
Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2011-03

A real-time system for abusive network traffic detection

Kakavelakis, Georgios.

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/5754

Downloaded from NPS Archive: Calhoun



 

 
NAVAL 

POSTGRADUATE 
SCHOOL 

 
MONTEREY, CALIFORNIA 

 

 
 

THESIS 
 

Approved for public release; distribution is unlimited 

A REAL-TIME SYSTEM FOR ABUSIVE NETWORK 
TRAFFIC DETECTION 

 
by 
 

Georgios Kakavelakis 
 

March 2011 
 

 Thesis Advisor: Robert Beverly 
 Second Reader: Joel D. Young 



THIS PAGE INTENTIONALLY LEFT BLANK 



 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, 
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send 
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to 
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503. 
1. AGENCY USE ONLY (Leave blank) 
 

2. REPORT DATE   
March 2011 

3. REPORT TYPE AND DATES COVERED 
Master’s Thesis 

4. TITLE AND SUBTITLE  A Real-Time System for Abusive Network Traffic 
Detection 
6. AUTHOR(S)  Georgios Kakavelakis 

5. FUNDING NUMBERS 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Naval Postgraduate School 
Monterey, CA  93943-5000 

8. PERFORMING ORGANIZATION 
REPORT NUMBER     

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
N/A 

10. SPONSORING/MONITORING 
    AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES  The views expressed in this thesis are those of the author and do not reflect the official policy 
or position of the Department of Defense or the U.S. Government.  IRB Protocol number ______N/A__________.  

12a. DISTRIBUTION / AVAILABILITY STATEMENT   
Approved for public release; distribution is unlimited 

12b. DISTRIBUTION CODE 
A 

13. ABSTRACT (maximum 200 words)  
 

Abusive network traffic—to include unsolicited e-mail, malware propagation, and denial-of-service attacks—remains 
a constant problem in the Internet. Despite extensive research in, and subsequent deployment of, abusive-traffic-
detection infrastructure, none of the available techniques addresses the problem effectively or completely. The 
fundamental failing of existing methods is that spammers and attack perpetrators rapidly adapt to and circumvent new 
mitigation techniques. Analyzing network traffic by exploiting transport-layer characteristics can help remedy this 
and provide effective detection of abusive traffic.  

Within this framework, we develop a real-time, online system that integrates transport layer characteristics 
into the existing SpamAssasin tool for detecting unsolicited commercial e-mail (spam).  Specifically, we implement 
the previously proposed, but undeveloped, SpamFlow technique. We determine appropriate algorithms based on 
classification performance, training required, adaptability, and computational load. We evaluate system performance 
in a virtual test bed and live environment and present analytical results. Finally, we evaluate our system in the context 
of SpamAssassin’s auto-learning mode, providing an effective method to train the system without explicit user 
interaction or feedback. 

 
 

15. NUMBER OF 
PAGES  

89 

14. SUBJECT TERMS Network Security, Autonomous Systems, Machine Learning  

16. PRICE CODE 

17. SECURITY 
CLASSIFICATION OF 
REPORT 

Unclassified 

18. SECURITY 
CLASSIFICATION OF THIS 
PAGE 

Unclassified 

19. SECURITY 
CLASSIFICATION OF 
ABSTRACT 

Unclassified 

20. LIMITATION OF 
ABSTRACT 
 

UU 
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)  
 Prescribed by ANSI Std. 239-18 



 ii

THIS PAGE INTENTIONALLY LEFT BLANK 



 iii

Approved for public release; distribution is unlimited 
 
 

A REAL-TIME SYSTEM FOR ABUSIVE NETWORK TRAFFIC DETECTION 
 
 

Georgios Kakavelakis 
Lieutenant, Hellenic Navy 

B.S., Hellenic Naval Academy, 1996 
 
 

Submitted in partial fulfillment of the 
requirements for the degree of 

 
 

MASTER OF SCIENCE IN COMPUTER SCIENCE 
 
 

from the 
 
 

NAVAL POSTGRADUATE SCHOOL 
March 2011 

 
 
 

Author:  Georgios Kakavelakis 
 
 
 

Approved by:  Robert Beverly 
   Thesis Advisor 

 
 
 

Joel D. Young 
Second Reader 

 
 
 

Peter J. Denning 
Chair, Department of Computer Science 
 



 iv

THIS PAGE INTENTIONALLY LEFT BLANK 



 v

ABSTRACT 

Abusive network traffic—to include unsolicited e-mail, malware propagation, and denial-

of-service attacks—remains a constant problem in the Internet. Despite extensive 

research in, and subsequent deployment of, abusive-traffic-detection infrastructure, none 

of the available techniques addresses the problem effectively or completely. The 

fundamental failing of existing methods is that spammers and attack perpetrators rapidly 

adapt to and circumvent new mitigation techniques. Analyzing network traffic by 

exploiting transport-layer characteristics can help remedy this and provide effective 

detection of abusive traffic.  

Within this framework, we develop a real-time, online system that integrates 

transport layer characteristics into the existing SpamAssasin tool for detecting unsolicited 

commercial e-mail (spam).  Specifically, we implement the previously proposed, but 

undeveloped, SpamFlow technique. We determine appropriate algorithms based on 

classification performance, training required, adaptability, and computational load. We 

evaluate system performance in a virtual test bed and live environment and present 

analytical results. Finally, we evaluate our system in the context of SpamAssassin’s auto-

learning mode, providing an effective method to train the system without explicit user 

interaction or feedback. 
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I. INTRODUCTION 

A major use of the Internet is trade and e-commerce, and increased reliance on the 

Internet for these functions demands increased reliability and security. The increase in 

Internet use has led to the evolution of technologies that permit high traffic and improved 

network performance with regard to bandwidth and traffic capacity. Abuse of the Internet 

infrastructure has unfortunately also increased, in the form of denial-of-service (DoS) 

attacks, worms, spam abusive traffic, DoS spam attacks, and so on. Internet abuse is 

increasing sociologically as well as technologically, with organized criminals and other 

malicious individuals exploiting the potential of network abuse.    

A. SCOPE 

The scope of this thesis is to: i) develop a real-time, online system, based on the 

previous work of [3], that detects abusive network traffic associated with unsolicited 

commercial e-mail, aka spam; ii) determines the most appropriate algorithms for such a 

detector; iii) evaluates its performance; and iv) presents analytical results from running 

the system. 

Electronic mail (e-mail) is one of the most popular applications of the Internet, 

enabling users to easily communicate by exchanging electronic messages at no upfront 

cost, quickly, reliably and easily. E-mail distribution relies on an infrastructure consisting 

of three components: user agents, mail servers, and Simple Mail Transfer Protocol 

(SMTP) [4]. User agents allow users to read, reply to, forward, save, and compose 

messages, whereas mail servers or message-transfer agents (MTAs) [5] are the core of the 

e-mail infrastructure, responsible for the proper store-and-forward dissemination of 

electronic mail. SMTP is the application protocol normally used for e-mail exchange and 

leverages the reliable transfer properties of TCP [6] to deliver mail from the sender’s 

MTA to the recipient’s MTA [7]. The e-mail architecture of the Internet is over three 

decades old and was designed at a time when the implicit assumption was that a user 

wanted to receive all messages addressed to him. 
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Unfortunately, this popular communication media has been exploited. E-mail 

abuse includes using high volumes of e-mail to distribute various types of content (as 

shown in Figure 1) ranging from product advertisements to malware and pornography, 

delivered to unsuspecting clients without their consent. These kinds of messages are 

known as unsolicited commercial e-mail or “spam.” Abusive e-mail started to become a 

problem when the Internet was opened to the public and has increased from 

approximately 10% of overall e-mail volume in 1998 to a fairly consistent rate of about 

88% to 92% today, posing a great burden not only to users but to service providers, 

companies, and the network itself [8].  

 

 

Figure 1.  Spam E-mail Detected [From [1]]  
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The nuisance factor of spam is manifold. It is irritating to sift cautiously through 

quantities of junk e-mail to find legitimate messages, and it is a waste of time and 

productivity. Besides that, spam may violate user privacy, for example, by phishing, in 

which the spammer deceives the recipient by pretending to be a trusted party and asks for 

sensitive information (passwords, credit-card numbers, etc.) [9]. Spam e-mail is a 

problem for mail providers because it reduces storage space and consumes computational 

resources [10]. Network performance is degraded, since bandwidth is wasted in 

delivering spam e-mail and congestion increases on the links.  

Many methods have been proposed to address the increasing problem of spam. 

One of the earliest, still used today, rejects messages that originated from senders found 

in blacklists—that is, databases, such as Spamhaus [11] and MAPS [12], that contain 

untrusted IP [13] addresses. Content filtering, another popular technique, relies on the 

assumption that spam messages contain words or phrases that differentiate them from 

legitimate e-mail messages. Systems that use this technique check the body and headers 

of a message for indicative words or phrases, using either a rule- or learning-based 

approach. Rule-based systems are less effective because the user has to be involved in the 

construction and update of the rules, which is time consuming and error prone. By 

contrast, learning-based systems use machine-learning algorithms to automatically 

categorize a message as spam or legitimate. These systems need to be trained on a set of 

messages in order to extract the features, words, or phrases that will become the basis for 

classifying messages. Spammers, meanwhile, adapt accordingly and find 

countermeasures, such as fake IP addresses or compromised hosts, also known as botnets, 

to evade blacklisting. To counter content filtering, they use sophisticated HTML- and 

CSS-based obfuscation techniques or place the entire message content in randomized 

images [14].  

Traffic-characterization studies [3, 15, 16] try to address these issues by 

examining network characteristics associated with spam behavior at the IP and TCP 

level. Studies have shown that spam messages frequently originate from specific IP-

address space regions and autonomous-system (AS) numbers. To be more effective and 

hide their trails, spammers take advantage of compromised hosts to send unsolicited 
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commercial e-mail, which manifests itself in specific TCP features such as packet drops, 

retransmissions, and variable roundtrip times (RTT) [6]. These techniques are promising 

since it is more difficult for spammers to thwart such characteristics by manipulating the 

IP or TCP layer.  

The reputation of senders, messages, or flows, and collaboration among systems 

and providers can leverage the above techniques and provide a more holistic view of the 

methods and behavior that spammers use to obscure themselves. 

