
Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2011-03

A real-time system for abusive network traffic detection

Kakavelakis, Georgios.

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/5754

Downloaded from NPS Archive: Calhoun

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

A REAL-TIME SYSTEM FOR ABUSIVE NETWORK
TRAFFIC DETECTION

by

Georgios Kakavelakis

March 2011

 Thesis Advisor: Robert Beverly
 Second Reader: Joel D. Young

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
March 2011

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE A Real-Time System for Abusive Network Traffic
Detection
6. AUTHOR(S) Georgios Kakavelakis

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government. IRB Protocol number ______N/A__________.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE
A

13. ABSTRACT (maximum 200 words)

Abusive network traffic—to include unsolicited e-mail, malware propagation, and denial-of-service attacks—remains
a constant problem in the Internet. Despite extensive research in, and subsequent deployment of, abusive-traffic-
detection infrastructure, none of the available techniques addresses the problem effectively or completely. The
fundamental failing of existing methods is that spammers and attack perpetrators rapidly adapt to and circumvent new
mitigation techniques. Analyzing network traffic by exploiting transport-layer characteristics can help remedy this
and provide effective detection of abusive traffic.

Within this framework, we develop a real-time, online system that integrates transport layer characteristics
into the existing SpamAssasin tool for detecting unsolicited commercial e-mail (spam). Specifically, we implement
the previously proposed, but undeveloped, SpamFlow technique. We determine appropriate algorithms based on
classification performance, training required, adaptability, and computational load. We evaluate system performance
in a virtual test bed and live environment and present analytical results. Finally, we evaluate our system in the context
of SpamAssassin’s auto-learning mode, providing an effective method to train the system without explicit user
interaction or feedback.

15. NUMBER OF
PAGES

89

14. SUBJECT TERMS Network Security, Autonomous Systems, Machine Learning

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

A REAL-TIME SYSTEM FOR ABUSIVE NETWORK TRAFFIC DETECTION

Georgios Kakavelakis
Lieutenant, Hellenic Navy

B.S., Hellenic Naval Academy, 1996

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
March 2011

Author: Georgios Kakavelakis

Approved by: Robert Beverly
 Thesis Advisor

Joel D. Young
Second Reader

Peter J. Denning
Chair, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Abusive network traffic—to include unsolicited e-mail, malware propagation, and denial-

of-service attacks—remains a constant problem in the Internet. Despite extensive

research in, and subsequent deployment of, abusive-traffic-detection infrastructure, none

of the available techniques addresses the problem effectively or completely. The

fundamental failing of existing methods is that spammers and attack perpetrators rapidly

adapt to and circumvent new mitigation techniques. Analyzing network traffic by

exploiting transport-layer characteristics can help remedy this and provide effective

detection of abusive traffic.

Within this framework, we develop a real-time, online system that integrates

transport layer characteristics into the existing SpamAssasin tool for detecting unsolicited

commercial e-mail (spam). Specifically, we implement the previously proposed, but

undeveloped, SpamFlow technique. We determine appropriate algorithms based on

classification performance, training required, adaptability, and computational load. We

evaluate system performance in a virtual test bed and live environment and present

analytical results. Finally, we evaluate our system in the context of SpamAssassin’s auto-

learning mode, providing an effective method to train the system without explicit user

interaction or feedback.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. SCOPE ..1
B. GOALS..4
C. MAJOR RESULTS..5
D. STRUCTURE...6

II. RELATED WORK ..7
A. CONTENT FILTERING ..7

1. Naïve Bayesian Classifier ..8
2. Support Vector Machines..10
3. C4.5..11

B. COLLABORATIVE FILTERING...13
C. REPUTATION SYSTEMS ...13

1. Identification Method ..14
2. Feedback Method...15

D. TRAFFIC CHARACTERIZATION..15
1. Network-Level Characteristics ...16
2. Transport-Level Characteristics ..17

III. ENVIRONMENT-SYSTEM OVERVIEW ...21
A. VIRTUAL-ENVIRONMENT ARCHITECTURE21

1. Server Side..21
2. Client Side...23
3. Network Emulator ...24

B. SYSTEM DESIGN...26
1. SpamAssassin ...26
2. SpamFlow ...28
3. SpamFlow Plugin ...28
4. SpamFlow Classification Engine ..30

IV. EXPERIMENTAL METHODOLOGY AND RESULTS......................................31
A. EXPERIMENTS ..31
B. RESULTS ...33

1. Test-Bed Evaluation...33
a. Classification Performance ..33
b. Throughput – Load ...38

2. Test-Bed Evaluation Using SpamAssassin in Auto-Learning
Mode..39

3. Live Testing ..44
C. AUTO-LEARNING ...48

V. CONCLUSIONS AND FUTURE WORK...59
A. FUTURE WORK...59

1. System Evaluation..59

 viii

2. Application Domains ...61
B. CONCLUSIONS ..61

LIST OF REFERENCES..65

INITIAL DISTRIBUTION LIST ...71

 ix

LIST OF FIGURES

Figure 1. Spam E-mail Detected [From [1]] ...2
Figure 2. Virtual-Environment Architecture ...22
Figure 3. Dummynet [From [2]]..25
Figure 4. System Architecture...27
Figure 5. Message Headers with spamflow features ...29
Figure 6. Test-Bed Evaluation: Accuracy ...34
Figure 7. Test-Bed Evaluation: Precision...35
Figure 8. Test-Bed Evaluation: Recall ...36
Figure 9. Test-Bed Evaluation Using SpamAssassin in Auto-Learning Mode:

Accuracy ..40
Figure 10. Test-Bed Evaluation Using SpamAssassin in Auto-Learning Mode:

Precision...41
Figure 11. Test-Bed Evaluation Using SpamAssassin in Auto-Learning Mode: Recall ..42
Figure 12. Live Testing: Accuracy..45
Figure 13. Live Testing: Precision ..47
Figure 14. Live Testing: Recall...48
Figure 15. Auto-Learning (Threshold=16): Accuracy. ...50
Figure 16. Auto-Learning (Threshold=16): Precision...50
Figure 17. Auto-Learning (Threshold=16): Recall ...51
Figure 18. Auto-Learning (Threshold=24): Accuracy ..52
Figure 19. Auto-Learning (Threshold=24): Precision...53
Figure 20. Auto-Learning (Threshold=24): Recall ...53
Figure 21. Auto-Learning (Threshold=30): Accuracy ..54
Figure 22. Auto-Learning (Threshold=30): Precision...55
Figure 23. Auto-Learning (Threshold=30): Recall ...55
Figure 24. Auto-Learning (Threshold=40): Accuracy ..56
Figure 25. Auto-Learning (Threshold=40): Precision...57
Figure 26. Auto-Learning (Threshold=40): Recall ...58

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF TABLES

Table 1. Test-Bed Evaluation: Accuracy ...34
Table 2. Test-Bed Evaluation: Precision..36
Table 3. Test-Bed Evaluation: Recall ..37
Table 4. Test-Bed Evaluation: Naïve Bayes Confusion Matrix.....................................37
Table 5. Test-Bed Evaluation: C45 Confusion Matrix ..37
Table 6. Test-Bed Evaluation: SVM Confusion Matrix ..38
Table 7. System Performance ..38
Table 8. Classification Engine CPU utilization ...39
Table 9. Test-Bed Evaluation Using SpamAssassin in Auto-Learning Mode:

Accuracy ..40
Table 10. Test-Bed Evaluation Using SpamAssassin in Auto-Learning Mode:

Precision...41
Table 11. Test-Bed Evaluation Using SpamAssassin in Auto-Learning Mode: Recall ..42
Table 12. Test-Bed Evaluation Using SpamAssassin in Auto-Learning Mode:

SpamAssassin Results..43
Table 13. Test-Bed Evaluation Using SpamAssassin in Auto-Learning Mode:

Naïve-Bayes Confusion Matrix ...43
Table 14. Test-Bed Evaluation Using SpamAssassin in Auto-Learning Mode: C45

Confusion Matrix ...43
Table 15. Test-Bed Evaluation Using SpamAssassin in Auto-Learning Mode: SVM

Confusion Matrix ...44
Table 16. Live Testing: Accuracy..46
Table 17. Live Testing: Precision ...47
Table 18. Live Testing: Recall...48
Table 19. Auto-Learning (Threshold=16): Confusion Matrix ...52
Table 20. Auto-Learning (Threshold=24): Confusion Matrix ...54
Table 21. Auto-Learning (Threshold=30): Confusion Matrix ...56
Table 22. Auto-Learning (Threshold=40): Confusion Matrix ...58

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF ACRONYMS AND ABBREVIATIONS

AS Autonomous System

BGP Border Gateway Protocol

CSS Cascading Style Sheets

DCC Distributed Checksum Clearinghouses

DKIM DomainKeys Identified Mail Signatures

DNS Domain Name System

DoS Denial of Service

FIN Finish (flag)

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IP Internet Protocol

ISP Internet Service Provider

MAP Maximum A-posteriori Probability

MTA Message Transfer Agent

OS Operating System

RAM Random Access Memory

RPC Remote Procedure Call

RST Reset (flag)

RTT Round-trip Time

SMTP Simple Mail Transfer Protocol

SYN Synchronize (flag)

TCP Transmission Control Protocol

TOS Type of Service

XML Extensible Markup Language

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

ACKNOWLEDGMENTS

I would like to express my deepest gratitude to my thesis advisor, Professor

Robert Beverly, for his patient guidance and continual encouragement and my second

reader, Professor Joel D. Young, for his valuable insights and comments. Without their

knowledge and assistance, this thesis would not have been successful.

Above all, I would like to express my love and gratitude to my wife, Dimitra, and

my daughter, Afroditi, for their understanding and endless love through the duration of

my studies.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A major use of the Internet is trade and e-commerce, and increased reliance on the

Internet for these functions demands increased reliability and security. The increase in

Internet use has led to the evolution of technologies that permit high traffic and improved

network performance with regard to bandwidth and traffic capacity. Abuse of the Internet

infrastructure has unfortunately also increased, in the form of denial-of-service (DoS)

attacks, worms, spam abusive traffic, DoS spam attacks, and so on. Internet abuse is

increasing sociologically as well as technologically, with organized criminals and other

malicious individuals exploiting the potential of network abuse.

A. SCOPE

The scope of this thesis is to: i) develop a real-time, online system, based on the

previous work of [3], that detects abusive network traffic associated with unsolicited

commercial e-mail, aka spam; ii) determines the most appropriate algorithms for such a

detector; iii) evaluates its performance; and iv) presents analytical results from running

the system.

Electronic mail (e-mail) is one of the most popular applications of the Internet,

enabling users to easily communicate by exchanging electronic messages at no upfront

cost, quickly, reliably and easily. E-mail distribution relies on an infrastructure consisting

of three components: user agents, mail servers, and Simple Mail Transfer Protocol

(SMTP) [4]. User agents allow users to read, reply to, forward, save, and compose

messages, whereas mail servers or message-transfer agents (MTAs) [5] are the core of the

e-mail infrastructure, responsible for the proper store-and-forward dissemination of

electronic mail. SMTP is the application protocol normally used for e-mail exchange and

leverages the reliable transfer properties of TCP [6] to deliver mail from the sender’s

MTA to the recipient’s MTA [7]. The e-mail architecture of the Internet is over three

decades old and was designed at a time when the implicit assumption was that a user

wanted to receive all messages addressed to him.

 2

Unfortunately, this popular communication media has been exploited. E-mail

abuse includes using high volumes of e-mail to distribute various types of content (as

shown in Figure 1) ranging from product advertisements to malware and pornography,

delivered to unsuspecting clients without their consent. These kinds of messages are

known as unsolicited commercial e-mail or “spam.” Abusive e-mail started to become a

problem when the Internet was opened to the public and has increased from

approximately 10% of overall e-mail volume in 1998 to a fairly consistent rate of about

88% to 92% today, posing a great burden not only to users but to service providers,

companies, and the network itself [8].

