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ABSTRACT 

 In this study, the author develops a MATLAB simulation of 

area search with acoustic sensors modeled by the Poisson Scan 

model and the Lambda-Sigma   model. Detection time results 

are compared to those given by the much simpler Random Search 

formula. Random Search was found to closely approximate the more 

complex models if detection range was selected correctly. 

Guidelines for selecting the Random Search detection range were 

developed. 
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EXECUTIVE SUMMARY 

 In this study, the author develops a MATLAB simulation of 

area search with acoustic sensors modeled by the Poisson Scan 

and the Lambda-Sigma   models.  

 Both the Poisson Scan model and Lambda-Sigma  model 

simulation results are found to be approximately exponentially 

distributed, which is consistent with the Random Search model. 

Thus, Random Search with the proper deterministic detection 

range  can be used to closely approximate simulation results 

obtained using the Poisson Scan and Lambda-Sigma  models. 

 Both the Poisson Scan and Lambda-Sigma  detection 

time results vary with  , , and 50 . The author constructs a 

regression model based on the simulation results and finds an 

approximate linear relationship between 50  and the best-fit 

 for reasonable   and . The gradient of the regression line 

depends on the values of   and . Thus, it is possible to 

estimate the best-fit  from problem parameters  , , and 50  

and then use Random Search, instead of Monte Carlo simulation, 

to predict the effectiveness of area search. 
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I. INTRODUCTION 

A. BACKGROUND 

 Random Search is one of the most well-known and used models 

for area search. However, because of its simplicity, it also 

has inherent limitations. For example, it assumes that the 

searcher and target search areas are identical and that the 

searcher uses a perfect cookie-cutter sensor. Captain Gi Young 

Kim 1 , ROK Air Force, studied these issues previously and 

suggested generalizations to the Random Search formula for 

cases where the searcher and target areas are not identical. 

However, there are remaining issues to address, particularly 

how well the Random Search model can approximate probabilistic 

sensors, such as those modeled by the Poisson Scan and 

Lambda-Sigma   models. 

B.  RESEARCH QUESTIONS 

The primary research questions are the following:  

1. When using the Poisson Scan model and the Lambda-Sigma 
  model, will detection times be approximately 
exponentially distributed, as predicted by the Random 
Search model? 

2. Can a non-cookie cutter sensor be replaced with a 
cookie-cutter sensor with the same sweep width and 
maintain approximately the same search performance? 

3. Are there significant differences in the detection results 
generated by simulations using the Poisson Scan and 
Lambda-Sigma   detection models? 

                     
1 Gi Young Kim, “Development and Testing of a New Area Search Model with 

Partially Overlapping Target and Searcher Patrol Areas,” Master’s thesis, 
Naval Postgraduate School, Monterey, California, 2008. 
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C.  THESIS ORGANIZATION 

 The thesis is organized as follows: Chapter II reviews the 

Poisson Scan and Lambda-Sigma   acoustic detection models; 

Chapters III and IV present a MATLAB simulations of these two 

models; Chapter V develops the best-fit , which is the 

equivalent cookie-cutter detection range for the Poisson Scan 

model and Lambda-Sigma  model; Chapter VI summarizes all 

results and recommends future studies. 



3 
 

II. OVERVIEW OF ACOUSTIC DETECTION MODELS 

A. BACKGROUND  

 In this chapter, we review the Passive Sonar Equation(PSE) 

and use it to develop two models for passive acoustic detection 

— the Poisson Scan model and the Lambda-Sigma   model. 

B. THE PASSIVE SONAR EQUATION 

 The passive sonar equation2 is an audit of energy flow 

between a source and a sonar receiver. All units are in 

decibels( ). 

 The Passive Sonar Equation(PSE) is 

                 , 

where 

           signal level of source, 

            propagation loss between the source and 

receiver, 

        detection noise level at the receiver, 

            detection threshold = signal level at receiver 

required to achieve a  of 0.5, 

  signal excess. 

 

 The left side of Passive Sonar Equation is the signal 

available at the receiver, and right side is the signal required 

for a probability of detection( ) of 0.5.  

 

                     
2  The references for this section are the unpublished lecture notes of 

Professor James N. Eagle, “Acoustic Detection Models,” 2009. 
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1. Figure of Merit( ) and  

 Figure of merit  and 50  are used as measures of 

effectiveness  for sonar detection performance.  is 

the maximum propagation loss a sonar system can absorb in  and 

still produce a 0.5 probability of detection. 50  is the 

maximum range between the source and receiver resulting in a 

0.5 probability of detection. 

 

  =  

= the transmission loss between source and receiver 

resulting in =0.5. 

50  = the maximum range where . 

2. Acoustic Modeling Assumptions 

 Mean . That is, the Passive Sonar 

Equation is used to calculate mean signal excess at the 

receiver. 

 ~ , , where   is typically 3-9 . We assume the 

signal excess is a normally distributed random variable 

with the mean given by the Passive Sonar Equation, and 

 is specified. 

