartilage, and muscle, their outlines become angular, either hexagonal or irregular.

Within the narrow boundary of a simple circle, the cell-membrane, are exhibited all the essential phenomena of life - growth, development, and reproduction. The physiology of these minute organisms is of peculiar interest, since all animal structure is but the multiplication of the cell as a mit, and the whole life of an animal is that of the cells which compose it: in them and by them all its vital processes are carried on. ${ }^{17}$

The structure of the cell is well illustrated by an egg, in which the shell represents the outer membrane, the white the cell-contents, the yolk the nuclens, and the germinal spot of the yolk the nucleolns. It is also seen in blood-corpuscles, by diluting with a weak solution of salt or sugar a drop of blood from a Frog, and placing it under the microscope. (See Figs. 62 and 158.)
2. Tissues.-There are organisms of the lowest grade (as Gregarina) which consist of a single cell, living for and by itself. In this case, the animal and cell are identical: the Gregarina has as much individuality as the Elephant. But all animals, sare these unicellular beings, are mainly aggregations of cells. For the varions parts of a body are not only separable by the knife, into bones, muscles, nerves, etc., but these are susceptible of a finer analysis by the microscope, which shows that they arise from the development and union of cells. These cellular fabrics, called tissues, differ from one another both chemically
and structurally, but agree in being permeable to liquids -a property which secures that flexibility of the organs so essential to animal life. Every part of the human body, for example, is moist: even the hairs, nails, and cuticle contain water. , The contents as well as the shape of the cells are usually modified according to the tissue which they form: thus, we find cells containing earthy matter, iron, fat, mucus, ctc.

In plants, the cell always retains the characters of the cell; but in animals (after the embryonic period) the cell usually undergoes such modifications that the cellular form disappears. The cells are connected together or enreloped by an intercellular substance (blastema), which may be watery, soft, and gelatinous, firmer and tenacions, still more solid and hyaline, or hard and opaque. In the fluids of the body, as the blood, the cells are separate; but in the solid tissues they coalesce, being simply connected together, as in the epidermis, or united into fibres and tubes.

In the lowest forms of life, and in all the higher animals in their embryonic state, the cells of which they are composed are not transformed into tissues: definite tissues make their first appearance in the Polyps, and they differ from one another more and more widely as we ascend the scale of being. In other words, the bodies of the lower and immature animals are more uniform in composition than the higher, adult forms. In the latter only are all the following tissues found represented:
(1) Epithelial Tissue.-This is the simplest form of cellular structure. It covers all the free surfaces of the body, internal and external, so that an animal may be said to be contained between the walls of a double bag. That which is internal, lining the mouth, windpipe, lungs, blood-vessels, gullet, stomach, intestines-in fact, every cavity and canal -is called epithelium. It is a very delicate skin, formed of
flat or cylindrical cells, and in some parts (as in the windpipe of air-breathing animals, and along the gills of the Oyster) is corered

Fig. 2.-Various kinds of Epithelium Cells: a, colnmnar, from small intestine; 3 , a single cell, showing nucleus; b, ciliated, from one of the small airtubes: d, the same, from the windpipe, with single cell magnified about 200 times; c, squamons, from eyelid of a calf, showiug changes of form, from the deep to superficial cells, 1 being the scurf. with cilia, or minnte hairs, about $\frac{1}{6000}$ of an inch long, which are incessantly moring. Continuous with this imer lining of the body (as seen on the lip), and covering the ontside, is the epidermis, or cuticle. It is the outer layer of the "skin," which we can remove by a blister, and in Man taries in thickness from $\frac{1}{800}$ of an inch on the cheek to $\frac{1}{10}$ on the sole of the foot. It is constantly wearing off at the surface, and as constantly growing in the deeper portion ; and in the process of growth and passage outward, the cells change from the spherical form to dead horny scales (seen in scurf and dandruff). In the lower layer of the cuticle we find the pigment cells, characteristic of colored races. Neither the epidermis nor the corresponding tissue within (epithelinm) has any blood-vessels or nerves. The epithelial tissue, then, is simply a superficial covering, bloodless and insensible protecting the more delicate parts underneath. Hairs, horns, hoofs, nails, claws, corns, beaks, scales, tortoiseshell, the wings of Insects, etc., are modifications of the epidermis.
(2) Connective Tissue.-This is the most extensive tissue in animals, as it is the great connecting medium by which the different parts are held together. Could it be taken out entire, it would be a complete mold of all the organs.

It surrounds the bones, muscles, blood-vessels, nerves, and glands, and is the substance of the ligaments, tendons, "true skin," mucous membranes, etc. It varies in character, being soft, tender, and elastic, or dense, tough, and generally unyielding. In the former state, it consists of innumerable fine white and yellow fibres, which interlace in all directions, learing irregular spaces, and form-
 ing a loose, spongy, moist Fig.3.-Connective Tissue, showing areolar web. In the latter, the fibres are condensed into sheets or parallel cords, having

Fig. 4.-Connective Tissue from human peritoneum; highly magnified; α, containing blood-vessel.
a wary, glistening appearance. Comective tissme is not very sensitive. It contains gelatine - the matter which tans when hide is made into leather. ${ }^{18}$
(3) Adipose Tissue. - This is simply an aggregation of large cells (averaging $\frac{1}{600}$ inch in diameter) filled with

Fig. 5.-Adipose Tissue, a; with fibres of comnective tissue, b. fat. They are distributed throngh the connective tissue (as in the "blubber" of Whales), or united into distinct masses (as about the kidneys in Ruminants). The marrow of bones is a good example. Globnles of fat occur in many Molluses and Insects; but true adipose tissue is found only in back-boned animals, particularly the herbivorous. In the arerage Man, it constitutes about $\frac{1}{\frac{1}{2}}$ part of his weight, and a single Whale has yielded 120 toms of oil. The fat of animals has the different names of oil, lard, tallow, snet, spermaceti, etc. It is a reserve of mutriment in excess of consmmption, serving also as a packing material, and as a protection against cold.
(4) Cartilaginous Tissue. - This is a deep-seated structure, better known as "gristle," which is dense, elastic, blnish white, and translucent, composed of cells imbedded in a grannlar or hyaline substance. It is found where strength, elasticity, and insensibility are wanted, as at the joints. It also takes the place of bones in the embryo. When cartilage is mixed with connective tissue, as in the ear, it is called fibro-cartilage.
(5) Osseous Tissue.-This hard, opaque tissue, called "bone," differs from the

Fig. 6. - Ossifying Cartilage, $\times 10$; a, cartilage cells, passing into compact bone, c, and then spongy bone, e.
former in having the intereellular spaces or meshes filled with phosphate of lime and other earths, instead of a hyaline substance. It may be called petrified cartilage-the quantity of earthy matter, and therefore the brittleness of the bone, increasing with the age of the animal. If a chicken-bone be left in dilute moriatic acid several days, it may be tied into a knot, since the acid has dissolved the lime, leaving nothing but cartilage and eonnective tissue. If a bone be burned, it becomes light, porous, and brittle, the lime alone remaining. ${ }^{19}$
Bone is a very rascu-

Fig. 7.-Transverse section of a Bone (Human Femur), $\times 50$, showing Haversian canals. lar tissue, that is, it is traversed by minute blood-ressels and nerves, which pass through a net-work of tubes, called Haversian canals. The

Fig. S.-Frontal Bone of IInman Skull under the microscope, showing lacune and canaliculi. canals average $\frac{1}{1000}$ of an inch, being finest near the surface of the bone, and larger further in, where they form a cancellated or spongy structure, and finally merge (in the long bones) into the central carity, eontaining the marrow. Under the microscope, each canal appears to be the centre of a multitude of lamina, or plates, arranged around it.

Lying between these plates are little carities, called lacunce, from which radiate exceedingly fine pores, or canaliculi. The form of the lacunæ differs in the bones of different animals, being angular in Fishes, and oval in other animals. The size is related, not to the size of the animal, but to the size of the blood-corpuscles, and is therefore greatest in Reptiles.

True bone is found only in Vertebrates, or back-boned animals.
(6) Dental Tissue. - Like bone, a tooth is a combination of earthy and animal matter. It may be called petrified epithelium. In the higher animals, it consists of three parts: dentine, forming the body of the tooth, and always present; enamel, capping the crown; and cement, covering the fangs (Fig. 29). The last is true bone, or osseons tissue. Dentine resembles bone, but differs in having neither

Fig. 9.- Mighly marnified section of Dentine and C'ement, from the fang of a Human Molar: a, b, marks of the origiual deutinal pulp; d, deutiual tubes, terminating in the very sensitive, modified layer, $g ; h$, cement.
lacume nor (save in Shark's teeth) canalicnli. It shows, instead, muder the miscroscope, innumerable parallel tubes, reaching from the outside to the pulp-cavity within. The "ivory" of Elephants consists of dentine. Enamel is the hardest substance in the body, and is composed of minute six-sided fibres, set closely together. It is wanting in the teeth of most Fishes, Suakes, Sloths, Armadillos, Spermwhales, ete.

True dental tissue is confined to Vertebrates.
(7) Muscular Tissue.-If we examine a piece of lean meat,
we find it is made up of a number of fusciculi, or bundles of fibres, placed side by side, and bound together by connective tissue. The microscope informs us that each fibre is itself a bundle of smaller fibres; and when one of these is more closely examined, it is found to be inclosed in a delicate, glossy tube, called the surcolemma. This tube is filled with very minute, parallel fibrils, areraging $\frac{1}{10000}$ of an inch in diameter, and having a beaded as-

Fig. 10.-Striated Muscular Fibre (of the Pig), $\times 200$. The constituent cells are seen at a; c is a fasciculus, or buadle. lect, each fibril being a row of cells. Tissne of this descrip-

Fig. 11. - Striated Muscular Fibres, from the heart of Man, divided by transverse septa into separate nucleated portions. tion constitutes all ordinary muscle, or "lean meat," and is marked by regular cross-lines, or strice.

Besides this striated muscular tissue, there exist, in the coats of the stomach, blood-vessels, and some other parts of Vertebrates, smooth muscular fibres, or membranes, which show a nuclens under the microscope, and do not break up into fibrils. The gizzards of fowls exhibit this form.

All muscle has the property of shortening itself when excited; but the contraction of the striated kind is under the control of the will, while the morement of the smooth fibres is involuntary. ${ }^{20}$ Muscles are well supplied with arteries, veins, and nerves; but the color is due to a peenliar pigment, not to the blood.

Muscular tissue is found in all animals, from the Coral to Man.
(8) Nervous Tissue.--Nervons matter exists under three forms: First-the cellular, consisting of nucleated cells,

Fig. 12.-Structure of a Nerve: 1, sheath, or neurilemma: 2, mednllary substance of Schwann ; 3, axis cylinder, or primitive baud. rarsing from $\frac{1}{6000}$ to $\frac{1}{200}$ of an inch in diameter, and distributed through the body, particularly in the gray portion of the brain, spinal cord, and nerve-centres, or ganglia. Second-the filrous, consisting of pale, flat, extremely fine filaments. They abound in the sympathetic nerves, the only nerves found in the Invertebrates. Third - the tubular. These are much larger than the fibrous, the coarsest being $\frac{1}{1 \frac{1}{200}}$ of an inch in diameter. They consist of tubes inclosing a transparent fibre and a viscid fluid called the nervemarrow. ${ }^{21}$ The delicate tube itself is called neurilemma,

Fio. 13.-A Ganglion of the Sympathetic Nerve of a Mouse.
analogous to the sarcolemma of muscular tissne. Nervetubes are found only in back-boned animals, and chiefly in the white substance of the brain and spinal cord.

A bundle of fibrous or tubular nerrous matter, surrounded by comnective tissue, constitutes a nerve.
3. Organs, and their Functions.- Animals, like Plants, grow, reproduce, and die: these three are the capital facts of every organism. Out of these may issue some peculiar phenomena, as Motion and Will.

Life is manifested in certain special acts, called functions, performed by certain special parts, called organs. Thms, the stomach is an organ, whose function is digestion. A single organ may manifest vitality, but it does not (sare in the very lowest forms) show forth the whole life of the animal. For, in being set apart for a special purpose, an organ takes upon itself, so to speak, to do something for the benefit of the whole animal, in return for which it is absolved from doing many things. The stomach is not called upon to circulate or purify the blood.

There may be functions withont organs, as the organless Ampeba digests, respires, moves, and reproduces by its general mass. But as we ascend the scale of animal life, we pass from the simple to the complex: gromps of cells or tissnes, instead of being repetitions of each other, take on a difference, and become distinguished as special parts with specific duties. The higher the rank of the animal, the more numerous the organs. The more complicated the structure, the more complicated the functions. But in all animals, the functions are performed under conditions essentially the same. Thus, respiration in the Sponge, the Fish, and in Man has one object and one means, thongh the methods differ. A function, therefore, is a group of similar phenomena produced by like canses.

The life of an animal consists in the accumulation and expenditure of force. The tissnes are store-honses of power, which, as they waste and decay, is given off in varions forms. Thus, the nerrous tissue generates nerve-force; the muscles, motion: and the fatty elements, heat. If we contemplate the phenomena presented by a Dog, the most obvious fact is his power of moving from place to place,
a power produced by the interplay of muscles and bones. We observe, also, that his motions are neither mechanical nor irregular; there is method in his movement. He has the power of willing, seeing, hearing, feeling, etc.; and these functions are accomplished by a delicate apparatus of nerves.

But the Dog does not exlibit perpetual motion. Sooner or later he becomes exhansted, and rest is necessary. Sleep gives only temporary relief. In every exercise of the muscles and nerves there is a cousumption or waste of their substance. The blood restores the organs, but in time the blood itself needs renewal. If not renewed, the animal becomes emaciated, for the whole body is laid mader contribution to furnish a supply. Hence the feelings of hunger and thirst, impelling the creature to seek food. This alone will maintain the balance between waste and repair. We notice, therefore, an entirely different set of functions, involving, howerer, the use of motion and will. The Dog seizes a piece of meat, grinds it between its teeth, sends it into the stomach, where it is digested, and then into the intestine, where it is further changed; there the nourishing part is absorbed, and carried to the heart, which propels it through little tubes, called blood-ressels, all over the body. In this process of digestion, certain fluids are required, as saliva, gastric juice, and bile: these are secreted by special organs, called glands. Moreover, since all the food eaten is not fitted to make blood, and as the blood itself, in going aromen the body, acts like a scavenger, picking up worn-ont particles, we have another function, that of excretion, or remoral of nseless matter from the system. The kidneys and lungs do much of this; but the lungs do something else. They expose the blood to the air, and introduce oxygen, which, we shall find, is essential to the life of every animal.

These centripetal and centrifugal movements in the
body-throwing in and throwing out-are so related and involved, especially in the lower forms, that they can not be sharply defined and classified. It has been said that every Dog has two lives-a regetative and an animal. The former includes the processes of digestion, circulation, respiration, secretion, etc., which are common to all life; the functions of the other, as motion, sensation, and will, are peculiar to animals. The heart is the centre of the regetative life, and the brain is the centre of the animal life. The aim of the regetative organs is to nourish the individnal, and reproduce its kind; the organs of locomotion and sense establish relations between the individual and the world withont. The former maintain life; the others express it. The former develop, and afterward sustain the latter. The vegetative organs, however, are not independent of the animal; for without muscles and nerves we could not procure, masticate, and digest food. The closer the connection and dependence between these two sets of organs, the higher the rank. ${ }^{22}$

All the apparatus and phenomena of life may be in cluded under the heads of

> Nutrition,
> Motion,
> Sensation.

These three are possessed by all animals, but in a variety of ways. No two species have exactly the same mechanism and method of life. We must learn to distinguish between what is vital and what is only accessory. That only is essential to life which is common to all forms of life. Our brains, stomachs, livers, hands, and feet are luxuries. They are necessary to make us human, but not living, beings. Half of our body is taken up with a complicated system of digestion; but the Amela has neithen month nor stomach. We have an elaborate apparatus of motion ; the Oyster can not stir an inch.

Nutrition, Motion, and Sensation indicate three steps up the grade of life. Thus, the first is the prominent function in the Coral, which simply "regetates," the powers of moving and feeling being very feeble. In the higher Insect, as the Bee, there is great activity with low organs of nutrition. In the still higher Manmal, as Man, there is less power of locomotion, though the most perfect nutritive system; but both functions are subordinate to Sensation, which is the crowning development.

In studying the comparative anatomy and physiology of the animal kingdom, our plan will be to trace the various organs and functions, from their simplest expression upward to the highest complexity. Thus, Nutrition will begin with absorption, which is the simplest method of taking food; going higher, we find digestion, but in no particular spot in the body; next, we see it confined to a tube; then to a tube with a sac, or stomach; and, finally, we reach the complex arrangement in Man.

CHAPTER VI.

NUTRITION.

Nutrition is the earliest and most constant of vital operations. While the organs of motion and sensation seem to be wanting in some lower forms, the means of vegetative life are always present. So prominent is the nutritive apparatns, that an animal has been likened to a moving sac, organized to convert foreign matter into its own likeness, to which the complex organs of amimal life are but auxiliaries. Thus, the bones and muscles are levers and cords to carry the body about, while the nervous system directs its motions in quest of food.

The objects of mutrition are growth, repair, and propagation. The first object of life is to grow, for no animal is born finished. Some animals, like plants, grow as long as they live $;{ }^{23}$ but the majority soon attain a fixed size. In all animals, however, without exception, food is wanted for another purpose than growth, namely, to repair the waste which is constantly going on. For every exercise of the muscles and nerves involves the death and decay of those tissues, as shown by the excretions. The amount of matter expelled from the body, and the amount of nourishment needed to make good the loss, increase with the activity of the animal. The supply must equal the demand, in order to maintain the life of the individual; and as an organism can make nothing, it must seek it from without. Not only are the muscles and nerres wasted by use, but every organ in the body; so that the whole structure needs constant renewal. An animal begins to die the moment it begins to live. The function of nutrition, therefore, is constructive, while motion and sensation are destructive.

Another source of demand for food is the production of germs, to propagate the race, and the nourishment of such offspring in the egg and infantile state. This reproduction and development of parts which can maintain an independent existence is a vegetative phenomenon (for plants have it), and is a part of the general process of Nutrition. But it will be more convenient to consider it hereafter (chapters xix., xx.). Still, another necessity for aliment among the higher animals is the maintenance of bodily heat. This will be treated under the head of Respiration.

For the present, we will study Nutrition, as manifested in maintaining the life of an adult individual.

In all animals, this process essentially consists in the introduction of food, its conversion into tissue, and the removal of worn-out material.

1. The food must be procured, and swallowed. (Ingestion.)
2. The food must be dissolved, and the nutritious parts separated into a fluid. (Digestion.)
3. The nutritive fluid must be carefully taken up, and then distributed all over the body. (Absorption and Circulation.)
4. The nutritive fluid, now called blood, must be exposed to the air, to absorb oxygen and liberate carbonic acid. (Respiration.)
5. The tissues must repair their parts wasted by use, by transforming particles of blood into living matter like themselves. (Assimilation.)
6. Certain matters must be strained from the blood, some to serve a purpose, others to be cast out of the system. (Secretion and Excretion.)

The mechanism to accomplish all this in the lowest forms of life is exceedingly simple, a single cavity performing all the functions. But in the majority of animals the apparatus is very complicated: there is a set of organs for the prehension of food; another, for digestion ; a third, for absorption; a fourth, for distribution; and a fifth, for purification.

CHAPTER VII.

THE FOOD OF ANIMALS.

The term food ineludes all substances which contribute to nutrition, whether they simply assist in the process, or are actually appropriated, and become tissue. With the food is usually combined more or less indigestible matter, which is separated in digestion.

Food is derived from the mineral, vegetable, and animal kingdoms. Water and salt, for example, are inorganic. The former is the most abundant, and a very essential article of food. Most of the lower forms of aquatic life seem to live by drinking : their real nourishment, however, is present in the water in the state of solution. The Earthworm, some Beetles, and certain sarage tribes of Men swallow earth; but this, likewise, is for the organic matter which the earth contains. As no animal, so far as we now know, is produced immediately from inorganic matter, so no animal can be sustained by it.

Nutritious or tissue-forming food comes from the organic world, and is either albuminous, as the lean meat of animals and the gluten of wheat; olcaginous, as animal fat and regetable ; or sacclurine, as starch and sugar. The first is the essential food-stuff ; no substance can serve permanently for food-that is, can prevent loss of weight and change in the body-unless it contains albuminons matter. The other two are not absolutely vital. Albumen contains nitrogen, which is necessary to the formation of tissue; fats and sugars are rich in carbon, and therefore serve to maintain the heat of the body. Warm-blooded animals feed largely on farinaceous or starchy substances, which in digestion are converted into sugar. But any animal, of the higher orders certainly, whether herbirorous or carnivorous, would starre, if fed on pure albumen, oil, or sugar. Nature insists upon a mixed diet, and so we find in all the staple articles of food, as milk, meat, and bread. at least two of these principles present. As a rule, the nutritive principles in vegetables are less abundant than in animal food, and the indigestible residue is consequently greater. The nutriment in flesh increases as we ascend the animal scale; thus, Oysters are less nourishing than Fish; Fish, less than Fowl; and Fowl, less than the flesh of Quadrupeds.

Many animals, as most Insects and Mammals, live solely on regretable food, and some species are restricted to particular plants, as the Silk-worm to the white mulberry. ${ }^{24}$ But the majority of animals feed on one another; such are hosts of the microscopic forms, and nearly all the radiated species, marine Shells, Crustaceans, Beetles, Flies, Spiders, Fishes, Reptiles, Birds, and clawed Quadrupeds.

A few, as Man limself, are omnivorons, i. e., are maintained on a mixture of animal and vegetable food. The use of fire in the preparation of food is peculiar to Man, who has been called "the cooking animal." A few of the strictly herbivorous and carnivorous animals have shown a capacity for changing their diet. Thus, the Horse and Cow may be bronght to eat fish and flesh; the Sea-birds can be habituated to grain; Cats are fond of alligatorpears; and Dogs take naturally to the plantain. Certain animals, in passing from the young to the mature state, make a remarkable change of food. Thus, the Tadpole feeds upon regetable matter; but when it becomes a Frog it lives on Insects.

Many tribes, especially of Reptiles and Insects, are able to go withont food for months, or even years. Insects in the larval, or eaterpillar, state are very voracions; but upon reaching the perfect, or winged, state, they eat lit-tle-some species taking no food at all, the mouth being actually closed. The male of the minute Notommata takes in no nutriment from the time it quits its egg till its death.

In general, the greater the facility with which an animal obtains its food, the more dependent is it upon a constant supply. Thus, carnivores endure abstinence better than herbivores, and wild animals than domesticated ones.

CIIAPTER VIII.

HOW AN1MALS EAT.

1. The Prehension of Food. - (1) Liquids. - The simplest method of taking nourishment is by absorption through the skin. The Tape-worm, for example, has neither mouth nor stomach, but imbibes the jnices of the animal it infests. Many other animals, especially Insects, live upon liquid food, but obtain it by suction through a special orifice or tube. Thus, we find a mouth, or sucker, furnished with minute teeth for lancing the skin of animals, as in the Leech; a bristle-like tube fitted for piercing, as in the Mosquito; a sharp sucker armed with barbs, to fix it securely during the act of sucking, as in the Lonse ; and a long, flexible proboscis, as in the Butterfly. Bees have a hairy, channeled tongue, and Flies have one terminating in a large fleshy knob, with or without little "knives" at the base for cutting the skin: both lap, rather than suck, their food.
Most animals drink by suction, as the Ox ; and a few ly lapping, as the Dog; the Elephant pumps the water up with its trunk, and then pours it into its throat; and Birds (excepting Dores) fill the beak, and then, raising the head, allow the water to run down.

Many aquatic animals, whose food consists of small particles diffused through the water, have an apparatus for creating currents, so as to bring such particles within their reach. This is particularly true of low, fixed forms, which are unable to go in search of their food. Thus, the Sponge draws nourishment from the water, which is made to circulate, through the system of canals traversing its body,
by the vibration of minnte hairs, or cilia, lining the canals. The microscopic Infusoria have cilia surronnding the mouth, with which they draw or drive into the body little currents containing mutritious particles. Biralse shells, as the Oyster and Clam, are likewise dependent upon this method of procuring food, the gills being fringed with cilia. So the singular fish, Amphioxns (the only example among Vertebrates), employs ciliary action to obtain the infusorial organisms on which it feeds. The Greenland Whale has a mode of ingestion somewhat unique, gulping great volumes of water into its mouth, and then straining ont, through its whalebone sieve, the small animals which the water may contain.
(2) Solids.-When the food is in solid masses, whether floating in water or not, the animal is usually providerl

Fig. 14.-A Rhizopod (Rotalia Veneta), with pseudopodia extended, $\times 30$. with prehensile appendages for taking hold of it. The jellylike Amœba has neither month nor stomach, but extemporizes them, seizing its food by merely applying its soft body to it, and then wrapping itself around it. Other minute creatures (Foraminifera) extemporize arms by throwing ont thread-like prolongations of their bodies (pseudopodia), which adhere to their prey, and then contract.

A higher type is seen in Polyps and Jelly-fishes, which hare hollow tentacles around the entrance to the stomach (Fig. 194). These tentacles are contractile, and, moreover, are covered with an immense number of minute sacs, in which a lighly elastic filament is coiled up spirally. When the tentacles are tonched by a passing animal, as a Crab, they seize it, and at the same moment throw ont their myriad filaments, like so many lassos, which increase
the adhesive power of the tentacles, and probably also emit a fluid, which paralyzes the victim; the month, meanwhile, expands to an extraordinary size, and the creature is soon ingulfed in the digestive bag.

In the next stage, we find no tentacles, but the food is bronght to the month by the flexible lobes of the body, commonly called "arms," which are covered with hmmdreds of minute suckers ; and if the prey, as an Oyster, is too large to be swallowed, the stomach protrudes, like a proboscis, and sucks it out of its shell. This is seen in the Star-fish (Fig. 207).

A great adrance is shown by the Sea-urchin, whose mouth is provided with five sharp teeth, set in as many jaws, and capable of being projected so as to grasp, as well as to masticate, its food.

In Mollnsks having a single shell, as the Snail, the chief organ of prehension is a straplike tongue, covered with minute recurved teeth, or spines, with which the animal rasps its food, while the upper lip is armed with a sharp, homy plate (Fig. 27). In many marine species, as the Whelk, the tongue is situated at the end of a retractile proboseis, or muscular tube. In the Cuttle-fish, we see the sudden development of an elaborate system of prehensile organs. Besides a spinous tongne, it has a pair of hard mandibles, resembling the beak of a Parrot, and working vertically; and aromed the month are eight or ten powerful arms furnished with numer-

Fig. 15. - Suckers on the Tentacles of a Cuttle-tish: a, hollow axis of the arm, containing nerve and artery ; c, cellular tissue; d, radiating tibres; h, raised margin of the disk aronnd the aperture $f, ?$, which contains a retractile membrane, or " piston," i.
ous cup-like suckers. So perfect is the adhesion of these suckers, it is easier to tear away a limb than to detach it from its hold.

The Articulated animals exhibit a great variety of means for procuring nourishment, in addition to the suctorial contrivances already mentioned, the immmerable modifications of the mouth corresponding to the diversity of food. The Earth-worm swallows earthy matter, which it secures with its lips, the npper one being prolonged. Other worms (as Laodicea) are so constructed that the gullet, which is frequently armed with teeth and forceps, can be turned inside out, to form a proboscis for seizing prey. Millepedes, Caterpillars, and Grubs have a pair of horny jaws moving horizontally. The Centipede has a second pair of jaws, which are really modified feet, terminated by curred fangs containing a poison-duct. The Horse-shoe Crab uses its feet for prehension, and the thighs, or basal joints, of its legs to masticate the food and force it into the stomach. The first six pairs of legs in the Lobster and Crab are likewise appropriated to conveying food into the mouth, the sixth being enormonsly developed, and furnished with powerful pincers, one of which serves as an anchor, enabling the creature to hold

Fig. 16. - One of the Fangs, or Perforated Mandibles, of the Spider. fast to some fixed object, while the other is an instrument for seizing or cutting its prey. Scorpions have a similar pair of claws for prehension, and also a pair of small forceps for holding the food in contact with the mouth. In their relatives, the Spiders, the claws are wanting, and the forceps end in a fang, or hook, which is perforated to convey venom. ${ }^{26}$

The biting Insects, as Beetles and Locusts, hare two
pairs of horny jaws, which open sidewise, one above and the other beluw the oral orifice. The upper pair are called mandibles; the lower, maxillae. The former are armed with sharp teeth, or with cutting edges, and sometimes are fitted, like the molars of quadrupeds, to grind the food. The maxille are similar, but smaller, and in some Insects have appendages called palpi, or feelers, which not only select, but hold, the food steady while they are divided by the mandibles and maxille: such appendages represent a third pair of jaws. The Mantis seizes its prey with its long fore legs, crushes it between its thighs, which are armed with spines, and then delivers it up to the jaws for mastication. All Articulates move their jaws horizontally.

The back-boned animals generally apprehend food by means of their jaws, of which there are two, moving vertically. The toothless Sturgeon draws in its prey by powerful suction. The Ilag-fish has a single tooth, which it plunges into the sides of its victim, and, thus securing a firm hold, bores its way into the flesh by means of its sawlike tongue. But Fishes are usually well provided with teeth, which, being sharp and cursing inward, are strictly prehensile. The fins and tongue are not prehensile. A mouth with horny jaws, as in the Turtles, or bristling with teeth, as in the Crocodile, is the only means possessed by nearly all Reptiles for secmring food. The Toad, Frog, and Chameleon captmre insects by darting ont the tongue, which is tipped with glutinous saliva. The constricting serpents (Boas) crush their prey in their coils before swallowing; and the renomons Snakes have a poison-fang. No Reptile has prehensile lips. All Birds use their toothless beaks in procuring food, but birds of prey also seize with their talons, and Woodpeckers, Inmmers, and Parrots with their tongnes. The beak varies greatly in slape, being a hook in the Eagle, a probe in the Woodpecker, and a shovel in the Duck.

Among the Quadrupeds we find a few special contrivances, as the trunk of the Elephant, and the long tongnes of the Giraffe and Ant-eater; but, as a rule, the teeth are the chief organs of prehension, always aided more or less by the lips. Ruminants, like the Ox, having hoofs on their feet, and no upper front teeth, employ the lips and tongue. Such as can stand erect on the hind legs, as the

Fig. 17.-Arm of the Thumbless Monkey (Ateles). Squirrel, Bear, and Kangaroo, nse the front limbs for holding the food and bringing it to the month, but never one limb alone. The clawed animals, like the Cat and Lion, make use of their feet in securing prey, all four limbs being furnished with curved retractile claws; but the food is conveyed into the mouth by the morement of the head and jaws. Man and the Monkeys employ the hand in bringing food to the mouth, and the lips and tongue in taking it into the cavity. The thumb on the human hand is longer and more perfect than that of the Apes and Alonkeys; but the foot of the latter is also prehensile.
2. The Mouths of Animals.-In the Parasites, as the Tape-worm, which absorb nomrishment through the skin, and Insects, as the May-fly and Bot-fly, which do all their eating in the larval state, the month is either wanting or rudimentary. ${ }^{26}$ The Amœba, also, has no mouth proper, but wraps itself around its food.

In the Animalcules it is simply a round or oval opening to the body-cavity, generally bordered with cilia, and situated on the side of the body, or at one extremity.

An elliptical or quadrangular orifice, surounded with
tentacles, and leading directly to the stomach, is the ordinary mouth of the Polyps and Jelly - fishes. In those which are fixed, as the Aetinia, Coral, and Hydra, the month looks upward: in those which freely move abont, as the Jelly-fish, it is generally underneath, the position of the animal being reversed. In some, the margin, or lip, can be protruded like a proboscis; and in all it is exceedingly dilatable.

The mouth of the Star-fish and Sea-urchin is a simple round aperture, followed by a very short throat. In the Star-fish, it is inclosed by a ring of hard tubercles. In the Sea-lurchin, it is armed with tive sharp teeth, resembling little conical wedges, set in as many jaws, and surrounded by a muscular membrane and minute tentacles.

Among the headless Mollusks which do not move about, the oral apparatns is very simple, being inferior to that of the radiated animals. Thns, the immorable Ascidian has a month without tentacles or lips, and in a strange place, for it is in the interior of the body, at the bottom of the respiratory sac; the aperture at the top of the creature being really for the entrance of water for the donble purpose of respiration and untrition, and any alimentary particles which enter with the water must find their way to the true mouth below. In the Oyster and Bivalves generally, the month is an marmed slit-a mere inlet to the stomach, situated in a kind of hood, formed by the nuion of the gills at their origin, and between two pairs of delicate lips. These lips make a furrow, along which pass the particles of food drawn in by the cilia.

Of the higher Mollusks, the little Clio (one of the Pteropods) has a triangular mouth, with two jaws armed with sharp horny teeth, and a tongue covered with spiny hooklets all directed backward. Some Univalves have a simple fleshy tule. Others, as the Whelk, have an extensible proboscis, which unfolds itself, like the finger of a glove,
and carries within it a rasp-like tongue, which can bore into the hardest shells. Such as feed on regetable matter, as the Snail, have no probos-

Fig. i8.-Jaw of the Common Snaii (Helix albolabris). cis, but on the roof of the month a curved horny plate fitted to cut leares, etc., which are pressed against it by the lips, and on the floor of the month a small tongue covered with delicate striæ. As fast as the tongue is worn off by use, it grows out from the root.

The month of the Cuttle-fish strikingly resembles that of the Vertebrates, and is the most elevated type below the Fishes. A broad circular lip nearly conceals a pair of strong horny mandibles, not mulike the beak of a parrot, but reversed, the upper mandible being the shorter of the two, and the jaws, which are cartilaginons, are imbedded in a mass of muscles, and move rertically. Between them is a fleshy tongue corered with papillæ and spines.

The parasitic Worms, living within or on the outside of other animals, generally have a sucker at one end or underneath, serving simply for attachment, and another which is perforated. The latter is a trne snctorial month, being the sole inlet of food. It is often surrounded with hooklets or teeth, which serve both to scarify the victim and secure a firm hold. In the Leech, the month is a triangular opening with thick lips, the upper one prolonged, and microscopic teeth. In many Worms it is a fleshy tube, which can be drawn in or extended, like the eyestalks of the Snail, and contains a minute dental apparatus inside.

Millepedes and Centipedes have two lateral jaws and a four-lobed lip.

In Lobsters and Crabs, the mouth is sitnated nnderneath the head, and consists of a soft upper lip, then a pair of

Fio. 19. - Mouth of a Locust dissected: 1, labrum, or upper lip; 2, mandibles ; 3, jaws; 4. labium, or lower lip; 5, tongne. The appendages to the maxillæ and lower lip are palpi.
upper jaws provided with a short feeler, below which is a thin bifid tongue; then follow two pairs of membranons under jaws, which are lobed and hairy; and next, three pairs of feet changed into jaws (Fig. 244). The IIorse-shoe Crab has no jaws, the thighs answering the purpose. The Barnacle has a prominent mouth, with three pairs of rudimentary jaws.

With few exceptions, the mouths of Insects in the larval, or caterpillar, state are fitted only for biting, the two jaws being horny shears. But in the winged, or perfect, state,

Fra, 21,-llead of a Wild Bee (Anthophora retusa), front view: a, compound eyes; b, clypens: c, three simple eyes ; d, antenne; c, labrum: f, mandibles; i, maxille; h, maxillary palpi ; l, palpiper: j, labial palpi ; m, paraglosse ; k, ligula.

Insects may be divided into the masticating (as the Beetle) and the suctorial (as the Butterfly). In the former group, the oral apparatus consists of two pairs of horny jaws (mandibles and maxille), which work horizontally between an upper (labrum) and an mider (labium) lip. The maxillæ and under lip carry sensitive jointed threads, or feelers (palpi). The front edge of the labium is commonly known as the tongue (ligula). ${ }^{27}$ In such a month, the mandibles are the most important parts ; but in passing to the suctorial Insects, we find that the mandibles are secondary to the maxille and labium, which are the only means of taking food. In the Bee tribe, we have a transition between the biting and the sucking Insects - the upper jaws "supply the place of trowels, spades, pickaxes, saws, scissors, and knives," while the maxillæ are developed into a sheath to inclose the long, slender, hairy tongue which laps up the sweets of flowers. In the suctorial Butterfly, the lips, mandi-

F19. 21.-Proboscis of a Butterfly.
bles, and palpi are reduced to rudiments, while the maxillæ are the only useful oral organs. These are excessively lengthened into a proboscis, their edges locking by means of minute teeth, so as to form a central canal, through which the liquid food is pamped $n p$ into the month. Seen under the microscope, the proboscis is made up of immumerable rings interlaced with spiral muscular fibres. The proboscis of the Fly is a

Fig. 22. - Mouth of the Horse - fly (Tubanus lineola): α, auteunæ; m, mandibles ; $m x$, maxille: $m p$, maxillary palpi; lb, labrum; l, labium, or tongue.

Fig. 23.-Under Surface of Male Spider: a, c, poison-fing ; b, teeth on interior margin of mandible, e; f, labium; g, thorax; h, limbs ; i, abdomen ; l, spinnerets: m, maxillary palpus; d, dilated terminal juint.
modified lower lip; that of the Bugs, fitted both for piercing and snction, is formed by the union of four bristles, which are the mandibles and maxilla strangely altered.

As most of the Arachinids live by suction, the jaws are seldom used for mastication. In the Scorpion, the apparent representatives of the mandibles of an Insect are transformed into a pair of small forceps, and the palpi, so small in Insects, are developed into formidable claws: both of these organs are prehensile. In Spiders, the so-called mandibles, which move more or less rertically, end in a fang; and the club-like palpi, often resembling legs,
have nothing to do with ingestion or locomotion. Buth Scorpions and Spiders have a soft upper lip, and a groove within the mouth, which serves as a canal while sucking their prey. The tongue is external, and situated between a pair of diminutive maxillæ.

The mouth of Vertebrates is a cavity with a fixed roof (the hard palate) and a movable floor (the tongue and lower jaw), having a transverse opening in front, ${ }^{28}$ and a narrow ontlet behind, leading to the gullet. Save in Birds and some others, the carity is closed in front with lips, and the margins of the jaws are set with teeth.

In Fishes, as in nearly all aquatic animals, the mouth is the common entry to both the digestive and respiratory organs; it is, therefore, large, and complicated by a mechanism for regulating the transit of the food to the stomach and the aërated water to the gills. The slits leading to the gills are provided with rows of processes which, like a sieve, prevent the entrance of food, and with valves to keep the water, after it has entered the gills, from returning to the mouth. So that the mouths of Fishes may be said to be armed at both ends with teeth-bearing jaws. A few Fishes, as the Sturgeon, are toothless; but, as a class, they have an extraordinary dental apparatus-not only the upper and lower jaws, but eren the palate, tongue, and throat, being sometimes studded with teeth. Every part of the month is evidently designed for prehension. Lips are usually present; but the tongue is often absent, or very small, and as often aids respiration as ingestion.

Reptiles have a wide mouth, even the insect-feeding Toads and the Serpents can stretch theirs enormously. True fleshy lips are wanting; hence the sarage aspect of the griming Crocodile. With some exceptions, as Toads and Turtles, the jaws are armed with teeth. Turtles are provided with horny beaks. The tongue is rarely absent, but is generally too thick and short to be of much use.

Fig. 24.-Mouth of the Crocodile: d, tongue; e, glands ; f, inferior, and g, superior, valve, separating the cavity of the mouth from the throat, h.
In the Toad, Frog, and Chameleon it is singularly extensile: rooted in front and free behind, it is shot from the mouth with such rapidity that the Insect is seized and swallowed more quickly than the eye can follow. Suakes have a slender forked tongue, consisting of a pair of muscular eylinders, which is solely an instrument of tonch.

Birds are without lips or teeth, the jarrs being covered with horn forming a beak. This raries greatly in slape, being extremely wide in the Whip-poor-will, remarkably long in the Pelican, stout in the Eagle, and slender in the Hummer. It is hardest in those that tear or bruise their food, and softest in water-birds. The tongne is also corered with a horny sheath, and generally spinous, its chief function being to secure the food when in the mouth. It is proportionally the largest and most fleshy in the Parrots.

The main characteristies of the mammalian mouth are fleshy lips and mobile cheeks. ${ }^{20}$ In the duek-billed Monotremes lips are wanting, and in the Porpoises they are barely represented. But in the herbirorous quadrupeds
they are the chief organs of prehension; in the carnirorons tribes they are thin and retractile; while in the Whate the upper lip falls down like a curtain, overlapping the lower jaw several feet. As a rule, the mouth is terminal; but in the Elephant, Tapts, Hog, and Shrew, the upper lip blends with the nose to form a proboscis, or suout. The mouth is comparatively small in the Elephant

Fig. 25.-IIuman Tongue and adjacent parts: a, lingual papiltæ; b, papillæ forming V -shaped lines: d, fungiform papillæ; e, filiform papillæ; a, epiglottis; m, nvula, or coulcal process, hanging from the soft palate, n; o, hard palate ; r, palatine glands, the mucous membrane being removed; v, section of the lower jaw. and in gnawing animals like the Squirrel, wide in the Carnivores, short in the Sloth, and long in the Ant-eater. Teeth are usually present, but vary in form and number with the habits of the animal. The Ant-eater is toothless, and the Greenland Whale has a sieve made of horny plates. The tongue conforms in size and shape with the lower jaw, and is a muscular, sensitive organ, which serves many purposes, assisting in the prehension, mastication, and swallowing of food, besides being an organ of taste, touch, and speech. Its surface is covered with minute prominences, called papilloe, which are arranged in lines with mathematical precision. In the Cats, these are developed into recurved spines, which the animal uses in cleaning bones and combing its̄ fur. Similar papillæ occur on the roof and sides of the month of the Ox and other Ruminants. The tongue is remarkably long in the Ant-eater and Giraffe, and almost immorable in the Gnawers, Elephants, and Whales.
3. The Teeth of Animals. - Nearly all animals have certain hard parts within the mouth for the prehension or
trituration of solid food. If wanting, the legs are often armed with spines, or pincers, to serve the same purpose, as in the Horse-shoe Crab; or the stomach is lined with "gastrie teeth," as in some marine Suails; or the deficiency is supplied by a muscular gizzard, as in Birds, Ant-eaters, Insects, and Cuttle-fishes. Even the Lobster and Crab, in addition to their complicated oral organs, have the stomach furnished with a powerful set of teeth.

The Sea-urchin is the first of animals, and the only one below Articulates and Mollusks, which exhibits any thing like a dental apparatus. Five calcareous teeth having the shape of three-sided prisms, each set in a triangular pyramid, or " jaw," are mored upon each other by a
 complex arrange- Frg. 26.-Echinus bisected, showing masticating apparatus. ment of levers and muscles. Instead of moving up and down, as in Vertebrates, or from right to left, as in Articnlates, they converge toward the centre, and the food passes between tell grinding surfaces.

The minute Rotifers (a group of minute Articulates) have a curions pair of homy jaws. That which auswers to the lower jaw is fixed, and called the "anvil." The upper jaw consists of two pieces called "hammers," which are sharply notched, and beat upon the "anvil" between them.

The horny-toothed mandibles of Insects, already mentioned, are mainly prehensile, but also serve to divide the food in a measure.

The three little white ridges in the mouth of the Leech
are the convex edges of horny semicircles, each bordered by a row of nearly a hundred hard, sharp teeth. When

Fic. 27.-Teeth and Masticatory Apparatus of Gasteropods : A, portion of odontophore, or "tongue," of V'elutina, enlarged ; B, portion of odontophore of Whelk (Buccinum undatum), magnified - the entire tougue has 100 rows of teeth; C, head and odontophore of Limpet (Patella vulgata); D, portion of same, greatly magnified, to show the transverse rows of siliceons teeth.
the mouth, or sucker, is applied to the skin, a sawing movement is given to the horny ridges, so that the "bite" of the Leech is really a saw-cut.

The dentition of the uniralve Mollusks, or the Snails, is generally lingual, i.e., it consists of microscopic teeth, usually siliceons and amber-colored, planted in rows on the tongue. The teeth are, in fact, the serrated edges of minute plates. The number of these plates varies greatly; the garden Slug has 160 rows, with 180 teeth in each row.

All Birds, and some other Vertebrates, as Ant-eaters, ${ }^{30}$ Turtles, Tortoises, Toads, and Sturgeons, have no teeth. Their absence is generally associated with a horny beak, a wide gullet, and a muscular stomach (gizzard).

In a few Vertebrates, horny plates take the place of teeth, as the Duck Mole (Ornithorhynchus) and Whalebone

Fig. 2S.-Section of the Upper Jaw of 4 Whale (Balcenoptera), showing baleenplates: a, superior maxillary bone; b, ligamentous gum attaching the horny body of the baleen-plate, c; d, fringe of bristles; e, smaller plates.

Whale. In the former, the plates consist of closely set vertical hollow tubes; in the latter, the balcen, or whalebone, plates, triangular in shape, and fringed on the inner side, hang in rows from the gums of the upper jaw. In some Whales there are about 300 plates composing the outer row in each jaw. ${ }^{31}$

True teeth, consisting mainly of a hard, calcareons substance called dentine, are found only in back-boned animals. They are distinct from the skeleton, and differ from bone in containing more mineral matter, and in not showing, under the microscope, any minute carities, called lacunce. A typical tooth, as found in Man, consists of a central mass of dentine, capped with enamel and surrounded with cement. The first tissue is always present, while the others may be absent. It is a mixture of animal and mineral matter disposed in the form of extremely fine tubes and cells, so minute as to prevent the admission of the

Fig. 29.-Section of Human M(olar, enlarged: k, crowu; n, neck; f, fang; e, enamel; d, deutine; c, cement ; p, pulpcavity. red particles of blood. One modification of it is ivory, seen in the tusks of Elephants. Enamel is the hardest tissue of the body, and contains not more than two per cent. of animal matter. It consists of six-sided fibres set side by side, at right angles to the smfaces of the dentine. Cement closely resembles bone, and is present only in the teeth of the higher animals.

Teeth are usnally confined to the jaws; but the number, size, form, strncture, position, and mode of attachment vary with the food and labits of the animal. As a rule, animals developing large numbers of teeth in the back part of the mouth are inferior to those having fewer teeth, and
those nearer the lips. The teeth of Mammals only have fangs.

The teeth of Fishes present the greatest variety. In number, they range from zero to hundreds. The Hag-fish (Myxine) has a single tooth on the roof of the mouth, and two serrated plates on the tongue; while the mouth of the Pike is crowded with teeth. In the very lowest of the class, we find teeth, short and blunt, in the shape of cubes, or prisms, arranged like mosaic work. Such pavementteeth (seen in some Rays) are fitted for grinding sea-weed

Fig. 30.-Jaws and Pavement-teeth of a Ray (Myliobates). and crushing shell-fish. But the cone is the most common form: sometimes so slender and close as to resemble plush, as in the Perch; or of large size, and flattened like a spear-head with serrated edges, as in the Shark; but more often like the canines of Mammals, curved inward to fit them for grappling. In the Shark, the teeth are confined to the fore part of the month; in the Carp, they are all situated on the bones of the throat; in the Parrot-fish, they occupy both back and front; but in most Fishes, the teeth are developed also on the roof, or palate, and, in fact, on nearly every bone in the mouth. They seldom appear (as in the Salmon) on the upper maxillary. As to mode of attachment, the teeth are generally anchylosed (fastened by bony matter) to the bones which support them, or simply bound by ligaments, as in the Shark. In a few Fishes, the teeth consist of flexible cartilage; but almost invariably they are composed of some kind of dentine, enamel and cement being absent.

Of Reptiles, Toads, Turtles, and Tortoises are toothless; Frogs have teeth in the upper jaw only; Snakes have a
more complete set, but Saurians possess the most perfect dentition. The number is not fixed even in the same species: in the Alligator it varies from 72 to 88 . The teeth are limited to the jawbones in the higher forms (Sanrians); but in others, as the Serpents, they are planted also in the roof of the month. With few exceptions, they are conical and curved (Fig. 35). In the Serpents they are longest and sharpest; and the renomons species have two or more fangs in the upper jaw. These fangs contain a canal, throngh which the poison is forced by muscles which compress the gland. The bones to which they are attached are morable, and the fangs ordinarily lie flat upon the gums, but are brought into a rertical position in the act of striking. As a rule, the teeth of Rep-

Fig. 31.-Poison Apparatus of the Rattlesuake: g, gland, with duct, leading to the fang, $f ; m$, elevator muscles of the jaw, which, in contracting, compress the gland: s, salivary glands on the edge of the jaws; n, nostril. tiles are simply soldered to the bone which supports them, or lodged in a groove; but those of Crocodiles are set in sockets. Reptilian teeth are made of dentine and a thin layer of cement, to which is added in most Saurians a coat of enamel on the crown.
In the majority of Mammals, the teeth are limited in number and definite in their forms. The number ranges from 1 in the Narwhal (but the longest tooth in the kingdom) to 220 in the Dolphin. The average is 32 , occurring in Ruminants, Apes, and Man; but 44 (as in the IIog and Mole) is called the typical or normal number, and this number is exceeded only in the lowest gronps. When more than 44 , the teeth are of the Reptilian trpe, small, pointed, and of nearly equal size, as in the Porpoise. In the higher Mammals, the teeth are comparatively few, and differ so much in size, shape, and use, that they can
be classed into incisors, canines, premolars, and molars. For such a dental series exhibits a double purpose, prehension and mastication. The chisel-shaped front teeth are fitted for cutting the food, and hence called incisors. These vary in number: the Lion has six in each jaw ; the Squirrel has two in each jaw, but remarkably developed; the Ox has none in the upper jaw, and the Elephant none in the lower; while the Sloth has none at all. ${ }^{32}$ The $c a$ -

Fig. 32.-Skull of the Babirusa, or Malayan Hog, showing growth and curvature of the canines.
nines, so called becanse so prominent in the Dog, are conical, and, except in Man, longer than the other teeth. They are designed for seizing and tearing; and they are the most formidable weapons of the wild carnivores. There are never more than fomr. They are wanting in all Rodents, and in nearly all herbivorons quadrupeds. The molars, or grinders, vary greatly in shape, but close-
ly correspond with the structure and habits of the animal, so that a single tooth is sufficent to indicate the mode of life and to identify the species. ${ }^{33}$ In the Ruminants, Rodents, Horses, and Elephants, the summits of the molar's are flat, like mill-stones, with transverse or curving ridges of enamel. In the Cats and Dogs, they are narrow and sharp, passing by each other like the blades of scissors, and therefore cutting, rather than grinding, the food. The more purely carnivorous the species, and the more it feeds mpon living prey, the fewer the molars. In animals living on mixed diet, as the Hog and Man, the crowns lave blunt tubercles. Premolars, or bicuspids, are those which were preceded by milk-teeth; the true, or back, molars had no predecessors.

The dentition of Mammals is expressed by a formula, which is a combination of initial letters and figures in

Fig. 33. - Teeth of the right lower jaw of adult male Chimpanzee (Tronlodytes niger), natural size. The molar series does not form a curve, as in Man.
fractional form, to show the number and kind of teeth on each side of both jaws. Thus, the formula for Man is: $i, \frac{2-2}{2-2} ; c, \frac{1-1}{1-1} ; p, \frac{2}{2-2} ; m, \frac{3-3}{3-3}=32$.

The teeth of Mammals are always restricted to the margins of the jaws, and form a single row in each. But they never form an unbroken series in any living species, ex-
cept Man. ${ }^{34}$ The teeth implanted in the premaxillary bone, and in the corresponding part of the lower jaw, whaterer their number, are incisors. The first tooth behind the premaxillary, if sharp and projecting, is a canine.

Each tooth has its partienlar bony socket. ${ }^{36}$ The molars are still further strengthened by having two or more diverging fangs, or roots, a feature peculiar to this class. The incisors and canines have but one fang; and those that are perpetnally growing, as the incisors of Rodents and Elephants, have none at all. The teeth of flesh-eating Mammals usually consist of hard dentine, surrounded with cement and capped with enamel. In the herbivorons tribes, they are very complex, the enamel and cement being inflected into the dentine, forming folds, as in the molar of the Ox , or plates, as in the compound tooth of the Elephant. This arrangement of the three tissues, which

Fig. 34.-Upper Molar Tonth of Indian Elephant (Elrphas Indicus), showing transverse arrangement of dentine, d, with festooned border of enamel plates, e; c, cement; one-third natural size.
differ in hardness, secures a smface with prominent ridges, well adapted for grinding. The cutting teeth of the Rodents consist of dentine, with a plate of enamel on the anterior surface, and the unequal wear preserves a chisellike edge. Enamel is sometimes wanting, as in the molars of the Sloth and the tusks of the Elephant.

In Fishes and Reptiles, there is an almost unlimited succession of teeth; but Mammalian teeth are cast and renewed but once in life.

Vertebrates use their teeth for the prehension of food, as weapons of offense or defense, as aids in locomotion, and as instruments for uprooting or cutting down trees. But in the higher class, they are principally adapted for dividing or grinding the food. ${ }^{36}$ While in nearly all other Vertebrates the food is bolted entire, Mammals masticate it before swallowing. Animals that masticate most thoroughly, digest most rapidly. Mastication, however, is more essential in the digestion of vegetable than of animal food; and hence we find the dental apparatus most efficient in the herbivorous quadrupeds. The food is most perfectly reduced by the Rodents.

Teeth, as we shall see, are appendages of the skin, not of the skeleton, and, like other superficial organs, are liable to be modified in accordance with the habits of the creature. They are, therefore, of great zoological value; for, such is the harmony between them and their uses, the naturalist can predict the food and general structure of an animal from a sight of the teeth alone. For the same reason, they form important guides in the classification of animals; while their durability renders them available to the paleontologist in the determination of the nature and affinities of extinct species, of which they are often the sole remains. Even the structure is so peculiar that a fragment will sometimes suffice.
4. Deglutition, or How Animals Swallow.-In the lowest forms of life, the month is but an aperture opening immediately into the body-cavity, and the food is drawn in by ciliary currents. But in the majority of animals, a muscular tube, called the gnllet, or cesophagus, intervenes between the mouth and stomach, the circular fibres of which contract, in a ware-like manner, from above downward, propelling the morsel into the stomach. ${ }^{37}$ In the higher Mollusks, Articulates, and Vertebrates, deglutition is generally assisted by the tongue, which presses the food
backward, and by a glairy juice, called saliva, which facilitates its passage through the gullet. ${ }^{38}$ Vertebrates have a cavity behind the mouth, called the throat, or pharynx, which may be considered as a fumel to the œesophagns. ${ }^{39}$ In air-breathers, it has openings leading to the windpipe, nose, and ears. In Man, as in Mammals generally, the process of deglutition is in this wise: the food, masticated by the teeth and lubricated by the saliva, is forced by the tongue and cheeks into the pharynx ; the soft palate keeping it out of the nasal aperture, and the valve-like epiglottis falling down to form a bridge over the opening to the windpipe. The moment the pharynx receires the food, it grasps it tightly, and, the mnscular fibres contracting above it and left lax below it, it is rapidly throst into the œsophagus. Here, a similar movement (the peristaltic) strips the food into the stomach. ${ }^{40}$ The rapidity of these contractions transmitted along the osophagus may be observed in the neck of a Horse while drinking.

Deglutition in the Serpents is painfully slow, and somewhat peenliar. For how is an animal, withont limbs or molars, to swallow its prey, which is often much larger than its own body? The Boa-constrictor, e.g., seizes the

Fig. 35.-Skull of Boa-constrictor: 1, frontal; 2, prefrontal; 4, postfrontal; 5, basloccipital; 6, sphenoid: 7, parietal; 12, mastoid; 13, alisphenoid; 17, premaxillary ; 1S, maxillary; 20, nasal; 24, transverse; 25, internal pterygoid; 34, dental, lower jaw ; 35, 36, angular ; a, tympanic ; s, prenasal ; v, petrosal.
head of its victim with its sharp recurving teeth, and crushes the body with its overlapping coils. Then, slowly uncoiling, and covering the carcass with a slimy mucus, it thrusts the head into its mouth by main force, the mouth stretching marvelously, the skull being loosely put together. One jaw is then unfixed, and the teeth withdrawn by being pushed forward, when they are again fastened farther back upon the animal. The other jaw is then protruded and refastened; and thus, by successive morements, the prey is slowly and spirally drawn into the wide gullet.

CHAPTER IX.

THE ALIMENTARY CANAL.

The Alimentary Canal is the great ronte by which nutritive matter reaches the interior of the body. It is the most universal organ in the animal kingdom, and the rest are secondary or subservient to it. In the higher animals, it consists of a mouth, pharynx, gullet, stomach, and intestine.

It is a general law, that food can be introduced into the living system only in a flnid state. While plants send forth their roots to seek nomrishment from withont, animals, which may be likened to plants turned outside in, have their roots (called absorbents) directed inward along the walls of a central tube or cavity. This cavity is for the reception and preparation of the food, so that animals may be said to carry their soil about with them. The necessity for such a cavity arises not only from the fact that the food, which is usually solid, must be dissolved, so as to make its way through the delicate walls of the carity into the system, but also from the occurrence of intervals be-
tween the periods of eating, and the consequent need of a reservoir. For animals, unlike plants, are thrown upon their own wits to procure food.

The alimentary canal is a continuation of the skin, which is reflected inward, as we turn the finger of a glove. We find every grade of this reflection, from the mere depression in the side of the body of the Amœba, to the sac of the Sea-anemone and the long intestinal tube of the Ox. So that food in the stomach is still outside of the true body. In fact, there are certain Worms, living inside of other animals, which have neither month nor stomach, but imbibe nourishnent through their skin." Such a method of taking food is a link between the plant's ontside mode of nutrition and the internal mode of the animal: fundamentally, there is no difference.

The feeblest sign of a digestive cavity is that extemporized by the jelly-like Ameba. Wherever a minnte seaweed or animalcule happens to come in contact with its

Fig. 36.-Dissected Actinia: a, the thick opaque skin consisting of ectoderm and endoderm, lined with muscular fibres; c, the tubular tentacles communicating with the interspaces, k, between the membraneous vertical folds, $g ; g^{\prime}$, orifices in the walls allowing passage of respiratory water from one compartment to another ; d, mouth leading to gastric cavity, e. body, the spot retracts, forming a depression, which sinks deeper and deeper, till the edges meet, and the prey is ingulfed. After the soluble parts are dissolved, the indigestible residue is brought to the surface by a reverse process.

A step higher than this is seen in Infusoria and the Hydra, where a definite oral
orifice, or mouth, leads to a permanent body-cavity, and serves both for the inlet of food and the outlet of matters not wanted. These animals may be likened to a tube or bag with one opening. There is no great difference between the membrane whieh lines this "stomach" and that which clothes the body; for the Hydra has been turned inside out, and digested as well. The Polyps have also but one external opening; but from this hangs down a short tube, open at both ends, reaching about half-way to the bottom of the body-cavity. Such an arrangement would be represented by a bottle with its neck turned inward. In this suspended sae, which is somewhat constricted at the extremities, digestion takes place; but the product passes freely into all the surrounding chambers, along with the water for respiration. The Meduse, or Jelly-fishes, preserve the same type of a digestive apparatus; but the sac is cut off from the general cavity, and numerons canals radiate from it to a circular canal near the margin of the disk. In the Star-fishes, the sae sends off two branches, or canals, to each ray. But these radiating canals serve a double purpose, for they not only carry nutritive matter, but bring back the excretions.

Thus far we have seen but one opening to the digestive cavity, rejected portions returning by the same road by which they enter. But a true alimentary canal should have an anal aperture distinct from the oral. The simplest form of such a canal is exhibited by the Sponge, in its system of absorbent pores for the entrance of liquid, and of several main channels for its diseharge. The apparatns, however, is not marked off from the general carity of the body, and, as in the preceding eases, digestion is not distinct from circulation. ${ }^{32}$

The Sea-urchin presents us with an important adrance -one cavity with two orifices; and the complicated apparatus of higher animals is but the development of this

Fig. 37.-Diagrammatic Section of a Sea-urchin (Echinus) : a, month ; b, esophagus ; c, stomach : d, intestine: f, madreporiform tubercle : g, sand-canal; h, ambulacral ring; k, Polian vesicles, which are probably reservoirs of fluid; m, ambulacral tube; o, anns; p, ambulacra, with their contractile vesicles; r, nervous ring aronnd the gullet; s, two nervous trunks, the right terminating, at aual pole, in a small ganglion ; t, blood-vascular rings connected by v, the contractile heart ; w, two arterial trunks radiating from the aurl ring: x, an ovary opening at the anal pole in a genital plate, $y ; z$, spines, with their tubercles.
type. This first rudiment of an alimentary canal begins in a month well provided with teeth and muscles, and extends spirally to its outlet, which generally opens on the upper, or opposite,surface. Moreover, while in many of the Worms the canal is a simple tube rumning through the axis of the cylindrical body from oral orifice to anal aperture, the canal of the Sea-urchin shows a distinction of parts, foreshadowing the pharynx, gullet, stomach, and intestines of Man himself. Both month and vent have muscles for constriction and expansion ; and, as the vent is on the summit of the shell, and the latter is covered with spines, the ejected particles are seized by delicate forks (pedicellaria), and passed on from one to the other down the side of the body, till they are dropped off into the water: ${ }^{43}$

The next higher modification we find in the Articulate subkingdom. In the Worms, the digestive tract is either a straight, murarying tube, or divided up into ponchies (sacenlated), as in the Leech, with clusters of little glands, called follicles, along the side, which are the rudiments of a liver. In Myriapods and Larræ, the same general plan is continned, the canal passing in a straight line from one extremity to the other, but showing a division into gullet, stomach, and intestine." Crustaceans, like the Lobster, have a short gullet leading to a large cavity, situated in
the head of the animal, which is a gizzard, rather than stomach, as it has thick muscular walls armed with teeth. A well-marked constriction separates this organ from the intestine. The liver is highly developed ; instead of numerons follicles, there is a large symmetrical organ, divided into two lobes, pouring its secretion into the upper part of the intestine, which is the true stomach.