B. GOALS 

The goals of this thesis are summarized as follows: 

• Develop a test bed consisting of three infrastructure components: i) the 

user agent implementing the client side of the SMTP protocol and 

generating e-mail traffic; ii) the network emulator, which mimics the 

network path and condition characteristics to create traffic analogous with 

that of a live network; and iii) the MTA, which implements the server side 

of SMTP protocol. 

• Develop the user agent, which will take as input messages from a corpus 

and replay them in such a way that we can differentiate spam from 

legitimate traffic and establish a ground truth when we receive messages 

on the MTA side. 

• Modify the network emulator so that it can produce random delay with 

mean µ and standard deviation σ. Create two different traffic schemes: one 

that simulates legitimate traffic and one that simulates spam-traffic 

characteristics, such as loss of packets, retransmissions, and variable RTT.  

• Modify our MTA to include the port number along with the IP address of 

the sender in the message headers; the (IP:Port) tuple will be our message 

identifier.  

• Integrate SpamAssassin with our MTA; SpamAssassin will be the host of 

our real-time system. 
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• Integrate our system with SpamAssassin by developing a plug-in 

(controller) that will control both the flow-analysis engine and the 

classification engine. Further, it will aggregate data from our classification 

engines and build the confusion matrices that will be used later in the 

evaluation process. 

• Develop our classification engine in a simple and extensible way by 

utilizing existing technologies such as the classifiers that are provided by 

Orange, a statistical- and machine-learning software package, and the 

XML-RPC protocol for the establishment of two-way communication 

between controller and the classification engine. 

• Evaluate the performance of our system within the test bed with respect to 

accuracy, precision, and recall.  

• Deploy our system in a live environment and evaluate its performance. 

• Evaluate how our system performs in an auto-learning fashion. We 

describe how we define auto-learning and discuss the results in Chapter 

IV, Section C. 

• Discuss future work, such as other fields of abusive traffic where our 

system may be used and enhancements of the existing system.  

C. MAJOR RESULTS 

The major results of this thesis are summarized in the following points: 

• Our system achieved greater than 90% accuracy, precision, and recall in 

both the virtual test bed and live environment, independent of the 

classification method—which indicates that it can adopt and capture any 

changes in TCP characteristics.  

• We achieved a 99% precision rate in live testing with as few as 128 

training examples, which suggests that spam flows are characterized by 

high entropy, and we achieve small initialization times. 
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• In auto-learning mode with SVM, we achieved above 97% rates in 

accuracy and precision and above 99% in recall, with as few as 256 

training examples. 

D. STRUCTURE 

The structure of our thesis is as follows: in Chapter II, we present previous work 

in the field of spam filtering and detection and discuss the machine-learning algorithms 

that we use for our classification engines. We elaborate on the test-bed architecture and 

system design in Chapter III, and in Chapter IV discuss our experiments within the test 

bed and the live environment, along with the evaluation results. Finally, in Chapter V we 

summarize our work and its results and discuss future work having to do with evaluation, 

the detection of other types of abusive traffic, unsupervised learning, and system 

enhancements that will increase usability.   
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II. RELATED WORK 

Many methods have been proposed to address the problem of spam. Among the 

most popular and widely deployed are content filtering, collaborative filtering, and 

reputation systems. We review these first, then discuss emerging work in traffic 

characterization, which is most relevant to this thesis.  

A. CONTENT FILTERING 

Content filters are founded on the premise that spam and legitimate e-mail contain 

features, in this case, words, that are statistically distinguishable. In general, a filter [17] 

is a function that takes as input the message to be classified and a model, and outputs a 

classification label.  

( )
,  if the decision is spam

,
,  otherwise

spam

leg

c
f m M

c
⎧ ⎫

= ⎨ ⎬
⎩ ⎭

, 

In the context of messaging and binary labels (spam or legitimate), m is the message to be 

classified, M is the model, and cspam and cleg are the classification labels assigned to the 

message. 

The model can be either rule or learning based. Rule-based models consist of 

logical rules that have to be continuously updated and refined by the user in order to be 

competent with the dynamic nature of spam e-mail. Updating rules is problematic 

because it is a time-consuming and often error-prone process [18]. In learning-based 

approaches, the model is the outcome of applying a training algorithm on the features of a 

selected set of labelled training messages. The objective is to create a model that 

generalizes to predicting the classification of new, unseen messages. Each message is 

mapped to a feature vector x composed of message characteristics, either textual or 

nontextual, from a dictionary formed by analyzing the messages. For textual features [8], 

we consider individual words, particular phrases, or overemphasized punctuation, such as 

“!!!.” Nontextual features [8] can be the domain type of the message sender (e.g., .edu or 

.com), whether the message was sent via a mailing list, or whether it has an attached 
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document (most junk e-mail does not, but some malware propagates via e-mail). Feature 

vectors can be constructed by various methods. We mention some of them [19]:   

• term frequency, where each feature is represented by the number of times 

that it appears in a given message (often normalized by frequency across 

messages) 

• binary representation, which indicates whether a particular feature occurs 

in the message 

• use of a stop list as a supplementary method to the above. The stop list 

contains words like “a,” “and,” “the,” etc., that are not used in the forming 

of the feature vector. 

• use of stemming as a supplementary method. Stemming reduces words to 

their root, for instance “builder,” “build,” and “building” share a common 

root. This technique also makes for a more compact model representation, 

while increasing accuracy. 

Learning-based filters have been the focus of considerable interest and one can 

select from a wide variety of machine-learning algorithms. We further elaborate on the 

three that we used to evaluate our system.  

1. Naïve Bayesian Classifier 

Naïve Bayes classifiers [20, 21] were used in [18, 22] as an automated method for 

filtering spam, in order to overcome the problems of manually constructing logical rules, 

which require users, on one hand, to be capable of constructing robust rules and, on the 

other, to constantly tune and refine the rules to adapt to the continuously changing nature 

of spam e-mail. Their experiments revealed impressive results on both precision and 

recall.  

The naïve Bayes classifier is based on the Bayes theorem and the assumption that 

each feature is conditionally independent of every other feature, given the class variable 

C. The Bayes theorem is defined as [22]: 
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( ) ( )| ( )
|

( )

k k
k

P F f C c P C c
P C c F f

P F f

= = =
= = =

=
, 

where C is the class variable and F is the feature vector. Applying the independence 

assumption: 

( ) ( )| |k i i k

i

P F f C c P F f C c= = = = =∏ , 

and by using the maximum a-posteriori probability (MAP), the basic decision rule can be 

defined as follows [17]: 

( )
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{ }
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⎜ ⎟
⎜ ⎟=
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The prior probability ( )P C c=  is given by the ratio of the number of examples 

that belong in class c to the total number of examples. The product of the conditional 

probabilities depends on the feature types, whether they are discrete or continuous. If the 

features are discrete, the conditional probability is the ratio of the number of vectors Fi 

that have value fi and belong to class ck to the total number of vectors that belong to class 

ck. In the case of continuous values, we assume that they follow a normal distribution and 

we have: 

( ) ( ), ,| ; ,k ki i k i i c i cP F f C c g x μ σ= = = , 

where 

( )
( )2

221; ,
2

x

X Xg x e
μ
σμ σ

πσ

−
−

=
, 

is the normal (Gaussian) distribution. 
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2. Support Vector Machines  

Support-vector machines were introduced by Vapnic [23]. The main objective of 

SVM is to discover the optimal hyperplane1 in n-dimensional feature space, such that the 

feature vectors of each class exist on the same side of the hyperplane. For example, if we 

take a random-feature vector that is closer to the feature vectors of class c1 than to c2, it 

will reside in the hyperplane side that represents class c1. Therefore, after the discovery of 

the optimal hyperplane, we will be able to correctly classify a given example.  

A hyperplane P is considered optimal if it maximizes the minimum margin, i.e., if 

the distances of the closest feature vectors of each class from P are equal. Formally, we 

can represent P with the equation 0w x b• + = , where w is the normal vector2 of P, b is a 

term that allows the algorithm to choose among all the hyperplanes that are perpendicular 

to the normal vector P, and •  is the inner product. The space that separates the feature 

vectors of each class is defined as the margin between two hyperplanes with the 

following equations:  

 1iw x b• + = , if ci = 1 
 1iw x b• + = − , if c2 = -1 

Therefore, every training example belongs to class ci, if 1iw x b• + ≥ and to class 

c2, if 1iw x b• + ≤ . Our goal is to maximize the margin. In that way, the classes will have 

a confident degree of separation, thus allowing us to make more effective classifications. 

So after having found the support vectors, the decision rule to classify an unknown 

example is the following:  

 ( )
1

n

i i i

i
f x sign a y x b

=

⎛ ⎞= +⎜ ⎟
⎝ ⎠
∑ ,  

where ai
 and b are used to maximize the margin of the separating hyperplane and yi = {1,-

1} are the classes.  

                                                 
1 A hyperplane in R1 is a point, in R2 is a line and in R3 is a proper plane. 
2 Normal vector w is perpendicular to the hyperplane. 
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The vectors, however, are not always linearly separable, so we have to apply a 

transformation function (10) : nR FΦ →  from the n-dimensional feature space to another 

feature space. In that case, the decision rule becomes (1): 

 ( ) ( )
1

,
n

i i i

i
f x sign a y K x x b

=

⎛ ⎞= +⎜ ⎟
⎝ ⎠
∑ ,  

where ( ) ( ) ( ),i j i jK x x x x= Φ •Φ  is the kernel function. 

3. C4.5 

C4.5 [24] is an extension of the ID3 decision-tree algorithm, designed to address 

ID3 issues, such as the handling of continuous attributes, avoiding overfitting data, 

reducing error pruning, handling missing values, etc. 

