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Same-sex sexual behaviour is ubiquitous in the animal
kingdom, but its adaptive origins remain a prominent puzzle.
Here, I suggest the possibility that same-sex sexual behaviour
arises as a consequence of the competition between an
evolutionary drive for a wide diversity in traits, which
improves the adaptability of a population, and a drive for
sexual dichotomization of traits, which promotes opposite-sex
attraction and increases the rate of reproduction. This trade-
off is explored via a simple mathematical ‘toy model’. The
model exhibits a number of interesting features and suggests a
simple mathematical form for describing the sexual orientation
continuum.

1. Introduction
When a particular behaviour or trait is widespread across a
group of animals, its origin is usually explained in terms of the
fitness advantage that it confers. Such explanations attempt first
to understand how the fitness of the animal population has a
dependence on the degree to which it exhibits a given trait. It is
then assumed that the processes of evolution and natural selection
bring the population close to the point of maximal fitness. (See, for
example, references [1,2] for a review.)

Given this paradigm, the prevalence of same-sex sexual
behaviour in the animal kingdom has presented something of a
puzzle. Same-sex sexual behaviour is ubiquitous across the animal
kingdom, and has been catalogued in hundreds of animal species
in ways that range from same-sex courtship and copulation
to long-term pair bonding and parenting. (See, for example,
reference [3] for an extensive review.) This ubiquity suggests
the possibility that same-sex behaviour is associated with some
kind of fitness advantage. The nature of this advantage, however,
remains poorly understood, and is a source of considerable
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scientific debate. The puzzle is particularly pronounced, because same-sex attraction ostensibly has a
significant cost, in the sense that it can reduce the frequency of mating between opposite-sex pairs, and
thereby lower the rate of reproduction.

A number of hypotheses have been proposed to explain the origin of same-sex sexual behaviour in
animals. These are reviewed, for example, in references [4,5], but a few of the more prominent hypotheses
are briefly listed as follows. One hypothesis is that such behaviours arise primarily because of their
role in maintaining social bonds, alliances and dominance hierarchies among members of the same sex.
Another possible mechanism is that same-sex courting or mating provides ‘practice’ that improves the
odds of success in later mating attempts with the opposite sex. Some studies have also considered the ‘kin
selection’ hypothesis, which posits that same-sex sexual behaviour in one individual provides a genetic
advantage to the individual’s siblings, and on the whole provides an advantage to the family genetic line.
Finally, there are genetically motivated hypotheses, such as the idea that genes promoting same-sex
sexual behaviour in a homozygous state may confer a fitness advantage when in a heterozygous state,
or the idea that an allele promoting same-sex sexual behaviour in one sex may increase the fitness of the
opposite sex. (Table 2 of reference [5] provides a summary of these and other hypotheses, along with
further references.)

The purpose of this paper is to define and consider an interesting mathematical problem that can be
said to describe a different potential mechanism for the adaptive origins of same-sex sexual behaviour.
Central to this proposed mechanism are two ideas: first, that having a diversity of traits among a given
group confers a fitness advantage, and second, that the sexual attraction of one individual to another is
determined by the traits of the other, rather than by their genetic sex. These two ideas together imply that
the breadth of traits present within a given sex is pulled in opposite directions by two competing factors.
On the one hand, the unpredictable environment favours a wide distribution of traits. On the other
hand, the sexual nature of reproduction favours a dichotomizing of traits according to each individual’s
biological sex. Such a dichotomy promotes opposite-sex attraction, thereby increasing the number of
offspring. The purpose of this paper is to explore the idea that a balance exists between these two factors
that naturally leads to a finite degree of same-sex sexual attraction.

It should be stated up front that this paper is not intended to be taken as a realistic model for
explaining the sexual behaviours or sexual orientations of any particular animal group.1 Instead, I focus
only on a simple mathematical problem, which represents a minimal description of a possible trade-
off between diversity of traits and sexual dichotomization. Further, this analysis considers only the
distribution of traits and preferences that maximize the expected fitness of the population as a whole.
Whether this kind of optimum can be expected to be produced by evolution and natural selection is a
delicate question, and depends on the mechanisms by which sexual traits and sexual preferences are (or
are not) inherited [1,2]. These questions are not considered here, and as such this paper is best read as
merely an interesting mathematical problem that is inspired by the question of the origins of diversity in
animal sexual behaviour. The hope is that this problem, and its solution, can inspire future discussion
and more accurate models.