Figure 1. Spam E-mail Detected [From [1]]

 3

The nuisance factor of spam is manifold. It is irritating to sift cautiously through

quantities of junk e-mail to find legitimate messages, and it is a waste of time and

productivity. Besides that, spam may violate user privacy, for example, by phishing, in

which the spammer deceives the recipient by pretending to be a trusted party and asks for

sensitive information (passwords, credit-card numbers, etc.) [9]. Spam e-mail is a

problem for mail providers because it reduces storage space and consumes computational

resources [10]. Network performance is degraded, since bandwidth is wasted in

delivering spam e-mail and congestion increases on the links.

Many methods have been proposed to address the increasing problem of spam.

One of the earliest, still used today, rejects messages that originated from senders found

in blacklists—that is, databases, such as Spamhaus [11] and MAPS [12], that contain

untrusted IP [13] addresses. Content filtering, another popular technique, relies on the

assumption that spam messages contain words or phrases that differentiate them from

legitimate e-mail messages. Systems that use this technique check the body and headers

of a message for indicative words or phrases, using either a rule- or learning-based

approach. Rule-based systems are less effective because the user has to be involved in the

construction and update of the rules, which is time consuming and error prone. By

contrast, learning-based systems use machine-learning algorithms to automatically

categorize a message as spam or legitimate. These systems need to be trained on a set of

messages in order to extract the features, words, or phrases that will become the basis for

classifying messages. Spammers, meanwhile, adapt accordingly and find

countermeasures, such as fake IP addresses or compromised hosts, also known as botnets,

to evade blacklisting. To counter content filtering, they use sophisticated HTML- and

CSS-based obfuscation techniques or place the entire message content in randomized

images [14].

Traffic-characterization studies [3, 15, 16] try to address these issues by

examining network characteristics associated with spam behavior at the IP and TCP

level. Studies have shown that spam messages frequently originate from specific IP-

address space regions and autonomous-system (AS) numbers. To be more effective and

hide their trails, spammers take advantage of compromised hosts to send unsolicited

 4

commercial e-mail, which manifests itself in specific TCP features such as packet drops,

retransmissions, and variable roundtrip times (RTT) [6]. These techniques are promising

since it is more difficult for spammers to thwart such characteristics by manipulating the

IP or TCP layer.

The reputation of senders, messages, or flows, and collaboration among systems

and providers can leverage the above techniques and provide a more holistic view of the

methods and behavior that spammers use to obscure themselves.

B. GOALS

The goals of this thesis are summarized as follows:

• Develop a test bed consisting of three infrastructure components: i) the

user agent implementing the client side of the SMTP protocol and

generating e-mail traffic; ii) the network emulator, which mimics the

network path and condition characteristics to create traffic analogous with

that of a live network; and iii) the MTA, which implements the server side

of SMTP protocol.

• Develop the user agent, which will take as input messages from a corpus

and replay them in such a way that we can differentiate spam from

legitimate traffic and establish a ground truth when we receive messages

on the MTA side.

• Modify the network emulator so that it can produce random delay with

mean µ and standard deviation σ. Create two different traffic schemes: one

that simulates legitimate traffic and one that simulates spam-traffic

characteristics, such as loss of packets, retransmissions, and variable RTT.

• Modify our MTA to include the port number along with the IP address of

the sender in the message headers; the (IP:Port) tuple will be our message

identifier.

• Integrate SpamAssassin with our MTA; SpamAssassin will be the host of

our real-time system.

 5

• Integrate our system with SpamAssassin by developing a plug-in

(controller) that will control both the flow-analysis engine and the

classification engine. Further, it will aggregate data from our classification

engines and build the confusion matrices that will be used later in the

evaluation process.

• Develop our classification engine in a simple and extensible way by

utilizing existing technologies such as the classifiers that are provided by

Orange, a statistical- and machine-learning software package, and the

XML-RPC protocol for the establishment of two-way communication

between controller and the classification engine.

• Evaluate the performance of our system within the test bed with respect to

accuracy, precision, and recall.

• Deploy our system in a live environment and evaluate its performance.

• Evaluate how our system performs in an auto-learning fashion. We

describe how we define auto-learning and discuss the results in Chapter

IV, Section C.

• Discuss future work, such as other fields of abusive traffic where our

system may be used and enhancements of the existing system.

C. MAJOR RESULTS

The major results of this thesis are summarized in the following points:

• Our system achieved greater than 90% accuracy, precision, and recall in

both the virtual test bed and live environment, independent of the

classification method—which indicates that it can adopt and capture any

changes in TCP characteristics.

• We achieved a 99% precision rate in live testing with as few as 128

training examples, which suggests that spam flows are characterized by

high entropy, and we achieve small initialization times.

 6

• In auto-learning mode with SVM, we achieved above 97% rates in

accuracy and precision and above 99% in recall, with as few as 256

training examples.

D. STRUCTURE

The structure of our thesis is as follows: in Chapter II, we present previous work

in the field of spam filtering and detection and discuss the machine-learning algorithms

that we use for our classification engines. We elaborate on the test-bed architecture and

system design in Chapter III, and in Chapter IV discuss our experiments within the test

bed and the live environment, along with the evaluation results. Finally, in Chapter V we

summarize our work and its results and discuss future work having to do with evaluation,

the detection of other types of abusive traffic, unsupervised learning, and system

enhancements that will increase usability.

 7

II. RELATED WORK

Many methods have been proposed to address the problem of spam. Among the

most popular and widely deployed are content filtering, collaborative filtering, and

reputation systems. We review these first, then discuss emerging work in traffic

characterization, which is most relevant to this thesis.

A. CONTENT FILTERING

Content filters are founded on the premise that spam and legitimate e-mail contain

features, in this case, words, that are statistically distinguishable. In general, a filter [17]

is a function that takes as input the message to be classified and a model, and outputs a

classification label.

()
, if the decision is spam

,
, otherwise

spam

leg

c
f m M

c
⎧ ⎫

= ⎨ ⎬
⎩ ⎭

,

In the context of messaging and binary labels (spam or legitimate), m is the message to be

classified, M is the model, and cspam and cleg are the classification labels assigned to the

message.

The model can be either rule or learning based. Rule-based models consist of

logical rules that have to be continuously updated and refined by the user in order to be

competent with the dynamic nature of spam e-mail. Updating rules is problematic

because it is a time-consuming and often error-prone process [18]. In learning-based

approaches, the model is the outcome of applying a training algorithm on the features of a

selected set of labelled training messages. The objective is to create a model that

generalizes to predicting the classification of new, unseen messages. Each message is

mapped to a feature vector x composed of message characteristics, either textual or

nontextual, from a dictionary formed by analyzing the messages. For textual features [8],

we consider individual words, particular phrases, or overemphasized punctuation, such as

“!!!.” Nontextual features [8] can be the domain type of the message sender (e.g., .edu or

.com), whether the message was sent via a mailing list, or whether it has an attached

 8

document (most junk e-mail does not, but some malware propagates via e-mail). Feature

vectors can be constructed by various methods. We mention some of them [19]:

• term frequency, where each feature is represented by the number of times

that it appears in a given message (often normalized by frequency across

messages)

• binary representation, which indicates whether a particular feature occurs

in the message

• use of a stop list as a supplementary method to the above. The stop list

contains words like “a,” “and,” “the,” etc., that are not used in the forming

of the feature vector.

• use of stemming as a supplementary method. Stemming reduces words to

their root, for instance “builder,” “build,” and “building” share a common

root. This technique also makes for a more compact model representation,

while increasing accuracy.

Learning-based filters have been the focus of considerable interest and one can

select from a wide variety of machine-learning algorithms. We further elaborate on the

three that we used to evaluate our system.

1. Naïve Bayesian Classifier

Naïve Bayes classifiers [20, 21] were used in [18, 22] as an automated method for

filtering spam, in order to overcome the problems of manually constructing logical rules,

which require users, on one hand, to be capable of constructing robust rules and, on the

other, to constantly tune and refine the rules to adapt to the continuously changing nature

of spam e-mail. Their experiments revealed impressive results on both precision and

recall.

The naïve Bayes classifier is based on the Bayes theorem and the assumption that

each feature is conditionally independent of every other feature, given the class variable

C. The Bayes theorem is defined as [22]:

 9

() ()| ()
|

()

k k
k

P F f C c P C c
P C c F f

P F f

= = =
= = =

=
,

where C is the class variable and F is the feature vector. Applying the independence

assumption:

() ()| |k i i k

i

P F f C c P F f C c= = = = =∏ ,

and by using the maximum a-posteriori probability (MAP), the basic decision rule can be

defined as follows [17]:

()

{ }
()()

{ }

()

{ }
()

1 2

,

,

,

 = , ,...,

 = argmax |

| ()
 = argmax

()

 = argmax () |

n

k
k spam leg

k k

k spam leg

k i i k
k spam leg i

c classify f f f

P C c F f

P F f C c P C c

P F f

P C c P F f C c

=

=

=

= =

⎛ ⎞= = =
⎜ ⎟
⎜ ⎟=
⎝ ⎠
⎛ ⎞

= = =⎜ ⎟
⎝ ⎠

∏

The prior probability ()P C c= is given by the ratio of the number of examples

that belong in class c to the total number of examples. The product of the conditional

probabilities depends on the feature types, whether they are discrete or continuous. If the

features are discrete, the conditional probability is the ratio of the number of vectors Fi

that have value fi and belong to class ck to the total number of vectors that belong to class

ck. In the case of continuous values, we assume that they follow a normal distribution and

we have:

() (), ,| ; ,k ki i k i i c i cP F f C c g x μ σ= = = ,

where

()
()2

221; ,
2

x

X Xg x e
μ
σμ σ

πσ

−
−

=
,

is the normal (Gaussian) distribution.

 10

2. Support Vector Machines

Support-vector machines were introduced by Vapnic [23]. The main objective of

SVM is to discover the optimal hyperplane1 in n-dimensional feature space, such that the

feature vectors of each class exist on the same side of the hyperplane. For example, if we

take a random-feature vector that is closer to the feature vectors of class c1 than to c2, it

will reside in the hyperplane side that represents class c1. Therefore, after the discovery of

the optimal hyperplane, we will be able to correctly classify a given example.

A hyperplane P is considered optimal if it maximizes the minimum margin, i.e., if

the distances of the closest feature vectors of each class from P are equal. Formally, we

can represent P with the equation 0w x b• + = , where w is the normal vector2 of P, b is a

term that allows the algorithm to choose among all the hyperplanes that are perpendicular

to the normal vector P, and • is the inner product. The space that separates the feature

vectors of each class is defined as the margin between two hyperplanes with the

following equations:

 1iw x b• + = , if ci = 1
 1iw x b• + = − , if c2 = -1

Therefore, every training example belongs to class ci, if 1iw x b• + ≥ and to class

c2, if 1iw x b• + ≤ . Our goal is to maximize the margin. In that way, the classes will have

a confident degree of separation, thus allowing us to make more effective classifications.

So after having found the support vectors, the decision rule to classify an unknown

example is the following:

 ()
1

n

i i i

i
f x sign a y x b

=

⎛ ⎞= +⎜ ⎟
⎝ ⎠
∑ ,

where ai
 and b are used to maximize the margin of the separating hyperplane and yi = {1,-

1} are the classes.

1 A hyperplane in R1 is a point, in R2 is a line and in R3 is a proper plane.
2 Normal vector w is perpendicular to the hyperplane.

 11

The vectors, however, are not always linearly separable, so we have to apply a

transformation function (10) : nR FΦ → from the n-dimensional feature space to another

feature space. In that case, the decision rule becomes (1):

 () ()
1

,
n

i i i

i
f x sign a y K x x b

=

⎛ ⎞= +⎜ ⎟
⎝ ⎠
∑ ,

where () () (),i j i jK x x x x= Φ •Φ is the kernel function.

3. C4.5

C4.5 [24] is an extension of the ID3 decision-tree algorithm, designed to address

ID3 issues, such as the handling of continuous attributes, avoiding overfitting data,

reducing error pruning, handling missing values, etc.

