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THE QUANTUM THEORY

INTBODUCTION

THE
old saying that small causes give rise to great effects

has been confirmed more than once in the history of

physics. For, very frequently, inconspicuous differences be-

tween theory and experiment (which did not, however, escape
the vigilant eye of the investigator) have become starting-

points of new and important researches.

Out of the well-known Mickelson-Morley experiment,

which, in spite of the application of the most powerful
methods of exact optical measurement, failed to show an

influence of the earth's movement on the propagation of

light as was predicted by classical theory, there arose the

great structure of Einstein's Theory of Belativity. In the

same way the trifling difference between the measured and

calculated values of black-body radiation gave rise to the

Quantum Theory which, formulated by Max Planck, was
destined to revolutionise in the course of time almost all

departments of physics.
The quantum theory is yet comparatively young. It is

therefore not surprising that we are confronted with an

unfinished theory still in process of development which,

changing constantly in many directions, must often destroy
what it has built up a short time before. But under such

circumstances as these, in which the theory is continually

deriving new nourishment from a fresh stream of ideas and

suggestions, there is a peculiar fascination in attempting to

review the life-history of the quantum theory to the present
time and in disclosing the kernel which will certainly out-

last changes of form,

1



CHAPTEE I

The Origin of the Quantum Hypothesis

i. Black-Body Radiation and its Realisation in Practice

THE
Quantum Theory first saw light in 1900. When, in

the years immediately preceding (1897-1899), Lummer
and Pringsheim made their fundamental measurements 1 of

black-body radiation at the Reichsanstalt, they could have

had no premonition that their careful experiments would

become the starting-point of a revolution such as has seldom

occurred in physics.
In the field of heat radiation chief interest at that time was

centred in the radiation of a black body (briefly called " black-

body
"
radiation), that is, of a body which absorbs completely

all radiation which falls on it and which thus reflects, trans-

mits, and scatters 2 none. We may shortly call to mind
the following facts. It is known that any body at a given

temperature sends out energy in the form of radiation into

the surrounding space. This radiation is not energy in a

single simple form but is made up of a number of single
radiations of different colours, i.e. of different wave-lengths A

or of different frequencies 3 v . In other words, it forms in

general a spectrum in which radiations of all frequencies
between v = and v = oo are represented. Further, these

radiations are present in varying
"
intensities." We define

this term thus. Consider the radiation emitted from unit

surface of the body per second in a certain direction
; break

it up spectrally and cut out of the spectrum a small frequency
interval dv such that it contains all frequencies between v and
v + dv. The energy of radiation Ev thus sliced out (namely,
the emissivity of the body for the frequency v) may be defined

in the following terms :
*

E, = 27rKvdv . . . (1)

2



BLACK-BODY RADIATION 3

provided that as we shall assume for the sake of simplicity
the surface of the body emits uniform and unpolarised

radiation in all directions.

The magnitude K,, thus defined is called the intensity of

radiation of the body for the frequency v. It is in general a

more or less complicated function of the frequency v, of the

absolute temperature of the body T, and of the inherent

properties of the body. The black body alone is unique in

this respect. For its radiation and therefore its K,, is, as

G. Kirchhoff
5 was the first to point out, dependent only

on the frequency v and the absolute temperature T, that is,

mathematically,

K,=/(v,T) . . (2)

^
This formula which gives the relation between the intensity

of radiation from a black body, the temperature, and the
" colour

"
is called the radiation formula or the law of radia-

tion of a black body.
To calculate this relationship on the one hand and to

measure it on the other were unsolved problems at that

time. Unimpeachable measurements were of course possible

only if one could succeed in constructing a black body which

approached sufiicientlyjrj(nar the theoretical ideal. This im-

portant step, the realisation of the black body, was taken by
0. Lummer and W. Wien* on the basis of Kirchhoff's

1

Law of Cavity Eadiation, which states : In an enclosure

or a cavity which is enclosed on all sides by reflecting ivalls,

externallyprotectedfrom exchanging heat with its surroundings,
and evacuated, the condition of

" black radiation
"

is auto-

matically set up if all the emitting and absorbing bodies at the

walls or in the enclosure are at the same temperature. In a

space, therefore, which is hermetically surrounded by bodies

at the same temperature T and which is prevented from ex-

changing heat with its surroundings, every beam of radiation

is identical in quality and intensity with that which would be

emitted by a black body at the temperature T.

Lummer and Wien, therefore, had only to construct a

uniformly heated enclosure with blackened walls having a

small opening. The radiation emitted from this opening was
then "black" to an approximation which was the closer
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the smaller the opening, that is, the less the completeness of

the enclosure was disturbed. The manner in which the

intensity K^ of the black radiation thus realised depended
on the frequency v and the temperature T had next to be

determined. The above-mentioned investigation of Lummer
and Pringsheim was devoted to this purpose.

2. The Stefan-Boltzmann Law of Radiation and Wien's

Displacement Law

While experimental research was proceeding on its way,

theory was not idle, for valuable pioneer work was being
done inasmuch as two fundamental laws were set up. In

the first place, L. Boltzmann* proved, with the help of

thermodynamics, the law previously enunciated by Stefan*
that the sum-total of the radiation from a black body,

taking all the frequencies together, namely, the quantity

{00

K.vdv, is proportional to the fourth power of its absolute
o

temperature :
10

K = y . T4
(y
= const.) . . . (3)

The laws proposed by Wien " entered more deeply into the

question. Wien imagines the black radiation enclosed in a

closed space with a perfectly reflecting piston as one wall,

and then supposes the radiation to be compressed adiabatically,

as in the case of gases (that is, no passage of heat to or from

the cavity is allowed during the process), by infinitely slow

movements of the piston. Now, if we express the change
which this process causes in the energy of a definite colour

interval dv in two ways, and if we take into consideration

that the waves reflected at the piston undergo a change of

colour according to Doppler's principle, we succeed in limiting

very considerably the unknown functional dependence of the

quantity K^ on v and T. There is thus obtained a re-

lation of the form 12

in which c is the velocity of light in vacuo, the function F
being left undetermined. From this, Wien's Displacement

Law, the conclusion 13 may be drawn that the frequency
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vmax for which K,/ (plotted as a function of v) is a maximum
is displaced towards higher values proportional to T as the

temperature increases :

vmax = const. . T . . . (4a)

If, as is usual in physical measurement, we use the wave-
s*

length A. = - instead of the frequency as the variable, W'iew's

Law assumes a somewhat different form. For if we consider

the radiant energy of a narrow range of wave-length d\ cor-

responding to the frequency range dv, and write it in the

form E),dX, then EdX. = Kvdv, that is : E^ = K* .

^.
In

place of (4) and (4a) we then get the relations :

T . const. = 8 . . (5a)

3. Wien's Law of Radiation

To formulate the law of radiation it was therefore neces-

sary only to evaluate the unknown function F in (4) or (5).

But this was just the central point of the whole question,

and the most difficult part of the problem.

Here, too, Wien made the first successful attack. On the

basis of not entirely unobjectionable calculations, which were

founded on Maxwell's law of distribution of velocities among
gas molecules, he arrived at the following specialised form 14

of the function F :

p _ a-Pf (a and /? are two constants).

Thus the law of radiation (4) assumes the form

which is called Wien's Law of Kadiation.

How far did experiment confirm these theoretical results ?

While the Stefan-Boltzmann Law and Wien's Displacement
Law were confirmed to a large extent by the observations of

Lummer and Pringsheim, 16 both experimenters found Wien's
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Law of Eadiation confirmed only for high frequencies, that is,

for short wave-lengths (more precisely, for large values of

$JH,
and detected, on the other hand, systematic discrepancies

for small frequencies, that is, for long wave-lengths. They
maintained with unswerving persistence that these discrepan-
cies were real in spite of objections from authoritative quarters.

For while F. Paschen 17 imagined that he had proved by his

work that Wien's Law of Eadiation was universally valid,

Max Planck, in his detailed theory of irreversible processes
of radiation,

18 had arrived again at Wien's radiation formula

by a more rigorous method. Starting from Kirchhoff's Law
of Cavity Eadiation, according to which the presence of any

emitting or radiating substance whatsoever in a uniformly
heated enclosure produces and ensures the maintenance of

the condition of black-body radiation, Planck chose as the

simplest schematic model of such a substance a system
of linear electromagnetic oscillators, and investigated the

equilibrium of the radiation set up between them and the

radiation of the enclosure. This is to be understood as fol-

lows : Each of the Planck oscillators as such we may, for

example, assume bound electrons capable of vibration pos-
sesses a fixed natural frequency v and responds, on account

of its weak damping, only to those waves of the radiation in

the enclosure whose frequencies lie in the immediate neigh-
bourhood of v, while all other waves pass over it without

effect. The oscillator thus acts selectively, as a resonator, in

just the same way as a tuning-fork of definite pitch com-
mences to sound only when its own "

proper" tone, or one

very near it, is contained in the volume of sound which strikes

it. In this process of resonance, however, the oscillator ex-

changes energy with the radiation inasmuch as, on the one

hand, it acts as a resonator in abstracting energy from the

external radiation, and, on the other, it acts as an oscillator

and radiates energy by its own vibration. Hence a dynamic
equilibrium is set up between the oscillator and the radiation

of the enclosure, and, indeed, between just those waves of

the radiation which have the frequency v. In this state of

equilibrium the radiation of frequency v acquires an intensity

Ky which, according to Kirchhoff's Law, is equal to the intensity
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of black-body radiat'ion at this temperature. Secondly, the

energy U of the oscillator passes in the course of time through

all possible values, the mean value 19 U of which is found to

be proportional to the intensity K,,, a result which seems im-

mediately plausible since the excitation of the oscillator will

be greater the more intense the radiation that falls on it.

