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A B S T R A C T   

An increase in the quality of recycled plastic is paramount to address the global plastic challenge and applica-
bility of recycled plastics. A potent approach is mechanical plastic sorting but sufficient analytical techniques are 
needed. This study applies unsupervised machine learning on short wave infrared hyperspectral data to build a 
model for classification of plastics. The model can successfully distinguish between twelve plastics (PE, PP, PET, 
PS, PVC, PVDF, POM, PEEK, ABS, PMMA, PC, and PA12) and the utility is further proven by recognizing three 
unknown samples (PS, PMMA, PC). The experimental setup is constructed similar to an in-line industrial setup, 
and the machine learning is optimized for minimal data processing. This ensures the industrial relevance and is a 
stepping-stone to solve the global plastic challenge.   

1. Introduction 

Plastics are commonly used materials in the modern society but only 
a minor amount of the consumer plastics are recycled into new products 
(plastic circular economy) [1–4]. The properties and price of plastics 
favor the use in disposable and single usage products, which regrettably 
accumulate as pollutants in our ecosystems due to poor waste handling 
[5–11]. The introduction of plastic circularity as a sustainable approach 
is challenged by consumer behavior, collection infrastructure, product 
design limitations, etc. [12,13]. 

In a typical recycling process, the plastic waste is downsized e.g. by 
chopping, washed, followed by flotation separation or mechanical 
sorting. The resulting plastic purities varies from 75 to 95 % by mass, but 
the industrial demands plastic purities of 95 %+ [14]. The main chal-
lenge is identification and analysis of the plastic waste stream at an 
industrial throughput. A common approach is a running conveyer belt 
with plastic waste and cameras mounted above to monitor the waste 
stream. The conveyer belt is normally monitored with a narrow band (or 
single band) near-infrared detector. It can be argued that expanding the 
number of spectral bands will enable unique plastic identification. Even 
so, only a few hyperspectral-imaging studies are reported in the litera-
ture that all conclude that the analysis could be transferred into indus-
trial settings for plastic sorting. 

It is demonstrated that polyolefins can be distinguished from other 

waste types e.g. wood and aluminum employing a hyperspectral analysis 
in the Vis/SWIR range from 400 to 1700 nm [15]. A further expansion of 
the number of plastic types was performed with inclusion of poly(vinyl 
chloride) (PVC), polystyrene (PS) in addition to the olefins poly-
propylene (PP) high- and low-density polyethylene (HDPE and LDPE, 
respectively). The plastics were analyzed with a hyperspectral camera in 
the range from 1000 to 2500 nm [16] and the implementation of a hi-
erarchical model enabled identification of the individual plastic types. 
These plastic types and addition of poly(ethylene terephthalate) (PET) 
and poly(acrylonitrile-butadiene-styrene) (ABS) post-consumer waste 
plastics has also been analyzed via a hyperspectral camera in the range 
from 1000 to 2500 nm. A Fisher discrimination model was suggested 
after a heavy spectral data processing and a high ability (100 %) for 
plastic identification was observed [17]. In addition to plastic types (also 
including poly(lactate acid)), a study includes the challenge of identi-
fying plastic types of black plastics [18]. A SWIR and MIR spectral range 
from 700 to 13,500 nm was applied with MIR measured as diffuse 
reflection (separate laboratory apparatus). It was found that plastics 
dyed black could only be distinguished with the help of MIR and that 
further equipment development is necessary for industrialization of MIR 
technology is needed. 

In this study, it will be examined if detailed plastic-type recognition 
is possible via reflection imaging with a hyperspectral camera (HC) 
technology in the wavelength range from 955 to 1700 nm with a 
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minimum of data processing – only applying a normalization and a 
Savitzky-Golay filter. Thus, thirteen commercially available plastic 
types have been imaged by an industrial HC on a moving conveyer belt. 
The spectral information is used to establish an unsupervised machine 
learning model (principal component analysis (PCA) and K-means 
clustering) to discriminate between the plastic types and to classify three 
unknown plastic samples. Fourier transformed infrared spectroscopy 
(FTIR), differential scanning calorimetry (DSC), and thermogravi-
metrical analysis (TGA) are solemnly used to document the polymer 
types and identify some additives in the plastics which can interfere with 
the HC model. 

