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ABSTRACT

In this study, the author develops a MATLAB simulation of
area search with acoustic sensors modeled by the Poisson Scan
model and the Lambda-Sigma (41— 0) model. Detection time results
are compared to those given by the much simpler Random Search
formula. Random Search was found to closely approximate the more
complex models if detection range was selected correctly.
Guidelines for selecting the Random Search detection range were

developed.
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EXECUTIVE SUMMARY

In this study, the author develops a MATLAB simulation of
area search with acoustic sensors modeled by the Poisson Scan
and the Lambda-Sigma (4A—0) models.

Both the Poisson Scan model and Lambda-Sigma (4 —0¢) model
simulation results are found to be approximately exponentially
distributed, which is consistent with the Random Search model.
Thus, Random Search with the proper deterministic detection
range R can be used to closely approximate simulation results
obtained using the Poisson Scan and Lambda-Sigma (A4 —o0) models.

Both the Poisson Scan and Lambda-Sigma (1—o0) detection
time results vary with 4, g, and R(50). The author constructs a
regression model based on the simulation results and finds an
approximate linear relationship between R(50) and the best-fit
R for reasonable 1 and o. The gradient of the regression line
depends on the values of A and o. Thus, it is possible to
estimate the best-fit R from problem parameters A, o, and R(50)

and then use Random Search, instead of Monte Carlo simulation,

to predict the effectiveness of area search.
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1. INTRODUCTION

A. BACKGROUND

Random Search is one of the most well-known and used models
for area search. However, because of its simplicity, it also
has inherent limitations. For example, it assumes that the
searcher and target search areas are identical and that the
searcher uses a perfect cookie-cutter sensor. Captain Gi Young
Kim!, ROK Air Force, studied these issues previously and
suggested generalizations to the Random Search formula for
cases where the searcher and target areas are not identical.
However, there are remaining issues to address, particularly
how well the Random Search model can approximate probabilistic
sensors, such as those modeled by the Poisson Scan and

Lambda-Sigma (41— 0) models.

B. RESEARCH QUESTIONS

The primary research questions are the following:

1. When using the Poisson Scan model and the Lambda-Sigma
(l—0) model, will detection times be approximately
exponentially distributed, as predicted by the Random
Search model?

2. Can a non-cookie cutter sensor be replaced with a
cookie-cutter sensor with the same sweep width and
maintain approximately the same search performance?

3. Are there significant differences in the detection results
generated by simulations using the Poisson Scan and

Lambda-Sigma (A—o0) detection models?

1l Gi Young Kim, “Development and Testing of a New Area Search Model with
Partially Overlapping Target and Searcher Patrol Areas,” Master’s thesis,
Naval Postgraduate School, Monterey, California, 2008.
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C. THESIS ORGANIZATION

The thesis is organized as follows: Chapter II reviews the
Poisson Scan and Lambda-Sigma (41— o0) acoustic detection models;
Chapters III and IV present a MATLAB simulations of these two
models; Chapter V develops the best-fit R, which 1is the
equivalent cookie-cutter detection range for the Poisson Scan
model and Lambda-Sigma (A —0) model; Chapter VI summarizes all

results and recommends future studies.



I1. OVERVIEW OF ACOUSTIC DETECTION MODELS

A. BACKGROUND

In this chapter, we review the Passive Sonar Equation (PSE)

and use it to develop two models for passive acoustic detection

— the Poisson Scan model and the Lambda-Sigma (1—o0) model.

B. THE PASSIVE SONAR EQUATION

The passive sonar equation? is an audit of energy flow
between a source and a sonar receiver. All units are in
decibels (dB) .

The Passive Sonar Equation (PSE) is

L¢ — Ny — DNL — DT = SE,
where

L¢ = signal level of source,

Ny = propagation loss Dbetween the source and
receiver,

DNL = detection noise level at the receiver,

DT = detection threshold = signal level at receiver
required to achieve a P; of 0.5,

SE = signal excess.

The left side of Passive Sonar Equation is the signal

available at the receiver, and right side is the signal required

for a probability of detection(Pg) of 0.5.

2 The references for this section are the unpublished lecture notes of
Professor James N. Eagle, “Acoustic Detection Models,” 2009.

3



1.

Figure of Merit(FOM) and R(50)

Figure of merit (FOM) and R(50) are used as measures of

effectiveness(MOE) for sonar detection performance. FOM is

the maximum propagation loss a sonar system can absorb in dB and

still produce a 0.5 probability of detection. R(50) is the

maximum range between the source and receiver resulting in a

0.5 probability of detection.

FOM = Ls—DNL — DT

= the transmission loss between source and receiver

resulting in P,;=0.5.

R(50) = the maximum range where Lg=FOM.

2.

Acoustic Modeling Assumptions

Mean SE::EE::FOMW—NW-. That 1s, the Passive Sonar
Equation is used to calculate mean signal excess at the
receiver.

SE~N(SE,0?), where o is typically 3-9dB. We assume the
signal excess is a normally distributed random variable
with the mean given by the Passive Sonar Equation, and
o is specified.

Detection occurs if and only if SE>0dB. This is a
threshold crossing model. Detection occurs when the
random SE is nonnegative and at no other times. And
probability of detection (called here instantaneous

probability detection, IPD) is P(SE =0).



