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In this work, two kinds of partial least squares modelling

methods are applied to predict a compressor map: one uses a

power function polynomial as the basis function (PLSO), and

the other uses a trigonometric function polynomial (PLSN).

To demonstrate the potential capabilities of PLSO and PLSN for

a typical interpolated prediction and an extrapolated prediction,

they are compared with two other classical data-driven

modelling methods, namely the look-up table and artificial

neural network (ANN). PLSO and PLSN are also compared

with each other. The results show that PLSO and PLSN have a

better prediction performance than the look-up table and the

ANN, especially for the extrapolated prediction. The

computational time is also decreased sharply. Compared with

PLSO, PLSN is characterized by a higher prediction accuracy

and shorter computational time than PLSO. It is expected that

PLSN could save computational time and also improve the

accuracy of a thermodynamic model of a diesel engine.

1. Introduction
The turbocharger is a vital component of the modern diesel engine.

It allows the engine to increase its power density through the

downsizing concept [1–3] while simultaneously decreasing fuel

consumption. As is well known, the compressor and the turbine

are the two most important components of the turbocharger itself.

Consequently, compressor models play a significant role in the

simulation and modelling of diesel engines, and, thus, it is crucial

to accurately describe the compressor map. However, one of the

most troublesome problems in the development of a compressor

model is the strong nonlinearity of its pressure characteristics

curves and efficiency characteristics curves. In general, many

experimental studies on the various operating and environmental
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Table 1. Nomenclature.

PLS partial least squares

PLS-R partial least squares regression

PLSO partial least squares with a power function polynomial form as the basis function

PLSN partial least squares with a trigonometric function polynomial form as the basis function

EPL extrapolation performance at the lower part-load operating area

IPL interpolation performance at the lower part-load operating area

EPU extrapolation performance at the upper part-load operating area
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conditions of a compressor are usually conducted to obtain the performance map. However, the

experimental data in the full operational range are usually very limited because of the cost and

restrictions of the compressor test (table 1).

In the published literature, there are several compressor modelling methodologies. The most popular

methodology is look-up tables [4], which use the experimental compressor mass flow rate and efficiency

maps. These maps are provided by compressor manufacturers in the form of lines of constant reduced speed

and efficiency. The reduced speed and efficiency at each point are calculated by linearly interpolating and

extrapolating the experimental maps [5]. As is well known, a compressor has strong nonlinear relationships

among its reduced speed, pressure ratio, mass flow rate and efficiency. Therefore, the predictive accuracy of

a compressor map using look-up tables is based on the quantity and quality of the experimental data. The

prediction performance of look-up tables greatly deteriorates when the experimental data are very limited.

To improve the accuracy of the compressor’s prediction, in [6], the elliptical curve fitting method was

introduced to map the fitting process. In this method, the shape of the compressor map is expressed by the

mathematical equation of an ellipse. According to the locations of the centre and axes of the ellipse, the

elliptical curve fitting method is divided into three branches: a fixed centre without rational axes; a fixed

centre with rational axes; and a flexible centre with rational axes. The method of a fixed centre without

rational axes has the worst predicted accuracy, having the lowest number of subcoefficients (20

subcoefficients) of the three branches. The method of a flexible centre with rational axes has an acceptable

predictive accuracy, with up to 100 subcoefficients, but this is too complicated for compressor map modelling.

Some intelligence algorithms are also applied to compressor map modelling. The well-known artificial

neural network (ANN) algorithm is widely used in many areas [7] because of its ability to process

nonlinearly and store massive amounts of experimental knowledge. Theoretically, an ANN can

approximate any nonlinear model and develop the relationship between the input and output variables

involved in a physical process without considering the underlying theories [8–10]. Hence, ANNs have

become increasingly popular in recent years for predicting the performance of a compressor map. As a

type of improved ANN, a feed-forward back-propagation neural network (BPNN) introduces feed-

forward and back-propagation into the ANN. This means signals feed forward and there is a deviation

between the experimental data and predictive value back-propagation. Consequently, BPNNs have the

capability to rapidly converge the characteristics and nonlinear mapping. The network is first trained by

experimental data, then the predictive results are regarded as experimental data in the second train.

Although BPNNs are effective in predicting the compressor map via interpolation, their predictive

accuracy is terrible in predicting the compressor map via extrapolation [11]. Moreover, it is important to

note that a large number of experimental data are necessary to sufficiently train a BPNN to obtain a

highly predictive accuracy and calculation stability. As a result, BPNNs are not suitable for compressor

map modelling when the experimental data are very limited [12–15].