The remainder of this paper is devoted to proposing and exploring a simple ‘toy model’, which
considers the optimal distribution of a single trait among the population. The distribution is completely
determined by a single parameter t that describes the relative importance of phenotypic variation for
the species fitness. The value of the parameter t determines both the distribution of traits among the
population and the prevalence of same-sex pairing, both of which can be described analytically. The
model exhibits a number of interesting mathematical features, including a series of bifurcations in
the trait distribution and in the distribution of sexual orientations as a function of t. At small t, both
distributions acquire a simple mathematical form. Results from the model are discussed in the context
of data on human sexual orientation.

2. Model
In the toy model that is the subject of this paper, it is imagined that all individuals are characterized
by a single trait whose value x ranges from 0 to 1. Suppose, for concreteness, that females tend to have
values of x that are closer to 1, whereas males tend to have values of x that are closer to 0. Under this
description, each sex is characterized by two probability density functions: one describing the probability
of possessing a certain trait value x, and the other describing the probability of desiring a trait value xc in

1Of course, this paper also does not attempt to analyse the relative advantages of sexual versus asexual reproduction; only sexual
reproduction is considered in the model presented here. Questions about the origin of sex have been studied elsewhere [6–9], and
remain a prominent research topic.
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p(x) = qc(x) q(x) = pc(x) = p(1 – x)

small t 

x

trait value

(a)

(b)

(c)

large t

Figure 1. (a) Schematic of the four relevant distributions of trait value and trait preference: p(x), the distribution of traits possessed
by males; q(x), the distribution of traits possessed by females; pc(x), the distribution of traits desired by males in a mate and qc(x), the
distribution of traits desired by females in a mate. Within the model, all four can be related to a single distribution p(x), which is to
be optimized. (b) When the parameter t is small, the optimal distributions are such that p(x) and q(x) have very little overlap, and the
number of offspring is maximized. (c) When t is large, a broader distribution of traits is favoured, and consequently, there is significant
overlap between the male and female trait distributions, resulting in a relatively high rate of same-sex pairing.

a mate. The distributions of the trait value x are denoted p(x) and q(x) for males and females, respectively.
The distribution of the desired trait value xc is denoted pc(xc) for males and qc(xc) for females. The
four distributions are summarized graphically in figure 1. It is assumed that x and xc are independent
variables, so that the trait value xc that an individual desires in a mate is independent of the trait value x
possessed by the individual itself.

In principle, these four distributions can be completely distinct from each other. However, in order
to simplify the model, I introduce the following two assumptions. The first assumption is that there is a
symmetry between the two sexes, such that each sex is equivalent to the other under a redefinition of the
value of the trait x → 1 − x. In other words, in terms of their traits and preferences, the two sexes are taken
to be ‘mirror images’ of each other, so that q(x) = p(1 − x) and qc(xc) = pc(1 − xc). The second assumption
is that the number of individuals possessing trait value x is equal to the number of individuals desiring
the trait value x in a partner. This assumption guarantees that there is ‘someone for everyone’, and is
equivalent to the conditions that pc(x) = q(x) and qc(x) = p(x). These two assumptions together imply that
there is only one relevant distribution p(x) for describing the two sexes, and that all others can be related
to it by pc(x) = q(x) = p(1 − x) and qc(x) = p(x) (figure 1).

Now, consider a population consisting of a very large number N of individuals, and suppose that the
individuals all become paired with each other in such a way that every individual’s desire for the trait
value of their partner is satisfied. The proportion of heterosexual pairings that result from this process
can be calculated as follows.