Ainong Insects, there is great variation in the form and length of the canal. The following parts can generally be dis-

Fig. 38.-Anatomy of a Caterpillar: g, h, œesophacus: h. i, stomach; k, hepatic vessels; l, m, intestine; q, r, salivary glands : p, salivary duct : a, b, c, longitndinal tracheal trunks; d, c, air-tubes distributed to the viscera; f. fit-mass ; v, x, y, silk-secretors: z, their excretory ducts, terminating in t, the spinneret, or $f u$ sulus.
tinguished: gullet, crop, gizzard, stomach, and large and small intestines, with many glandular appendages. The crop, gizzard, and large intestine are sometimes absent, especially in the carnivorons species. In Bees, the crop is called the "honey-bag." The gizzard is found in In-
sects having mandibles, and is frequently lined with rows of horny teeth, which are specially developed in Grass-

Fig. 39.-Alimentary Canal of a Beetle: a, pharynx : b, gullet, leading to crop, c, gizzard, c, and stomach, e; f, delicate biliary tubes; g, intestine; h, other secreting organs.

Fig. 40.-Alimentary Canal of the Bee (Apis mellifica) : a, gnllet; b, crop; c, d, stomach ; e, small iutestine ; f, large intestine; g, anal orifice; h, biliary vessels; i, auxiliary glands.
hoppers, Crickets, and Locists. The intestines are remarkable for their convolutions. Insects have no true liver; but its functions are performed by little tubes (сеса) around the stomach. ${ }^{46}$

The alimentary canal of Spiders is short and straight, the pharynx and gullet being very minute. The stomach is characterized by sending out tubular prolongations, and the intestine ends in a large bladder-like expansion. Scor-

Fig. 41.-A atomy of a Sphinx Moth : n, nervous cord: n^{\prime}, brain sending off nerves to the legs, $l^{\prime}, l^{\prime \prime}, l^{\prime \prime \prime}$, and for the wings at $n^{\prime \prime} ; h$, dorsal vessel, or heart ; c, crop; s, stomach ; i, intestines; o, reproductive organs; o^{\prime}, oviduct ; $8-20$, segments.
pions have no stomachal cavity-a straight intestine passes directly throngh the body.

In bivalve Mollusks, like the Clam, the month (which is a mere aperture) opens at once into the stomach, which lies imbedded in a large liver, and the intestine, describing a few turns, passes directly throngh the heart." In the mivalve Mollusks, like the Suail, the gullet is long, and frequently expands into a crop; the stomach is often donble, the anterior being a gizzard provided with teeth for mastication ; the intestine passes through the liver, and ends in the fore part of the body, usually on the right side.

The highest Mollusks, as the Cuttle-fish and Nantilus, exhibit a marked advance. A month with powerful mandibles leads to a long gullet, which ends in a strong muscular gizzard resembling that of a fowl. ${ }^{47}$ Below this is a carity, which is either a stomach or duodenum; it receives the bile from a large liver. The intestine is a tube of miform size, which, after one or two slight curves, bends up, and opens into the "funnel" near the month.

Fishes have a simple, short. and wide alimentary canal. The stomach is separated from the intestine by a narrow "pyloric" orifice, or valve, but is not so clearly distingnished from the gullet, so that regurgitation is

Fio. 42.- Alimentary Canal of the Oyster: a, stomach laid open; d, liver ; b, c, d, f, convolutions of the intestine: g, anal aperture; n, o, auricle and ventricle; l, m, adductor muscle; h, k, lobes of mouth divided to show the venous canals at the base of the gills.

Fig. 43.-Anatomy of a Gasteropod (Snail) : a, month : b, foot: c, anus; d, lung; c, stomach, covered above by the salivary glands; f, intestine; g, liver; h, heart; i, aorta; j, gastric artery; l, hepatic artery ; k, artery of the foot ; m, abdominal cavity, supplying the place of a venous sinns; n, irregular canal commnnicating with the abdominal cavity, and carrying the blood to the lung; o, vessel carrying blood from the lung to the heart.
eass. ${ }^{48}$ Indeed, it is common for Fishes to disgorge the indigestible parts of their food, and some, as the Carp,

Fig. 44.-Anatomy of a Lamellihranch (Mactra): a, shell ; b, mantle ; c, tentacles, or lips; d, month ; e, nerves ; f, moscles ; g, anterior and, n, posterior ganglion ; h, liver; i, heart ; k, stomach; l, intestine passing through the heart; m, kidney ; o, anal end of the intestine : p, exhalent and, q, inhalent respiratory tubes, or siphons; r, gills; s, foot.
send the food back to the pharynx to be masticated. The stomach is usnally bent, like a siphon; but the intestine is nearly straight, and withont any marked distinction into small and large. Its appendages are a large liver and a rudimentary pancreas.

In the amphibions Reptiles, as the Frogs, the digestive apparatus is very similar to that of Fishes; but the two kinds of intestines can be more readily distingnished. The higher Reptiles generally have a long wide gullet, which passes insensibly into the stomach, and a short intestine (about twice the length of the body) very distinctly divided into small and large by a constriction. ${ }^{40}$ The regetable-feeding Tortoises have a comparatively long intestinal tube; and the Serpents have a slender stomach, but little wider than the rest of the alimentary canal.

The stomach of the Croeodile is more complex than any hitherto mentioned. It resembles that of the Cuttle-fish, but offers a still more striking analogy to

Fto. 45.-Auatomy of a Cephalopod (diagram): a, tentacles; b, masticatory apparatus; c, eye; d, salivary gland; e, nervons ganglia; f, exophagns; g, internal shell, or "cuttle-bone:" h, stomach; i, iutestine; k, anus; l, funnel; m, ink-bag; n, ovary; o, ovidnct; p, liver ; r, gill contained in the branchial chamber: s, brauchial heart; t, systemic heart ; v, mantle. the gizzard of a Bird, having very thick walls, and the musenlar fibres radiating precisely in the same mamer. So that, in this respect, the Crocodile may be considered as the comecting link between Reptiles and Birds. ${ }^{\text {bo }}$ It is in Crocodiles also that the duodenum, a small pouch, with which the intestine begins, is first distinctly defined. Into this ponch, the liver and pancreas, or sweet-bread, pour their secretions. Furthermore, in the lower animals, the
intestines lie more or less loose in the abdomen; but in the Crocodile, and likewise Birds and Mammals, they are supported by a membrane called mesentery.

In Birds, the length of the alimentary canal varies with

Fig. 46.-Anatomy of the Carp: br, branchix, or gill-openings ; c, heart: f, liver ; εn. swimming bladder; ci, intestiual eanal ; o, ovarium: u, utethra. The side-view shows the disposition of the muscles in vertical flakes.
their diet, being greatest in those living on grain and fruit. The gullet corresponds in length with the neck, which is longest in the long-legged tribes, and in width with the food. In those that swallow large fish entire, the gullet is dilatable, as in Snakes. In nearly all Birds, the food is delayed in some cavity before digestion: thus, the Pelican has a bag inder the lower jaw, and the Cormorant has a eapacious gullet, where they store up fishes; while thase that gorge themselves at interrals, as the Vulture, or feed on seeds and grains, as the Turker, have a ponch, called the crop'. developed near the lower end of the gullet. ${ }^{5}$ The Ostrich, Goose, Swan, most of the Waders, and the frnit or insect eating Birds, which find their food in tolerable abundance, and

Fig. 47. -Stomiach of the Crocorlile: a, mnscular fibres radiating from a centrai tendon, $b ; d$, commencement of duodenum ; c, œsophagus ; f, intestine.
take it in small quantities, have no such reservoir. Pigeons have two crops.

In all Birds, the food passes from the gullet into the proventriculus, or stomach proper, where it is mixed with a "gastric juice" secreted from glands on the surface. Thence it goes into the gizzard, an oval sac of highly muscular texture, and lined with a tongh horny skin. ${ }^{52}$ The gizzard is most highly developed, and of a deep-red
color, in the Scratchers and flat-billed Swimmers (as Fowls and Swans) ; but comparatively thin and feeble in Birds of Prey (as the Eagle). The gizzard is followed by the intestines, which are longer than those of Reptiles: the small intestine begins with a loop (the duodenum), and is folded several times upon itself; the large intestine is short and straight, terminating in the sole ontlet of the body, the cloaca. A liver and pancreas are always attached to the upper part of the small intestine.

The alimentary canal in Mammals is clearly separated into four distinet cavities: the pharynx, or throat; the cesophagns, or gullet ; the stomach; and the intestines.

The pharynx is more complicated than in Birds. It is a fun-nel-shaped bag, having seven openings leading into it: two from the nostrils, and two from the ears;
one from the windpipe, gruarded by the epiglottis; one from the month, with a fleshy curtain called the soft palute ; and one from the œesophagns. It is the natural passage for food between the mouth and the esophagus, and of air between the nostrils and windpipe. Like the mouth, it is lined with a soft mucons membrane.

The œsophagus is a long and narrow tube, formed of two musenlar layers: in the outside one, the fibres rom lengthwise; in the other, they are circular. It is also covered more or less with a sheath of striated fibres, and lined with mucous membrane. While in all Fishes, Reptiles, and Birds the rentral chamber is one, in Mammals it is divided, by a partition called the diaphragm, into two

Ftg. 49.-Digestive Apparatus of Man: 1, tongue: 2, pharynx : 3, œsophagus: 4, soft palate: 5 , larynx; 6 , palate; 7 , epiglottis; 8 , thyroid cartilage; ?, beginning of spinal marrow ; $10,11,12$, vertebre, with spinous processes; 13 , cardiac oritice of stomach: 14, left end of stomach; 18 , pyloric valve; $19,20,21$, duodenum: 22 , gall-bladder: 27 , duct from pancreas: $2 \mathrm{~s}, 29$, jejunum of intestine; 30 , ileum ; 34 , ceecum ; $36,37,38$, colon, or large intestine ; 40 , rectum.
cavities-the thorax, containing the heart, lmgs, etc.; and the abdomen, containing the stomach, intestines, etc. The

Fig. 50.-Ideal Section of a Mammalian Vertebrate: A, pectoral, or fore limb; B, pelvic, or hind limb; a, mouth; b, cerebrum; c, cerebellum ; d, nose; e, eye; f, ear ; g, œsophagus ; h, stomach ; i, intestine ; j, diaphragm, or midriff ; k, rectum, or termination of intestine; l, anus; m, liver; n, spleen; o, kidney ; p, sympathetic system of nerves; q, pancreas; r, urinary bladder; s, spinal cord; u, ureter; v, vertebral column ; w, heart ; x, lung; y, trachea, or windpipe; z, epiglottis.
œsophagus passes through a slit in the diaphragm, and almost immediately expands into the stomach.

In the majority of Mammals, the stomach is a muscular bag of an irregnlar oval shape, lying obliquely across the abdomen. In the Flesh-eaters, whose food is easy of solntion, the stomach is usnally simple, and lies nearly in the

Fig. 51.-_Section of Horse's Stomach: A, left sac; B, right sac; C, duodenum. comrse of the alimentary canal ; but in proportion as the food departs more widely in its composition from the body itself, and is therefore more difficult to digest, we find the stomach increasing in size and complexity, and turned aside from the general comrse of the canal, so as to retain the food a longer time. ${ }^{63}$ The inlet, or opening, into the œsophagns is called cardiac ; the outlet,
or opening, leading into the intestines is called pyluric. In the Carnivores, Apes, and most odd-toed quadrupeds, the stomach resembles that of Man. That of the toothless Ant-eater has the lower part turned into a kind of
 gizzard for crushing its food. The Fre. 52.-Stomach of the PorElephant's is subdivided by numerons poise: c, cardiac ; p, pyloric. folds. In the Horse, it is constricted in the middle; and in the Rodents, Porpoises, and Kangaroos, the constriction is carried so far as to make two or three sections. But animals that chew the cud (Ruminants) have the most

Fig. 53.-Stomach of the Lion : c, cardiac orifice, or entrance of cesuphagus; p, pyloric. complex stomach. It is divided into four peculiar chambers: First, the paunch (rumen), the largest of all, receises the lialf-masticated food when first swallowed. The imer surface is covered with papillæ, except in the Camel, which has large cells for storing up water. From this, the food passes into the honey-comb stomach (reticulum), so named from its structure. Liquids swallowed usually go directly to this cavity, without passing through the paunch, and hence it is sometimes

Fig. 54.-Complex Stomach of a Ruminant: a, gullet; b, rumen, or paunch; c, reticulum; d, psalterium, or manyplies ; e, abomasus ; f, pylorus leading to duodenum.
called the water-bag. Here the food is made into little balls, and returned to the mouth to undergo a thorough mastication. When finally swallowed, it is directed, by a groove from the esophagns, to the third, and smallest, carity, the manyplies (psulterium), named from its numerous folds, which form a strainer to keep back any undivided food; and thence it passes into the true stomach (abomasus), from which, in the calf, the remnet is procured for curdling milk in the mamufacture of cheese.

Fig. 55. - Vertical Section of the Coats of the Stomach: 1, surface of mucons membrane, and mouths of gastric follicles ; 2, gastric tnbnli, or follicles: 3 , dense connective tissue; 4, submucons tissue; 5 , transverse mascular fibre; 6, longitudinal muscular fibre; 7, fibrons, or serons, coat. This fourth carity is like the human stomach in form and function, and is the only part which secretes gastric juice. The rumen and reticulum are rather dilatations of the esophagus than parts of the stomach itself; while the latter is dirided by constriction into two chambers, the psalterium and abomasus, as in many other animals.

In structure, the stomach resembles the eesophagus. The smooth outside coat (peritoneum) is a reflection of the membrane, which lines the whole abdomen. The middle, or muscular, coat consists of three layers of fibres, rimning lengthwise around and obliquely. The successive contraction and relaxing of these fibres produce the wormlike motion of the stomach, called peristaltic. The innermost, or mucous, membrane, is soft, velvety, of a reddishgray color in Man, and filled with multitudes of glands, which secrete the gastric juice. The human stomach,
when distended, will hold about five pints; that of the Kangaroo is as long as its body.

The intestinal canal in Mammals begins at the pyloric end of the stomach, where there is a kind of valve or circular muscle. Like the stomach, it varies greatly, according to the nature of the food. It is generally longest in the Vegetable-feeders, and shortest in the Flesh-feeders. The greater length in the former is dne to the fact that regetable food requires a longer time for digestion, and that a greater bulk of such food is required to obtain a given quantity of nutriment. The intestines measure 150 feet in a full-grown Ox , while they are but three times the length of the body in the Lion, and six times in Man. Save in some lower forms, as the Whales, there are two main divisions, the "small" and " large" intestines, at the junction of which is a valve. The former is the longer of the two, and in it digestion is completed, and from it absorption takes place. The large intestine is a temporary lodging-place for the useless part of the food, until it is expelled from the body. The be-

Fig. 56.-Section of the Wall of the Human Intestine (ileum), $\times 50: a$, villi ; b and d, glands; c and e, mucous membrine : f, circular muscles; g, h, longitudinal muscles. ginning of the small intestine is called the duodenum, into which the ducts from the liver and pancreas open. The intestinal canal has the same structure as the stomach, and by a peristaltic motion its contents are propelled downward. The inside surface of the small intestine is corered with a host of thread-like processes (villi), resembling the pile of velret.

In taking this general survey of the succession of forms which the digestive apparatus presents among the principal groups of animals, we can not fail to trace a gradual specialization. First, a simple excavation in the body, one orifice serving as inlet for food and outlet for indigestible matter; next, a sac, or short tube, with walls of its own suspended in the body-cavity ; then, a canal passing through the body, and, therefore, haring both month and rent ; next, an apparatus for mastication, and a swelling of the central part of the canal into a stomach, having the special endowment of secreting gastric juice; then, a distinction between the small and large intestine, the former thickly set with villi, and receiving the secretions of large glands. We also notice that food, the means of obtaining it, the instruments for mastication, and the size and complexity of the alimentary canal, are closely related.

CHAPTER X.

HOW ANIMALS DIGEST.

The object of the digestive process is the reduction of food into such a state that it can be absorbed into the system. For this purpose, if solid, it is dissolved; for fluidity is a primary condition, but not the only one. Many soluble substances have to undergo a chemical change before they can form parts of the living body. If albumen or sugar be injected into the veins, it will not be assimilated, but be cast out unaltered.

To produce these two essential changes, solution and transmutation, two agencies are used - one mechanical, the other ehemical. The former is not always needed, for many animals find their food already dissolsed, as the

Butterfly ; but solid substances, to facilitate their solution, are gronnd or tom into pieces by teeth, as in Man; by jaws, as in the Lobster; or by a gizzard, as in the Turkey.

The chemical preparation of food is indispensable. ${ }^{64}$ It is accomplished by one or more solvent fluids secreted in the alimentary canal. The most important, and one always present, is the gastric juice, the secretion of which is restricted to the stomach, when that cavity exists. In the higher animals, numerous glands pour additional fluids into the digestive tube, as saliva into the upper part or mouth, and bile and pancreatic juice into the npper part of the intestine. In fact, the mucons membrane, which lines the alimentary canal thronghont, abounds with secreting pores.

The Digestive Process is substantially the same in all animals, but it is carried further in the more highly dereloped forms. In the Infusoria, the food is acted upon by some secretion from the walls of the body-cavity, the exact nature of which is unknown. In the Star-fish and Sea-urchin, we find two solvents - a gastric juice, and another resembling bile; but the two appear to mingle in the stomach. Mollusks aud Articulates show a clear distinction between the stomach and intestine, and the contents of the liver are poured into the latter. There are, therefore, two stages in the digestive act: first, the food is dissolved by the gastric juice in the stomach, forming chyme; secondly, the chyme, upon entering the intestine, is changed into chyle by the action of the bile, and is then ready to be absorbed into the system.

In Vertebrates, a third solvent is added, the pancreatic juice, which aids the bile in completing digestion. But Maminals have a still more perfect and elaborate process; for in them the saliva of the month acts chemically. upon the food; while the saliva in all other animals has
no other office, so far as we know, than to moisten the food for swallowing.

Taking Man as an example, let us note the main facts in the process. During mastication, by which the relative surface is increased, the food is mixed with saliva, which converts the starch into sugar. ${ }^{\text {s5 }}$ Passed into the stomach, the now sweetish, pulpy mass is subjected to the action of the gastric juice, a peculiar acid, which lias no effect on starch or oil, but readily dissolves the albmmen, fibrine, gelatine, and like constituents of the food. ${ }^{56}$ While this solution is going on, the muscular walls of the stomach successively contract and relax, rolling the food about, and mixing it thoronghly with the gastric juice, and, at the same time, moving the whole mass toward the pyloric

Fig. 57 .-Chyle Corpuscles, $\times 500$. chyle, and a residnary mass, which is gradually converted into freces, and expelled from the system. ${ }^{68}$ Exactly how this change from chyme to chyle is prodnced is not known; but it is the most inportant part of the digestive process.

Chyme differs from food in haring starchy particles changed into sngar, and much of the albuminous portion chemically altered by the gastric juice; but the conversion of the starch is not complete, and certain albuminous parts, and all of the oily particles, remain untouched. In the duodenmm, the whole mass is acted upon by secretions from the liver and pancreas. While the
gastric secretion was acid, these are alkaline; and their office seems to be - the subdivision of the fatty matter into minute particles (emulsion), till they are diffused through the liquid, like atoms of butter in milk, thas fitting it to be absorbed into the blood; and the completion of the work begun by the saliva and gastric juice. In this they are assisted by the "intestinal juice" secreted by the mucous lining of the small intestine, the action of which is merely supplementary. The chyle is slowly drisen throngh the small intestine by the creeping, peristaltic motion of its walls, the nutritions portion being taken up by the absorbents, as described in the next chapter, while the undigested part remaining is discharged from the large intestine.

CHAPTER XI.

TIIE ABSORBENT SYSTEM.
Tne nutritive matter (chyle), prepared by the digestive process, is still outside of the organism. How shall it enter the living tissue?

In animals, like the Infusoria and Polyps, whose digestise department is not separated from the body-cavity, the food, as soon as dissolved, mingles freely with the tissnes and organs it has to nowrish. In the higher Invertebrates having an alimentary canal, the chyle passes, by simple transudation, through the walls of the canal directly into the soft tissues, as in Insects, or is absorbed from the canal by veins in contact with it, as in Sea-mrchins, Mollnsks, Worms, and Crustaceans, and then distributed through the body.

In Vertebrates only do we find a special absorbent system. Three sets of ressels are concerned in the general
process by which fresh material is taken up and added to the blood: Veins, Lacteals, and Lymphatics. Only the two former draw material from the alimentary canal.

It is a general law that the food is absorbed as fast as it is dissolved, and, therefore, there is a constant loss in the passage down the canal. In the mouth and cesophagus, the absorption is slight; but much of that which has yielded to the gastric juice, with most of the water, is greedily absorbed by the veins of the stomach, and made to join the current of blood which is rushing to the liver. Absorption by the reins also takes place from the skin and lungs. Medicinal or poisonous gases and liquids are readily introduced into the system by these chamels.

We have seen that the oily part of the food passes unchanged from the stomach into the small intestine, where, acted upon by the pancreatic juice, it is ent up into extremely minute particles. These, and the remaining nu-

Fig. 5s.-Lacteal System of Mammal: a, descending aorta, or principal artery ; b, thoracic duct; c, origin of lacteal vessels, g, in the walls of the intestine, d; e, mesentery, or membrane attaching the intestine to walls of the body; f, lacteal, or mesenteric, glands. tritive substances not taken up by the blood-vessels, enter the system in a romdabout way. A multitude of microscopic tubes form a network in the walls of the intestine, and even rin into the little velvety villi with which the intestine is lined. ${ }^{\text {bo }}$ The villi, projecting into the digested food, like rootlets into the soil, absorb the chyle, which is immediately passed into the net-work of tubes, called lacteals, from the milky character of the chyle which they conrey, in Mammals. These lacteals unite into larger trunks, which lie in the mesentery (or membrane which suspends the intestine to the back wall of the abdomen), and these pour
their contents into one large vessel, the thoracic duct, lying along the backbone, and joining the great jngnlar vein in the neck.

While the lacteals spring from the intestine only, the lymphatics come from all parts of the body, ${ }^{60}$ more especially the skin. The two are closely allied in structure and office, and both empty into the thoracic duct; so that they may be regarded as two sets of roots issuing from one common trunk. They differ in the nature of the fluid they contain, the lymphatics carrying transparent lymple, abounding with minnte colorless disks, or cells; while chyle has, in addition, a crowd of oil-globnles, which render it white and opaque. ${ }^{01}$ Both coagulate upon exposmre to the air. The chief function of the lymphatics seems to be to gather up matters which lave served a purpose in the system, bit which may again be used in the blood, and to return to the circu-

Fig. 59.-Principal Lymphaties of the Iluman Body: a, union of left jngular and subclavian veins: b, thoracic duct; c, receptaculum chyli. The oval bodies are glands.
lation that superflnons part of the blood ponred ont upon the tissnes, over and above what was needed.

Like the roots of Plants, the absorbent ressels do not commence with open months; but the flnid which enters them must traverse the membrane which covers their
minute extremities. The pores of this membrane (which, though invisible, are demonstrable) are so many short cap-

Fig. 60. - Diagram of a Lymph Gland, showing change from eprithelial to nucleated cells. illary tubes; so that the passage of the chyle is a physical necessity, and is not dependent on a vital or some other mysterions principle. But as capillary attraction can not produce motion beyond the capillary tubes, another force is called into play, namely, diffusion. The chyle, having passed through the membrane, meets a fluid (lymph), with which it is miscible, and diffuses itself into that fluid, learing room for a fresh supply to enter the membrane. ${ }^{62}$ In this way a slow but strong current is kept up, which is probably aided by a rhythmical contraction of successive portions of the lacteals themselves. In Fishes and Reptiles, the absorbents are provided with pulsating sacs, called lymphatic hearts. In Pirds and Mammals, they are furnished with valres, which prevent the backward flow of the contents.

CIIAPTER XII.

TIIE BLOOD OF ANIMALS.

The Blood is that peculiar fluid derived from digested food which carries to the living tissues the materials necessary to their growth and repair. The great bulk of the body is occupied with apparatus for the preparation and circulation of this vital fluid.

The blood of the lower animals (Invertebrates) differs so widely from that of Man and other Vertebrates, that the former were long supposed to be without blood. In them the blood is commonly colorless; but it has a blnish
cast in Crustaceans; reddish, yellowish, or greenish, in Worms; and reddish, greenish, or brownish, in Jellyfishes. The red liquid which appears when the head of a Fly is crushed is not blood, but comes from the eyes. In Fishes, Reptiles, Birds, and Mammals, the blood is red, excepting the white-blooded fish, Amphioxus. ${ }^{63}$

As a rule, the more simple the fabrie of the body, the more simple the nutritive fluid. In Sponges and Infusoria, it is sea-water carrying organic particles; in the low Polyps and Jelly-fishes, it is merely chyme; in all other Invertebrates, having a complete alimentary canal, it is chyle; in the backboned animals, it is a highly complex and distinct fluid.

In all animals, however, from Sponge to Man, the blood, apparently a clear, homogeneous tluid, really consists of minute grains, or globnles, of organic matter floating in water. If the blood of a Frog be poured on a filter of blutting - paper, a transparent fluid (called plasmu) will pass through, learing red particles, resembling sand, on the upper surface. Under the microscope, these particles prore to be cells, or flattened disks (called corpuscles) containing a muclens; some are colorless, and others red. The red disks

Fio. 61.-Red Blood-corpuscles of Man: a, shows circular contour; b, a biconcave section; c, a group in chains.
have a tendency to run together; the colorless ones remain single. Meanwhile, the plasma separates into two parts.by coagulating ; that is, minute fibres form, consisting of fibrine, leaving a pale yellowish fluid, called se-
rum. ${ }^{64}$ Had the blood not been filtered, the corpuscles and fibrine would hare mingled, forming a jelly-like mass, known as clot. Further, the serum will coagnlate if heated, dividing into lardened albumen and a watery flnid, called serosity, which contains the soluble salts of the bluod.

These several parts may be expressed thms:

If now we examine the nutritive fluid of the simplest
 animals, we will find only a watery fluid containing granules. In Radiates and the lowest Articulates and Mollusks, there is a similar fluid, with the addition of a few white corpuscles. But there is no fibrine, and, therefore, it does not coagulate. In Fig. 62.-Nucleated Blood-cells of a Frog, $\times 250$. the higher Articulates and Mollusks, the circulating fluid resembles the chyle as we find it in the thoracic duct of Vertebrates, containing colorless nucleated cells, and coagnlating. ${ }^{65}$ In Vertebrates, there are, in addition to the plasma and white corpuscles of I_{1} vertebrates, red corpuscles, to which their blood owes its pecnliar lime. In Fishes, Reptiles, and Birds, i.e., all the backhoned animals born from eggs, these red corpuscles are nucleated ; but in those of Mammals, no nucleus has been discovered. ${ }^{\text {ac }}$

Fig. 63.-Elliptical Corpuacle of the Frog, showing a white prominence at the centre.

All blood-corpmscles are microscopic. The white are more miform in size tharr the red; and generally smaller (except in Mammals), being about $\frac{1}{2 \overline{5} 00}$ of an inch in diameter. The red corpuscles are largest in Reptiles (those of the amplibions Proteus being the extreme, or $\frac{1}{3} \frac{1}{50}$ of an inch), next in Fishes, then Birds and Mammals. The smallest known are those of the Mnsk-deer. In Mammals, the size agrees with the size of the animal only within a matural order; but in Birds the correspondence holds good thronghont the class, the largest being fomd in the Ostrieh, and the smallest in the Humming-bird. In Man, they measure $\frac{1}{3200}$ of an inch, so that it would take 40,000 to cover the head of a pin.

As to shape, the colorless corpuscles are ordinarily globular, or sac-like, in all animals ; but they are constantly changing. The form of the red disks is more permanent, althongh they are soft and elastic, so that they squeeze through very narrow passages. They are oval, circular,

Fig. 64,-Comparative Size and Shape of the red Corpuscles of various Animals.
or angular, in Fishes; oral in Reptiles, Birds, and the Canel tribe; and circular in the rest of Mammals. They are double-conrex when oval, and double-concare when circular.

Blood is always heavier than water; but is thinner in cold-blooded than in warm-blooded animals, in herbirores than in carnivores. The blood of lirds, which is the hottest known, being 10° higher than Man's, is richest in red corpuscles. In Man, they constitute about one-half the mass of blood. The white globules are far less numerous than the red; they are more abment in venous than arterial blood, in the sickly and ill-fed than in the healthy and vigorons, in the lower Vertebrates than in Birds and Manmals.

There is less blood in cold-blooded than in warm-blooded animals; and the larger the animal, the greater is the

Fig. 65.-Capillary Circulation in the Web of a Frog's Foot, $\times 100: a, b$, small veins ; d, capillaries in which the oval corpuscles are seen to follow one another in single series; c, pigment-cells in the skin.
proportion of blood to the body. Man has about a gallon aud a half, equal to one-tenth of his weight. The heart of the Greenland Whale is a yard in diameter.

The main Office of the Blood is to supply nourishment to, and take away waste matters from, all parts of the body. It is at once purveyor and scavenger. In its circulation, it passes, while in the arterial half of the capillaries, within an infinitesimal distance of the various tissnes. The plasma, carrying the nutritive matter needed, exudes throngh the walls of the capillary tubes; the tissue assimilates or makes like to itsclf whatever is suitable for its growth and repair ; and the lymphatics (the escapepipes) take up any surplus, and return it to the blood. At the same time, the venous part of the capillary network absorbs the waste products of the tissues, expelling the gases by the lungs, and the solid matters by the skin and kidneys. The special function of the several constituents of the blood is not clearly known. The colorless corpuscles in Vertebrates are supposed to be the source of the red disks. The latter are probably the carriers of gases, absorbing oxygen in the lungs, which they give to the tissues, and receive carbonic acid in exchange.

Like the solid tissues, the blood, which is in reality a liquid tissue, is subject to waste and renewal, to growth and decay. Its source is the product of digestion, not only the lacteal chyle, which is the only fluid in the body that has never formed part of the blood, but also the cliyme absorbed by the blood-ressels of the stomach. Chyle differs from blood chiefly in containing less albumen and fibrine, and no red disks. The transmutation is accomplished by the small glands (mesenteric) attached to the laeteals, the lymph, and the lungs. In the low organisms, the nutritive fluid is prepared by contact with the tissnes, without passing throngh special organs.

CHAPTER XIII.

THE CIRCULATION OF TIIE BLOOD.
The Blood is kept in continual motion in order to nomrish and purify the body and itself. For as life means work, and work brings waste, there is constant need of fresh material to make good the loss in every part of the system, and of the remoral of matter which is no longer fit for use.

In the rery lowest animals, where every part of the

Fig. 66.-Venous Valves. They usually occur in pairs, as represented. structure is equally capable of absorbing the digested food and is in contact with it, there is no occasion for any circulation, althongh in them even it is not allowed to stagnate. But in proportion as the power of absorption is confined to certain parts, the more need and the greater complexity of an apparatus for conreying the nutritions fluid to the varions tissues.

In nearly all animals, the mutritive fluid is conveyed to the rarions parts of the body by a system of tubes, called blood-vessels. The higher forms
have two sets-arteries and veins, in which the blood moves in opposite directions, the former carrying blood from a central reservoir or heart, the latter taking it to the heart. The walls of these tubes are made of three coats, or layers, of tissue, the arteries being elastic, like rubber, aud many of the reins being furnished with values. ${ }^{67}$ In Vertebrates, the great artery coming ont of the heart is called cortu, and the grand renons trunk, entering the heart on the opposite side, is called rena cava. Both sets divide and subdivide mutil their branches are finer than hairs; and joining these finest arteries and finest veins are intermediate microscopic tubes, called capillaries (in Man abont $\frac{1}{3000}$ of an inch in diameter). ${ }^{68}$ In these only, so thin and delicate are their walls, does the blood come in contact with the tissues or the air.

In all animals having a special

Fig. 67. - Relation of artery, a, vein, b, and capillaries, c, as seen in the muscles of a Dog. organ for respiration (gills or lmgs), there are two sets of capillaries, since there are two circulations-the systemic, from the heart around the system to the heart again, and the pulmonary, from the heart through the respiratory organ back to the heart. This donble course may be illustrated by the figure S.

There is no true system of blood-ressels below the Starfish. The canals of the Sponge are really on the outside of the animal. In the Infusoria and Polyps, the nutritive matter mixed with water rises and falls in the body-cavity. The simplest provision for the distribution of the products
of digestion is shown by the Jelly-fish, whose stomach sends off radiating tubes.

The first Approach to a Circulatory System is made by the Star-fish and Sea-urchin. A vein rums along the whole length of the alimentary tube, to absorb the chyle, and forms a circle aromb each end of the tube. These circonlar vessels send off branches to varions parts of the body; but as they are not connected by a net-work of capillaries, there can be no circuit (Fig. 37).

The next higher type is exhibited by the Articulates. If we examine the back of any thin-skimned Caterpillar,

Fic. 6s.-Part of the Dorsal Vessel, or Ileart, of a Cockchafer bisected: a, b, muscular walls; d, valves between the compartments; c, valve defending one of the orifices communicating with the general cavity of the abdomen. a long pulsating tube is seen ruming beneath the skin from one end of the body to the other. This dorsal ressel, or heart, as it is called, is open at both ends, and divided by valves into compartments, permitting the blood to go forward, but not backward. Each compartment commmnicates by a pair of slits, guarded by valves, with the bodycarity, so that fluids may enter, but can not escape. "Circulation" is very simple. We hare seen that the chyle exudes throngh the walls of the alimentary canal directly into the cavity of the abdomen, where it mingles with the blood already there. This mixed fluid is drawn into the dorsal tube through the valvular openings as it expands; and upon its contraction, all the sidevalres are closed, and the fluid is forced toward the head. Passing out at the front opening, it is again diffnsed among and between the tissnes of the body. The blood, therefore, does not describe a circle in definite
chamels so as to return constantly to its point of departure.

Certain Worms (as the Earth -worm) have a ventrai tube, convering the blood from head to tail, with numerons cross canals joining the ventral and dorsal tubes. In the Lobster and Crab, Spider and Scorpion, the dorsal

Fig. 69.-Circulation in a Lobster: a, heart ; b, artery for the eyes: c, artery for antemie; d, hepatic artery; e, superior abdominal artery; f, sternal artery; g, venous sinuses transmitting blood from the body to the branchie, h, whence it returns to the heart by the branchio-cardiac vessels, i.
tube sends off a system of arteries (not found in Insects); but the blood, as it leaves these tubes, escapes into the general carity, as in other Articulates. The Lobster and Crab, however, show a great adrance in the concentration of the propelling power into a short muscular sac - the first rudiment of a true heart.

A third development of the circulatory system is furnished by the Mollusks. Comparatively slnggish, they need a powerful force-pump in the form of a compact heart. In the Oyster and Snail, we find such an organ having two cavities - an amicle and a rentricle, one for receiving, and the other for distributing, the blood. The auricle injects the blood into the ventricle, which propels it by comntless arteries to the various organs. Thence it passes, not immediately to the reins, as in higher animals,' but into the spaces around the alimentary canal. A part of this is carried by vessels to the gills or lung, and then returned with the unpurified portion to the anricle. The
whole of the blood, therefore, does not make a complete circuit.

A still higher form is seen in the Cuttle-fish, the high-

Fig. 70.-Circulating Apparatus in the Fish: a, branchial artery ; b, arterial bulb; c, ventricle; d, auricle ; e, venous sinus ; f, portal vein: g, intestine; h, vena cava; i, branchial vessels; k, dorsal artery, or aorta; l, kidneys; m, dorsal artery. est of Invertelrates. Instead of a double heart, we find a triple one, a ventricle to throw the blood over the system, and two anricles to force it into the gills. Hitherto, there has been a propelling cavity on the "arterial" side only; but now the reins which collect the blond from the system to send it back to the heart by the way of the gills, are furnished with two lranchial hearts, which accelerate the cirenlation through those organs. Many of the arteries and reins are joined by capillaries, but not all; so that in no invertebrate animal is the blood retmened to the heart by a continuons closed system of blood-ressels.

As a rule, in all animals haring any cirenlation at all, the current always takes one direction. This is generally necessitated by valves. But a curions exception is presented by the Ascidians (a group of low Mollusks), whose tubular heart is ralveless, and the contractions occur alternately at one end and then the other; so that the blood oscillates to and fro, and a given vessel is at one time a
vein and at another an artery. In this respect it resembles the foetal heart of higher animals.

In Vertebrates only is the circulating enrent strictly confined to the blood-ressels; in no case does it escape into the general cavity of the body. In other respects, there is no great advance in the apparatus of the lowest Tertebrates over that of the highest Mollusks. The heart of Fishes, as in the Oyster, is double, but its position is reversed. Instead of driving arterial blood over the body, it receives the retuming, or renous, blood, and sends it to the gills. Re-collected from the gills by minute tubes, called capillaries, the blood is passed into a large artery, or aorta, along the back, which distributes it by a complex system of capillaries among the tissnes. These capillaries unite with the ends of the reins which pass the blood into the auricle of the heart. ${ }^{69}$

In Reptiles generally (as Frogs, Snakes, Lizards, and

Fig. 71.-Diagram of a single lleart: d, auricle; e, ventricle; c, veins leading to auricle ; a, aorta, or main artery. Turtles), the heart has three cavities - two auricles and one rentricle. The venous blood from the body is received into the right auricle, and the purified blood from the lnngs into the left. Both throw their contents into the rentricle, which pumps the mixed blood in two direc-tions-partly to the lnngs, and partly around the system. Circulation is, therefore, incomplete, since the whole current does not pass through the lungs, and three kinds of blood are found in the body-arterial, renous, and mixed.

The ventricle of these Reptiles is partially divided by a partition. In the Crocodile, the division is complete, so
that there are really four carities--two auricles, and two

Fig. 72.-Heart of the Dugong, a typical four-chambered heart, the parts being more separated than in higher animals: E, right ventricle; L, left ventricle; D , right auricle; F , pulmonary artery: K, left auricle; A, aorta. ventricles. But both ventricles send off aortas which cross one another, and at that point a small aperture brings the two in commmication. The venous and arterial currents are, therefore, mixed, but not within the heart, as in the other Reptiles, nor so extensively. In the structure of the heart, as well as gizzard, Crocodiles approach the Birds.
The Highest Form of the
Circulating System is possessed by the warm-blooded Vertebrates, Birds, and Mammals. Not a drop of blood can make the circuit of the body without passing throngh the lungs, the circulation to and from those organs being as perfect as the distribution of arterial blood. The heart consists of fonr cavities - a right auricle and ventricle, and a left auricle and ventricle. In other words, it is a hollow muscle divided internally by a rertical partition into two distinct chambers, each of which is again divided by a valve into an auricle and a ventricle. The work of the right auricle and sentricle is to receive the blood from the reins, and

Fig. 73. - Theoretical Section of the Human Heart: a, right ventricle : b, inferior vena cava; c, tricuspid valve; d, right anricle; e, pulmonary veins; f, superior vena cava; g, pulmonary arteries ; h, aorta ; k, left auricle; l, mitral valve ; m, left ventricle ; n, septum. send it to the lungs; while the other two receive the
blood from the lungs, and propel it over the body. The left rentricle has more to do than any other cavity. The two auricles contract at the same instant; so, also, do the ventricles. The somds which they respectively make may be imitated by the words lubb, tup. The comrse of the current in Birds and Mammals is as follows: the venous blood bronght from the system is discharged by two or three large trunks ${ }^{70}$ into the right auricle, which immediately forces it Fic. Tt,--Plan of Cireulapast a valve ${ }^{71}$ into the right ventricle. The ventricle then contracts, and the blood rushes through the pulmonary artery past its semilunar valves into

tion in Fishes: a, anricle; b, ventricle; c, pulmonary artery ; e, pulmonary veins, bringing blood from the gills, d, and nuiting in the aorta, $f ; g$, vena cava. the lungs, where it is changed from blue to erimson, returning by the pulmonary vein to the left auricle. This

Frgs. 75, 76.-A, Plan of Circulation in Amphihia and Reptiles; B, Plan of Circulation in Birds and Mammals : a, right anricle receiving venons blood from the system: b, left auricle receiving arterial blood from the lungs: c, c^{\prime}, ventricles; d, e, f, systemic artery, vein, and capillaries : g, h, k, pulmonary artery, vein, and capillaries. sends it past the mitral valves into the left ventricle, which drives it by the semilnnar valves into the aorta, and thence, by its ramifying arteries and capillaries, into all parts of the body except the lungs. From the capillaries, the blood, now changed from crimson to blue, is gathered by the veins, and conveyed back to the heart.

The Rate of the

Blood-current generally increases with the activity of the animal, being most rapid in Birds. ${ }^{\text {² }}$ In Insects, however, it is comparatively slow; but this is because the air is taken to the blood-the whole body being bathed in air, so that the blood has no need to hasten to a special organ. Nerertheless, the pulsations in a Bee at rest are nearly doubled when it is lively. The motion in the arteries is two or three times faster than in the reins, but diminishes as the distance from the heart increases. In the aorta of the Horse, the blood moves $12 \frac{1}{2}$ inches per second; in that of Man, $10 \frac{1}{2}$; in the capillaries of Man, 2 inches per minute ; in those of a Frog, 1.

The Cause of the Blood-current may be cilia, or the contractions of the body, or pulsating tubes or hearts. In the higher animals, the impulse of the heart is not the sole means: it is aided by the contractions of the arteries themselves, the movements of the chest in respiration, and the attraction of the tissues for the arterial blood in the capillaries. In the Chick, the blood moves before the heart begins to beat; and if the heart of an animal be suddenly taken out, the motion in the capillaries will continne as before. It has been estimated that the force which the human heart expends in twenty-four hours is equivalent to lifting $12 \pm$ tons one foot.

CIIAPTER XIV.

HOW ANIMALS BREATIIE.

Arterial Blood, in passing through the system, both loses and gains certain substances. Its loss is made good by fresh prodncts of digestion; and the solid or fluid waste matters which it has taken up are removed by excretion.

But it becomes tainted, also, by carbonic acid gas, and loses the free oxygen which it possessed. It is this difference in the gaseous contents which makes the great difference between the erimson blocd of the arteries and the dark-purple blood of the veins in the higher animals.

The First Object of Respiration is to convert venons into arterial blood. It is done by bringing it to the surface, so that the carbonic acid may be exhaled and oxygen absorbed. The apparatus for this purpose is analogous to the one used for circulation. In the lowest animals, the two are combined. But in the highest, each is essentially a pmop, distributing a fluid (in one case air, in the other blood) throngh a series of tubes to a system of cells or capillaries. They are also closely related to each other: the more perfect the circulation, the more careful the provision made for respiration.

Respiration is performed either in air or in water. So that all animals may be classed as air-breathers or water-breathers. The latter are, of conrse, aquatic, and seek the air which is dissolved in the water. Laud-snails, Myriapods, Spiders, Insects, Reptiles, Birds, and Mammals breathe air directly; the rest, with few exceptions, receive it throngh the medimm of water. In the former case, the organ is internal ; in the latter, it is more or less on the ontside. But howerer varied the organs - tubes, gills, or lungs-they are all constructed on the same principle.
(1) Sponges, Infusoria, and Polyps have no separate respiratory apparatus, but absorb air, as well as food, from the currents of water passing throngh them.

In the Star-fish, Sea-urchin, and the like, we find the first distinct respiratory organs, althongh none are exclusively devoted to respiration. There are two sets of ca-nals-one carrying the nutrient fluid, and the other, radiating from a ring around the month, distributing aërated

Trg. Ti.-Lob-worm (Arenicola piscatorum), a dorsibranchiate, showing the tufts of capillaries, or external gills. The large head is withont eyes or jaws.
water. This may be called the "waterpipe system." Besides this, there are numerous gill-like fringes, which probably aid in respiration.

Fresh-water Worms; like the Leeeh and Earth-worm, breathe by the skin. The body is always covered by a viscid fluid, which has the property of absorbing air. The air is, therefore, brought into immediate contact with the soft skin, menderneath which lies a dense net-work of blood-vessels.

All the rest of water-breathing animals have gills. The simplest form is seen in Marine Worms: delicate veins projecting throngh the skin make a series of arborescent tufts along the side of the body; as these float in the water, the blood is purified. Bivalve Mollusks have four flat gills, consisting of delicate membranes filled with blood-ressels and covered with cilia. In the Oyster, these ribbon-like folds are exposed to the water when the shell opens; but in the Clam, the mantle incloses them, forming a tube, called siphon, through which the water is driven by the cilia. ${ }^{73}$ The aquatic Gas- Fro. 7 s. - Dingrammatic section of a teropods (Univalves) have either tufts, like the Worms, or comb-like ciliated gills in a cavity behind the liead, to

Lamellibranch (Anorlon): a, lobes of mantle; b, gills, show ing transverse partitions ; c, ventricle of heart ; d, auricles ; e, pericardium ; f, g, glandnlar sacs; h, venons sinns; k, foot ; A, branchial, or pallial, chamber; B, epibranchial chamber.
which the water is admitted by a siphon. The Cuttle-fish has similar flat gills covered by the mantle; but the water is drawn in by muscular contractions instead of by cilia. The end of the siphon throngh which it is ejected is called the funnel. The leaf-shaped gills of Lobsters and Crabs are also placed in tubular cavities, and a current is kept up by a little valve worked by the jaws.

The perfection of apparatus for aquatic respiration is seen in Fishes. The gills are comb-like fringes supported on four or fise bony or cartilaginous arches, and consist of myriads of microscopic capillaries, the object being to expose the venons blood in a state of minute subdivision to streams of water. The gills are always covered; and the water taken in by the mouth passes between the gills, and escapes by a single opening on each side, in most Fishes, but by five slits in the Sharks. The act of "breathing water" resembles swallowing, only the water enters the gills instead of the gullet.
(2) Air-breathers have trachea, or lungs. The former consist of two principal tubes, which pass from one end of the body to the other, opening on the surface by apertures, called spiracles, resembling a row of button-holes along the sides of the abdomen, and ramifying through the smallest and most delicate organs, so that the air may follow the blood wherever it circulates. To keep the pipes ever open, and at the same time leave them flexible, they are

Fig. 79.-Spiracle of an Insect, \times i5. provided with an elastic spiral thread, like the rinber
tube of a drop-light. Respiration is performed by the

Fig. 80.- Tracheal Tnbe of an Insect, highly magnified, showing elastic spiral thread. movements of the abdomen, as may be seen in the Bee when at rest. This "airpipe system," as it may be termed, is best developed in Insects.

The "nerves" of an Insect's wing consist of a tube within a tube: the imer one is a trachea carrying air, and the onter one, sheathing it, is a blood-ressel. So perfect is the aëration of the whole body, from brain to feet, the blood is oxygenized at the moment when, and on the spot where, it is carbonized; only one kind of fluid is, therefore, cir-culating-arterial. It is difficult to drown an Insect, as the water can not enter the pores; but if a drop of oil be applied to the abdomen, it falls dead at once, being suf-

Fig. 81.-Ideal Section of a Bee: a, alimentary canal; h, dorsal ves-el; t, trachea; n, nervours cord.
focated. The largest spiracle is usually fom on the thorax, as under the wing of a Moth: such may be strangled by pinching the thorax.

In Millipedes and Centipedes, the spiracles open into
little sacs commected together by tubes; in Spiders and Scorpions, the spiracles, usually four in number, are the mouths of sacs without the tubes, and the interior of the sac is gathered into folds; land Suails have one spiracle, or aperture, on the left side of the neck, leading to a large cavity, or sac, lined with fine blood-vessels. These sacs represent the primitive idea of a long, which is but an infolding of the

Fia. S2.-Section through a bronchial tube, Lung of a Bird, magnitied: a, the cavity ; b, its lining membran ? supporting bloodvessels ; c, perforations at the orifices of the lobular passages, d; e, interlobular spaces, containing the terminal branches of the pulmonary vessels supplying the capillary plexns, f, to the meshes of which the air gets access by the lobular passages. skin, divided up into cells, and covered with capillary veins. ${ }^{74}$

Like the alimentary canal, the lungs of an animal are really an inflected portion of the outer surface; so that

Fig. s3. - Part of a transverse section of a Pig's Bronchial Twig, $\times 240$: a, onter tibrous layer ; b, masenlar layer; c, inner fibrous layer; d, epithelial layer; f, one of the neighboring alveoli.
breathing by the skin and breathing by lungs are one in principle. Indeed, in many animals, especially Frogs, respiration is carried on by both lungs and skin.

All Vertebrates have two kinds of respiratory organs in the course of their life. From Fish to Man, all have gills

Fig. St.-Lungs of a Reptile: α, trachea; b, its bifurcation : c, palmonary artery ; d, pulmouary vein ; the sac, B, is rudimeutary. in the embryo state. ${ }^{25}$ Fishes, and a few Amphibians, keep them through life; but in the rest they disappear. All, too, have lungs; but fully developed only in Reptiles, Birds, and Mammals. The lung of the Fish (the air-bladder) remains rudimentary. A few adult Amphibians, as Protens and Siren, retain both gills and lungs, thus forming a link between Fishes and Reptiles. But Frogs and Salamanders begin life as waterbreathers, and when mature have lungs only:

The lungs of Vertebrates are elastic membranous sacs, divided more or less into cells to increase the surface. Upon the walls of the cells are spread the capillary blood-vessels. The smaller the cells, the greater the extent of smrface mpon which the blood is exposed to the influence of the air, and, therefore, the more active the respiration and the purer the blood. The lungs are relatively largest in Reptiles, and smallest in Mammals. But in the cold-blooded Amphibians and Reptiles, the air-cells are few and large; in the warm-blooded Birds and Mammals, they are exceedingly numerons and minute. ${ }^{78}$ In Birds and Mammals, the blood in the capillaries is exposed to the air on all sides; in the Reptiles, on one only. Respiration is most perfect in Birds; they require, relatively to their weights, more air than Mammals or Reptiles, and most
quickly die for lack of it. In Birds, respiration is not contined to the lungs; but, as in Insects, extends through a great part of the body. $\Lambda i r$-sacs connected with the lungs exist in the abdomen and muder the skin of the neck, wings, and legs. Even the bones are hollow for this purpose; so that if the windpipe be tied, and an opening be made in the wing-bone, the Bird will continne to respire. The right lung is usually the larger; in some Snakes, the left is wanting entirely. In Mammals, the lungs are freely suspended in the thorax; in other Vertebrates, they are fastened to the back.

The lungs communicate with the atinosphere by means of the trachea, or windpipe, formed of a series of cartilaginous rings, which keep it constantly open. It begins in

Fig. S5.-Lings of a Frog: a, hyoid apparatns ; b, cartilaginous ring at root of the lungs; c, pulmonary vessels; d, pulmonary sacs having this peculiarity common to all coldblooded air-breathers, that the trachea does not divide into bronchial branches, but terminates abruptly by orifices which open at once into the general cavity. A cartilaginous net-work divides the space into little sacs, on the walls of which the capillaries are sprend.

Fig. 86. - Distribution of Air-tnbes in Mammalian Lungs: a, larynx ; b, trachea; c, d, left and right bronchial tubes; e, f, g, the ramifications. In Man the snldivision contimes until the ultimate tubes are one-twen-ty-fifth of an inch in diameter. Each lobnle represents in miniatnre the structure of the entire lung of a Frog.
the back part of the month, opening into the pharynx by a slit, called the glottis, which, in Mammals, is protected
by the valve-like epiglottis. The trachea passes along

Fig. s7.--Skeletun of a Frog. the neck in front of ${ }^{\text {" }}$ the esophagns, and divides into two branches, or bronchi, one for each lung. In Birds and Mammals, the bronchial tubes, after entering the lings, subdivide again into minute ramifications.

Vertebrates are
the only animals that breathe through the mouth or nostrils. Fishes inspire only. Frogs, having no ribs, and Turtles, whose ribs are soldered together into a shield, are compelled to swallow the air. Snakes, Lizards, and Crocodiles draw it into the lungs by the play of the ribs." Birds, unlike other animals, do not inhale the air by an active effort ; for that is done by the springing-back of the breast-bone and ribs to their natural position. To expel the air, the breastbone is drawn down toward the backbone by muscles, which compresses the lungs.

Mammals alone have a perfect thorax, i.e., a closed

Fig. 88.-IIuman Thorax: α, vertebral column ; b, b^{\prime}, ribs, the lower ones false; c, clavicle ; e, intercostal muscles, removed on the left side to show the diaphragm, d; f, pillare of the diaphragm attached to the lumbar vertebre; g, muscles for elevating the ribs; h, steruum.
cavity for the heart and lungs, with movable walls (breastbone and ribs) and a diaphragm, or musenlar partition, separating it from the abdomen. ${ }^{78}$ Inspiration (or filling the lungs) and expiration (or emptying the lungs) are both accomplished by muscular exertion; the former, by raising the ribs and lowering the diaphragm, which enlarge the capacity of the chest, and the air rushes in to prevent a racumm; the latter, by the ascent of the diaphragm and the descent of the ribs.

As a rule, the more active and more muscular an animal, the greater the demand for oxygen. Thus, warmblooded animals live fast, and their rapidly decaying tissues call for rapid respiration; while in the cold-blooded creatures the waste is comparatively slow. Respiration is most active in Dirds, and least in water-breathing animals. The sluggish Toad respires more slowly than the busy Bee, the Mollask more slowly than the Fish. But respirations, like beats of the heart, are fewer in large Mamnials than in small ones. An average Main inhales about 700 cubit feet of air per day.

Another result of respiration, besides the purification of the blood, is the production of heat. The chemical combination of the oxygen in the air with the carbon in the tissues is a true combustion ; and, therefore, the more active the animal and its breathing, the higher its temperature. Birds and Mammals have a temperature of about 105° and 100° respectively, and are called warm-blooded. Fishes and Reptiles lave a lower and more variable temperature, ranging from 35° to 50°, and are called coldblooded. The Bee is from 3° to 10°, and the Earth-worm and Snail from $1 \frac{1}{2}^{\circ}$ to 2°, higher than the air. The mean temperature of the Carp and Toad is 51°; of Man, 98°; Dog, 99°; Cat, 101°; Squirrel, 105°; Swallow, 111°.

CIIAPTER XV.

SECRETION AND EXCRETION.

In the circulation of the blood, not only are the nutrient materials deposited within the body in the form of tissue, but certain special fluids are separated and conveyed to the external or internal surfaces of the body. These fluids are of two kinds: some, like saliva, gastric juice, bile, milk, etc., are for usefnl purposes; others, like sweat and urine, are expelled from the system as useless or injurions.

F1g. S9.-Three plans of secreting Membranes. The heavy line represents the areolar-vascular layer; the next line is the basement, or limiting membrane; and the dotted line the epithelial layer: a shows increase of surface by simple plaited or fringed projections ; b, five modes of increase by recesses, forming simple glands, or follicles; c, two forms of compound glands. The separation of the former is called secretion; the remoral of the latter is excretion. The two functions differ also in this, that secretion is intermittent, as, e. g., the gastric jnice is formed when wanted, while excretion is constant day and night. Both processes, however, are substantially alike.

In the lowest forms, there are no special organs, but secretion and excretion take place from the general surface. Even in the higher animals, there are secreting membranes. The membranes lining the nose and alimentary canal and inclosing the lungs, heart, and joints, secrete lubricating fluids.

The infolding of such a membrane into little sacs or short tubes (follicles), each having its own outlet, is the type of all secreting and excreting organs. The lower tribes have nothing higher, and the apparatus for preparing the gastric fluid attains no further development even in Man. When a cluster of these follicles, or sacs, discharge their contents by one common duct, we have a gland. But whether membrane, follicle, or gland, the organ is covered with a net-work of blood-vessels, and lined with epithelial cells, which are the real agents in the process.

The chief Secreting Organs are the salivary glunds, gastric follicles, pancreas, and liver, all sitnated along the digestive tract.

1. The salivary glands, which open into the mouth, secrete saliva. They exist in nearly all animals, except Fishes, Crocodiles, and Whales, and are most largely dereloped in such as lise on vegetable food. The saliva serves to lubricate or dissolve the food for swallowing, and, in Mammals that masticate, aids also in digestion. ${ }^{79}$
2. The gastric follicles are minute tules in the walls of the stomach secreting gastric juice. They are found in all Vertebrates, and in the higher Mollusks and Artienlates. In the lower forms, a simple membrane lined with cells serves the same purpose. Under the microscope, the soft mucous membrane of the human stomach presents a honey-comb appearance, caused by numerous depressions or cells. At the bottom of these de-

Fig. 90.-Follicles from the Stomach of a Dog, \times 150 ; near the mouth, a, there is a lining of columnar epithelium. pressions are clusters of spots, which are the orifices of
the tubular follicles. The follicles are less than $\frac{1}{3000}$ of an inch in diameter, and number millions.
3. The pancreas, or "sweetbread," so important in the process of digestion, when present, exists only in the Ver-

Fig. 91.-Pancreas of Man, $o ; g$, gall-bladder; s, cystic duct; c, duct from the liver; p, pyloric valve ; e, i, duodenum. tebrates and the higher Mollusks. In its structure and its secretion it closely resembles the salivary glands. In the Cut-tle-fish, it is represented by a sac; in Fishes, by a group of follicles. It is proportionally largest in Birds whose salivary glands are deficient. The pancreatic juice enters the duodenum.
4. A liver in some form is found in all animals having a distinct digestive cavity. In Mollusks and Vertebrates, it is the largest gland in the body. The higher the animal, the more compact the organ. Thins, in Polyps it is represented by yellowish cells lining the stomach; in Insects, by delicate tubes along the intestine; in Mollusks, by a cluster of sacs, or follicles, forming a loose compound gland. In Vertebrates, the liver is well defined, and composed of a multitude of lobules (which give it a granular appearance) arranged on the capillary veins, like grapes on a stem, and containing nucleated secreting cells. It is of variable shape, but usually two, three, or five lobed, and is centrally situated-in Mammals, just below the diaphragm. In most Vertebrates, there is an appendage to the liver, called the gall-bladder, which is simply a reserroir for the bile when not wanted.

The liver is both a secretory and excretory organ. For while the bile performs an essential, though mysterious,
part in the digestive process, it is decomposing matter filtered from the blood, and, if not cast out of the system,

Fig. 92.-Liver of the Dog, F,F; D, duodenum and intestines; P, pancreas: r, spleen ; e, stomach: f, rectum ; R, right kidney ; B , gall-bladder; ch, cystic dnct; F , lobe of liver dissected to show distribution of portal veiv, VP, and hepatic vein, $v h$; d, diaphragm; VC, vena cava; C, heart.
produces jaundice. It is reabsorbed by the lacteals, but is finally diseharged by oxidation through the lungs. In animals of slow respiration, as Crustaceans, Mollusks, Fishes, and Reptiles, fat accumulates in the liver. "Codliver oil" is an example.

The great Excreting Organs are the lungs, the kidneys, and the skin; and the substances which they remove from the system-earbonic acid, water, and ureaare the products of decomposition, or organic matter on its way back to the mineral kingdom. ${ }^{80}$ Different as these
organs appear, they are constructed upon the same principle : each consisting of a very thin sheet of tissue separating the blood to be purified from the atmosphere, and straining ont, as it were, the noxions matters. All, moreover, excrete the same substances, but in very different proportions: the lungs exhale carbonic acid and water, with a trace of urea; the kidneys expel water, urea, and a little carbonic acid; while the skin partakes of the nature of both, for it is not only respiratory, especially among the lower animals, but it performs the work of the kidneys when they are diseased.

1. The lungs (and likewise gills) are mainly excretory organs. The oxygen they impart sweeps with the blood throngh every part of the body, and unites with, i.e., burns up, the effete matters, which, set free by muscular and nervous exertion, would poison the system, if not removed. The carbonic-acid gas thus generated is carried by the reins to the lungs, and there exhaled in breathing. This process is more immedi-

Fig. 93. - Section of Human Kidney, showing the tubular portion, 3 , grouped into cones; 7, the wreter, or outlet of the secretion. ately necessary to life than any other: the arrest of respiration is fatal.
2. While the lungs (and skin also, to a slight degree) are sources of gain as well as loss to the blood, the kidneys are purely excretory organs. Their sole function is to eliminate the solid products of decay which ean not pass out by the lungs. In Mammals, they are discharged in solution; but from other animals who drink little the excretion is more or less solid. In Insects, the kidners are groups of tubes; in the higher Mollusks, they are represented by spongy masses of follicles; in Tertebrates, they are
well-dereloped glands, two in number, and consisting of closely packed tubes.
3. The skin of the soft-skinned animals, partieularly of Amphibians and Mammals, are covered with minute pores, which are the ends of as many delicate tubes that lie coiled up into a knot within the true skin. These are the sweat-glands, which excrete watery vapor, and with it certain salts and gases. The importance of this excretion, known as perspiration, is shown by the fact that if the skin be varnished orer, the animal will die. On the accession of Leo X. to the papal chair, a child was gilded all orer, at Florence, to represent the Golden Age, and it died in a few homrs.

Besides these secretions and excretions, there are others, confined to particular animals, and designed for special purposes: sueh are the oily matters secreted from the skin of cuadrupeds for lnbricating the hair and keeping the skin flexible; the tears of Reptiles, Birds, and Mammals; the milk of Mammals; the ink of the Cuttle-fish; the poison in the stings of Jelly-fishes and Insects; and the silk of Spiders and Caterpillars.

CIIAPTER XVI.

```
TIIE SKIN AND SKELETON.
```

The Skin, or Integument, is that layer of tissue which covers the onter surface of the body. The term Skeleton is applied to the hard parts of the body, whether external or internal, which serve as a frame-work or protection to the softer organs, and afford points of attachment to muscles. If external, as the crust of the Lobster, it is called Exoskeleton; if internal, as the bones of Man, it is called

Endoskeleton. The former is but a modification of the skin.