 Detection occurs if and only if 0 . This is a 

threshold crossing model. Detection occurs when the 

random  is nonnegative and at no other times. And 

probability of detection (called here instantaneous 

probability detection, ) is 0 .  
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Figure 1.    when 0 

 

3. Implications 

 
  0 ,  where ~ ,  

       / . 

 

where  is the cumulative normal distribution function. This 

relationship between  and the probability of detection is 

illustrated in Figure 1. 

C. THE FIXED SCAN AND POISSON SCAN MODELS 

1. Fixed Scan Model 

 The Fixed Scan model 3  assumes that probabilistically 

independent detection opportunities occur at regularly spaced 

time intervals. It is attractive analytically, since there is 

a simple formula for calculating the probability of detection 

over any time interval [0, ]. Let  be the set of detection 

opportunity times  within the interval, and let  

 

 / . 

 

                     
3 Alan R. Washburn, Search and Detection, 4th ed. 3-4p. 
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be the detection probability for a scan containing time , where 

the signal excess  is acknowledged to depend on time. Then 

the cumulative detection probability over the interval is  

 

1 ∏ 1 . 

 

 In other words, there will be a detection at [0, ] unless 

detection fails at every one of the independent scans within 

the interval. However, the Fixed Scan model suffers from its 

dependence on an arbitrarily selected origin of time. The 

Poisson Scan model was developed, in part, to address this 

issue. 

2. Poisson Scan Assumptions 

 ● Independent detection opportunities occur at Poisson 

times with rate (units : 1/time). 

 ● Probability of detection at time , given that a 

detection opportunity exists at , is  / . 

3. Development 

 From the Poisson Scan assumption, the instantaneous  

detection rate at time  is 

 

/ . 

 

Then it follows from the properties of the non-homogeneous 

Poisson Process that  

 

1 exp / .  
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 In this model, 1/  is the mean time between independent 

detection opportunities (glimpses). Probabilistic independence 

is assumed for each glimpse, with  specifying the average 

glimpse rate. By varying , the sonar can be made as effective 

(  larger) or ineffective (  smaller) as desired, subject to 

sensor or operational constraints. The sonar system can only 

call detection at the discrete glimpse times, and otherwise is 

assumed to be processing previously received data. 

D. THE LAMBDA-SIGMA   MODEL 

 In the Poisson Scan model, detection can occur at time 

 only if a detection opportunity occurs at , and an independent 

draw from  ~ ,   is greater than or equal to 0. 

 A potentially more realistic model would assume that  

is a random, continuous function of time  (that is, a 

continuous - time stochastic process), and that detection 

occurs at any time  where 0. 

1.   Model Assumptions and Development  

 Let 

, 

 

where  is the mean signal excess at time , which is 

computed(as in the Poisson Scan model) from the PSE as 

 

. 

 

 is a 0-mean stochastic process. More specifically,  is 

a   jump process, described below. 
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 Each random sample path of  is a step function, where 

the duration of each step (the time between jumps) is 

exponentially distributed with mean 1/, and the height of each 

step (the value of ) is normally distributed with mean 0 and 

variance . 

 

 

Figure 2.     Detection Process Example 

 

 As illustrated in Figure 2, detection occurs whenever 

.  can be thought of as the time-varying sum of all 

random components of  and . 

2. Computing  when   is Constant 

 Assume , 0, . We will develop an expression 

for the probability of initial detection occurring between time 

0 and , which we call . 
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   , for some 0,  

     1 , for all 0,  

     1 ∑ , for all ∞ 0, |  jumps occur in 0,  

     jumps occur in 0,  

     1 ∑ 1 /
!

  

     1 1  / ∑ /

!
   

     1 1  / / , since ∑
!

 

     1 1  / /  

         1 1  / / . 

 

Figure 3.      and  Functions for Time of 
Initial Detection  when  is Constant 
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 At time 0, the probability of detection is / .  

 The mean time to detection, , and the density function, 

  , for time of initial detection are 

 

1 /
/

, 

  / 1 / / ,  for 0.  

         Also,  0  / . 

 

Note that this probability distribution has a discrete portion 

0  with units of probability (unitless) and a continuous 

portion 0  with units of probability/time (or, 1/time). 



11 
 

III. SIMULATION OF POISSON SCAN MODEL 

A. DESCRIPTION OF POISSON SCAN SIMULATION MODEL 

1. Characteristics of the Searcher 

 The searcher is not allowed to search for a target outside 

the search area. In addition, the searcher’s initial position 

is uniformly distributed inside of the search area. After that, 

the searcher selects his course randomly, independent of the 

target’s movement. The course change event is determined by 

Poisson process with rate . Independent scan opportunities 

also occur according to a Poisson process, but with rate . Also, 

it is assumed that signal transmission loss4 follows either the 

spherical spreading law 20 log  or the cylindrical 

spreading law 10 log . The searcher speed was fixed at 

15 / . 

2. Characteristics of the Target 

 Like the searcher, the target is not allowed to move 

outside of the search area and has an initial position uniformly 

distributed over the search area. The logic of the target 

movement is the same as that of the searcher; that is, the target 

has its own, independent Poisson process with course change rate 

. The target speed was fixed at 5 / . 