SE ~ N(SE, d%)

E IPD = P(SE > 0) = ®(SE/o)
SE 0
Figure 1. IPD when SE<0

3. Implications

IPD(SE) = P(SE = 0), where SE~N(SE,c?)
= ®(SE /o).

where @ 1s the cumulative normal distribution function. This

relationship between SE and the probability of detection is

illustrated in Figure 1.

C. THE FIXED SCAN AND POISSON SCAN MODELS
1. Fixed Scan Model

The Fixed Scan model 3 assumes that probabilistically
independent detection opportunities occur at regularly spaced
time intervals. It is attractive analytically, since there is
a simple formula for calculating the probability of detection
over any time interval [0, t]. Let S be the set of detection

opportunity times T within the interval, and let

IPD (1) = ®(SE(1)/0).

3 Alan R. Washburn, Search and Detection, 4th ed. 3-4p.
5



be the detection probability for a scan containing time T, where

the signal excess SE(t) is acknowledged to depend on time. Then

the cumulative detection probability over the interval is
P(T <t) = Fr(t) =1 —[ltes(1 = IPD (7)) .

In other words, there will be a detection at [0, t] unless
detection fails at every one of the independent scans within
the interval. However, the Fixed Scan model suffers from its
dependence on an arbitrarily selected origin of time. The
Poisson Scan model was developed, in part, to address this

issue.

2. Poisson Scan Assumptions

® Independent detection opportunities occur at Poisson
times with rate A(units : 1/time).

® Probability of detection at time t, given that a
detection opportunity exists at t, is IPD(t) = ®(SE(t)/o).

3. Development

From the Poisson Scan assumption, the instantaneous

detection rate at time t is

y () = 20(SE(t)/0).

Then it follows from the properties of the non-homogeneous

Poisson Process that

P(T < t) = Fp(t) = 1 — exp (-1 [,_, ®(SE(t) /o) ds).



In this model, 1/1 is the mean time between independent
detection opportunities (glimpses). Probabilistic independence
is assumed for each glimpse, with A specifying the average
glimpse rate. By varying A, the sonar can be made as effective
(A larger) or ineffective (A smaller) as desired, subject to
sensor or operational constraints. The sonar system can only
call detection at the discrete glimpse times, and otherwise is

assumed to be processing previously received data.

D. THE LAMBDA-SIGMA (4 - o) MODEL

In the Poisson Scan model, detection can occur at time
t only if a detection opportunity occurs at t, and an independent
draw from SE ~N(SE, 6?) is greater than or equal to 0.

A potentially more realistic model would assume that SE(t)

is a random, continuous function of time ¢t (that is, a

continuous - time stochastic process), and that detection

occurs at any time t where SE(t) =0.

1. (A—o0) Model Assumptions and Development

Let

SE(t) = SE(t) — X (1),

where SE(t) is the mean signal excess at time t, which is

computed(as in the Poisson Scan model) from the PSE as

SE(t) = FOM(t) — Ny, (t).

X(t) is a 0-mean stochastic process. More specifically, X(t) is

a (A—0) jump process, described below.



Each random sample path of X(t) is a step function, where
the duration of each step (the time between Jjumps) 1is
exponentially distributed with mean 1/4, and the height of each
step (the value of X(t)) is normally distributed with mean 0 and

variance o?2.

X(t) initial
(dB) detection

X ~ N(D, o7

AN
/

\J

|
=

S_E( t) loss of contact \

- T >
T~ exp(A)
Figure 2. (1—0) Detection Process Example

As illustrated in Figure 2, detection occurs whenever
SE(t) = X(t). X(t) can be thought of as the time-varying sum of all

random components of FOM and Ny .

2. Computing P, when SE is Constant

Assume SE(t) =SE =k, t€[0, t]. We will develop an expression
for the probability of initial detection occurring between time

0 and t, which we call Fp(t).



Fr(t) =P(X(t) <k, forsomet € [0, 7])
=1—-PX(t) >k, forallt € [0, 7])
=1-Y,P(X(t) >k, forall t € [0, 7]|i jumps occurin [0, T])
X P (i jumps occur in [0, T])
=1 - 320(1 - d(k/))+ ELene

=1—[1—- ®(k/o)]e et Zoo ([1-@(k/0)]At)

i!
=1—[1- &(k/o)]e Mell-2k/DIAt  5ince fiot—: = e¥
=1-[1- @&(k/g)]e oK/t

=1-[1— ®(SE/o)]e e/t

IP(_{I('T.v(-rion at time 0) = ®(SE/o)

A J

time ¢
()
time ¢ -
Figure 3. (1—o0) PDF and CDF Functions for Time of

Initial Detection T when SE is Constant



At time 0, the probability of detection is ®(SE/o).
The mean time to detection, E(T), and the density function,

fr(t), for time of initial detection are

_1- & (SE /o)
EM = AP (SE /o) ’

fr(t) = A®(SE /0)[1 — ®(SE Jo)]e *PCE/t £6r t > 0.
Also, P(t=0)= ®(SE/o).

Note that this probability distribution has a discrete portion

(T=0) with units of probability (unitless) and a continuous

portion (T >0) with units of probability/time (or, 1/time).

