Trigonometry: Finding an Unknown Angle

June 10, 2014

Review: 4.06 Q14

A hot air balloon is anchored to the ground by a rope. When it drifts 20 m sideways, it makes an angle of 75° with the ground. How long is the rope (to one decimal place)?

Review: 4.06 Q14

Finding unknown angles

If we are given two side lengths, we can find the ratio between them. From this, we can invert the appropriate trigonometric ratio to obtain the angle.

Finding unknown angles

If we are given two side lengths, we can find the ratio between them. From this, we can invert the appropriate trigonometric ratio to obtain the angle.

Inverting the ratios

Notation: if $\sin (\theta)=\frac{a}{b}$, we write

$$
\sin ^{-1}\left(\frac{a}{b}\right)=\theta
$$

Inverting the ratios

Notation: if $\sin (\theta)=\frac{a}{b}$, we write

$$
\sin ^{-1}\left(\frac{a}{b}\right)=\theta
$$

Note: Although for a number x we say $x^{-1}=\frac{1}{x}$, this notation does not carry over to sin, cos and tan (these are not numbers!). Instead, ${ }^{-1}$ stands for an inverse: to reverse either sin, cos or tan.

Inverting the ratios

Notation: if $\sin (\theta)=\frac{a}{b}$, we write

$$
\sin ^{-1}\left(\frac{a}{b}\right)=\theta
$$

Note: Although for a number x we say $x^{-1}=\frac{1}{x}$, this notation does not carry over to sin, cos and tan (these are not numbers!). Instead, ${ }^{-1}$ stands for an inverse: to reverse either \sin , \cos or tan.

$$
\text { Angle }(\theta) \stackrel{\sin (\theta)}{\stackrel{\sin ^{-1}\left(\frac{a}{b}\right)}{\rightleftarrows}} \text { Ratio of sides }\left(\frac{a}{b}\right)
$$