Consider two different trait values x1 and x2. One can now define two groups of individuals:
(i) those who possess trait value in the infinitesimal interval (x1, x1 + dx1) and desire trait value
(x2, x2 + dx2) in a partner, and (ii) those who similarly possess x2 and desire x1. These two groups
are referred to as ‘group 1’ and ‘group 2’, respectively. The number of males in group 1 is given by
M1 = N · p(x1) dx1 · pc(x2) dx2. Similarly, the number of females in group 1 is F1 = N · q(x1) dx1 · qc(x2) dx2.
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For group 2, one can likewise define the number of males and females as M2 = N · p(x2) dx2 · pc(x1) dx1,
and F2 = N · q(x2) dx2 · qc(x1) dx1, respectively. Because of the symmetry of the distributions p(x) and q(x),
the total number of individuals M + F is the same in both groups. One can, therefore, pair the two groups
in such a way that each individual in group 1 is paired with an individual in group 2. If these pairings
are selected at random, then the proportion of heterosexual pairings is (M1F2 + F1M2)/(M + F)2, and the
number of heterosexual pairings between the two groups is dNhet(x1, x2) = (M1F2 + F1M2)/(M + F). To
find the total number of heterosexual pairings across the entire population, one can integrate dNhet(x1, x2)
over all values of x1, x2. Inserting the expressions for M1,2 and F1,2 gives

Nhet = N
2

∫ 1

0

∫ 1

0

[(p(x1)p(1 − x2)]2 + [(p(1 − x1)p(x2)]2

p(x1)p(1 − x2) + p(1 − x1)p(x2)
dx1 dx2. (2.1)

The value of Nhet is maximized when the distributions of possessed traits and desired traits, p(x)
and p(1 − x), have zero overlap (i.e. when p(x)p(1 − x) = 0 everywhere). In this case, all pairings are
heterosexual, Nhet = N. If each heterosexual pairing produces b offspring on average, then the number of
individuals in the next generation is bNhet.

On the other hand, one may expect finite overlap between p(x) and p(1 − x) in situations where there
is a fitness advantage conferred by each sex having a wide diversity in traits. In particular, one can define
the trait entropy of the next generation as

S = −bNhet

∫ 1

0
p(x) ln[p(x)] dx. (2.2)

Equation (2.2) is equivalent to the Shannon entropy s of the distribution p(x), multiplied by the number
of individuals in the population. The entropy S is maximized when p(x) ≡ 1, i.e. when every trait value
is equally likely for each individual, regardless of sex. Presumably, when the environment is such that
there is pressure to produce offspring and also pressure to maintain a diversity of traits, the distribution
p(x) will reach a steady-state that involves a trade-off between maximizing the number of offspring and
maximizing the entropy of the trait distribution (figure 1b,c).

To model that trade-off, I introduce a generic fitness function F that consists of a term proportional
to the total offspring number plus a term proportional to the trait entropy. In other words, the proposed
fitness function is

F = u0Nhet + T0S,

where u0 and T0 are constants that arise from environmental pressures and are independent of the
distribution p(x). Dividing both sides of this equation by u0Nb one arrives at a renormalized fitness
function f = F/(u0Nb) that is a function of only a single parameter t

f = n(1 + ts). (2.3)

Here, n = Nhet/N (see equation (2.1)) and s = S/(bNhet) (see equation (2.2)) are functionals of the trait
distribution p(x), and t = T0/u0 is a dimensionless ‘entropy parameter’ that characterizes the relative
importance of trait diversity. (In this sense, t plays a role similar to that of the temperature in the
Helmholtz free energy of statistical physics.) When t = 0, the optimum distributions have no overlap
between male and female traits, and all pairings are heterosexual (n = 1). When t → ∞, on the other
hand, the population fitness is optimized by p(x) ≡ 1, and heterosexual and homosexual pairings are
equally likely (n = 1/2).

In the remainder of this paper, results are presented for the distribution p(x) at different values of the
parameter t. The primary tool used for finding the optimal p(x) is a numerical Monte Carlo algorithm,
which is described in appendix A. Briefly, this algorithm divides the trait interval [0, 1] into discrete
points xi, and makes an initial guess for the function p(xi). The values of p(xi) are then optimized by
making random deviations from the initial guess, and then evaluating the corresponding change to
the population fitness f . Changes are kept or discarded according to the Metropolis algorithm, and the
procedure is iterated until a convergent solution is found.