2. Materials and methods 

The materials used and the sample preparation, is followed by the 
method for documentation based on FTIR, DSC, TGA, and HC. Finally, 
the use of HC to discriminate plastics via machine learning is described. 

2.1. Materials 

The thirteen commercially available plastics included in this study 
are listed in Table 1. 

All materials were used as received or processed into disk-shaped 
plastic specimens. 

2.2. Sample preparation 

PP, ABS, PET, and PC samples were injection molded on a manually 
operated benchtop injection molder (Model A-100, Galomb inc., USA) 
into a custom-made mold (SI figure S1). The mold cavity was designed to 
make 3 mm thick disks of Ø 35 mm. The polymers’ process temperatures 
(melt, mold) are PP (175 ◦C, r.t.), ABS (250 ◦C, r.t.), PET (260 ◦C, 40 ◦C), 
and PC (310 ◦C, 80 ◦C) and all samples were relaxed for a minimum of 24 
h and stored in zip lock bags until testing. The remaining plastic types 
were supplied as disk specimens, except PS, which were obtained from a 
CD cover. To test the effect of surface roughness, five ABS disks were 
stabbed multiple times with a screwdriver giving deep (1− 2 mm) sur-
face indentations and another five ABS disks were filed with a wood rasp 
ripping up the surface. 

2.3. Fourier transformed inferred spectroscopy 

Fourier transformed infrared spectra (FT-IR) of the disks and un-
known samples were collected in an attenuated total reflection (ATR) 
mode on an iS5 spectrophotometer (Thermo Fisher Scientific, USA) 

fitted with a ZnSe crystal (iD5, Thermo Fisher Scientific, USA). Back-
ground (n = 8) and sample measurement (n = 8) was measured with a 
resolution of 2 cm− 1. Wavelength dependent penetration depth and 
baseline were corrected with OMNIC (v. 9.2.98., Thermo Scientific, 
USA) built-in functions. 

2.4. Differential scanning calorimetry 

A sample of 5− 10 mg (Sartorius, MSE125P-000-DU) was cut from 
the sample disks and sealed (Universal Crimper Press, PerkinElmer, 
USA) into aluminum pans (Pans and covers type: 02190041) prior to 
measurement. Samples were loaded in a DSC 8000 (PerkinElmer, USA) 
controlled by Pyris (v. 11.1.0.0488, PerkinElmer, USA), heated to Tmax, 
then cooled and subsequently heated from − 70 ◦C to Tmax all scans at 20 
◦C min− 1. Tmax being 250 ◦C for PVC, PVDF, POM N, and POM B; 300 ◦C 
for HDPE, PP, PS, ABS, PMMA, PET, and PA12; and 400 ◦C for PEEK and 
PC. The first derivative’s apex (150 points average filtering) determined 
the inflection point glass transition temperature (Tg) and the second 
derivative’s minimum (150 points average filtering) determined the 
melting temperature (Tm). 

2.5. Thermogravimetric analysis 

Samples of 5− 10 mg (Sartorius, MSE125P-000-DU) are heated both 
in laboratory air and under nitrogen in a TG 209 F1 Libra (Netzsch, GE) 
from 35 ◦C to 800 ◦C, 10 ◦C min− 1. The first derivative’s apex (50 points 
average filtering) determined inflection point degradation temperature 
(Td). 

2.6. Hyperspectral camera setup 

The hyperspectral camera (HC) setup can be found in the supporting 
information and is operated in its own room to minimize the impact of 
changing temperature, humidity, and light. 

