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Abstract: Pseudo-Invariant Calibration Sites (PICS) are one of the most popular methods for in-flight
vicarious radiometric calibration of Earth remote sensing satellites. The fundamental question of
PICS temporal stability has not been adequately addressed. However, the main purpose of this
work is to evaluate the temporal stability of a few PICS using a new approach. The analysis was
performed over six PICS (Libya 1, Libya 4, Niger 1, Niger 2, Egypt 1 and Sudan 1). The concept of a
“Virtual Constellation” was developed to provide greater temporal coverage and also to overcome
the dependence limitation of any specific characteristic derived from one particular sensor. TOA
reflectance data from four sensors consistently demonstrating “stable” calibration to within 5%—the
Landsat 7 ETM+ (Enhanced Thematic Mapper Plus), Landsat 8 OLI (Operational Land Imager),
Terra MODIS (Moderate Resolution Imaging Spectroradiometer) and Sentinel-2A MSI (Multispectral
Instrument)–were merged into a seamless dataset. Instead of using the traditional method of trend
analysis (Student’s T test), a nonparametric Seasonal Mann-Kendall test was used for determining the
PICS stability. The analysis results indicate that Libya 4 and Egypt 1 do not exhibit any monotonic
trend in six reflective solar bands common to all of the studied sensors, indicating temporal stability.
A decreasing monotonic trend was statistically detected in all bands, except SWIR 2, for Sudan 1 and
the Green and Red bands for Niger 1. An increasing trend was detected in the Blue band for Niger 2
and the NIR band for Libya 1. These results do not suggest abandoning PICS as a viable calibration
source. Rather, they indicate that PICS temporal stability cannot be assumed and should be regularly
monitored as part of the sensor calibration process.

Keywords: PICS; BRDF; virtual constellation; monotonic trend; radiometric calibration; Landsat;
MODIS; Sentinel

1. Introduction

Remote sensing using orbiting satellite sensors is essential for detecting and monitoring changes in
the Earth’s land surfaces, oceans, atmosphere and climate [1]. The number of orbiting Earth Observation
(EO) satellites has increased dramatically within the past decade. By 2017, over 150 EO satellites
were launched, mostly “small” satellites operated by commercial vendors. One of the challenges
emerging from the growing use of EO satellite sensors is achieving accurate radiometric calibration
of individual sensors and establishing a baseline calibration among multiple sensors. Radiometric
calibration is essential for the use of remote sensing data in quantitative applications such as climate
change monitoring, ocean measurements, vegetation measurements and so forth. Regular in-flight
calibration assesses the sensor’s on-orbit performance throughout its operating lifetime. These can be
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performed on data acquired from an on-board calibration source, such as a solar diffuser panel, and/or
acquisition of radiance measurements from the Earth’s surface through vicarious calibration methods.
It is important to highlight that a significant portion of the cost saving is achievable with small EO
satellite sensors by removing on-board calibration source. For these sensors, vicarious calibration
is the preferred option. Perhaps the three most commonly used vicarious calibration methods are:
reflectance-based approach [2], cross-calibration [3]; and analysis of Pseudo-Invariant Calibration Sites
(PICS) image data [4,5]. Performing in-situ vicarious calibration at many of these sites is not possible
due to their geographic remoteness and/or political instability. Consequently, research is increasingly
focused on vicarious calibration based on satellite sensor observations of selected PICS [6]. The current
work focuses on the last method.

There has been a significant increase in the use of PICS over the last 14 years to monitor the
long-term top-of atmosphere (TOA) reflectance trends from different sensors [4,7,8]. Govaerts et al.,
for example, have developed an operational calibration method using bright desert calibration sites to
support geostationary satellite data [9,10]. In order to evaluate the in-flight calibration performance
of optical satellite sensors, the selection of reference PICS based on certain criteria such as the site’s
radiometric and spectral stability is a challenging task. Sites should be chosen such that a sufficient
number of overpasses occur for as many sensors as possible so that they can be used in a sensor’s
long-term performance monitoring [11]. In addition, there are some intrinsic properties for choosing
PICS which typically include data availability, spatial uniformity, temporal stability and spectral
uniformity [12]. Moreover, the site should be located in higher altitude arid or desert regions to
minimize atmospheric effects. The Committee on Earth Observation Satellites (CEOS) has developed
an online catalog of candidate test sites meeting these criteria [6]. Six of these sites have been officially
designated as “reference” PICS appropriate for satellite sensor calibration and monitoring sensor
radiometric performance [6]: Libya 1, Libya 4, Mauritania 1, Mauritania 2, Algeria 3 and Algeria 5.

Previous research has yielded significant advances in PICS-based on-orbit sensor calibration and
monitoring of sensor radiometric performance. Morstad and Helder [13] developed an approach
for the calibration of the Landsat 5 TM using images of the Sonoran Desert as a candidate PICS.
Chander et al. [14] assessed the on-orbit calibration stability of the Terra MODIS and Landsat 7 ETM+

sensors based on analysis of Libya 4 image data; their results indicated a change in sensor-measured
TOA reflectance of approximately 0.4% per year or less over a 10-year period.

The underlying assumption of the PICS-based calibration is that the site is “invariant” – or
pseudo invariant, so any detected change in the lifetime trend is attributed solely to sensor response.
However, is it valid to assume that the sites are invariant over time? Previously, by assuming site
invariance, little emphasis was given to developing an explicit assessment of a site’s temporal stability.
Therefore, the main objective of this work is to evaluate the temporal stability of PICS using a new
approach. Stability of pseudo invariant sites should to be tested before their use in monitoring
post-launch radiometric calibration stability of satellite sensors. Once a site’s temporal stability
is assured, the analysis of sensor stability based on these invariant sites can be undertaken with
greater confidence.

The key technique of this work involves the implementation of a process to “homogenize” TOA
reflectance data from multiple sensors for a given PICS, creating a Virtual Constellation (VC) TOA
reflectance dataset for that site. The VC is a recent concept developed by CEOS in support of the
Group on Earth Observations (GEO) objectives and as the space component of the Global Earth
Observation System of Systems (GEOSS). According to CEOS a VC is a “coordinated set of space
and/or ground segment capabilities from different partners that focuses on observing a particular
parameter or set of parameters of the Earth system” [15]. Claverie et al. [16], for example, used this new
concept to describe sensor data homogenization of the Landsat 8 (L8) Operational Land Imager (OLI)
and Sentinel 2A/Sentinel 2B (S2A/S2B) Multispectral Instrument (MSI) surface reflectance products.
Such homogenization requires pre-processing before merging data from multiple sensors to create
a smooth time series dataset. Helder et al. [17] provided valuable recommendations to achieve this
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based on observations relating to cross-calibration between the OLI and MSI sensors to achieve better
data interoperability.

