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ABSTRACT

The high cost of porting software from one machine to another stems from

the ad hoc way in which the programmer's problem solving abstraction interacts

with the machine's physical resource abstraction. If this interaction could be

formalized, the well known semantic gap would at least be better understood, if

not narrowed significantly. In this study, we apply techniques borrowed from

contemporary research in abstract data type specification to design, specify and

implement the physical resources of an abstract machine called AM.
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I. INTRODUCTION

We address the problem of formalizing the relationship between hardware

and software resources by demonstrating a practical methodology for precisely

specifying the manner in which the two may interact. After a brief statement of

the problem and related topics, we discuss the theory behind our research and

some of the issues affecting our results. Finally, we describe in some detail the

manifestation of our efforts, a specification and implementation of an abstract

machines we call AM.

A. THE PORTABILITY PROBLEM

It is well known that porting large programs from one machine to another is

an expensive ordeal. It is also well known that once the software has been moved

to the new machine, it is anybody's guess whether or not it will work as before 1
.

Even if our program seems to work, we may find it consumes more resources than

we expected. Indeed, this may be just as bad as if it did not work at all.

There are a number of reasons why the portability problem is getting worse,

not better:

- Most architectures, even those which profess to be "language directed",

reflect a bias toward making the machine look like what the programmer

wants, or toward some engineering goal, such as maximizing the number of

devices.

- Both languages and machines are related to the data they manipulate in an

implementation dependent way.

- Language and hardware designers pursue their conflicting goals to the

detriment of the poor compiler writer, who, with imprecise tools and

methodologies is faced with the job of implementing ambiguous semantics on

an informally designed resource.

Although these and other factors do adversely contribute to the imperfect task of

moving software from one machine to another, they add their weight to other

difficult issues in language design, computer architecture and software

We assume, probably unjustifiably, that it worked correctly before we tried to move it.



engineering. This study confines itself to treating the issues surrounding the

interaction between the programmer's view of the world as a problem, and the

architect 's view of the world as a resource.

1. Abstraction

Abstraction describes the separation of the defining properties of an

object from other, unnecessary details about it. A programmer is primarily

concerned with solving a problem. Appropriately, the tools at his disposal,

programming languages, development aids, the programming environment, form

a problem solving abstraction. The hardware (and some of the software) on which

this problem solving abstraction is implemented, however, is an abstraction of a

different sort. Addresses, registers, ports, most of the operating system service

routines, all provide more or less efficient ways to manipulate the physical

resources of the machine — they form a physical resource abstraction.

The fuzzy area between these two abstractions, sometimes simplistically

perceived as the boundary between hardware and software, exposes a number of

shortcomings in language design and computer architecture collectively termed

the semantic gap.

2. The Semantic Gap

The semantic gap manifests itself anywhere a problem solving abstraction

touches a physical resource abstraction. A detailed description may be found in

Myers (1982). He observes that the semantic gap contributes to the cost of

software development, software unreliability, inefficiency, complexity, and the

distortion of programming languages. Certainly no single development or

methodology will eliminate this problem.

Narrowing the semantic gap requires significant changes in the

fundaments of computer architecture and language design. We chose to

concentrate on three factors which significantly contribute to this problem:

- Informally described semantics.

- Representation dependent data types.

- Arbitrarily designed instruction set architectures.

The implication, of course, is that through increased formalism, the introduction

of representation independent data, and a more thoughtful treatment of the
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instruction set, the semantic gap can be narrowed. The balance of this thesis is

devoted to describing a methodology for doing just that.

B. THREE WAYS TO NARROW THE SEMANTIC GAP

1. Formalism

The benefits of formalism in the design process have been amply revealed

in countless articles treating this issue from the standpoint of software

engineering. Our concern will be limited to formalism as it applies to the

specification of an abstraction. Various specification methodologies exist, many

of which have been used with more or less success in projects of practical

significance. But we caution the reader that by "formal" we mean a

mathematical rigour rooted in proven theory. The idea of formalism as often

applied to software engineering will not do here. A formal specification is a

complete description of the meaning of an object. It forms the basis for an

abstraction and is ultimately a bridge over the semantic gap.

The benefits of formalism in which we are most interested are:

- It provides a firm basis for proving our assertions about a specification and

its implementation.

- It encourages a discipline on the part of the designer to be rigorously precise.

- It compels us to find ways of describing things which are representation

(implementation) independent.

2. Representation Independence

Conventional machines force us, as programmers, to develop our own

abstractions of data. At a time when we are most concerned with developing

clean algorithms the architecture obligates us to worry about status registers and

word length. Certainly someone must ultimately deal with these physical

properties of the hardware, but this should not fall as an obligation upon

programmer. The programmer should be free to ignore unnecessary detail.

We will attempt to minimize the dependence of data upon its

representation through the use of abstract data types. Our notion of data is very

general and includes, for example, program instructions.

9



3. Intent Expressive Resource Abstraction

Conventional architectures do not permit us to unambiguously express

our intent in a program. Artificial data types combined with typical resource

models force ambiguity and the overloading of data structures. Stack frames are

a good example of this. The semantics of the frame combine those of an array

and those of a stack. Meanwhile, the whole thing is implemented in memory,

with the data types overlayed on an array of fixed length cells.

We claim that applying methods similar to those used to describe

abstract data types, we can describe an abstraction of the physical resources of a

machine which benefits not only from the formalism used to specify it, but also

permits the implementor to clearly interpret the intent of programs written for it.

C. METHODOLOGY
The goal of this research is to contribute something of practical significance

to the study of software portability by treating an area which has been largely

ignored — the design of a formal abstraction for the machine itself. We have

innumerable high level programming languages, programming environments,

graphics languages, database machines, file systems, operating system command

interpreters, a whole host of different abstractions tailored to the task of

providing us with just enough information to do everything we need to do, and

nothing more. So why, then, have we failed to develop abstractions for the

hardware resources, upon which we are so dependent, which are more than just a

collection of registers, opcodes and some arbitrary rules about how they interact.

A more difficult but certainly more important task than actually defining the

abstraction is developing a methodology for producing more.

Our method has been to take a naive approach toward all areas of the design

and implementaion process not directly related to the specification itself. We do

this for two reasons. First, we can take for granted the large body of research in

programming languages and computer architecture — we are designing neither a

language nor a processor, even though ad hoc examples were required to complete

the implementation. Second, the research is intended to benefit programmers.

Since it is unreasonable to expect those who may use this method to understand

the theory behind the specification, the key to understanding the reasons for our

10



design decisions lies in the way we coded it. Thus, cleverness has been eschewed

in favor of clarity.

Our task in this thesis, then, is to examine a wide range of issues which

impinge on the process of designing and implementing the specification of a

machine, and then to describe how we went about actually doing it.

11



II. THEORY

There are many ways to write a specification. A high level language is an

example of a specification with more or less ambiguous semantics. To achieve

true portability, we must be able to demonstrate the following properties in our

implementation:

- The specified semantics actually implemented on the source machine are

completely unambiguous.

- The implementation on the source machine is "correct".

Thus, our method of specification must be formal enough to permit proofs of

correctness. Although the knowledgable reader will know that the provability of

usefully complex specifications has so far been unrealized, research conducted in

parallel with this study (Griffin 1984) has given us reason to be optimistic.

The requirement for unambiguous precision and provability leads us

naturally to a mathematical basis for our specification. Here we find a significant

body of research already in place in the area of abstract data type specification.

Goguen (1978) and Guttag (1978) treat this topic in great detail. We will not do

so here. Instead we give an overview of the important concepts of abstract data

types and the underlying theory of specifications as a preface to a treatment of

the issues. The following discussion is a paraphrase of Davis (1984). The reader

is directed to that paper for more details.

A. ABSTRACT DATA TYPES

A data type is a class of objects together with a set of operations which may

be performed on those objects. An abstract data type is a precise description of a

class of objects in terms of the semantics of the operations which may be

performed on the class. Our reasons for considering abstract data types are

twofold. First, in any specification of a hardware resource, some mention of the

data types it manipulates must be made. Second, although an abstract data type

is primarily a problem solving resource, it may imply a physical resource as well.

A stack is a good example of this. Our goal is to arrive at a technique which

12



spec boolean

is

sort

bool;

primitive

op

true: -» bool;

false: -» bool;

not: - bool;

and: bool,bool -» bool;

axiom

false = not true;

not(not(b)) = b;

and(true,b) = b;

and(false,b) = false;

and(bl,b2) = and(b2,bl);

and(and(bl,b2),b3) = and(bl,and(b2,b3));

end boolean;

Figure 2.1: A Spec for the Abstract Type Boolean

permits us to specify both problem solving and physical resource abstractions

with equal facility. Hence, we begin with the specification of data types, not

because this is the best place to start, but rather because we can refer to the large

body of research on the subject.

A typical example of an abstract data type is boolean (Figure 2.1). The

reader should have no trouble seeing that all the classical rules of inference, as

well as the operators or and implies may be derived from the given axioms and

primitive operators. In this sense, Figure 2.1 represents a minimal specification

of the type boolean. A student of logic will note here that several other

combinations of primitive operators will permit all the others to be derived. We

further note that the names chosen for the operators, indeed for the type itself,

are purely arbitrary.
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This leads us to a number of important facts about abstract data types:

- The meaning of an abstract type specification does not depend upon the

notation used to express it.

- A type may imply other operators than those mentioned explicitly in the

specification.

- Two "equivalent" data types may not only "look" different, but may be

specified using fundamentally different operators and axioms.

Proving two abstract types to be equivalent is not trivial. To do this we must be

able to show that the set of possible expressions built using the operators from

one specification is in some way "equivalent" to the set produced with operators

from the other.

An expression is constructed from the operators and values of the type using

composition of operators. Here, using prefix notation, are two correctly formed

boolean expressions:

not(and(true,false))

and(true,and(false,not (true)
)

)

Note, they do not contain variables, but are constructed solely from operators.

Below is an expression with free variables:

and(not(x),or(true,y))

Evaluating an expression is straightforward, but the presence of free variables

makes it much more difficult to prove assertions about the specification of the

type.

The notation we used in Figure 2.1 is not arbitrary. It reflects the

fundamental theory upon which our method of specification is based.

B. ALGEBRAS

An algebra is an aggregate of operators and sets. The sets describe argument

and result types for each operator, while the operators define the ways in which

arguments may be manipulated to form results. The general form of an operator

is:

o : a
l
,a 2,a i ,...,am -»a„

where each a, is a carrier set of sort «, . The set and arrangement of arguments

14



and result are known as the characteristic of the operator. A sort is an index

into a set of carriers. The carrier indexed by the sort represents the data type,

while the sort represents the "name" of that type, like "integer", "boolean" or

"character". Each operator is thus an explicitly defined function which accepts

zero or more typed arguments and returns a typed result. The type of each

argument may differ from every other argument as well as from the result type.

Any usefully complex data type requires the use of free variables. Their

presence introduces the possibility that the type we specify may not by finitely

describable. Note, "finitely describable" does not mean "descibes a finite number

of objects". It means the description is itself finite, i.e., the number of operators

and the number of axioms is finite. It is sometimes difficult to find a finite

description of a type, since many mathematical and logical operations assume a

non-finite application. Simple iteration is an example of this.

Since we hope to describe something in a way which is representation

independent, we must be certain we introduce no representational bias into the

specification. If we ultimately hope to show how to use these methods to

describe hardware in a representation independent way, we certainly do not want

to require the use of a particular architecture unless we can demonstrate its

generality.

C. ALGEBRAIC SPECIFICATIONS

A specification is a template for the sets and operators in the algebra. The

semantics of the type are specified using axioms, which are provable equations

constructed from operators and free variables. The template makes no

assumptions about the elements of the sets in the algebra, or about how

operators are applied to manipulate the elements. This information is furnished

by the axioms. Let us now return to Figure 2.1.

In the case of the specification for boolean, we require a single set to hold the

values of the type. Call it bool. Next, we specify two constants1
to represent

the two possible values of any object in the type. Call them true and false.

Then we select the smallest set of operators from which we know we can derive

Really 0-ary operators.

15



any others we might need. Not and and are those tranditionally encountered in

computer hardware. Thus, so far we have:

sort

ops

bool

true: -» bool

false: — bool

not: bool -» bool

and: bool,bool -* bool

Now we need some axioms to describe the semantics of the operators on values of

type bool.

not (true) = false

not(not(b)) = b

and(true,b) = b

and (false,b) = false

and(bl,b2) = and(b2,bl)

and(and(bl,b2),b3) = and(bl,and(b2,b3))

These axioms explicitly describe all the essential properties of the operators.

Notice that no explicit mention is made of the possible composition of a set of

boolean values. We know true and false must be in it, but they may not be

unique.

The syntax used in Figure 2.1 was chosen to permit automatic compilation.

To date, no such compiler has been written, but a syntax directed editor

operating on a similar syntax is available (Lilly 1984).

Algebraic specifications are composed of a signature, which includes the

operators and sorts, and axioms. Axioms are simply equations between terms

(expressions) made up of operators and/or free variables from the specification.

Axioms may be conditional. A specification is thus a pair (S,E) where S is the

signature and E is a set of axioms.

An algebra's signature matches the specification if there is a one to one

correspondence between the sorts and operators of the specification and the

carriers and operators of the algebra, and if the operations on elements of the

carriers are consistent with the semantics specified by the axioms in the

specification. If we associate the name bool to what we normally accept as the

16



boolean type, i.e.,the set {t,f}, and if, using conventional notation, we associate

the operators in the specification for bool with some representative operators

true t

false f

and &
. not

then the equations

~ (&(x,&(t,y)) = ' (&(x,y))

&(-x,&(y,f)) =f

bool {a}

true —a
false -*a

and (x,y)-a

not (x)-a

both satisfy the axioms of the specification. Important to note, however, is that

the symbols we choose to associate with the operators in a specification are

completely arbitrary. If we instead make the following associations

(constant ops returning 'a')

(trivial binary op)

(trivial unary op)

it can be easily shown that this algebra also satisfies the axioms, but we would

not admit that it is representative of the boolean type. Thus, we make a

distinction between an algebraic specification and an algebra. What then is the

meaning of a specification? It is the class of algebras which is uniquely associated

to that specification. The precise nature of this association will be discussed in

Section E.

D. TERM, INITIAL AND FINAL ALGEBRAS

Given a specification (S,E), with signature S and axioms E, our next problem

is to show that there are indeed algebras with that signature which satisfy the

axioms. Using the specification for boolean as an example, the term algebra is the

set of all term expressions which can be constructed without violating the

characteristic of an operator in the specification. This set of terms is obtained

using a technique know as the Herbrand construction.

If we view terms as strings on an alphabet of operator names, some useful

punctuation symbols and a finite set of symbols for the names of free variables,

17



the the set of terms forms a language on the alphabet obeying the following

grammar:

- For each sort s in S add the production

< Ts > - < Ts> >

where Ts is the set of all terms which can be created from the signature

which contain no free variables and Ts is the set of all terms in Ts of sort s .

Note that T, and Ts are both term algebras.

- For each operator of characteristic

'. S 1,8 2 , ...,«„
—f S

add the production

< Ts > - op( ' < Ts > ','...','< Ts > ')

'

' '
i

'»

where 'op ' is a name uniquely associated to o .

- For each free variable X of sort « , add the production

<r
5#
>- 'x'

The reader will note that the grammar just described is LL(l), and thus can be

parsed very efficiently, particularly by automatically generated parsers. This is

the theoretical basis for the methodology described in Guttag (1978a).

Now, the set of axioms induces two canonical congruences on Ts , which in

turn induce two quotient algebras on Ts , called the initial quotient algebra and

the final quotient algebra. The first congruence is such that two terms, t and t

'

are congruent if and only if the assertion t = t
' can be proven from the axioms.

The following rules apply (Davis 1984):

- Any axiom is a proven equation. Any conditional axiom is a valid rule of

inference for proving equations from proven equations.

- If, in a proven equation, every occurence of a free variable is replaced by a

single term of the same sort, the resulting equation is proven.

- If, in an equation, some term is replaced by a term which is provably

equivalent, the resulting equation is proven.

- Any equation derived from proven equations using the reflexive, symmetric

or transitive laws for equality is proven.

From these it can be shown that the relation defined by all pairs of provably

equal terms is a congruence.

18



The second congruence is such that two terms, t and t
' are congruent if and

only if the equation t = t
' is consistent with the axioms. An equation is

consistent if, by adding it to the set of axioms, the resulting set of terms is not

trivial. A set of terms is considered trivial when, for all terms, any two terms of

the same sort are provably equal.

A correspondence H associating the carrier sets and operators of one algebra

A to the carrier sets and operators of another algebra B can be shown to be a

homomorphism, provided:

- The correspondence between carrier sets preserves the sort type.

- The correspondence between operators preserves the characteristic.

- The standard property of homomorphisms holds:

H(o{t l ,t i,...,tm ))=H(o){H[t l),H(u),...,H{tn ))

where each t
{

is an element of sort s, in A .

There is a canonical homomorphism from a term algebra to an algebra A , with

the same signature, which can be determined by evaluating each formal term in

the term algebra through its corresponding term in A .

E. ALGEBRAIC SEMANTICS

We learn to ascribe meaning to abstraction by associating with that

abstraction concrete objects. In some sense, we "know" the meaning of concepts

like table and tree when we can recognize the class of objects captured by those

concepts 2
. In the "world" of algebraic specifications, the concrete objects are the

algebras. They form the manifestation of the meaning of a specification. As we

have said, a specification induces three congruences: a congruence defined by the

algebra on the evaluated terms, a congruence on the initial quotient algebra and

a congruence on the final quotient algebra. We can determine whether or not a

candidate algebra captures the meaning of a specification by examining the

properties of the congruence it induces. If the congruence is identical with the

initial quotient algebra, then we say the candidate describes the "initial algebra

semantics" of the specification. Likewise, if the congruence is identical with the

The author would be happy to discuss the epistemic implications of this statement with the

philosophically minded reader some other time.
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final quotient algebra, then we say the candidate describes the "final algebra

semantics" of the specification. If the congruence matches neither the initial nor

the final quotient algebra, then the candidate does not describe the meaning of

the specification.

Now that we know how to determine whether or not our specification

describes something "real", the next step is to show that the object(s) it describes

has the properties we intended. Rather than discuss the details, we direct the

reader again to Goguen (1978) and Davis (1984), and instead list some of the key

results of this theory below:

- A specification is an abstraction of a concrete object. It forms a template for

an algebra which must ultimately describe the meaning of the specification.

- A term algebra contains only those terms composed of operators without free

variables. A free algebra permits terms with free variables.

- The axioms of a specification are really equations between terms in a free

algebra.

- The initial algebra semantics of a specification is defined by the class of

algebras whose signature is given in the specification, with the property that

any two formal terms are provably equal from the axioms if and only if the

corresponding expressions in the algebra of that class evaluate to the same

constant.

- The final algebra semantics of a specification is defined by the class of

algebras whose signature is given in the specification, with the property that

any two formal terms are consistent with the axioms if and only if the

corresponding expressions evaluate to the same constant.

- Any two final or any two initial algebras for a specification are isomorphic.

- The object a specification specifies is computable if and only if the class of

initial algebras and the class of final algebras are the same. Likewise, any

time one can show all formal terms reduce to a 0-ary term (a constant), then

the initial and final algebraic semantics must be the same.