The HC setup consisted of a 29 cm wide conveyer belt (Newtec, DK) 
for sample transportation and a line-scan hyperspectral camera equip-
ped with a spectrograph (QiSpec, QT5022K-I320-SWIR, Qtechnology, 
DK). The geometrical resolution was 1.1 mm (across) by 0.9 mm (along 
the conveyer belt) and the spectral resolution was 8.3 nm from 955 to 
1700 nm (Calibration information is given in SI). The samples were 
illuminated by two rows of four halogen spots (12 V, 20 W) illuminating 
the conveyer belt at a 45◦ angle. Prior to measurement a fully illuminate 
Teflon sample (white reference) and the darkroom signal (black refer-
ence) were measured. 

2.7. Hyperspectral polymer analysis 

In a typical experiment, the samples were loaded on the conveyer 
belt, all other lights than the halogen lamps are turned off, and the 
samples passed by the scan line at a speed of 3.75 m min− 1, and the raw 
data was transferred to a laptop computer. The spectral signal for each 
disk was summarized over 200 pixels. The signal was then intensity 
corrected (black and white reference), vignette adjusted, and trans-
formed into an absorbance spectrum (A = log(I0/I)), which is reported. 

2.8. Hyperspectral identification via machine learning 

The spectra are recorded as in 2.6.1., with the only two differences of 
1) being kept as reflectance and 2) cropped to 972–1675 nm. The spectra 
are then normalized to span from zero to one, and the signal are 
Savitzky-Golay filtered [19] (width: 9, polynomial degree: 1, differen-
tiation order: 1) to enhance the signal-to-noise ratio. Finally, the ob-
tained principal components (PCA, Python, four principal components) 
are visualized in a score plot. The loading matrix was extracted and 
applied to post-process the unknown sample spectra (U1, U2, and U3 in 
Table 1). The thirteen cluster centroids (one centroid per plastic type) 

Table 1 
Plastic identification, plastic type, trade name, supplier for the materials 
included in this study.  

ID Plastic type Name Supplier 

HDPE Polyethylene PE 100 SIMONA 
PP Polypropylene 240-CA12 INEOS 
PS Polystyrene CD cover – 
PVC Poly(vinyl chloride) PVC-U GEHR 
PVDF Poly(vinylidene difluoride) PVDF GEHR 
POM N Polyoxymethylene Ertacetal C Mitsubishi 
POM B Polyoxymethylene Ertacetal C Mitsubishi 
PEEK Polyetheretherketone Ketron PEEK 1000 Mitsubishi 
ABS Poly(acrylonitrile-butadiene- 

styrene) 
Terluran GP35 INEOS 

PMMA Poly(methyl methacrylate) Setacryl 1000 Madreperla 
PC Polycarbonate Makrolon 2652 Covestro 
PET Poly(ethylene therphalate) CB-602 UltraPurge 
PA12 Polyamide 12 PA 12-TR GEHR 
U1 Unknown Weighing boat 

(White) 
VWR 

U2 Unknown Plexiglas Rias 
U3 Unknown Safety glasses VWR  
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were estimated via K-means (Python, 13 clusters, K-means intelligent 
seed values, and random state: 42). 

3. Results 

FT-IR spectra from all materials are stacked in Fig. 1. 
The spectra in Fig. 1 (detailed spectra is given in SI) are assigned as 

follows. HDPE: The bands at 2915, 2848, 1465, and 719 cm− 1 are 
ascribed to stretch (ν) and bending (δ) of CH2. PP: Additional bands 
compared to HDPE are found at 2916, 2866, and 1375 cm− 1 and is 
ascribed to ν + δCH3 side chain and the ν + δCH backbone [20]. PS: 
Similar backbone bands to HDPE and additional bands at 3082, 3058, 
3024, 1600, and 1492 cm− 1 are ascribed to the aromatic ν + δCHar and 
aromatic ring bend. The five overtones from 1660 to 1940 cm− 1 and the 
band at 756, and 696 cm− 1 are assigned to the mono-substituted aro-
matic ring. PVC: Similar backbone bands to HDPE (shifted with ≈ -30 
cm− 1) and additional bands at 1331, 1097, 966, and 610 cm− 1 and the 
thermostabilizing additive is found at 1732, 1258 and 1186 cm− 1 and 
with some overlap at ν + δCH2, and ν + δCH bands in PVC [20–23]. 
PVDF: Weaker bands near 2950 cm− 1 and a stronger band at 1396 cm− 1 