 

                     
4 Robert J. Urick, Principles of Underwater Sound, 3rd ed. 101p. 
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B. COMPUTER ALGORITHM 

1. Input [Units] 

 Number of simulation replications, 500. 

 Maximum simulation time, 150 . 

 The length of search area in  direction, 150 . 

 The length of search area in  direction, 150 . 

 Searcher speed,   / . 

 Target speed,   / . 

 Searcher’s scan rate,   / . 

 Searcher’s course change rate,   1/ . 

 Target’s course change rate,   1/ . 

 The unit time of simulation, Δ  . 

 The size of search area,   . 

 Figure of Merit,   . 

 Transmission loss, 20 log  . 

 Signal Excess, . 

 Variance of Signal Excess,   . 

2. Functioning of the Poisson Scan Simulation 

 When a new replication begins, the initial positions of 

the searcher and the target are chosen from a uniform 

distribution over the search area. The initial headings are also 

drawn uniformly between 0 and 2  radians. The subsequent course 

changes for the searcher and target occur according to Poisson 

processes with rates  and , respectively. According to 



13 
 

Captain Gi Young Kim’s thesis5, the recommended value for the 

course change rate is 2 ⁄ , which implies that on 

average, two course change events occur during the time required 

for the searcher to go from edge to edge in the search area.  

 When the searcher or target encounters an area boundary, 

a random reflection occurs. After a reflection, the new course 

in radians is _ 0.5, 0.5 , where  is the 

perpendicular course from the reflection boundary. This scheme 

was recommended and tested by Captain Gi Young Kim6 to achieve 

an approximate uniform distribution of the searcher and target 

tracks in the search area. 

 In the Poisson Scan model, there are two ways to simulate 

detection times. One uses the instantaneous probability 

detection at specific time , which follows the Poisson process 

with rate . This is because in the Poisson Scan model, detection 

opportunities occur according to a Poisson process with rate 

. So, the mean time between independent detection opportunities 

is 1/ . The distance between the searcher and the target is 

calculated at specific time . Then, the mean signal excess  

is determined by using the Passive Sonar Equation(PSE) allowing 

the calculation of . The next step is generating a 

standard uniform random number and comparing it with the . 

If  0, 1 , then  a detection occurs at that 

specific time . 

 

                     
5 Gi Young Kim, “Development and Testing of a New Area Search Model with 

Partially Overlapping Target and Searcher Patrol Areas,” Master’s thesis, 
Naval Postgraduate School, Monterey, California, 2008. 

6 Gi Young Kim, KOREA AIR FORCE CAPTAIN, graduated from the Naval 
Postgraduate School in 2008. 
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Distance Mean signal excess 

Figure 4.   Simulation when calculating distance and  at 
specific time  

 The other way to simulate detections is to check for a 

detection at each Δ . The distance between the searcher and the 

target is calculated at every time step Δ , and the mean signal 

excess is computed.  

 

Distance Mean signal excess 

Figure 5.   Simulation when calculating distance and  at 
every Δ  

 After that, we compute the instantaneous probability of 

detection /  and detection rate / . 

At each time step Δ , if  0, 1 , then a 

detection occurs. 
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Figure 6.    for different simulations 

 

 As illustrated in the simulation results of Figure 6, the 

results of these two simulation methods are very similar, and 

theoretically should be identical. 

 For this thesis we used the  simulation method. In order 

to approximate a continuous simulation,  should be small. 

However, too small a  results in too many calculations. In the 

next section, we answer the question, “How small should  be 

to produce accurate results without creating excessively long 

simulation runs?” 



16 
 

 

Figure 7.    for various values of  

 

3. Output 

 Extensive simulation experimentation showed that  

was the largest  resulting in reliable and repeatable results. 

Thus we move the searcher half the distance of the 50  at each 

time step. Typical results are shown in Figure 7. 

 In order to find best-fit , which is the equivalent range 

of a cookie-cutter sensor to the Poisson Scan Model, the author 

experimented with various values of , , and .  
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90  

 
18.15   0.0250  

87  

13.08 0.0181 
84  

 
8.24   0.0114  

80  

 
4.94 0.0068   

77  

 
2.74 , 0.0038  

74  

 
1.40 , 0.0019    

Figure 8.    for various  in Poisson Scan model 

 

 

: Random Search formula 
: Poisson Scan formula 
: Simulation result 
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0  

 
3.49   0.0048

1  

3.51 0.0049 
2  

 
3.75   0.0052

3  

 
4.68 0.0064 

4  

 
5.25   0.0072

5  

 
6.52 0.0090 

6  

 
8.51   0.0117

7  

 
11.83 0.0163 

Figure 9.    for various  in Poisson Scan model 

: Random Search formula 
: Poisson Scan formula 
: Simulation result 
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0.5 1/

1.79   0.0025

1 1/

2.77 0.0038 
1.5 1/

3.86   0.0053

2 1/

4.68 0.0064 
2.5 1/

4.94   0.0068

3 1/

5.25 0.0072 

Figure 10.    for various  in Poisson Scan model 

 

: Random Search formula 
: Poisson Scan formula 
: Simulation result 
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The Green line represents the Poisson Scan model formula. 
 