1. The Skin.-The skin is a very complex tissue, since it serves not only for a covering, but also for an organ of excretion, absorption, and touch. In the lowest forms, as Amœbæ and Infusoria, it is an extremely delicate film, or membrane, but little more consistent than the body which it envelopes. But throughont the animal kingdom, from the slimy coat of the Polyp to the thick hide of the Rhinoceros, the skin shows a similar structure-an imer and an outer layer; the former called dermis ; the latter, epidermis. ${ }^{{ }^{1}}$

Except in the low and immature forms, as Worms and Caterpillars, the skin of Articulates is hardened into a crust. The loose skin, called the mantle, which envelopes the body of the Mollusk corresponds to the true skin of higher animals. The border of the mantle is surrounded with a delicate fringe, and, morenver, contains minute glands, which secrete the shell and the coloring matter by which it is adorned. The Tumicates have a leathery epidermis, remarkable for containing, instead of lime, a snbstanee resembling regetable cellulose.

In Mammals, whose skin is most fully dereloped, the dermis is a sheet of tongh elastic tissue, consisting of interlacing fibres, and containing blood-ressels, lymphatics, sweat-glands, and nerves. It is the part converted into leather when hides are tanned, and attains the extreme thickness of three inches in the Rhinoceros. The upper surface is corered with a rast number of minute projections, called papillce, each the termination of a nerve; these are the essential agents in the sense of tonch. ${ }^{82}$ They are best seen on the tongue of an Ox or Cat, and on the human fingers, where they are arranged in rows.

Covering this sensitive layer, and accurately molded to all its furrows and ridges, lies the bloodless and nerveless
epidermis. It is that part of the skin which is raised in a blister. It is thickest where there is most pressure or hard usage : on the back of the Camel it attains musual thickness. The lower portion of the epidermis (called rete mu-

Fig. 94.-Section of Skin, trom LIorse's Nostril: E, epidermis; D, derma; 1, horny layer of epidermis ; 2, rete mucusum ; B, papillary layer of derma; 4, excretory duct of a sudoriparous, or sweat, gland; 5 , glomerule, or convoluted tube of the same; 6 , hair follicle; 7 , sebaceous gland; 8 , internal sheath of the hair follicle ; 9, bulb of the hair ; 10 , mass of adipose tissne.
cosum) is comparatively soft, and consists of nucleated cells containing pigment-grannles, on which the color of the animal depends. Toward the surface, the cells become flattened, and finally, on the outside, are changed to horny scales (Fig. 2, c).

These scales, in the higher animals, are constantly wearing off in the form of scurf, and as constantly being renewed from below. In Lizards and Serpents, the old epidermis is cast entire, being stripped off from the head to the tail; in the Toad, it comes off in two pieces; in the Frog, in shreds; in Fishes and some Mollusks, in the form of slime. Howerer modified the epidermis, or whatever its appendages, the like process of removal goes on. Mammals shed their hair; Birds, their feathers; and Crabs,
their shells. When the loss is periodical, it is termed moulting.
2. The Skeletons. - (1) The Exoskeleton is developed by the hardening of the skin, and, with very few exceptions, is the only kind of skeleton possessed by invertebrate animals. The usual forms are coral, shells, crusts, scales, plates, hairs, and feathers. It is horny or calcareons; while the endoslieleton is generally a deposit of earthy material within the body, and is nearly confined to the Vertebrates.

The microscopic particles of living jelly, called Polycistines and Foraminifera, cover themselves with siliceous and calcareous shells of the most beantiful patterns. The Sponge has an internal skeleton of horny fibres, which is the sponge of commerce. Coral is the

Fig. 95.-1, Vertical Section, and, 2, Transverse Section, of a Sclerodermic Corallite : a, month ; b, tentacles; c, stomach; d, intermesenteric chamber; e, mesentery ; f, septum ; η, endoderm; h, epitheca; k, theca, or outer wall; m, columella; n, short partitions; p, tabula, or transverse partitions, a characteristic of extinct corals ; r, sclerobase; s, cœnenchyma, or common substance connecting a neighboring corallite: t, ectoderm ; x, pali, or imperfect partitions.
solid frame-work of certain Polyps. There are two kinds: one represented by the common white coral, which is a calcareous secretion within the body of the Polyp, in the form of a cylinder, with partitions radiating toward a centre (sclerodermic) ; the other, represented by the solid red coral of jewelry, is a central axis deposited by a group of Polyps on the outside (sclerobasic).

The skeleton of the Star-fish is a leathery skin studded with calcareous particles. The Sea-urchin is covered with an inflexible sleell of elaborate and beantiful construction. The shell is really a calcified skin, being a net-work of fibrous tissue and earthy matter. It raries in shape from a sphere to a disk; and consists of hundreds

Frg. 96.-Shell of Sea-urchin (Cidaris) without its spines. of angular pieces accurately fitted together, like mosaicwork. These form ten zones, like the ribs of a melon, five broad ones alternating with five narrower ones. The former (called interambulacra) are cosered with tuber-

Fig. 97.-Structure of Sea-urchins' Spines: $1, a$, spine of Cidaris cut longitudinally : t, s, ball and socket joint ; p, pedicellariæ; 2,3 , transverse sections of spines of Cidaris and Echinus.
cles bearing movable spines. The narrow zones (called ambulucra, as they are likened to walks through a forest)
are pierced with small holes, through which the animal sends out fleshy tentacles.

The skin of the Crab and Lobster is hardened by calcareous deposit into a "crust," or shell ; ${ }^{83}$ but, instead of forming one piece, it is divided into a series of segments, which move on each other. The number of these segments, or rings, is usually twenty-one-to the head, thorax, and abdomen, seven each. In the adult, however, the rings of the head and thorax are often soldered together into one shield, called cephato-thorax; and in the Horseshoe Crab all the divisions of the skeleton are quite obliterated. The shell of Crustaceans is periodically cast off, for they continue to grow even after they have reached their mature form. This molting is a very remarkable operation. How the Lobster can draw its legs from their cases without unjointing or splitting them has long been a puzzle. ${ }^{\text {eq }}$ But the cast-off skeleton is a perfect copy of the animal, retaining in their places the delicate coverings of the eyes and antennæ, and even the lining membrane of the stomach with its teeth!

The horny crnst of Insects differs from that of Crns-
taceans in consisting mainly of chitine and in containing no lime. The head, thorax, and abdomen are distinct, and usually consist of thirteen visible segments-one for the head, three for the thorax (called prothorax, mesothorax, and metathorax), and nine for. the abdomen. The antennæ, or feelers, legs, and wings, as well as hairs, spines, and scales, are appendages of the skeleton. As Insects grow only during the larval, or caterpillar, state, molting is confined to that period.

The shells of Mollusks are well-known examples of exoskeletons. The mantle, or loose skin, of these animals secretes calcareons earth in successive layers, converting the epidermis into a "shell." So varions and characteristic is the microscopic structure of shells, that a fragment is sometimes sufficient to determine the group to which it belongs. A large class of shells is represented by that of the Oyster, which is composed of three parts: the external brown epidermis, of horny texture; then the prismatic portion, consisting of minute columns set perpendicularly to the surface ; and the internal nacreons layer, or " moth-er-of-pearl," made up of exceedingly thin plates. The pearly lustre of the last is due to light falling upon the outcropping edges of wavy laminæ. ${ }^{86}$ In many cases, the prismatic and nacreous layers are traversed by minute tubes. Another typical shell-structure is seen in the common Cone, a section of which shows three layers, besides the epidermis, consisting of minute plates set at different angles. The Nantilns is composed of two distinct layers: the onter one having the fracture of broken china; the inner one, nacreous.

Most living shells are made of one piece, as the Snail; these are called "univalves." Others, as the Clam, consist of two parts, and are called "biralves." In either case, a valve may be regarded as a hollow cone, growing in a spiral form. The zibs, ridges, or spines on the out-
side of a shell mark the successive periods of growth, and, therefore, correspond with the age of the animal. The following figures show the principal parts of the ordinary bivalves and mivalves. The valves of a bivalve are generally equal, and the umbones, or beaks, a little in front of the centre. The valves are bound together by a ligament near the umbones, and often, also, by means of a "hinge" formed by the "teeth" of one valve interlocking into cavities in the other. The aperture of a univalve is

Fig. 99.-Left Valve of a Bivalve Mullusk (Cytherea chione) : h, hinge ligament; u, umbo; l, lunule; c, cardinal, and t, t^{\prime}, lateral, teeth ; α, a^{\prime}, impressions of the anterior and posterior adductor muscles; p, pallial impression; s, sinus occupied by the retractor of the siphons.

Fig. 100.-Section of a Spiral Univalve (Triton corrugatus): a, apex; b, spire; c, suture ; d, posterior canal; e, onter lip of the aperture; f, anterior canal.
frequently closed by a horny or calcareous plate, called "operculnm," which the animal carries on its back, and which is a part of the exoskeleton.

Imbedded in the back of the Cuttle-fish is a very light spongy "bone," which, as already observed, is a secretion from the skin, and, therefore, belongs to the exoskeleton. It has no resemblance to true bone, but is formed, like shells, of a number of calcareous plates. Nerertheless, the Cuttle-fish does exhibit the first traces of an endo-
skeleton: these are plates of cartilage, one of which surrounds the brain, and hence may be called a skull. To this cartilage, not to the "cuttle-bone," the muscles are attached.

In Vertebrates, the exoskeleton is subordinate to the endoskeleton, and is feebly developed in comparison. It is represented by a great variety of appendages to the skin, which are mainly organs for protection, not for support. Some are horny developments of the epidermis, such as hairs, feathers, nails, claws,
 hoofs, horns, and the Fio. 101.-Skeletal Architecture in the Armadilscales of Reptiles; othlo, showing the relation of the carapax to the vertebral column. ers arise from the lardening of the dermis by calcareous matter, as the scales of Fishes, the plates of Crocodiles and Turtles, and the shield of the Armadillo.

The scales of Fishes (and likewise the spines of their vertical fins) lie imbedded in the overlapping folds of the skin, and are covered with a thin epidermis. The scales of the bony Fishes (Perch, Salmon, etc.) consist of two

Fig. 102.-Diagrammatic Section of the Skin of a Fish (Carp) : a, derm, showing laminated structure with vertical fibres, $b ; e$, gristly layer; c, laminated layer, with calcareous granules; d, superficial portion developing into scales; f, scale-pit.
lavers, slightly calcareous, and marked by concentric and radiating lines. Those of the Shark have the structure of teeth, while the scutes, or plates, of the Crocodiles, Turtles, and Armadillos are of true bone.

Fig. 103.-Vertical Section of the Forefoot of the Horse (middle digit): 1, 2, 4, proximal, middle, and distal, or ungnal, phalanges; 3 , sesamoid, or nut-bone; 5 , 6,7 , tendons; 9 , elastic tissue; 8,10 , internal and external floor of the hoof; 11,12 , internal and external walls.
Beaver and Rat, have the same structure. Nails are flattened horny plates developed from the upper surface of the fingers and toes. Claws are sharp conical nails, being developed from the sides as well as upper surface; and hoofs are blunt cylindrical claws. Hollow horns, as of the Ox, may be likened to claws sheathing a bony case. The horn of the Rhinoceros is a solid mass of epidermal fibres. "Whalebone," the rattles of the Rattlesnake, and the beaks of Turtles and Birds, are likewise epidermal.

Hairs, the characteristic clothing of Mammals, are elongated horny cones, composed of "pith" and

The scales of Snakes and Lizards are horny epidermic plates covering the overlapping folds of the trine skin. In some Turtles these plates are of great size, and are called "tortoise - shell;" they cover the bony dermal plates. The scales on the legs of Birds, and on the tail of the

Fin. 104.-Section of the Root and part of the Shaft of a Homan Hair ; it is covered with epidermic scales, the inner layer, c, forming the outer covering of the shaft, being imbricated; the root consists of angular cells loaded with pigment.
"crust." The latter is an outer layer of minnte overlapping scales, which are directed toward the point, so that rubbing a human hair or fibre of wool between the thumb and finger pushes the root-end away. The root is bulbous, and is contained in a minute depression, or sac, formed by an infolding of the skin. IIairs are usually set obliquely into the skin. Porcupine's quills and Hedgehog's spines make an easy transition to feathers, which differ from hairs only in splitting up into numerous laminæ. They are the most complicated of all the modifications of the epidermis. They consist of a "quill" (answering to the bulb of a hair), and a "shaft," supporting the "rane," which is made up of " barbs," " barbules," and interlocking "processes." The quill alone is hollow, and has an orifice at each end. The teeth of Mollusks and Articulates are also epidermal structures; but the teeth of Vertebrates are developed from the dermis. In all cases, teeth belong to

Fig. 105.-Parts of a Feather: a, qnill, or barrel; b, shaft ; c, vane, or beard; d, accessory plume, or down; e, f, lower and upper umbilicus, or orifice, leading to the interior of the quill. the exoskeleton. A human tooth and an oyster-shell represent each other, structure for structure.
(2) The Endoskeleton, as we have seen, has its first representative in the Cuttle-fish. With this exception, it is peculiar to Vertebrates. In the Cuttle-fish, and some Fishes, as the Sturgeon and Shark, it consists of cartilage; but in all others (when adult) it is bone or osseous
tissue. Yet there is a diversity in the composition of bony skeletons: that of fresh-water Fishes contains the least earthy matter, and that of Birds the most. Hence the density and ivory-whiteness of the bones of the latter. Unlike the shells of Mollusks and the crust of the Lobster, which grow by the addition of layers to their borders, bones are moist, living parts, penetrated by bloodressels and nerves, and covered with a tough membrane, called periosteum, for the attachment of muscles.

The surface of bones is compact; but the interior may be solid or spongy (as the bones of Fishes, Turtles, Sloths, and Whales), or hollow (as the long bones of Birds and the active quadrupeds). There are also cavities (called "sinuses") between the inner and outer walls of the skull, as remarkably shown by the Elephant. The cavities in the long bones of quadrupeds are filled with marrow; those in the long bones of Birds and in skulls contain air.

The number of bones not only differs in different animals, but varies with the age of an individual. In very early life there are no bones at all; and ossification, or the conversion of cartilage into bone, is not completed until maturity. This process begins at a multitude of points, and theoretically there are as many bones in a skeleton as centres of ossification. But the actnal number is usually much less - a resnlt of the tendency of these centres to coalesce. Thus, the thigh-bone in youth is composed of five distinct portions, which gradually unite. So in the lower Vertebrates many parts remain distinct which in the higher are joined into one. The occiput or backbone of Man's skull is the union of three or four bones, which are seen separate in the skull of the Fish.

A complete skeleton, made up of all the pieces which might enter into its composition, does not exist. Every animal has some deficiency. All have a skull and back-
bone; but in the development of the rarions parts, and especially of the appendages, there is endless variety. Fishes come nearest to the archetype skeleton; but while they posesss a complete set of skull-bones, they have no

representatives of fingers and toes. The Snake has plenty of ribs and tail, but no breast-bone; the Frog has a breastbone, but neither tail nor ribs. As the skeleton of a Fish is too complieated for the primary student, we will select for illustration the skeleton of a Lion-the type of quad-
rupeds. It should be remembered, however, that all Vertebrates are formed on one plan.

The vertebrate skeleton consists of a series of rings, called vertebre, arranged along the back of the body, with certain appendages, as limbs, ribs, etc. The vertebree are always present, but the appendages are inconstant. In the lowest Fishes, the spinal column is a continnous cylinder, with scarcely a trace of division, and in Birds, also, it is much consolidated; but usually the vertebre are separable. They range in number from 10 in the Frog (not comting the head) to 305 in the Boa-constrictor.

A typical vertebra consists of a number of bony pieces so arranged as to form two arches, or hoops, comnected by

Fig. 107.-Vertebre-A, cervical ; B, dorsal: 2, centrım ; 4, transverse process, containing foramen, a, for artery ; 5 , articular process; 3 , spinous process, or neural spine: 1 , neural canal; 6 , facets for head of rib, the tubercle of the rib fitting in a facet on the process, $4 ; b$, laminæ or neurapophyses.
a central bone, or centrum. ${ }^{87}$ The upper hoop is called the neural arch, because it encircles the spinal marrow; the lower hoop is called the hamal arch, because it incloses the heart and the great central blood-vessels. An actnal vertebra, however, is subject to so many modifications, that it deriates more or less from this ideal type. Selecting one from the middle of the back for an example, we see that the centrum sends off from its dorsal side two branches, or processes, called neurapophyses. These meet to form the neural arch, under which is the neural canal, and above which is a process called the neural
spine. On the anterior and posterior edges of the arch are smooth surfaces, or zygapophyses, which in the natural state are covered with cartilage, and come in contact with the corresponding surfaces of the preceding and succeeding vertebre. The bases of the arch are notched in front and behind, so that when two vertebre are put together a romd opening (intervertelral foramen) appears between the pair, giving passage to the nerves issuing from the spinal cord. From the sides of the arch, blunt transverse processes project ontward and backward, called diapophyses. Such are the main elements in a representative vertebra. The hrmal arch is not formed by any part of the vertebra, but by the ribs and breast-bone. Theoretically, however, the ribs are considered as elongated processes from the centrum (pleurapophyses), and in a few eases a heemal spine is developed from the breast-bone corresponding to the neural spine.

The vertebree are mited together by ligaments, but chiefly by a very tongh, dense, and elastic substance between the centra. The neural arches form a continuons canal which contains and proteets the spinal cord; hence the sertebral column is called the neuroskeleton. The column is always more or less curved; but the beantiful sigmoid enrrature is pecnliar to Man. The vertebre gradually increase in size from the head toward the end of the trimk, and then diminish to the end of the tail. The neural arch and centrum are seldom wanting; the first vertebra in the neck has no centrum, and the last in the tail is all centrum. The vertebre of the extremities (head and tail) depart most widely from the typical form.

The rertebral column in Fishes and Snakes is divisible into three regions - head, trunk, and tail. But in the higher animals there are six kinds of vertebre: cranial, cervical, dorsal, lumbar, sacral, and caudal.

The cranial vertebre form the skull. They are greatly

Fig. 108.

Fig. 109.

BONES OF THE MAMMALIAN SKULL.*

VOMER.
HYOID ARCH.

PREMAXILLA. MAXILLA. PALATINE. PTERYGOID.
LOWER JAW, OR MANDIBLE.

THE SKULL OF THE DOG.

Fig. 10s.-Under surface. Fig. 109.-Upper surface. Fig. 110.-Longitudinal vertical section; one-half natural size: SO, supraoccipital; ExO, exuccipital ; BO, basioccipital; $I P$, interparietal ; $P a$, parietal; $F r$, frontal; $S q$, squamosal ; Ma, malar; L, lachrymal; $M x$, maxilla ; $P M x$, premaxilla; Na, nasal; $M T$, maxilloturbinal: $E T$, ethmoturbinal ; $M E$, ossitied portion of the mesethmoid; $C E$, cribriform, or sieve-like, plate of the ethmoturbinal; VO, vomer ; PS, presphenoid; $O S$, orbitosphenoid; $A S$, alispheuoid; $B S$, basisphenoid; $P l$, palatine; $P t$, pterygoid; Per, periotic; Ty, tympauic bulla; an, anterior uarial aperture; ap, or apf, anterior palatine foramen; ppf, posterior palatine foramen; io, iufraorbital foramen ; pof, postorbital process of frontal boue ; op, optic foramen ; sf, sphenoidal fissure ; $f r$, foramen rotundum, and anterior opening of alisphenoid canal; as, posterior opening of alisphenoid canal; fo, foramen ovale; $t m$, firamen lacerum medium ; $a f$, glenoid fossa; $g p$, postglenoid process; paf, postglenoid forameu; eam, external auditory meatos; $8 m$, stylomastoid foramen ; $f p$, forameu lacerum posterius ; $c f$, condylar forameu ; $p p$, paroccipital process: oc, occipital condyle; fm, foramen magnum ; a, angular process; s, symphysis of the mandible where it unites with the left ramns ; id, iuferior dental canal; $c d$, condyle; $c p$, coronoid process; the * indicates the part of the cranium to which the condyle is articulated when the mandible is in place; the npper border in which the teeth are implanted is called alveolar ; $s h, e h, c h, b h, t h$, hyoidean apparatus, or os linguce, smpporting the tongue. In the skalls of old auimals, there are three ridges: occipital, behind: sagittal median, on the upper surface; and superorbital, across the frontal, in the region of the eyebrows. The last is highly developed in the Gorilla.

[^1]modified, as the nemral arches are expanded to inclose the brain. The number of distinct bones composing the skull is greatest in Fishes, and least in Birds: this arises from the fact that the boues remain separate in the former case, while those of the chick become united together (anchylosed) in the full-grown Bird. A skull consists of the brain-case and the face. The principal parts of the skull, as shown in the Dog's, are: 1. The occipital bone behind, containing a large hole, or foramen magnum, on each side of which are rounded prominences, called condyles, by which the skull articulates with the first cervical vertebra. 2. The parietal. 3. The frontal. These three form the main walls of the brain. 4. The sphenoid, on the floor of the skull in front of the occipital, and consisting of three pieces. 5. The temporal, in which is sitnated the ear. In Man this is one bone; but in most animals there are three-the periotic, tympanic, and squamosal. 6. The malar, or "cheek - bone," which sends

Fig. 111. - Skull of the Horse: 1, premaxillary bone; 2, upper incisors; 3, npper canines ; 4, superior maxillary ; 5 , infraorbital foramen : 6 , superior maxillary spine; 7 , nasal bones; 8, lachrymal; 9 , orbital cavity; 10, lachrymal fossa; 11; malar ; 12 , npper molars; 13, frontal; 15 , zygomatic arch; 16, parietal ; 17 , occipital protuberance; 18, occipital crest; 19, occipital condyles; 20 , styloid processes; 21, petrons bone; 22, basilar process; 23, condyle of inferior maxillary : 24 , parietal crest; 25 , inferior maxillary ; 26 , lower molars ; 27 , anterior maxillary foramen; 28, lower canines; 29 , lower incisors.
back a process to meet one from the squamosal, forming the zygomatic arch. 7. The nasal, or roof of the nose. 8. The maxilla; that part of the upper jaw in which the canines, premolars, and molars are lodged. 9. The premaxilla, in which the upper incisors are situated. 10. The palatine, which, with the maxillary bones, forms the roof of the month. There are tro appendages to the skull: the mandible, or lower jaw, whose condyles, or rounded extremities, fit into a eavity (the glenoid) in the temporal bone; and the hyoid, sitnated at the root of the tongue.

The cervical vertelra, or bones of the neck, are pecnliar in having an orifice on each side of the centrum for the passage of an artery. The first, called atlas, because it supports the head, has no centrum, and turns on the second, called axis, around a blunt process, called the odontoid. The centra are usually wider than deep, and the neural spines very short, except in the last one. The number of cervical rertebre ranges from 1 in the Frog to 25 in the Swan.

The dorsal vertebre are such as bear ribs, which, uniting with the breast-bone, or sternum, form a bony arch over the heart and lungs, called the thorax. The sternum may be wanting, as in Fishes and Snakes, or greatly developed, as in Birds. When present, the first vertebra whose ribs are connected with it is the first dorsal. The neural spines of the dorsal series are generally long, pointing backward.

The lumbar vertebre are the massive vertebræ lying in the loins between the dorsals and the hip-bones.

The sacral vertelrce lie between the hip-bones, and are generally consolidated into one complex bone, called sacrum.

The caudal vertebrce are placed behind the sacrum, and form the tail. They diminish in size, losing proc-
esses and neural arch, till finally nothing is left but the centrum. They number from 3 or 4 in Man to 270 in the Shark.

Besides the lower jaw, hyoid, and ribs, Vertebrates have other appendages to the spinal column-two pairs of limbs. ${ }^{\text {E8 }}$ The fore limb is divided into the pectoral arch (or shoulder girdle), the arm, and the hand. The arch is fastened to the ribs and vertebre by powerful muscles, and consists of three bones, the scapula, or shonl-der-blade, the coracoid, and the clavicle, or collar-bone. The scapula and coracoid are generally mited, the latter forming a process of the former; and the clavicles are frequently wanting, as in the hoofed animals. The humerus, radius, and ulna are the bones of the arm, the first articulating by ball-and-socket joint with the scapula, and by a hinge-joint with the radius and nlna. The humerus and radius are always present; but the ulna may be absent. The bones of the hand are divided into those of the carpus, or wrist ; the metacarpus, or palm ; and the phalanges, or fingers. The fingers, or "digits," range in number from 1 to 5 .

The hind limb is composed of the pelvic arch (or hipbones), the leg, and the foot. These parts correspond closely with the skeleton of the fore limb. Like the shoulder, the pelvic arch, or os innominatum, consists of three bones-ilium, ischium, and pubis. The three are distinct in Reptiles and in the young of higher animals; but in adult Birds and Mammals they become mited together, and are also (except in Whales) solidly attached to the sacrum. The two pelvic arches and the sacrum thus soldered into one make the pelvis. The leg-bones consist of the femur, or thigh; the tibia, or shin-bone; and the fibula, or splint-bone. The rounded head of the femur fits into a carity (acetabulum) in the pelvic arch, while the lower end articulates with the tibia, and sometimes
(as in Birds) with the fibula also. An extra bone, the patella, or knee-pan, is hung by a muscle in front of the joint between the femur and tibia of the higher animals. The foot is made up of the tarsus, or ankle; the metatarsus, or lower instep; and the phalanges, or toes. The toes number from 1 in the Horse to 5 in Man.

Certain parts of the skeleton, as of the skull, are firmly joined together by zigzag edges or by overlapping; in either case the joint is called a suture. But the great majority of the bones are intended to move one upon another. The vertebre are locked together by their processes, and also by a tough fibrous substance between the centra, so that a slight motion only is allowed. The limbs furnish the best examples of movable articulations, as the ball-and-socket joint at the shoulder, and the hingejoint at the elbow. The bones are held together by ligaments, and, to prevent friction, the extremities are covered with cartilage, which is constantly lubricated with an unctuous fluid called synovia.

CHEMICAL COMPOSITION OF BONES.

	Con.	Tortoise.	Hawk.	Man.
Phosphate of Lime, with trace of Fluate of Lime.	57.29	52.66	64.39	59.63
Carbonate of Lime.	4.90	12.53	7.03	7.33
Phosphate of Magnesia............	2.40	0.82	0.94	1.32
Sulphate, Carbonate, and Chlorate of Soda.	1.10	0.90	0.92	0.69
Glutine and Chondrine............	32.31	31.75	25.73	29.70
Oil.	2.00	1.34	0.99	1.33
	100.00	100.00	100.00	100.00

Fig. 112.-Skeleton of the Perch (Perca fluviatilis): 1, frontal ; 4, postfrontal ; 7, parietal; 8, supraoccipital ; 9, exoccipital; 11, alisphenoid ; 12, mastoid: 15 , nasal ; 17, premaxillary ; 18, maxillary ; 19, preuasal; 20, suborbital plates; 21, supratemporal (peculiar to Fishes) ; 23, mastotemporal ; 24, transverse bone ; 27 , squamotemporal; 28, operculum, or flap, closing the gill-openings ; 30, preoperculum ; 31, symplectic (peculiar); 32, subopercuinm; 33, interoperculum ; 34, dental-that part of the lower jaw containing the teeth; 35 , supra-angular; 36, angular; 42, urohyal, lying between , we branches of the os hyoides; 46, suprascapular; 47, scapula; 48 , coracoid, 70 , 73 styliform processes ; 74,79 , interspinous boues; 75 , dorsal tins; 80 , pelvic bone ; 81 , ventral fiu; 83, b, hæmal spines ; $85, a$, parapophyses; 86 , anal fin.

Fig. 115.-Skeleton of the Tortoise (plastron removed): a, cervical vertebræ; c, dorsal vertebre; d, ribs; e, sternal ribs (the marginal bones of the carapax); l, scapula : k, clavicle; b, coracoid bone; f, pelvis; i, femur; g, tibia : h, fibula.

Fig. 116.-Skeleton of a Vulture: 1, craninm-the parts of which are separable only in the chick; 2, cervical vertebre; 3, dorsal; 4, coccygeal, or caudal; the lumbar and sacral are consolidated together, and to the ribs, $5 ; 6$, sternum, or breastbone, extraordinarily developed; 7, furculum, clavicle, or "wish-boue;" 8, coracoid; 9 , scapnla; 10 , humerus; 11 , ulna, with rudimentary radins; 12 , metacarpals; 13, phalanges of the great digit of the wing ; 19, thumb; 14, pelvis; 15 , femar; 16, tibia and fibula, or crus; 17, metatarsus (tarsus is wanting in Birds); 18, Internal digit, or toe, formed of three phalanges; the middle toe has four phalanges; the outer, five; and the back toe, or thamb, two.

Fig. 117.-Skeleton of the Horse (Equus caballus): 22, premaxillary: 12, foramen in the maxillary ; 15, nasal ; 9 , orbit; 19, coronoid process of lower jaw ; 17, surface of implantation for the masseter muscle; there are seven cervical vertebræ, nineteen dorsal, D-D ; five lumbar, $a-e$; five sacral, $f-l$; and seventeen caudal, $p-r$; 51, scapnla, or shoulder-blade; i, spine, or crest; h, coracoid process (acromion wanting) : 1 , first pair of ribs (clavicle wanting, as in all Ungulates) ; e, sternum : a, shaft of hnmerns: b, deltoid ridge : g, head fitting in the glenoid cavity of the scapula-near it is a great tuberosity for the attachment of a powerful muscle; k, condyles: 54 , radius, to which is firmly anchylosed a rudimentary ulna, 55 , called olecranon; 56 , the seven bones of the carpus, or wrist; 57 , large metacarpal, or "cannon-bone," with two "splint-bones;" $5 S$, fetlock-joint; 59 , phalanges of the developed digit, corresponding to the third finger in Man; 62, pelvis; 63, the great trochanter, or prominence on the femur, 65 ; 66 , tibia; 67 , rudimentary fibula; $65_{\text {, hock, }}$ or heel, falsely called knee; 69 , metatarsals.

Fig. 118.-Skeleton of the Ox (Bos taurus).

Fig. 119.-Skeleton of an Elephant (Elephas Indicus).

Yig. 120.-Skeleton of the Cbimpanzee (Troglodytes niger).

CHAPTER XVII.

HOW ANIMALS MOVE.

1. Muscle.-The power of animal motion is vested in protoplasm, cilia, and muscles. The simplest forms of life, as the structureless Sponge and Amœba, move by the contraction and extension of the protoplasin of which they consist. In nearly all animals we find with the microscope myriads of little hair-like cilia, which are incessantly vibrating. They are seen on the outside of Infusoria, serving as paddles for locomotion; they fringe the gills of the Oyster, creating currents for respiration; and they line the passage to our lungs to expel the mucus. The cause of ciliary motion is unknown; no muscle or nerve has been traced to them. Water seems to be a necessary condition.

But muscular tissue is the great motor agent, and exists in all animals from the Coral to Man. The power of contractility, which in the Amœba is diffused throughout the body, is here confined to bundles of lighly elastic fibres, called muscles. When a muscle contracts, it tends to bring

Fig. 121.-A Contracting Mnscle.
its two ends together, thus shortening itself, at the same time increasing in thickness. This shrinking property is excited by external stimulants, such as electricity, acids, alkalies, sudden heat or cold, and even a sharp blow; but
the ordinary cause of contraction is an influence from the brain conveyed by a nerve. The property, however, is independent of the nervous system, for it does not cease immediately after death. The amount of force with which a muscle contracts depends on the number of its fibres; and the amount of shortening, on their length.

As a rule, muscles are white in cold-blooded animals, and red in the warm-blooded. They are white in all the Invertebrates, Fishes, Batrachians, and Reptiles, except Salmon, Sturgeon, and Shark; and red in Birds and Mammals, except in the breast of the common fowl, and the like. ${ }^{89}$

It is also a rule, with some exceptions, that the voluntary muscles of Vertebrates, and all the muscles of the Lobster, Spider, and Insect tribes, are striated ; while the involuntary muscles of Vertebrates, and all the muscles of Radiates, Worms, and Mollusks, are smooth. All muscles attached to internal bones, or to a jointed external skeleton, are striated. The voluntary muscles are generally solid; and the involmntary, hollow. ${ }^{90}$

This leads to another classification of muscles: into those which are attached to solid parts within the body; those which are attached to the skin or its modifications; and those having no attachments, being complete in themselves. The last are hollow or circular muscles, inclosing a cavity or space, which they reduce by contraction. Examples of such are seen in the heart, blood-vessels, stomach, iris of the eye, and around the month. In the lower Invertebrates, the muscular system is a net-work of longitudinal, transverse, and oblique fibres intimately blended with the skin, and not divisible into separate muscles. As in the walls of the human stomach, the fibres are usually in three distinct layers. This arrangement is exhibited by soft-bodied animals, like the Sea-anemone, the Snail, and the Earth-worm. Four thousand fibres have been counted
in a Caterpillar. There are also "skin-muscles" in the higher animals, as those by which the Horse produces a twitching of the skin to shake off Insects, and those by which the hairs of the head and the feathers of Birds are made to stand on end. Invertebrates, whose skin is hardened into a shell or crust, have muscles attached to the inside of such a skeleton. Thus, the Oyster has a mass of parallel fibres connecting its two valves; while in the Lobster and Bee, fibres go from ring to ring, both lougitudinally and spirally. The muscles of all Invertebrates are straight parallel fibres, not in bundles, but distinct, and usually flat, thin, and soft.

The great majority of the muscles of Vertebrates are attached to the bones, and such are voluntary. The fibres, which are coarsest in Fishes (most of all in the Rays), and finest in Birds, are bound into bundles by a web-like tissue; and the muscles thus made up are arranged in layers around the skeleton. Sometimes their extremities are attached to the bones (or rather to the periosteum) directly; but generally by means of white inelastic cords, called tendons. In Fishes, the chief masses of muscle are disposed along the sides of the body, apparently in longitudinal bands, reaching from head to tail, but really in a series of vertical flakes, one for each vertebra. In proportion as limbs are developed, we find the museles concentrated about the shoulders and hips, as in quadrupeds. The bones of the limbs are used as levers in locomotion, the fulcrum being the end of a bone with which the moving one is articulated. Thus, in raising the arm, the humerus is a lever working upon the scapula as a fulcrum. The most important muscles are called extensors and flexors. The former are such as pass over the back of a joint to extend the bone beyond it; while the flexors lie in front of the joint to bring the same bone into an angle with its fulcrum-as in bending the arm.
2. Locomotion.-All animals have the power of voluntary motion, and all, at one time or another, have the means of moving themselves from place to place. A few are free in the embryo-life, and fixed when adult, as the Sponge, Coral, Crinoid, and Oyster. There may be no regular well-defined means of progression, as in the Amceba, which extemporizes arms to creep over the surface; or movement may be accomplished by the contraction of the whole body, as in the Jelly-fish, which, pulsating about fifteen times in a minute, propels itself backward throngh the water. So the Worms and Snakes swim by the undulations of the body.

But, as a rule, animals are provided with special organs for locomotion. These become reduced in number, and progressively perfected, as we adrance in the scale of rank. Thus, the Animalcule is covered with thonsands of hair-like cilia; the Star-fish has hundreds of soft, unjointed, tubular suckers; the Centipede has from 30 to 40 jointed hollow legs; the Lobster, 10 ; the Spider, 8 ; and the Insect, 6; the Quadruped has 4 solid limbs for locomotion; and Man, only 2.
(1) Locomotion in Water.-As only the lower forms of life are aquatic, and as the weight of the body is partly sustained by the element, we must expect to find the organs of progression simple and feeble. The Infusoria swim with great rapidity by the incessant vibrations of the delicate filaments, or cilia, on their bodies. The common Squid on our coast admits water into the interior of the body, and then suddenly forces it out through a funnel, and thus mores backward, or forward, or around, according as the funnel is turned-toward the head, or tail, or to one side. The Lobster has a fin at the end of its tail, and propels itself backward by a quick down-stroke of the abdomen.

But Fishes, whose bodies offer the least resistance to
progression through water, are the most perfect swimmers. Thus, the Salmon can go twenty miles an hour, and even

Fig. 122.-The Fins of a Fish (Pike-perch).
ascend cataracts. They have fins of two kinds: those set obliquely to the body, and in pairs; and those which are vertical, and single. The former, called pectoral and ventral fins, represent the fore and hind limbs of quadrupeds. The vertical fins, which are only expausions of the skin, vary in number; but in most Fishes there are at least three: the caudal, or tail-fin; the dorsal, or back-fin;

F'ro. 123.-Diagram illustrating the locomotion of a Fish. The tail describes the arc of an ellipse; the resultant of the two impulses is the straight line in front. and the anal, situated on the abdomen, near the tail. The chief locomotive agent is the tail, which sculls like a stern-oar; the other fins are mainly used to balance and raise the body. When the two lobes of the tail are equal, and the rertebral column stops short at its base, as in the Tront, it is said to be homocercal. If the vertebre extend into the upper lobe, making it longer than the lower one, as in the Shark, the tail is called heterocercal. The latter is the more effective for varying the course; the Shark, e.g., will accompany and gambol around a ship in full sail across the Atlantic. The Whale swims by striking the
water up and down, instead of laterally, with a fin-like horizontal tail. Many air-breathing animals swim with facility on the surface, as the Water-birds, having webbed toes, and most of the Reptiles and Quadrupeds.
(2) Locomotion in Air.- The power of flight requires a special modification of structure and an extraordinary muscular effort, for air is 800 times lighter than water. Nevertheless, the velocity attainable by certain Birds is greater than that of any Fish or Quadruped; the Hawk being able to go 150 miles an hour. The bodies of Insects and Birds are made as light as possible by the distribution of air-cavities. ${ }^{91}$

The wings of Insects are generally four in number; sometimes only two, as in the Fly. They are moved by muscles lying inside the thorax. They are simple expansions of the skin, or crust, being composed of two delicate films of the epidermis stretched upon a net-work of tubes. There are three main varieties: thin and transparent, as in the Dragon-fly; opaque, and covered with minute colored scales, which are in reality flattened hairs, as in the Butterfly; and hard and opaque, as the first pair (called elytra) of the Beetle.

The wings of Birds, on the other hand, are modified fore-limbs, consisting of three sets of feathers (called primary, secondary, and tertiary), inserted on the hand, forearm, and humerus. The muscles which give the downward stroke of the wing are fastened to the breast-bone; and their power, in proportion to the weight of the Bird, is as 10,000 to 1 . Yet the Insect is even superior in vigor and velocity of flight. ${ }^{32}$ In ascending, the Bird slightly rotates the wing, striking downward and a little backward; while the tail acts as a rudder. A short, rounded, concave wing, as in the common Fowl, is not so well fitted for high and prolonged flight as the long, broad, pointed, and flat wing of the Eagle. The wing is folded by
means of an elastic skin connecting the shonlder and wrist, which is stretched when the wing is expanded.

Fig. 124.-Flamingoes taking Wing.
Besides Insects and Birds, a few other animals have the power of flight, as Bats, by means of long webbed fingers; Flying Fishes, by large pectoral fins; and Flying Reptiles, Flying Squirrels, and the like, by membranes between the fore and hind legs.
(3) Locomotion on Solids. - This requires less muscular effort than swimming or flying. The more unyielding the basis of support, the greater the amount of force left to move the animal along. The simplest method is the suctorial, the animal attaching itself to some fixed object, and then, by contraction, dragging the body onward. But the higher and more common method is by the use of bones, or other hard parts, as levers.

The Star-fish creeps by the working of hundreds of tubular suckers, which are extended by being filled with fluid forced into them by little sacs. The Clam moves by fixing and contracting a muscular appendage, called a "foot." The Snail has innumerable short muscles on the under side of its body, which, by successive contractions resembling minute undulations, enable the animal to glide forward apparently without effort. The Leech
has a sucker at each end: fixing itself by the one on its tail, and then stretching the body, by contracting the muscular fibres which run around it, the creature fastens its month by suction, and draws forward the hinder parts by the contraction of longitudinal muscles. The Earthworm lengthens and shortens itself in the same way as the Leech, but instead of suckers for holding its position, it has numerous minute spines pointing backward; while the Caterpillar has short legs for the same purpose. The legless Scrpent moves by means of the scutes, or large scales, on the under side of the body, acted upon by the ribs. In a straight line, locomotion is slow; but by curving the body laterally or vertically, it can glide or leap with great rapidity.

Most animals have morable jointed limbs, acted upon as levers by numerons muscles. The Centipede has fortytwo legs, each with five joints and a claw. The Crab has five pairs of six-jointed legs; but the front pair is modified into pincers for prehension. With the rest, which end in a sharp claw, the Crab moves backward, forward, or sideways. The Spider has eight legs, usually serenjointed, and terminating in two claws toothed like a

Fig. 125.-Diagrammatic section of Star-fish : a, mouth; b, stomach : c, cæcım, or intestine; d, dorsal surface; e, ambulacral plates ; f, ovarium; g, tubular feet; h, internal sacs for extending the feet.
comb, and a third which acts like a thumb. In rumning, it moves the first right leg, then the fourth left; next, the first left, and then the fourth right ; then the third right
and second left together; and, lastly, the third left and second right together. The front and hind pairs are, therefore, mored like those of a quadruped. The Insect

Fig. 126. - Feet of Insects: A, Bibio febrilis; B, House-fly (Musca domestica); C, Water-beetle (Dytiscus). has six legs, each of five joints: the coxa, or hip; trochanter; femur; tibia, or shank; and tarsus. The last is subdivided usually into five joints and a pair of claws. Such as can walk upside down, as the Fly, have, in addition, two or three suckers between the claws. ${ }^{93}$ While the leg-bones of Vertebrates are covered by the muscles which moved them, the limbs of Insects are hollow, and the muscles inside. The fore legs are directed forward, and the two hinder pairs backward. In motion, the fore and hind feet on one side, and the middle one on the other, are mored simultaneously, and then the remaining three.

The four-legged animals have essentially the same apparatus and method of motion. The Crocodile has an awkward gait, owing to the fact that the limbs are short, and placed far apart, so that the muscles act at a mechanical disadvantage. The Tortoise is proverbially slow for a similar reason. Both swim better than they walk. Lizards are light and agile, but progression is aided by a wriggling of the body.

The locomotive organs of the mammalian quadrupeds
are much more highly organized. The bones are more compact ; the vertebral column is arched, and yet elastic, between the shoulder and hip, and the limbs are placed vertically underneath the body. The bones of the fore limb are nearly in a line; but those of the hind limb, which is mainly used to project the body furward, are more or less inclined to one another, the angle being greatest in animals of great speed, as the Horse. Some walk on hoofs, as the Ox (Ungulate); some on the toes, as the Cat (Digitigrade); others on the sole, touching the ground with the heel, as the Bear (Plantigrade). In the

Fig. 127. - Feet of Carnivores: A, Plantigrade (Bear); B, Pinnigrade (Seal); C, Digitigrade (Lion).

Pinnigrade Seal, half of the fore limb is huried under the skin, and the hind limbs are turned backward to form a fin with the tail. The normal number of toes is five; but some may be wanting, so that we have one-toed animals (as IIorse), two-toed (as Ox), three-toed (as Rhinoceros), four-toed (as Hippopotamus), and fire-toed (as the Elephant). The IIorse steps on what corresponds to the nail of the middle finger; and its swiftness is mainly owing to the solidity of the extremities of the limbs. Horses of the greatest speed have the shoulder-joints directed at a considerable angle with the arm.

The order in which the legs of quadrupeds succeed each other determines the various modes of progression, called the walk, trot, gallop, and leap. Many, as the Horse, have all these movements; while some only leap, as the Frog and Kangaroo. In leaping animals, the hind limbs are extraordinarily developed. In many Mammals, like the Squirrel, Cat, and Dog, the fore legs are used for prehension as well as locomotion, and such have a collar-bone. Monkeys use all fomr, and also the tail, for

Fig. 12S.-Feet of Hoofed Mammals: A, Elephant; B, Hippopotamus; C, Rhinoceros; $D, \mathrm{Ox} ; E$, Horse. a, astragalus; $c l$, calcaneum, or heel ; s, naviculare; b, cuboides; ce, ci,cm, cuneiform bones; the numbers indicate the digits in use.
locomotion and prehension, keeping a horizontal attitude; while the Apes, half erect, as if they were half-quadruped, half-biped, go shambling along, tonching the ground with the knuckles of one hand and then of the other. In descending the scale, from the most anthropoid Ape to the true quadruped, we find the centre of gravity placed increasingly higher up-that is, farther forward. Birds and Men are the only true bipeds; the former standing on their toes, the latter on the soles of the feet. Terrestrial Birds walk and run; while Birds of Flight usually
hop. The Ostrich can for a time outrun the Arabian Horse; and the speed of the Cassowary exceeds that of the swiftest Greyhomid.

Fig. 129.-Muscles of the Human Leg: sartorius, or "tailor's muscle," the longest muscle in the body, flexes the leg upon the thigh ; rectus femoris and vastus externus and internus extend the leg, maintaining an erect postnre: gastrocnemius, or "calf," used chiefly in walking, for raising the heel. Another layer underlies these superficial muscles.

Fig. 130.-Muscles of an Insect's Leg (Melolontha vulgaris): a, flexor, and b, extensor, of tibia; c, flexor of fout: d, accessory muscle; e, extensor of claw: f, extensor of tarsus. The joints are restricted to movements in one plane; and therefore the muscles are simply flexors and extensors. All the muscles are within the skele. ton.

CHAPTER XVIII.

THE NERVOUS SYSTEM.

Nervous Matter exists in the form of cells, fibres, or tubes. In the cellular state it is grayish, and accumulated

Fis. 131. - Nerve-cells from Human Brain: A, associated with nerve-tubes and blood-vessels; B, inultipolar uncleated cells. in masses, called ganglia, or centres, which alone originate nervous force; the fibrous and tubular kinds are generally white, and arranged in bundles, called nerves, which serve only as conductors. Most nerres consist of white fibres, and go in pairs, each member having a distinct office: one carries impressions received from the external world to the gray centres, and hence is called an afferent, or sensory, nerve; the other conducts an inflnence generated in the centre to the mnscles, in obedience to which they contract, and hence it is called an efferent, or motor, nerve. Thus, when the finger is pricked with a pin, an afferent nerve conveys the impression to the great cen-tre-the brain, which immediately trans-

Fig. 132.-Nervous System of a Star-fish: consisting of five ganglia, g, aromin the mouth, which send to each ray a pair of nerves.
mits an order by an efferent nerve to the muscles of the hand to contract. If the former are eut, sensation is lost, but voluntary motion remains; if the latter are ent, the animal loses all control over the muscles, although sensibility is perfect; if both are cut, the animal is said to be paralyzed. The nature of nerre-force, and exactly how the nerves terminate in the skin and muscles, are unsolved problems.

Fig. 134. - Nervous System of a Caterpillar (Sphinx ligustri) ; the first is the cephalic, or head, ganglion. As to the relocity of a nervous impulse, we know it is far less than

Fig. 133. - Nervous System of a Mollusk, the Gasteropod Aplys$i a: a$, anterior gangliou; c, cephalic; l, lateral; g, abdominal. that of electricity or light, and that it is more rapid in warm-blooded than in coldblooded animals, being nearly twice as fast in Man as in the Frog.

Nerrous matter in the form of cells doubtless exists in the very lowest animals, although it is invisible under the most powerful microscopes. ${ }^{94}$ But a ne:rvous system of centres and nerves for keeping up a communication between different parts of the body is not required in such as have no distinct organs; we wonld look for it only in those possessing a well-defined musenlar system. In the Star-fish we detect the first clear specimen of cells and fibres connected together to receive and convey impressions. It consists of a ring around the month, made of five ganglia of equal size, with radiating nerres. The Mollusks
are distinguished by an irregularly scattered nerrous system. They have two or more ganglia around the gnllet, and one or two more in the posterior region; all are mited by threads, and send off nerves to the varions organs. The articulated animals generally have a double nerrous cord lying along the ventral side, and studded with ganglia of nearly uniform size, except the first, which is the largest of all, and represents the brain. In the simple Earth-worm there is no trace of ganglia; in the Centipede and Caterpillar there is a ganglion for each segment; but in the higher forms, as the Bee, several ganglia are fused together in the head and thorax, indicating a concentration of organs for sensation and locomotion.

In Tertebrates, the nervons system is more highly developed, more complex, and more concentrated than in the lower forms. In fact, there are some parts, as the brain, to which we find nothing analogous in the Invertebrates; and while the actions of the latter are mainly, if not wholly, antomatic, those of backboned animals are voluntary. Its position, moreover, is peculiar, the great mass of the nervons matter being accumulated on the dorsal side, and inclosed by the neural arches of the skeleton.

The brain and spinal cord lie in the eavity of the sknll and spinal column, wrapped in three membranes. Both consist of gray and white nervous matter; but in the brain the gray is on the outside, and the white within; while the white of the spinal cord is external, and the gray internal. Both are double, a deep fissure running from the forehead backward, dividing the brain into two hemispheres, and the spinal cord resembling two columns welded together; even the nerves come forth in pairs to the right and left. So that a person may be said to consist of two individuals acting simultaneonsly. If the two halves of the brain do not act in concert, the man is said to be insane; if one
half of the spinal cord is diseased, one side of the body is paralyzed. The brain is the organ of sensation ; the spinal cord is the organ of mere life and motion. The brain may be removed, and yet the animal, though it can not feel, will live for a time, showing that it is not absolutely essential to life; in fact, the brain does nothing in apoplexy and deep sleep. But if the spinal cord be destroyed, the animal dies, for it can neither move nor breathe, as all the afferent and efferent nerves terminate in the cord.

The Brain is that part of the nervons system contained in the skull. ${ }^{.8}$ It increases in size and complexity as we pass from the Fishes, by the Reptiles and Birds, to Mammals. Thus, the body of the Cod is 5000 times hearier than its brain-in fact, the brain weighs less than the spinal cord; while in Man, the brain, compared with the body, is as 1 to 36 , and is 40 times heavier than the spinal cord. The brains of the Cat weigh only 1 oz .; of the Dog, 6 oz. $5 \frac{1}{2}$ dr.: and of the Horse, 22 oz .15 dr . The only animals whose brains outweigh Man's are the Elephant and Whale: the maximum weight

l
Fig. 135.-Human Brain and Spinal Cord, one-fifth natural size: a, great longitudinal fissure ; b, anterior lobe: c, middle lobe; d, medulla oblongata: e, cerebellum: f, first spinal nerve; g, brachial plexus of nerves supplying the arms; h, dorsal nerves; i, lumbar nerves; k, sacral plexus of nerves for the limbs , l, candit equina: the figures indicate the twelve pairs of cranial nerves, of which 1 is olfactory, 2 are optic, and 8 auditory. of the Elephant's being 10 lbs . ; and of the Whale's, 5 lbs.; while the human does not exceed 4 lbs . Yet the human
brain is heavier in proportion to the body. But quality must be considered as well as quantity, else the Donkey will outrank the Horse, and the Canary-bird, Man; for their brains are relatively hearier.

The main parts of the brain are the cerelrum, cerebellum, and medulla oblongata.

The cerebrum is a mass of white fibrous matter covered by a layer of gray cellular matter. In the lower Vertebrates, the exterior is

Fig. 126.- Brain of the Horse-npper view, onelalf natural size: a, mednlla oblongata; b, lateral and middle lobes of cerebellum; c, interlobular fissure ; d, cerebral hemispheres; c, olfactory lobules. smooth; but in most of the Mammals it is convoluted, or folded, to increase the amomnt of the gray surface. The convolutions multiply and deepen as we ascend the scale of size and intelligence, being very complex in the Elephant and Whale, Monkey and Man. As a rule, they are proportioned to the intelligence of the animal; yet the brains of the Dog and Horse are smoother than those of the Sheep and Donkey. Evidently the quality of the gray matter must be taken into aceount. Save in the bony Fishes, the cerebrom is the largest portion of the brain; in Man, it is over eight times heavier than the cerebellum.

The cerebellum, or "little brain," lies behind the cerebrum, and, like it, presents an external gray layer, with a white interior. In Mammals, it is likewise finely conroluted, consisting of gray and white laminæ, and is divided into two lobes, or hemispheres. In the rest of the Vertebrates, the cerebellum is nearly or quite smooth; and in the lowest Fishes it is merely a thin plate of nervons matter. In many Vertebrates, however, it is larger, compared with the cerebrum, than in Man, since in Man the cerebrum is extraordinarily developed.

The medulla oblongata is the connecting link between the cerebrum and cerebellmm and the spinal cord. In structure, it resembles the spinal cord-the white matter being external, and the gray internal. The former lies beneath or behind the brain, passing through the foramen magnum of the skull, and merging imperceptibly into the cord. The latter is a continuous tract of gray matter inclosed within strands of white fibres, and corresponds to the rentral cord in Insects. It usually ends in the lumbar region of the vertebral column; but in Fishes it reaches to the end of the tail. In Fishes and Reptiles, the cord ontweighs the brain; in Birds and Mammals, the brain is heavier than the cord. In Man, it weighs about an ounce and a half.

The parts of the brain are always in pairs ; but in relative development and position they differ widely in the several classes of Vertebrates. In Fishes and Reptiles, they are arranged in a horizontal line; in Birds and Mammals, they lie on top of each other, till, in Man, the axis of the brain is at right angles with the spinal cord. In looking down upon the brain of a Cod, we see in front a pair of olfactory lobes (which send forth the nerves of smell), behind them the small cerebral hemispheres, then the large optic lobes (in which originate the nerves of sight), and, last of all, the thin cerebellum. Not till we reach

Man and the A pes do we find the cerebrum so highly developed as to overlap both the olfactory lobes in front and the cerebellum

Fig. 137.-Brain of the Perch, upper view : a, cerebellum; b, cerebrum; c, olfactory gauglia; i, olfactory nerves; g, supplementary lobes. behind.

Functions of the Brain. -The cerebrum is the source of intelligence and will. It has no direct commmication with the outside world, receiving its consciousness of external objects and erents throngh the spinal cord and the nerves of special sense. The nerves of smell and sight alone come from the cerebrum. ${ }^{96}$
The cerebellum seems to preside over the muscular morements. When re-

Fig. 138. - Brain of the Frog, upper view, $\times 4$: I, olfactory nerves; $L o l$, olfactory lobes; Hc , cerebral hemispheres : Pn, pineal gland; Fho and Srh, third and fourth ventricles; Lop, optic lobes: C, cerebellum: Mo, medulla oblongata. moved, the animal desires to execute the mandates of the

Fig. 139.-A, C, upper and side vicws of the Brain of a Lizard. B, D, upjer and side views of the Brain of a Turkey: Olf, olfactory lobes; $H m p$, cerebral hemispheres; $P n$, pineal gland: $M b$, optic lobes of the middle brain; $C b$, cerehellum; $M O$, medulla oblongata: $i i$, optic nerves; $i v$ and $v i$, nerves for the muscles of the eve; $P y$, pituitary body.
will, but can not; its motions are irregular, and it acts as if intoxicated. It is largest in animals capable of the

Fig. 140.-Brain of the Cat (Felis domestica) : a, medulla oblongata; b, cerebellum; c, cerebrum.

Fig. 141. - Brain of the Orang - utan, upper surface; one-third natural size.
most complicated movements: being larger in the Ape than in the Lion, in the Lion than in the Ox, in Birds than in Reptiles.

The medulla oblongata is not only the medium of communication between the brain and the spinal cord, but it is itself a nervons centre: the

Frg. 142. - Human Brain, side view: 1, medulla oblougata; 3 , cerebellum; 5 , froutal couvolutions of cerebrum.

Frg. 143.-Human Brain, upper view, one-third natural size: 1 , anterior lobes; 2, posterior ; 3, great median fissure.
brain above and the cord below may be removed withont death to the animal, but the destriction of the medulla
is fatal. Of the twelve pairs of nerres issuing from the contents of the skull (encephalon), ten come from the medulla oblongata. Among these are the nerves of hearing and taste, and those that control the lungs and heart. Respiration ceases im-

Fig. 144.-Relation of the Sympathetic and Spinal Nerves: c, fissure of spinal cord; a, anterior of a dursal spinal nerve; p, posterior root, with its ganglion; a^{\prime}, anterior branch; p^{\prime}, posterior branch; s, sympathetic; e, its double juuction by white and gray filaments. mediately when the medulla is injured.

The spinal cord can of itself generate nerveforce; but it is mainly a conductor-propagating through its central gray matter the impressions received by the nerves to the brain, and taking back through its fibrons part the impulses of the brain. In Man, thirty-one pairs of nerves arise from the cord to supply the whole body, except the head. Each nerve has an anterior and posterior root: its power of cansing muscular contraction is lodged in the former (hence called motor), and the power of giving rise to sensation resides in the latter (sensory). The fibres leading from the brain to the cord cross one another in the medulla oblongata, so that if the right cerebral hemisphere be diseased, the left side of the body loses the power of voluntary motion.

The sympathetic nerrous system is a double chain of knots, or ganglia, lying along the sides of the vertebral
columm. From these ganglia nerves are given off, which, instead of going to the skin and muscles, like the spinal nerves, form net-works about those internal organs over which the will has no control, as the heart, stomach, and intestines. Their apparent office is to stimulate these organs to constant activity. By some anatomists, the ganglia are considered as reservoirs of nervous force.

1. The Senses.

Sensation is the consciousness of impressions on the sensory nerves. These impressions produce some change in the brain; but what that change is, is a darkness on which no hypothesis throws light. Obvionsly, we feel only the condition of our nerrous system, not the objects which excite that condition.

All animals possess a general sensibility diffused over the greater part of the body. ${ }^{97}$ But, besides this (save in the rery lowest forms), they are endowed with special nerves for receiving the impressions of light, sound, ete. These nerves of sense, as they are called, although structurally alike, transmit different sensations: thus, the Ear can not recognize light, and the Eye can not distinguish sounds. In the higher animals, the organs of sight, hearing, and smell are situated in pairs on each side of the head; that of taste, in the mucons membrane cosering the tongue; while the sense of tonch is diffused over the skin. Sight and hearing are stimulated, each by one agent only; while tonch, taste, and smell may be excited by varions substances. The agents awakening sight, hearing, and tonch are physical ; those cansing taste and smell are chemical. Animals differ widely in the numbers and keenness of their senses. But there is no sense in any one which does not exist in some other.

Touch is the simplest and the only unirersal sense ; no animal is without it. It is likewise the most positive and
certain of the senses. Wherever it exists, there is a tissue containing a net-work of capillaries and the terminations of sensory nerves. In the Sea-anemone, Snail, and Insect,

Fig. 145.-Various Antennæ. it is most acute in the "feelers" (tentacles, horns, and anteunæ); ${ }^{98}$ in the Oyster, the edge of the mantle is most sensitive ; in Fishes, the lips; in Snakes, the tongue ; in Birds, the beak and under side of the toes; in Quadrupeds, the lips and tongue ; and in Monkeys and Man, the lips and the tips of the tongue and fingers. In the most sensitive parts of Birds and Mammals, the true skin is raised up into multitudes of minute elerations, called papillce, containing loops of capillaries and nerve-filaments. There is a correspondence between the delicacy of tonch and the development of intelligence. The Cat and Dog are more sagacious than hoofed animals. The Elephant and Parrot are remarkably intelligent, and are as celebrated for their tactual power.

Taste is more refined than tonch, since it gives a knowledge of properties which can not be felt. It is always placed at the entrance to the digestive canal, as its chief purpose is to guide animals in their choice of food. No special organ of taste can be detected in the Invertebrates, although all seem to exercise a faculty in selecting their food. Eren

Fıg. 146.-Papillæ of Human Palm, $\times 35$, the cuticle being removed. in Fishes, Reptiles, and Birds this sense is very obtuse, for they bolt their food. But the higher animals have it well developed. It is confined to the tongue, and is most
delicate at the root. ${ }^{20}$ A state of solution and an actual contact of the fluid are necessary conditions.

Smell is the perception of odors, i.e., certain substances in the gaseons state. Many Invertebrates have this sense: Snails, e.g., seem to be guided to their food by its sceut, and Flies soon find a piece of meat. But it is impossible to say what or where the organ is. Most probably it is minted with the instrument of tonch. In Vertebrates, it is placed at the entrance to the respiratory tube, in the upper region of the nose. There the olfactory nerves, which issue from the

Fig. 147.-Olfactory Nerves on the wall of the nasal cavity. front lobe of the cerebrum, and pass throngh the ethmoid lone, or roof of the nasal cavity, are distributed over a moist mucous membrane. The odorous substance, in a gaseons or finely divided state, is dissolved in the mucus covering this membrane. In Fishes and Reptiles generally, this organ is feebly developed: Sharks, however, gather from a great distance around a carcass. In the Porpoises and Whales it is nearly or entirely wanting. Among Birds, Waders have the largest olfactory nerres; but Vultures seem to have the keenest scent. It is most acute in the carnivorons quadrupeds, and in some wild herbivores, as the Deer. In Man it is less delicate, but has a wider range than in any brute.

