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ABSTRACT

Several problems are treated which arise in the study

of generalized airforces in unsteady supersonic cascades

having subsonic axial velocity. The finite cascade of

oscillating wedges is first solved numerically. When the

thickness is very small, the general nonlinear solution

agrees with results based on the linear theory of charac-

teristics, while for the single wedge oscillating near shock

detachment it agrees closely with Carrier's exact solution.

There is some indication that thickness effects are reduced

by cascading. Next, the finite cascade of oscillating flat

plates is solved analytically, to the third power of

oscillation frequency. The generalized surface pressure is

shown to agree with exact numerical results for moderate

blade index, but diverges in the far field of the cascade.

For comparison with the finite cascade, there is presented

finally an elementary periodic solution for the infinite

cascade. A simple relationship between the two basic cascade

models is developed. The investigation is presently restricted

to flow regions upstream of Mach wave reflections in the

blade passages.
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SYMBOLS

a speed of sound in undisturbed flow

b dimensionless pivot, measured from leading edge

c chord of blade or aerofoil

d blade spacing (fig. 3.1)

g(y) dimensionless lateral excursion amplitude of
bow wave

f,h arbitrary functions of the arguments (x~3y) or
U-3n)

g,r arbitrary functions of the argument (£+3n)

k reduced frequency (k=ooc/U)

1 chordwise stagger of adjacent blades (fig. 3^1)

m chordwise stagger of adjacent leading edge
Mach lines (fig. 3.1)

n blade index

s left running Mach wave (s=x-$y)

u ,v dimensionless horizontal and vertical perturbation
velocities respectively (thickness problem)

u,,v- dimensionless horizontal and vertical perturbation
velocities respectively (unsteady angle-of-attack
problem)

/y. /\

u-,,v, the quantities u, and v, immediately downstream
of bow wave respectively

/«.

w ,w_ dimensionless normal velocities immediately
n n

upstream and downstream of bow wave respectively
A.

w. ,w. dimensionless tangential velocities immediately
upstream and downstream of bow wave respectively

w,(x) downwash velocity

v' dimensionless normal velocity of bow shock in
stationary coordinates





x,y dimensionless cartesian coordinates (x=X/c, y=Y/c)

t time (t=TU/c)

y aerofoil surface (y=Y/c)

Cp ,C
p

aerofoil pressure coefficient on upper and lower
surface respectively

M Mach number of inlet flow relative to blading

M component of M normal to bow wave

U velocity of inlet flow relative to blading

a angle-of-attack of n blade
n

2 2cotangent of Mach angle ($ =M -1)

YQ (y) orientation of bow shock wave in steady flow

Y* change in orientation of bow shock wave due to
aerofoil motion

y adiabatic index

6 wedge semi-vertex angle

£,"Ef left and right running Mach waves respectively
(e=£-Bn, c=C+3n)

8 transformation variable

X,\i state variables (thickness problem)

v defined by equ. 2.43

£,n dimensionless cartesian coordinates, generally
used for nth blade with origin at leading edge

p density of undisturbed flow

$ perturbation velocity potential

<{> , <f>,
potentials due to thickness distribution and
angle-of-attack respectively

y interblade phase angle

\\> modified perturbation velocity potential

ACp total pressure loading coefficient (ACp=C
p

- C
p )

a) oscillation frequency





1 INTRODUCTION

1. 1 General Problem Area

Significant improvements in the performance of the next

generation of gas turbine engines seem possible with

compressors having lighter discs and blades, with a smaller

number of stages and increased pressure ratio perstage.

This calls for increased tip speeds which give rise to

supersonic flow relative to the blades, even when the axial

flow is subsonic. With lighter blades operating in the low

supersonic range close to the flutter boundary, the non-

linear effects of blade thickness may also be important.

In this regard unsteady airforce calculations are frequently

advanced with the warning that thickness effects have not

been considered.

Flutter problems have thus arisen which are quite dif-

ferent from those associated with stalled compressor blading,

The onset of this phenomenon is characterized by a sudden

increase in blade stress at the fundamental mode frequency.

When flutter is encountered, it is also observed that all

the blades oscillate at the same frequency, usually in the

torsional mode, with some constant interblade phase angle

[1]-

With the above features in mind, the present work aims

to provide methods for determining oscillating airforces in

high-speed compressor stages for use in flutter calculations





Both thickness effects and certain aspects of the linearized

supersonic flow theory are considered. In order to study

these problems, however, the actual flow through the com-

pressor must be simplified. Thus, irreversible shock losses

and viscous boundary layer interactions are neglected. How-

ever, the resulting potential flow field remains highly

three-dimensional due to rotational effects and downwash

induced by the blade-tip vortex system [2], The fully

three-dimensional case is too difficult to handle by present

methods and further simplification is achieved by unwrapping

the annulus of blades from the body of the compressor (see

fig. 1.1). Thus, generalized airforces for flutter calcula-

tion purposes are at present calculated by determining the

irrotational flow of a perfect gas through oscillating

two-dimensional cascades.

Supersonic cascades are of the two types illustrated in

fig. 1.1. When the axial velocity into the compressor stage

is supersonic, the Mach lines of the effective inlet flow

are swept back beyond the leading edge locus. This is the

rectilinear cascade with the supersonic leading-edge locus

condition, in which no disturbances exist upstream of the

blade passages. The entire flow in this case is a periodic

extension of the flow between the first two blades. The

solution of this problem, using a Laplace transformation,

was first given by Lane [3] . When the axial velocity is

subsonic there results the subsonic leading edge locus

10





Supersonic Axiol Subsonic Axiol

Velocity Velocity

fig. 1.1 The two basic rectilinear cascades

condition, in which disturbances exist infinitely far

upstream. This is the case of main practical interest and

it has yet to be solved in closed form for general oscilla-

tion frequencies.

11





1. 2 Rectilinear Cascade Theory - Recent Progress

Noteworthy of the progress which has recently been made

with the above problem are the approaches of Platzer and

Chalkley [4], Brix and Platzer [5], Verdon [6] and Nagashima

and Whitehead [8]. Although somewhat different procedures

were used in each case, namely characteristics [4,5], finite

differences [6] and singularity distribution methods [8] , the

agreement between the methods is generally good. The

dependent variable in these methods is the forced steady

state amplitude of the velocity potential. However, the

methods exhibit several disadvantages. First, convergence is

slow and it is usually necessary to add the effect of a large

number of aerofoils; Verdon shows regular oscillations in the

amplitude of the unsteady lift and pitching moment out to

blade index 30. Second, for large blade index, significant

numerical errors are introduced in pressure loading, particu-

larly when the blades oscillate in phase. Third, no

mathematical proof exists to show that the limiting pressures

are indeed representative of the infinite array.

An alternative numerical approach by Sisto and Ni [7]

attacks the infinite cascade by directly introducing the

boundary condition which ensures periodicity of the flow with

blade index. Instead of solving the small perturbation wave

equation for the forced steady state amplitude of the velocity

potential, Sisto solves the complete set of unsteady flow

equations using the time-marching technique. However, in

12





the example given, 100 time-steps were needed for

convergence [7] . The method, apparently, may be extended

to include thickness effects.

The infinite cascade problem has recently been solved

analytically to the first order in frequency by Kurosaka [9].

Using the streamwise coordinate x as the Laplace transforma-

tion variable, a general solution in integral form for <{>(x,y)

is obtained, which contains arbitrary functions for the

initial conditions 4>(o,y) and 9cf>/8x(o,y) . The complexity of

the initial value problem is reduced by representing 4>(x,y)

as the first two terms in a power series based on frequency.

Reformulation as a simple integral equation follows by

eliminating the unknown initial condition using the periodic-

ity requirement in the cascade. The analysis is complicated

and the equations of great length. The stability boundaries,

for torsional oscillations at reduced frequency 0.1, are of

little practical application in turbine flutter calculations.

Comparison with any of the available finite cascade solutions

would have been of more fundamental interest. A limitation

of the theory is that when the blades oscillate in phase, the

surface pressures become infinite; the lifting pressure,

however, remains finite. This could indicate that a first-

order power series in frequency is inadequate. Kurosaka

is presently extending this work to include terms of higher

order in frequency. In a very recent paper, Verdon and

Unpublished communication.
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McCune present a singularity method for the infinite

cascade [10]; further work, however, is required to clarify

the numerical convergence aspects of the method.

The concern of the discussion to the present juncture

has been with linearized supersonic flow theory. Thus, the

above methods for predicting flutter in compressor stages

have employed unsteady supersonic airforces calculated on

the basis of flat-plate theory; the influence of blade

thickness remains to be investigated. Thickness influences

the steady flow about supersonic wings by causing a redistri-

bution of pressure which usually changes the total lift force

slightly and the pitching moment considerably. This well

known experimental result is in agreement with Busemann's

second-order potential flow theory [11] . The unsteady

counterpart of the Busemann theory is the second-order

potential flow theory of Van Dyke [12]. Van Dyke gives a

solution for the slowly oscillating aerofoil of arbitrary

profile expressed as a third-power series based on frequency,

and a solution for the oscillating wedge which is exact in

frequency. Teipel considers the unsteady supersonic aerofoil

with arbitrary profile, attacking the problem numerically

[13,14]. This method also assumes potential flow, with no

entropy loss through the oscillating bow shock wave. However,

shock losses may be of practical interest in high-speed

compressor blading near shock detachment. These effects may

fortunately be estimated by comparison with Carrier's exact

solution for the oscillating wedge [15]

.

14





1. 3 Present Investigation

The main aims of the present work were twofold: first

it was desired to determine a numerical procedure for

calculating the nonlinear effects of blade thickness in

finite cascades, and second it was desired to investigate

theoretically the features of the linear (flat plate)

cascade. The nonlinear study employs a generalization of

Teipel's method, briefly mentioned earlier in this sequel.

However, the flow variables immediately behind the second

oscillating bow shock wave, and indeed behind each succeeding

wave, can no longer be determined simply by assuming steady

upstream flow conditions. The flow is taken to be irrota-

tional and isentropic and to satisfy the unsteady form of

the nonlinear transonic small perturbation equation at all

points in the field. Teipel's approach is to derive the

unsteady boundary conditions behind the oscillating bow

shock wave (an interesting strategem involving the Rankine

Hugoniot equation is used) and to then develop the solution

downstream using a nonlinear characteristics procedure. A

concise account is given of Teipel's work, omitting considerable

detail, but emphasizing fundamentals and important computational

steps

.

Before extending the basic method to the cascade problem,

its accuracy in the low supersonic range near shock detach-

ment was carefully investigated by comparison with Carrier's

exact solution for the oscillating wedge. This elegant

15





solution involves evaluation of an infinite Bessel function

series; perhaps as a consequence there are no published

results on pressure distribution, or indeed results of any

kind showing the effect of thickness on the main aero-

dynamic stability derivatives in the low supersonic range.

Such results, given here for the oscillating wedge, are thus

of fundamental interest, as well as providing the necessary

base for comparison with the potential flow theory.

Agreement is found with Van Dyke's result, that thick-

ness generally reduces the dynamic stability of the torsion

mode. However, the magnitude of the effect on pressure

distribution and various unsteady force derivatives, is more

dramatically illustrated by the present results than by those

of previous authors. In the case, for example, of slow

oscillations about a forward pivot at low supersonic Mach

number, it is shown that while the biconvex aerofoil

exhibits a level of instability only slightly higher than

that predicted by the classical linear theory of Garrick and

Rubinow [16], the equivalent single wedge is drastically

unstable.

An important limitation in scope was imposed throughout

the present work by restricting attention to the flow in the

cascade upstream of any Mach wave reflections in the blade

passages. These flow regions are indicated in fig. 1.2 as

the preinterference zone A and first blade passage zone B

of the cascade; they frequently extend through most of the

16





fig. 1.2 Preinterference and blade passage zones
considered in the investigation

cascade. It is nevertheless to be emphasized that under no

circumstances has attention been given to the trailing edge

wake, which clearly influences the cascade exit flow [9,17]

Results for the finite cascade of oscillating wedges

reduce correctly for vanishing blade thickness to those of

Platzer and Verdon, mentioned earlier in this sequel.

Such exact limiting results, obtained from the general
nonlinear thickness model, are extensively used in this
dissertation for comparison with linear theory developments,

17





Also for this limiting case, certain simple forms of the

general bow shock wave analysis are presented. Pressure

distributions are given for two 5-percent thick wedges

oscillating in phase for several oscillation frequencies.

However, until the present solution is extended to the exit

plane of the cascade the results are of limited use in

practical flutter calculations. Nevertheless, reduced

influence due to thickness for the second blade is indicated.

Section 3 presents a theoretical approach, using Laplace

transformation, to the finite flat plate cascade. There is

developed, to the third power in frequency, an analytical

solution for the velocity potential together with closed-

form expressions for unsteady pressure distribution. For

two blades, the out-of-phase (damping) solution is shown to

be accurate for reduced frequency 0.4 at M = 1.25 and for

reduced frequency 0.7 at M = 1.6, well beyond the useful

range of the first-order solution obtained by neglecting the

cubic frequency term. On the other hand, the complete third-

order theory is satisfactory out to blade index 9 for

oscillations with reduced frequency 0.2 at M = 1.6. The

theory also correctly predicts, when the blades oscillate in

phase, a strong sinusoidal modulation of pressure with blade

index. However, owing to an expansion of the Bessel function

which assumes small values of the argument, the third-order

solution diverges in the far field, failing to approach a

finite limit with increasing blade index. When the higher

order terms are removed, the first-order frequency solution

18





solution is relatively simple. In paragraph 3.4 there is

given an alternative derivation of this important first-

order solution for the finite cascade, based on Sauer's

classical treatment of the oscillating flat plate in unbounded

flow [18].

The coefficients of upper surface pressure and total

pressure loading, according to the first-order theory, are

found to be

n-1
(u) _(u) , . 2km V^ -pyu) . 2km X"^C
P

c
p

+ i e
n

p=l

AC
p

= 2 C ( u) [e-^-l] + i & [^-m] e"
1

* 1

for the n blade in the torsion mode when angle-of-attack

is maximum. Here CJ, corresponds to the first blade; y is
1

interblade phase angle; k reduced frequency; d interblade

spacing; and m the chordwise stagger of adjacent leading edge

Mach lines (for the sonic leading-edge locus, m = 0, and

Cp is independent of blade index) . To first-order frequency,
n

the pressure loading for the finite cascade is therefore

constant for all blades except the first, while for y = it

is independent of position along the chord and pivot axis

location. The upper surface pressure, however, exhibits a

continuing oscillation with blade index, except in the case

19





of zero interblade phase angle, when the out-of-phase

3component increases by the constant amount 2km/$ from

blade-to-blade.