The algorithm evaluates an unknown feature vector based on the following 

strategy: initially, it selects the best feature as the root of the decision tree. For every 

different value of the feature, it creates a descendant node, which consists of all the 

vectors that contain the specific feature value. This whole process is repeated recursively 

for each feature node in the decision tree. The process ends when one of the following 

conditions is met:  

1. all vectors of the current node belong to the same class or  

2. all features are used 

How well the decision tree will perform depends on the selection process of the 

best feature. This will allow us to have a better clustering for each class of examples. A 

suitable measure for the evaluation of the features, and therefore for the selection of the 

best feature, is the information gain (IG) of an attribute A [25]. If we define S as the set 

of training examples, then the mathematical representation of IG is given by the 

following formula: 

 
( )

( ) ( ) ( )
v

v
v Values A

S
IG A Entropy S Entropy S

S∈

= − ∑ , where 

 2
1

( ) log
c

i i
i

Entropy S p p
=

= −∑ ,  

Values(A) is the set of attribute A values, Sv is a subset of S that contains the examples  
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with attribute A having value v, and pi is the ratio of the number of examples that belong 

to class i to the total number of examples. Entropy represents the amount of information  

that is provided by the attribute and, in information theory, is measured in bits [25]. Our 

goal is to maximize the IG of the selected attribute by minimizing the entropy of Sv, or, 

in other words, by reducing the number of bits.  

Information gain, however, has the disadvantage that it selects attributes with a 

large set of values. To overcome this shortcoming, Quinlan [26] suggests utilizing the 

information-gain ratio, which is formalized as follows: 

 ( )( )
( )

IG AGR A
IV A

= , where 

 2

1

( ) log
A

i i

i

S S
IV A

S S=

= −∑ ,  

and Si are the subsets of S that contain attribute A with value i. So, again, our goal is to 

find the attribute that maximizes the above ratio.  

Drucker et al. [19] evaluated both the SVM and C4.5 algorithms on the spam 

problem, reporting acceptable results in terms of accuracy. Furthermore, Blanzieri and 

Bryl [27] improved the accuracy of the SVM filtering technique by leveraging the 

phenomenon of locality in spam [17]. 

Spammers, however, can easily evade content filters through different techniques, 

such as misspelling words, inserting HTML tags inside words to avoid detection of 

typical spam keywords, or lately, encapsulating the spam message inside an attached 

image, better known as image-based spam [28].  

Furthermore, the user is another factor that determines the performance of content 

filters. Users can give feedback to the systems by reporting false positives and false 

negatives in order to retrain the classifiers. The major concern with users is that their 

classification is subjective and subject to error. Every user has a different notion of which 

e-mail is spam. Most of them classify an e-mail as spam not objectively, based on the 

definition of spam as unsolicited commercial e-mail, but rather, subjectively, based on 

the fact that it has no interest to them [29].  
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B. COLLABORATIVE FILTERING 

Collaborative filtering addresses the problem of the user’s subjective assessment. 

This technique is based on the idea that if many users collaborate and share their 

subjective assessments of an e-mail, they can be leveraged to create a more objective 

classification on that specific e-mail. The larger the number of users that collaborate, the 

better the results will be. For example, if a user decides to report a message as non-spam 

when the application knows that 10,000 users have reported it as spam, the application 

will ignore his suggestion. But if the numbers of votes is small, the objectivity of the 

suggestion is in doubt. 

In a collaborative system [29], whenever a user receives an e-mail, a filtering 

application suggests a classification for the e-mail: either spam or not. Then the user can 

decide whether to accept this suggestion or deny it. If the user classifies the message as 

spam, a signature is computed for that e-mail and is reported to a collective knowledge 

base. If the signature matches a known signature of the database, it is then regarded as 

spam. 

The robustness of the filter depends greatly on the signature algorithm. 

Spammers, in order to evade collaborative-filtering techniques, change at random small 

portions of the message, with the intention of making each spam message unique. If the 

signature algorithm fails to ignore such small randomizations, it will produce different 

signatures for the same message. For greater robustness, algorithms have been developed 

to be more content aware, so that unimportant changes do not alter the signature. For 

example, Razor [30] uses short-lived signatures where the signature is based on text that 

is selected from the spam message, based on a random number that changes regularly.  

C. REPUTATION SYSTEMS 

All transactions on the Internet today are covered by the umbrella of relative 

anonymity. This allows users to act maliciously without any consequences. Reputation 

systems try to solve this problem by developing trustworthy relationships between 

producers and consumers. Their goal is to assign a reputation score to an e-mail entity. 
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For this to be accomplished, these systems collect feedback from users, create a 

behavioral profile, and assign a score based on previous behavior [31].  

Reputation systems can be categorized [31] according to two characteristics: the 

method of identifying the sending entity and the type of feedback that is further 

processed.  

1. Identification Method 

Entity identification is accomplished by using either the content or the address of 

the message. Systems that are founded on content-based identifiers use a form of 

fingerprint to establish a good correlation between message and entity. We can define a 

fingerprint as a many-to-one mapping. A good fingerprinting algorithm must not be 

susceptible to message mutation. Thus, it must map many similar messages to the same 

fingerprint while not mapping any additional messages to the fingerprint [32]. Razor [30] 

and DCC [33] are two such systems that use fingerprinting to identify a message sender.  

Address-based identifiers can be an IP address, sender domain, or the entire 

address of the message (IP and domain). Systems that use the IP address as an identifier 

have as a back end real-time databases, which query in order to find out whether the IP 

address is blacklisted. These systems can be considered binary reputation systems 

[38] since they do not give a score but a yes/no answer. The disadvantages of this method 

[31] are that a legitimate host can be compromised and used to send spam messages, its 

IP address can be hijacked, and legitimate users can share IP addresses with others that 

send spam. Furthermore, Ramachandran et al. [15] showed that as much as 35% of spam 

messages were sent from IP addresses that were not included in blacklists. 

As mentioned, another type of address-based identifier that reputation systems 

can use is the sender domain. Sender-authentication schemes, e.g., SenderID [34] and 

DKIM [35], prevent domain spoofing. SenderID is a path-based technology in which 

domain owners publish DNS TXT records that indicate which IP addresses are allowed to 

send e-mail on behalf of a given domain. DKIM is a crypto-based technology. The sender 

signs the message with a private key associated with the domain and the recipient uses 

the public key advertised in the DNS to verify the sender domain [31]. 
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2. Feedback Method 

Reputation systems use two types of feedback: reactive and predictive. 

We define reactive feedback [31] as the feedback provided by humans or 

automated means such as spamtraps, honeypots, or other filtering systems. Examples of 

such systems are real-time blacklists and collaborative-filtering systems like those 

mentioned above. We must, however, ensure that the feedback provided originates from 

legitimate sources. In other words, we must establish a reporter’s trustworthiness, 

otherwise the data are susceptible to malicious or accidental pollution. 

Predictive feedback has to do with building behavioral-feature vectors based on a 

vast amount of observed activity for given identifiers [31]. The behavioral characteristics 

can be extracted from statistical properties such as volume, frequency, and distribution of 

identifiers or relations among identifiers. An example of a system that uses statistical 

properties is DCC, which uses the message fingerprint as an identifier and measures the 

volume of reports for each fingerprint. If the volume exceeds a certain threshold, the 

message is considered spam. Further, Leiba et al. [36] assign a reputation score to a 

message based on statistics for each IP address of the SMTP path. The statistics are the 

number of spam or legitimate e-mails for which each IP address on the SMTP path 

appears. Goldbeck and Handler [37] use the social network of users and user-assigned 

reputation scores for people they know to build a large reputation network, from which 

they can infer recursively a reputation score for the sender of a message.     

Reputation systems, however, face some difficulties. First of all, there is no 

standard to define what constitutes a reputation score, so each vendor uses different 

criteria; and second, there is no centralized clearinghouse of reputations, which makes it 

difficult for vendors to exchange reputation scores [38]. 

D. TRAFFIC CHARACTERIZATION 

Traffic-characterization methods are a recent novel approach to differentiating 

sources of abusive traffic. Several prior works are directly relevant to our research. These 

methods try to identify spam by leveraging the network or transport-layer properties. 
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Whereas spammers have the ability to alter the content of a message or spoof an IP 

address or sender domain, they have much less power to forge network (e.g., IP) or 

transport-level (e.g., TCP) properties.  

1. Network-Level Characteristics 

Ramachandran et al. [15] examine the spamming behavior at the network layer 

(IP layer) by correlating data collected from three sources: a sinkhole, a large e-mail 

provider, and the “command and control” of a Bobax botnet. More specifically, they 

focused on the following network-level properties: 

• IP address space from which spam originates 

• autonomous systems that sent spam messages to their sinkhole 

• BGP route announcements 

With respect to IP address space, their findings showed that spam and legitimate 

e-mail originate from the same portion of the IP address space, suggesting that it is not a 

good discriminating property. Autonomous-system (AS) utilization, on the other hand, 

showed that spammers use different ASs to disseminate their load as compared to the 

ASs that legitimate e-mail is sent from—which suggests that it could be a promising 

feature for filtering systems of spam messages.  

Hao et al. [16], however, showed that AS alone as a feature may cause a large rate 

of false positives. Their work focused on extracting lightweight features from network-

level properties such as geodesic distance between sender and receiver, sender IP-

neighborhood density, probability ratio of spam to ham at the time of day the packet 

arrives, the AS number of the sender, and the status of open ports on the sender machine. 

Their feature-selection process showed that AS is the most influential feature, but when 

used for classification yields a false-positive rate of 0.76% under a 70% detection rate, 

which suggests that it should be used in combination with other features. Further studies 

[39, 40] have shown that a spammer can evade this technique by advertising routes from 

a forged AS number [16].  
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2. Transport-Level Characteristics 

In a spirit similar to Ramachandran et al., Beverly and Sollins [3] explored 

transport-layer characteristics in order to determine whether spam e-mail presents 

different behavior from legitimate e-mail. Their idea is based on the premise that 

spammers have to send large volumes of e-mail to be effective, which suggests that the 

network links involved would experience contention and congestion. Therefore, 

transport-layer properties such as number of lost segments and the roundtrip time (RTT) 

would have different metrics in such a contentious environment, allowing discrimination 

between spam and legitimate behavior.  

The features that they used to evaluate the transport-layer properties are the 

following: 

• number of packets 

• retransmissions 

• packets with RST bit set 

• packets with FIN bit set 

• number of times zero window was advertised 

• number of times minimum window was advertised 

• maximum idle time between packets 

• initial roundtrip time estimate 

• variance of inter-packet delay  

Among those features, the feature-selection process showed that RTT and 

minimum-congestion window are the most discriminatory. Their analysis revealed that 

50% of spam messages have an RTT greater than 200ms, which correlates with the 

findings of Hao et al. [16] that showed that spam messages travel longer distances than 

legitimate ones. As for the performance of the classifier, the evaluation showed that it 

exhibits more that 90% accuracy and precision.  