The primary goal of this work is to determine the temporal stability of six PICS commonly used
in calibration analyses by the South Dakota State University Image Processing Laboratory (SDSU
IPLAB): Niger 1, Niger 2, Libya 1, Libya 4, Egypt 1 and Sudan 1. The four sensors studied in this
work are the Landsat 8 OLI, Landsat 7 ETM+, Terra MODIS and Sentinel 2A MSI. These sensors were
selected for the following reasons: (i) previous research has consistently established their radiometric
calibration to within 5% [18–20]; (ii) the local equatorial crossing times for these sensors are close,
thus they can image a given region under similar solar illumination and atmospheric conditions;
and iii) large amounts of data for these sensors are widely and freely available. It is shown that the
individual sensor’s TOA reflectance datasets, in one or more bands, violate one or more conditions
required for proper application of the Student’s T-test, which has traditionally been employed for drift
analyses [14,18]. For the purposes of this work, the “appropriate” statistical analysis is non-parametric
in nature. The data from these sensors for a particular PICS were combined into a single TOA reflectance
dataset, with the intent of reducing the effects of discrepancies in sensor radiometric performance
such as spectral response and solar/sensor viewing geometry. The stability assessment of the site was
determined from the TOA reflectance temporal trend of the combined dataset. In principle, this work
could be done using the TOA reflectance data from an individual sensor, under the assumption the
sensor response is not degrading over time. However, the use of multiple sensors offers increased
temporal resolution of the dataset and also overcomes the dependence limitation of any one particular
sensor. Moreover, the span of data acquisition is not similar across all sensors. Therefore, direct
comparison of the trends between individual sensors might yield different conclusions about a given
site’s temporal stability (e.g., one sensor’s trend suggests the site is changing while another sensor’s
trend suggests it is not). Finally, statistical analysis was performed on the VC to identify potential
monotonic trends in the TOA reflectance.

2. Satellite Sensor Overview: Landsat-8 OLI, Landsat-7 ETM+, Sentinel-2A MSI and
Terra MODIS

This section provides a brief overview of the sensors investigated for this work. The basic performance
characteristics for each sensor are presented in Table 1.

Table 1. Basic Sensor Characteristics [1,3,4,8,14,18].

Characteristics Landsat 8-OLI Landsat 7-ETM+ Sentinel 2A-MSI Terra MODIS

Number of Bands 11 8 13 36
Spatial Resolution 30 m 15 m, 30 m, 60 m 10 m, 20 m, 60 m 250 m, 500 m, 1000 m

Swath Width 185 km 183 km 295 km 2330 km
Spectral Coverage 0.4–1.38 µm 0.4–14 µm 0.4–2.2 µm 0.4–12.5 µm
Pixel Quantization 12 bits 8 bits 12 bits 12 bits

Launch Date 11 February 2013 15 April 1999 23 June 2015 18 December 1999
Temporal Resolution 16 days 16 days 5 days 1–2 days

Orbit Type Sun-synchronous Sun-synchronous Sun-synchronous Sun-synchronous
Equatorial Crossing Time 10:13 a.m. 10:00 a.m. 10:30 a.m. 10:30 a.m.

Altitude 705 km 705 km 786 km 705 km

The Landsat series of sensors have acquired the longest continuous series of image observations
of the Earth’s surface [19]. Prior to the launch of L8, the Landsat-7 Enhanced Thematic Mapper Plus
(ETM+) was considered to be the most stable of the Landsat series, with estimated uncertainties in
its at-sensor radiance calibration of ±5% [3]. Until very recently, the ETM+ has employed radiance
based-calibration [21]. The ETM+ detector performance has been more stable than its on-board
calibrators [22]. Angal et al. [21] showed in their cross-calibration work of ETM+ and MODIS that
both instruments demonstrate high temporal stability in spectrally matching bands with 2% long term
drifts for more than 18 years.
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The OLI has been performing well, providing high quality data for Earth observation and
the prelaunch calibration of the Landsat-8 OLI had an estimated uncertainty of approximately 3%
in reflectance products. Subsequent post-launch reflectance-based calibrations have consistently
demonstrated uncertainties on the order of 2% or less [23]. OLI radiometric calibration and stability
are monitored by on-board calibrators and it was found that except for the Coastal/Aerosol band (CA),
other bands are stable to within 0.3% [24].

The MODIS is a key instrument onboard the Terra and Aqua satellites operated as a part of
NASA’s (National Aeronautics and Space Administration) Earth Observing System. MODIS data is
used for a wide range of applications such as ocean, land, atmosphere and climate monitoring. It has
operated successfully on-board for the last 19 years. For Terra MODIS TOA reflectance products,
a calibration uncertainty of approximately ±2% has been estimated [3,25]. The MODIS instrument
acquires data at three spatial resolutions—250 m, 500 m and 1 km, which are coarser than the other
sensors used in the study. In contrast, MODIS presents the highest temporal resolution (near-daily
revisit acquisition capability).

Sentinel-2A was the first in the Sentinel-2 series of satellites launched for the Copernicus program
developed by the European Space Agency (ESA). The main purpose of this sensor is to provide stable
image data of high spatial resolution (10 to 60 m) [26]. Time series data obtained from its onboard
sensor, the Multi-Spectral Instrument (MSI), are comparable to OLI and other well calibrated sensor
data [26]. Barsi et al. [27] demonstrated that OLI and MSI showed stable radiometric calibration, with
consistency between matching spectral bands to approximately ~2.5%. According to the Sentinel-2
Mission Requirement Document, the instrument has stringent radiometric requirements: (a) the
absolute radiometric uncertainty shall be better than 5% (the goal is 3%); (b) the inter-band relative
radiometric uncertainty data shall be constant from one spectral band to any other one to better than 3%
over the reduced dynamic range; (c) the requirement between the satellites (cross-satellite) is 3% [28].

In order to analyze the stability of pseudo-invariant sites using the Virtual Constellation approach,
it is necessary for all sensors to image common ground targets in the same regions or spectral bands
of the electromagnetic spectrum. For the sensors investigated in this work, the common bands are
designated as “Blue,” “Green,” “Red,” “NIR,” “SWIR1” and “SWIR2.” Table 2 gives the corresponding
wavelength ranges of each band for each sensor. The Relative Spectral Responses in analogous bands
for these sensors are presented in Figure 1.

Table 2. Sensor Spectral Bands.

Bandwidth (nm)

Sensor Blue Green Red NIR SWIR 1 SWIR 2

OLI 452–512 (b2) 533–590 (b3) 636–673 (b4) 851–879 (b5) 1567–1651 (b6) 2107–2294 (b7)
ETM+ 441–514 (b1) 519–611 (b2) 631–692 (b3) 772–898 (b4) 1547–1748 (b5) 2064–2346 (b7)

MSI 470–524 (b2) 504–602 (b3) 649–680 (b4) 855–875 (b-8a) 1569–1658 (b11) 2113–2286 (b12)
MODIS 459–479 (b3) 545–564 (b4) 620–670 (b1) 841–876 (b2) 1628–1652 (b6) 2105–2155 (b7)Remote Sens. 2019, 11, x FOR PEER REVIEW  5 of 24 
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3. Study Area (PICS Sites)

Helder et al. [29] developed an automated invariant site identification algorithm to locate
statistically optimal regions. The results from this work suggested that temporal stability in the range
of 1–3% could be achieved by using the CEOS referenced sites. In another study, Mishra et al. [30]
ranked the CEOS referenced test sites according to temporal uncertainty estimated from an analysis of
ETM+ data. In this work, the six SDSU IPLAB PICS across North Africa were evaluated (Figure 2).
The temporal uncertainties of these six PICS in each of the spectral bands from visible to shortwave
infrared (SWIR) were found to be less than other CEOS-recommended PICS (e.g., Mauritania 1,
Mauritania 2, Algeria 3, Algeria 5 and Mali) [30]. The center latitude and longitude coordinates for each
site are given with the corresponding site name: (1) Libya 4 (28.55◦N, 23.38◦E); (2) Libya 1 (24.70◦N,
13.49◦E); (3) Niger 1 (9.36◦N, 20.41◦E); (4) Niger 2 (10.44◦N, 21.08◦E); (5) Sudan 1 (21.40◦N, 27.70◦E);
and (6) Egypt 1 (27.41◦N, 26.38◦E). The Region of Interest (ROI) within each PICS have been chosen
based on previous studies [31]. The algorithm was developed by the SDSU IPLAB, known as PICS
normalization process (PNP), identified the regions within the PICS, which are specified as “Optimal
Region.” This means that all pixels inside the selected ROIs in this work present at least 3% temporal,
spatial and spectral variability. In other words, the selected ROI presents temporal, spatial and spectral
stability equal or better than 3%. Figure 2 shows the optimal region for each site as the white pixels and
the selected ROI for each site as a blue rectangle. Table 3 gives the corresponding corner latitude and
longitude coordinates defining the ROI, along with the corresponding Landsat World-wide Reference
System 2 (WRS2) path and row.Remote Sens. 2019, 11, x FOR PEER REVIEW  6 of 24 
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Table 3. WRS-2 Path/Row and Center ROI coordinates of selected PICS.