- An algebra is effectively computable when its signature matches that of the

specification, its carrier sets are enumerable, and the operations defined by

its operators can be described using algorithms.

- Any time one can show the class of initial and final algebras is not the same,

there exists at least one algebra which is not effectively computable.

- Any two specifications which can be shown to produce the same class of

algebras are equivalent (semantically).

One final result of this theory forms a key part of the foundation for

believing it possible to describe an abstract machine with algebraic specifications:
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We can prove a Turing machine is describable by these algebras. Therefore,

we can describe a computer with these algebras.
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III. ISSUES

The elegance with which algebraic specifications solve the mechanical

problem of specifying an abstraction does nothing to help solve a whole host of

other problems affecting our design. In fact, the use of a formal methodology has

imposed constraints which would not normally affect more conventional

architectures. We treat these and other issues now.

spec integer

is

extend

with

boolean

sort

op

axiom

end extend;

end integer;

int;

predint: int -» int;

succint: int — int;

sumint: int, int — int;

zeroint: -» int;

eqint: int,int — bool;

gtint: int,int — bool;

predint(succint n) = n;

comutative (sumint, int);

associative (sumint, int);

sumint(n,zeroint) = n;

sumint(n,succint m) = succint(sumint(n,m));

equivrel(eqint,int)

;

irreflexive(gtint,int);

transitive(gtint,int)

;

Figure 3.1: A Spec for the Abstract Type Integer
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A. FIRST PRINCIPLES

Any formal specification must begin with some assumptions, "first

principles", upon which the whole methodology is based. We have already

discussed the mathematical basis for our specification method. Let us look now

at its implications.

1. Assumptions

At some point we will have to describe the operations our abstract

machine will perform. Some of these operations can be defined explicitly. Most,

however, will be defined in terms of certain primitives, the meanings of which we

simply take for granted. For example, it is probably a good idea for AM to be

able to perform integer arithmetic. So, we specify the integer data type. Figure

3.1 gives us just about everything we need, except for one thing. The

specification does not describe, nor should it describe, the way in which strings

from an alphabet may be uniquely associated to the elements of the type. As

written, the specification obligates us to refer to the "number" 5 as

succint(succint(succint(succint(succint(zeroint)))))

Not very convenient.

Thus, we consciously limit the scope of our formalism in the interest of

practicality. Our use of a formal specification is intended to improve our

understanding of the meaning of a physical resource, not elementary number

theory.

2. Notation and Syntax

Although the notation ultimately used to express the specification is

arbitrary, the need for automatic parsing means the usual syntactic and semantic

considerations facing the designers of any programming language are before us as

well. In addition, since, as we will show, the specification of anything useful is

likely to be complex, we may also need to choose notation which supports

automatic program generation, or at least macro processing.

3. The Limitations of Algebraic Specifications

Once we are commited to a formal design methodology, it will be difficult

to justify departures from the method. This means we have limited ourselves to

designing objects which can be describe with the semantics we have defined.
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Unfortunately, there are many accepted features of conventional processors which

are extemely difficult if not impossible to describe with algebraic specifications.

Take, for example, the typical primitive of all machine types — the bit. The

reader is encouraged to attempt to write a semantic description of two's

complement arithmetic, or operation of a status register. True, one of the goals

we have stated is representation independence. But for this we give up the

freedom to design anything we might conceive.

Another important limitation is the difficulty with modality. How does

one specify when an operation is to occur. In operators whose arity is greater

than one, the arguments are assumed to "arrive" simultaneously, and side effects

are not allowed. A number of techniques have been suggested as to how timing

might be formally expressed (Giegerich 1983) but we use only the simplest.

Modality is expressed in terms of parametric dependencies.

prog(a,q) = xeq(atomofinstr(fetchm(a,q),a,q));

In the above example, the operator fetchm is applied "before" atomofinstr,

which is applied before xeq.

4. Finiteness

No matter what we describe with a formal specification, any

implementation of the specification must be finite. Hence a problem: how do we

describe a finite limitation of an infinite set of objects. Consider again Figure 3.1.

It specifies a type with a countable infinity of objects. But we have no machines

to represent an infinity of numbers. The problem does not stop there. A

specification for the natural data type, which will look much the same as the one

for integer, will also describe a countable infinity of objects. In a world

accustomed to twice as many signed as unsigned integers, this will come as a

great shock!

Obviously, any actual machine will be finite. And although the problem

we have just described may seem more metaphysical than physical, it forces us to

realize that we will never be able to fully implement a specification. More

important, it also requires us to deal with boundary conditions in ways which

may not preserve our methodology.
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Another area where we run into trouble is the number of terms induced

by the specification. If the number of terms is infinite, then the specification is

not even representable, let alone computable. This problem can easily creep into

a specification unnoticed.

5. Parameters

To reduce the enormous complexity of some types of specifications,

designers have turned to the use of parameterized specifications. The basic idea

is to write a specification whose signature is a template for other specifications.

A typical example would be the type string. We might want strings of other

objects besides characters. Rather than duplicate what is essentially the same

specification, it is parameterized and instantiated when needed in the

specification. The need for parameterized specifications goes beyond a simple

savings in the effort of writing a specification. Some objects are simply not

describable without them.

Parameterized specifications are still not well understood. Most of the

underlying theory concerning them is under debate. We have minimized our use

of them, as a result.

6. Errors

What to do when objects which are not members of the right carrier sets

find their way into operations is a real problem, as is the "propagation" of errors

throughout the specification. A number of ways of handling this have been

proposed, most notably by Goguen (1978), but without much success. We have

found that in implementation this is not a problem, however, and have generally

taken the point of view that the most important thing to specify is where errors

are explicitly detected rather than what to do about them once they are.

7. Proving Correctness

We have not mentioned provability except to say that a formal design

methodology tends to support formal methods of proof. It is beyond the scope of

this study to treat this issue in detail, but we will return to it an the discussion of

our implementation.
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B. HIGH LEVEL LANGUAGES

The vast majority of large software systems are written in a high level

language. Dialectal variations between languages notwithstanding, the problem

of porting software from one hardware environment to another does not involve

mapping one high level abstraction to another. It is much more complex. It

involves the translation of a relation between the semantics of a language and its

implementation on one machine into a similar but not identical relation on

another machine. The properties of this relation form part of the semantic gap.

1. Implementation and the Semantic Gap

Implementing a problem solving abstraction on conventional machines is

somewhat haphazard due in part to difficulties in mapping the semantics of the

language onto the semantics of the hardware. It is unfortunately true that there

is often no way at all to describe the meaning of a problem solving abstraction in

terms of the physical resource. This occurs because language designers do not

want to acknowledge the existence of the resource provided by the engineers and

because engineers do not see the -physical resource as part of a higher level

abstraction.

In general, when we push a physical resource abstraction up to meet a

problem solving abstraction, the class of languages which may be efficiently

implemented on that hardware is narrowed. Likewise, when problem solving

abstraction is pulled down toward the physical resource, we lose the ability to

elegantly map our problems into a program.

The task of implementing a language should acknowledge the semantic

gap, not contribute to it. We must therefore find ways to describe the precise

relationship between the language semantics and the resource. Our methodology

should make this easier.

2. The Chicken and the Egg

One problem we will always have to deal with is where to start. Do we

begin by defining a general purpose problem solving abstraction, or by defining

the resource? We have chosen the latter for several reasons. First, we have come

to realize that it is easy to dream up problem solving abstractions which are

simply unimplementable. Ada may be a prime example of this. Second, an
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understanding of the fundamental characteristics of the resource reveals much

more about the relationship between a language and its implementation than an

understanding of the semantics of the language. Third, we have gotten pretty

good at describing language abstractions, but have only scratched the surface at

trying to formally describe a physical resource. Thus, we devote our efforts to

describing an abstract machine.

C. THE PHYSICAL RESOURCE

The ideas behind the concept of a memory or a display are not really well

understood. We know they are complex physical structures, but we have great

difficulty formalizing what it means to fetch or store values. The primary cause

of this difficulty is the design process itself.

The hardware design process is a battle against the clock, against rising

complexity, against shrinking space, where opportunity is expediency, and unused

space is a crime. That must change if the semantic gap is to be narrowed

significantly.

Complex components imply complex semantics. Complex semantics imply

even more complex specifications. The conventional design goals of minimizing

circuit complexity, and of maximizing the regularity and orthogonality of the

instruction set architecture do not really address the issue of semantic

complexity. If our goal is to increase software portability, a way must be found

to coalesce the many conflicting considerations affecting the design process.

Admittedly, the hardware-software relationship is only one of these

considerations.

1. The Instruction Set

An important question one might ask is, what effect does the

specification methodology have upon the design of the instruction set

architecture? If we are prevented from describing the instructions we need for an

application, the whole method loses much of its appeal. Interestingly, we have

found that the content of the instruction set is much more related to the types of

data we are able to describe, rather than to the method of algebraic specification.

Representation independence renders meaningless instructions like shift and

rotate because the level of abstraction is necessarily higher. In essence, the
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physical resource is made to look more like a primitive problem solving

abstraction.

We found also that the typical issues facing the designer of an instruction

set, such as timing, opcode size, addressing modes, and such, tend to become

moot. However, consideration of regularity and orthogonality — programming

language issues — remain as important as ever. This reinforces the observation

that emphasis upon the resource as a resource is considerably diminished when

the machine is modeled as an abstraction.

2. Overlap

The term overlap is used here in reference to the manner in which

machine data types are overlaid upon a common resource, the memory. Overlap

occurs in conventional machines because data structures are overloaded to

prevent the waste of valuable computer resources. For a typical word size of 32

bits, the practice is to assign the character type to a byte (8 bits), short integers

to a half word, long integers to a word, and standard and extended precision

floating point numbers to a word and double word respectively. Without even

mentioning the problem of alignment 1
it should be clear to even the casual reader

that describing the semantics of such a memory system would be a mess. We

borrow from Giegerich (1983) to illustrate this point. We define a function

overlap which accepts two cell identifiers and returns true when overlap exists

between the cells, false if not. If we assume even alignment for 16-bit words and

32-bit longwords, then the overlap axiom relating 16 and 32-bit words would be

overlap (Ml6[a ],M32[6 ]) = {b J$ a ^ 6 +2)

where a and 6 are addresses, and, of course, overlap is commutative. Now,

imagine having to specify a set of overlap axioms relating each data type to every

other data type, and then having to specify them everywhere they applied to

axioms throughout the specification! What makes this even worse is it can be

shown that, for certain configurations of memory, there may be an infinity of

such axioms. Therefore, we avoid overlap.

Many machines require types larger than one byte to be aligned on an even address.
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D. SPECIFICATIONS

Algebraic specifications impose restrictions upon the class of objects we can

describe. Although a benefit from this is that it forces us to think very carefully

about the objects we are attempting to specify, it is important not to allow the

methodology to restrict our thinking. That this can easily happen has been

demonstrated over and over again with programming languages. Experienced

programmers are masters of idiom. But mastering the "tricks" of particular

specification language should not be considered a goal.

1. Notation, Syntax and Semantics

Although the notation is theoretically arbitrary, the design of a

specification language is at least as difficult as designing a programming

language, perhaps more so. Abstract algebra already has a body of accepted

notation, and familiarity with it tends to bias one's ideas about how to go about

designing a language. Some of the key points to remember are:

- The grammar/syntax should support automated parsing.

- The language should not make it easy for the writer to specify things which

cannot possibly describe physical objects (such as an object with an infinite

number of terms).

- The language should be human readable since anything usefully complex will

be difficult enough to understand without requiring the reader to wade
through syntax to determine the meaning of a specification.

The relationship between a language and the semantics it is intended to

express is often difficult to understand. Indeed, this fact is one of the reasons for

this study. That the meaning of a block of statements in a specification depends

upon a complex mathematical theory does not make this relationship any easier

to discern. Notation and syntax should, in the worst case, have no effect

whatsoever upon the expressibility of the abstraction.

In a programming language, the symbols which make up a program

represent abstract objects with which most of us are familiar. The fact that a

specification language "looks" and "feels" like a programming language is not

necessarily a good thing. On the pro side, similarities between an algebraic

specification language and procedural programming languages help those

unfamiliar with the methodology to understand how to describe abstractions.
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Unfortunately, this "understanding" is tainted by the knowledge most of us have

gained through years of experience. It will not do to explain to a budding

specification writer, "You can't use the name of a sort as an argument to an

operator because a sort is just an index into a set of carriers."

There is one very important difference between a programming language

and a specification language. The semantics of a programming language

construct or of a particular statement in a program may be ambiguous for any

number of reasons. The language may be poorly defined, there may be several

"dialects" in use, and of course, the compiler writer may have erred during the

implementation. Although the latter case is still possible in the implementation

of a specification, one thing is certain — the meaning of a particular axiom is

completely defined. We may not know what we have written, we may think it

means something it does not, we may even have expressed a built-in ambiguity 2
,

but the true meaning of an axiom is completely determined by the underlying

theory we discussed in Chapter 2. The problem is figuring out what that

meaning is. Unfortunately, one of the most important results of actually

designing and implementation a specification is that we discover there is just no

easy way to find this out. We cannot even be certain that an incorrectly

specified abstraction will be guaranteed to fail when it is implemented, because

any implementation is at best a finite instantiation of a subclass of objects

described in the specification. One implementation may work fine because the

values which uncover the ambiguity are simply not defined, while another, less

restrictive implementation may not work at all. We will return to this issue

again in our discussion of the implementation.

We have already noted that errors are difficult to handle in algebraic

specifications. It is not that they are difficult to express, nor is it that it is

difficult to determine where errors might occur. Rather, it is that a formal

treatment of errors usually results in an explosion of extra terms due to a

tremendous increase in the number and complexity of axioms, which must be

modified to account for these "boundary conditions". All we have to say about

An axiom which evaluates to two different terms, depending upon the order of evaluation,

is explicitly ambiguous.
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this is, we realize it is a difficult problem which must be solved, and that we have

no good solution for it.

2. Parameterized Specifications

The more complex the object we are attempting to describe, and

particularly, the more general a class of operations, the more likely it is that a

parameterized specification will be required. Since the meaning and method of

expressing parameterized specifications are highly disputed, we have used it only

once in our specification ~ to describe a data type for character strings.

Parameterized specifications provide an additional level of abstraction to

those we described in Chapter 2. They specify a template onto which the sorts

and operators of another specification must be mapped. This mapping is one-to-

one. The axioms and operations expressed in the body of the parameterized

specification become available to the parameterized type when it is instantiated.

Parameterized specifications make the already difficult task of determining the

properties of the carrier sets even more difficult.

spec A
end A

spec B
extend A

end B

spec C
extend A

end C

spec D
extend B,C

end D

Figure 3.2: The Problem with Extension
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3. Extension

The concept of extension is somewhat analogous to the way attributes

may be added to an object in an object oriented language, such as Smalltalk. An

existing specification is "extended" with the addition of more sorts, operators

and/or axioms. Extension is required because the process of building the abstract

specification involves continuously adding to existing specifications, moving from

low level primitives, through higher and higher levels of abstraction. The reader

will note that this is a classic example of bottom up design. The algebraic

specification methodolgy we use here requires it.

A serious problem with extension involves the proliferation and

duplication of specifications through the abstraction hierarchy. Figure 3.2

illustrates this. Notice that specs B and C are extensions of A. But D extends B

and C, so there are now two "copies" of A in D. The analogy to scoping an a

programming language looks attractive, but is very weak, if not incorrect. It is

closer to the concept of multiple inheritance in an object-oriented language.

When we say extension adds new operators, axioms and sorts to an existing

specification, we really mean "adds new objects and rules to an existing collection

of objects and rules. Illustrated in Figure 3.2 is the addition of a specification to

itself (A on A). What effect does this have upon the semantics we are

describing? Most references do not treat this problem.
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IV. DESIGN

Athough the literature is filled with examples used to illustrate how one

might specify abstractions, few provide a practical treatment of the problem of

designing a working system. This study has been an attempt to bring the theory

down to earth ~ to show that it really is possible to use algebraic specifications

to design something which we not only can talk about, but which we can actually

use.

A. THE SPECIFICATION LANGUAGE

Appendix A contains a high level grammar for our specification language,

which is similar to examples found in the literature, with changes to give it the

feel of a programming language. A "module" in the specification is called a spec.

The entire specification forms a hierarchy of specs which are related to one

another through the operation of extension which we described in the previous

chapter. Each spec may introduce zero or more new sorts, operators and/or

axioms, which may be added to an existing spec through extension, or which may

form the primitives of a new "branch" of the hierarchy. Although it is

conceivable that one might specify an object composed of disjoint specs, this is

not the usual case. Extension provides the only means of relating the carriers

and operators described in two different specs 1
.

Our language also permits the use of parameterized specifications, although

we minimize their use because their properties are not well understood.

We avoid a detailed description of the syntactic sugar, since this is essentially

arbitrary. The semantics and overall structure, however, is not. For example, all

symbols must be unique. No symbol may be used unless it has first appeared as

the name of a spec, in a sort definition, or to the left of a colon in an operator

definition. This rule guarantees that at no time are the properties of the object

inferred from the name ambiguous. Thus, the structure of a specification is much

There are several other operations by which two specifications may be related. They are

discussed in Fasel (1983). We do not use them here.
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like a Pascal program, but more restrictive. There are no self referential specs,

and no use of a spec before it has been defined.

The language also introduces the idea of primitive, derived, hidden and error

operators. Primitive operators are those which must be implemented to provide a

full instantiation of the specification. Derived operators are simply that —

derived from the primitives. The implementor may elect to ignore these, secure

in the knowledge that their functions may be performed by composition of

primitives. In our specification for boolean, or and implies are derived

operators. Error operators accept no arguments. They are guaranteed to return

a value of the result sort which must be an error. The need for such operators

and their limitations are described in detail in Goguen (1978). We found them,

in practice, to be a nuisance. We will return to the issue of errors in our

discussion of the implementation. Hidden operators are those to which the

programmer has no access. They represent abstractions of the machine required

to express a certain semantics but nothing more.

1. The Macro Preprocessor

One of the things we quickly realized as the specification became more

complex was that the writer of a specification spends a lot of time writing the

same thing, over and over again. This occurs whenever the specification calls for

the description of a number of general purpose operators which operate on

elements of a number of different carries through the use of a mapping function.

Our fetch and store operators are an example of this. They are capable of

storing and retrieving values of any type to and from primary storage. All the

AM data types map into a common type, value, which is passed to or returned

from fetch and store. The spec which describes the mapping function for each

type is virtually identical except for the names of operators and sorts. Thus, we

introduced a partially defined, imaginary macro preprocessor which provides for

macros with parameters. The reader will see examples of its use throughout the

specification.

The basic form of a macro definition is

replace "text..." with "other text..."

Since the lexics of our specification language does not require quotes, they are
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used as delimiters for definition and equivalence strings. A macro with

arguments looks like

replace(A,B,...,Z) "text " with "other text "

where the formal parameters must be capital letters. Since we do not allow

uppercase letters within the spec itself, an uppercase letter denotes a formal

parameter to a macro. Thus for the definition

replace(A)

"convert(A)"

with

"atomofA: val — S"

then the string

would be replaced by

wherever it appeared.

convert (bool)

atomofbool: val -* bool

B. THE MACHINE

AM is a abstract machine whose overall concept is based upon a simple

design put forward by Fasel (1980). Appendix B contains the specification which

describes it, and Appendix C contains the programmer's manual for a simple

assembler which produces native, relocatable AM object code.