for δCH2 compared to HDPE, further bands at 1277, 1178, 1068, 874, 
and 840 cm− 1 are ascribed to ν+δC-F [20]. POM: Similar backbone 
bands to HDPE and additional ether bands at 1235, 1091, 924, 895, and 
631 cm− 1 [20,24]. PEEK: Bands found at 3060, 1595, 1488, and 765 
cm− 1 are ascribed to para-disubstituted benzene rings, the band at 1652 
cm− 1 is ascribed to νC=O, and the six bands from 1300 to 1000 cm− 1 are 
ascribed to νC-O. [20,25]. ABS: Similar bands to PS and additional at 
2250 cm− 1 from the acrylonitrile, and bands between 1680− 1620 cm− 1 

(νC––C) and at 912 (1,2-PB) and 967 cm− 1 (1,4-PB) from polybutadiene 
[26]. PMMA: Similar bands to PP (slightly shifted and without CH) and 
additional bands at 1721 cm− 1 from νC––O and 1237, 1195, and 1145 
cm− 1 from the νC–O in the ester group. PC: νC––O is found at 1771 
cm− 1, νC-O found from 1000 to 1300 cm− 1, and the para-disubstituted 
benzene is similar to that of PEEK except for the weak band at 1600 
cm− 1. PET: Similar backbone bands to HDPE and additional bands at 
1712 cm− 1 ascribed to νC––O, the bands at 1240 and 1095 cm− 1 

ascribed to νC–O, and the para-disubstituted benzene similar to PEEK, 
except the band at 766 cm− 1 is shifted to 723 cm− 1. PA12: Similar 
backbone bands to HDPE and additional bands at 3230 cm− 1 νNH and 
δNH at 1537 cm− 1 (with overtone at 3077 cm− 1) and a band at 1639 
cm− 1 ascribed to νC––O [20]. 

Glass transition temperature (Tg), melting temperature (Tm), and 
decomposition temperature (Td) found via DSC and TGA are listed in 

Table 2 (details are given in SI). 
The thermal properties in Table 2 show that there is low to no con-

tent of additives like softeners, fillers, etc. present in the applied poly-
mers. [27] 

The materials are analyzed with the industrial HC setup, and Fig. 2 
shows the HC image of four disks at 1204 nm and the spectra of POM N. 

Fig. 2 illustrates an example of a HC image of four sample disks and 
the area over which the spectral averaging is performed (left). The need 
for averaging to enhance the signal-to-noise ratio is seen as a reduction 
of noise as spectra are summarized. When averaging over 216 mm2 (200 
pixel) the spectral information becomes evident. In addition, the 
average and standard deviation of 1032 spectra measured on POM N is 
given in the supporting information. 

Ten ABS disks have been imaged sequentially and their spectra are 
shown in Fig. 3. 

From Fig. 3 it is found that there is a high reproducibility of spectral 
data for the ten ABS samples. The spikes on Disk 3 at 1590 nm, Disk 2 at 
1680 nm, and Disk 7 at 1680 nm are ascribed to a channel blackout in 
one of the camera pixels applied in the summation. 

The HC spectra obtained from the disks with modified surfaces are 
given in Fig. 4. 

The different surface textures of the ABS disks results in a minor shift 

Fig. 1. FT-IR spectra for the materials tested. The spectra are shifted for visual clarity.  

Table 2 
Glass transition temperature (Tg), melting temperature (Tm), and decomposition 
temperature (Td) for the materials analyzed by differential scanning calorimetry 
(DSC) and thermogravimetrical analysis (TGA). TGA data is given as the Td 
(mass loss%).   