The exact calculation of this relationship between l v and U
on the basis of classical electrodynamics this is the first

part of Planck's calculations leads to the fundamental

formula :

*. -
J

' I? (7)

In the second part Planck 2 determined Z7, although by a

method that is not free from ambiguity, as a function of v and

T on the basis of the second law of thermodynamics. He
obtained

The combination of (7) and (8) gives us Wien's Law of Badia-

tion (6). -

4. The Quantum Hypothesis. Planck's Law of Radiation

Lummer and Pringsheim, however, refused to surrender.

In a fresh investigation
21 in 1900 they showed that in the

region of long waves Wien's radiation formula undoubtedly did

not agree with the results of observation. As a result of this,

Planck, in an important paper
22 which must be regarded as

marking the creation of the quantum theory, decided to

modify his method of deducing the law of radiation, namely,

by altering the expression (8) which gives the mean energy
of the oscillator, but which is not unique. He proceeded as

follows. 23 In order to distribute the whole available energy

among the oscillators, he imagined this energy divided into

a discrete number of finite
" elements of energy

"
(energy

quanta) of magnitude e, and supposed these energy quanta
to be distributed at random among the individual oscillators

exactly as a given number of balls, say 5, may be distributed

among a certain number of boxes, say 3. Each such distri-

bution (of 5 balls among 3 boxes) may obviously be carried
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out in a number of different ways, whereby, however, we are

not concerned with which particular balls lie in which par-
ticular boxes, but with the number contained in each. 24 Now
since each such " distribution

"
corresponds to a definite state

of the system, it follows from what has just been said that

each condition may be realised in a number of different

ways, that is, each condition is characterised by a certain

number of possibilities of realisation. This number is called

by Planck the thermodynamic probability W of the condition

in question. For it is obvious that the probability of a con-

dition or state is the greater, i.e. it will occur the more fre-

quently, the greater the number of ways in which it may
be realised. By means of the usual formulae of permuta-
tions and combinations, of which the latter alone come into

consideration here, it was possible to calculate the probability
of any given distribution of the elements of energy among
the oscillators, and thus also the probability of a given

energetic condition of the system of oscillators as a func-

tion of the mean energy U of an oscillator and of the energy

quantum. Now, L. Boltzmann 25 has given an extremely
fertile rule, which connects the probability of state W of a

system with its entropy S, a magnitude which, as is well

known, plays a similar role in the second law of thermodyna-
mics to that played by energy in the first. Thus S was ob-

tained as a function of U and e. If now, on the other hand,
one applied the second law itself, which expresses the en-

tropy S as a function of the mean energy U and the absolute

temperature T, the following result was obtained by this cir-

cuitous process : the entropy, as an auxiliary magnitude, was

eliminated, and a relation between U, T, and e was gained.
This fundamental result, first obtained by Planck, is as

follows :

U = __!
(k being a constant) . . (9)

ekr - 1

But from (7) and Wien's Displacement Law (4) it follows

that for the mean energy U of an oscillator, a relationship of

the following form exists :



THE QUANTUM HYPOTHESIS 9

A comparison of (9) and (10) shows that U assumes the

form required by (10) only when c is set proportional to v, the

frequency. This is an essential point of Planck's Theory : if

we are to remain in agreement with Wien's Displacement Law,
the energy element e must be set equal to hv

= Hv . . . . (11)

The constant h, which, on account of its dimensions (energy
x time), is called Planck's Quantum of Action, has played,
as we shall see, a r61e of undreamed-of importance in the

further development of the quantum theory.

By combining the formulae (7), (9), and (11) the renowned
radiation law of Planck follows at once :

ekT _ 1

which Planck first deduced in the year 1900 in the manner
above described, that is, by the hypothesis of energy quanta.
In the same year as well as in the following year this Law of

Radiation was confirmed very satisfactorily by H. Eubens and

F. Kurlbaum 26 for long waves, and by F. Paschen 27 for short

waves. The later measurements of radiation emitted by
black bodies,28 particularly the exact work carried out by E<

Warburg and his collaborators at the Reichsanstalt, have also

demonstrated the validity of Planck's formula. In opposition
to this, W. Nernst and Th. Wulf, as the result of a critical

review of the whole experimental material available up to that

date, have recently shown the existence of deviations (up to

7 per cent) between the measured and the calculated values

according to Planck's formula, and hence feel themselves

constrained to decide against the exact validity of Planck's

formula. Whatever view is taken of this criticism, it is at any
rate a powerful incentive to take up anew the measurement

of the radiation emitted by black bodies with all the finesse

and precautions of modern experimental science, and thereby
to decide finally the important question whether Planck's

Law is exactly valid or not.

For short wave-lengths, i.e. high frequencies (more exactly,
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for high values of ^V Planck's formula assumes the form

K, = h

f . e-a - .... (13)

and thus passes over into Wien's Law (cf. formula (6),

which, as we have seen, was confirmed by experiment for

these frequencies). In the other limiting case, i.e. for long

waves, low frequencies (more exactly for small values of
=-^

Planck's formula assumes the form

1C = V

lkT . . (14)
cr

as is easily found by developing the exponential function

eT'k as a series. This limiting law, which has been confirmed

in the region of long wave-lengths, had been given pre-

viously by Lord Rayleiyh.
30 Planck's formula thus contains

Wien's Law and Bayleigh's Law as limiting cases.

If we use the wave-length A. instead of the frequency v,

Planck's Law takes the form

To make this clear, the intensity of radiation E^ is plotted
in Fig. 1 as a function of A for various values of T. The
curves which exhibit Ko as a function of v have a quite
similar appearance. The maximum of the J^x-curves lies at

the point at which - has the value 4-9651.

It follows that

'

a relation, which is identical in form with Wien's Displace-
ment Law (5a).

For the total radiation we get from (12) or (15)

- r
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an equation which gives expression to the Stejan-Boltzmann
Law si

(3).

From (16) and (17) we recognise that the measurement (a)

of the total radiation (K) and (b) of the

wave-length of the maximum (Amax),
at

a fixed known temperature, allows us to

calculate the two constants h and k of the

radiation formula.32 From Kurlbanm's
measurements of the Stefan-Boltzmann
constant y, which were available at that

time, and from the constant 8 of Wien's

Displacement Law (measured by Lummer
and Prinysheim) Planck 33 found the fol-

lowing values :

h = 6-548 x 10- 27
[erg . sec.]

*- 1-346.
10-|j|]

. (18)

Corresponding to the varying values

which have been found in the course of

time for the constants y and 8, the values

and k have undergone changes which
are not worth while

recording here.
For particularly

/? the measurement of

pIG> i t
the total radiation

as we see from
the strongly varying values given in note 15 has not yet
reached a sufficient degree of certainty, to allow a very ac-

curate calculation of the two radiation constants h and k to be

based on the Stefan-Boltzmann constant. Methods which
allow h to be determined with undoubtedly much greater

accuracy will be described later.

5. Consequences of Planck's Theory

The deduction of the radiation formula and the determina-

tion of its constants did not, however, exhaust the successes

of Planck's new theory ; on the contrary, important relation-

ships of this theory to other departments of physics became
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immediately revealed. For it was found 3* that the constant

k of the radiation formula is nothing other than the quotient
of the absolute gas constant B (which appears in the equa-
tion of state of an ideal gas) and the so-called Avogadro
number N, i.e. the number of molecules in a grammolecule.

*- .... (19)

As the value of E is sufficiently accurately known from

thermodynamics

B =
deg.J

Planck,38 by making use of the radiation measurements, was
able to calculate the value of N. By using (18) he found

N = 6-175 x 1023
. . . (20)

The agreement of this value with the values deduced by
quite different methods is very striking.36 Avogadro's Law
forms the bridge to the electron theory. For it is known
that the electric charge which travels in electrolysis with

1 gramme-ion, that is, with .ZV-ions, is a fundamental con-

stant of nature, which is called the Faraday. Its value was,

according to the position of measurements at that time,
9658 . 3 . 10 10 electrostatic units (the value nowadays ac-

cepted 37 is 9649-4 . 2-999 . 1010
).

If now each monovalent-
ion carries the charge e of the electron, the equation

Ne = 9658 . 3 . 1010
. . . (21)

must hold. From this, by using (20), we get

e = 4-69 x 10~ 10 electrostatic units . (22)

The value of the electron charge thus calculated by Planck
from the theory of radiation differs only by about 2 per cent

from the latest and most exact measurements of E. A.
Millikan** who found the value

e 4-774 . 10 - 10 electrostatic units, . (23)

A truly astonishing result.