Now that we have the theory upon which to base a specfication, the next

important question to answer is, what do we design? Our stated goal has been to

contribute to solving the portability problem by attacking the semantic gap.

But, not only must we design a machine, we must also remember and analyze the

process of designing it. Therefore, we treat now this process, discussing our

fundamental design decisions and the reasons behind them.

At the time of this writing there are many examples of advanced special and

general purpose architectures. Some of the big names are RISC (Patterson 1982)

and various language directed architectures (Waite 1975, Hoffman 1982 and

Myers 1982). After a survey of these and other references, we decided to put off
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talking about the architecture until we can see what sorts of things we might

describe and understand with our specification language.

In his PhD thesis, Fasel (1980) describes a simple abstract machine called

SAM (Single Accumulator Machine). After wading through his spec and some

preliminary attempts to specify a few objects of greater complexity, we decided to

model a conventional architecture. We have two very good reasons for this.

First, since we are all familiar with the typical Von Neumann processor, we

should be more likely to find good ways to formally describe it. Second, this

same familiarity should make it more likely for others to understand our

specification.

The next step is determining where to start. This is not too difficult. The

operation of every machine can be reduced to a complex sequence of simple

operations. At a level of abstraction below the basic data element and its

primitives we should be required to specifiy the semantics of processing elements

and control stores. At a level above the basic data element we would merely be

adding another to the long list of Von Neumann programming languages.

Therefore, we use as a basis for the specification, the primitive data types. In the

interests of simplicity, we chose five: boolean, natural (unsigned), integer,

character and string. These form the atomic data types, referred to hereafter as

atoms.

Data types implemented on conventional architectures exhibit a built-in

dependence upon the way in which values are represented in hardware. This

arises naturally from design goals which stress storage efficiency, and leads to

several undesirable properties. First, machine data structures are overloaded.

Given an arbitrary address, not only can we not tell what type of data we have

accessed, we can not even determine with certainty if we have accessed all of it.

We might be in the middle of a floating point number or on the end of a

character string. Second, nothing prevents a programmer from treating one type

of data as another. Third, the "state" of a machine is impossible to analyze.

The endless string of bits characterizing the "meaning" of a program at a

particular instant provides no hope for proving something about the program's

correctness. We therefore offer an architecture which will rationalize the
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relationship between data and the machine, but which can be implemented easily

either by emulation or through direct hardware means.

An abstract machine which solves these problems must have the following

properties:

- In the organization of primary storage, the next logical data item is in the

next logical address.

- Except as formally specified, no data type may be accessed in any way as

another.

- Given any arbitrary logical address, the value stored there and its type can

always be determined.

Hence, we use a tagged architecture with some very special characteristics",

which takes away some of the programmer's freedom to "twiddle" bits. The

resource provided by this architecture will now be partitioned into functional

areas along the lines of a conventional machine.

Typical resources available at the instruction set level include the primary

storage, high speed registers, stacks, I/O ports and perhaps a heap. We will

define abstractions for each of these. Here, again, we see a marked difference

between the conventional view of the physical resource and that imposed by our

specification method. Ports, stacks and the heap are usually thrown right in with

the rest of the program and data. In fact, as we have said in Chapter 1, stacks

are often accessed as arrays. AM treats each of these resources as a black box.

One may push, pop and read the top of a stack, but the stack pointer is

inaccessible, as are any values below the top element (unless one pops the stack

to reach them). We thus remove another freedom once enjoyed by the

programmer — that of treating one type of data structure as another.

A conventional instruction set forms an abstraction closely tied to the

representation of data in the hardware. Our architecture makes this impossible.

Instead, whatever instruction set we design will become much closer to a

primitive problem solving abstraction. Again in the interest of simplicity and

understanding, we define an instruction set which should be thoroughly familiar

to most readers who have programmed in assembly language.

A proposal for a hardware implementation with these properties is given in Yurchak (1984)
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The restrictions upon the programmer's freedom which we have discussed are

justified because by giving up the ability to do almost anything we can imagine,

we gain the ability to explicitly specify our intent during the course of a program.

The specification does not specify what a resource is or how it is implemented. It

does specify exactly what the resource means and how to use it.

AM is an abstraction of a conventional Von Neumann resource with some

unconventional properties. The primary (only) machine element is called a value.

All data primitives (atoms) map into values. Primary storage is an array of one

or more memory segments, each of which may contain an arbitrary number of

cells. Each cell is capable of "containing" any legal data value. Both programs

and data may reside together in a single segment. For high speed storage, there

are one or more register segments, each of which contains an arbitrary numbr of

registers. Again, every register is capable of containing any type of data. AM
also has one or more stacks, a heap, and a crude file system. We will discuss the

details in the next section.

The basic atomic data types are augmented by several others needed for the

execution of programs. These are memory addresses, register addresses, stack

addresses, file addresses and instructions.

C. THE SPEC

The specification for AM is contained in Appendix B. The language used to

describe it obeys the grammar found in Appendix A. We will discuss the

specification in some detail since portions are nonintuitive.

1. Macro Definitions

At the top of the specification are listed a number of macro definitions.

We concern ourselves for the time being with just those definitions pertaining to

the properties of relations. The intended properties of certain operators will

require that we express axioms for commutativity, transitivity, etc., throughout

the specification. Rather than write this out repeatedly, we define macros with

appropriate parameters which permit a more readable and explicit expression of

these properties. Take, for example, the equality operator for integers,

eqint: int,int -» bool;
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which returns true if the arguments are equivalent, false if not. We should like

to express that eqint is an equivalence relation on objects of type int. Thus, we

need the following axioms:

eqint(i,i) = true;

eqint(ij) = eqint(j,i);

implies(and(eqint(ij),eqint(j,k)),eqint(i,k)) = true;

But there are relations like this one throughout our specification. Thus we define

macros like

replace(X,S)

"equivrel(X,S) M

with

"for i in S

X(i,i) = true;

for i j in S

X(iJ) = X(j,i);

for ij,k in S

implies(and(X(ij),X(j,k)),X(i,k)) = true"

which permits us to write, in the case of eqint,

equivrel (eqint, int);

We then read this as "eqint is an equivalence relation on int ". Note that we

are not required to explicitly specify the type of free variables, since this can

normally be determined by context. We do so in the interest of clarity, since

there can be no doubt for which type eqint is an equivalence relation.

For the reader who doubts that the more complex macros described in

this specification will work, a modified version of the familiar M4 macro

preprocessor3
will correctly deal with every macro found in our specification.

2. The Atomic Types

The basic data types form the primitive objects of the problem solving

abstraction. The programmer's algorithm must in some way be mapped into

these abjects. Boolean is described first because, not only is it a data type

available for use by the programmer, it is also part of the specification itself.

" See Kernighan and Ritchie, The M4 Macro Preprocessor, Bell Laboratories, Murray Hill,

New Jersey, July 1974.
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Many axioms in other parts of the specification require boolean to express their

meaning.

Note that in this and every other spec, the spec name is distinct from the

name of any sort. Any similarities in them are purely arbitrary. The name given

to a spec denotes an abstract object, the aggregate of sorts and operators and

axioms. The name given a sort is an index into a set of carriers. It denotes a

specific set of values which, together with operators, forms an abstract data type.

In any but the most simple specifications, it will be very difficult to point to a

single thing and say "This is the data type so-and-so." Throughout this thesis

we loosly refer to "the type int" or "the type integer". This is imprecise, but for

lack of a convenient way of expressing ourselves, we shall continue to freely mix

these terms. The reader is warned to examine Chapter 2 again if this point is

unclear.

In the spec for boolean, or and implies are specified as derived

operators. We provide them for convenience only. DeMorgan s axioms may be

omitted as well.

Natural is then expressed as an extension of boolean, and integer as an

extension of natural. A typical set of operators is provided. We do not specify

multiplication or division, although using conditional axioms this is not too

difficult. Integer extends boolean to permit conversions to be specified. AM
allows conversions between no other types. Note that the zero values of natural

and integer are distinct, as are all other members of their respective carriers.

The spec for character defines 128 ASCII codes. The symbol for each

character (each a 0-ary operator returning a constant value) includes the

bracketing single quotes.

String is expressed as a parameterized specification. The parameter

template must be matched in a one-to-one correspondance by some other spec

before a string type may be instantiated. Thus, we may have strings of anything,

so long as a spec exists with a single sort and two operators whose semantics

exactly matches axioms in the parameter template. The syntax we use to express

the mapping of sorts to sorts and operators to operators is awkward but

necessary to prevent the description of impossible objects.
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Now that the atomic types are specified, we must define AM's basic

element of storage, the value. The relationship of the atomic types to machine

values must be expressed in terms of value. The spec is trivial. It introduces a

single sort, val and an error op typerr to express the condition corresponding to

a type conversion error. Now, examine the macro newtype at the top of the

specification. It expands a statement of the form

newtype(sortname,specname);

into an actual spec defining a new data type to AM which is an extension of the

atom's spec and value. Within this spec are the key operators and axioms

which imply AM's tagged architecture. Using integer as an example, valofint

accepts an atom of type int and returns a val. atomofint accepts a val and

returns an int atom. The special properties of the operator atomofint are

expressed in the axiom

atomofint (valofint (x)) = x;

which relates atomof... and valof... as inverses. Thus, given any value of type

val, atomof... will extract an atom of the appropriate type.

Here we must deal once again with errors. Operators are not functions,

and their arguments are not parameters. An operator's characteristic determines

the types of objects it can accept, and the type of object it returns. It is an

abstract object which defines a protocol of communication with respect to other

abstract objects in a specific way. It is not precisely an error for a value of the

wrong sort to appear as an argument for an operator. It has no meaning at all.

In fact, algebraic specifications provide no way of expressing the relationship of

other objects to the characteristic of an operator. This is one of the stumbling

blocks of the methodology. Goguen (1978) discusses this in great detail.

Unfortunately, in the real objects defined by the abstraction, there may come a

time when an object described with one spec appears where an object of another

type is expected. Therefore, we avoid a rigorous treatment of errors by

substituting for a theory the following rules:

- If any value violates the characteristic of an operator, that operator returns

an error of the type corresponding to its return type.
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- It is the responsibility of the specification writer to explicitly define the

effects of errors on the object being described.

In our specification, the only proper way to handle conversion errors is to provide

a set of axioms defining the result of an expression containing opposing

atomof... and valof... operators whose sorts do not match. This is handled in

the error spec.

So, the atomic types are introduced as machine data type. Strings are a

special case, since we must first instantiate the paramaterized spec for strings of

characters, and then relate it to val. This is done with spec charstring and spec

str.chartype. Note the dot notation, similar to an aggregate structure reference,

used to denote the relation of the chartype spec to the sort str.

3. Machine Primitives

We must now specify an abstraction of the operations of the machine

itself. We need to be able to reference values, specify arithmetic and logical

operations, and define instruction opcodes. We start with identifiers.

The concept of identifier, as we use it here, refers to the name of an

abstract data structure composing some physical resource, such as a memory

segment, a stack, or a file. Identifiers are needed to allow us to reference these

structures as complete objects. The only operation we need is a comparison for

equality for each type.

We then write specifications for each of the types of addresses we will

need, one for each AM data structure. The memaddresses spec defines the

operators used to reference values in primary storage. Given the identifier of a

memory segment, the base address is returned by startmemaddr. Successive

and previous addresses may be obtained using nextmemaddr and

prevmemaddr respectively. Note, there is no previous address to

startmemaddr. This condition is defined as an error in the axioms, offset

permits arbitrary values to be referenced as integer displacements from another.

Its semantics is defined recursively. Note how the memaddresses spec defines an

abstraction which exhibits the properties we required for our machine — that the

next (previous) data item is in the next (previous) logical address.
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Next we specify the operators for accessing registers. This is easier, since

we may not perform address "arithmetic" on register addresses. We need only

have a way for obtaining all of them, given the first. As with memaddresses, we

provide an operator for deciding whether or not two register addresses are equal.

Notice that we draw a distinction between addresses and integer displacements,

although operators like offset allow mixed use of these and others sorts in

precisely defined ways.

The stack is a little more interesting. We do not want the programmer

to have access to the "inside" of the stack, nor do we want to provide facilities

for altering the stackpointer. We therefore provide an operation for returning the

stack pointer, and for determining whether or not two stack pointers are equal,

but no more. The anticipated push and pop operations cannot be defined here

for the same reasons we have not defined store and fetch operations — we have

yet to define all the objects which might be stored or fetched, and we have no

concept of a machine state. This will be treated shortly.

The spec for files offers the same "black box" abstraction as the stack.

We want to give the programmer access only through a carefully designed set of

as yet unspecified primitives. Therefore, the only referencing primitive is that for

obtaining a file's address.

AM's intrinsic operator codes are next defined in the amoperators spec.

These give the programmer access to the atomic operators provided with each

data type. Each such atomic operator is mapped to a corresponding operator in

amoperators (its machine code). We introduce a new sort for each type of

operator (monadic, dyadic, relational, etc.) and the operators themselves. A set

of apply... operators are also specified. These will accept an instrinsic op of the

appropriate type, plus one or more argument values, and return a result. They

form AM's arithmetic and logic unit (ALU). Also defined here are sets of

relational ops for those types in which they have meaning. These will provide

the programmer with the primitives for conditional branch instructions.

The next spec defines the instruction set as a set of operators which all

return an atom of the sort instr. They are the opcode templates. In a typical

assembly language manual, the description of each instruction includes some sort
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of diagram or table showing the characteristic bit patterns of the opcode, with

"holes" to be filled in by the operands to the instruction. The operators specified

in the aminstructions spec correspond precisely to these diagrams. They accept

zero or more "operands" and return an atom representing the aggregate opcode.

The AM assembler uses these operators to construct an AM object program.

Notice, there are no axioms in this spec. After a brief study the reader will see

that these instructions are similar to those found on a large number of popular

processors. For a description of the naming conventions, see Appendix C.

The only thing left to do is to relate the objects we have just described to

val so that they can be stored and fetched in the same manner as the atomic

data types. To do this we again invoke the newtype macro.

4. State

The next spec forms the heart of AM. It describes the semantics of the

the physical resource. A new sort is introduced, state, which at any moment

represents the state of execution. Every operator whose result depends upon the

current state of execution must accept a state value as an argument, and every

operator which alters the state must return a state value. Thus a familiar

pattern develops throughout the operators in this spec. For example, to examine

the value stored in a register or memory cell, we must provide not only the

address, but also the current state of the machine. The state is not altered.

However, when a value is stored, a new state must be returned.

initam returns a constant representing the "initial state" of the machine.

By implication, all values in the machine in state initam are "undefined". This

is an error condition, specified with the value undef. The axioms make it

impossible to fetch from a cell whose value is undefined.

Fetch and store for memory and registers is self-explanatory. Worth

noting are the axioms which relate them as inverses.

The stack operators are also straightforward. Notice it is impossible to

alter the stack pointer (which is only implied in the operators) except by pushing

or popping a value. The axioms relate the operators, and make it an error to pop

or access the top of an empty stack.
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Heap operators are provided to permit the dynamic allocation of

arbitrary sized memory segments for constructing linked lists, frames and other

structures, lalloc returns the identifier to a segment of n cells, lfree deallocates

it, returning it to the heap. The indir operator has been designed expressly to

permit up-level addressing through a list of frames allocated using lalloc.

The file operators are not really part of AM. They resemble a set of

typical operating system service calls. We provide them to enable AM to

communicate with the outside world. Files are much more interesting than the

other structures, since their semantics resemble the operation of an infinite

sequence generator. How, for instance, do we specify the semantics of a

removable cartridge disk drive? What is read off the file may in no way be

related to what was written on it.

5. Execution

At this point AM is essentially complete. At our disposal are all the

tools we need to build programs to manipulate data any way we want. Missing,

however, is a means for executing programs. What we have just described is a

fairly typical Von Neumann architecture with the bounds removed. We have

noted in the previous chapter how difficult it is to express the passage of time.

How do we express the sequential execution of a program? Our solution is

derived from that used by Fasel (1980).

Define two operators, we call them prog and xeq, which are co-

recursive. The semantics of execution are given by

prog: memaddr,state -* state;

xeq: instr,memaddr,state -» state;

prog(m,q) = xeq(atomofmstr(fetchm(m,q)),m,q);

where m is a memory address (in this case representing the value of the program

counter) and q is the current state of execution. The axiom can be interpreted

like this:

At any moment, the state of the program at address m in state q is

equivalent to the execution of the instruction stored at that address.
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This axiom is used to "fire off a program. The progression from one instruction

to another is given, as one might suspect, in the axioms for each instruction. For

example, consider the move memory-to-memory instruction (mov_m_m). The

axiom which defines its semantics is

xeq(mov_m_m(ml,m2),m,q) =
prog(nextmemaddr(m),storem(fetchm(ml,q),m2,q));

which means:

The state resulting from the execution of mov_m_m with operands ml and

m2 at address m in state q is equivalent to the state of the program at the

next address, after what is fetched from ml is stored in m2.

Notice that the q's in the axiom are identical (refer to the same state). The

reader should see that, through this axiom, we have fetched, decoded and

executed an instruction, and incremented the program counter (m). The other

axioms in the spec express exactly the same relationship between xeq and prog.

Sequencing must be expressed as a nesting of operators. Thus, the

execution of an AM program amounts to a non-deterministic recursion between

xeq and prog. Cleverness on the part of the implementor is required to enable

AM to execute programs of useful length.

6. Remarks

The reasons for various distinctions among objects which, in a

conventional design, would more intuitively be lumped together are often subtle.

However, they reflect a conscious effort to capture the abstraction of a machine

at a level low enough to provide a degree of flexibility in writing the axioms

which define its semantics. The higher the level of abstraction, the more difficult

it is to infer a direct correspondence between the resource and the specification

which describes it.

We should at this point rationalize our error operations and move as

many as possible into a dedicated error spec, where they can be properly handled

as a whole. The specification in Appendix B does not reflect this. The result is

that error ops and axioms are scattered throughout the specification.
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To completely specify the effects of errors a set of axioms must be

supplied for each operator. We avoid this in the interest of simplicity, but

caution the reader that errors have not been properly treated here.

We guarantee there are errors in our specification, and encourage to

reader to do as we have done: stare at the specification, and thoroughly test its

implementation. We note that the design and implementation of a specification

language brings with it the host of problems which follow more conventional

programming languages. We do not have a way of determining if the

specification is correct, let alone whether or not it describes what we want it to.

However, we have demonstrated how something of useful complexity can

be described using algebraic specifications. By moving toward the problem

solving abstraction from the resource side, we require data to be manipulated in a

representation independent way. We have also shown that, by capturing the true

meaning of the machine's data structures in a specification, we remove the

semantic ambiguities usually encountered where a resource oriented instruction

set meets a problem oriented language. The instruction set becomes a medium

through which we may unambiguously express our intent in a program.
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V. IMPLEMENTATION

AM is implemented as a finite state machine interpreter. It comprises

approximately 12000 lines of C code, including the assembler. Details of the

assembler are treated in Appendix C. The overall concept is quite simple. A

text file representing an assembly language program is translated by the assmbler

into a relocatable object module. A loader, part of the AM interpreter, loads this

object module into the appropriate cells, and AM executes it.

