
Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2009-06

Characterization of robotic tail orientation as

a function of platform position for surf-zone robots

Holland, Courtney L.

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/4782

Downloaded from NPS Archive: Calhoun

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

CHARACTERIZATION OF ROBOTIC TAIL
ORIENTATION AS A FUNCTION OF PLATFORM

POSITION FOR SURF-ZONE ROBOTS

by

Courtney L. Holland

June 2009

 Thesis Advisor: Richard Harkins
 Second Reader: Peter Crooker

Approved for public release; distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for
reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and
reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

June 2009
3. REPORT TYPE AND DATES COVERED

Master’s Thesis
4. TITLE AND SUBTITLE: Characterization of Robotic Tail Orientation as a
Function of Platform Position for Surf-Zone Robots
6. AUTHOR(S) Courtney L. Holland

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE
A

13. ABSTRACT (maximum 200 words) The Naval Postgraduate School Small Robot Initiative is an ongoing
effort to develop autonomous robotic platforms for military applications. The latest design in this series, a
quadruped robot with a tail for stability and obstacle climbing, is currently under development in
collaboration with Case Western Reserve University. Tail orientation as a function of robot platform attitude
is tested for angle of bank climbs at 10 and 15 degrees. Data indicate that although the platform induced noise
is significant, tail orientation can be successfully managed with proper PID feedback mechanisms, including
tail position as a function of platform attitude. Gross control of the tail used as an assist for climbing is
validated in this experiment. More sophisticated filter algorithms are indicated for fine tuned tail control,
including but not limited to the Kalman filter.

15. NUMBER OF
PAGES

103

14. SUBJECT TERMS Amphibious, Autonomous, Robotics, WHEGS

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

 Prescribed by ANSI Std. 239-18-298-

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

CHARACTERIZATION OF ROBOTIC TAIL ORIENTATION
AS A FUNCTION OF PLATFORM POSITION FOR SURF-ZONE ROBOTS

Courtney L. Holland
Lieutenant, United States Navy

B.S., United States Naval Academy, 2002

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN APPLIED PHYSICS

from the

NAVAL POSTGRADUATE SCHOOL
June 2009

 Author: Courtney L. Holland

 Approved by: Richard Harkins
 Thesis Advisor

 Peter Crooker
 Second Reader

 James Luscombe
 Chairman, Department of Applied Physics

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

 The Naval Postgraduate School Small Robot Initiative is an ongoing effort to

develop autonomous robotic platforms for military applications. The latest design in

this series, a quadruped robot with a tail for stability and obstacle climbing, is

currently under development in collaboration with Case Western Reserve University.

Tail orientation as a function of robot platform attitude is tested for angle of bank

climbs at 10 and 15 degrees. Data indicate that although the platform induced noise

is significant, tail orientation can be successfully managed with proper PID feedback

mechanisms, including tail position as a function of platform attitude. Gross control

of the tail used as an assist for climbing is validated in this experiment. More

sophisticated filter algorithms are indicated for fine tuned tail control, including but

not limited to the Kalman filter.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION ... 1
A. NPS BACKGROUND... 1
B. WHEGS PLATFORM DEVELOPMENT.. 1

1. Biologically Inspired Movement ... 1
2. Early WHEGS™ Designs.. 2
3. Pelican Whegs™ Development ... 3

C. THESIS CONCEPT.. 4
II. ROBOT DESIGN.. 7

A. MECHANICAL COMPONENTS... 7
1. Platform .. 7
2. Wheel Legs.. 7
3. Tail Mechanism .. 9

B. ELECTRICAL COMPONENTS... 11
1. Drive Control.. 11
2. Power Distribution... 13
3. Tail Control .. 14

C. ELECTRONIC COMPONENTS .. 20
1. Microcontroller .. 20
2. Router.. 20
3. GPS.. 21
4. Compass .. 22

III. ROBOT CONTROL ... 25
A. CONTROL ALGORITHM.. 25

1. Manual Control .. 26
2. Waypoint... 26
3. Navigation ... 27
4. GPS.. 27
5. Compass .. 27

B. TAIL CONTROL .. 27
C. JAVA GRAPHICAL USER INTERFACE .. 29

IV. RESULTS... 31
A. TAIL POSITION CALIBRATION... 31
B. TAIL POSITION VS. ROBSTER PITCH – STATIC................................... 32
C. TAIL POSITION VS. ROBSTER PITCH – DYNAMIC.............................. 34

1. Experimental Setup.. 34
2. Experimental Results ... 37

V. RECOMMENDATIONS.. 47
A. CONTROL ALGORITHM IMPROVEMENTS ... 47
B. INCLINOMETER... 48
C. TAIL ANGLE SENSOR... 48

 viii

APPENDIX A. TAIL CONTROL DYNAMIC C CODE .. 49
APPENDIX B. EMBEDDED DYNAMIC C CODE .. 57
APPENDIX C. EXPERIMENTAL DATA.. 79
LIST OF REFERENCES ... 85
INITIAL DISTRIBUTION LIST .. 87

 ix

LIST OF FIGURES

Figure 1. Agbot (From [2]) .. 3

Figure 2. Pelican Whegs™ (From [4]) .. 4

Figure 3. ROBSTER, front view.. 5

Figure 4. ROBSTER, side view ... 5

Figure 5. Robster Pelican Whegs™... 8

Figure 6. Wheel vs. DAGSI Whegs™ vs. Pelican Whegs™... 9

Figure 7. Tail Mechanism .. 10

Figure 8. 24VDC Motor Battery (From [5]) .. 12

Figure 9. Power Pad 160 laptop battery (From [5]) ... 12

Figure 10. Devantech MD-22 motor controller (From [7]) ... 13

Figure 11. Power Distribution Design (From [5]) ... 14

Figure 12. Tail Component Functional Diagram ... 15

Figure 13. PWM Motor Controller (From [8]) .. 16

Figure 14. 2.56kHz PWM Circuit .. 17

Figure 15. PWM Waveform from Oscilloscope .. 18

Figure 16. 12VDC Voltage Regulator circuit .. 19

Figure 17. Spectrol 536 Potentiometer .. 19

Figure 18. BL2000 Microcontroller (From [12])... 20

Figure 19. Netgear Rangemax 240 Wireless Router (From [13]).. 21

Figure 20. Garmin GPS 16HVS (From [14])... 22

Figure 21. HMR3000 Digital Compass (From [15]) ... 23

Figure 22. MR Sensor Basics (From [15])... 23

Figure 23. Wheatstone Bridge (From [15]) ... 24

Figure 24. Control Algorithm Flow (After [3]) ... 26

Figure 25. Proportional Control Loop.. 28

Figure 26. JAVA GUI Screen Capture (From [5]) .. 29

Figure 27. Tail Angle vs. Voltage.. 31

Figure 28. Static Test Concept ... 32

 x

Figure 29. Robot Pitch and Tail Angle .. 33

Figure 30. Dynamic Test Ramp ... 35

Figure 31. Dynamic Test Concept ... 36

Figure 32. Desired Robot Pitch and Tail Angle Plot ... 37

Figure 33. Robot Pitch vs. Time - Data Points and Linear Fit for Single 10 Trial 39

Figure 34. Robot Pitch vs. Time - 10 ... 40

Figure 35. Robot Pitch vs. Time - ... 40

Figure 36. Average Robot Pitch - 10 and 15 .. 41

Figure 37. Tail Angle vs. Time - Data Points and Linear Fit for Single 10 Trial.............. 42

Figure 38. Tail Angle vs. Time - 10 ... 43

Figure 39. Tail Angle vs. Time - ... 43

Figure 40. Average Tail Angle – 10 and 15 ... 44

Figure 41. Average Robot Pitch and Tail Angle - 10 .. 45

Figure 42. Average Robot Pitch and Tail Angle - .. 46

 xi

LIST OF TABLES

Table 1. Power Requirements ... 14

Table 2. Motor Controller Truth Table (From [8]) ... 16

Table 3. Interface Architecture ... 25

Table 4. Average Standard Deviations.. 37

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

ACKNOWLEDGMENTS

 Thanks to Professor Harkins, my thesis advisor, for keeping me on the right

track, even if I didn’t know where I was headed. Thanks to Professor Crooker for

volunteering to help, and for teaching me pretty much everything I know about

electronics. Thanks to George Jaksha, without whom, I would have gotten absolutely

nowhere. I’d like to thank Sam for the caffeine, and Keith for the helpful hints. And,

I’d also like to thank my wife, Ania, for putting up with me while I have been MIA

these last few months.

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. NPS BACKGROUND

 The Naval Postgraduate School Small Robot Initiative (SMART) is an ongoing

effort of the Combat Systems Science and Technology Department to develop

autonomous robots with potential military applications. Utilizing Commercial Off-the-

Shelf (COTS) components, this program seeks to design, build, and operate cost effective

robots that are highly mobile, can perform waypoint navigation and dead reckoning,

conduct obstacle avoidance, and support a variety of different mechanisms to perceive

and interact with their environment.

 There is significant interest in developing robots for operation in rugged,

unstructured environments. In particular, the ability to deploy autonomous robots in

beach, surf-zone, and near-shore environments is highly sought after for both civilian and

military applications. Potential applications include the ability to conduct coastal surveys,

covert surveillance, mine identification, and mine clearance operations. However, this

environment is extraordinarily challenging for a robot to operate in and no current robotic

applications have been successfully fielded. The robot would need to be robust enough to

navigate a varied and changing environment to include soft and shifting sands, the

movement of the tides and waves, and an uneven surface with few level areas. In addition

to this, the robot would need to be rugged enough to withstand water to a certain depth,

salt water corrosion, and various kinetic stresses from operating in a real world

environment.

B. WHEGS PLATFORM DEVELOPMENT

1. Biologically Inspired Movement

 WhegsTM (wheel-legs) is a class of robot developed using basic mechanical

designs that were inspired by the locomotive principles of biological organisms. Roger

Quinn of Case Western Reserve University developed this method for utilization in the

university’s Biologically Inspired Robotics Laboratory. The motion of Whegs™ concept

was inspired by the mobility of hexapods, specifically the cockroach, to take advantage

 2

of the insect’s inherent stability and mobility over a variety of terrain. The principals of

cockroach motion are that it stands and moves using six legs. It walks using a tripod gait,

wherein the front and rear legs of the body move in phase with the middle leg of the

opposite side of the body. When it encounters a large obstacle, its gait changes by

engaging all of its WhegsTM simultaneously to surmount the obstacle [1]. It also flexes its

body joint to permit greater vertical reach for its legs and prevents high centering off the

obstacle during a climb by bending the front half of its body down.

2. Early WHEGS™ Designs

 Whegs™ utilize a unique wheel-leg design to take advantage of both the

enhanced mobility of legged platforms and the simplicity of wheel driven robots. The

Whegs™ is a simple design that utilizes COTS resources to greatly increase mobility

over normal wheeled robots without the need for complicated low level control

algorithms. The standard Whegs™ wheel consists of symmetrically spaced spokes

attached to a central hub. Passive mechanical adaptation is incorporated through the use

of torsional compliance devices in the axles, permitting the opposing Whegs™ to engage

for additional torque to surmount significant obstacles. After the obstacle has been

surmounted, the opposing Whegs™ will automatically return to its normal gait for

continued translation.

 The previous Whegs™ design used by the NPS SMART program was the Dayton

Area Graduate Studies Institute (DAGSI) Whegs™ prototype called Agbot. The Agbot

platform was built as a collaboration between NPS and Case Western Reserve University

Biologically Inspired Robots Laboratory. Agbot, pictured in Figure 1, is a six-legged

robot with a tripod gait. It utilizes one drive motor to move the Whegs™, which are

mechanically linked through a chain and gear system. Passive compliance on Agbot is

performed by a limited slip differential which consists of two coaxial axles linked by a

spring. Steering is accomplished by turning the front and back leg sets inboard in

opposition, accounting for a large turning radius. Agbot did not have body joint flexion

incorporated, but the chasis was built in two halves with a body joint. An in-depth review

of Agbot can be found in [2].

 3

Figure 1. Agbot (From [2])

3. Pelican Whegs™ Development

 The Pelican Whegs is the latest design effort under this initiative. Alexander

Boxerbaum of Case Western Reserve University is building the Pelican Whegs body as

part of the ongoing examination of Whegs-based robotic applications.

 The Pelican Whegs™ platform replaces the hexapod locomotion and body joint

flexion of the DAGSI Whegs™ with quadruped locomotion and a motorized tail as seen

in Figure 2. This robot moves using a diagonal gait instead of the more stable tripod gait

of the earlier model. To improve stability, the three spoke wheel-legs have been replaced

by four evenly spaced spoke wheel-legs to reduce body roll and vertical translation

during motion. The right and left side Whegs™ are driven using separate drive motors,

and each set is linked mechanically. This permits Pelican Whegs™ to take advantage of

the differential, tank steering common to most wheeled robots. The passive torsionally

compliant devices will be incorporated into enclosures in the individual Whegs™ hubs.

 The new tail mechanism is intended to perform several functions for the Pelican

Whegs™. During normal operation, the tail can be lowered to provide stability during

transit across uneven terrain to reduce undesirable body tilt and roll. When the robot

seeks to mount an obstacle, the tail will be lowered to provide additional motive force to

 4

help boost the robot. It also replaces the body flexion function of the DAGSI Whegs™ by

acting as a foot during climbing, preventing the robot from high-centering and falling

back off of obstacles [4].