There is derived in Section 4, using a much simpler

approach than Kurosaka [9], an elementary periodic solution

for the infinite cascade. When the condition of flow

periodicity is imposed, the pressure loading coefficient for

the infinite cascade is found to agree with ACp given above,
n

while for finite interblade phase angle the periodic solution

for the surface pressure coefficient is precisely the mean

value of the oscillatory series for Cp .

n

1. 4 Important Note

Concerning the simple harmonic motion assumed for aerofoil

angle of attack, the following should be emphasized. First,

the time dependent angle of attack of the isolated blade,

a-i = exp ikt, where k is reduced frequency and t nondimensional

time, assumes an oscillation amplitude of unity. This is

consistent with the basic premise that all flow variables are

linear functions of angle of attack and that the onset of

flutter is characterized by oscillations of very small

amplitude. Where significant nonlinearities are present

(Section 2), they enter on account of aerofoil thickness.

Second, the angle of attack of the n blade, at time zero,

is denoted a = a-, exp i(n-l)p , where \i is interblade phase

angle. Solutions for surface pressure consist of a real and

an imaginary part, and throughout this dissertation final

20





results for the n blade are expressed at the instant when

a = 1, by multiplying by exp -i(n-l)y. Accordingly, the

real component of surface pressure is in-phase with the

angle of attack of the n blade, while the imaginary

component is the pressure which occurs at the instant when

the blade presents zero angle of attack to the free stream

with its trailing edge moving down.

This work was made possible for the author through the

guidance of Professor Max F. Platzer of the Department of

Aeronautics

.
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2 NONLINEAR THICKNESS EFFECTS

The methods which are being increasingly applied to the

study of flutter in high-speed compressor stages employ

generalized air forces calculated on the basis of linearized

supersonic flow theory. Frequently, these methods are

advanced with the warning that the results do not include

nonlinear thickness effects. Accordingly, there is given

in the present section, employing a generalization of Teipel's

method for the single oscillating aerofoil, a numerical

solution of the thickness problem for aerofoils oscillating

in cascade. The method is intended for application in the

low supersonic range near shock detachment, where thickness

effects may be of considerable practical interest.

2 . 1 Aerofoil in Unbounded Supersonic Flow
The Teipel Approach

The small perturbation equation describing the unsteady

transonic flow of an irrotational fluid is given by Landahl

[19]

[
m2 . 1+U <i±IL|±] d

2
$> d

2
$ 1 8

2
$ 2M 9

2
$

2
,

3x
2 "

3y
2

'
"

a
2

3T
2 " a 3x3T

'

where the nonlinear term involving the adiabatic index is

shown in ref. 19 to be of vanishing significance for

unsteady flows in which

22





k >> 1*^-11 2.2a

where k denotes reduced frequency and M. local Mach number.

The nonlinearity also vanishes for flows about bodies of

small thickness, such that

k >> 6
2/3 2.2b

where 6 is the larger of the quantities thickness-to-chord

ratio or oscillation amplitude. The present aim is to

investigate the effect of thickness on the unsteady flow in

low-supersonic compressor stages for blade vibration

frequencies within the critical flutter range. Previous

work, based on linearized supersonic flow theory, indicates

that this range extends to k = 1.5 [20].

A clear understanding of Teipel's treatment of equ. 2.1

for the case of the biconvex aerofoil oscillating in unbounded

supersonic flow is essential before considering the cascade

problem. Accordingly, there is presented below a concise

account of the Teipel method. This account, based on

translations of the German by the present writer, strongly

emphasizes the fundamentals of Teipel's analysis, highlights

important computational steps, but omits considerable detail.

Further, while Teipel employs the chord length c = 2 with

origin at midchord and works in dimensional variables, these

conventions are not adopted in the present study.

23





2.1.1 Characteristic equations

Head-Wove in

Steady Flow

Head-Wave in

Unsteady Flow

K*>T

Tszsz^

fig. 2.1 Biconvex aerofoil in torsion mode

With reference to fig. 2.1, the basic problems

involved in solving equ. 2.1 are threefold. First, a solution

must be found which satisfies the differential equation at all

points within the disturbed flow field. Second, it must

satisfy the usual linearized form of the unsteady boundary

condition, which requires tangential flow along the aerofoil

surface

Y = 2.3

24





Third, the appropriate boundary conditions must be satisfied

along the oscillating head wave which separates the disturbed

from the undisturbed flow. The remainder of this paragraph

outlines the Teipel approach for solving equ. 2.1 subject to

the tangency condition of equ. 2.3. Paragraph 2.1.2 gives

the head-wave analysis and paragraph 2.1.3 the computational

steps.

Upon introducing the nondimensional variables

X Y TU . $ _ .

x = -
, y - - , t = —

, * = — 2.4

equs. 2.1 and 2.3 become

[M
2

- 1 +M2
(y+D

2 2 2 2
ii iLJfe _ ill = _M

2 LA - 2m2 8 -i
8x „ 2 „ 2 „._2 8x8t

9x 8y 3t

2.5a

H=I + I » * = °

where Y = Y(x,t) , as shown in fig. 2.1, and y = Y/c .

Consider torsional oscillations a = exp(iooT) about

the pivot x = b, and define a reduced frequency

k - — 2.6

Then there may be written for the total potential <$>(x,y,t)

the sum of a steady thickness term
<J>

(x,y) and an unsteady

angle-of-attack term $-, (x,y)

• 25





<J>(x,y,t) = 4> (x,y) +
(f> 1

(x,y)eikt 2.7

whereupon the differential equation and tangency condition

become

[

9 9 ^ ^
NT - 1 +M (Y+D

2 2
ro ro

9x J ~ 2 „ 2
9x 9y

= 2. 8a

3<J>o
, 8y( x)

9y 9x ; y = 2.8b

m -i+nt (y+1)
9<J>

8x

d
2

<t> 1
9
2

^
i7"

,2,2

+ M (y+1)
3
2
A

- M k "<j)

1
+ ±2kM

9x

34>.

93T

9(J).

3x~

= 2.9a

8<J>.

ay
= -[1 + ik(x-b)

]

2.9b

where <j>, denotes the amplitude of the forced steady-state

velocity potential and y (x) the aerofoil profile, nondimen-

sionalized through division by the chord. In deriving equ.

2.9a, <{) is neglected in comparison with 4> , , in agreement

with the assumption of very small amplitude oscillations.

The hyperbolic differential equation (2.8a) is nonlinear,

due to the term involving the adiabatic index . However,

the solution procedure using nonlinear characteristics is

26





straightforward. The potential 4> (x,y) represents the

steady-state flow (assumed to be entirely supersonic) about

a thin aerofoil (assumed to be symmetrical) at zero angle

of attack.

The hyperbolic differential equation (2.9a) is

linear — since
<J>

is known. Furthermore, since the coeffi-
o

cients of the second-order derivatives are those in equation

2.8a, the characteristic directions in both problems are

identical. The potential (f>, (x,y) represents the unsteady

flow due to angle-of-attack.

The basic approach, using the method of characteris-

tics is now apparent. First, equation 2.8 is solved. The

compatibility relations for
<J)

are extremely simple. How-

ever, they must be applied along characteristic lines in

the (x,y) plane with varying slope. Second, employing

appropriate compatibility relations for <j>. , the character-

istic mesh derived for the steady problem (in the region

formed between the head wave and the upper surface of the

aerofoil) is used to develop the unsteady solution.

The characteristic lines of equ. 2.8a have the slope

-1/2
(41 ) Q

= ± A 2.10
3x a, 3

along which the state variables change according to the

compatibility relations
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3/2
X ' + y = const. 2.11

where the constant for the left running a characteristics

(upper sign) will be denoted by C and that for the right

running $ characteristics (lower sign) by C , as shown in

fig. 2.2. The state variables have the meaning

A = M2
- 1 + (y + 1) M

2
u 2.12a

y = |( Y + 1) M2
v
Q

2.12b

^-Characteristics

M

ead-Wave

a -Characteristics

xVz_M =c(a)

fig. 2.2 The characteristic mesh
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where u = 8<}) /8x and v =
3<f> /9y are nondimensional

horizontal and vertical perturbation velocities, respectively,

Along the profile y is known, from the tangency condition

imposed by equ. 2.8b. The curvature of the head wave and

the structure of the entire simple wave flow thus follow

with little difficulty from equ. 2.10 to 2.12. Observe, for

example, that the compatibility relations demand X and u

constant along all a characteristics, which are therefore

straight lines in the (x,y) plane. This important result

follows if the 3 compatibility equation is assumed to remain

valid through the bow shock wave. For then there may be

written, referring to fig. 2.2

x
3/2 + = y}/2
a Ka «>

X
V2 + = x

3/2
b Hb oo

,3/2 _ .3/2
a Ka b Hb

where X occurs in the undisturbed flow and u =0. There
oo *^oo

follows

a b

^a
=

^b

*
Oswatitsch considers the problem, and by comparison

with exact shock polar results shows that the use of equ. 2.11
leads to a maximum possible error in A of 6% [21]

.
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and from equ. 2.10 the result that the a characteristics

are straight lines. The computational procedure for dealing

with the <j> problem is now straightforward and will be given

in paragraph 2.1.3, as mentioned previously. Using equ. 2.12a,

the differential equation describing the <j), problem may be

written

2 2
8 (|>

1 3 <$>! 9A M 2,2 A ,x —«- T- +
87 af - M k

*i
+ l2

8x 8y

9
9<h

kMz -r-i =0 2.13
8x

whereupon, along the characteristic lines previously defined

in equ. 2.10, the following compatibility relations can be

shown to hold

3u-

dx
_ 1
+ —

a,B VT

3v,

8x J a,B
* |A + i2kM

2

8x
u
l

"
.2.-2
k M

A y l

2.14

4>i
=

where u, = 3
cf>

-. / 3 , v, = 9<J>,/8y are respectively nondimensional

horizontal and vertical perturbation velocities for the

unsteady problem. The state variable X is known everywhere.

In equ. 2.14 the second-order term in frequency somewhat

complicates a numerical solution since, as is clear, the

potential $, itself must be determined throughout the field

(by integrating the velocities)

.

Teipel's rather involved treatment of dX/dx can be

simplified using a geometrical interpretation. At the

point Q(x,y) in fig. 2.3
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y

/3-Characts. ^><C

•^c^

a - Characts.

X

fig. 2.3 Geometrical interpretation of dX/dx

M c a
x - x
c a

limit x > x
c a

However, from a result of paragraph 2.1.1, the state

variable A is constant along an a characteristic.

Accordingly, writing X-, = X in the above equation and using

an obvious approximation for the denominator

iAIq
Id a , . . .

~- ; limit x , -»- x
2 x -,

- x da

which is simply

X 1 ["jul
x ' 2 [axj

2.15
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The compatibility equations for the unsteady problem thus

become

dv n u., ~

,

->, .,2 . 22
du

l
" If +

2T (^
3

dx + x 1— u
l

dx " -X- *i
dx =

°

2.16a

- .

dV
l

U
l • 2kM2 , k

2
M
2

. , n 1C ,

du. + -—— + -^-r- + i —

r

u, dx - —

r

6. dx = 2.16b
1 r~ 2A A 1 A Y

l

along a and 3 characteristics, respectively. Also, since

dcf>, =
8(f>, /3xdx + 84>,/3ydy

jj

>

1
= (|>

1

a
+ / (u

1
dx + v

1
dy) 2.17

Further details of important computational steps are given

in paragraph 2.1.3.

2.1.2 Bow Shock Wave Analysis

There are two important boundaries associated with

the
<J>,

(x,y) problem. One is the aerofoil surface along

which the flow must be tangent and along which v, (x,o) is

therefore given by equ. 2.9b. The other is the oscillating

shock wave which emanates from the leading edge of the aero-

foil. Fluid particles in the undisturbed flow, passing

through this oblique moving shock, will have their properties

suddenly changed. Accounting for entropy losses, this

change could be calculated using the shock polar [22]. How-

ever, the flow is assumed to be isentropic and no account is
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taken of irreversible shock losses. Accordingly, the flow

variables immediately behind the head wave are derived using

the isentropic Rankine Hugoniot relations. The more exact

shock polar is not employed.