CHAPTEE II

The Failure of Classical Statistics

i. The Equipartition Law and Rayleigh's Law of Radiation

IF
these great successes had justified faith in Planck's

Theory, it was also soon recognised as had already been

emphasised by Planck in his first papers that the central

point of the theory lay in the Quantum Hypothesis, i.e. in the

novel and repulsive conception, that the energy of the oscilla-

tors of natural period v was not a continuously variable

magnitude, but always an integral multiple of the element of

energy, that is e = hv. The recognition of the necessity of

this hypothesis has forced itself upon us more and more in the

course of time, and has become established, more especially

through indirect evidence, inasmuch as every attempt to work

with the classical theory has led logically to a false law of
radiation. For when Planck turned the radiation problem ,

into a problem of probability for a definite amount of energy
was to be divided among the oscillators according to chance,

and the mean value U of the energy of an oscillator was to

be calculated it became possible to apply the methods of

the statistical mechanics founded by Clerk Maxivell, L.

Boltzmann, and Willard Gibbs. And the application of these

methods to the case in question appeared to be demanded
from the start, if the standpoint, self-evident in classical

physics, that the energy of the oscillator could assume in

continuous sequence all values between and oo were

adopted. What, then, did statistical mechanics require?
One of its chief laws is the law of the equipartition of kinetic

energy,
89 according to which in a state of statistical equilibrium

at absolute temperature T every degree offreedom of a mechan-

ical system, however 'complicated, possesses the mean kinetic

13
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energy %kT. In this expression the constant k is denned by

(19), and is thus the same constant as that which appears
in the Law of Eadiation. A system of /degrees of freedom,

therefore, possesses at a temperature T a mean kinetic energy

/ . $kT. For example, the atom of a monatomic gas is a

configuration which possesses three degrees of freedom, if we

regard it from the point of view of mechanics as a mass-

point. Its kinetic energy at the temperature T has therefore

a mean value M fkT, independent of its mass, a result which
has been known in the kinetic theory of gases since the time

of Maxwell, and which is deduced as a consequence of his

law of distribution of velocities.

Planck's linear oscillator, which is essentially identical

with an electron vibrating in a straight line, possesses one

degree of freedom
;

its kinetic energy at the temperature T
has therefore the mean value ^kT. Now the mean potential

energy of the oscillator is equal to its mean kinetic energy.
41

As a result, its mean total energy (kinetic plus potential) has

the value

t7= kT . . . , (24)

This result of classical statistics, when combined with the

relation (7) deduced from classical electrodynamics, gives

Rayleigh's Law of Badiation

R-jjJM
1

. .-,. ..
. (25)

which, as we saw (cf. (14)), is contained in Planck's Law of

Radiation as a limiting case for small values of r?L that is,

for long waves or high temperatures.
This Law of Radiation of Bayleigh which, deduced as it

is from the fundamental principles of classical statistics and

electrodynamics, should be able to claim general validity for

all frequencies and all temperatures, stands none the less in

glaring contradiction to observation. For while all observed

curves of distribution of energy of a black body (i.e. Kv plotted

as a function of v, T being constant) always show a maximum,
the curve expressed by (25) rises without limit for rising

/*00

- values of v, and therefore gives for the sum K = 2 / "Kvdv an

infinitely large value.
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2. Fruitless Attempts at Improvement

From very different quarters and in the most varied ways

attempts were made, as time went on, to escape from

Rayleigh's Law without discarding classical statistical

mechanics. All in vain. Thus /. H. Jeans,** without

making use of a "material" oscillator, considered only the

radiation as such in an enclosure, and distributed the whole

energy of radiation according to the Law of Equipartition
over the individual "

degrees of freedom of radiation
"
(which

are here the individual vibrations that are possible in an en-

closure). Further, H. A. Lorentz** deduced in a penetrating

investigation the thermal radiation of the metals, starting from

the conception that the free
" conduction electrons," which

carry the current, produce the radiation by their collisions

with the atoms, and applying the Law of Equipartition to

the motion of these electrons. The problem was attacked

in a somewhat different fashion by A. Einstein and L. Hop/**

They imagined the Planck oscillator firmly attached to a

molecule, and then considered this complex exposed to the

radiation and the impacts of other molecules. The Law of

Radiation could then be deduced from the condition that the

impulse, which the impacts of the molecules give to the com-

plex, must not on the average be changed by the impulses,
which the radiation gives to the oscillator. We may also

mention a paper of A. D. Fokker which was supplemented

by M. Planck.** In this, by the aid of a general law due to

Einstein, the statistical equilibrium between the radiation

and a large number of oscillators was examined on the basis

of the classical theories. All these different ways ended,

however, at the same point ; they all led to Rayleigh's Law.
And finally, at the Solvay Congress in Brussels in 1911,

H. A. Lorentz*1 showed, in the most general manner

imaginable, that we arrive of necessity at this wrong law,

if we assume the validity of Hamilton's Principle and of

the Principle of Equipartition for the totality of the pheno-
mena (of mechanical and electromagnetic nature) which

take place in an enclosure containing radiation, matter, and

electrons. Only in the limiting case of high temperatures or

small frequencies do the results of the classical theory agree
with the results of observation.



CHAPTEE III

The Development and the Ramifications of the

Quantum Theory

i. The Absorption and Emission of Quanta

AS
stated above, the conviction was bound to establish

itself that every attempt to deduce the laws of radiation

on the basis of classical statistics and electrodynamics was
doomed from the outset to failure, and it was necessary to

introduce a hitherto unknown discontinuity into the theory.
It was, of course, clear that this

"
atomising of energy

"
would

conflict sharply with existing and apparently well-founded

theories. For if the energy of the Planck oscillator was only
to amount to integral multiples of e = hv, and therefore was

only to be able to have the values 0, e, 2e, 3e . . . then, since

the oscillator only changes its energy by emission and ab-

sorption, the conclusion was inevitable that oscillators cannot

absorb and emit amounts of energy of any magnitude but only
whole multiples of c. (Quantum emission and quantum
absorption.) This conclusion is in absolute contradiction to

classical electrodynamics. For, according to the electron

theory, an electromagnetic oscillator, for instance a vibrat-

ing electron, emits and absorbs in a field of radiation perfectly

continuously, that is to say, in sufficiently short times it emits

or absorbs indefinitely small amounts of energy.

2. Einstein's Light-quanta ; Phenomena of Fluctuation in a Field
of Radiation

Thus at the very entrance into the new country there

yawned a gulf, which had either, in view of the previous
success of the classical theory, to be bridged over by a com-

promise ; or, failing this, tradition would have to be discarded

and the gap would be relentlessly enlarged. Einstein felt him-
16
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self compelled to take the latter radical course. On the basis

of very original considerations,49 he set up the hypothesis that

the energy quanta not only played a part, as Planck held, in

the interaction between radiation and matter (resonators or

oscillators), but that radiation, when propagated through a

vacuum or any medium, possesses a quantum-like structure

(Light-quantum hypothesis). Accordingly, all radiation was
to consist of indivisible

"
radiation quanta

"
;
when the energy

is being propagated from the exciting centre, it is not divided

evenly in the form of spherical waves over ever-increasing
volumes of space, but remains concentrated in a finite number
of energy complexes, which move like material structures,

and can only be emitted and absorbed as whole individuals.

Einstein believed himself forced to this strange conception,
which breaks with all the observations that appear to

support the undulatory theory, by several investigations,

all of which led to the same conclusion. He was per-

suaded to this view by the result of calculations dealing
with certain phenomena of fluctuation, phenomena which

are familiar to us in statistics and particularly in the kinetic

theory of gases. It is well known that in a gas which

contains n molecules in a volume V
Q ,

the spatial distribution

of these molecules is far from constant, being subject to vari-

ation on account of the motion of the molecules. Indeed, in

principle, extreme cases are possible as that, for example, in

which all n molecules are collected at a given moment in a

fractional part v(<v )
of the volume. The probability of

this rare constellation is known to be

w =

an extraordinarily small number when n is great ; that is to

say, the event in question occurs extremely rarely.

Now, the spatial density of the radiation enclosed within a

volume VQ
is subject to quite analogous variations. If E is

the total energy of the radiation (supposed to be monochro-

matic) and if its frequency v is so great, or its temperature
so low, that Wien's Law of Eadiation holds for it, then the

probability that the whole radiation occupies the partial

volume u VQ) is, according to Einstein*

2
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. (27)

A comparison with (26) shows that the radiation, within

the limits of validity of Wien's Law, behaves as if it were made

(Tjl

\

= r-
) independent complexes of energy, each of mag-

nitude hv.