Computational fluid dynamics (CFD) simulations were applied to estimate the compressor map

numerically in several studies [16–19]. This method has been proven to have a relatively high accuracy, but

it is usually quite time-consuming, which makes it impossible to predict the compressor map in an available

time frame. To shorten the computational time, the CFD simulation is converted into two-dimensional (2D)

methodologies [20] and mean-line (one dimensional) methodologies [21] by using empirical or semi-

empirical correlations. Accordingly, the predictive accuracy is inevitably sharply decreased. Another

disadvantage of these methods is that they require some knowledge about the geometry of the compressor,

which is not always available as this may be the manufacturer’s proprietary information.

The partial least squares (PLS) regression method is a novel multiple statistical analysis method

developed from the field of chemistry [22]. The PLS method has been introduced into compressor

performance prediction because of the following advantages: it is strong and robust, it requires a low
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Figure 1. Compressor characteristics map generalization.

rsos.royalsocietypublishing.org
R.Soc.open

sci.5:172454
3

sample number and it has obvious physical meaning [23,24]. Even though the prediction accuracy of the

PLS method is already at a high level, there is still ongoing work to improve it further. Tian et al. [25]

combined an ANN and PLS to predict the performance of a scroll compressor, dividing the

compressor performance into nonlinear and linear portions. The nonlinear portion was simulated

using an ANN, while the linear one was modelled using the PLS method. The prediction results show

that this method has a higher prediction accuracy than both an ANN and a normal PLS. However,

this method is too complex, and it is difficult to distinguish the nonlinear and linear portions. Chu

et al. [26] introduced a kernel function into the PLS method, referred to hereafter as the kernel partial

least squares (KPLS). The KPLS improved the prediction accuracy owing to its diversity, but the

prediction accuracy can greatly change when using different types of kernel functions.

As described above, completely modelling a successful engine’s thermodynamic performance mainly

depends on the method used, which must express well the component characteristic maps with good

extrapolation and interpolation performance. In this work, we propose a new prediction model with a

simple structure with a high prediction accuracy and short computational time. A new PLS prediction

model (PLSN) is proposed based on the traditional PLS model by replacing the basic function of the

PLS, a power function polynomial, with a trigonometric function. The results show that, when

compared with a look-up table, the BPNN and the traditional PLS method (PLSO), PLSN achieves the

best prediction accuracy while having the shortest computational time. Compared with other PLS

models [25,26], the prediction accuracy is of the same magnitude, but the model structure of PLSN is

much simpler. The remainder of this paper is organized as follows. In §2, the simulation problems of

compressor characteristics maps and some relative solutions proposed in the literature are described.

In §3, an application and an analysis of the novel method proposed by the authors are presented.

Finally, §4 presents the conclusions.
2. Methodology
2.1. Problem description of compressor characteristics maps
One of the most troublesome problems in the development of a component-based diesel engine

performance model is compressor modelling. Fortunately, a steady-state compressor map can be used

in compressor modelling, because the air flow in the compressor can be assumed to be a quasi-steady

flow. In general, the compressor is modelled as a lumped element in the thermodynamic performance

model. The compressor performance can be represented by four characteristic parameters: reduced

flow rate, isentropic efficiency, pressure ratio and reduced speed [27]. The characteristic parameters

are usually represented as a flow characteristics map and an efficiency characteristics map. Once two

arbitrary characteristic parameters are confirmed, the other two characteristic parameters are also

confirmed through the flow characteristics map and efficiency characteristics map.

Usually, parts of the rotational speed characteristics curves of compressor maps, including the on-design

operating point, are derived from a test bed or by means of CFD during actual thermodynamic performance

modelling, and reasonable interpolation and extrapolation have to be performed in order to make good use

of the flow characteristics and efficiency characteristics under a wider range of off-design characteristic

areas. The experimental data shown in figure 1 are derived from the manufacturer, and the data are
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divided into three portions: sample data for building the predicting model, interpolation data and

extrapolation data for verifying the accuracy of the prediction model.

2.2. Look-up table method
One of the most popular and simplest approaches is the look-up table method, in which the core algorithm

is often linear or spline interpolation and extrapolation; this method has been widely used in almost every

commercial thermodynamic calculation software, i.e. Krawal-modular, GT-ise, IPSEpro and Thermoflex.