Tg [◦C]α Tm [◦C]α Td [◦C]β Td [◦C]γ 

HDPE – 138 427 (100) 473 (100) 
PP – 149 328 (100) 458 (100) 
PS 101 – 367 (100) 415 (98) 
PVC 82 – 284 (59) 433 (36) 292 (59) 468 (23) 
PVDF – 172 404 (57) 558 (41) 452 (68) 
POM N – 169 285 (94) 355 (99) 
POM B – 170 313 (100) 357 (100) 
PEEK – 341 580 (31) 661 (94) 592 (45) 
ABS 110 – 411 (92) 552 (8) 428 (93) 
PMMA 129 – 317 (98) 374 (99) 
PC 149 – 506 (73) 618 (100) 513 (80) 
PET 86 250 428 (85) 574 (100) 438 (84) 
PA12 159 – 420 (93) 535 (100) 437 (98)  

α DSC at 20 ◦C min− 1. 
β TGA at 20 ◦C min− 1 in air. 
γ TGA at 20 ◦C min− 1 in N2. 
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in the overall spectral intensities (Fig. 4), however, the spectral infor-
mation is identical. The intensity ratio between the bands at 1150 nm 
(aromatic) and 1230 nm (aliphatic) is 1.008 ± 0.001, 1.006 ± 0.0004, 
and 1.007 ± 0.002 for untreated, rasped, and indented ABS disks, 
respectively. 

All 13 materials in Table 1 were analyzed via industrial HC imaging 
and the spectra are given in Fig. 5. 

The spectra in Fig. 5 (detailed spectra is given in SI) are assigned as 
follows. HDPE: The bands at 1180 and 1220 nm are ascribed to 3νCH2 
and bands at 1050, 1400, 1420, and 1550 nm is ascribed to combination 
(com.) bands from ν + δCH2, the band at 1670 nm is ascribed to 2νCH2 
overtones [28]. PP: In addition to HDPE, bands for 3νCH3 at 1190, com. 
at 1490 nm and 3νCH3 at 1660 nm [28] (CH has weak bands at 1160 and 
1490 nm). PS: Similar bands to HDPE and bands at 1160 (3νCHar) and 
1660 (2νCHar) nm from CH in the benzene ring and com at 1520 nm 

[28]. PVC: Slightly downshifted bands for CH and CH2 compared to 
HDPE [28]. PVDF: Even larger downshift (3νCH) than PVC in addition 
to a larger intensity of the band at 1680 nm (2νCH2) [28]. POM: Similar 
bands to HDPE and additional bands at 1230 (3νH2-C-O) and 1375 nm 
(com) and an enhanced intensity at 1690 nm (2νCH2) [28]. ABS: Has a 
higher intensity at 1650 nm compared to PS and additional band at1680 
nm from cis butadiene [28]. PMMA: Similar bands to PP and additional 
bands at 1150 (5νC––O, weak), 1190 (3νH3C–O), and 1450 nm 
(4νC––O) [28]. PC: Bands are found at 1150, 1330, 1680 nm for 3νCHar, 
3νCH3, and 2νCHar+2νCH3, respectively and combination bands from 
1390− 1550 nm including the band from 4νC––O in the esters [28]. PET: 
Similar bands to HDPE and additional bands at 1150 and 1660 nm from 
the aromatics [28]. PA12: Similar bands to HDPE with the addition of 
bands ascribed to the amide at 1025 (3νNH), 1430 (2νsNH), 1470 
(2νaNH), 1540, 1570, 1595, and 1620 nm ascribed to the Amid II band 
overlapping with the CH2 com. [28]. 

A score plot of the PCA on the obtained spectra after Savitzky-Golay 
filtering is given in Fig. 6. 

The score plot in Fig. 6 shows that the plastic types cluster with good 
separation. However, it is evident that PS, PC, ABS, and PET cluster close 
together in the center of the score plot due the presence of both aro-
matics and aliphatic groups. Further, Fig. 6 shows that the unknown 
samples are assigned to their respective clusters; U1 is assigned to PS, U2 
assigned to PMMA, and U3 is assigned to PC. Although, U2 is close to 
PVDF in Fig. 6 the model prediction is based on all four principal 
components. Thus, U2 is correctly predicted to PMMA. 