Once the distribution p(x) is known, one can also examine the corresponding distributions of ‘sexual
orientation’ θ , which is defined as the probability of a given individual pairing with a same-sex rather
than with an opposite-sex partner. In particular, for an individual (say, a male) that prefers a trait value
xc in a partner, one can define the orientation ϑ(xc) of the individual as the proportion

ϑ(xc) = p(xc)
p(xc) + q(xc)

= p(xc)
p(xc) + p(1 − xc)

(2.4)



5

rsos.royalsocietypublishing.org
R.Soc.opensci.3:160403

................................................
of same-sex individuals among the group to which the individual is attracted. One can also define a
probability density function for θ as

P(θ ) =
∫

pc(xc)δ(θ − ϑ(xc)) dxc, (2.5)

where δ(x) is the Dirac delta function. In the following section, results are presented for both the trait
distribution p(x) and the orientation distribution P(θ ) as a function of the entropy parameter t.

3. Results
When the entropy parameter is large, t � 1, the trait distribution becomes flat, p(x) ≡ 1, which maximizes
the trait entropy at the cost of reducing the total number of offspring by 50%. In fact, the optimal
distribution is precisely equal to p(x) ≡ 1 for all values of t ≥ 4. Only at t < 4 do traits begin to specialize
according to sex. At t slightly smaller than 4, the distribution p(x) acquires a step-like shape, with traits
corresponding to x < 1/2 being more prevalent in males, and traits with x > 1/2 being more prevalent
in females. This transition is depicted in figure 2a.

One can describe the transition at t = 4 analytically by writing the distribution p(x) as

p(x) =
⎧⎨⎩1 + c, x < 1

2

1 − c, x > 1
2 ,

where c is a parameter to be determined. Inserting this distribution into equations (2.1) and (2.2), one
can evaluate the frequency n of opposite-sex pairing as n = 3/2 − 1/(1 + c2), and the trait entropy as
s = [(1 + c) ln(1 + c) + (1 − c) ln(1 − c)]/2. Expanding these expressions to the lowest order in c gives a
fitness function f = 1/2 + c2(1 − t/4) − c4t/2, which is minimized when

c =
√

4 − t
4t

. (3.1)

In other words, at t ≥ 4, the optimal fitness is provided when c = 0, and the trait distribution is uniform.
At t < 4, on the other hand, there emerges a difference in trait distributions between the two sexes, with
a magnitude c that grows as

√
4 − t.

This splitting also has an implication for the distribution of sexual orientations, P(θ ). At t > 4, when the
trait distribution is uniform, all individuals have orientation θ = 1/2, because there is no sexualization of
traits. When t is lowered below 4, on the other hand, there emerge two classes of orientation: θ = (1 ± c)/2.
The former class (with a majority preference for same-sex partners) comprises a smaller proportion (1 −
c)/2 of the population. The latter class (with a majority preference for opposite-sex partners) comprises
a larger proportion (1 + c)/2. In other words, the distribution of orientation P(θ ) is such that P(θ ) = δ(θ −
1/2) at t > 4, whereas at t slightly less than 4, one has P(θ ) = ((1 + c)/2)δ(θ − (1 − c)/2) + ((1 − c)/2)δ(θ −
(1 + c)/2). This bifurcation of the orientation distribution is depicted in figure 2b.

As t is reduced even further, the trait distribution undergoes a sequence of additional splittings, as
illustrated in figure 2a. At t � 1.7, for example, the two-step structure of the trait distribution undergoes
a transition to a three-step structure. In terms of the orientation distribution, one can say that a third
class of individuals with orientation θ = 1/2 emerges in between the other two, and P(θ ) is a sum of three
Dirac delta functions. At t � 1.17, this three-class structure transitions to a four-class structure, and as t is
reduced an increasingly large number of classes emerge.