PICS WRS-2
Path/Row

Minimum
Latitude

Minimum
Longitude

Maximum
Latitude

Maximum
Longitude

Center
Latitude

Center
Longitude

Libya 4 181/40 28.38 23.09 28.81 23.86 28.55◦ N 23.38◦ E
Libya 1 187/43 24.55 13.32 24.86 13.66 24.70◦ N 13.49◦ E
Niger 1 189/46 20.28 9.19 20.53 9.52 9.36◦ N 20.41◦ E
Niger 2 188/45 21.25 10.38 21.47 10.71 10.44◦ N 21.08◦ E
Sudan1 177/45 21.40 27.81 21.75 27.59 21.40◦ N 27.70◦ E
Egypt1 179/41 26.91 26.31 27.13 26.62 27.41◦ N 26.38◦ E

4. Methodology

Due to differences in sensor design, the radiometric responses for each sensor are not the same.
As part of the data processing described in this section, these differences must be reduced such that all
sensors measure a common radiance/reflectance level.

4.1. Image Pre-Processing

All of the Landsat ETM+ and OLI images used in this study were downloaded to the SDSU IPLAB
archive from the United States Geological Survey (USGS) Earth Resources Observation and Science
(EROS) Data Center (https://earthexplorer.usgs.gov/). Similarly, Sentinel 2 MSI images were retrieved
from the Copernicus Open Access Hub (https://scihub.copernicus.eu/). All MODIS data products can
be accessed from the Earth Data website (http://earthdata.nasa.gov/). Here, the MODIS Collection 6.1
was used, since it represents the best available MODIS data. Lyapustin et al. [32] describes the latest
version of the algorithm used for processing the MODIS Collection 6 data record. Finally, the MODIS
Characterization Support Team (MCST) provided the Terra MODIS imagery. All of the downloaded
image products were pre-processed by each group to remove radiometric and geometric artifacts.
The OLI, ETM+ and MSI products were then scaled to 16-bit integers representing TOA reflectance;
the MODIS products were processed to produce TOA reflectance values [14]. Additional details
describing the various pre-processing steps can be found on each group’s web site.

4.2. Conversion to TOA Reflectance

For the OLI, ETM+ and MSI, the pixel values for each ROI at each site were then converted to
TOA reflectance using linear scaling factors given in the associated product metadata. For the ETM+

and OLI, the TOA reflectance is directly obtained as follows [33]:

ρ′λ= Mρ∗QCal +Aρ (1)

where ρ′
λ

is the estimated TOA reflectance, QCal is the calibrated DN pixel value and Mρ and Aρ are
band-specific, reflectance-based multiplicative and additive scaling factors, respectively. These scaling
factors were designed to account for the estimated exoatmospheric solar irradiance that is needed for
radiance-to-reflectance conversion, which can vary according to the model (Chance-Kurutz (ChKur)
solar spectrum) used to calculate it [34], as well as the seasonal variation in the Earth-Sun distance.
However, these coefficients do not account for solar zenith angle (SZA), so an additional cosine
correction is required:

ρλ =
ρ′
λ

cos (SZA)
(2)

Conversion of MSI pixel values to TOA reflectance just involves scaling by a single constant which
accounts for the exoatmospheric irradiance, Earth-sun distance and any required cosine correction:

ρλ=
DNcal

g
(3)

https://earthexplorer.usgs.gov/
https://scihub.copernicus.eu/
http://earthdata.nasa.gov/
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where DNcal is the 12-bit (calibrated DN) pixel value and g = 10000 is the currently established
scale factor.

For MODIS, the reflectance information for the six PICS was received from the NASA MCST.
Using the same region of interest as shown in Figure 2, the at-sensor reflectance values on a per-pixel
basis were extracted for each MODIS band used in this study. These values were computed at the
native spatial resolution of each MODIS band (250 m for bands 1, 2, 3 and 4 and 500 m for bands 6
and 7) and then averaged over the ROI. The Level 1B calibrated products used for this work are from
Collection 6.1, the version reflecting the latest calibration algorithms from MCST. The irradiance model
used by the MODIS instrument is basically the combination of different irradiance models [35–37].

4.3. Data Filtering

Once the mean TOA reflectance value for each image’s ROI was calculated, filtering was required
to ensure only cloud-free image data were analyzed. ETM+ and OLI image data were filtered in part
using the associated quality band information. In the case of MODIS, the MODIS cloud-mask product
was used—which provides the information about cloud-presence at 1 km spatial resolution [38]. If over
50% of the pixels were flagged as “cloudy” for any scene, then it was excluded from the process. For all
sensors, an empirical 2-sigma (2σ) filtering approach (i.e., 2 standard deviations from the mean of
the temporal TOA reflectance derived from all scenes) was applied, as Median Absolute Deviation
(MAD) and other mean-based approaches were found to be too “aggressive” in removing potential
outliers. Any image’s mean TOA reflectance for the ROI exceeding the 2σ threshold resulted in visual
inspection of the image for all spectral bands; if the visual inspection indicated clouds/shadows or
other artifacts not identified in the quality data, the scene was excluded from further analysis. Note
that when cloud/shadows were detected in the ROI for any spectral band of an image, the entire scene
(all spectral bands) was discarded from the analysis.

4.4. Bidirectional Reflectance Distribution Function (BRDF) Correction

The TOA reflectance of a given target can vary significantly from one acquisition to the next
depending on the solar and sensor positions at each acquisition time. This effect is modeled by the
Bidirectional Reflectance Distribution Function (BRDF). BRDF effects can also occur due to variations
in orientation between multiple sensors co-incidentally imaging the same target with the same
solar position.

For this analysis, BRDF correction of the mean TOA reflectance data from each scene was based
on a multilinear regression model derived from the solar zenith/azimuth and sensor zenith/azimuth
angles. Additional details describing this multilinear BRDF correction can be found in Reference [39].

ρmodel= β0+β1Y1+β2X1+β3Y2+β4X2 (4)

where β0, β1, β2, β3, β4 are the model coefficients. Y1, X1, Y2 and X2 are Cartesian coordinates
representing the planar projections of the solar and sensor angles originally given in spherical coordinates:

Y1= sin(SZA)∗ sin(SAA) (5)

X1= sin(SZA)∗ cos(SAA) (6)

Y2= sin(VZA)∗ sin(VAA) (7)

X2= sin(VZA)∗ cos(VAA) (8)

where SZA, SAA, VZA and VAA are the solar zenith, solar azimuth, view zenith and view azimuth
angles, respectively. The BRDF-corrected TOA reflectance for each sensor was determined as follows:

ρBRDF−corrected =
ρobs

ρmodel
× ρref (9)
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Here, ρobs is the observed mean TOA reflectance from each scene. ρmodel is the model predicted
TOA reflectance. ρref is the TOA reflectance with respect to a set of “reference” solar and sensor
position angles; for this analysis, the reference SZA, SAA, VZA and VAA angles were calculated as the
mean of the corresponding SZA, SAA, VZA and VAA angles from all processed scenes.