Moreover, Ouyang et al. [41] conducted a large-scale empirical analysis of 

transport-layer characteristics on 600K+ messages, based on the work of Beverly and 

Sollins. They expanded the feature set to include other features such as the operating 



 18

system of the remote host, the advertised window size in the SYN packet from the remote 

host, and variance of RTT. Among the most discriminating features between spam and 

ham, their analysis revealed three-way-handshake, time-to-live, idle time between 

packets and variance of inter-packet delay. Performance-wise, they showed that 

transport-layer features are stable over time and can classify spam with 85–92% 

accuracy.  

Esquivel et al. [42] suggested leveraging transport-layer characteristics to defend 

against spam at the router level using a signature-based defense mechanism. For this to 

be accomplished, the mechanism has to be lightweight so that it does not impose 

overhead on the router; that is, the signatures have to be stateless and require a small 

amount of memory. TCP fingerprints were proposed as signatures because they are 

lightweight, can be computed on a single TCP SYN packet, and are very few in number, 

so they can be stored without much overhead incurred on the router.  

They experimented on two live e-mail data sets that included both spam and 

legitimate e-mail messages. They used pOf [43] as the tool to extract signatures from a 

packet capture. They discovered common signatures across both data sets for spam e-

mails; however, in the case of legitimate e-mail messages, no common signatures were 

revealed. Noteworthy was the fact that many of the top signatures used by hosts to sent 

legitimate messages are also used by hosts to send spam, which is evidence that they have 

changed some of the OS configurations. Furthermore, they observed that the spam 

signatures were stable over a period of several months for both locations. As far as 

performance, analysis showed that router-level filtering with TCP fingerprinting can filter 

28%–59% of spam messages with a 0.05% false-positive rate. 

Another approach on traffic characterization was proposed by Schatzmann et al. 

[44]. They focused on the network-level characteristics of spammers, but from the 

perspective of an AS or ISP. Their idea is based on the assumption that a large number of 

e-mail servers perform some level of pre-filtering (e.g., blacklisting). This knowledge 

however, remains local at the server and, depending on the server configuration or the  
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policy that is in effect, each server would perform differently. If we had access to that 

knowledge, we could analyze it and use it to improve the overall performance of the 

servers.  

Schatzmann et al. showed that this local knowledge of pre-filtering decisions can 

be collected using flow-size information like bytes per flow, packets per flow, or average 

bytes per packet instead of examining the server logs. They gathered data within a three-

month period from border routers of a major ISP serving more than thirty universities and 

government institutions. Their analysis showed that 95.64% of the sessions that failed 

had flows with less than 322 bytes, 96.99% of the sessions that were rejected had flows 

from 322 to 1559 bytes (corresponding to the SMTP envelope), and 97.16% of the 

sessions that were accepted had flows of greater than 1559 bytes. So just by byte count 

we can estimate the filtering decisions of mail servers. 

They further validated their claim on a network-wide scale with fifty active mail 

servers that used blacklisting and whitelisting. The results showed that the traffic rejected 

by blacklisting had flow sizes between 322–1559 bytes, which concur with the above 

findings, and more than 90% of the accepted SMTP sessions had flow sizes greater than 

1559 bytes. Leveraging this knowledge, they further proposed a reputation-rating system 

of e-mail senders. This intuition is based on the fact that when a server rejects in a 

consistent manner, it implicitly applies a rating on the specific client. These ratings can 

be used to build a collaborative-rating system, where the system would recommend 

acceptance or rejection of an SMTP session based on the collective behavior of all the 

servers. 
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III. ENVIRONMENT-SYSTEM OVERVIEW 

This chapter describes the architectural approach we followed for our system and 

environment. We evaluated our system in both a virtual test bed and a live-test 

environment. A virtual test bed provides insights about the behavior of a system and 

allows for more controllable conditions, allowing us to reach more reliable and 

reproducible results [2]. Our goal was to evaluate our system under high-traffic-rate 

conditions and measure characteristics such as throughput and system load. This is 

especially appropriate when deploying the system in a resource-constrained environment 

such as a router.  

Live testing, on the other hand, is important because it reveals how the system 

interacts with possibly unknown features of the external environment [2]. We deployed 

our system in a live environment from January 25, 2010 to March 2, 2011 and collected a 

trace of 5,926 e-mail messages. Section A describes the architecture of our virtual test-

bed environment and Section B discusses the design of our real-time, abusive-network, 

traffic-detection system.  

A. VIRTUAL-ENVIRONMENT ARCHITECTURE 

An overview of our virtual environment is shown in Figure 2. It consists of three 

building blocks: the client side, server side, and network emulator. The client side 

generates the required SMTP [4] traffic, which is then received, analyzed, and classified 

on the server side. The role of the network emulator is to simulate congestion, in the form 

of longer delay, delay variance, retransmissions, etc., that large volumes of spam traffic 

will cause on the link.  

1. Server Side 

The server side consists of two virtual machines: one acting as the DNS server 

and the other as the mail server (MTA). For our DNS server, we used BIND [45], and for 

our mail server, Postfix [46].  
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Figure 2.  Virtual-Environment Architecture 

Furthermore, we installed SpamAssassin [47] and SpamFlow [3] in the virtual 

machine that hosts the mail server, in order to achieve real-time, traffic-analysis 

functionality. More specifically, we integrated SpamFlow into SpamAssassin by 

developing a Perl plug-in so that SpamFlow could analyze SMTP packets, build the flow 

for each message, and extract the corresponding TCP features in real time.  

Further, we have a libpcap [48] process that is running in promiscuous mode to 

assist SpamFlow in accomplishing its tasks. It collects all passing traffic from the 

interface it is listening on and writes them to a file, which is rotated at a specific rate to 

avoid large files and still not miss packets that belong to a message we haven’t processed 

yet.  Note that in the future, we plan to more tightly integrate the promiscuous packet 

capture with SpamFlow by storing flow features in memory as possible to avoid file 

system performance overhead. 

For classification, we developed a classifier in Python using Orange [49], a 

machine-learning library for Python. See Section B for the implementation details of the 

classifier and the approach we selected to establish a communication path between 

SpamFlow and the classifier.     
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2. Client Side 

The client side also uses two virtual machines that accommodate the task of 

generating the appropriate SMTP traffic. Each client consists of an e-mail replayer and 

the 2005 TREC public spam corpus [50] containing 92,187 messages, of which 52,788 

are spam and 39,399 are legitimate. The corpus consists of an index file and a directory 

structure with the messages. The index file contains the path and label—spam or ham—

for each message, which we use to establish ground truth. One issue that we had to 

address during our design was the limited TCP ephemeral-port range that the operating 

system enforces with regard to the volume of our corpus, as we discuss further below. 

For the purpose of generating our SMTP traffic, we developed in Python [51] an 

e-mail replayer which performs the following tasks: 

• takes as input each message from a corpus, extracts the headers, and  adds 

as recipient a valid user of our virtual-network domain 

• adds another helper header that contains the label of the message in such a 

way as to not trigger SpamAssassin and enables us to establish the ground 

truth during our analysis process  

• establishes an SMTP session with our mail server 

• sets the type of service (tos) field in the IP header of each message to 

some value, depending on its class. Thus spam and legitimate messages 

have different tos values, which allows us to redirect them through 

different paths in our network emulator 

• finally, the replayer transmits the message 

As mentioned above, the operating system limits the range of ephemeral3 ports a 

host can use. In our case, the range of available ephemeral ports is from 32,768 to 61,000, 

which allows us to establish 28,232 unique TCP connections. The total number of 

messages we want to transmit, however is 92,187, many more than the available 

connections. This is a problem because we use the IP:Port tuple to identify the message, 

                                                 
3 Ephemeral ports are temporary ports assigned by a machine's IP stack, and are assigned from a 

designated range of ports for this purpose. 
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build the flow from the message packets that correspond to the given IP:Port tuple, and 

extract the features. As a solution, we used two virtual machines and manually bound the 

interface to a port using our own ephemeral-port range. Applying these two approaches, 

every message was mapped to a unique 4-tuple (server IP, server port, host IP, host port), 

which allowed us to uniquely identify each message on the server side and extract its 

corresponding flow features. We could have adopted another approach and used the 

message identifier instead, which is unique for every message. This approach, however, 

would require making a deep packet inspection to retrieve the message identifier, which 

implies more computational time, and we would lose the lightweight principal from our 

system.  

3. Network Emulator 

Emulators are tools that generate appropriate network-environment characteristics 

to allow for protocol or application evaluation. In our case, our goal is to reproduce the 

TCP characteristics that spam TCP traffic exhibits, such as TCP timeouts, 

retransmissions, resets, and highly variable roundtrip time (RTT) estimates [3]. For our 

evaluation, we selected Dummynet [52], a publicly available tool that allows packets to 

pass through virtual network links to introduce delay, loss, bandwidth constraints, 

queuing constraints, etc.  

Dummynet [2] comprises two main components: an emulation engine and a 

packet classifier. The emulation engine (Figure 3) or pipe as we will call it, consists of a 

finite-size queue, a scheduler, and a communication link with fixed bandwidth and 

programmable propagation delay. We can build our network environment by configuring 

the main parameters: bandwidth, queue size, queuing discipline, and propagation delay. 

Traffic is passed to the pipe using the packet classifier, ipfw, which matches packets 

according to a predefined rule set and applies appropriate actions. 
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Figure 3.  Dummynet [From [2]] 

Once a packet is inserted into the pipe, it is queued and drained at a rate 

corresponding to the link’s bandwidth B . The next stage for the packet is the 

communication link, where it stays for a time Dt equal to the propagation delay of the 

link. The packet is reinjected into the network stack after time Dt expires. As a result of 

this process, the pipe will delay each packet i by a time ( )i i
i D

l QT tB
+= + , where il   is 

the length of the packet, iQ is the queue size, and B  and Dt are the bandwidth and 

propagation delay of the link, respectively [2]. 

As mentioned above, Dummynet introduces a fixed amount of propagation delay 

into the link, which induces difficulties in achieving a variable RTT, as would be present 

in a congested environment. To address this problem, we modified Dummynet to provide 

random delays based on a normal distribution with mean μ  and standard deviation σ . 