Teipel's analysis of the unsteady head wave is in

fact surprisingly straightforward, when the equation for

the change in gas speed through a moving normal shock is

given. Such a weak shock is shown in fig. 2.4, moving from

left-to-right with the speed W relative to the undisturbed

inlet flow. Denoting the velocity of the latter w , the

shock thus has the velocity (W + w ) in stationary coordinates,

The one-dimensional continuity and momentum equations then

lead to the expression given by (2.18) for w , the gas speed

following passage through the shock. Here it is to be assumed

that the velocities w , w„ and W have been normalized throughn n 3

division by U. An outline of Teipel's elegant use of this

result follows:

W+w
Undisturbed

. ^_
flow into

shock Wn ,a

n

Wr

wn.Wn*2W/,_aV\ 21j

fig. 2.4 Flow through normal shock
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The locus of the oscillating head wave, as it might

appear with the aerofoil at small positive incidence in a

low frequency torsional mode, is shown in fig. 2.5. For a

wedge, the orientation y of the head wave in steady flow

is constant. However, for the biconvex section shown,

Y = Y (y) • Consider P(x,y) on the oscillating head wave

in the immediate neighbourhood of the leading edge. Then,

notwithstanding the variation of y with y, the approximate

horizontal coordinate of P is

x = y cot y + g(y) e
p J p 'o y J

ikt
2.19

NB all velocities

normalized thro-

-ugh dwision by U

Normal shock speed

fig. 2.5 Geometry of oscillating bow wave
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where the nondimensional, complex, shock excursion amplitude

g(y) has been multiplied by exp(ikt) in accordance with the

basic assumption involving harmonic time dependence. Omitting

this time dependence, the slope at P(x,y) is

m = cot yo
+ §2L = cot (y + Y') 2.20

where fig. 2.5 shows the small angle y' • Employing an

elementary trigonometrical expansion and taking tan y' = Y*'

the change in the orientation of the head wave relative to

its position in steady flow may thus be approximated by

Y
1 = - sin y j 2.21

' 'o dy

The nondimensionless velocity assumed for P(x,y)

in stationary coordinates is

dx

at
2 = iks(y) 2 - 22

from equ. 2.19, omitting exp(ikt). Multiplying by sin y t

the normal velocity of the head wave in stationary coordinates

is

v' = ik sin y 9(y) 2.23
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which is to be associated directly with the shock speed

(W + w ) in fig. 2.4. It therefore follows from equ. 2.18

that the gas speed w immediately behind and normal to the

head wave is given by

w
n

w =
n

2(v' - w
n )

Y + 1
1 -

2 , 2
a /u

(v' - w )n

2.24

But

w = sin(y^ + y') = sin Y + Y

'

cos Y~ 2.25n 'o ' ' o ' ' o

whereupon

n n

2(v'-w
n )

7+1
2a'

2 2
(y+l)U sin yo •—

1+
y'cosy -v 1

)

"sTn~Tr~

-1

2.26

Employing the Binomial theorem, and after some simplifica-

tion, the main result of the Teipel head wave analysis may

be written

w = J-tvsiny
n y+1 'o

2/M 2n

1+-
n

Y-l
Y-l+ J-—r-cosy^
Y+1 o

2/M 2-i

1- n

Y-l Y

Y+1
1+- v
M
n J

2.27

U sin y
M o
n

2.28
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where the second-order terms y' and v' are given above in

terms of the head-wave displacement g(y). The tangential

velocity of the fluid is unchanged on passing through the

head wave and consequently

w. = w, = cos v - v 1 sin y 2.29
t t 'o ' 'o

It is now required to find the dimensionless pertur-

bation velocities 8(}>,/8x and 8(J>,/8y immediately behind the

head wave, these being the desired boundary value quantities

for the solution of the <{>, problem. Formally introducing

the overhat notation to denote quantities immediately behind

the bow wave

A *S A /N. /\

u-. = (w siny+w cosy) - (w siny +w cosy ) 2.30a

^ /V A A >\

v, = (-w cosy+w siny) - (-w cosy +w siny ) 2.30b

where the two groups of terms on the right of equ. 2.30

represent fluid velocities behind the head wave (a) in

unsteady flow and (b) in steady flow. Of course, y = y +y'.

The remaining work is routine. Neglecting squares and

products of y* and v 1

, there is obtained finally

u, = m, ~ + imn g 2.31a
1 1 dy 2^
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v, = n n
-=-2. + in~g 2.31b

1 1 dy 2^

m, = —rr sin 2y sin y
1 y+1 'o 'o

_2k ,,.,,„ 2 4 . 2m = —-T- (1+1/M ) sin y
2 y+1 n o

2.32

-2 2 2
n.. = —-=- (cos 2y + 1/M ) sin Y
1 y+1 'o n ' "o

n~ = —r-=r (1+1/M ) cot y_ sin y
2 y+1 n 'o ' o

The more formidable looking equations of ref. 14 result

when the orientation of the head wave is expressed in the

form

2
tan y_ - —7=z =r 2.33

° ^+ V^

an important observation, which follows from the slope of

the left-running characteristics in equ. 2.10, and is equi-

valent to averaging the Mach angles before and after

leading-edge compression.

Equations 2.31a and 2.31b are simultaneous ordinary

differential equations for the unsteady head-shock profile.

They are expressed in terms of the unknown dimensionless

perturbation velocities u, and v, immediately behind the

shock. The coefficients m and n are functions of y in general
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because of the curvature of the steady shock boundary.

They are known from the solution of the 6 problem.

2.1.3 Computational Procedure

Certain mathematical aspects of the unsteady transonic

flow about a thin aerofoil have been discussed. It is now

desired to translate these considerations into a procedure

for solving the problem numerically. With regard to the

steady state or
<f>

problem, the following sequence of steps

may be used:

(i) Guess the point P

fig. 2.6 Construction procedure for characteristic lines
and steady-state bow wave
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(ii) There may be written, corresponding to

the a and B characteristics which meet at P_

C 3/2 . 3/2 _ci
X
±

- ux
= Aa - ya

= C

•* 3/2 , 3/2 „&
oo Koo a a

from equ. 2.11, and where, as noted previously, the overhat

denotes a quantity immediately behind the head wave. But

from the steady tangency condition of equ. 2.12b

„ = | (Y*D M2 (|X)

x
a

Further, y, = y and A. = A since the two states are onla 1 a

the same a characteristic. Accordingly

L = (A
3/2 . ,2/3

1 °° a

(iii) Construct the a characteristic through

P with slope from equ. 2.10
a

dx
A
l
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(iv) Construct the initial segment of the

head wave between the leading edge point P and P, with

slope

dx
2^ + {h + ^

which is equivalent to averaging the Mach lines before and

after leading edge compression. This is not the segment of

an a characteristic. Hence, P, on the head wave is

determined.

(v) The state variable y- must satisfy the

tangency condition and is a known function of x
2 , as in

step (ii) . Along the 3 characteristic through P
2

X
3/2 + m 3/2 3

A
l ya

A
2

V 2
C

x
2

- x
1 ^h + ^2

and hence x
2

and A
2

follow by a simple iteration procedure.

(vi) Guess A (thereby determining P, ) and

repeat steps (ii)-to-(v).

Determination of the general mesh point P. is obvious

The above sequence of steps is repeated until the entire

characteristic mesh is formed and the 6 problem solved.
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Some experience is useful in determining a suitable initial
*

point P and the x-wise increment A. In the case of ar a

simple wedge or flat plate aerofoil, the head wave is

straight and the state variables constant throughout the

flow field; consequently the complexity of the
<f>

problem

is greatly reduced.

The same characteristic mesh applies to the unsteady

<()- problem. Here, it will be recalled, there is available

the following information: First, the unsteady tangency

condition of equ. 2.9b for v, (x,o) ; second, the compatibility

relations of equs . 2.16a and 2.16b, which identify small

differential changes in the state variables u,(x,y) and

v, (x,y) along the a and 3 characteristics, respectively;

and third, the first-order ordinary differential equations

(2.31a and 2.31b) for g(y), the amplitude of the oscillating

head wave, measured from steady state. For a typical problem

the shaded area of fig. 2.7 is of infinitesimal dimension, as

should be clear from the information in the footnote *.

Accordingly, the leading edge values of u, and v, are assumed

to apply throughout this small region. Let v, (P ) , or v

for convenience, denote the dimensionless vertical perturba-

tion velocity immediately behind the head shock at the

leading edge. Then from equ. 2.9b

*
Typical values for M = 1.2, t = 0.025 and M = 1.15,

t = 0.0125 were x = 0.0017, A = 0.0055 and x = 0.0088,
A = 0.0042 5, respectively; with fourteen mesh points

o 2 ' 5 n
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fig. 2.7 Initial step for the unsteady problem

v = -(1 - ikb)
o

where b is the dimensionless pivot. From equ. 2.31

m
u = — v
o n, o

since g(o) = 0. Also from equ. 2.31

gl"go
(u +u )/2 = m —— + im

2
(g +g )/2

2 1
J o

**

g, -g
n n „ _„° + in

2 (g 1
+g

o
)/2

1 o' 1 Yt~YJ 1 J o

**

while from equ. 2.16a

v -v (u.+u ) (A,-A ) VM2
„ 1 O j. 1 O 1 O , , , , KM , . . .u i"un

_—r=r + (xi~xJ + 1 1
—

(

u
l
+uJ x i~ xJ

{h 2A
l
(x
a"

x
Q

)

A
1 1

o
1

a

k
2
M
2

(
(X1~XJ I )

-n7-j*a+--^- (u
l
+u

o ) + (v
l
+V

o ) /VH }

(XrX
a

}
= °
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where
<J>

would be taken as zero for the single aerofoil in
a J

unbounded flow. The three algebraic equations (**) deter-
*

mine u, , v, , and g, at the mesh point P, . By similarly

applying these equations to the points P,, P,. , P
n

(assume

u, (P,) and v.(P,) apply at the intersection of the a

characteristic through P, with the 3 characteristic through

P
1

) / the unsteady boundary conditions along the entire head

wave may be determined. Subsequently, the compatibility

relations (equs. 2.16a and 2.16b) give the entire unsteady

flow field.

2 .2 Discussion of Results for Flat Plate, Wedge and
Biconvex Aerofoils

The linearized pressure coefficient on the upper surface

of the aerofoil is

U 00

P "P

1/2 p? =-![ff + slr] =-2[u
o+

e
ikt
<V ik

*l>'
2 - 34

where u and u, are dimensionless horizontal perturbation
o 1 r

velocities due to aerofoil thickness and angle-of--attack,

respectively. The thickness or steady state component of

pressure is entirely real and of no direct interest. The

unsteady component, which varies in accordance with the

assumed harmonic time dependence, is complex and will be

written, omitting the term exp(ikt)

Again it is to be noted that u, , v. and g, should in
•v y\ dm J. JL

fact be denoted u,(P,) , v^CP,) and g(P-,) .
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C
p
u)

= -2(u
1

+ ik«J>1 ) 2.35

The present aim is to study the effect of thickness on

Cp . Therefore, it is appropriate to first discuss the

meaning of the real and imaginary parts. The real part,

R [Cp ] , is the pressure which occurs as the oscillation

starts. It is the component of unsteady aerodynamic pressure

which is in-phase with the angle-of-attack (aerodynamic

stiffness). The imaginary part, I [Cp ], is the pressure

at the instant the aerofoil presents zero angle-of-attack

to the free stream with the trailing edge moving down. It

is due to aerofoil rotation about the pivot and therefore

out-of-phase with the angle-of-attack (aerodynamic damping)

.

A mathematical model describing Teipel' s method has been

formulated and results compared (a) with Teipel calculations

for a family of biconvex aerofoils in the low supersonic

range [13], and (b) with Carrier's exact solution for the

oscillating wedge [15] . Some disagreement was found with

Teipel, which could not be resolved. As shown in fig. 2.8

for a 2% thick biconvex aerofoil oscillating in the torsion

mode about midchord this disagreement is in I [ci, ] , the3 m P

component of pressure which is out-of-phase with the angle-

of-attack. Similar results were obtained for most of the

torsion and plunge modes considered in ref. 13. However, in

the case of vanishing aerofoil thickness, the present model

agrees with Teipel, and indeed with the classical linear
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fig. 2.8 Pressure distribution for 2% thick biconvex
aerofoil pivoted at mid-chord
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theory of Garrick and Rubinow [16]. The structure of

Teipel's nonlinear characteristics mesh is based on 13-points

across the chord. A similar number was found to be satis-

factory for all of the unsteady aerofoil motions considered

in the present investigation.

As already mentioned Teipel assumes isentropic flow with

no entropy loss through the head shock. In view of the

envisaged application of the basic method to compressor

blade rows in the low-supersonic range, where irreversible

shock losses could be important, this assumption requires

investigation. Carrier's solution for the wedge, oscillating

about its apex in unbounded supersonic flow, is exact in

thickness and therefore accounts correctly for entropy losses

in the fluid provided the amplitude of oscillation is small

(the solution is linear in angle-of-attack) . It provides

an obvious basis for comparison with the potential-flow

theory.

The Carrier analysis is difficult and the final solution

is expressed as an infinite series of Bessel functions of

the first kind with certain coefficients which are to be

determined successively from three simultaneous algebraic

recurrence relations. Consequently, the computation involved

is considerable, which may account for the fact that no

pressure distributions based on the theory are available.

Reference should be made, however, to exact calculations by

Van Dyke of the stability derivative m for a 5% thick

oscillating wedge. These are published in ref. 23, which

extends Carrier's solution to include pivots other than the apex
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fig. 2.9 Pressure distribution for 5% wedge pivoted
at apex

Figure 2.9 presents the component of pressure which is

out-of-phase with the angle-of-attack for a 5% thick wedge

oscillating about its apex. The free-stream Mach number is

1.15, only slightly above that for shock detachment. There-

fore, the results should highlight possible limitations of

the potential-flow method. There are two fundamental observa-

tions. First, the strong effect of thickness, particularly
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at the low oscillation frequency, and second the performance

of the present Teipel model, which is considered excellent.

Calculations on the shape of the oscillating bow shock

wave are given in fig. 2.10, which shows the dimensionless

lateral amplitude of the wave at the instant when the aerofoil

is at maximum incidence. It is clear that the flat-plate

theory, which forms the basis for Jones' work on the oscil-

lating biconvex aerofoil [24], fails entirely to predict the

shock wave locus

.

1-0

R,[gly>]

-i-o

-20

3-0

Linear theory (T= )

T=0-05

k=l-2

fig. 2.10 Locus of the oscillating bow wave
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The main results of the present paragraph show the

effect of thickness on several stability coefficient

derivatives for the oscillating wedge. The British notation

has been used to define the derivatives

m.
a

= Im u (b-o c^
u)

d^ 2.36a

m = R
a e / (b-a c^

u)
d£ 2.36b

1 = Roa e / C^
u)

d S 2.36c

which are, of course, the dynamic and static moment

derivatives and the lift derivative for the aerofoil,

respectively. Dynamically unstable oscillations about the

pivot will thus have -m. < , and the absence of a positive

static restoring moment will correspond to -m. < . The
a

damping moment derivative -m. is plotted against oscillation

frequency in fig. 2.11 for several low supersonic Mach

numbers. As is well known, the linear theory predicts

unstable oscillations at low frequency, under certain

conditions. This is clearly illustrated in the figure for

each of the Mach numbers considered. Thickness effects are

seen to increase the possibility of instability for oscillations
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fig. 2.11 Damping moment coefficient for 5% thick
wedge pivoted at apex

of very low frequency. However, as the frequency increases,

the effect is reversed. At the higher frequencies, in

accordance with Landahl's observation noted earlier (equ. 2.2),

there is no significant effect due to thickness. Close to the
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shock detachment Mach number, thickness effects cause a

highly nonlinear modulation in the curves of -m. versus k.

The curves of restoring moment and lift coefficient, shown

in fig. 2.12, exhibit similar features. The prediction by

the present Teipel model of these interesting nonlinearities

,

in close agreement with the exact solution, seems adequately

to justify the basic isentropic-flow method. Also given in

figs. 2.11 and 2.12 is Van Dyke's second-order thickness

solution for very low oscillation frequencies [12].