10



111.SIMULATION OF POISSON SCAN MODEL

A. DESCRIPTION OF POISSON SCAN SIMULATION MODEL
1. Characteristics of the Searcher

The searcher is not allowed to search for a target outside
the search area. In addition, the searcher’s initial position
is uniformly distributed inside of the search area. After that,
the searcher selects his course randomly, independent of the
target’s movement. The course change event is determined by
Poisson process with rate Ag;. Independent scan opportunities
also occur according to a Poisson process, but with rate A;. Also,
it is assumed that signal transmission loss? follows either the
spherical spreading law (N, =20logpr) or the cylindrical
spreading law (N, = 10log,,7). The searcher speed was fixed at

15 nm/hour.

2. Characteristics of the Target

Like the searcher, the target is not allowed to move
outside of the search area and has an initial position uniformly
distributed over the search area. The logic of the target
movement is the same as that of the searcher; that is, the target

has its own, independent Poisson process with course change rate

A¢. The target speed was fixed at 5nm/hour.

4 Robert J. Urick, Principles of Underwater Sound, 3rd ed. 1l0lp.
11



B. COMPUTER ALGORITHM
1. Input [Units]

e Number of simulation replications, Npgps = 500.

e Maximum simulation time, tya = 150[hour].

e The length of search area in X direction, L, = 150[nm].
e The length of search area in Y direction, [, = 150[nm].
e Searcher speed, V [nm/hour].

e Target speed, U [nm/hour].

e Searcher’s scan rate, A; [Glimpses/hour].

e Searcher’s course change rate, A; [1/hour].

e Target’s course change rate, A; [1/hour].

¢ The unit time of simulation, At [hour].

e The size of search area, A;=1, X[, .

e Figure of Merit, FOM [dB].

e Transmission loss, N, = 20log(Distance) [dB].

e Signal Excess, SE=FOM-N,.

e Variance of Signal Excess, ¢ [dB].

2. Functioning of the Poisson Scan Simulation

When a new replication begins, the initial positions of
the searcher and the target are chosen from a uniform
distribution over the search area. The initial headings are also
drawn uniformly between 0 and 2m radians. The subsequent course
changes for the searcher and target occur according to Poisson

processes with rates Ay and A;, respectively. According to

12



Captain Gi Young Kim’s thesis®, the recommended value for the
course change rate is ﬂﬁ=2V/Jz:§7;, which implies that on
average, two course change events occur during the time required
for the searcher to go from edge to edge in the search area.

When the searcher or target encounters an area boundary,
a random reflection occurs. After a reflection, the new course
in radians is Uniform_Random(C, —0.5,C, +0.5), where C, is the
perpendicular course from the reflection boundary. This scheme
was recommended and tested by Captain Gi Young Kim® to achieve
an approximate uniform distribution of the searcher and target
tracks in the search area.

In the Poisson Scan model, there are two ways to simulate
detection times. One uses the instantaneous probability
detection at specific time t, which follows the Poisson process
with rate A. This is because in the Poisson Scan model, detection
opportunities occur according to a Poisson process with rate
A. So, the mean time between independent detection opportunities
is 1/A. The distance between the searcher and the target is
calculated at specific time t. Then, the mean signal excess(SE)
is determined by using the Passive Sonar Equation (PSE) allowing
the calculation of IPD(SE). The next step is generating a
standard uniform random number and comparing it with the IPD(SE).
If Uniform Random(0,1) < IPD(SE), then a detection occurs at that

specific time t.

S Gi Young Kim, “Development and Testing of a New Area Search Model with
Partially Overlapping Target and Searcher Patrol Areas,” Master’s thesis,
Naval Postgraduate School, Monterey, California, 2008.

6 Gi Young Kim, KOREA AIR FORCE CAPTAIN, graduated from the Naval
Postgraduate School in 2008.
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Figure 4. Simulation when calculating distance and SE at
specific time t

The other way to simulate detections is to check for a

detection at each At. The distance between the searcher and the

target is calculated at every time step At, and the mean signal

excess 1s computed.

160

140} A
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120 ¢ . m n
4 0 *
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Mean Signal Excess[dB]

40 -

stk
20 B

L ! B n
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.
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Tirne[hour]

Time[hour]

Distance Mean signal excess
Figure 5. Simulation when calculating distance and SE at
every At

After that, we compute the instantaneous probability of
detection IPD(SE) = ®(SE(t)/o) and detection rate y(t) = A®(SE(t)/o).

At each time step At, if Uniform Random(0,1) <y(t)At, then a

detection occurs.

14



Using detection rate

Ideal value

Using IPD

Time

Figure 6. Fr(t) for different simulations

As illustrated in the simulation results of Figure 6, the
results of these two simulation methods are very similar, and

theoretically should be identical.

For this thesis we used the At simulation method. In order
to approximate a continuous simulation, At should be small.
However, too small a At results in too many calculations. In the
next section, we answer the question, “How small should At be

to produce accurate results without creating excessively long

simulation runs?”

15
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Figure 7. Fr(t) for various values of At

3. Output

R(50)

Extensive simulation experimentation showed that At = ™

was the largest At resulting in reliable and repeatable results.
Thus we move the searcher half the distance of the R(50) at each
time step. Typical results are shown in Figure 7.