More specifically, we set up Dummynet to introduce a mean delay of 150 ms with 50-ms 

standard deviation for spam traffic that originates from the replayer and is destined for 

the mail server, and a 40-ms mean delay with 25- ms standard deviation for legitimate 

traffic in both directions. We introduced delay in legitimate traffic in order to avoid 

overfitting our model. 

To emulate timeouts, retransmissions, and resets, we applied a random-packet-

drop policy on the pipe. While we recognize that our modifications to Dummynet only 

partially emulate a congested network (for example, loss events are independent—an 

assumption that does not hold true in a real queue), our goal in the emulation  
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environment was to enable testing.  Specifically, as mentioned above, the environment 

provides a means to emulate high-rate traffic and evaluate performance, throughput, 

system load, etc. on representative traffic. 

B. SYSTEM DESIGN 

An overview of our real-time system is shown in Figure 4. It comprises four main 

components: SpamAssassin, SpamFlow Analysis Engine, SpamFlow Plug-in, and the 

SpamFlow Classification Engine. We refer to SpamFlow Analysis Engine, SpamFlow 

Plug-in, and SpamFlow Classification Engine as spamflow, plugin, and classifier, 

respectively. Furthermore, we have a separate process running in promiscuous mode, 

which captures every packet of the SMTP session using libcap and stores it to disk.  

Every message received by the mail server is processed by SpamAssassin and 

then piped to plugin, where we extract the identification tuple (host IP address, host port 

number) from the message and then pass it to spamflow for feature extraction. Thereafter, 

plugin is responsible for communicating with classifier for the classification task. We 

describe each component in more detail in the following subsections. 

1. SpamAssassin 

SpamAssassin is an open-source, rule-based, content filter. Each rule is assigned a 

score using a genetic algorithm. All scores are then aggregated to produce an overall 

score for each message. The classification process involves comparing the overall score 

with a user-defined threshold (which defaults to a value that maximized performance on a 

broadly representative training sample during the genetic-algorithm stage). If the score is 

above the threshold, then the message is classified as spam; otherwise, as legitimate. 

Moreover, using a modular architecture, SpamAssassin can be extended to include other 

filtering techniques, such as real-time blackhole lists (RBLs), whitelists, collaborative 

filtering, learning-based techniques (e.g., naïve Bayes), and others.  

Furthermore, SpamAssassin features a threshold-based mode in which new 

exemplar emails trigger an automatic retraining process.  While the SpamAssassin 

documentation refers to this as “auto-learning,” in the machine learning and spam-
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filtering communities, this is typically called online or iterative learning. The primary 

difference is that in advanced iterative learning approaches the classification model is 

modified to account for the new emails; whereas in auto-learning, the entire model is 

recreated. More specifically, SpamAssassin selects messages that achieve proper 

threshold values, rebuilds the model of the built-in naïve Bayes classifier, and classifies 

subsequent messages with the newly updated model. A message is selected as spam if the 

score that it receives is greater than 12 points and as non-spam if the score is less than 0.1 

points. We discuss the results of applying this technique to our system in Chapter IV, 

Section C.      

     

 

 
Figure 4.  System Architecture 

We used SpamAssassin with the default configuration of rules, but we disabled all 

network tests (lookups in blackhole lists (RBL), collaborative filtering with Ryzor [30], 

Pyzor [53], and DCC [33]), because our virtual environment was insulated from the outer 

world. Also, we disabled rules comparing the date on the message header with the date 
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the message was received. All messages in our corpus, whether legitimate or spam, have 

out-of-date dates in the headers, which implies that triggering those rules makes no 

contribution to the overall scoring process (and might artificially affect classification 

performance negatively). 

2. SpamFlow 

Spamflow serves as our network analyzer. It accepts as input a libpcap [54] trace, 

builds corresponding flows, and extracts TCP features for each flow. We modified 

spamflow for our purposes to extract TCP features for a given message identified by the 

(host IP address, host port number) tuple. To accomplish the above tasks, spamflow needs 

to communicate with a separate process that is responsible for capturing TCP packets in 

promiscuous mode and storing them to disk. Spamflow retrieves the packets from the disk 

associated with the given (IP address, TCP port number) tuple and extracts their flow 

features.  This solution, however, is not the most effective since it involves file 

operations. A better solution that also preserves the lightweight character of our system is 

for all input/output operations of both the libpcap process and spamflow to be executed in 

memory. We leave this as future work and in the meantime could use a RAM disk to 

emulate this behavior. We modified our mail server to add to the header of each e-mail 

the (IP address, TCP port number) identification tuple of the remote mail-transport agent 

(MTA) sending the mail. 

3. SpamFlow Plugin 

Spamflow cannot operate as a standalone application for real-time traffic analysis; 

therefore, we had to integrate it with an existing one. We selected SpamAssassin because 

it is open source, widely used (the commercial Barracuda [55] network appliance is based 

on SpamAssassin), and employs a modular architecture that allows extensions through 

plug-ins. SpamAssassin is written in Perl [56]. We developed, using Perl, a module that 

integrates spamflow into SpamAssassin and allows it to operate in a real-time fashion: as 

e-mail messages are routed through spamflow, they are classified using a previously 
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learned model of transport features and given a score. This score, in combination with the 

scores from other rules, provides a final message disposition.  

Plugin acts as the controller of the system and binds the traffic-analysis engine 

and the classifier together. This module performs two main tasks that are related to 

spamflow and classifier. The first task is to provide spamflow with the 2-tuple identifier 

of the current message under inspection and receive in return the features that correspond 

to the given message identifier. Once plugin obtains the features, the second task involves 

classification: passing the features, via an appropriate protocol, over to the classifier and 

retrieving the corresponding classification. In Figure 5, we see an example of a message 

headers where the plugin has attached the features that spamflow has extracted. 

 

Figure 5.  Message Headers with spamflow features 

From Josephine@rsi.com Tue Feb 01 23:21:58 2011 
Return-Path: <Josephine@rsi.com> 
X-Spam-Checker-Version: SpamAssassin 3.3.1 (2010-03-16) on 
ralph.rbeverly.net 
X-Spam-Level: ** 
X-Spam-Status: No, score=2.9 required=5.0 
tests=BAYES_40,HTML_MESSAGE,SPAMFLOW, 
          UNPARSEABLE_RELAY autolearn=no version=3.3.1 
X-Spam-Spamflow-Tag: the features are 
3792891725:37689,12,10,0,0,0,0,1,1,0,53248,34.464852,0.162818,120.44
1156,148.297699,51.891697,5840,48,1,64 
Delivered-To: rbeverly@ralph.rbeverly.net 
Received: (qmail 30923 invoked by alias); 1 Feb 2011 
23:21:58 -0000 
Delivered-To: jobs@eactivenetworks.com 
Received: (qmail 30920 invoked from network); 1 Feb 2011 
23:21:57 -0000 
Received: from cm-static-18-226.telekabel.ba 
(77.239.18.226:37689) by ralph.rbeverly.net with SMTP; 1 Feb 
2011 23:21:57 -0000 
Received: from vdhvjcvivjvbwyhxnscvfwq (192.168.1.185) by 
bluebellgroup.com (77.239.18.226) with Microsoft SMTP Server 
id 8.0.685.24; Wed, 2 Feb 2011 00:20:48 +0100 
Message-ID: <4D489025.504060@etisbew.com> 
Date: Wed, 2 Feb 2011 00:20:48 +0100 
From: Essie <Essie@hermes.com> 
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; 
rv:1.9.2.12) 
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To accomplish this task, we used XML-RPC [57] as the communication protocol 

between the two ends. XML-RPC is a simple protocol that allows procedures running in 

different applications or machines to communicate with each other. They exchange 

XML-formatted data [58] using the HTTP [59] protocol. Specifically, the client uses the 

HTTP-POST request to pass data to the server; the server in return sends an HTTP 

response. In our implementation, we registered classifier with a classify procedure that 

takes as input the features. So plugin sends the HTTP-POST request with the name of the 

procedure to call, classify, along with the features, as coma separated values forming a 

string, and receives via HTTP response the classification label from each classifier.  

We chose XML-RPC because it is simple. It allows classifier to potentially 

operate on a different machine from spamflow, which in the future could allow the XML-

RPC classifier to serve many spamflow instances in a multithreaded fashion and 

distribute load; it uses XML, which has been established as a standard format across 

many platforms and applications; and finally, both Perl and Python provide an API for 

the XML-RPC protocol. The latter has to do with the fact that we implemented classifier 

using Python, as we will discuss in the next subsection.  

4. SpamFlow Classification Engine 

As mentioned above, we have implemented classifier using Python and the 

Orange machine-learning package. Orange is a simple-to-use package with many 

features, such as a variety of machine-learning algorithms, a statistical module that allows 

different evaluation techniques, and visualization widgets. 

Our classifier implementation comprises three machine-learning algorithms: 

naïve Bayes, decision trees (C4.5), and support-vector machines (SVM). We selected 

three algorithms because we wanted to examine if the classification performance of our 

system is a function of the classification method, and these algorithms are known to 

provide good performance. All three algorithms are invoked to provide a classification 

for the requested flow features.     
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IV. EXPERIMENTAL METHODOLOGY AND RESULTS 

In this chapter, we describe the experiments performed on our system using the 

infrastructure and architecture described in Chapter III. We then discuss performance 

results and the implications as observed in both the synthetic laboratory environment and 

in the live network test. 

A. EXPERIMENTS 

We evaluated both the system as a whole and classifier by itself, with three 

different experiments. The first two were performed on the virtual test-bed environment 

and the third on a server in live testing. For both experiments on the virtual test bed, we 

tested our system against high-rate and high-volume traffic. Our volume consisted of 

approximately 70,000 e-mail messages that we replayed using both of our clients. While 

the combination of the replayer application and the simulated network delay limited our 

testing throughput to approximately 110 msgs/min, we show later in this chapter that our 

classification engine is capable of processing 78,000 msgs/min. The load to which we 

subject the system is sufficiently high to simulate a realistic environment, exercise our 

algorithms, and measure performance with reliability.  