1 exp / . 

The red line represents the formula resulting from a random 

search with a cookie-cutter sensor that has best-fit  range. 

1 exp 2 / , 

ln 1

2
, 

where  is the approximate mean relative speed between target 

and searcher determined as follows:  

1
2 cos . 

The blue line represents the results of the simulation.   

 The results show that for the model parameters examined 

here, the Poisson Scan model gives detection times that are 

approximately exponentially distributed, as does the Random 

Search model. The conclusion is that, the Random Search model 

using the proper detection range  can closely approximate 

detection results given by the Poisson Scan model. 

 A potentially more accurate procedure for determining  

would be to plot ln 1  versus  and to solve for the 

best-fit slope . Then, 

2
. 
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IV. SIMULATION OF LAMBDA-SIGMA  MODEL 

A. DESCRIPTION OF LAMBDA-SIGMA  SIMULATION MODEL 

 The Lambda-Sigma  detection model7 is distinguished 

from the Poisson Scan model by allowing detection at any time 

during the scan, rather than only at specific scan times. This 

model assume that  is a random, continuous function of time 

. Then, 

 

, 

 

where  is a 0-mean stochastic process where the duration of 

each step is exponentially distributed with mean 1/ , and the 

height of each step is normally distributed with mean 0 and 

variance . Detection occurs at any time  where >0. 

 

                     
7 The references for this section are the unpublished lecture notes of 

Professor James N. Eagle, “Acoustic Detection Models,” 2009. 
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B. COMPUTER ALGORITHM 

1. Input [Units] 

 Number of simulation replications, 500. 

 Maximum simulation time, 150 . 

 The length of search area in  direction,  150 . 

 The length of search area in  direction,  150 . 

 Searcher speed, 15 / . 

 Target speed, 5 / . 

 Searcher’s course change rate, 2 ⁄   1/ . 

 Target’s course change rate, 2 ⁄   1/ . 

 The unit time of simulation, Δ 50 2⁄  . 

 The size of Search area,   . 

 Figure of Merit,   . 

 Transmission loss, 20 log  . 

 Signal Excess, . 

 Jump rate of stochastic process,   / . 

 Standard deviation of jump in stochastic process, . 

2. Functioning of the Program 

 With the Lambda-Sigma  model, the duration of each 

step is exponentially distributed with mean 1/ , and the height 

of each step is normally distributed with mean 0 and variance 

. 
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Figure 11.   Example of  model simulation 

 
In Figure 11, the blue line represents one realization of the 

0-mean stochastic process , and the red line represents mean 

signal excess. At each time step Δ , if , then a 

detection occurs. In the Figure 11, the first detection occurs 

at 55 hours.  

3. Output 

 In order to find the best-fit , which is the equivalent 

range of a cookie-cutter sensor to that of the Lambda-Sigma 

 model, the author experimented with various values of 

model parameters , , and . 

  

Detection  occur 
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90  

 
19.07    0.0252

87  

12.81 0.0176 
84  

 
8.81   0.0121

80  

 
5.37 0.0077 

77  

 
3.97   0.0054

74  

 
2.81 0.0038 

Figure 12.    for various  in (  model  

  

: Random Search formula 
 

: Simulation result 
 



25 
 

0  

 
4.61  0.0063

1  

 
5.01 0.0069 

2  

 
5.11   0.0070

3  

 
5.89 0.0081 

4  

 
6.56   0.0091

5  

 
7.84 0.0107 

6  

 
10.08   0.0138

7  

 
12.68 0.0174 

Figure 13.    for various  in (  model  

 

: Random Search formula 
 

: Simulation result 
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5.58 0.0076 
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5.86   0.0079
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5.89 0.0081 
2.5 1/

5.99   0.0082

3 1/  

6.06 0.0083 

Figure 14.    for various  in (  model 

: Random Search formula 
 

: Simulation result 
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The red lines in Figures 12–14 show Random Search results 

with a cookie-cutter sensor having best-fit  range. The blue 

line represents the results of the simulation. As was the case 

with the Poisson Scan model, simulation results using the 

Lambda-Sigma  model showed an exponential time to initial 

detection. Thus, Random Search with the correct deterministic 

detection range  can be used to closely approximate simulation 

results obtained using the stochastic Lambda-Sigma  model. 

The task that remains is to estimate from problem parameters 

the appropriate value of . 
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V.  ESTIMATION OF BEST-FIT  

A. LATERAL RANGE CURVE 

1. Description of the Lateral Range Curve 

 In order to estimate the best-fit , the author simulated 

lateral range curves for sensors with the same parameters as 

the Poisson Scan model and Lambda-Sigma  model. Sweep 

width  is defined to be the area underneath the lateral range 

curve. 

, 

where  is the lateral range curve. In the cookie-cutter 

sensor with detection range , 

, 

therefore, /2. 