There are only four issues of real interest concerning the details of the

implementation. These are the representation of data types, the mapping of

operators in the specification to functions in the interpreter, the handling of

errors, and the execution of a program.

The AM interpreter is a fairly large program by most standards. We feel it

notable that the period of time from completion of the specification to a working

version of the interpreter spanned just two weeks! We attribute this level of

productivity largely to the existence of the specification, which left absolutely no

doubt about the meaning of operations. Once a few mechanical obstacles had

been bridged, writing the program was largely repetition.

fdefme NATJTYPE 0x0002

typedef unsigned intnat;

typedef struct {

short type;

nat val;

} NAT;

Figure 5.1: Type Definitions
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A. IMPLEMENTING DATA TYPES

As in any piece of substantial software, we look first at the data structures

required to support our algorithm (which in this case was represented by the

specification). We chose C as it appeared to provide the easiest translation from

the specification. In retrospect, Lisp would work very well, too.

AM is a tagged architecture. Each data element must be self descriptive.

The most likely construct to provide this is a structure (record), and this is what

we used. Figure 5.1 lists some fragments from the header files used by our

typedef short opcode;

typedef struct {

short type;

union value *val;

} INSTR;

typedef union value {

short type;

opcode opcodeval;

BOOLboolval;

INT intval;

NAT natval;

CHARcharval;

STRING stringval;

MEMADDR memaddrval;

REGADDR regaddrval;

STKADDR stkaddrval;

FIL fileval;

INSTR instrval;

MOP mopval;

DOP dopval;

RELOP relopval;

BOP bopval;

}VAL;

Figure 5.2: Machine Values
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interpreter. Each atom is represented as a structure consisting of a 16-bit tag

field, and a value field. The size of the value field varies with the type. Each

sort in the specification is assigned a sixteen bit code. Whenever an atom is

created, or copied, it is tagged with the appropriate code.

By using a fixed size tag field as the first field in each record, we build in

some additional robustness, since even in the event of a mistyped structure being

copied into the formal parameter of a function, we can rely upon the first word to

be a valid code (the type).

The next step is to describe the structure for machine values, which must be

capable of containing any atom. This is more difficult. We resort here to

subterfuge. Our specification method relies upon the extend operation to build

more and more complex specifications. Unfortunately, there are few Von

Neumann languages which permit additions to the definition of a data type once

the compiler has seen it. In C, we cannot specify directly two structures which

contain each other. So, we resort to the technique illustrated in Figure 5.2. The

problem is caused by the type instr which represents the opcode returned when

each instruction operator is invoked. These instr atoms must contain values for

their operands (as part of the opcode), but are themselves values, since we must

be able to store and fetch instructions. How else would we get a program into

memory and execute it? The solution is to fool C into thinking we are talking

about pointers to structures instead of structures themselves. This works fine

since we implement an instruction opcode as a structure whose value field is a

pointer to the opcodes.

The primary physical resources are also defined as structures (Figure 5.3).

Registers, primary storage and stacks are represented as arrays of arrays of

pointers to values. The reader should note that a simple change to the constants

in the header files can completely alter the configuration of the machine. We can

specify an arbitrary number of arbitrarily long memory segments and register

segments, and an arbitrary number of different sized stacks. Files are represented

as usual as an array of structures containing status information and an

input/output buffer. The number and type of files can also be changed by
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typedef struct {

int size;

VAL **val;

} memseg;
typedef struct {

int num;
VAL **val;

} regseg;

typedef struct {

int size;

int sp;

VAL **val;

} stkseg;

typedef struct {

int stat;

int mode;

int type;

int val;

} fileseg;

#defme _NUMMEMSEG 1024

fdefine _NUMUSRSEG 2

#define _NUMREGSEG 1

fdefine _NUMSTKSEG 1

fdefine _NUMFILES 16

memseg _mem[_NUMMEMSEG] =
{

1024, 0,

1024, };

regseg _j;eg[_NUMREGSEG] =
{

32, };

stkseg _stk[_NUMSTKSEG] =
{

512,512,0 };

fileseg _file[^NUMFILES] =
{

1,RMODE,CHAR_VAL,0,
l,WMODE,CHAR_VAL,l,
l,WMODE,CHAR_VAL,2 }

Figure 5.3: The Physical Resource
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BOOLtrue = { BOOLJTYPE, 1 };

BOOLfalse = { BOOLJTYPE. };

BOOLnot(a)
BOOLa;

{

a.val = !a.val;

return(a);.

}

BOOLand(a,b)
BOOLa,b;

{

a.val = (a.val &:& b. val);

return(a);

}

BOOLor(a,b)
BOOLa,b;

a.val = (a.val
||

b.val);

return(a);

BOOLeqbool(a,b)

BOOLa,b;

{

a.val = (a.val == b.val);

return(a);

BOOLnebool(a,b)

BOOLa,b;

{

a.val = (a.val != b.val);

return(a);

}

Figure 5.4: Operator-Function Mapping
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modifying a few constants. Only one module of our interpreter need be

recompiled to make this alteration.

B. MAPPING OPERATORS TO FUNCTIONS

It seems natural, although incorrect, to look at the operators in a spec as

functions. However, in the implementation, this makes perfect sense. Figure 5.4

lists the code for the AM module which implements the boolean type. The

header files which provide the constant definitions are omitted here. Notice that,

where possible, we rely upon the operations provided by the C language, rather

BOOLatomofbool(v)
VAL v;

{

BOOLb;

if (v.type != BOOLJVAL)
error("value not of type BOOL - %x",v.type);

b.type - BOOLJTYPE;
b.val = v.boolval.val;

return(b);

}

VAL valofbool(b)

BOOLb;

{

VAL v;

if (b.type != BOOLJTYPE)
error("atom not of type BOOL - %x",b.type);

v.boolval.type = BOOL_VAL;
v.boolval.val = b.val;

return(v);

Figure 5.5: Error Handling
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than slow down an already slow interpreter with axiomatic implementations of

the operators.

One of the design decisions we must make is whether to pass structures or

pointers to structures throughout the program. Pointers are faster from the

standpoint of parameter passing, but make it difficult to determine when to free

unwanted values. Passing structures is safer, because a new copy of the data is

made within each function, but it is slow. We choose to be slow, but safe ~ we

pass structures.

As the implementation proceeds to more and more complex specifications,

the program relies less and less upon C and more and more upon the bulk of

operators which we have defined. In fact, the more complex operators are

implemented as calls to previously defined functions which almost directly mimic

the axioms from which they are derived. We will illustrate this shortly.

C. ERROR HANDLING

All errors are fatal, but they need not be. Those errors which are not must

be defined explicitly in the specification. As we have said, a more detailed

treatment of errors would be an area for further study.

AM flags most errors in the operators which perform data conversions. This

is a natural place for this to occur, since it is difficult to see how the type of a

data element may be changed at any other time. Figure 5.5 lists a fragment

which implements the boolean conversion routines. The routine errorQ does not

return, but terminates execution after writing the error message to stderr. Notice

that, even if a much larger structure was passed to atomofboolQ or valofboolQ.

the error would be detected and handled gracefully.

This type of error checking is also performed in the functions which

implement data operations.

D. EXECUTION

The final point of interest involves actually executing a program. The

method is also illustrative of the way in which the program mimics the axioms of

the specification. Here, too, we resort to subterfuge to implement in a finite way

a specification which could require the expendature of an infinite resource (an
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f include <setjmp.h>

jmp_buf _context;

MEMADDR cond();

main(argc,argv)

char *argv[];

{

int ap;

for (ap=l; ap < argc; ap++ ) {

if (*argv[ap] == '-')
{

if (*(argv[ap]+ l) == 't')

traceflag = 1;

}

}

initam();

amloadQ;

setjmp(_context)

;

Q = prog(^c,Q);

}

exit(O);

STATE prog(m,q)

MEMADDR m;

STATE q;

{

q = xeq(atomofmstr(fetchm(m,q)),m,q);

}

STATE xeq(i,m,q)

INSTR i;

MEMADDR m; \

STATE q;

{

opnd *p;

if (i.type != INSTR^TYPE)
error("attempt to execute non-instruction - %x", i.type);
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p = i.val;

switch (getopcode(p[0].opcodeval)) {

/*

a case and semantics for each valid opcode

goes in here

*/

default:

error("attempt to execute an illegal instruction - %x",

p[0].opcodeval);

}

longjmp (_context , 1 )

;

}

MEMADDR cond(b,ml,m2)

VAL b;

MEMADDR ml,m2;

{

return(b.boolval.val? ml: m2);

}

Figure 5.6: Program Execution

implied stack in this case). The problem is the corecursive relationship between

the functions xeq() and progQ. We eliminate this problem by never actually

returning from xeq(). We rely on a dangerous but effective C idiom, setjmpQ

and longjmpQ. Figure 5.6 illustrates.

In main(), initamQ configures AM and invokes all of the initialization

operators. amloadQ loads a program from secondary storage into the appropriate

cells as directed by the linker directives in the object module. SetjmpQ then

saves the state of the "real" machine. The variable _pc is the program counter

which is set inside amloadQ. Now everything is set. The program is loaded and

ready to run.

progQ is now called. Notice that prog simply invokes xeq(). Recall now the

axiom which defines the semantics of execution.

prog(m,q) = xeq(atomofinstr(fetchm(m,q)),m,q);
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case MOVJvl_M:
q = storem(

fetchm(

p[l] .memaddrval,

q

p [2].memaddrval,

q

);

_pc = nextmemaddr(jc);
break

Figure 5.7: The Semantics for mov m m

The value of a language which permits usefully long and descriptive names is

obvious in this case. Within xeq() a large case statement decodes the instruction

and executes it according to the semantics provided for that case. This semantics

is very closely modeled on the axioms in the specification. Figure 5.7 lists one

such case and its accompanying semantic action. Compare it to the axiom for

mov m m.

xeq(mov_m_m(ml,m2),m,q) =
prog(

nextmemaddr(m)

,

storem(

fetchm(ml,q),

m2,

q

)

);

The similarities are not accidental. This should make the point that it is

beneficial for the implementation language to permit such a close modeling of the

specification. Obviously, this made the implementation easier to write, easier to

debug and easier to understand.
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E. OBSERVATIONS

AM is slow (about as fast as the average Basic interpreter). But we have

been unable to make it fail in 2 months of testing. AM refuses to do anything

which has not been expressly defined in the specification from which it is

implemented. This is encouraging.

As stated earlier, coding went extremely quickly (about 3000 lines a week).

We attribute this to the presence of the specification, which was a template for

the program, and C, which translates nicely from our specification language. We

can make a case here for a rule which would require that the specification

language be syntactically and structurally similar to the implementation

languages.

The next step would be to implement the interpreter in microcode on a

writable control store. This may imply a change in the specification language

syntax.

We designed and implemented a Von Neumann resource, but need not have

done this. This methodology should be amenable to a wide variety of

architectures and implementations. In fact, if an architecture appears to be

particularly unsuited to formal specification, it should become suspect. We

strongly believe that because the methodology suggests a tagged, non-overlapping

storage organization, this tells us something about the way we should be

designing machines.
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VI. CONCLUSIONS

We have noted that a semantic gap exists where concepts which are

primarily resource oriented clash with those which are primarily problem

oriented. We have described a theory upon which to base a method for formally

specifying the meaning of an abstract machine and the resource it represents.

We have shown how something usefully complex can be described with this

method, and that it can be successfully implemented.

So, what have we learned? As in all cases where physical objects and their

observable properties must be abstracted, algebraic specifications describe only

fragments of the physical world. The writer of the specification is faced with the

difficult task of eliding unnecessary detail from a collection of facts and

assumptions while capturing the essential semantics, and nothing more. This is

difficult for a number of reasons:

- Designing a specification is at least as difficult as designing a programming

language, with a similar set of issues and problems.

- The writer is obligated to understand and abide by a set of precise

restrictions imposed by the theory upon which the specification method is

based.

- There are no developments tools to support this methodology.

- The problem of testing and proving a specification correct is, as yet,

unresolved.

- No method has been developed for finding the differences, if any, between

the semantics actually defined by a specification, and those intended by the

writer.

- The fact that any implementation can be only a finite instantiation of a

specification poses a similar set of problems to those surrounding the

acceptance of language and hardware standards.

These difficulties not withstanding, we cannot avoid the rising complexity of

hardware and software, nor can we ignore the ways in which resource dependence

adversely affects software portability. We have explored a method for describing

and thinking about machines in a rational way, which permits us to better
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understand the relationship between software, and the resource upon which it is

implemented.

A. FUTURE WORK
Algebraic specifications provide a plausible method for formally describing a

physical resource abstraction — this we have demonstrated. We suggest the

following areas for continuing research:

- Implement a specification in microcode, using a writable control store.

- Port the abstract machine interpreter to a number of different physical

resources.

- Implement a high level language on the abstract machine, and test its

portability between several implementations of the machine.

- Rationalize the treatment of errors within a specification.

- Develop an abstraction for a file system and a bit-mapped display.

- Write a compiler which can perform syntactic and semantic analyses on a

specification, determine its properties, and generate a test suite of terms to

validate it.

- Examine a variety of architectures as to their describability using the

algebraic specification methodology.
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APPENDIX A: A GRAMMAR FOR ALGEBRAIC SPECIFICATIONS

abstraction:

(abstraction spec)?

spec:

(spechead
|

parmhead) specbody specend

spechead:

nameblk 'is'

parmhead:

nameblk 'parm' specbody 'is'

specend:

'end' specname

nameblk:

'spec' specname

specbody:

extension

|

specblk

extension:

extendblk specblk 'end' 'extend'

extendblk:

'extend' specnames 'with'

specnames:

specname

|
specnames ',' specname

specblk:

useblk

|
sortblk? opblk axiomblk?

useblk:

'use' specname '(' specname ')' mapping? specblk 'enduse'

mapping:

'where' eqivlist

equivlist:

equivalence ';'

|

equivlist equivalence ';'
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equivalence:

sortname 'is' sortname

|

opname 'is' opname

sortblk:

sortnames:

sortname ';'

|
sortnames sortname ';'

opblk:

primblk? dervblk? errblk?

primblk:

'primitive' 'op' ops

op';'

ops:

I

ops op
;

op:

opname ':' arglist? '->' sortname

arglist:

sortname

|
arglist ',' sortname

dervblk:

'derived' 'op' ops

erblk:

'error' 'op' ops

axiomblk:

'axiom' axioms

axioms:

axiom ';'

axioms axiom ';'

axiom:

('for' varlist 'in' sortname )? termexpr '= ' termexpr

termexpr:

factor
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I

opname '(' factors ')'

factors:

factor

I
factors ',' factor

factor:

opname
freevar

varlist:

freevar

|
varlist ',' freevar
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APPENDIX B: THE SPECIFICATION FOR AM

! amspec

replace(X,S)

"equivrel(X,S)"

with

"for ij,k in S

X(i,i) = true;

X(i,j) = X(j,i);

implies(and(X(i,j),X(j,k)),X(i,k)) = true"

replace(X,S)

"reflexive(X,S)"

with

"for i in S

X(i,i) = true"

replace(X,S)

"commutative(X,S)"

with
'

"for i,j in S

X(i,j) = X(j,i)"

replace(X,S)

"transitive(X,S) If

with

"for i,j,k in S

implies(and(X(i,j),X(j,k)),X(i,k)) = true"

replace(X,S)

"associative(X,S)"

with

"for i,j,k in S

X(i,X(j,k)) = X(X(i,j),k)"

replace(X,S)

"irreflexive(X,S)"

with

"for i in S

X(i,i) = false"

replace(X,S)

"symmetric(X,S)"

with

"for i,j in S

implies(X(i,j),X(j,i)) = true"
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replace(X,S)

"antisymmetric(X,S)"

with

"for ij in S

implies(and(X(i,j),X(j,i)),(i == j)) = true"

replace(S,T)

"newtype(S,T) M

with

"spec Stype

is

extend

T,

value

with

primitive

op

atomofS: val — S;

valofS: S -» val;

error

op

Sern -» S;

axiom

for x in val

atomofS(valofS(x)) = x;

atomofS(typerr) = Serr;

end extend;

end Stype"

spec boolean

is

sort

bool;

primitive

op

true: -» bool;

false: —
> bool;

not: bool —» bool;

and: bool,bool -* bool;

derived

op

or: bool,bool —
» bool;

implies: bool,bool —
* bool;

axiom

false = not (true);

not(not(b)) = b;

and(true,b) = b;

and(false.b) = false;

not(and(bl,b2)) = or(not(bl),not(b2));

or(bl,b2) = not and(not(bl),not(b2)j;

not(or(bl,b2)) = and(not(bl),not(b2));

or(true,b) = true;

or(false,b) = b;

commutative( and, bool);

commutative (or,bool);

implies(bl,b2) = not(and(bl,not(b2)));

end boolean;
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spec natural

is

extend

boolean

with

sort

nat;

primitive

op

prednat: nat -» nat;

succnat: nat —
> nat;

sumnat: nat,nat -» nat;

zeronat: -» nat;

eqnat: nat,nat — bool;

gtnat: nat,nat — bool;

axiom

prednat (zeronat) = zeronat;

prednat(succnat(n)) = n;

commutative (sumnat,nat);

associative (sumnat,nat);

sumnat(n, zeronat) = n;

sumnat(n,succnat(m)) = succnat(sumnat(n,m));

equivrel( eqnat,nat);

irreflexive( gtnat,nat);

transit ive( gtnat,nat);

gtnat(succnat(n),n) = true;

end extend;

end natural;
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spec integer

is

extend

boolean,

nat

with

sort

int;

primitive

op

predint: int — int;

succint: int —
» int;

sumint: int,int —
» int;

zeroint: — int;

eqint: int,int —
» bool;

gtint: int, int — bool;

ntoi: nat — int;

iton: int -» nat;

error

op

nconverr: — nat;

axiom
predint(succint(n)) = n;

commutative (sum int, int);

associative(summint,int);

sumint(n, zeroint) = n;

sumint(n,succint(m)) = succint(sumint(n,m));

equivrel( eqint, int);

irreflexivef gtint, int);

transit ive( gtint, int);

gtint(succint(n),n) = true;

ntoi(zeronat) = zeroint;

ntoi(succnat(n)) = sumint(succint(zeroint),ntoi(n));

iton(zeroint) = zeronat;

iton(succint(n)) =

if or(gtint(n, zero int), eqint (n, zeroint ))
= true

then

sumnat(succnat( zeronat ),iton(n));

else

nconverr;

end extend;

end integer;
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spec character

is

extend

boolean

with

sort

char;

primitive

op

'A

a

T

'B'

V,
C,

7+7='," '

, 'Z ': -» char;

z': - char;

< 7>

-* char;

char;

char;

1
', ": -» char,

'1V2','3','4','5'

NUL: - char;

SOH: - char;

STX: -> char;

ETX: - char;

EOT: -> char;

ENQ: - char;

ACK: -» char;

BEL: —
* char;

BS: -» char;

HT: - char;

LF: -» char;

VT: - char;