As stated in Chapter III, our other goal was to evaluate our system classification 

performance. Even though the conditions that our virtual test bed produced are, naturally, 

not perfectly representative of a live environment, we can extract valuable information on 

how the classifiers react and perform on artificial features. The test bed gives us the 

ability to measure different performance metrics such as throughput, training times, and 

system load. We established a reference of comparison for evaluation purposes by using 

SpamAssassin in two configurations. The first configuration included only the local tests, 

which perform checks on the message body and headers, whereas in the second phase we 

allowed SpamAssassin to utilize its own built-in naïve Bayes classifier. As previously 

stated, we did not use any rules requiring network access, e.g., real-time blacklists, 

because our environment had no access to the Internet.  
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To accommodate our experimental needs, we divided our corpus into two sets. 

The testing set consisted of 70,000 messages, and the remaining 22,176 messages were 

the training set. For each experiment, we used four different training sets, consisting of 

10, 100, 1,000 and 10,000 training examples. Each training set was then populated using 

sampling without replacement, as we did not want to select the same message twice, 

ensuring an equal composition in the number of spam and legitimate e-mail messages. 

For each training-set size, we perform tenfold cross-validation to ensure generality and 

reliable results. Our goal was to evaluate our system with increasing sizes of training 

examples and repeat the evaluation process for each set ten times, in order to compensate 

for any variations that would be a result of the sampling procedure, as well as to affirm 

that the classifiers would perform better as the training set size increased.     

The metrics that we used for our evaluation are the standard classification 

performance measures of accuracy, precision, and recall. Precision measures 

classification specificity [60], which is defined as the proportion of the positive 

classifications that are correct; this measure penalizes any incorrect positive classification 

(false positives) but does not penalize any loss of positive classifications. Recall 

measures classification coverage [60], defined as the proportion of the set of positive 

cases that the system correctly classifies, and therefore penalizes false negatives but not 

false positives. Accuracy measures the proportion of classifications that are correct, and 

thus gives equal weight to both false positives and false negatives. The formulas that we 

used to compute the aforementioned metrics are the following: 
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Finally, we need to mention the SVM configuration that we used in our 

evaluation, since it is tunable. The SVM implementation of Orange provides two 

classification types, C-SVC (support-vector classification) and Nu-SVC, with each 
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adjusting different parameters to calibrate their performance. For our experiments, we 

selected the C-SVC type, because Nu-SVC, which was the default type in Orange, was 

producing errors, and C-SVC was recommended instead. As kernel type, we used the 

Gaussian kernel or radial-basis function (RBF), because it is proposed in [61] as a good 

start, and we selected parameter C4 = 5. We leave as future work examination of the 

performance of our system on different kernel types and parameters.      

B. RESULTS 

1. Test-Bed Evaluation 

Our goal for this first experiment was to evaluate our system in a high-volume-

and-rate traffic environment and examine the system and classification performance. In 

the first subsection, we discuss the classification performance relative to SpamAssassin 

as a reference point, and in the second subsection, present the system performance with 

respect to throughput, classification training times, and system load.  

a. Classification Performance 

The results of our system evaluation (first experiment, lab environment) 

with respect to accuracy, precision, and recall are shown in the following figures. The 

values in the x-axis are in logarithmic scale (base 10) and represent 10, 100, 1,000 and 

10,000 training examples.  

Figure 6 shows accuracy, where we can observe that all three classifiers 

(naïve Bayes, C4.5 decision trees, and SVM) behaved as expected. As the number of 

training examples increased, the resulting performance increases. With large training-set 

sizes, all of the classifiers achieved greater than 98% accuracy on our test data. C4.5 had 

the best performance of all, achieving 99% accuracy; but in general we cannot detect any 

significant performance difference among the different classifiers.  

                                                 
4 C defines the penalty parameter of error term and is always greater than zero. 
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On the other hand, SpamAssassin, using only word-token features, 

produced only 99 true positives—a 40% accuracy, which is quite a significant difference, 

even in an artificial environment. These results in the laboratory suggest the significant 

potential effectiveness of TCP behavioral filtering versus content filtering. The analytical 

results on accuracy for the three classifiers and for each sample are shown in Table 1.    

 
Figure 6.  Test-Bed Evaluation: Accuracy 

 Training Samples 

Classifier 10 100 1000 10000 

Bayes 0.914 0.972 0.981 0.981 

C45 0.900 0.966 0.987 0.996 

SVM 0.812 0.977 0.983 0.978 

Table 1.  Test-Bed Evaluation: Accuracy 
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Precision and recall are  depicted in Figure 7 and 8 respectively, and the 

analytical results for all classifiers in Tables 2 and 3. We observe again that all classifiers 

reach high rates of precision and recall. C4.5 has the most stable behavior, achieving a 

99% rate both in precision and recall, followed by naïve Bayes and then SVM. By 

contrast, SpamAssassin without naïve Bayes performed well, precision-wise, with zero 

false positives, but had a very low recall rate of 0.02%, because there were a great 

number of false negatives.      

Noteworthy is the fact that all three classifiers reached the maximum 

performance rate after the second training sample, which is probably due to the synthetic 

traffic that we generated. We therefore suggest, as future work, the creation of a more 

representative synthetic traffic in the laboratory environment. Nevertheless, our results 

suggest that we may expect an analogous behavior in a live environment, achieving a 

good performance with a small number of training examples. The confusion matrices for 

each classifier are shown in Tables 4, 5, and 6. 

 
Figure 7.  Test-Bed Evaluation:  Precision 
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 Training Samples 

Classifiers 10 100 1000 10000 

Bayes 0.938 0.983 0.989 0.99 

C45 0.904 0.972 0.994 0.998 

SVM 0.941 0.997 0.997 0.995 

Table 2.  Test-Bed Evaluation: Precision 

 
Figure 8.  Test-Bed Evaluation:  Recall 
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 Training Samples 

Classifiers 10 100 1000 10000 

Bayes 0.921 0.970 0.979 0.979 

C45 0.939 0.971 0.984 0.995 

SVM 0.738 0.964 0.975 0.970 

Table 3.  Test-Bed Evaluation: Recall 

 

Sample TP FN TN FN 

10 38414 3275 25559 2739 

100 40399 1245 27557 696 

1000 40342 852 27361 442 

10000 35940 754 22944 360 

Table 4.  Test-Bed Evaluation: Naïve Bayes Confusion Matrix 

 

Sample TP FN TN FN 

10 39127 2562 23889 4409 

100 40450 1194 27081 1172 

1000 40536 658 27548 255 

10000 36521 172 23218 85 

Table 5.  Test-Bed Evaluation: C45 Confusion Matrix 
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Sample TP FN TN FN 

10 30782 10908 26055 2243 

100 40141 1503 28152 102 

1000 40162 1032 27694 109 

10000 35583 1111 23115 188 

Table 6.  Test-Bed Evaluation: SVM Confusion Matrix 

b. Throughput—Load 

Table 7   shows  how  the   three  classifiers   performed  with   respect  to 

training times and classification throughput. Examining the results, we observe that naïve 

Bayes provides the higher throughput among the three classifiers, and this conforms to 

the fact that its decision rule is much simpler than the other two, whereas C4.5 has the 

lowest training time. SVM, on the other hand, achieves the lowest throughput and the 

largest training time, due to the more complex decision model. The significant takeaway 

from these measurements is that, taking into account the relative independence of our 

system from the classification method, we can select the classification model that fit our 

needs. For example, the low training time of C4.5 makes it a good candidate when we 

need to retrain often and want to minimize idle times.    

 

 Training Times (msec)  

across samples 

 10 100 1000 10000 

Throughput 

(msgs/sec) 

Bayes 0.884 15.016 105.453 104.843 1300 

C4.5 0.151 0.964 16.017 29.785 1100 

SVM 0.721 12.691 224.250 260.018 700 

Table 7.  System Performance 
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The classification engine’s CPU utilization, using all three classifiers at 

the same time, for the duration of our experiment was 0.1%, as we observe on Table 8, 

which shows that our system requires low system resources in order to operate.   

 Time (sec)

User 6.52 

System 86.04 

Elapsed 86263 

CPU  0.1% 

Table 8.  Classification Engine CPU utilization  

2. Test-Bed Evaluation Using SpamAssassin in Auto-Learning Mode  

In the second experiment, we explore if we can improve the built-in naïve Bayes 

classification engine of SpamAssassin using the threshold-based “auto-learning” 

operational mode that we described in Chapter III, Section B.  

This experiment allows us to assess the strength of TCP features against the 

content features.  Accuracy, precision and recall of all three classifiers are presented in 

Figures 9, 10, and 11, the analytical results are presented in Tables 9, 10, and 11. Again 

we observe as in the first experiment that C4.5 and Bayes achieve high performance 

across all metrics with rates above 95%. SVM, however shows a deviation compared to 

the results of the first experiment, which is probably due to the fact that we have not tried 

different SVM kernel types and parameters.   

SpamAssassin, on the other hand, does not show any improvement using the 

naïve Bayes classifier in “auto-learning” mode, compared to the previous experiment. As 

is shown in Table 12, accuracy and recall remain at the same low levels of 40% and 0.2% 

respectively. Nevertheless, we stress that SpamAssassin achieves zero false positives, 

that is 100% precision rate, which implies its conservative character, and that a 

combination of traffic and content filtering would produce a good line of defense against 

spam. The confusion matrices of all three classifiers are shown in Tables 13, 14, and 15.  
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 Training Samples 

Classifier 10 100 1000 10000 

Bayes 0.817 0.961 0.970 0.969 

C45 0.812 0.963 0.983 0.993 

SVM 0.599 0.968 0.962 0.870 

Table 9.  Test-Bed Evaluation Using SpamAssassin in Auto-Learning Mode: Accuracy 

 

Figure 9.  Test-Bed Evaluation Using SpamAssassin in Auto-Learning Mode: Accuracy 
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Figure 10.  Test-Bed Evaluation Using SpamAssassin in Auto-Learning Mode: Precision 

 Training Samples 

Classifier 10 100 1000 10000 

Bayes 0.881 0.986 0.991 0.992 

C45 0.846 0.974 0.993 0.996 

SVM 0.722 0.995 0.990 0.971 

Table 10.  Test-Bed Evaluation Using SpamAssassin in Auto-Learning Mode: Precision 
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Figure 11.  Test-Bed Evaluation Using SpamAssassin in Auto-Learning Mode: Recall 