2-5
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04 0-8 '2 k
0-4 08 '2 k

fig. 2.12 Restoring moment and lift coefficients
for 5% thick wedge pivoted at apex

The results discussed above seem to justify Teipel 's

assumption of isentropic flow for the oscillating aerofoil,

even at Mach numbers close to shock detachment. They also
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give a useful indication of general thickness effects for the

wedge oscillating about its apex. Of more practical interest,

however, are the pressure distributions given in fig. 2.13

for a 2 1/2% thick biconvex aerofoil pivoted at the leading

edge, midchord, and trailing edge positions, respectively.

4
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\ M-12
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e
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l-O

4
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k = 2

LINEAR TfCORY

(T-0)

fig. 2.13 Pressure distribution for 2.5% thick
biconvex aerofoil
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As in the case of the wedge, thickness effects are highly

significant at the lower of the two frequencies considered.

At the higher oscillation frequency, however, they seem to be

important only in bringing about a marked change in the local

distribution of pressure. The total out-of-phase aerodynamic

force and moment are evidently in reasonable agreement with

linear theory. This is shown more clearly in fig. 2.14, which

illustrates the damping moment coefficient for these three

torsional modes. The possibility is also indicated in fig.

2.14 of a significant increase in the stability of the biconvex

aerofoil, compared with the flat plate, for oscillations about

rearward pivots

.

|-m o
I

2
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T-0 025

-j I

02 04 oc o e 10 12 14
k

LlfCAfl T>€0RY

(T-0)

fig. 2.14 Damping moment coefficient for 2.5% biconvex aerofoil
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When the thickness ratios of the wedge and circular

arc or biconvex aerofoils are 4:1, they will cause the same

deflection of the airstream at their leading edges and

consequently they will have the same shock detachment Mach

number. The damping moment coefficients are therefore

compared in fig. 2.15 for a 5% thick wedge and a 1 1/4% thick

biconvex aerofoil. The strong instability of the wedge,

oscillating slowly about a forward pivot, is shown most

clearly in this figure. Thickness effects are much less

important for the 'equivalent 1 biconvex section.

2 . 3 Aerofoils in Cascade

The transonic small perturbation equation is assumed to

describe the flow throughout the cascade. Consequently, the

same basic method of solution outlined for the single oscil-

lating aerofoil will apply . However, in determining the

unsteady airforces acting on the second blade, there must be

contended with the fact that the flow immediately upstream

of the second oscillating bow shock wave is no longer uniform,

as is the case for the third blade, and so on. This, the

remaining problem of significance, is treated in paragraph

2.3.2. First, however, there must be considered a steady

<J)
problem. For the cascade of wedges this is a simple one.

2.3.1 The steady cb problem

Consider the region shown in fig. 2.16, downstream

of the second right-running bow shock wave but upstream of

the first trailing edge expansion wave. Denote this region
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PREINTERFERENCE

BLADE PASSAGE
REGION

fig. 2.16 Preinterference and blade passage zones

of the blade passage, zone B. The compatibility equation

for the right-running 3 wave through P is
a

x
3/2 _ A

3/2 3 M2 6
oo a 2 '

2.37a

while that for the left-running a wave reads

X
a
/2

" 7 (y+1) m2<5 = A
b
/2 +

I (y+1) m2(S 2.37b

which follow from the elementary characteristics formulas

given previously. The state variable X, which determines

the steady horizontal velocity u according to equ. 2.12a is

thus
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[' .2 ,,3/2 3

2
X_ = I (M* - 1)

"'
* - * (Y+D M^6

]

2/3
2.38a

in the preinterference region (zone A) , and

DX
b

= |(M
2 -1) 3/2

- | (y+1) M2

6| 2.38b

in the blade passage region (zone B)

.

It is worthwhile at this juncture to briefly compare

this transonic small perturbation theory with the theories

of Ackeret and Prandtl-Meyer . The pressure coefficient

Cp
= ~2u , according to the transonic perturbation theory is

-2

(y+Dm'
(M

2
-l)

3/2
- | (y+D M2

6 (M
2
-l)

2.39a

on the upper surface of the isolated blade, and

^—j \ (M
2
-l)

3/2 - \ (y+D M2
6 - (M

2
-l) >

(y+Djt ( l z J )

2.39b

on the lower surface of the second blade. By taking a

Binomial theorem expansion for large M (or small 6) there is

2 1/2
obtained the Ackeret theory, C^ = 26/(M -1) ' and C = 3C

a
F
b

F
a
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The transonic and Prandtl-Meyer pressure coefficients, which

are nonlinear functions of the streamline deflection angle 6,

are compared with the Ackeret theory below

.... .,
,

Transonic Small
Perturbation Ackeret Prandtl

Meyer

C
P
a

0.0486 0.04654 0.05065

\ 0.1649 0.13962 0.16066

M = 1.25, Semiwedge Angle 6=1'

The slopes of the a and 3 characteristics in zone B

-1/2
are ±X, , respectively. Also, following the procedure

for averaging yjX upstream and downstream of the shock, the

orientation of the right-running bow wave separating this

zone from zone A is -2/ (yjX + vXT ) .

This essentially completes the solution of the <j>

problem. Zone C immediately above the second blade need not

be considered, since a streamline of the steady flow passing

through the second left-running bow shock wave clearly

experiences no further disturbance. Indeed, the upper bow

wave from the second blade is now an a characteristic of the

zone A field. Blade-to-blade periodicity of the $ solution

in zone C must follow. A typical characteristic mesh with

the Kantrowitz condition (discussed later) imposed on the

steady inlet flow, is shown in fig. 2.17.
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fig. 2.17 Characteristic mesh for interacting wedge flows

2.3.2 The unsteady <J>, problem

The flow is assumed to remain supersonic throughout

the cascade and consequently the unsteady compatibility

relations derived previously apply everywhere. Indeed, they

simplify somewhat for the cascade of oscillating wedges,

since 9A/8x is zero. Accordingly, along a ana $ characteris-

tics, respectively

du
x

- dv^yfT + i2kM u-j/A dx - k M 4^/A dx = 2.40a

du
x

+ dv
1
/^/T + i2kM u

1
/A dx - k M 4^/ A dx = 2.40b
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where the state variable X will assume the value X in
a

zones A and C and A, in zone B. It is desired to determine

the change in velocity as the fluid passes through the

oscillating bow wave from zone A into zone C, assuming

isentropic conditions. Thus, denote u*(x,y,t) and v*(x,y,t)

the horizontal and vertical velocities immediately upstream

of P(x,y) on the head wave. The components of u* are 1 + u

and u,exp(ikt) , and for v* they are 6 and v-,exp(ikt) , where

u, and v, are known functions of x and y from the zone A

solution of the single aerofoil problem, and 6 is the semi-

wedge angle. It therefore follows, expressing u in terms of

X according to equ. 2.12a, that the velocity into the bow
a

wave may be written

u* —
X^ - (M

2
-l)

1 + ~ 2—
(y+l)M

+ u,(x,y)e 2.41a

v* = 6 + v-, (x,y)e
lkt

2.41b

As with the single biconvex aerofoil (except that the steady

shock profile is now straight and y consequently is a

constant) denote the orientation of the unsteady bow shock

wave at P(x,y) by y +y\ as shown in fig. 2.18. Then the

dimensionless normal and tangential velocity components into

the shock are
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fig. 2.18 Geometry of oscillating bow wave for second blade

v* = (v+u,) sin(y +Y' ) - ( S+v, ) cos

(

y +Y ' ) 2.42a

w. = (v+u, ) cos (y +y' ) + (6+v, ) sin (y_+y' ) 2.42b

omitting exp(ikt) but keeping in mind that this harmonic

time dependence applies to all unsteady functions, and where

the following notation has been used
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v = 1 +
X
a

- (*T-1)

(y+l)M
2

2.43

Neglecting second-order products of y' with u, , v, , and 6,

equs. 2.42a and 2.42b may be approximated by

w^ = vsiny^ - 6cosy^ + (u-, siny^ - v-, cosy^ + vy * cosy )

2.44a

Wj vcosy + 6siny + (u
n
cosy +v,siny -vy'siny )o

2.44b

The normal component of gas speed w immediately

behind the moving bow wave is obtained using the Rankine-

Hugoniot equation in the form developed previously. Thus,

employing the present expression for w , equ. 2.24 becomes

w -w = —rr (
v

' -w ) +
n n y+1 n

2a'

2 2
(y+1) a U siny

1 +
u,siny +vy'cosy -v,cosy -6cosy -v'
1 o ' o 1 ' o ' o

vsmy

-1

2.45

where v" is the normal velocity of the head wave in stationary

coordinates. The Binomial theorem yields
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Y-l
n y+1 'o

2/M
1 +

n

(Y-DV
+ I" 1

Y+l 'o

2/M.
2 n

1 - n

(y-l)v'
Y

y+l

1/M 2-i

1 +
n

Y-l
+ -L-rr (u,siny - v, cosy - 6cosy )Y+l 1 'o 1 ! o 'o

2/M.

1 - n

(Y-Dv _

2.46

after some simplification, and where, as previously defined,

M is the normal inlet Mach number of the steady flow and

the quantities y
1 anc^ v' are of small order compared with

Y and U. The unsteady velocities u-. and v-, are known in

zone A immediately upstream of the second bow wave. Thus,

with w. = w, (equ. 2.44b), the components of velocity

immediately behind the second left-running bow wave can be

determined. These are the required boundary value quantities

for the solution of the unsteady characteristics problem in

zone C. They are obtained from w and w using a simple

orthogonal transformation (2.30) . Neglecting such high-

order terms as y' u -i/ v'u,, and y*6, the following simultaneous

ordinary differential equations can thus be determined

u, = m,dg/dy + inug + ni^u, + n\.v. 2.47a

v, = n,dg/dy + in~g + n^u, + n,v. 2.4 7b
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in terms of the complex lateral amplitude of the oscillating

bow shock wave g(y) . The velocities u, (x,y) and v, (x,y)

are known from the solution of the unsteady <j>, problem,

while the coefficients m and n are known from the solution

of the steady A problem. For the wedge, in which case the

locus of the steady bow shock wave is a straight line, the

m and n are constant. They are given, with y = YQ (y) in

the general case, as

m, = 2v . ~ .2—rr sin 2y sin y
Y+l o ' o

rru =

m^ =

m„ =

2k
Y+l

1/M,
2-,

1 +
n

v

. 2
sin y

2 y-1 • 2
cos y + J-rr sin y 1 _

'o y+ 1 o

sin 2y n sin 2y
'o y-1 o

2/M
n

(Y-DV

n.

n^ =

2

-2v
Y+l

-2k
Y+l

y
Y+l

cos 2y +
'o

2/M
1 - n

(Y-DV

1/M
2n

n

v

. 2sin y

1/M
2n

1 +
n

v

cot y sin y'o ' o

2.48

n-> = m,

n. = . 2sin y
Y-1 2

+ -J—r cos yY+l o

2/M
2 1

1 - n

(Y-DV

65





The above equations reduce to those of paragraph 2.1.2 when

v = 1 and the unsteady perturbation velocities are u-, =

and v., = . The unsteady shock locus g(y) and the required

u-.(x,y) and v, (x,y) are determined simultaneously in a

manner similar to that described previously (by employing

equ. 2.47 and the a compatibility formula 2.40a). However,

if the torsional mode of the second blade leads that of the

first so that its oscillation is described by ot
2

= exp [i (kt+y) ] ,

where y is the interblade phase angle, then the unsteady

flow tangency condition will read

3<J>

3
— = - l+ik(p-b) e

ly
; n = 2.49

which is a simple modification of equ. 2.9b. The vertical

perturbation velocity v, immediately behind the bow wave

at the leading edge of the second blade, g(o) = 0, is there-

fore known and there may be determined consequently the

corresponding value of u,

m . (m n -m n ) (m n -m n )

U
l

= "
nY

(1- lkb)e +
K[

U
l

+
K[

V
l

2.50

Thus has been presented the basic analysis necessary

for the determination of the unsteady aerodynamic force on

the upper surface of the second blade in zone C. Nothing
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new is involved in extending the procedure to succeeding

blades. It is necessary, however, to indicate how the

analysis should be modified to yield the appropriate unsteady

boundary conditions behind the lower bow wave, following

which the zone B field can be determined. As may easily be

verified, defining g(y) as an upstream perturbation, the

changes necessary reduce simply to reversing the algebraic

signs of m
2 , m. and n-. in the shock geometry equations,

which in this case must be solved in conjunction with the

$ compatibility relation (2.40b) to yield the required

u
1
(x,y) , v (x,y)

.

2.3.3 Limiting Cases

There are several interesting limiting situations

which arise in the case of vanishing blade thickness. With

v = 1 and M = 1, the shock geometry equations, written for

conditions immediately behind the upper and lower waves at

the leading edge of the second blade, are

2 . 2 v-3
• 2

u n = - —-=-sin2v Y -i+u, cos y +-L7rSin v
1 y+1 'o'u,l 1

[
'o y+1 'o

A
4 2

v, = ± —r^-cos y Y
1

-i+Vt
1 y+1 o'u,l 1

• 2 v-3 2sin y +
.

i

cos Y
'o y+1 o

2v
l .

±
7irI

sin2Y

2.51a

2u
l

±—~rSin2Y
Y+1 o

2.51b

where the upper sign is to be taken for the upper wave and

where y' is the perturbation in the orientation of the upper

shock (relative to y ) very close to the leading edge; it
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is considered to be a constant. Similarly y-! denotes a

perturbation to the lower wave. Both are positive for up-

stream excursions of the unsteady shock relative to its

steady-state position. The u-, and v, are dimensionless per-

turbations on the blade immediately behind the bow wave

and the u-, and v, similar quantities immediately upstream

of this point; the latter are zero, of course, for the first

blade. Now v, is known from the unsteady tangency condition;

for small amplitude in-phase torsional oscillations about

the pivot b it is simply

v
1

= -(l-ikb)a 2.52

Case (i) Isolated blade

It follows immediately, with u, - v, =0, that

v« = ± lii a sec
2
y (1-ikb) 2.53

'u, 1 4 'o
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u
1

= ± a tany
Q
(l-ikb) 2.54

The significance of these equations is as follows: The

general shock polar [Ref. 22 page 177], upon assuming the

turning angle of the flow 6 is so small that there may be

2written the relation tan (£-6) = tan £ - 6sec £, may in turn

be written

-Hr- 6 tan £ = sin £ - sin v 2.55
2 ^ * 'o

where £ is the shock angle (measured from the direction of

the free stream) . Writing (-a) for 6 and with (y + y')

for £, where y' is second order, equation 2.53 results. The

isentropic-f low assumptions are thus seen to be consistent

with the linearized shock polar. The pressure coefficient

immediately behind the oscillating shock wave at the leading

edge of the blade is

C = ± 2a/B(l-ikb) 2.56

a result which, it is important to note, is exact in frequency.