Figure 2. Pelican Whegs™ (From [4])

C. THESIS CONCEPT

 A robotic platform named Robster, seen in Figure 3 and Figure 4, was built to

emulate the basic functional design considerations and components of the Pelican

Whegs™ robot. This thesis is determined to develop control and logic algorithms to

operate the tail mechanism implementation in the new Pelican Whegs™ design and

evaluate the efficacy of the new design. Passive compliance devices were not built for the

Robster due to their complexity and poor reliability and are not the focus of this thesis.

 5

Figure 3. ROBSTER, front view

Figure 4. ROBSTER, side view

 6

THIS PAGE INTENTIONALLY LEFT BLANK

 7

II. ROBOT DESIGN

A. MECHANICAL COMPONENTS

1. Platform

 The Robster chasis and platform components were chosen to match the functional

capabilities of the Pelican Whegs™ chasis. The four drive motors, motor controllers,

motor battery, and tail assembly are mounted on a wide by long thick

aluminum plate. The tail assembly gears, shafts, motor, and paddle are attached to a

separate removable platform connected to the base. Above this, a separate aluminum

plate is connected using 3” extensions to provide the base for the electronics. This plate

also shields sensitive electronic components from large electromagnetic interference

generated during drive motor activation. The Robster weighs 32lbs, primarily due to the

four drive motors and the tail motor. This weight was much greater than the expected

weight of the Pelican Whegs™ and affected some of the results of the experiment.

2. Wheel Legs

 Robster has four wheel-legs machined from single pieces of hard, polyvinyl

chloride plastic pictured in Figure 5. Each Wheg™ consists of four, 3.5” long spokes

around a central hub, evenly separated by . The four-spoke leg has advantages and

disadvantages compared to a conventional wheel that are common to all Whegs™ (see

Figure 6). In a conventional wheel, climbing ability is limited by the radius of the wheel,

no matter how great the traction of the wheel. The Pelican Whegs™ can get a foothold

for an obstacle height given by

for a 29.3% greater climbing ability than a wheel. The Pelican Whegs™ also has an

advantage over the previous DAGSI Whegs™ model in the vertical translation of its

Whegs™ hub during motion, which is given by

 8

Vertical translation is only 7.6% of hub height, which is also 43% less than the 13% of

hub height achieved by the three-spoked DAGSI Whegs™. Consequently, the Pelican

Whegs™ enjoys a much steadier ride. This advantage helps to offset the reduced stability

of the diagonal vs. tripod gait [1].

Figure 5. Robster Pelican Whegs™

 9

Figure 6. Wheel vs. DAGSI Whegs™ vs. Pelican Whegs™

3. Tail Mechanism

 The Robster tail mechanism, pictured in Figure 7, was designed to approximate

the desired function of the modeled Pelican Whegs™ tail device. A motor connected to a

steel rod running lengthwise along the center rear half of the robot drives the tail. The

gears that interlink the motor and shaft have a ratio of 1:1. This shaft, in turn, links to a

second rod mounted parallel to the rear of the platform with a gearing ratio of 1:2. The

tail is a wide by long by thick panel of clear PVC plastic mounted to the

rear shaft by two aluminum brackets. All gears are straight, bevel gears fabricated from

steel.

 10

Figure 7. Tail Mechanism

 A Maxon RE 40 148866 series motor with a GP 42C 203123 planetary gear head

is used to drive the shaft of the tail assembly. This motor can provide 98.7mNm or

 11

0.0728 lb-ft of continuous torque and operates at a maximum permissible speed of

8200RPM. The Maxon is driven by a 12VDC power source with a max continuous

current of 6A and a no load current of 241mA. The planetary gear head provides a 74:1

reduction [6]. The motor output to the first bevel gear is therefore given a maximum of

5.387 lb-ft and 110.8 RPM. The output from the motor to the tail shaft through the 1:2

step up gear is 10.774lb-ft

 Given the output torque values, a tail height of four inches, and a tail length of 12

inches, the vertical component of the downward force generated by the tail can be

calculated as follows:

This would not be sufficient to lift the whole robot body. However, it would provide a

large additional positive vertical force during any climbing operation.

B. ELECTRICAL COMPONENTS

1. Drive Control

a. Motor Battery

 The battery driving the wheel motors is a rechargeable 24 VDC, 4000

mAhr Nickel Metal Hydride (NiMH) battery pack, shown in Figure 8. The battery pack is

a 2 x 10 array of C cell batteries and weighs 3½ pounds. It is mounted between the two

sets of wheels and relatively centered in the platform base.

b. Electronics Battery

 The electronics battery is the Power Pad 160 rechargeable, 15VDC,

11,000 mAhr Lithium Ion battery, shown in Figure 9. This battery is mounted flat on

Robster’s chassis and weighs 2½ lbs. This battery can provide 27.4 minutes of power for

operation of all Robster electronic components.

 12

Figure 8. 24VDC Motor Battery (From [5])

Figure 9. Power Pad 160 laptop battery (From [5])

c. Motor Controllers

 Two MD22 Devantech Dual Motor Drivers, pictured in Figure 10, control

the Whegs™ speed and direction. Each motor controller can handle 5A current capacity

for motors from 5 to 50V. A 3A fuse is connected in line with the +24V battery terminal

to prevent high current draw to the circuit board. Both motor and logic ground are

internally connected through the module providing the common ground for the whole

robot. The motor controllers have five modes of operation. These motor drivers are set to

 13

Control Mode 1, capable of providing two independent channels for separate motors, but

which are instead tied together to electronically link each motor pair. A DC analog

voltage provides the control signal from 5V (Full Forward) to 2.5V (Stop) to 0.0V (Full

Reverse) [7]. The analog voltages are provided by the BL2000 through a LM6132 Buffer

circuit. This protects the BL2000 Digital to Analog Converter (DAC) outputs from high

current draws that will destroy the DAC’s.

Figure 10. Devantech MD-22 motor controller (From [7])

2. Power Distribution

 Robster requires 24V, 15V, 12V, and 5V to run its various electronic and

mechanical components. The basic components for Robster’s power supply and

distribution system were taken from the Bigfoot robot developed by John Herkamp [5].

Mechanical power drawn from the 24V battery is routed directly to the motor controllers

driving the wheels. AGC 4A, 250V glass fuses in line with the motor controllers protect

against high current from the batteries. The 15VDC laptop battery provides the

electronics power through a separate bus. Both 12V and 5V are reduced from the 15VDC

battery by means of 7812 and 7805 voltage regulators, respectively. Common ground for

all components is provided through the wheel motor controllers, which use both 5VDC

and 24VDC (see Figure 11). Voltage requirements and current loads for each component

are delineated in Table 1.

 14

3. Tail Control

 The tail mechanism is driven by a 12V battery connected through a Devantech

MD-22 Motor Controller. The battery is a rechargeable 12VDC NiMH 4000mAh battery

pack comprised of a 2 x 5 array of C cell batteries. A 4A fuse is place in line with the

battery to protect the motor controller from high current draw from the motor. The MD-

22 is driven by a DAC on the microcontroller, which is protected by a LM6132 Buffer

circuit. This configuration is shown in Figure 12.

Figure 11. Power Distribution Design (From [5])

Component Voltage Requirements

(V)
Current Requirements

(mA)
BL2000 15 60
Router 12 160

Motor Controllers 5 50
Buffers 5 0.36
PWM 5 3
GPS 5 60

Compass 5 35
Potentiometer 5 33
Total Current 401.36
Battery Life 27.4min

Table 1. Power Requirements

 15

 Separate motor driver circuits were built to drive a 12V PWM Motor Controller.

This motor driver configuration functioned to drive the tail mechanism. However, this

arrangement provided insufficient motor torque to lift the robot platform due to voltage

droop through the voltage regulator circuit.

a. PWM Motor Controller

 The motor controller for the tail mechanism is the SuperDroid Robots

PWM Motor Controller (see Figure 13). This motor controller can handle from 12-

55VDC and drive 3A continuously with surges up to 6A using the LMD18200H-bridge

IC. It has a four pin header which provides inputs for ground, break, PWM input, and

direction. Break is used to effectively short the Output terminals when set to logic HIGH.

Direction controls the direction of current flow between the two Output leads,

determining the direction of motor rotation. PWM input operates from 0-5V at a

minimum of 1kHz. These operational parameters are displayed in Table 2 [8].

Figure 12. Tail Component Functional Diagram

 16

 A simple buffer circuit was built to provide the signal for the DRIVE and

BREAK. This buffer was built to protect the digital output ports on the BL2000 from

sudden high current pulls generated by the motor controller using a LM6132 Buffer op-

amp.

Table 2. Motor Controller Truth Table (From [8])

b. 1.4kHz PWM Circuit

 A Pulse Width Modulation (PWM) circuit drives the motor controller (see

Figure 14). This simple PWM circuit is generated by a LM555 timer integrated circuit

operating in an astable-oscillator configuration [9]. From the figure below, the resistors

are and with a capacitor .

Figure 13. PWM Motor Controller (From [8])

 17

Figure 14. 2.56kHz PWM Circuit

 Given the resistance and capacitance values for this circuit, the PWM circuit has

the following characteristics (see Figure 15):

 18

Figure 15. PWM Waveform from Oscilloscope

c. Tail Voltage Regulator Circuit

 This circuit converts the 24VDC power of the motor battery and reduces it

to 12VDC power for use with the Maxon tail motor, as shown in Figure 16. This circuit

uses a standard 7812 voltage regulator IC with a maximum 1A output to provide maintain

the +12V voltage [10]. A high current MJ2955 PNP transistor and Dale-RH , 25W

power resistors function to boost the output current at the regulated voltage. A 1A fuse

placed on the output side of the voltage regulator prevents high current from leaking back

to the regulator.

d. Potentiometer

 A variable resistance potentiometer functioning as a voltage divider

determines inclination of the Tail. A Spectrol 536 wire wound precision rotary

potentiometer is used in this application. The Spectrol 536 has resistive range from

to with a tolerance of . This ten turn potentiometer can be rotated through

 [11].

 19

Figure 16. 12VDC Voltage Regulator circuit

 This potentiometer is firmly connected to the right end of the axial tail shaft,

rotating with the tail shaft, shown in Figure 17. Five volts is applied across the outer

terminals of the while the wiper is connected to an ADC input on the BL2000. The

baseline voltage for this configuration 2.499V at indicating a incline. As the tail

moves up or down, the voltage follows a linear relationship inversely proportional to the

change in angular position.

Figure 17. Spectrol 536 Potentiometer

 20

C. ELECTRONIC COMPONENTS

1. Microcontroller

 The BL2000 Wildcat microcontroller is a single-board computer that offers high

performance in a compact form factor, pictured in Figure 18. The BL2000 incorporates

the 22.1MHz Rabbit microprocessor, 256K flash memory, 128K static RAM, 28 digital

input/output ports, 9 12-bit analog/digital converter inputs, 2 12-bit digital/analog

converter outputs, 4 serial ports, and 1 RJ-45 Ethernet port. It is robust, highly adaptable,

and easily programmed using Dynamic C [12].

Figure 18. BL2000 Microcontroller (From [12])

2. Router

 During operation, all communications with Robster are directed through a

Netgear Rangemax 240 Wireless G router installed onboard the platform, pictured in

Figure19. This router operates on the IEEE standard 802.11B and G at 2.4GHz with a

maximum data rate of 240Mbps and a range of up to 300 ft. It has four built in 10/100

Mbps switch inputs to connect devices, one of which is used to connect the BL2000. The

router operates on 12VDC input power and draws 160mA of continuous current [13]. All

 21

communication utilizes the standard UPD protocol. The router is connected to the RJ-45

Ethernet port on the BL2000 and provides the communications pathway for the JAVA

interface.

Figure 19. Netgear Rangemax 240 Wireless Router (From [13])

3. GPS

 Positional data is provided by the Garmin GPS-16HVS antenna and receiver

system, shown in Figure 20. The receiver is a 12 channel Wide Area Augmentation

System (WAAS) capable of simultaneously tracking 12 satellites to compute a

differential GPS fix for a position accuracy of 3-5m. It updates in interval of 1 to 900

seconds in 1 second increments. This GPS unit requires 3.3 to 6VDC-regulated power

typically drawing 65mA of current. It communicates using true RS-232 output and

asynchronous serial input with RS-232 and TTL voltage levels. This application uses the

National Marine Electronics Association (NMEA) 0183 v2.0 ASCII serial format with

GPGGA as the primary output sentence [14].