Hearing is the perception of sound. The simplest form of the organ is a sac filled with fluid, in which float the soft and delicate ends of the anditory nerve. The ribrations of the fluid are usually strengthened by the presence of minute hard granules, called otoliths. The Invertebrates have no higher apparatus than this; and it is probable that they can distinguish one noise from another, but neither pitch nor intensity. In all animals the organ is double, but not always located in the head. In
the Clam, it is found at the base of the foot ; some Grasshoppers have it in the forelegs; and in many Insects it is

Fig. 148.-Brain and Auditory Apparatus of the Cuttle-fish: a, b, brain ; c, auditory apparatus; d, the cavity in which it is lodged; e, f, g, eyes; $1,2,3$, otoliths.
on the wing. Lobsters, Crabs, and most Insects have the auditory sacs at the base of the antennæ. ${ }^{100}$

A complex organ of hearing, located in the head, exists in all Vertebrates, save the rery lowest Fishes. As complete in Man, it consists of the following parts: 1st. The

Fig. 149.-Section of Human Ear: a, external ear, with auditory canal ; b, tympanic cavity containing the three bones; c, hammer, and its three muscles, $d, e, f ; g$, tympanic membrane, or head of the drum ; h, Eustachian tube leading to the pharynx: i, labyrinth, with semicircular canals and cochlea visible. external ear (which is peculiar to Mammals); the auditory canal, abont an inch long, lined with hairs and a waxy secretion, and closed at the bottom by a membrane, called tympanum, or "drum of the ear." 2 d . The middle ear, containing three little bones (the smallest in the body), malleus, incus, and stapes, articnlated together. The carity commmicates with the exterual air by means of the Eustachian tube, which opens at the back part of the month. 3d.

The internal ear, or labyrinth, an irregular cavity in the solid part of the temporal bone, and separated from the middle ear by a bony partition, which is perforated by two small holes. The labyrinth consists of the vestibule, or entrance; the semicircular canals, or tubes; and the cochlea, or spiral canal. While the other parts are full of air, the labyrinth is filled with a liquid, and in this float the ends of the anditory nerve. The vibrations of the air, collected by the external ear, are concentrated upon the tympanum, and thence transmitted through the chain of little bones to the fluid in the labyrinth.

Now, the essential organ of hearing is the labyrinth, which is, substantially, a bag filled with fluid and nervefilaments. Fishes generally have but little more. In Reptiles there are added a tympanum, chain of bones, cochlea, and Eustachian tube; the tympanum being external. Birds have, extra to Reptiles, an anditory passage, opening on a level with the surface of the head, and surrounded by a circle of feathers. Mammals only have an external ear. ${ }^{101}$

Sight is the perception of light. ${ }^{102}$ In all animals it depends upon the peeuliar sensitiveness of the optic nerre to the vibrations of ether. But while in Vertebrates this nerve comes from the middle mass of the brain, in Invertebrates it is derived from a ganglion. Many animals are utterly destitute of visual organs, as all the Protozoans, and the lower Radiates and Mollusks, besides intestinal Worms and the blind Fish of Mammoth Care. Around the margin of the Jelly-fish, and at the end of the rays of certain Star-fishes and Sea-nrchins, are colored spots, smpposed to be rudimentary eyes; but as a lens is wanting, there is no image; so that the creature can merely distinguish light from darkness and color without form. Such an eye is nothing but a collection of pigment granules on the expansion of a nervous thread, and the pereep-
tion of light is the sensation of warmth, the pigment absorbing the rays and converting them into heat.

Going higher, we find a lens introduced forming a dis-

Fig. 150.-Head of a Snail bisected, showing structure of tentacles: a, right inferior tentacle retracted within the body; b, right superior tentacle fully protruded; c, left superior tentacle partially inverted; d, left inferior tentacle ; f, optic verve; q, retractor muscle ; h, optic nerve in loose folds; i, retractor muscle of head; k, nerve and muscle of left inferior tentacle; l, m, nervous collar. tinct image. The Snail, for example, has two simple eyes, called ocelli, mounted on the tip of its long tentacles, cousisting of a globular lens, ${ }^{103}$ with a transparent skin (cornea) in front, and a colored membrane (choroid) and a nerrons net-work (retina) behind. Such organs are the only eyes possessed by Myriapods, Spiders, Scorpions, and Caterpillars. Adult Insects usually have three ocelli on the top of the head. But the proper visual organs of Lobsters, Crabs, and Insects are two compound eyes, perched on pedestals, or fixed on the sides of the head. They consist of an immense number of ocelli pressed together so that they take an angular form-four-sided in Crustacea, sixsided in Insects. They form two rounded protuberances varionsly col-ored-white, yellow, red, green, purple, brown, or black. Under the microscope, the surface is seen to be divided into a host of facets, ${ }^{104}$ each be-

Fig. 151.-IIead of the Bee, showing compound eyes, the three ocelli, or stemmata, and the antennæ. ing an ocellus complete in itself. Each cornea is convex on one side, and either convex or flat on the other, so that
it produces a foeus like a lens. Behind the cornea, or lens, is the pigment, having a minute aperture, or "pupil." Next (in place of the "ritreous humor" of Vertebrates) is a conical tube - one for each facet-with sides and bottom lined with pigment. These tubes converge to the optic ganglion, the fibres of which pass through the tubes to the cornea. ${ }^{105}$ Vision by such a compound eye is not a mosaic; but each
 ocellus gives a complete image, although a different per-

Fig. 153.-Section of IInman Eye: a and b, npper and lower lid; c, conjunctiva, or mucous membrane, lining the inner surface: d, external membrane ; e, sheath of optic nerve; f, g, muscles for rolling the eye up or down; h, sclerotic; i, transparent cornea; j, choroid; k, l, ciliary muscle for adjusting the eye for distance ; m, iris and pupil; n, canal ; o, retina; s, vitreous humor; t, crystalline ; v, anterior chamber; x, posterior chamber. spective from its neighbor. The multiplied images are reduced to one mental stereoscopic picture, on the principle of single vision in ourselves.

The eyes of the Cuttle-fish are the largest and the most perfect among Invertebrates. They resemble the eyes of higher animals in haring a crystalline lens with a chamber in front (open,
however, to the sea-water), and a chamber behind it filled with " vitreous humor."
The eye of Vertebrates is formed by the infolding of the skin to create a lens, and an outgrowth of the brain

Fig. 154.-Section of the Human Retina, $\times 400: 1$, internal limiting membrane; 2 , optic-nerve fibres; 3 , ganglion cells; 4, internal molecular layer; 5 , internal granules; 6 , external molecular layer: 7 ,
external grannles; 8 , external limiting membrane; internal granules; 6 , external molecular layer: 7 ,
external grannles; s, external limiting membrane; 9 , layer of rods and cones; 10 , pigment layer. to make a sensitive layer. It consists of a white spherical case (sclerotic) made of tough tissue, with a transparentfront, called the cornea. This case is kept in shape by two fluids - the thin aqueous humor filling the cavity just behind the cornea, and the jelly-like vitreous humor occupying the larger posterior chamber. Between the two humors lies the donbleconvex crystalline lens. On the frout face of the lens is a contractile circular curtain (iris), with a hole in the centre (pupil) ; and lining the sclerotic coat is the choroid membrane, covered with dark pigment. The optic nerre, entering at the back of the eye through the sclerotic and choroid coats, expands into the transparent
retina, which consists of several layers-fibrous, cellular, and granular. The most sensitive part is the surface lying next to the black pigment. And here is a peculiarity of the rertebrate eye: the nerve-fibres entering from behind, turn back and look toward the bottom of the eye, so that vision is directed backward; while invertebrate rision is directly forward. In Vertebrates only, the optic nerves cross each other (decussate) in passing from the brain to the eyes; so that the right side of the brain, e.g., receives the impressions of objects on the left side of the body. ${ }^{108}$

Generally, the eyes of Vertebrates are on opposite sides of the head; but in the Flat-fishes both are on the same side. Usually, both eyes see the same object at once; but in most Fishes the eyes are set so far back, the fields of vision are distinct. The cornea may be flat, and the lens globular, as in Fishes; or the cornea very convex, and the lens flattened, as in Owls. Purely aquatic animals have neither eyelids nor tears ; but nearly all others (especially Birds) have three lids. ${ }^{107}$ The pupil is usually round; but it may be rhomb-shaped, as in Frogs; vertically oval, as in Crocodiles and Cats; or transversely oval, as in Geese, Doves, Horses, and Ruminants. Many quadrupeds, as the Cat, have a membrane (tapetum) lining the bottom of the eyeball with a brilliant metallic lustre, usually green or pearly: it is this which makes the eyes of such animals luminous in the dark.

2. Instinct and Intelligence.

The simplest form of nervous excitement is mere sensation. Above this we have sensation awakening conscionsness, out of which come those voluntary activities gromped together under the name of Instinct; and, finally, Intelligence.

The lowest forms of life are completely under law, for their movements seem to be due solely to their organiza-
tion. They are automatons, or creatures of necessity. Such, also, are some actions in the higher animals, as breathing, the beating of the heart, the contractions of the iris, and all the first movements of an infant. ${ }^{108}$ But, generally, the actions of auimals are not the result of mere bodily organization.
The inferior orders are under the control of Instinct, i.e., an apparently untaught ability to perform actions which are useful to the animal. ${ }^{100}$ They seem to be born with a measure of knowledge and skill (as Man is said to have innate ideas), acquired neither by reason nor experiment. For what could have led Bees to imagine that by feeding a worker-larra with royal jelly, instead of beebread, it would turn out a queen, instead of a nenter? In this case, neither the habit nor the experience conld be inherited, for the worker-bees are sterile. We can only guess that the discovery has been communicated by the survivors of an older swarm. Uniformity is another characteristic feature of instinct. Different individuals of the same species execute precisely the same movements under like circumstances. The career of one Bee is the career of any other. We do not find one clever and another stupid. Honey-combs are built now as they were before the Christian era. The creatures of pure instinct appear to be tied down, by the constitution of their nervous system, to one line of action, from which they can not spontaneously depart. The actious vary only as the structure changes. ${ }^{110}$ There is a wonderful fitness in what they do; but there is no intentional adaptation of means to ends.

All animals, from the Star-fish to Man, are guided more or less by instinct; but the best examples are furnished by the insect-world, especially by the social Hymenopters (Ants, Bees, and Wasps). The Butterfly carefully provides for its young, which it is destined never to see; many Insects feed on particular species of plants, which
they select with wonderful sagacity; and Monkeys avoid poisonous berries; Bees and Squirrels store up food for the future ; Bees, Wasps, and Spiders construct with marvelous precision; and the subterranean chambers of Ants and the dikes of the Beaver show engineering skill; while Salmon go from the ocean up the rivers to spawn; and Birds of the temperate zones migrate with great regularity.
But in the midst of this antomatism there are the glimmerings of intelligence and free-will. We see some evidence of choice and of designed adaptation. Pure instinct should be infallible. Yet we notice mistakes that remind us of mental aberrations. Bees are not so economical as has been generally supposed. A mathematician can make five cells with less wax than the Bee uses for four; while the Humble-bee uses three times as much material as the Hive-bee. An exact hexagonal cell does not exist in nature. Flies lay eggs on the earrion-plant becanse it happens to have the odor of putrid meat. The domesticated Beaver will build a dam across its apartment. Birds frequently make mistakes in the construction and location of their nests. In fact, the process of cheating animals relies on the imperfection of instinct. Nor are the actions of the brute creation always perfectly uniform; and so far as animals conform to circumstances, they act from intelligence, not instinct. There is proof that some animals profit by experience. Birds do learn to make their nests; and the older ones build the best. Trappers know well that young animals are more easily eanght than old ones. Birds brought up from the egg, in eages, do not make the characteristic nests of their species; nor do they have the same song peculiar to their species, if they have not heard it. Chimney-swallows certainly built their nests differently in America three hundred years ago. A Bee can make cells of another shape, for it sometimes does; its actions,
therefore, being elective and conditional, are in a measure the result of calculation.

The mistakes and variations of instinct are indications that animals have something more - a limited range of that principle of Intelligence so luminous in Man. No precise line can be drawn between instinctive and intelligent acts; all we can say is, there is more freedom of choice in the latter than the former; and that some animals are most instinctive, others most intelligent. Thus, we speak of the instinct of the Ant, Bee, and Beaver, and the intelligence of the Elephant, Dog, and Monkey. Instinct loses its peculiar character as intelligence becomes developed. Ascending from the Worm and Oyster to the Bee, we see the movements become more complex in character and more special in their objects; but instinct is supreme. Still ascending, we observe a gradual fading-away of the instincts, till they become subordinate to higher faculties - will and reason. We can predict with considerable certainty the actions of animals guided by pure instinct; but in proportion as they possess the power of adapting means to ends, the more variable their actions. Thus, the architecture of Birds is not so uniform as that of Insects.

We must credit brutes with a certain amount of observation and imitation, curiosity and cunning, memory and reason. Animals have been seen to pause, deliberate, or experiment, and resolve. The Elephant and Horse, Dog and Monkey, particularly, participate in the rational nature of Man, up to a certain point. Thinking begins wherever there is an intentional adaptation of means to ends; for that involves the comparison and combination of ideas. Animals have self-consciousness : a Cat never mistakes another Cat for itself. They interchange ideas: the whine of a Dog at the door on a cold night certainly implies that he wants to be let in. Even Bees and Ants, it is well
known, confer by passing their antennæ. All the higher animals, too, have similar emotions, as joy, fear, love, and anger.

While instinct culminates in Insects, the highest development of intelligence is presented in Man. ${ }^{11}$ In Man only does instinct cease to be the controlling power. He stands alone in having the whole of his organization conformed to the demands of his brain ; and his intelligent acts are characterized by the capacity for unlimited progress. The brutes can be improved by domestication; but, left to themselves, they soon relapse into their original wildness. Civilized Man also goes back to savagery; yet Man (though not all Men) has the ambition to exalt his mental and moral nature. He has a sonl, or conscions relation to the Infinite, which leads him to aspire after a lofty ideal. Only he can form abstract ideas. And, finally, he is a completely self-determining agent, with a prominent will and conscience-the highest attribute of the animal creation. In all this, Man differs profoundly from the lower forms of life.

3. The Voices of Animals.

Aquatic animals are mute. ${ }^{12}$ A world of Radiates, Mollusks, and Fishes, therefore, would be silent. Insects are about the only Invertebrates capable of producing sounds. Their organs are usually external, while those of higher animals are internal. Insects of rapid flight generally make the most noise. In some the noise is produced by friction (stridulation); in others, by the passage of air through the spiracles (humming). The shrill notes of Crickets, and Grasshoppers are produced by rubbing the wings against each other, or against the thighs; but the Cicada, or Harrest-fly, has a special apparatus - a tense membrane on the abdomen, acted upon by muscles. The bnzzing of Flies and humming of Bees are caused, in
part, by the vibrations of the wings; but the trne voice of these Insects comes from the spiracles of the thorax.

Suakes and Lizards have no rocal cords, and can only hiss. Frogs croak, ${ }^{13}$ and Crocodiles roar, by the ribration of the glottis. The hinge Tortoise of the Galapagos Islands utters a hoarse, bellowing noise.

The vocal apparatus in Birds is situated at the lower end of the trachea, where it divides into the two bronchi. ${ }^{114}$ It consists mainly of a bony drum, with a crossbone, having a vertical membrane attached to its upper edge. The membrane is put in motion by eurrents of air passing on either side of it. Five pairs of muscles (in the Songsters) adjust the length of the windpipe to the pitch of the glottis. The various notes are produced by differences in the blast of air, as well as by changes in the tension of the membrane. The range of notes is commonly within an octave. Birds of the same family have a similar roice. All the Parrots have a harsh utterance; Geese and Ducks quack; Crows, Magpies, and Jays eaw; while the Warblers differ in the quality, rather than the kind, of note. ${ }^{115}$ The Parrot and Mocking-bird use the tongue in imitating human sounds. Some species possess great compass of voice. The Bell-bird can be heard nearly three miles; and Livingstone said he could distinguish the voices of the Ostrich and the Lion only by knowing that the former roars by day, and the latter by night.

The vocal organ of Mammals, unlike that of Birds, is in the upper part of the larynx. It consists of four cartilages, of which the largest (the thyroid) produces the prominence in the human throat known as "Adam's apple," and two elastic bands, called "vocal cords," just below the glottis, or upper opening of the windpipe. The various tones are determined by the tension of these cords, whieh is effected by the raising or lowering of the thyroid prominence. The will can not influence the con-
traction of the rocalizing muscles, except in the very act of rocalization. The vocal sounds produced by Mammals may be distinguished into the ordinary roice, the cry, and the song. The second is the sound made by brntes. The Whale, Porpoise, Armadillo, Ant-eatcr, Porcupine, and Giraffe are generally silent. The Bat's roice is probably the shrillest sound audible to human ears. There is little modulation in brute utterance. The Opossum purrs, the Sloth and Kangaroo moan, the Hog grunts or squeals, the Tapir whistles, the Stag bellows, and the Elephant gives a hoarse trumpet sound from its trunk and a deep groan from its throat. All sheep have a guttural voice; all the Cows low, from the Bison to

Fig. 155.-IInman Larynx, seen in profile: a, half of the hyoid bone; e, trachea; f, œsophagus; g, epiglottis. the Musk-ox ; all the Horses and Donkeys neigh; all the Cats miau, from the domestic animal to the Lion; all the Bears growl; and all the Canine family-Fox, Wolf, and Dog-bark or howl. The Howling-monkeys and Gorillas have a large carity, or sac, in the throat for resonance, enabling them to utter a powerful voice; and one of the Gibbon-apes has the remarkable power of emitting a complete octare of musical notes. The human roice, taking. the male and female together, has a range of nearly four octaves. Man's power of speech, or the utterance of articulate sounds, is due to his intellectual development rather than to any structural difference between him and the Apes. Song is produced by the glottis, speech by the mouth.

CHAPTER XIX.

REPRODUCTION.

It is a fundamental truth that every living organism has had its origin in some pre-existing organism. The doctrine of "spontaneous generation," or the supposed origination of organized structures ont of inorganic particles, has not yet been sustained by facts.
All animals, without exception, arise from eggs. But while reproduction by eggs is common to all, it is only one among several modes of

Fig. 156.-Reproduction of Infusoria (Vorticella) by fission or self-division. multiplication. For the lowest forms of life not only generate by eggs, but also by self-division and budding. ${ }^{116}$

Self-division, the simplest mode possible, is a natural breaking-up of the body into distinct surviving parts. This process is sometimes extraordinarily rapid, the increase of one animalcule (Paramecium) being computed at 268 millions in a month. It is most common in the Infusoria; but is occasionally exhibited even by the aquatic and intestinal worms.

Budding consists, in animals as in plants, in the growth
of buds, generally from the exterior of the body, possessing all the essential parts of the parent stock. The buds may develop into individnals complete, but not distinct, forming, with others like itself, a compound animal, as the Coral ; or the buds may become detached, giving rise to perfect independent individuals, as the Hydra (Fig. 186). The latter mode closely resembles self-division. Rarely, as in the Aphis, those little green insects causing "blight," the bndding is internal, and so rapid that the tenth generation would number one quintillion. Budding in the higher animals produces monstrosities, as doubleheads, double-thumbs, etc.

Generation by Eggs is accomplished by the union of two dissimilar cells-a germ-cell, or orum; and a spermcell; the embryo being evolved from the former. ${ }^{17}$ An egg, which is the product of this union, is the lowest possible condition of animal life. It is a globular mixture of albmmen and oil. A freshly laid Hen's egg, boiled hard, well exhibits the general structure. The outside shell consists of earthy matter (lime) deposited in a net-work of animal matter. It is minutely porons, to allow the passage of vapor and air to and fro. Lining the shell

Fig. 157.-Theoretical Egg, or Cell: v, vitelline membrane; y, oleaginous pole; a, albuminous pole ; p, Purkinjean, or germinal, vesicle ; u, Wagnerian, or germiual, dot. is a double membrane (membrana putaminis) resembling delicate tissue-paper. At the larger end, it separates to inclose a bubble of air for the use of the chick. Next comes the albumen, or "white," in spirally arranged layers, within which floats the yolk. The yolk is prevented from moving toward either end of the egg by two twisted cords of albumen, called chalazce; ${ }^{118}$ yet is allowed to rise toward one side, the yolk being lighter than the albumen. The yolk is composed of oily granules (abont $\frac{1}{2 \delta \sigma}$ of an
inch in diameter), inclosed in a sac, called the vitelline membrane, and disposed in concentric layers, like a set of vases placed one within the other. That part of the yolk which extends from the centre to a white spot (cicatricula) on the ontside can not be hardened, even with the most prolonged boiling. The cicatricnla, or embryo-spot - the part for which all the rest was made-is a thin disk of cellular structure, in which the new life first appears. It is always on that side which naturally turns uppermost,

Fig. 15s.-Longitudinal section of Hen's Egg before incubation : a, yolk, showing concentric layers; a^{\prime}, its semi-fluid centre, consisting of a white granular sub-stance-the whole yolk is inclosed in the vitelline membrane; b, inner dense part of the albumen ; b^{\prime}, outer, thinuer part ; c, the chalazz, or albumen, twisted by the revolutions of the yolk; d, double shell-membrane, split at the large end to form the chamber $f ; e$, the shell; h, the white spot, or cicatricula, and under it the germinal vesicle of Purkinje, or uucleus, which is afterward ruptured, and becomes invisible.
for the yolk can turn upon its axis; it is, therefore, always nearest to the external air and to the Hen's bodytwo necessary conditions for its development. There is another reason for this polarity of the egg: the lighter and most delicate part of the yolk, the cicatricula, is collected where the upper carity of the animal, inclosing the nervons system, is to be; while the heary oily portion remains beneath, where the lower cavity, inclosing the organs of nutrition, is afterward developed.

The essential parts of any egg are the germ-cell, or cic-
atricula, yolk, and vitelline membrane. The shell and albumen are often wanting. When the albumen is present, it is commonly covered by a membrane only, as in

Fig. 159.-Egg of a Shark.
Frogs ; in Sharks, the envelope is horny ; and in Crocodiles it is calcareous, as in Birds.

The eggs of all animals, in their essentials, are alike in kind, but not in degree. The egg of the Amoba is a mere cell, with a light spot in one part of the contents. The egg of the IIydra differs in having this light spot sharply defined, and inclosed in a sac, or germinal vesicle. In the Rabbit's egg, there is another sac, called germinal dot, inside the germinal vesicle; while the eggs of most of the higher animals show a nucleolus within the germinal dot. An egg, therefore, closely resembles a cell, consisting of an outer and an inner sac and a dot, or a series of hollow concentric spheres.

The size of an egg depends mainly upon the quantity of yolk it contains; and this is proportioned to the grade of development which the embryo attains when it leaves the egg. ${ }^{110}$ In the eggs of the Star-fishes, Worms, Insects, Mollusks (except the Cuttle-fishes), and Mammals, the yolk is very minnte and formative, i.e., it is converted into the parts of the future embryo. In the eggs of Lobsters, Crabs, Spiders, Cephalopods, Fishes, Reptiles, and Birds,
the yolk is large and colored, and consists of two partsthe formative, or germ-yolk, immediately surrounding the germinal resicle; and the nutritive, or food-yolk, constituting the greater part of the mass, by which the young animal in the egg-life is nourished. In the latter case, the young eome forth more mature than where the food-yolk is wanting.

As to form, eggs are oral or elliptical, as in Birds and Crocodiles ; spherical, as in Turtles and Wasps; cylindrical, as in Bees and Flies; or shaped like a hand-barrow, with tendrils on the corners, as in the Shark. The eggs of some very low forms are sculptured or covered with hairs or prickles.

The number of eggs varies greatly in different animals, as it is in proportion to the risks during derelopment. Thus, the eggs of aquatic tribes, being umprotected by the parent, and being largely consumed by many animals, are multiplied to prevent extinction. The spawn of a single Cod contains millions of eggs; that of the Oyster, 300,000 . A Queen-bee, during the five years of her existence, lays about a million eggs.

Eggs are laid one by one, as by Birds; or in clusters, as by Frogs, Fishes, and most Invertebrates. The spawn of the Sea-snails consists of vast numbers of eggs adhering together in masses, or in sacs, forming long strings.

As a rule, the higher the rank, the more care animals take of their eggs and their young, and the higher the temperature needed for egg-development. In the majority of cases, eggs are left to themselves. The fresh-water Mussel-shell (Unio) carries them between its gills, and the Lobster under its tail. The eggs of many Spiders are enveloped in a silken cocoon, which the mother guards with jealous eare. Insects, as Flies and Moths, deposit their eggs where the larva, as soon as born, can procure its own food. Most Fishes allow their spawn, or roe, to
float in the water; but a few build a kind of flat nest in the sand or mud, hovering over the eggs until they are hatched; while the Acara of the Amazons carries them in its mouth. The Amphibians, generally, envelop their eggs in a gelatinous mass, which they leave to the elements; but the female of the Surinam Toad carries hers on her back, where they are placed by the male. The great Amazon-Turtles lay their eggs in holes two feet deep in the sand; while the Alligators simply cover theirs with a few leaves and sticks. Nearly all Birds build nests, those of the Perchers being most elaborate, as their chicks are dependent for a time on the parent. ${ }^{120}$ The young of Marsupials, as the Kangaroo, which are born in an extremely immature state, are nomrished in a pouch ontside of the body. ${ }^{121}$ But the embryo of all other Mammals is developed within the parent to a more perfect condition by means of a special organ, the placenta. It is a general law, that animals receising in the embryo state the longest and most constant parental care ultimately attain the highest grade of development.

CHAPTER XX.

DEVELOPMENT.

Development is the evolution of a germ into a complete organism. The study of the changes within the egrg constitutes the science of Embryology; the transformations after the egg-life are called metamorphoses, and include growth and repair.

The process of development is a passage from the general to the special, from the simple to the complex, from the homogencous to the heterogeneous, by a series of dif-
ferentiations. It brings out first the profounder distinctions, and afterward those more external. That is, the most essential parts appear first ; e.g., the nerrous system and skeleton precede the digestive apparatus. And not only does development tend to make the several organs of an individual more distinct from one another, but also the individual itself more distinguished from other individuals and from the medium in which it lives. With advancing development, the animal, as a rule, acquires a more specific, definite form, gains the ability of maintaining a temperature of its own, and increases in weight and locomotive power. Life is a tendency to individuality.

Development of a Hen's Egg. - The first change is the segmentation of the formative part of the yolk (germyolk) by a process of self-division. It separates inte two spheres, which subdivide into four more, and so on till the whole is broken up into a myriad of cells. These cells finally arrange themselves into a layer (called blasto-

Fio. 160.-First Stages in Segmentation of a Mammalian Erir: A, first division into halves, with spermatozoa aromd it; B and C, progressive subdivision, ultimately transforming the vitellus, or yolk, into a "mulberry mass" of globules, or en-bryo-cells.
derm), lining the vitelline membrane; and a round lightcolored disk in this layer is the germinal spot, or cicatricula, already mentioned. This is the first trace of organization. Soon the germinal disk thickens, and splits into three layers: out of the upper one are ultimately formed
the instruments of thought, sensation, and motion, or the brain, spinal column, muscles, and skin; in the lower originates the digestive system; while the middle gives rise to the blood and the organs of circulation. The next

Fig. 161.-Vertical Sections of an Egg, showing progressive stages of developmeut: a, primitive streak; b, the furrow, becoming a closed canal in the last.
phase is the appearance of a faint straight furrow passing throngh the middle of the external layer, called the primitive stripe, which corresponds to the axis of the future body. ${ }^{122}$ The walls of the furrow gradually rise, and at last meet, forming a canal, larger at one end than the other, which is filled with a fluid-the beginning of the brain and spinal marrow. Beneath the furrow, a delicate cartilaginous thread appears (called notochord)-the representative of the backbone. At the same time, the margin of the germ extends farther and farther over the yolk, till it completely incloses it. So that now we see tiro cavities - a small one, containing the nerrous system; and a larger one below, for the digestive organs. Presently, numerous rows of dark-yellow corpuscles are seen on the middle layer, which are subsequently inclosed, forming a net-

Fig. 162.-Rudimentary Hearts, human: 1, venous trunks; 2, auricle; 3 , ventricle; 4, bulbus arteriosus. work of capillaries, called the vascular area. A dark spot indicates the situation of the heart, which is the first distinctly bounded carity of the cireulatory system. It is a short tube lying iengthwise just behind the head, with a feeble pulsation,
causing the blood to flow backward and forward. The tube is gradually bent together, mutil it forms a donble carity, resembling the heart of a Fish. On the fourth day of incubation, partitions begin to grow, dividing the carities into the right and left auricles and ventricles.

Figs. 163-167.-Embryo in a Hen's Egg during the first five days: A, mucous layer;
B, vascular layer; C, blastoderm, or serous membrane, in the last figure forming the amniotic sac; D , vitelline membrane; e, thickened blastoderm, the first rudiment of the dorsal part (in the last fignre it marks the place of the lungs); h, heart: a, b, its two chambers. o branchial arteries; m, aorta; i, liver; p, allantois.

The septum between the auricles is the last to be finished; being closed the moment respiration begins. The

Fig. 16s.-Ileu's Egg, more highly developed. The embryo is enveloped by the amnion, and has the umbilical vesicle, or remuant of the yolk, hanging from its under surface; while the allantois turns upward, and spreads ont over the interual surface of the shell-membrane. (From Dalton's "Physiology.")
blood-ressels ramify in all directions through the yolk, making it a spongy mass, and all perform the same office; it is not till the fourth or fifth day that arteries can be distinguished from reins, by being thicker and by carrying blood only from the heart. ${ }^{123}$

The embryo lies with its face, or ventral surface, toward the yolk, the head and tail curving toward each other. A delicate transparent membrane (a part of the upper layer of the blastoderm) rises like a hood over

Fig. 169. - Mammalian Embryo, with allantois fully formed: 1 , umbilical vesicle, containing the last of the yolk; 2, amnion ; 3 , allantois, on which the fringes of the placenta are developing. (From Dalton's "Plysiology.")
the back of the embryo till it forms a closed sac, called the amnion. It is filled with a thin liquid, which serves
to protect the embryo. Meanwhile, another important organ is forming on the other side. A portion of the lower, or internal, blastodermic layer elongates downward, and then upward, spreading out over the whole inner surface of the shell, so that it surrounds both embryo and amnion. This is the allantois. It is full of blood-ressels, and it serves as the respiratory organ until the chick picks the shell and breathes by its lungs. ${ }^{124}$ The chorion is the outermost part of the allantois-in other words, the envelope of the orum; and the placenta of Mammals is the shaggy, vascular edge of the chorion.

The alimentary canal is at first a straight tube closed at both ends, the middle being connected with the yolk-bag. As it grows faster than the body, it is thrown into a spiral coil; and at several points it dilates, to form the crop, stomach, gizzard, etc. The mouth is developed from an infolding of the skin. The liver is an outgrowth from the digestive tube, at first a cluster of cells, then of follicles, and finally a true gland. The lungs are dereloped on the third day as minute buds from the upper part of the alimentary canal, or pharynx. As they grow in size, they pass from a smooth to a cellular condition.
The skeleton at the beginning consists, like the notochord, of a gelatinous material, which gradually becomes condensed and cellular, turning to cartilage. Then minute canals containing blood-vessels arise, and earthy matter (chiefly phosphate of lime) is deposited between the cells. The primary bone thus formed is compact: true osseous tissue, with canaliculi, laminr, and Haversian canals, is the result of subsequent absorption. ${ }^{126}$ Certain bones, as those of the face and cranium, are not preceded by cartilage, but by connective tissue: these are called membrane bones. Ossification, or bone-making, begins at numerons distinct points, called centres; and, theoretical$1 y$, every centre stands for a bone, so that there are as
many bones in a skeleton as centres of ossification. But the actual number in the adult animal is much smaller, as many of the centres coalesce. ${ }^{128}$ The development of the backbone (as, in fact, the growth of the whole chick) is not from the head or from the tail, but from a central point midway between: there the first vertebre appear, and from thence they multiply forward and backward.

The limbs appear as buds on the sides of the body; these lengthen and expand so as to resemble paddles the wings and legs looking precisely alike; and, finally, they are divided each into three segments, the last one subdividing into digits. The feathers are developed from the outside cells of the epidermis: first, a horny cone is formed, which elongates and spreads out into a rane, and this splits up into barbs and barbules.

The muscles are formed either by the growth in length of a single cell, or by the coalescence of a row of cells: the cell-wall thus produces a long tube-the sarcolemma of a fibre, and the grannlar contents arrange themselves into linear series, to make fibrillæ.. ${ }^{127}$

Nervons tissue is derived from the multiplication and union of embryo-cells. The white fibres at first resemble the gray. The brain and spinal marrow are developed from the primitive stripe-that pale-white line on the cicatricula, which almost from the beginning is conical, foreshadowing head and tail. Soon the brain, by two constrictions, divides into fore-brain, mid-brain, and hindbrain. The fore-brain throws out two lateral hemispheres (cerebrum), and from these protrude forward the two olfactory lobes. From the middle-brain grow the optic lobes; and the hind-brain, afterward separated into cerebellum and medulla oblongata, is the origin of the earsacs.

Modes of Development.-The structure and embryology of a Hen's egg exhibit many facts which are com.
mon to all animals. But every grand division of the Animal Kingdon has its characteristic method of developing.

Protozoans differ from all higher forms in not undergoing segmentation.

The egg of the Sea-anemone, after segmentation, becomes a solid pear-shaped body, covered with cilia. Soon one end is indented; then the indentation deepens until it becomes a cavity, and the edge rolls inward till it extends half-way to the bottom. Little ridges are then seen in the interior, which finally become so many partition-walls; while minute protuberances aromd the opening, or mouth, are the begimings of the tentacles. There is no distine-

Fig. 170. - Development of Sea-anemone, slightly magnified: 1 , first stage after segmentation; 2 , shows the beginning of the digestive cavity: 6 , its completion; a, teutacles ; b, partitions. tion into nervons and digestive regions. The egg of the Oyster divides in two, as if to form two individuals, but soon two triangular disks appear, the rudiments of shells, and the two pulsating sacs are fused together into one heart. Then the embryo revolves in the egg, and becoming fringed with cilia, it quits the egg, and closes the valves, which were wide open. The embryo of an Insect shows from the first a right and left side; but the first indication that it is an Articulate is the development of a series of indentations dividing the body into snecessive rings, or joints. Next, we observe that the back lies near the centre of the egg, the rentral side looking ontward; i.e., the embryo is donbled upon itself backward. And, finally, the appearance of three pairs of legs proves that it will be an Insect, rather than a Worm, Crustacean, or Spider.

The Vertebrate embryo lies with its stomach toward
the yolk, reversing the position of the Articulate; but the grand characteristic is the primitive stripe, which is nearly confined to the eggs of Vertebrates. This is comnected with another, the setting apart of two distinct regionsthe nervous and nutritive. There are three modifications of Vertebrate development: that of Fishes and Amphibians, that of True Reptiles and Birds, and that of Mammals. The amnion and allantois are wanting in the aquatic Vertebrates; while the placenta (which is the allantois vitally comnected with the parent) is peculiar to Mammals. In Mammals, the whole yolk is segmented ; in Birds, segmentation is confined to the small white speck seen in opening the shell.

At the ontset, all animals, from the Sponge to Man, are indistinguishable from one another. They are mainly drops of fluid, a little more transparent on one side than the other' ; and, in all cases, this almost homogeneous globule must develop three well-defined parts - a germinal dot, germinal vesicle, and yolk. But while Vertebrates and Invertebrates can trasel together on the same road up to this point, here they diverge-never to meet again. For every grand group early shows that it has a peculiar type of construction. Erery egg is from the first impressed with the power of developing in one direction only, and never does it lose its fundamental characters. The germ of the Bee is divided into segments, showing that it helongs to the Articulates; the germ of the Lion has the primitive stripe-the mark of the coming Vertebrate. The blastodermic layer of the Vertebrate egg rolls up into two tnbes - one to hold the viscera, the other to contain the nervons cord; while that of the Invertebrate egg forms only one such tubular division. The features which determine the subkingdom to which an animal belongs are first developed, then the characters revealing its class.

There are differences also in grade of development as
well as type. For a time there is no essential difference between a Fish and a Mammal : they have the same nervons, circulatory, and digestive systems. The first departure is the alteration of the heart of the Mammal, giving it four cavities; while the heart of the Fish remains in its rudimentary condition. We may call this arrested development. There are many such cases, in which the embryo of an animal represents the permanent adult condition of some lower form. In other words, the higher species, in the course of their development, offer likenesses, or analogies, to finished lower species. The human germ, at first, can not be distinguished from that of any other animal: for anght we can see, it may turn out a Frog or a Philosopher. The appearance of a primitive stripe excludes it at once from all Invertebrates. For a time, it assumes a structure seen only in the Fish, and then another, found only in Mammals. Later still, it is not unlike the embryos of the Ox, Dog, and Monkey successively; then it looks like any other infant, and finally it acquires the peculiarities of the race to which it belongs. ${ }^{123}$ All the members of a group, therefore, do not reach the same degree of perfection, some remaining in what corresponds to the immature stages of the higher animals. Such may be called permanently embryonic forms.

Sometimes an embryo develops an organ in a rudimentary condition, which is lost or useless in the adult. Thus, the Greenland Whale, when grown up, has not a tooth in its head, while in the embryo life it has teeth in both jaws; unborn Calves have canines and upper incisors; and the female Dugong has tusks which never cut the gum. The "splint-bones" in the Horse's foot are unfinished metatarsals.

Animals differ widely in the degree of development reached at orulation and at birth. The eggs of Frogs
are laid before they can hardly be said to have become fully formed as eggs. The eggs of Birds are laid when there is scarcely a trace within them of the germinal spot; while the eggs of Mammals are retained by the parent till after the egg - stage is passed. ${ }^{129}$ Ruminants and terrestrial Birds are born with the power of sight and locomotion. Most Carnivores, Rodents, and perching Birds come into the world blind and helpless; while the human infant is dependent for a much longer time.

1. Metamorphosis.

Few animals come forth from the egg in perfect condition. The rast majority pass through a great variety of forms before reaching maturity. These metamorphoses (which are merely periods of growth) are not peculiar to Insects, though more apparent in them. Man himself is developed on the same general principles as the Butterfly, but the transformations are concealed from riew. The Coral, when hatched, has six pairs of partitions; afterward, the spaces are divided by six more pairs; then twelse intermediate pairs are introduced; next, twentyfour, and so on. The embryonic Star- fish has a long body, with six arms on a side, from one end of which the young Star-fish is apparently budded off. Soon the twelve-armed body dies, and the young animal is of age. Worms are continually growing by the addition of new segments. Nearly all Insects undergo complete metamorphosis, i. e., exhibit four distinct stages of existence-egg, larra, pupa, and imago. The worm-like larra ${ }^{130}$ may be called a locomotive-egg. It has little resemblance to the parent in structure or habits, eating and growing rapidly. Then it enters the pupa state, wrapping itself in a cocoon, or case, and remaining apparently dead till new organs are developed; when it escapes a perfect winged Insect, or imago. ${ }^{131}$ Wings never exist in the larra; and Insects
which undergo no apparent metamorphosis, as Lice, are wingless. The Grasshopper develops from the young lar-

Fig. 171.-Batterfly in the Imago, Pupa, and Larva States.
va to the winged adult without changing its mode of life: the worm-like stage is passed within the egg. In the de-

Fig. 172.-Metamorphosis of the Mosquito (Culex pipiens) : A, boat of eggs; B, some of the eggs highly magnitied, d, with lid open for the escape of the larva, $\mathrm{C} ; \mathrm{D}$, pupa; E, larva magnified, showing respiratory tube, e, anal fins, f, antemnæ, g; F, imago; a, anteunæ; b, beak.
velopment of the common Crab, so different is the outward form of the newly hatched embryo from that of the adult, that the former has been described as a distinct species.

The most remarkable example of metamorphosis among Vertebrates is furnished by the Amphibians. A Tadpole -the larra of the Frog-has a tail, but no legs; gills, instead of lungs; a heart precisely like that of the Fish; a horny beak for eating regetable food, and a spiral intes-

Fig. 173.-Metamorphosis of the Newt.
tine to digest it. As it matures, the hinder legs show themselves, then the front pair; the beak falls off; the tail and gills waste away; lungs are created; the digestire apparatus is changed to suit an animal diet; the heart is altered to the Reptilian type by the addition of another auricle; in fact, skin, muscles, nerves, bones, and blood. ressels vanish, being absorbed atom by atom, and a ners set is substituted. Moulting, or the periodical renewal of epidermal parts, as the shell of the Lobster, the skin of the Toad, the scales of Snakes, the feathers of Birds, and
the hair of Mammals, may be termed a metamorphosis. The change from milk-teeth to a permanent set is another example.

An animal rises in organization as development advances. Thus, a Caterpillar's life has nothing nobler about it than the ability to eat, while the Butterfly expends the power garnered up by the larra in a gay and busy life. But there are seeming reversals of this law: Some mature animals appear lower in the scale than their young. The larval Cirripede has a pair of magnificent compound eyes and complex antennæ; when adult, the antemm are gone, and the eyes are rednced to a single, simple minute eye-spot. So the germs of the sedentary Sponge and Oyster are free and active. The adult animal, however, is always superior in alone possessing the power of reproduction.

2. Alternate Generation.

Sometimes a metamorphosis extending over several generations is required to evolve the perfect animal; "in other words, the parent finds no resemblance to himself in any of his progeny, mutil he comes down to the greatgrandson." Thns, the Jelly - fish, or Medusa, lays eggs which are hatched into larre resembling Infusoria-little transparent oval bodies covered with cilia, by which they swim about for a time till they find a resting-place. One of them, for example, becoming fixed, develops rapidly; it elongates and spreads at the upper end; a mouth is formed opening into a digestive cavity; and tentacles multiply till the month is surrounded by them. At this stage it resembles a IIydra. Then slight wrinkles appear along the body, which grow deeper and deeper, till the animal looks like "a pine-cone surmounted by a tuft of tentacles;" and then like a pile of sancers (about a dozen in number) with scalloped edges. Next, the pile breaks
up into separate segments, which are, in fact, so many dis. tinct animals; and each turning over as it is set free, so as to bring the mouth below, develops into an adult Meflusa, becoming more and more convex, and furnished with tentacles, circular canals, and other organs exactly like those of the progenitor that laid the original egg.

Here we see a Medusa producing eggs which develop into Infusoria-like larræ, and these grow into stationary

Fig. 174.-Alternate Generation : a, b, c, ova of an Acaleph (Chrysaora) ; d, e, f, Hy dras : g, h, Hydras with constrictions; i, Hydra undergoing fission; k, one of the separated segments, a free Medusa.
forms resembling Hydras. The Hydras then produce not only Meduse by budding in the manner described, but also other Hydras like themselves by budding and by eggs. All these intermediate forms are transient states of the Jelly-fish ; but the metamorphoses can not be said to occur in the same individual. While a Caterpillar becomes a Butterfly, this Hydra-like individual produces a number of Meduse. Alternate generation is almost confined to the low Radiates (Fig. 190).

3. Growth and Repair.

Growth is increase of bulk, as Development is increase of structure. It ocenrs whenever the process of repair exceeds that of waste, or when new material is added faster than the tissues are destroyed. There is a speciic
limit of growth for all animals, although many of the low cold-blooded forms, as the Trout and Anaconda, seem to grow as long as they live. After the body has attained its maturity, i.e., has fully developed, the tissues cease to grow; and nutrition is concerned solely in supplying the constant waste, in order to preserve the size and shape of the organs. A child eats to grow and repair; the adult eats only to repair. ${ }^{132}$ Birds develop rapidly, and so spend most of their life full-fledged; while Insects generally, Fishes, Reptiles, and Nammals mature at a comparatively greater age. The perfect Insect rarely ehanges its size, and takes but little food; eating and growing are almost confined to larral life. The crust of the Sea-urchin, which is never shed, grows by the addition of matter to the margins of the plates. The shell of the Oyster is enlarged by the deposition of new laminæ, each extending beyond the other. At every enlargement, the interior is lined with a new naereons layer; so that the number of such layers in the oldest part of the shell indicates the number of enlargements. When the shell has reached its full size, new layers are added to the inner surface only, which increases the thickness. It is the margin of the mantle which provides for the increase in length and breadth; while the thickness is derived from the whole surface. The edges of the concentric laminæ are the "lines of growth." The Oyster is full-grown in about five years. The bones of Fishes and Reptiles are continnally growing; the long bones of higher animals increase in length so long as the ends (epiphyses) are separate from the shaft. The limbs of Man, after birth, grow more rapidly than the trimk.

The power of regenerating lost parts is greatest where the organization is lowest, and while the animal is in the young or larval state. It is really a process of budding. The head of the Hydra, if separated, will reproduce a
body and tail; if the tail is cut off, it will add a body and head. Certain Worms may be ent into several pieces, and each part will regain what is needed to complete the mangled organism. The Star-fish can reproduce its arms; the Holothuria, its stomach; the Snail, its tentacles; the Lobster, its claws; the Spider, its legs; the Fish, its fins; and the Lizard, its tail. Nature makes no mistake by putting on a leg where a tail belongs, or joining an immature limb to an adult animal. ${ }^{133}$ In Birds and Mammals, the power is limited to the reproduction of certain tissues, as shown in the healing of wounds. Very rarely an entire human bone, removed by disease or surgery, has been restored. The nails and hair continue to grow in extreme old age.

4. Likeness and Variution.

It is a great law of reproduction that all animals tend to resemble their parents. A member of one class never produces a member of another class. The likeness is very accurate as to general structure and form. But it does not descend to every individnal feature and trait. In other words, the tendency to repetition is qualified by a tendency to variation. Like produces like, but not exactly. The similarity never amomnts to identity. So that we have two opposing forces-the hereditary tendency to copy the original stock, and a distinct tendency to deviate from it.

This is one of the most universal facts in nature. Erery development ends in diversity. Every body knows that no two indiriduals of a family, human or brute, are absolutely alike. There are always individual differences by which they can be distingnished. Eridently a parent does not project precisely the same line of influences upon each of its offspring.

This rariability makes possible an indefinite modifica-
tion of the forms of life. For the rariation extends to the whole being, even to every organ and mental characteristic as well as to form and color. It is very slight from generation to generation; but it can be accumulated by choosing from a large number of individuals those which possess any given variation in a marked degree, and breeding from these. Nature does this by the very gradual process of "natural selection;" Man hastens it, so to speak, by selecting extreme varieties. Hence we have in our day remarkable specimens of Ponltry, Cattle, and Dogs, differing widely from the wild races.

Sometimes we notice that children resemble, not their parents, but their grandparents or remoter ancestors. This tendency to revert to an ancestral type is called atavism. Occasionally stripes appear on the legs and shoulders of the Horse, in imitation of the aboriginal Horse, which was striped like the Zebra. Sheep have a tendency to revert to dark color's.

The laws governing inheritance are unknown. No one can say why one peculiarity is transmitted from father to son, and not another; or why it appears in one member of the family, and not in all. Among the many canses which tend to modify animals after birth, are the quality and quantity of food, amount of temperature and light, pressure of the atmosphere, nature of the soil or water, habits of fellow-animals, etc.

Occasionally animals occur, widely different in structure, having a very close external resemblance. Barnacles were long mistaken for Shells, Polyzoans for Polyps, and Lamprey - eels for Worms. Such forms are homomorphic. Members of one group often put on the outward appearance of allied species in the same locality: this is called mimicry. "They appear like actors or masqueraders dressed up and painted for amusement, or like swindlers endeavoring to pass themselves off for weil-
known and respectable members of society." Thus, eertain Butterflies on the Amazons have such a strong odor that the Birds let them alone; and Butterflies of another family in the same region have been found disguising themselves for protection by assuming the same form and color of wing. So we have bee-like Moths, beetle-like Crickets, wasp-like Flies, and ant-like Spiders; harmless and renomons Snakes copying each other, and Orioles departing from their usual gay coloring to imitate the plumage, flight, and voice of quite another style of Birds. The species which are imitated are much more abundant than those which mimic them. There is also a general harmony between the colors of an animal and those of its habitation. We have the white Polar Bear, the sand-colored Camel, and the dusky Twilight-moths. There are Birds and Reptiles so tinted and mottled as exactly to match the rock, or gromnd, or bark of a tree they frequent; and there are Insects rightly named "Walkingsticks" and "Walking-leares." These coincidences are not always accidental, but often intentional on the part of nature, for the benefit of the imitating species. Generally, they wear the livery of those they live on, or ape the forms more favored than themselves.

5. Homology, Analogy, and Correlation.

The tendency to repetition in the development of animals leads to some remarkable affinities. Parts or organs, having the like origin and development, and therefore the same essential structure, whatever their form or function, are said to be homologous; while parts or organs anatomically different, but corresponding in use, are called analogous.

The following are examples of homology: the arms and legs of Man ; ; ${ }^{134}$ the upper and lower set of teeth; the parts of the vertebral column, however modified; the
scapular and pelvic arches; the humerus and femur ; carpus and tarsus; the right and left sides of most animals; the dorsal and anal fins of Fishes; the arms of Man, the fore - legs of a Horse, the paddles of a Whale, the wings of a Bird, the front flippers of a Turtle, and the pectoral fins of a Fish ; the proboscis of a Moth, and the jaws of a Beetle; the shell of a Snail, and both valves of a Clam; the follicles of Invertebrates, and the compact liver of Vertebrates. ${ }^{136}$ The wings of the Bird, Flying Squirrel, and Bat are hardly homologons, since the wing of the first is developed from the fore-limb only; that of the Squirrel is an extension of the skin between the fore and hind limbs; while in the Bat the skin stretches between the fingers, and then down the side to the tail. The legs of a Lobster and Lizard; the wings of a Butterfly and Bird; the gills of a Fish, and the lungs of other Vertebrates, are analogons. The air-bladder of a Fish is homologous with a lmg, and analogous to the air-chanbers of the Nautilus. The wings of Birds and Bats are both homologons and analogous; as likewise the contractile protoplasm of the Amœba, and the muscular tissue of the Vertebrate.

In the midst of the great variety of form and structure in the animal world, a certain harmony reigns. Not only are different species so related as to suggest a descent from the same ancestor, but the parts of any one organism are so closely connected and mutnally dependent, that the character of one must receive its stamp from the characters of all the rest. Thus, from a single tooth it may be inferred that the animal had a skeleton and spinal cord, and that it was a carnivorous hot-blooded Mammal. Certain structures always co-exist. Animals with two occipital condyles, and non-nucleated blood-corpuscles, suckle their young, i. e., they are Mammals. All Ruminant hoofed beasts have horns and cloren-feet. If the hoofs are even, the horns are eren, as in the Ox ; if odd, as in
the Rhinoceros, the horns are odd, i. e., single, or two placed one behind the other. Creatures with feathers always have beaks. Pigeons with short beaks have small

Fig. 175.

Fig. 177.

Fig. 176.

Fig. 178,

HOMOLOGIES OF LIMBS.

Frg. 175.-Arm and Leg of Man, as they are when he gets down on all fours. Fio. 176.-Fore and Ilind Legs of Tapir. Fig. 177.-Fore Leg of Seal and Hind Leg of Alligator. Fic. 178.-Wing of the Bat. S, scapula; I, ilinm, or shin-bone of pelvis; H, hnmerus; F, femur: O, olecranon, or tip of the elbow ; P, patella; U, nlua; T, tibia; R, radius: Fi, fibula; Po, pollex, or thumb; Ha, hallex, or great toe. Compare the fore and hind limbs of the same animal, and the fore or hind limbs of different animals. Note the directions of the homologons segmeuts.
feet; and those with long beaks, large feet. The long limbs of the Homnd are associated with a long head. A white spot in the forehead of a Horse generally goes with white feet. Hairless Dogs are deficient in teeth. Long wings usually accompany long tail-feathers. White Cats with blue eyes are deaf. A Sheep with numerons horns is likely to have long, coarse wool. Homologous parts tend to vary in the same manner; if one is diseased, another is more likely to sympathize with it than one not homologons. This association of parts is called correlation of growth.

6. Relations of Number, Size, Form, and Rank.

The Animal Kingdom has been likened to a pyramid, the species diminishing in number as they ascend in the scale of complexity. This is not strictly true. The number of living species known is about 400,000 , of which nearly nineteen-twentieths are Invertebrates. The Animalcules (not reckoned in this comnt) are innmmerable. But next, the Articulates are the most numerous, then Vertebrates, Mollusks, and Radiates. Of Vertebrates, Fishes are most abundant; then follow Birds, Mammals, and Reptiles.

The largest species usually belong to the highest classes. The aquatic members of a group are generally larger than the terrestrial, and the marine than the fresh-water. The extremes of size are an Infusorimm, $\frac{1}{4000}$ of an inch in diameter, the smallest animal ever measured, and the Whale, one hundred feet long, the largest animal ever created. The female is frequently larger than the male, as of the Nautilns, Spider, and Eagle. The higher the class, the more uniform the size. Of all animals, Insects and Birds are the most constant in their dimensions.

Every organism has its own special law of growth: a Fish and an Oyster, though born in the same locality, de-
velop into very different forms. Yet a symmetry of plan underlies the structure of all animals. In the embryo, this symmetry of the two ends, as well as the two sides, is nearly perfect; but it is sulsequently interfered with to adapt the animal to its special conditions of life. It is a law that an animal grows equally in those directions in which the incident forces are equal. The Crinoid, rooted to the rocks, is subjected to like conditions on all sides, and, therefore, it has no right and left, or fore and hind parts. The lower forms, generally, are more or less geometrical figures: spheroidal, as the Sea-urchin; radiate, as the Star-fislı; and spiral, as many Foraminifers. The higher animals are subjected to a greater variety of conditions. Thus, a Fish, always going through the water head foremost, minst show considerable difference between the head and the hinder end; or a 'Curtle, moving over the gromed with the same surface always down, must have distinct dorsal and ventral sides.

Nevertheless, there is a striking iikeness between the two halves or any two organs situated on opposite sides of an axis. And, first, a bilateral symmetry is most constant. It is best exhibited by the Artieulates and Vertebrates; but nearly all animals can be clearly divided into right and left sides - in other words, they appear to be double. A vertical plane would divide into two equal parts our brain, spinal cord, vertebral column, organs of sight, hearing, and smell; our teeth, jaws, limbs, lungs, etc. In fact, the two haives of every egg are identical. There are many exceptions: the heart and liver of the higher Vertebrates are eccentric; the nervous system of Mollusks is scattered; the hemispheres of the human brain are sometimes mequal ; the corresponding bones in the right and left arms are not precisely the same length and weight ; the Narwhal has an immense tusk on the left side, with none to speak of on the other: Rabbits have
been born with one ear, and Stags with one horn ; the Rattlesnake has but one ling; both eyes of the Flomder and Halibut are on the same side; the claws of the Lobster differ; and the valves of the Oyster are mequal. But all these animals and their organs are perfectly symmetrical in the embryo state.

Again, animals exhibit a certain correspondence between the fore and hind parts. ${ }^{136}$ Thus, the two ends of the Centipede repeat each other. Indeed, in some Worins, the eyes are developed in the last segment as well as the first. So a Vertebrate may be considered, not only as two individuals placed side by side, but also as two individnals put end to end-the head and arms representing one, and the legs the other. In the embryo of Quadrupeds, the four limbs are closely alike. But in the adult, the fore and hind limbs differ more than the right and left limbs, because the functions are more dissimilar. An extreme want of symmetry is seen in Birds which combine aërial and land locomotion.

There is also a tendency to a vertical symmetry, or up-and-down arrangement - the part above a horizontal plane being a reversed copy of the part below. A good example is the posterior half of a Cod, while the tail of a Shark shows the want of it. This symmetry decreases as we ascend the scale. In most animals there is considerable difference between the dorsal and ventral surfaces; and in all the nervons system is more symmetrically disposed than the digestive.

Every animal is perfect in its kind and in its place. Yet we recognize a gradation of life. Some animals are manifestly superior to some others. But it is not so easy to say precisely what shall guide us in assorting living forms into high and low. Shall we make structure the criterion of rank? Plainly the simple Jelly - fish is beneath complicated Man. An ounce of musele is worth a
pound of protoplasm, and a grain of nervons matter is of more account than a ton of flesh. The intricate and finished build of the Horse elevates him immeasmrably above the stupid Snail. The repetition of similar parts, as in the Worm, is a sign of low life. So also a prolonged posterior is a mark of inferiority, as the Lobsters are lower than the Crabs, Snakes than Lizards, Monkeys than Apes. The possession of a head distinct from the region behind it is a sign of power. And in proportion as the fore-limbs are used for head purposes, the animal ascends the scale: compare the Whale, Horse, Cat, Monkey, and Man.

But shall the Fish, never rising above the " monotony of its daily swim," be allowed to outrank the skillful Bee? Shall the brainless, sightless, almost heartless Amphioxus, a Vertebrate, be allowed to stand nearer to Man than the Ant? What is the possession of a backbone to intelligence? No good reason can be given why we might not be just as intelligent beings if we carried, like the Insect, our hearts in orr backs and our spinal cords in our breasts. So far as its activity is concerned, the brain may be as effective if spread out like a map as packed into its present shape. Eren animals of the same type, as Vertebrates, can not be ranked according to complexity. For while Mammals, on the whole, are superior to Birds, Birds to Reptiles, and Reptiles to Fishes, they are not so in every respect. Man himself is not altogether at the head of creation. We carry abont in our bodies embryonic structures. Thns, the embryo Bird has its bones full of marrow as we have all our life long; but afterward they become hollow air-sacs. So feathers are more complex than hairs. That structural affinity and rital dignity are not always parallel, may be seen by comparing an Anstralian and an Englishman. ${ }^{137}$

Function is the test of worth. Not mere work, however; for we must consider its quality and scope. An
animal may be said to be more perfect in proportion as its relations to the external world are more varied, precise, and fitting. Complexity of organization, variety, and amount of power are secondary to the degree in which the whole organism is adapted to the ciremmstances which surround it, and to the work which it has to do. Ascent in the animal scale is not a passage from animals with simple organs to animals with complex organs, but from simple individuals with organs of complex function to comples individuals with organs of simple function : the addition as we ascend being not function, but of parts to discharge those functions; and the advantage gained, not another thing done, but the same thing done better. Advance in rank is exhibited, not by the possession of more life (for some animalcules are ten times more lively than the busiest Man), but by the setting apart of more organs for special purposes. The higher the animal, the greater the number of parts combining to perform each function. The power is inereased by this division of labor. The most important feature in this specialization is the tendency to concentrate the nervons energy toward the head (cephalization). It increases as we pass from the Oyster up to Man.

As a rule, fixed species are inferior to the free, water species to land species, fresh-water animals to marine, aretic forms to tropical, and the herbivorons to the carnivorons. Precocity is a sign of inferiority: compare the chicks of the Hen and the Robin, a Colt with a Kitten, the comparatively well-developed Caterpillar with the footless grub of the Bee. Among Invertebrates, the male is frequently inferior, not only in size, but also in grade of organization. Animals having a wide range as to climate, altitude, or depth are commonly inferior to those more restricted: Man is a notable exception.

There is some relation between the duration of life and
the size, structure, and rank of animals. Vertebrates not only grow to a greater size, but also live longer than Invertebrates. Whales and Elephants are the longest lived: and Falcons, Ravens, Parrots, and Geese, Alligators and Turtles, and Sharks and Pikes, are said to live a century. The life of Quadrupeds generally reaches its limit when the molar teeth are worn down: those of the Sheep last about 15 years; of the $\mathrm{Ox}, 20$; of the Horse, 40 ; of the Elephant, 100. Many inferior species die as soon as they have laid their eggs, just as herbs perish as soon as they have flowered.

7. The Struggle for Life.

Every animal is striving to increase in a geometrical ratio. But each lives, if at all, by a struggle at some period of its life. The meekest creatures mnst fight, or die.
"There is no exception to the rule that every organie being naturally inereases at so high a rate that, if not destroyed, the earth would soon be covered by the progeny of a single pair." If the increase of the human race were not checked, there would not be standing-room for the descendants of Adam and Ere. A pair of Elephants, the slowest breeder of all known animals, would become the progenitors, in five centuries, of $15,000,000$ of Elephants, if death did not interfere. In fifteen years, a pair of Birds wonld increase to $2,000,000,000$. Evidently a rast number must perish, and a far greater host of eggs fail to mature. Whaterer the arerage number of individuals in any country, twice that number must die annually. A single Cod, laying millions of eggs, if allowed to have its own way, wonld soon pack the ocean.

Yet, so nicely balanced are the forces of nature, the arerage number of each kind remains about the same. The total extinction of any one species is exceedingly
rare. The number of any given species is not determined by the number of eggs produced, but by its conditions. ${ }^{138}$ Aquatic birds ontnumber the land birds, because their food never fails, not becanse they are more prolific. The Fulmar-petrel lays but one egg, yet it is believed to be the most numerons bird in the world.

The main checks to the high rate of increase are: climate (temperature and moisture), acting directly or indirectly by reducing food; and other animals, either rivals requiring the same food and locality, or enemies, for the rast majority of animals are carnivorous. Offspring are continually varying from their parents, for better or worse. If feebly adapted to the conditions of existence, they will finally go to the wall. But those forms having the slightest advantage over others inhabiting the same region, being hardier or stronger, more agile or sagacions, will smrvive. Should this adsantageous variation become hereditary and intensified, the new variety will gradually extirpate or replace other kinds. This is what Mr. Darwin means by Natural Selection, and INerbert Spencer by the Survival of the Fittest.

PART II.

SYSTEMATIC ZOOLOGY.

Facts are stupid things until bronght iuto connection with some general law.-Agassiz.

No man becomes a proficient in any science who does not transcend system, and gather up new truth for himself in the boundless field of research. -Dr. A. P. Peabody.

Never ask a question if you can help it; and never let a thing go unknown for the lack of asking a question if you can't help it.-Beecher.

He is a thoroughly good naturalist who knows his own parish thoroughly. -Charles Kingsley.

CHAPTER XXI.

THE CLASSIFICATION OF ANIMALS.

The Kingdom of Nature is a literal Kingdom. Order and beauty, law and dependence, are seen everywhere. Amidst the great diversity of the forms of life, there is unity; and this suggests that there is one general plan, but carried ont in a variety of ways.

Naturalists have ceased to believe that each animal or group is a distinct, cireumseribed idea. "Every animal has a something in common with all its fellows: mueh with many of them; more with a few ; and, nsually, so much with several, that it differs but little from them." The object of classification is to bring together the like, and to separate the unlike. But how shall this be done? To arrange a library in alphabetical order, or according to size, binding, date, or language, would be unsatisfactory. We must be guided by some internal character. We must decide whether a book is poetry or prose: if poetry, whether dramatic, epic, lyric, or satiric ; if prose, whether history, philosophy, theology, philology, science, fiction, or essay. The more we subdivide these groups, the more difficult the analysis.