In order to find best-fit R, which is the equivalent range
of a cookie-cutter sensor to the Poisson Scan Model, the author

experimented with various values of A4, o, and FOM.

16
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The Green line represents the Poisson Scan model formula.

P(T<t)=F(t)=1—exp (—A]t ®(SE(s)/0)ds).
s=0

The red line represents the formula resulting from a random

search with a cookie-cutter sensor that has best-fit R range.

P(T <t) =F(t) =1—exp (—2RVt/A)),

- ln(l - FT(tmax)) * As
2Vt max

R =

)

where V is the approximate mean relative speed between target

and searcher determined as follows:

1T
V=Ef JV2 + U2 — 2VU cos 6 do.
0

The blue line represents the results of the simulation.

The results show that for the model parameters examined
here, the Poisson Scan model gives detection times that are
approximately exponentially distributed, as does the Random

Search model. The conclusion is that, the Random Search model
using the proper detection range R can closely approximate
detection results given by the Poisson Scan model.

A potentially more accurate procedure for determining R

would be to plot —In(1—Fr(t)) versus t and to solve for the

best-fit slope y. Then,
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IV. SIMULATION OF LAMBDA-SIGMA (A4 —o0) MODEL

A. DESCRIPTION OF LAMBDA-SIGMA (4-—o0) SIMULATION MODEL

The Lambda-Sigma (A —0) detection model’ is distinguished
from the Poisson Scan model by allowing detection at any time
during the scan, rather than only at specific scan times. This
model assume that SE(t) is a random, continuous function of time

t. Then,

SE(t) = SE(t) — X (1),

where X(t) is a O-mean stochastic process where the duration of
each step is exponentially distributed with mean 1/4, and the
height of each step is normally distributed with mean 0 and

variance ¢?. Detection occurs at any time t where SE(t)>0.

7 The references for this section are the unpublished lecture notes of
Professor James N. Eagle, “Acoustic Detection Models,” 2009.
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B. COMPUTER ALGORITHM
1. Input [Units]

e Number of simulation replications, Npgps = 500.

e Maximum simulation time, tya = 150[hour].

¢ The length of search area in X direction, l, = 150[nm].
e The length of search area in Y direction, [, =150[nm].
e Searcher speed, V =15[nm/hour].

e Target speed, U =5][nm/hour].

e Searcher’s course change rate, /15=2V/m [1/hour].
e Target’s course change rate, /1t=2U/m [1/hour].

e The unit time of simulation, At = R(50)/2 XV [hour].

e The size of Search area, A;=1, X[, .

e Figure of Merit, FOM [dB].

e Transmission loss, N, = 20log(Distance) [dB].

e Signal Excess, SE=FOM-N,.

e Jump rate of stochastic process, A; [times/hour].

e Standard deviation of jump in stochastic process, o[dB].

2. Functioning of the Program

With the Lambda-Sigma (4 —o0) model, the duration of each
step is exponentially distributed with mean 1/4;, and the height
of each step is normally distributed with mean 0 and variance

.
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Figure 11. Example of (A—o0) model simulation

In Figure 11, the blue line represents one realization of the
O-mean stochastic process X(t), and the red line represents mean
signal excess. At each time step At, if SE(t) =X(t), then a
detection occurs. In the Figure 11, the first detection occurs

at 55 hours.

3. Output

In order to find the best-fit ﬁ, which is the equivalent
range of a cookie-cutter sensor to that of the Lambda-Sigma
(A—0) model, the author experimented with various values of

model parameters A, o, and FOM.
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The red lines in Figures 12-14 show Random Search results

with a cookie-cutter sensor having best-fit R range. The blue
line represents the results of the simulation. As was the case
with the Poisson Scan model, simulation results using the
Lambda-Sigma (4 —o0) model showed an exponential time to initial
detection. Thus, Random Search with the correct deterministic
detection range R can be used to closely approximate simulation
results obtained using the stochastic Lambda-Sigma (41— o) model.
The task that remains is to estimate from problem parameters

the appropriate value of R.
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V. ESTIMATION OF BEST-FIT R

A. LATERAL RANGE CURVE

1. Description of the Lateral Range Curve

In order to estimate the best-fit ﬁ, the author simulated
lateral range curves for sensors with the same parameters as
the Poisson Scan model and Lambda-Sigma (1—0) model. Sweep

width W is defined to be the area underneath the lateral range

curve.
w =.f [(x)dx,

where [(x) is the lateral range curve. In the cookie-cutter

sensor with detection range R,

l,z € [-R.R]
i(z) = { 0, otherwise

therefore, R=W/2.

L i i i i Lo i i
1 1 | | | | 1 1 1 1 1 | |
1 1 | | | | 1 1 1 1 1 | |
LA v U B A i
targets
A
1
@S///:*"“““*f\\\x
-Li2 Ry searcher R L2
Figure 15. Sweep Width Interpretation
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2. Computer Algorithm of Lateral Range Curve

In the lateral range curve simulation geometry, shown in

Figure 15, target lateral ranges are uniformly distributed over

-L/2 to L/2 and target tracks are straight. Except for this
characteristic, input elements in each lateral range curve
simulation are the same for both the Poisson Scan model and
the Lambda-Sigma (1—0) model. The lateral range curve 1is
determined by the ratio of the number of detections that occur
to number of replications at each lateral range from the

searcher.