The algorithm evaluates an unknown feature vector based on the following

strategy: initially, it selects the best feature as the root of the decision tree. For every

different value of the feature, it creates a descendant node, which consists of all the

vectors that contain the specific feature value. This whole process is repeated recursively

for each feature node in the decision tree. The process ends when one of the following

conditions is met:

1. all vectors of the current node belong to the same class or

2. all features are used

How well the decision tree will perform depends on the selection process of the

best feature. This will allow us to have a better clustering for each class of examples. A

suitable measure for the evaluation of the features, and therefore for the selection of the

best feature, is the information gain (IG) of an attribute A [25]. If we define S as the set

of training examples, then the mathematical representation of IG is given by the

following formula:

()

() () ()
v

v
v Values A

S
IG A Entropy S Entropy S

S∈

= − ∑ , where

 2
1

() log
c

i i
i

Entropy S p p
=

= −∑ ,

Values(A) is the set of attribute A values, Sv is a subset of S that contains the examples

 12

with attribute A having value v, and pi is the ratio of the number of examples that belong

to class i to the total number of examples. Entropy represents the amount of information

that is provided by the attribute and, in information theory, is measured in bits [25]. Our

goal is to maximize the IG of the selected attribute by minimizing the entropy of Sv, or,

in other words, by reducing the number of bits.

Information gain, however, has the disadvantage that it selects attributes with a

large set of values. To overcome this shortcoming, Quinlan [26] suggests utilizing the

information-gain ratio, which is formalized as follows:

 ()()
()

IG AGR A
IV A

= , where

 2

1

() log
A

i i

i

S S
IV A

S S=

= −∑ ,

and Si are the subsets of S that contain attribute A with value i. So, again, our goal is to

find the attribute that maximizes the above ratio.

Drucker et al. [19] evaluated both the SVM and C4.5 algorithms on the spam

problem, reporting acceptable results in terms of accuracy. Furthermore, Blanzieri and

Bryl [27] improved the accuracy of the SVM filtering technique by leveraging the

phenomenon of locality in spam [17].

Spammers, however, can easily evade content filters through different techniques,

such as misspelling words, inserting HTML tags inside words to avoid detection of

typical spam keywords, or lately, encapsulating the spam message inside an attached

image, better known as image-based spam [28].

Furthermore, the user is another factor that determines the performance of content

filters. Users can give feedback to the systems by reporting false positives and false

negatives in order to retrain the classifiers. The major concern with users is that their

classification is subjective and subject to error. Every user has a different notion of which

e-mail is spam. Most of them classify an e-mail as spam not objectively, based on the

definition of spam as unsolicited commercial e-mail, but rather, subjectively, based on

the fact that it has no interest to them [29].

 13

B. COLLABORATIVE FILTERING

Collaborative filtering addresses the problem of the user’s subjective assessment.

This technique is based on the idea that if many users collaborate and share their

subjective assessments of an e-mail, they can be leveraged to create a more objective

classification on that specific e-mail. The larger the number of users that collaborate, the

better the results will be. For example, if a user decides to report a message as non-spam

when the application knows that 10,000 users have reported it as spam, the application

will ignore his suggestion. But if the numbers of votes is small, the objectivity of the

suggestion is in doubt.

In a collaborative system [29], whenever a user receives an e-mail, a filtering

application suggests a classification for the e-mail: either spam or not. Then the user can

decide whether to accept this suggestion or deny it. If the user classifies the message as

spam, a signature is computed for that e-mail and is reported to a collective knowledge

base. If the signature matches a known signature of the database, it is then regarded as

spam.

The robustness of the filter depends greatly on the signature algorithm.

Spammers, in order to evade collaborative-filtering techniques, change at random small

portions of the message, with the intention of making each spam message unique. If the

signature algorithm fails to ignore such small randomizations, it will produce different

signatures for the same message. For greater robustness, algorithms have been developed

to be more content aware, so that unimportant changes do not alter the signature. For

example, Razor [30] uses short-lived signatures where the signature is based on text that

is selected from the spam message, based on a random number that changes regularly.

C. REPUTATION SYSTEMS

All transactions on the Internet today are covered by the umbrella of relative

anonymity. This allows users to act maliciously without any consequences. Reputation

systems try to solve this problem by developing trustworthy relationships between

producers and consumers. Their goal is to assign a reputation score to an e-mail entity.

 14

For this to be accomplished, these systems collect feedback from users, create a

behavioral profile, and assign a score based on previous behavior [31].

Reputation systems can be categorized [31] according to two characteristics: the

method of identifying the sending entity and the type of feedback that is further

processed.

1. Identification Method

Entity identification is accomplished by using either the content or the address of

the message. Systems that are founded on content-based identifiers use a form of

fingerprint to establish a good correlation between message and entity. We can define a

fingerprint as a many-to-one mapping. A good fingerprinting algorithm must not be

susceptible to message mutation. Thus, it must map many similar messages to the same

fingerprint while not mapping any additional messages to the fingerprint [32]. Razor [30]

and DCC [33] are two such systems that use fingerprinting to identify a message sender.

Address-based identifiers can be an IP address, sender domain, or the entire

address of the message (IP and domain). Systems that use the IP address as an identifier

have as a back end real-time databases, which query in order to find out whether the IP

address is blacklisted. These systems can be considered binary reputation systems

[38] since they do not give a score but a yes/no answer. The disadvantages of this method

[31] are that a legitimate host can be compromised and used to send spam messages, its

IP address can be hijacked, and legitimate users can share IP addresses with others that

send spam. Furthermore, Ramachandran et al. [15] showed that as much as 35% of spam

messages were sent from IP addresses that were not included in blacklists.

As mentioned, another type of address-based identifier that reputation systems

can use is the sender domain. Sender-authentication schemes, e.g., SenderID [34] and

DKIM [35], prevent domain spoofing. SenderID is a path-based technology in which

domain owners publish DNS TXT records that indicate which IP addresses are allowed to

send e-mail on behalf of a given domain. DKIM is a crypto-based technology. The sender

signs the message with a private key associated with the domain and the recipient uses

the public key advertised in the DNS to verify the sender domain [31].

 15

2. Feedback Method

Reputation systems use two types of feedback: reactive and predictive.

We define reactive feedback [31] as the feedback provided by humans or

automated means such as spamtraps, honeypots, or other filtering systems. Examples of

such systems are real-time blacklists and collaborative-filtering systems like those

mentioned above. We must, however, ensure that the feedback provided originates from

legitimate sources. In other words, we must establish a reporter’s trustworthiness,

otherwise the data are susceptible to malicious or accidental pollution.

Predictive feedback has to do with building behavioral-feature vectors based on a

vast amount of observed activity for given identifiers [31]. The behavioral characteristics

can be extracted from statistical properties such as volume, frequency, and distribution of

identifiers or relations among identifiers. An example of a system that uses statistical

properties is DCC, which uses the message fingerprint as an identifier and measures the

volume of reports for each fingerprint. If the volume exceeds a certain threshold, the

message is considered spam. Further, Leiba et al. [36] assign a reputation score to a

message based on statistics for each IP address of the SMTP path. The statistics are the

number of spam or legitimate e-mails for which each IP address on the SMTP path

appears. Goldbeck and Handler [37] use the social network of users and user-assigned

reputation scores for people they know to build a large reputation network, from which

they can infer recursively a reputation score for the sender of a message.

Reputation systems, however, face some difficulties. First of all, there is no

standard to define what constitutes a reputation score, so each vendor uses different

criteria; and second, there is no centralized clearinghouse of reputations, which makes it

difficult for vendors to exchange reputation scores [38].

D. TRAFFIC CHARACTERIZATION

Traffic-characterization methods are a recent novel approach to differentiating

sources of abusive traffic. Several prior works are directly relevant to our research. These

methods try to identify spam by leveraging the network or transport-layer properties.

 16

Whereas spammers have the ability to alter the content of a message or spoof an IP

address or sender domain, they have much less power to forge network (e.g., IP) or

transport-level (e.g., TCP) properties.

1. Network-Level Characteristics

Ramachandran et al. [15] examine the spamming behavior at the network layer

(IP layer) by correlating data collected from three sources: a sinkhole, a large e-mail

provider, and the “command and control” of a Bobax botnet. More specifically, they

focused on the following network-level properties:

• IP address space from which spam originates

• autonomous systems that sent spam messages to their sinkhole

• BGP route announcements

With respect to IP address space, their findings showed that spam and legitimate

e-mail originate from the same portion of the IP address space, suggesting that it is not a

good discriminating property. Autonomous-system (AS) utilization, on the other hand,

showed that spammers use different ASs to disseminate their load as compared to the

ASs that legitimate e-mail is sent from—which suggests that it could be a promising

feature for filtering systems of spam messages.

Hao et al. [16], however, showed that AS alone as a feature may cause a large rate

of false positives. Their work focused on extracting lightweight features from network-

level properties such as geodesic distance between sender and receiver, sender IP-

neighborhood density, probability ratio of spam to ham at the time of day the packet

arrives, the AS number of the sender, and the status of open ports on the sender machine.

Their feature-selection process showed that AS is the most influential feature, but when

used for classification yields a false-positive rate of 0.76% under a 70% detection rate,

which suggests that it should be used in combination with other features. Further studies

[39, 40] have shown that a spammer can evade this technique by advertising routes from

a forged AS number [16].

 17

2. Transport-Level Characteristics

In a spirit similar to Ramachandran et al., Beverly and Sollins [3] explored

transport-layer characteristics in order to determine whether spam e-mail presents

different behavior from legitimate e-mail. Their idea is based on the premise that

spammers have to send large volumes of e-mail to be effective, which suggests that the

network links involved would experience contention and congestion. Therefore,

transport-layer properties such as number of lost segments and the roundtrip time (RTT)

would have different metrics in such a contentious environment, allowing discrimination

between spam and legitimate behavior.

The features that they used to evaluate the transport-layer properties are the

following:

• number of packets

• retransmissions

• packets with RST bit set

• packets with FIN bit set

• number of times zero window was advertised

• number of times minimum window was advertised

• maximum idle time between packets

• initial roundtrip time estimate

• variance of inter-packet delay

Among those features, the feature-selection process showed that RTT and

minimum-congestion window are the most discriminatory. Their analysis revealed that

50% of spam messages have an RTT greater than 200ms, which correlates with the

findings of Hao et al. [16] that showed that spam messages travel longer distances than

legitimate ones. As for the performance of the classifier, the evaluation showed that it

exhibits more that 90% accuracy and precision.

Moreover, Ouyang et al. [41] conducted a large-scale empirical analysis of

transport-layer characteristics on 600K+ messages, based on the work of Beverly and

Sollins. They expanded the feature set to include other features such as the operating

 18

system of the remote host, the advertised window size in the SYN packet from the remote

host, and variance of RTT. Among the most discriminating features between spam and

ham, their analysis revealed three-way-handshake, time-to-live, idle time between

packets and variance of inter-packet delay. Performance-wise, they showed that

transport-layer features are stable over time and can classify spam with 85–92%

accuracy.

Esquivel et al. [42] suggested leveraging transport-layer characteristics to defend

against spam at the router level using a signature-based defense mechanism. For this to

be accomplished, the mechanism has to be lightweight so that it does not impose

overhead on the router; that is, the signatures have to be stateless and require a small

amount of memory. TCP fingerprints were proposed as signatures because they are

lightweight, can be computed on a single TCP SYN packet, and are very few in number,

so they can be stored without much overhead incurred on the router.

They experimented on two live e-mail data sets that included both spam and

legitimate e-mail messages. They used pOf [43] as the tool to extract signatures from a

packet capture. They discovered common signatures across both data sets for spam e-

mails; however, in the case of legitimate e-mail messages, no common signatures were

revealed. Noteworthy was the fact that many of the top signatures used by hosts to sent

legitimate messages are also used by hosts to send spam, which is evidence that they have

changed some of the OS configurations. Furthermore, they observed that the spam

signatures were stable over a period of several months for both locations. As far as

performance, analysis showed that router-level filtering with TCP fingerprinting can filter

28%–59% of spam messages with a 0.05% false-positive rate.