 

Figure 15.   Sweep Width Interpretation 
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2. Computer Algorithm of Lateral Range Curve 

 In the lateral range curve simulation geometry, shown in 

Figure 15, target lateral ranges are uniformly distributed over 

– /2 to /2 and target tracks are straight. Except for this 

characteristic, input elements in each lateral range curve 

simulation are the same for both the Poisson Scan model and 

the Lambda-Sigma  model. The lateral range curve is 

determined by the ratio of the number of detections that occur 

to number of replications at each lateral range from the 

searcher. 

 

 

Figure 16.   Simulation result of lateral range curve 

 
Then, the area underneath the lateral range curve is sweep width, 

which can be computed numerically. 
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3. Output of Lateral Range Curve 

 The following tables compare the half-sweep width computed 

from lateral range curve simulations to the best-fit  obtained 

from Poisson Scan and Lambda-Sigma  simulations, for 

various , , and  values and assuming spherical spreading. 

 

 74 77 80 84 87 90 
Poisson Scan 
model[  

1.40 2.74 4.94 8.24 13.08 18.15

 model ] 2.80 3.97 5.37 8.81 12.81 19.07
Lateral range half 
sweep width of P-S 

model[  
2.14 3.75 6.31 10.26 16.15 28.42

Lateral range half 
sweep width of 

 model[  
3.07 4.49 6.65 11.31 16.87 25.63

Table 1.   Comparison of  between Poisson Scan model,  
 model and half sweep width of each model when 
 3 , 2 , 15 , 5  

 
 

 0 1 2 3 4 5 6 7 
Poisson Scan 
model[  

3.49 3.51 3.75 4.68 5.25 6.52 8.51 11.83

 model ] 4.61 5.01 5.11 5.89 6.56 7.84 10.08 12.68
Lateral range half 
sweep width of P-S 

model[  
3.68 4.29 5.12 6.31 8.07 10.62 14.56 20.78

Lateral range half 
sweep width of 

 model[  
5.30 5.55 5.98 6.64 7.70 9.36 11.86 15.42

Table 2.   Comparison of  between Poisson Scan model,  
 model and half sweep width of each model when 

 80 , 2 , 15 , 5  
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1/  0.5 1 1.5 2 2.5 3 
Poisson Scan 
model[  

1.79 2.77 3.86 4.68 4.94 5.25 

 model ] 5.03 5.58 5.86 5.89 5.99 6.06 
Lateral range half 
sweep width of P-S 

model[  
0.89 2.98 4.89 6.32 7.40 8.23 

Lateral range half 
sweep width of 

 model[  
5.73 6.07 6.36 6.64 6.84 7.02 

Table 3.   Comparison of  between Poisson Scan model,  
 model and half sweep width of each model when 
 80 , 3 , 15 , 5  

 
 These results showed that: 

 The best fit  is strongly dependent on , , and  for 
both the Poisson Scan and Lambda-Sigma  models. 

 The Lambda-Sigma  best fit  somewhat exceeds the 
Poisson Scan best fit , and this might be due to the 
Lambda-Sigma  model starting with a positive 
probability of detection at time 0. 

 The best fit  generally increases with increases in , 
, and  for both the Poisson Scan and Lambda-Sigma  
models 

 The lateral range curve model produces half-sweep width 
values which can significantly exceed the best fit  
values produces by the Poisson Scan and Lambda-Sigma  
models 

It is not clear why the lateral range procedure produced 

detection range estimates not matching well with those of the 

Poisson Scan and Lambda-Sigma  models; but it is possible 

that the lateral range assumptions (infinite, straight-line 

paths with uniformly distributed closest points of approach) 

were not well enough met in the area search simulation. 
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B.  

1. Description of  

 Another way to estimate the best-fit  is to use 50 , 

which is the maximum range between the searcher and target 

resulting in an instantaneous detection probability of 0.5. In 

other words, 50  is the maximum range where mean signal excess 

 is zero. For this analysis, the author assumes that signal 

transmission loss follows a mixture of spherical spreading 

20 log  and cylindrical spreading 10 log . 

Specifically, we use 15 log . The author also assumes that 

the source level of the target  is in the range 84 to 95 , 

detection noise level at the receiver  is 45 , and 

detection threshold  is -15 . Therefore, by the passive 

sonar equation,  is in the range 54 to 65 . 

2. Compute  

 With the author’s assumptions, the  and 50  can be 

calculated.  

 
 

                          15 log . 

 
Setting 0 , 0.5, and 1 1852 , we determine that 

 

50
10
1852

  .   

 
This value can be compared to the best-fit  values obtained 

from the Poisson Scan and Lambda-Sigma  simulations.  
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3. Output of  

 For acoustic detection models, a reasonable  is 1 to 2  

and a reasonable  is 2 to 4 . The author used regression to 

examine how well the computed 50  values estimated the 

best-fit  values obtained from the Poisson Scan and 

Lambda-Sigma  simulations. 

 

 

Figure 17.   Regression result of Poisson Scan model 

 

 R(50)[nm] 
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Figure 18.   Regression result of Lambda-Sigma  model 

 
 As shown in Figures 17 and 18, the relationship between 

50  and best-fit  is approximately linear. In addition, the 

slope of each regression line strongly depends on the values 

of , , and the model being used.  