 An example GPS NMEA output string is as follows:

$GPGGA,123519,4807.038,N,01131.000,E,1,08,0.9,545.4,M,46.9,M,,*47

GGA Global Positioning System Fix Data

123519 Fix taken at 12:35:19 UTC

4807.038,N Latitude 48 deg 07.038' N

01131.000,E Longitude 11 deg 31.000' E

Fix quality: 0 = invalid 1 = GPS fix (SPS)

 22

 2 = DGPS fix 3 = PPS fix

 4 = Real Time Kinematic 5 = Float RTK

 6 = estimated (dead reckoning) (2.3 feature)

 7 = Manual input mode 8 = Simulation mode

08 Number of satellites being tracked

0.9 Horizontal dilution of position

545.4,M Altitude, Meters, above mean sea level

46.9,M Height of geoid (mean sea level) above WGS84 ellipsoid

(empty field) time in seconds since last DGPS update

(empty field) DGPS station ID number

*47 the checksum data, always begins with *

[14]

Figure 20. Garmin GPS 16HVS (From [14])

4. Compass

 Robster heading, tilt, and incline are determined using the Honeywell HMR3000

Digital Compass, shown in Figure 21. The HMR3000 uses three magneto resistive

magnetic sensors and a liquid filled, two axis tilt sensor to produce accurate compensated

heading data for up to 45° of tilt (see Figure 22). The magneto-resistive sensing elements

are composed of NiFe thin films deposited on a silicon substrate as a Wheatstone resistor

bridge (see Figure 23). The magnetometer has a wide dynamic range of ±2 Gauss

 23

(200µT) compared with 0.65 Gauss for earth’s magnetic field and therefore should not

saturate. The compass has an accuracy of 0.5° with 0.1° of resolution [15].

Figure 21. HMR3000 Digital Compass (From [15])

Figure 22. MR Sensor Basics (From [15])

 24

Figure 23. Wheatstone Bridge (From [15])

 Compass heading is calculated at 13.75Hz from 5 filtered measurements: TiltX,

TiltY, MagX, MagY, and MagZ. The HMR3000 is powered by 5V regulated supply but

is capable of operating with 6-15V unregulated power supply. It communicates using

standard serial RS-232 connection using an NMEA 0183 output string at 19200 baud

[15].

 An example compass NMEA output string is as follows:

$PTNTHPR,85.9,N,-0.9,N,0.8,N*2C

HPR Heading, Pitch, and Roll

85.9 Heading 85.9° magnetic

-0.9 Tilt -0.9° x-axis

0.8 Roll 0.8° y-axis

N*2C checksum for parity

 25

III. ROBOT CONTROL

A. CONTROL ALGORITHM

 A computer algorithm embedded on the BL2000 microprocessor controls Robster.

The code is written in Dynamic C and compiled using Dynamic C 7.1.9. The program

uses a series of costatements to permit the processor to conduct cooperative multitasking

operations. Costatements are a feature of Dynamic C that permits the program to perform

several tasks simultaneously by voluntarily releasing processor time to the next function

during delays in the individual tasks. The components of this control algorithm were

developed for the Bender robot and described in detail in [3]. The basic outlines of this

control algorithm are provided in Table 3 and Figure 24.

FUNCTION PORT
Wheels DAC1
Tail DAC0

Compass Serial C
GPS Serial B

Potentiometer ADC0

Table 3. Interface Architecture

 26

Figure 24. Control Algorithm Flow (After [3])

1. Manual Control

 The user initiates the manual control costatement through the JAVA interface by

way of port 4001 calls manual control. Manual control overrides all autonomous

navigation functions and sets the man_ctrl flag that prevents the robot from entering the

navigation and PID costatements. Manual control receives a string from the JAVA

application buttons, converts the string to integers, and parses it for control voltages for

the left and right motor pairs. The motor control signal for the left motor pair is directed

by DAC1 and the right side by DAC0.

2. Waypoint

 The user initiates the Waypoint costatement through port 4002. It stores the

waypoint coordinate data from the JAVA Application and parses that data into an

acceptable form for the Navigation costatement. In addition, this function also resets the

man_ctrl flag.

 27

3. Navigation

 The Navigation costatement is initiated by the Waypoint costatement from the

JAVA interface. It receives the waypoint data and passes heading error and range from

waypoint information to the Control costatement. It uses the error function to determine

the heading error value from the new_hdg and curr_heading variables.

4. GPS

 The GPS costatement triggers the GPS receiver and translates that data for the

JAVA GUI through port 4004. The GPS receiver is controlled on the BL2000 on Serial

Port C. GPS data is updated in the GUI every one second.

5. Compass

 The compass costatement triggers the compass and translates the data for heading,

pitch, and roll to the JAVA GUI through port 4003. The compass is controlled by the

BL2000 on Serial Port B. The compass is configured to update to the BL2000 five times

per second.

B. TAIL CONTROL

 The tail costatement takes data from the digital compass and potentiometer inputs,

determines the optimal angular position of the tail mechanism, and transmits the drive

signal to the tail motor. For this experiment, the tail angle will follow the pitch angle of

the robot unless the robot exceeds a predetermined positive pitch angle. At this angle, the

tail will immediately lower to provide the boost function described by [4].

 The compass input is parsed from the NMEA string output statement of the

compass. The ASCII characters representing the pitch data are stored in memory and

converted into a floating-point variable, which is interpreted by the BL2000. An offset is

added to the Pitch value to correct for error due to imperfect mounting of the compass to

the platform.

 The tail position is computed from the analog voltage generated by the

potentiometer and read into ADC0. This value is initialized upon startup to determine the

 28

voltage that corresponds to a angle, indicating that the tail is horizontal. Moving the

tail updates the stored analog voltage and converts this to a tail angle based on

where V0 is the initial voltage that corresponds to , Vt is the current voltage, c1 is

an experimentally determined proportionality constant which converts the voltage to an

angular value and is the computed position of the tail with respect to the horizontal

(see section IV-A).

 A proportional coefficient determines the desired motor drive signal output to

DAC1 (see Figure 25). This statement provides a motor drive signal proportional to the

difference between the current compass pitch and tail angle values given by

where is the compass pitch, VS is the tail stop voltage, VT is the tail motor drive

voltage, and c2 is an experimentally determined proportionality constant which converts

the angular measurement given in degrees into a voltage (see section IV-B).

 The control algorithm for the tail is a series of if…then…else function calls that

bound the parameters for tail actuation. The if…then…else statement is a C command

which performs a task only if defined criteria are met during the function call. If not, it

will check whether the parameters of the else statement are met before ignoring the

function. A series of nested if…then…else provide boundary conditions for different

motor commands.

Figure 25. Proportional Control Loop

 29

C. JAVA GRAPHICAL USER INTERFACE

 Kubilay Uzan developed the JAVA Graphical User Interface for use in the NPS

SMART program. This program takes data input from the GPS receiver and Compass

and returns motor control signals for the wheels. All information is passed through the

router. The user interface is a JAVA application, which appears as a map on the laptop

screen (see Figure 26). GPS data on fix time, available satellites, latitude, and longitude,

and compass data on heading, pitch, and roll are parsed to the interface. Error messages

are processed to a separate error indicator. Both manual control and waypoint navigation

commands can be input by the user and output to the robot [5].

Figure 26. JAVA GUI Screen Capture (From [5])

 30

THIS PAGE INTENTIONALLY LEFT BLANK

 31

IV. RESULTS

A. TAIL POSITION CALIBRATION

 To calculate the angle of the tail with respect to the horizontal, the consant, c1,

from Equation 10, had to be determined experimentally. In other words, the

potentiometer output to the BL2000 was characterized to generate an accurate, reliable

measurement of the angle of the tail as shown in Figure 27.

To do this, the robot was placed on an elevated platform and the embedded

Dynamic C program was initiated. The wheel and tail motors were both deactivated. The

tail was then manually elevated and lowered using a Cenco-Lerner Lab Jack to maintain a

fixed angle. The tail was moved in increments of with each new angular position

verified by a protractor and liquid level.

 The result was the linear relationship between the voltage and the indicated tail

angle. This data was plotted in Octave GNU and returned a linear regression plot of the

resulting data pictured in Figure 27. The slope of the line generated is determined to be:

Figure 27. Tail Angle vs. Voltage

 32

 The proportionality constant, c1, is utilized to determine the actual tail angle.

During dynamic evaluation, the computed tail angle became highly erratic due to noise

generated by other loads on the source voltage. Offsets in the horizontal base voltage also

developed due to friction between the potentiometer and tail shaft. To reduce these

effects, the proportionality constant was adjusted several times to test the response of the

tail position indication. For the proportionality constant, a value c1 = 500 deg
V generated a

properly damped observed response. The applied c1 was only 50% of the determined

value.

B. TAIL POSITION VS. ROBSTER PITCH – STATIC

 Tail position response to compass pitch angle was characterized using a static

demonstration of the tail control algorithm. For this experiment, the robot was placed on

an elevated platform, and the pitch of the robot was manually manipulated by tilting the

robot body, depicted in Figure 28. The tail motor controls the position of the tail angle in

accordance with parameters defined in the robot control algorithm.

Figure 28. Static Test Concept

 33

 The results for the static demonstration were plotted in Figure 29 and were in

agreement with the desired results. For the plot, CPU run time starting at i = 200, the

robot pitch angle was steadily increased and the tail responded by increasing with the

increasing tail angle. When the pitch was increased beyond the critical angle, set at 15o,

the tail reacted by rapidly changing its attitude downward to stop at the negative stop, set

at -35o for this test. When the pitch angle declined below the critical angle, the tail rapidly

returned to its position and continued following the pitch angle. This event can be seen

between i = 5000 and i = 5800. After this event, the tail attitude continues to follow the

pitch angle, from a positive angle through negative angles and back to the horizontal.

Figure 29. Robot Pitch and Tail Angle

 The proportionality constant c2 from Equation 11, used to generate the output

control voltage, was determined analytically and through experimental testing. The limits

for the tail angle, , provide a maximum allowable differential of 70o. The stop voltage

for the tail motor controller is VS=2.5V with a voltage range between 0V for maximum

reverse voltage and 5V for maximum forward voltage. Using Equation 11, a minimum

value for c2 can be derived.

(i)

 34

 These bounds correspond to the voltage bandwidth of the motor controller. In the

case where motor controller voltage is outside these bounds, the motor signal becomes

erratic and cannot be properly characterized. The robot rapidly approaches this limit in

the case where pitch exceeds 15o and the tail moves down to drive the rear of the robot.

To avoid this situation, c2 = 35 deg
V was chosen to provide a buffer for the motor

controller voltage. This limited maximum drive signal voltage to 0.5V<VT<4.5V.

 Physical upper and lower bounds for the tail angle were encountered where the

tail struck the lower base of the robot at its maximum negative angle and where the

plastic tail plank impacted the longitudinal shaft of the tail mechanism at its maximum

positive angle. The physical limits of the tail were measured to be

θt
max = 75 and

θt
min = −60 . For this test, the tail would only actuate between limits

−40 ≤θt ≤ 30

 in

order to avoid slamming into these stops and possibly damaging the assembly. If the tail

overshoots these bounds, motor control voltage is set to stop and then a small drive

voltage is sent to reverse the direction of the tail and return it to the desired limits.

C. TAIL POSITION VS. ROBSTER PITCH – DYNAMIC

1. Experimental Setup

 Dynamic tests were performed to evaluate the performance of the tail algorithm

during robot operation. This test was used to characterize the performance of the compass

pitch sensor under the non-ideal conditions of yaw and vertical translation during robot

motion. The test characterized the response of the tail control algorithm to this

unpredictable environment and its ability to generate a desired tail angle.

 The dynamic test entailed driving the robot forward over a ramp elevated to

different slope angles and recording the response of the compass and potentiometer with

time. The ramp was a simple platform made of two wooden boards meeting at

vertices to form an isosceles triangle, see Figure 30. Wooden blocks support the apex of

 35

this ramp from beneath and are adjusted to provide the desired elevation. Rubber strips

were attached to the surfaces of the Whegs™ to increase dynamic friction between the

plastic wheels and the smooth wooden surface.

Figure 30. Dynamic Test Ramp

 Figure 31 is a pictorial representation of the desired dynamic test characteristics.

The desired performance of the tail control, as a function of the robot pitch angle, was

identical to that of the static test of tail control. On level ground, the robot pitch should

indicate approximately zero angle and the tail should be parallel to the surface (see Figure

31 a). As the robot began to ascend the ramp, the pitch should indicate this increasing

positive angle and the tail angle should increase directly proportional to the increasing

pitch (see Figure 31 b). As the pitch exceeded a critical value for each ramp slope, the tail

should immediately descend and remain in that position until the pitch fell below the

critical slope angle (see Figure 31 c). As the robot descended the ramp, the pitch angle

should become negative and the tail should continue to follow the pitch (see Figure 31 d).

As the robot returned to level ground, the pitch angle and the robot tail incline should

both indicate this by resuming the original condition of zero angle for both pitch and tail

(see Figure 31 e).

 36

Figure 31. Dynamic Test Concept

 The tail control algorithm was optimized during testing to generate a smoother,

more consistent response as the robot crossed the ramp. To record data, the robot

remained directly connected to the laptop by means of the BL2000 programming cable

and the data was obtained by means of a printf terminal output command. Output would

only be collected for recorded changes of the compass pitch of

θc > 0.2

 . Ten data sets

were recorded utilizing this method, five for the platform elevated to a 10o slope and five

for the platform elevated to a 15o slope. An example of an ideal data set is depicted in

Figure 32. Letter labels in Figure 32 correspond to the letter labels given to the steps

depicted in Figure 31.

 37

Figure 32. Desired Robot Pitch and Tail Angle Plot

2. Experimental Results

 The data from the experimental trials were plotted in MATLABTM to evaluate the

performance of the pitch indication and tail sensor. For all plots, both individual data

points and seventh order linear regression fit lines of each data set are displayed with

different colors. The plots for average robot pitch and tail angle for each set of trials

includes error bars characterizing the standard deviation of these results (see Table 4).