Probability of detection
[
=

Figure 16. Simulation result of lateral range curve

Then, the area underneath the lateral range curve is sweep width,

which can be computed numerically.
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3. Output of Lateral Range Curve

The following tables compare the half-sweep width computed
from lateral range curve simulations to the best-fit R obtained
from Poisson Scan and Lambda-Sigma (A—o0) simulations, for

various FOM, A, and o values and assuming spherical spreading.

FOM[dB] 74 77 80 84 87 90
Poisson Scan
model [nm]
(A—0) model[nm] 2.80 3.97 5.37 8.81 12.81 19.07
Lateral range half
sweep width of P-S | 2.14 3.75 6.31 10.26 16.15 28.42
model [nm]
Lateral range half
sweep width of 3.07 4.49 6.65 11.31 16.87 25.63
(A —0) model [nm]

1.40 2.74 4.94 8.24 13.08 18.15

Table 1. Comparison of R between Poisson Scan model, (1-o0)
model and half sweep width of each model when

c=3dB, 1=2——,V =152y =522
hour hour

hour

SigmaldB] 0 1 2 3 4 5 6 7
Poisson Scan
model [nm]
(1—0) model[nm] 4.61 |5.01|5.11|5.89| 6.56 7.84 10.08 | 12.68
Lateral range half
sweep width of P-S | 3.68 | 4.29|5.12 | 6.31|8.07 | 10.62 | 14.56 | 20.78
model [nm]
Lateral range half
sweep width of 5.30 | 5.55 | 5.98 | 6.64 | 7.70 9.36 11.86 | 15.42
(1—0) model [nm]

3.49 | 3.51 | 3.75|4.68|5.25| 6.52 8.51 11.83

Table 2. Comparison of R between Poisson Scan model, (1-o0)
model and half sweep width of each model when

FOM =80dB, A=2——,V =152y = 5 22
hour hour

hour
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A[1/hour] 0.5 1 1.5 2 2.5 3
Polsson Scan .86 | 4.68 | 4.94 | 5.25
model [nm]
(A —0) model[nm] 5.03 5.58
Lateral range half
sweep width of P-S 0.89 2.98 4.89 6.32 7.40 8.23

model [nm]

Lateral range half
sweep width of 5.73 6.07 6.36 6.64 6.84 7.02
(A —0) model [nm]

1.79 2.77

w

(€]

.86 5.89 5.99 6.06

Table 3. Comparison of R between Poisson Scan model, (1-o0)
model and half sweep width of each model when
FOM =80dB, 0 = 3dB, V = 15.——,U = 5

hour

These results showed that:

e The best fit R is strongly dependent on FOM, A, and o for
both the Poisson Scan and Lambda-Sigma (4—0) models.

¢ The Lambda-Sigma (1—o0) best fit R somewhat exceeds the
Poisson Scan best fit ﬁ, and this might be due to the

Lambda-Sigma (A—0) model starting with a positive
probability of detection at time O.

e The best fit R generally increases with increases in FOM,

A, and o for both the Poisson Scan and Lambda-Sigma (4 —0)
models

e The lateral range curve model produces half-sweep width
values which can significantly exceed the best fit R

values produces by the Poisson Scan and Lambda-Sigma (4 —0)
models

It is not clear why the lateral range procedure produced
detection range estimates not matching well with those of the
Poisson Scan and Lambda-Sigma (1—0) models; but it is possible
that the lateral range assumptions (infinite, straight-line
paths with uniformly distributed closest points of approach)

were not well enough met in the area search simulation.
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B. R(50)
1. Description of R(50)

Another way to estimate the best-fit R is to use R(50),
which is the maximum range between the searcher and target

resulting in an instantaneous detection probability of 0.5. In
other words, R(50) is the maximum range where mean signal excess
SE is zero. For this analysis, the author assumes that signal
transmission loss follows a mixture of spherical spreading
(N, =20logyor) and cylindrical spreading (N,, = 10logz7)

Specifically, we use N, = 15log;,7r. The author also assumes that
the source level of the target Lg¢ is in the range 84 to 95dB,
detection noise level at the receiver DNL is 45dB, and
detection threshold DT is -15dB. Therefore, by the passive

sonar equation, FOM is in the range 54 to 65dB.

2. Compute R(50)
With the author’s assumptions, the FOM and R(50) can be

calculated.

SE = FOM — N,,
= FOM — 15logqo 7.

Setting SE =0dB, P;=0.5, and 1nm = 1852m, we determine that

FOM
10 15

1852

R(50) =

This value can be compared to the best-fit R values obtained

from the Poisson Scan and Lambda-Sigma (4—o0) simulations.
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3. Output of R(50)

For acoustic detection models, a reasonable A is 1 to 2hr™!
and a reasonable 0 is 2 to 4dB. The author used regression to
examine how well the computed R(50) values estimated the
best-fit R values obtained from the Poisson Scan and

Lambda-Sigma (A —o0) simulations.