 

          1  2  

2  0.85 50 1.71 1.10 50 1.67 

3  1.06 50 2.17 1.44 50 2.41 

4  1.49 50 3.05 2.13 50 3.79 

Table 4.   Regression result of Poisson Scan model at each  and 
  

  

 

 R(50)[nm] 
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           1  2  

2  1.05 50 0.16 1.14 50 0.23 

3  1.26 50 0.44 1.50 50 0.93 

4  1.65 50 1.09 2.15 50 2.27 

Table 5.   Regression result of Lambda-Sigma  model at each
  and  

 
 As illustrated in Tables 4 and 5, it is possible to estimate 

the best-fit  from problem parameters 50 , , and . Then 

this best-fit  can be used with the Random Search formula below 

to further estimate the area search probability of detection 

by time . 

1 . 
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VI. CONCLUSIONS 

A. CONCLUSIONS AND RECOMMENDATIONS 

 There are two primary contributions of this thesis. The 

first is the demonstration that initial detection times for area 

search simulations using both the Poisson Scan and Lambda-Sigma 

 acoustic detection models are approximately 

exponentially distributed, allowing the simulation results to 

be closely approximated by the venerable Random Search formula. 

And the second contribution is the observation that the best-fit 

cookie-cutter detection range used in the Random Search formula 

can be accurately predicted using the simulation model 

parameters , , and the 50  detection range. 

 In this thesis, it is assumed that acoustic signal 

transmission loss follows either spherical spreading or 

cylindrical spreading. A potentially more realistic model could 

be developed by using actual propagation loss data. 
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APPENDIX 

A. MATLAB CODE 

1. Poisson Scan Model(I) 

 

Nreps=500; %number of simulation replications 
tmax=150; %max. simulation time (hr) 
lx=150; %search area length in x direction (nm) 
ly=150; %search area length in y direction (nm) 
V=15; %searcher speed (nm/hr) 
U=5; %target speed (nm/hr) 
lams=(2*V)/sqrt(lx*ly); %searcher course change rate (1/hr) 
lamt=(2*U)/sqrt(lx*ly); %searcher course change rate (1/hr) 
laml=2; %searcher looking rate (1/hr) 
sig=3; %signal excess variance (dB) 
FOM=60; %figure of merit (dB) 
R50=10^(FOM/15)/1852; %R(50) (nm) 
dt=R50/(2*V); %delta t (hours) 
Xs=zeros(1,tmax/dt+1); %initialize x-position to zero(searcher) 
Ys=Xs; %initialize y-position to zero(searcher) 
Cs=Xs; %initialize searcher course to zero 
Xt=Xs; %initialize x-position to zero(target) 
Yt=Xs; %initialize y-position to zero(target) 
Ct=Xs; %initialize target course to zero 
T=0:dt:tmax; %simulation time vector 
A=lx*ly; %search area 
CumDet=zeros(1, tmax/dt+1); %initialize cumulative detection state 
for n=1:Nreps %main simulation loop 
    xs=rand*lx; %initial searcher and target x and y positions 
    ys=rand*ly; 
    xt=rand*lx; 
    yt=rand*ly; 
    cs=rand*2*pi; %initial searcher course 
    ct=rand*2*pi; %initial target course 
    t=0; %set simulation time to 0 
    tindex=1; %initialize time index to 1 
    Xs(tindex)=xs; %save initial searcher x position 
    Ys(tindex)=ys; %save initial searcher y position 
    Cs(tindex)=cs; %save initial searcher course 
    Xt(tindex)=xt; %save initial target x position 
    Yt(tindex)=yt; %save initial target y position 
    Ct(tindex)=ct; %save initial target course 
    Distance=zeros(1, tmax/dt+1); %initialize distance between target and 
searcher 
    SE=zeros(1, tmax/dt+1); %initialize signal excess 
    Gamma=zeros(1, tmax/dt+1); %initialize instantaneous probability of 
detection 
    Detection=zeros(1, tmax/dt+1); % initialize detection vector 
    for t=1:tmax/dt %inner loop 
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        tindex = tindex+1; %update simulation time index 
        if rand<lams*dt; cs=rand*2*pi; end 
        if Xs(tindex-1)<0; cs=(rand-0.5); end 
        if Xs(tindex-1)>lx; cs=pi+(rand-0.5); end 
        if Ys(tindex-1)<0; cs=pi/2+(rand-0.5); end 
        if Ys(tindex-1)>ly; cs=-pi/2+(rand-0.5); end         
        if rand<lamt*dt; ct=rand*2*pi; end 
        if Xt(tindex-1)<0; ct=(rand-0.5); end 
        if Xt(tindex-1)>(lx); ct=pi+(rand-0.5); end 
        if Yt(tindex-1)<0; ct=pi/2+(rand-0.5); end 
        if Yt(tindex-1)>(ly); ct=-pi/2+(rand-0.5); end    
        Xs(tindex) = Xs(tindex-1)+V*dt*cos(cs); %Update x and y positions 
        Ys(tindex) = Ys(tindex-1)+V*dt*sin(cs); 
        Cs(tindex)=cs; 
        Xt(tindex) = Xt(tindex-1)+U*dt*cos(ct); %Update x and y positions 
        Yt(tindex) = Yt(tindex-1)+U*dt*sin(ct); 
        Ct(tindex)=ct; 
        