This is simple Ackeret theory with AC = 4a/3 at maximum
P

*

*
See equ. 3.13 of the next Section.
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angle-of-attack , and AC - -4akb/$ when the aerofoil is

at zero angle-of-attack with the trailing edge moving down.

Case (ii) Second blade with k = and p = 180°

The tangency condition for the second blade reduces

to v = a, while the flow induced by the first blade is

u
1

= a tany and v, = -a. Consequently, the shock geometry

equation (3.51b) yields

Y^ = a sec
2
yo

(y-l)/2 2.57a

2 2
Y-J

= -a sec y (y+3-4cos yq ) /2 2.57b

which, as shown in fig. 2.20, are positive and negative

angles, respectively. Substituting equ. 2.57 into the

shock geometry equation (2.51a) and simplifying results in

the velocity perturbations -a tany and 3a tany on the

M s

A-/
/ /
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upper and lower surfaces respectively of the second blade.

The pressure loading is therefore AC = -8a tany •c 3
p 'o

2.3.4 Results

A mathematical model based on the nonlinear analysis

has been formulated. During the model validation phase

several flow solutions were obtained for the oscillating

wedge cascade for various combinations of the Mach number,

oscillation frequency, pivot location and thickness-chord

ratio. These results, however, are of limited practical

interest until the solution is extended to include the cascade

exit flow. Consequently, only a representative example of

these preliminary calculations is given, showing the nonlinear

effects of thickness on two 5% thick wedges oscillating

in-phase about a 33% chord pivot at M = 1.2. The inlet

flow is parallel to the suction surfaces of the wedges;

otherwise, in the case k = 0, steady equilibrium rotation

of the compressor blading is not possible. Kantrowitz

gives a clear explanation of this unique incidence condition

in Ref. 25.

The results, for several reduced frequencies, are

given in fig. 2.21. For the isolated blade, at k = 0.1,

the strong destabilizing influence of thickness on the

out-of-phase air loads is clear. For the second blade,

however, depending on the outcome of calculations downstream

of £ = a, which are beyond the scope of the present inves-

tigation, it seems highly likely from the results in fig. 2.21
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that thickness effects may be stabilizing. The magnitude

of the nonlinearity in the case of the second blade is

certainly reduced. At higher oscillation frequencies,

nonlinear thickness effects are seen to cause only local

variations in pressure loading.
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3 FINITE SUPERSONIC CASCADE WITH A SUBSONIC LEADING EDGE.
A THIRD-ORDER THEORY IN FREQUENCY

The finite rectilinear cascade was originally solved

during the course of this investigation to first order in

oscillation frequency, using both Laplace transformation

and by generalization of Sauer's solution for the slowly

oscillating aerofoil in unbounded flow [18]. However, the

pressure loading was found to remain constant for all the

blades of the cascade (except the first) while the unsteady

surface pressures, for the case of oscillations with zero

phase difference between the blades, diverged in the far

field. Kurosaka obtains a similar unbounded result for the

infinite cascade [9], The work of the present section was

undertaken mainly to determine if these limitations of the

first-order analysis could be avoided by seeking a solution

of higher order in oscillation frequency.

The velocity potential is first derived exactly to third

order in frequency for a single aerofoil oscillating in

unbounded supersonic flow. The cascade with two blades is

then solved by requiring continuity of the potential along

the left and right running bow waves emanating from the

leading edge of the second blade and by suitably modifying

the flow tangency condition to account for the downwash

induced by the first blade. The general case of n-blades is

then given.
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3 .1 Isolated Blade in Unbounded Flow

The linearized equations describing the flow field,

unsteady flow tangency condition and pressure coefficient

for the oscillating rectilinear cascade shown in fig. 3.1

are

I b—

|

fig. 3.1 Cascade geometry

(M
2-D dh

2
-

7

p
dx

z
9Y

8$
9Y

2M 9
2
$_1_ jT£

a
2

9T
2 " a 3X8T

dX 8T

3.1a

3.1b

C
P

= 2 I a* .
i 3£~

U
|_
9X U 3T

3.1c
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where Y defines the aerofoil surface. Consider small

amplitude torsional oscillations a-, = exp(iooT) about the

pivot x = b and introduce the dimensionless variables

X Y . TU , ooc . $ ^
X - —

, y = —
i t = — , k = -77- , A = —- 3.2

c J c c U Y cU

The above equations, written for the flow in the preinter-

ference zone of the first blade, become

2 2
9 3 <J> n 3 <!>! 99 9 Hi

3 —^ *r- = kMf. - i2k*T -r-± 3.3a^2.2 Y l 3x
3x 3y

94>i
r-^- = - [1 + ik(x-b)] ; y = 3.3b
dy

8*i
C
p

= -2 [~ + ik^] 3.3c

The partial differential equation for the unsteady

velocity potential may be transformed to a more convenient

form through

<j>
=

ty e
x 3.4a

G = ^ 3.4b

3
2
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In terms of the modified potential there results

2 2

2
9

$i 3 *
i + (^) 2

3x 3y
2

(TT> *i
=

° 3.5a

dip.

w = -w, (x) ; y = 3.5b

C = 2e
*1

-i8x

LM

iG _ 3_
2 3x

3.5c

where the downwash velocity is

w
1
(x) = e

i0x
1 + i

£6 (x_b) 3.6

Taking the Laplace transform of equ. 3.5a with respect

to the streamwise coordinate x and noting that the initial

conditions ip-,(0,y) and 8iK/3x (0 ,y) are zero

d
2

i>

3y"

i(p) _ 3
2
(p

2 + e
2/M2

) ip

1
( P ) = o 3.7

ty, (p) denoting the transformed dependent variable. The

solution is
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l( p) = A
l(
p)e-^'P2+e2/M2)!5 + B

1
(p)e^ ( P2+e2/M2

>''2

3.8

where the condition B, (p) = must be imposed to ensure

that the flow remains undisturbed upstream of the left-

running bow wave x-3y = 0. The constant A, (p) follows from

the flow tangency condition of equ. 3.5b, whereupon the

modified potential becomes

* X (P)

w
1
(p)

(3(p
2
+ Q

2/M
2

)

h
-3y(p

2
+e

2/M2 )^
3.9

Inversion is accomplished using standard tables together

with the convolution theorem

^ 1
(x,y) -t / w

1
(u) J (x,y,u) du 3.10a

where J is the Bessel function of the first kind
o

J
Q
(x,y,u) = J

Q M
(x-u)

2
- 3

2
y
2 3.10b

s = x - By 3.11
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It is now to be assumed that the solution may be expressed

as a power series based on frequency up to terms involving the

cube of the frequency parameter 6. Accordingly, expanding the

integrand of equ. 3.10 and performing the integration

2 2^(X/Y) = a
1
s + i6s[b

1
s+b

2
] + 6 s [c,s+c

2
+c

3
x]

+ iG
3
s
3
[d

1
s
2
+d

2
s+x(d

3
s+d

4
)

]

3.12a

where

a-L = 1/3

b
]_

= (2M
2
-1)/2M2

3 d
x

= -(8M4-12M 2+3)/48M4
$

b
2

= -3 2b/M2
3 d

2
= 3

4
b/6M4

3

c
1

= -3 2/2M2
3 d

3
= (2M

2 -1)/12M4
3

c
2

= 3
2b/2M2

3 d
4

= 3
2b/4M4

3

c
3

= -1/4M2
3 3.12

and ^, (x,y) = for s < . The upper surface pressure

coefficient for the flat plate oscillating in unbounded

supersonic flow, exact to the third power of the oscillation

frequency, follows by substituting equ. 3.12a into equ. 3.5c

with k = 3
2 e/M2
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(u) 2 . 2k
(2-M2

)x + 3
2
b +

23 L
(M

2
+ 2)x + 43

2
b x

+ i
k M

7
23 L

(M +4) 2u ~ ; x + 33 b 3.13

3.2 Cascade with Two Blades

Introduce the coordinates £ and n , where

C = £ - n 3.14

and consider the problem of determining the velocity

potential §*{£, t T\) in the preinterference zone immediately

above the second blade (the shaded region in fig. 3.1) . The

differential equation and tangency condition are

3
2 *\

8£
2

9<JS

8
2

<f>

3n

2 2 2 2
8(t>

2_£ = k
z
MZ

(j)

2
- i2kMz -^ 3.15a

an
= -e

iy
[l + ik(£-b)] n = o 3.15b

where the oscillation of the second blade, upon introducing

the interblade phase angle u, is described as a^ = a-,exp(iy)

The potential must be continuous along the second left-

running Mach wave separating the preinterference zones of the

first and second blades. Accordingly
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(f> 2 (c
= °) =

<|>1
(s=m) = ^ 1

(s=m)e
-10X

3.16

Consider the following transformation of dependent

variable

4>2 U/n) = i>2 U/n) e
-i6x

3.17

where, as shown in fig .3.1 f x = £+1. This is different

than the transformation of equ. 3.4 on account of the phase

lag exp(-i91), which ensures that along the second bow wave

£ = (or s = m) the continuity of <j> implies the continuity

of ty.
Accordingly, there may be written

ip
2 (C=0) = ip

1
(s=m) 3.18

In terms of the modified potential, the differential equation,

tangency condition and pressure coefficient are now

2 2

2 8 ^2 3 ty

3 2
3tT

- + (¥)
2 ^ - o

M

3n
-w

1 (^) exp i(y+ei)

F
2

^2 ^2 "
M

3i|;
:

ixp -i[eU+l)+y]

3.19a

3.19b

3.19c
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where, by introducing exp(-iy) in equ. 3.19c f the pressure

coefficient is given at the instant when the second blade

is at maximum angle-of-attack.

Take the Laplace transform in the streamwise sense

92V P)
2 2 2 2—

?f-
- (T (p

z+eVM^H
2
(p) = f(p,n) 3.20

dr\

where the non-homogeneous form results from the fact that

the flow along the line £=0 is now disturbed by the first

blade. The appropriate initial conditions could, in fact,

be obtained for d < n < m/$ from equ. 3.12a, while for

n > m/3 (free-stream) they are zero. It may be noted in

passing that m, shown in fig. 3.1, is the chordwise stagger

of adjacent leading edge Mach lines in the cascade and that

the limit m=0 corresponds to the sonic leading-edge locus

condition. A particular integral for the present problem

could thus be obtained by employing the Heavyside unit step

function, as in Kurosaka [9] . In this case an integral may

be written down immediately from the continuity requirement

of equ. 2.18

1T.2, .2 „,2

^2 (P) =
^i^P) + A2

(

p ^ e
en(P^+eVM^r

+ B (p)e $Tl(P +e /M > 3.21

Further, since the inverse of the second term on the right

vanishes for r, < , there must follow B
2
(p) = for

\\)

2 (C=0) = ^(s^m) .
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The constant A
2
(p) follows from the downwash condition

imposed by equ. 3.19b

-w
1
(p)e

i(y+91)
= j^-

P
- B(p

2
+ e

2/M
2
)A

2 (p) ; y=d 3.22

whereupon the general solution of equ. 3.20 is

^(y+ei)

(p
2
+ e

2
/M^) ">

w
1
(p)e VM ^'

+i> • (p) Rn /„2,
fi
2 /M2. »5

2 (P) - ^(P) +
1

, 2 , * e^<P +6 /M
)

3.23a

where ^ ' = * ; x = u+1 , y=d 3.2 3b

The inverse is

*. (£,n) = ^(x^y) +
I y ['w

1
(u)e

i(y+ei)
+iJ;

;L

' J (S,n,u) du

3.24

where the integral vanishes for ? < .

Recalling equ. 3.10a, this may be written in the form

if>2 U,n)
= ^ 1

(x / y) + i|;

1 (^ / ri)e
:L(y+el)

+ I(£,n) 3.25a

where I(£,ri) is to be determined by integrating the product

of the Bessel function and the downwash function for the

first blade ty-,, which is known from the solution of the

preceding paragraph. That is
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lU,n) =
j f ^'J (^ri,ii) du 3.25b

4Neglecting terms of order 6 in the expansion of the Bessel

function

!U,n) - J ja1+ ii 2b (u+m) +b
2

+ fi (u+m) 3c, (u+m) + 2c
2
+ 2c~(u+l)

+ i6
3
(u+m) 4d

1
(u+m) + 3d

2
(u+m) + 3d

3
(u+m) (u+1)

+ 2d
4
(u+l)

2 r

1 -

4M
l-u)

2 - 3
2
n
2 du 3.26

Performing the integration and defining an interference

potential ty-j(E,,r\) f it is found that

iJ>

2 U,n)
= ^ 1 (? / n)e

l(y+ei)
+ K»12 (C,n) 3.27a

where the interference term is
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^12 (£,n) = a
1
m + i6m b

1
m+b

2
+ 6 m c,m +c

2
m+c

3
(C£+mx)

3 T 3 2 — — 1
+ 10 m d-m +d

2
m +d

3
m(3/2 CC+mx) +d

4 ( CC+mx)

1 = K + 3n 3.28

Equation 3.27 is the required expression for the modified

velocity potential, exact to the third power of the oscil-

lation frequency parameter 6. It is easily shown to satisfy

the transformed differential equation and tangency condition,

while along the leading edge bow wave £ = it may be seen

to reduce to iK .

The upper surface pressure coefficient for the second

blade now follows by operating on 4u(5fTl) according to equ.