11 7

6 10 12
R(S0)[nm]

Figure 17. Regression result of Poisson Scan model
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T T T T T T T T T T
2 4 ] 8 10 12
R(S0)[nm

Figure 18. Regression result of Lambda-Sigma (41— o) model

As shown in Figures 17 and 18, the relationship between

R(50) and best-fit R is approximately linear. In addition, the

slope of each regression line strongly depends on the values

of 4, o, and the model being used.

o A 1[hr~1] 2 [hr™1]
2dB R =085xR(50) - 1.71 R =1.10 x R(50) — 1.67
3dB R =1.06 x R(50) — 2.17 R =144 x R(50) — 2.41
4dB R =1.49 x R(50) — 3.05 R =213 x R(50) — 3.79
Table 4. Regression result of Poisson Scan model at each 1 and
o
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o>~ 1[hr~1] 2[hr~1]
2dB R =1.05xR(50) — 0.16 R = 1.14 x R(50) — 0.23
3dB R =1.26 X R(50) — 0.44 R =1.50 x R(50) — 0.93
4dB R =1.65 x R(50) — 1.09 R =2.15x R(50) —2.27
Table 5. Regression result of Lambda-Sigma (1—o0) model at each
A and o

As illustrated in Tables 4 and 5, it is possible to estimate
the best-fit R from problem parameters R(50), A, and o. Then
this best-fit R can be used with the Random Search formula below
to further estimate the area search probability of detection

by time t.

—2RVt
PT<t)=F;(t)=1—¢e 4 .
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V1. CONCLUSIONS

A. CONCLUSIONS AND RECOMMENDATIONS

There are two primary contributions of this thesis. The
first is the demonstration that initial detection times for area
search simulations using both the Poisson Scan and Lambda-Sigma
A—o0) acoustic detection models are approximately
exponentially distributed, allowing the simulation results to
be closely approximated by the venerable Random Search formula.
And the second contribution is the observation that the best-fit
cookie-cutter detection range used in the Random Search formula
can be accurately predicted wusing the simulation model
parameters A, o, and the R(50) detection range.

In this thesis, it 1is assumed that acoustic signal
transmission loss follows either spherical spreading or
cylindrical spreading. A potentially more realistic model could

be developed by using actual propagation loss data.
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APPENDIX

Poisson Scan Model (1)

A. MATLAB CODE
1.
Nreps=500;

gnumber of simulation replications

tmax=150; %Smax. simulation time (hr)
%search area length in x direction (nm)
%search area length in y direction (nm)

1x=150;
1y=150;
%searcher speed (nm/hr)

v=15;

U=5; Starget speed

(nm/hr)

lams=(2*V) /sqrt (1x*1ly); S%$searcher course change rate (1/hr)
lamt=(2*U) /sqrt (1x*1ly); S%$searcher course change rate (1/hr)
%searcher looking rate (1/hr)

%$signal excess variance (dB)

laml=2;

sig=3;

FOM=60;

$figure of

merit (dB)

R50=10" (FOM/15) /1852; %R (50) (nm)

dt=R50/ (2*V) ;

%delta t (hours)

Xs=zeros (1, tmax/dt+1); %initialize x-position to zero (searcher)

y-position to zero (searcher)
searcher course to zero
x-position to zero(target)
y-position to zero(target)
target course to zero

tmax; %$simulation time vector

Ys=Xs; %initialize
Cs=Xs; %initialize
Xt=Xs; %initialize
Yt=Xs; %$initialize
Ct=Xs; %initialize
T=0:dt:

A=1x*1ly; %search area

CumDet=

XsS=
ys=
xt=
yt=
cs=
ct=

zeros (1, tmax/dt+1l); %initialize cumulative detection state
for n=1:Nreps %main simulation loop
rand*1lx; %$initial searcher and target x and y positions

rand*ly;
rand*1lx;
rand*ly;
rand*2*pi;
rand*2*pi;

%$initial searcher course
%initial target course

t=0; %set simulation time to O

tindex=1;

Xs (tindex)=xs;

Ys
Cs
Xt
Yt

—~ e~~~

)
tindex)=ys;
tindex)=cs;
tindex)=xt;
tindex)=yt;

Ct (tindex)=ct;
Distance=zeros (1, tmax/dt+l); %$initialize distance between target and
searcher
zeros (1, tmax/dt+1); %$initialize signal excess
Gamma=zeros (1, )
detection
Detection=zeros(l, tmax/dt+1l); % initialize detection vector
for t=1l:tmax/dt %inner loop

SE=

%$initialize time index to 1

%$save initial searcher x position
%save initial searcher y position
%$save initial searcher course
%save initial target x position
%save initial target y position
%$save initial target course

tmax/dt+1); %$initialize instantaneous probability of
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tindex = tindex+l; %update simulation time index
if rand<lams*dt; cs=rand*2*pi; end

if Xs(tindex-1)<0; cs=(rand-0.5); end

if Xs(tindex-1)>1x; cs=pi+(rand-0.5); end

if Ys(tindex-1)<0; cs=pi/2+(rand-0.5); end

if Ys(tindex-1)>ly; cs=-pi/2+ (rand-0.5); end
if rand<lamt*dt; ct=rand*2*pi; end

if Xt (tindex-1)<0; ct=(rand-0.5); end

if Xt (tindex-1)>(1lx); ct=pi+(rand-0.5); end

if Yt(tindex-1)<0; ct=pi/2+(rand-0.5); end

if Yt(tindex-1)>(ly); ct=-pi/2+(rand-0.5); end

Xs (tindex) = Xs(tindex-1)+V*dt*cos(cs); %Update x and y positions
Ys(tindex) = Ys(tindex-1)+V*dt*sin(cs);