4. Discussion 

This study is based on industrial available materials that might 
contain a broad range of additives, thus material verification was 
necessary. It is clear from the TGA results that the materials included 
(Table 1) were all fully decomposed (Table 2 and SI). It is further seen 
that oxygen in many cases (as expected) resulted in more thermal stable 
decomposition products giving rise to multiple mass loss steps. Inde-
pendent of decomposition atmosphere, the 100 % mass loss documents 
that the materials contained no (or insignificant) amount of inorganic 
additives. The DSC results (see Table 2) showed insignificant shifts in Tg 
and Tm compared to literature values [27]. This indicates that there are 
low or insignificant concentrations of organic additives (e.g. softeners) 
in the included materials. However, for PVC there is (as expected) clear 
FTIR signals (see Fig. 1 and SI for more spectral detail) from the thermal 
stabilizers, which may have shifted the melting point to a lower value. In 
combination FTIR, DSC, and TGA results show that the included mate-
rials have no (or low) contaminant concentrations and they can be 
applied as commercially available plastics representing the different 
polymeric types. 

The image pixel size is 1.1 mm by 0.9 mm but due to noise, it is not 
possible to obtain clear spectra from only one pixel. Enhancing the 
spectral signal-to-noise ratio by spectra summarization over a number of 
pixels to obtain clear spectral information is the limiting factor for 

Fig. 2. Left, four disks (left to right: PEEK, POM N, POM N, and POM B) presented at 1204 nm and POM N (marked with the area of averaging). Right, hyperspectral 
spectrum of POM N from scans averaged over 1, 10, 25, and 200 pixels, respectively. 

Fig. 3. Shows the spectra measured on ten different ABS specimens, each 
spectrum is an average of 200 pixels. 

Fig. 4. Average spectra measured 10 ABS samples (Norm.), 5 ABS samples 
surface treated with a wood rasp (Rasp), and 5 ABS samples surface treated 
with screwdriver indentations (Screw.). 
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minimum geometrical dimensions of the plastic materials. Thus, ele-
ments larger than 27 mm2 (25 pixel) are necessary for achieving a suf-
ficient signal-to-noise ratio for the discrimination model. It is seen that 
averaging does not eliminate the dead pixel error (even after summa-
rization of 200 spectra, Fig. 3), the reason is that the dead pixel is include 
in every line scanned across the conveyer belt. It is important to include 
these artifacts in the data handling, as they are present in all SWIR 
sensors. 

The spectral quality as a function of surface roughness and texture 
were investigated and showed that despite an overall intensity reduc-
tion, presumably due to light scattering, the spectral information 
remained intact (Fig. 4). More important it was observed that even 
severer surface changes only gave a minor intensity reduction. It is clear 
that further investigation with a wider range of geometries, surface 
treatments, etc. are called for prior to industrialization of the technique. 
Most of the examined plastics are in a pure form, but POM was included 
as both neutral and blue POM (Table 1 and Fig. 5). The PCA (Fig. 6) 
shows that POM made a dense cluster independent of color. TGA results 
show that POM is colored with an organic dye (no residue after burning 
or pyrolysis) and organic dyes normally contain conjugated aromatic 
systems. Thus, it is a plausible expectation that the organic dye will 
absorb around 1160 (3νCHar) and 1660 (2νCHar) nm where POM has no 
absorbance (Fig. 5). However, the results indicate that the effect of 
plastic pigmentation on the spectral information is not interfering with 

the first two principal components in the PCA as both POM neutral and 
blue are on top of each other in the score plot. 