Trial (Average) Standard Deviation

Robot Pitch 10 5.77

Tail Angle 10 9.41

Robot Pitch 15 7.32

Tail Angle 15 10.06

Table 4. Average Standard Deviations

 Large data scatter was a significant factor in the resulting pitch and tail incline

data. Motion of the WhegsTM platform is subject to a vertical translation, pitch in the

direction of motion, and yaw perpendicular to the direction of motion during normal

a. b. c. d. e.

 38

horizontal movement. A WhegsTM platform is analogous to driving on square wheels.

Though the ends are curved to the arc of a circle, they cannot obviate this innate

limitation. In addition, the compass mounting was jostled and vibrated due to these

shocks. The nonlinear characteristics of the platform and the pitch sensor resulted in the

large scatter observed in the recorded data points from the dynamic experiment.

 Results for the 15 ramp were generally much worse than the shallower ramp due

to mechanical limitations of the robot. Climbing the steeper ramp appeared to approach

the limits of the torque capabilities of the driving motors and the dynamic friction

achievable by the WhegsTM. During each run, the robot slowed dramatically as it climbed

the ramp, and accelerated rapidly on the downward side of the ramp. The resulting data

was very chaotic, particularly for the tail angle, even though the robot appeared to

perform its desired tasks based on visual observations.

a. Robot Pitch

 Figure 33 represents the robot pitch angle for a single run of the robot over

the ramp. The plot for individual data points indicates a great deal of noise in the pitch

indication as the robot proceeded over the ramp. However, the regression line indicates

that the recorded data generally corresponded with our desired results. The large pitch

measurement at i = 1600 was likely produced by the impact of the front WhegsTM on the

flat ground as the robot rapidly descended the slope.

 39

Figure 33. Robot Pitch vs. Time - Data Points and Linear Fit for Single 10 Trial

 Robot pitch data for both ramp angles was plotted in Figure 34 and Figure 35 to

illuminate trends in the recorded pitch data over the course of ten tests. From all trials, the

compass data proved to be a rough but useful estimate for characterizing the robot’s pitch

during actual operation. The change in angle over time is apparent through the majority

of the regression plots. At a given time, the pitch angle was observed to steadily

increased to a maximum in most trials. At this point, a transition from positive incline to

negative decline was observed. Both ramp angles showed a transition of pitch angle from

positive to negative as the robot body continued along the downward slope. All plots

indicated the change in slope of the pitch from negative back toward zero, indicating the

robot returning to a level surface.

 However, all trials produced a significant amount of spurious angular data that

affected the response of the tail control algorithm. Both plots recorded large amounts of

scatter in the results. For the shallow slope, the individual linear fit curves were fairly

consistent, but all of the runs significantly overshot the ramp angle near the tip-over

point. On the downward slope of the steeper ramp, the individual data points alternated

between positive and negative values for several of the runs, flattening out the regression

 40

plots. No explanation could be found because these results could not be reproduced

consistently through all trials and were sometimes absent in others.

Figure 34. Robot Pitch vs. Time - 10

Figure 35. Robot Pitch vs. Time -

 41

 The final plot, Figure 36, compared average pitch results for both ramp heights.

The pitch results for both trials produced average values less than the actual amount, an

overdamped condition. However, the 10o slope was much closer to representing the

correct result than the higher angle slope. In addition, the standard deviation for the 15o

slope was 27% larger than that of the shorter slope, indicating that the results were far

less consistent over the data set.

Figure 36. Average Robot Pitch - 10 and 15

b. Tail Angle

 Figure 37 represents the plot of a single run of the robot over the ramp. As

in the plot of pitch data, the recorded tail angle data was very noisy, but the regression

line generally corresponded with the desired results. The large and rapid swings in tail

angle indicate that the tail response (see Equation 11) could be further damped. However,

several attempts to do this resulted in very sluggish tail response for a variety of different

proportionality constants.

 42

Figure 37. Tail Angle vs. Time - Data Points and Linear Fit for Single 10 Trial

 Results for the tail angle, plotted in Figure 38 and Figure 39, were not as

conclusive as the pitch results. For the majority of trials, the tail was observed to perform

the desired characteristics of holding a fixed horizontal position on flat terrain, holding a

positive angle during the initial ascent of the positive slope, lowering rapidly when pitch

angle exceeded a set value, maintaining a negative angle on the down slope, and

returning to a horizontal position following the ramp. This was especially true of the

trials across the 10o slope. However, the regression plots showed that most of the output

data was not consistent for the 15o slope, and individual trials produced vastly different

results.

 43

Figure 38. Tail Angle vs. Time - 10

Figure 39. Tail Angle vs. Time -

 44

 Comparing average results for both ramps in Figure 40, the 15o slope produced

better results than the shallower ramp. This fact appears to be more an artifact of the

method for averaging the data, and not representative of the results of the individual trials

for that set which produced a wide variation in results for each trial. However, the

standard deviation for the 15o data set was only 6% larger than that derived from the 10o

data set.

Figure 40. Average Tail Angle – 10 and 15

c. Robot Pitch vs. Tail Angle

 The final plot sets, Figure 41 and Figure 42, compare average values for

each trial set. This produced some expected and some surprising results. Both plots

illustrated the sudden change in tail angle as the robot pitch exceeded the critical value,

exactly the desired result. This operation occurred near the maximum pitch angles for

each slope. One unexpected result was that the average tail response for the 10o slope did

not reproduce the desired operation as well as the 15o slope for the positive side of the

incline. During the ascent of the 15o slope, the robot slowed significantly due to the

greater torque requirements necessary to surmount the greater incline, giving it additional

 45

time to generate a response. However, both reacted correctly to angles in excess of their

respective critical angles, lowering the tail to the boost position, and at identical rates. On

the downward side of the ramp, the 15o slope produced a significant overshoot of the

horizontal in comparison to the 10o slope. This was likely caused by the rapid and very

large change in the difference between the pitch and tail angle, producing a high tail

voltage in the difference function (see Equation 11) for a brief period. For both the pitch

and tail angles, standard deviation for the 15o slope was much larger than that found in

the 10o slope.

VT =

θc −θt

c2

+VS =
30 − −40

35 deg
V

+ 2.5V = 4.5V (11)

Figure 41. Average Robot Pitch and Tail Angle - 10

 46

Figure 42. Average Robot Pitch and Tail Angle -

 47

V. RECOMMENDATIONS

 The purpose of this thesis was to evaluate sensor and control components for

integration into future work on the Pelican Whegs™ prototype currently under

development at Case Western Reserve University. Robster proved that a tail mechanism

could be incorporated into the Pelican Whegs™ design, and that this system could be

controlled using a digital compass with tilt sensor and a variable resistance potentiometer

to indicate tail position. Robster could effectively keep track of its pitch and maintain an

appropriate attitude for its tail during walking and climbing operations. However,

performance was better when climbing a shallower platform than a steeper one due to the

underdamped response of the feedback loop. After evaluating this demonstration

platform, some specific considerations were recommended for implementation in the

prototype.

A. CONTROL ALGORITHM IMPROVEMENTS

 Further work is needed to develop the specific control algorithm to be

implemented in the Pelican Whegs™. The primary improvement to the tail control

algorithm will need to come in damping or eliminating response to spurious sensor data.

This can be accomplished by filtering sensor input data for transient results that might fall

outside the surrounding data. A set of data would need to be stored in memory and the

results compared for outliers. However, this would take a certain amount of computer

time and would be highly reliant on the repetition frequency of the sensor queries. Tail

reaction time to pitch changes would be protracted, but much improved position

reliability would be obtained.

 A new critical angle needs to be found for the tail “boost” response. Currently,

this angle was chosen to match the parameters of the experimental setup. However, the

critical angle for this response should occur when the robot’s center of gravity causes it to

high-center and flip over. This angle would need to be characterized specifically for the

Pelican Whegs™ platform.

 48

B. INCLINOMETER

 A more responsive pitch indicator might be utilized to improve the positional

awareness of the robot. The HMR 3000 compass was employed in this robot because it

was already integrated into the navigation function of the robot and had a readily

available two-axis tilt sensor. Yet, inconsistent pitch data during the dynamic tests was

the primary source of error in the results. A solid-state MEMS inclinometer would likely

provide better fidelity and a higher sampling rate than this. However, a different

inclinometer was not acquired due to cost and lack of time to implement in this thesis.

C. TAIL ANGLE SENSOR

 An optical shaft encoder might be used as an alternative to the variable resistance

potentiometer. The potentiometer was very responsive to changes in inclination and

results were easily interpreted by the BL2000. However, the measurement was subject to

nonlinear errors due to noise in the source voltage. These variations introduced

unpredictable results into several of the testing trials. A shaft encoder would output a

fixed value for each given unit of rotation. Therefore, variations in the input voltage

would not affect the results. This might reduce some of the inaccurate results that were

recorded during the dynamic tests.

 49

APPENDIX A. TAIL CONTROL DYNAMIC C CODE

/*---

Courtney Holland
 29MAY2009
ROBSTER THESIS RESULTS
Demonstration of Walking and Tail Over Obstacle
 1. Before starting, place Tail at 0 deg

 2. Tail Control - Turn ON:
 a. Compass
 b. Potentiometer
 c. Tail
 d. Motor Controller

 3. Drives forward for XX seconds

--*/

#define READDELAY 15

#define MAX_SENTENCE 100

#memmap xmem
/*---
-

 Serial Port Settings

#define BINBUFSIZE 127

#define BOUTBUFSIZE 127

#define CINBUFSIZE 127

#define COUTBUFSIZE 127

/*--

 Compass variables

--*/

char dir_string[2];
int string_pos;
char input_char;
float curr_hdg;

char compass_sentence[MAX_SENTENCE];

 50

int compass_error;

//Tilt test variables

char *first, *second, *third, *fourth;
float tilt;

const int compass_delay = 50; //mili-seconds to delay between compass
readings
const char init_str[] = "#BAD=11*7A\r\n"; //5 times per second
//const char init_str[] = "#BAD=15*7E\r\n"; //200 times per second

unsigned long compass_wait_time;

const int compass_timeout = 1;

int Compass_update;

/*--

 New PID Variables

--*/

int compconv;

const float P = 1; // proportional coefficient (concrete)
const float I = 5; // Integral coefficient (concrete)
const float D = 3; // differential coefficient (concrete)

int flag; // determines left or right turn or stop
int flagint; // integral counter

float insidevolts; // voltage on side to which robot turns
float pScale; // proportional scaling term
float dScale; // differential scaling term
float iScale; // integral scaling term

int Error; // heading error +/- 180
int prevError; // heading error previous sample

/*--

 CTRL bools

--*/

int man_ctrl;

/*--

 Control Variables

--*/

 51

const float ERR_INNER_STOP = 90.0; //Error(deg) that makes inner
track stop

const float ERR_INNER_REV = 180.0; //Error(deg) that makes inner
track rev

const float PW_STOP = 2.50; //Pulse width that
results in stop command

const float PW_REV = 1.50; //Pulse width
that results in max reverse (old 4.00)

const float PW_FWD = 3.25; //Pulse width
that results in max forward (old 0.80)

float LeftSide, RightSide; // wheel control for
manual control

const int Motor = 1; //wheel
drive

const int Tail = 0; //tail
drive

const int rt_ch = 0; //right side
const int lt_ch = 1; //left side

float rot, Tale;
 //Potentiometer measurements

const float T_FWD = 3.00;
const float T_STOP = 2.55;
const float T_REV = 1.00;
float T_MOVE;

/*--

 Function Prototypes

--*/

int compass_get_hdg(char sentence[MAX_SENTENCE]);

void msDelay (long sd);

unsigned long t0;

#define time 5

/**

 Main Function

*******/

 52

main()

{

 int i, t;

 float diff, tilt1, level;

/* --
--

 Initializations

*/

 brdInit();

/* --
--

 Motor Initialization

*/

 anaOutVolts(Motor, PW_STOP);
 anaOutVolts(Tail, PW_STOP);

 iScale=0;
 pScale=0;
 dScale=0;

 tilt1 = 10;
 t = 0;
 i = 0;

/* --
--
 Set flags

*/

 man_ctrl = 1;
 Compass_update = 0;

/*---
--

 Initialize Compass

*/

 53

 serBopen(9600);
 serBwrFlush();
 serBputs(init_str);

 rot = anaInVolts(0);
 msDelay(100);
 level = rot;

 while (1)
 {
// --
--

// Compass Costatement

//

// this is where we transmit the compass report to the GUI

// --
--

 costate
 {
 waitfor (DelayMs(compass_delay));

 serBrdFlush();

 string_pos = 0;

 input_char = serBgetc();
 //find begining of sentence

 compass_wait_time = SEC_TIMER + compass_timeout;
//timeout if compass not working

 while (input_char != '$')
 {
 if (SEC_TIMER > compass_wait_time) abort;
 input_char = serBgetc();
 msDelay(READDELAY);
 }
 //read the sentence

 while (input_char != '*')
 {
 compass_sentence[string_pos] = input_char;
 string_pos++;

 if(string_pos == MAX_SENTENCE)
 string_pos = 0; //reset string if too
large

 input_char = serBgetc();
 msDelay(READDELAY);
 }

 54

 compass_sentence[string_pos] = 0; //add null

 //Tilt string parse
 first = strtok(compass_sentence, ",");
 second = strtok(NULL, ",");
 third = strtok (NULL, ",");
 fourth = strtok (NULL, ",");