Cs (tindex)=cs;

Xt (tindex) = Xt (tindex-1)+U*dt*cos(ct); %Update x and y positions
Yt (tindex) = Yt (tindex-1)+U*dt*sin(ct);

Ct (tindex) =ct;

Distance (tindex-1)=sqgrt ((Xs (tindex-1)-Xt (tindex-1)) .2+ (Y¥s (tindex-1)-Yt
(tindex-1)) .%2);
SE (tindex-1)=FOM-15*10gl0 (Distance (tindex-1)*1852);
Gamma (tindex-1)=laml*normcdf (SE (tindex-1) /sig);
if rand <= Gamma (tindex-1) *dt;
Detection (t: (tmax/dt+1))=1;
end
end %inner loop (time increasing from 0 to tmax)
CumDet = CumDet + Detection;
end %outer loop (simulation replications)
Probability=CumDet/Nreps;
plot (T, Probability, 'b-"), axis([0,tmax,0,1])
xlabel ('Time', 'Fontsize', 12), ylabel ('CDP', 'FontSize', 12)
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2. Poisson Scan Model(l11)

Nreps=500; S%Snumber of simulation replications
tmax=150; %max. simulation time (hr)
1x=150; %search area length in x direction (nm)
1ly=150; %search area length in y direction (nm)
V=15; %searcher speed (nm/hr)
U=5; S%target speed (nm/hr)
lams=(2*V) /sqrt (1x*1ly); S%searcher course change rate (1/hr)
lamt=(2*U) /sqgrt (1x*1ly); %$searcher course change rate (1/hr)
laml=2; %$searcher looking rate (1/hr)
sig=3; %signal excess variance (dB)
FOM=60; %figure of merit (dB)
R50=10" (FOM/15) /1852; %R (50) (nm)
dt=R50/ (2*V); %delta t (hours)
Xs=zeros (1, tmax/dt+1); %$initialize x-position to zero (searcher)
Ys=Xs; S$initialize y-position to zero(searcher)
Cs=Xs; %initialize searcher course to zero
Xt=Xs; %initialize x-position to zero(target)
Yt=Xs; %$initialize y-position to zero (target)
Ct=Xs; %initialize target course to zero
T=0:dt:tmax; %simulation time vector
A=1x*ly; %search area
CumDet=zeros (1, tmax/dt+1l); %initialize cumulative detection state
for n=1:Nreps %main simulation loop
xs=rand*1lx; %initial searcher and target x and y positions
ys=rand*ly;
xt=rand*1lx;
yt=rand*ly;
cs=rand*2*pi; %initial searcher course
ct=rand*2*pi; %initial target course
t=0; %set simulation time to 0
tindex=1; %initialize time index to 1
Xs (tindex)=xs; %save initial searcher x position
Ys (tindex)=ys; %save initial searcher y position
Cs(tindex)=cs; %save initial searcher course
Xt (tindex)=xt; %save initial target x position
Yt (tindex)=yt; %save initial target y position
Ct (tindex)=ct; %save initial target course
Distance=zeros (1, tmax/dt+l); %$initialize distance between target and
searcher
SE=zeros (1, tmax/dt+1l); %$initialize signal excess
Gamma=zeros (1, tmax/dt+l); %$initialize instantaneous probability of
detection
Detection=zeros (1, tmax/dt+l); % initialize detection vector
for t=l:tmax/dt %inner loop
tindex = tindex+1l; %update simulation time index
if rand<lams*dt; cs=rand*2*pi; end
if Xs(tindex-1)<0; cs=(rand-0.5); end
if Xs(tindex-1)>1x; cs=pit+(rand-0.5); end
if Ys(tindex-1)<0; cs=pi/2+(rand-0.5); end
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if Ys(tindex-1)>ly; cs=-pi/2+(rand-0.5); end
if rand<lamt*dt; ct=rand*2*pi; end

if Xt (tindex-1)<0; ct=(rand-0.5); end

if Xt (tindex-1)>(1lx); ct=pi+(rand-0.5); end

if Yt(tindex-1)<0; ct=pi/2+(rand-0.5); end

if Yt(tindex-1)>(ly); ct=-pi/2+(rand-0.5); end

Xs (tindex) = Xs(tindex-1)+V*dt*cos(cs); %Update x and y positions
Ys(tindex) = Ys(tindex-1)+V*dt*sin(cs);

Cs (tindex)=cs;

Xt (tindex) = Xt (tindex-1)+U*dt*cos(ct); %Update x and y positions
Yt (tindex) = Yt (tindex-1)+U*dt*sin(ct);