Another approach on traffic characterization was proposed by Schatzmann et al.

[44]. They focused on the network-level characteristics of spammers, but from the

perspective of an AS or ISP. Their idea is based on the assumption that a large number of

e-mail servers perform some level of pre-filtering (e.g., blacklisting). This knowledge

however, remains local at the server and, depending on the server configuration or the

 19

policy that is in effect, each server would perform differently. If we had access to that

knowledge, we could analyze it and use it to improve the overall performance of the

servers.

Schatzmann et al. showed that this local knowledge of pre-filtering decisions can

be collected using flow-size information like bytes per flow, packets per flow, or average

bytes per packet instead of examining the server logs. They gathered data within a three-

month period from border routers of a major ISP serving more than thirty universities and

government institutions. Their analysis showed that 95.64% of the sessions that failed

had flows with less than 322 bytes, 96.99% of the sessions that were rejected had flows

from 322 to 1559 bytes (corresponding to the SMTP envelope), and 97.16% of the

sessions that were accepted had flows of greater than 1559 bytes. So just by byte count

we can estimate the filtering decisions of mail servers.

They further validated their claim on a network-wide scale with fifty active mail

servers that used blacklisting and whitelisting. The results showed that the traffic rejected

by blacklisting had flow sizes between 322–1559 bytes, which concur with the above

findings, and more than 90% of the accepted SMTP sessions had flow sizes greater than

1559 bytes. Leveraging this knowledge, they further proposed a reputation-rating system

of e-mail senders. This intuition is based on the fact that when a server rejects in a

consistent manner, it implicitly applies a rating on the specific client. These ratings can

be used to build a collaborative-rating system, where the system would recommend

acceptance or rejection of an SMTP session based on the collective behavior of all the

servers.

 20

THIS PAGE INTENTIONALLY LEFT BLANK

 21

III. ENVIRONMENT-SYSTEM OVERVIEW

This chapter describes the architectural approach we followed for our system and

environment. We evaluated our system in both a virtual test bed and a live-test

environment. A virtual test bed provides insights about the behavior of a system and

allows for more controllable conditions, allowing us to reach more reliable and

reproducible results [2]. Our goal was to evaluate our system under high-traffic-rate

conditions and measure characteristics such as throughput and system load. This is

especially appropriate when deploying the system in a resource-constrained environment

such as a router.

Live testing, on the other hand, is important because it reveals how the system

interacts with possibly unknown features of the external environment [2]. We deployed

our system in a live environment from January 25, 2010 to March 2, 2011 and collected a

trace of 5,926 e-mail messages. Section A describes the architecture of our virtual test-

bed environment and Section B discusses the design of our real-time, abusive-network,

traffic-detection system.

A. VIRTUAL-ENVIRONMENT ARCHITECTURE

An overview of our virtual environment is shown in Figure 2. It consists of three

building blocks: the client side, server side, and network emulator. The client side

generates the required SMTP [4] traffic, which is then received, analyzed, and classified

on the server side. The role of the network emulator is to simulate congestion, in the form

of longer delay, delay variance, retransmissions, etc., that large volumes of spam traffic

will cause on the link.

1. Server Side

The server side consists of two virtual machines: one acting as the DNS server

and the other as the mail server (MTA). For our DNS server, we used BIND [45], and for

our mail server, Postfix [46].

 22

Figure 2. Virtual-Environment Architecture

Furthermore, we installed SpamAssassin [47] and SpamFlow [3] in the virtual

machine that hosts the mail server, in order to achieve real-time, traffic-analysis

functionality. More specifically, we integrated SpamFlow into SpamAssassin by

developing a Perl plug-in so that SpamFlow could analyze SMTP packets, build the flow

for each message, and extract the corresponding TCP features in real time.

Further, we have a libpcap [48] process that is running in promiscuous mode to

assist SpamFlow in accomplishing its tasks. It collects all passing traffic from the

interface it is listening on and writes them to a file, which is rotated at a specific rate to

avoid large files and still not miss packets that belong to a message we haven’t processed

yet. Note that in the future, we plan to more tightly integrate the promiscuous packet

capture with SpamFlow by storing flow features in memory as possible to avoid file

system performance overhead.

For classification, we developed a classifier in Python using Orange [49], a

machine-learning library for Python. See Section B for the implementation details of the

classifier and the approach we selected to establish a communication path between

SpamFlow and the classifier.

 23

2. Client Side

The client side also uses two virtual machines that accommodate the task of

generating the appropriate SMTP traffic. Each client consists of an e-mail replayer and

the 2005 TREC public spam corpus [50] containing 92,187 messages, of which 52,788

are spam and 39,399 are legitimate. The corpus consists of an index file and a directory

structure with the messages. The index file contains the path and label—spam or ham—

for each message, which we use to establish ground truth. One issue that we had to

address during our design was the limited TCP ephemeral-port range that the operating

system enforces with regard to the volume of our corpus, as we discuss further below.

For the purpose of generating our SMTP traffic, we developed in Python [51] an

e-mail replayer which performs the following tasks:

• takes as input each message from a corpus, extracts the headers, and adds

as recipient a valid user of our virtual-network domain

• adds another helper header that contains the label of the message in such a

way as to not trigger SpamAssassin and enables us to establish the ground

truth during our analysis process

• establishes an SMTP session with our mail server

• sets the type of service (tos) field in the IP header of each message to

some value, depending on its class. Thus spam and legitimate messages

have different tos values, which allows us to redirect them through

different paths in our network emulator

• finally, the replayer transmits the message

As mentioned above, the operating system limits the range of ephemeral3 ports a

host can use. In our case, the range of available ephemeral ports is from 32,768 to 61,000,

which allows us to establish 28,232 unique TCP connections. The total number of

messages we want to transmit, however is 92,187, many more than the available

connections. This is a problem because we use the IP:Port tuple to identify the message,

3 Ephemeral ports are temporary ports assigned by a machine's IP stack, and are assigned from a

designated range of ports for this purpose.

 24

build the flow from the message packets that correspond to the given IP:Port tuple, and

extract the features. As a solution, we used two virtual machines and manually bound the

interface to a port using our own ephemeral-port range. Applying these two approaches,

every message was mapped to a unique 4-tuple (server IP, server port, host IP, host port),

which allowed us to uniquely identify each message on the server side and extract its

corresponding flow features. We could have adopted another approach and used the

message identifier instead, which is unique for every message. This approach, however,

would require making a deep packet inspection to retrieve the message identifier, which

implies more computational time, and we would lose the lightweight principal from our

system.

3. Network Emulator

Emulators are tools that generate appropriate network-environment characteristics

to allow for protocol or application evaluation. In our case, our goal is to reproduce the

TCP characteristics that spam TCP traffic exhibits, such as TCP timeouts,

retransmissions, resets, and highly variable roundtrip time (RTT) estimates [3]. For our

evaluation, we selected Dummynet [52], a publicly available tool that allows packets to

pass through virtual network links to introduce delay, loss, bandwidth constraints,

queuing constraints, etc.

Dummynet [2] comprises two main components: an emulation engine and a

packet classifier. The emulation engine (Figure 3) or pipe as we will call it, consists of a

finite-size queue, a scheduler, and a communication link with fixed bandwidth and

programmable propagation delay. We can build our network environment by configuring

the main parameters: bandwidth, queue size, queuing discipline, and propagation delay.

Traffic is passed to the pipe using the packet classifier, ipfw, which matches packets

according to a predefined rule set and applies appropriate actions.

 25

Figure 3. Dummynet [From [2]]

Once a packet is inserted into the pipe, it is queued and drained at a rate

corresponding to the link’s bandwidth B . The next stage for the packet is the

communication link, where it stays for a time Dt equal to the propagation delay of the

link. The packet is reinjected into the network stack after time Dt expires. As a result of

this process, the pipe will delay each packet i by a time ()i i
i D

l QT tB
+= + , where il is

the length of the packet, iQ is the queue size, and B and Dt are the bandwidth and

propagation delay of the link, respectively [2].

As mentioned above, Dummynet introduces a fixed amount of propagation delay

into the link, which induces difficulties in achieving a variable RTT, as would be present

in a congested environment. To address this problem, we modified Dummynet to provide

random delays based on a normal distribution with mean μ and standard deviation σ .

More specifically, we set up Dummynet to introduce a mean delay of 150 ms with 50-ms

standard deviation for spam traffic that originates from the replayer and is destined for

the mail server, and a 40-ms mean delay with 25- ms standard deviation for legitimate

traffic in both directions. We introduced delay in legitimate traffic in order to avoid

overfitting our model.

To emulate timeouts, retransmissions, and resets, we applied a random-packet-

drop policy on the pipe. While we recognize that our modifications to Dummynet only

partially emulate a congested network (for example, loss events are independent—an

assumption that does not hold true in a real queue), our goal in the emulation

 26

environment was to enable testing. Specifically, as mentioned above, the environment

provides a means to emulate high-rate traffic and evaluate performance, throughput,

system load, etc. on representative traffic.

B. SYSTEM DESIGN

An overview of our real-time system is shown in Figure 4. It comprises four main

components: SpamAssassin, SpamFlow Analysis Engine, SpamFlow Plug-in, and the

SpamFlow Classification Engine. We refer to SpamFlow Analysis Engine, SpamFlow

Plug-in, and SpamFlow Classification Engine as spamflow, plugin, and classifier,

respectively. Furthermore, we have a separate process running in promiscuous mode,

which captures every packet of the SMTP session using libcap and stores it to disk.

Every message received by the mail server is processed by SpamAssassin and

then piped to plugin, where we extract the identification tuple (host IP address, host port

number) from the message and then pass it to spamflow for feature extraction. Thereafter,

plugin is responsible for communicating with classifier for the classification task. We

describe each component in more detail in the following subsections.

1. SpamAssassin

SpamAssassin is an open-source, rule-based, content filter. Each rule is assigned a

score using a genetic algorithm. All scores are then aggregated to produce an overall

score for each message. The classification process involves comparing the overall score

with a user-defined threshold (which defaults to a value that maximized performance on a

broadly representative training sample during the genetic-algorithm stage). If the score is

above the threshold, then the message is classified as spam; otherwise, as legitimate.

Moreover, using a modular architecture, SpamAssassin can be extended to include other

filtering techniques, such as real-time blackhole lists (RBLs), whitelists, collaborative

filtering, learning-based techniques (e.g., naïve Bayes), and others.

Furthermore, SpamAssassin features a threshold-based mode in which new

exemplar emails trigger an automatic retraining process. While the SpamAssassin

documentation refers to this as “auto-learning,” in the machine learning and spam-

 27

filtering communities, this is typically called online or iterative learning. The primary

difference is that in advanced iterative learning approaches the classification model is

modified to account for the new emails; whereas in auto-learning, the entire model is

recreated. More specifically, SpamAssassin selects messages that achieve proper

threshold values, rebuilds the model of the built-in naïve Bayes classifier, and classifies

subsequent messages with the newly updated model. A message is selected as spam if the

score that it receives is greater than 12 points and as non-spam if the score is less than 0.1

points. We discuss the results of applying this technique to our system in Chapter IV,

Section C.

Figure 4. System Architecture

We used SpamAssassin with the default configuration of rules, but we disabled all

network tests (lookups in blackhole lists (RBL), collaborative filtering with Ryzor [30],

Pyzor [53], and DCC [33]), because our virtual environment was insulated from the outer

world. Also, we disabled rules comparing the date on the message header with the date

 28

the message was received. All messages in our corpus, whether legitimate or spam, have

out-of-date dates in the headers, which implies that triggering those rules makes no

contribution to the overall scoring process (and might artificially affect classification

performance negatively).