 }//end of compass

// --
--
// Tail Control Costatement
// --
--

costate
{
 i++;
 tilt = atof(fourth)+ 4.0;
 rot = anaInVolts(0);

 Tale = 500*(rot - level);
 diff = tilt - Tale;
 T_MOVE = diff/45 + T_STOP;

//Move only with tail angle between +30 and -40
 if(Tale <= 30 && Tale >= -40){
 if (tilt >= -1.0 && tilt <= 1.0){
//For Pitch within 1 deg of 0 and tail within 5, STOP
 if(Tale <= 5 && Tale >= -5)
 anaOutVolts(Tail, T_STOP);
 else anaOutVolts(Tail, T_MOVE);
 }
//For Pitch < 15 deg, Tail follows pitch
 if (tilt > 3.0 && tilt <= 12.0)
 anaOutVolts(Tail, T_MOVE);
//For Pitch > 15 deg, Tail moves DOWN
 if (tilt > 15.0)
 anaOutVolts(Tail, T_REV);
 //For Pitch < -3 deg, Tail follows pitch
 if (tilt < -3.0)
 anaOutVolts(Tail, T_MOVE);
 }
 else if (Tale > 30){ //Move Tail DOWN at
stop
 anaOutVolts(Tail, 2.3);
 }
 else if (Tale < -40){ //Move Tail UP at stop
 anaOutVolts(Tail, 2.7);
 }
//Print only for different Pitch
 if (tilt1 >= tilt + 0.2 || tilt1 <= tilt - 0.2){
 printf("%d \t %.4f \t %.4f \n", i, tilt, Tale);
 }
 tilt1 = tilt;
} //end of tail statement

 55

costate
{
 anaOutVolts(Motor, PW_STOP);
 waitfor (DelayMs(10000));
 anaOutVolts(Motor, PW_FWD);
 waitfor (DelayMs(10000));
} //end of motor drive statement
}//while(1)

}//main

/* START FUNCTION DESCRIPTION
**
compass_get_hdg

SYNTAX: int compass_get_data();
KEYWORDS: compass
DESCRIPTION: Parses a sentence to extract heading data.
 This function is able to parse HPR data from a
 HMR3000 Digital Compass
PARAMETER1: sentence - a string containing a line of HPR data
RETURN VALUE: 0 - success
 -1 - parsing error
 -2 - heading marked invalid

SEE ALSO:
END DESCRIPTION
**/
int compass_get_hdg(char sentence[MAX_SENTENCE])
{
 auto int i;
 char *err,*hdg,*type;
 char error;

 if(strlen(sentence) < 4)
 return -1;

 if(strncmp(sentence, "$PTNTHPR", 8) == 0)
 {
 //parse hpr sentence
 type = strtok(sentence, ",");
 hdg = strtok(NULL, ",");
 err = strtok (NULL, ",");
 if(hdg == NULL)
 return -2;
 //pull out data
 curr_hdg = atof(hdg);

 error = (int)err;
 if (strncmp(&error, "N", 1) == 0)
 return -2;
 }
 else
 return -1;
 return 0;
}

 56

void msDelay (long sd)
{
 unsigned long t1;
 t1 = MS_TIMER;

 for (t1 = MS_TIMER; MS_TIMER < (sd + t1););
}

 57

APPENDIX B. EMBEDDED DYNAMIC C CODE

/***
LT Courtney Holland

I. AGBOT Code v2.0 - 18MAR2009
 Changes:
 Eliminated all references to Bigfoot Arm and Thermopile
 Commented out sonar

II. AGBOT Code v2.1 - 20MAR2009
 Changes:
 Added accelerometer costatement

III. ROBSTER Code v2.2 - 09APR2009
 Working Code for Comms, GPS, Compass, IR, Navigation
 Changes:
 Deleted accelerometer costatement
 Added Serial compass

IV. ROBSTER Code v2.3 - 13APR2009
 Good working code for all mechanical components
 Changes:
 Added function for tail
 Working on manual tail control
 To Do:
 Navigation improvements

V. ROBSTER Code v2.4 - 18MAY2009
 Changes:
 Both wheel set now on DAC1 under Motor
 Tail now on DAC0 under Tail
 Added:
 Potentiometer for ADC0 as Rotation Sensor

**/
/**
BL2000 CONNECTIONS

 Motor Controllers
 DAC1 <---> //left side wheels
 DAC0 <---> //right side wheels

 Tail Controller
 OUT0 BREAK BLACK
 OUT1 FWD/REV YELLOW

 GPS Serial Communicataions
 TX2 BROWN
 RX2 BROWN WITH RED
 GROUND BLACK

 Compass Serial Communicataions
 TX1 GREY
 RX1 GREY

 58

 GROUND BLACK

 IR Ranger
 ADC3 WHITE //center
**/

#define READDELAY 15

#define MAX_SENTENCE 100

/*--
 Network Settings
--*/

#define MY_IP_ADDRESS "192.168.1.2" //BL2000
adress
#define INTERFACE_ADDRESS "192.168.1.3" //Laptop
address
#define MY_NETMASK "255.255.255.0"
#define MY_GATEWAY "192.168.1.1" //Router
address

#define MAN_PORT 4001 // receives manual control data
#define WP_PORT 4002 // receives waypoint data
#define GPS_PORT 4003 // sends gps data
#define COMPASS_PORT 4004 //sends compass data
#define ERROR_PORT 4005 // sends error reports

#use "dcrtcp.lib"

#memmap xmem

/*---
 Serial Port Settings
---*/

#define BINBUFSIZE 127
#define BOUTBUFSIZE 127
#define CINBUFSIZE 127
#define COUTBUFSIZE 127
/*---
 GPS Variables
--*/

double curr_lat;
double curr_lon;

const int xmit_delay = 100;

char sentence[MAX_SENTENCE];
char dir_string[2];

typedef struct {
 int lat_degrees;
 int lon_degrees;
 double lat_minutes;
 double lon_minutes;

 59

 char lat_direction;
 char lon_direction;
} GPSPosition;

GPSPosition current_pos; // Declare new GPSPosition variable

int gps_error, gps_error_count;

const float pi = 3.14159;

const char GPS_Reset[]="$PGRMI,,,,,,,R\r\n"; // Reset Unit
const char GPS_Sent_Clr[]="$PGRMO,,2\r\n"; // Clear all output
sentences
const char GPS_GGA_Enable[]="$PGRMO,GPGGA,1\r\n"; // Enable the GGA
sentence

unsigned long gps_wait_time;
const int gps_timeout = 1;

int string_pos;
char input_char;

/*--
 Compass variables
--*/

float curr_hdg;
char compass_sentence[MAX_SENTENCE];
int compass_error;

//Tilt test variables
char *first, *second, *third, *fourth;
float tilt;

const int compass_delay = 50; //mili-seconds to delay between compass
readings
const char init_str[] = "#BAD=11*7A\r\n"; //5 times per second
//const char init_str[] = "#BAD=15*7E\r\n"; //200 times per second

unsigned long compass_wait_time;
const int compass_timeout = 1;

int Compass_update;

/*--
 New PID Variables
--*/

int compconv;
const float P = 1; // proportional coefficient (concrete)
const float I = 5; // Integral coefficient (concrete)
const float D = 3; // differential coefficient (concrete)
int flag; // determines left or right turn or stop
int flagint; // integral counter
float insidevolts; // voltage on side to which robot turns
float pScale; // proportional scaling term
float dScale; // differential scaling term

 60

float iScale; // integral scaling term
int Error; // heading error +/- 180
int prevError; // heading error previous sample

/*--
 Communications
--*/

word status, port;
longword host;

udp_Socket compass_data, gps_data, error_data;
sock_type wp_data, man_data;

char cmdBuf[2048];
char cmdstr[20], *cmdptr;

char wptBuf[2048];
char wptstr[500], *wptptr, *wpttmp;

char error_buf[200];

/*--
 Nav Variables
--*/

const float brg_error = 5.0; //Allowable Bearing Error
const float rng_error = 5.0; //Allowable range error (in yards)

float lat_diff, lon_diff; //The amount of Lat/Long (in Seconds and
 // Decimal Seconds between
Bender's current
 // position and the next waypoint

float theta; //Angle (deg) from True North to next
waypoint
float hdg_error; //Angle (deg) from current heading to next
 // waypoint

float new_hdg; //The Desired heading in degrees

double rng, temp_rng; // Range and temporary range (in yards)

double brg; //Don't know what this is for

/*--
 Waypoint Variables
--*/

typedef struct
{
 double lat;
 double lon;
 char action;
}WP; // Define WP structure

WP waypoints[10]; // stores the list of waypoints

 61

char passed_waypoint[10]; // Stores action value for passed
waypoints
int curr_wp; // current wp
char *temp;
char *temp_lat, *temp_lon;
char *temp_action;

double lat, lon, wlat, wlon;

/*--
 CTRL bools
--*/

int man_ctrl;
int GPS_updated;

/*--
 Control Variables
--*/

const float ERR_INNER_STOP = 90.0; //Error(deg) that makes inner track
stop
const float ERR_INNER_REV = 180.0; //Error(deg) that makes inner track
rev

const float PW_STOP = 2.50; //Pulse width that results in stop
command
const float PW_REV = 1.5; //Pulse width that results in max reverse
(old 4.00)
const float PW_FWD = 3.5; //Pulse width that results in max
forward (old 0.80)

float LeftSide, RightSide; // wheel control for manual control
const int Motor = 1; //wheel drive

const int Tail = 0; //tail drive
const int rt_ch = 0; //right side
const int lt_ch = 1; //left side
float rot, Tale, level; //Potentiometer measurements
float T_MOVE; //Tail Proportional equation

const float T_FWD = 3.00;
const float T_STOP = 2.55;
const float T_REV = 1.50;

/*--
 Function Prototypes
--*/

int compass_get_hdg(char sentence[MAX_SENTENCE]);
int gps_get_position(GPSPosition *newpos, char *sentence);
int gps_parse_coordinate(char *coord, int *degrees, float *minutes);
int ERROR_function(float new_hdg);
void msDelay (long sd);

void CommStart(void);

 62

unsigned long t0;
#define time 5

/**
 Main Function
**/

main()
{

 int i, t;
 float diff;

/* --
 Initializations
 --*/
 brdInit();
 CommStart();

/* --
 Motor Initialization
---*/

 anaOutVolts(Motor, PW_STOP);
 anaOutVolts(Tail, PW_STOP);

 new_hdg=0;
 iScale=0;
 pScale=0;
 dScale=0;

/* --
 Set flags
---*/

 man_ctrl = 1;
 GPS_updated = 0;
 Compass_update = 0;

/*--
 Initialize Compass
---*/

 serBopen(9600);
 serBwrFlush();
 serBputs(init_str);

/*---
 Initialize GPS
---*/

 serCopen(9600); // Open serial port C
 serCwrFlush(); // Flush serial port C Buffer
 serBputs(GPS_Reset); // Send Reset signal to GPS Receiver
 serBputs(GPS_Sent_Clr); // Send Clear signal to GPS Receiver
 serBputs(GPS_GGA_Enable); // Send GGA Sentence enable signal

 63

 // (position info)
/*---
 Initialize Tail
--*/

 rot = anaInVolts(0);
 msDelay(100);
 level = rot;

 while (1)
 {
 tcp_tick(NULL);
//---
// Receive Manual Control Data
// --

 costate
 {
 waitfor(sock_recv(&man_data, cmdstr, (word)sizeof(cmdstr)));

 //Tokenize the string and convert to integers
 LeftSide = atof(strtok(cmdstr, " "));
 RightSide = atof(strtok(NULL, "/n"));

 anaOutVolts(Motor, RightSide);
// anaOutVolts(Tail, LeftSide);

 if (!man_ctrl)
 {
 sprintf(error_buf, "$Manual control data recieved...IN
MANUAL CTRL\n", curr_wp);
 sock_puts(&error_data, error_buf);
 }
 //Update the flags
 man_ctrl = 1;

 } // man data costate

// --
// Compass Costatement
// this is where we transmit the compass report to the GUI
// --

 costate
 {
 waitfor (DelayMs(compass_delay));

 serBrdFlush();
 string_pos = 0;

 input_char = serBgetc();

 //find begining of sentence
 compass_wait_time = SEC_TIMER + compass_timeout; //timeout
if compass not working

 64

 while (input_char != '$')
 {
 if (SEC_TIMER > compass_wait_time) abort;
 input_char = serBgetc();
 msDelay(READDELAY);
 }

 //read the sentence
 while (input_char != '*')
 {
 compass_sentence[string_pos] = input_char;
 string_pos++;

 if(string_pos == MAX_SENTENCE)
 string_pos = 0; //reset string if too large

 input_char = serBgetc();
 msDelay(READDELAY);
 }

 compass_sentence[string_pos] = 0; //add null
 sock_puts(&compass_data, compass_sentence);

 //Tilt string parse
 first = strtok(compass_sentence, ",");
 second = strtok(NULL, ",");
 third = strtok (NULL, ",");
 fourth = strtok (NULL, ",");
 if((compass_error =compass_get_hdg(compass_sentence)) != 0)
 {
 sprintf(error_buf, "$Compass Error: %d\n",compass_error);
 sock_puts(&error_data, error_buf);
 }
 else
 {
 Compass_update = 1;
 }
 }//end of compass