Ct (tindex)=ct;

if rand<laml*dt

Distance (tindex-1)=sqrt ( (Xs (tindex-1)-Xt (tindex-1)) .72+ (¥s(tindex-1)-Yt
(tindex-1)) ."2);
SE (tindex-1)=FOM-20*10gl0 (Distance (tindex-1) *1852) ;
Gamma (tindex-1)=normcdf (SE (tindex-1) /siqg) ;
if rand <= Gamma (tindex-1);
Detection (t: (tmax/dt+1))=1;
end
end
end %inner loop (time increasing from 0 to tmax)
CumDet = CumDet + Detection;
end %outer loop (simulation replications)
Probability=CumDet/Nreps;
plot (T, Probability, 'b-"'), axis ([0, tmax,0,1])
xlabel ('Time', 'Fontsize', 12), ylabel('CDP', 'FontSize', 12)
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3. Lambda-Sigma (4 — o) Model
Nreps=500; S%Snumber of simulation replications
tmax=150; %max. simulation time (hr)
1x=150; %search area length in x direction (nm)
1ly=150; %search area length in y direction (nm)
V=15; %searcher speed (nm/hr)

U=5; S%target speed (nm/hr)

lams=(2*V) /sqrt (1x*1y) ;
lamt=(2*U) /sqgrt (1x*1y) ;
lamda=2; %duration of each step
sig=3; Sheight of each step (dB)
FOM=60; figure of merit (dB)

R50=10" (FOM/15)/1852; %R (50) (nm)
dt=R50/ (2*V); %delta t (hours)

Xs=zeros (1, tmax/dt+1) ;

%searcher
%searcher
(1

o

°

(1/hr)
(1/hr)

course change rate
course change rate
/hr)

%initialize x-position to zero (searcher)

Ys=Xs; %$initialize y-position to zero(searcher)
Cs=Xs; %initialize searcher course to zero
Xt=Xs; %initialize x-position to zero(target)
Yt=Xs; %$initialize y-position to zero (target)
Ct=Xs; %initialize target course to zero

SP=Xs; %initialize step function

T=0:dt:tmax; %simulation time vector

A=1x*1ly; %search area

CumDet=zeros (1, tmax/dt+1);

$initialize cumulative detection state

for n=1:Nreps %main simulation loop

xs=rand*1lx; %$initial searcher
ys=rand*ly;
xt=rand*1lx;
yt=rand*ly;
cs=rand*2*pi;
ct=rand*2*pi; %$initial target
sp=randn*sig; %initial step
t=0; %set simulation time to O
tindex=1;

and target x and y positions

$initial searcher course

course

$initialize time index to 1

Xs (tindex)=xs; %save initial searcher x position
Ys (tindex)=ys; %save initial searcher y position
Cs (tindex)=cs; %save initial searcher course

Xt (tindex)=xt; %save initial target x position
Yt (tindex)=yt; %save initial target y position
Ct (tindex)=ct; %save initial target course
SP(tindex)=sp; %save initial step

Distance=zeros (1, tmax/dt+1):;
searcher
SE=zeros (1, tmax/dt+1l); %initi
Detection=zeros (1, tmax/dt+1l);
for t=l:tmax/dt %inner loop
tindex tindex+1;
SP (tindex)=SP (tindex-1) ;
if rand<lamda*dt;
if rand<lams*dt;

cs=rand*2

SP(tindex)=randn*sig;

%initialize distance between target and

alize signal excess
%$initialize detection vector

update simulation time index

end

*pi; end
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if Xs(tindex-1)<0; cs=(rand-0.5); end

if Xs(tindex-1)>1x; cs=pi+(rand-0.5); end

if Ys(tindex-1)<0; cs=pi/2+(rand-0.5); end

if Ys(tindex-1)>ly; cs=-pi/2+(rand-0.5); end
if rand<lamt*dt; ct=rand*2*pi; end

if Xt (tindex-1)<0; ct=(rand-0.5); end

if Xt (tindex-1)>(1lx); ct=pi+(rand-0.5); end

if Yt(tindex-1)<0; ct=pi/2+(rand-0.5); end

if Yt(tindex-1)>(ly); ct=-pi/2+(rand-0.5); end

Xs (tindex) = Xs(tindex-1)+V*dt*cos(cs); %Update x and y positions
Ys(tindex) = Ys(tindex-1)+V*dt*sin(cs);

Cs (tindex)=cs;

Xt (tindex) = Xt (tindex-1)+U*dt*cos(ct); %Update x and y positions
Yt (tindex) = Yt (tindex-1)+U*dt*sin(ct);

Ct (tindex)=ct;

Distance (tindex-1)=sqgrt ((Xs (tindex-1)-Xt (tindex-1)) ."2+(¥s (tindex-1)-Yt
(tindex-1)) .%2);
SE (tindex-1)=FOM-15*10gl0 (Distance (tindex-1) *1852) ;
if SP(tindex-1) <= SE (tindex-1);
Detection (t: (tmax/dt+1))=1;
end
end %inner loop (time increasing from 0 to tmax)
CumDet = CumDet + Detection;
end %outer loop (simulation replications)
Probability=CumDet/Nreps;
plot (T, Probability, 'b-"'), axis ([0, tmax,0,1])
xlabel ('Time', 'Fontsize', 12), ylabel('CDP', 'FontSize', 12)
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