When t becomes small, t � 1, the distribution p(x) has so many steps that it closely approximates a
continuous function. As shown in figure 3, in this limit this function closely matches the form,

p(x) 	 2
1 + exp[(x − 1/2)/T̃]

, (3.2)

which is reminiscent of the Fermi function from quantum statistical mechanics. The parameter T̃, which
for the Fermi function is related to the system temperature, is linearly proportional to the entropy
parameter t at small t.

To derive the relation between T̃ and t, one can insert equation (3.2) into equations (2.1) and (2.2).
Evaluating the corresponding integrals at small T̃ gives n 	 1 − π2T̃2 and s 	 − ln 2 + π2T̃/3. The fitness



6

rsos.royalsocietypublishing.org
R.Soc.opensci.3:160403

................................................

0

1

2

p(
x)

t > 4 t = 2.5 t = 1.5

0.5 1.0
x

0

1

2

0

1

2

0

1

2

0

1

2

0

1

2
p(

x)
t = 1.1

0.5 1.0
x

t = 0.8

0.5 1.0

0.5 1.0 0.5 1.0 0.5 1.0

x

t = 0.6

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
entropy parameter, t

0

0.2

0.4

0.6

0.8

1.0

pr
ef

er
en

ce
,q

(a)

(b)

Figure 2. (a) Evolution of the trait distribution p(x) with decreasing entropy parameter t. Different subplots are labelled by the
corresponding value of t. (b) Plot of the values of sexual orientationθ observed in the population for different values of t. Points represent
values of θ arising from the trait distribution p(x). The size of the points indicates the relative abundance of that orientation.
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Figure 3. Plot of the trait distribution p(x) in the form ln(2/p − 1) versus x − 1/2. Plotted in this way, the ‘Fermi function’ form,
equation (3.2), corresponds to a straight line with zero intercept and a slope equal to 1/T̃ . In order of decreasing slope, the different
curves correspond to t = 0.05, t = 0.1, t = 0.2 and t = 0.4. The points show numerical results and the lines are the analytical solutions
of equations (3.2) and (3.3), with no fitting parameters.

function f = n(1 + ts) is then minimized when

T̃ 	 t
6(1 − t ln 2)

. (3.3)

This solution minimizes equation (2.3) to within a term of order t3, suggesting that equation (3.2) is exact
in the limit t → 0.
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Equation (3.2) also implies a specific, continuous form for the distribution of sexual orientations, P(θ ).

In particular, evaluating equation (2.5) gives

P(θ ) = 2T̃
θ

. (3.4)

Note that, for any non-zero value of the entropy parameter t, the distributions of male and female
traits always have finite overlap, and consequently, there are no individuals with strictly heterosexual
or homosexual orientation, θ = 0 or θ = 1. Consequently, the distribution P(θ ) should be considered to be
defined only over the interval [θmin, θmax], where θmin = ϑ(xc = 1) = [1 + exp(1/2T̃)]−1 and θmax = ϑ(xc =
0) = [1 + exp(−1/2T̃)]−1. In this sense, the probability distribution P(θ ) is properly normalized, because∫θmax

θmin
P(θ ) dθ = 1.

4. Discussion
In this paper, I have considered a simple mathematical toy model for the trade-off between sexual
dichotomy of traits and trait diversity. Among the more interesting features of the model are the series
of sharp transitions in the trait distribution as the parameter t is varied, and the ‘Fermi function’ shape
of the distribution at small values of t. Of course, the model has employed a number of fairly artificial
assumptions, most notably the assumption of a single relevant trait that is defined on the interval [0, 1].
Because this assumption is unlikely to be applicable to a real biological population, it may be difficult to
find direct empirical comparisons with the trait distribution p(x).

On the other hand, the model also makes specific predictions about the distribution of sexual
orientation, which can in principle be observed. For example, the model suggests that when the relative
importance of trait diversity is high (or, equivalently, when the relative importance of producing a large
number of offspring is low), the population can be divided into a small number of well-defined groups
with similar sexual orientation. As the environment is changed in such a way that trait diversity becomes
less important, these groups split into a larger number of groups through a sequence of sharp transitions.
Finally, when the value of trait diversity is low, the distribution of sexual orientation becomes continuous
and takes the form P(θ ) ∝ 1/θ .