Two other investigations
si of Einstein led to the same

conclusion. In the first, a very large volume filled with

black-body radiation is considered, which communicates with

a small volume v. If E is the momentary energy of the

radiation of frequency v in the volume v, this energy varies,

as is known, irregularly with the time about a mean value

E ; the magnitude = E - E is called the fluctuation of the

energy. Now, the general theory of statistics leads to the

following value 52 for the mean square, that is, for e2
,

P - *2" . g . . . . (28)

If we replace E by the value obtained from Planck's Law of

Eadiation, we obtain for the mean square of fluctuation an

expression with two terms,83 in which only one term can be

calculated on the basis of the classical undulatory theory;
the second, which greatly exceeds the first in magnitude
when the density of radiant energy is low (that is, at high

frequencies or at low temperatures, in short, when Wien's

Law is valid), can only be understood when we again picture
the radiation as composed of indivisible energy-quanta.
The second of Einstein's two investigations, to which we

referred above, deals with the fluctuations of impulse which
a freely movable reflecting plate is subjected to in a field of

black-body radiation on account of the irregular fluctuations

of the pressure of radiation. If, in addition, the plate is sub-

jected to the irregular blows of gas-molecules, under the

influence of which it executes Brownian movements, there

must be equilibrium between the impulses which the mole-

cules on the one hand, and the radiation on the other, im-

part to the plate. If, now, we assume Planck's Law to hold

for the radiation, there again follows for the mean square of

the variations in impulse due to the radiation an expression
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in two terms, only one of which is explained by the un-

dulatory theory of light. The other term points to a

quantum-like structure of the radiation, and this suggests the

introduction of the light-quantum hypothesis.
/

3. Transformation of Light-quanta into other Light-quanta or

Electronic Energy

However strange this hypothesis appeared, it was not to be

denied that it was capable of explaining simply and naturally
a number of phenomena which completely baffled the un-

dulatory theory. A very striking example of this is afforded

by the laws of phosphorescence, investigated by P. Lenard
and his co-workers, and especially by Stokes' Law. For if

vp is the frequency of the phosphorescent light emitted,
and ve the frequency of the light exciting phosphorescence,
then, according to Einstein's conception,

34 one quantum hve

of the exciting radiation is changed through absorption by
the atom of the phosphorescent substance into one quantum
hvp of the light of phosphorescence. According to the prin-

ciple of energy, we must have hve > hvp ,
i.e. ve > vp . And

this is Stokes' Law.

Further, another fact in the realm of phosphorescence
phenomena speaks against the undulation hypothesis and in

favour of that of light-quanta. According to the classical

undulatory theory, all molecules of a phosphorescent body
on which a light-wave impinges, should absorb energy from
the wave, and thus all simultaneously become able to emit

phosphorescent light. In reality, relatively only very few
molecules are excited to phosphorescence at the same time,
and only gradually, in the course of time, does the number of

molecules excited increase. It would thus appear as if the

light-wave falling on the phosphorescent body has not equal

intensity along its whole front as the classical theory
assumes but rather as if it consists of single energy-com-
plexes thrown out by the source of light, so that the wave-point
possesses, as it were, a "beady" structure, in which active

portions (light-quanta) alternate with inactive gaps.
This conception of the "beady" wave-front had played a

part before the advent of Einstein's hypothesis of light-quanta.
/. J. Thomson flfl had tried to make use of it to explain the
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fact that, when a gas is ionised by ultra-violet light or Eontgen
rays, only a relatively extremely small number of gas-mole-
cules are ionised. This is a phenomenon which is quite

analogous to the above-named phenomenon of phosphor-
escence

; for these, too, according to Lenard's view, the exci-

tation consists in the disjunction, through the agency of the

radiation, of electrons from the molecules of the phosphor-
escent body, and these electrons attach themselves to

"
storage

atoms." On the return of these electrons to the parent
molecules, energy is set free and sent out as phosphorescent

light. The ionisation of gases by ultra-violet light or Eont-

gen rays
s6 is also capable of being explained naturally by the

light-quantum hypothesis. If we suppose with Einstein,

that one light-quantum hv is used ;up in ionising one mole-

cule, then hv > J, where / is the work required to ionise

one molecule, that is to say, to remove an electron from it.

We have under consideration here a phenomenon which be-

longs to the great branch of photo-electric phenomena,
51 i.e.

the liberation of electrons from gases, metals, and other sub-

stances by the action of light. According to the hypothesis
of light-quanta, in all these processes light-quanta are changed
into kinetic energy of the electrons hurled off from the body.
If we again adopt Einstein's standpoint, according to which
one light-quantum hv is transformed into the kinetic energy
of one projected electron, we must have the following re-

lation ss for the energy of emission of the emitted electrons,

each having a mass m :

m-y2 = /tv _ p . . . . (29)

This is called Einstein's Law of the Photo-electric Effect. In

this, P is the work that has to be done to tear the electron

away from the atom, and to project it from the point at

which it is torn from the atom up to the point at which it

leaves the surface of the body. For the energy of the emitted

electrons we thus obtain a linear increase with the periodicity
of the light which releases them. This law, wrhich many in-

vestigators have attempted to prove, with varying success,
has recently been verified by R. A. Millikan 59 for the normal

photo-electric effect 6 of the metals Na and Li with such a

degree of accuracy that we can actually use this method for



ELECTRONIC ENERGY 21

the exact determination of h. The value found by Millikan,

h ~ 6-57 x 10 ~ 27
,

is in good agreement with the value

h = 6'548 x 10 ~ 27 found by Planck from radiation measure-

ments.

In an entirely similar manner as was used for the

phenomena of phosphorescence, the phenomena of fluores-

cence in the regions of the Rontgen and visible radiations may
be explained by the hypothesis of light-quanta. The in-

vestigations of Ch. Barkla, Sadler, M. de Broglie, and

E. Wagner- have shown the following: if a body is inun-

dated with Rontgen rays, and if the absorption of these rays by
the body is measured whilst the hardness (i.e. the frequency
ve) of the rays is varied, the absorption, as we pass from

lower to higher vet suddenly increases to a high value for a

certain value of ve . At the same moment the body begins,
at the expense of the energy absorbed, to emit a secondary

Rontgen radiation characteristic of the body itself in the form
of a line spectrum. It further appears that all lines emitted

have a lower v than that of the exciting radiation. As a

matter of fact, the hypothesis of light-quanta requires that the

radiation-quantum hv of all rays emitted as secondary radia-

tion should be smaller than the quantum hv of the primary

exciting rays. For example, the region of frequencies which
serves to excite the " ^-series" stretches from a sharply
defined limit vk (the so called "

edge of the absorption band ")

upwards towards higher frequencies; whereby vk is some-

what larger than the hardest known line (y) of the .ST-series.

In other words, the excitation of secondary Rontgen radiation

by primary Rontgen rays also obeys Stokes' Law.

4. The Transformation of Electronic Energy into Light-quanta

It is very significant, that the transformation of light-

quanta into kinetic energy of electrons is also, as it were,

"reversible," that is, the opposite process also occurs in

nature, by which light-quanta result from the kinetic energy
of charged particles. A good example of processes of this

kind is afforded by the generation of Rontgen rays by the

impact of quickly-moving electrons (cathode rays) on matter.

If, say, the characteristic JT-series of a certain element is to
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be generated by the impact of cathode rays upon an anti-

cathode formed of the said element, then the kinetic energy
E of an impinging electron must exceed a critical value EK .

For if we imagine E changed into a light-quantum hve ,
then

ve must fall within the region of excitation of the .ST-series, and
must thus be ^> VK (VK being the frequency of the edge of the

absorption band). It follows that E ^> hvK(
= EK). From this

there follows an important relation between the frequency VK
of the edge of the absorption band and the critical value EK
of the electronic energy, i.e. the smallest value of the energy
at which the electron is just able to generate the required

secondary radiation. This quantum-relation EK = JivK has

proved quite correct according to measurements carried out

by D. L. Webster 62 and E. Wagner*3 and conversely presents,
when EK and VK are sufficiently accurately known, a method

for the determination of h**

Now, it is known that the cathode rays, on striking the

anti-cathode, do not merely excite the characteristic Eontgen
radiation, that is a line spectrum, but excite a continuous

spectrum as well, the so-called "impulse radiation" (Brems-

strahlung). If we therefore select any frequency v of this

continuous spectrum, the ideas of the hypothesis of light
-

quanta immediately suggest the conclusion that a definite

minimum energy Em of the impinging electrons is necessary

to excite this frequency i/, and that we must have Em
= hv.

The investigations of D. L. Webster
,

62 W. Duane and F. L.

Hunt**, A. W. Hull and M. Rice,**E. Wagner,87 F. Dessauer

and E. Back*6 have confirmed these formulae with the

greatest accuracy, and thus form the foundation of one of

the most trustworthy methods for the precise measurement
of the magnitude h. The following values' were obtained :

h = 6-50 x 10- 27
(Duane-Hunt) ; h = 6-53 x H)- 27

(Webster) ;

h ** 6-49 x 10 - 27
(Wagner).

We also meet with similar phenomena in the visible and

neighbouring regions of the spectrum. Thus /. Franck
and G. Hertz*9 showed that the impact of electrons upon
mercury vapour molecules can be used to excite a definite

characteristic fluorescence line of mercury of wave-length
X = 2536J (i.e.

v = 1-183 . 1015
),

if the kinetic energy of the
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electron exceeds a certain critical value EQ
. In this con-

nexion they found that the relation EQ
= hv was again

fulfilled with great accuracy.
70 We shall return to these

experiments and others connected with them later, since they

play an important part in confirming the most recent model

of the atom.

5. Other Applications of the Hypothesis* of Light-quanta

In a considerable number of other cases, which shall only
be noticed shortly at this point, the hypothesis of light-quanta
has proved of value, especially in the hands of /. Stark 71 and

Einstein. Thus Stark 72 has made use of this hypothesis to

interpret the fact that the canal-ray particles emit their
" kinetic radiation

"
only when their speed exceeds a certain

value. He has also propounded general laws for the position
of band-spectra of chemical compounds by arguing on the basis

of the hypothesis of light-quanta.
73

Finally, Einstein 7* and
Stark 78 have considered photo-chemical reactions from the

standpoint of the hypothesis of light-quanta and have enun-

ciated a fundamental law, which has been verified, at least

partially, by the detailed investigations of E. Warburg.