It is important to highlight that the MODIS Field of View (FOV) is approximately ±49.5◦. However,
in this work only at nadir or near-nadir viewing images were used. The variation in the view zenith
angles for different PICS is less than 10 degrees. The scenes with larger view angles have not been
included in the analysis. In addition, for the Sentinel and Landsat instruments the effect of angular
variations within the ROI may not be negligible. Both instruments have a per-pixel solar zenith angle
variation product. For the purposes of this work, BRDF correction was performed using the angular
information for the pixels within the selected ROI (and not the scene-center angle information).

4.5. Scaling Adjustment

PICS site stability was initially evaluated based on analyses of an individual sensor’s
BRDF-corrected TOA reflectance trend. As will be shown in Section 5, this initial approach produced
contradictory conclusions among the sensors, primarily due to significant differences in their operating
lifetimes affecting the amount of available data (e.g., the Sentinel-2A MSI has actively acquired image
data for only three years, while the Landsat-7 ETM+ has actively acquired image data for almost
20 years). To provide a “common” operating lifetime, the BRDF-corrected mean TOA reflectance
datasets for all sensors were pooled to produce a single time series dataset. The responses of the ETM+,
MODIS and MSI were scaled by an adjustment factor to match the observed OLI response. For each
sensor, the required adjustment factor was calculated as the mean of the ratios of the BRDF-corrected
mean TOA reflectance values from near-coincident acquisitions with the OLI.

“Near-coincident acquisitions” refer to the scenes which are imaged within a maximum acceptable
window of days; as for MODIS and OLI, “near-coincident” refers to the scene pairs imaged
approximately 8 days apart. Finally, the TOA reflectance of each sensor was then normalized
by the adjustment factor. It should be stated here that the proposed scaling adjustment can account for
all types of differences (including the RSR differences) between the OLI and other sensors. Therefore,
the SBAF normalization using Hyperion was not performed here.

4.6. Linearity Check for Individual Sites

Once the BRDF-corrected mean TOA reflectance datasets were generated for each sensor at each
site, linear regressions were performed to characterize the temporal responses:

ρi= α1ti + α0 (10)

where ti is the decimal year, ρi is the BRDF-corrected mean TOA reflectance for a test site for a given
sensor, α1 is the slope of the regression line and α0 is the associated intercept. To determine whether a
linear relationship between mean TOA reflectance and decimal year could be identified, a correlation
test was performed for each site for each individual sensor. Tables 4 and 5 present the correlation test
results for Libya 4 for individual sensors and for the virtual constellation, respectively. In summary,
there was sufficient statistical evidence to indicate a linear relationship between BRDF-corrected mean
TOA reflectance and decimal year only for the OLI and ETM+ in most bands. For the MSI there
was insufficient evidence to indicate a linear relationship in most bands and for MODIS, there was
insufficient evidence in any band. Correlation tests performed for the other sites also exhibited
inconsistencies in identification of a linear relationship across all bands. Based on these results,
application of any statistical test expecting a linear relationship between BRDF-corrected mean TOA
reflectance and time would likely lead to potentially misleading conclusions. It is possible that
higher-order polynomial or even nonlinear relationships are present in the data.
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Table 4. Correlation between Decimal Year and BRDF Corrected Mean TOA Reflectance of Libya 4.

L8-OLI L7-ETM+ S2A-MSI Terra MODIS

Bands Pvalue Correlation Pvalue Correlation Pvalue Correlation Pvalue Correlation

Blue 0.0046 Yes 0.035 Yes 0.509 No 0.128 No
Green 0.0012 Yes 0.190 No 0.052 No 0.695 No
Red 0.0252 Yes 0.005 Yes 0.014 Yes 0.194 No
NIR 0.0004 Yes 0.003 Yes 0.192 No 0.342 No

SWIR1 0.0150 Yes 0.069 No 0.322 No 0.213 No
SWIR2 0.5118 No 0.009 Yes 0.111 No 0.656 No

Table 5. Correlation between Decimal Year and BRDF Corrected band adjusted combined Mean TOA
Reflectance of Libya 4.

Virtual Constellation (OLI, ETM+, MSI and MODIS)

Bands P Value Correlation

Blue 0.4848 No
Green 0.4467 No
Red 0.0104 Yes
NIR 0.0130 Yes

SWIR 1 0.1949 No
SWIR 2 0.1595 No

4.7. Normality Check for Individual Sites

Mendes and Pala (2003) [40], studied the power of three normality tests. According to the
authors Shapiro-Wilk was the most powerful test regardless of distribution and sample size and they
recommend it to be used when testing for normality. In addition, in a more recent study, Yap and Sim
(2011) [41], compared the power of eight normality test based on Monte Carlo simulation. According
to their study, the results show that Shapiro–Wilk test is a powerful test regardless of distribution
(symmetric short-tailed, symmetric long-tailed or asymmetric distributions). That is why this test was
performed to determine whether the BRDF-corrected mean TOA reflectance values for each sensor
and site represent samples obtained from a normally distributed population. Figure 3a,b, respectively,
show the histograms of ETM+ Blue and SWIR2 band TOA reflectance obtained for Libya 4. Visual
inspection of these histograms shows the appearance of a right-skewed tail in the Blue band histogram
and a slight left-skewed tail in the SWIR2 band histogram, suggesting a non-normal distribution.
This hypothesis is confirmed with the Shapiro-Wilk test results for all ETM+ bands from Libya 4,
indicating the data are not normally distributed. The MODIS and MSI test results indicate their data
are not normally distributed in some bands for this site. Interestingly, the OLI test results indicate its
data are normally distributed in all bands. The particular Shapiro-Wilk results for each band using the
Libya 4 data are summarized in Table 6.
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Table 6. Shapiro-Wilk Normality Test of BRDF-corrected Mean TOA Reflectance of Libya 4 by Sensor,
α = 0.05.

Band L8-OLI L7-ETM+ S2A-MSI Terra MODIS Combined Sensor

Blue Normal Non-normal Normal Non-normal Non-normal
Green Normal Non-normal Normal Non-normal Non-normal
Red Normal Non-normal Normal Normal Normal
NIR Normal Normal Normal Normal Non-normal

SWIR 1 Normal Normal Non-normal Non-normal Non-normal
SWIR 2 Normal Normal Normal Normal Normal

The Shapiro-Wilk normality test result for combined sensor data also shows non-normal (Table 6)
distribution of TOA reflectance for 4 bands whereas for the remaining two bands normal distribution
is indicated. Application of the Shapiro-Wilk test to the reflectance data from the other sites suggests
non-normality of reflectance data in at least some of the bands for all the sensors. Based on these
results, application of any statistical test expecting normally distributed BRDF-corrected mean TOA
reflectance values could likely result in to potentially misleading conclusions.

4.8. Statistical Tests for Trend Analysis

As mentioned previously, the Student’s T-Test has traditionally been used to evaluate satellite
sensor performance based on PICS data analysis. Chander et al. [14] used linear regression as well as
the T-Test to evaluate long term sensor stability of the ETM+ and MODIS. Angal et al. [42] used the
T-Test to evaluate long term drift of TOA Reflectance over CEOS reference test sites for ETM+ and
MODIS Collections 5 and 6. However, as shown in Sections 4.6 and 4.7, the linearity and normality
assumptions for the T-test do not apply to all bands in the individual and combined TOA reflectance
datasets. Nonparametric statistical tests, such as the Mann-Kendall test, do not require assumptions
of linearity and/or normality in the dataset. Thus, this test was selected for detection of potential
monotonic trends.