3.19c. The final result, exact to the third power of oscil-

lation frequency is

C < u) = c<
u)

+ C<
u)

e"
iy

3.29a
2 1 12

where the interference pressure coefficient due to the

aerodynamic interaction of the first blade may be evaluated

as
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2 (

_ i2km k m ) aM 2 c ,cp_ - TT + —
I

6M ^
+

12 3 23
m(M2

+2) + 4M2 3d + 4b3
2

+
ikVm j_ (4M

2+1K 2
+

23
-m(M2

+4) - 6M
2
3d - 6b3

2

+ -m2 (M
2
+4)/3 -m3d(M2

+3) - b3
2
(3m+4d3)

3.29b

being independent of interphase blade angle u and vanishing

for the cascade with the sonic leading edge locus condition

(m = 0) . The imaginary part of this result, the unsteady

pressure which is out-of-phase with angle-of-attack, is given

in fig. 3.2 for two blades oscillating in-phase about the

pivots at b. The inlet Mach number is 1.1. The results

labeled characteristics are exact in frequency and were

derived by neglecting thickness terms in the nonlinear

oscillating head shock model described in Section 2.

The low supersonic Mach number strongly emphasizes

nonlinear frequency effects in these calculations; as shown

later, the third-order theory gives satisfactory results out

to much higher frequencies in the higher supersonic range.

For the cascade considered here, the interference pressure

coefficient Cp compares in magnitude with the pressure

coefficient C^ u) for the isolated blade. At k = 0.075, the
P
l
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fig. 3.2 Upper surface pressure distribution for
second blade (zero interblade phase angle)

out-of-phase upper surface lift coefficient for the second

blade is 1.42; for the same blade oscillating in unbounded

supersonic flow it is 1.06.

Turning now to the blade passage zone downstream of the

second right-running bow wave, for r\ < and £ > (see

fig. 3.1). The differential equation for the modified

velocity potential, unsteady tangency condition and pressure

coefficient given by the set of equs . 3.19 still apply. Also
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i^
2 (C = 0) = ip

i
(s=2£+m) 3.30

ensures continuity of potential along the bow wave T, =

In this case the general solution, given by inverting

equ. 3.21, reduces to

n>. U,n) = ^(x,y) ~\J rw
1
(u)e

i(y+61)
+ip

l
' J (£»n,u) du

3.31

where the integral vanishes for C* < ; ^, ' is given by

equ. 3.2 3b; and the over-bar (n) is used to distinguish the

blade-passage from the preinterference zone. The important

difference between equs . 3.24 (preinterference zone) and

3.31 (blade-passage zone) is the sign attached to the integral;

however, increased complexity is to be expected in the present

case because of the reflection of left-running waves from the

lower surface of the second blade. Some simplification is

nevertheless possible as only the difference in potential

through the blade surface is now required. Accordingly

*2
(£,0 ) =^(x,d) - i/;

1
(C / 0)e

l(y+61)
+ I(£,0) 3.32

where iJj, is given by equ. 3.12a and I(£,0) by equ. 3.26.
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From a previous result

i/;

2 U,0
+

) = i\)

1
(x f d) + i|i

1
(^ / 0)e

l(y + ei)
+ 1(5,0) 3.25a

whereupon it follows that

AiM£) = -2 ^(^OJe1^ 911
+ 1(^,0) 3.33

The pressure loading coefficient is therefore given by

evaluating

AC, •2C<
u) - 4

P
l

i| 1(5,0) - || exp -l 6(5+1) +y

3.34

the reduction of which, to the expression given below, is

somewhat simplified by noting that the highest order term

in 1(5,0) occurs as a derivative with respect to 5. This

differentiation is most conveniently performed under the

integral sign in equ. 3.26. The final result is

AC T -2C<
u)

+ AC e
*1 F

12

-iy 3.35a

where the interference pressure loading coefficient is
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AC - 2C
12 *1 3

(u) i2k f 0M 2 , OD 2
)

-, + —5- < 2M 3d - 23 ml

2

+ * /_M2
£
2
+ [-4m(M

2
-l) -2M2 3d(2M2

-5) ] £+ [-m(2M2 -3) +m2 3d+2b3 2
] 2M

2
3dl

23 { >

3 2
ik M f 9 ^ 9 9 9 9 9-K^4f-^(6ir +2)/3^

J+[2m(4Mz
-3)-8d3]e +[8m(M^-2)-4M^3d(M^-3)

23 (

,
-3b3 HBd

+ [-2m
2-4M4

3
2
d
2
/3+4M2m3d(M2-2)-43 2

d(M2
3d+m) ] 3d \

3.35b

Considerable reduction is involved in determining this result.

However, the expression contains only the three basic

geometric cascade parameters m, d and b (fig. 3.1), together

with Mach number and frequency. To first order in frequency,

the preinterference pressure loading of the second of two

blades oscillating in-phase is thus seen to be independent

of chordwise coordinate £ and pivot location b. This somewhat

surprising result applies for low frequency oscillations. To

the next highest order in frequency, unsteady air forces on

the second blade depend on both of these quantities.

A second interesting observation is that when quadratic

and cubic terms in frequency are neglected, there results,

for y = 0, simply R
e
(AC

p
) = and lm (AC

p
) = 4k/3 (M

2
d/3~m)

.

This is precisely Kurosaka's periodic solution for the pre-

interference zone of the infinite two-dimensional cascade [9].

It is surprising that Kurosaka's solution, the derivation of
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which requires the inversion of an integral equation, should

be the same as the solution obtained here for the second

blade in the finite cascade. An elementary approach to the

rectilinear periodic cascade problem is given in Section 4.

Before generalizing the present analysis, fig. 3.3

summarizes the solution obtained for two blades. The real

component of generalized aerodynamic pressure acts on the

blade at maximum angie-of-attack and is therefore in-phase

with the angle-of-attack. Further, R [Cp ]
= -2/3 as the

frequency of oscillation approaches zero, as given by

Ackeret theory. The imaginary air forces, however, are 2 70°

out-of-phase and therefore act on the blade as it passes

through zero angle-of-attack with the trailing edge moving down

02 0-4 0-6 06 Io Z

O CHARACTERISTICS

FIRST ORDER

THIRD ORDER

-e s

02 0« 0-6 8 10

fig. 3.3 Upper and lower surface pressure distributions for
second blade (zero interblade phase angle, k = 0.2)
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The range of reduced frequencies over which the present

solution compares favourably with exact calculations is

indicated in fig. 3.4. For the cascades shown, the out-of-

phase pressure loading of the second blade has been integrated

up to the point of intersection along the chord of the trailing

edge expansion wave from the first blade. At M=1.25 the

third-order theory gives the preinterference lift to a few

percent for reduced frequencies to 0.4; at M = 1 . 6 the upper

frequency bound is 0.7.

0-5

O CHARACTERISTICS

FRST ORDER

THIRD ORDER

2-0

m-o 2 / /
r- 1-fTI

:P dcJ

UkI-94 / ( (~
' -w / \ /

1i /

1*5 I / / d -0-66
J

§

I

9

l f / _L
L*

1-0 -

1

/

//

// *

0-2 0-4 0-6 08 10 k

fig. 3.4 Variation of preinterference lift with reduced
frequency for second blade (zero interblade phase
angle)
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3. 3 Cascade with n-Blades

The analysis is readily extended to the n blade in

the cascade. With

t = e - 3t 3.36

in the preinterference zone of the third blade (fig. 3.1),

continuity of the potential along the third left-running

bow wave t = 0, requires

<J>3
(t=0) =

<j>

2
(C=m) = i[>

2
(e=m)e

iex
3.37

The appropriate transformation of $ is now

^(cy) = ^o(£^Y) e 3.38

where x = e+21. Equations will result which thus have an

obvious bearing to those of paragraph 3.2. The tangency

condition (3.19b), for example, becomes in the case of the

third blade 3^
3
/3y = -w, ( e) exp2i (u-61) in the plane y = 0.

Recalling equ. 3.24, the following solution thus applies for

i|»3 (e#Y)/ valid for t >

. / ^ . fr ^ 1 C [ / \
2i(y+0l) 9

^2(n=d)'
* 3 (erY) = 1>2 U,n) + j J w

1
(u)e + ~ J (c,y,u)du

3.39
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But the upwash in the plane of the third blade is now

55*(„-d) =V ei(P+91) + Sil <^» 3.40

from equ. 3.27. The maximum upwash induced in the plane of

the third blade is thus seen to vary from that induced in

the plane of the second blade by the amount 3ip _/8ri (ri=d) ,

which is second order in oscillation frequency. With this

result, equ. 3.39 may be written

i(y+ei)
r r

ty3
(e,y) = i/>

2 U,n) + g J
w
i<

u)e + ^ J
Q (e,Y,u)

3ip
i r ° v i2

+
F 7 ^n (n=d) du 3 * 41

o

where, because of the above observation concerning the

downwash, the expansion of the Bessel function has been

taken as unity in the last integral. Noting that

%\p /8n(n=d) is independent of streamwise position, and

employing equs . 3.24 and 3.2 7

i|>

3
(e,Y) = ^ 2

(e,Y)e
i(y+61)

+ V12 iZ.r\) + j j—1 (n=d) 3.42
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For the preinterference zone above the fourth blade,

there would be written

*4 <P,r) = ^ 3 (e, Y ) +
| J I Wl (u)e 3l(ll+el + — (n=d) J

Q (P/ r,u)du

3.43

where the meaning of the new coordinates is clear and where

the upwash in the plane of the fourth blade is

3 *3, «
, , i(u+ei)

3
*i2, ,..

3
*i2, .. , ,.— (Y=d) = i/^'e + ^ (n=2d) - ^ (n=d) 3.44

which may be written

^3 (Y=d) = ,2
. e
i(,+ex,

+ ^2 (n=d) 3.45

since

di>

3n

"I 2 2— (n=d) = -mB n 2c
3
6
2 +i6 3 (3md

3
+2d

4
) 3.46

from equ. 2.27. It is now easy to show that

3ip

*
4
<P,r) - ^

3
(P,r)e

i(y+ei)
+ ^(^n) + -^-^ (n=d)

3.47

where t+T = 2t+m .
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In view of the simple recurrence relation for the upwash

(equs. 3.40 and 3.45), it is possible to generalize equs

.

3.42 and 3.47; the following result is thereby obtained for

the preinterference potential of the n blade in the cascade

^n ( ^' n) = ^ n-l (^ ri)ei(y+el) +
^i 2

( a ' b >
+ (n-2) C+m

dty
12

8n
(n=d)

3.48

where E, and r\ , with x, = ^ — Bn , have been used as general

coordinates for the n blade and ip,
?

is to be evaluated at

a = £+(n-2)l , b = n+(n-2)d . This simplifies to

n (5rn) = ^n_i u '
n)e:L(y+ei)

+*i2 ( ^' n)

n 2 2
+ 6 c~m (n-2) < 2£+ndB+(n-l)m|

+ i6
3
m
2
(n-2) i d

3
m/2 j 6£+ (3n-l) d3+ ( 3n-4)

mj

+ d
4
[2^+ndB+(n-l)ml \ 3.49a

th
as the modified potential for the n preinterference zone

of the finite cascade, with the velocity potential given by

4>

n U,n)
=

i>n
(Z,r))e

i6[£+(n-l)l] 3.49b

96





It is readily shown that equ. 3.49 satisfies the differential

equation and boundary conditions described at the beginning

of this section. The requirement demanding continuity of

<j>(£,n) along the wave c=0 may also be shown to be satisfied.

The upper-surface pressure coefficient for the n blade

is given by evaluating

u) = 2\~ tyn -j
1̂ ) exp -i{e[£+(n-l)l] + (n-l)v}

3.50

where ip =
i> (£,0) , and C* corresponds to a (max) .

n 2-2
Carrying out the simplification, with k = M 0/3

r (u) (u)

P P -,n n-1
+ e

-i(n-l)y (u) F (u)

p P
L F

12 .

3.51a

where the term of second order in frequency is

C"i
u) = k

2
/e

5 (n-2)M2m(3m+2dg)

+ ik
3
/3

7 (n-2)M
2mj-[m(4M2 +l)+3M2

d3]£ + ml(5M
2
-2) + M2m

- b3
2
(3m+2d3) - [m(4M

2
+l) +2M

2
dS] ^i

3.51b

which embraces the case n-2. The solution may be written
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n-1 n
(u) _ „(u)= C T

n
+ c

(u) y e-^ + y c(
u)

e-
i( P" 1)VJ

P
12 ~ ~ P

p=l p=3

3.51c

where C is the upper-surface pressure coefficient for the
1

( )isolated blade and C^ the previously defined interference
P
12

coefficient associated with the first and second blades.

Equation 3.51 is compared with the method of characteristics

in fig. 3.5. Comments on the solution are given in paragraph

3.4 below.
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fig. 3.5 Upper surface pressure distribution for the n

blade (zer interblade phase angle)

th
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The potential difference through the plane of the n

blade is

th

A*n U) = ^n. 1 {K)e
i ^ + 61) - 2£ —±1

( n=d) 3.52

which gives

AC
p

= AC
p

+ e
l(n~ 1)y AC

p
3.53a

n n-1

where the second order term is

2 . 3

ACL = ~r 2mdM2 + ^V mdM2
[-2(M

2
+1) ^-2M

2 ln+m(4M2
-l)+2M2d3-2b3

2
]P

6
4

B
6

3.53b

Equation 3.53a may be written

n

AC
p

= AC
p

+ Y^ AC
p
e

X (p X) P 3.53c
2 p=3

where the last term is zero for the case of n=2 and where

AC is the loading coefficient for the second blade.
P
2
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3.4 Further Discussion of the Solution

A solution which is exact to first-order in oscillation

frequency is easily extracted from the more general solution

Written for the component of pressure which is out-of-phase

with the angle-of-attack, this result for the n
1*1 blade is

"mku)1 = I k u)
1p m p nL n J L 1 J

n-1
2km V*—T y cos py

m AC.

nJ

4 . „ x 4k fMd- sin U + -5- I -^ m

According to the elementary theory, the out-of-phase surface

pressure thus exhibits a sustained oscillation with blade

index, except in the case y=0, when the solution diverges.

In this case, Cp increases by the constant amount 2km/

$

n
from blade-to-blade. However, the pressure loading or total

damping force remains finite and independent of blade index

for all y. Further, AC is uniform across the chord of the
n

blade and is independent of pivot position.

The failure of first-order theory in the far field of the

cascade, for the case when the blades oscillate in-phase, was

the main reason for seeking the third-order solution. This

solution is further compared with the method of characteristics

in fig. 3.6, giving out-of-phase preinterference lift for

several reduced frequencies and interblade phase angles. The

following observations are to be noted
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(a) for zero interblade phase angle, upper-surface air

loads given by the method of characteristics fall below the

first-order solution, which becomes unbounded as the effect

of more and more blades is considered. The third-order

solution is much better.