A classification of animals founded on external resemblances, as size, eolor, or adaptation to similar habits of life, would be worthless. It wonld bring together Fishes and Whales, Birds and Bats, Worms and Eels. Nor should it be based on any one character, as the quality of the blood, structure of the heart, development of the brain, embryo-life, ete.; for no character is of equal value in every tribe. A natural classification must rest on those
prevailing characters which are the most constant. ${ }^{139}$ And such a classification can not be linear. It is impossible to arrange all animal forms from the Sponge to Man in a single line, like the steps of a ladder, according to rank. Nature passes in so many ways from one type to another, and so multiplied are the relations between animals, that one series is out of the question. There is a number of series, and series within series, sometimes proceeding in parallel lines, but more often divergent. The animals arrange themselves in radiating groups, each group being connected, not with two gronps merely, one above and the other below, but with sereral. Life has been likened to a great tree with countless branches spreading widely from a common trunk, and deriving their origin from a common root; branches bearing all mamer of flowers, every fashion of leaves, and all kinds of fruit, and these for erery use.

The groups into which we are able to cast the varions forms of animal development are very unequal and dissimilar. We must remember that a genns, order, or class is not of equal value throughont the kingdom. Moreover, each division is allied to others in different degrees-the distance between any two being the measure of that affinity. The lines between some are sharp and clear, between others indefinite. Like the islands of an archipelago, some groups merge into one another throngh comnecting reefs, others are sharply separated by mufathomable seas, yet all have one common basis. Links have been found revealing a relationship, near or distant, even between animals whose forms are very mulike. How different a Fish and a Lizard! yet there is a strange creature (the Axolotl of Mexico) whose organization is intermediate between the two, so that it is difficult to determine to which group it belongs. The Slow-worm is a transition between Lizards and Snakes; while the extinct Ichthyosaurus bridges the
chasm between Crocodiles and Fishes. Birds seem isolated; but in ancient times there were flying Reptiles; while the Ornithorhynchus, Kangaroo, and Bat stand on the border-line between Mammals and the feathered tribe. Eren between the grand Vertebrate and Invertebrate divisions there flits a ghost-like form-the Amphioxus, half Worm, half Fish.

We hare, then, groups subordinate to groups, and interlocking, but not representing so many successive degrees of organization. For, as already intimated, complication of structure does not rise in continuous gradation from one group to another. Every type starts at a lower point than that at which the preceding class closes; so that the lines overlap. While one class, as a whole, is higher than another, some members of the higher class may be inferior to some members of the lower one. Thus, certain Starfishes are nobler than certain Mollusks; the Nautilus is above the Worm, and the Bee is more worthy than the lowest Fish. The groups coalesce by their inferior species; e.g., the Fishes do not graduate into Reptiles through their higher forms, but the two come closest together low down in the scale. Man appears to be the goal of creation; but eren within the Vertebrate series, every step of development, say of the Fish, is away from the goal. The highest Fish is the one farthest from Man.

A number of animals may, therefore, hare the same grade of development, but conform to entirely different types. While a fundamental unity underlies the whole Animal Kingdom, suggesting a common starting - point, we recognize four or five distinct plans of structure. ${ }^{130}$ Thus, animals like the Coral, unlike all others, have the alimentary canal opening into the body-carity, have no separate nerrons and rascular regions, and the parts of the body radiate from a centre. Such form a subkingdom called C'elenterata. Animals, like the Star-fish, har-
ing also a radiating body, but a closed alimentary canal, and a distinct, symmetrical nervous system, constitute the subkingdom Echinodermata. ${ }^{141}$ Animals, like the Snail, with a soft, unsymmetrical body, well-developed digestive apparatus, and scattered nervous system, form the subkingdom Mollusca. Animals, like the Bee, with a symmetrical body composed of numerous segments, a nerrons system consisting of a double chain of ganglia along the lower side of the body, and limbs on the same side as this nervous cord, form the subkingdom Articulata. Animals, like the Ox, having a double nervons system, one (the ganglionic) lying on the upper side of the alimentary canal, the other and main part (spinal) lying along the back, and completely shat off from the other organs by a partition of bone or gristle, known as the "vertebral column," and having limbs, never more than four, always on the side opposite the great nerrous cord, constitute the subkingdom Vertebrata.

Comparing these great divisions, we see that the Vertebrates differ from all the others chiefly in having a double body-cavity and a double nervous system, the latter lying above the alimentary canal; while Invertebrates have one carity and one nerrous system, the latter being placed either below or around the alimentary camal. The Articulate type differs from the Molluscan mainly in being jointed. The Echinoderms and Colenterates are built on the common type of a star; but they differ from each other in the presence or absence of distinct alimentary, circulatory, and nerrous systems.

But there are types within types. Thus, there are five modifications of the Vertebrate type-Fish, Amphibian, Reptile, Bird, and Mammal; and these are again divided and subdivided, for Mammals, e. g., differ among themselves. So that in the end we have a constellation of groups within groups, founded on peculiar characters of
less and less importance, as we descend from the general to the special.

Individuals are the units of the Animal Creation. An animal existence, complete in all its parts, is an individual, whether separate, as Man, or living in a community, as the Coral. ${ }^{142}$

Variety: when two or more individuals differ by a single peculiarity only, such as size, color, or outline, one is called a variety of the other; as the various races of Men and breeds of Cattle. Varieties are usually local. A cross between distinct races is called mongrel.

Species is the smallest group of indiriduals which can be defined by several constant characteristics. They are so alike, that it is possible for them to have descended from one pair; and they always transmit to their offspring some peculiarity of their organization. A cross betreen two distinct species, as the Horse and Ass, is called a $h y$ brid; as the Mule.

Genus is a group of species haring the same essential structure. Thus, the closely allied species, Cat, Tiger, and Lion, belong to one genus.

Family, or Tribe, is a group of genera haring a similar form. Thus, the Dogs and Foxes belong to different genera, but betray a family likeness.

Order is a group of families, or genera, related to one another by a common structure. Cats, Dogs, Hyenas, and Bears are linked together by important anatomical features; their teeth, stomachs, and claws show carnivorous habits.

Class is a still larger group, comprising all animals which agree simply in a special modification of the type to which they belong. Thus, Fishes, Amphibians, Reptiles, Birds, and Mammals are so many aspects of the Vertebrate type.

Subkingdom is a primary division of the Animal King-
dom, which includes all animals formed upon one of the four or five types of structure ; as Vertebrate.
These terms were invented by Linnæns, except Family and Subkingdom, which were added by Lamarck. To Linnæus we are also indebted for a scientific method of naming animals. Thus, a Dog in Zoology is called Canis fumiliaris, which is the union of a generic and specific name, corresponding to the surname and Christian name in George Washington, only the specific name comes last. It will be understood that these are abstract terms, expressing simply the relations of resemblance: there is no such thing as genus or species.

Classification is a process of comparison. He is the best naturalist who most readily and correctly recognizes likeness founded on structural characters. As it is easier to detect differences than resemblances, it is much easier to distinguish the class to which an animal belongs than the genus, and the genus than the species. In passing from species to classes, the characters of agreement become fewer and fewer, while the distinctions are more and more manifest; so that animals of the same class are more like than unlike, while members of distinct classes are more unlike than like.

To illustrate the method of zoological analysis by searching for affinities and differences, we will take an example suggested by Professor Agassiz. Suppose we see together a Dog, a Cat, a Bear, a Horse, a Cow, and a Deer. The first feature which strikes us as common to any two of them is the horn in the Cow and Deer. But how shall we associate either of the others with these? We examine the teeth, and find those of the Dog, the Cat, and the Bear sharp and cutting; while those of the Cow, the Deer, and the Horse have flat surfaces, adapted to grinding and chewing, rather than cutting and tearing. We compare these features of their structure with the habits of these
animals, and find that the first are carnivorous-that they seize and tear their prey; while the others are herbivorous, or grazing, animals, living only on regetable substances, which they chew and grind. We compare, further, the Horse and Cow, and find that the Horse has front teeth both in the upper and the lower jaw, while the Cow has them only in the lower; and going still further, and comparing the internal with the external features, we find this arrangement of the teeth in direct relation to the different structure of the stomach in the two animals-the Cow having a stomach with four ponches, while the Horse has a simple stomach. Comparing the Cow and Deer, we find the digestive apparatus the same in both; but though both have horns, those of the Cow are hollow, and last throngh life ; while those of the Deer are solid, and are shed every year. Looking at the feet, we see that the herbivorous animals are hoofed; the carnivorous, clawed. The Cow and Deer have cloven feet, and are ruminants; the Horse has a single hoof, and does not chew the cud. The Dog and Cat walk on the tips of their fingers and toes (digitigrade) ; the Bear treads on the palms and soles (plantigrade). The claws of the Cat are retractile ; those of the Dog and Bear are fixed.

In this way we determine the exact place of each animal. The Dog belongs to the kingdom Animalia, subkingdom Vertebrata, class Mammalia, order Carnivora, family Canidce, genus Canis, species Familiaris, variety Hound (it may be), and its individual name, perhaps, is "Rover." The Cat differs in belonging to the family Felidu, genus Felis, species Catus. The Bear belongs to the family Ursidar, genus Ursus, and species Ferox, if the Grizzly is meant. The Horse, Cow, and Deer belong to the order Ungulata; but the Horse is of the family Equida, genus Equus, species Caballus; the Cow is of the family Bovida, genus Bos, species Taurus; the Deer
is of the family Cervidce, genus Cervus, species Virginianus, if the common Deer is meant.

The following diagram ronghly represents (for the relations of animals can not be expressed on a plane surface) the relative positions of the subkingdoms and classes according to affinity and rank. It will be seen that the Vertebrate, Articulate, and Molluscan types stand at the angles of an isosceles triangle. The lowest Worms are simpler than the lowest Mollusks ; yet Articulates, on the whole, are, perhaps, higher than the Mollusks: the former have more ontward expression ; the latter, more concentration.*

Mammalia.

Vertebrata. | Aves. |
| :--- |
| Reptilia. |

Amphibia,
Pisces.

Cephalopoda.
Gasteropoda.
Lamelibranchiata. Mollusca. Tunicata.

Polyzoa. Brachiopoda. Annelida.
Echinoidea. Holothuroidea.
Ecminodermata.
Asteroidea. Crinoidea.

Anthozoa. Celenterata.

Hydrozoa.
Spongida.
Infusoria.
Protozoa.
Rhizopoda. Gregarinida.

* The student should master the distinctions between the great groups, or classes, before proceeding to a minuter classification. "The essential matter, in the first place," says Huxley, "is to be quite clear about the different classes, and to have a distinct knowledge of all the sharply definable modifications of animal structure which are discernible in the Animal Kingdom."

Subkingdom.-Protozon.

This division was proposed by Von Siebold in 1845 to contain that rast clond of microscopic beings on the verge of the Animal Kingdom which could not be received into the other subkingdoms. It is artificial and provisional. The classes composing it are not founded on a common type, but are distinguished by the absence rather than the presence of positive characters. The time may come when the microscope will resolve these nebulæ, so that we can give them a natural classification. Probably some of them are transitory stages in the history of higher organisms. Many stand parallel to the Protophytes of the Vegetable World, and no definite line can be drawn between them.

Protozoans agree in being minute, aquatic, and exceedingly simple in structure, their bodies consisting mainly or wholly of the contractile, gelatinous matter called protoplasm, or sarcode - the first homogeneous substance which has the power of controlling chemical and physical forces. No traces of nervous or muscular fibres, circulatory or digestive organs have been discovered. Yet they take and assimilate food, grow and multiply, which are the essential signs of life. The usual methods of reproduction are self-division and budding.

The subkingdom may be divided into four classes: Gregarinida, Rlizopoda, Infusoria, and Spongida. The perfectly homogeneous Monera of Haeckel would rank lower than the Gregarinæ; but as they are doubtfully referred to the Animal Kingdom, we do not include them.

Class I.-Gregarinida.

The Gregarinæ, discorered by Dufour in 182S, are the simplest animal forms of which we have any knowledge. They closely resemble a cell, or mieroscopic egg; the only organ is a nucleus, suspended in extremely mobile granu-
lar matter; and the most conspicuons signs of life are the contraction and lengthening of the worm-like body. They feed by absorption, and are all parasites, living in the ali-

Fig. 179.-Gregarina gigantea, highly magnified: a, nucleus.
mentary canal of higher animals ; particnlarly in the Cockroach and Earth-worm. The name is derived from the fact that they occur in large numbers crowded together. By some authors they are associated with the parasitic Worms.

Class II.-Rhizopoda.

The Rhizopods are characterized by the power of throwing out at will delicate processes of their bodies, called pseudopodia, or false feet, for prehension or locomotion. They possess no cilia. The representative forms are Amce$b c e$, Foraminifera, and Polycystina.

An Amœba is a naked, fresh-water Rhizopod; an indefinite bit of protoplasm, as structureless as a speck of

Fig. 150.-Amoeba princeps, $\times 150$; the same animal in various shapes.
 jelly, save that it is made of two distinct layers, and has a contractile carity inside. It has no particular form, as it changes contimually. It moves by putting forth short, blunt processes, and eats by wrapping its body around the particle of food. The size ranges from $\frac{1}{70}$ to $\frac{1}{2800}$ of an inch in diameter. Specimens can be obtained by scraping the mucons matter from the stems and leaves in staguant ponds.

A Foraminifer differs from an Amœba in having an appareutly simpler body, the protoplasm being without layers or cavity; but it has the property of secreting an envelope, usually of carbonate of lime. The shell thus formed is sometimes of extraordinary complexity and singular beauty. It is generally perforated by innumerable minnte orifices (foramina) through which the animal protrudes its myriad of glairy, thread-like arms. The majority are compound, resembling chambered shells, formed by a process of budding, each new individual being added so as to make a straight series, a spiral, or a flat coil.

Fig. 181.-Rhizopods: a a monothalamous, or single-chambered, Foraminifer (Lagena striata) ; b, a polythalamous, or many-chambered, Foraminifer (Polystomella crispa, with pseudopodia extended); c, a Radiolarian, one of the Polycystines (Podocystis Schomburgkii).

As a rule, the many-chambered species have calcareons, perforated shells; and the one-chambered have an imperforated membranons, porcelanons, or arenaceous envelope. The former are marine. There are few parts of the ocean where these microscopic shells do not occur, and in astounding numbers. A single ounce of saud from the Antilles was calculated to contain over three millions. Their remains constitute a great proportion of the socalled sand-banks which block up many harbors. Yet they are the descendants of an ancestry still more prolific; for the chalk-cliffs of England, the building-stone of Paris,
and the blocks in the Pyramids of Egypt are largely composed of extinct Foraminifers.

A Polycystine differs from a Foraminifer in secreting a siliceons, instead of a calcareons, shell, studded with spines; and the central part of the body is made up of many cells, and surrounded by a strong membrane. While Foraminifers live mostly at the bottom of the sea, Polycystines generally float on the surface. They are also more minute, but as widely diffused. They enter largely intr the formation of some strata of the earth's crust, and abound especially in the rocks of Barbados and at Richmond, Va.

Class III.-Infusoria.

This unassorted group of living particles derived its

Fig. 182.-A Compound Monad (Uvella), $\times 1000$. name from the fact that they were first discovered in regetable infusions. Every drop of a stagnant pool is crowded with them. They are all single and microscopic, yet of varions sizes, the difference between the smallest and largest being greater than the difference between a Mouse and an Elephant. Some are fixed (as Vorticella); but the majority are free, and constantly in motion, propelled by countless cilia, as a galley by its oars. The delicate body consists of unorganized sarcode (i. e., there are no cellular tissues, but the whole body represents a single cell), covered by a membrane, or skin, and containing a semi-fluid substance, a contractile cavity, and several
granules. On one side is a slight depression, or "mouth," leading to a short, funnel-shaped throat. A mouth and a rudimentary digestive cavity are the distinctive features of these Protozoans. They multiply so rapidly (chiefly by self-division), that a Paramecium, the most common form, may become the parent of $1,364,000$ in 42 days.

There are two main groups: Flagellata, or Monads, provided with one or two flagella, or long bristle-like cilia; and Ciliata, which are furnished with numerous vibratile cilia.

Class IV.-Spongida.

An ordinary Sponge is a compound animal, or, more properly, an aggregated colony of individual cells, supported on a skeleton of horny fibres, which are so united as to form a net-work of tubes. The essential part is the glairy, gelatinous substance investing this elastic framework. It consists of myriads of monthless, sarcode bodies, which in some respects resemble Amœbæ, but approach

Fic. 184.-Hypothetical Section of a Sponge: a, superficial layer; b, inhalent pores; c, ciliated chambers; d, exhalent aperture, or osculum ; e, deeper substance of the Sponge.
the flagellate Infusoria in being uniciliated, and the Hydrozoa in having two layers of cells in the body-wall, and in producing true eggs. While in other Protozoa aggregation is a result of growth, and the parts are not mutually dependent, in Sponges the parts work for the life of the whole, giving the mass a kind of individuality. Differen-
tiation is carried to a higher degree, as we find ectoderm and endoderm, fibrous tissue, ciliated tracts, and a canalsystem for circulation.

When freshly taken from its element, a Sponge is hard and glistening on the outside, and strongly resembles a piece of liver. While living, constant currents of water issue from the large orifices, fed by smaller streams entering by the minute pores, the currents being caused by cilia

Fig. 185.-Horny Skeleton of a Sponge.
lining the passages. So that "the Sponge represents a kind of subaqueous city, where the people are arranged about the streets and roads, in such a manner that each can easily appropriate his food from the water as it passes along." The apertures, or " gates," can be closed at the will of the animal.

A few species are wholly gelatinous, having no skeleton; some are calcareous, aping the Corals; many are entirely siliceous, resembling spun glass, as the beautiful

Venus flower-basket (Euplectella); but the majority have a tibrons, horny skeleton, which in some forms is strengthened by siliceous needles (spicula). Excepting a few small fresh-water species (as Spongilla), Sponges are marine. In the former, the gelatinous part is greenish; in the latter, it is brown, red, or purple. In preparing the sponge of commeree, this is rotted by exposure, and washed out. The best fishing-grounds are the eastern end of the Mediterranean and around the Bahama Islands.

Subkingdom.-Celenterata.

These radiate animals are distinguished by having a distinct body-cavity, the walls of it consisting of two layers of cellular tissue, an outer (ectoderm) and inner (endoderm) ; and thread cells, which are minute sacs containing a fluid, and connected with barbed filaments capable of being thrown out for stinging purposes. Most are provided with hollow tentacles around the month. All are aquatic, and nearly all are marine. There are two classes, represented by the Hydra and Sea-anemone. Both reproduce by budding and by eggs; but in the former the eggs are developed from the exterior of the body, while in the latter they are internal.

Class I.-Hydrozoa.

These Colenterates have no separate digestive sac, so that the body is a simple tube, or cavity, into which the mouth opens. A nervous system is not apparent. Such are the fresh-water IIydra and the oceanic Jelly -fish (Acaleph or Medusa).

The body of the Mydra is tubular, soft, and sensitive, of a greenish or reddish color, and seldom over half an inch long. It is found spontaneonsly attached by one end to submerged plants, while the free end contains the orifice, or mouth, erowned with tentacles, by which

Fig. 186.-Hydra: 2, with tentacles fully extended; 3 , creeping; 5 , budding.
the creature feeds and creeps. Closely related to the Hydra are the compound Sertnlarians, often mistaken for delicate sea-weeds. The commonest species on our Atlantic coast ($D y$ namena) is of a paleyellow color, and hangs in fringes from seaweeds, shells, and rocks.

The ordinary Acaleph has a soft, gelatinous, semi - transparent, bellshaped body, with tubes radiating from the central cavity to the circumference, where they are connected by a circular canal, and with the margin fringed with stinging tentacles. The radiating parts are in multiples of four. Around the rim are minute colored spots, called "eye - specks," supposed to be the earliest indications of the organs of sight. In fine weather, these "sea - blubbers" are seen floating on the sea, mouth downward, moring about by flap-

Fig. 18t.-Sertularia growing on a Shell.

Fig. 1Ss.-Medusa (Pelagia noctiluca), a free Lucernarian. Mediterranean.

Fig. 189.-Portuguese Man-of-war (Physalia), $\frac{1}{8}$ natural size. Tropical Atlantic.

Fig. 190.-Jelly-fish (Aurelia aurita), with young in various staves.
ping their sides, like the opening and shutting of an umbrella, with great regularity. They are frequently phosphorescent when disturbed. Some

Fig. 191.-A Meausa, seen in profile and from below, showing central polypite, radiating and marginal canals. are quite small, resembling little glass bells; the common Aurelia is over a foot in diameter when full grown; while the Cyanea, the giant among Jelly -fishes, sometimes measures five feet, with tentacles forty feet long. When dried, nothing is left but a film of membrane weighing only a few grains.

There are two representative types: the Lucernaria, the Umbrella-acaleph, having a short pedicel on the back for attachment; tentacles disposed in eight gronps around the margin, the eight points alternating with the forr partitions of the body-cavity and the four corners of the mouth; not less than eight radiating canals, and no membranous veil. The common species on the Atlantic shore, generally found attached to eel-grass, is an inch in diameter, of a green color. Discophora, the ordinary Jel-

Fif. 192. - Lucernaria auricula attached to a piece of sea-weed: natural size. The one on the right is abnormal, having a ninth tuft of tentacles.
ly-fish, is free and oceanic. It differs from the Lucernaria in its usually larger size and solid disk, four radiating canals, which ramify and open into a circular vessel, and a "reil," or shelf, always running around the mouth of the disk. ${ }^{143}$

Class II.-Anthozoa.

These marine animals, which by their gay tentacles conrert the bed of the ocean into a flower-garden, or by their secretions build up coral-islands, lave a body like a round gelatinous bag. One end, the base, is ustally attached; the other has the month in the centre, smrounded by munerons hollow tentacles, which are corered with nettling lasso - cells. This upper edge is turned in so as to form a sac within a sac, like the neck of a bottle turned ontside in. The inner

Fig. 193.-Horizontal Section of Actinia through the stomach, showing septa and compartments. me, which is the digestive cavity, does not reach the bottom, but opens into the general body-cavity. The space between these two concentric tubes is divided by a series of vertical partitions, some of which extend from the body-wall to the digestive sac, but others fall short of it

Fig. 194. -- Actinia expanded, seen from above, showing mouth. Instead, therefore, of the radiating tubes of the A caleph, there are radiating spaces. No members of this class are microscopic. Allare long-lived ecmpared with the IIydrozoa, liring for several years.

1. Soft-bodied Pol-yps.-The best-known representative of this gromp is the Actinia, or Sea-anemone. Itleads a
single life, and is capable of a slow locomotion. Muscular fibres run around the body, and others cross these at right angles. The tentacles, which often

Fig. 195.-A Ctenophore (Pleurobrachia pileus); natural size. number over 200 , and the partitions, which are in reality double, are in multiples of six. At night or when alarmed, the tentacles are drawn in, and the aperture firmly closed, so that the animal looks like a rounded lump of fleshy substance plastered on the rock. It feeds on Crabs and Mollusks. It abounds on erery shore, especially of tropical seas. The size varies from one-eighth of an inch to a foot in diameter.

The Ctenophora (as the Pleuro. brachia, Cestum, and Beroë) likewise secrete no hard deposit. They are transparent and gelatinons, swimming on the ocean by means of eight bands of comb-like fringes, which work like paddles. The body is not contractile as in the Jellyfishes. They are considered the highest of Coelenterates, having a complex nutritive apparatus and a definite nervous system.
2. Coral Polyps.-The majority of Anthozoa secrete a calcareous or horny frame-work called "coral." With few exceptions, they are fixed and composite, living in colonies formed by a continuous process of budding. Their

Fig. 196.-Organ-pipe Coral (Tubipora musica). Indian Ocean. structures take a variety of shapes: often dome-like, but more frequently imitating shrubbery and clusters of leaves.

The members of a coral community are organically connected; each feeds himself, yet is not independent of the rest. We can speak of the individual Corals, a, b, c, but we must write them down abc. The compound mass is "like a living sheet of animal matter, fed and nourished by numerous mouths and as many stomachs." Life and death go on together, the old Polyps dying below as new ones are developed above. The living part of an Astrica is only half an inch thick. The growth of the branching Madrepore is about three inches a year. The prevailing color of the Coral Polyps is green; and the usual size varies from that of a pin's head to half an inch, but the Mnshroom-coral (which is a single individual) may be a foot in diameter.

Corals are of two kinds: those deposited within the tissues of the animal (sclerodermic), and those secreted by the onter surface at the foot of the Polyp (sclerobasic). The Polyps producing the former are Actinoid, resembling the Actinia in structure. ${ }^{144}$ The skeleton of a single Polyp (called corallite, Fig. 95) is a copy of the animal, except the stomach and tentacles, the earthy matter being secreted within the onter wall and between each pair of partitions. So that a corallite is a short tube with vertical septa radiating toward the centre. ${ }^{146}$ A sclerobasic coral is a true exoskeleton, and is distinguished by being smooth and solid. The Polyps, having eight fringed tentacles, are situated on the outside of this as a common axis, and are connected together by the fleshy conosarc covering the coral.
(1) Sclerodermic Corals.-Astreca is a hemispherical mass covered with large cells. Meandrina, or "Brain-coral," is also globular; but the mouths of the Polyps open into each other, forming furrows. Fungia, or "Mnshroomcoral," is disk-shaped, and differs from other kinds in being the secretion of a single gigantic Polyp, and in not

Fig. 197.-Madrepma aspera, living and expanded; hatural size. Pacific.
being fixed. Madrepore is neatly branched with pointed extremities, each ending in a small cell about a line in diameter. Porites, or "Sponge-coral," is also branching, but the ends are blunt, and the surface comparatively

Fig. 198.-Ctenactis echinata, or "Mushroom-coral:" one-fourth natural size. Pacific.

Fig. 199.-Astreea pallida; natural size. Feejee Islands.
smooth. Tubipora, or "Organ - pipe coral," consists of smooth red tubes connected at intervals by cross plates.

Fıs. 200.-Diploria cerebriformis, or "Brain-coral;" one-half natural size. Bermudas.

Fig. 201.-Astraea rotulosa. West Indies.
The Astrcea, Meandrina, Mradrepore, and Porites are the chief reef-forming corals. They will not live in waters the mean temperature of which is below 65°

Fig. 202.-Cell of Madrepore Coral, magnified. The cup-like depression at the top of a coral skeleton is called calicle.

Fig. 203.-Fragment of Red Coral (Corallium rubrum), showing living cortex and expanded Polyps. Mediterrauean.

Fahr., nor at greater depth than twenty fathoms. The most luxuriant reefs are in the Central and Western Pacific and arome the West Indies.
(2) Sclerobasic Corals.-Corallium rubrum, the precions coral of commerce, is shrub-like, about a foot high, solid throughout, taking a high polish, finely grooved on the

Fig. 204.-Sea-fin (Gorgonia) and Sea-pen (Pennatula).
surface, and of a crimson or rose-red color. In the living state the branches are covered with a red cenosarc studded with Polyps. Gorgonia, or "Sea-fan," differs from all the other representative forms in having a horny axis corered with calcareous spicules. The branches arise in the same vertical plane, and mite into a beautiful network.

Subkingdom Ecmivodermata.

The Eehinoderms, as Star-fishes and Sea-nrchins, are distinguished by the possession of a distinct nerrons system (a ring around the mouth); an alimentary canal, completely shut off from the body-carity, and having both oral and anal apertures; a peeuliar system of circular and radiat-
ing canals, and a symmetrical arrangement of all the parts of the body around a central axis in multiples of five. ${ }^{146}$

Fig. 205.-Forms of Echinoderms, from Radiate to Aunulose type.
There are four principal classes, all exclusively marine and solitary, and all having the power of secreting more or less calcareons matter.

Class I.-Crinoidea.

The Crinoids, or "Sea-lilies," are fixed to the sea-bottom by means of a hollow, jointed, flexible stem. On the top of the stem is the body proper, resembling a bud or expanded flower, containing the digestive apparatus, with the surromding arms, or tentacles. The month looks upward. There is a complete intermal skeleton for strength and support, the entire animal, body, arms, and stem, consisting of thousands of stellate pieces comected together by irritable matter. Crinoids were very abmendant in the old geologic seas, and many limestone strata were created out of their remains. They are now nearly extinct: dredging in the deep parts of the Caribbean Sea and Atlantic Ocean has brought to light two or three living representatives.

Fig. 206.-A living Crinvid (Pentacrimus asteria); oue-fuurth natural size. West Indian Seas.

Class II.-Asteroidea.

Ordinary Star-fishes consist of a flat central disk, with five or more arms, or lobes, radiating from it, and eontaining branches of the viscera. The skeleton is leathery, hardened by small calcareons plates (11,000 by calculation), but somewhat flexible. The mouth is below; and the rays are furrowed moderneath, and piereed with numerous holes, through which pass the sucker-like tenta-cles-the organs of locomotion and prehension. The red spots at the ends of the rays are supposed to be eyes. The usnal color of Star-fishes is yellow, orange, or red. They

Fig. 207. - Under - surface of Star-fish (Goniaster reticulatus), showing ambulacral grooves and protruded suckers.

Fig. 205.-Ophiocoma Russei, an Ophiura; natural size. West Indies.
abound on every shore, and are often seen at low tide half huried in the sand, or slowly gliding over the rocks. Cold fresh water is instant death to them. They have the power of reproducing lost parts to a high degree. They are very voracions, and are the worst enemies of the Oyster.

About 150 species are known. These may be divided into three groups: (1) species having four rows of feet, represented by the common five-fingered Asterias; (2) species having two rows of feet, as the many-rayed Solaster, or "Sun-fish," and the pentagonal Goniaster; (3) species having long slender arms, which are not prolongations of the body, and are not provided with suckers, as the Opliura, or "Brittle - star," and Astroplyyton, or " Basket-fish." The last are of inferior rank, and resemble inverted stemless Crinoids. The digestive sac is confined to the disk; and the madreporic plate is underneath.

Crass III.--Echinoidea.

The Sea-urchin is encased in a thin hollow shell corered with spines, and rarying in shape from a sphere to a disk. ${ }^{147}$ The month is moderneath, and contains a dental apparatus more complicated than that of any other creatwre from the Sponge to Man. It leads to a digestive tube, which extends spirally to the snmmit of the body. The spines are for burrowing and locomotion, and are moved by small moscles,

Fig. 209.-Under-surface of a Sea-urchin (Echinus esculentus), showing rows of suckers among the spines. British seas. each being artictilated by ball-andsocket joint to a distinct tubercle. When stripped of its spines, the shell (or "test") is seen to be formed of a multitude of pentagonal plates, fitted together like a mosaic. ${ }^{148}$ Five donble rows of plates, passing from pole to pole, like the ribs of a melon, alternate with fire other double rows. In one set, called the ambulacra, the plates are perforated for the protrusion of tubular feet, or suckers, as in the Star-fish. So that altogether there are twenty series of plates - ten ambulacral, and ten interambulacral. The shell is not cast, but grows by the enlargement of each individual plate, and the addition of new ones around the mouth and the opposite pole. Every part of an Echinns, even sections of the spines, show the principle of radiation. If the arms of a Star-fish were turned
backward so as to meet, we would have a very close imitation of a Sea-urchin, the ventral surface corresponding to the ambulacral areas. Echini live near the shore, in rocky holes or under sea-weed. They are less active than Star-fishes, but, like them, feed on Shells and Crabs. They reproduce by minute red eggs.

Regular Echini, as the common Cidaris, are nearly globular, and the oral and anal openings are opposite. Iiregular Echini, as the Clypeaster, are flat, and the anal orifice is near the margin.

Class IV.-Holothuroidea.

These worm-like "Sea-slugs," as they are called, have a soft elongated body, with a tough contractile skin containing scattered granules. One end, the head, is abruptly teminated, and has a simple aperture for a month, encircled with feathery tentacles. There are five longitudinal

Fig. 210.-sea-slugs (Holothuria).
rows of ambulacral suckers, but only one is nsed for locomotion. The mouth opens into a pharyns leading to a long intestinal canal. Inolothurians have the singular power of ejecting all their internal organs, surviving for some time the loss of these essential parts, and afterward reproducing them. They occur on nearly every coast,
especially in tropical waters, where they sometimes attain the length of three or four feet. As found on the beach after a storm, or when the tide is out, they are leathery lumps, of a reddish, brownish, or yellowish color. They may be likened to a Sea-urchin devoid of a shell, and long drawn ont, with the axis horizontal, instead of vertical.

Subkingdom Mollusca.

A Mollusk is a soft-bodied animal, witliout internal skeleton, and without joints, covered with a moist, sensitive, contractile skin, which loosely envelops the creature, like a mantle. In some cases the skin is naked; but generally it is protected by a calcareous covering (shell). The length of the body is less in proportion to its bulk than in other animals. The lower classes have no distinct head. The nervous system consists, in the trine Mollusks, of three well-developed pairs of ganglia, which are principally concentrated around the entrance to the alimentary canal, forming a ring around the throat. The other ganglia are, in most cases, scattered irregularly through the body, and in such the body is unsymmetrical. The digestive system is greatly developed, especially the liver, as in most aquatic animals. Except in the Cephalopods, the muscles are attached to the skin. Only the higher Mollusks have a distinct heart (auricle and rentricle), and this is always on the arterial side. While in neighboring groups, as Foraminifers, Corals, Star-fishes, and Articulates, we find repetitions of similar parts, in Mollusks every part or organ is single. The total number of living species probably exceeds 20,000 . The great majority are water-breathers, and marine; some are fluviatile or lacustrine; and a few are terrestrial air-breathers. All bivalves, and nearly all univalres, are aquatic Each zone of depth in the sea has its particular species.

There are six classes of Mollusks. Of these, the first three form a group by themselves, called Molluscoidea, distinguished by having only one or two nervons ganglia, an imperfect circulatory apparatus, and generally no organs for prehension and locomotion. Of the other three, Lamellibranchs are headless, while Gasteropods and Cephalopods only have a distinct head, and an apparatus for mastication.

Class I.-Polyzoa.

These minnte Mollusks resemble the Polyps in appearance, living in clusters, each individual inhabiting a delicate cell, or tube, and having a simple mouth surrounded with ciliated tentacles. The colony often takes a plantlike form; sometimes spreads, like fairy-chains or lacework, over other bodies; or corers rocks and sea-weeds in

Fig. 211.--Polyzoans: 1. Ifornera lichenoides; natural size. 2. Branch of the same, magnified. 3. Discopora Skenei; greatly enlarged.
patches with a delicate film. The majority secrete carbonate of lime. Though an extremely low form of the Molluscan type, a Polyzoan shows its superiority to the Coral, which it imitates, in possessing a distinct alimentary canal
and a well-defined nerrous system. The cells of a group never have comection with a common tube, as in Ceelenterates. There are both marine and fresh-water species.

Class II.-Tunicata.

The Tunicates are either single or compound, and are fomnd in all seas. The most common form (the solitary Ascidians) are inclosed in a leathery, elastic bag, one end of which is fastened to the rocks, while the other has two orifices, for the inlet and exit of a current of water for mutrition aud respiration. They are without head, feet, arms, or shell. Indeed, few animals seem more helphess

Fig. 212.-An Ascidiau. and apathetic than these apparently shapeless beings. The tubular heart exhibits the curions phenomenon of reversing its action at brief intervals, so that the blood oscillates backward and forward in the same ressels, as was supposed to be the case in the hmman system before the time of Harrey. Another pecnliarity is the presence of cellnlose in the skin. While the Ascidians are fixed and single, the Salpiuns are free, and alternately single and social. They are usually seen swimming in long (hains (the offspring of one individnal). Each member of this colony produces solitary young, which are unlike their parents, and these again give birth to aggregated forms.

Class III.-Brachiopoda.

These Mollusks have a bivalre shell, the valves being applied to the dorsal and rentral sides of the body. The valres are unequal, the rentral being usnally larger, and more convex; but they are symmetrical, i.c., a vertical
line let fall from the hinge divides the shell into two equal parts. The rentral valve has, in the great majority, a prominent beak, perforated by a foramen, or hole, through which a fleshy foot protrudes to attach the animal to submarine rocks. The valves are opened and shnt by means of muscles, and in some cases they are hinged, having teeth and sockets near the beak. The month faces the middle of the

Fig. 213.-A Brachiopor (Terebratulina septentrionalis). Atlantic coast.
margin opposite the beak; and on either side of it is a long fringed "arm," generally coiled up, and sup-

Fig. 214.-Dorsal Valve of a Brachiopod (Terebratula), showing, in descending order, cardinal process, dental sockets, hinge-plate, septum, and loop supporting the ciliated arms. ported by a bony frame-work. The animal, having no gills, respires either by the arms or the mantle. Brachiopods were once very abundant, over 2000 extinct species having been described; but less than a hundred species are now living. ${ }^{149}$ They are all marine, and fixed; but of all Mollusks, they enjoy the greatest range of climate and depth.

Class IV.-Lamellibranchiata.

Lamellibranchs are all ordinary bivalres, as the Oyster and Clam. The shells differ from those of Brachiopods in being placed on the right and left sides of the body, so that the hinge is on the back of the animal, and in being unequilateral and equivalved. ${ }^{160}$ The umbo answers to the
beak, but it is not perforated. It is the point from which the growth of the valse commences. Both Brachiopods and Lamellibranchs are headless; but in the latter, the mouth points the same way as the umbo,

Fig. 215. - Pearl Oyster (Meleagrina margaritifera) ; one-fourth natural size. Ceylon. i. e., toward the anterior part. The length of the shell is measured from its anterior to its posterior margin, and its breadth from the dorsal side where the hinge is to the opposite, or ventral, edge. The valves are mited to the animal by one muscle (as in the Oyster), or two (as in the Clam), and to each other by a hinge. In some species, as the Fresh-water Mussel, the hinge is simply an elastic ligament, passing on the outside from oue valve to the other just behind the beak, so that it is on the stretch when the valves are closed, and another placed between the edges of the valves, so that it is squeezed as they shut, like the spring in a watch-case. Such biralves are said to be edentulons. But in the majority, as the Clam, the ralves also articulate by interlocking parts called teeth. The valves are, therefore, opened by the ligaments, and closed by the muscles.

Fig. 216. - Salt - water Mussel (Mytilus pellucidus). Atlantic coasts.

The margin of the shell on which the ligament and teeth are situated is termed the hinge-line.

Lamellibranchs breathe by four plate-like gills (whence the name), two on each side underneath the mantle (Fig. 78). In the higher forms, the mantle is rolled up into two tubes, or siphons, for the inhalation and exhalation of water. They feed on infusorial particles filtered from the water. A few are fixed, the Oyster, e.g., habitually lying on its left valve, and the Salt-water Mussel hanging to the
rocks by a cord of threads called "byssus ;" but the rest have a "foot," by which they creep about. Unlike the Oyster, also, the majority live in an erect position, resting

Fig. 217.-Lamellibranch (Mactra): a, foot; b, c, siphons.
on the edges of their shells. Over 4000 living species are known. These are fresh-water and marine, and range from the shore to a depth of a thousand feet.

The chief characters for distinguishing Lamellibranchs are the muscular impressions, ${ }^{151}$ whether one or two; the presence of a pallial sinus, which indicates the possession of siphons; the structure of the hinge; and the symmetry of the valves.

The following are the leading types of structure:

1. Mantle open; no siphon-tubes, and therefore no pallial sinus; one muscular impression; foot wanting, or very small; shell mequivalve and edentulous: as the Oyster (Ostrea), Scallop (Pecten), and Pearl Oyster (Avicula). ${ }^{162}$
2. Mantle open in front, and closed behind, except one small aperture; no pallial sinus; two muscular impressions; foot large; shell equivalve: as the Sea Mussel (Mytilus), and Fresh-water Clam (Unio).
3. Mantle having three openings; tubes wanting, or very short; no

Fig. 21s.- C'uckle (Carcizuan costetiom) : one-thind matmal size. Chinả scas.
pallial sinus; two muscular impressions: as " the giant of the bivalve race" (Tridacne) and Cockle (Cardium). ${ }^{163}$
4. Mantle, with three openings; siphons large; pallial sinus and muscular impressions well marked: as the common Clam (Venus), ${ }^{164}$ and the burrowing Razor-shell (Solen).

Class V.-Gasteropoda.

The Snails are, with rare exceptions, all mnivalves. ${ }^{155}$ The body is coiled up in a conical shell, which is usually spiral, the whorls passing obliquely (and generally from right to left) ${ }^{160}$ around a central axis, or "columella." When the columella is hollow (perforated), the end is called the "umbilicus." When the whorls are coiled around the axis in the same plane, we lave a discoidal

Fig. 219.-Whelk (Buccinum), showing operculum, o, and siphon, 8 .
shell, as the Planorbis. The mouth, or "aperture," of the shell is "entire" in most vegetable-feeding Snails, and notched or produced into a canal for the siphons in the carnivorous species. The former are generally land and fresh-water forms, and the latter all marine. In some Gasteropods, as the River-snails, a horny or calcareous
plate (operculum) is secreted on the foot, which closes the aperture when the animal withdraws into its shell. In locomotion, the shell is carried with the apex directed backward.

The body of most Gasteropods is unsymmetrical, the organs not being in pairs, but single, and on one side, instead of central. The mantle is continuons round the body, not bilobed, as in Lamellibranchs. A few, as the common Garden-snail, have a lung; but the rast majority breathe by gills. The head is more or less distinct, and provided with two tentacles, with auditory sacs at their bases; two eyes, which are often on stalks; and a straplike tongue covered with minute teeth. The heart is situated, in the majority, on the right side of the back. All, except the Pteropods, move by means of a ventral disk, or foot.

- Gasteropods are now the reigning Mollusks, comprising three-fourths of all the living species, and are the types of the subkingdom. They have an extraordinary range in latitude, altitude, and depth.

Omitting a few rare and aberrant forms, ${ }^{157}$ we may separate the class into the following orders:

1. Pteropods.-These are small, marine, floating Mollusks, whose main organs of motion resemble a pair of wings or fins coming out of the neck, whence the common name, "Sea-butterflies." Many have a delicate, transparent shell. The head has six appendages, armed with several hundred thonsand microscopic suckersa prehensile apparatus unequaled in complication. Pteropods oceur in

Fig. 220.-A Pteropod ($\boldsymbol{H} y$ alea tridentata). Atlantic. every latitude, but generally in mid-ocean, and in the arctie regions are the food of Whales and Sea-birds.
2. Opisthobranchs.-These low Gasteropods are, for the
most part, naked Sea-slugs, a few only having a small shell. The feathery gills are behind the heart (whence the name). They are found in all seas from the arctic to the torrid, generally on rocky eoasts. When disturbed, most of them draw themselves up into a lump of jelly

Fig. 221. - A Tritonian (Dendronotus arborescens). British seas.

Fig. 222. - Bulla ampul$l r$, or " Bubble-shell ;" three - fourths natural size. Indian Ocean.
or tough skin. Examples: Sea-lemon (Doris), the beautiful Tritonia, the painted Eolis, the Sea-hare (Aplysia), which discharges a purple fluid, and the Bubble-shell (Bulla).
3. Pulmonates.-These air-breathing Gasteropods, represented by the familiar Snail, have the simplest form of lung - a cavity lined with a delicate net-work of bloodressels, which opens externally on the right side of the neck. This entrance is closed by a valse, to shut out the water in the aquatic tribes, and the hot, dry air of summer days in the land species. They are all fond of moisture, and are more or less slimy. Their shells are lighter (being thimer, and containing less earthy matter) than those of marine Mollusks, having to be carried on the back without the support of the water. Their eggs are laid singly; while the eggs of other orders are laid in chains.

They are found in all zones, but most numerous where lime and moisture abound. All feed on vegetable matter. A few are naked, as the Slug; some are terrestrial ; others live in fresh water. The Land-snails, represented by the common Helix, the gigantic Bulimus, and the Slug (Li\max, are distinguished by their four "horns," the short
front pair being the true tentacles, and the long hinder pair being the eye-stumps. They have a saw-like upper

Fig. 223.-A, Land-snail (Helix); B, C, D, Slugs (Limax) ; E, F, G, Pond-snails (Limncea, Paludina, and Planorbis).
jaw for biting leares, and a short tongue corered with minute teeth. The Pond-snails, as Limncea and I'lanorbis, differ in having no eye-stalks, the eyes being at the base of the tentacles. They are obliged to come frequently to the surface of the water to breathe.
4. Prosobranchs.-These are aquatic Gasteropods, breathing by gills sitnated in front of the heart. They are the most highly organized and the most abundant of the crawling Mollusks. Nearly all are marine, and all have a shell.

Among the lower forms are the sin-

Fiar. 224.-Bulimus oblongus; one-half natural size. Guiana. gnlar Chiton, covered with eight shelly plates; Limpet (Patella), well known to erery sea-side visitor; and the

Fig. 225.-Cowry (Cuprcea capensis) ; twothirds natural size. South Africa.

Fig. 226. - Haliotis, or "Pearly Earshell." Pacific coasts.

Fig. 227. - Spindleshell (Fusus colus); one-half natural size. Ceylon.

Fig. 228. - Cassis rufa, or "Helmet-shell;" one-fourth natural size. Indian Ocean.

Fig. 230.-Cone-shell (Conus marmoreus) ; two-thirds natural size. China seas.

Fig. 231.-Chiton squamosus; one-half natural size. West Indies.

Fig. 229.-Anger-shel) (Terebra maculata); one - half natural size. China seas.

Fig. 232.-Volute (Voluta musica) ; one-half natural size. West Indies.

Fie. 233. - Top-shell (Turbo marmoratus); one-fourth natural size. China seas.

Fig. 235.-Paludina, a Fresh-water Suail.

Fig. 234.-Strombus gigas, or "Wincedshell;" one-fifth natural size. West Indies.

Fig. 236.-Key-hole Limpet (Fissurella listeri). West Indies.

Fig. 2:i.-Ear-shell (H. tuberculata), and Dog-whelk (Nassa reticulata). England.
beautiful Ear-shell (IIaliotis), frequently used for ornaments and inlaid-work.

In the higher Prosobranchs, the gills are comb-shaped and the sexes are distinct. The group includes all the spiral univalve sea-shells, and a few fresh-water shells. Many have the aperture entire, which is closed with an operculum: as the dull-colored P'aludina and Melania from fresh water, and the pyramidal Trochus, pearly Turbo, screw-like Turritella, common Periwinkle (Littorina), and globular Nutica from the sea. Others, the highest of the race, have the margin of the aperture notched or produced into a canal, and are carnivorons and marine: such are nearly all the sea-shells, remarkable for their beautifnl forms, enameled surfaces, and brilliant tints, as the Cowry (Cyprea), Volute, Olive, Cone, Harp, Whelk (Buccinum), Cameo-shell (Cassis), Rock-shell (Murex), Trumpet-shell (Triton), Spindle-shell (Fusus), and Wing-shell (Strombus).

Class VI.-Cephalopoda.

The Cephalopods stand at the head of the subkingdom, some of them ontranking the highest Articulates; but they are not so typical as the Gasteropods. The head is set off from the body by a slight constriction, and furnished with a pair of large, staring eyes, a month armed with a rasping tongue and a parrot-like beak, and eight or more tentacles or arms. The body is symmetrical, and wrapped in a muscular mantle.

The nervons system is more concentrated than in other Invertebrates; the cerebral ganglia are even inclosed in a cartilaginons cranium. All the five senses are present. The class is entirely marine (breathing by plume-like gills on the sides of the body), and carnivorons. The naked species are found in every sea. Those with chambered shells (as Nautilus, Ammonite, and Orthoceras) were once
very abundant: more than 2000 fossil species are known, but ouly one living representative-the Pearly Nautilus.

1. Tetrabranchs. - This order is characterized by the possession of four gills, forty or more short tentacles, and an external, chambered shell. The partitions, or septa, of the shell are united by a tube called "siphuncle," and the animal lives in the last and largest chamber. ${ }^{168}$ The living Nantilus has a smooth, pearly shell, a head retractile within the mantle or "hood," and calcareous mandibles well fitted for masticating Crabs, on which it feeds. This strag-

Fro. 238.-Pearly Nautilus, with shell bisected: one-half natural size. Indian Ocean. gler of a mighty race dwells in the deep parts of the Indian Ocean, crawling on the bottom: and while the shell is well known, only two or three specimens of the animal have ever been obtained.
2. Dibranchs.-These are the most active of Mollusks, and the tyrants of the lower tribes. Among them are the largest of invertebrate animals. They are naked, having no external shell covering the body, but usually a horny or calcareons part within. They have a distinct head, prominent eyes, horny mandibles, eight or ten arms furnished with suckers, ${ }^{160}$ two gills, a com-

Fig. 239.-Cuttle-fish (Sepia officinalis) ; one-fifth natural size. Atlantic coasts.
plete tubular funnel, and an ink-bag containing a peculiar fluid (sepiu), of intense blackness, with which the water is darkened to facilitate escape. They hare the power of changing color, like the Chameleon. They crawl with their arms on the bottom of the sea, head downward, and also swim backward or forward, usually with the back downward, by means of fins, or squirt themselves backward by forcing water forward through their breathing fumnels.

The Paper Nautilus ($A r$ gonauta) and the Ponlpe (Octopus) have eight arms. The female Argonaut secretes a thin, unchambered shell for

Fig. 240. - Paper Nautilns (Argonauta argo) : 1, swimming toward a by ejecting water from funnel, $b ; 2$, crawling on the bottom; 3 , coiled within its shell, which is one-fourth natural size. Mediterranean.
carrying its eggs. The Squid (Loligo) and Cuttle - fish (Sepia) have ten arms, the additional pair being much longer than the others. Their eyes are movable, while those of the Argonaut and Ponlpe are fixed. The Squid, so much used for bait by cod-fishermen, has an internal horny "pen," and the Cuttle has a spongy - calcareous "bone." The extinct Belemnite had a similar structure.

Subkingdom Articllata.

This is larger than all the other subkingdoms put together, as it includes the jointed animals, such as Worms, Crabs, and Insects. These differ widely from the Molluscan type in having a symmetrieal form, and in showing a repetition of similar parts, not only in the shelly exterior, but equally among the internal organs.

The skeleton is ontside, and consists of articulated segments or rings. The limbs, when present, are likewise jointed and hollow. The jaws move from side to side. The nervons system consists mainly of a donble chain of ganglia ruming along the ventral surface of the body under the alimentary canal. The brain is in the form of a ring encircling the gullet. The alimentary canal and the circulatory apparatus are nearly straight tubes lying lengthwise - the one throngh the centre, and the other along the back. There is a remarkable correspondence, especially in the lower forms, between the joints of the body and the ganglia of the nervons cord, the respiratory organs and the chambers of the dorsal heart. Each ring of a Worm has a complete cireulatory, respiratory, and nerrous apparatus. ${ }^{160}$

As we adrance from the lowest forms (Worms), in which the body is elongated, the rings numerous, the skin soft, and the legs imperfect, we shall find the rings fewer, the skin firmer, and the legs more elaborately formed, as in the Centipede; till in the Bee, Spider, and

Crab, we see an increasing consolidation of the exoskeleton, and more perfect limbs, and a tendency to concentrate the body in front, and thin out behind. Along with these progressice steps, we notice the muscular powers becoming more energetic, and the nervous ganglia condensing into larger masses.

The subkingdom is divided into five classes: the aquatic Worms and Crustaceans, and the air-breathing Spiders, Myriapods, and Insects. ${ }^{161}$ The various forms of articulate life arise from the unequal development of the body-segments and variation in the number and form of appendages.

> Class I.-Annelida.

The Annelids, or Worms, are distinguished from all other Articulates by the absence of hollow articulated

Fig. 241.-Marine Wurm (Cirratulus grandis), with extended cirri. Atlantic.
limbs, and by the fact that no one part of the body is highly honored above the rest. The body is soft, and composed of a succession of rings (from 20 to 500), which are repetitions of each other. The first segment, called the head, differs little from the rest. The legs, when existing, are merely bunches of short, stiff bristles (setce), each terminating in a hook or blade. Many of the seaworms have tentacles. Touch is probably the only sense.

Fig. 242.-Tape-worm (Trenia solium) : a, bead; b, c, d, segments of the body.

Fig. 243. - Rotifer, or "Wheel-animalcule" (IIydatina); bighly magnified.

The blood is often reddish, but seldom contains corpuscles. Strange to say, the circulatory apparatus is closed, and more highly developed than in Insects. They are mostly marine, and carnivorons.

There are three representative orders: 1 . The low and abnormal Annuloida, which are without joints or setæ, and are mainly parasitic, as the Tape-worm (Tonia), Hair-worm (Gordiacea), and Trichina. ${ }^{162}$ 2. The Abran-
chiates, which breathe by the skin. The majority are fresh-water, as the Leech (Sanguisuga) and Earth-worm (Lumbricus). 3. The Branchiates, whose organs of respiration are tuft-like gills on the back or head. Such are the sea-worms Arenicola, Nereis, and Serpula.

The Rotifers, or "Wheel-animalcules," are minute aquatic Articulates, whose exact position is doubtful, having some of the features of both Worms and Crustaceans. They resemble Infusoria externally, but have a complete alimentary canal and well-developed nervons system. At the head is a disk furnished with cilia for locomotion and prehension, and at the other end is a pair of "toes," which act like foreeps. None are over $\frac{1}{36}$ of an inch long.

Class II.-Crustacea.

This class includes all Articulates having jointed legs and gills. ${ }^{183}$ Among them are the largest, strongest, and most voracious of the subkingdom, armed with powerful claws and a hard cuirass bristling with spines. Although constructed on a common type, Crustaceans exhibit a wonderful diversity of external form : contrast, for example, a Barnacle and a Crab. We will select the Lobster as illustrative of the entire group.

Every Crustacean consists of twenty-one segments, of which seven belong to the head, seven to the thorax, and seven to the abdomen. ${ }^{184}$ In the Lobster, however, as in all the higher forms, the joints of the head and thorax are welded together into a single crust, called the cephalothorax. On the front of this shield is a pointed process, or rostrum; and attached to the last joint of the abdomen (the so-called "tail") is the sole representative of a tail-the telson. This skeleton is a mixture of chitine and calcareous matter, and corresponds to our epidermis. ${ }^{105}$

On the under-side of the body we find numerons ap-
pendages, feelers, jaws, claws, and legs beneath the ceph-alo-thorax, and flat swimmerets under the abdomen. In fact, as a rule, erery segment carries a pair of morable appendages. The seven segments of the head are compressed into a very small space, yet have the following members: the eye-stalks; the short and long antennæ; the mandibles, or jaws, between which the month opens; the two pairs of maxillæ; and a pair of modified limbs, called "footjaws." The thoras carries two more pairs of foot-jaws, and fice pairs of legs. The foremost legs, "the great claws," are extraordinarily developed, and terminated by strong pincers (chelce). Of the forr slender pairs succeeding, two are furnished with claws, and two are pointed. The last pair of swimmerets, together with the telson, form the candal fin-

Fig. 244.-Under-side of the Cray-nish, or Freshwater Lobster (Astacus finviatilis) : a, first pair of antennæ: b, second pair: c, eyes; d, anditory tubereles: e, foot-jaws; f, g, inst and fifth patir of thoracic legs ; h, false abdominal feet; i, anus ; k, caudal fin.
the main instrument of locomotion; the others (ealled "false feet") are used by the female for carrying her eggs. The eyes are raised on stalks so as to be movable (since the head is fixed to the thorax), and are compound, made up of about 2500 square facets. At the base of each small antenna is a minute sae, whose mouth is guarded by
laiars : this is the organ of hearing. ${ }^{166}$ The gills, twenty on a side, are situated at the bases of the legs and inclosed in two chambers, into which water is freely admitted, in fact, drawn by means of a curious valve at the outlet which works like the "screw" of a propeller. The heart is a single oval cavity, and drives arterial blood-a dusky thid full of corpuscles. The alimentary canal consists of a short gullet, a gizzard-like stomach, and a straight intestine.

Crustaceans pass through a series of strange metamorphoses before reaching their adult form. They also periodically cast the shell, or molt, every part of the integument being renewed; and another remarkable endowment is the spontaneous rejection of limbs and their complete restoration. Many species are found in fresh water, but the class is essentially marine and carnivorous.

No natural classification of this raried group has been discovered. It will be convenient to divide it into four orders:

1. Cirripeds, distinguished by being fixed, by having a shelly corering, and by their feathery arms (cirri). Such are Barnacles (Lepas) and Acorn-shells (Balanus), so common on rocks and timbers by the sea-shore.
2. Entomostracans, which agree in having a horny shell and no abdominal limbs; represented by the little Waterfleas (Cyclops) of our ponds, the King-crabs (Limulus), abounding on every sea-coast, and the extinct Trilobites. The abdomen of the King-crab is reduced to a mere spine, the appendages about the mouth are nsed for locomotion, and the eyes are smooth.
3. Tetradecapods, small, fonrteen-footed species; as the Wood-louse, or Sow-bug (Oniscus), so common in damp places, and the Sand-flea (Gammarus), seen by the seaside in summer.
4. Decapods, having ten legs, as the Shrimp (Cran-

Fig. 245.-Barnacles, or Pedunculate Cirripedes (Lepas anatifera).
gon), Cray-fish and Lobster (Astacus), and Crab (Cancer). Crabs differ from Lobsters chiefly in being formed for creeping at the bottom of the sea instead of swimming, and in the reduction of the abdomen or "tail" to a mere

rudiment which folds into a groove under the enormons thorax. They are the highest and largest of Crustaceans: they have been found at Japan measuring ten feet between the tips of the claws.

Fig. 248.-Lobster (Iomarus Americanus).

Fig. 249.-Swimming Crab.

Class III.—Arachnida.

The Arachinids are closely related to the Crustaceans, having the body divided into a cephalo-thorax and abelomen. ${ }^{167}$ To the former are attached eight legs of seren joints each; the latter has no locomotive appendages. The head carries two, six, or eight eyes, smooth and sessile (i. e., not faceted and stalked, as in the Lobster), and approaching the eye of the Vertebrates in the completeness and perfection of their apparatns. The antemme, if present, are only two, and these are not "feelers," but modified to serve for the prehension of food. They are all airbreathers, having spiracles which open either into air-sacs or tracheæ. The young of the higher forms undergo no metamorphosis after leaving the egg.

Arachnids number nearly 5000 species. The typical forms are divided into three gronps:

1. Acarina, represented by the Mites and Ticks. They have an oval or romded body, without any marked articulations, the head, thorax, and abdomen being apparently merged into one. They have no brain, only a single ganglion lodged in the abdomen. They breathe by trachere. The month is formed for suction, and they are generally parasitic. The Mites (Acarus) are among the low-

Fig. 250. - A Mite (Demodex folliculorum), one of the lowest Arachnids; a parasite on human hair: $\times 125$. est of Articulates. The body is soft and minute. The Ticks (Ixorles) have a leathery skin, and are sometimes half an inch long. The month is furnished with a beak for piercing the animal it infests.
2. Pedipalpi, or Scorpions, characterized by very large maxillary palpi ending in forceps, and a prolonged, jointed abdomen. The nervous and cireulatory systems are more highly organized than those of Spiders; but the
long, tail-like abdomen and the abnormal jaws place them in a lower rank. The abdomen consists of twelve segments: the anterior half is as large as the thorax, with no well-marked division between ; the other part is comparatively slender, and ends in a hooked sting, which is perforated by a tube leading to a poison-sac. The antennæ are transformed into small, nipping claws, and the eyes gen-

Fig. 251.-Scorpion (under-surface) and Centipede.
erally number six. Respiration is carried on by four pairs of pulmonary sacs which open on the under-surface of the abdomen. The heart is a strong artery, extending along the middle of the back, and divided into eight separate chambers. Scorpions are confined to the warm-temperate and tropical regions, usually lurking in dark, damp places.

The IIarvest-men (Phalangium), frequently seen about our houses, belong to this order. They have a short, thick body and extremely long legs, and breathe by tracheæ.
3. Araneina, or Spiders. They are distinguished by
their soft, mnjointed abdomen, separated from the thorax by a narrow constriction, and provided at the posterior end with two or three pairs of appendages, called "spinnerets," which are considered homologous with the legs. The office of the spimerets is to reel out the silk from the silk-glands, the tip being perforated by a myriad of little

Fig. 252.-A, female Spider ; B, male of same species ; C, arrangement of the eyes.
tubes, through which the silk escapes in excessively fine threads. An ordinary thread, just risible to the naked eye, is the mion of a thousand or more of these delicate streams of silk. ${ }^{108}$ These primary threads are drawn out and united by the hind legs.

The mandibles are vertical, and end in a powerful hook, in the end of which opens a duct from a poison-gland in the head. The maxillæ, or "palpi," which in Scorpions are changed to formidable claws, in Spiders resemble the thoracic fect, and are often mistaken for a fiftl pair. The
brain is of larger size, and the whole nervons system more concentrated than in the preceding order. There are gen-

Fig. 253.-Spinnerets of the Spider, $b, c ; a$, palpiform organs. erally eight simple eyes, rarely six. They breathe both by trachere and lung-like sacs, from two to four in number, sitnated under the abdomen. All the species are carnisorolls.

The instincts of Spiders are of a high order. They are, perhaps, the most wily of Articulates. They display remarkable skill and industry in the construction of their webs; and some species (called "Mason Spiders") eren excarate a subterranean pit, line it with their silken tapestry, and close the entrance with a lid which moves upon a linge. ${ }^{169}$

Class IV.-Myriapoda.