4.8.1. Mann-Kendall Trend Test

The Mann-Kendall test is a widely used non-parametric test for identification of trends in a time
series dataset [43–45]. The test has been extended to account for seasonal variation within the dataset,
leading to its use in analyses of environmental and climatological data [43]. The Mann-Kendall test
evaluates whether a series of values tend to increase or decrease over time through what is essentially a
nonparametric form of monotonic trend regression analysis. This test analyzes the sign of the difference
between later-measured data and earlier-measured data (see Equation (11)). For the purposes of this
analysis, the seasonal Mann-Kendall test was performed at the 0.05 significance level on the hypotheses:

H1. no monotonic trend/Observations are random.

H2. monotonic trend, with the direction of trend dependent on the sign of the Mann-Kendall statistic, Sk, for each
season k, calculated from the temporally sorted dataset:

Sk=

nk−1∑
i = 1

nk∑
j = i +1

sgn(Yjk−Yik) (11)

where Yjk and Yik are observations from season k in years j and i, respectively and nk is the number of years
including season k. The sign of certain argument X is defined as follows:

sgn (X) =


1 if X > 0
0 if X = 0
−1 if X < 0

(12)
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These statistics are summed up for the p different seasons to estimate the overall test statistic Sn:

Sn =

p∑
k = 1

Sk (13)

If Sn is positive, later values tend to be larger than earlier values and an upward trend is indicated.
If Sn is negative, later values tend to be smaller than earlier values and a downward trend is indicated.
If the p-value for Sn is less than the empirical significance level (0.05), there is sufficient evidence to
reject the null hypothesis and conclude that there is a monotonic trend. Otherwise, there is insufficient
evidence to conclude that a monotonic trend exists. It has already been stated that the sensors in
this study are well calibrated with some degree of uncertainties, so if a monotonic trend (upward or
downward) is found, it indicates changes to the site’s stability.

In any kind of hypothesis testing, the choice of decision making is a challenging task. Therefore,
the concept of “Type I” and “Type II” errors should be mentioned here. “Type I” error arises for
rejecting null hypothesis when it is actually true, also known as a “False Positive.” In other words,
this error is because of accepting alternative hypothesis. Type I error is generally reported as the
p-value. Usually, the common practice is to set Type I error as 0.05 or 0.01—this means there is 5 or
1 in 100 chance that the trend that we are observing is because of chance. This is called “Level of
Significance.” Significance level needs to be chosen very carefully for getting rid of “Type I” error.

“Type II” error arises for not rejecting null hypothesis when the alternative hypothesis is true.
In case of trend analysis, “Type II” error occurs when we fail to observe the presence of a monotonic
trend when the truth is the presence of a monotonic trend.

4.8.2. Chi-Square Test

In this work one more statistical test was also performed, the Chi-Square test. This test is used to
determine if there is significant difference between the expected and observed values. The value of the
Chi-Square statistic indicates the disagreement between the observed values and the values expected
under a statistical model, including any uncertainties. The test has the following statistic:

X2=
∑ (y i−f(x i))

2

σ2 (14)

where yi is the measurement of the quantity y, when the quantity x is xi; f(xi) is the expected value
obtained from the linear models and σ2 is the uncertainty of yi. In the analysis, chi-square test statistics
have been calculated for two linear models for the mean TOA reflectance—one model includes the
slope (y = mx + c), while the other model is based on the mean TOA reflectance (y = c). Thereafter,
the chi-square test statistics were compared from these two models to see whether they matched with
the monotonic trend analysis results. This similarity/dissimilarity of results would indicate the effect of
all types of calculation uncertainty in the trend analysis.

5. Results and Discussion

In the following sections, trend analysis results are shown for the Libya 4 site exclusively. This is
because Libya 4 has been extensively used for sensor performance determination for a long time [5,14].
For the remaining PICS, a summary of the results is included thereafter.

5.1. Individual Sensor Trend Analysis

Figure 4 shows the long-term TOA reflectance trends over the Libya 4 PICS for spectrally matching
bands of ETM+, OLI, MODIS and S2A MSI. The trends shown here have been BRDF corrected to
minimize effects due to seasonal behavior. The normalization is effective in the visible and NIR bands;
residual seasonality is apparent in NIR and both SWIR bands, particularly in SWIR 2. The trends for
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the ETM+, OLI and MSI overlap in the visible bands and are offset slightly in the NIR and SWIR bands.
However, the MODIS reflectance is lower in the visible bands and significantly higher in the SWIR
bands, with larger offsets occurring at the longer wavelengths. These offsets are caused by several
factors, including the spectral signature of the ground target, differences due to the RSR (as described
in Section 2) and atmospheric effects. In the NIR band, the MODIS and ETM+ reflectance trends are
offset from the OLI and MSI trends.
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Figure 4. Temporal trend of BRDF-corrected TOA Reflectance over Libya 4 Site [L7 ETM+, Terra
MODIS, L8 OLI and S2A MSI]. Blue (a), Green (b), Red (c), NIR (d), SWIR 1 (e) and SWIR 2 (f) spectral
bands. Note that in this figure the scaling adjustment factor has not been applied yet.

To evaluate the long-term stability of the four sensors, the non-parametric Seasonal Mann-Kendall
test was applied to the individual sensor datasets, according to the hypotheses stated in Section 4.8.2.
Table 7 shows the analysis results. For the given significance level (0.05), there is insufficient evidence
to indicate a monotonic trend in any band of the MODIS and MSI TOA reflectance datasets; for the
ETM+ and OLI datasets, there is sufficient evidence to indicate monotonic trends are present in some
of the bands. In this case, the individual sensor results are contradictory with respect to potential
change in the site; no definite conclusion can be drawn. In addition, the potential trends identified
in the ETM+ and OLI datasets appear to be in opposite directions for some of the analogous bands.
Again, no definite conclusions regarding site stability can (or should) be drawn based on these results.
To overcome this limitation, the TOA reflectance virtual constellation approach using multiples satellite
Sensors is presented in the next section.
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Table 7. Seasonal Mann-Kendall Test Results by Sensor for Libya 4 PICS, Significance level α = 0.05.

Band Kendall Correlation Coefficient S Statistic Value P Value Decision

Landsat -7 ETM+

Blue −0.066 −71 0.2691 No Trend
Green 0.086 93 0.1466 No Trend
Red 0.151 163 0.0106 Upward Trend
NIR 0.269 289 0.0000 Upward Trend

SWIR 1 0.278 299 0.0000 Upward Trend
SWIR 2 0.213 229 0.0003 Upward Trend

TERRA MODIS

Blue 0.088 111 0.1211 No Trend
Green 0.072 91 0.2046 No Trend
Red 0.089 113 0.1146 No Trend
NIR 0.076 97 0.1761 No Trend

SWIR 1 −0.063 −80 0.2656 No Trend
SWIR 2 −0.004 −5 0.9551 No Trend

Landsat-8 OLI

Blue −0.254 −15 0.1319 No Trend
Green −0.424 −25 0.009 Downward Trend
Red −0.373 −22 0.023 Downward Trend
NIR −0.39 −23 0.0166 Downward Trend

SWIR 1 −0.458 −27 0.0051 Downward Trend
SWIR 2 −0.085 −5 0.6668 No Trend

Sentinel-2A MSI

Blue 0.150 3 0.6721 No Trend
Green 0.500 10 0.0624 No Trend
Red 0.300 6 0.3006 No Trend
NIR 0.300 6 0.3006 No Trend

SWIR 1 0.350 7 0.2042 No Trend
SWIR 2 −0.200 −4 0.5346 No Trend

Note: Kendall correlation coefficient is a nonparametric measure of the strength and association that exists between
two variables measured on at least an ordinal scale. It returns a value between 0 and 1; 0 value of it refers to no
relationship and 1 refers to a perfect relationship.