6. Planck's Second Theory

In spite of all the successes which the quantum hypothesis
of light is able to show, we must not leave out of consideration

that this radical view, at least in its existing form, is very
difficult to bring into agreement with the classical undulatory

theory. Since on the one hand the phenomena of interference

and diffraction, in all their observed minutiae, are excellently
described by the, wave-theory, but offer almost insuperable
difficulties to the quantum theory of light, it is easy to under-

stand that few scientists could make up their minds to ap-

prove of such a far-reaching change in the old and well-tested

conception of the propagation of light, a change that entailed

perhaps its complete abandonment. This more cautious and
conservative standpoint was taken up by M. Planck, who
retains it to this day, inasmuch as he preferred to locate the

quantum property in matter (the oscillators) or at least to

confine it to the process of interaction between matter and
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radiation while endeavouring to retain the classical wave-

theory for the propagation of radiation in space. None the

less, serious hindrances had already intruded themselves in

the development of his first quantum hypothesis (quantum
emission and quantum absorption). For H. A. Lorentz 1

'
1

pointed out quite rightly that the conception, especially of

quantum absorption, leads to peculiar difficulties. He showed

that the time which an oscillator requires for the absorption
of a quantum of energy turns out to belong to an improbable

degree when the external field of radiation is sufficiently weak.

Moreover, it would be possible to interrupt the radiation at

will before the oscillator had absorbed a whole quantum. As

a result of these objections Planck determined to modify the

quantum hypothesis as follows. Absorption proceeds con-

tinuously and according to the laws ofclassical electrodynamics :

the, energy of the oscillators is therefore continuously variable, and

can assume any value between and oo . On the other hand;

emission occurs in quanta, and the oscillator can emit only
when its energy amounts to just a whole multiple of hv.

Whether it then emits or not is determined by a law of prob-

ability. But if it does emit, then it loses its whole momentary

energy, and therefore emits quanta. Between two emissions its

energy-content grows by absorption continuously and in pro-

portion to the time.

According to this second theory of Planck, which is called

the theory of quantum emission, the mean energy U of a

linear oscillator is ~ greater than in the first theory .79 While
A

in the former case the mean energy of the oscillator at abso-

lute zero was equal to zero (see equation (9) from which,

when T = 0, U 0), in the case of this second theory it is

equal to ~. The oscillators retain therefore at the zero-
A

point a zero-point energy of value
-^

as a mean, inasmuch

as they assume, when T = 0, all possible energies between

and hv. Nevertheless, this theory also, when the relation

(7) is correspondingly modified, leads to Planck's Law of

Eadiation.

In the course of time Planck has made several further
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attempts 80 to enlarge and modify this second theory too. For

example, he has temporarily assumed the emission also to be

continuous, and relegated the quantum element to the excita-

tion of the oscillators by molecular or electronic impacts. He
has, however, repeatedly returned in essentials to the second

form of his theory (continuous absorption, quantum emission).

7. Zero-point Energy

In more than one direction, this theory has had further

results. The appearance of the mean zero-point energy,
which is peculiar to this second theory of Planck, became
the starting-point of a series of researches, in which certain

physicists, going beyond Planck, postulated the existence of

a true (not mean) zero-point energy equal for all oscillators.

On this basis, Einstein and 0. Stern 81 have given a deduction

of Planck's Law which avoids all discontinuities other than

the existence of this zero-point energy.
In the year 1916, Nernst 82 took a still more radical step in

postulating the existence of a "
zero-point radiation

"
which

was also to be present at the absolute zero of temperature
and was to exist independently of heat radiation, filling the

whole of space, and such that the oscillators, as well as all

molecular structures, set themselves in equilibrium with it by

taking up the zero-point energy. Even if we regard these

views more or less sceptically, one thing cannot be ignored :

many facts undoubtedly support the conception that at the

absolute zero by no means all motion has ceased. We need

only draw attention to the fact, that, according to the view of

F. Richarz,*3 P. Langevin** and according to the experiments
of Einstein, W. J. 'de Haas ** and E. Beck** Para- and Dia-

magnetism are produced by rotating electrons and that this

magnetism remains in existence down to the lowest tempera-
tures.

8. Theory of the Quantum of Action

In yet another respect has Planck's theory proved stimu-

lating, in virtue of a special formulation which Planck gave
it 87 at the Solvay Congress in Brussels during 1911. For
here Planck gave expression for the first time to the idea

that the appearance of energy-quanta is only a secondary
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matter, being only the consequence of a deeper and more

general law. This law, which is to be regarded as the pre-
cursor of the latest development of the doctrine of quanta,

may be formulated as follows : Suppose the momentary state

of a Planck oscillator, say a linearly vibrating electron, to be

defined according to Gibb's method by its displacement q from
its position of rest and by its impulse or momentum p, and

suppose it to be represented in a q-p plane (the state- or

phase-plane). Every point of the q-p plane, that is, every

phase-point, corresponds to a definite momentary condition of

the oscillator. The postulate is then made that not all points
of this plane of states are equivalent. On the contrary, there

FIG. 2.

are certain states of the oscillator which are distinguished by
a peculiarity. The totality of the phase-points that cor-

respond to these peculiar states form a family of discrete

curves which surround one another. In the case of the

Planck oscillator these curves are concentric ellipses (see

Fig. 2) which divide the phase-plane into ring-like strips.

The postulate of the quantum theory now consists in this,

that these ring strips all possess the same area h. If we
calculate on this basis the energy possessed by an oscillator

in one of these unique states, we find so that it is a whole

multiple of hi/. These special states (represented in the

phase-plane by the points of the discrete ellipses) are, there-
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fore, according to Planck's first theory, the only dynamically

possible and stable states of the oscillator. If an oscillator

emits or absorbs, its phase-point jumps from one ellipse to

another. The state of affairs is different if we accept Planch's

second theory. According to this, all conditions of the oscil-

lator, that is all points on the phase-plane, are dynamically

possible. On the other hand, emission takes place only in

the states specially distinguished by the ellipses. Seen from

this new point of view, the energy-quanta are, therefore, only
a result of the partitioning of the phase-plane. Mathe-

matically, we may express this
" structure of the phase-plane

"

thus : the nth unique curve encloses a surface of area nh, or,

in symbolic language,

[" \dqdp = \pdq = nh . . (30)

The double integral is taken over the surface ;
the single

integral is taken around the boundary curve of the nth

ellipse.

On this basis for systems of one degree of freedom, which

is called Planck's theory of
" the action-quantum

"
for h has

the dimensions of an action the modern extension of the

quantum theory for several degrees of freedom has, as we
shall see, been erected.

Further, a line of argument proposed and developed by
A. Sommerfeld takes its origin here. Starting from the fact

just mentioned, that Planck's constant h possesses the dimen-

sions of action (energy-time), Sommerfeld set up the hypo-
thesis 89 that for every purely molecular process, say the release

of an electron in the photo-electric effect, or the stopping of

an electron by the anticathode in the generation of Eontgen

rays, the quantity called action (L
-

V)dt, known to
Jo

from Hamilton's Principle, has the value ~ . Here L and V
ATT

are the kinetic and potential energies of the electron respec-

tively, T is the duration of the molecular process, say, for

example, the time which is required for the release of the

electron from the atomic complex during the photo-electric

effect, or the stopping of the electron by the anti-cathode.

us
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This formulation of the quantum hypothesis is, as it were,

an expression of the well-known fact that large amounts of

energy are absorbed or given up in short times, whereas small

amounts are absorbed or emitted in longer times by the

molecules, so that on the whole the product of the energy
transferred and the duration of the time of exchange is a

constant. In fact, fast cathode rays, for example, are stopped

by matter in a shorter time and therefore generate harder

Eontgen rays than slow cathode rays. Sommerfeld has

applied his theory successfully to the mechanism of the

generation of Eontgen rays and y-rays.9 SommerfeM and

P. Debye 91 have worked out on the same basis a theory of

the photo-electric effect, which, like the hypothesis of light-

quanta, also leads to Einstein's Law (29).
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The Extension of the Doctrine of Quanta to the

Molecular Theory of Solid Bodies 92

i. Dulong and Petit's Law

IT
was a particularly fortunate circumstance for the con-

solidation of the doctrine of quanta that the failure of

classical statistics was not confined to the theory of radiation,

but, as appears later, extended to the molecular theory of solid

bodies. Thus there arose in quite another field a strong sup-

port for the quantum hypothesis, namely, in the field of Atomic

Heats. The Atomic Heat of a substance (in the case of poly-
atomic bodies we say the " Molecular Heat ") is defined as the

product of its specific heat and its atomic weight (or molec-

ular weight) ; or, otherwise expressed, it is that amount of

heat which must be communicated to a "
gramme-atom

"
93

(or gramme-molecule) of the body, in order that its tempera-
ture may be raised by one degree. According to our present

conceptions, the thermal content of a monatomic solid, say
a crystal, is nothing more than the energy of the elastic

vibrations of its atoms, which are arranged in the form of

a space-lattice, about their positions of equilibrium. If we

apply classical statistics to these vibrations, and particularly
the law of equipartition of kinetic energy, we arrive at the

following conclusion : The mean kinetic energy of an atom
3kT

vibrating in space, i.e. with three degrees of freedom, is ~
,
and

A

its mean potential energy is equal to the same amount,94 so

that its total energy is therefore 3kT. If we now consider

1 gramme-atom of the body, that is, a system of N atoms

(where N is the Avogadro number, approximately 6 x 10 23
),

we get for the mean energy of the body, remembering (19),

E = 3kTN = 3RT . . . (31)

29
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where E is the absolute gas-constant. It follows that the

atomic heat of the body at constant volume becomes :

0,-g =3^ = 5.94 . . (32)

This is the law of Dulong and Petit,95 according to which

the atomic heat (at constant volume) of monatomic solid bodies

has the value 5'94
^--, independently of the temperature**

This law is actually obeyed by many elements more or less

closely.
97 On the other hand, elements have long been known

which are far from following this rule, and which show

systematic differences, especially at low temperatures.