FF: -» char;

CR: — char;

SO: —
* char;

SI: — char;

DLE: -» char;

DC1: -» char;

DC2: -> char;

DC3: — char;

DC4: -» char;

NAK: -» char;

SYN: -> char;

ETB: - char;

CAN: -> char;

EM: — char;

SUB: - char;

ESC: -» char;

FS: — char;

GS: -» char,

RS: —
» char;

US: -* char;

SP: -» char;

DEL: -» char;

eqchar: char,char — bool;

gtchan char,char -» bool;

axiom
equivrel( eqchar, char);

,irreflexive(gtchar,char);

transit ive(gtchar,char);

gtchar( DEL', '" ') = true;

gtchar( " ', '}') = true;

gtchar('}', 1 ') = true;

gtchar( 1
', '{') = true;

gtchar( '{', z ') = true;

6 ','7', '8', '9','0': - char
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gtchar( 'z ',..., 'a ')
= true;

gtcharf 'a',
''

')
= true;

gtcharf
"'

', '_') = true;

gtchar( '_[,
'*

') = true;

gtchar( "','}') = true;

gtchar( ']
',
") = true;

gtchar( ",
'[') = true;

gtchar( '[
', Z ') = true;

gtchar( Z ',..., 'A') = true;

gtcharj 'A ',
'@ ') = true;

gtchar( '@ ', '?
') = true;

gtchar( '?','>
') = true;

gtchar( '>','= ') = true;

gtchar( '=','<
')
= true;

gtchar( '< ', ';
') = true;

gtchar( '; ', ':
') = true;

gtchar( ':
',

'9
') = true;

gtcharj '9 ',.--,'0') = true;

gtchar( '0 ',
'/ ') = true;

gtchar( '/ ', '.
')
= true;

gtchar( '.
',

'
')
= true;

gtchar( '-',',
')
= true;

gtchar( ', ', '+ ') = true;

gtchar( '+','*
')
= true;

gtchar( '* ', ')
')
= true;

gtchar( ') ', '(
')
= true;

gtchar( '( ', '") = true;

gtchar(
"

',
'& ') = true;

gtchar( '& ', '% ') = true;

gtchar( '% ', '$ ') = true;

gtchar( '$
',
'# ') = true;

gtcharj '# ', '" ') = true;

gtchar( '" ', '!
') = true;

gtcharj '! ',SP) = true;

gtchar(SP,US) = true;

gtchar(US,RS) = true;

gtchar(RS,GS) = true;

gtchar(GS,FS) = true;

gtchar(FS,ESC) = true;

gtchar(ESC,SUB) = true;

gtchar(SUB,EM) = true;

gtchar(EM,CAN) = true;

gtcharj CAN,ETB) = true;

gtchar(ETB,SYN) = true;

gtchar(SYN,NAK) = true;

gtchar(NAK,DC4) = true;

gtchar(DC4,DC3) = true;

gtchar(DC3,DC2) = true;

gtchar(DC2,DCl) = true;

gtchar(DCl,DLE) = true;

gtchar(DLE,SI) = true;

gtchar(SI,SO) = true;

gtchar(SO,CR) = true;

gtchar(CR,FF) = true;

gtchar(FF,VT) = true;

gtcharj VT,LF) = true;

gtcharjLF.HT) = true;

gtcharJHT,BS) = true;

gtcharJBS.BEL) = true;

gtcharJBEL,ACK) = true;

gtcharjACK,ENQ) = true;
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gtchar(ENQ.EOT) = true;

gtchar(EOT,ETX) = true;

gtchar(ETX,STX) = true;

gtchar(STX,SOH) = true;

gtchar(SOH,NUL) = true;

end extend;

end character;
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spec string

parm
extend

boolean

with

sort

lm;

primitive

op

eqlm: Lm,lm -» bool;

gtlm: lm,lm -* bool;

axiom

equivrel(eqlm,lm);

irreflexive(gtlm,lm);

transit ive(gtlm,lm);

end extend;

is

extend

natural,

boolean

with

sort

str;

primitive

op

nullstr: -» str;

makestr: lm —
> str;

catstr: str,str -» str;

lenstr: str -» nat;

headstr: str —
» lm;

tailstr: str — str;

eqstr: str, str — bool;

gtstr: str, str — bool;

axiom

lenstr(nullstr) = zeronat;

lenstr(makestr(l)) = succnat(zeronat);

lenstr(catstr(sl,s2)) = sumnat(lenstr(sl),lenstr(s2));

headstr(makestr(l)) = 1;

tailstr(makestr(l)) = nullstr;

headstr(catstr(makestr(l),s)) = 1;

tailstr(catstr(makestr(l),s2)) = s2;

headstr(nullstr) = strerr;

tailstr(nullstr) = nullstr;

catstr(catstr(sl,s2),s3) = catstr(sl,catstr(s2,s3));

catstr(nullstr,s) = catstr(s,nullstr) = s;

equivrel (eqstr, str);

irreflexive(gtstr,str);

transit ive(gtstr,str);

implies(eqlm(ll,l2),eqstr(makestr(ll),makestr(l2))) = true;

implies(gtlm(U,12),gtstr(makestr(ll),makestr(l2))) = true;

gtnat(lenstr(makestr(l)),lenstr(nullstr)) = true;

implies(gtnat(lenstr(sl),lenstr(s2)),gtstr(sl,s2)) = true;

if not eqstr(lenstr(sl),zeronat) then

gtnat(lenstr(catstr(sl,s2),lenstr(s2)) = true;

else

eqnat(lenstr(catstr(sl,s2),lenstr(s2)) = true;

end if;

end extend;

end string;
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spec value

is

sort

val;

error

op

typerr: — val;

end value;

new type (bool,boolean);

new type(int, integer);

newtype (nat,natural);

new type(char,character);

spec charstring

is

extend

chartype

with

use

string(character)

where

char is lm;

eqchar is eqlm;

gtchar is gtlm;

end extend;

end charstring;

spec str.chartype

is

extend

charstring

with

primitive

op

atomofstr.char: val -* str.char;

valofstr.char: str. char —
» val;

error

op

str.charerr: —
» str. char;

axiom

for x in val

atomofstr.char(valofstr.char(x)) = x;

atomofstr.char(typerr) = str.charerr,

end extend;

end str. chartype;
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spec identifiers

is

sort

memid;

regid;

stkid;

fid;

primitive

op

mem: -» memid;

reg: -* regid;

stk: —
> stkid;

eqmemid: memid,memid — bool;

eqregid: regid,regid —
> bool;

eqstkid: stkid, stkid -» bool;

eqfid: fid, fid -» bool;

axiom
equivrel( eqmemid,memid);

equivrel( eqregid,regid);

equivrel( eqstkid,stkid);

equivrel(eqfid,fid);

end identifiers;

spec memaddresses

is

extend

identifiers,

boolean

with

sort

memaddr;
primitive

op

startmemaddr: memid — memaddr;
nextmemaddr memaddr -» memaddr;

preamemaddr: memaddr —
> memaddr;

eqmemaddr: memaddr,memaddr — bool;

getmemid: memaddr -» memid;

offset: int,memaddr -* memaddr;

error

op

memaddrerr: -» memaddr;
axiom

equivrel(eqmemaddr,memaddr);

preamemaddr(nextmemaddr(m)) = m;

preamemaddr(startmemaddr(i)) = memaddrerr;

eqmemaddr(startmemaddr(il),startmemaddr(i2)) = eqmemid(il,i2);

eqmemaddr(startmemaddr(i),nextmemaddr(a)) = false;

eqmemaddr(nextmemaddr(al),nextmemaddr(a2)) = eqmemaddr(al,a2);

offset(zeroint,m) = m;

offset(succmt(n),m) = nextmemaddr(offset(n,m));

offset(predint(n),m) = preamemaddr(offset(n,m));

eqmemid(i,getmemid(offset(n,startmemaddr(i)));

end extend;

end memaddresses;
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spec regaddresses

is

extend

identifiers,

boolean

with

sort

regaddr;

primitive

op

startregaddr: regid —
* regaddr;

nextregaddr: regaddr —> regaddr;

eqregaddr: regaddr,regaddr — bool;

axiom
equivrel( eqregaddr,regaddr);

eqregaddr(startregaddr(il),startregaddr(i2)) = eqregid(il,i2);

eqregaddr(startregaddr(i),nextregaddr(a)) = false;

eqregaddr(nextregaddr(al),nextregaddr(a2)) = eqregaddr(al,a2);

end extend;

end regaddresses;

spec stkaddresses

is

extend

identifiers,

boolean

with

sort

stkaddr;

primitive

op

eqstkaddr stkaddr,stkaddr -» bool;

stkpointer: stkid —
* stkaddr;

axiom
equivrel( eqstkaddr, stkaddr);

eqstkaddr(stkpointer(il),stkpointer(i2)) = eqstkid(il,i2);

end extend;

end stkaddresses;

spec files

is

extend

identifiers,

boolean

with

sort

file;

primitive

op

getfile: fid —
* file;

eqfile: file, file — bool;

axiom

equivrel( eqfile, file);

eqfile(getfile(il),getfile(i2)) = eqfid(il,i2);

end extend;

end devaddresses;
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spec amoperators

is

extend

booltype,

nattype,

inttype,

chartype,

str.chartype

with

sort

mop;

dop;

relop;

bop;

primitive

op

applymop: mop,val —
» val;

applydop: dop, val,val —> val;

applyrel: relop, val,val —
» val;

applybop: bop, val — val;

boolnot: —
» mop;

booland: — dop;

boolor: — dop;

natsum: — dop;

intsum: — dop;

charstrlen: —
» mop;

charconcat: —
> dop;

charmakestr: -» mop;

charheadstr: -» mop;

chartailstr: —
* mop;

replace(S)

"relationalops(S)"

with

"Sgt: -* relop;

Seq: -* relop"

error

op

operr —
» val;

moperr: —
» mop;

doperr: — dop;

reloperr: —> relop;

axiom

applymop(m,typerr) = operr;

applydop(d,v,typerr) = operr,

applydop(d,typerr,v) = operr;

replace(M,0,S)

"monadic(M,0,S)"

with

"applymop(M,v) =

valofS(0(atomovS v))"

replace(D,0,S)

"dyadic(D,0,S)"

with

"applydop(D,vl,v2) =
valofS(0(atomofS vl,atomofS v2))"

replace(S)

"relations(S)"

with

"applyrel(Seq,vl,v2) =

valofS(eqS(atomofS vl,atomofS v2));

applyrel(Sgt,vl,v2) =
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valofS(gtS(atomofS vl,atomofS v2))"

monadic (boolnot, no t,bool);

dyadic(booland,and,bool);

dyadic (boolor,or,bool);

dyadic (natsum,sumnat,nat);

dyadic(intsum,sumint,int);

dy adic(charstrlen, lens tr. char, str. char);

dy adic(c hare oncat,cat str.char,str.char);

relationalops(nat);

relationalops(Lnt);

relationalops(char);

relationalops( str.char);

end extend;

end amoperators;
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spec aminst ructions

is

extend

amoperators,

memaddresses,

regaddresses,

stkaddresses

with

sort

instr;

primitive

op

dyads: dop,regaddr,regaddr —
» instr;

dyadsi: dop,val,regaddr —» instr;

dyad: dop,regaddr,regaddr,regaddr —
> instr;

dyadi: dop,val,regaddr,regaddr —> instr;

monads: mop,regaddr —
> instr;

monad: mop,regaddr,regaddr —
> instr;

monadi: mop,val,regaddr — instr;

offst: int,regaddr -> instr;

movjnjn: memaddr,memaddr — instr;

mov_pcrj>cr: int,int —» instr;

mov ri m: regaddr,memaddr — instr;

mov_ri_pcr: regaddr,int —
> instr;

mov_rid_m: regaddr,int,memaddr — instr;

mov_rid_pcr: regaddr,int,int — instr;

mov ridn m: regaddr,nat,int,memaddr — instr;

mov_ridn_pcr: regaddr,nat,int,int — instr;

mov_m_ri: memaddr,regaddr -* instr;

mov per ri: int,regaddr— instr;

mov m rid: memaddr,regaddr,int —
» instr;

mov_pcr_rid: int,regaddr,int — instr;

mov_m_ridn: memaddr,regaddr,nat,int —> instr;

mov_pcr_ridn: int,regaddr,nat,int — instr;

mov_ri_ri: regaddr,regaddr -* instr;

mov_rid_ri: regaddr,int,regaddr —
> instr;

mov_ridn_ri: regaddr,nat,int,regaddr — instr;

mov_ri_rid: regaddr,regaddr,int — instr;

mov_ri_ridn: regaddr,regaddr,nat,int -* instr;

mov_rid_rid: regaddr,int,regaddr,int -» instr;

mov_ridnjrid: regaddr,nat,int,regaddr,int -» instr;

mov_rid_ridn: regaddr,int,regaddr,nat,int —
» instr;

mov_ridn_ridn: regaddr,nat,int,regaddr,int,int -» instr;

movi_m: val,memaddr — instr;

movi_pcr: val,int —
> instr;

movi_ri: val,regaddr —
> instr;

movi_rid: val,regaddr,int — instr;

movi_ridn: val,regaddr,nat,int -» instr;

movi r: val,regaddr —
* instr;

movjj: regaddr,regaddr — instr;

movjnj: memaddr,regaddr -* instr;

mov_pcr_r: int,regaddr —
» instr;

mov_ri_r: regaddr.regaddr — instr;

mov_rid_r: regaddr,int,regaddr —» instr;

mov_ridn_r: regaddr,nat,int,regaddr —
> instr;

mov_r_m: regaddr,memaddr —
» instr;

mov_r_pcr: regaddr,int -* instr;

mov_r_ri: regaddr.regaddr —
> instr;

mov r rid: regaddr,regaddr,int -» instr;

mov_r_ridn: regaddr,regaddr,nat,int -> instr;

push r: regaddr,stkaddr —> instr;
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push m: memaddr,stkaddr -» Lnstr;

push_pcr: Lnt,stkaddr -» instr;

push_ri: regaddr,stkaddr —* instr;

push_rid: regaddr,int,stkaddr — instr;

push_ridn: regaddr,nat,int,stkaddr — instr;

pushi: val,stkaddr -» instr;

pop_r: stkaddr,regaddr -* instr;

pop m: stkaddr,memaddr —
» instr;

pop_pcr: stkaddr,int -» instr;

pop_ri: stkaddr,regaddr —
> instr;

pop rid: stkaddr,regaddr,int —» instr;

pop_ridn: stkaddr,regaddr,nat,int — instr;

popx: stkaddr —
» instr;

jmp: memaddr —
> instr;

jmp_ri: memaddr -» instr;

jmp_r: regaddr -* instr;

bra: int — instr;

bra r: regaddr -» Lnstr;

if: relop, regaddr,regaddr,memaddr —» instr;

ifi: relop,regaddr, val,memaddr —* instr;

ifte: relop,regaddr,regaddr,memaddr,memaddr — instr;

iftei: relop,regaddr, val,memaddr,memaddr — instr;

if_pcr: relop,regaddr,regaddr, int —
* instr;

ifi per: relop,regaddr, val, int -» instr;

ifte_pcr: relop,regaddr,regaddr.int, int — Lnstr;

iftei_pcr: relop, regaddr, val, int,int — instr;

test: bop,regaddr,memaddr —
> instr;

testm: bop,memaddr,memaddr —
* instr;

teste: bop,regaddr,memaddr,memaddr -» instr;

testme: bop,memaddr,memaddr,memaddr - instr;

test_pcr: bop,regaddr, int -» instr;

testmjcr: bop,memaddr, int —
» instr;

teste per: bop,regaddr, int, int —
• instr;

testmejer: bop,memaddr, int, int — Lnstr;

stop —
» instr;

jsr: memaddr,stkaddr —
* instr;

jsr_ri: memaddr,stkaddr -» instr;

jsr_r: regaddr.stkaddr — Lnstr;

bsr: int,stkaddr -» Lnstr;

bsr_r: regaddr.stkaddr — instr;

rts: stkaddr -> instr;

link: regaddr,nat -» instr;

unlink: regaddr -» instr;

open: stkaddr -» instr;

close: stkaddr -» Lnstr;

read: stkaddr — instr;

write: stkaddr -» Lnstr;

org: -» instr;

extern: —
* instr;

globl: -» instr;

mbegin: —
» instr;

mend: —» instr;

end extend;

end aminstructions;

newtype (memaddr,memaddresses);
newtype(regaddr,regaddresses);

new type(stkaddr,stk addresses);

new type(file, files);

new type( instr, aminstructions);
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spec amstate

is

extend

aminstructions,

identifiers

with

sort

state;

primitive

op

initam: —
» state;

storer: val,regaddr,state —
* state;

fetchr: regaddr,state — val;

storem: val,memaddr,state —
» state;

fetchm: memaddr, state — val;

initstk: stkaddr,state -+ state;

topstk: stkaddr,state —
» val;

pushstk: val,stkaddr,state —
> state;

popstk: stkaddr,state — state;

lalloc: nat, state — memid;

lfree: memid,state -» state;

indir: nat,memaddr —
> memaddr;

infile: file, state -» val;

outfile: val, file,state —
» state;

openfile: str.char,file,int,int,state —
> state;

closefile: file,state -» state;

rmode: -» int;

wmode: —» int;

rwmode: -* int;

openerr: —
» bit;

openok: -» int;

valdata: -» int;

chardata: -» int;

undef: — val;

error

op

ioerr: -» val;

staterr: —
» state;

emptystkerr: -* val;

undflowstkerr: —» state;

nonallocern — val;

accesserr: — memaddr;

axiom
implies(eqmemaddr(al,a2),fetchm(al,storem(v,a2,q)) = v)

= true;

implies (not (eqmemaddr(ml,m2)),fetchm(ml,storem(v,m2,q)) = fetchm(ml,q))

= true;

fetchm(m, initam) = undef;

storem(fetchm(m,q),m,q) = q;

implies(eqregaddr(rl,rl),fetchr(rl,storer(v,r2,q)) = v)

= true;

implies(not(eqregaddr(rl,r2)),fetchr(rl,storer(v,r2,q)) = fetchr(r2,q))

= true;

fetchr(r,initam) = undef;

storer(fetchr(r,q),r,q) = q;

topstk(s,pushstk(v,s,q)) = v;

popstk(s,pushstk(v,s,q)) = q;

topstk(s,initstk(s)) = emptystkerr;

popstk(s,initstk(s)) = undflowstkerr;

popstk(s, initam) = undlowstkerr,

fet chm(offset(n,startmemaddr(lalloc(nl,q))), lfree ( lalloc (i,q),q2))
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= nonallocerr;

storem(v,offset(n,startmemaddr(lalloc(nl,q))),lfree(lalloc(i.q),q2))