As described, color, surface texture, and shape all influence the 
overall intensity of the obtained spectral data. In the current system, it is 
possible to reduce the speed of the conveyer belt and thereby enhancing 
the ordinate (along the conveyer belt) resolution (Fig. 2 right) i.e. giving 
more pixel rows for spectral noise reduction. This approach is chal-
lenged by a reduction in material throughput and is therefore of low 
industrial relevance. The size and speeds are to be determined and 
optimized in the individual applications. Further, the reduction in speed 
will not eliminate the dead pixel noise. Small variations in the obtained 
spectra are found at lowest and highest wavelengths due to the sensi-
tivity if the InGaAs sensor, thus the spectra are cropped from 955− 1700 
nm to 972− 1675 nm prior to PCA. Further, the signal-to-noise ratio is 
maximized by applying a Savitzky-Golay filtering of the spectra. This 
means that spectral summation, normalization, and Savitzky-Golay 
filtering is the only data processing necessary for obtaining a full ma-
terial classification via unsupervised machine learning (Fig. 6). This is 
key in obtaining an industrial relevant sorting algorithm i.e. reduce data 
processing time to a minimum while maintaining maximum material 
classification. It can be argued (Fig. 5) that spectral information between 
the overtones and combination bands could be discarded as they do not 
carry any material information and thus do not participate in the 
decision-making algorithm. This will result in a reduction of the 
demanded data processing, increase the sampling rate, and thereby 
resulting in a better spectral quality or higher material throughput. 

The resulting score-plots from the PCA showed that normalization 
and Savitzky-Golay filtering significantly improved the grouping of 
polymer types compared to the analysis of raw spectra. However, the 
close grouping of PC, PS, and ABS increase the uncertainties in dis-
tinguishing between these plastic types. On the other hand, the K-means 
algorithm does determine all the centers correctly if the number of 
clusters are defined to the thirteen number of materials. If there is no 
maximum number of clusters allowed then the K-means algorithm finds 
14 cluster by dividing the PP cluster into two. This indicates that the 
three aromatic containing plastics are statistically separated into sepa-
rate groups. It is unclear why the PP data have a less dense cluster in the 
score plot (Fig. 6), but this low density is acceptable as the PP cluster is 
isolated in the upper part of the third quadrant of the score plot. 

The unknown samples (U1, U2, and U3) were selected by random in 
the laboratory and imaged after the machine learning model was made, 
approximately a month after the reference plastics were measured. 
Based on the PCA of the unknown samples it is clear that U1 is PS, U2 is 
PMMA, and U3 is PC. From the IR spectra (given in SI) verify that U1 is 
PS, U2 is PMMA, and that U3 is PC. The random material selection with 

Fig. 5. Hyperspectral spectra for all materials, averaged over 200 pixel and shifted for visual clarity.  

Fig. 6. Score plot of the first and second principal component (PC1 and PC2, 
respectively) from the principal component analysis made on the Savitzky- 
Golay filtered HC spectra. Calculated cluster centers (black circle), the un-
known samples (X), symbols are the known material type, and a color is 
assigned to the predicted material type. 
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no sample preparation, the time and day of imaging, and the fact that the 
samples were unknown until the day of imaging, demonstrates the 
predictive quality of the model. Further, the industrial potential is 
clearly demonstrated as all samples are imaged on a running conveyer 
belt using an industrial spectrograph, the data processing is kept at a 
minimum, and the machine learning shows its strong predictive power 
to discriminate between plastic types. 

5. Conclusion 

Hyperspectral imaging with wavelengths from 955 to 1700 nm on 
thirteen different plastics analyzed by PCA has shown that the spectral 
range is sufficient to differentiate plastics. Camera artifacts, sample area, 
and surface roughness/texture have an impact on the recorded spectra, 
and a Savitzky-Golay filter was successfully applied to minimize the 
impact from these variances and to emphasize the differences in over-
tones arising from the different polymer types. Unsupervised machine 
learning has proven to cluster the plastic types and the resulting loading 
matrix correctly classified unknown plastic samples. As all hyper-
spectral, imaging is performed with an industrially available spectro-
graph and with a minimum of data processing, it can be concluded that 
this evolving technology is the right tool to tackle the recycled plastic 
purity and thereby the global plastic challenge. 
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[3] G. Leone, J.M.T. Borràs, E. de V. Martín, The New Plastics Economy: Rethinking 

the Future of Plastics & Catalysing Action, 2017. 
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