Thus, as early as the year 1875, F. H. Weber 98 found that

the atomic heat of diamond at - 50 C. is about 0'75 SSk. The
deg.

atomic heats of other elements
'

as well (boron, beryllium,

silicon) have also been shown to be much too small at

ordinary temperatures. And altogether it appeared that the

defect from Dulong and Petit's normal value occurs quite

generally at low temperatures, and becomes the more pro-

nounced, the lower the temperature. The classical theory
offered no solution of these low values of the atomic heat.99

2. Einstein's Theory of Atomic Heats

Einstein was the first to recognise
10 that in this case, too,

the quantum theory was destined to solve the difficulty.

Precisely as in the theory of radiation, the method of

classical statistics leads of necessity to a wrong law in the

field of atomic heats. Hence, here also, we must abandon
the law of the equipartition of energy. In fact, we need only

imagine electric charges distributed among the atoms 101 and
then we see that, exactly like the Planck oscillators, they must
set themselves in equilibrium with the heat-radiation which
is always present in the body. This means, however, that

_ C2

the relation (7), according to which U =
-% K,,, must be set

up between the mean energy U of an atom vibrating linearly
with frequency i>, and the intensity of radiation K,/. If we
now take Planck's radiation formula (12) aft empirically
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given, it follows immediately that the mean energy U of the

linearly vibrating atom must possess, not the value kT given

by classical statistics, but the value given by the quantum

theory, namely, U = j~-- For tbe atom wm<cn vibrates

in space we get, therefore by an obvious generalisation in

place of the classical value 3kT, the quantum value : -^ *

^

0,9

0,8

0,7

0,6

0,3

Q,'

i
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is therefore in the case of a definite body (i.e.

with v fixed)
a function of the temperature. Its form is such (see Fig. 3),

that for T =
(i.e.

x = GO
)

the atomic heat itself is

zero, and then increases gradually with increasing tem-

perature, approaching asymptotically at high temperatures

(i.e. with small x) the classical value 3R. Dulong and

Petit's Law is therefore only true in the limit for small

values of
-y-^,

that is, for low frequencies of atomic vibration,
rCJL

or high temperatures, exactly as is the case with liayleigh's

Law of Radiation. The departures from Dulong and Petit's

Law, in passing from high to low temperatures, become marked
the sooner the greater the frequency of the atoms.

3. Methods of Determining the Frequency

This frequency v the only unknown magnitude in Einstein's

formula (34) may be determined by several independent and

very noteworthy methods. One way that is always possible
is of course the following : For a given substance we choose

an experimentally well-known value of the atomic heat C*

which corresponds to a definite temperature T*. From (34)

it follows then that - = ~, an equation from which
(e

x -
1) 6ti

x = can be determined, and thence v. From the v thus
rC J-

found the course of the whole Cv curve can be calculated for

all temperatures, and compared with experiment.
Besides this

"
empirical

"
method of determining v, there

are a number of other more "
theoretical

"
methods which

do not require the use of the values of the atomic heat.

Einstein,102 as far back as 1911, discovered an important
connection between the frequency v and the elastic properties
of the body. That such a connexion must exist is easily

recognised from the following considerations : imagine the

atoms of the body arranged upon a space-lattice, as in a

crystal, and suppose a certain definite atom arbitrarily dis-

turbed from its position of rest, then this atom, when released,

will execute vibrations about its position of equilibrium. If

we suppose these vibrations to be simply periodic (" mono-
chromatic ") we shall, however, soon recognise that this
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supposition is an inadmissible approximation we see that

the frequency v is the greater the smaller the atomic mass,
and therefore also the atomic weight of the body, and the

greater on the other hand the force which restores the

atom to its position of equilibrium. This restoring force is,

however, for its part the stronger, the less extensible and

therefore compressible the body is. Hence v must turn out

the greater, the smaller the atomic weight and the compres-

sibility of the substance. The exact working out of this idea

led Einstein to the formula 103

2-8. 107
,Q~

Where A is the atomic weight, p the density, and K the

compressibility of the body.
A further interesting relation, which connects v with ther-

mal data, namely, the melting-point, was found by F. A.

Lindemann 1M by working out the conception that the ampli-
tude of vibration of the atom at the melting-point is of the

order of magnitude of the distances between the atoms. If

TS is the absolute melting-point, then it follows that

. (36)

Another formula deduced by E. Gruneisen 10S may also be

given here :

. (37)

Here Cv is the atomic heat at constant volume, and a is the

coefficient of thermal expansion ;
the index means that the

value of C\a.-^p^ at absolute zero is to be used.

From formulae (35) and (36) we recognise at once the

abnormal behaviour of diamond, for example, in respect to its

atomic heat. For it is known that diamond has a high melt-

ing-point and very low compressibility accompanied by a low

atomic weight. Its v is therefore comparatively large, and

it follows therefore, according to the above considerations,

that its atomic heat falls below Dulong and Petit's value of

3B = 5-94 5-i at comparatively high temperatures. In fact
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cal.

the atomic heat of diamond at 284 abs. is only 1'35 T~ , at
deg.'

413 abs. it is 3*64 -
', and even at 1169 abs. it reaches only

the value 5-24 ^-
deg.

Finally, particular importance attaches to a relation, first

discovered by E. Madelung 1Q6 and W. Sutherland, between

the frequency v of the atoms and the optical properties
of bodies. The two investigators started in this case from

the following conception : Crystals of diatomic compounds
(binary salts), such as rock-salt (NaCl), sylvin (KC1),

potassium bromide (KBr), and others, are known to be

cubical space-lattices, in which the single atoms carry electric

charges, and therefore appear as ions. In fact, the points of

the space-lattice are occupied alternately by the positively

charged Na+ (or K+) atoms, and the negatively charged Cl~

(or Br~) atoms. If an electromagnetic light-wave of frequency
v falls upon this crystal, the two ions are thrown into forced

oscillations relatively to one another, and further, on account

of "
resonance," the more strongly, the more exactly the fre-

quency v of the impinging wave agrees with the natural fre-

quency vr ,
which lies in the infra-red, of the ions themselves.

Since the ionic vibrations are set up at the cost of the energy
of the impinging wave, this energy will be weakened (ab-

sorbed) the more during its passage through the body, the

nearer v lies to vr . On the other hand, the vibrating ions

radiate back waves of frequency v since they are compelled
to execute these vibrations, when set into forced vibration,

doing so the more strongly, the more pronounced the reson-

ance is, again, therefore, the nearer v lies to vr . Hence a

region of maximum absorption and strongest (metallic) re-

flection will lie in the neighbourhood
108 of v = vr . These

regions of metallic reflection of a given substance may be

detected by the method of
" Eeststrahlen

"
(residual rays)

worked out by H. Rubens and E. F. Nichols. 109 For this

purpose we only require to reflect radiation of a considerable

range of frequency about v repeatedly from the substance.

In this way all waves will be gradually absorbed except those

most strongly reflected. These are, however, just those of
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frequency vr . They are thus "residual." The ultra-red fre-

quency vr of the ions therefore agrees with the frequency of

the residual rays.
110 On the other hand, this vibration of the

charged atoms is dependent on the elastic properties of the

substance, as we recognised in considering the formula (35).

We thus conclude that the "
elastic

"
frequency of the atoms

of binary salts agrees to a close approximation with the

"optical" frequency of their residual rays. But since the
"
elastic

"
frequency of the atoms determines the behaviour

of their atomic heat, the ring is thereby closed, and W.
Nernst 1J1 was thus justified in propounding the fundamental

law, that in calculating the atomic heat of binary salts, ive

may simply insert for the atomic frequencies v the, frequencies

of the residual rays.
In this way a number of independent ways were opened

up for determining the atomic frequencies required for the

calculation of the atomic heat. A comparison of the various

values of v determined by these different methods shows in

general satisfactory agreement, at any rate in order of magni-
tude. 112 One could hardly expect more, as we shall soon see,

in view of the many idealised conditions that were used in

the theory.