2. SpamFlow

Spamflow serves as our network analyzer. It accepts as input a libpcap [54] trace,

builds corresponding flows, and extracts TCP features for each flow. We modified

spamflow for our purposes to extract TCP features for a given message identified by the

(host IP address, host port number) tuple. To accomplish the above tasks, spamflow needs

to communicate with a separate process that is responsible for capturing TCP packets in

promiscuous mode and storing them to disk. Spamflow retrieves the packets from the disk

associated with the given (IP address, TCP port number) tuple and extracts their flow

features. This solution, however, is not the most effective since it involves file

operations. A better solution that also preserves the lightweight character of our system is

for all input/output operations of both the libpcap process and spamflow to be executed in

memory. We leave this as future work and in the meantime could use a RAM disk to

emulate this behavior. We modified our mail server to add to the header of each e-mail

the (IP address, TCP port number) identification tuple of the remote mail-transport agent

(MTA) sending the mail.

3. SpamFlow Plugin

Spamflow cannot operate as a standalone application for real-time traffic analysis;

therefore, we had to integrate it with an existing one. We selected SpamAssassin because

it is open source, widely used (the commercial Barracuda [55] network appliance is based

on SpamAssassin), and employs a modular architecture that allows extensions through

plug-ins. SpamAssassin is written in Perl [56]. We developed, using Perl, a module that

integrates spamflow into SpamAssassin and allows it to operate in a real-time fashion: as

e-mail messages are routed through spamflow, they are classified using a previously

 29

learned model of transport features and given a score. This score, in combination with the

scores from other rules, provides a final message disposition.

Plugin acts as the controller of the system and binds the traffic-analysis engine

and the classifier together. This module performs two main tasks that are related to

spamflow and classifier. The first task is to provide spamflow with the 2-tuple identifier

of the current message under inspection and receive in return the features that correspond

to the given message identifier. Once plugin obtains the features, the second task involves

classification: passing the features, via an appropriate protocol, over to the classifier and

retrieving the corresponding classification. In Figure 5, we see an example of a message

headers where the plugin has attached the features that spamflow has extracted.

Figure 5. Message Headers with spamflow features

From Josephine@rsi.com Tue Feb 01 23:21:58 2011
Return-Path: <Josephine@rsi.com>
X-Spam-Checker-Version: SpamAssassin 3.3.1 (2010-03-16) on
ralph.rbeverly.net
X-Spam-Level: **
X-Spam-Status: No, score=2.9 required=5.0
tests=BAYES_40,HTML_MESSAGE,SPAMFLOW,
 UNPARSEABLE_RELAY autolearn=no version=3.3.1
X-Spam-Spamflow-Tag: the features are
3792891725:37689,12,10,0,0,0,0,1,1,0,53248,34.464852,0.162818,120.44
1156,148.297699,51.891697,5840,48,1,64
Delivered-To: rbeverly@ralph.rbeverly.net
Received: (qmail 30923 invoked by alias); 1 Feb 2011
23:21:58 -0000
Delivered-To: jobs@eactivenetworks.com
Received: (qmail 30920 invoked from network); 1 Feb 2011
23:21:57 -0000
Received: from cm-static-18-226.telekabel.ba
(77.239.18.226:37689) by ralph.rbeverly.net with SMTP; 1 Feb
2011 23:21:57 -0000
Received: from vdhvjcvivjvbwyhxnscvfwq (192.168.1.185) by
bluebellgroup.com (77.239.18.226) with Microsoft SMTP Server
id 8.0.685.24; Wed, 2 Feb 2011 00:20:48 +0100
Message-ID: <4D489025.504060@etisbew.com>
Date: Wed, 2 Feb 2011 00:20:48 +0100
From: Essie <Essie@hermes.com>
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US;
rv:1.9.2.12)

 30

To accomplish this task, we used XML-RPC [57] as the communication protocol

between the two ends. XML-RPC is a simple protocol that allows procedures running in

different applications or machines to communicate with each other. They exchange

XML-formatted data [58] using the HTTP [59] protocol. Specifically, the client uses the

HTTP-POST request to pass data to the server; the server in return sends an HTTP

response. In our implementation, we registered classifier with a classify procedure that

takes as input the features. So plugin sends the HTTP-POST request with the name of the

procedure to call, classify, along with the features, as coma separated values forming a

string, and receives via HTTP response the classification label from each classifier.

We chose XML-RPC because it is simple. It allows classifier to potentially

operate on a different machine from spamflow, which in the future could allow the XML-

RPC classifier to serve many spamflow instances in a multithreaded fashion and

distribute load; it uses XML, which has been established as a standard format across

many platforms and applications; and finally, both Perl and Python provide an API for

the XML-RPC protocol. The latter has to do with the fact that we implemented classifier

using Python, as we will discuss in the next subsection.

4. SpamFlow Classification Engine

As mentioned above, we have implemented classifier using Python and the

Orange machine-learning package. Orange is a simple-to-use package with many

features, such as a variety of machine-learning algorithms, a statistical module that allows

different evaluation techniques, and visualization widgets.

Our classifier implementation comprises three machine-learning algorithms:

naïve Bayes, decision trees (C4.5), and support-vector machines (SVM). We selected

three algorithms because we wanted to examine if the classification performance of our

system is a function of the classification method, and these algorithms are known to

provide good performance. All three algorithms are invoked to provide a classification

for the requested flow features.

 31

IV. EXPERIMENTAL METHODOLOGY AND RESULTS

In this chapter, we describe the experiments performed on our system using the

infrastructure and architecture described in Chapter III. We then discuss performance

results and the implications as observed in both the synthetic laboratory environment and

in the live network test.

A. EXPERIMENTS

We evaluated both the system as a whole and classifier by itself, with three

different experiments. The first two were performed on the virtual test-bed environment

and the third on a server in live testing. For both experiments on the virtual test bed, we

tested our system against high-rate and high-volume traffic. Our volume consisted of

approximately 70,000 e-mail messages that we replayed using both of our clients. While

the combination of the replayer application and the simulated network delay limited our

testing throughput to approximately 110 msgs/min, we show later in this chapter that our

classification engine is capable of processing 78,000 msgs/min. The load to which we

subject the system is sufficiently high to simulate a realistic environment, exercise our

algorithms, and measure performance with reliability.

As stated in Chapter III, our other goal was to evaluate our system classification

performance. Even though the conditions that our virtual test bed produced are, naturally,

not perfectly representative of a live environment, we can extract valuable information on

how the classifiers react and perform on artificial features. The test bed gives us the

ability to measure different performance metrics such as throughput, training times, and

system load. We established a reference of comparison for evaluation purposes by using

SpamAssassin in two configurations. The first configuration included only the local tests,

which perform checks on the message body and headers, whereas in the second phase we

allowed SpamAssassin to utilize its own built-in naïve Bayes classifier. As previously

stated, we did not use any rules requiring network access, e.g., real-time blacklists,

because our environment had no access to the Internet.

 32

To accommodate our experimental needs, we divided our corpus into two sets.

The testing set consisted of 70,000 messages, and the remaining 22,176 messages were

the training set. For each experiment, we used four different training sets, consisting of

10, 100, 1,000 and 10,000 training examples. Each training set was then populated using

sampling without replacement, as we did not want to select the same message twice,

ensuring an equal composition in the number of spam and legitimate e-mail messages.

For each training-set size, we perform tenfold cross-validation to ensure generality and

reliable results. Our goal was to evaluate our system with increasing sizes of training

examples and repeat the evaluation process for each set ten times, in order to compensate

for any variations that would be a result of the sampling procedure, as well as to affirm

that the classifiers would perform better as the training set size increased.

The metrics that we used for our evaluation are the standard classification

performance measures of accuracy, precision, and recall. Precision measures

classification specificity [60], which is defined as the proportion of the positive

classifications that are correct; this measure penalizes any incorrect positive classification

(false positives) but does not penalize any loss of positive classifications. Recall

measures classification coverage [60], defined as the proportion of the set of positive

cases that the system correctly classifies, and therefore penalizes false negatives but not

false positives. Accuracy measures the proportion of classifications that are correct, and

thus gives equal weight to both false positives and false negatives. The formulas that we

used to compute the aforementioned metrics are the following:

() ()

p

p p

p

p n

p n

p n p n

t
precision

t f

t
recall

t f

t t
accuracy

t t f f

=
+

=
+

+
=

+ + +

Finally, we need to mention the SVM configuration that we used in our

evaluation, since it is tunable. The SVM implementation of Orange provides two

classification types, C-SVC (support-vector classification) and Nu-SVC, with each

 33

adjusting different parameters to calibrate their performance. For our experiments, we

selected the C-SVC type, because Nu-SVC, which was the default type in Orange, was

producing errors, and C-SVC was recommended instead. As kernel type, we used the

Gaussian kernel or radial-basis function (RBF), because it is proposed in [61] as a good

start, and we selected parameter C4 = 5. We leave as future work examination of the

performance of our system on different kernel types and parameters.

B. RESULTS

1. Test-Bed Evaluation

Our goal for this first experiment was to evaluate our system in a high-volume-

and-rate traffic environment and examine the system and classification performance. In

the first subsection, we discuss the classification performance relative to SpamAssassin

as a reference point, and in the second subsection, present the system performance with

respect to throughput, classification training times, and system load.

a. Classification Performance

The results of our system evaluation (first experiment, lab environment)

with respect to accuracy, precision, and recall are shown in the following figures. The

values in the x-axis are in logarithmic scale (base 10) and represent 10, 100, 1,000 and

10,000 training examples.

Figure 6 shows accuracy, where we can observe that all three classifiers

(naïve Bayes, C4.5 decision trees, and SVM) behaved as expected. As the number of

training examples increased, the resulting performance increases. With large training-set

sizes, all of the classifiers achieved greater than 98% accuracy on our test data. C4.5 had

the best performance of all, achieving 99% accuracy; but in general we cannot detect any

significant performance difference among the different classifiers.

4 C defines the penalty parameter of error term and is always greater than zero.

 34

On the other hand, SpamAssassin, using only word-token features,

produced only 99 true positives—a 40% accuracy, which is quite a significant difference,

even in an artificial environment. These results in the laboratory suggest the significant

potential effectiveness of TCP behavioral filtering versus content filtering. The analytical

results on accuracy for the three classifiers and for each sample are shown in Table 1.

Figure 6. Test-Bed Evaluation: Accuracy

 Training Samples

Classifier 10 100 1000 10000

Bayes 0.914 0.972 0.981 0.981

C45 0.900 0.966 0.987 0.996

SVM 0.812 0.977 0.983 0.978

Table 1. Test-Bed Evaluation: Accuracy

 35

Precision and recall are depicted in Figure 7 and 8 respectively, and the

analytical results for all classifiers in Tables 2 and 3. We observe again that all classifiers

reach high rates of precision and recall. C4.5 has the most stable behavior, achieving a

99% rate both in precision and recall, followed by naïve Bayes and then SVM. By

contrast, SpamAssassin without naïve Bayes performed well, precision-wise, with zero

false positives, but had a very low recall rate of 0.02%, because there were a great

number of false negatives.

Noteworthy is the fact that all three classifiers reached the maximum

performance rate after the second training sample, which is probably due to the synthetic

traffic that we generated. We therefore suggest, as future work, the creation of a more

representative synthetic traffic in the laboratory environment. Nevertheless, our results

suggest that we may expect an analogous behavior in a live environment, achieving a

good performance with a small number of training examples. The confusion matrices for

each classifier are shown in Tables 4, 5, and 6.