= staterr;

offse t(n, offset (nl,st artmemaddr(lalloc(n2,q)))) =

if or(gtint(n,ntoi(n2)),eqint(n,ntoi(n2))) = true

then

accesserr;

else

offset (sumint(n,nl),

startmemaddr(lalloc(n2,q)));

indir(zeronat,m) = m;

indir(succnat(n),m) = atomofmemaddr(fetchin(indir(n,m),q));

infile(f,openfile(s,f,wmode,x,q)) = ioerr;

infile(f,initam) = ioerr;

iiifile(f,close(d,q)) = ioerr;

outfile(v,f,close(f,q)) = staterr;

outfile(v,f,initam) = staterr;

outfile(f,openfile(s,f,m,chardata,q)) = staterr;

outfile(v,f,openfile(s,f,rmode,x,q)) = staterr;

closefile(f,openfile(s,f,n,x,q)) = q;

openfile(s,f,n,openfile(s,f,m,x,q)) = staterr;

end extend;

end amstate;
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spec am
is

extend

amstate,

memaddrtype,

regaddrtype,

stkaddrtype,

instrtype

with

sort

type;

primitive

op

prog: memaddr, state —
> state;

hidden

op

xeq: Lnstr,memaddr,state —
> state;

cond: val,memaddr,memaddr -> memaddr;

whattype: val —
> type;

typeundef: —
> type;

typebool: -> type;

typechar: —
> type;

typenat: -» type;

typeint: —» type;

typestring.char: -» type;

typememaddr: — type;

typefile: —
» type;

typeinstn -» type;

eqtype: type,type —
* bool;

isundef: —
» bop;

isbool: — bop;

ischar: —
» bop;

isnat: -» bop;

isint: —
* bop;

isstring.char: — bop;

isinstr: —
> bop;

ismemaddr: — bop;

isfile: —* bop;

axiom
whattype undef = typeundef;

whattype valofbool(b) = typebool;

whattype valofchar(c) = typechar;

whattype valofnat(n) = typenat;

whattype valofint(i) = typeint;

whattype valofstring.char(s) = typestring.char;

whattype valofmemaddr(m) = typememaddr;

whattype valoffile(f) = typefile;

whattype valofmstr(i) = typeinstr;

replace(S)

"isops(S);"

with

"applybop(isS,v) =

if eqtype(whattype v.typeS) = true then

valofbool true;

else

valofbool false;

endif;"

isops(bool);

isops(char);

isops(nat);

isops(int);
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isops(string.char);

isops(memaddr);

isops(instr);

isops(file);

equivrel(eqtype,type);

Lmplies(

eqtype(whattype(vl),whattype(v2)) = false,

applyrel(inteq,vl,v2) = valofbool(false)

)
= true;

tmplies(

eqtype(whattype(vl),whattype(v2)) = false,

applyrel(nateq,vl,v2) = valofbool(false)

)
= true;

Lmplies(

eqtype(whattype(vl),whattype(v2)) = false,

applyrel(chareq,vl,v2) = valofbool(false)

)
= true;

Lmplies(

eqtype(whattype(vl),whattype(v2)) = false,

applyrel(string.chareq,vl,v2) = valofbool(false)

)
= true;

cond(valofbool(true),al,a2) = al;

cond(valofbool(false),al,a2) = a2;

prog(a,q) = xeq(atomofinstr(fetchm(a,q),a,q));

xeq(dyads(o,rl,r2),m,q) =

prog(

nextmemaddr(m),

storer(

applydop(

o,

fetchr(rl,q),

fetchr(r2,q)

).

r2,

q

)

);

xeq(dyadsi(o,v,rl),m,q) =

prog(

nextmemaddr(m),

storer(

applydop(

o,

v,

fetchr(rl,q)

).

rl,

q

)

);

xeq(dyad(o,rl,r2,r3),m,q) =
prog(

nextmemaddr(m),

storer(

applydop(

o,

fetchr(rl,q),

fetchr(r2,q)
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r3,

q

xeq(dyadi(o,v,rl,r2),m,q) =

prog(

nextmemaddr(m),

storer(

applydop(

o,

v,

fetchr(rl,q)

).

r2,

q

)

);

xeq(monads(o,rl),m,q) =

prog(

nextmemaddr(m),

storer(

applymop(

o,

fetchr(rl,q)

).

rl,

q

xeq(monad(o,rl,r2),m,q) =

prog(

nextmemaddr(m),

storer(

applymop(

o,

fetchr(rl,q)

).

r2,

q

xeq(monadi(o,v,rl),m,q) =

prog(

nextmemaddr(m),

storer(

applymop(o,v),

rl,

q

)

);

xeq(offst(i,r),m,q) =

prog(

nextmemaddr(m),

storer(

valofmemaddr(

offset
(

i,

atomofmemaddr(
fetchr(r,q)

)
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xeq(mov_m_m(ml,m2),m,q) =

prog(

nextmemaddr(m),

storem(

fetchm(ml,q),

m2,

q

)

);

xeq(mov^pcr_pcr(il,i2),m,q) =

prog(

nextmemaddr(m),

storem(

fetchm(

offset (il,m),

q

).

offset(i2,m),

q

xeq(mov_ri_m(r,ml),m,q) =

prog(

nextmemaddr(m),

storem(

fetchm(

atomofmemaddr(

fetchr(r,q)

).

q

),

ml,

q

)

);

xeq(mov_ri_pcr(r,i),m,q) =
prog(

nextmemaddr(m),

storem(

fetchm(

atomofmemaddr(
fetchr(r,q)

),

q

).

offset (i,m),

q

)

);

xeq(mov_rid_m(r,i,ml),m,q) =

prog(

nextmemaddr(m),

storem(

fetchm(

offset (
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atomofmemaddr(

fetchr(r,q)

ml,

q

xeq(mov_rid_pcr(r,il,i2),m,q) =

prog(

nextmemaddr(m),

storem(

fetchm(

offset
(

il,

atomofmemaddr(

fetchr(r,q)

offset(i2,m),

q

xeq(mov_ridji_m(r,n,i,ml),m,q) =

prog(

nextmemaddr(m),

storem(

fetchm(

offset
(

i,

indir(

n,

atomofmemaddr(

fetchr(r,q)

)

)

),

q

);

xeq(mov_ridn_pcr(r,n,il,i2),m,q) =
prog(

nextmemaddr(m),

storem(

fetchm(

offset
(

il,

indir(

n,

atomofmemaddr(

fetchr(r,q)

)

)
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).

offset(i2,m),

q

)

);

xeq(mov_m_ri(ml,r),m,q) =
prog(

nextmemaddr(m),

storem(

fetchm(ml,q),

atomofmemaddr (fetchr(r,q)

)

>q

xeq(mov_pcr_ri(i,r),m,q) =
prog(

nextmemaddr(m),

storem(

fetchm(

offset(i,m),

q

)-

atomofmemaddr(

fetchr(r,q)

q

)

);

xeq(mov_m_rid(ml,r,n),m,q) =
prog(

nextmemaddr(m),

storem(

fetchm(ml,q),

offset
(

n,

atomofmemaddr(

fetchr(r,q)

xeq(mov_pcr_rid(il,r,i2),m,q) =

prog(

nextmemaddr(m),

storem(

fetchm(

offset(il,m),

q

),

offset
(

i2,

atomofmemaddr(
fetchr(r,q)

q

)

);

xeq(mov_m_ridn(ml,r,il,i2),m,q) =
prog(
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nextmemaddr(m),

storem(

fetchm(ml,q),

offset
(

i2,

indir(

ill

atomofmemaddr(

fetchr(r,q)

)

)

)-

q

xeq(movj>cr_ridn(il,r,n,i2),m,q) =

prog(

nextmemaddr(m),

storem(

fetchm(

offset(il,m),

q

),

offset
(

12,

indir(

n,

atomofmemaddr(

fetchr(r,q)

)

)

q

)

);

xeq(mov_ri_ri(rl,r2),m,q) =

prog(

nextmemaddr(m),

storem(

fetchm(

atomofmemaddr(
fetchr(rl,q)

).

q

)-

atomofmemaddr(

fetchr(r2,q)

).

q

xeq(movj-id_ri(rl,i,r2),m,q) =

prog(

nextmemaddr(m )

,

storem(

fetchm(

offset
(

i,

atomofmemaddr(

fetchr(rl,q)

)
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),

q

).

atomofmemaddr(

fetchr(r2,q)

).

q

)

);

xeq(mov_ridn_ri(rl,il,i2,r2),m,q) =

pr°g(

nextmemaddr(m),

storem(

fetchm(

offset
(

i2,

indir(

il,

atomofmemaddr(

fetchr(rl,q)

)

)

atomofmemaddr(
fetchr(r2,q)

xeq(mov_ri_rid(rl,r2,n),m,q) =

prog(

nextmemaddr(m),

storem(

fetchm(

atomofmemaddr(

fetchr(rl,q)

),

q

),

offset
(

n,

atomofmemaddxf
fetchr(r2,q)

xeq(mov_ri_ridn(rl,r2,il,i2),m,q)

prog(

nextmemaddr(m),
storem(

fetchm(

atomofmemaddr(

fetchr(rl,q)

).

q

).

offset
(
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i2,

indir(

il,

atomofmemaddr(

fetchr(r2,q)

q

)

);

xeq(mov_rid_rid(rl,il,r2,i2),m,q) =

prog(

nextmemaddr(m),
storem(

fetchm(

offset
(

il,

atomofmemaddr(

fetchr(rl,q)

)

),

q

),

offset
(

i2,

atomofmemaddr(

fetchr(r2,q)

)

q

)

);

xeq(movj]idn_rid(rl,il,i2,r2,i3),m,q) =

prog(

nextmemaddr(m),

storem(

fetchm(

offset
(

i2,

indir(

il,

atomofmemaddr(

fetchr(rl,q)

)

)

q

).

offset
(

S3,

atomofmemaddr(

fetchr(r2,q)

)

q

)

);

xeq(movj-id_ridn(rl,il,r2,i2,i3),m,q) =
prog(

nextmemaddr(m),
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storem(

fetchmf

offset
(

il,

atomofmemaddr(
fetchr(rl,q)

),

offset(

i3,

indir(

12,

atomofmemaddr(

fetchr(r2,q)

xeq(mov_ridn_ridn(rl,il,i2,r2,i3,i4),m,q)

prog(

nextmemaddr(m)

,

storem(

fetchm(

offset
(

i2,

indir(

il,

atomofmemaddr(
fetchr(rl,q)

offset
(

i4,

indir(

i3,

atomofmemaddr(

fetchr(r2,q)

);

xeq(movi_m(v,ml),m,q) =

prog(

nextmemaddr(m),
storem(v,ml,q)

);

xeq(movi_pcr(v,i),m,q) =

prog(

nextmemaddr(m),

storem(

v,

offset (i,m),
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);

xeq(movi_ri(v,r),m,q) =

prog(

nextmemaddr(m),

storem(

v,

atomofmemaddr(
fetchr(r,q)

).

q

)

);

xeq(movi_rid(v,r,n),m,q) =

prog(

nextmemaddr(m),

storem(

v,

offset
(

n,

atomofmemaddr(

fetchr(r,q)

xeq(movi_ridn(v,r,il,i2),m,q) =

prog(

nextmemaddr(m),

storem(

v,

offset
(

i2,

indir(

il,

atomofmemaddr(
fetchr(r,q)

).

q

)

);

xeq(movi_r(v,r),m,q) =
prog(nextmemaddr(m),storer(v,r,q));

xeq(mov_r_r(rl,r2),in,q) =

prog(nextmemaddr(m),storer(fetch(rl,q),r2,q));

xeq(mov m_r(ml,r),m,q) =
prog(nextmemaddr(m),storer(fetchm(ml,q),r,q));

xeq(mov_pcr_r(i,r),m,q) =

prog(

nextmemaddr(m),

storer(

fetchm(offset(i,m),q),

r>

q

);

xeq(mov_ri_r(rl,r2),m,q) =

91



prog(

nextmemaddr(m),
storer(

fetchm(

atomofmemaddr(
fetchr(rl,q)

)

).

r2,

q

xeq(mov_rid_r(rl,n,r2),m,q) =
prog(

nextmemaddr(m),

storer(

fetchm(

offset
(

n,

atomofmemaddr(
fetchr(rl,q)

r2,

q

)

);

xeq(mov_ridn_r(rl,il,i2,r2),m,q) =

prog(

nextmemaddr(m),

storer(

fetchm(

offset
(

i2,

indir(

11,

atomofmemaddr(

fetchr(rl,q)

)

)

).

q

).

r2,

q

)

);

xeq(mov r m (r,ml),m,q) =
prog(nextmemaddr(m),storem(fetchr(r,q),ml,q));

xeq(mov r pcr(r,i),m,q) =

prog(

nextmemaddr(m),

storem(

fetchr(r,q),

offset(i,m),

q

)

);

xeq(mov r ri(rl,r2),m,q) =
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prog(

nextmemaddr(m),
storem(

fetchr(rl,q),

atomofmemaddr(

fetchr(r2,q)

).

q

)

);

xeq(mov r rid(rl,r2,n),m,q) =

prog(

nextmemaddr(m),

storem(

fetchr(rl,q),

offset
(

n,

atomofmemaddr(
fetchr(r2,q)

xeq(mov r ridn(rl,r2,il,i2),m,q) =

prog(

nextmemaddr(m)

,

storem(

fetchr(rl,q),

offset
(

i2,

indir(

il,

atomofmemaddr(
fetchr(r2,q)

)

)

).

q

xeq(push r(r,s),m,q) =
prog(nextmemaddr(m),pushstk(fetchr(r,q),s,q));

xeq(push_m(ml,s),m,q) =

prog(nextmemaddr(m),pushstk(fetchm(ml,q),s,q));

xeq(push_pcr(i,s),m,q) =

prog(

nextmemaddr(m),

pushstk(

fetchm(

offset (i,m),

q

1.

s,

q

)

);

xeq(push_ri(r,s),m,q) =
prog(

nextmemaddr(m),

pushstk(
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)

fetchm(

atomofmemaddr(
fetchr(r,q)

)

q

),

3,

q

xeq(push_rid(r,n,s),m,q) =

prog(

nextmemaddr(m),

pushstk(

fetchm(

offset
(

n,

atomofmemaddr(

fetchr(r,q)

)

);

xeq(push_ridn(r,il,i2,s),m,q) =

prog(

nextmemaddr(m),

pushstk(

fetchm(

offset
(

i2,

indir(

il,

atomofmemaddr(

fetchr(r,q)

)

);

xeq(pushi(v,s),m,q) =

prog(nextmemaddr(m),pushstk(v,s,q));

xeq(pop_r(s,r),m,q) =

prog(

nextmemaddr(m),
popstk(

s,

storer(

topstk(s,q),

r,

q

)

)

);
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xeq(pop_m(s,ml),m,q) =

prog(

nextmemaddr(m),

popstk(

s,

storem(

topstk(s,q),

ml,

q

)

)

);

xeq(pop_pcr(s,i),m,q) =

prog(

nextmemaddr(m),

poptsk(

s,

storem(

topstk(s,q),

offset (i,m),

q

)

)

);

xeq(pop_ri(s,r),m,q) =

prog(

nextmemaddr(m),

popstk(

s,

storem(

topstk(s.q),

atomofmemaddr(
fetchr(r,q)

),

q

)

)

);

xeq(pop_rid(s,r,n),m,q) =

prog(

nextmemaddr(m),
popstk(

s,

storem(

topstk(s,q),

offset
(

n,

atomofmemaddr(
fetchr(r,q)

xeq(pop_ridn(s,r,il,i2),m,q)

pr°g(

nextmemaddr(m),

popstk(

s,

storem(
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topstk(s,q),

offset
(

i2,

indir(

il>

atomofmemaddrf
fetchr(r,q)

xeq(popx(s),m,q) =

prog(nextmemaddr(m),popstk(s,q));

xeq(jmp(ml),m,q) =

prog(ml,q);

xeq(jmp_mi(ml),m.q) =

prog(atomofmerr.addr(fetchm(ml,q)),q);

xeq(jmp_r(r),m.q) =

prog(atomofmemaddr(fetchr(r,q)),q);

xeq(bra(n),m,q) =

prog(offset(n,nextmemaddr(m)),q);

xeq(bra_r r,m,q) =
prog(offset(atomofint(fetchr(r,q)),nextmemaddr(m)),q);

xeq(if(o,rl,r2,ml),m,q) =

prog(

cond(

applyrelf

o,

fetchr(rl,q),

fetchr(r2,q)

),

ml,

nextmemaddr(m)

xeq(ifi(o,r,v,ml),m,q) =

prog(

cond(

applyrel(

o,

fetchr(r,q),

v

).

ml,

nextmemaddr(m)

xeq(ifte(o,rl,r2,ml,m2),m,q) =
prog(

cond(

applyrel(

o,

fetchr(rl,q),

fetchx(r2,q)

)-

ml,
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m2

),

q

);

xeq(iftei(o,r,v,ml.m2),m,q) =

prog(

cond(

applyrel(

o,

fetchr(r,q),

v

),

ml,

m2
)-

q

);

xeq(if_pcr(o,rl,r2,n),m,q) =

prog(

cond(

applyrelf

o,

fetchr(rl,q),

fetchr(r2,q)

),

offset(n,nextmemaddr(m)),

nextmemaddr(m)

).

q

);

xeq(ifi_pcr(o,r,v,n),m,q) =

prog(

cond(

applyrel(

o,

fetchr(r,q),

v

),

offset (n,nextmemaddr(m)),

nextmemaddr(m)

)-

q

);

xeq(ifte_pcr(o,rl,r2,il,i2),m,q) =

prog(

cond(

applyrel(

o,

fetchr(rl,q),

fetchr(r2,q)

).

offset (il,nextmemaddr(m)),

offset (i2,nextmemaddr(m))

xeq(iftei_pcr(o,r,v,il,i2),m,q) =

prog(

cond(

applyrel(

0,
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fetchr(r.q),

offset (il,nextmemaddr(m)),

offset(i2,nextmemaddr(m))

).

q

);

xeq(test(o,rl,ml),m,q) =

prog(

cond(

apply bop(o,fetchr(rl,q)),

ml,

nextmemaddr(m)

),

q

);

xeq(testm(o,m2,ml),m,q) =

prog(

cond(

applybop (o,fetchm(m2,q)),

ml,

nextmemaddr(m)

).

q

);

xeq(teste(o,rl,ml,m2),m,q) =
prog(cond(applybop(o,fetchr(rl,q)),ml,m2),q);

xeq(testme(o,m3,ml,m2),m,q) =
prog(cond( applybop(o,fetchm(m3,q)),ml,m2),q);

xeq(test_pcr(o,rl,n),m,q) =
prog(

cond(

applybop(o,fetchr(rl,q)),

offset (n,nextmemaddr(m)),

nextmemaddr(m);

xeq(testm_pcr(o,m2,n),in,q) =

prog(

cond(

applybop(o,fetchm(m2,q)),

offset(n,nextmemaddr(m)),

nextmemaddr(m)

xeq(teste_pcr(o,rl,il,i2),m,q) =

prog(

cond(

applybop (o,fetchr(rl,q)),

offset (il, nextmemaddr(m)),
offset(i2,nextmemaddr(m))

).

q

);

xeq(testme_pcr(o,m3,il,i2),m,q) =
prog(

cond(

apply bop(o,fetchm(m3,q)),
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offset (il,nextmemaddr(m)),

offset(i2,nextmemaddr(m))

),

q

);

xeq(stop,m,q) = prog(m,q) = q;

xeq(jsr(ml,s),in,q) =

prog(ml,pushstk(valofmemaddr(nextmemaddr(m)),s,q));

xeq(jsr_mi(ml,s),rn,q) =

prog(

atomofmemaddr(fetchm(ml,q)),

pushstk(valofmemaddr(nextmemaddr(m)),s,q)

);

xeq(jsr_r(r,s),m,q) =

prog(

atomofmemaddr(fetchr(r,q)),

pushstk(valofmemaddr(nextmemaddr(m)),s,q)

);

xeq(bsr(n,s),m,q) =

prog(

offset (n,nextmemaddr(m)),

pushstk(valofmemaddr(nextmemaddr(m)),s,q)

);

xeq(bsr_r(r,s),m,q) =

prog(

offset
(

atomofint(fetchr(r,q)),

nextmemaddr(m)

).

pushstk(valofmemaddr(nextmemaddr(m)),s,q)

);

xeq(rts s,m,q) =

prog(atomofmemaddr(topstk(s,q)),popstk(s,q));

xeq(link(r,n),m,q) =

prog(

nextmemaddr(m),

storer(

valofmemaddr(

startmemaddr(lalloc(n,q))

),

r,

storem(

fetchr(r,q),

startmemaddr(lalloc(n,q),q)

xeq(unlink(r),m,q) =
prog(

nextmemaddr(m),
lfree(

getmemid(

atomofmemaddr(fetchr(r,q))

)-

storer(

fetchm(

atomofmemaddr(fetchr(r,q)),

q

),

r,

q
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xeq(open(s),m,q) =

prog(

nextmemaddr(m),
openfile(

atomofstr.char(

topstk(s,popstk(s,popstk(s,popstk(s,q))))

),

atomoffile(topstk(s,popstk(s,popstk(s,q)))),

atomofint(topstk(s,popstk(s,q))),

atomofrnt(topstk(s,q)),

popstk(s,q)

xeq(close(s),m,q) =

prog(

nextmemaddr(m),

closefile(

atomoffile(topstk(s,q)),

popstk(s,q)

xeq(read(s),m,q) =

prog(

nextmemaddr(m),

storem(

infile(

atomoffile(topstk(s,popstk(s,q))),

popstk(s,q)

atomofmemaddr(topstk(s,q)),

popstk(s,q)

xeq(write(s),m,q) =

pr°g(

nextmemaddr(m)

,

outfile(

fetchm(

atomofmemaddr(topstk(s,popstk(s,q))),

popstk(s,q)

atomoffile(topstk(s,q)),

popstk(s,q)

);

end extend;

end am;
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APPENDIX C: A SIMPLE ASSEMBLER FOR AM

1. Introduction

AMASM is an assembler which produces a relocatable load module for AM,
an abstract machine interpreter. This document constitutes the reference manual

for Version 1.0. It provides a description of the syntax and semantics of the

assembler as well as a description of the salient features of the AM machine and

a definition of the opcodes executed by AM.
AMASM is, to the extent possible, written in portable C. Readers desiring

to port the code to 16-bit machines may have to make slight changes to "defines"

since long is assumed to occupy 32 bits, and short 16 bits.