Myriapods differ from Crustaceans and Spiders in having the thorax merged in the abdomen, while the head is free. In other words, the body is divided into similar segments, so that thorax and abdomen are scarcely distinguishable. They resemble Worms in form and in the simplicity of their nervons and circulatory systems; but the skin is stiffened with chitine, and the legs (indefinite in number') are articnlated. The legs resemble those of Insects, and the head appendages follow each other in the same order as in Insects-eyes, antennæ, mandibles, maxillæ, and palpi. They breathe by tracher, and have two antennæ and a rariable number of eyes.

There are two orders:

1. Chilognatha, having a cylindrical body, each segment furnished with two pairs of legs. They are of slow locomotion, harmless, and vegetarian. The Thonsand-legged Worm (Julus) is a common representative.
2. Chilopoda, characterized by having a flattened body composed of about twenty segments, each carrying one
pair of legs, of which the hindermost is converted into spines. They have longer antennæ than the preceding, and the month is armed with two formidable fangs connected with poisonons glands. They are carnivorous and active. Such is the Centipede (Scolopendra).

Class V.--Insecta.

Insects are distinguished by liaving head, thorax, and abdomen distinct, three pairs of jointed legs, one pair of antennæ, and generally two pairs of wings. The number of segments in the body never exceeds twenty. The head, apparently one, is formed by the union of seren pieces. The thoras consists of three, the prothorax, mesothorax, and metathorax, each bearing a pair of legs; the wings, if present, originate from the last two segments. The abdomen is normally composed of nine segments, more or less movable upon one another. The skin is hardened with chitine, and to it, as in all Articulates, the muscles are attached. The organs of sense are confined to the cephalic division of the body, the motor organs to the thoracic, and the regetative to the abdominal. All the appendages are hollow.

The antennæ are inserted between or in front of the eyes. There is a great varicty of forms, but all are tubnlar and jointed. They are supposed to be organs of touch, and also seem to be sensitive to sound. The eyes are usually compound, composed of a large number of hexagonal corneæ, or facets (from fifty in the Ant to many thonsands in the winged Insects). They are never placed on movable pillars as the Lobster's. Besides these, there are three simple eyes, called ocelli. The month may be fitted for biting (masticatory), as in Beetles, or for sucking (suctorial), as in Butterflies. The masticatory type, which is the more complete, and of which the other is but a modification, consists of fom horny jaws (mandibles and max-
illat) and an upper and an under lip (labrum and labium).

Fig. 254.-Under-surface of a Beetle (Harpalus caliginosus): a, ligula; b, paraglosser ; c, supports of labial palpi; d, labial palpus; e, mentum ; f, inner lobe of maxilla; g, onter lobe; h, maxillary palpns ; i, mandible; k, buccal opening; l, gula, or throat ; m, buccal sutures; n, gular suture; o, prosternum ; p, episternum of prothorax ; p^{\prime}, epimeron ; $q, q^{\prime}, q^{\prime \prime}$, coxæ: $r, r^{\prime}, r^{\prime \prime}$, trochauters ; s, $s^{\prime}, s^{\prime \prime}$, femora, or thighs ; $t, t^{\prime}, t^{\prime \prime}$, tibæ ; v, ventral abdominal segments ; w, episterna of mesothorax; x, mesosternum ; η, episterua of metathorax ; y^{\prime}, epimeron; z, metasterunm. Sensitive palpi (maxillary and labial) are developed from the lower jaw and lower lip. The labimm is also prolonged into a ligula, or tongue.

The legs are invariably six in the adult, the fore-legs directed forward and the hinder pairs backward. Each consists of a hip, thigh, shank, and foot. ${ }^{170}$ The larræ have also "false legs," without joints, on the abdomen, upon which they chiefly rely in locomotion. The wings are expansions of the crust stretched over a network of horny tubes. The renation, or arrangement of these tubes (called veins and veinlets), particularly in the forewings, is peenliar in each genus. In many Iusects, especially Hymenopters, the abdomen of the female ends in a tube which is the sheath
of a sting, as in the Bee, or of an ovipositor, or "borer," as in the Ichneumon, by means of which the eggs are deposited in suitable places.

Cephalization is carried to its maximum in this class, and we have animals of the highest instincts under the articulate type. The "brain" is formed of several ganglia massed together, and lies across the upper side of the throat just behind the month. The main cord, which lies along the rentral side of the body, with a swelling for each segment, corresponds to the sympathetic system of Vertebrates. A true brain and spinal cord are unrepresented among invertebrated animals. The digestive apparatus consists of a pharyux, gullet (to which a crop is added in the Fly, Butterfly, and Bee tribes), gizzard, stomach, and intestine. There are no absorbent ressels, the chyme simply transuding through the walls of the canal. The blood, usnally a colorless liquid, is drisen by a chain of hearts along the back, i. e., by a pulsating tube divided into valcular saes, ordinarily eight, which allow the eurrent to flow only toward the head. As it leaves this main pipe (aorta), it escapes into the cavities of the body, and thus bathes all the organs. Althongh the blood does not circulate in a closed system of blood-vessels, as in Vertebrates, yet it always takes one set of channels in going from the heart, and another in returning. Respiration is carried on by tracher, a system of tubes opening at the surface by a row of apertures (spiracles), generally nine on each side of the body.

The sexes are distinct, and the larre are hatched from eggs. As a rule, an Insect, after reaching the adult, or imago, state, lives from six months to a few hours, and dies after the process of reproduction. Growth takes place only during larval life, and all metamorphoses oecur then. Among the social tribes, as Bees and Ants, the majority (called "workers") do not develop either sex.

Insects (the six-footed Artieulates) comprise four-fifths of the whole Animal Kingdom, or about 200,000 species. They are grouped into seven orders:
Lower series: body usually flattened; prothorax large and Neuropters, squarish ; mouth-parts usually adapted for biting; metamorphosis incomplete ; pupa often inactive ; larva flattened, often resembling the adult.
Higher series: body usually cylindrical; prothorax small; mouth-parts more generally formed for sucking; metamorphosis complete; pupa inactive; larva usually cylindrical, very unlike the adult.

Neuropters,
Orthopters,
Hemipters,
Coleopters.
Neuropters,
Orthopters,
Hemipters,
Coleopters.
Neuropters,
Orthopters,
Hemipters,
Coleopters.
Dipters, Lepidopters, Hymenopters.

1. Neuropters have a comparatively long, slender body, and four large, transparent wings, nearly equal in size, membranous and lace-like. Such are the brilliant Drag-on-flies, or Devil's Darning-needles (Libellula), well known by the enormous head and thorax, large, prominent eyes

Fig. 255.-Dragon-fly (Libellula).
(each furnished with 12,000 polished lenses), and Scor-pion-like abdomen; the delicate and short-lived May-flies (Ephemera); Caddis-Hies (Phryganea), whose larve live in a tubular case made of minute stones, shells, or bits
of wood; the Horned Corydalis (Corydalus), of which the male las formidable mandibles twice as long as the head; and the White Ants (Termes) of the tropics.
2. Orthopters have four wings: the front pair somewhat thickened, narrow, and overlapping along the back; the hind pair broad, net-reined, and folding up like a fan upon the abdomen. The hind legs are usually large, and fitted for leaping, all the species being terrestrial, although some fly as well as leap. The eyes are small, the mouth

Fig. 256.-Metamorphosis of a Cricket (Gryllus).
remarkably developed for cutting and grinding. The larræ and pupæ are active, and resemble the imago. They are all regetarian. Each family produces characteristic somnds (stridulation). The representative forms are Crickets (Gryllus), Locusts (Locustu), Grasshoppers (Acrydium), Walking-sticks (Phasma), and Cockroaches (Blatta).
3. Hemipters, or "Bugs," are chiefly characterized by a suctorial mouth, which is produced into a long, hard

F1g. 257.-Metamorphosis of an IIemipter, Water-boatman (Notonecta).
beak. The four wings are irregularly and sparsely reined, sometimes wanting. The body is flat abore, and the legs slender. The larra differs from the imago in wanting

F1g. 25S.-Seventeen-year Locust (Cicada septendecim) : a, pupa; b, the same, after the imago, c, has escaped through a reut in the back; d, holes in a twig, where the $e g g s, e$, are inserted.
wings. In some species, the fore-wings are opaque at the base, and transparent at the aper, whence the name of the order. Some feed on the juices of animals, others on plants. Here belong the wingless Bed-bug (Cimex) and Louse (Pediculus), the Squash-bug (Corous), Water-boatman (Votonecta), Seventeen-year Locust (Cicada), Cochineal (Coccus), and Plant-lice (Apliss).
4. Coleopters, or "Beetles." This is the largest of the orders, the species numbering abont 90,000 . They are easily recognized by the elytra, or thickened horny forewings, which are not used for flight, but serve to cover the hind pair. When in repose, these elytra are always mited by a straight edge along the whole length. The hind wings, when not in use, are folded transversely. The mandibles are well developed, and the integument generally is hard. The legs are strong, for the Beetles are among

a
Fig. 259. - a, imago, and b, larva, of the Goldsmith Beetle (Cotalpa lanigera); c, pupa of June-l)ug (Lachnosterna fusea).
the most powerful ruming Insects. The larre are wormlike, and the pupa is motionless. The highest tribes are carnirorons. The most prominent forms are the savage but beautiful Tiger Beetles (Cicindela); the common Ground Beetles (Carabus), whose hind wings are often absent; the Diving Beetles (Dytiscus), with boat-shaped body, and hind legs changed into oars; the Carrion Beetles (Silpha), distingnished by their black, flat bodies and

Fig. 260.-Sexton Beetles (Necrophorus vespillo), with larva and nymph. They are burying a mouse, preparatory to laying their eggs in it.
club-shaped antennæ; the Goliath Beetles (Scarabcous), the giants of the order; the Snapping-bugs (Elater); the Lightning - bugs (Pyrophorus) ; the spotted Lady-birds (Coccinella); the showy Long-horned Beetles (Cerambycide); and the destructive Weevils (Curculionidce), with pointed snouts.
5. Dipters, or "Flies," are characterized by the rudimentary state of the hinder pair of wings. Although laving, therefore, but one available pair, they are gifted with the power of rery rapid flight. While a Bee moves its wings 190 times a second, and a Butterfly 9 times, the

Honse-fly makes 330 strokes. A few species are wingless. The eyes are large, with numerous facets; the tong ne terminates in a fleshy knob, and the other parts of the mouth are fitted for suction, being generally converted into fine

Fig. 261.-Metamorphosis of the Musquito (Culex pipiens).
lancets; the thorax is globular; and the legs slender. The larre are footless grubs. The Dipters number about 24,000 . Ainong them are the Mosquitoes (Culex); Hes-

Fig. 262.-Metamorphosis of the Flesh-fly (Sarcophaga carnaria): a, eggs; b, young maggots just hatched; c, d, full-grown maggots ; e, pupa; f, imago.
sian-fly (Cecidomyia), so destructive to wheat; Daddy-long-legs (Tipula), resembling a gigantic Mosquito ; the wingless Flea (l^{\prime} ulex); besides the immense families represented by the Housefly (Musca) and Bot-fly (Estrus).
6. Lepidopters, or "Butterflies" and "Moths," are

1YYY F io
Fig. 263.-Scales from the wings of varionus Lepidopters. known chiefly by their four large wings, which are thickby covered on both sides by minute, overlapping scales. The scales are of different colors, and are often arranged in patterns of exquisite beauty. They are in reality modified hairs, and every family has its particular form of scale. The head is small, and the body cylindrical. The legs are not used for locomotion. All the mouth parts are nearly obsolete except the maxillæ, which are fashioned into a "proboscis" for pumping up the nectar of flowers. The lure,

Fig. 264. -Part of the wing of a Moth (Saturnia), magnified to show the arrangement of scales.
called "caterpillars," have a worm-like form, and from one to fire pairs of abdominal legs, in addition to the six on the thorax. The mouth is formed for mastication, and (except in the larre of Butterflies) the lip has a spinneret comnected with silk-glands.

There are three groups: the gay Fis. 265.-Tanessa polychloros, or "Tortoise-shell ButButterflies, haring
 knobbed or hooked antennæ, and flying in the sunshine only ; the dull-colored Sphinges, with autennæ thickened

in the middle, and flying at twilight; and the noeturnal Moths, which generally prefer the night, and whose antennæ are thread-like and often feathery. Generally, when

Fig. 267.-Fruit-moth (Pyralis pomona): b, larva; a, chrysalis; c, imago.
at rest, the Butterflies keep their wings raised vertically, while the others hold theirs horizontally. The pupa of the former is unprotected, and is usually suspended by

Fig. 26s. - llead of a Caterpillar, from beneath: a, antenne; b, horny jaws; c, thread of silk from the conical fnsulus, on either side of which are rudimeutary palpi. a bit of silk: ${ }^{171}$ the pupa of the Moths is inclosed in a cocoon.

From 22,000 to 24,000 Lepidopterons species have been identitied. Some of the most common Butterflies are the swallow-tail Pupilio, the white Pieris, the sulphuryellow Colias; the Argymnis, with silver spots on the under side of the hind wings; the Vanessa, with notched wings. The Sphinges exhibit little variety. They lave narrow, powerful wings, and
are sometimes mistaken for Inmming-birds. The " po-tato-worm" is the caterpillar of a Sphinx. The most conspicnons Moths are the large and beantiful Attacus, distinguished by a triangular, trausparent spot in the centre of the wing; the white Bombyx, or "silk-worm;" the reddish-brown Clisiocampa, whose larva, "the American Tent-caterpillar," spreads its web in many an apple and cherry tree; the pale, delicate Geometrids; and the small but destructive Tineids, represented by the Clothes-moth.
7. Hymenopters, comprising at least 25,000 species, include the highest, most social, and, we may add (if we except the Silk-worm), the most useful, of Insects. They have a large head, with compound eyes and three ocelli, month fitted both for biting and suction, ${ }^{172}$ legs formed for locomotion as well as support, and forr wings equally transparent, and interlocking by small hooks during flight. The females are usually provided with a sting, or borer. The larre are footless, helpless grubs, and generally nurt-

b

Fig. 269.-Honey-bee (Apis mellifica): a, female; b, worker; c, male.
ured in cells, or nests. Such are the Honey-bees (Apis), Humble-bees (Bombus), Wasps (Vespa), Ants (Formica), Ichnemmon-flies, and Gall-flies. Those living in societies exhibit three castes: females, or "queens"" males, or "drones;" and nenters, or sexless "rorkers." There is but one queen in a live, and she is treated with the greatest distinction, even when dead. She dwells in a large, pearshaped cell, opening downward. She lays three broods of eggs : from the first come forth workers, the second pro-
duces males, and the last females. The drones, of which there are about 800 in an ordinary hive, are marked by their great size, their large eyes meeting on the top of the head, and by being stingless. The workers, which number twenty to one drone, are small and active, and provided with stings and hollow pits in the thighs, called "baskets," in which they carry pollen. Their honey is nectar elaborated in the crop by an unknown process; while the wax is secreted from the sides of the abdomen and mixed with saliva. There is a subdivision of extra labor: thus there are wax-workers, masons, and nurses. Ants (except the Sauiba) have but two classes of workers. While Ants live in hollow trees or subterranean chambers (called formicarium), Honey-bees and Wasps construct hexagonal cells. The comb of the Bee is hung vertically, that of the Wasp is horizontal.

Such are the main divisions of the Invertebrates-creatures which are commonly regarded with aversion, and considered our foes rather than friends. Many of them are unmistakable nuisances, and it is difficnlt to see the purpose of their creation. Yet not a few have put us under obligations. Protozoans give us sponge and chalk; Radiates yield us coral ; Mollusks contribute pearls; and Insects spin us silk. Nearly every grand gronp sends representatives to our tables: Oysters, Sea-slngs, and Lobsters are staple articles with many people; Bees gather honey; and Amazonian Indians make Ants into salad.

Subkingdom Vertebrata.

This grand division includes the most perfect animals, or such as have the most raried functions and the most numerous and complex organs. Besides the mmmmbered host of extinct forms, there are abont $2 \check{5}, 000$ living species, widely differing among themselves in shape and habits, yet closely allied in the grand features of their organization, the general type being endlessly modified.

The fundamental distinctive character of Vertebrates is the separation of the main mass of the nerrons system from the general carity of the body. A transverse section of the body exhibits two carities, or tubes --the dorsal, containing the cerebro-spinal nervons system; the rentral, inclosing the alimentary canal, heart, lungs, and a donble chain of ganglia, or sympathetic system. This rentral, or hæmal, cavity corresponds to the whole body of an Invertebrate; while the dorsal, or nemral, is entirely extra.

Vertebrates are also distinguished by an in-

Fig. 270.-Ideal Plans of the Subkingdoms. V, trausverse section of vertebrate type; v, the same, inverted. $M I$, transverse section of molluscous type; and $M d$, of molluscoid. A and $A d$, transverse sections of articulate type, high and low. C, longitudinal section of celenterate type: a, alimentary canal; c, body-cavity. In the other fignres, the alimentary canal is shaded, the heart is black, and the nervous cords are open rings. ternal, jointed skeleton, endowed with vitality, and eapahe of growth and repair. During embryo-life it is represented by the notochord; but this is afterward replaced

Fig. 271. - Diagram of Circulation in the higher Vertebrates: 1, heart ; 2, lungs; 3 , head and upper extremities; 4 , spleen ; 5 , intestine; 6 , kidney ; 7 , lower extremities; 8, liver. (From Dalton's "Physiology.")
by a more highly dereloped vertebral column of cartilage or bone. ${ }^{173}$ The column and cranimm are never absent; other parts may be wauting, as the ribs in Frogs, limbs in Snakes, ete. The limbs are never more than four, and are always articulated to the hæmal side of the body, while the legs of Invertebrates are dereloped from the neural side. The muscles moving the limbs are attached to the endoskeleton.

The cireulation of the blood is complete, the arteries being joined to the reins by eapillaries, so that the blood never escapes into the visceral carity as in the Invertebrates. All have a portal rein, carrying blood through the lirer; all have lacteals and lymphatics. The blood is red, and contains both kinds of corpuscles. ${ }^{174}$ The teeth are developed from the dermis, never from the cutiele, as in Mollusks and Articulates; the jaws move vertically, and are never modified limbs. The liver and kidneys are always present. The respiratory organs are either gills or lungs,
or both. Vertebrates are the only animals which breathe through the month.

The nerrons system has two marked divisions: the cer-ebro-spinal, presiding over the functions of animal life (sensation and locomotion) ; and the sympathetic, which controls the organic functions (digestion, respiration, and circulation). In no case does the gullet pass throngh the nervons system, as in Invertebrates, and the mouth opens on the side opposite to the brain. Probably none of the five senses are ever altogether absent. The form of the brain is modified by the relative development of the various lobes. In the lower Vertebrates, the cerebral hemispheres are small - in certain Fishes they are actually smaller than the optic lobes-in the higher, they nearly or quite overlap both olfactories and cerebellum. The brain may be smooth, as in most of the cold-blooded animals, or richly convoluted, as in Man.

The skull is distinctly set apart from the spinal column, except in Fishes. It is bony in Mammals, mingled bone and cartilage in Birds and Reptiles, and in Amphibians and Fishes mainly or wholly eartilaginons. The human skull contains fewer bones than the sknll of most animals, excepting Birds. The skull of all Vertebrates is divisible into two regions: the cranium, or brain-case and the face. The size of the cranial capacity, compared with the area of the face, is generally the ratio of intelligence. In the lower orders, the facial part is enormonsly predominant, the eye-orbits are directed ontward, and the occipital condyles are nearly on a line with the axis of the body. In the higher orders, the face becomes subordinate to the cranium, the sensual to the mental, the eyes look forward, and the condyles approach the base of the cranium. Compare the "snouty" skull of the Crocodile and the almost vertical profile of eivilized Man. A straight line drawn from the middle of the ear to the base of the nose, and
another from the forehead to the most prominent part of the upper jaw, will include what is called the facial angle, which roughly gives the relation between the two regions, and therefore the rank of the animal. ${ }^{175}$ In the cold-blooded Vertebrates the brains do not fill the cranium; while in Birds and Mammals a cast of the cranial cavity well exhibits the general features of the cerebral surfaze.

The subkingdom is divided into five great elasses: Fishes, Amphibians, Reptiles, Birds, and Mammals. The first three are "cold-blooded," the other two are "warmblooded." Fishes and Amphibians have gills during the whole or a part of their lives, while the rest never have gills. Fishes and Amphibians in embryo have neither amnion nor allantois, while the other three are provided with both.

Fishes and Amphibians agree in having gills, in wanting amnion and allantois, and in possessing nucleated red blood-corpuscles.

Birds and Reptiles agree in having no gills, but both amnion and allantois, in the articulation of the skull with the spine by a single condyle, in the development of the skin into feathers or scales, and in circulating oval, nucleated, red corpuscles.

Mammals differ from Birds and Reptiles in having two occipital condyles, and their blood-corpuscles are not nucleated. ${ }^{176}$

All Vertebrates are single and free. Mammals and a few Reptiles bring forth their young alive; the rest are oviparous.

Class I.-Pisces.

Fishes are the lowest of Vertebrates. "They fall far behind the rest in strength, intelligence, and sensibility. The eyes, though large, are almost immovable, bathed by
no tears, and protected by no lids. Dwelling in the realm of silence, ears are little needed, and such as they have are without external parts, the sound being obliged to pass through the cranium. Taste and smell are blunted, and touch is nearly confined to the lips. Destitute of the means of social intercourse (being almost mute), their chief enjoyment is to eat, and to be eaten is the end of their existence.
But the class yields to no other in the number and rariety of its forms. It includes nearly one-half of all the vertebrated species. So great is the range of variation, it is difficult to frame a definition which will characterize all the finny tribes. ${ }^{177}$ It may be said, however, that Fishes are the only backboned animals having median fins (as dorsal and anal) supported by fin-rays, and whose limbs (pectoral and rentral fins) do not exhibit that three-fold division (as thigh, leg, and foot) found in all other Vertebrates. ${ }^{178}$

The form of Fishes is admirably adapted to the element in which they live and more. Indeed, Nature nowhere presents in one class such elegance of proportions with such variety of form and beauty of color. The head is

A
Fig. 272.-Scales of Fishes: A, cycloid scale (Salmon) ; B, ctenoid scale (Perch) ; C, placoid scale (Ray) ; D, ganoid scales (Amblypterus) - a, upper surface; b, under surface, showing articulating processes.
disproportionately large, but pointed to meet the resistance of the water. The neek is wanting, the head being a prolongation of the trunk. The viscera are closely packed near the head, aud the long, tapering trunk is left
free for the development of muscles which are to move the tail-the instrument of locomotion. The biconcave vertebre, with intervening cavities filled with elastic gelatine, are desigued for rapid and versatile movements. The body is either naked, as in the Eel, or covered with polished, overlapping scales, as in the Perch. Rarely, as in the Sturgeon, it is defended by bony plates, or by mimute, hard spines, as in the Shark.

The vertical fins (dorsal, anal, and candal) are peculiar to Fishes. The dorsal vary in number, from one, as in the Herring, to three, as in the Cod; and it may be suft, as in the Tront, or spiny, as in the Perch. If the dorsals

Fig. 273.-Blue-fish (Temnodon saltator). All seas.
be cut off, the Fish reels to and fro. The candal may be homocercal, as in ordinary species; or heterocercal, as in Sharks. In ancient heterocercal Fishes, the tail was frequently rertebrated. The pectoral and ventral fins stand for the fore and hind limbs of other Vertebrates. As the specific gravity of the body is greater than that of the water, most Fishes are provided with an air-bladder, which is an outgrowth from the œesophagus. This is absent in such as grovel at the bottom, as the Rays, and in those, like the Sharks, endowed with compensating muscular power.

Fishes have no prehensile organ besides the month.

Both jaws are alike movable. The teeth are numerous, and are generally recurved spines, as in the Pike; flat and triangular, with serrated edges, in the Shark; and tessellated in the Ray. They feed principally on animal matter. The digestive tract is relatively shorter than in other Vertebrates. ${ }^{179}$ With one exception (the Amphioxus), the blood is red, and the heart has rarely more than two cavities, an auricle and a ventricle, both on the venons side. Ordinary Fishes have fomr gills, the water escaping by one external aperture, or "gill-slit;" but in the Sharks

Fig. 274.-Salmon (Salmo salar). Both hemispheres.
there is a separate opening for each gill. The brain consists of several ganglia placed one behind the other, and occupies but a small part of the cranial cavity. Its average weight to the rest of the body is as low as 1 to 3000 . The eggs of bony Fishes are naked, and multitudinous, sometimes numbering millions in a single spawn; those of the Sharks are few, and protected by a horny shell.

There are six orders of Fishes:

1. Pharyngobranchs, represented by a single species,
the Lancelet, or Amphioxus. This lowest known Vertebrate is about two inches long, semi-transparent, and of worm-like form, and is found in the sandy bottom of many seas, especially the Mediterranean. ${ }^{173}$
2. Marsipobranchs, as the eel-like Lamprey and Hag. They have a cartilaginous skeleton and sac-like gills, but no scales, limbs, or lower jaw, and only one nasal organ, all other Vertebrates having two.
3. Teleosts, including all the common Fishes, having a bony endoskeleton and a scaly exoskeleton. ${ }^{180}$ The skull is extremely complicated; the upper and lower jaws are complete (whence the name of the order), and the gills are comb-like or tufted. The tail is homocercal ; the other fins are variable in number and position. In the soft-finned Fishes, the ventrals are absent, as in the Eels; or attached to the abdomen, as in the Salmons, Herrings, Pikes, and Carps; or placed under the throat, as in the Cod, Haddock, and Flounder. In the spiny-finned Fishes, the ventrals are generally under or in front of the pectorals, and the scales ctenoid, as in the Perches, Mnllets, and Mackerels.
4. Ganoids, distinguished by their enameled bony plates or scales. The endoskeleton is not completely ossified; the ventral fins are placed far back; and the tail is generally heterocercal. The gills are like those of the bony Fishes. This was one of the largest orders in old geologieal history. The few modern representatives, as the Sturgeon, Gar-pike, and Polypterus, are essentially freshwater.
5. Elasmobranchs, having a gristly skeleton, and a harsh skin, called "shagreen." The gill-openings are uncovered; and the month is generally under the head. The ventral fins are placed far back; the pectorals are large, in the Rays enormonsly developed; and the tail is heterocercal. Such are the Sharks, Rays, and Chimæra. They are all

Fig. 275.-Lamprey (Petromyzon Americanus). Atlantic.

Fig. 276.-Cat-fish, or Horned Pont (Pimelodus catus). American rivers.

Fig. 27i.-Cod (Morrhua Americana). Atlantic coast.

Ftg. 2\%8.-Gar-pike (Lepidosteus bison). Lake Ontario.

Fig. 279.-Sturgeon (Acipenser sturio). Atlautic coast.

Fig. 281.-Shark (Carcharias vulgaris). Atlantic.
marine. The largest Shark found, and therefore the largest Fish, measured thirty-five feet.
6. Dipnoi, or Mud-fishes (Lepidosiren), of tropical rivers. They form a link between the typical Fishes and

Ftg. 282.-Thornback (Raia clarata). European seas.
the Amphibians. They have an cel-like body covered with cycloid seales; an embryonic notochord for a back-

Fig. 283.-Lepidosiren annectens; one-fourth natural size. African rivers.
bone; long, ribbon-like pectoral and ventral fins, set far apart; two auricles, and one ventricle; and, besides gills, a cellular air-bladder, which is used as a lung.

Class II.-Amphibia.

These cold-blooded Vertebrates are distinguished by having gills when young, and true lungs when adult. They have no fin-rays, and the limbs, when present, have the same divisions as those of higher animals. The skin is soft, and generally naked, and the skeleton is ossified. The skull is flat, and articulates with the spinal colmmn by two condyles. There is no distinct neck ; and the ribs are usually small or wanting. The heart consists of two auricles and one ventricle. All undergo metamorphosis upon learing the egr, passing throngh the "tadpole" state. They commence as water-breathing larre, when they resemble Fishes in their respiration, cirenlation, and locomotion. In the lowest forms, the gills are retained throngh life; but all others have, when mature, lungs only, the gills disappearing. The cuticle is frequently shed, the mode rarying with the habits of the species. ${ }^{182}$ The common Frog, the type of this class, stands intermediate between the two extremes of the vertebrate series; no fundamental part is excessively dereloped.

There are fom orders-the first two are tailed, the other two tailless:

1. Urodelans have a naked skin, a tail, and two or four limbs. Some retain their gills through life, as the Prote-

Fig. 2S4.-Head and Gills of Menobranchus. Cayuga Lake. us of Austria, Axolotl (Siredon) of Mexico, and the two-legged Mnd-eel (Siren) of South Carolina. Others drop their gills, and always have four limbs, as the aquatic Newts and land Salamanders. ${ }^{182}$ The fore limbs first make their appearance in the tadpole.
2. Labyrinthodonts, now extinct, resembled gigantic Salamanders, except in their complex teeth and exoskeleton of bony plates.
3. Ccecilians have neither tail nor limbs, a snake-like

fig. zos.-rroteus anguinus. Europe.
form, minute scales in the skin, and well-developed ribs. They are confined to the tropics.
4. Batrachians include all the well-known tailless Amphibians, as Frogs and Toads. They have a moist, naked skin, ten vertebre, and no ribs. Λ s they breathe by swallowing the air, they can be suffocated by holding the month open.

Fig. 2S6.-Red Salamander (Pseudotriton ruber). United States.

They have four limbs - the hinder the longer, and the first developed. They have four fingers and five toes. The tongue is long, and, fixed by its anterior end, it can be rapidly thrown out as 'an organ of prehension. ${ }^{183}$ The eggs are laid in the water enreloped in a glairy mass; and the tadpoles resemble the Urodelans, till both gills and tail are absorbed. Frogs (Rana) have teeth in the upper jaw, and webbed feet; Toads ($B u f_{0}$) are higher in rank, and have neither teeth nor fully webbed feet. The former have been known to live sixteen years, and the latter thirty-six.

> Class III.-Reptilia.

These air-breathing, cold-blooded Vertebrates are distinguished from all Fishes and Amphibians by never having gills, and from Birds by being covered with horny scales or bony plates. The skeleton is never cartilaginous; and the skull has one occipital condyle. The vertebre are ordinarily concave in front; and the ribs are well developed. With few exceptions, all are carnivorous; and teeth are always present, except in the Turtles, where a horny
sheath covers the jaws. The teeth are never fastened in sockets, except in Crocodiles. The jaws are usually very wide. The heart has three chambers, save in Crocodiles, where the rentricle is partitioned. ${ }^{184}$ But in all cases a mixture of arterial and venous blood is circulated. The lungs are large, and coarsely cellular. The limbs, when present, are provided with three or more fingers as well as toes.

There are four orders of living Reptiles-the first two have horny scales, and two external nostrils; the others have bony plates combined with scales, and one external nostril:

1. Ophidians, or Snakes, are characterized by the absence of visible limbs; ${ }^{186}$ by the great number of vertebre, amounting to over 400 in the great Serpents; by a corresponding number of ribs, but no sternum ; and immovable

Fig. 2ss.-Adder, or Viper (Vipera berus). England.
transparent eyelids. The tongue differs from that of nearly all other reptiles in being bifid and extensile. The mouth is very dilatable. The skin is frequently shed, and
always by reversing it. Snakes make their way on land or in water with equal facility.

As a rule, the venomons Suakes, as Vipers and Rattlesnakes, are distinguished by a triangular head covered with small scales; a constriction behind the head; two or more fangs, and few teeth; small eyes, with vertical pupil; and

Fig. 289.-a, Head of a harmless Suake (upper view); b, heads of various venomous Suakes.
short, thick tail. In the harmless Snakes, the head gradnally blends with the neck, and is corered with plates; the teeth are comparatively numerous in both jaws; the pupil is round, and the tail tapering. This rule, however, has many exceptions.
2. Lizards may be likened to Snakes provided with four limbs, each laving five digits. ${ }^{186}$ The body is covered with horny scales. All hare teeth, which are simple in structure; and the halves of the lower jaw are firmly mited in front, while those of Snakes are loosely tied together by ligaments. Nearly all have a breast-bone; and the eyes (sare in the Gecko) are fmrnished with morable lids. In the common Lizards and Chameleon, the tongue is extensile. The tail is usually long, and naturally snaps off at the twelfth candal. The Chameleon has a prehensile tail. The Ignana is distinguished by a dewlap on the

Fig. 290.-Lizard (Lacerta).
throat and a crest on the back. Except some of the Monitors of the Old World, all the Lizards are terrestrial.
3. Chelonians, or Tortoises and Turtles, approach the Amphibians in some respects, but are of anomalous structure. The skeleton is external, so as to include not only

Fig. 291.-Hawk's-bill Turtle (Eretmochelys imbricata). Trupacal Atlantic.
all the riscera, but also the whole muscular system, which is attached internally, as in Articulates; and even the limbs are inside, instead of outside, the thorax. The exoskeleton mites with the endoskeleton, forming the carapax, or case, in which the body is inclosed. The exoskeleton consists of horny plates, known as "tortoise-shell;" in the soft Tortoises (Trionyx) this is wanting. The vertebree of the back are soldered together, and the ribs are expanded, making the walls of the carapax. The ven-

Fig. 292.--Box-tortoise (Cistudo virginea). United States.
tral piece is called the plastron, or sternum. ${ }^{187}$ All are toothless. There are always four stout legs; and the order furnishes the only examples of Vertebrates lower than Birds that really walk, for Lizards and Crocodiles wriggle and drag their body along. The eggs are covered with a calcareons shell.

The Sea-turtles, as the edible Green Turtle and the Hark's-bill Turtle, which furnishes the "tortoise-shell" of commerce, have the limbs converted into paddles. The fresh-water forms, represented by the Snapping Turtle (Chelydra), are amphibious, and have palmated feet. Land Tortoises (Testudo) have short, clumsy limbs, fitted for slow motion on the land; the plastron is very broad; and the carapax is arched (while it is flattened in the aquatic species), and head, legs, and tail can be drawn within it. The land and marine species are regetablefeeders; the others, carnivorous.
4. Crocodiles, the highest and largest of Reptiles, have two exoskeletons - one of horny scales (epidermic), and another of bony plates (dermal). The bones of the sknll
are firmly united, and furnished with numerous teeth inplanted in distinct sockets. The lower jaw extends back of the cranimm. The heart has four cavities, but the pulmonary artery and aorta commmicate with each other, so that there is a mixture of venous and arterial blood. They have external ear-openings, closed by a flap of the skin, and eyes with movable lids; a muscular gizzard; a long, compressed tail; and four legs, with feet more or less webbed, and having five toes in front and four behind. The existing species are confined to tropical rivers, and are carnivorous. The eggs are covered with a hard shell.

There are three representative forms: the Gavial of the

Frg. 293.-Alligator (A. Mississippiensis). Southern States.
Ganges, remarkable for its long snout and miform teeth; the Crocodile of the Nile, whose teeth are unequal, and the lower canines fit into a notch in the edge of the upper jaw, so that it is risible when the mouth is closed; and the Alligator of the Mississippi, whose canines, in shutting the month, are concealed in a pit in the upper jaw. The toes of the Gavials and Crocodiles are webbed to the tip; those of the Alligators are not more than half-webbed.

In the medireval ages of geological history, the class of Reptiles was far more abundantly represented than now. Among the many forms which geologists have unearthed
are numerous gigantic Saurians, which ean not be classified with any of the four living orders. Such are the Ichthyosaurus, Plesiosaurus, P'teroductyle, Megalosaurus, and Iguanodon.

Class IV.-Aves.

Birds form the most clearly defined class in the whole Animal Kingdom. The Eagle and Irummer, the Ostrich and Duck, widely as they seem to be separated by size, form, and habits, still exhibit one common type of structwre. On the whole, Birds are more closely allied to Reptiles than to Mammals. In number, they approach the Fishes, ornithologists having determined 11,000 species.

A Bird is an air-breathing, egg-laying, warm-blooded, feathered Vertebrate, with two limbs (legs) for perching, walking, or swimming, and two limbs (wings) for flying or swimming. Organized for flight, it is gifted with a light skeleton, very contractile museular fibre, and a respiratory function of the highest development.

The skeleton is more compact than those of Reptiles and Mammals, at the same time that it is lighter, and the bones are harder and whiter. It contains fewer bones than usnal, many parts being anchylosed together, as the cranial, dorsal, and sacral. The lumbar vertebre are wanting; but the neck is remarkably long (containing from 9 to 24 vertebre) and flexible, enabling the head to be a most perfect prehensile organ. The ribs generally are jointed in the middle, as well as with the backbone and stermm. The last, where the mnscles of flight originate, is highly developed. ${ }^{188}$ The skull articulates with the spinal column by a single condyle, and with the lower jaw, not directly, as in Mammals, but through the interrention of a separate bone, as in Reptiles.

All Birds always have four limbs, while every other rertebrate class shows exceptions. The fore-limbs are fit-
ted for flight. They ordinarily consist of nine separate bones, and from the hand, fore-arm, and humerus are developed the primary, secondary, and tertiary feathers of the wing. The hind limbs are formed for progressionwalking, hopping, rumning, paddling, and also for perching and grasping. The modifications are more numerous and important than those of the bill, wing, or tail. There are twenty bones ordinarily, of which the tibia is the prin-

Fra. 294.-Principal Parts of a Bird: a, primaries: b, secondaries; c, spurious wing; d, wing-coverts; e, tertiaries; f, throat, or jugulnm; g, chin; h, bill; the meeting line between the two mandibles is the commissure; the ridge on the upper mandible is called culmen; that of the lower, gonys; the space between the base of the upper mandible and the eye is the lore ; i, forehead; k, crown : l, scapular feathers; m, back: n, metatarsus, often called tarsus or tarso-metatareus; o, abdomen : p, rump; q, upper tail-coverts; r, lower tail-coverts. cipal ; but the most characteristic is the tar-so-metatarsus, which is a fusion of the lower part of the tarsus with the metatarsus. The thigh is so short, the knee is nerer seen outside of the plumage; the first joint visible is the heel. ${ }^{189}$ Most Birds have four toes (the external or "little" toe is always wanting); many have three, the hallux, or "big" toe, being absent; while the Ostrich has but two, answering to the third and fourth. The normal number of phalanges, reckoning from the hallux, is $2,3,4,5$. The toes always end in claws.

Birds have neither lips nor teeth, epiglottis nor diaphragm. The teeth are wanting, becanse a heary masticating apparatus in the head would be unsuitable for flight. The beak, crop, and gizzard vary with the food. ${ }^{190}$ The sole organs of prehension are the beak and legs. The
eirculation is double, as in Mammals, starting from a fourchambered heart. Respiration is more complete than in other Vertebrates. The lungs are fixed, and communicate with air-sacs in varions parts of the body, as along the vertebral column, and also with the interior of many bones, as the humerns and femur, which are usually hollow and marrowless. ${ }^{101}$ Both brain and cord are much larger relatively than in Reptiles; the cranium is larger in proportion to the face; and the parts are not situated in one plane, one behind the other. The cerebrum is round and smooth; and the cerebellum single-lobed. The ears resemble those of Crocodiles; but the eyes are well developed, and protected by three lids. They are placed on the sides of the head, and the pupil is always round. The sexes generally differ greatly in plumage, in some cases more widely than two distinct species. But the coloration of either sex of any one species is very constant.
A. Aquatic Birds.-Specially organized for swimming; the body flattened, and covered with water-proof clothing -feathers and down; the legs short (the knees being whoily withdrawn within the skin of the body), and set far apart and far back; the feet webbed, and hind toe elevated or absent. The legs are always feathered to the heel at least. They are the only Birds whose neek is sometimes longer than the legs.

1. Pygopodes, or Divers.These lowest of the feathered tribe have very short wings and tail, and the legs are placed so far back that they are obliged, when on

Fig. 295.-Penguin (Aptenodytes Pennantii). Falkland Islauds.

Fig. 296.-Loon (Colymbus torquatus). North America.
land, to stand nearly bolt upright. They are better fitted for diving than for flight or even swimming. They belong to the high latitudes, living on Fishes mainly, and are represented by the Penguins, Auks, Loons, and Grebes.
2. Longipennes, or Gulls.-Distinguished by their long, pointed wings, usually long tail, and by great powers of flight. They are all carnivorons. Such are the Gulls and

Fig. 23t.-Tern (Sternu).

Fig. 298.-Cormorant (Graculus).
Terns, which frequent the sea-coast, lakes, and rivers; and the Albatrosses and Petrels (the largest and smallest of web-footed Birds), which are oceanic.
3. Totipalmates, or Cormorants. - Characterized by a long bill, generally hooked; wings rather long; and toes long, and all four joined together by broad webs. Throat generally naked, and furnished with a sac. The majority are large sea-birds, and feed on Fishes, Mollusks, and Insects. Examples are the Cormorants, Pelicans, and Gannets.

Fig. 299.-Wild Goose (Bernicla Canadensis). United States.

Fig. 300.-Wild Duck (Anas boschas). North America.
4. Lamellirostres, or Ducks, have a heary body, moderate wings, short tail, flattened bill, covered by a soft skin, with ridges along the edges. Diet more commonly regetarian than animal. The majority inhabit fresh wa-ter-as the Ducks, Geese, Swans, and Flamingoes.
B. Terrestrial Birds. - This group exhibits great dicersity of structure; but all agree in being especially terrestrial in habit,

Fia. 301.-Sandpiper (Tringa hypoleuca). Eugland. spending most of the time on the ground, not on trees or the water, although many of them fly and swim well. The legs are long or strong, and the knee is free from the body. The hind toe, when present, is small and elevated.
5. Grallatores, or Waders. - These are readily distinguished by their long and bare legs. Generally, also, the toes, neck, and bill are of proportionate length, and the tail short. They feed on small animals, and, with a few exceptions, frequent the banks of rivers. In flying, their legs are stretched out behind, while in most other Birds they are folded under

Fig. 302.-Heron (Ardea). the body. Such are the Rails, Cranes, Herons, Storks, Ilises, Stilts, Snipes, Sandpipers, and Plovers.

Fig. 303.-Rail, or Marsh Hen (Rallus elegans). United States.
6. Cursores, or Runners. -This small, aberrant order includes the Ostriches, Cassowaries, and Apteryx, well marked by their gigantic size, rudimentary wings, keelless breast-bone, and robust legs. The African Ostrich has two toes, the Cassowary three, and the Apteryx four. The barbs of the feathers are disconnected. They subsist chiefly on plants, sceds,
and fruit, and, excepting the Rhea, or American Ostrich, belong to the Old World.
7. Rasores, or Scratchers. As a rule, this order, so valuable to Man, is characterized by a short, arched bill; short and coneare wings, unfitted for protracted flight; stout legs, of medium length; and four toes, the three in front being united by a short web, and terminating in blunt claws. The legs are usually feathered to the heel, sometimes (as in Grouse) to the toes. The feathers of the body are large and coarse. The males generally have gay plumage, and some appendage to the head. The nostrils are covered by a scale or valve. Their main food is grain. Such are the Grouse, Partridges, Turkeys, Pheasants, Poultry, and Curassows. To these may be added

Fig. 305.-Prairie-chicken (Cupidonia cupido). Western prairies.

Pigeons and Dores, although they stand intermediate be-
tween the terrestrial and perching Birds, as the Flamingoes link the aquatic and terrestrial. They differ from the typical Rasores in having wings for prolonged flight, and slender legs, fitted rather for an arboreạl life, with toes not united, and the hind toe on a level with the rest.
C. Aërial Birds.-This highest and largest group iucludes all those Birds whose toes are fitted for grasping or perching, the hind toe being on a level
 with the rest. The knee is free from the body, and the leg is generally feathered to the heel. The wings are adapted for rapid or long flight; and they hop, rather than walk, on the ground. ${ }^{102}$ They always live in pairs; and the young are hatched helpless.
8. Raptores, or Birds of Prey, differ from all other

Fig. 307.-Barn-owl (Strix flam$m e a)$. Both hemispheres. Birds, except Parrots, in having a strongly hooked bill and a waxy membrane (cere) at the base of the upper mandible; and from Parrots,

Fig. 308. - Fish-hawk (Pandion Carolinensis). United States.
in haring three toes in front and one behind. The toes are armed with long, strong, crooked talons; the legs are robust; and the wings are of considerable size, adapted

Fig. 309.-Golden Eagle (Aquila chrysaëtos). North America and Europe.
for rapid and powerful flight. The bill is stont and sharp, and usnally toothed. All are carnivorons. The female is larger than the male, except the Condor. There are two

Fia. 310.-Foot of Parrot and Woodpecker.
seetions: the Diurnal, whose eyes are on the sides of the head, wings pointed, and metatarsus and toes covered over with scales, as the Vultures, Kites, Hawks, Falcons, and Eagles; the Nocturnal, whose large eyes are directed forward and surromnded by radiating feathers, metatarsus feathered, and plumage soft, as the Owls.
9. Scansores, or Climbers. ${ }^{193}$ - These Birds have no other exclusive peculiarity than the pairing of the toes, two being turned forward and two backward. Usually it is the onter toe which pairs with the hind toe; in the Trogons, it is the imer one. They are not musical, and ouly ordinary fliers. They feed on Insects or fruit. The majority make nests in the hollows of old trees; but the Cuckoos lay in the nests of other Birds.
In climbing, the Wood-

Fig. 311.-Trogon elegans. Central America.
peckers are assisted by their stiff tail, and the Parrots by their hooked bill. The important Scansores are the Par-

Fig. 312.-Head of a Fly-catcher (Tyrannus).
rots, Woodpeckers, Barbets, Toucans, Cuckoos, Jacamars, and Trogons.
10. Insessores, or Perchers.-This order is the most numerous and varied in the whole class. It comprehends all those tribes which live habitually among trees, excepting

Fig. 313.-Guat-sucker (Caprinulgus).
the Rapacious and Climbing Birds, and whose toes-three in front, and one behind-are eminently fitted for perching only. The legs are slender, and seldom used for locomotion.

They are divisible into three sections: a. The Volitores, remarkable for their powers of flight. The wings are long and pointed, the voice is incapable of modulation, and the eggs are white. Such are the Hummers, having a long, slender bill; and the Swifts, Goat-suckers, and Kingfishers, having a short bill and wide gape. ${ }^{194}$ b. Clamatores, with nothing in common but a harsh voice. In most, the tarsus is enceloped in a row of plates, which meet behind in a groove, and the bill broad, and bent down abruptly at the tip.

Fig. 314. - White-throated Sparrow (Zonotrichia albicollis). United States.

Fig. 315.-Redstart (Setophaga ruticilla). Unitea States.

Fig. 316.-White-eyed Viren (Vireo Noveboracensis). United States.

The typical representatives are the Tyrant Fly-catchers. c. Oscines, or Songsters, all of whom have a rocal ap-
paratus, though all do not sing. The anterior face of the tarsus is one continuous plate, or divided transversely into

Fig. 317.-Kingfisher (Ceryle).
large scales; and the plates on the sides meet behind in a ridge. The toes, always three in front and one behind, are

Fig. 310.-Swallow (Hirundo).
on the same level. The eggs are usually colored. Here belong the Ravens, Crows, Jays, Birds of Paradise, Blackbirds, Orioles, Larks, Sparrows, Tanagers, Wax-wings, Swallows, Wrens, Warblers, Thrushes, etc.

Class V.-Mammalia.

Mammals are distinguished from all other creatures by any one of the following characters: they suckle their young; the thorax and abdomen are separated by a perfect diaphragm; the red corpuscles of the blood have no nuclens, and are therefore double-concave; and either a part or whole of the body is hairy. ${ }^{196}$

They are all warm-blooded Vertebrates, breathing only by lungs, which are suspended freely in the thoracic cavity; the heart is four-chambered, and the circulation is double, as in Birds; the aorta is single, and bends over the left bronchial tube; the large reins are furnished with valves; the red corpuscles differ from those of all other Vertebrates in being circular (except in the Camel); the entrance to the windpipe is always guarded by an epiglottis; the cerebrum is more highly developed than in any other class, containing a greater amount of gray matter and (in the higher orders) more convolutions; the cerebellum has lateral lobes, a mammalian peculiarity; ${ }^{196}$ the cranial bones are united by sutures, and they are fewer than in cold-blooded Vertebrates; the skull has two occipital condyles, a feature imitated only ly the Amphibians; the lower jaw consists of two pieces only (often united), and articulates directly with the cranium; with two exceptions (Manatee and Hoffman's Sloth), there are always seven cervical vertebre; the dorsals, and therefore the ribs, vary from ten to twenty-four; the articulating surfaces of the vertebre are generally flat; the front limbs are never wanting, and the hind limbs only in a few aquatic forms; excepting the Whales, each digit car-
ries a nail, claw, or hoof; the teeth (always present, save in certain low tribes) are planted in sockets; the month is closed by flexible lips; an

Fig. 319.-Longitudinal Section of Human Body (theoretical): a, cerebro-spinal nervous system ; b, cavity of nose ; c, cavity of mouth; d, alimentary canal; e, chain of sympathetic ganglia ; f, heart; g, diaphragm. exterual ear is rarely absent; ${ }^{197}$ the eyes are always present, though rudimentary in some burrowing animals; they are viviparous; and, finally, and perhaps above all, while in all other animals the embryo is developed from the nourishment laid up in the egg itself, in Mammals it draws its support, almost from the beginning, directly from the parent, and, after birth, it is sustained for a time by the milk secreted by the mammary glands. From the first, therefore, till it can care for itself, the young Maminal is in vital connection with the parent. ${ }^{198}$

Fig. 320. -Transverse Section of Iuman Body (theoretical): a, cerebro-spinal nervous axis contained in nenral tnbe ; e, chain of sympathetic ganglia; d, alimentary canal ; f, heart ; h, hæmal tube.

1. Monotremes.-This order is created to include two singular forms, the Duck-mole (Ornithorhynchus) and Spiny Ant-eater (Echidna), both confined to the Australian continent. The former has a covering of fur, a bill like
that of a Duck, and webbed feet. The latter is covered with spines, has a long toothless snont, like the Ant-eater's, and the feet are not webbed. Both burrow, and feed upon

Fig. 321.-Ornithorhynchus.
Insects. The brain is smooth in the Ornithorhynchus, and folded in the Echidna. In both, the cerebral hemispheres are loosely mited by transverse fibres, and do not cover the cerebellnun and olfactory lobes. ${ }^{100}$
2. Marsupials are distinguished by the fact that the young, always born premature, are transferred by the mother to a pouch on the abdomen, where they are attached to the nipples, and the milk is forced into their mouths by special muscles. ${ }^{200}$ They have " marsupial bones" projecting from the pelvis, which may serve to support the pouch; but as the Monotremes have the same bones, but no pouch, they donbtless have some other function. These bones are peculiar to animals having no placenta, namely, to Monotremes and Marsupials. The brains of Marsupials resemble those of the Monotremes, except that the cerebrum of the Kangaroo covers the olfactory lobes. All have the four kinds of teeth, and all are cor-
ered with fur, never with spines or scales. Except the Opossums of America, all are restricted to Australia and

Fig. 322.-Virginian Opossum (Didelphys V'irginiana).
adjacent islands. The Wombat, Kangaroo, and Phalanger are herbivorous; the Bandicoot, Opossum, Hylacinus, and Dasyurus are chiefly carnivorous.
3. Edentates.-This strange order contains very diverse forms, as the leaf-eating Sloths and the insectivorous Anteaters and Armadillos of South America, and the Pangolin and Orycteropus of the Old World. The gigantic fos-

Fig. 323.-Skull of the Great Ant-eater (Myrmecophaga jubata): 15, nasal; 11, frontal; 7, parietal; 3, superoccipital ; 2, occipital condyles; 25 , tympanic; 73, lachrymal ; 32, lower mandible. Teeth wanting. sils, Megatherium and Glyptodon, belong to this group. The Sloths and Ant-eaters are corered with coarse hair; the Armadillos and Pangolins, with an armor of plates or scales. The Ant-eaters and Pangolins are strictly edentate, or toothless; the rest lave molars, wanting, however, enamel and roots. In general, it may be said that the order includes all quadrupeds hasing sep-
arate, clawed toes and no incisors. The Sloths are arboreal; the others burrow. The brain is generally smooth;

Fig. 324.-Armadillo (Dasypus).
but that of the Ant-eater is convoluted, and has a large corpus callosum; but in all, the cerebellum and part of the olfactories are exposed. ${ }^{201}$
4. Rodents, or Gnawers, are characterized by two long, curved incisors in each jaw, enameled in front, and perpetually growing; they are specially formed for nibbling. Separated from them by a wide space (for eanines are wanting), are the flat molars, admirably fitted for grind-

Fig. 325.-Sknll of a Rodent (Capybara) : 22, premaxillary; 21, maxillary ; 26, molar; 27, squamosal; 73, lachrymal ; 15, nasal ; 11, frontal ; 4, occipital processes, unusually developed; i, incisors; a, angle of lower jaw.
ing. The lower jaw has longitudinal condyles, which work freely backward and forward in longitudinal fur-

Fio. 326.-Incisor Teeth of the Hare.
rows. Nearly all have clavicles; and the toes are clawed. The cerebrum is nearly or quite smooth, and covers but a small part of the cerebellum. All are regetarian.

About two-thirds of all known Mammals are Rodents. They range from the equator to the poles, over every continent, over mountains and plains, deserts and woods. The

Fig. 327.-Beaver (Castor Canadensis). North America.
more important representatives are the Porcupines, Capybaras, Guinea-pigs, Hares, Mice, Rats, Squirrels, and Beavers. The Capybara and Beaver are the giants of the race.
5. Insectivores are diminutive insect-eating animals, some, as the Shrew, being the smallest of Mammals. They have small, smooth brains, which, as in the preceding orders, leave uncovered the cerebelhum and olfactory lobes. The molar teeth bristle with sharp, pointed cusps, and are associated with canines and incisors. They have a

Fig. 32s.-Shrew Mouse (Sorex). long muzzle, short legs, and clavicles. The feet are formed for walking or grasping, and are plantigrade, five-toed, and clawed. The Shrew, Hedgehog, and Mole are examples.
6. Cheiropters, or Bats, repeat the chief characters of the Insectivores; but some (as the Flying-fox) are fruiteaters, and have corresponding modifications of the teeth.

Fig. 329.-Bat (Vespertilio).
They are distinguished by their very long fore-limbs, which are adapted for flight, the fingers being immensely lengthened, and united by a membranous web. The
toes, and one or two of the fingers, are armed with hooked nails. The clavicles are remarkably long, and the sternum is of great strength; but the whole skeleton is extremely light, though not filled with air, as in Birds. The

Fig. 330.-Skeleton of a Bat.
eyes are small, the ears large, and the sense of tonch is very acnte. The favorite attitude of a Bat when at rest is that of suspension by the claws, with head downward. They are all nocturnal.
7. Cetaceans, or Whales, have the form and life of Fishes, yet they possess a higher organization than the preceding orders. They have a broad brain, with many and deep foldings; the foramen magnum of the skull is entirely posterior; the whole head is disproportionately large, and the jaws greatly prolonged. The body is covered with a thick, smooth skin, with a layer of fat ("blub-

Fig. 331.-Outline of the Sperm-whale (Physeter): a, blow-hole; b, the case containing spermaceti; $c, j n n k ; d$, bunch of the neck-between it and the corner of the mouth is the eye; h, hnmp; i, ridge; k, the small; f, tail, or flukes. Betweeu the dotted lines are the spiral strips of blubier. Maximum length, sixty feet. South Atlantic.
ber") minderneath ; there are no clavicles; the hind limbs are wanting, and the front pair changed to paddles; the tail expands into a powerful, horizontal fin; neck and ears are apparently wanting; the eyes small, with only two lids; the nostrils ("blow-holes")-double in the Whale, single in the Porpoise-are on the top of the head. All are carnivorous, and essentially marine, a few Dolphins only being found in the great rivers. In the Whalebone Whales, the teeth are absorbed, and disappear before birth, and their place is supplied by horny "baleen" plates. "The

Fig. 332.-Greenland Whale (Balana mysticetus). North Atlantic.

Whale feeds by putting this gigantic strainer into operation, as it swims through the shoals of minute Mollusks, Crustaceans, and Fishes, which are constantly found at the surface of the sea. Opening its capacions mouth, and allowing the sea-water, with its multitudinous tenants, to fill the oral cavity, the Whale shuts the lower jaw upon the

Fig. 333.-Troop of Dolphins, with Manatee in the distance.
balcen plates, and, straining out the water through them, swallows the prey stranded upon its rast tongne." In all other Cetaceans teeth are developed, especially in Dolphins and Porpoises; but the Sperm Whale has them only in the lower jaw, and the Narwhal can show but a single tusk. The Dolphins are the only Mammals having no organ of smell.
8. Sirenians resemble the Cetaceans in shape, but are closely allied to the hoofed animals in organization. They have the limbs of the Whales, and are aquatic; but they are herbivorous, and frequent great rivers and estuaries.

They have two sets of teeth, the Cetaceans never having but one. They have a narrow brain; bristles scantily corering the body; and nostrils placed on the snout, which is large and Heshy. Such are the Manatee and Dugong.
9. Proboscidians.-This race of giants, now nearly extinct, is characterized by two upper incisors in the form of tusks, mainly composed of dentine (ivory). In the extinct Dinotherium the tusks projected from the lower jaw; and in the Mastodon, from both jaws. Canines are wanting. The molars are few and large, with transverse ridges (Elephant) or tubercles (Mastudon). The cerebrmm is large and convoluted, but does not cover the cerebellum. The skull is enormons, the size arising in great measure from the derelopment of air-cavities between the inner and outer plates. The nose is prolonged into a flexible trunk, which is a strong and delicate organ of prehension. There are four massive limbs, each with five toes incased in broad, shallow hoofs, and also with a thick, tegumentary pad. The knee is below and free from the body, as in Monkeys and Men. Clavicles are wanting. The body of the Elephant is nearly naked; but the Mammoth, an extinct species, had a covering of long woolly hair. Elephants live in large herds, and subsist on foliage and grass. There are but two living species: the Asiatic, with long head, concave forehead, small cars, and short tusks ; and the African, with romd head, consex forehead, large ears, and long tnsks. ${ }^{202}$
10. Ungulates, or Hoofed Quadrupeds.-This large order, comprehending many animals most nseful to Man, is distinguished by four well-developed limbs, each furnished with not more than four complete toes, and each toe incased in a hoof. The leg, therefore, has no prehensile power; it is only for support and locomotion. Clavicles are wanting; and the radius and ulna are so mnited as to prevent rotation. There are always two sets of teeth, i.e.,
milk-teeth are succeeded by a permanent set. The grinders have broad crowns. As a rule, all are herbivorons. The brain is always convoluted, but the cerebellum is largely uncovered.

Ungulates are divided into the odd and even toed. a. The Odd-toed, as the three-toed Rhinoceros and Tapir, ${ }^{202}$ and the one-toed Horse. ${ }^{204}$ The first is distinguished by its very thick skin, the absence of canines, and one or two horns on the nose. The tapir has the four kinds of teeth, and a short proboscis. The dental formula of the Horse is-

$$
i \frac{3-3}{3-3}, c \frac{1-1}{1-1}, \quad p m \frac{3-3}{3-3}, m \frac{3-3}{3-3}=40
$$

The canines are often wanting in the mare. The Horse walks on the third finger and toe. The metacarpals and metatarsals are greatly elongated, so that the wrist and heel are raised to the middle of the leg. b. The Even-toed Ungulates - Hog, Hippopotamus, and Ruminants - have

Fig. 334.-Indian Rhinoceros (R. unicornis).
two or four toes. ${ }^{205}$ The Hog and Hippopotamus have the four kinds of teeth, and, in the wild state, are vegetarian. The Rimminants have two toes on each foot, enveloped in hoofs which face each other by a flat side, so that they appear to be a single hoof split or "cloven." Usually there are also two supplementary hoofs behind, but they do not ordinarily touch the gromd. All chew the cud, and have a complicated stomach. They have incisors in the lower jaw only, and these are apparently eight; but the two outer ones are canines. ${ }^{208}$ The molars are flat typical grinders. The dental formula of the Ox is-

$$
i \frac{0-0}{3-3}, c \frac{0-0}{1-1}, p m \frac{3-3}{3-3}, m \frac{3-3}{3-3}=32 .
$$

With few exceptions, as the Camel, all Ruminants have horns, which are always in pairs. Those of the Deer are solid, bony, and decidnous; those of the Giraffe and An-

1G. 335.-Stag, or lied Deer (Cervus elaphus). Earope.
telope are solid, horny, and permanent; in the Goat, Sheep, and Ox they are hollow, horny, and permanent.
11. Carnivores, or Beasts of Prey, may be recognized by their four long, curved, acute, canine teeth, the gap

Fig. 336.-Raccoon (Procyon lotor). United States.

Fig. 337.-Wolf (Lupus occidentalis). Uniterl Stntes.

Fig. 338.-Ermine-weasel (Putorius Noveboracensis). United States. between the incisors and canines in the upper jaw for the reception of the lower canine, and molars graduating from a tuberculate to a trenchant form in proportion as the diet deviates from a miscellaneous kind to one strictly of flesh. The incisors, with rare exceptions, number six in each jaw. The teetl are lodged in distinct sockets, and covered with enamel. There are always two sets. The skull is comparatively small, the jaws are shorter and deeper than in Ungnlates, and there are numerons bony ridges on the inside and outside of the cranimm - the high occipital crest being specially characteristic. The cerebral hemispheres are joined by a large corpus callosum, but the
cerebellum is never completely corered. Both pairs of limbs are well developed, the front being prehensile; but the clavicles are rudimentary. The humerus and femur are mainly inclosed in the body. The digits, never less than four, always have sharp and pointed claws. ${ }^{207}$ The body is covered with abundant hair.

Fig. 339.-Red Fox (Vulpes fulvus). United States.