// --
// Tail Control Costatement
// --

 costate
 {
 i++;
 tilt = atof(fourth)+ 4.0;
 rot = anaInVolts(0);

 Tale = 500*(rot - level);
 diff = tilt - Tale;
 T_MOVE = diff/45 + T_STOP;

 //Move only with tail angle between +30 and -30
 if(Tale <= 30 && Tale >= -40){
 if (tilt >= -1.0 && tilt <= 1.0){
//For Pitch within 1 deg of 0 and tail within 5, STOP

 65

 if(Tale <= 5 && Tale >= -5)
 anaOutVolts(Tail, T_STOP);
 else anaOutVolts(Tail, T_MOVE);
 }
 if (tilt > 3.0 && tilt <= 12.0){
//For Pitch < 15 deg, Tail follows pitch
 anaOutVolts(Tail, T_MOVE);
 }
 if (tilt > 12.0){
 //For Pitch > 15 deg, Tail moves DOWN
 anaOutVolts(Tail, T_REV);
 }
 if (tilt < -3.0){
 //For Pitch < -3 deg, Tail follows pitch
 anaOutVolts(Tail, T_MOVE);
 }
 }
 else if (Tale > 30){
 //Move Tail DOWN at stop
 anaOutVolts(Tail, 2.3);
 }
 else if (Tale < -40){
 //Move Tail UP at stop
 anaOutVolts(Tail, 2.7);
 }
 tilt1 = tilt;
 } //end of tail statement

// --
// Receive Waypoint Data
// --

 costate
 {
 waitfor(sock_recv(&wp_data, wptstr, (word) sizeof(wptstr)));

 //find begining of string
 wptptr = wptstr; //assign a pointer

 while (*wptptr != '$') //Step through until begining of string
 wptptr++;
 wptptr++;
 //tokenize
 temp_lat = strtok(wptptr, " ");
 temp_lon = strtok(NULL, " ");
 temp_action = strtok(NULL, " ");

 for (i = 0; i < 10; i++)
 {
 if ((temp_lat == 0 && temp_lon ==0) ||
 waypoints[i].action != "P")
 {
 waypoints[i].lat = strtod(temp_lat, NULL);
 waypoints[i].lon = strtod(temp_lon, NULL);
 waypoints[i].action = *temp_action;
 } //End if Statement

 66

 temp_lat = strtok(NULL, " ");
 temp_lon = strtok(NULL, " ");
 temp_action = strtok(NULL, " ");
 }//End for loop

 curr_wp = 0;
// Resets current WP to 1st waypoint. If this is an
// update to waypoints, Nav will increment curr_wp until
// a good waypoint is there.
 //update the flags
 man_ctrl = 0;

 sprintf(error_buf,
 "$WP's recieved. In AUTO NAV and preceeding to WP
%d\n",
 curr_wp);
 sock_puts(&error_data, error_buf);

 // these commands make the robot start moving forward before
 // trying to find the heading to avoid em surge near compass
 anaOutVolts(rt_ch, PW_FWD);
 anaOutVolts(lt_ch, PW_FWD);
 msDelay(500);

 }//End Waypoint Costatement

// --
// GPS
// --
 costate
 {
// waitfor (DelaySec(gps_delay));

 serCrdFlush();
 string_pos = 0;
 input_char = serCgetc();

 //timeout if gps not sending data
 gps_wait_time = SEC_TIMER + gps_timeout;
 while (input_char != '$')
 {
 if (SEC_TIMER > gps_wait_time) abort;
 input_char = serCgetc();
 msDelay(READDELAY);
 }
 //find begining of sentence
 while ((input_char != '\r') && (input_char !='\n'))
 {
 sentence[string_pos] = input_char;
 string_pos++;
 if(string_pos == MAX_SENTENCE)
 string_pos = 0; //reset string if too large

 input_char = serCgetc();
 msDelay(READDELAY);

 67

 }

 sentence[string_pos] = 0;

 sock_puts(&gps_data, sentence);
 //tcp_tick(NULL);

 gps_error = gps_get_position(¤t_pos, sentence);

 if ((gps_error == 0) || (gps_error == -1))
 gps_error_count = 0;
 else
 {
 gps_error_count ++;
 }
 GPS_updated = 1;
 curr_lat=(current_pos.lat_degrees +
(current_pos.lat_minutes/60));
 curr_lon=(current_pos.lon_degrees +
(current_pos.lon_minutes/60));

// }
 }//GPS

// --
// Navigation
// Passes heading error and range to CTRL costatement and uses error
function
// to determine error from new_hdg and curr_heading
// --
 costate
 {
 if (man_ctrl)
 {
 abort;
 }
 if (GPS_updated) //Navigates to new waypoint
 {
 //if(1) {
 // give fake lat/long
 //curr_lat = 36.595;
 //curr_lon = 121.8753;

 lat = 60 * curr_lat; // converts latitude into
 // Minutes and decimal minutes
 lon = 60 * curr_lon; // converts longitude into
 // Minutes and decimal minutes
 wlat = 60 * waypoints[curr_wp].lat;
// Converts waypoint values
 wlon = 60 * waypoints[curr_wp].lon; // to decimal minutes
// replaced by following line for simplicity
 rng =sqrt((4000000*(wlat-lat)*(wlat-lat))+
 (2560000*(wlon-lon)*(wlon-lon)));
 if (rng <= rng_error)
// When close enough to waypoint, action
// code takes effect and next waypoint is loaded
 {

 68

 switch (waypoints[curr_wp].action)
 {
 case 'T': //Go to next waypoint
 {
 passed_waypoint[curr_wp] = 'T';
 // Stores action code in temp array
 waypoints[curr_wp].action = 'P';
 // Changes action code to indicate
 // WP has been passed
 sock_puts(&error_data, "$Proceeding to next
WP\n");
 curr_wp++;
 while ((waypoints[curr_wp].lat == 0) &&
 (waypoints[curr_wp].lon == 0))
 { //checks for valid WP
 curr_wp++;
 if (curr_wp == 10)
 {
 sock_puts(&error_data, "$No Valid WP
Found\n");
 tcp_tick(NULL);
 man_ctrl = 1;
 abort;
 }//End if
 }//End while
 break;
 } //End case 'T'

 case 'H': //Start from beginning again
 {
 for (i = 0;i < 10;i++)
//Reloads prior action codes
 {
 waypoints[i].action = passed_waypoint[i];
 }
 sock_puts(&error_data,"$Proceeding back to home
WP. \n");
 curr_wp = 0;

 while ((waypoints[curr_wp].lat == 0) &&
 (waypoints[curr_wp].lon
== 0))
 { //checks for valid WP
 curr_wp++;

 if (curr_wp == 10)
 {
 sock_puts(&error_data, "$No Valid WP
Found\n");
 tcp_tick(NULL);
 man_ctrl = 1;
 abort;
 }//End if
 }//End while

 break;
 }//End case 'H'

 69

 case 'S': //Stop
 {
 anaOutVolts(rt_ch, PW_STOP);
 anaOutVolts(lt_ch, PW_STOP);
//Stops Bigfoot

 for (i = 0; i < 10; i++)
//Clears the Waypoint array
 {
 waypoints[i].lat = 0;
 waypoints[i].lon = 0;
 waypoints[i].action='T';
 }//End for loop

 sock_puts(&error_data,
 "$Destination Achieved,
Waypoints cleared\n");
 tcp_tick(NULL);
 man_ctrl = 1;
 abort;
 }//End case 'S'

 case 'C': //Turn in a circle then proceed to next
 // WP????? this could be a problem
 {
 curr_wp++;
 while ((waypoints[curr_wp].lat == 0) &&
 (waypoints[curr_wp].lon == 0))
 { //checks for valid WP
 curr_wp++;
 if (curr_wp == 10)
 {
 sock_puts(&error_data, "$No Valid WP Found\n");
 tcp_tick(NULL);
 man_ctrl = 1;
 abort;
 }// End if
 }// End while
 break;
 }//End case 'C'
 case 'P': // Check for passed waypoints
 {
 curr_wp++; // Bigfoot ignores this point
 // and goes to next one
 while ((waypoints[curr_wp].lat == 0) &&
 (waypoints[curr_wp].lon == 0))
 { // Checks for valid WP
 curr_wp++;
 if (curr_wp == 10)
 {
 sock_puts(&error_data, "$No Valid WP Found\n");
 tcp_tick(NULL);
 man_ctrl = 1;
 abort;
 }//End if
 }//End while

 70

 break;
 }//End case 'P'

 default: //Indicates and invalid action code
 {
 sprintf(error_buf, "$Invalid action for WP # %d\n",
 curr_wp);
 sock_puts(&error_data, error_buf);
 tcp_tick(NULL);

 anaOutVolts(rt_ch, PW_STOP);
 anaOutVolts(lt_ch, PW_STOP);
 man_ctrl = 1; abort;
 }//End default case
 }//End Switch
 if (curr_wp > 9) // Should not be here.
 // Action for last WP invalid.
 {
 anaOutVolts(rt_ch, PW_STOP);
 anaOutVolts(lt_ch, PW_STOP);
 man_ctrl = 1;
 sock_puts(&error_data, "$Invalid action for wp 9\n");
 tcp_tick(NULL);
 abort;
 }//End if (curr_wp>9)
 }//End if (rng < rng_error)
 // Calculate new heading if range not within error
 // 3600 converts lat_diff and lon_diff to decimal seconds
 lat_diff = 3600 * (waypoints[curr_wp].lat-curr_lat);
 lon_diff = 3600 * (curr_lon - waypoints[curr_wp].lon);
 // determine theta in degrees
 theta = atan((lat_diff) / (lon_diff)) * (180 / pi);
 // waypoint located in positive y-axis
 if ((lon_diff == 0) && (lat_diff > 0))
 new_hdg = 0;
 // waypoint is located in negative y-axis
 else if ((lon_diff == 0) && (lat_diff < 0))
 new_hdg = 180;
 // waypoint is located in positive x-axis
 else if ((lon_diff > 0) && (lat_diff == 0))
 new_hdg = 90;
 // waypoint is located in negative x-axis
 else if ((lon_diff < 0) && (lat_diff == 0))
 new_hdg = 270;
 // waypoint is located in the first or fourth quadrant
 // (0-90 or 270-0)
 else if (lon_diff > 0)
 new_hdg = 90 - (int)(theta);
 // waypoint is located in the second or third quadrant
 // (90-180 or 180-270)
 else if (lon_diff < 0)
 new_hdg = 270-(int)(theta);
 hdg_error = ERROR_function(new_hdg);
 tcp_tick(NULL);
 }// End if (GPS_updated)
 }// End NAV costate
//***

 71

// PID Controls
//***

 costate
 {
 waitfor(!man_ctrl);

 if (hdg_error <= 5.0 && hdg_error >= -5.0)
 {
 hdg_error = 0.0;
 flag = 2;
 }

 if ((hdg_error >= 180.0) ||
 ((hdg_error > -180.0) && (hdg_error < 0.0)))
 {
 flag = 1;
 }
 else
 {
 flag = 0;
 }
 //calculate proportional scale constant
 Error = (int)(fabs(hdg_error));

 if (Error > 180)
 {
 Error = 360 - Error;
 }

 pScale = (Error*(0.008333));

 dScale = ((Error-prevError)*(0.00833));

 iScale = pScale + iScale;

 if(flagint > 40)
 {
 iScale = 0.0;
 }

 flagint++;

 prevError = Error;

 if(!(hdg_error == 0.0))
 {
 insidevolts = (P * pScale) + (I * iScale) + (D * dScale);
 //Do not send more than we put out
 if(insidevolts > PW_STOP)
 {
 insidevolts = 2.35;
 }

 if(flag == 0) // turn right
 {
 anaOutVolts(rt_ch, insidevolts);

 72

 anaOutVolts(lt_ch, PW_FWD);
 }

 if(flag == 1) // turn left
 {
 anaOutVolts(rt_ch, PW_FWD);
 anaOutVolts(lt_ch, insidevolts);
 }
 }//ends if for heading error not = 0
 else
 {
 // send the right voltages to the wheels if no heading error
 // and the range is greater than the delta
 anaOutVolts(rt_ch, PW_FWD);
 anaOutVolts(lt_ch, PW_FWD);
 }
 }//end PID costate

}//while(1)

}//main

/* START FUNCTION DESCRIPTION
**
compass_get_hdg

SYNTAX: int compass_get_data();

KEYWORDS: compass

DESCRIPTION: Parses a sentence to extract heading data.
 This function is able to parse HPR data from a
 HMR3000 Digital Compass

PARAMETER1: sentence - a string containing a line of HPR data

RETURN VALUE: 0 - success
 -1 - parsing error
 -2 - heading marked invalid

SEE ALSO:

END DESCRIPTION
**/

int compass_get_hdg(char sentence[MAX_SENTENCE])
{
 auto int i;
 char *err,*hdg,*type;
 char error;

 if(strlen(sentence) < 4)
 return -1;

 if(strncmp(sentence, "$PTNTHPR", 8) == 0)
 {

 73

 //parse hpr sentence
 type = strtok(sentence, ",");
 hdg = strtok(NULL, ",");
 err = strtok (NULL, ",");
 if(hdg == NULL)
 return -2;

 //pull out data
 curr_hdg = atof(hdg);

 error = (int)err;
 if (strncmp(&error, "N", 1) == 0)
 return -2;