Figure 7. Test-Bed Evaluation: Precision

 36

 Training Samples

Classifiers 10 100 1000 10000

Bayes 0.938 0.983 0.989 0.99

C45 0.904 0.972 0.994 0.998

SVM 0.941 0.997 0.997 0.995

Table 2. Test-Bed Evaluation: Precision

Figure 8. Test-Bed Evaluation: Recall

 37

 Training Samples

Classifiers 10 100 1000 10000

Bayes 0.921 0.970 0.979 0.979

C45 0.939 0.971 0.984 0.995

SVM 0.738 0.964 0.975 0.970

Table 3. Test-Bed Evaluation: Recall

Sample TP FN TN FN

10 38414 3275 25559 2739

100 40399 1245 27557 696

1000 40342 852 27361 442

10000 35940 754 22944 360

Table 4. Test-Bed Evaluation: Naïve Bayes Confusion Matrix

Sample TP FN TN FN

10 39127 2562 23889 4409

100 40450 1194 27081 1172

1000 40536 658 27548 255

10000 36521 172 23218 85

Table 5. Test-Bed Evaluation: C45 Confusion Matrix

 38

Sample TP FN TN FN

10 30782 10908 26055 2243

100 40141 1503 28152 102

1000 40162 1032 27694 109

10000 35583 1111 23115 188

Table 6. Test-Bed Evaluation: SVM Confusion Matrix

b. Throughput—Load

Table 7 shows how the three classifiers performed with respect to

training times and classification throughput. Examining the results, we observe that naïve

Bayes provides the higher throughput among the three classifiers, and this conforms to

the fact that its decision rule is much simpler than the other two, whereas C4.5 has the

lowest training time. SVM, on the other hand, achieves the lowest throughput and the

largest training time, due to the more complex decision model. The significant takeaway

from these measurements is that, taking into account the relative independence of our

system from the classification method, we can select the classification model that fit our

needs. For example, the low training time of C4.5 makes it a good candidate when we

need to retrain often and want to minimize idle times.

 Training Times (msec)

across samples

 10 100 1000 10000

Throughput

(msgs/sec)

Bayes 0.884 15.016 105.453 104.843 1300

C4.5 0.151 0.964 16.017 29.785 1100

SVM 0.721 12.691 224.250 260.018 700

Table 7. System Performance

 39

The classification engine’s CPU utilization, using all three classifiers at

the same time, for the duration of our experiment was 0.1%, as we observe on Table 8,

which shows that our system requires low system resources in order to operate.

 Time (sec)

User 6.52

System 86.04

Elapsed 86263

CPU 0.1%

Table 8. Classification Engine CPU utilization

2. Test-Bed Evaluation Using SpamAssassin in Auto-Learning Mode

In the second experiment, we explore if we can improve the built-in naïve Bayes

classification engine of SpamAssassin using the threshold-based “auto-learning”

operational mode that we described in Chapter III, Section B.

This experiment allows us to assess the strength of TCP features against the

content features. Accuracy, precision and recall of all three classifiers are presented in

Figures 9, 10, and 11, the analytical results are presented in Tables 9, 10, and 11. Again

we observe as in the first experiment that C4.5 and Bayes achieve high performance

across all metrics with rates above 95%. SVM, however shows a deviation compared to

the results of the first experiment, which is probably due to the fact that we have not tried

different SVM kernel types and parameters.

SpamAssassin, on the other hand, does not show any improvement using the

naïve Bayes classifier in “auto-learning” mode, compared to the previous experiment. As

is shown in Table 12, accuracy and recall remain at the same low levels of 40% and 0.2%

respectively. Nevertheless, we stress that SpamAssassin achieves zero false positives,

that is 100% precision rate, which implies its conservative character, and that a

combination of traffic and content filtering would produce a good line of defense against

spam. The confusion matrices of all three classifiers are shown in Tables 13, 14, and 15.

 40

 Training Samples

Classifier 10 100 1000 10000

Bayes 0.817 0.961 0.970 0.969

C45 0.812 0.963 0.983 0.993

SVM 0.599 0.968 0.962 0.870

Table 9. Test-Bed Evaluation Using SpamAssassin in Auto-Learning Mode: Accuracy

Figure 9. Test-Bed Evaluation Using SpamAssassin in Auto-Learning Mode: Accuracy

 41

Figure 10. Test-Bed Evaluation Using SpamAssassin in Auto-Learning Mode: Precision

 Training Samples

Classifier 10 100 1000 10000

Bayes 0.881 0.986 0.991 0.992

C45 0.846 0.974 0.993 0.996

SVM 0.722 0.995 0.990 0.971

Table 10. Test-Bed Evaluation Using SpamAssassin in Auto-Learning Mode: Precision

 42

Figure 11. Test-Bed Evaluation Using SpamAssassin in Auto-Learning Mode: Recall

 Training Samples

Classifier 10 100 1000 10000

Bayes 0.800 0.947 0.958 0.957

C45 0.836 0.964 0.979 0.993

SVM 0.530 0.950 0.945 0.811

Table 11. Test-Bed Evaluation Using SpamAssassin in Auto-Learning Mode: Recall

 43

SpamAssassin

TP 99 Accuracy 0.4

FN 41595 Precision 1

TN 28304 Recall 0.002

FP 0

Table 12. Test-Bed Evaluation Using SpamAssassin in Auto-Learning Mode:
SpamAssassin Results

 TP FN TN FP

10 32910 8209 23525 4457

100 38902 2171 27402 535

1000 38929 1695 27129 358

10000 34566 1557 22718 269

Table 13. Test-Bed Evaluation Using SpamAssassin in Auto-Learning Mode: Naïve-Bayes
Confusion Matrix

 TP FN TN FP

10 34394 6724 21703 6279

100 39579 1494 26891 1046

1000 39780 843 27187 300

10000 35869 254 22834 153

Table 14. Test-Bed Evaluation Using SpamAssassin in Auto-Learning Mode: C45
Confusion Matrix

 44

 TP FN TN FP

10 21804 19314 19572 8410

100 39036 2037 27734 203

1000 38406 2217 27094 393

10000 29279 6844 22121 866

Table 15. Test-Bed Evaluation Using SpamAssassin in Auto-Learning Mode: SVM
Confusion Matrix

3. Live Testing

In this section, we discuss the results of our live testing on the rbeverly.net MTA

from January 25, 2011 to March 2, 2011, where we collected 6,026 e-mail messages, of

which 5,610 were spam and 416 legitimate. Ground truth was first established via

SpamAssassin. We then manually examined all the legitimate messages and relabeled

those that were false negatives. We did not examine every spam message to ensure no

false positives (due to the large volume of such messages); however, we did manually

sample for spam to establish reasonable ground truth. Even though the volume of traffic

captured is small and represents a small portion of the Internet traffic, the results with

respect to accuracy, precision, and recall were strong.

The results are depicted in the following figures, where each figure presents the

performance of the three classifiers on a specific metric. For the live testing corpus, we

selected training sets of 8, 16, 32, 64, 128, 256, and 512 messages, following the same

procedures (tenfold cross-validation, etc) as the simulated experiments and tested on the

remaining messages. The values on the x-axis represent the number of samples in

logarithmic scale (base 2); so for example, x-axis x=2 represents a sample of eight

training examples, x=4 represents 16 training examples and so on, and each sample has

an equal number of spam and legitimate e-mail messages. The values on the y-axis

represent the percentage for each metric, and each curve maps to a classifier.

 45

In Figure 12, we present the accuracy achieved as defined in Section A. First, we

observe that all three classifiers behave well as the training size increases, with naïve

Bayes achieving the higher accuracy, along with C4.5, but also having the smoothest

curve. C4.5, also performs with the higher accuracy but has some fluctuations,

considering the lower starting point and the knee at point six on the x-axis. These

fluctuations, however, cannot be considered representative, due to account the small

number of training examples. Finally, SVM has the lowest accuracy among the three but

is more stable than C4.5. As we mentioned in Section A, SVM is very adjustable, so this

performance may not be representative. The analytical results of all three classifiers and

for each training sample size are shown on Table 16.

Figure 12. Live Testing: Accuracy

 46

 Training Samples

 8 16 32 64 128 256 512

Bayes 0.8 0.88 0.9 0.92 0.925 0.93 0.93

C4.5 0.63 0.83 0.86 0.84 0.9 0.91 0.93

SVM 0.85 0.84 0.84 0.89 0.88 0.9 0.9

Table 16. Live Testing: Accuracy

Another significant point is that the network behavior of spammers at the TCP

level as it is captured by spamflow is so strong that accuracy is independent of the

classification method that we want to follow. This is significant because we can select an

algorithm that has low training time and good throughput, thus minimizing the overhead

on systems that have constrained resources, or must deal with very high rates of abusive

traffic.

Moreover, we emphasize the fact that even with as low as sixteen training

examples, our system exhibits greater than 80% accuracy, which is important when

training examples are few.

Precision is shown in Figure 13 and more detailed results in Table 17. Examining

our results, we observe that our system has a relatively stable behavior across samples,

with a rate greater than 97%. At the maximum training size, all three classifiers achieve

the significant rate of 99%. This implies that our system exhibits a very small false

positive rate, which is crucial for our users, since we do not want to misclassify and lose

legitimate e-mails. Furthermore, we observe again that we can achieve high precision

rates independent of the classification method. Combining this high precision along with

high accuracy, we can conjecture that spamflow is a very promising system. Another

significant result is that naïve Bayes achieves both the higher precision and the higher

accuracy, which establishes it as a good candidate for our system.

Finally, in Figure 14 and Table 18, we present how the classifiers behaved with

respect to recall. Recall appears to show the same trends as accuracy, and this behavior is

 47

expected considering the high rates in precision. Accuracy takes into account both false

positives and false negatives, and since precision is almost 100%, recall is the component

that drives its behavior. So, as with accuracy, all classifiers achieved more than 90%

recall and behaved in the same manner as accuracy.

 Training Samples

 8 16 32 64 128 256 512

Bayes 0.992 0.991 0.992 0.99 0.992 0.993 0.996

C4.5 0.971 0.98 0.986 0.992 0.991 0.996 0.997

SVM 0.981 0.984 0.986 0.986 0.989 0.99 0.994

Table 17. Live Testing: Precision

Figure 13. Live Testing: Precision

 48

Figure 14. Live Testing: Recall

Training Samples

8 16 32 64 128 256 512

Bayes 0.81 0.87 0.91 0.92 0.927 0.935 0.934

C4.5 0.62 0.83 0.86 0.83 0.906 0.904 0.931

SVM 0.86 0.84 0.84 0.89 0.88 0.902 0.905

Table 18. Live Testing: Recall

C. AUTO-LEARNING

In this section, we discuss some additional experiments we conducted on

threshold-based auto-learning, as mentioned in Chapter III, Section B, and present their

results. Auto-learning is the incremental process of building the classification model

based on exemplar e-mail messages that achieve certain threshold values. In our case, we

 49

use the flow features of e-mail messages otherwise classified via orthogonal methods as

having very high or very low scores. More specifically, we explicitly retrain each

classification model each time we observe a message with a particularly high score from

the other SpamAssassin categories (rule- and Bayesian-word based) that meets our

threshold criteria; i.e., having a score above or below our threshold. After retraining is

complete, we evaluate our models on subsequent messages until we observe one or more

messages with scores above or below our thresholds, at which point we stop and retrain

the models. For this experiment we use our live corpus.

We set up two thresholds: one for spam messages and one for legitimate. The

selection of the thresholds was based on the spam and ham score distributions. Spam-

message scores follow a normal distribution, with mean µ = 16.31 and standard deviation

σ = 7.73, whereas scores of legitimate messages have mean µ = 1.3 but are skewed to the

left. Therefore, for the legitimate messages we selected a threshold t = 1, which proved

effective as it allowed the classifiers to be trained on 267 messages out of the 416. For

spam messages, we selected four thresholds to examine the trends of our classifiers. The

first was the mean and the other three were one, two, and three standard deviations above

the mean.

The results of the first run are shown Figures 15, 16, and 17, where we trained the

classifiers with 2,685 spams and 267 legitimate messages, thus using ten times more

spam than ham. The analytical results of the confusion matrix are presented in Table 19.

 50

Figure 15. Auto-Learning (Threshold=16): Accuracy.

Figure 16. Auto-Learning (Threshold=16): Precision

 51

Figure 17. Auto-Learning (Threshold=16): Recall

We observe a gradual improvement in the performance in all metrics, with C4.5

and SVM achieving constant high rates above 95% in accuracy, precision, and recall with

as few as 1,024 (210) training examples. Naïve Bayes shows high precision rates of 98%

but low performance in accuracy and recall, probably due to the higher volume of spam-

training examples. C4.5 has the second-best performance by achieving rates above 95%

in accuracy and above 97% in precision and recall. Finally, SVM presents similarly high

performance, with rates in accuracy and precision above 96% and above 99% in recall.