(b) the exact results for the surface lift (u = 0)

continue to oscillate out to large blade index, although

the first segments only of these oscillations are shown in

fig. 3.6 (see, however, fig. 4.2).

(c) for finite u the approximate theory and the method

of characteristics predict a strong sinusoidal modulation

of upper-surface lift with blade index. There is also a

sinusoidal modulation in total pressure loading, but of

considerably reduced magnitude. This important practical

result is accurately predicted by the third-order theory
*

in the near field of the cascade.

(d) the third-order solution diverges in the far field.

This is most clearly seen by the occurrence directly of

blade index in the second-order expressions for C and
n

AC
p

.

n
Notwithstanding the above limitation, the simple closed-

form solution provides a useful means for estimating generalized

air forces in the finite cascade over a range of practical

*
The behavior of the exact solution in the increasingly

far field of the cascade is considered in paragraph 4.2.
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oscillation frequencies. Possible applications include

(i) preliminary blade design, (ii) validation of computer

models based on exact solutions of the linearized equations

and, less obviously, (iii) as a basis for comparison with

a possible periodic solution for the infinite cascade,

exact to the third-power of oscillation frequency. In the

next Section, such a solution is derived which is exact to

the first-power of oscillation frequency; the surface

pressure is shown to agree with the mean level of the present

first-order oscillatory solution. It seems highly likely,

on this basis, that a periodic solution to the third-power

in oscillation frequency would agree with the mean level of

the present divergent oscillatory solution.
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4 PERIODIC SOLUTION FOR THE UNSTEADY SUPERSONIC CASCADE

WITH A SUBSONIC LEADING EDGE

Flutter calculations presently employ generalized air

forces determined by applying linearized flow theory to

finite rectilinear cascades [20], However, no proof has

been given that these forces are representative of the

infinite rotor. Indeed, it is frequently very difficult to

obtain convergence of the surface pressures in practical

calculations. This has been shown by Verdon [6]. It has

been repeatedly demonstrated over a wide range of oscilla-

tion frequencies during the course of the present

investigation.

The work of the final Section of this dissertation

attempts to relate the finite cascade theory of the previous

Section with an elementary periodic solution derived for

the infinite cascade. The periodic analysis is based on a

generalization of Sauers solution for the flat plate oscil-

lating slowly in unbounded supersonic flow [18] . It is

exact to the first power of the oscillation frequency.

Kurosaka gives a difficult mathematical treatment of this

problem [9] . The present approach, however, is much simpler.

4 . 1 The Periodic Solution

The dimensionless linearized perturbation equations

describing the supersonic flow, tangency condition and

pressure coefficient for the single flat-plate aerofoil are
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2 2

B ^ ^ = k%V - i2kM^ 3—

^

4.1a
8x

2
9y

2 1 9x

9<t>

= -[1 + ik(x-b) ]; y = 4.1b
By

,

1

= " 2
\ 83T

+ lk*l/C = -2
I
-,—= 4.1c

as previously given. The coordinate x is measured downstream

from the leading edge/ b is the pivot and k the reduced

frequency of oscillation. Upon expressing $, as • a first-

order power series based on frequency, Sauer gives the

following particular solution

(J, 1
(x,y) = f

1
(s) + k[h

1
(s) - iM

2
y/3f

1
(s)] 4.2a

f^s) = h
1
(s) =0; s < 4.2b

s = x - 3y 4.3

which thus vanishes upstream of the left running leading

edge bow wave. Apply the flow tangency condition of equ.

4.1b

[l+ik(s-b)] = 3f{ + k(Bh
;

[+iM
2
/3f

1
) 4.4
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where the prime denotes differentiation with respect to

argument and where, since 7=0,5 has been written for x.

It follows that

f
1
(s) = s/3 4.5a

h
x
(s) = - is/3

3
(s/2 + bg

2
) 4.5b

The velocity potential for s > is then

<|)

1
(x,y) =

I
- i M (| + b3

2
+ M2

3y) 4.6

and by substituting directly into equ. 4.1c, the upper

surface pressure coefficient, exact to the first power of

oscillation frequency

(u) 2 J , 2k r/n_^2,..^ 2

3

' = - =r + i ^ [(2-M )x+b$ ] 4.7
3'

in agreement with the result derived in paragraph 3.1

using the Laplace transform.

Consider now the infinite array and denote by x,y the

th *
coordinates of the flow referenced to the n ' blade. At

*
No confusion should arise from the use of the same

x,y coordinates as in the unbounded flow case.
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time t = 0, as shown in fig. 4.1, the angle-of-attack of

the n^ blade is a = 1. That of the (n+1)
th

blade,
n '

denoted the q blade, is a = exp (ip) . The preinter-
si

ference zone potential
<f>

(x,y) in the shaded region of

fig. 4.1 clearly must satisfy equ. 4.1a. Accordingly

<j>n
(x,y) = f

n
(s) + k h

n
(s)-iM y/Sfn (s) 4.8

where s = x - $y, as in the previous case. However, while

c=e-/377«o

s-x-/9y-o

fig. 4.1 Cascade geometry
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the functions f, (s) and h,(s) previously vanished ahead of

the leading-edge bow wave, this is no longer so. Similarly

for the preinterference zone immediately above the q blade

4 Urn) = f (C) + k
SI T.

h (O-iMn/Bf (?) 4.9

C = 5 ~ Bn 4.10

Apply the flow tangency condition to both regions

l+ik(s-b) = Bf *+k(Bh'+iMVBf )n n n
4.11a

iy
l+ik(C-b) Bf '+k(Bh'+iMV3f_

)

q " y
4.11b

in the planes y=0(0<s<l;s=x) and n =

(0 < C
< 1; i - C) / respectively. There immediately

results for the steady-state and first-order frequency

terms, respectively

f
n
(s) = s/B + A

n
4.12a

f (C) = C/Be
ly

+ A
q

4.12b

h (s) =
n

^4 (§+bB
2+M

2
BA )

- ikB

B
n n

4.12c

h (C)
=

q *
- i^ (Lfb3

2
)e

ly
+ M

2
BA - ikB

B

4.12d
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where A and B are integration constants. Thus it is

found that

<J>n
(x,y) =

3 n
iks

|n-b3
2+M2

gy+M2
3A -ik -r-yA -B

3 n n

4.13a

q
U/Tl) =

3 q 7" (ffb3
2+M2

3 n )

e

ly
+M

2
3A

- ik
r M2

-T-T\A -B
3 q q

4.13b

The requirement for continuity of the velocity potential

across the bow wave s = m or £ = may be written

<|>n
(s = m) =

<j>

q
( C = 0) 4.14

which leads to

111
TV TV— + A *= A„

3 n q
4.15

by virtue of the steady-state terms in equ. 3.13.

The velocity potential in the n preinterference zone

at the instant when the angle-of-attack of the n blade is

a =1 has been denoted d> (s) and at this same time in the
n yn

q zone when a = exp(iy) by $ (c) • Thus, at the somewhat

earlier time when a =1 the potential in the q zone will

be
<J)

(^)exp(-iy) by virtue of the assumed harmonic time

109





dependence. For periodicity of the flow

*n
(s) = 4>

q
U) e~

iy
4.16

Applying this result to equ. 4.13

n
A e

•iy
4.17

and using equ. 4.15

A_ = m-/-6-
n lu ,

e H-l
4.18

The preinterference pressure coefficient for the upper

surface of the n blade in the infinite cascade, exact to

the first power of oscillation frequency, follows without

Bn

(u)

n

2 . 2k
(2-M

2
)x+b$

2+— m

e
1]J

-l
4.19a

which may be written as a modification to C , the upper

surface pressure coefficient for the isolated blade in

unbounded supersonic flow

(u) = c
(u)

+
i2km/B'

n M* -
4.19b
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Consider the flow in the blade passage bounded by the

4- Y\

right-running bow wave from the q blade and its reflection

from the n blade. The potential may be constructed by

superimposing upon the previous solution of left-running

waves a similar family of right-running waves

<f>

q
U,n) =

<J>n U,y) + gq U)
+ k r (c)+iM n/$ga (C) 4.20

C = K + 3n 4.21

It is seen immediately that

g (0) = 4.22

continuity of the steady-state potential requiring
<f>

=
<f>

when c"
= . With the observation s = C+m, y = n+d, the

potential
<f>

(x,y) may be expressed in terms of the local

coordinates £,n of the q blade; equ. 4.20 is then

4>

q
U,n) = *n (C,n) + | - i -p C(m+d3M

2 )+mn3M2
+C

+ gq
(0 + k

— M —
r
q

( ^ )+i X ng
q
U) 4.23

where C is a constant involving A , cascade geometry, and
n

Mach number. The flow tangency condition applied to the

lower surface of the q blade may therefore be written
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—x ve H l+ik( c-b) -[l+ik(^-b)

M
2

+ ik(-^-m)
p

+ 3r' + k( 3^ + i^g
q

) 4.24

where £ has been written for £, since n = 0. From the

steady-state terms, together with equ. 4.22

V* =^ * 4.25

while from the first-order frequency dependence

r^ = - i/3
3

(l-e
ly

) (c+b3
2

) + M2
d3 - mg

: 4.26

Hence, the lower surface pressure coefficient for the q

blade, from equs. 4.1c and 4.2 3

th

(1) (u) _
p
q pn \

g
q qK g +m/B-(m+dBM

2
)/3

3])• 27a

C
(U)

+ (l-e^C (U)
+ i *£<££- m) + i

Pn p l 3
v

3

2 km

4.2 7b

where, as previously defined, C and C are the upper
P- Pi

th ]n
surface pressure coefficients for the n blade and for the

isolated blade, respectively, Finally, there may be written

for the preinterference pressure loading for the q , or

(n+1) blade, the following expression
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AC
o

C
o
U)

- Cn
(U) ^ 4.28a

pn+l pn+l pn

using the periodicity of C , and which reduces to

2

AC - IC (1-e ) + i -5- (—7T m) 4.2 8b
pn+l p l 3 3

These should now be rewritten to correspond to the time

of maximum angle-of-attack for the (n+1) blade. Thus,

multiply equ. 4.28b by exp(-iy) and there may be written

the following general expressions for the preinterference

pressures in the infinite cascade

c
(u) = (u) . 2km/

B

3

4>29
P Pi e^ - 1

2
._ _ (u) , -iy ,. , . 4k ,M d

s
-iu „ ->nAC = 2C (e - 1) + i -— (— m) e M 4.30

P Pl P 3

4 . 2 Comparison with Finite Cascade Theory

The analysis of Section 3 gives the following solution

for preinterference pressures when terms of quadratic and

cubic frequency dependence are neglected

c
(u) . c

(u)
+

. 2km y e
-i

P Pi 3 X—o.mi ^1 3 rTi

n-1

p=l

AC = 2C
(u)

(e"
1^ 1) + i ^(^-m)e"^

pn p l 3 3n X 4.32
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•HVi

for the n blade of the finite supersonic cascade, with

C denoting the upper surface pressure coefficient for the

isolated blade. Consider equ. 4.31 and for y ^ 2-nm (where

m is integer) write

m
(u)

n
- C

(u)

n-1
2km \T*=
~7T 2-s

cos PU

2km i -1 sin(n-^i) y \
\ 2 2 sin y/2 /

4.33a

(u)

n
- C

(u)

n-1
2km

B
3 X! sin py

2km i sin

I 2(l-c
cos (n-^) \i

cos y) 2 sin y/2
4.33b

where it may be noted that interblade phasing introduces into

the real part of equ. 4.33 terms of first order in frequency.

The upper surface pressures in the unsteady finite

cascade are thus predicted on the basis of the elementary

theory to oscillate indefinitely with blade index, except

for the case of zero interblade phase angle, when the

component of unsteady aerodynamic force which is out-of-phase

with the angle-of-attack evidently diverges. This divergence

is due to the approximate representation of the velocity

potential by terms of first order in oscillation frequency,
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or to some other limitation of the elementary theory, as

illustrated in fig. 4.2 giving the results of exact calcula-

tions of unsteady preinterference lift. Considered, with

zero inter-blade phase angle, are torsional oscillations at

reduced frequencies of 0.3 and 1.0. The results show an

almost undamped oscillation in upper and lower surface lift

with blade index out to the 35 blade.

0-5

0-4 -

UjfcP d<]

0-3 -

0-2

01

0-2 -

fig. 4.2 Variation of preinterference lift with blade index.

Method of characteristics with zero interblade
phase angle
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On the basis of the low frequency theory of the finite

cascade, together with the results of fig. 4.2 (see also

fig. 3.6) it is possible to conclude that surface pressures

in finite cascade calculations will exhibit a very lightly

damped oscillation with blade index for most frequencies of

practical interest in flutter analysis and for all inter-

blade phase angles

.

Sustained oscillations in surface pressure with blade

index are not possible in the infinite rotor. Without proof,

Verdon suggests that a periodic solution may be obtained by

estimating the mean level of these oscillations [6] . This

assumption has indeed been the basis for past work on super-

sonic unstalled compressor blade flutter. As outlined below,

the present work provides some justification for this approach

At low oscillation frequencies, a proof is given that the

average of finite cascade calculations is in fact the desired

periodic solution for the infinite cascade.

Rewrite equ. 4.29 for the infinite array in terms of real

and imaginary parts

m
r (u) r (u) 2km 1

2

4.34

R
(u) _ (u) 2 km

e
3

sin p
2(1- cos y

)

which are precisely the mean values of the two undamped

oscillatory series given in equ. 4.33 for the finite cascade
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The solution for the finite cascade involves the divergent

series

n

E- 1py

which does not converge to a sum in the ordinary sense of

the word. However, the series is capable of generalized

summation, using the method of arithmetic means [25], In

this sense, the Cesaro generalized sum is

R £
L 1

ipy
+

m=<»

£
m=-°°

2tt
- m

)
4.35a

m £
L- 1

ipy sin y
2(1- cos y)

4.35b

where 6 is the delta function. It may thus be said that the

solution for the finite array converges in the Cesaro sense

to the desired periodic solution (y ^ 0)

.