Owing to the sparsity of the compressor characteristics map data from the test bed or from CFD and

discretization, which will reduce the amount of characteristic data further, a component characteristics

table inserted into the thermodynamic performance model may cause information loss and cannot

accurately represent the shape of the characteristics map. On the one hand, because of the different

pressure ratio ranges for different constant rotational speed curves, the dimensional range of the pressure

ratio in the table is different, which makes the interpretation of the table difficult. On the other hand, for

a high, constant rotational speed curve, the flow characteristics curve is approximately vertical in the

range of a comparatively small pressure ratio; however, if the data for discretization are incomplete, it is

difficult to determine infinitesimal changes in the flow rate with the pressure ratio. Therefore, owing to

the discretization process, a difference between the characteristics map in a table and the actual

characteristics is simply unavoidable, so the sample data of compressor maps in the table should be

dense and regular.

2.3. Artificial neural network method
The neural network method, which can approximate any nonlinear function by selecting the appropriate

network, has become an effective solution for expressing compressor characteristics maps due to its

highly nonlinear mapping capacity. ANN-based compressor performance modelling involves the

following three steps: network construction, network training and network mapping. A detailed

schematic diagram of the process is shown in figure 2.

A BPNN [28], which is a feed-forward BPNN and one of the foremost types in the ANN family, is

used as a comparative algorithm. Here, the version of the BPNN that we use is from [29].

2.4. A new regression analysis method: partial least squares regression
The PLS regression (PLS-R) method is a novel multiple statistical analysis method developed from the field

of chemistry and proposed by S. Wold and C. Albno in 1983. PLS-R combines the basic functions of a

multiple linear regression analysis, a canonical correlation analysis and a principal component analysis,

and integrates the data analysis method of modelling the prediction type with a non-model-based data

analysis method organically [30]. In general, a PLS-R consists of the following steps.

Suppose the number of dependent variables is q and the number of independent variables is p. To

study the statistical relationship between the dependent variables and independent variables, n
number of sample points are observed to constitute the data sheet of the dependent variables and

independent variables, i.e. X ¼ [x1, x2, . . . , xp]n�p and Y ¼ [y1, y2, . . . , yq]n�q. Components t1 and u1 are

extracted from X and Y, respectively (that is, t1 is the linear combination of x1, x2, . . . , xp and u1 is the

linear combination of y1, y2, . . . , yq). During the extraction of these two components, two requirements

should be noted as follows in order to accommodate the need for regression:

(i) t1 and u1 should carry the most mutation information about their own data sheets. This means the

variances in t1 and u1 reach their respective maximum values.

(ii) The absolute value of the degree of the correlation of t1 and u1 achieves its maximum value.
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These two requirements show that t1 and u1 should be as sufficient as possible to represent their own

data sheet, while the component t1 of X has the strongest explanatory power for component u1of Y. After

extracting the first components t1 and u1, PLS-R conducts the regression of X for t1 and the regression of Y
for u1. If the regression equation has reached a satisfactory accuracy, the calculation terminates; if not, the

second round of component extraction is conducted, making use of the residual information of X being

interpreted by t1 and the residual information of Y being interpreted by u1, and so on until a satisfactory

accuracy is reached. If m number of components t1, t2, . . . , tm are finally extracted from X, PLS-R conducts

the regression of yk for t1, t2, . . . , tm, and, then, yk is further expressed by a regression equation regarding

the previous independent variables x1, x2, . . . , xp, k ¼ 1, 2, . . . , q. The basic mathematical procedure of

PLS-R is as follows.

(i) Suppose X ¼ [x1, x2, . . . , xp]n�p, and Y ¼ [y1, y2, . . . , yq]n�q. Standardizing X gives

x�ij ¼
xij � xj

sj
, ð2:1Þ

where i ¼ 1,2, . . . , n, j ¼ 1, 2, . . . , p and sj ¼
1

n

Xn

j¼1

ðxj � xjÞ2
2
4

3
5

1=2

.

Then, E0 ¼ ½x�1, x�2, . . . , x�j , . . . , x�p�n�p is obtained.

Y is standardized in the same way, and, then, F0 ¼ ½y�1, y�2, . . . , y�j , . . . , y�q �n�q is obtained.

(ii) Extract component:

wi ¼
E0i�1Fi�1

kE0i�1Fi�1k
, ti ¼ Ei�1wi, pi ¼

E0i�1ti

ktik2
ð2:2Þ

and

Ei ¼ Ei�1 � tip0i, ð2:3Þ

where i ¼ 1, 2, 3, . . . , m, m � rankðE0Þ and can be determined by cross-validation.