Another noteworthy point is the behavior of all classifiers with respect to precision. With

as few as 64 (26) training examples, all reached constant high precision rates above 95%.

In the following experiments, we gradually increased the spam threshold, which resulted

in fewer spam-training examples, and examples for which we have more confidence in

their true disposition as spam.

Next, we increased the spam score threshold to 24, resulting in 960 spam-training

examples, with ham examples being constant at 267, because we retained the same ham-

score threshold.

 52

 TP FN TN FP

Bayes 2477 448 112 37

C45 2854 71 68 81

SVM 2917 8 36 113

Table 19. Auto-Learning (Threshold=16): Confusion Matrix

Naïve Bayes improved performance in all metrics, achieving rates above 92% in

accuracy and recall compared to 84%, as shown in Figures 15, 16, and 17, and reached a

99% precision rate. C4.5 improved the performance in precision, with rates above 98%,

but lowered slightly the rates in accuracy and recall, though still above 93% and 95%,

respectively. Finally, SVM improved performance in all metrics, achieving rates above

97% in accuracy and precision and above 99% in recall. We show the results of our

second auto-learning experiment in Figures 18, 19, and 20, and the respective confusion

matrices in Table 20.

Figure 18. Auto-Learning (Threshold=24): Accuracy

 53

Figure 19. Auto-Learning (Threshold=24): Precision

Figure 20. Auto-Learning (Threshold=24): Recall

 54

 TP FN TN FP

Bayes 4326 324 111 38

C45 4416 234 71 78

SVM 4625 25 36 113

Table 20. Auto-Learning (Threshold=24): Confusion Matrix

We increased the spam-score threshold in our third auto-learning experiment to

30 and the classifiers were trained with 229 spam flows and 267 ham flows. Figure 21

shows accuracy, and Figures 22, and 23, show precision and recall, respectively. Again,

we observe a gradual improvement, but have slight differences in performance. Naïve

Bayes shows the best behavior in all metrics, achieving high precision rates above 98%

with as few as six training examples and improving gradually the performance in

accuracy and recall, with constant rates above 95% after 165 training examples. C4.5 and

SVM, on the other hand, show better performance in precision with respect to first and

second experiments, achieving rates above 98% in accuracy and recall; however, their

performance degrades, while still achieving rates above 90%. Table 21 shows the

confusion matrix of this experiment.

Figure 21. Auto-Learning (Threshold=30): Accuracy

 55

Figure 22. Auto-Learning (Threshold=30): Precision

Figure 23. Auto-Learning (Threshold=30): Recall

 56

 TP FN TN FP

Bayes 5219 162 77 72

C45 4918 463 91 58

SVM 4975 406 69 80

Table 21. Auto-Learning (Threshold=30): Confusion Matrix

In the last experiment, we raised the spam score threshold to 40, and this ended up

in training the classifiers with 30 spam training examples many fewer than the number of

ham examples. The results are interesting as depicted in Figures 24, 25, and 26, and

Table 22, with the precision rate remaining above 97% across all classifiers with as few

as six training flows. C4.5 achieves the highest precision rate, with 99%, followed by

SVM with 98% and naïve Bayes with 97%.

Figure 24. Auto-Learning (Threshold=40): Accuracy

The other interesting point is that naïve Bayes manages to retain high rates both in

accuracy and recall, with rates of 97% and 99% respectively, even if we subtract spam-

 57

training examples. Finally, the performance of both C4.5 and SVM degrades with SVM,

falling to 60% after the point of 32 examples; but we have to keep in mind that we can

tune SVM and find the kernel and parameters that best fit our features.

Figure 25. Auto-Learning (Threshold=40): Precision

 58

Figure 26. Auto-Learning (Threshold=40): Recall

 TP FN TN FP

Bayes 5547 33 22 127

C45 4811 769 104 45

SVM 3553 2027 97 52

Table 22. Auto-Learning (Threshold=40): Confusion Matrix

 59

V. CONCLUSIONS AND FUTURE WORK

The goal of this thesis was to develop and evaluate an online, real-time system for

abusive-network-traffic detection, based on the previous work of Beverly and Sollins [3].

Our primary focus was to detect abusive traffic associated with unsolicited commercial e-

mail. To accomplish our goal, we developed a test bed using virtual machines and a

network emulator that induces generated SMTP traffic sufficient to match the

characteristics that live spam traffic exhibits at the TCP layer. In Section A we discuss

future work whereas in Section B our conclusions.

A. FUTURE WORK

Having gone through the process of building our test bed, deploying our system in

live environment, and evaluating its performance in both environments, as well as in

using the threshold-based, auto-learning mechanism, we discern a need for future work in

system evaluation and application domains.

1. System Evaluation

Our test bed was not ideal for thorough system benchmarking. It served, however,

as a step towards developing and integrating the different components and a first-phase

evaluation. In future work, we would like to evaluate our system in a more realistic test

bed like PlanetLab [62], where we could achieve higher data rates and observe the effects

on throughput and system load. Furthermore, Dummynet uses an independent-loss

model, which means that the decision to drop a packet is independent of whether a

previous packet has been dropped. This model, however, does not represent the actual

loss behavior that we experience in the Internet. Thus, we need to use a more

representative model in the spirit of [63]. Since Dummynet is integrated into PlanetLab,

PlanetLab should be an ideal testing platform. Moreover, we would like to extend our

live testing by deploying our system in the network core, where we can experience high

volumes of traffic and thus capture a more representative picture of spamming-network

behavior at the TCP layer.

 60

During our classification-engine evaluation process, we used a specific SVM

kernel type; thus the results extracted may not be fully representative of SVM

performance. SVM can be optimized by using different kernel types, and for each kernel

type, different parameters. So, we would like to expand our system evaluation by using

different kinds of kernel types and finding the best parameters to suit our features.

Furthermore, we would like to implement our auto-learning feature in plugin,

since the experimental results were very promising, and then evaluate our system as a

first line of defense using SpamAssassin for further analysis. We would like to expand on

that by observing how spamflow can perform using unsupervised learning techniques, so

that we do not have to select flows based on SpamAssassin scores. We would like to

experiment on different techniques such as clustering, principal-component analysis, and

independent-component analysis, and explore first whether we can have a strong

separation between spam and ham features. Having established that, we would like to

discover which spam flows exhibit strong entropy, in order to use them as training points

for our classification engine.

We could further reinforce our simulated incremental-learning method to use

actual incremental algorithms. These algorithms proceed in a sequence of trials and each

trial is decomposed into three steps. First, the learning algorithm is presented with an

example. The algorithm then predicts the label of the example; and finally, the algorithm

is told the true label. The goal of these algorithms in the case of classification problems is

to minimize the number of mistakes. This procedure is also called the mistake-bound

learning model [64]. The main difficulty of online learning is the continuous requirement

for label feedback, which in our case could be obtained using SpamAssassin.

Recently, several researchers have proposed incremental learning methodologies

for spam detection [65, 66]. In addition, recent work on efficiently folding new positive

samples into naïve Bayes [67, 68] and SVM [69, 70], is promising. We have shown that

simulated incremental learning performs well using our SpamFlow techniques. Efficient,

online, incremental learning will allow a fielded system to adjust to the dynamic threat

environment.

 61

2. Application Domains

Our goal was to develop a system for abusive network traffic detection, but we

experimented specifically on abusive traffic originating from spammers. A botnet is a

group of compromised hosts that are being controlled through a command-and-control

mechanism. Botnet detection is an immediate application domain, since spammers, in

order to obfuscate themselves, utilize botnets to send high volumes of traffic.

We would like to investigate, through statistical analysis, if received spam flows

from botnets have a strong correlation and if spam traffic unrelated to botnets follows a

more random distribution. If that is the case, we would be able to distinguish between

originators of spam traffic. To accomplish this task, we could work in the same spirit as

[71] and build a botnet infrastructure that would allow us not only to evaluate spamflow

against spam-traffic detection, but against other types of abusive traffic that originate

from botnets, such as denial-of-service attacks.

Second, botnets often host scam infrastructure. We wish to investigate whether

we can detect the dual of the problem investigated in this thesis: if access to the bots, e.g.,

via a web-request, reveals similarly discriminating transport features.

A final possibility is to examine the effectiveness of spamflow in intrusion

detection. To facilitate this task, we could deploy a honeypot or honeynet and integrate

spamflow into Bro, an open-source network-intrusion and -detection system. Honeypots

are decoy servers or systems that are being used in order to collect information about an

attacker and honeynet is a collection of honeypots that form a network. Using statistical

analysis such as clustering, correlation, or principal-component analysis, we would like to

examine if we can discern different attacks based on TCP features and use Bro’s

estimations as our ground truth.

B. CONCLUSIONS

In developing the environment, we applied certain modifications to fit our needs.

First, we modified the network emulator, dummynet, to produce a random delay with a

mean µ and a standard deviation σ allowing us to simulate characteristics such as

 62

congestion and variations in the roundtrip time (RTT). Secondly, we had to alter our

MTA to include in the header of the message the IP and the port number of the sender.

This was appropriate so that our flow-analysis engine could aggregate packets into flows,

extract features, and match e-mails with flows. We also had to overcome a port-

reusability problem, since the number of TCP connections that we had to establish

demanded larger than the available range of ephemeral ports.

Further, we had to develop our classification engine and integrate our system into

SpamAssassin so that it could operate in real-time. For the latter, we developed a plug-in

that allowed us to obtain the information (IP:Port) we needed from SpamAssassin and

use it as input into spamflow. The plugin was also responsible for the confusion matrices

that we used during the evaluation process. We developed our classification engine using

Orange, a statistical- and machine-learning software package. Finally, for communication

between plugin and the classifier we used the standard and extensible XML-RPC

protocol.

We evaluated our system in the test bed, as well as in a live, real-world

environment. Our goal was to evaluate the performance in a high-rate environment and

observe how it behaves in terms of throughput and system load. We achieved only

moderate e-mail message-traffic rates, due to hardware restrictions, but the test bed was a

first stage providing efficient high-rate testing. Next, we wanted to examine how strong

TCP characteristics are in contrast with content features and we used SpamAssassin as a

basis for comparison. Finally, we wanted to investigate how our system would perform in

auto-learning mode. We defined auto-learning as the process of gradually training our

system with flows that are associated with messages strongly indicative of being either

spam or legitimate, as determined by SpamAssassin-assigned content and rule-based

scores that match our threshold criteria.

Summarizing the results from our experiments, we present the following key

points.

 63

• All three classifiers achieved greater than 90% accuracy, precision, and

recall in both the virtual test bed and in the live environment, which

indicates that our system can adopt and capture any changes in the TCP

characteristics.

• The high precision rate of 99% that all classifiers showed, along with the

high accuracy, indicates the strong effectiveness of our system.

• The results showed that even with a small number of training examples,

we can achieve great performance, which implies that the network

behavior of spammers at the TCP level as captured by spamflow is quite

discriminating and we need only a small number of training examples to

initialize our system.

• Naïve Bayes performance, with respect not only to accuracy, precision,

and recall, but also to throughput, makes it a viable candidate for our

system.

• The performance of our system is relatively stable across all samples and

independent of the classification method, which emphasizes the quality of

spamflow’s features and increases its reliability. Auto-learning showed

that spamflow can achieve high rates in accuracy, recall, and precision.

Especially in precision, all three classifiers achieved a 99% rate,

suggesting that we could use spamflow as a first line of defense, and have

suspicious messages further being filtered by SpamAssassin .

We hope that this thesis serves to sufficiently motivate our approach to abusive-

traffic detection and mitigation and to warrant further research in the area.

 64

THIS PAGE INTENTIONALLY LEFT BLANK

 65

LIST OF REFERENCES

[1] Baracuda Networks. Spam central: Spam emails detected. Available:
http://www.barracudanetworks.com/ns/resources/spam_central.php.

[2] M. Carbone and L. Rizzo, "Dummynet Revisited," ACM SIGCOMM Computer

Communication Review, vol. 40, pp. 12–20, April 2010.