 Training Samples 

Classifier 10 100 1000 10000 

Bayes 0.800 0.947 0.958 0.957 

C45 0.836 0.964 0.979 0.993 

SVM 0.530 0.950 0.945 0.811 

Table 11.  Test-Bed Evaluation Using SpamAssassin in Auto-Learning Mode: Recall 
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SpamAssassin 

TP 99 Accuracy 0.4 

FN 41595 Precision 1 

TN 28304 Recall 0.002 

FP 0   

Table 12.  Test-Bed Evaluation Using SpamAssassin in Auto-Learning Mode: 
SpamAssassin Results 

 

 TP FN TN FP 

10 32910 8209 23525 4457 

100 38902 2171 27402 535 

1000 38929 1695 27129 358 

10000 34566 1557 22718 269 

Table 13.  Test-Bed Evaluation Using SpamAssassin in Auto-Learning Mode:  Naïve-Bayes 
Confusion Matrix 

 

 TP FN TN FP 

10 34394 6724 21703 6279 

100 39579 1494 26891 1046 

1000 39780 843 27187 300 

10000 35869 254 22834 153 

Table 14.  Test-Bed Evaluation Using SpamAssassin in Auto-Learning Mode: C45 
Confusion Matrix 
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 TP FN TN FP 

10 21804 19314 19572 8410 

100 39036 2037 27734 203 

1000 38406 2217 27094 393 

10000 29279 6844 22121 866 

Table 15.  Test-Bed Evaluation Using SpamAssassin in Auto-Learning Mode: SVM 
Confusion Matrix 

3. Live Testing 

In this section, we discuss the results of our live testing on the rbeverly.net MTA 

from January 25, 2011 to March 2, 2011, where we collected 6,026 e-mail messages, of 

which 5,610 were spam and 416 legitimate. Ground truth was first established via 

SpamAssassin. We then manually examined all the legitimate messages and relabeled 

those that were false negatives. We did not examine every spam message to ensure no 

false positives (due to the large volume of such messages); however, we did manually 

sample for spam to establish reasonable ground truth. Even though the volume of traffic 

captured is small and represents a small portion of the Internet traffic, the results with 

respect to accuracy, precision, and recall were strong.  

The results are depicted in the following figures, where each figure presents the 

performance of the three classifiers on a specific metric. For the live testing corpus, we 

selected training sets of 8, 16, 32, 64, 128, 256, and 512 messages, following the same 

procedures (tenfold cross-validation, etc) as the simulated experiments and tested on the 

remaining messages. The values on the x-axis represent the number of samples in 

logarithmic scale (base 2); so for example, x-axis x=2 represents a sample of eight 

training examples, x=4 represents 16 training examples and so on, and each sample has 

an equal number of spam and legitimate e-mail messages. The values on the y-axis 

represent the percentage for each metric, and each curve maps to a classifier. 
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In Figure 12, we present the accuracy achieved as defined in Section A. First, we 

observe that all three classifiers behave well as the training size increases, with naïve 

Bayes achieving the higher accuracy, along with C4.5, but also having the smoothest 

curve. C4.5, also performs with the higher accuracy but has some fluctuations, 

considering the lower starting point and the knee at point six on the x-axis. These 

fluctuations, however, cannot be considered representative, due to account the small 

number of training examples. Finally, SVM has the lowest accuracy among the three but 

is more stable than C4.5. As we mentioned in Section A, SVM is very adjustable, so this 

performance may not be representative. The analytical results of all three classifiers and 

for each training sample size are shown on Table 16. 

 
Figure 12.  Live Testing: Accuracy 
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 Training Samples 

 8 16 32 64 128 256 512 

Bayes 0.8 0.88 0.9 0.92 0.925 0.93 0.93 

C4.5 0.63 0.83 0.86 0.84 0.9 0.91 0.93 

SVM 0.85 0.84 0.84 0.89 0.88 0.9 0.9 

Table 16.  Live Testing: Accuracy 

Another significant point is that the network behavior of spammers at the TCP 

level as it is captured by spamflow is so strong that accuracy is independent of the 

classification method that we want to follow. This is significant because we can select an 

algorithm that has low training time and good throughput, thus minimizing the overhead 

on systems that have constrained resources, or must deal with very high rates of abusive 

traffic.  

Moreover, we emphasize the fact that even with as low as sixteen training 

examples, our system exhibits greater than 80% accuracy, which is important when 

training examples are few.  

Precision is shown in Figure 13 and more detailed results in Table 17. Examining 

our results, we observe that our system has a relatively stable behavior across samples, 

with a rate greater than 97%. At the maximum training size, all three classifiers achieve 

the significant rate of 99%. This implies that our system exhibits a very small false 

positive rate, which is crucial for our users, since we do not want to misclassify and lose 

legitimate e-mails. Furthermore, we observe again that we can achieve high precision 

rates independent of the classification method. Combining this high precision along with 

high accuracy, we can conjecture that spamflow is a very promising system. Another 

significant result is that naïve Bayes achieves both the higher precision and the higher 

accuracy, which establishes it as a good candidate for our system. 

Finally, in Figure 14 and Table 18, we present how the classifiers behaved with 

respect to recall. Recall appears to show the same trends as accuracy, and this behavior is 
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expected considering the high rates in precision. Accuracy takes into account both false 

positives and false negatives, and since precision is almost 100%, recall is the component 

that drives its behavior. So, as with accuracy, all classifiers achieved more than 90% 

recall and behaved in the same manner as accuracy.  

 

 Training Samples 

 8 16 32 64 128 256 512 

Bayes 0.992 0.991 0.992 0.99 0.992 0.993 0.996 

C4.5 0.971 0.98 0.986 0.992 0.991 0.996 0.997 

SVM 0.981 0.984 0.986 0.986 0.989 0.99 0.994 

Table 17.  Live Testing:  Precision 

 

Figure 13.  Live Testing: Precision 
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Figure 14.  Live Testing: Recall 

Training Samples  

8 16 32 64 128 256 512 

Bayes 0.81 0.87 0.91 0.92 0.927 0.935 0.934 

C4.5 0.62 0.83 0.86 0.83 0.906 0.904 0.931 

SVM 0.86 0.84 0.84 0.89 0.88 0.902 0.905 

Table 18.  Live Testing: Recall 

C. AUTO-LEARNING 

In this section, we discuss some additional experiments we conducted on 

threshold-based auto-learning, as mentioned in Chapter III, Section B, and present their 

results. Auto-learning is the incremental process of building the classification model 

based on exemplar e-mail messages that achieve certain threshold values. In our case, we 
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use the flow features of e-mail messages otherwise classified via orthogonal methods as 

having very high or very low scores. More specifically, we explicitly retrain each 

classification model each time we observe a message with a particularly high score from 

the other SpamAssassin categories (rule- and Bayesian-word based) that meets our 

threshold criteria; i.e., having a score above or below our threshold. After retraining is 

complete, we evaluate our models on subsequent messages until we observe one or more 

messages with scores above or below our thresholds, at which point we stop and retrain 

the models. For this experiment we use our live corpus.   

We set up two thresholds: one for spam messages and one for legitimate. The 

selection of the thresholds was based on the spam and ham score distributions. Spam-

message scores follow a normal distribution, with mean µ = 16.31 and standard deviation 

σ = 7.73, whereas scores of legitimate messages have mean µ = 1.3 but are skewed to the 

left. Therefore, for the legitimate messages we selected a threshold t = 1, which proved 

effective as it allowed the classifiers to be trained on 267 messages out of the 416. For 

spam messages, we selected four thresholds to examine the trends of our classifiers. The 

first was the mean and the other three were one, two, and three standard deviations above 

the mean.     

The results of the first run are shown Figures 15, 16, and 17, where we trained the 

classifiers with 2,685 spams and 267 legitimate messages, thus using ten times more 

spam than ham. The analytical results of the confusion matrix are presented in Table 19.  
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Figure 15.  Auto-Learning (Threshold=16): Accuracy.  

 
Figure 16.  Auto-Learning (Threshold=16): Precision 
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Figure 17.  Auto-Learning (Threshold=16): Recall 

We observe a gradual improvement in the performance in all metrics, with C4.5 

and SVM achieving constant high rates above 95% in accuracy, precision, and recall with 

as few as 1,024 (210) training examples. Naïve Bayes shows high precision rates of 98% 

but low performance in accuracy and recall, probably due to the higher volume of spam-

training examples. C4.5 has the second-best performance by achieving rates above 95% 

in accuracy and above 97% in precision and recall. Finally, SVM presents similarly high 

performance, with rates in accuracy and precision above 96% and above 99% in recall. 

Another noteworthy point is the behavior of all classifiers with respect to precision. With 

as few as 64 (26) training examples, all reached constant high precision rates above 95%. 

In the following experiments, we gradually increased the spam threshold, which resulted 

in fewer spam-training examples, and examples for which we have more confidence in 

their true disposition as spam.  

Next, we increased the spam score threshold to 24, resulting in 960 spam-training 

examples, with ham examples being constant at 267, because we retained the same ham- 

score threshold. 
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 TP FN TN FP 

Bayes 2477 448 112 37 

C45 2854 71 68 81 

SVM 2917 8 36 113 

Table 19.  Auto-Learning (Threshold=16): Confusion Matrix 

Naïve Bayes improved performance in all metrics, achieving rates above 92% in 

accuracy and recall compared to 84%, as shown in Figures 15, 16, and 17, and reached a 

99% precision rate. C4.5 improved the performance in precision, with rates above 98%, 

but lowered slightly the rates in accuracy and recall, though still above 93% and 95%, 

respectively. Finally, SVM improved performance in all metrics, achieving rates above 

97% in accuracy and precision and above 99% in recall. We show the results of our 

second auto-learning experiment in Figures 18, 19, and 20, and the respective confusion 

matrices in Table 20. 

 
Figure 18.  Auto-Learning (Threshold=24): Accuracy 
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Figure 19.  Auto-Learning (Threshold=24): Precision 

 
Figure 20.  Auto-Learning (Threshold=24): Recall 



 54

 TP FN TN FP 

Bayes 4326 324 111 38 

C45 4416 234 71 78 

SVM 4625 25 36 113 

Table 20.  Auto-Learning (Threshold=24): Confusion Matrix 

We increased the spam-score threshold in our third auto-learning experiment to 

30 and the classifiers were trained with 229 spam flows and 267 ham flows. Figure 21 

shows accuracy, and Figures 22, and 23, show precision and recall, respectively.  Again, 

we observe a gradual improvement, but have slight differences in performance. Naïve 

Bayes shows the best behavior in all metrics, achieving high precision rates above 98% 

with as few as six training examples and improving gradually the performance in 

accuracy and recall, with constant rates above 95% after 165 training examples. C4.5 and 

SVM, on the other hand, show better performance in precision with respect to first and 

second experiments, achieving rates above 98% in accuracy and recall; however, their 

performance degrades, while still achieving rates above 90%. Table 21 shows the 

confusion matrix of this experiment. 