In principle, some of these results can be tested empirically by measuring the frequency of same-sex
versus opposite-sex mating or pairing for a large number of individuals across an animal population. (Of
course, one should be cautious about conflating the observed frequency of same-sex behaviours with the
internal preference of an individual for same-sex partners.) Unfortunately, I am unaware of any studies
that present sufficient data to construct an empirical version of the distribution P(θ ).

To date, the vast majority of quantitative research about same-sex sexual behaviour focuses on
humans. Some studies, beginning with the Kinsey reports, [10,11], have made an effort to assess the
relative abundance of different sexual orientations. One can ask, then, how the results from such studies
compare with the derived results from the model of this paper.

Such a comparison should, of course, be considered to be extremely speculative in nature. It is unlikely
that the diverse range of human sexual behaviours can be described using the simplistic toy model
outlined in this paper. What is more, data on sexual orientation in humans usually divides individuals
into discrete categories and relies on self-reporting of same-sex sexual behaviour or sexual attraction.
All of this makes it difficult to say anything quantitative about the distribution P(θ ).

With these caveats, one can nonetheless make a speculative comparison between the distribution
P(θ ) and interview/survey data about human sexual orientation. Such data often categorize individuals
according to their position on the Kinsey scale, which describes sexual orientation on a seven-point
scale [10]. If this seven-point scale is (dubiously) considered to correspond to evenly distributed intervals
of the orientation θ in the range [0, 1], then one can compare it directly to the theoretical distribution P(θ )
from the model. Such a comparison is presented in figure 4.

Figure 4 suggests that a very approximate fit to equation (3.4) is possible. This fit gives T̃ ≈
0.09, which corresponds to an entropy parameter t ≈ 0.4. This relatively small value of t is within
the regime where the theoretical optimum distribution p(t) is well approximated by the continuous
function of equation (3.2). One notable failure of the model is that it is unable to capture the relatively
large proportion of individuals at either extreme of the distribution, θ ≈ 0 and θ ≈ 1. These extremes
correspond to individuals who identify as either ‘completely heterosexual’ or ‘completely homosexual’,
and their abundance is apparently greater than can be explained by the simple model proposed here.
It remains an interesting question whether such extremization of sexual orientation can arise from
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Figure 4. Data for sexual orientation distribution in humans, as codified by the ‘Kinsey scale’, which in this plot have been uniformly
spaced along the interval 0–1 and plotted in double-logarithmic scale. Squares represent survey response data for ages 18–29 in the USA
taken during the year 2015 [12], circles are survey responses among ages 18–24 in the UK in 2015 [13], upward-facing triangles correspond
to males age 20–25 in the original Kinsey reports (published in 1948) [10] and downward-facing triangles are from females age 20–25
in the Kinsey reports (published in 1953) [11]. The star symbols, connected by a solid line, denote a simple average of the four datasets.
The dashed line shows a fit to equation (3.4).

optimization of the population fitness, or whether its appearance in the data is better ascribed to other
(perhaps psychological or sociological) factors.

Future and ongoing studies may allow us to adjudicate between different proposed mechanisms for
the appearance of same-sex sexual behaviour in the animal kingdom. In particular, the mechanism
proposed here can be refined or refuted by collecting data on the proportion θ of same-sex versus
opposite-sex sexual encounters for many individuals across a large animal population, and then checking
whether it obeys the characteristic 1/θ distribution (as at t � 0.5) or whether it resembles a set of discrete
delta functions (as at t � 1).

Alternatively, one could look for correlations between the rate of same-sex sexual behaviour in an
animal species and the diversity of expression of a particular trait. If any such evidence is absent, it
would suggest that the origins of same-sex sexual behaviour cannot be described as a simple competition
between increased trait diversity and increased sexual dichotomization of traits. It could also suggest that
the traits desired by a particular individual (xc) are not statistically independent of the traits possessed by
the individual (x); such non-independence would fundamentally alter the tension between the two terms
in equation (2.3). Either way, finding a clever way to measure and study the distribution of biological
traits, p(x), or the distribution of sexual orientations, P(θ ), may prove to be a powerful tool for unravelling
the mystery of same-sex sexual behaviour.