[3] R. Beverly and K. Sollins, "Exploiting transport-level characteristics of spam," in

CEAS 2008 - Fifth Conference on Email and Anti-Spam.

[4] J. Klensin. (2001, April). Simple mail transfer protocol. Internet RFC 2821

(Standards Track) Available: http://www.ietf.org/rfc/rfc2821.txt.

[5] D. Crocker, "Mail transfer agent," in Internet RFC 5598-Internet Email

Architecture, p. 31.

[6] Postel. (1981, September). Transmission control protocol. Internet RFC 793

Available: http://www.ietf.org/rfc/rfc793.txt.

[7] J. F. Kurose and K. W. Ross, "Electronic mail in the internet." in Computer

Networking:A Top Down Approach., 5th ed. Anonymous Addison Wesley, 2010,
p. 120.

[8] Messaging Anti-Abuse working Group (MAAWG), "Email metrics program: The

network's operator perspective," Tech. Rep. 13, November. 2010. Available:
http://www.maawg.org/sites/maawg/files/news/MAAWG_2010-
Q1Q2_Metrics_Report_13.pdf.

[9] C. Drake, J. Oliver and E. Koontz, "Anatomy of a phishing email," in

Proceedings of the First Conference on Email and Anti-Spam. 2004.

[10] M. Siponen and C. Stucke, "Effective anti-spam strategies in companies: An

international study," in Proceedings of the 39th Hawaii International Conference
on System Sciences. 2006.

[11] The Spamhaus Project. Spamhaus. Available: http://www.spamhaus.org/.

[12] MAPS. Introduction to the realtime blackhole list (RBL). Available:

http://www.mail-abuse.com/pdf/WP_MAPS_RBL_060104.pdf.

[13] J. Postel. (1981, September). Internet protocol. Internet RFC 791. Available:

http://www.faqs.org/rfcs/rfc791.html.

 66

[14] R. Thomas and D. Samoseiko, "The game goes on: An analysis of modern spam
techniques," in Virus Bulletin Conference, Montreal, Canada, 2006.

[15] A. Ramachandran and N. Feamster, "Understanding the network-level behavior of

spammers." in Proceedings of ACM SIGCOMM.

[16] S. Hao, N. A. Syed, N. Feamster, A. G. Gray and S. Krasser, "Detecting

spammers with SNARE: Spatio-temporal network-level automatic reputation
engine." In Proceedings of the 18th Conference on USENIX Security
Symposium.

[17] E. Blanzieri and A. Bryl, "A survey of learning-based techniques of email spam

filtering," Artif. Intell. Rev., vol. 29, pp. 63–92, March 2008.

[18] M. Sahami, S. Dumais, D. Heckerman and E. Horvitz, "A Bayesian Approach to

Filtering Junk E-Mail," AAAI Technical Report WS-98-05, 1998.

[19] H. Drucker, Donghui Wu and V. N. Vapnik, "Support vector machines for spam

categorization," Neural Networks, IEEE Transactions, vol. 10, pp. 1048–1054,
1999.

[20] R. O. Duda and P. E. Hart, "Bayes decision theory," in Pattern Classification and

Scene AnalysisAnonymous, John Wiley & Sons, 1973, p. 10.

[21] T. M. Mitchell, Machine Learning. McGraw-Hill, 1997.

[22] I. Androutsopoulos, J. Koutsias, K. V. Chandrinos, G. Paliouras and C. D.

Spyropoulos, "An evaluation of naive bayesian anti-spam filtering," in
Proceedings of the Workshop on Machine Learning in the New Information Age.
Barcelona, Spain, 2000, pp. 9–17.

[23] V. N. Vapnik, "Estimation of Dependencies Based on Empirical Data," 1992.

[24] J. R. Quinlan, "C4.5: Programs for Machine Learning," 1993.

[25] S. Russell and P. Norvig, Artificial Intelligence. A Modern Approach. New

Jersey: Pearson Education Inc., 2003.

[26] J. R. Quinlan, "Induction of Decision Trees," Machine Learning, 1986.

[27] E. Blanzieri and A. Bryl, "Evaluation of the highest probability SVM nearest

neighbor classifier with variable relative error cost," in Proceedings of the Fourth
Conference on Email and Anti-Spam.

 67

[28] F. Roli, B. Biggio, G. Fumera, I. Pillai and R. Satta, "Image spam filtering by
detection of adversarial obfuscated text."

[29] A. Gray and M. Haahr, "Personalized, collaborative spam filtering," in

Proceedings of First Conference on Email and Anti-Spam.

[30] V. V. Prakash. Vipul's razor. Available: http://razor.sourgeforge.net.

[31] D. Alperovitch, P. Judge and S. Krasser, "Taxonomy of email reputation

systems," in 27th International Conference on Distributed Computing Systems
Workshop (ICDCSW'07).

[32] V. V. Prakash and A. O'Donnel, "Fighting Spam with Reputation Systems," ACM

QUEUE, November 2009.

[33] Rhyolite. (2011, February 2). Distributed checksum clearinghouses (DCC).

Available: http://www.rhyolite.com/dcc/.

[34] J. Lyon and M. Wong. (2006, Sender ID: Authenticating E-mail. Internet RFC

4406 (Experimental). Available: http://www.ietf.org/rfc/rfc4406.txt.

[35] E. Allman, J. Callas, M. Delany, M. Libbey, J. Fenton and M. Thomas. (2007,

May). DomainKeys identified mail (DKIM) signatures. Internet RFC 4871
(Standards Track). Available: http://www.ietf.org/rfc/rfc4871.txt.

[36] B. Leiba, J. Ossher, V. T. Rajan, R. Segal and M. N. Wegman, "SMTP path

analysis," in Proceedings of Second Conference on Email and Anti-Spam. 2005.

[37] J. Goldbeck and J. Handler, "Reputation network analysis for email filtering," in

Proceedings of First Conference on Email and Anti-Spam. 2004.

[38] R. Haskins, "The Rise of Reputations in the Fight Against Spam." Available:

http://linux.sys-con.com/node/48128.

[39] J. Karlin, S. Forest and J. Rexford, "Autonomous security for autonomous

systems." Computer Networks, vol. 52, pp. 2908–2923, 2008.

[40] X. Zhao, D. Pei, L. Wang, D. Massey and A. Mankin, "An analysis of BGP

multiple origin AS (MOAS) conflicts," in Proceedings of the First ACM
SIGCOMM Workshop on Internet Measurement (IMW), 2001.

[41] T. Ouyang, S. Ray, M. Allman and M. Rabinovich, "A Large-Scale Empirical

Analysis of Email Spam Detection through Transport-level Characteristics,"
Technical Report 10-001, International Computer Science Institute. January
2010.

 68

[42] H. Esquivel, T. Mori and A. Akella, "Router-level spam filtering using TCP
fingerprints: Architecture and measurement-based evaluation," in Sixth
Conference on Email and Anti-Spam, 2009.

[43] M. Zalewski. (2006, The new P0f. Available:

http://lcamtuf.coredump.cx/p0f.shtml.

[44] D. Schatzmann, M. Burkhart and T. Spyropoulos, "Inferring spammers in the

network core," in Passive and Active Conference, Seoul,South Corea, 2009, pp.
229–238.

[45] Internet Systems Consortium. BIND: Berkeley internet name domain. Available:

http://www.isc.org/software/bind.

[46] W. Venema. Postfix. Available: http://www.postfix.org/documentation.html.

[47] J. Mason. Filtering spam with SpamAssassin. Presented at HEANet Annual

Conference. Available:
http://wiki.apache.org/spamassassin/PresentationsAndPapers.

[48] V. Jacobson, C. Leres and S. McCanne. (2008, October 27, 2010). Packet capture

library (pcap). Available: http://www.tcpdump.org/pcap3_man.html.

[49] Laboratory of Artificial Intelligence, Faculty of Computer and Information

Science, University of Ljubljana, Slovenia, "Orange: A Component Based
Machine Learning Library for Python," vol. 2.0, 2010.

[50] G. Cormack and T. Lynam. 2005 TREC public spam Corpus.

[51] G. Van Rossum. Python. Available: http://www.python.org/.

[52] L. Rizzo, "Dummynet: A Simple Approach to the Evaluation of Network

Protocols," ACM Computer Communication Review, vol. 27, pp. 31–41, 1997.

[53] F. Tobin, "Pyzor: Spam-Blocking Networked System," Available:

http://sourceforge.net/projects/pyzor/.

[54] V. Jacobson, C. Leres and S. McCanne, "Packet Capture Library (pcap)," vol.

1.0.0, October 27, 2010.

[55] Baracuda Networks. (2003, October). Baracuda spam and virus firewall.

Available: http://www.barracudanetworks.com/ns/products/spam_overview.php.

[56] W. Larry. Perl. Available: http://perldoc.perl.org/.

 69

[57] D. Winer. (1998, April). XML-RPC specification. Available:
http://www.xmlrpc.com/spec.

[58] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler and F. Yergeau. (2008,

November 26). Extensive markup language (XML) 1.0. W3C Recommendation
Available: http://www.w3.org/TR/2008/REC-xml-20081126/.

[59] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach and T. Berners-

Lee. (1999, June). Hypertext transfer protocol--HTTP/1.1. Internet RFC 2616
(Standards Track) Available: http://www.w3.org/Protocols/rfc2616/rfc2616.html.

[60] S. A. Alvarez, "An exact analytical relation among recall, precision and

classification accuracy in information retrieval," Computer Science Department,
Boston College, Tech. Rep. BC-CS-02-01, July 2002.

[61] C. Chang, C. Chang and C. Lin, "A Practical Guide to Support Vector

Classification," April 15, 2010.

[62] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawrzoniac and M.

Bowman, " PlanetLab: an overlay testbed for broad-coverage services,"
SIGCOMM Comput. Commun. Rev., vol. 33, pp. 3–4, 12, 2003.

[63] E. M. Nahum, M. Rosu, S. Seshan and J. Almeida, "The effects of wide-area

conditions on WWW server performance," SIGMETRICS Perform.Eval.Rev., vol.
29, pp. 257–267, June 2001.

[64] A. Blum, "On-Line Algorithms in Machine Learning (a survey)." This is a Survey

Paper for a Talk Given at the Dagstuhl Workshop on on-Line Algorithms, June
1996.

[65] C. Siefkes, F. Assis, S. Chhabra and W. S. Yerazunis, "Combining Winnow and

Orthogonal Sparse Bigrams for Incremental Spam Filtering," vol. 3202, pp. 410–
421, 2004.

[66] V. Keiser and T. G. Dietterich, "Evaluating online text classifications algorithms

for email prediction in TaskTracer," in Sixth Conference on Email and Anti-Spam
CEAS 2009, Mountain View, California, 2009.

[67] L. Fei-Fei, R. Fergus and P. Perona, "Learning generative visual models from few

training examples: An Incremental Bayesian approach tested on 101 object
categories," Computer Vision and Image Understanding, vol. 106, pp. 59–70,
April 2007.

 70

[68] M. Godec, C. Leistner, A. Saffari and H. Bischof, "On-line random naive bayes
for tracking," in Proceedings of the 20th International Conference on Pattern
Recognition (ICPR). Instanbul, 2010, pp. 3545–3548.

[69] G. Cauwenberghs and T. Poggio, "Incremental and Decremental Support Vector

Machine Learning," Advances in Neural Information Processing Systems, vol. 13,
2001.

[70] C. Tseng and M. Chen, "Incremental SVM model for spam detection on dynamic

email social networks," in International Conference on Computational Science
and Engineering, Vancouver,Canada, 2009, pp. 128–135.

[71] W. T. Strayer, D. Lapsley, R. Walsh and C. Livadas, "Botnet Detection Based on

Network Behavior." In Botnet Detection: Countering the Largest Security
Threat, 2007.

 71

INITIAL DISTRIBUTION LIST

3. Defense Technical Information Center
Ft. Belvoir, Virginia

4. Dudley Knox Library
Naval Postgraduate School
Monterey, California

5. Hellenic Navy General Staff
Athens, Greece

6. Hellenic Fleet Command
Salamis, Greece

