

(450)

any thing that might contribute to a publick Benefit, and to do fome juftice to Merit, could induce me, I fhall only requeft that what I have here offered may be conftrued by that Intention.

Philad. 28th of
'Fune, 1734•

J. Logaro

Note, That the Radius of the Quadrant being divided into 20 equal Parts, the Center x (in Fig. 1.) of the Curvature of the HorizonVane (AB) mult be $12 \frac{8}{8}$ of thofe Parts from the Center (C) of the Quadrant. The Breadth ($A B$ or $g b$) of that Vane fhould be $\frac{-1}{10}$ of the whole Radius, that is, $\frac{1}{20}$ on each Side of the Center (C).
IV. The Defcription and \mathcal{U} e of an Inftrument for taking the Latitude of a Place at any time of the Day; by Mr. Richard Graham F. R.S. is in, is too well known to be infifted on : Freguent opportunities of obferving the Latitude muft confequently
confequently be of very great Advantage to Navigation. The Method ufually practifed, is by taking the Sun or Stars Meridian Altitude or Zenith Diftance: In this Cafe, if the Sun does not fhine but for fome fmall Time only, before Noon and after, though it be clear all the reft of the Day, it is of no ufe for this Purpofe. Mr. Fatio, F.R.S, (in the Year 1728) propofed a Method for finding the Latitude, from two or more Obfervations of the Sun (or Stars) at any Time, the Diftance of the faid Obfervations in Time, being given by a Watch; but as his Method requires a valt Number of Computations, and a great deal of Skill in Spherical Trigonometry, it has very feldom been made ufe of, and never but by good Mathematicians. The Inftrument here defcribed will anfiver the fame End, and has thefe Advantages; viz.
i f, It may be very cafily underftood by Seamen. $2 d l y$, It immediately hhews the Latitude of the Place.
$3 d l y$, It gives the Time of Day at Sea when no other Inftrument can.
4tbly, It may be made as large, and confequently as accurate as is defired.

A Defcription of the Infirument. See Fig. 2.
$A B C$ reprefents part of the Hemifphere of a large Globe (half the Globe, and the Part below the Tropick are cut off, that it may take up the lefs room.) A C, half the Equator, divided into 12 Hours above, and 180 Degrees below, and fubdivided into Minutes,

(452)

as is likewife the lower Tropick DD. EE, a moveable graduated Meridian, turning on the Axis FF. Gatr Index to fix it (by the means of the Screw H) to any Hour. I il, a circular Beam-compafs, the Center I i to be fixed on the Meridian to any Degree and Minute of Declination, by the Method commonly called Nonius's Divifions : k the Point for drawing Arches, which is likewife fixed to any Degree and Minute by the fame Method. As the Meridian is at fome Diftance from the Globe, L is a piece of Brafs to fix on the Meridian, marked with Nonius's Divifions, with a Point reaching down to the Interfection of the Arches, by which means the Diffance of the faid Interfection from the Equator, or its Latitude is found. The Degrees and Minutes may likewife be fhewn by diagonal Lines.

The Vee of the Infrument.

I. PROPOSITION.

From two Observations of the Height of the Sun, the Diftance of the faid Obfervations in Time, being given by a Watch, as likewife the Declination of the Sun; to find the Latitude of the Place, and Hour of the Day.
I. When the Ship is at Reft, that is, at Ancbor, or in a Calm, fo as to bave little or no progreflive Motion.

Cafe: x,

.453)

Cafe r. Suppofe the Sun in the Equator, on the Day of Obfervation : Fix the Center of the Beamcompafs at o Degree (or at the Equator,) and move the Point k to the Zenith Diftance (the Complement of the Altitude, taken by the ufual Inftruments,) and from any Hour, as from C, defcribe an Arch of a Circle with the faid Point, as $b c\left(E_{x .}\right.$ r.) Suppofe eight Hours after, by your Watch, you have another Obfervation ; move the Meridian eight Hours farther, to d, and fix it there; and with the Zcnith Diftance then obferved, delcribe another Arch as $e f$, the Point where it cuts the former is the Place of Obfervation, and its Diftance taken on the Meridian from the Equator hhews its Latitude; and the Minutes reckoned on the Equator from the Meridian to C and d (the Times of Obfervation) fhew what thofe Hours were.

Cafe 2. When the Sun has Deciination :. Fix the Center of the Beam-compafs on the Meridian, to the proper Degree of Declination for the Day of Obfervation, and proceed as before.

Cafe, 3. If the Obfervations are at a greater Diftance than twelve Hours, but in the tame Day: Make ufe of the Complement to twenty-four Hours of the Diftance in Time, and take the Declination on the contrary, or lower fide of the Equator; and inftead of the Zenith Diftances, take the Nadir Difances or Altitudes increafed by ninety Degrees.

Thus

(454)

Thus you will find the Latitude, and Time of each Obfervation from Midnight. In this Cafe the Beam-compafs muft extend to more than 90 De: grees.