Finally, it is worth emphasizing that many of the results presented here are specific to the quantitative
form of the assumed fitness function, equation (2.3). For example, one might consider that the degree
of trait diversity is better characterized using the variance σ 2 = ∫1

0(x − 〈x〉)2p(x) dx, rather than using the

entropy s. (Here, 〈x〉 = ∫1
0 xp(x) dx is the average value of the trait x.) Substituting σ 2 for s in the fitness

function f would then give a different mathematical optimization problem, and thus a different trait
distribution p(x) for each value of the parameter t. Indeed, for the specific choice f = n(1 + tσ 2), I find
that the optimal distribution p(x) assumes only one of two extremes: at all t larger than some critical
value, tc ≈ 25, the optimal distribution is p(x) = 1, which corresponds to the t → ∞ limit in figure 2; on
the other hand, at all t < tc, the optimal distribution is 2Θ(x − 1/2), where Θ(x) is the Heaviside step
function, which corresponds to the t → 0 limit in figure 2. Thus, replacing the distribution entropy with
the variance in equation (2.3) gives a significantly different phenomenology—one where the population
consists uniformly of either bisexual individuals (θ = 1/2) or heterosexual individuals θ = 1), depending
on whether t is above or below a critical value.

Data accessibility. Numerical code corresponding to the analysis performed in §2 and appendix A is available as a part of
this article’s electronic supplementary material.
Competing interests. I have no competing interests.
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Appendix A. Numerical optimization of p(x)
In §2, a model is introduced that relates the fitness f of the population to the trait distribution p(x). Written
out explicitly, this relation is

f =
[

1
2

∫ 1

0

∫ 1

0

[(p(x1)p(1 − x2)]2 + [(p(1 − x1)p(x2)]2

p(x1)p(1 − x2) + p(1 − x1)p(x2)
dx1 dx2

]

×
[

1 − t
∫ 1

0
p(x) ln p(x) dx

]
. (A 1)

For a given value of the entropy parameter t, there is a specific distribution p(x) that maximizes equation
(A 1). This distribution can be found numerically using the following method.

First, the interval [0, 1] is divided into a set of M regularly spaced points, {xi}. The results presented
here use M = 60. An initial guess is then made for the values of the distribution, p(xi), consistent with the
normalization constraint

1
M

M∑
i=1

p(xi) = 1.

For the results presented in this paper, the initial guess was p(xi) ≡ 1. A Metropolis-type algorithm is
then used to incrementally update the values of p(xi) in such a way that the maximum of f is increasingly
approached. Specifically, the algorithm consists of repeatedly choosing random pairs of points xi and
xj, and then updating the values p(xi) and p(xj) such that p(xi) → p(xi) + δ and p(xj) → p(xj) − δ. The
increment δ is chosen at random from a small interval; results presented here use δ ∈ (0, 0.01). After each
update, the change δf in the fitness is evaluated. If δf is positive, then the update is kept. If δf < 0, on the
other hand, then the update is reverted with probability 1 − exp[βδf]. Here, β is an ‘inverse temperature’
parameter that determines the rate of convergence of the solution and the final numerical accuracy.

Results presented in §3 use a process of successively increasing values of β, starting at β = 105 and
gradually increasing to β = 1011. At each value of β, a large number, 104 M, of updates is attempted to
ensure convergence of the solution. Care was taken to ensure that the solution converged to the same
result for different random realizations of the numerical procedure.

Finally, one can note that equation (A 1) has no explicit dependence on the value of x, and therefore,
the numerical procedure does not, in general, find a set of values {p(xi)} that is meaningfully ordered as
a function of xi. One can therefore arrange the numerical values {p(xi)} in order of decreasing value, and
the resulting solution produces the same value of the fitness f .
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