Distance(tindex-1)=sqrt((Xs(tindex-1)-Xt(tindex-1)).^2+(Ys(tindex-1)-Yt
(tindex-1)).^2); 
        SE(tindex-1)=FOM-15*log10(Distance(tindex-1)*1852); 
        Gamma(tindex-1)=laml*normcdf(SE(tindex-1)/sig); 
        if rand <= Gamma(tindex-1)*dt; 
           Detection(t:(tmax/dt+1))=1; 
        end 
    end %inner loop (time increasing from 0 to tmax) 
    CumDet = CumDet + Detection;   
end %outer loop (simulation replications) 
Probability=CumDet/Nreps; 
plot(T,Probability,'b-'), axis([0,tmax,0,1]) 
xlabel('Time', 'Fontsize', 12), ylabel('CDP', 'FontSize', 12) 
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2. Poisson Scan Model(II) 

 

Nreps=500; %number of simulation replications 
tmax=150; %max. simulation time (hr) 
lx=150; %search area length in x direction (nm) 
ly=150; %search area length in y direction (nm) 
V=15; %searcher speed (nm/hr) 
U=5; %target speed (nm/hr) 
lams=(2*V)/sqrt(lx*ly); %searcher course change rate (1/hr) 
lamt=(2*U)/sqrt(lx*ly); %searcher course change rate (1/hr) 
laml=2; %searcher looking rate (1/hr) 
sig=3; %signal excess variance (dB) 
FOM=60; %figure of merit (dB) 
R50=10^(FOM/15)/1852; %R(50) (nm) 
dt=R50/(2*V); %delta t (hours) 
Xs=zeros(1,tmax/dt+1); %initialize x-position to zero(searcher) 
Ys=Xs; %initialize y-position to zero(searcher) 
Cs=Xs; %initialize searcher course to zero 
Xt=Xs; %initialize x-position to zero(target) 
Yt=Xs; %initialize y-position to zero(target) 
Ct=Xs; %initialize target course to zero 
T=0:dt:tmax; %simulation time vector 
A=lx*ly; %search area 
CumDet=zeros(1, tmax/dt+1); %initialize cumulative detection state 
for n=1:Nreps %main simulation loop 
    xs=rand*lx; %initial searcher and target x and y positions 
    ys=rand*ly; 
    xt=rand*lx; 
    yt=rand*ly; 
    cs=rand*2*pi; %initial searcher course 
    ct=rand*2*pi; %initial target course 
    t=0; %set simulation time to 0 
    tindex=1; %initialize time index to 1 
    Xs(tindex)=xs; %save initial searcher x position 
    Ys(tindex)=ys; %save initial searcher y position 
    Cs(tindex)=cs; %save initial searcher course 
    Xt(tindex)=xt; %save initial target x position 
    Yt(tindex)=yt; %save initial target y position 
    Ct(tindex)=ct; %save initial target course 
    Distance=zeros(1, tmax/dt+1); %initialize distance between target and 
searcher 
    SE=zeros(1, tmax/dt+1); %initialize signal excess 
    Gamma=zeros(1, tmax/dt+1); %initialize instantaneous probability of 
detection 
    Detection=zeros(1, tmax/dt+1); % initialize detection vector 
    for t=1:tmax/dt %inner loop 
        tindex = tindex+1; %update simulation time index 
        if rand<lams*dt; cs=rand*2*pi; end 
        if Xs(tindex-1)<0; cs=(rand-0.5); end 
        if Xs(tindex-1)>lx; cs=pi+(rand-0.5); end 
        if Ys(tindex-1)<0; cs=pi/2+(rand-0.5); end 
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        if Ys(tindex-1)>ly; cs=-pi/2+(rand-0.5); end         
        if rand<lamt*dt; ct=rand*2*pi; end 
        if Xt(tindex-1)<0; ct=(rand-0.5); end 
        if Xt(tindex-1)>(lx); ct=pi+(rand-0.5); end 
        if Yt(tindex-1)<0; ct=pi/2+(rand-0.5); end 
        if Yt(tindex-1)>(ly); ct=-pi/2+(rand-0.5); end    
        Xs(tindex) = Xs(tindex-1)+V*dt*cos(cs); %Update x and y positions 
        Ys(tindex) = Ys(tindex-1)+V*dt*sin(cs); 
        Cs(tindex)=cs; 
        Xt(tindex) = Xt(tindex-1)+U*dt*cos(ct); %Update x and y positions 
        Yt(tindex) = Yt(tindex-1)+U*dt*sin(ct); 
        Ct(tindex)=ct; 
        if rand<laml*dt 
            