 }
 else
 return -1;

 return 0;
}

//***
// gps_parse_coordinate
//
// Parses GPS position data
//
//PARAMETERS: coord - contains N/S, E/W
// degrees, minutes - positional information
//
//RETURN VALUE: 0 - success (xxxxx.xxxx minutes)
// -1 - parsing error
//
//***

nodebug int gps_parse_coordinate(char *coord, int *degrees, float
*minutes)
{
 auto char *decimal_point;
 auto char temp;
 auto char *dummy;

 decimal_point = strchr(coord, '.');
 if(decimal_point == NULL)
 return -1;
 temp = *(decimal_point - 2);
 *(decimal_point - 2) = 0; //temporary terminator
 *degrees = atoi(coord);
 *(decimal_point - 2) = temp; //reinstate character
 *minutes = strtod(decimal_point - 2, &dummy);
 return 0;
}

/* START FUNCTION DESCRIPTION
**
gps_get_position

 74

SYNTAX: int gps_get_position(GPSPositon *newpos, char
*sentence);

KEYWORDS: gps

DESCRIPTION: Parses a sentence to extract position data.
 This function is able to parse any of the
following
 GPS sentence formats: GGA

PARAMETER1: newpos - a GPSPosition structure to fill
PARAMETER2: sentence - a string containing a line of GPS data
 in NMEA-0183 format

RETURN VALUE: 0 - success
 -1 - not differential
 -2 - sentence marked invalid
 -3 - parsing error

SEE ALSO:

END DESCRIPTION
**/

//can parse GGA
nodebug int gps_get_position(GPSPosition *newpos, char *sentence)
{
 auto int i;

 if(strlen(sentence) < 4)
 return -3;
 if(strncmp(sentence, "$GPGGA", 6) == 0)
 {
 //parse GGA sentence
 for(i = 0;i < 11;i++)
 {
 sentence = strchr(sentence, ',');
 if(sentence == NULL)
 return -3;
 sentence++; //first character in field
 //pull out data
 if(i == 1) //latitude
 {
 if(gps_parse_coordinate(sentence,
 &newpos->lat_degrees,
 &newpos->lat_minutes)
)
 {
 return -3; //get_coordinate failed
 }
 }
 if(i == 2) //lat direction
 {
 newpos->lat_direction = *sentence;
 }
 if(i == 3) // longitude
 {

 75

 if(gps_parse_coordinate(sentence,
 &newpos->lon_degrees,
 &newpos->lon_minutes)
)
 {
 return -3; //get_coordinate failed
 }
 }
 if(i == 4) //lon direction
 {
 newpos->lon_direction = *sentence;
 }
 if(i == 5) //link quality
 {
 if(*sentence == '0')
 return -2;
 if(*sentence == '1')
 return -1;
 }
 }
 }
 else
 {
 return -3; //unknown sentence type
 }
 return 0;
}

/* START FUNCTION DESCRIPTION
**
ERROR_function

SYNTAX: int ERROR_function(new_hdg);

KEYWORDS: nav, control

DESCRIPTION: Determines heading error for use by Nav and Control
costatements

PARAMETER1: new_hdg - latest update of bearing to next waypoint or
direction
 to drive based upon sonar contact

RETURN VALUE: hdg_error

SEE ALSO:

END DESCRIPTION
**/

int ERROR_function(float new_hdg)
{
 hdg_error = new_hdg - curr_hdg;

 if (hdg_error <= 6 && hdg_error >= -6)
 {
 hdg_error = 0;

 76

 }

 return(hdg_error);
}

/* START FUNCTION DESCRIPTION
**
gps_get_position

SYNTAX: void msDelay(long sd);

KEYWORDS: delay, wait

DESCRIPTION: introduces a defined ms delay loop

PARAMETER1: sd - number of ms to wait

SEE ALSO:

END DESCRIPTION
**/

void msDelay (long sd)
{
 unsigned long t1;

 t1 = MS_TIMER;
 for (t1 = MS_TIMER; MS_TIMER < (sd + t1););
}

//

//
// Communication Start
//
//

void CommStart()
{
 sock_init();
 if (!(host = resolve(INTERFACE_ADDRESS)))
 {
 exit(3);
 }

/*--
 open outgoing error port
--*/

 if (!udp_open(&error_data, ERROR_PORT, 0xffffffff, ERROR_PORT,
NULL))
 {
 exit(3);
 }

 77

 sock_mode(&error_data, TCP_MODE_ASCII);
 sock_mode(&error_data, UDP_MODE_NOCHK);

/*--
 open incoming waypoint port
 ---*/

 if (!udp_open(&wp_data, WP_PORT, 0xffffffff, WP_PORT, NULL))
 {
 sock_puts(&error_data, "$Unable to open WP UDP session\n");
 exit(3);
 }
 sock_mode(&wp_data, UDP_MODE_NOCHK);

/*---
 open incoming manual control port
 ---*/

 if (!udp_open(&man_data, MAN_PORT, 0xffffffff, MAN_PORT, NULL))
 {
 sock_puts(&error_data, "$Unable to open MANUAL UDP session\n");
 exit(3);
 }
 sock_mode(&man_data, UDP_MODE_NOCHK);

/*---
 open outgoing compass port
 ---*/

 if (!udp_open(&compass_data, COMPASS_PORT, 0xffffffff,
COMPASS_PORT, NULL)) {
 sock_puts(&error_data, "$Unable to open COMPASS UDP session\n");
 exit(3);
 }
 sock_mode(&compass_data, TCP_MODE_ASCII);
 sock_mode(&compass_data, UDP_MODE_NOCHK);

/*--
 open outgoing GPS port
 ---*/

 if (!udp_open(&gps_data, GPS_PORT, 0xffffffff, GPS_PORT, NULL))
 {
 sock_puts(&error_data, "$Unable to open GPS UDP session\n");
 exit(3);
 }
 sock_mode(&gps_data, TCP_MODE_ASCII);
 sock_mode(&gps_data, UDP_MODE_NOCHK);

 sock_puts(&error_data, "$Sockets are established\n");

 if (sock_recv_init(&wp_data, wptBuf, (word)sizeof(wptBuf)))
 {
 sock_puts(&error_data, "$Could not enable WP buffer.\n");
 exit(3);
 }

 78

 if (sock_recv_init(&man_data, cmdBuf, (word)sizeof(cmdBuf)))
 {
 sock_puts(&error_data, "$Could not enable MAN buffer.\n");
 exit(3);
 }
} // end Comm Start

 79

APPENDIX C. EXPERIMENTAL DATA

Experiment 1

Voltage Tail Angle Voltage Tail Angle
2.344976 -44.61956 2.374723 -14.873028
2.344976 -44.61956 2.374723 -14.873028
2.344976 -44.61956 2.374723 -14.873028
2.344976 -44.61956 2.374723 -14.873028
2.344976 -44.61956 2.374723 -14.873028
2.344976 -44.61956 2.37968 -9.915352
2.344976 -44.61956 2.37968 -9.915352
2.349934 -39.661884 2.37968 -9.915352
2.349934 -39.661884 2.37968 -9.915352
2.349934 -39.661884 2.37968 -9.915352
2.349934 -39.661884 2.374723 -14.873028
2.354892 -34.704208 2.37968 -9.915352
2.354892 -34.704208 2.37968 -9.915352
2.354892 -34.704208 2.374723 -14.873028
2.354892 -34.704208 2.37968 -9.915352
2.349934 -39.661884 2.37968 -9.915352
2.354892 -34.704208 2.389596 0
2.354892 -34.704208 2.384638 -4.957676
2.354892 -34.704208 2.384638 -4.957676
2.354892 -34.704208 2.384638 -4.957676
2.354892 -34.704208 2.384638 -4.957676
2.349934 -39.661884 2.384638 -4.957676
2.354892 -34.704208 2.389596 0
2.354892 -34.704208 2.384638 -4.957676
2.354892 -34.704208 2.384638 -4.957676
2.354892 -34.704208 2.389596 0
2.359849 -29.746532 2.384638 -4.957676
2.354892 -34.704208 2.384638 -4.957676
2.354892 -34.704208 2.384638 -4.957676
2.354892 -34.704208 2.384638 -4.957676
2.354892 -34.704208 2.389596 0
2.354892 -34.704208 2.384638 -4.957676
2.359849 -29.746532 2.389596 0
2.359849 -29.746532 2.389596 0
2.359849 -29.746532 2.389596 0
2.359849 -29.746532 2.389596 0
2.359849 -29.746532 2.389596 0
2.359849 -29.746532 2.389596 0
2.359849 -29.746532 2.384638 -4.957676
2.359849 -29.746532 2.389596 0
2.359849 -29.746532 2.394553 4.957676
2.359849 -29.746532 2.394553 4.957676
2.359849 -24.788857 2.394553 4.957676
2.359849 -24.788857 2.394553 4.957676
2.359849 -24.788857 2.394553 4.957676
2.359849 -24.788857 2.399512 9.915829
2.359849 -24.788857 2.399512 9.915829
2.364807 -19.830704 2.399512 9.915829
2.359849 -24.788857 2.399512 9.915829
2.359849 -24.788857 2.399512 9.915829
2.364807 -19.830704 2.404469 14.873505
2.359849 -24.788857 2.404469 14.873505
2.359849 -24.788857 2.404469 14.873505
2.364807 -19.830704 2.399512 9.915829
2.364807 -19.830704 2.399512 9.915829
2.359849 -24.788857 2.404469 14.873505
2.364807 -19.830704 2.404469 14.873505
2.359849 -24.788857 2.404469 14.873505
2.364807 -19.830704 2.404469 14.873505

 80

2.359849 -24.788857 2.399512 9.915829
2.364807 -19.830704 2.409427 19.831181
2.364807 -19.830704 2.409427 19.831181
2.359849 -24.788857 2.409427 19.831181
2.359849 -24.788857 2.409427 19.831181
2.359849 -24.788857 2.409427 19.831181
2.359849 -24.788857 2.414385 24.788857
2.359849 -24.788857 2.414385 24.788857
2.369765 -19.830704 2.414385 24.788857
2.369765 -19.830704 2.419342 29.746532
2.364807 -24.78838 2.414385 24.788857
2.369765 -19.830704 2.419342 29.746532
2.369765 -19.830704 2.414385 24.788857
2.369765 -19.830704 2.414385 24.788857
2.369765 -19.830704 2.419342 29.746532
2.369765 -19.830704 2.414385 24.788857
2.369765 -19.830704 2.419342 29.746532
2.369765 -19.830704 2.419342 29.746532
2.374723 -14.873028 2.419342 29.746532
2.374723 -14.873028 2.419342 29.746532
2.374723 -14.873028 2.419342 29.746532
2.374723 -14.873028 2.419342 29.746532
2.374723 -14.873028 2.414385 24.788857
2.374723 -14.873028 2.419342 29.746532
2.364807 -24.78838 2.419342 29.746532
2.374723 -14.873028
2.374723 -14.873028
2.374723 -14.873028

Experiment 2

Time Pitch Tail Time Pitch Tail
1 0.7 0 6468 9.3 9.9154

610 0.7 -4.9579 6569 8.4 12.3942
659 0.3 -4.9579 6619 8.2 9.9154
1212 1.1 -4.9579 6670 7 9.9154
1270 0.7 -2.4788 6721 7.5 9.9154
1319 0.3 -2.4788 6773 5.8 7.4365
1369 0.7 -2.4788 6927 4.7 7.4365
1578 0.7 -2.4788 6979 3.6 4.9577
1677 1.2 -4.9579 7029 2.1 4.9577
1794 2.3 -2.4788 7146 0.5 2.4788
2028 3 -2.4788 7196 1.1 4.9577
2086 3.6 -4.9579 7353 0.6 2.4788
2188 4.7 4.9577 7455 -0.3 4.9577
2239 4 4.9577 7505 0.8 4.9577
2290 3.7 4.9577 7603 -1.8 4.9577
2393 4.6 4.9577 7660 -0.5 4.9577
2495 5.1 4.9577 7709 -2 4.9577
2653 5.8 4.9577 7768 -4.5 4.9577
2909 6.4 7.4365 7820 -5.2 4.9577
3011 6.9 4.9577 7923 -5.5 2.4788
3062 7.3 7.4365 7973 -6.3 2.4788
3112 7.7 7.4365 8022 -7.3 2.4788
3368 8 7.4365 8071 -8.4 0
3472 8.6 4.9577 8173 -9.2 0
3624 9.1 7.4365 8223 -8.7 -2.4788
3675 9.3 7.4365 8323 -10.8 -2.4788
3725 9.6 9.9154 8372 -11.9 -2.4788
3776 9.8 9.9154 8421 -11 -2.4788
3827 10.1 9.9154 8471 -10.8 -4.9579
3878 10.8 9.9154 8520 -11.6 -4.9579
3929 10.6 9.9154 8621 -13.8 -7.4368
3981 10.8 9.9154 8670 -14.1 -4.9579
4032 11 9.9154 8721 -14.5 -7.4368
4137 11.4 9.9154 8770 -13.9 -7.4368
4188 11.7 9.9154 8820 -14.7 -9.9156