The Kendall correlation coefficient is also a good indicator for the presence of trend in any dataset.
From Table 7, it can be stated that where the S statistic value is higher, the Kendall correlation coefficient
is also higher. This coefficient provides consistency with the S statistic value to indicate trend.

5.1.1. Libya 4 PICS Stability Analysis

To address the ambiguous result described in the previous section, a data homogenization
technique was applied to create a “combined” TOA reflectance dataset (Virtual Constellation).
The technique consisted of applying a sensor-specific Scaling Adjustment factor to the TOA reflectance
datasets, as described in Section 4.5. Figure 5a–f show the resulting trends for all sensors in each band.
In comparison to the non-adjusted datasets shown in Figure 4a–f, there is excellent agreement between
each sensor’s TOA reflectance values (even though seasonality effects are still observable in the SWIR
bands). As a result, a seamless TOA reflectance dataset was created. As mentioned in Section 4.5,
this Scaling Adjustment can account for additional sources of disagreement between sensors, including
RSR differences.
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Figure 5. Temporal trend of BRDF-corrected Scaling Adjusted TOA reflectance over Libya 4 site
(L7 ETM+, Terra MODIS, L8-OLI, S2A-MSI) in (a) blue band; (b) Green band; (c) Red band; (d) NIR
band; (e) SWIR 1 band; (f) SWIR 2 band.

Table 8 includes the estimated Scaling Adjustment factors for each of the 3 sensors (ETM+, MODIS
and MSI) over Libya 4 site to normalize the TOA reflectance to OLI’s TOA reflectance.

Table 8. Scaling Adjustment Factors for Libya 4 PICS for each Sensor, by Band (Normalized to OLI).

Band L7- ETM+ Terra-MODIS S2A-MSI

Blue 1.015 0.980 1.021
Green 1.010 1.027 1.005
Red 1.004 1.028 0.994
NIR 0.992 1.004 0.996

SWIR 1 1.004 0.994 0.995
SWIR 2 1.002 1.001 1.005

Table 9 shows the disagreement in mean TOA reflectance between the OLI and the other
sensors before and after scaling adjustment normalization. The maximum disagreement between
the OLI and S2A-MSI is consistently less than 3% before normalization and less than 0.1% after
normalization; this is mainly due to mismatches in their RSRs. Disagreement between the OLI and
MODIS significantly decreased, from over 8% before normalization to less than 0.3% after normalization.
Similarly, disagreement between the OLI and ETM+ decreased from over 8.6% before normalization to
approximately 0.4% after normalization. Clearly, the Scaling Adjustment has significantly reduced
effects due to all differences in sensor response, including differences in relative spectral response and
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perhaps accounting for atmospheric effects as well. The increased agreement should allow for a more
definitive analysis of site stability.

Table 9. Mean Percentage difference of mean TOA reflectance of L8 and the other 3 sensors before and
after Scaling Adjustment normalization over Libya 4 site.

Sensor L7- ETM+ Terra-MODIS S2A-MSI

Bands Before After Before After Before After

Blue −3.13 −0.07 −5.39 −0.27 2.06 0.06
Green −0.98 0.13 −5.03 0.01 −1.07 0.03
Red 0.78 0.18 −5.10 −0.11 2.76 0.02
NIR −8.62 0.35 −2.38 −0.06 0.45 0.02

SWIR 1 −2.16 0.33 3.65 0.10 0.67 0.01
SWIR 2 −5.86 0.40 8.34 −0.16 −0.35 0.04

Figure 6 shows the combined TOA reflectance datasets over Libya 4 for corresponding bands in all
sensors. The Seasonal Mann-Kendall test was applied to the combined dataset at the same significance
level as that used for the tests on the individual sensor data. Table 10 shows the results from this
test. For the given significance level and estimated p-values, there is insufficient statistical evidence to
indicate the presence of a long-term monotonic trend in TOA reflectance for any band of the combined
dataset. However, the presence of short-term trends cannot be ruled out.
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Figure 6. Virtual constellation – homogenized 4 sensor’s TOA reflectance trends for the 6 spectrally
matched bands over Libya 4 site.

Table 10. Seasonal Mann Kendall test result of Trend Analysis of Libya 4 (homogenized TOA reflectance
data).

Band Kendall Correlation Coefficient S Statistic Value P-Value Decision

Blue 0.072 120 0.1507 No Trend
Green 0.098 162 0.0979 No Trend
Red 0.119 197 0.1408 No Trend
NIR 0.131 217 0.0862 No Trend

SWIR 1 –0.063 −105 0.3717 No Trend
SWIR 2 0.077 127 0.2878 No Trend

This section presented the results of a stability analysis of the combined Libya 4 dataset. The next
sections present the results of similar analyses conducted at the remaining PICS studied in this work.

5.1.2. Virtual Constellation Trend Analysis

The concept of virtual constellation has already been introduced in the previous sections. Table 11
shows the number of datasets available after pre-processing for combining TOA reflectance data
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from 4 different sensors. It is clear that the number of combined/homogenized scenes of each PICS is
sufficiently large enough for temporal analysis to detect small changes in time series datasets of PICS.

Table 11. Total number of scenes used for each site in trend analysis.

Sites Libya 4 Egypt 1 Niger 1 Niger 2 Sudan 1 Libya 1

Number of homogenized Scenes 642 769 702 727 732 712

5.1.3. Egypt 1, Sudan 1, Niger 1, Niger 2 and Libya 1 Stability Analysis

Figure 7 shows the BRDF-corrected band adjusted homogenized mean TOA reflectance trend
for the Egypt 1, Sudan 1, Niger 1, Niger 2 and Libya 1. As with Libya 4, seasonal variability and
sensor response differences are significantly accounted for with the BRDF and Scaling Adjustment
normalizations. At Libya 1, however, there appears to be potential outliers in TOA reflectance,
particularly in the longer wavelength bands. These potential outliers should not be cloud-related,
as pixels in the ROIs were visually checked and excluded from analysis if obvious clouds and/or cloud
shadows were identified. Even though they appear as potential outliers, they were not excluded for
the trend analysis, as all TOA reflectance data from each scene represent valid measurements used for
trend detection.
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Figure 7. Homogenized TOA reflectance trends of Egypt 1 (a), Sudan 1 (b), Niger 1(c), Niger 2 (d) and
Libya 1(e) PICS.

Table 12 summarizes the Seasonal Mann-Kendall test results obtained for the Egypt 1, Sudan 1,
Niger 1, Niger 2 and Libya 1.
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Table 12. Seasonal Mann-Kendall test results for Combined Sensor TOA Reflectance Datasets at
Remaining SDSU Sites, α = 0.05.