The input syntax of AMASM is similar to that of other assemblers. It

supports symbolic addresses and constants and a typical set of directives, but has

no macro capabilities. The assembler accepts an ASCII source file created on a

conventional text editor and produces an output file containing relocation

information and AM opcodes. The output file may be loaded using the AM
loader and executed by AM.

2. Usage
AMASM is invoked with the following command line syntax:

amasm [-t] [-1] file ...

AMASM produces a single load module "a.vm", which forms the input to the

AM loader. The optional "-t" switch sends debugging trace to "stdout". The
optional "-1" switch generates the listing and crossreference file "a.x". Appended
to this file is a hex dump of "a.vm".

3. Lexical Conventions
Assembler tokens include identifiers (alternatively, "symbols" or "names"),

literal constants, operators and delimiters.

3.1. Identifiers

Legal identifiers are described by the following regular expression:

[A-Za-zJ|A-Za-zO-9j*

Identifiers consist of a letter or underline "_|_' followed by a string of zero or more
letters, decimal digits and underlines. Upper and lower case are distinct.

Identifiers may represent symbolic constants, instruction mnemonics, labels,

addresses and type names.

3.2. Operators
The following are considered to be operators:

== !=<<=> > =

+ -*/%&!
The meaning of the above symbols varies with context.
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3.3. Literal Constants
Decimal and hexadecimal constants are described by the following regular

expressions respectively:

[-+][0-9]+| [0-9] +
$[0-9A-Za-z] +

Decimal constants consist of an optional sign followed immediatly by one or more

decimal digits. Hexadecimal constants consist of the character "$" followed

immediately by a string of one or more decimal digits and upper or lower case

letters "A" through "F". Numeric constants may represent addresses, integer

and natural numbers, boolean and character values.

Character constants consist of a single quote "'", followed either by an ASCII
character not a newline or a numeric constant, followed by a closing single quote.

String constants consist of a string of zero or more ASCII characters (except

newline) enclosed in double quotes.

3.4. Blanks
Blanks and tabs are ignored by the assembler except where required to

separate adjacent constants or identifiers.

3.5. Comments
The character ";" produces a comment. The assembler ignores all further

characters on the line up to the terminating newline.

3.6. Delimiters

All other characters found in the input stream are treated as delimiters.

4. Statements
A source program is composed of a sequence of statements which are

separated by newlines. There are 3 kinds of statements: directives, instructions

and null.

Instructions and null statements may be preceded by a label. Directives may
(in some cases, must) be preceded by an identifier.

4.1. Labels &c Identifiers

A label consists of an identifier followed by a colon ":". When the assembler

encounters a label, the effect is to assign the current value of the location counter

to the name.

An identifier preceding a directive is assigned a value whose type depends

upon the directive. For instance, the equate directive assigns a typed value to

an identifier, while the define storage directive assigns the current value of the

location counter.

Neither labels nor identifiers may be redefined within a single source file.

4.2. Null Statements
A null statement is an empty statement. Although ignored by the assembler,

null statements may be preceded by a label.
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4.3. Directive Statements

A directive is a command to the assembler to perform some sort of operation

which does not involve emitting an executable instruction. Typical directives

(also known as "pseudo ops" or "pseudo instructions") allocate storage for

variables, make names within the current module visible to other modules and set

the location counter. Directives also produce instructions for the AM linker and

loader.

Directives consist of a keyword followed by zero or more arguments,

depending upon the context. Directives and their syntax are described in more

detail in Section 11.

4.4. Instruction Statements
Instruction statements produce the code which is ultimately executed by AM.

An instruction may be preceded by a label, and consists of a keyword followed by

zero or more arguments, depending upon context.

The AM instruction set and its syntax will be described in detail in Section

13.

5. The Machine
Because AM differs from conventional machines in a number of important

ways, some discussion is necessary before introducing the instruction set.

Outwardly similar to a number of well known examples, AM instructions form an

unconventional set of primitive operations which implement a formally specified

semantics. The reasons for this are described below.

AM uses a tagged architecture. Thus, each data element contains, within it,

information which uniquely identifies a finite set of legal operations which may be

performed upon it, as well as a range of legal values it may take on. This set of

operations and values is known formally as a data type. AM supports a number
of data types. An element of a particular data type will be referred to

throughout the rest of this manual as an atom.
AM physical resources are partitioned into segments. There are several

types of segments, and these together form a conventional overall model of the

familiar stored program computer. There are memory segments (primary

storage), register segments (high-speed memory), stacks, and file segments

(secondary storage). Segments are further partitioned into discrete, addressable

elements (alternatively, "cells") which will contain atoms during the execution of

a program. These elements will be referred to repeatedly as typed values. The
reason for the distinction between atoms and values will become more clear

shortly.

AM is the finite implementation of a formal specification. As such, data

elements and the operations which can be applied to them must reflect a

mathematical consistency not required by conventional architectures. Since all

operations which affect the state of the machine must be able to "communicate"
with each other during the execution of a AM program, they must do so using a

common object. This object is a value. The memory, the registers, the stack,

the files all hold values. Store, fetch, execute, read, write — any operations which
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change the state of the machine — all operate on values (i.e., storage cells). All

other operations, such as "add", "multiply", "and", "or", work on atoms.

Atomic operations in AM correspond to those which take place in the temporary

registers of the arithmetic and logic unit of a conventional processor.

5.1. Configuration

A unique feature of AM is the ease with which it is possible to reconfigure

the machine by partitioning the physical resources in different ways. A typical

configuration would be something like this:

2 memory segments

1 register segment (with a useful number of registers)

1 stack

4 files

The configuration chosen should provide a good indication of the types of

programs AM is intended to execute.

Note that, in conventional machines, stacks are implemented in primary

storage. This constitutes an overloading of data structures which obscures the

intent of the user of these structures. It also creates a semantic nightmare for the

specification writer. In AM, stacks take their rightful places as separate entities

with easy to understand properties.

In addition to the resources listed above, AM has a conventional program

counter.

5.1.1. Memory
AM memory is partitioned into segments which may be of unequal but fixed

length. A program and its data will reside in memory segments. It is not

necessary that code and data share the same segment, nor is it required that code

and data be contiguous. The loader will determine from the origin directive

where to load code and data values.

The AM heap is implemented as a set of operations which allocate and

deallocate memory segments.

AM has a rich set of addressing modes which interact with a powerful move
instruction which allows the programmer to move a value from "anywhere to

anywhere".

5.1.2. Registers

AM registers form the high-speed storage into which operands are placed.

All atomic operations, such as add and divide, require operands to be in

registers.

5.1.3. Stack
The AM stack is conventional in every respect except that it is impossible to

access any value except the top. Thus, frames are implemented on the heap, not

the stack.

AM has a typical set of push and pop instructions for operating on stacks.
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5.1.4. Files

Input/output is implemented rather arbitrarily along the lines of system calls

to an operating system and should not be considered part of AM itself.

Instructions are provided to open, close, read to and write from a file.

6. Atoms
An atom is a component of a data type. The assembler recognizes the

following types of atoms:

boolean

natural

integer

character

string

memory address

register address

stack address

file address

As operands to instruction mnemonics, these atoms form the familiar set of literal

and symbolic constants found in typical assembly language programs.

Atoms may appear in the form literal constants:

100

SdOfl

'a'

"this is a string atom"

They may also appear as symbols which take on the value of the atom in some

other part of the source program. With few exceptions, anywhere a literal

constant may be used, a symbolic constant of the appropriate type may also be

used.

The assembler distinguishes between types of atom using syntax and context.

The syntax is described below.

6.1. Boolean
A boolean atom has only two values, true and false. These values are

represented to the assembler by the decimal or hexadecimal constants for 1 and

0, respectively.

1

$1

$0

are legal boolean atoms.

6.2. Natural
This type represents, as the name implies, the natural (unsigned) numbers.

Legal values range from zero to positive infinity. Natural numbers are

represented to the assembler as decimal or hexadecimal constants whose values
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are greater than or equal to zero.

$2f5

240

are legal natural atoms.

6.3. Integer

Integers range from negative to positive infinity, and are specified as

hexadecimal or signed or unsigned decimal constants.

-250

$ed67f

+ 10

are legal integer atoms.

6.4. Character
Character atoms may take values defined by the ASCII character set. They

are represented to the assembler as literal character constants.

'a'

'r'

are legal character atoms.

6.5. String

String atoms are composed of zero or more concatenated ASCII characters.

They are specified as literal strings.

"this is a legal string atom"
It!)

are both legal string atoms.

6.6. Memory Address
Memory address atoms consist of two components: a segment address, and an

element address. Memory addresses are represented as an ordered pair of

unsigned decimal or hexadecimal constants, separated by a colon ":" and enclosed

within parentheses "(" ")".

(0:100)

represents memory segment 0, element 100.

(2:$10)

represents segment 2, element 16.

Segment and element addresses start at 0. The number and size of available

memory segments depends upon the current configuration of AM.
Labels are considered memory address atoms, as are names which appear to

left of the define storage and define constant directives.
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6.7. Register Addresses

Register atoms have a syntax identical to that of memory addresses except

that a lower case "r" is prepended to the address.

r(0:3)

refers to register segment 0, register 3.

Segment and element addresses start, as with memory addresses, at 0. The

number of register segments, and the number of registers within each segment,

varies as determined by the current AM configuration.

6.8. Stack Addresses

A stack address has only one component: the segment address. Stack

addresses are specified by prepending a lower case "s" to an unsigned decimal or

hexadecimal constant enclosed within parentheses.

8(2)

refers to stack segment 2.

Stack addresses begin at 0. The number of stacks depends upon AM's
configuration.

6.9. File Addresses

File address atoms may not appear in a program except within typed values.

File address atoms are represented as unsigned integer or hexadecimal constants.

File addresses start at 0. The number of files which may be open at one time

is determined by the current AM configuration. The first three file addresses

(0,1,2) are normally opened automatically by AM when a program is loaded.

7. Typed Values
Some of the atomic types may also appear as typed values in certain

instructions and directives. A typed (immediate) value is represented as an

ordered pair consisting of a keyword representing the type, and the atom itself,

separated by a comma "," and enclosed within curly braces "{""}".

{int,100}

represents the integer value 100.

{addr, (1:100)}

represents memory address value (1:100).

A list of the types which may be used as immediate values alongside the

corresponding keywords appears below:

bool - boolean

nat - natural

int - integer

char - character

string - character string

addr - memory address

file - file address
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Immediate values are used, as in conventional assembly languages, for loading

constants into cells, initializing storage, pushing parameters to subroutines on the

stack, and so on.

A special syntax may be applied when expressing typed values for the define

storage and define constant directives. The type keyword may be followed by

a list of atoms of the appropriate type, separated by commas.

{int, 1,2,3,4,5,6,7,8}

shows an example of this.

8. Expressions

An expression may be substituted anywhere an integer or natural atom is

called for. The expression must be a sequence of integer/natural atoms (and

symbolic constants equated to integer/natural atoms) separated by operators and

grouping symbols which evaluates to an atom of the type called for where the

expression is used.

8.1. Expression Operators
Legal operators are (in order of increasing precedence):

- or

& - and

-f - - addition and subtraction

*
I % - multiplication, division, and modulus

- unary minus

Expressions may be grouped using parentheses " (" ")".

9. Notation
Throughout the rest of this manual, the following notational conventions will

be used to describe the syntax of directives and instructions.

M - memory address atom

R - register address atom

S - stack address atom
I - integer atom
N - natural atom

A - atom
V - typed value

< > - items enclosed within angle brackets are arguments
- items enclosed in square brackets are optional

<ea> - effective address

<ev> - effective value

10. Data Format
AMASM emits object code and directives using AM I/O modules. The

object module is, thus, directly readable by AM. A linker and loader may be

written either in a high level language, or AM assembler.

The data and object module formats described below are a direct reflection of
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AM's tagged architecture. The following conventions will apply:

- All numbers show are in hexadecimal.

- The letter "H" is a place holder signifying any 4-bit value.

- The general form of a typed value is

tag vai

where "tag" is a 16-bit type field, and "val" is an 8 to 32-bit value.

There are two exceptions:

- Character string atoms and values have a 16-bit size field inserted after the

type field which indicates the number of characters in the value field

(including the terminating null). This size field is omitted in memory (since

it is not needed), replaced by a pointer to the string. Both the size field and

pointer will be omitted in the format diagrams.

- Instruction values have a 16-bit opcode following the type field, followed

by a list of operand values.

A number of the formats listed below are not described elsewhere in this

manual since they are either not accessible to the programmer, or are implied by

context.

10.1. Atom Formats

boolean 0001 HH
natural

integer

character

0002 HHHHHHHH
0003 HHHHHHHH

0004 HH
character string - 0005 HH...00

memory address - 0009 HHHHHHHH
register address - 000A HHHHHHHH
stack address - 000B HHHHHHHH
file address - 0011 HHHH
monadic operator - 000C HHHH
dyadic operator - 000D HHHH
relational operator - 000E

|
HHHH

boolean comparitor - 0012 HHHH

10.2. Value Formats

boolean

natural

0110 HH
0120 HHHHHHHH

integer - (0130| [HHHHHHHH
character 0140 HH
character string - 0150 |HH...Q0
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memorv address - 10160 1 IHHHHHHHH
register address - [0170

1

[HHHHHHHH"

stack address 0180 HHHHHHHH
file address - |01A0

instruction

HHHH
0190 HHHH

| zero or more operand atoms

10.3. Object Module Format
The structure of an object module is very simple. The only object always

found is a leading org directive. Next, if any symbols were declared global or

external in the source module, a pseudo instruction will be emitted for each such

symbol. The rest of the file contains executable and pseudo instructions emitted

as they occur in the source.

11. Assembler Directives

AMASM recognizes the following directives:

equ - equate

org - absolute origin

rorg - relative origin

extern - external symbol

globl - global symbol

ds - define storage

dc - define constant

Directives do not produce code which will be executed by AM, but they may
cause linker/loader instructions to be emitted. The meaning and syntax of each

directive is described in the following pages.
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EQU Equate EQU

Syntax:

<name> equ <equivalence>

where:

<name> is any legal identifier

<equivalence> is any atom or typed value

Description:

The symbol <name> is assigned the value of <equivalence>. Elsewhere in

the source module, the symbol may be used in place of a literal value of the same

type as <equivalence> using the following syntax:

- If the symbol represents a memory address atom, the symbol may be used

directly.

- If the symbol represents a typed (immediate) value, it must be enclosed in

curly braces M {" "}".

- If the symbol represents an integer or natural atom, it must be preceded by

a pound sign "#".

Example:

progseg equ (0:0)

dataseg equ (1:100)

offset equ 10

datafile equ {file,3}

org progseg

move (addr,data},r(0:0)

move {int,100},r(0:0)@#offset

push {string, "test. dat"},s(0)

push {datafile}, s(0)

push {int,0},s(0)

push {int,0},s(0)

open s(0)

stop

org dataseg

ds 100data

"progseg" and "dataseg" are equated to memory address atoms,

"offset" is equated to the integer atom 10.

"datafile" is equated to the file address value {file, 3}.
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Format:
equ does not cause an emission.
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ORG Absolute Origin ORG

Syntax:

org [M]

Description:

The location counter is reset to M, if specified; otherwise it remains

unchanged. All memory addresses and labels specified after an org directive up

to the next org or rorg directive not exlicitly expressed as displacements are

treated as absolute addresses. Code generated after an org directive up to the

next org or rorg directive is not relocatable.

Example:

org

move (0:0),r(0:0)

data

org (1:0)

ds {int,100},{nat,0}

Format:

0190 18F4 0160 HHHHHHHH
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RORG Relative Origin RORG

Syntax:

rorg [M]

Description:

The location counter is reset to M, if specified; otherwise it remains

unchanged. All memory addresses and labels specified after a rorg directive up

to the next org or rorg directive are computed as displacements. Code
generated after a rorg directive up to the next org or rorg directive is

relocatable (program counter independent).

Example:

rorg

move {int, 100},data

jsr stuff

stop

data ds 10

In the above example, the move would be emitted using destination

program counter relative addressing.

Format:

0190 18F4 0160 HHHHHHHH
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DS Define Storage DS

Syntax:

[<name>] ds N [V...]

[<name>] ds [N] V...

where:

<name> is an optional identifier

ds permits a list of atoms to follow the type keyword of each value.

Description:

ds allocates storage for values starting at the current value of the location

counter.