4. Nernst's Heat Theorem

With a view to discovering experimentally the general law

for the decrease of the atomic heat when approaching low tem-

peratures W. Nernst 113 began in 1910, in co-operation with

his research students, a series of masterly and widely planned
researches. For, by an entirely different route from Einstein

namely, by way of thermodynamics he also had become
convinced that the atomic heat of solid bodies must become

vanishingly small on approaching absolute zero. In his

opinion this result was only one of several consequences of a

general principle, namely, a new law of heat.114 This Heat

Theorem of Nernst often called the Third Law of Thermo-

dynamics states, in its original form, the following fact : If

we regard a system of condensed (i.e. liquid or solid) bodies,

which passes at temperature T by means of an isothermal

reaction from one state to another, and if A is the maximum
work which can be gained from this reaction, then
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M for the limit T =
. .* (38)

that is to say, in the immediate neighbourhood of absolute zero,

the maximum work which can be gained is independent of the

temperature But it follows immediately from this, if we

apply the two laws of thermodynamics, 113 that for any
reaction which changes the system from the initial condition

with energy 0^ to the final condition with energy U%, the

relation holds that

= f r t

Now, since -^=. ,
if we take a gramme-atom of the substance,

dT

gives the atomic heat, we are led to enunciate the following
rule : in the immediate neighbourhood of absolute zero, the

atomic heat of condensed systems remains unchanged during

any transformation.
Planck 116 has given Nernst' s Theorem a still more general

form : Not only the difference of the atomic heats (before and

after the reaction) is to assume the value at absolute zero, but

also each atomic heat itself is to do the same. Thus it follows

from the extended Nernst Theorem, in agreement with the

demands of the quantum theory, that the atomic heats of

solid bodies disappear at absolute zero.

5. The Improvement on Einstein's Theory of Atomic Heats

The experiments of Nernst and his collaborators proved

quite convincingly that the atomic heat of all solid bodies

tends towards a zero value as the temperature falls. In

the main, the courses of these decreasing values showed a

notable agreement with Einstein's formula (34). At low

temperatures, however, systematic discrepancies were found

in all cases, in the sense that the observed atomic heats fell

off much more slowly than Einstein's formula demanded.*w

W. Nernst and F. A. Lindemann 118 tried to take these dis-

crepancies into account by constructing an empirical formula,

and this actually expressed the observations much more

accurately than did the Einstein formula. This Nernst-
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Lindemann formula, which is now only of historical interest,

is as follows :

It receives a meaning if we suppose that one half of all the

atoms vibrate with the frequency i/,
the other half with the

I/

frequency While this supposition is untenable in this

raw form, it contains a kernel of truth, namely, recognition
of the fact that the " monochromatic

"
theory of atomic

heats, which assumes only a single fixed frequency v for all

atoms, goes too far, being an idealisation of the real state of

affairs. Einstein, who at first, for the sake of simplicity,

reckoned with only one frequency, had himself already

recognised how matters stood, and drawn attention to the

need for amending his theory.
119 Nowadays, in fact, we think

of a solid body, say a crystal, as built up of atoms regularly

arranged upon a space-lattice, according to Bravais concep-
tion

;
and this hypothesis has been verified as a certainty

through Lane's discovery of the interference of Eontgen rays.

In such a complicated mechanical system, however, the

single atoms do not vibrate independently of one another

with a single frequency v. But the position of equilibrium
of each atom, and thereby the type of its oscillations about

that position, is determined rather by the forces which all the

other atoms of the body exert upon the atom in question.
We are confronted with a structure which is comparable to

the one-dimensional case of a vibrating string, and which
thus possesses a whole spectrum of natural frequencies,

corresponding to the overtones of the string. If the body
consists of N atoms, it possesses in general 3N natural

frequencies,
120 of which the slowest are sound waves, while

the quickest fall in the infra-red. The most general possible
movement of each atom then consists in a super-position
of all these natural frequencies. Now, since each natural

frequency represents a linear, i.e. simple periodic, motion,

exactly like the motion of a Planck oscillator, the idea
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naturally suggested itself, in calculating the energy-content
of the body, to allot to each natural frequency of period v the

hv
theoretical quantum amount -^ as if the natural period

/*-!
were identical with a linear oscillator. The total mean

energy of the body then becomes

3N

in which the summation is carried over all 3N natural

frequencies v
lt

v
z ,

i>
3 ,

. . . v3#, that is, over the whole elastic

spectrum of the substance. By differentiation with respect
to T we obtain the atomic heat

dS
dT "(**- IV """M7

i=t

The kernel of the problem thus consists in calculating the
" elastic spectrum

"
of a given body, that is, in determining

for any body the position of its natural periods. In this sense,

the theory has been worked out from two different sides
;
on

the one hand by P. Debye,
m who took an elastic continuum

as an approximation to the actual atomically constructed

body, and on the other by M. Born and v. Kdrmdn^2 who
replaced the crystal of limited size by one of infinite di-

mensions. The difference between these two methods of

approximation causes the main problem, namely, the working-
out of the elastic spectrum, to be solved quite differently in

the two cases. The Debye theory, which from the outset

leaves out of consideration the crystalline, and even the

atomic, structure of the body, rests upon the classical theory
of elasticity, which, of course, treats bodies as structureless

continua. From it follows the important law : the number

Z(v)dv of all those natural periods, the frequency of which
falls within the interval v, v + dv, amounts to 123
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Z(v)dv = 47rFi+V2^ (43)

Here F is the volume of the body, GI and ct are the velocities

with which longitudinal and transverse waves, respectively,
are propagated within the body. In this case, however, the

following difficulty occurs in replacing the body, which in

reality consists of N atoms, by a continuum, namely, the

elastic spectrum extends to infinity, that is, the number of

natural frequencies becomes infinitely great. For example,
the number of natural frequencies (fundamental tone and
over-tones) of a linear string of length L are

vi = ct
~ and Vi = ct

^
respectively (i

=
1, 2, . . . DO

)

according as to whether we are considering transverse or

longitudinal frequencies. The series of overtones therefore

extends without limit to infinity. In reality, however, as the

body consists of N atoms (mass-points), it may not possess
more than 3N natural frequencies. In order to attain this,

Debye helps himself out by means of the following bold

supposition. Instead of calculating strictly the elastic spec-
trum of the real body consisting of N atoms, he replaces it by
that of the continuum as an approximation, but breaks it off

arbitrarily at the SNth natural period. Debye thus gets the

greatest frequency vm which occurs, that is, the upper limit

of the elastic spectrum, from the condition :

therefore . (44)

The atomic heat of the body, which follows from (42), is

M
hv \ 2r/hv \ 2

\(kf)
'

'

-
l)
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a result which can easily be brought into the following more

simple form :
124

m ,. KN
'

where Xm = ra - m

The atomic heat is therefore only a function of the magnitude

xm ,
that is, it depends only on the ratio ~ : here

-^
= rS?

This result may be expressed in Debye's terms thus : reckon-

ing the temperature T as a multiple of a temperature which

is characteristic of the particular body, then the atomic heat is

represented for all monatomic bodies by the same curve. Hence
we must be able to bring the Cv curves of all monatomic
bodies into coincidence, if only the scale of temperature be

suitably chosen for each substance. 123 For high tempera-
tures, the Debye formula passes over, as it must do, into the

classical value of Dulong and Petit, Cv = 3.B,
126

just as do

the Einstein and Nernst-Lindemann formulae. On the other

hand, it differs from these latter in falling much more slowly
at low temperatures. For while the atomic heats, according
to both Einstein and Nernst-Lindemann, fall exponentially

(with ^e~~r~ )
at low temperatures, Debye's formula leads

to the fundamental law, 12'' that the atomic heats of all bodies at

low temperatures are proportional to the third power of the

absolute temperature.
It is further remarkable, that we may write formula (44)

for the maximum natural frequency in a form such that only
measurable magnitudes occur in it. For if we express the two
velocities of sound Ct and ci in terms of the elastic constants of

the body, and replace the volume V of the gramme-atom by
, u ,. , atomic weight (A) ., ,
the quotient

-
3
- &

.

v ;
,
it follows that 128

density (p)

5-28 . 107
.
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In it K is again the compressibility of the body, o- the

Poisson ratio, that is, the ratio of the transverse contraction

to the extension. The similarity of this formula with the

Einstein relation (35) strikes one immediately. But in this

case the second elastic constant of the isotropic body, or,

enters into the equation as well. Altogether, the upper limit

vm of the elastic spectrum, at which, as one can show, 129 the

natural frequencies always crowd together closely, plays in

the stricter theory an analogous role to that played by the

single natural frequency v in the " monochromatic
"
theory.

Comparison with experiment shows 130 that the Debye

formula, at any rate for the monatomic elements such as

aluminium, copper, silver, lead, mercury, zinc, diamond, de-

scribes the course of values of the measured atomic heats

very accurately. Particularly at low temperatures, the pro-

portionality between the atomic heat and the third power of

the absolute temperature receives fair confirmation.131 In

view of the fact that the idealised view (replacement of the

actually atomic body by a continuum) is carried very far, we
must not regard the agreement' between theory and experi-

ment as self-evident. At low temperatures, Debye's idealis-

ation will justify itself. For then -^ is large, and hence the
K J.

amount of energy - is small, excepting when v itself as-

ek? - 1

sumes small values. At low temperatures, therefore, only long

waves will contribute sensibly to the energy of a body, and hence

to its atomic heat. For long waves, however, that is, for

waves, the length of which is great compared with the dis-

tance between the atoms, the specific atomistic construction of

the body plays no part ;
for them the substance is almost a

continuum. The position is quite different at high tempera-
tures, at which the longer frequencies up to the maximum vm

(that is, the shorter waves down to the smallest) furnish con-

tributions of energy. For the waves which correspond to the

highest frequencies possess lengths, as can easily be shown,132

which are comparable with the distances between the atoms,

and for these shorter waves the medium cannot fail to betray
its atomic structure. Here, therefore, its replacement by a
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continuum becomes questionable since the approximation is

only very rough.