Band Kendall Correlation Coefficient S-Statistic Value P-Value Decision

Egypt 1

Blue 0.088 176 0.1285 No Trend
Green 0.082 164 0.2659 No Trend
Red 0.098 196 0.1880 No Trend
NIR 0.144 287 0.0616 No Trend

SWIR 1 0.051 102 0.6014 No Trend
SWIR 2 0.161 321 0.0510 No Trend

Sudan 1
Blue –0.195 –365 0.0500 Downward Trend

Green –0.275 –516 0.0040 Downward Trend
Red –0.193 –362 0.0178 Downward Trend
NIR –0.175 –328 0.0210 Downward Trend

SWIR 1 –0.259 –485 0.0033 Downward Trend
SWIR 2 –0.006 –11 0.9058 No Trend

Niger 2
Blue 0.207 377 0.0002 Upward Trend

Green 0.055 100 0.2744 No Trend
Red 0.079 145 0.1444 No Trend
NIR 0.071 130 0.2498 No Trend

SWIR 1 –0.090 –164 0.3031 No Trend
SWIR 2 0.035 63 0.6517 No Trend

Niger 1

Blue 0.078 145 0.1286 No Trend
Green –0.147 –272 0.0191 Downward Trend
Red –0.164 –305 0.0080 Downward Trend
NIR –0.120 –222 0.0624 No Trend

SWIR 1 –0.129 –240 0.0533 No Trend
SWIR 2 –0.038 –70 0.6164 No Trend

Libya 1

Blue 0.047 78 0.3833 No Trend
Green 0.031 51 0.5715 No Trend
Red 0.078 129 0.1473 No Trend
NIR 0.124 205 0.0209 Upward Trend

SWIR 1 0.023 38 0.6754 No Trend
SWIR 2 0.010 17 0.8563 No Trend

For Egypt 1, there is insufficient statistical evidence to indicate the presence of a monotonic trend
in any band; This is suggesting that the site might be stable over time. For Sudan 1, however, there is
evidence from statistical perspective to indicate the presence of a monotonic trend in all bands except
the SWIR 2 band. For Libya 1, there is again statistical evidence to indicate a trend only in the NIR
band. For the Niger sites, there are indications of trends in some of the visible bands. For Niger 2,
the trend presents in the Blue band only, while at Niger 1 the trend presents in the Green and Red bands.
It should be emphasized that the presence of these trends is inferred from the statistical test results.
The stability requirement of PICS based on each of the satellite sensor mission is also an important
aspect to consider; since a site may essentially be stable “enough” for one sensor and not be suitable
for another one —due to its associated uncertainties requirements.

The temporal coefficient of variation (CV) was calculated, for each PICS, as the ratio of the TOA
reflectance standard deviation to the temporal mean. Table 13 shows the estimated CV for each site. It is
clear that Libya 4 and Egypt 1 exhibit somewhat smaller CV across all of the common bands compared
to the other PICS, even though the estimated CV at all sites is less than 3% across the common bands.



Remote Sens. 2019, 11, 1502 18 of 23

Clearly, the 3% criterion used in PICS-based sensor calibration is maintained even after VC. Libya 4’s
CV is within 1.5% in these bands, providing additional corroboration for concluding that the Libya 4
site is exhibiting long-term temporal stability.

Table 13. Temporal Coefficient of Variation (Standard Deviation/ Temporal Mean TOA Reflectance) of
6 selected PICS (%).

Bands Libya 4 Egypt 1 Niger 1 Niger 2 Sudan 1 Libya 1

Blue 1.26 1.78 2.64 2.86 2.13 2.83
Green 0.98 1.58 1.86 2.19 1.78 2.08
Red 0.89 1.45 1.50 1.76 1.61 1.50
NIR 1.05 1.33 1.41 1.69 1.65 1.46

SWIR 1 1.01 1.24 1.37 1.41 1.47 1.42
SWIR 2 1.25 1.53 1.65 1.59 1.64 1.61

5.2. Chi-Square Test Result (Goodness of Fit Test)

As currently implemented, the Seasonal Mann-Kendall test does not account for uncertainty in
the calculated mean TOA reflectance values. To determine the best fits of the mean TOA reflectance
data (both including and excluding any trend) that account for uncertainty, the Chi-Square test
was performed as described in Section 4.8.2. The estimated ‘goodness of fit’ between the two
regressions is based on the Akaike Information Criteria (AIC) [46] associated with the χ2 test statistic,
(see Equation (15). The AIC compares the quality of a set of statistical models to each other. A good
model is the one that has minimum AIC among all the other models. In other words, a lower AIC
value indicates a better fit.

AIC = X2+ 2p +
2p (p + 1)
N − p − 1

(15)

Here, X2 is the Chi-Square test statistic value; p is the number of regression parameters (p = 1
when the regression model is y = c and p = 2 when the regression model is y = mx + c); and N is
the total number of observations (i.e., the number of processed scenes used in the analysis). Lower
AIC values indicate a better degree of fit. For the Chi-Square test statistic calculation, four types of
uncertainty are considered: (1) the BRDF correction uncertainty; (2) the spatial coefficient of variation
(CV) in calculated mean TOA reflectance (defined as the ratio of the spatial standard deviation to
the TOA reflectance mean); (3) the calibration uncertainty for each sensor; and (4) the uncertainty
in the scaling adjustment factor calculation. The range of uncertainties arising from each source is
summarized in Table 14.

Table 14. Estimated range of average homogenized TOA reflectance uncertainty for 4 different sources
across 6 PICS.

Source of Uncertainty Uncertainty Range (%) Remarks

Spatial CV of TOA reflectance 0.57%–3.57% For all common bands
Sensor calibration uncertainty 2%–5% For all common bands

BRDF calculation uncertainty 0.65%–2.09% Within 2.09% for VNIR bands; 1.89% for
SWIR bands

Scaling Adjustment uncertainty 0.86%–3.22% 0.91% to 3.22% for VNIR bands and 0.86% to
2.73% for SWIR bands

The total uncertainty was estimated for each of the analogous spectral bands assuming that the
individual uncertainties were not significantly correlated. Therefore, total uncertainty was found by
taking the square root of the squared sum of each of the uncertainty:

Utotal =
√

U2
spatial + U2

calibration + U2
BRDF + U2

scaling (16)
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The maximum uncertainty ranges between approximately 4.22% to 6.01% in the Blue band and
between approximately 4.61% to 5.42% for the SWIR 2 band. This is basically due to atmospheric
scattering and water absorption effects in these two bands. The total estimated uncertainty for the six
PICS is shown in Table 15.

Table 15. Total average estimated uncertainty (%) for all six spectrally matched bands, by PICS.

Bands Libya 1 Libya 4 Niger 1 Niger 2 Sudan 1 Egypt 1

Blue 6.01% 4.32% 5.25% 5.06% 4.74% 4.22%
Green 4.93% 4.18% 3.96% 4.06% 4.31% 4.50%
Red 4.33% 4.32% 3.72% 3.92% 4.30% 4.59%
NIR 4.45% 4.52% 3.72% 4.00% 4.37% 4.51%

SWIR 1 4.65% 4.20% 3.88% 3.66% 4.25% 3.81%
SWIR 2 5.42% 5.35% 5.19% 4.61% 5.07% 4.79%

Table 16 summarizes the AIC results of the test for all PICS. Based on these results and the
estimated uncertainty result from the previous section, the following conclusions can be drawn:

• At Libya 4, the estimated AIC values assuming no trend (Without Slope Fit) are less than the
values assuming a trend (With Slope Fit) in all bands. This result indicates that Libya 4 TOA
reflectance does not appear to exhibit a trend in any band within the estimated uncertainty. Similar
AIC behavior was observed at Egypt 1, resulting in a similar conclusion.