Cafe 4. If the Obfervations are more than a Day afunder; as for Inftance a Day and two Hours (26 Hours:) Place the Centre of the Beamcompafs two Hours farther than it was the Day before ; but in different Declinations, according to the Table of Declination for the feveral Days.

Cafe 5. When the Obfervations are made by a Star : The Center of the Beam-compafs muft be fet to the Declination of the Star; then proceed as before. To find the Hour in this Cafe, the right Afcenfion muft be likewife given.

Scbolium. The fame Method may be uffeful at Land, when no Meridian Obfervation offers.

II. The Sbip in Motion.

Cafe I. Suppofe the Sun in the Equator : The Diflance between the two Obfervations cight Hours,as before, and the Arch a a a (Ex.2.) deffrib'd by the Zenith Diftance of the firt Obiervation, from the Center C; and the Angle $c a b, 40$ Degrees, is the Angle between the Ship's way, and the Azimuth of the Sun continued, (given by the Azimuth Compafs;) and that during the eight Hours, the Ship has made one Degree, or 60 Minutes from a to b, or from the Sun ; then,

(455)

then, as Radius is to the Cofine of $c a b 40 \mathrm{De}-$ grees, fo is $a b 60$ Minutes to $a c 46$ Minutes; add 46 Minutes to the Zenith Diftance $\mathrm{C} a$; and with k, the Point of the Beam-compafs fet at that Diftance, deferibe the Arch $c b e$; then with the Zenith Diftance of the laft Obfervation, whofe Center is d, draw the trch $f f$; the Point where it cuts the Arch $c b e$, is the Place where the Ship was laft; and its Diftance taken on the Meridian from the Equator hhews its Latitude ; the Minutes reckoned on the Equator from the Neridian to d (the Time of the laft Obfervation) fhew the Hour, or its Diflance from 120° Clock.

Cafe 2. If the Ship had failed from a to β or towards the Sun: The Cofine of the Angle $\beta a \gamma$, or of the Angle between the Ship's Way and the Sun, muft be fubftracted from the Zenith Diftance of the firf Obfervation.
N. B. Only the two Arches cbe,ff, are to be drawn on the Globe, the reft being added here, to flew the Reafon of the Conftruction.

Cafe 3. To find the Latitude of the firf Place: From the Equator, with a pair of Compaffes, take the Diftance failed 60 Minutes, and with one Foot in the Interfection of the Arches bee, ff, the Place found before, put the other in the Arch aaa, the Zenith Diftance of the firft Obfervation, and in this Inftance, on the left Hand of the Azimuth of the Sun, this is the Place fought; and its Diftance ta-

(456)

ken on the Meridian from the Equator, fhews the Latitude ; and the Minutes reckoned on the Equator from the Meridian to C , the Time of the firlt Ob . fervation, fhew the Hour.

The Interval in Time or Degree between the two Places, fhewn by the Index G, is the Difference of Longitude.
N. B. Thofe Obfervations are beft, whofe Arches crofs each other almolt at right Angles.

II. PROPOSITION.

The Zenith Diffances of two Stars, obferved at the fame Time, their Declination, and right Afcenfion being known; to find the Latitude of the Place of Observation.

Fix the Center of the Beam-compafs to the Declination of either of the Stars, and with the Zenith Diftance of that Star defcribe an Arch; move the Meridian as many Hours farther as is the Difference of right Afcenfion of the other Star; and fix the Center of the Beam-compafs to the Declination of it; and with its Zenith Diftance crofs the firf Arcin:
The Interfection thews the Latitude of the Place of Obfervation; and alfo the Diftance of the right Afcenfion of the Zenith from that of either of the Stars, by which means the Hour may be known.

If a Celeftial Globe is made ufe of, then place the Center of the Beam-compafs over the feveral Stars.

(457)

The Latitude and Hour being given, the Variation of the Compafs is eafily known.
N. B. In order to draw Arches on the Globe; rub fome black Lead powdered on a piece of Paper; lay the Side which is black'd next the Globe, where you imagine the Interfection of the Arches will be: Then draw them on the clean Side with the Print of the Beam-compafs, and they will appear on the Globe ; and if the Globe is well varnifhed, they may be rubbed out with Bread, or walhed out with Water.

As Altitudes at Sea are now readily taken, with great Exactnefs, by the Quadrant invented by $70 b n$ Hadley, Efq; V.P. R.S. and as the faid Altitudes are the Principles on which the Operations above defcribed are founded ; the previous Ufe of that Quadrant cannot but be of the utmoft Importance to thofe who fhall have Occafion for this Inftrument.

The Defcription and Ufe of this Inftrument was laid before the Royal Society Dec. 9. 1731; but as I knew Mr. Reid was contriving one for the fame Purpofe, I delay'd making mine Publick. His Method not yet appearing in Print, I have thought proper to communicate my own (efpecially as tis now improv'd) conceiving it may be of fome Advantage to Navigation.