(iii) Solve regression coefficient vector:

ri ¼
F0i�1ti

ktik2
, i ¼ 1, 2, 3, . . . , m ð2:4Þ

and

w�i ¼
Yi�1

j¼1

ðI � wjp0jÞwi: ð2:5Þ

(iv) Obtain the PLS-R model:

F0 ¼ t1r01 þ t2r02 þ . . .þ tmr0m þ Fm ¼ E0w�1r01 þ E0w�2r02 þ . . .þ E0w�mr0m þ Fm

¼ E0½
Xm

j¼1

w�j r0j� þ Fm ¼ E0Bþ Fm
ð2:6Þ

and

B ¼
Xm

j¼1

w�j r0j , ð2:7Þ

where B is the regression coefficient vector of the PLS-R model, and Fm is the residual matrix.

(v) Transfer the standardized variables into original variables to obtain the final PLS-R model.

The PLS-R method was applied to obtain the compressor map regression model. As PLS-R is a

multiple linear regression method, we take the speed character and pressure character, which can

always be easily measured as independent variables, and the flow character and efficiency character

as dependent variables, and then organize the two independent variables into a group to introduce

more variables. Its combination form is as follows:

z ¼
Xh

i¼1

 Xi

k¼0

ða � vi�k
1 � vk

2Þ
!
þ b, ð2:8Þ
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where z is the flow character and efficiency character as dependent variables, v1 and v2 are the speed

character and pressure character as independent variables, respectively, and h is the maximum fitting

power of the polynomial.

Then:

i ¼ 1, k ¼ 0, x1 ¼ vi�k
1 � vk

2 ¼ v1, ð2:9Þ

i ¼ 1, k ¼ 1, x2 ¼ vi�k
1 � vk

2 ¼ v2, ð2:10Þ

i ¼ 2, k ¼ 0, x3 ¼ vi�k
1 � vk

2 ¼ v2
1, ð2:11Þ

......

i ¼ 1, k ¼ m, x�Pl�1

i¼1

ðiþ1Þi
2
þmþ 1

� ¼ vi�k
1 � vk

2 ¼ vl�m
1 � vm

2 , ð2:12Þ

...

and i ¼ h, k ¼ h, x�Ph

i¼1

ðiþ1Þi
2

� ¼ vi�k
1 � vk

2 ¼ vh
2: ð2:13Þ

Here

p ¼ hþ
Xh

i¼1

Xi

k¼0

ðk þ 1Þk
2

 !
ð2:14Þ

and
y1 ¼ z: ð2:15Þ

Then

X ¼ ½x1, x2, . . . , xp�n�p,

Y ¼ ½y1�n�1,

9=
; ð2:16Þ

where n is the number of sample data points.

Then, the coefficient vector a and constant b can be derived by applying X and Y into the PLS-R

algorithm. Finally, the PLS-R model of the compressor characteristics maps is established.

Compared with a traditional regression method, the main features of PLS-R are as follows [30].

(i) A strong correlation among independent variables is allowed during regression modelling.

(ii) It has a good tolerance to measurement noise.

(iii) Each regression coefficient for each independent variable can be interpreted in the PLS-R model.

To further match the nonlinearity of the compressor characteristics lines and to improve the prediction

accuracy and shorten the calculation time, we chose the trigonometric function as the basis function of

PLS(f(x) ¼ [1, sin x, cos x, sin 2x, cos 2x, . . . , sin mx, cos mx]T). This new prediction model is referred to

as PLSN.

To compare the improvement of the prediction accuracy and computation time with the new model,

the traditional power function polynomial-based PLS model (f(x) ¼ [1, x, x2, . . . , xb21]T) is also listed in

this paper, and is referred to as PLSO.
3. Application and analysis
Here, a certain compressor map obtained from a design manual of a centrifugal compressor, shown in

figures 3 and 4 is used to test the effectiveness of the proposed method in which the sample data

consist of nine speed lines. The speed lines of the test data are also shown in figures 3 and 4.

3.1. Flow characteristics map
To demonstrate the effectiveness of the proposed methods for the typical interpolated and extrapolated

predictions, two other classical data-driven modelling methods, including the look-up table and feed-
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forward BPNN, are compared from the perspective of prediction accuracy and time consumption. For the

flow characteristics map, the extrapolation and interpolation performance from the traditional methods

and the proposed method are shown in figures 5–7.

A criterion is shown in equation (3.1) where the root mean square error (RMSE) of the difference

between the predicted data and the test data is introduced to check the interpolation and extrapolation

performance of the proposed method. The comparative results are shown in tables 2 and 3.