The divergent series for the finite cascade may be

interpreted conveniently by representing the partial sums

n

•n-E-
1py

as points in the complex plane. From equ. 4.33 it is then

easy to show that these points are equally spaced about the
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circumference of a circle which passes through the origin of

coordinates and whose center is at the point shown (fig. 4.3)

The amplitude of oscillations is 1/2 cosec y/2 .

cosec /jl/z

Re[sn]

fig. 4.3 Geometrical interpretation of the divergent
series for the finite cascade array

The finite and infinite cascade solutions are compared in

fig. 4.4. Presented against blade index are in-phase and

out-of-phase components of upper surface lift. The results
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• i

--o
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c

o

> o o

1
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BLADE NO (n)

fig. 4.4 Comparison of finite and infinite (periodic)
solutions for upper surface lift (k=0.1)
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given include exact calculations based on the method of

characteristics which extend to blade index 20. Several

interblade phase angles are considered. Reduced frequency

is 0.1. It is important to note that no periodic solution

exists according to the present theory when the blades

oscillate in phase (u = 0). In fig. 4.4, however, making

allowance for the expected limitations of first order theory

in the far field of the cascade, it is clear that for u

greater than some small value, the lift in the finite cascade

commences to oscillate about the derived periodic solution.

Further, when the blade oscillations are approximately

in-phase, the pressure forces in the finite cascade oscillate

with large period and amplitude. As u approaches 180° the

period and amplitude become very small. Both the method of

characteristics and the elementary theory predict this

behaviour. Note also that the imaginary part of the periodic

solution is independent of y; however, the real component of

the pressure varies with u, approaching Ackeret theory as the

phase angle approaches 180°.

The unsteady air forces in the finite cascade do not

therefore converge in the usual sense with increasing blade

index to the periodic forces predicted by infinite cascade

theory. Instead, they oscillate indefinitely about the

periodic solution. Further, while exact calculations indicate

the possibility of light damping of these oscillations, the

rate of convergence is much too slow for practical purposes.
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In the case of the blade pressure loading, the diffi-

culties noted above disappear. The ACp of equ. 4.32 for
n

the finite cascade and the ACp of equ. 3.30 for the infinite

cascade are identical. The fact that AC is constant for
n

all the blades of the cascade (except the first) was noted

in Section 3. This finding of the elementary theory is in

agreement with the results given in fig. 4.5* (see also

fig. 4.2).

*Note the large component of lift in these calculations
which is not associated with the pitching of the aerofoil,
namely 4 sin y /$ •
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16 20

fig. 4.5 Variation of upper surface lift and total lift
with blade index (45° interblade phase angle,
k=0.1)
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5 CONCLUSIONS

Nonlinear Effects

A numerical procedure for calculating the nonlinear

effects of blade thickness in finite supersonic cascades

with a subsonic leading edge locus is presented. A basic

feature of the method is the application of the Rankine

Hugoniot relations to determine unsteady boundary conditions

immediately downstream of an oscillating bow shock wave. The

solution is developed downstream of the shock using the two-

dimensional nonlinear theory of characteristics. For the

single oscillating wedge, the solution is in good agreement

with Carrier's exact solution, even at Mach numbers close to

shock detachment. There is a significant increase in the

stability of the biconvex aerofoil, compared with the flat

plate, for oscillations about a rearward pivot. On the other

hand, for slow oscillations about a forward pivot, this

aerofoil exhibits a level of instability which is somewhat

higher than that given by the classical linear theory. The

equivalent single wedge, however, is dramatically unstable

and in this case the pressures show very poor agreement with

linear theory. The general nonlinear thickness solution for

the finite cascade reduces correctly in the limit as blade

thickness vanishes. There is also an indication that thick-

ness effects may be reduced by cascading.
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Linear Theory

The finite flat plate array is solved analytically to

the third power in oscillation frequency, using the Laplace

transform. Notwithstanding the divergence of the solution

in the far field of the cascade, owing to a Bessel function

expansion which assumes small values of the argument, the

simple expressions for pressure distribution have application

over a useful range of oscillation frequencies. The important

first-order frequency solution is also derived by generalizing

Sauer's classical treatment of the oscillating flat plate in

unbounded supersonic flow. This is compared with a corre-

sponding result for the infinite array , which is obtained

using a simple periodic analysis. The pressure loading in

the two cases is shown to be identical. For the case when

the blades oscillate with some phase difference, surface

pressures in the finite cascade exhibit a continuing oscilla-

tion with blade index. The mean value of this oscillation

is shown to be the correct periodic solution.
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APPENDIX

Alternative Derivation of the First-Order Solution

for the Finite Cascade

A solution for the finite cascade, exact to first-order

in oscillation frequency, may be obtained by suitably

extending Sauer's solution for the isolated blade oscillating

slowly in unbounded supersonic flow [18] . The flow in the

n preinterference zone of the cascade must satisfy

2 2
d *n 8 *n 2 2 2

8<
^n

2 —~ ^ = k^M 6 - i2kMT ^ A. la6„2 „ 2 Yn 3xp 8x 9y

3<J>

B. = -[1 + ik(x-b) ] e
i(n 1)y

; y = A. lb
9y

where x and y are local coordinates for the n blade. A

particular solution is

<Pn U,Y)
= f

n
(s) + k[h

n
(s) ~ iM

2
yf

n
(s)/3] A.

2

where s = x-£y A. 3

and where, for the isolated aerofoil, the functions f (s)

and h(s) vanish upstream of the left-running bow wave s=0

Apply the flow tangency condition
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[l + ik(s-b)]e l(n 1)y = 3f
n

' + k(3h
n

' + iM
2
f
n/3) A.

4

where the prime denotes differentiation with respect to

argument and where, since y=0, s has been written for x.

It follows that

f
n
(s) = s/3e

i(n- 1)li + A
n A. 5a

h„(s) = is/3 3
t(s/2+bB

2
)e

l(n 1] y + M
2
3A

n J + B
R

A. 5bn

where A^ and B are integration constants. Thusn n 3

/ \ si (n-1) u . , ik
n (x,y) = j e + A

n
- -3

p

(f+b3
2+M2 3y)e

i(n- 1) ^+M23A
n

- ik(M yA
n
/3-B

n ) A.

6

To determine the pressure coefficient

C
p

(x,y) = -2[f
n

' +k(h
n

, +if
n

,

)l e

n

-i(n-l)

y

A.

7

4- \\

corresponding to maximum angle-of-attack of the n blade,

the integration constant A is required. This is obtained

by matching steady potentials in adjacent preinterference

regions along the common left-running bow wave. Thus, with

A,=0, the continuity requirement
<J>

(s=m) =
<f>n+ -|( s ~0) leads to
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n

n-2

p=0
3

ipy
A.

8

and the upper surface pressure coefficient for the n

blade in the cascade in the preinterference zone is

c
(u) . c

^u)
+ ik

2m

n 1 3

n-1

Z
P=l

-ipv
A.

9

where C^' corresponds to the isolated blade. To 0(k) this

agrees with equ. 3.51c derived using the Laplace transform.

If consideration is now given to the flow field bounded

by the right-running bow wave from the (n+1) blade and its

reflection from the n blade, then the potential in this

region may be constructed by superimposing upon the previous

th
solution of left-running waves from the n blade an analogous

family of right waves. The basic procedure is given in

Section 4, where the Sauer approach is applied to the infinite

cascade. The pressure loading is found to be

AC, = 2C
(u)

n
e"

1]J -l +
i4k M2 d - m

-iy
A. 10

which is again in agreement with a result of Section 3.

127





LIST OF REFERENCES

1. Fleeter, S., Proceedings of a Workshop on Aeroelas-
ticity in Turbomachines held at Detroit Diesel Allison,
Indianapolis, June 1972, Project Squid, ONR.

2. Okurounmu, 0. and McCune, J.E. , Lifting Surface Theory
of Axial Compressor Blade Rows: Parts 1 and 2, AIAA
Journal, Vol. 12, No. 10, Oct. 1974, pp. 1363-1380.

3. Lane, F. , Supersonic Flow Past an Oscillating Cascade
with Supersonic Leading Edge Locus, Journal of Aero-
nautical Sciences, Vol. 24, June 1957, pp. 65-66.

4. Platzer, M.F., and Chalkley, E.G., Theoretical Investi-
gation of Supersonic Cascade Flutter and Related
Interference Problems, AIAA/ASME/SAE 13th Structures,
Structural Dynamics, and Materials Meeting, San Antonio,
Texas, April 1972, Paper No. 72-377.

5. Brix, C.W. , and Platzer, M.F., Theoretical Investigation
of Supersonic Flow Past Oscillating Cascades with Subsonic
Leading Edge Locus, AIAA 12th Aerospace Sciences Meeting,
Washington, D.C. , Jan. 1974, Paper No. 74-14.

6. Verdon, J.M. , The Unsteady Aerodynamics of a Finite
Supersonic Cascade with Subsonic Axial Flow, Transactions
of ASME , Journal of Applied Mechanics, Vol. 40, No. 3,
Sept. 1973, pp. 667-671.

7. Sis to, F. and Ni, Ron Ho, Research on the Flutter of
Axial-Turbomachine Blading, Stevens Institute of
Technology, Tech. Rep. ME-RT74-008, May 1974.

8. Nagashima, T. and Whitehead, D.S., Aerodynamic Forces
and Moments for Supersonic Vibrating Blades, CUED/A-
Turbo/TR-59, Cambridge University, 1974.

9. Kurosaka, M. , On the Unsteady Supersonic Cascade with
a Subsonic Leading Edge - An Exact First Order Theory,
Parts 1 and 2, Transactions of ASME, Journal of
Engineering for Power, Vol. 96, No. 1, Jan., 1974,
pp. 13-31.

10. Verdon, J.M. and McCune, J.E., The Unsteadv Supersonic
Cascade in Subsonic Axial Flow, AIAA Journal, Vol. 15,
No. 2, Feb. 1975, pp. 193-201.

128





11. Busemann, A., Aerodynamischer Auftrieb bei Uberschall-
geschwindigkeit, Luftfahrt forschung, Bd. 12, Nr. 6,
Oct. 1935, pp. 213.

12. Van Dyke, M.D., Supersonic Flow Past Oscillating
Aerofoils Including Nonlinear Thickness Effects, NACA
Technical Note 2982, July 1953.

13. Teipel, I., Die Berechnung instationarer Luftkrafte im
schallnahen Bereich, Journal de Mecanique, Vol. 4,
No. 3, Sept. 1965, pp. 335-360.

14. Teipel, I., Die Verdichtungsstosswelle an einem
oszillierenden Keil, DVL - Bericht Nr. 424, 1965.

15. Carrier, G.F., The Oscillating Wedge in a Supersonic
Stream, Journal of Aeronautical Sciences, Vol. 16,
No. 3, March 1949, pp. 150-152.

16. Garrick, I.E., and Rubinow, S.J., Flutter and Oscillating
Air Force Calculations for an Aerofoil in . Two-Dimensional
Supersonic Flow, NACA Report No. 84 6, 194 6.

17. Lichtfuss, H.J. and Starken, H. , Supersonic Exit Flow
of Two-Dimensional Cascades, ASME Publication, Presented
at the Gas Turbine and Fluids Engineering Conference
and Products Show, San Francisco, Calif., March 19 72.

18. Sauer, R. , Elementare Theorie des langsam schwingenden
Uberschallflugels, ZAMP, 1950, pp. 248-253.

19. Landahl, M. , Unsteady Transonic Flow, Permagon Press,
London, 19 61.

20. Snyder, L.E. , and Commerford, G.L. , Supersonic Unstalled
Flutter in Fan Rotors; Analytical and Experimental
Results, ASME Paper No. 74-GT-40, Nov. 1973.

21. Oswatitsch, K., Die Berechnung wirbelfreier achsensym-
metrischer Uberschallfelder , Oesterr. Ing-Archiv X,

Bd. 4, 1956, pp. 359-382.

22. Owazarek, J. A. , Fundamentals of Gas Dynamics, Inter-
national Text Book Company, Pennsylvania, 19 64,
pp. 366-378.

23. Van Dyke, M.D., On Supersonic Flow Past an Oscillating
Wedge, Quarterly of Applied Mathematics, Vol. 11, No. 3,

Oct. 1953, pp. 360-363.

129





24. Jones, W.P. and Skan, W. , Aerodynamic Forces on Biconvex
Aerofoils Oscillating in a Supersonic Air Stream,
Aeronautical Research Council R&M No. 2749, August 1951.

25. Kantrowitz, A., The Supersonic Axial-Flow Compressor,
NACA Report No. 9 74, 19 50.

26. Lyusternik, L.A. , and Yanpol'skii, A.R. , Mathematical
Analysis, Permagon Press, London, 1965.

130





INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Documentation Center 2

Cameron Station
Alexandria, Virginia 22314

2. Library, Code 212 2

Naval Postgraduate School
Monterey, California 93940

3. Associate Professor M.F. Platzer, Code 57P1 15
Department of Aeronautics
Naval Postgraduate School
Monterey, California 93940

4. Professor D.J. Collins, Code 57Co 1

Department of Aeronautics
Naval Postgraduate School
Monterey, California 93940

5. Professor T.H. Gawain , Code 57Gn 1
Department of Aeronautics
Naval Postgraduate School
Monterey, California 9 3940

6. Associate Professor R.P. Shreeve, Code 57Sf 1

Department of Aeronautics
Naval Postgraduate School
Monterey, California 93940

7. Professor C. Comstock, Code 53Zk 1
Department of Mathematics
Naval Postgraduate School
Monterey, California 93940

8. Professor K.E. Woehler, Code 6lWh 1
Department of Physics and Chemistry
Naval Postgraduate School
Monterey, California 9 3940

9. William Richard Chadwick 1

Research Associate
Surface Warfare Department
U.S. Naval Weapons Center
Dahlgren, Virginia

10. Dr. H. J. Mueller, Code AIR-310 1
Naval Air Systems Command
Washington, DC 20 36

131

















Thesis
C33863
c.l

Chadwick
Unsteady supersonic

cascade theory includ-
ing nonlinear thick-
ness effects.

The sis

C33863 Chadwick

c.l Unsteady supersonic
cascade theory includ-

ing nonlinear thick-
ness effects.

23



thesC33863

U
|«iSV supersonic "scade theory inclu

3 2768 002 09679 4
DUDLEY KNOX LIBRARY