Distance(tindex-1)=sqrt((Xs(tindex-1)-Xt(tindex-1)).^2+(Ys(tindex-1)-Yt
(tindex-1)).^2); 
            SE(tindex-1)=FOM-20*log10(Distance(tindex-1)*1852); 
            Gamma(tindex-1)=normcdf(SE(tindex-1)/sig); 
            if rand <= Gamma(tindex-1); 
                Detection(t:(tmax/dt+1))=1; 
            end 
        end 
    end %inner loop (time increasing from 0 to tmax) 
    CumDet = CumDet + Detection;   
end %outer loop (simulation replications) 
Probability=CumDet/Nreps; 
plot(T,Probability,'b-'), axis([0,tmax,0,1]) 
xlabel('Time', 'Fontsize', 12), ylabel('CDP', 'FontSize', 12) 
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3. Lambda-Sigma  Model 

 

Nreps=500; %number of simulation replications 
tmax=150; %max. simulation time (hr) 
lx=150; %search area length in x direction (nm) 
ly=150; %search area length in y direction (nm) 
V=15; %searcher speed (nm/hr) 
U=5; %target speed (nm/hr) 
lams=(2*V)/sqrt(lx*ly); %searcher course change rate (1/hr) 
lamt=(2*U)/sqrt(lx*ly); %searcher course change rate (1/hr) 
lamda=2; %duration of each step (1/hr) 
sig=3; %height of each step (dB) 
FOM=60; % figure of merit (dB) 
R50=10^(FOM/15)/1852; %R(50) (nm) 
dt=R50/(2*V); %delta t (hours) 
Xs=zeros(1,tmax/dt+1); %initialize x-position to zero(searcher) 
Ys=Xs; %initialize y-position to zero(searcher) 
Cs=Xs; %initialize searcher course to zero 
Xt=Xs; %initialize x-position to zero(target) 
Yt=Xs; %initialize y-position to zero(target) 
Ct=Xs; %initialize target course to zero 
SP=Xs; %initialize step function 
T=0:dt:tmax; %simulation time vector 
A=lx*ly; %search area 
CumDet=zeros(1, tmax/dt+1); %initialize cumulative detection state 
for n=1:Nreps %main simulation loop 
    xs=rand*lx; %initial searcher and target x and y positions 
    ys=rand*ly; 
    xt=rand*lx; 
    yt=rand*ly; 
    cs=rand*2*pi; %initial searcher course 
    ct=rand*2*pi; %initial target course 
    sp=randn*sig; %initial step 
    t=0; %set simulation time to 0 
    tindex=1; %initialize time index to 1 
    Xs(tindex)=xs; %save initial searcher x position 
    Ys(tindex)=ys; %save initial searcher y position 
    Cs(tindex)=cs; %save initial searcher course 
    Xt(tindex)=xt; %save initial target x position 
    Yt(tindex)=yt; %save initial target y position 
    Ct(tindex)=ct; %save initial target course 
    SP(tindex)=sp; %save initial step 
    Distance=zeros(1, tmax/dt+1); %initialize distance between target and 
searcher 
    SE=zeros(1, tmax/dt+1); %initialize signal excess 
    Detection=zeros(1, tmax/dt+1); %initialize detection vector 
    for t=1:tmax/dt %inner loop 
        tindex = tindex+1; %update simulation time index 
        SP(tindex)=SP(tindex-1); 
        if rand<lamda*dt; SP(tindex)=randn*sig; end 
        if rand<lams*dt; cs=rand*2*pi; end 
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        if Xs(tindex-1)<0; cs=(rand-0.5); end 
        if Xs(tindex-1)>lx; cs=pi+(rand-0.5); end 
        if Ys(tindex-1)<0; cs=pi/2+(rand-0.5); end 
        if Ys(tindex-1)>ly; cs=-pi/2+(rand-0.5); end         
        if rand<lamt*dt; ct=rand*2*pi; end 
        if Xt(tindex-1)<0; ct=(rand-0.5); end 
        if Xt(tindex-1)>(lx); ct=pi+(rand-0.5); end 
        if Yt(tindex-1)<0; ct=pi/2+(rand-0.5); end 
        if Yt(tindex-1)>(ly); ct=-pi/2+(rand-0.5); end    
        Xs(tindex) = Xs(tindex-1)+V*dt*cos(cs); %Update x and y positions 
        Ys(tindex) = Ys(tindex-1)+V*dt*sin(cs); 
        Cs(tindex)=cs; 
        Xt(tindex) = Xt(tindex-1)+U*dt*cos(ct); %Update x and y positions 
        Yt(tindex) = Yt(tindex-1)+U*dt*sin(ct); 
        Ct(tindex)=ct; 
        
Distance(tindex-1)=sqrt((Xs(tindex-1)-Xt(tindex-1)).^2+(Ys(tindex-1)-Yt
(tindex-1)).^2); 
        SE(tindex-1)=FOM-15*log10(Distance(tindex-1)*1852); 
        if SP(tindex-1) <= SE(tindex-1); 
           Detection(t:(tmax/dt+1))=1; 
        end 
    end %inner loop (time increasing from 0 to tmax) 
    CumDet = CumDet + Detection;   
end %outer loop (simulation replications) 
Probability=CumDet/Nreps; 
plot(T,Probability,'b-'), axis([0,tmax,0,1]) 
xlabel('Time', 'Fontsize', 12), ylabel('CDP', 'FontSize', 12) 
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