• At Libya 1, the estimated AIC values assuming a trend (With Slope Fit) are less than the
corresponding AIC values assuming no trend (Without Slope Fit) in the NIR band. This suggests
the presence of a trend in that band’s TOA reflectance data within the estimated uncertainty.
The estimated no-trend AIC values are less in the other bands, that is, no significant trend
was detected.

• At Sudan 1, the estimated AIC values assuming trends (With Slope Fit) for all bands except SWIR
2 are less than the corresponding AIC values assuming no trend (Without Slope Fit). Within the
estimated uncertainty, these results suggest the existence of trends in all bands except SWIR 2.

• At Niger 1, the estimated AIC values assuming trends (With Slope Fit) for the Green and Red bands
are less than the corresponding AIC values assuming no trend (Without Slope Fit). This suggests
the presence of trends in those band’s TOA reflectance data within the estimated uncertainty.
The estimated no-trend AIC values are less in the other spectral bands, suggesting no significant
trend was detected.

• At Niger 2, the estimated AIC value assuming a trend (With Slope Fit) for the Blue band is less
than the corresponding AIC value assuming no trend (Without Slope Fit). This suggests the
presence of a trend only in this band’s TOA reflectance data within the estimated uncertainty.

In general, the Seasonal Mann-Kendall test results agree very well with the χ2/AIC results.
The overall conclusions regarding statistically significant evidence for trends in the combined reflectance
dataset do not change. Whether these candidate trends are physically significant, however, remains to
be determined.
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Table 16. Goodness of fit based on AIC score of Chi-Square test for the fits—without slope (y = c) and
with slope (y = mx + c).

Bands Without Slope
Fit y=c

With Slope Fit
y = mx+c Bands Without Slope

Fit y = c
With Slope Fit

y = mx+c

Libya 4 Egypt 1

Blue Lower AIC Higher AIC Blue Lower AIC Higher AIC
Green Lower AIC Higher AIC Green Lower AIC Higher AIC
Red Lower AIC Higher AIC Red Lower AIC Higher AIC
NIR Lower AIC Higher AIC NIR Lower AIC Higher AIC

SWIR 1 Lower AIC Higher AIC SWIR 1 Lower AIC Higher AIC
SWIR 2 Lower AIC Higher AIC SWIR 2 Lower AIC Higher AIC

Libya 1 Sudan 1
Blue Lower AIC Higher AIC Blue Higher AIC Lower AIC

Green Lower AIC Higher AIC Green Higher AIC Lower AIC
Red Lower AIC Higher AIC Red Higher AIC Lower AIC
NIR Higher AIC Lower AIC NIR Higher AIC Lower AIC

SWIR 1 Lower AIC Higher AIC SWIR 1 Higher AIC Lower AIC
SWIR 2 Lower AIC Higher AIC SWIR 2 Lower AIC Higher AIC

Niger 1 Niger 2
Blue Lower AIC Higher AIC Blue Higher AIC Lower AIC

Green Higher AIC Lower AIC Green Lower AIC Higher AIC
Red Higher AIC Lower AIC Red Lower AIC Higher AIC
NIR Lower AIC Higher AIC NIR Lower AIC Higher AIC

SWIR 1 Lower AIC Higher AIC SWIR 1 Lower AIC Higher AIC
SWIR 2 Lower AIC Higher AIC SWIR 2 Lower AIC Higher AIC

6. Conclusions

Earth observing satellite sensors provide a vital source of information relating to changes
occurring at the Earth’s surface. Regular monitoring of the radiometric performance of these sensors
is fundamentally important to the sensor calibration community. Selected PICS have been used
extensively in satellite sensor calibration and performance monitoring for the last two decades.
However, the temporal stability of these PICS has been assumed, implying that any change in observed
temporal stability is due to changes in sensor response; if a PICS is not temporally stable, long term
temporal trend monitoring results obtained for the site will not provide proper useful insights into
the sensor’s radiometric performance. This work presents the results of an explicit analysis into PICS
temporal stability, with the intent to provide the sensor calibration community the means to improve
PICS evaluation and selection.

The work analyzed the TOA reflectance time series of six PICS (Libya 4, Libya 1, Niger 1,
Niger 2, Egypt 1 and Sudan 1) using four sensors (Landsat 7 ETM+, Landsat 8 OLI, Terra MODIS
and Sentinel-2A MSI). Initially, individual sensor time series were analyzed. However, this approach
led to contradictory conclusions about a site’s temporal stability in corresponding bands among
the four sensors. Inconclusive result generated by the traditional method (individual sensor-based
trend analysis) is due to the time series period being different among the sensors—each sensor did
not possess a common “start” time due to differences in launch date. In order to overcome these
limitations, a homogenization process was performed, that is, a Virtual Constellation with the four
sensors was created by combining the individual sensor time series datasets pre-processed to minimize
all differences in the sensor response. A beneficial side effect of the homogenization process is a
significantly increased temporal resolution of the dataset, which should allow quicker detection of
small changes in TOA reflectance.

The new approach presented in this paper is robust compared to the traditional single-sensor
approach, as it is not constrained by the limitations imposed by sensor design and/or operating
characteristics (e.g., temporal coverage, spatial resolution, geometric and radiometric calibration
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accuracy, on-orbit calibration variability etc.) or by the statistical behavior of the resulting time series
dataset. The VC approach can be used in trend detection not only for the selected PICS but for any PICS
used by the sensor calibration community. The addition of sensors to the VC with higher temporal and
spatial resolution may make this analysis more powerful.

Based on the results of the homogenized dataset analysis, it can be concluded that the Libya 4
and Egypt 1 PICS are temporally stable in the six reflective band ranges common to the four sensors.
In contrast, the Sudan 1 PICS data indicate the presence of a decreasing monotonic trend in all common
bands except SWIR 2; a decreasing monotonic trend is also indicated statistically in the Niger 1 Green
and Red band datasets; The Niger 2 PICS data indicate an increasing monotonic trend only in the
Blue band; An increasing monotonic trend is also indicated by the statistical test in the Libya 1 NIR
band dataset.

The analysis presented here suggests there is sufficient statistical evidence to conclude that with
respect to common spectral band ranges among the four sensors, some of the PICS are indicating
monotonic trends in some specific bands. However, these trends do not suggest that the sites are
changing greatly over time. The changes detected in this analysis are generally quite small to be
considered physically significant. The stability requirement of PICS based on each of the Satellite
Sensor mission is an important aspect to consider. For example, the highest temporal change detected
in all evaluated sites was in the Blue band for Sudan 1; the percentage change in mean TOA reflectance
between the periods 1999–2012 and 2013–2018 is approximately 0.8%. This amount of temporal change
may be ignored by some sensors, whereas it may not be acceptable for calibration of others due its
associated uncertainties. For other spectral bands of this site, as well as for other sites, the change
ranged from 0.14% to 0.65%. These changes are less than the stated mission requirements (e.g., 5%
calibration uncertainty for MODIS, 2% calibration uncertainty for OLI), therefore, the evaluated sites
are safely considered as a viable source of calibration. However, if any sensor demonstrates less
calibration uncertainty (e.g., <0.1%), the Sudan 1 site should not be used. From this analysis, it can
be stated that despite very minor changes, all of the selected PICS can be used for calibration and
performance monitoring of the sensors considered in this work.

The analysis presented here could be extended to determine whether the official CEOS
recommended PICS exhibit temporal stability at this time and whether they maintain temporal
stability over time. Overall, this work has demonstrated that even with the slight changes detected at
some of the SDSU PICS, they are suitable for use in long-term monitoring of sensor performance.
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