Carnivores are divided according to the modifications of the limbs: a. Pimigrades, having short feet expanded into webbed paddles for swimming, the hinder ones being bound in with the skin of the tail. Such are the Seals, Walrus, and Eared Seals, or Sea-lions. b. Plantigrades, in which the whole, or nearly the whole, of the hind foot forms a sole, and rests on the ground. The claws are not

Fig. 340.-Southern Sea-lion (Otariu jubata). Antarctic Ocean.
retractile ; the ears are small, and tail short. Bears, Badgers, and Raccoons are well-known examples. c. Digiti-
grades keep the heel raised above the ground, walking on the tips of the toes. The majority have long tails. Such are the Weasels, Otters, Civets, Hyenas, Foxes, Jackals, Wolves, Dogs, Cats, Panthers, Leopards, Tigers, and Lions. The last five differ from all others in having retractile claws, and the radius rotating freely on the ulna. The Cats have thirty teeth; the Dogs, forty-two, or twelve more molars. In the former, the tongue is prickly; in the latter, smooth.
12. Primates, the head of the kingdom, are characterized by the possession of two hands and a pair of feet, the thigh free from the body, and all the digits furnished with nails, the first on the foot enlarged to a "great toe." Throughout the order, the hand is eminently or wholly prehensile, and the foot, however prehensile it may be, is always locomotive. ${ }^{208}$ The clavicles are perfect. The eyes are situated in a complete bony cavity, and look forward.

Fig. 341.-Lemur (L. ruber). Madagascar. There are two sets of teeth, all enameled; and the incisors, numbering four in each jaw. They are divided into Lemurs, Monkeys and Apes, and Man.
a. Lemurs, or "Madagascar Cats," are corered with soft fur, have usually a long tail, pointed ears, fox-like muzzle, and curved nostrils. They walk on all fours, and the thumb and great toe are generally opposable to the digits. The second toe has a long, pointed claw instead of a nail. The cerebrum is relatively small, and flattened, and does not cover the cerebellum and olfactory lobes. ${ }^{209}$

乙. The Monkeys of tropical America have, generally, a
long, prehensile tail ;200 the nostrils are placed far apart, so that the nose is wide and flat; the thumbs and great toes are fitted for grasping, but are not opposable to the other digits; and they have four molars more than the Apes or Man-that is, thirty-six teeth in all. In the Apes of the Old World the tail is never prehensile, and is sometimes wanting; the nostrils are close together; both thumbs and great toes are opposable ; and the teeth, though numbering the same as Man's, are uneven (the incisors being

Fig. 342.-White-throated Sapajou (Cebus hypoleucus). Ceutral America.
prominent, and the canines large), and the series is interrupted by a gap on one side or other of the canines. Their arerage size is much greater than that of the Lemurs or Monkeys, and they are not so strictly arboreal. In both Monkeys and Apes, the cerebrum covers the cerebellum. ${ }^{211}$ While in the Lemurs and Monkeys the skull is rounded and smooth, that of the Apes, especially those eoming nearest to Man - the anthropoid, or long-armed,

Apes, as Gorilla, Chimpanzee, Orang, and Gibbon - is characterized by strong crests. Lemurs and Monkeys

Fig. 343.-Skull of Orang-utan (Simia satyrus). take a horizontal position; but the Apes assume a semierect attitude, the legs being

Fig. 344.-skull of Chimpanzee (Troglodytes niger).
shorter than the arms. In all the Primates but Man, the budy is clothed with hair, which is generally longest on the back. Several Monkeys and Apes have a beard, as the Howler and Orang.

Fig. 345,-Female Orang-utan (from photograph). Borneo.

The Orang is the least human of all the anthropoid Apes as regards the skeleton, but comes nearest to Man in the form of the brain. The Chimpanzee approaches Man most closely in the character of its cranium and teeth, and the proportional size of the arms. The Gorilla is most

Fig. 346.-Skeletons of Man, Chimpanzee, and Orang.
Man-like in bulk (sometimes reaching the height of five feet six inches), in the proportions of the leg to the body and of the foot to the hand, in the size of the heel, the form of the pelvis and shoulder-blade, and volume of brain. ${ }^{212}$
c. Man differs from the Apes in being an erect biped. In him, the vertebrate type, which began in the horizontal Fish, finally became rertical. No other animal habitually stands erect; in no other are the fore-limbs used exelusively for head-purposes, and the hind pair solely for locomotion.

Man alone can stand, walk, run, jump, climb, swim, ride, drive, sit, or lie on his back for any length of time.

His limbs are naturally parallel to the axis of his body, not perpendicular. They have a near equality of length,
but the arms are always somewhat shorter than the legs. In all the great Apes the arms reach below the knee, and the legs of the Chimpanzee and Gorilla are relatively shorter than Man's.

Man only has a finished hand, most perfect as an organ of touch, and most versatile. Both hand and foot are relatively shorter than in the Apes. The foot is plantigrade; the leg bears vertically upon it; the heel and great toe are longer than in other Primates; and the great toe is not

Fig. 347.-Foot (a) and Hand (b) of the Gorilla.
opposable, but is used only as a fulcrum in locomotion. The Gorilla has both an inferior hand and inferior foot. The hand is clumsier, and with a shorter thumb than Man's; and the foot is prehensile, and is not applied flat to the gromnd. ${ }^{213}$

The scapular and pelvic bones are extremely broad, and the neck of the femur remarkably long. Man is also singular in the double curve of the spine: the Baboon comes nearest to Man in this respect.

The human skull has a smooth, rounded outline, elevated in front, and devoid of crests. The cranium greatly predominates orer the face, being four to one; ${ }^{214}$ and no other animal (except the Siamang Gibbon) has a clin.

Man stands alone in the peculiarity of his dentition : his
teeth are rertical, of nearly uniform height, and close together. In every other animal the incisors and canines are more or less inclined, the canines project, and there are vacant spaces. ${ }^{216}$

Man has a longer lobule to his ear than any Ape, and no muzzle. The bridge of his nose is decidedly convex; in the Apes generally it is flat.
Man has been called the only naked terrestrial Mammal. II is hair is most abundant on the scalp; never on the back, as in the Apes.

Man has a more pliable constitution than the Apes, as

Fig. 348.-Australiau Savage.
shown by his world - wide distribution. The animals nearest him soon perish when removed from their native places.

Though Man is excelled by some animals in the aeuteness of some senses, there is no other animal in which all the senses are capable of equal development. He only has the power of expressing his thoughts by articulate speech, and the power of forming abstract ideas.

Man differs from the Apes in the absolute size of brain,
and in the greater complexity and less symmetrical disposition of its convolutions. The cerebrum is larger in proportion to the cerebellum (being as $8 \frac{1}{2}$ to 1), and the former not only covers the latter, but projects beyond it. The brain of the Gorilla scarcely amounts to one-third in

rolume or one-half in weight of that of Man. Yet, so far as cerebral structure goes, Man differs less from the Apes than they do from the Monkeys and Lemurs. The great gulf between Man and the brute is not physical, but psychical. ${ }^{16}$
CIIAPTER XXII.
SYSTEMATIC ARRANGEMENT OF REPRESENTATIVE FORMS.
Subkingdom Protozon.- An artificial group, with no common type; animals simple, minute, and

Class I. Monera.-Entirely homogeneous in structure: as Buthybius, Class II. Gregarinida.-Consisting of one cell, and parasitic: Giregar

Class III. Rhizopoda.-IIaving the power of throwing out parts of the body for prehension,
Order 1. Amabea.-Naked: Amaeba, Actinophrys.
Order 2. Foraminifrra.-With calcareous shell; \{ single: Lagena.
Order 3. Ramolaria.-With siliceous shell: Polyejostina.
Class IV. Infusoria.-IIaving mouth and cilia.
Order 1. Flagellata.-With long, lash-like filaments: Monad.
Order 2. Ciliata.-Covered with vibratile cilia; $\{$ nixed: Vorticella. (free: Paramacium.
Order 2. Ciliata.-Covered with vibratile cilia;
Class V. Spongida.-Amœebiform bodies unite
Class V. Spongida.-Amœbiform bodies united into a composite mass, generally secreting a common skeleton.
Order 1. Myxospongia.-Gelatinons; no skeleton:Hatisarea.
Order 2. Fibrosposgia.-With fibrous skeleton; $\left\{\begin{array}{l}\text { horny: Spumgia. }\end{array}\right.$
Order 3. Calorspongia.-Skeleton calcareous, not fibrous: Sifcon.
Celenterata. - Radiated animals, with distinct body-cavity, tentacles, and nettling
Hydrozoa.-Single digestive eavity, with which the mouth communicates freely.

> Order 1. IIynroida.-Fixed by adherent disk; $\left\{\begin{array}{l}\text { single: Hyura. } \\ \text { componnd: Sertularia. }\end{array}\right.$ Order 2. Siphonophora.-Free and oceanic, swimming by crested air-sac: Physalia. Order 3. Luobrnarida.-Cup-shaped, with marginal tufts of tentacles, and eight or m naria.
Order 3. Lueernarida.-Cup-shaped, with marginal tufts of tentacles, and eight or more radiating canals; attached ; single : Lucer-
Class II. Anthozoa.-Double digestive cavity, with radiating septa.
soft-bodied; single; slightly locomotive: Actimea.
sclerodermic, rough, calcareons coral: Madcomposite; fixed; secreting $\left\{\begin{array}{c}\text { repore. } \\ \text { sclerobasic }\end{array}\right.$ soft-bodied: Alcyonium.
coral: Corallium.
o tentaeles ; dig
e
d
$\stackrel{\Xi}{-}$
Class III. Echinoidea.-Body inclosed in a spinous shell; free, mov- $\{$ spherical: Ciduris.
('lass IV. Holothuroidea.-Body eylindrical and soft; free, moring by suckers; mouth forward, surrounded by tentacles :
Pentuctu.
Subkingdom Mollesca.-Soft-bodied, unjointed animals, with museular skin (" mantle"), generally
protected by a calcareons shell; nervous system scattered.
§ 1. Destitutc of masticatory apparatus, fecding by ciliary action. Polyzoa.-Minute; composite; fixed; mouth with tentacles: Flustra.
Ssingle and fixed: Ascidia.

Subkingdom Mollusca-Continued.

* Crawling by ventral disk.
Order 2. Opisthobranohiata.-Naked, with external gills toward the rear of the body; marine: Doris. Order 3. Prosobranolitata.-Gills in front; with shell ; $\left\{\begin{array}{l}\text { aperture entire : Natica. } \\ \text { aperture notched: Strom }\end{array}\right.$
 Class VI. Cephalopoda.-Symmetrical body; with arms around the mouth; walk and swim; marine; three-chambered
heart.
Order 1. Tetrabranchiata.-Having four gills, many tentacles, and an external, chambered shell : Nuutilus.
Order 2. Dibranomata.-Two gills; naked; iuk-bag; $\left\{\begin{array}{l}\text { eight arms: Oetopus. } \\ \text { ten arms: Sepia. }\end{array}\right.$

Onder 1. Cirripedia.-Fixed; shelly covering; feathery arms: Balanus.
Order 2. Entomostraca.-Horny carapax ; joints of abdomen and thorax more or less than fonteen; no abdominal legs: Limulus. Order 3. Tetradecapons.-Carapax of mingled lime and chitine; fourteen-footed; small: Oniscus.
Order 4. Deoarons.-Carapax of mingled lime and chitine; ten-footed; large: Astacus.
8 2. Air-breuthing.
Class III. Arachnida.-Eight thoracic legs ; cephalo-thorax ; antennæ modified.
Order 1. Agarina.-Minnte; no marked articnlations; tracheal respiration ; suctorial : Acarus. Order 2. Pedipalpi.-Long, jointed abdomen ; pulmonary sacs; lobster-like claws: Scorpio. Order 3. Araneina.-Soft, short, unjointed abdomen ; spinnerets; pulmonary sacs: Epeira.
Class IV. Myriapoda.-Segments similar; worm-like; chitinous skin; tracheæ; two antennæ.
Order 1. Culognatua.-Cylindrical; four legs to each joint: Iulus.
Order 2. Cullopopa.-Flattened; two legs to each joint: Seolopendra.
Class I. Insecta.-Head, thorax, and abdomen distinct; chitinous erust; six thoracie legs; winged; two antennæ; tracheæ.
Order 1. Neurobtera.-Slender abdomen ; fonr equal, large, trausparent wings; biters: Libellula.
Order 2. Orthoptrra.-Fuur wings, front pair slightly thickened, narrow and overlapping, hind pair transparent, broad, and folded; biters: Gryllus.
Order 3. Hemiptera.-Snctorial; legs slender ; \{ wingless: Cimcx.
Order 4. Coleoptera.-Four wings, front pair horny, uniting by straight edge; biters: Searabeus.
Order 5. Dipteri.-Two transparent wings; slender legs; suctorial : Musea. antenve feathery: Attacus. Sphinx.
 Order 6. Lepidoptera.-Four large, scaly wings; legs not locomotive; spiral proboscis for suction; $\left\{\begin{array}{l}\text { an } \\ \text { an }\end{array}\right.$
Order 7. Hymenoptera.-Four transparent wings; month fitted for both biting and suction; social : Apis.
Order 7. Iryaenorera.-Four transparent wings; antennæ spindle-shaped:
-

Order 4. Croconlus.-Covered with scales and bony plates: tceth in distinct
sockets; heart with four cavities; eyelids and earlids ; $\left\{\begin{array}{l}\text { long snout: Gavialis. } \\ \text { lower canines fitting into a notch : Crocodilus. } \\ \text { lower canines fitting into a pit: Alligator. }\end{array}\right.$
Class IV. Aves,-Feathered, four limbs, hind pair for progression on land or water, front for flight; no teeth; three eyelids; one occipital condyle ; heart with four cavities; lungs.

* Hind toe wanting or elevated.
Order 1. Natatores.-Swimmers; webbed toes; legs short: Anser. Order 2. Gballatores.-Waders; long necks, lege, aud toes: Ardea.
Order 3. Cursores.-Runners ; short wings; stirong legs: Struthio.
Order 4. Rasores.-Scratchers ; strong, blint claws; three toes front, one behind; arched bill : Gallus.
Order 5. Scansores.-Climbers; two toes in frout and two behind: Picus.
Order 6. Raptores.-Birds of prey; sharp, enrved beak and talons: stroug
Order 7. Insessores.-Perchers ; short, slender legs; three toes front, oue behind: Turdus.
Class V. Mammalia.-Suckle their young ; red corpuseles double-concave; heart with four cavities ; lungs; diaphragm; body hairy; two occipital condyles.
Order 1. Monotbemata.-Dack-billed; webhed feet: Ornithorhynchus. Order 2. Marsuplalia.- With pouch for immature young: Diadelphys.
* * Placental; with fins.
Order 3. Cetacea.-ilind limbs wanting, front pair for swimming; nostrils on top $\{$ teeth wanting: Balana.
teeth in lower jaw: Physeter.

Order 4. Sibenia.-Herbivorons cetaceans; nostrils at the end of the snout; molars in both jaws: Manatus.
Subkingdom Vertebrata-Continued.

$\begin{aligned} & \text { Order 5. Ungulata.-Vegetarian; large, flat molars; }\left\{\begin{array}{l} \text { even-toed; fonrfold stomach: Bos. } \\ \text { odd-toed; single stomach: Equus, } \end{array}\right. \\ & \qquad * * * * \text { Placental; with claws. } \end{aligned}$		
$\text { Order 6. Edentata.- }\left\{\begin{array}{l} \text { Toothless : Myrmecophaga. } \\ \text { Incisors wantivg: Bradypus. } \end{array}\right.$		
Order 7. Romentia.-Canines wanting; incisors highly developed: Mus,		
Order 8. Insegtivora.-Molars with sharp points : Scalops.		
Order 9. Cheiroptera.-Fore-limbs webbed for flight : Vespertilio.		
Order 10. Proboscidea.-Mammoth quadrupeds, with tusks and proboscis : Elephas.		
Order 11. Carnivora.-Flesh-eaters ; canines well developed: molars trenchant ; $\left\{\begin{array}{l}\text { pinnigrade : Phoca. } \\ \text { plantigrade: Ursus. } \\ \text { digitigrade: Felis. }\end{array}\right.$		
Order 1	2. Primates.-Four incisors in each jaw; great toe with flat nail;	hands on forr limbs; teeth uneven hands on fore-limbs only; teeth even

CHAPTER XXIII.

THE DISTRIBUTION OF ANIMALS.

Life is everywhere. In the air above, the earth beneath, and the waters under the earth, we are surromided with life. Nature lives: every pore is bursting with life; every death is only a new birth, every grave a cradle. The air swarms with Birds, Insects, and invisible animalcules. The waters are peopled with innumerable forms, from the Protozoan, millions of which would not weigh a grain, to the Whale, so large that it seems an island as it sleeps upon the waves. The bed of the sea is alive with Crabs, Shells, Polyps, Star-fishes, and Foraminifera. Life everywhere-on the earth, in the earth, crawling, creeping, burrowing, boring, leaping, rumning.

Nor does the vast procession end here. The earth we tread is largely formed of the débris of life. The quarry of limestone, the flints which struck the fire of the old Revolutionary muskets, are the remains of comtless skeletons. The major part of the Alps, the Rocky Monntains, and the chalk cliffs of England are the monmmental relics of by-gone generations. From the ruins of this living architecture we bnild our Parthenons and Pyramids, our St. Peters and Louvres. So generation follows generation. But we have not yet exhansted the survey. Life cradles within life. The bodies of animals are little worlds having their own fanna and flora. In the fluids and tissues, in the eye, liver, stomach, brain, and muscles, parasites are found ; and these parasites often have their parasites living on them.

> "Great fleas have little fleas and smaller fleas to bite 'em; And these again have other fleas, and so ad infinitum."

Thus the ocean of life is inexhaustible. It spreads in every direetion, into time past and present, flowing everywhere, eagerly surging into every nook and corner of creation. On the mountain-top, in the abysses of the Atlantic, in the deepest crevice of the earth's crnst, we find traces of animal life. Nature is prodigal of space, but economical in filling it. ${ }^{217}$

Animals are distributed over the globe according to definite laws, and with remarkable regularity.

Each of the three great provinces, Earth, Air, and Water, as also every continent, contains representatives of all the classes; but the varions classes are mequally represented. Every great elimatal region contains some species not found elsewhere, to the exelusion of some other forms. Every grand division of the globe, whether of land or sea, each zone of climate and altitude, has its own fauna. And, in spite of the many eanses tending to disperse animals beyond their natural limits, each country preserres its peenliar zoological plyssiognomy.

The space oceupied by the different gronps of animals is inversely as the size of the individuals. Compare the Coral and Elephant.

Fama now ocenpying a separate area is closely allied to the famm which existed in geologic times. Thus, Australia has always been the home of Marsupials, and South America of Edentates.

It is a general rule that gronps of distinct species are circumseribed witlin definite, and often narrow, limits. Man is the only cosmopolitan; yet even he comprises several marked races, whose distribution corresponds with the great zoological regions. The natives of Australia are as grotesque as the animals. Certain brutes likewise have a great range : thus, the Puma ranges from Canada to Pata-
gonia; the Musk-rat, from the Aretic Ocean to Florida; the Ermine, from Behring's Straits to the IImalayas; and the IIippopotamus, from the Nile and Niger to the Orange River. ${ }^{2: 8}$

Frequently species of the same genus, living side by side, are widely different, while there is a close resemblance between forms which are antipodes. The Mud-eel of South Carolina and Axolotl of Mexico have their connecting links in Japan and Austria. The Ameriean Tapir has its mate in Sumatra; the Llama is related to the Camel, and the Opossum to the Kangaroo.

The chief causes modifying distribution are temperature, topography, ocean and wind currents, humidity and light. To these may be added the fact that animals are ever intruding on each other's spheres of existence. High mountain-ranges, wide deserts, and cold currents in the ocean are impassable barriers to the migration of most species. Thus, river-fish on opposite sides of the Andes differ widely, and the cold Peruvian current prevents the growth of coral at the Galapagos Islands. So a broad river, like the Amazons, or a deep, narrow channel in the sea, is an effectual barrier to some tribes. Thus, Borneo belongs to the Indian region, while Celebes, though but a few miles distant, is Australian in its life. The faunæ of North America, on the east coast, west coast, and the open plains between, are very different.

Animals dwelling at high elevations resemble those of colder latitudes. The same species of Insects are found on Mount Washington, and in Labrador and Greenland.

The range does not depend upon the powers of locomotion. The Oyster extends from IIalifax to Charleston, and the Snapping-turtle from Canada to the equator; while many Quadrupeds and Birds have narrow habitats.

The distribution of any group is qualified by the nature
of the food. Carnivores have a wider range than herbivores.

Life diminishes as we depart from the equator north or sonth, and likewise as we descend or ascend from the level of the sea.

The zones of geography have been divided by zoologists into narrower provinces. Five vertical regions in the sea have been recognized: the Littoral, extending between tide-marks; the Laminarian, from low water to 15 fathoms ; the Coralline, from 15 to 20 fathoms; the deep-sea Coral, from 50 to 100 fathoms; and the Bathybian, from 100 fathoms down. Every marine species has its own limits of depth. It would be quite as difficult, said Agassiz, for a Fish or a Mollusk to cross from the coast of Europe to the coast of America as for a Reindeer to pass from the arctic to the antarctic regions across the torrid zone. Marine animals congregate mainly along the coasts of continents and on soundings. The meeting-place of two maritime currents of different temperatures, as on the Banks of Newfoundland, favors the development of a great diversity of Fishes.

Esery great province of the ocean contains some representatives of all the subkingdoms. Deep-sea life is diversified, though comparatively sparse. Examples of all the five invertebrate divisions were found in the Bay of Biscay, at the depth of 2435 fathoms. ${ }^{219}$

Distribution in the sea is influenced by the temperature and composition of the water, and the character of the bottom. The depth acts indirectly by modifying the temperature. Northern animals approach nearer to the equator in the sea than on the land, on account of cold currents. The heary aquatic Mammals, as Whales, Walruses, Seals, and Porpoises, are mainly polar.

The land consists of the following somewhat distinct areas: the Neotropic, comprising South America, Mexi-
co, and West Indies; the Neoarctic, including the rest of America; the Palaarctic, composed of the eastern continent north of the Tropic of Cancer ; the Africano-Indian, or Africa south of Sahara, Southern Asia, and the western half of the Malay Archipelago; and the Australian, or the eastern half of the Malay Islands and Australia.

Life in the polar regions is characterized by great uniformity, the speeies being few in number, though the number of individuals is immense. The same animals inhabit the arctic portions of the three continents; while the antarctic ends of the continents, Australia, Cape of Good Hope, and Cape Horn exhibit strong contrasts. Those three continental peninsulas are, zoologically, separate worlds. In fact, the whole sonthern hemisphere is peenliar. Its fauna is antique. Australia possesses a strange mixture of the old and new. South America, with newer Mammals, has older Reptiles; while Africa has a rich vertebrate life, with a striking uniformity in its distribution. ${ }^{220}$

In the tropies, diversity is the law. Life is more raried and crowded than elsewhere, and attains its highest development.

The New-world fauna is old-fashioned, and inferior in rank and size, compared with those of the eastern continents.

As a rule, the more isolated a region, the greater the rariety. Oceanic islands have comparatively few species, but a large proportion of endemic or peculiar forms. Batrachians are generally absent, and there are no indigenous terrestrial Manmals. The productions are related to those of the nearest continent. When an island, as Britain, is separated from the inain-land by a shallow channel, the mammalian life is the same on both sides.

Protozoans, Colenterates, and Echinoderms are limited to the waters, and nearly all are marine. Sponges are
mostly obtained from the Grecian Archipelago and Bahamas. Corals abound throughont the Indian Ocean and Polynesia, east coast of Africa, Red Sea and Persian Gulf, West Indies and around Florida. Trne Crinoids are found only in the Caribbean Sea and on the coast of Norway. The other Echinoderms abound in almost erery sea, the Star-fishes chiefly along the shore, the Seaurchins in the Laminarian zone, and the Sea-slngs around coral-reefs.

Mollusks have a world-wide distribution over land and sea. The land forms are restricted by climate and food, the marine by shallows or depths, by cold currents, by a sandy, gravelly, or mud bottom. Living Brachiopods, though few in number, occur in tropical, temperate, and arctic seas, and from the shore to the greatest depths. The rest of the Bivalves are also found on every coast and in every climate, as well as in rivers and lakes, but do not flourish at the depth of much more than 200 fathoms. The fresh-water Mussels are more numerous in the United States than in Europe, and west of the Alleghanies than east. The sea-shells along the Pacific coast of America are unlike those of the Atlantic, and are arranged in five distinct groups--Aleutian, Californian, Panamic, Peruvian, and Magellanic. On the Atlantic coast, Cape Cod and Cape Hatteras separate distinct provinces. Of land-snails, Helix has an almost universal range, but is characteristic of North America, as Bulimus is of South America, and Achatina of Africa. The Old World and America have no species in common, except a few in the extreme north.

The limits of Insects are determined by temperature and regetation, by oceans and momntains. There is an insect-fauna for each continent, and zone, and altitude. The Insects near the snow-line on the sides of mountains in the temperate region are similar to those in polar lands. The Insects on our Pacific slope resemble those of Europe,
while those near the Atlantic coast are more like those of Asia. Not half a dozen Insects live in the sea.

The distribution of Fishes is bounded by narrower limits than that of other animals. Λ few tribes may be called cosmopolitan, as the Sharks and Herrings; but the species are local. Size does not appear to bear any relation to latitude. The marine forms are three times as numerons as the fresh-water. The migratory Fishes of the northem hemisphere pass to a more southern region in the spring, while Birds migrate in the autumn.

Living Reptiles form but a fragment of the immense number which prevailed in the Middle Ages of Geology. Being less muder the influence of Man, they have not been forced from their original habitats. None are arctic. America is the most favored spot for Frogs and Salamanders, and India for Suakes. Anstralia has no Batrachians, and two-thirds of its Snakes are venomous. In the United States, only 22 out of 176 are venomons. Frogs, Snakes, and Lizards occur at elevations of over 15,000 feet. Crocodiles, and most Lizards and Turtles, are tropical.
Swimming Birds, which constitute about one-fourteenth of the entire class, form one-half of the whole number in Greenland. As we approach the tropics, the variety and number of land Birds increase. Those of the torrid zone are noted for their brilliant plumage, and the temperate forms for their more sober hues, but sweeter roices. India and South America are the richest regions. Birds with rudimentary wings, as Penguins and Ostriches, prevail in the southern hemisphere. Hummers, Tanagers, Orioles, and Toncans are restricted to the New World. Parrots are found in every continent, except Europe; and Woodpeckers ocenr everywhere, save in Anstralia.

The vast majority of Mammals are terrestrial ; but Cetaceans and Seals take to the sea, Otters and Beavers de-
light in lakes and rivers, and Moles are subterranean. As of Birds, the aquatic species abound in the polar regions. Marsupials inhabit two widely separated areas-America and Australia. In the latter continent, they constitute three-fourths of the fauna; while Edentates, Ruminants,

Fig. 351.-Zones of Animal Life.
Horses, Elephants, Hogs, Squirrels, Moles, Carnivores, Monkeys, and Apes are wanting. Excepting a few species in South Africa and South Asia, Edentates are confined to tropical South America. The equine family is indigenous to South and East Africa and Southern Asia. In North America, Rodents form about one-half the num-
ber of Mammals; they are entirely wanting in Madagascar. Ruminants are sparingly represented in America. Carnivores flourish in every zone and continent. The prehensile-tailed Monkeys are strictly South American; while the anthropoid Λ pes belong to the west coast of Africa, and to Borneo and Sumatra. Both Monkeys and Apes are most abundant near the equator; in fact, their range is limited by the distribution of palms.
(1)

NOTES.

${ }^{1}$ The complete and claborate natural history of a single species or limited group is called a Monograph, as Darwin's "Monograph of the Cirripedia." A Memoir is not so formal or exhanstive, giving manly original investigations of a special subject, as Owen's "Memoir on the Gorilla."
${ }^{2}$ Before the time of Linnieus, the Lady-bug, e. g., was ealled "the Coccinella with red coleopters having seven black spots." He called it Coccinella septem-punctata.
${ }^{3}$ Mandino (1315) and Berenger (1518), of Bologna, and Vesalins, of Brussels (1550), were the first anatomists. Circulation of the blood discovered by Harvey, 1616. The lacteals discovered by Asellius, 169:, and the lymphatics by Rudbek, 1650 . Willis made the first minute anatomy of the brain and nerves, 1664 . The red blood-corpuseles were diseovered by Leeuwenhoek and Malpighi, 16\%5. Infusoria tirst observed by Leeuwenhock, 16%; the name given by Mïller, 1786. Swammerdam was the founder of Entomology, 16\%5. Comparative anatomy was first cultivated by Perrault, Pecquet, Duverney, and Mery, of the Academy of Paris, the latter part of the seventeenth century. Malpighi, the founder of structural anatomy, was the first to demonstrate the structure of the lungs and skin, 1690. About the same time, Ray and Willoughby first elassified Fishes on strnetural grounds. Foraminifers were seen by Beccarius one hundred and fifty years ago; but their true structure was not demonstrated till 1885, by Dujardin. Peyssonel published the first elaborate treatise on Corals, 1727. Haller was the first to distinguish between contractility and sensibility, 175\%. White blood-corpuscles discorered by Hewson in 17\%5. Spallanzani was the first to demonstrate the true nature of the digestive process, 1780 . Cuvier and Geoffroy, in 1797, proposed the first natural classification of animals. Before that, all Invertebrates were divided into Insects and Worms. Lamarek was the first to study Mollusks, 1800 ; before him, attention was confined to the shell. He separated spiders from Insects in 1812. The law of correlation enunciated by Cuvier, 1826. Von Bacr was the founder of Embryology, establishing the doctrine omnia ex ovo, 1827; but the first rescarches in Reproduction were made by Fabricius about 1600, and by Harvey in 1651. Wolff, early in this ecntury, was the pioncer in observing the phenomena of Development. Sars first observed alternate generation, 1833. Duméril is considered the father of Herpetology, and Owen of Odontology. Schleiden and Schwann published their celebrated researches in eell-structure, 1841 ; but Bichat, who died 1802 , was the founder of Histology. Protoplasm was discovered by Dujardin.
${ }^{4}$ This twofold division is arbitrary. No essential distinction, founded on the nature of the elements concerned, or the laws of their combination, can be made ; and so many so-ealled organic substances, as urea, ammonia, alcohol, tartarie and oxalic acids, have been prepared by inorganic methods, that the boundary-line is daily becoming fainter, and may in time vanish altogether. It should be added, however, that "those organic compounds which have been artifieially formed are invariably products of decomposition, or, in other words, the excretions or secretions of organized bodies; and are far less complex in their constitution than organized structures."-GregoRy's Orgaric Chemistry. "Chemical synthesis has in reality reproduced only matters unfitted for life; that is to say, mineral matters."-M. Dumas. We would here utter our protest against the introduction of any more terms like inorganic, imertebrate, acephalous, etc., which express no qualities.
${ }^{5}$ Eren the works of nearly all animals proceed in circles or segments of circles.
${ }^{6}$ London Quarterly Review, January, 1869, p. 142. It is true of any great primary group of animals, as of a tree, that it is much more easy to define the summit than the base.
${ }^{7}$ De Bary on "Myxomyecte;" Darwin on "Carnivorous Plants."
${ }^{8}$ This, of course, is not universally true. If we regard a tree as an association of phytons, or plants, instead of an individual, then each leaf and petal when developed is perfect and abiding, like the separate Polyps of a compound Coral. Some consider every organ a distinet individual existence; in this view, an animal, like a tree, is a compact community.
${ }^{9}$ It should be noted that plants evolve earbonic acid only when in a state of decomposition or exhaustive process, not during normal, vigorous growth. Both animals and plants in decay consume oxygen. "There is every reason to believe that carbonic acid is continually given off from the interior of plants, while oxygen is absorbed."-CARPENTER. It is interesting to compare the temporary respiratory organ of plants, the cotyledon, with the gills of a tadpole: both disappearing when the evolution of the permanent apparatus renders them unnecessary.
${ }^{10}$ There are certain phenomena, even among the higher plants, connected with the habits of climbing plants and with the functions of fertilization, which it is very difficult to explain without admitting some low form of a general harmonizing and regulating function, comparable to such an obseure manifestation of reflex nervous action as we have in Sponges and in other animals in which a distinct nervous system is absent.-Prof. Wyville Thomson's Introductory Lecture at Edirburgh.
${ }^{11}$ If nature had endowed us with microscopic powers of vision, and the integuments of plants had been rendered perfectly transparent to our eyes, the regetable world would present a very different aspect from the apparent immobility and repose in which it is now manifested to our senses.-Husboldt's Cosmos, i., 341.
${ }^{12}$ Sce Gray's "Structural Botany," p. 350; Rolleston's "Forms of Animal Life," p. 143.
${ }^{12}$ We may safely say that there is no plant which may not serve as food for some animal.
${ }^{14}$ Life has been ealled the vital foree, and it has been suggested that it may be found to belong to the same eategory as the convertible forces, heat and light. Life seems, however, to be more a property of matter in a certain state of combination than a forec. It does no work, in the ordinary seuse. -Prof. Wiville Thomson. The recent experiments of Robert IIamilton tend to prove the existence, in every highly developed organism, of two lives: a life resident in every atom of the structure, however eomplex, and another life for which we fail to find an expression. But the latter is the life which keeps together the structure as a whole: it is the life that selects the nutrition best suited to its individual self; it is the life that has to do with the continuation of the speeies; lastly, it is the life to which the molecular lives, which make up the strueture, are subordinated; and when this nameless life departs, these myriad lives, no longer co-operating, start on an independent course.
${ }^{15}$ There was a time in our history when a single membrane discharged all the functions of life-digesting, respiring, seereting. The separation of a heart, lung, stomach, liver, etc., for special duty, was an after-consideration.
${ }^{16}$ The vegetable cell has usually two conecutric coverings: cell-wall and primordial utricle. In animal cells the former is wanting, the membrane representing the utricle. As a general fact, animal cells are smaller than vegctable cells.
${ }^{17}$ Cells are not the sourees of life, as onee thought, but are the products of protoplasm. "They are no more the producers of vital phenomena than the shells seattered in orderly lines along the sea-beach are the instruments by which the gravitation-force of the moon acts npon the oceam. Like these, the eells mark only where the vital tides have been aud how they have acted."-Prof. Huxley.
${ }^{15}$ The white fibres are inclastic, and from $\frac{1}{400} \overline{0}$ to $\frac{1}{2+\frac{1}{0} \overline{0}}$ of an inch in diameter. They are best seen in the tendons. The yellow fibres are clastic, curled at the ends, very long, and from $\frac{1}{21000}$ to $\frac{1}{4000}$ of an inch in diameter. They are shown in the hinge-ligament of an Oyster. Comnective tissue appears arcolar, i.e., shows interspaces, only uuder the microscope.
${ }^{19}$ Certain bones, as tliose of the face and forehead, are preceded by membranes instead of cartilage.
${ }^{20}$ In the heart, the museular fibres are striated, yet involuntary; but the sarcolemma is wanting.
${ }^{21}$ Other names are medullary sheath and white substauce of Schwam.
${ }^{22}$ We may, however, infer that the animal functions are not absolutely essential to the vegetative, from the facts that plants digest without miseles or nerves, and that nutrition takes place in the embryo loug before the nerves have been developed.
${ }^{23}$ This is not strietly true, for the Elm and Oak, the Trout and Alligator, do reach a maximum size.
${ }^{24}$ The suctorial Iusects always subsist upon one and the same kind of food.
${ }^{25}$ Scorpions and Spiders properly feed upon the juices of their vietims after lacerating them with their claws; but fragments of Iusects have been found in their stomachs.
${ }^{26}$ At one end of the Tape-worm is a minute pore, by some considered the mouth, with a eirclet of spines and four suekers.
${ }^{27}$ The real tongue forms the floor of the mouth, and is found as a distinct part in a few Insects, as the Criekets.
${ }^{28}$ In a few Fishes, it is circular or oval.
${ }^{29}$ The mouth of the Whale is exeeptional, the walls not being dilatable. The act of sucking is characteristic of all young Mammals, hence the need of lips.
${ }^{30}$ The Ant-eater has two callous ridges in the mouth, against which the inseets are erushed by the action of the tongue.
${ }^{31}$ Strictly speaking, the baleen plates do not represent tecth; for in the cmbryo of the Whale we find miunte calcareous teeth in both jaws, which never cut the gum. The whaleboue is probably a peeuliar development of hair in the palate, and under the mieroscope it is seen to be made up of fibres which are hollow tubes.

3: The "tusks" of the Narwhal and Elephant are prolonged incisors; those of the Walrus and Wild Boar are canines.
${ }^{33}$ "I was one day talking with Professor Owen in the Hunterian Museum, when a gentleman approached, with a request to be informed respeeting the nature of a curious fossil which had been dug up by one of his workmen. As he drew the fossil from a small bag, and was about to haud it for examination, Owen quietly remarked, 'That is the third molar of the under jaw of an extinct species of rhinoceros.' "-Lewes's Studies in Animal Life.
${ }^{34}$ This gap or interspace, so characteristic of the inferior Mammals, is called diastema. It is wanting in the extinet Auoplotherium, and is hardly perceptible in one of the Lemurs.
${ }^{35}$ In the Spermaeeti-whale, the tceth are fixed to the gum.
${ }^{36}$ The Iguana among Reptiles, and Fishes with pavement-teeth, approach the Mammals in this respect.
${ }^{37}$ This movement is called peristaltic or vermicular, and characterizes all the sueceeding movements of the alimentary canal.
${ }^{38}$ Fishes and Amphibians have no saliva, but a short gullct. Birds are aided by a sudden upward jerk of the bead.
${ }^{39}$ Fishes and Reptiles have no pharynx proper, the nostrils and glottis opening into the mouth.
${ }^{40}$ This movement of the pharynx and esophagus is wholly involuntary. Liquids are swallowed in exactly the same way as solids.
${ }^{41}$ The few animals in which the digestive cavity is wanting are called agastric, and agree in having a very simple structure, and in being parasitic. Such are some Entozoa (as Tape-worm), and unicellular Protozoa (as Gregarina). They absorb the juices, already prepared, by the physical process of endosmose. There are other minute organisms which scem to be able to extract the necessary elements, CHON, from the medium in which they live.
${ }^{42}$ Moreover, as a Sponge is an aggregation of animals, these canals are for a community, not for a single individual. According to Alexander Agassiz, the Ctenophore have a truc alimentary canal, passing through the bodycavity.

43 "Nothing is more curious and entertaining than to watch the neatness and aceuracy with which this proces is performed. One may see the rejected bits of food passing rapidly along the lines upon which these pedicellariae ocenr in greatest number, as if they were so many little roads for the conveying away of the refuse matters; nor do the forks cease from their labor till the surface of the amimal is completely elean and free from any foreign substance." - Agassiz's Sut-side Studies.
${ }^{44}$ In the larva of the Bee, the anal orifice is wanting.
${ }^{45}$ The length of the camal in Insects is not so indicative of the habits as in Mammals. Thns, it is nearly as long and more complicated in the carnivorous Beetles than in the honcy-sipping Buttertlies.
${ }^{46}$ The object of this is unknown. It does not occur in the Oyster:
${ }^{47}$ In the Nautilus, this is preceded by a capacious crop.
${ }^{45}$ In the Shark, this is impossible, owing to a great number of fringes in the gullet hanging down toward the stomach.
${ }^{49}$ At the begimning of the large intestine in the Lizards (and in many Vertebrates above them, especially the vegetarian orders), there is a blind sac, called cucum. The worm-like appendage to the eæcum is almost peculiar to Man and the Apes.
${ }^{50}$ The Crocodile is said to swallow stones sometimes, like Birds, to aik the gastric mill.
${ }^{51}$ In the erop of the common Fowl, vegetable food is detained sixteen hours, or twice as long as animal food. The Dormouse, among Mammals, has an approach to a erop.

52 In Mollusks, the gizzard, when present, is situated between the crop and the true stomach; in Birds, it eomes after the stomach.
${ }^{53}$ The fourth stomach of Ruminants is the largest so long as the animal sucks.
${ }^{54}$ The Tape-worm has no digestive apparatus, and "flesh which is decomposed by decay into a semi-fluid mass is absorbed by the sponge-like bodics of certain animals which live in stagnant pools" (Clark); but these are not real exceptions to the rule. In both cases, transmutation goes before absorption.
${ }^{35}$ As starch is a regetable product, we would look for the most abundant saliva in those mammals that feed on herbs and grain; and such is the fact. Moreover, as sugar is heat-producing, in cold-blooded Reptiles, Fishes, Mollusks, and other like carnivores, a fluid to eonvert stareh into sugar would be ont of place.
${ }^{66}$ These substances are only dissolved and chemically modified (being converted into what are termed peptones), not "organized" or "vitalized."
${ }^{57}$ It is probable that the digestive part of the alimentary canal in all animals manifests a similar mechanieal movement. It is most remarkable in the gizzard of a fowl, which corresponds to the pyloric end of the human stomach. This muscular organ, supplying the want of a masticatory apparatus in the head, is powerful enongh to pulverize, not only grain, but even pieces of glass and metal. This is done by two hard museles moving ohliquely upon each other, aided by gravel purposely swallowed by the bird. The grinding may be heard by means of the stethoscope.
${ }^{58}$ Chyle is opaque in carnivores; more or less transparent in all other Vertebrates, as in Birds, since the food does not contain fatty matter.
${ }^{59}$ In Fishes, the villi are few or wanting. In Man, they number about 10,000 to the square inch.
${ }^{60}$ Except, probably, the brain, spinal-marrow, bones, tendons, ligaments, epidermis, ete.
${ }^{61}$ The lacteals also carry lymph when the intestinc is empty and they have nothing else to do.
${ }^{62}$ The phenomenon produced by these properties conjointly, capillary attraction and diffusion, is called endosmosis.
${ }^{63}$ The blood is colorless also in the museular part of all Fishes. That of Birds is of the deepest red. The coloring matter of the red blood in Worms is not in the corpuseles, but in the plasma.
${ }^{64}$ Coagulation in the living body is mainly prevented by being kept in coustant motion. It may be artificially arrested by common salt. Arterial blood coagulates more rapidly than venous. The disposition of the red corpuscles in chains, or rouleaux, does not occur within the blood-vessels. The cause has not been diseovered.
${ }^{65}$ The corpuscles of Invertebrates are usually colorless, even when the olood is tinged. It should be observed that those animals whose blood resembles chyle or lymph have no lacteals or lymphatics.
${ }^{66}$ Except during feetal life. The corpuseles of the Camel are non-nucleated, as in other Mammals.-If the transparent fluid from a boil be examined with a microscope, it will be seen to be almost composed of colorless corpuscles, showing their use in repairing iujurics.
${ }^{67}$ There are no valves in the reins of Fishes, Reptiles, and Whales, and few in Birds.
${ }^{68}$ Capillaries are wanting in the epidermis, nails, hair, tceth, and eartilages. Hence, the epidermis, for example, when woṛ out by nse, is not removed by the blood, like other tissues, but is shed.
${ }^{69}$ A part of the blood, howerer, in going from the capillaries to the heart, is turned aside and made to pass through the liver and kidneys for purification. This is called the portal circulation, and exists in all Vertebrates, except that in Birds and Mammals it is confined to the liver.
${ }^{70}$ Two in the higher Mammals, three in the lower Mammals, Birds, and Reptiles. They are called vence cave.
${ }^{71}$ Tricuspid in Mammals, triangular in Birds.
${ }^{72}$ The pulse of a Hen is 140 ; of a Cat, 110 to 120 ; of a Dog, 90 to 100; and of an $\mathrm{Ox}, 25$ to 42 .
${ }^{73}$ The bivalve Brachiopods, having no gills, breathe by delicate arms about the mouth, or by the "mantle."
${ }^{74}$ The air-bladder, found in most Fishes, is another rudiment of a lung, although it is used, not for respiration, but for altering the specific gravity of the Fish. In the Gar-pike of our Northern lakes, it very elosely resembles a lung, having a cellular structure, a tracheal tube, and a glottis. The gills represent lungs only in function; they are totally distinct parts of the organism. (See Huxley, "Anatomy of Vertebrated Animals," p. 92.)
${ }^{75}$ Well seen in Tadpoles, or young of the Frog.
${ }^{76}$ In the human lungs, they number $600,000,000$, eaeh about $\frac{1}{10} \overline{0}$ of an ineh in diamcter, with an aggregate area of 132 square feet. The thickness of the membrane between the blood and the air is $\frac{2}{2+00}$ of an inch. The lungs of Carnivores are more highly developed than those of IIcrbivores. In the Manatee, they are not confined to the thorax, but extend down nearly to the tail.
${ }^{77}$ Croeodiles are the only Reptiles whose nostrils open in the throat behind the palate, instead of directly into the mouth-cavity. This euables the Crocodile to drown its vietim withont drowning itself; for, by keeping its snout above water, it can breathe while its month is wide open.
${ }^{78}$ A rudimentary diaphragm is seen in the Croeodile and Ostrich.
${ }^{79}$ The poison-glands of venomous Serpents and the silk-vessels of Caterpillars are considered to be modified salivary glands. Birds, Snakes, aud Cartilaginous Fishes have no urinary bladder.
${ }^{80}$ Since the weight of a full-grown animal remains nearly uniform, it must lose as mueh as it reccives; that is, the excretions, including the solid residunm ejected from the intestinal eanal, equal the food and drink.
${ }^{81}$ Other names for derm are, cutis, corium, enderon, and true skin; and for epidermis, cuticle, ecderon, and scarf-skin. The derm is often so intimately blended with the museles, that its existence as a distinct layer is not easily made out. Even in Iufnsoria, we find the tunic double, an outside cuticula lined by a soft cortical layer; and in Jelly-fishes, naturalists distinguish an ectoderm and endoderm.
${ }^{82}$ See Fig. 146. Papillæ are searcely visible in the skin of Reptiles and Birds.
${ }^{83}$ The animal basis of this strueture is chitine, a peeuliar substance found in the hard parts of all the artieulated animals.
${ }^{84}$ The large claws within the old crust are soft, and hence are able to be drawn through the small joints.
${ }^{85}$ The shell is always an epidermal strueture, even when apparently internal. The horny "pen" of the Squid, the "bone" of the Cuttle-fish, and the caleareons spot on the back of the Slug, are only concealed under a fold of the mantle. So the shell of the common Unio, or Fresh-water Clam, is covered with a brownish or greenish membrane, which is the outer layer of the epidermis. Where the mantle covers the lips of a shell, as in most of the large sea-snails, or where its folds cover the whole exterior, as in the polished Cowry, the epidermis is wanting, or covered up by an additional layer.
${ }^{86}$ The pearls of commerce, found in the mantle of some Mollusks, are similar in structure to the shell; but what is the innermost layer in the shell, is plaecd on the outside in the pearl, and is mueh finer and more compact. The pearl is formed around some nueleus, as an organie particle, or grain of sand.
${ }^{87}$ When the centrum is concave on both sides, as in Fishes, it is said to be araplicalous; when concave in front and convex behind, as in Croeodiles, it is called procolous; when concave behind and convex in front, as in the neekvertebre of the Ox, it is opisthocolous. In the last two cases, the vertebre unite by ball-and-socket joints.
${ }^{69}$ A few have but one pair, the Whale and Siren wanting the hind pair; while some have noue at all, as the Snakes and lowest Fishes. In land ani-
mals, the posterior limbs are generally most developed; in aquatic animals, the anterior. Dr. Wyman contends that the limbs are tegumentary organs, and attached to the vertebral column in the same sense that the teeth are attached to the jaws.
${ }^{89}$ The museles of some Invertelurates, as Spiders, are yellow.
${ }^{90}$ The museles of the heart and gallet are striped. In the lowest animals, these distinetions of voluntary and involuutary, striated and smooth, solid and hollow, museles can seldom be made.
${ }^{91}$ The skeleton of the Carrion-crow, for example, weighs, when dry, only 23 grains.
${ }^{92}$ The Dragon-fly can outstrip the swallow, nay, it can do in the air more than any bird-it can fly backward and sidelong, to right or left, as well as forward, and alter its course on the instant without turning. It makes 28 beats per second with its wings; while the Bee makes 190 , and the Housefly 330. The swiftest Race-horse can double the rate of the Salmon. So that Insect, Bird, Quadruped, and Fish would be the order according to velocity of movement.
${ }^{93}$ These suckers (pulvilli) have a delicate fringe of hairs, each hair being a minute tube containing a viscid fluid by which the Fly alheres.
${ }^{94}$ The cilia of Infusoria appear to act independently of any nervous power.
${ }^{95}$ More precisely, the term brain, or brains, applies only to the ecrebrum, while the total contents of the cranium are called encephalon.
${ }^{96}$ The exact functions of the cerebrum are not yet clearly understood. If we remove it from Fishes, or even Birds, their voluntary movements are little affeeted; while the Amphioxus, the lowest of Fishes, has no brain at all, but its life is regnlated by the spinal cord. Such mutilated animals, however, make no intelligent efforts. The substance of the cerebrum, as also the cerebellnm, is insensible, and may be ent away without pain to the animal ; and when both are thus removed, the animal still retains sensation.
${ }^{97}$ Parts destitnte of blood-vessels, as hair, tecth, nails, cartilage, ete., are not sensitive. The impressibility of the nerves is proportioned to the activity of circulation. According to the recent investigations of Dr. Bowditch, the channels of motor and sensitive impressions lie in the lateral, and not in the anterior and posterior, columns of the spinal cord.

99 "Tentacles" and "horns" are more or less retractile, while antennæ are not, but all are hollow. Antenna alone are jointed.
${ }^{99}$ In Man, the soft palate and tonsils also have the power of tasting.
${ }^{100}$ No organ of hearing has been discovered with certainty in the Radiates and Spiders.
${ }^{101}$ It is wanting in the aquatic mammals. Crocodiles have the first representative of an outside ear in the form of two folds of skin.
${ }^{102}$ This, like the definition of smell and hearing, is loose language. There is no such thing as sound till the vibrations strike the tympanum, nor even then, for it is the work of the brain, not of the auditory nerve. Sound is the sensation of the wave-movement of the air, and hearing is that sensation. So without eyes the world would be wrapped in darkness; light is nothing.
${ }^{103}$ In Invertebrates and aquatic Vertebrates, the crrstalline lens is globu-
lar; or, in other words, it is round in short-sighted animals, and flattish in the long-sighted. The lens of the Invertebrate is not exactly the same as the lens of the Vertebrate eye, though it performs the same function; it is really a part of the cornea.
${ }^{104}$ The Ant has 50 in eaeh eye, the Honse-fly 8000, the Dragon-fly $12,500$.
${ }^{305}$ The pigment, therefore, while apparently in front of the retina, is really behind it, as in Vertebrates. The layer beneath the cornea, serving as an "iris," is wanting in noeturnal insects, since they need every ray of light. The optic nerve alone is insensible to the strongest light.
${ }^{206}$ It should be notieed that this corresponds with another peculiar fact already mentioned, that either hemisphere of the brain controls the museles on the opposite side of the body. In Iuvertebrates the motor apparatus is governed on its own side.
${ }^{107}$ Sharks have eyelids, while Snakes have none. The third cyelid (called nictituting membrune) is rudimentary in Mammals.
${ }^{108}$ An infant would doubtless learn to walk if brought up by a wild beast, since it was made to walk. Just as an infusorium moves its eilia, not because it has any object, but beeause it can move them. New-born puppies, deprived of brains, have suckled; and decapitated eentipedes run rapidly. Such physical instiuets exist without mind, and may be termed "blind impulses."

109 We say "apparently," because it may be a fixed habit, first learned by experience, transmitted from generation to generation. A duckling may go to the water, and a hound may follow game in some sense, as Sir John Herschel takes to astronomy, inheriting a taste from his father. Breeders take advantage of this power of inheritanec.

110 "Thus, while the human organism may be likened to a keyed instrument, from which any music it is capable of producing ean be ealled forth at the will of the performer, we may compare a Bee, or any other Insect, to a barrel-organ, which plays with the greatest exactness a certain number of tunes that are set upon it, but can do nothing else."-Carpenter's Mental Physiology, p. 61. This eonstancy may be largely due to the uniformity of conditions under which Insects live.
${ }^{211}$ We may say, as a rule, that the proportion of instinct and intelligence in an animal corresponds to the relative development of the spinal cord and cerebrum. As a rule, also, the addition of the power to reason comes in with the addition of a cerebrum, and is proportioned to its development. Between the lowest Vertebrate and Man, therefore, we observe successive types of intelligence. Intelligence, however, is not aceording to the size of the brain (else Whales and Elephants would be wisest), but rather to the amount of gray matter in it. A honey-comb and an Oriole's nest are constructed with more care and art than the hut of the savage. It is truc, this - is no test of the capability of the animal in any other direction; but when they are fashioned to suit eircumstances, there is proof of intelligence in one direction. Plyssiologists now hold that the cerebrum is not essential to eonseionsness.
${ }^{112}$ Air-breathing Vertebrates, as the Manatee and Sea-lion, are exeeptions. There are, doubtless, many sounds we can not hear. The noise of a Spider
may be terrific to a Fly; and while Flies hear one another, they take no notice of the human voice.
${ }^{113}$ An exception to the general rule that the smaller animals have more acute roices.
${ }^{114}$ It is wanting in a few, as the Storks.
${ }^{215}$ The Nightingale and Crow have vocal organs similarly constructed, yet one sings, and the other eroaks.

116 The three methods are snbstantially alike; for an egg is only a separated bud. In the lower organisms, the parent is completely broken up into new individuals; in the higher, new individuals form but an infinitesimal part (germ) of the parent. Under any form, reproduction is a process of disintegration. Some Protozoa do not appear to prodnce by eggs.

117 These cells are detached portions, or buds, of the parental organisms. Generally, these two kinds of cells are produced by separate sexes; but in a few cases, as the Snail, they originate in the same individual. Such an animal, in whom the two sexes are combined, is called an hermaphrodite.
${ }^{218}$ If an egg be violently shaken, this connection is broken; and this is the seeret of making an egg stand on end without breaking it, as Columbus is said to have done.
${ }^{119}$ The eggs of Mammals are of nearly uniform size; those of Birds, Insects, and most other animals are proportioned to the size of the adult. Thins, the egg of the Epyornis, the great extinet bird of Madagascar, has the eapacity of $50,000 \mathrm{Humming}$-birds' eggs.
${ }^{220}$ As a general rule, when both sexes are of gay and conspicnous colors, the nest is such as to conceal the sitting Bird; while, whenever there is a striking contrast of colors, the male being gay and the female dull, the nest is open. Such as form no nest are many of the Waders, Swimmers, Scratchers, and Goatsuckers.
${ }^{121}$ As the Crocodile, by its gizzard and its rude nest, looks forward, so the ponched Kangaroo looks backward, to the true ornithic type.
${ }^{122}$ This rudiment lies transversely to the long axis of the egg; and as the chick develops, it turns upon its side, so that the forepart of the head usually faces the narrow end of the egg.
${ }^{123}$ The blood comes into being before the blood-ressels, and veins before arteries; i. e., the very first motion is toward the heart. The blood is first yellowish. The red corpuseles are supposed to be derived from the nuelei of the white corpuscles: the origin of the latter is undetermined.
${ }^{124}$ Exactly as the blood in the capillaries of the skin is aërated by the external atmosphere.
${ }^{125}$ Thus, the hollow wing-bone was first solid, next a marrow-bone, and finally a thin-walled air-cell. The solid bones of the Penguin are examples of arrested development.
${ }^{126}$ The thigh-bone of the child consists of five distinct parts; in the adult, they are united into one.
${ }^{127}$ Muscle is mainly fibrine, while nerve is chiefly albumen.
${ }^{128}$ This generalization must not be confounded with the old statement, which is not true, that the higher animals pass through all the phases of the lower life. See Spencer's "Principles of Biology," i., 143; Clark's "Mind in Nature," 159.
${ }^{129}$ For this reason, Mammals are called viviparous; but, strictly speaking, they are as oriparous as Birds. The process of reproduction is the same, whether the eggr is hatehed within the parent or without. The eggs of Birds contain whatever is wanted for the development of the embryo, except heat, whieh must come from without. Manmals, having no foodyolk, obtain their nutrition from the blood of the parent, and after birth from milk. Most of the slarks are viviparous.
${ }^{130}$ The larvæ of Butterflies and Moths are called caterpillurs; those of Beetles, grubs; those of Flies, maggots; those of Mosquitoes, wigglers.-The terms larva, pupu, and imugo are relative only; for, while the grub and caterpillar are quite different from the pupa, the bee-state is reached by a very gradual ehange of form, so that it is diffieult to say where the pupa ends and the imago begius. In faet, a large number of Inseets reach maturity through an indefinite number of slight changes. The Humble-bee molts at least ten times before arriving at the winged state.
${ }^{131}$ Every tissue of the eaterpillar disappears before the development of the new tissues of the imago is commenced. The organs do not change from one into the other ; but the new set is developed out of formless mat-ter.-The pupa of the Moth is protected by a silken cocoon, the spinning of which was the last aet of the larva; that of the Butterfly is simply inclosed in the dried skin of the larra, whieh is called chrysalis because of its golden spots. The pupa of the Honey-bee is called nymph; it is kept in a wax-eell lined with silk, spun by the nursing-bee, not by the larra. The time required to pass from the egg to the imago varies greatly: the Bee consumes less than twenty days, while the Cieada requires seventeen years.
${ }^{132}$ Compare the amount of food required in proportion to the bulk of the bods, and also with the amount of work done, in youth, manhood, and old age.
${ }^{133}$ Excepting, perhaps, that the new tail of a Lizard is cartilaginous.
${ }^{134}$ The patella, or knee-pan, has no representative in the fore-limb, and, strietly, it belongs to the muscular system rather than to the skeleton. Some anatomists contend that the great toe is homologous with the little finger, instead of the thumb.
${ }^{135}$ It is doubtful whether the dorsal tube of Insects and the heart of Mammals are homologous, as the circulatory organs of Invertebrates may prove to be homologous with the lymphatie system of Vertebrates. The jawbones and limb-bones of Vertebrates are homologous, according to some naturalists.
${ }^{136}$ Polarity begins, as we have already seen, in the very first change of an egg.
${ }^{137}$ The structure of the highest plants is more complex than is that of the lowest animals; but, for all that, powers are possessed by jelly-fishes of which oaks and cedars are devoid.-Mivart.
${ }^{138}$ It is, however, true that the number of eggs laid is proportioned to the risk in development.
${ }^{139}$ According to Mr. Darwin, the characters which naturalists consider as showing true affinity between any two or more species are those which have been inherited from a common parent, and, in so far, all true classiti-
eation is genealogical ; i.e., it is not a mere grouping of like with like, but it includes like descent, the cause of similarity. In the existing state of science, a perfect classification is impossible, for it involves a perfect knowledge of all animal structure and life's history. As it is, it is only a provisional attempt to express the real order of nature, and it comes as near to it as onr laws do in explaining phenomena. It simply states what we now know abont comparative anatomy and physiology. As science grows, its language will become more precise and its classifieation more natural.
${ }^{140}$ The term type is also used to signify that form which presents all the characters of the gromp most completely. Each genus has its typical species, each order its typical genus, cte. The word is also applied to the specimen on which a new species is founded. A persistent type is one which has continned with very little change through a great range of time. The family of Oysters has existed throngh many geological ages.
${ }^{141}$ The Cœlenterata and Echinodermata together make up the Radiata, the old subkingdom of Cuvier. Echinoderma is probably more correct than Echinodermata; but we retain the old orthography.
${ }^{142}$ Strictly speaking, no individual is independent. Such is the division of labor in a hive, that a single Bee, removed from the community, will soon die, for its life is bound up with the whole. In a philosophical sense, Man is a composite being, every organ being an individual, though not an independent, existence. An individual repeats the type of its kingdom, subkingdom, class, order, family, genus, and species, through its whole line of descent.
${ }^{143}$ The Millepore coral, so abundant in the West Indian Sea, is the work of Hydroids. The surface is nearly smooth, with minute punctures. Gegenbaner, Hacckel, and others hold that the Acalephs have no body-cavity at all, the internal system of canals being homologous with the intestinal cavity of other animals.

144 Among the exceptions are Tubipora, which have cight tentacles and no septa, and the extinct Cyathophylla, whose septa are eight or more.