 81

4290 11.9 9.9154 8920 -15.5 -9.9156
4392 12.4 12.3942 8969 -15 -9.9156
4442 12.8 12.3942 9020 -14.6 -12.3944
4492 13.1 12.3942 9069 -15.2 -12.3944
4541 13.7 12.3942 9119 -14.9 -12.3944
4592 14.1 12.3942 9219 -13.9 -14.8733
4642 13.8 12.3942 9268 -13.7 -14.8733
4744 13.7 14.8733 9319 -14.1 -14.8733
4847 13.9 14.8733 9420 -13.7 -14.8733
4898 14.7 14.8733 9469 -14.3 -14.8733
4998 15.5 14.8733 9519 -14 -14.8733
5048 16 -19.8309 9621 -13 -14.8733
5099 14.9 -37.183 9671 -12.4 -14.8733
5151 17.2 -37.183 9823 -10.4 -12.3944
5202 16.8 -37.183 9872 -11.6 -12.3944
5253 15.2 -37.183 9922 -11.1 -9.9156
5303 14.5 -37.183 10022 -10.6 -9.9156
5355 13.7 -34.7042 10226 -9 -7.4368
5406 13.4 -29.7465 10276 -8.3 -9.9156
5457 11.7 7.4365 10327 -8.1 -9.9156
5508 11.9 9.9154 10376 -8.3 -9.9156
5558 12.6 9.9154 10427 -8.6 -7.4368
5659 12 12.3942 10476 -8.9 -7.4368
5710 12.2 12.3942 10527 -6.2 -7.4368
5759 11.1 12.3942 10576 -5.8 -7.4368
5809 11.3 12.3942 10626 -5.6 -4.9579
5911 11.1 12.3942 10728 -4 -4.9579
6011 11.3 12.3942 10779 -3.8 -4.9579
6214 10.3 14.8733 10882 -3.6 -2.4788
6316 10.1 12.3942 10935 -1.3 -4.9579
6417 10.2 12.3942 11053 0.4 -4.9579

Experiment 3a - 10 deg

Trial 1 Trial 2
Time Pitch Tail Time Pitch Tail
1 -0.9 0 1 4 0

287 0.5 -2.4788 56 -0.5 0
335 -2 -14.8733 152 -0.2 0
391 -0.9 -14.8733 201 0.5 0
439 -0.4 -12.3944 249 -0.3 -2.4788
534 -0.7 -4.9579 299 -0.5 2.4788
580 -0.4 -7.4368 397 -1.2 7.4365
676 0 -2.4788 452 -0.4 7.4365
725 -0.5 -4.9579 747 -0.9 4.9577
867 3.7 -2.4788 795 -0.6 2.4788
919 2 4.9577 938 20 -4.9577
977 -28 4.9577 987 -18 -19.8309
1025 -12.9 -17.3521 1035 12.7 -14.8733
1072 15.5 -14.8733 1085 9.9 -19.8309
1120 5.4 -44.6198 1135 21.3 -29.7465
1171 -7.2 -29.7465 1184 -14.3 -17.3521
1218 3 -27.2677 1231 4.6 -14.8733
1287 24.8 9.9154 1281 27 -19.8309
1334 3 -22.3098 1331 4 -27.2677
1404 25 -24.7889 1390 -5.7 -14.8733
1453 7 -37.183 1439 4 -2.4788
1504 3 -42.141 1498 27.7 4.9577
1565 -12.9 -49.5775 1546 -1.6 -4.9577
1614 -2.8 -47.0986 1603 -0.8 -4.9577
1664 -1.6 -39.6619 1649 -1.7 -4.9577
1715 -2.5 -32.2254 1705 -0.2 -4.9577
1772 -1.1 -27.2677 1752 0.2 -12.3944
1827 -0.9 -14.8733 1800 -1 -12.3944
1875 -0.3 2.4788 1896 -0.2 -9.9156

 82

1922 -1.3 4.9577 1944 0.2 2.4788
2035 -1 12.3942 1993 0 2.4788

Trial3 Trial 4
Time Pitch Tail Time Pitch Tail
1 0.4 0 1 -0.6 0

142 -0.7 9.9154 239 0 0
189 0.3 7.4365 289 -0.7 0
335 0.2 0 435 -4.1 0
722 0.3 -2.4788 485 -2.9 2.4788
818 0.7 -2.4788 542 -1.1 2.4788
865 4.8 4.9577 888 4.1 -12.3942
914 18 7.4365 937 0 -7.4365
962 21.1 -12.3944 986 2.7 -7.4365
1009 30.8 -19.8309 1042 3.7 14.8733
1058 1.2 -17.3521 1090 -3.5 14.8733
1113 23.7 -34.7042 1139 -7.5 -19.8309
1162 4 -17.3521 1187 4 9.9156
1221 2.5 -14.8733 1370 35.3 4.9577
1276 14.2 -12.3944 1419 -1.1 -24.7886
1324 5.3 -19.8309 1474 -11.6 -17.3521
1372 -12.6 -17.3521 1521 -15.7 -34.7042
1420 -16 -19.8309 1569 4 -29.7463
1470 -1.6 -19.8309 1629 -7.1 -29.7463
1526 -11.6 -12.3944 1678 -0.6 -34.7042
1576 -1.3 -9.9156 1725 0.2 -32.2254
1689 -0.8 -7.4368 1821 -3.9 7.4368
1833 -0.3 -4.9577 1871 -0.2 9.9156
1880 -0.6 0 1919 0.6 12.3944
2075 -0.4 4.9577 2164 0.3 14.8733

Trial 5

Time Pitch Tail
1 0.5 -2.4788
86 0.7 -4.9577
134 1.1 -4.9577
190 0.7 -4.9577
336 -0.8 -17.3521
384 0 -4.9577
434 -0.3 -2.4788
481 1 -4.9577
530 0.7 -4.9577
577 0.5 -2.4788
865 7.8 -4.9577
915 24 7.4365
963 19.8 -19.8309
1011 18.4 -19.8309
1058 4 -17.3521
1108 15.1 -24.7886
1155 23.6 -19.8309
1202 6.3 -14.8733
1253 4 -19.8309
1376 -19.3 12.3944
1424 4 -7.4365
1484 -5.3 7.4365
1534 -2.7 4.9577
1590 0.2 2.4788
1637 -0.4 2.4788
1782 0 2.4788

 83

Experiment 3b - 15 deg

Trial 1 Trial 2
Time Pitch Tail Time Pitch Tail
1 3 2.4788 1 -1.3 0
58 -1.4 2.4788 169 -2.1 -27.2677
345 -1 2.4788 225 -0.1 -2.4788
393 -2.4 2.4788 272 -1.8 -2.4788
450 -2.9 -2.4788 327 -1.3 -2.4788
506 2.7 -4.9579 1013 -3.6 -7.4368
562 -0.7 -2.4788 1062 7.4 -4.9579
610 -1.3 -2.4788 1111 5.8 9.9154
667 -1.5 -2.4788 1161 -0.7 12.3942
723 -1.3 -2.4788 1209 24.2 2.4788
1066 9.1 -7.4368 1255 9.9 -24.7889
1114 3 -12.3944 1304 9.7 -17.3521
1186 15.8 12.3942 1354 14.5 14.8733
1234 3 17.3521 1401 13.9 17.3521
1305 16.1 17.3521 1448 8.7 19.8309
1353 19.1 14.8733 1496 -8.7 0
1402 28.8 -17.3521 1546 24.2 -2.4788
1450 -0.6 -34.7042 1593 11.4 -14.8733
1498 3 -34.7042 1641 -6.1 -14.8733
1568 9.6 -9.9156 1690 -9.7 -9.9156
1616 23.5 0 1739 -8.9 -7.4368
1663 -11.3 -12.3944 1787 -10 -14.8733
1711 -21.9 -12.3944 1837 -9.4 -7.4368
1758 -9.5 -9.9156 1884 -9 -7.4368
1807 -7.6 -12.3944 1934 -8.8 -7.4368
1904 -8.1 -9.9156 1983 -9.6 0
1952 -7.8 -12.3944 2082 -9.7 -4.9579
2001 -7.6 -12.3944

Trial3 Trial 4

Time Pitch Tail Time Pitch Tail
1 3 0 1 3 0
66 -0.9 0 66 -0.8 0
403 -0.8 0 113 -1 0
887 5.4 -4.9579 162 -0.4 0
935 20.4 9.9154 209 -1.3 -2.4788
982 13.1 -32.2254 267 -0.5 -2.4788
1031 10.4 -7.4368 315 -0.8 0
1080 13.5 14.8733 412 -2.6 -4.9577
1127 23.9 17.3521 468 -0.9 -4.9577
1175 11.3 -29.7465 899 6.7 -7.4365
1224 14.8 -7.4368 998 9.6 14.8733
1271 3 12.3942 1048 -7 12.3944
1342 -4.5 19.8309 1098 6.4 4.9579
1392 17.9 9.9154 1148 13.1 4.9579
1440 22.7 -22.3098 1195 14.1 12.3944
1487 23.4 -29.7465 1242 20.7 12.3944
1534 3.1 -22.3098 1290 3 -19.8309
1583 -2.1 -22.3098 1361 -25.9 -17.3519
1638 -0.3 -14.8733 1408 -14.4 -7.4365
1687 2.5 -2.4788 1455 9.4 -14.873
1745 0.2 12.3942 1503 3 -14.873
1795 -0.7 12.3942 1573 -1 32.2254
1843 0.4 7.4365 1625 -2.5 37.1833
1893 -0.2 7.4365 1678 -0.1 34.7042
1941 0.1 7.4365 1729 0.2 34.7042
2040 -0.8 7.4365 1887 0.6 37.1833

 1938 0.4 37.1833

Trial 5
Time Pitch Tail
1 3 2.4788

 84

59 -1.2 2.4788
287 -1 2.4788
336 -1.3 -4.9579
393 -2.1 -2.4791
449 -1.3 -7.4368
506 -1.6 -7.4368
561 -1.2 -7.4368
1073 -4.3 -9.9156
1122 15.5 -2.4791
1170 3 14.873
1242 15 29.7463
1290 21.3 24.7886
1339 21.8 -19.8309
1388 20.4 -22.31
1437 13 -22.31
1486 13.8 -47.0986
1534 3 -17.3521
1606 -25.9 -14.8733
1653 25.7 -47.0986
1701 -5.9 -47.0986
1751 7.9 -39.6621
1801 0.2 -39.6621
1849 -0.1 2.4788
1897 -2.4 7.4365
1952 -1.6 17.3521
2008 -0.1 14.873

 85

LIST OF REFERENCES

1. Quinn, R.D., et al. “Improved Mobility Through Abstracted Biological
Principles,” Proceedings of the 2002 IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2002, pp. 2652-2657.

2. Dunbar, T.W. "Demonstration of Waypoint Navigation for a Semi-Autonomous

Prototype Surf-Zone Robot." M.S. thesis, Naval Postgraduate School, 2006.

3. Ward, J.L. "Design of a Prototype Autonomous Amphibious Whegs™ Robot for

Surf-Zone Operations." M.S. thesis. Naval Postgraduate School, 2005.

4. Boxerbaum, A.S., et al. "Design of a Semi-Autonomous Amphibious Surf-Zone

Robot," Technical Report. Case Western Reserve University, 2009.

5. Herkamp, J.F., “Deployment of Shaped Charges by a Semi-Autonomous Ground

Vehicle,” M.S. thesis, Naval Postgraduate School, Monterey, California, 2007.

6. Maxon. Planetary Gearhead 42C.
 http://www.treffer.com.br/produtos/maxon/redutores/pdf/245.pdf
 (accessed June 2009).

7. Superdroid Robots. MD22 Devantech Dual Motor Driver.
 http://www.superdroidrobots.com/product_info/MD22_info.htm
 (accessed June 2009).

8. Superdroid Robots. PWM Motor Controller 3A 12-55V.
 http://www.superdroidrobots.com/shop/item.asp?itemid=583
 (accessed June 2009).

9. National Semiconductor Corporation. LM555 Timer Specification Sheet.
 http://www.national.com/mpf/LM/LM555.html
 (accessed June 2009).

10. Fairchild Semiconductor. LM78xx Fixed Voltage Regulator.
 http://www.datasheetcatalog.com/datasheets_pdf/L/M/7/8/LM7812.shtml
 (accessed June 2009).

11. Spectrol. 536 Series Potentiometer.
 http://www.nteinc.com/pot_web/pdf/536_series.pdf
 (accessed June 2009).

 86

12. Z-World. BL-2000.
 http://www.zworld.com/products/bl2000/
 (accessed June 2009).

13. Netgear. Rangemax 240 Wireless Router.
 http://www.netgear.com/Solutions/HomeNetworking/WirelessNetworking/Range

Max240.aspx
 (accessed June 2009).

14. Garmin. GPS 16 HVS.
 http://www.garmin.com/manuals/425_TechnicalSpecifications.pdf
 (accessed June 2009).

15. Honeywell. HMR3000 Digital Compass.
 http://www.ssec.honeywell.com/magnetic/datasheets/hmr3000.pdf
 (accessed June 2009).

 87

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Physics Department
Naval Postgraduate School
Monterey, California

4. Richard Harkins
Department of Applied Physics
Naval Postgraduate School
Monterey, California

5. Peter Crooker
Department of Applied Physics
Naval Postgraduate School
Monterey, California

6. Alexander Boxerbaum

Case Western Reserve University
Cleveland, Ohio

7. Dr. Ravi Vaidyanathan
Bristol University
Bristol, United Kingdom