 
Figure 21.  Auto-Learning (Threshold=30): Accuracy  
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Figure 22.  Auto-Learning (Threshold=30): Precision 

 
Figure 23.  Auto-Learning (Threshold=30): Recall 
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 TP FN TN FP 

Bayes 5219 162 77 72 

C45 4918 463 91 58 

SVM 4975 406 69 80 

Table 21.  Auto-Learning (Threshold=30): Confusion Matrix 

In the last experiment, we raised the spam score threshold to 40, and this ended up 

in training the classifiers with 30 spam training examples many fewer than the number of 

ham examples. The results are interesting as depicted in Figures 24, 25, and 26, and 

Table 22, with the precision rate remaining above 97% across all classifiers with as few 

as six training flows. C4.5 achieves the highest precision rate, with 99%, followed by 

SVM with 98% and naïve Bayes with 97%.  

 
Figure 24.  Auto-Learning (Threshold=40): Accuracy 

The other interesting point is that naïve Bayes manages to retain high rates both in 

accuracy and recall, with rates of 97% and 99% respectively, even if we subtract spam-
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training examples. Finally, the performance of both C4.5 and SVM degrades with SVM, 

falling to 60% after the point of 32 examples; but we have to keep in mind that we can 

tune SVM and find the kernel and parameters that best fit our features. 

 
Figure 25.  Auto-Learning (Threshold=40): Precision 
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Figure 26.  Auto-Learning (Threshold=40): Recall 

 

 TP FN TN FP 

Bayes 5547 33 22 127 

C45 4811 769 104 45 

SVM 3553 2027 97 52 

Table 22.  Auto-Learning (Threshold=40): Confusion Matrix 
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V. CONCLUSIONS AND FUTURE WORK 

The goal of this thesis was to develop and evaluate an online, real-time system for 

abusive-network-traffic detection, based on the previous work of Beverly and Sollins [3]. 

Our primary focus was to detect abusive traffic associated with unsolicited commercial e-

mail. To accomplish our goal, we developed a test bed using virtual machines and a 

network emulator that induces generated SMTP traffic sufficient to match the 

characteristics that live spam traffic exhibits at the TCP layer. In Section A we discuss 

future work whereas in Section B our conclusions. 

A. FUTURE WORK 

Having gone through the process of building our test bed, deploying our system in 

live environment, and evaluating its performance in both environments, as well as in 

using the threshold-based, auto-learning mechanism, we discern a need for future work in 

system evaluation and application domains.  

1. System Evaluation 

Our test bed was not ideal for thorough system benchmarking. It served, however, 

as a step towards developing and integrating the different components and a first-phase 

evaluation. In future work, we would like to evaluate our system in a more realistic test 

bed like PlanetLab [62], where we could achieve higher data rates and observe the effects 

on throughput and system load. Furthermore, Dummynet uses an independent-loss 

model, which means that the decision to drop a packet is independent of whether a 

previous packet has been dropped. This model, however, does not represent the actual 

loss behavior that we experience in the Internet. Thus, we need to use a more 

representative model in the spirit of [63]. Since Dummynet is integrated into PlanetLab, 

PlanetLab should be an ideal testing platform. Moreover, we would like to extend our 

live testing by deploying our system in the network core, where we can experience high 

volumes of traffic and thus capture a more representative picture of spamming-network 

behavior at the TCP layer. 
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During our classification-engine evaluation process, we used a specific SVM 

kernel type; thus the results extracted may not be fully representative of SVM 

performance. SVM can be optimized by using different kernel types, and for each kernel 

type, different parameters. So, we would like to expand our system evaluation by using 

different kinds of kernel types and finding the best parameters to suit our features.  

Furthermore, we would like to implement our auto-learning feature in plugin, 

since the experimental results were very promising, and then evaluate our system as a 

first line of defense using SpamAssassin for further analysis. We would like to expand on 

that by observing how spamflow can perform using unsupervised learning techniques, so 

that we do not have to select flows based on SpamAssassin scores. We would like to 

experiment on different techniques such as clustering, principal-component analysis, and 

independent-component analysis, and explore first whether we can have a strong 

separation between spam and ham features. Having established that, we would like to 

discover which spam flows exhibit strong entropy, in order to use them as training points 

for our classification engine.   

We could further reinforce our simulated incremental-learning method to use 

actual incremental algorithms. These algorithms proceed in a sequence of trials and each 

trial is decomposed into three steps. First, the learning algorithm is presented with an 

example. The algorithm then predicts the label of the example; and finally, the algorithm 

is told the true label. The goal of these algorithms in the case of classification problems is 

to minimize the number of mistakes. This procedure is also called the mistake-bound 

learning model [64]. The main difficulty of online learning is the continuous requirement 

for label feedback, which in our case could be obtained using SpamAssassin.  

Recently, several researchers have proposed incremental learning methodologies 

for spam detection [65, 66]. In addition, recent work on efficiently folding new positive 

samples into naïve Bayes [67, 68] and SVM [69, 70], is promising. We have shown that 

simulated incremental learning performs well using our SpamFlow techniques.  Efficient, 

online, incremental learning will allow a fielded system to adjust to the dynamic threat 

environment. 
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2. Application Domains 

Our goal was to develop a system for abusive network traffic detection, but we 

experimented specifically on abusive traffic originating from spammers. A botnet is a 

group of compromised hosts that are being controlled through a command-and-control 

mechanism. Botnet detection is an immediate application domain, since spammers, in 

order to obfuscate themselves, utilize botnets to send high volumes of traffic.  

We would like to investigate, through statistical analysis, if received spam flows 

from botnets have a strong correlation and if spam traffic unrelated to botnets follows a 

more random distribution. If that is the case, we would be able to distinguish between 

originators of spam traffic. To accomplish this task, we could work in the same spirit as 

[71] and build a botnet infrastructure that would allow us not only to evaluate spamflow 

against spam-traffic detection, but against other types of abusive traffic that originate 

from botnets, such as denial-of-service attacks.  

Second, botnets often host scam infrastructure.  We wish to investigate whether 

we can detect the dual of the problem investigated in this thesis: if access to the bots, e.g., 

via a web-request, reveals similarly discriminating transport features.   

A final possibility is to examine the effectiveness of spamflow in intrusion 

detection. To facilitate this task, we could deploy a honeypot or honeynet and integrate 

spamflow into Bro, an open-source network-intrusion and -detection system. Honeypots 

are decoy servers or systems that are being used in order to collect information about an 

attacker and honeynet is a collection of honeypots that form a network. Using statistical 

analysis such as clustering, correlation, or principal-component analysis, we would like to 

examine if we can discern different attacks based on TCP features and use Bro’s 

estimations as our ground truth. 

B. CONCLUSIONS 

In developing the environment, we applied certain modifications to fit our needs. 

First, we modified the network emulator, dummynet, to produce a random delay with a 

mean µ and a standard deviation σ allowing us to simulate characteristics such as 
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congestion and variations in the roundtrip time (RTT). Secondly, we had to alter our 

MTA to include in the header of the message the IP and the port number of the sender. 

This was appropriate so that our flow-analysis engine could aggregate packets into flows, 

extract features, and match e-mails with flows. We also had to overcome a port-

reusability problem, since the number of TCP connections that we had to establish 

demanded larger than the available range of ephemeral ports.  

Further, we had to develop our classification engine and integrate our system into 

SpamAssassin so that it could operate in real-time. For the latter, we developed a plug-in 

that allowed us to obtain the information (IP:Port) we needed from SpamAssassin and 

use it as input into spamflow.  The plugin was also responsible for the confusion matrices 

that we used during the evaluation process. We developed our classification engine using 

Orange, a statistical- and machine-learning software package. Finally, for communication 

between plugin and the classifier we used the standard and extensible XML-RPC 

protocol. 

We evaluated our system in the test bed, as well as in a live, real-world 

environment. Our goal was to evaluate the performance in a high-rate environment and 

observe how it behaves in terms of throughput and system load. We achieved only 

moderate e-mail message-traffic rates, due to hardware restrictions, but the test bed was a 

first stage providing efficient high-rate testing. Next, we wanted to examine how strong 

TCP characteristics are in contrast with content features and we used SpamAssassin as a 

basis for comparison. Finally, we wanted to investigate how our system would perform in 

auto-learning mode. We defined auto-learning as the process of gradually training our 

system with flows that are associated with messages strongly indicative of being either 

spam or legitimate, as determined by SpamAssassin-assigned content and rule-based 

scores that match our threshold criteria.    

Summarizing the results from our experiments, we present the following key 

points. 
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• All three classifiers achieved greater than 90% accuracy, precision, and 

recall in both the virtual test bed and in the live environment, which 

indicates that our system can adopt and capture any changes in the TCP 

characteristics.  

• The high precision rate of 99% that all classifiers showed, along with the 

high accuracy, indicates the strong effectiveness of our system.  

• The results showed that even with a small number of training examples, 

we can achieve great performance, which implies that the network 

behavior of spammers at the TCP level as captured by spamflow is quite 

discriminating and we need only a small number of training examples to 

initialize our system. 

• Naïve Bayes performance, with respect not only to accuracy, precision, 

and recall, but also to throughput, makes it a viable candidate for our 

system. 

• The performance of our system is relatively stable across all samples and 

independent of the classification method, which emphasizes the quality of 

spamflow’s features and increases its reliability. Auto-learning showed 

that spamflow can achieve high rates in accuracy, recall, and precision. 

Especially in precision, all three classifiers achieved a 99% rate, 

suggesting that we could use spamflow as a first line of defense, and have 

suspicious messages further being filtered by SpamAssassin .  

We hope that this thesis serves to sufficiently motivate our approach to abusive-

traffic detection and mitigation and to warrant further research in the area. 
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