145 The longest septa (called primary) are the oldest : the shorter, secondary ones, are developed afterward. As a rule, selerodermic corals are calcareous, and a section is star-like; the sclerobasic are horny and solid. The latter are considered higher in rank.
${ }^{146}$ Some Star-fishes (Solaster) have twelve rays. In all Echinoderms, probably, sea-water is freely admitted into the body-cavity around the viscera. The canals likewise contain water, which enters through a porous tubercle, the madreporiform plate, or "dorsal wart," best seen on the back of the Starfish and Sea-urchin.-By some, Echinoderms are regarded as Worms.
${ }^{147}$ The shell is not strictly external, like the crust of a Lobster, but is coated with the soft substance of the animal.
${ }^{148}$ Six hundred pieces have been counted in the shell alone, and twelre hundred spines. The feet number about three thousand. They can be protruded beyond the longest spines.
${ }^{149}$ The most important genera are Terebratula, Rhynchonella, Discina, Lingula, Orthis, Spirifer, and Productus. The first four have representatives in existing seas. Professor Morse, indorsed by Kowalensky, maintains the
affinity of Brachiopods to the Worms. Davidson, however, retains them in their old position, as a class independent of, but related to, the Mollusea. By many, the Tunicates are joined to the Brachiopods; by others, they are called Worms in disguise.
${ }^{150}$ There are some exceptions : the Oyster is unequivalved, and the Pecten. equilateral.
${ }^{151}$ The chicf impressions left on the shell are those made by the muscles -the dark spots called "eyes" by oyster-men; the pallial line made by the margin of the mantle; and the bend in the pallial line, called pallial sinus, which exists in those shells having retraetile siphons, as the Clam.
${ }^{152}$ The Pearl Oyster has a small, anterior muscle in the umbo, and the Spondylus has teeth.
${ }^{153}$ The muscular impressions in Tridaene are blended into one. It is conjectured that this is the ease in the Oyster.
${ }^{154}$ The Clam is the highest of Lamellibranchs, and the Oyster one of the lowest. The Venus arenaria, or "Soft Clam," has its month always open a little ; while V. mercenaria, or "Hard Clam," keeps its mouth elosed.
${ }^{155}$ The Sling has no shell to speak of, and the Chiton is covered with cight pieces. It may be remembered, as a rule, that all univalve shells in and around the United States are Gasteropods, and that all bivalves in our rivers and lakes, and along our sea-coasts (save a few Brachiopods), are Lamellibranchs.
${ }^{156}$ That is, if viewed with the aperture facing the observer. Shells twisted in the opposite direction are called "left-handed."
${ }^{157}$ Such as Dentalium, which may be a Pteropod, and the swimming Nucleobranch, as Carinaria.
${ }^{158}$ Instead of a strong breathing tube with a valse, answering for a forcepump and propeller, as in the Cuttle-fish, it has only an open gutter made by a fold in the mantle, like the siphons of the Gasteropods. The back chambers are filled with nitrogen gas.
${ }^{159}$ The common Poulpe has two thousand suckers, each a wonderful little air-pump, under the control of the animal's will.
${ }^{160}$ Hence the theory of Spencer, favored by Wallace and Clark, that Articulates are compond animals, each segment representing an individual. The dorsal tube is probably homologous with the right ventricle.
${ }^{161}$ The order is one of relation rather than of rank. The elasses can not be arranged serially. The Myriapods have a worm-like multiplication of parts, degrading them, and their nerrous system is simpler than that of Caterpillars; yet their heads show a elose relationship to Insects. The Arachnids include some lower forms than Myriapods; on the other hand, for their wonderful instincts, Owen places them above the Inseets. They are closely allied to Crustaceans, and stand more nearly between Crustaceans and Inseets than between Myriapods and Insects. The higher Articulates begin life as worm-like embryos. None of the air-breathers have two pairs of antennæ, while the aquatic classes may have.-Articulates with jointed appendages articulated to the body are called Arthropoda.
${ }^{162}$ The joints of the Tape-worm are not true segments, only successive growths containing ova. The true animal is the so-called "head." The
intestinal Worms are, by some eminent naturalists, separated under the distinct name of Helminthozoa.
${ }^{163}$ Apparent exceptions: Some lower forms have no branchire, but respire by the skin, usually of the legs, but this is substantially a gill; certain Crabs, also, live on dry land, but they manage to keep their gills wet.
${ }^{264}$ The student should remember that this threefold division is not equivalent to the like division of a vertcbrate body.
${ }^{165}$ Each ring (called somite) is divisible into two ares, a dorsal and ventral, and each arc consists of four pieces.

166 Sight and hearing are the only senses discovered in this class.
${ }^{167}$ The four pairs of legs in Arachnids answer to the two pairs of maxillæ, the great claws, and the tirst pair of legs of the Lobster.
${ }^{168}$ Compare the single thread of the Silk-worm and other caterpillars.
${ }^{169}$ The common Spider, Epeira, which constructs with almost geometrical precision its net of spirals and radiating threads, will finish one in forty minutes, and just as regularly if confined in a perfectly dark place.
${ }^{170}$ These parts do not correspond to the parts so named in human anat. omy.
${ }^{171}$ The pupa-case is generally ornamented with golden spots; hence the common name chrysalis.
${ }^{172}$ More properly, at least in the Bee, the lip is not converted into a suetorial tube, but into an extensible tongue, with which the liquid food is lapped up.
${ }^{173}$ All Vertebrates lave a notochord, but not all have a rertebral column, as the Amphioxus. This eccentric creature, without skeleton, limbs, brain, beart, lymphatics, or red blood, we leave out of account. It is not fairly a member of the subkingdom, but rather a link between the Mollusks and Fishes. In aquatic animals the posterior limbs are the ones aborted or rednced, if any; in land animals the fore-limbs are usually sacrificed. The vertebre correspond with and are dependent on the nervous centres. This is shown by the fact that the tail, which is reproduced by Lizards in case of loss, is a single bone, because although bone may be reproduced, the spinal cord can not be.
${ }^{174}$ The smallest corpuseles are found in Ruminants; the largest in Amphibians with permanent gills. The average size in Birds is double that of Man's, and about equal to that of the Elephant. Those of Monkeys are a trifle smaller than the human. In the embryo they are larger than in the adult. Camels only among Mammals have oval disks.
${ }^{175}$ Oblong skulls, whose diameter from the frontal to the occipital greatly exceeds the transserse diameter, are called dolichocephalic; and such are usually prognathous, i.e., have projecting jaws, as the negro's. Round skulls, whose extreme length does not exceed the extreme breadth by a greater proportion than 100 to 80 , are brachycephalic; and such are generally orthognuthons, or straight-jawed.
${ }^{176}$ The classes are varionsly grouped into the Hrematocrya, or Cold-bloodcd, and the Hematotherma, or Warm-blooded; into the Branchiata and Abrunchiata; into the Allantoidea and Anallantoidea; and into Ichithyopsidn (Fishes and Amphibians), Sauropsida (Reptiles and Birds), and Mammalia.

According to Owen, the only eharacter which absolutely distinguishes Fishes and Reptiles is whether or not there is an open passage from the nostrils to the mouth.
${ }^{177}$ Some Iehthyologists, as Agassiz, Haeckel, Cope, and Gill, divide the Vertebrates below the Amphibians into three or four distinct elasses. See "Smithsonian Mise. Coll.," vol. xi.
${ }^{178}$ It would be safe to say that any living Vertebrate with side fins supported by fin rays is a Fish; but the extinet Amphibian Ichthyosuurus also had them.
${ }^{179}$ The eapacity for growing as long as life lasts, which some Fishes are said to possess, may be explained by the facts that their bodies are, firstly, of very nearly the same specific gravity as the water in which they live, and, secondly, of a temperature which is but a very little higher than that which they are there exposed to. Thus the foree which in other animals is expended in the way of opposition to that of gravity and in the way of producing heat is available for sustaining continuous growth.-Rolleston.
${ }^{180}$ Scales with smooth, circular outline are called cycloid; those with notched or spiny margins are ctenoid. A few Teleosts are without scales or osseous skeleton. The ventral fins are often wanting, and the pectoral occasionally. There are about 9000 speeies of bony fishes.
${ }^{181}$ Amphibians with a moist skin are also remarkable for their cutaneous respiration. They will live many days after the lungs are removed. Their vertebre vary in form: in the lowest they are biconcave, like those of Fishes; in Salamanders they are opisthocelian: in the Frogs and Toads they are usually procelian.
${ }^{182}$ Salamanders are often taken for Lizards, but differ in having gills in early life and a naked skin. The Protens and Siren resemble a tadpole arrested in its development.
${ }^{143}$ The Surinam Toad has no tongue.
${ }^{184}$ The Reptilian heart may be likened to a persistent foetal heart of the higher animals.

185 The posterior pair of limbs is sometimes represented by a pair of small bones; and there is one Ophidian which shows traces of external limbs.
${ }^{186}$ There are some notable exceptions. The Slow-worm is legless, and the Chameleon has a soft skin.
${ }^{187}$ Aecording to Owen; but Huxley insists that the plastron belongs to the exoskeleton.
${ }^{188}$ Knees always bend forward, and heels always bend backward.
${ }^{189}$ It is a peeuliarity of all Birds, though not confined to them, that the generation produets and the refuse of digestion are all discharged through one common outlet.

190 Existing Birds have been divided into two primary groups, according to the development of the breast-bone: (1) Rutite, or Runners, as the Ostrich, without a keel; and (2) Carinate, or Fliers, comprising the grand majority of Birds, having a prominent keel. The fossil Archoopteryx, a lizard-like Bird, is plaeed in a separate division, Surrure. Birds have also been divided aceording to their degree of development at birth into (1) Hesthogenous, as Fowls, Ostriehes, Plovers, snipes, Rails,

Divers, and Ducks, whose chick is hatehed completely clothed, has perfeet senses, runs about, and feeds itself. When full grown, it uses its feet rather than wings, flying with a rapid, labored stroke, and taking the first opportunity to settle on land or water, not on trees; the male is polygamous and pugnacious; the female makes little or no nest; and neither sex sings. This group is of the best use to man, and approaches more nearly to Mammals, the liabitual use of the legs and preferenee for land or water degrading it as a Bird and raising it in the list of animals; (2) Gymnogenous, as Gulls, Pelieans, Birds of Prey, Herons, Sparrows, Woodpeckers, and Pigeons, whose chick comes helpless, blind, and naked; it can neither walk nor feed itself, but gapes for food; the adult is monogamous, and builds claborate nests in trees and perches; many sing; all are habitual fliers. These are birds par excellence, gifted with higher intelligence than the others, and are never domesticated for food.
${ }^{291}$ We can not claim that this airy skeleton is necessary for flight. The bones of the Bat are free from air, yet it is able to keep longer on the wing than the Sparrow. The common Fowl has a hollow humerus; while some Birds of long flight, as the Snipe and Curlew, have airless bones.
${ }^{192}$ Hopping is characteristie of and confined to the Perchers; but many of them, as the Meadow-lark, Blackbird, and Crow, walk.

193 This order, founded on the disposition of the toes, is purely artificial. But it is better to retain it until ornithologists agree upon some natural arrangement.
${ }^{194}$ In the Swifts and Goatsnekers, the hind toe is versatile, being turned sideways, or even forward; while the third and fourth toes of the Kingfisher are united, and its wings are short.
${ }^{195}$ The Whales are hairy during foetal life only.
${ }^{196}$ The brain of Mammals differs also from that of lower Vertebrates in that the lobes of the ccrebrum are connected by a band called corpus callosum, and the lobes of the cerebellum by the pons Tarolii.
${ }^{197}$ As in the Whale, Porpoise, Seal, and Mole. Teeth are wanting in the Whalebone Whales, Ant-eaters, Manis, and Echidna.
${ }^{198}$ An acceptable classification of Mammals is still a desideratum. Owen's subclasses, founded on the structure of the brain, and De Blainville's (adopted by Husley and Gill), founded on the nature of the reproductive organs, are unsuitable for a text-book. It is sufficient to state here that the two lowest orders are implacental, and their young are born in a very imperfect condition; while all the rest are placental, whose cmbryos are more completely formed before birth, being connected with the blood of the mother by means of the placenta, a development of the allantois.
${ }^{199}$ The Monotremes resemble Birds and Reptiles in having but one outlet for the rectum, genital, and urinary organs. They resemble Marsupials in having marsupial bones, but have no pouch. They differ from all other Maumals in having no distinct nipples.
${ }^{200}$ The pouch is wanting in some Opossums and the Dasyurus.
${ }^{201}$ The Edentates are allied to the Reptiles, especially the Tortoises: compare the carapax of the Armadillo, the broad ribs, toothless mouth, and gizzard-like stomach of the Ant-cater, and the great size of the blood-corpuseles in the Sloth.
${ }^{202}$ For the best aceount of the Elephant, see Tennant's "Ceylon."
${ }^{203}$ The forefeet of the Tapir have four toes, but one does not touch the ground.
${ }^{204}$ The extinet Horse (Hipparion) had three toes, two small hoofs dangling behind. The foot of the Horse is of wonderfil structure. The bones are constructed and placed with a view to speed, lightuess, and strength, and bound together by ligaments of marvelous tenacity. There are elastie pads and eartilages to prevent jarring; and all the parts are covered by a living membrane which is exquisitely sensitive, and endows the foot with the sense of touch, without which the animal could not be sure-footed. The hoof itself is a world of wonders, being made of parallel fibres, each a tube composed of thousands of minute cells, the tubular form giving strength. There are three parts, "wall," "sole," and " frog "一the triangular, ehastie piece in the middle, which acts as a cushion to prevent concussiou and also slipping.
${ }^{205}$ The American Peceary has three toes on the hind foot.
${ }^{206}$ The Camel and Llama are exceptional, having two upper incisors and canines, are not strictly cloven-footed, and are hornless.
${ }^{207}$ The Hyena alone of the Carnivores has only four toes on all the limbs, and the Dog has four hind toes.-The Lion is the king of beasts in majesty, but not in strength. Five men can easily hold down a Lion, while it requires nine to control a Tiger.
${ }^{205}$ The old term Quadrumana is rejected because it misleads, for Apes, as well as Men, have two feet and two hands. There is as much anatomical difference between the feet and hands of an Ape as between the feet and hands of Man. Owen, however, with Cuvier, considers the Apes truly "fourhanded."
${ }^{209}$ The eye-orbits of the Lemurs are open behind. The Flying Lemur (Galcopithecus) is eonsidered an Insectivore.
${ }^{210}$ The little Marmosets are not typical Monkeys, having a non-prehensile tail and only 32 teeth.
${ }^{211}$ It fails to cover in the Howling Monkey and Siamang Gibbon; but in the Squirrel Monkey it more than covers, overlapping more than in Man. As to the convolutions, there is every grade from the almost smooth brain of the Marmoset to that of the Chimpanzee or Orang, which falls but little below Man's.
${ }^{212}$ The tailed Apes of the Old World have longer legs than arms, and generally have "eheek-pouches," which serve as poekets for the temporary stowage of food.
${ }^{213}$ In the human infant, the sole naturally turns inward; and the arms of the embryo are longer than the legs.
${ }^{214}$ The Aye-aye, the lowest of the Lemurs, is remarkable for the large proportion of the cranium to the face.
${ }^{215}$ This feature was shared by the extinet Anoplotherium, and now to some extent by one of the Lemurs (Tarsizus).
${ }^{216}$ We have treated Man zoologically only. His place in Nature is a wider question than his position in Zoology: but it involves metaphysical and psychologieal considerations, which do not belong here.
${ }^{217}$ See Lewes's clarming "Studies in Animal Life." Doubtless an examination of all the strata of the earth's erust would diselose forms immensely outurmbering all those at present known. And even had we every fossil, we wonld have but a fraction of the whole, for many deposits have been so altered by heat that all traces have been wiped out. Animal life is mueh more diversified now than it was in the old geologic ages; for several new types have come into existence, and few have dropped out.
${ }^{218}$ A mong the types characteristic of America are the Gar-pike, Snappingturtle, Hummers, Sloths, and Musk-rat. Many of our most common animals are importations from the Old World, and therefore are not reekoned with the American fauna; sueh as the Horse, Ox, Dog and Sheep, Rats and Miee, Honey-bee, House-ily, Weevil, Currant-worm, Meal-worm, Cheese-maggot, Cockroach, Croton-bng, Carpet-moth and Fur-moth.-Distribntion is complieated by the voluntary migration of some animals, as well as by Man's intervention. Besides Birds, the Bison and Seals, some Rats, eertain Fishes, as Salmon and Herring, and Loensts and Dragon-flies among Inseets, are migratory.
${ }^{219}$ When the eable between Franee and Algiers was taken up from a depth of eighteen hundred fathoms, there came with it an Oyster, Cockle-shells, Annelid tabes, Polyzoa, and Sea-fans. Ooze brought up from the Atlantie plateau (two thousand fathoms) consisted of ninety-seven per eent. of Foraminifers.
${ }^{220}$ Only around the shores of the Aretic Sea are the same animals and plants found through every meridian; and in passing southward, along the three prineipal lines of land, specific identities give way to mere identity of genera ; these are replaeed by family resemblances, and at last even the families beeome in a measure distinct, not only on the great continents, but on the islauds, till every little rock in the ocean bas its peeuliar inlubitants.

THE NATURALIST'S LIBRARY.

THE following works of reference, accessible to the American student, are recommended:

Agassiz, Methods of Study in Natural History.
Carpenter, Comparative Physiology.
Marsuall, Outlines of Physiology.
Hcxlex, Lessons in Elementary Physiology.
Mivart, Lessons in Elementary Anatomy.
Aoassiz and Gould, Principles of Zoology.
Rolleston, Forms of Animal Life.
Lewes, Studies of Animal Life.
Jones, General Outline of the Organization of the Animal Kingdom.
Clark, Mind in Nature.
Huxlfy and Martin, Elementary Biology.
Owen, Comparative Anatomy of Invertebrates and Vertebrates.
Sieboid, Anatomy of Invertebrates.
Hexley, Anatomy of Vertebrated Auimals.
Hexley and Hawkine, Atlas of Comparative Osteology.
Flower, Osteology of Mammalia.
Chadveat, Comparative Auatomy of Domesticated Animals.
Gray, Anatomy, Descriptive and Surgical.
Foster and Balfour, Elements of Embryology.
Paokard, Life Ilistories of Animals.
Strioker, Handbook of IIuman and Comparative Histology.
Lankester, Ialf-hours with the Microscope.
Owfex, Paleontology.
Knignt, English Cyclopredia (Natural History).
Van mer IIonyrn, IIandbook of Zoology.

Cevier, Animal Kingdom.
Woon, Illustrated Natural Mistory.
Milne-Edwards, Maunal of Zoology.
Nichorson, Maunal of Zoology.
Tennex, Elements of Zoology.
Morse, First Book of Zoology.
Jowes, Animal Creation.
Agassrz, Sea-side Studies iu Natural History.
Taylor, Half-hours at the Sea-side.
Greenf, Manuals of Sponges and Ccelenterata.
Dana, Corals and Coral Islands.
Verrill and Smitn, Invertebrates of Vineyard Sonnd.
Gould and Binner, Invertebrata of Massachusetts.
Woorwarl, Manual of Mollusca.
Packard, Guide to the Study of Insecte.
Denean, Transformations of Insects.
Storer, Fishes and Reptiles of Massachusetts.
De Kar, Natural History of New York.
Coere, Key to North American Birds.
Jordan, Manual of the Vertebrates, etc., of Northeru United States.
Bardi, Brewfr, and Ridgwar, Birds of North America.
Barrd, Mammals of North America.
Allen, Mammalia of Massachusetts.
Scamon, Marine Mammals of North Pacific.
Brack, Manual of Ethnology.
Darwin, Animals and Plants under Domestication.
Wallace, Geographical Distribation of Animals.
Merbay, Geographical Distribution of Mammals.

Of serial publications, the student should have access to the American Naturalist, American Journal of Science, Popular Science Monthly, Smithsoniun Contributions and Miscellaneous Collections, Bulletins and Proceedings of the various societies, Popular Science Review, Intcllectual Observer, and Annals and Magazine of Natural History.*

[^2]
I N D E X .

Abranoilate Worms, 272, 352.
Absorbent System, 93.
Acalephl, attemate generation of, 207.
" structure of, $23 \mathrm{~S}, 37 \mathrm{~s}$.
Acariua, 277, 353.
Acarns, 353.
Acipenser, 303, 354 .
Acoru-shells, 274.
Actinaria, 350.
Actinia, anatomy of, 74.
" described, 241, 350.
" developmeut of, 200.
Actinophrys, 349.
Adder, 30 .
Adipose Tissue, 36.
Eolis, 262.
Agastric Animals, 370.
Air-bladder of Fishes, 116, 372.
Air-breathers, 111, 113.
Albatross, 317.
Alcyonaria, 350.
Alcyonium, 350.
Alimentary Canal, 73.
Allautoidea, 350 .
Allantois, 198.
Alligator, 312, 355.
Alternate Generation, 206, 239.
Ambulacra, 129, 252.
Ammonite, 266.
Amnion, 197.
Amæba feeding, 50, 74.
" locomotion of, 155.
" structure of, 232,349 .
American Types, 3\&4.
Amphibians, described, $305,354,351$. " egges of, 193.
Amphiccelons, 373 .
Amphioxus, 50, 302, 374, 350 .
Anallantoidea, 3so.
Aualogy, 211.
Anchylosis, 142.

Anguis, 354.
Animalcules, month of, 54.
Animals and Plants, 21, 368.
Aunelids, $270,352$.
Anunloida, 271, 352.
Anoura, 354.
Anser, 355.
Ant-eater, 330, 370.
Antenne, 174, 374.
Anthozoa, 241,350.
Auts, 293.
Aorta, 103.
Ape, 151, 343, 383.
Apis, 353.
Aplysia, 262.
Apteryx, 319.
Arachuid, 277, 353.
Araneina, 27s, 353.
Archetype, 137.
Ardea, 319, 355.
Areolar Tissue, 35.
Argonauta, 268.
Armadillo, 133, 330.
Arteries, 103.
Arthropoda, 379.
Articulates, circulation in, 105.
" described, 226, 269, 352.
" digestion $\mathrm{in}, 75,91$.
Ascidian, circulation in, 106.
" described, 256, 350.
" mouth of, 55 .
Astacus, 273, 352.
Asterias, 251, 350 .
Asteroidea, 55, 75, 91, 111, 129, 159, 250, 350.

Astræa, 243.
Atavism, 210.
Attacus, 291, 353.
Auk, 316.
Aurelia, 239, 350.
Aves, 313, 355.

Axolot1, 306.
Aye-aye, 383 .
Babiresa-hog, 68,
Baboon, 346.
Balæna, 147, 355.
Balauus, 274, 352.
Bandicoot, 330 .
Barbet, 324.
Barnacle, 57, 275.
Basket-fish, 251.
Bathybius, 349 .
Batrachians, 307.
Bats, 1S7, 333.
Beaver, 332.
Bed-bug, 287.
Bee, anatomy of, 114.
" described, 293.
" eggs of, 192.
" eye of, 178.
" instinct of, 183.
" month of, 58 .
" muscles of, 154.
Beetles, described, 282, 287.
" eyes of, 179 .
" mouth of, 58 .
" prehension of, 53.
Belemnite, 269.
Beroë, 242.
Birds, anatomy of, S4.
" brain of, 315 .
" classification of, 355,381 .
" described, 313.
" digestive system of, S3.
" distribution of, 363.
" flight of, 157.
6 lungs of, 115, 315 .
" mouth of, 61 .
" prehension of, 49, 53 .
" respiration in, 116.
" sense of smell, 175.
" skeletou of, $136,14 \mathrm{~S}, 313$.
" vocal apparatus, 186.
Bird of Paradise, 327.
Bivalve Shells, 131, 258.
Blackbird, 327.
Blastema, 33.
Blastoderm, 194.
Blood, circulation of, 102. " color of, $97,372$.
6 constitution of, 98 . " current, 110, 372 . " development of, 376 . " oftice of, 101. " vessels, 102.
Blubber, 334.
Blne-ish, 300.
Bua constrictor, skull of, 72.

Bones, 36, 136, 145.
Bos, 150, 356.
Brachiopods, 256, 351, 378.
Brachycephalic Skull, 380.
Bradypus, 356.
Brain-case, 141.
" development of, 199.
" functions of, 170.
" size of, 345 .
" structure of, $166,3 S 2$.
Branchiate Vertebrates, 350 .
" Worms, 272.
Bronchial Tubes, 118.
Bryozoa, 255.
Bubble-shell, 262.
Buccinum, 260.
Buddiug, 188.
Bufo, 307, 354.
Bugs, described, 255. " mouth of, 59.
Bulimus, 262.
Bulla, 262.
Butterfly, described, 290. mouth of, 58 .

Candis-fle, $2 S 4$.
Cæcilians, 306, 354 .
Cæсиm, 371.
Calcispongin, 349.
Camel, 3 S3.
Cameo-shell, 266.
Canaliculi, 3 S .
Capillaries, 103.
Capybara, 331.
Carapax, 133.
Cardium, 259.
Carinatæ, 381.
Caruivores, 340, 356.
Cartilaginous Tissne, 36.
Cassis, 264.
Cassowary, 319.
Castor, 332.
Cat, brain of, 167, 171.
Cat-tribe, 342.
Caterpillar, anatomy of, 77.
" circulation in, 104.
" head of, 292.
" nervous system of, 165.
Cebus, 356.
Cells, 31, 98, 369.
Centipede, 52, 114, 159, 166, 281.
Cephalization, 218.
Cephalopods, anatomy of, S1.
" described, 266,352.
Cephalo-thorax, 130, 272.
Cerebellum, 169.
Cerebrum, 165, 374.
Cestum, 242.

Cetacea, 334, 355.
Chameleon, 309.
Cheiropters, 333 , 356.
Chelonians, 310, 354.
Chelydra, 354.
Chilognatha, 280, 353 .
Chilopoda, 250, 353.
Chimsera, 302.
'himpauzee, $69,151,345$.
Chitine, 373.
Chiton, 263.
Chorion, 195.
Chrysalis, 377, 380.
Chyle, 92, 372.
Chyme, 92.
Cicada, 256, 353.
Cicatricula, 190.
Cidaris, 253, 351.
Cilia, 50, 374.
Ciliata, 349.
Cimex, 353.
Cirripeds, 254, 352.
Clam, described, 260, $3 \% 9$.
" digestive system, 79.
" locomotion of, 158.
" respiration iv, 112.
Clamatores, 325.
Class, 227.
Classification, 223, 349, 378 .
Claws, 134.
Clio, $55,351$.
Cloaca, 84.
Clypeaster, 351.
Coagulation, 372.
Cochineal, 257.
Cockle-shell, 259.
Cockroaches, 255.
Cod-fish, 167, 303.
Colenterata, 225, 237, 349.
Cold-blooded Animals, 119, 354.
Coleopters, 287, 353.
Coluber, 354.
Condor, 322.
Cone-shell, 264.
Connective Tissue, 34, 369.
Coral, 128, 242.
Corallium, 247, 352.
Corium, 373.
Cormorant, 317.
Corpuscles, $97,372,350$.
Correlation of Growth, 212.
Corydalis, 285.
Cowry, 264.
Crab, described, 275.
" legs of, 159.
" mouth of, 56 .
" skeletou of, 130.
Crane, 319.

Cranium, 139, 141.
Cray-ilsh, 273.
Cricket, 285.
Crinoid, 248, 350.
Crocodile, described, 147, 311, 355, 373.
" digestive system, $81,83,371$.
" exoskeleton of, 133.
" heart of, 107.
" locomotion of, 160 .
" mouth of, 61.
Crotalns, 354.
Crow, 327.
Crustaceans, described, 272, 352.
" digestive system, 76 .
"6 skeleton of, 130.
Ctenophora, 242, 350, 370.
Cuckoo, 323.
Curassow, 320 .
Cursores, 319, 355.
Cuticle, 373.
Cutis, 373.
Cattle-bone, 373.
Cuttle-fish, brain and eyes of, $176,179$.
" circnlation in, 106.
" described, 26s.
" digestive system, 79 .
" mouth of, 56 .
" prehension of, 51.
.6 skeleton of, 132, 135, 373.
Cypræa, 266.
Daddy-lono-legs, 290.
Dasypus, 331.
Dasyurus, 330 .
Decapods, $27 \star, 353$.
Deep-sea Forms, 359, 384.
Deer, 339.
Deglutition, 71.
Delphinus, 355.
Dental Furmula, 69.
" Tissue, 38.
Dermis, 126, 373.
Development, 193, 199, 376.
Diadelphys, 330, 355 .
Diaphragm, 85, 119, 373.
Diastema, 370.
Dibranchs, 267, 352.
Differentiation, 31.
Digestion, 90.
Digitigrades, 161, 342.
Dipnoi, 304, 354 .
Dipters, 2s8, 353.
Discophora, 240, 350.
Distribution, 357,384 .
Divers, 315.
Dog, 342.
" brain of, 167 .
" digection iu, 123.

Dog, skull of, 140.
Dolichocephalic Sknll, 380.
Dulphin, 335, 355.
Doris, 262, 352.
Duve, 320. •
Dragon-fly, 284, 374.
Duck, 318.
Duck-mole, 328.
Dugong, 108, 337.
Daudenum, 89.
Eagle, 322.
Ear, 176.
Ear-shell, 264.
Earth-worm, 272.
" circulation in, 105.
" feeding, 52 .
" locomotion of, 159.
" nervons system, 166.
" respiration in, 112.
Ecderon, 373.
Eichidua, 328.
Echinoderms, 226, 247, 350, 378.
Echinus, 91, 104, 129, 252, 350, 378.
Ectoderm, 237, 373.
Edentates, 330, 356, 352.
Egys, generation by, 189, 376.
4 kinds of, 191, 376.
6 structure of, 189.
Elasmobranchs, 302, 354.
Elephant, 337, 356.
" brain of, 167, 168 .
" skeleton of, 150.
" teeth of, 70 .
" voice of, 187.
Elytra of Beetles, 287.
Embryology, 12, 193.
Embryos, likeness of, 201.
Encephalon, 172, 374.
Euderon, 373.
Endoderm, 237, 373.
Eudoskeleton, 126, 128, 135.
Endosmosis, 372.
Entomostracans, 274, 353.
Epeira, 353.
Epidermis, 34, 126, 128, 373.
Epiglottis, 11 s.
Epithelium, 33.
Equus, 142, 149, 356.
Euplectella, 237, 349.
Excretion, 119.
Exoskeleton, 125.
Eyes, compound, 178, 375 .
" simple, 178.
" structure of, 180 .
Fadial Angle, 298.
Falcon, 323, 355.

Family, 227.
Fangs, 67.
Feathers, 135.
Felis, 137, 356.
Fibrospongia, 349.
Fishes, anatomy of, 82.
" brains of, $168,301$.
" circulation in, 106, 109.
" described, 298, 381.
" digestive system, 79 .
6 distribution of, 363 .
" gills of, 113, 301.
". heart of, 107.
" locomotion of, 156,300 .
" month and teeth, 60,66 .
" mnscles of, 154.
" prehension of, 53 .
" scales and skeleton, $133,146,299$.
Fish-hawk, 321.
Flagellata, 235, 349.
Flamingo, 158, 318.
Flea, 290.
Flight, 157.
Flustra, 351.
Fly, described, 288.
" feet of, 160 .
" mouth of, 59 .
Fly-catcher, 324.
Flying-fox, 333.
Follicles, 121.
Food, kinds of, 47.
" necessity of, 45.
" prehension of, 49.
Foraminifers, 50, 128, 233, 349.
Forms of Animals, 215.
Fox, 341.
Frog, blood-cells of, 98.
" brain of, 170.
" described, 307.
" metamorphosis of, 205.
" prehension of, 53.
" skeleton of, 118.
Fungia, 243.
Fusus, 264, 266.
Gali-iblamper, 122.
Gall-flies, 293.
Gallus, 355.
Ganglia, nervous, 163.
Gannet, 317.
Ganoids, 302, 354.
Gar-pike, 302.
Gasteropods, 260, 351.
Gastric Follicles, 121.
" Teeth, 63.
Gavial, 312, 355.
Genus, 227.
Germinal Dot, 191.

Gibbon, 344.
(iills, 112, 113.
Giruffe, 339.
Gizzard, 63, 83, 371.
Glands, 121.
Glottis, 117.
Glyptodon, 330.
Gnawers, 331.
Goatsucker, 324.
Goose, 318.
Gorgonia, 247.
Gorilla, 3.45.
Grallatores, 319, 355.
Grasshopper, 285.
Grebe, 316.
Gregarinida, 231, 349.
Grouse, 320.
Growth and Repair, 207, 381.
Grubs, 377.
Gryllus, 353.
Guinea-pig, 332.
Gulls, 316.
Gymnogenous Birds, 382.
Hematooria, 380.
Irematotherma, 350.
Ilag-fish, 302.
Hair, 134.
Hair-worm, 271.
Haliotis, 264.
Halisarca, 349.
Hand, 346.
Hare, 332.
Harvest-men, 278.
Haversian Canals, 37.
Hawk, 323.
Hearing, 175.
IIeart of Fishes, 107.
" Man, 108, 195.
" Oyster, 105.
Heat, animal, 119.
Hedgehog, 333.
Helix, 262, 352.
Hemipters, 255, 353.
Hen's Egg, development of, 194.
" parts of, 190 .
Hermaphrodite, 376.
Heron, 319.
IIesthogenous Birds, $3 \$ 1$.
Heterocercal Tail, 156.
Hippopotamus, 338.
Histology, 12.
History of Zoology, 14, 367.
Hog, 338.
IIolothurians, 253, 351.
Homo, 345, 356.
Homocercal Tail, 156.
Homology, 211.

Hoofe compared, 102.
Horns, 134.
Horse, brain of, 168.
" described, 13, 33 S.
" foot of, 134, 161, 383.
" skull and skeleton, 142, 149.
" stomach of, 86.
Horseshoe Crab, 52.
Hummer, 325.
Hyalea, 351.
Hydra, 75, 159, 237, 350.
Hydroida, 350.
Hydrozoa, 237, 350.
Hyena, 383.
Hylacinus, 330.
Hymenopters, 293, 353.
Isı, 319.
Ichneumon, 293. -
Ichthyopsida, 350 .
Ichthyosaurus, 313.
Iguana, 309.
Individual, 227.
Infusoria, 50, 188, 234, 349.
Insectivores, 333,356 .
Insects, circulation in, 104, 283.
" classification of, 284,353.
" described, 281,353.
" development of, 200.
" digestive system in, 78 .
" distribution of, 362.
" eyes of, 178 .
" legs of, 160, 163, 252.
" metamorphosis of, 203.
" mouth of, $53,57,252$.
" nervous system, 283.
" noise of, 155.
" respiration $\mathrm{in}, 113,114,233$.
" skeleton of, 130, 252.
" wings of, 157, 252.
Insessores, $32 t, 355$.
Inspiration, modes of, 118.
Instinct, 181, 375.
Intelligence, 153, 375.
Intestinal Canal, 89.
Invertebrates, 154, 294.
Isis, 350 .
Iulus, 250, 353.
JAOAMAR, 324.
Jaws, 53.
Jay, 327.
Jelly-fish, described, 238.
" digestive system, 54,75 .
Kangaroo, 330.
Kiducy, 123.
King-crab, 274.

Kingflsher, 325.
Kite, 323.
Labiem and Labrem, 5s.
Labyrinthodunts, 306.
Lacerta, 310, 354 .
Lacertilia, 354.
Lacteals, 94.
Lacure, 38.
Lagena, 349.
Lamellibranchs, 112, 257, 351.
Lamellirostres, 318.
Lamprey, 302.
Lancelet, 302.
Land-suails, 263.
Lark, 327.
Laryux, 187.
Leech, 272.
" locomotion of, 158.
" mouth of, $49,56,63$.
Legs of Animals, 155, 199, 213.
Lemur, 342, 356.
Lepidopters, 290, 353.
Lepidosiren, 304, 354.
Libellula, 284, 354.
Life, distribution of, 357.
" duration of, 219.
" nature of, 28,369 .
" phenomena of, 29, 43.
" struggle for, 219 .
Lightning-bug, 288.
Ligula, 5 s.
Likeness and Variation, 209.
Limax, 26:2, 352.
Limbs of Vertebrates, 144, 374.
Limuæa, 263, 352.
Limpet, 263.
Limnins, 274, 353.
Lingula, 351.
Lion, $87,137,383$.
Liver, 121.
Lizarde, 160, 170, 309.
Lobster, 272.
" circulation in, 105.
" eggs of, 192.
-. gills of, 113.
" locomotion of, 155.
" month of, 56 .
" muscles of, 154.
" preheusion of, 52 .
" skeletou of, 130.
Locomotion, 155.
Locust, 285.
Loligo, 2 e9.
Longipennes, 316.
Loon, 316.
Louse, 257.
Lucernaria, 240, 350.

Lumbricus, 272, 352.
Lungs, 115, 123, 373.
Lymphatics, 94.
Maduepore, 244, 350.
Madreporiform Plate, 3is.
Maggots, 377.
Mammals, anatomy of, 80 .
" brain of, 382.
" circulation in, 109.
" described, $327,355$.
" distribution of, 364 .
" locomotion of, 161.
" month and teeth of, 61, 67 .
" respiration in, 116.
" skull of, 141.
" vocal apparatus, 186.
Mammoth, 337.
Man, 85, 171, 213, 345, 383.
Manatee, 327, 337, 355.
Mandibles, 58, 143.
Mantis, 53.
Mantle, 126.
Marsipobranchs, 302, 354.
Marsupials, 329, 355.
Mastodou, 337.
May-fly, 284.
Meandrina, 243.
Medulla oblongata, 169.
Medusa, 75, 238.
Megatherium, 330.
Melania, 266.
Membrane Bones, 198, 369.
Meuobranchus, 306.
Mesentery, $82,94$.
Metamorphosis, 203, 377.
Millepede, 56, 114.
Millepore, 378.
Mimicry, 210, 376.
Minerals aud Organisms, 19.
Mites, 277.
Mole, 333.
Molluscoidea, 255.
Mollusks, anatomy of, 80 .
" circulation in, 105.
" described, 226, 254, 351.
" digestion in, 91.
" distribution of, 362 .
" locomotion of, 158.
" mouths of, 55 .
" nervous system of, 165 .
" respiratiou in, 112.
" shells of, 131.
Monad, 234, 349.
Monera, 349.
Monkeys, 342.
Monotreme, 328, 355, 382.
Mosquito, 49, 204, 289.

Moth, 291.

Moulting, 128, 130, 205.
Monse, 332.
Months of Animals, 54.
Mud-eel, 306.
Mud-fish, 304.
Murex, 266.
Mus, 356.
Musca, 290, 353.
Muscle, 152.
Muscular Tissue, 3S, 152, 199.
Mussels, 259.
Myriapods, 76, 230, 353.
Myrmecophaga, 330, 356.
Mytilns, 259.
Myxospongia, 349.
Naile, 134.
Natatores, 315, 355.
Natica, 266, 352.
Natural Selection, 220.
Nautilus, 267, 352.
Nereis, 2i2, 352.
Nerve-cells, 163.
Nerves, 163 , 1 i2.
Nervous Tissue, 40, 16-1, 199.
Neurilemma, 40.
Neuropters, 284, 353.
Newt, 306.
Nictitating Membrane, 375.
Notochord, 195.
Nucleolus, 191.
Number of Animals, 214.
Nummulite, 349.
Nutrition, 44.
Nymph, 377.
Ooelle, 175.
Octopus, 268, 352.
Cssophagus, 85.
Olfactory Nerves, 175.
Olive-shell, 266.
Oniscus, 353.
Ophidians, 308, 354.
Ophiomorpha, 354.
Ophiura, 251, 350.
Opisthobranchs, 261, 352.
Opisthocœlous, 373.
Opossum, 330.
Orang-utan, 171, 344.
Order, 227.
Organization, 30.
Organ-pipe Coral, 242.
Organs, 41.
Oriole, 327.
Ornithorhynchus, 328,355 .
Orthoceras, 266.
Orthopters, 285, 353.

Orycteropus, 330.
Oscines, 325.
Osseous Tissue, 36.
Ossification, 36, 195.
Ostrea, 259, 351.
Ostrich, 319.
Otoliths, 175.
Ovipositor, 283.
Owls, 323.
Ox, 150, 340.
Oyster, circulation in, 105.
" described, 259.
" development of, 200.
" digestion in, 79.
" mouth of, 54 .
4 muscles of, 154.
" prehension of, 50 .
" respiration in, 112.
"s shell of, 131, 208.
Palate, 62, 85.
Pallial Siuus, 379.
Palpi, 58.
Paludina, 265.
Pancreas, 121.
Pangolin, 330.
Paper Nautilus, 265.
Pupillæ, 62, 126, 174. 373.
Papilio, 353.
Paramecium, 234, 349.
Parrot, 322, 324.
Partridge, 320.
Patella, 263, 377.
Pavement-teeth, 66.
Pearl-oyster, 25S, 373,379.
Peccary, 383.
Pectoral Arch, 144.
Pedicellariæ, $76,371$.
Pedipalpi, 277, 353.
Pelican, 317.
Peuguin, 315.
Penuatula, 247.
Pen of the Squid, 373.
Pentacta, 351.
Pentacriuus, 249, 350.
Perch, 146, 170, 354.
Perchers, 324.
Periosteum, 136.
Peristaltic Movement, 370 .
Periwiukle, 206.
Petrel, 317.
Petromyzon, 303, 354.
Phalanger, 330.
Pharyngobranchs, 301.
Pharynx, 72, 84, 370.
Pheasant, 320.
Phoca, 356.
Physalia, 239, 350.

Physeter, 334, 355.
Picus, 355.
Pigeon, 320.
Pinnigrades, 161, 341.
Pisces, 554.
Placenta, 198.
Placeutal Animals, 355, 382 .
Plauorbis, 263.
Plantigrades, 161, 341.
Plant-lice, 287.
Plastron, 311.
Platypus, 328.
Pleurobrachia, 242, 350.
Plover, 319.
Poisou-fang, 52, 67, 373.
Polycistines, 128, 234, 349.
Polyps, 50, 54, 75.
Polyzoa, 255, 351.
Pond-suails, 263.
Porcupine, 332.
Porites, 244.
Porpoise, 87, 335.
Portal Circulation, 372.
Portuguese Man-of-war, 239.
Poulpe, 268, 379.
Prairie-chicken, 320.
Primates, 342, 356.
Primitive Streak, 195.
Proboscideans, 337, 356.
Proboscis of Butterfly, 58 .
" Elephant, 62, 150.
Procælous, 373.
Prognathous Skull, 380.
Prosobranchs, 263, 352.
Proteus, $306,354$.
Protozoa, 200, 231, 349.
Psendopodia, 50, 232.
Pteropods, 55, 261.
Pulmonates, 262, 352.
Pygopodes, 315.
Qeadrumana, 383.
Racooon, 340.
If:idiates, 227.
IRadiolarians, 233, 349.
Rails, 319.
Rana, 307, 354.
Range of Animals, 358.
Rank of Animals, 216.
Raptores, 321, 355.
Rasores, 320, 355.
Rat, 332.
Ratitæ, 381.
Rattlesnake's Fangs, 67.
Raven, 327.
Ray, 302.
Razor-shell, 260.

Redstart, 325.
Reproduction, 188, 208, 376.
Reptiles, circulation in, 107, 109, 308.
" corpuscles of, 99.
" described, 307.
" digestion in, 81 .
" distribution of, 363.
" lungs of, 116 .
" mouth of, 60 .
" preheusion of, 53 .
" scales of, 134.
" teeth of, 66,
" voiceless, 186.
Respiration, 111.
Rete mucosum, 127.
Retina, 180.
Rhea, 320.
Rhinoceros, 338.
Rhizopods, 232, 349.
Rodents, 331, 356.
Rotifers, 63, 272.
Rudimentary Parts, 202.
Ruminants, 87, 339.
Salamander, $306,354,381$.
Salivary Glands, 121, 373.
Salmon, 301, 354.
Salpians, 256, 351.
Sand-flea, 274.
Sandpiper, 318.
Sarcolemma, 39, 199.
Saturians, 313.
Sanropsida, 380.
Saururæ, 381.
Scales of Butterflies, 290.
" Fishes and Reptiles, 193, 299,
381.

Scallop-shell, 259.
Scalops, 356.
Scansores, 323, 355.
Scapular Arch, 144.
Scarabæus, 353.
Scarf-skin, 373.
Sclerobasic Coral, 128, 247.
Sclerodermic Coral, 128, 243.
Scolopendra, 2s1, 353.
Scorpion, described, 277, 353.
" digestion in, 78.
" month of, 52,59 .
" spiracles of, 115 .
Sea-anemone, 200, 241.
Sea-blubber, 238.
Sea-butterfly, 260.
Sea-fan, 247.
Sea-hare, 262.
Seal, 341.
sea-lemon, 262.
sea-lily, 24 S .

Sea-lion, 341.
sea-slug, 253.
Sea-urchin, circulation in, 104.
" described, 252.
" digestion iv, 75, 91.
" mouth of, 55 .
" respiration iu, 111.
" shell of, $129,37 \mathrm{~s}$.
" spines of, $129,3 \pi s$.
" teeth of, 63 .
Sea-worms, 272.
secretion, 120 .
Self-division, 188.
Senses, 173.
Sepia, $26 \mathrm{~s}, 352$.
Serpents, skulls of, 73 .
Serpula, 272.
Sertularians, 238, 350 .
Setæ, 271.
Setophaga, 325.
Shark, described, 302.
" eggs of, 191.
" skeleton of, 135 .
Shells of Crustaceans, $130,272$.
" Mollusks, 131, 257, 260.
" Sea-urchius, 129,375.
Shrew, 333.
Shrimp, 27t.
Sight, 177.
Silk-worm, 293.
Simia, 356.
Siphonophora, 350.
Siphuncle, 267.
Siredon, 306.
Siren, 306.
Sirenians, 336, 355.
Size of Animals, 214.
Skeleton, 125.
Skin, 125, 126.
skull, 142, 350 .
Sloth, 330.
Slug, 262.
Smell, 175.
Suail, circulation in, 105.
" described, 260.
" digestion $\mathrm{in}, 7$ 7.
" mouth and teeth of, 56, 64.
" prehension of, 51 .
" shell of, 132.
" tentacles of, 175 .
Snakes, described, 308, 354.
" locomotion of, 155, 159.
" preheusion of, 53.
Snapping-bugs, 2s7.
Snipe, 319.
Somite, 350.
Songsters, 325.
Sorex, 333.

Sow-bug, 274.
sparrow, 325, 327.
Species, 22%.
Sperm-whale, 334 .
Sphinx-moth, 291, 353.
Spider, described, 308, 354.
" digestion in, 78.
" legs of, 159.
" month of, 59.
" prehension of, 52 .
" spiracles of, 115.
Spinal Colnmn, 143.
" Cord, 166, 169, 172.
Spinnerets of Caterpillar, 292.
" Spider, 280.
Spiracles, 113.
Sponge, 49, 123, 235, 349, 370.
Squalus, 354.
squid, 155, 269.
Squirrel, 332.
Star-fish, anatomy of, 159.
" circulation in, 104.
" described, 250.
" digestion in, 91.
" feeding, 51.
" locomotion of, 158 .
" Dervons system, 165 .
" respiration $\mathrm{in}, 111$.
Stilt, 319.
Stomachs, 83, S6, 85.
Stork, 319.
Stridulation, 185.
Strombus, 265, 352.
Struthio, 355.
Sturgeou, 53, 302.
Subkingdom, 227.
Sub-fish, 251.
Survival of the Fittest, 220.
Suture, 145.
Swallow, 326.
Swan, 318.
Swift, 325.
Sycon, 349.
Symmetry, 215.
Syuovia, 145.
Tenif, 271, 352
Tauagers, 327.
Tapetum, 181.
Tape-worm, 49, 271, 379.
Tapir, 213, 33s, 353.
Taste, 174.
Teeth, 38, 62, 65, 66, 68, 70.
Teleosts, 302, 354.
Temperature of Animals, 119.
Tendons, 154.
Tentacles, 50.
Terebra, 264.

396

Terebratula, 257, 351.
Termites, 255.
Teru, 316.
Testudo, 354.
Tetrabranchs, 267, 352.
Tetradecapods, 274, 352.
Thorax, 118, 281.
'Thornback, 304.
'Thousand-legged Worm, 280.
Throat of Mammals, 72.
Thrush, 327.
Thyroid Cartilage, 186.
Ticks, 277.
Tissues, 32.
Toad, 307.
Tongue, 53, 54, 61, 62.
Top-shell, 265.
Tortoise-shell, 311.
Totipalmates, 317.
Toucan, 324.
Touch, 173.
Tracheæ, 113.
Trichina, 271.
Trilobite, 274.
Triton, 266.
Tritonia, 262.
Trochus, 266.
Trogon, 323.
Tubipora, 242, 245.
Tunicates, 126, 256, 351, 379.
Turbo, 265.
Turdus, 355.
Turkey, 170, 320.
Turritella, 266.
Turtle, 134, 148, 160, 192, 310.
Tusks, 370.
Types, 225, 378.
Tyrant Fly-catcher, 325.
Ungulates, 161, 337, 356.
Unio, 259.
Univalves, 131, 260.
Urodelans, 306, 354.
Ursus, 356.
Variation, 209.
Variety, 227.
Veins, 94, 102, 103.
Veua cava, 103, 372.
Venus, $260,351$.
Venus-basket, 237.
Vertebræ, 133, 143, 199.
Vertebrates, 226, 295.
" circulation in, 108, 296.
" classification of, 298.
66

Vertebrates, digestion in, 91.
" mouths of, 60 .
" nervous system of, 297.
" preheusion of, 53.
Vespertilio, 333, 356.
Villi, 89, 94, 372.
Vireo, 325.
Vitelline Membrane, 190.
Viviparous, 377.
Voices of Animals, 185.
Volitores, 325.
Volute, 264.
Vorticella, 349.
Valture, 14S, 323.
Walking-stiok, 285.
Warblers, 327.
Warm-blooded Animals, 119, 355 .
Wasps, 293.
Water-boatmen, 286.
Water-breathers, 111.
Water-fleas, 274.
Wax-wing, 327.
Weasel, 340 .
Weevil, 287.
Whale, baleen of, $64,134,370$.
"6 brain of, 167, 168.
" described, 334.
" feeding, 50, 336.
" locomotion of, 156.
" skeleton of, 147.
Whelk, 55, 260, 265.
White Ants, 285.
Wigglers, 377.
Windpipe, 117.
Wings of Bats, 158.
6 Birds, 157.
" Insects, 157.
Wolf, 340 .
Wombat, 330.
Woodpecker, 322, 324.
Worms, described, 270.
" digestive system, 76 .
" locomotion of, 155.
" mouth of, 56 .
" respiration of, 112.
Wren, 327.
Yolk, 189, 194.

Zonotrionta, 325.
Zoological analysis, 228.
" barriers, 359.
" provinces, 360.
Zoology defined, 11.
" history of, 14, 367.

VALUABLE AND INTERESTING WORKS

FOR

PUBLIC \& PRIVATE LIBRARIES,

Published by ILARPer \& Brotilers, New York.

67 For a full List of Books suitable for Libraries published by Harper \& Brothers, nee IIarper's Catalogue, which may be had gratnitously on applientions to the publishers personally, or by letter eaclosing Jine Cents in Postage stamps.
G Harper \& Brothers will send their publications by mail, postage prepaid, on receipt of the price.

MACAULAYS ENGLAND. The History of England from the Accession of James II. By Thomas Babington Macadlay. New Edition, from new Electrotype Plates. 8vo, Cloth, with Paper Labels, Uneut Edges and Gilt Tops, 5 vols. in a Box, $\$ 1000$ per set. Sold only in Sets. Cheap Edition, 5 vols. in a Box, 12 mo , Cloth, $\$ 250$; Sheep, $\$ 375$.

MACALLAY'S LIFE AND LETTERS. The Life and Letters of Lord Macaulay. By his Nephew, G. Otro Trevelyan, M.P. With Portrait on Steel. Complete in 2 vols., 8 vo, Cloth, Uncut Edges and Gilt Tops, $\$ 500$; Sheep, $\$ 600$; Half Calf, $\$ 950$. Popular Edition, two vols. in one, 12 non , Cloth, $\$ 175$.
HUME'S ENGLAND. The History of England, from the Invasion of Julius Cæsar to the Abdication of James H., 1688. By David Heme. New and Elegant Library Edition, from new Electrotype Plates, 6 vols. in a Box, 8vo, Cloth, with Paper Labels, Uncut Edges and Gilt Tops, $\$ 1200$. Sold only in Sets. Popular Edition, 6 vols. in a Box, 12 mo , Cloth, $\$ 300$; Sheep, \$450.
GIBBON'S ROME. The History of the Deeline and Fall of the Roman Empire. By Edward Gibbon. With Notes by Dean Milman, M. Guzot, and Dr. William Suiti. New Edition, from new Electrotype Plates. 6 vols., 8vo, Cloth, with Paper Labels, Uncut Edges and Gilt Tops, $\$ 1200$. Sold only in Sets. Popular Edition, 6 vols. in a Box, 12mo, Cloth, $\$ 300$; Sheep, \$ 450 .
IIILDRETII'S LNITED STATES. Ilistory of the United States. First Series: From the Discovery of the Continent to the Organization of the Government under the Federal Constitution. Srcond Series: From the Adoption of the Federal Constitution to the End of the Sixteenth Congress. By Richard Hildretif. Popular Edition, 6 vols. in a Box, 8 vo, Cloth, with Paper Labels, Uncut Edges and Gilt Tops, \$12 00. Sold onlv in Sets.

MOTLEY'S DUTCII REPUBLIC. The Rise of the Dutch Republic. A History. By John Lothrop Motley, LL.D., D.C.L. With a Portrait of William of Urange. Cheap Edition, 3 vols. in a Box, 8vo, Cloth, with Paper Labels, Uneut Edges and Gilt Tops, $\$ 600$. Sold only in Sets. Original Library Edition, 3 vols., 8vo, Cloth, $\$ 10$ on0; Sheep, $\$ 1200$; Half Calf, \$17 25.

MOTLEY'S UNITED NETHERLANDS. History of the United Netherlands: from the Death of William the Silent to the Twelve Years' Truce $-158 t-1609$. With a full View of the English-Dutch Struggle against Spain and of the Origin and Destruction of the Spanish Armada. By John Lotirop Motlex, LL.D., D.C.L. Portraits. Cheap Edition, 4 vols. in a Box, 8ro, Cloth, with Paper Labels, Uncut Edges and Gilt Tops, $\$ 800$. Sold only in Sets. Original Library Edition, 4 vols., 8vo, Cloth, $\$ 1400$; Sheep, $\$ 1600$; Half Calf, $\$ 2300$.

MOTLEY'S LIFE AND DEATH OF JOHN OF BARNEVELD. The Life and Death of John of Barneveld, Advocate of Holland: with a View of the Primary Causes and Movements of "The Thirty Years' War." By John Lothrop Motley, LL.D., D.C.L. Illustrated. Cheap Edition, 2 vols. in a Box, 8vo, Cloth, with Paper Labels, Unent Edges and Gilt Tops, $\$ 400$. Sold only in Sets. Original Library Edition, 2 vols., 8 vo , Cloth, $\$ 700$; Sheep, $\$ 800$; Half Calf, $\$ 1150$.

GEDDES'S HISTORY OF JOHN DE WITT. History of the Administration of John De Witt, Grand Pensionary of Holland. By James Geddes. Vol. I.-1623-1654. With a Portrait. 8vo, Cloth, $\$ 250$.

SKETCHES AND STUDIES IN SOUTHERN EUROPE. By John Addington Symonds. In Two Volumes. Post 8vo, Cloth, $\$ 400$.

SYMONDS'S GREEK POETS. Studies of the Greek Pocts. By Jorn Addington Symonds. 2 vols., Square 16 mo , Cloth, $\$ 350$.

BENJAMIN'S CONTEMPORARY ART. Contemporary Art in Europe. By S. G. W. Benjamin. Illustrated. 8vo, Cloth, \$350.
BENJAMIN'S ART IN AMERICA. Art in America. By S. G. W. BenJamin. Illustrated. 8ro, Cloth, \$400.

HUDSON'S IISTORY OF JOURNALISM. Journalism in the United States, from 1690 to 1872 . By Frederic Hudson. 8vo, Cloth, $\$ 500$; Half Calf, $\$ 725$.

KINGLAKE'S CRIMEAN WAR. The Invasion of the Crimea: its Origin, and an Aecount of its Progress down to the Death of Lord Raglan. By Alexander William Kinglake. With Maps and Plans. Three Volumes now ready. 12 mo , Cloth, $\$ 200$ per vol.

JEFFERSON'S LIFE. The Domestic Life of Thomas Jefferson: Compiled from Family Letters and Reminiscences, by his Great-granddaughter, Sarah N. Randolpi. Illustrated. Crown svo, Cloth, \$2 50.

LAMB'S COMPLETE WORES. The Works of Charles Lamb. Comprising his Letters, Poens, Essays of Elia, Fissays upon Slakspeare, Hogarth, ete., and a Sketeh of his Life, with the Final Memorials, by T. Noon Talfourd. With Portrait. 2 vols., 12 mo , Cloth, $\$ 300$.

Lawrence's historical studies. Iistorical studies. By Eugene Lawreace. Containing the following Essays: The Bishops of Rome.Leo and Luther:-Loyola and the Jesuits.-Ecumenical Councils.-The Vaudois.-The IIuguenots.-The Church of Jerusalem.-Dominic and the Inquisition.-The Conquest of Ireland.-The Greek Chureh. 8vo, Cloth, Uncut Edges and Gilt Tops, $\$ 300$.

LOSSING'S FIELD-BOOK OF THE RENOLUTION. Pietorial FieldBook of the Revolution : or, lllustrations by Pen and Pencil of the History, Biography, Seenery, Relies, and Traditions of the War for Independence. By Bexson J. Lossisg. 2 vols., 8 vo, Cloth, $\$ 1400$; Sheep or Roan, \$1500; Italf Calf, $\$ 1800$.

LOSSING'S FIELD-BOOK OF TIIE WAR OF 1812. Pietorial FieldBook of the War of 1812; or, Illustrations by l'en and l'encil of the History, Biography, Scenery, Relics, and Traditions of the last War for American Independence. By Bexson J. Lossing. With several hundred Engravings on Wood by Lossiug and Barritt, chiefly from Original Sketches by the Author. 1088 pages, 8 vo, Cloth, $\$ 700$; Sheep, $\$ 850$; Roan, $\$ 900$; Half Calf, $\$ 1000$.

FORsTER'S LIFE OF DE.IN SWIFT. The Early Life of Jonathan Swift (1667-1711). By Joun Forster. With Portrait. 8vo, Cloth, Uneut Ellges and Gilt Tops, \$2 50.

GREEN'S ENGLISH PEOPLE. History of the English People. By Jons Richard Green, M.A. 3 volumes ready. 8 vo, Cloth, 250 per volume.

SHORT'S NORTH AMERICANS OF ANTIQUTTY. The North Americans of Antiquity. Their Origin, Migrations, and Type of Civilization Considered. By Join T. Siort. Illustrated. 8vo, Cloth, \$300.

SQUIER'S PERU. Peru: Ineidents of Travel and Exploration in the Land of the Incas. By E. George Suctier, M.A., F.S.A., late U.S. Commissioner to Peru. With Illustrations. 8vo, Cloth, $\$ 500$.

MYERS'S LOST EMPIRES. Remains of Lost Empires: Sketehes of the Ruins of Palnyra, Nineveh, Babylon, and Persepolis. By P. V. N. Myers. Illustrated. 8 vo , Cloth, $\$ 350$.

MAURY'S PHYSICAL GEOGRAPHY OF THE SEA. The Plyssical Geography of the Sca, and its Meteorology. By M. F. Maury, LL.D. 8vo, Cloth, $\$ 400$.

SCHWEINFURTH'S HEART OF AFRICA. The Heart of Africa. Three Years' Travels and Adventures in the Unexplored Regions of the Centre of Africa - from 1868 to 1871. By Dr. Georg Schweinfurtii. Translated by Ellen E. Frewer. With an Introduction by Winwood Reade. Illustrated by about 130 Wood-cuts from Drawings made by the Author, and with two Maps. 2 vols., 8vo, Cloth, $\$ 800$.

M'CLINTOCK \& STRONG'S CYCLOPADIA. Cyclopædia of Biblical, Theological, and Ecelesiastical Literature. Prepared by the Rev. Joun M'Clintock, D.D., and James Strong, S.T.D. 9 vols. now ready. Royal 8vo. Price per vol., Cloth, $\$ 500$; Sheep, $\$ 600$; Half Morocco, $\$ 800$. (Sold by Subscription.)

MOHAMMED AND MOHAMMEDANISM: Lectures Delivered at the Royal Institution of Great Britain in February and Mareh, 1874. By R. Bosworth Smith, M.A., Assistant Master in Harrow School; late Fellow of Trinity College, Oxford. With an Appendix containing Emanuel Deutsch's Article on "Islam." 12mo, Cloth, \$150.

MOSHEIM'S CHURCH HISTORY. Ecclesiastical History, Ancient and Modern ; in which the Rise, Progress, and Variation of Church Power are considered in their connection with the State of Learning aud Philosophy, and the Political History of Europe during that Period. Translated, with Notes, etc., by A. Maclane, D.D. Continued to 1826 by C. Coote, LL.D. 2 vols., 8 ve , Cloth, $\$ 400$; Sheep, $\$ 500$.

HARPER'S NEW CLASSICAL LIBRARY. Literal Translations.
The following volumes are now ready. 12 mo , Cloth, $\$ 150$ each.
Cesar.-Virgil.-Sallust. - Horace. - Cicero's Orations. -Cicero's Offices, etc.-Cicero on Oratory and Orators.-Tacitus (2 vols.).
-Terence. - Sophocles. - Juvenal. - Xenopion. - Homer's Iliad.

- Homer's Odyssey. - Herodotes. - Demosthenes (2 vols.). -Thu-cydides.-Eschilus.-Euripides (2 vols.).-Livy (2 vols.).-Plato [Select Dialogues].

VINCENT'S LAND OF THE WHITE ELEPHANT. The Land of the White Elephant: Sights and Scenes in Southeastern Asia. A Personal Narrative of Travel and Adventure in Farther India, embracing the Countries of Burma, Siam, Cambodia, and Cochin-China (1871-2). By Frank Vincent, Jr. Illustrated with Maps, Plans, and Wood-cuts. Crown 8vo, Cloth, $\$ 350$.
保

[^0]: * Numbers like this refer to the Notes at the end of the volume.

[^1]: * In this diagram, modified from Huxley's, the italicized bones are single: the rest are double. Those in the line of the Ethmoid form the Cranio-facial Axis: these, with the other spheuoids and occipitals, are developed in cartilage; the rest are membrane bones. In the Human skull, the three occipitals coalesce into one.

[^2]: * Perfect specimens are invaluable in the study of Zoology. A few bundred choice objects are the best illustrations to accompany a text-book, or course of lectures. In fact, they are indispensable to the clear compreheusion of the forms of life. Many specimens are easily obtained; but many others come from distant lands or seas, and must be carefully prepared for preservation and nse. It is well for teachers and students to know that there is one establishment in America where it is possible to secure those type-collections so important for educational purposes. Professor H. A. Ward, of Rochester, New York, has the largest facilities in the country for furnishing skeletons and special preparations for schools and musenms. The leading museums in America are indebted to him for some of their choicest material. Every effort is made to supply select and perfect specimens. His collection is especially rich in Invertebrates, and his osteological preparations are remarkable for the elegance of their monuting.