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
i¼1 ½ðzi, predicted � zi, testÞ=zi, test�2

m

s
, ð3:1Þ
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Table 2. Extrapolation and interpolation performance comparison of the traditional methods and the proposed method for the
flow characteristics map.

algorithm

RMSE

EPL (%) IPL (%) EPU (%) total (%)

look-up table 13.3236 6.9334 6.3699 9.4193

BP 7.6496 1.4385 27.3835 16.4362

PLSO 1.7510 2.6251 0.4814 1.8429

PLSN 0.9856 1.4937 0.7414 1.1184

Table 3. Time consumption comparison of the traditional methods and the proposed method for calculating one operating
point.

algorithm look-up table BP PLSO PLSN

time consumption (s) 8 � 1024 5.799 � 1023 5.1 � 1025 5 � 1026
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where zi,test is the ith test data, zi,predicted is the corresponding prediction data of PLS-R model and m is the

number of test data.

From figures 5–7 and table 2, the BPNN has a better interpolation performance than the other

methods but also the worst extrapolation performance for the flow characteristics map, which is
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especially evident at the upper part-load operating area. In general, the proposed methods of PLSO and

PLSN have an obvious improvement in both extrapolation and interpolation performance, especially for

the extrapolation performance at the upper part-load operating area. From table 3, we can also see that

the proposed method is very beneficial for engine real-time performance simulation and online

monitoring. Furthermore, it is interesting to find that the PLS with the trigonometric function

polynomial form as the basis function has an advantage over that with the polynomial form as the

basis function, especially in computational time, which is reduced by an order of magnitude.
3.2. Efficiency characteristics map
For the efficiency characteristics map, the extrapolation and interpolation performance of the traditional

methods and the proposed method are shown in figures 8–10.

The criterion shown in equation (3.1) is used to check the performance of the interpolation and

extrapolation of the proposed method. The comparative results are shown in tables 4 and 5.

From figures 8–10 and table 4, the proposed methods of PLSO and PLSN have evident improvements

in both the extrapolation and interpolation performance. For the interpolation performance, all four

methods can predict the tendency of efficiency variations with the flow character. For the

extrapolation performance, the BPNN lost the ability to predict the tendency of efficiency variations

with the flow character in the lower part-load operating area, and only PLSN had the ability to

predict the tendency of efficiency variations with the flow character in the upper part-load operating

area. From table 5, we can also see that the proposed methods, especially PLSN, are very beneficial

for engine real-time performance simulation and online monitoring because of their shorter

computational time.

Furthermore, it is interesting to note that the PLS with the trigonometric function polynomial form as

the basis function has several advantages over that with the power function polynomial form as the basis
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Table 4. Extrapolation and interpolation performance comparison of the traditional methods and the proposed method for the
efficiency characteristics map.

algorithm

RMSE

EPL (%) IPL (%) EPU (%) total (%)

look-up table 2.5276 1.3200 7.5256 4.2045

BP 9.0518 2.3180 5.4155 6.1849

PLSO 0.4384 0.8336 2.5670 1.4345

PLSN 0.3500 0.3430 1.7169 0.9261

Table 5. Time consumption comparison of the traditional methods and the proposed method for calculating one operating
point.

algorithm look-up table BP PLSO PLSN

time consumption (s) 1.12 � 1024 6.118 � 1023 5.0 � 1025 7 � 1026
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function. One is that the PLSN has a higher prediction accuracy than the PLSO despite the interpolation

and extrapolation; the other is that the PLSN can predict the tendency of efficiency variation with the

flow character successfully at the upper part-load operating area where PLSO had lost this ability;

even more surprising is that the computational time of PLSN is much shorter than that of PLSO.
4. Conclusion and discussion
A multiple linear regression method, i.e. the PLS-R method, was proposed in this paper and applied to

obtain the compressor map regression model based on known compressor characteristics maps. The

following meaningful conclusions were determined.

(i) The proposed method has an evident improvement in both extrapolation and interpolation

performance.

(ii) PLS with the trigonometric function polynomial form as the basis function has the advantage of

both expressive precision and time consumption over that with the power function polynomial

form as the basis function.

(iii) Compared with [25,26], the new PLS has a similar or even slightly improved prediction accuracy.

It also avoids the complex structure of the ANN-PLS and complicated kernel function of KPLS.
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(iv) The PLS-R model may improve the real-time calculating performance during the dynamic

performance simulation of a diesel engine performance model.

(v) It can be expected that the application of PLS-R modelling has a certain reference value to improve

the accuracy for thermodynamic performance modelling of a diesel engine.
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