- If N is specified and N is greater than or equal to the number of values in

the list, space for N values is allocated and the location counter is

incremented by N.

- If N is specified and N is less than the number of values in the list, N is

ignored.

- If N is not specified, the amount of storage allocated is equal to the

number of values in the list. The location counter is incremented by this

number.

- If a value list is specified, the allocated cells will be initialized to those

values, beginning with the first.

- Cells allocated but not initialized are considered to hold undefined values.

It is an error to attempt to read an undefined value.

Example:

datal ds 10

data2 ds 10 {int, 100}, {nat,0,20,40}

data3 ds {char, 'a', 'b'}

ds {string, "this is a sting value"}

The first ds allocates 10 values and leaves them undefined, "datal" may be

used to index into those values.

The second also allocates 10 values, but initializes the first to the integer

100, and the next 3 to the naturals 0, 20, and 40. The last 6 values are left

undefined.

The third ds shown allocates 2 character values.

The fourth allocates a single string value. No identifer was specified.

Format:
A typed value is emitted for each value in the list. In addition, ds will emit

an org pseudo op (see org ) whenever the number of values in the value list is

less than N.
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DC Define Constant DC

Syntax:

[<name>] dc V...

where:

<name> is an optional identifier

dc permits a list of atoms to follow the type keyword of each value.

Description:

dc allocates and initializes storage from a list of values starting at the

current value of the location counter.

Example:

data3 dc {char, 'a', 'b'}

dc {string, "this is a string value"}

The first ds shown allocates 2 character values.

The second allocates a single string value. No identifer was specified.

Format:
A typed value is emitted for each value in the list.
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GLOBL Global Symbol GLOBL

Syntax:

globl <name>...

where:

<name> is any legal identifier

Description:

The list of symbols is made visible to external modules. Each <name> in

the list must be defined as a memory address somewhere within the current

module.

Example:

globl test,data

test:

data

move (0:0),r(0:0)

stop

ds 10

"test" and "data" are made visible to other modules.

Format:
For each symbol declared global, a globl pseudo op is emitted, followed by a

string containing the symbol, followed by a memory address representing the

value of the symbol.

0190 18F3 0005 HH...00 0009 HHHHHHHH
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EXTERN External Symbol EXTERN

Syntax:

extern <name>...

where:

<name> is any legal identifier

Description:

The list of symbols is made visible to the current module and are assumed to

be defined elsewhere. An error is flagged if a symbol in the list is not referenced

somewhere within the current module. It is also an error for any symbol in the

list to be defined within the current module.

Example:

extern expon

push (int,100},s(0)

jsr expon,s(0)

Format:
For each symbol declared external, an extern pseudo op is emitted, followed

by a string containing the symbol.

0190 18F2 0005 HH...00
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12. Addressing Modes
AM supports 10 addressing modes:

r - register direct

ri - register indirect

rid - register indirect with displacement

ridn - n-level register indirect with displacement

m - memory absolute

mi - memory indirect

per - program counter relative

i - immediate value

a - immediate atom

s - stack direct

Like other more familiar processors, not all AM instructions can use all of the

addressing modes.

In addition, AMASM supports address expressions, which provides a

rudimentary indexing capability.

12.1. Register Direct

The operand is in a register.

Syntax: R

Format:

000A HHHHHHHH

12.2. Register Indirect

The address of the operand is in a register.

Syntax: R@
R - holds the operand address

Format:

000A HHHHHHHH

12.3. Register Indirect with Displacement
The address of the operand is the sum of the address in a register and an

integer displacement.

Syntax: R@I

R - holds a base address

I - an integer displacement

Format:

000A HHHHHHHH 0003 HHHHHHHH

12.4. N-level Register Indirect with Displacement
The address of the operand is the sum of the address obtained from the nth

link in a chain of dynamic links and an integer displacement.
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Syntax: RN@I

R - holds the current frame pointer

N - a non-negative frame reference

I - an integer frame displacement

(R0@I is equivalent to R@I)

Format:

000A HHHHHHHH 0002 HHHHHHHH 0003 HHHHHHHH

12.5. Memory Absolute

Syntax: M
M - the operand address

Format:

0009 HHHHHHHH

12.6. Memory Indirect

The address of the operand is in a memory cell.

Syntax: M@
M - a pointer to the operand address

Format:

0009 HHHHHHHH

12.7. Program Counter Relative

The address of the operand is the sum of the program counter and an integer

displacement.

Syntax: M
M - the operand address

The specified address must be in the same module as the instruction. The
assembler automatically computes the displacement. Program counter relative is

specified for a block by placing a rorg directive at the top of the block.

Format:

0003 HHHHHHHH

12.8. Immediate Value
The operand is an immediate value.

Syntax: V

V - any typed value

Format:

tag val
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12.9. Immediate Atom
The operand is an atom.

Syntax: A

A - usually an integer or natural

Format:

tag val

12.10. Stack Direct

The operand is a stack.

Syntax: S

Format:

000B HHHHHHHH

13. Instruction Set

The AM instruction set is simple but powerful. The rigid data types make it

meaningless to specify operations like shift and mask, thus removing some of the

programmer's freedom to muck with data in arbitrary ways. The tagged

architecture will detect errors like jumping to data, or accessing instructions as

data, as well as the more common bounds checking performed by runtime

libraries.

13.1. Machine Errors

The following errors are detected by AM during loading and execution:

- attempt to execute a non-instruction

- attempt to execute an illegal instruction

- memory segment not defined

- memory segment overflow

- memory segment underflow

- register segment not defined

- register segment underflow

- register segment underflow

- stack segment not defined

- <file> contains unresolved references

- attempt to convert negative int to nat

- no predecessor to zeronat

- unknown operator to applybop
- unknown operator to applymop
- unknown operator to applydop
- unknown operator to applyrelop

- type error - GT
- type error - GE
- type error - LT
- type error - LE
- no more segment available
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- attempt to free invalid memory segment
- attempt to free non-allocated segment
- stack empty
- stack overflow

- stack underflow

- file already open
- unable to close file

- unable to open <file>

- file already closed

- file not open
- file not open for reading

- file not open for writing

- reading file, type not recognized

- error reading file

- writing file, type not recognized

- invalid memory segment
- memory segment not allocated

- invalid memory address

- invalid register segment
- invalid register address

- invalid stack segment
- invalid file descriptor

- attempt to return head of null string

- value not of type bool

- atom not of type bool

- value not of type int

- atom not of type int

- value not of type nat

- atom not of type nat

- value not of type char

- atom not of type char

- value not of type string

- atom not of type string

- value not of type memaddr
- atom not of type memaddr
- value not of type regaddr

- atom not of type regaddr

- value not of type stkaddr

- atom not of type stkaddr

- value not of type instr

- atom not of type instr

- value not of type file

- atom not of type file

- type error

All machine errors are fatal.
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13.2. Assembler Errors

AMASM will detect and report the following errors:

- symbol not an address

- symbol defined locally

- <symbol> does not match declared type

- relative memory indirect not permitted

- symbol not a value

- symbol not an integer

- symbols declared but not referenced

- displacement from external addresses not permitted

- relative addressing not permitted between segments

- out of symbol space

- symbol declared external

- symbol already defined

- symbol not of same type

- impossible value for given type

- syntax error

Assembler errors are not fatal, but will prevent the creation of the object

module and, usually, the cross-reference file.

13.3. AM Operations

AM supports a useful set of monadic, dyadic, relational and test operators.

These operators are to be used with the monad, dyad, if and test insructions.

The mnemonics/symbols for each operator along with the data types to which

each may be applied are described below.

13.3.1. Dyadic Operators (DOP s)

cat - string concatenation

cat accepts two string arguments and returns the concatenation of the first

onto the second.

add,sub,mul,div - computational operators

These operators accept integer or natural arguments (both of the same type)

and return a result of that type. Divide by zero returns an error, div

discards any remainder.

and,or

and and or accept two boolean arguments and return a boolean result.

13.3.2. Monadic Operators (MOP 's)

len - string length

len accepts a string and returns its length as a natural number.
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not - boolean negation

not accepts a boolean argument and returns its negation.

make - make a string

This operator accepts a character argument and returns a string of length 1.

head - the head of a string

This operator accepts a string and returns the character at its head. It is an

error to take the head of an empty string.

tail - the rest of a string

tail accepts a string and returns a string containing all but the first

character. The tail of an empty string is the empty string.

13.3.3. Relational Operators (RELOP 's)

The relational operators are:

== - equality

> - greater than

>= - greater than or equal to

< - less than

<= - less than or equal to

!= - not equal to

They may be applied to int, nat, char and string.

If == or != are applied to arguments of different types, == returns true, !
=

return false. This applies also to types not listed above. >,>=,< and <= return

an error if there arguments are not of the same type.

Relational operators return a boolean result.

13.3.4. Test Operators (BOP's)
These operators permit the programmer to test a cell for type before

attempting to access it. These are necessary because AM considers it a fatal

error to read from an undefined cell or apply an operator of one type on data of

another. The test operators are the same as the type mnemonics, plus a

mnemonic for testing undefined values:

bool

nat

int

char

string

instr

addr

file

undef
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Test operators accept a typed value and return true if the value is of the specified

type, false otherwise, undef returns true if a value is undefine. false otherwise.
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DYADS Dyadic Short DYADS

Syntax:

<dop> Rx,Ry

where:

<dop> is a dyadic operator

Operation:

Ry <dop> Rx --> Ry

Description:

The operation corresponding to <dop> is applied to the operands and the

result stored in Ry.

Example:

and r(0:0),r(0:l)

Addressing Modes:

Rx: r

Ry: r

Format:

"0190
1

14801
1

|
operands

"
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DYADSI Dyadic Short Immediate DYADSI

Syntax:

<dop> V,R

where:

<dop> is a dyadic operator

Operation:

R <dop> V --> R

Description:

The operation corresponding to <dop> is applied to the operands and the

result stored in R.

Example:

sub {int,100},r(0:l)

Addressing Modes:

V: i

R: r

Format:

0190] [4802
1

| operands
"
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DYAD Dyadic Long DYAD

Syntax:

<dop> Rx,Ry,Rz

where:

<dop> is a dyadic operator

Operation:

Ry <dop> Rx --> Rz

Description:

The operation corresponding to <dop> is applied to Rx and Ry and the

result stored in Rz.

Example:

add r(0:0),r(0:l),r(0:3)

<dop> Rx,Ry
5
Ry is equivalent to <dop> Rx,Ry

Addressing Modes:

Rx: r

Ry: r

Rz: r

Format:

0190] 1
4803

|

| operands
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DYADI Dyadic Long Immediate DYADI

Syntax:

<dop> V,Rx,Ry

where:

<dop> is a dyadic operator

Operation:

Rx <dop> V --> Ry

Description:

The operation corresponding to <dop> is applied to V and Rx and the result

stored in Ry.

Example:

add {int,100},r(0:0),r(0:l)

<dop> V,Rx,Rx is equivalent to <dop> V,Rx

Addressing Modes:

V: i

Rx: r

Ry: r

Format:

0190] 14804
1

| operands
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Monadic Short MONADSMONADS

Syntax:

<mop> R

where:

<mop> is a monadic operator

Operation:

<mop> R --> R

Description:

The operator corresponding to <mop> is applied to R and the result stored

in R.

Example:

not r(0:0)

Addressing Modes:

R: r

Format:

0190] 13807
|

|
operands
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MONAD

Syntax:

<mop> Rx,Ry

Monadic Long MONAD

where:

<mop> is a monadic operator

Operation:

<mop> Rx --> Ry

Description:

The operator corresponding to <mop> is applied to Rx and the result stored

in Ry.

Example:

not r(0:0),r(l:0)

Addressing Modes:

Rx: r

Ry: r

Format:

0190| [4808
1

1
operands
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MONADI Monadic Long Immediate MONADIo

Syntax:

<mop> V,R

where:

<mop> is a monadic operator

Operation:

<mop> V --> R

Description:

The operator corresponding to <mop> is applied to the immediate value V
and the result stored in R.

Example:

not {bool,flag},r(l:0)

Addressing Modes:

V: i

R: r

Format:

0190 4809 operands
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OFFSET Offset an Address OFFSET

Syntax:

offset I,R

R must contain a memory address atom

Operation:

R + I --> R

Description:

The sum of I and the address in R is stored in R.

Example:

offset 20,r(0:0)

Addressing Modes:

I: a

R: r

Format:

0190 [3810 operands
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MOVE Move a Value MOVE

Syntax:

move <eal>,<ea2>

where:

<ea> must be one of the addressing modes listed below

Operation:

source —> dest

Description:

The value found at the source address is copied into the destination address.

Example:

move r(0:0),data

move (addr,data},r(0:20)

move {int,100},r(0:20)@

move r(0:20)@10,r(0:10)

data: ds 100

Addressing Modes:

<eal>: r,ri,rid,ridn,m,pcr,i

<ea2>: r,ri,rid,ridn,m,pcr

Format:

0190] { |H815| ...|H83G
| } |

operands
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PUSH Push a Value PUSH

Syntax:

push <ea>,S

where:

<ea> is one of the addressing modes listed below

Operation:

source — > S

Description:

The source value is pushed onto stack S. The programmer has no access to

the stack pointer.

Example:

push (int,100},s(0)

push r(0:10),s(l)

Addressing Modes:

<ea>: m,pcr,r,ri,rid,ridn,i

S: s

Format:

0190] { [H83D |

...|H843
1 } | operands
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POP Pop a Value POP

Syntax:

pop S,<ea>

where:

<ea> is one of the addressing modes listed below

Operation:

S — > dest

Description:

The source value is popped off stack S and stored at <ea>. The programmer

has no access to the stack pointer.

It is an error to attempt to pop a value from an empty stack.

Example:

pop s(0),r(0:l)

pop s(0),data

data: ds 1

Addressing Modes:

S: s

<ea>: m,pcr,r,ri,rid,ridn

Format:

0190
1 { |H844| ...[H849] } |

operands
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POPX Remove the Top of a Stack POPX

Syntax:

popx S

Operation:

S -->

Description:

The top value of stack S is removed.

It is an error to attempt to remove the top of an empty stack.

Example:

popx s(0)

Addressing Modes:

S: s

Format:

0190
|

|284A
|

[operands
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JMP Jump

Syntax:

jmp <ea>

where:

<ea> is one of the addressing modes listed below

Operation:

<ea> --> PC

JMP

Description:

Execution resumes at <ea>.

If jmp follows a rorg directive, a jump to memory absolute is converted to a

branch.

Example:

here:

jmp here

jmp r(0:0)

jmp (1:150)@

Addressing Modes:

<ea>: m,r,mi,pcr

Format:

0190] { |H850 |

...[H852l } |
operands
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BRA

Syntax:

bra <ev>

Branch BRA

where:

<ev> is one of the addressing modes listed below

Operation:

PC + <ev> -> PC

Description:

Execution resumes at the sum of the program counter and the effective value.

Example:

bra 100

Addressing Modes:

<ev>: a,r

Format:

0190
1 { |H853| ...[H854] } 1

operands
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IF If: Conditional Jump/Branch IF

Syntax:

if R <relop> <ev>,M
if <bop> <ea>,M

where:

<relop> is a relational operator

<bop> is a test operator

<ea> and <ev> are one of the addressing modes listed below

Operation:

if R <relop> <ev> then

M-> PC

if <bop> <ea> then

M--> PC

Description:

If the comparison is true, execution resumes at M; otherwise, with the next

instruction.

Example:

loop:

done:

data

move {int,10},r(0:0)

if ' r(0:0) < {int,l},done

sub (int,l},r(0:0)

jmp loop

if int data,loop

ds 1

Addressing Modes:

R: r

<ev>: r,i

<ea>: r,m

M: m,pcr

Format:

0190

{ |
5860

1 ,
[586T|

, |
5864

| ,[58651 , 1
4870

|
, |
4871

| ,
|4874~1

, |
4875

| } |
operands
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IFTE If-Then-Else: Conditional Jump/Branch IFTE

Syntax:

if R <relop> <ev>,Mx,My
if <bop> <ea>,Mx,My

where:

<relop> is a relational operator

<bop> is a test operator

<ea> and <ev> are one of the addressing modes listed below

Operation:

if R <relop> <ev> then

Mx -> PC
else

My --> PC

if <bop> <ea> then

Mx -> PC
else

My --> PC

Description:

If the comparison is true, execution resumes at Mx; otherwise, at My.

Example:

if r(0:0) > r(0:l),casel,case2

stuff: move r (0:0),data

easel: jsr first,s(0)

if int r(0:0),easel

stop

case2: jsr second,s(0)

stop

Addressing Modes:

R: r

<ev>: r,i

<ea>: r,m

Mx: m,pcr

My: m,pcr
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Format:

10190

{ 1
6862 1]6863] , |

6866
[
,
[6867

| , |
5872]

, |
5873 \fo876

| , | 5877] } [operands
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STOP Halt Execution STOP

Syntax:

stop

Operation:

Description:

Execution is terminated.

Addressing Modes:

Format:

0190 1880
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JSR Jump Subroutine JSR

Syntax:

jsr <ea>,S

where:

<ea> is one of the addressing modes listed below

Operation:

PC --> S

<ea> --> PC

Description:

The program counter is pushed onto stack S, and execution resumes at

<ea>.

Following a rorg directive, memory absolute is converted automatically to

program counter relative.

Example:

jsr incr,s(0)

Addressing Modes:

<ea>: m,mi,r,pcr S: s

Format:

1

0190
| { |H890| ...|H892| } |

operands
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BSR Branch Subroutine BSR

Syntax:

bsr <ev>,S

where:

<ev> is one of the addressing modes listed below

Operation:

PC -> S

PC + <ev> -> PC

Description:

The program counter is pushed onto stack S, and execution resumes at the

sum of the program counter and <ev>.

Example:

bsr r(l:0),s(0)

Addressing Modes:

<ev>: r,a S: s

Format:

0190
| { |

3893
| ,[3894] } [

operands
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RTS

Syntax:

rts S

Operation:

S --> PC

Return from Subroutine RTS

Description:

Execution resumes at the address popped from stack S.

Example:

inrc: add (int,l},r(0:0)

rts s(0)

Addressing Modes:

S: s

Format:

0190
|

[2895
1

1
operand
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LINK Link Frame and Allocate LINK

Syntax:

link R,N

Operation:

R@ --> address®

address — > R

Description:

A segment of N cells is allocated from the heap. The value stored in R is

save at the base address of the segment. The segment base address is returned in

R.

This instruction is designed to create dynamic links for local environments.

Example:

proc: link r(0:5),l

move r(0:5)2@4,r(0:0)

add {int,100},r(0:0)

move r(0:0),r(0:5)2@4

unlink r(0:5)

rts

Above is an example of uplevel addressing.

Addressing Modes:

R: r

N: a

Format:

0190
|

| 3896
1

| operands
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UNLINK Unlink and Free UNLINK

Syntax:

unlink R

Operation:

R@ --> R

Description:

The value in the base address of the segment pointed to by R is returned in

R. The segment is freed.

Example:

proc: link r(0:5),l

move r(0:5)2@4,r(0:0)

add (int,100},r(0:0)

move r(0:0),r(0:5)2@4

unlink r(0:5)

rts

Addressing Modes:

R: r

Format:

0190
|

12897] | operand
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