7. The Lattice Theory of Atomic Heats according to Born and
Karman. The Elastic Spectrum of the most general Crystal

At this point the above-mentioned investigations of Born
and Kdrmdn intervene, which, going beyond Debye, take

account of the real crystalline structure of the body, that is

to say, the space-lattice arrangement of the atoms. In order

to overcome the great mathematical difficulties involved, they

imagined, as has already been said, the actual limited crystal

replaced by one extended indefinitely. Thus the disturbing
effect of the surface on the interior could be eliminated, so

that now all atoms were exposed to the same conditions.

Here also the main problem is again to determine the elastic

spectrum, or if we dispense with the exact calculation of

the proper frequencies at least to discover the law, accord-

ing to which the proper (or natural) frequencies are distributed

among the different regions of frequency. This problem was
first solved by Born and Kdrmdn for regular crystals. The
laws thus obtained were then extended to the case of simple

point-lattices of arbitrary symmetry, and finally, Born de-

duced them, in his "Dynamics of the Crystal Lattice," for

the most general form of space-lattice.
133

These most general space-lattices arise from the periodic

repetition in space of a definite group of atoms and electrons

(basic group) which on the whole is electrically neutral, and
is enclosed in a parallelepiped of space, the "elementary

parallelepiped." In Fig. 4 such a lattice, in this case, how-

ever, plane, is illustrated, in which the basic group consists

of three particles ( o x
).

All particles form together a

simple lattice, as do the o and x particles. We have in this

way three interlocked simple lattices.

Thus, for example, the halogen compounds of the alkalies

(NaCl, LiCl, KC1, KBr, KI, EbCl, EbBr, Ebl, and so forth)

form cubic space-lattices, in which the lattice points are

alternately occupied by the positive alkali ion and the negative

halogen ion (see Fig. 5). If we regard the whole cube here

pictured as the "
elementary cube," then the basic group would
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contain eight particles, namely, four ions of each sort (they are

numbered here). We have thus eight interpenetrating simple
lattices. Every four of them would, however, consist of the

same kind of particle. Hence it is advisable to select in this

case in place of the cube the rhombohedron (double-lined in

FIG. 4.

the figure) as the elementary parallelepiped. Then the basic

group consists only of the two different particles 1 and 8, of

which the one lies in a corner, the other in the middle of the

parallelepiped. In fact we can get the whole lattice by displac-

ing the basic group in the direction of the three rhombohedral

edges, a distance equal to a whole multiple of the length of
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the edge. The lattice consists therefore, according to this

view, of two interlaced simple cubical atomic lattices. Further-

more, they are
" surface-centred

"
lattices, that is to say, such

that not only the corners of the cubes, but also the middle

points of the cube-surfaces, are occupied. If in the most

general case the basic group contains s different particles, the

lattice consists of s interlaced simple lattices.

O #*

FIG. 5.

In order now to get a general view of the laws which

govern the elastic spectrum of such a most general crystal,

we proceed according to Born and Kdrmdn as follows : We
imagine an elastic wave of definite wave-length and definite

direction (the normal to the wave front) passing through the

crystal. For each wave thus defined there are 3s natural
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frequencies with periodicities v
1
v
2
v
3

. . . vss . The first three

frequencies v
lt

v.
,
v
3 correspond to those natural frequencies

of the crystal, by which the single interpenetrating simple
lattices are similarly distorted to a first approximation with-

out being compelled to move relatively to one another.

These are the three ordinary acoustic natural periods (one

longitudinal, two transverse). The remaining 3(s
-

1)

frequencies, on the other hand, correspond to another type
of motion of the crystal, namely, to those natural frequencies
with which the single simple lattices oscillate with respect to

one another without distortion. If the basic group contains

only one particle (s
=

1), i.e. if the crystal consists of only a

simple lattice, this second type of motion disappears alto-

gether, and we are left with only the three acoustic natural

frequencies i/
1?

v
2 ,

v3 . If, on the other .hand, we are dealing
with a crystal, say of tBe halogen compounds of an alkali,

for example, rock-salt (NaCl), s = 2, there exist, as we have

seen, besides the three acoustic oscillations, three further

natural frequencies of the second type. In consequence
of the regular crystal character of the alkaline halides, these

three natural frequencies exactly coincide, at any rate for

long waves, and give rise to that motion in which the sodium
lattice vibrates approximately as a rigid structure against the

likewise rigid chlorine lattice. We see at once that it is

just the natural frequency last considered that will play the

chief part in the optics of these crystals. For when an

electromagnetic wave meets the crystal, the sodium ions

are driven by the electric force of the wave to the one side,

and the oppositely-charged chlorine atoms are drawn to the

opposite side. It is thus just the type of vibration described

above that is brought about. If the frequency of the

external wave approaches closely to that of the natural

period, resonance occurs. These infra-red vibrations, there-

fore, are what determine the course of the refractive index,

especially in the infra-red. They are the so-called "infra-

red dispersion frequencies." It is also in their neighbourhood
that the places of metallic reflection lie which are detected

by the method of residual-rays.
What has just been stated for the special case s = 2

(alkaline halides) may, of course, be immediately generalised.
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For if the basic groups consists of s different particles, it

is just the 3(s 1) natural frequencies that determine the

dispersion of the crystal. Among them are those, in the

neighbourhood of which the regions of metallic reflection

(residual rays) lie. If the basic group contains p positive
atomic residues and s - p electrons, the frequencies i/4 . . . i/

3,

fall correspondingly into two classes : the first class consists

of 3(^-1) infra-red frequencies, which arise from the

atomic residues ;
the second consists of 3(s

-
p) ultra-violet

frequencies, which are to be ascribed to the influence of the

electrons. The infra-red natural frequencies decide the

course of the refractive index in the infra-red, the position
of the residual rays, and, as we shall see, the atomic heats ;

the ultra-violet natural frequencies, on the other hand, deter-

mine chiefly the refractive indices in the visible and ultra-

violet. Incidentally, the general lattice-theory of Born m
confirms the law previously enunciated by Haber 13S that the

frequencies of the first class (infra-red) bear the same ratio to

the second (ultra-violet) class, as regards order of magnitude,
as the square root of the mass of the electron bears to the

square root of the mass of the atom.

After this digression let us now return to our starting-point.

Up to the present we have always considered a wave of

definite length X and with a definite normal' direction n, and

we have seen that corresponding to it there are, in the most

general case, 3s natural frequencies v
l

. . . i/3S
. Let us now

allow the wave-length A to vary continuously, keeping the

wave-direction constant, by going from infinitely long waves

to the smallest. Then each of the 3s natural frequencies will

also vary continuously, and will pass through a continuous

range of values. In other words, the 3s natural frequencies
are certain functions of the wave-length A :

-i -/<(*).

From this, however, we learn the fundamental fact that all

these ranges of values of the single natural frequencies are

only finite in extent and that, therefore, each of the 3s continua

of frequencies automatically breaks off at a highest limiting

frequency.
"
Automatically," i.e. without our arbitrary assist-

ance (as in Debyes case), solely on account of the analytical
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form of the function /t-. This is explained by the fact that

the wave-length X of possible waves in the crystal has a

lower limit set to it : waves of length below a certain lowest

value cannot exist. This is most simply recognised from the

following instructive example. If we consider a simple
cubical lattice having the atomic distance a, and examine,
for example, longitudinal waves, which are being propagated

along an edge of the cube so that all atoms on an edge at

right angles to this side oscillate in the same phase in the

direction of the edge then we see at once that the smallest

wave that is possible here has the length Xmjn = 2a. For
this wave, namely, successive planes of the cube swing
in opposite phase, that is,

"
against

"
one another. The

functional relation between v and X assumes the special
form :

13fi

- (47)

For infinitely long waves (X
= oo ), v = ;

if we pass on
to shorter waves, v increases continuously, until, for X = 2a,

it reaches its maximum value vm . At this limiting frequency
vm the range of possible v's breaks off automatically.

Up to the present we have given the wave-direction (n, the

direction of the normal) a certain fixed value, and have
allowed the wave-length X to vary. We now give the wave-

direction by degrees other values, and at each step we allow

the wave-length to vary from the value oo to the least

possible value. Then the nature of the functional dependence
of the magnitude vi or X, and the position of the limiting

frequencies also change continuously with the wave-direction,

so that we may say : the 3s natural frequencies are, in

general, continuous functions of the wave-length X and of

the wave-direction n :

* /<(*, w), (t-1,2,3, - - - 3s) . (48)

In it, each of the functions /t
- breaks off automatically for a

minimum value of the wave-length at an upper limit

(vi)max, which itself still depends on the wave-direction.

These equations express the law of dispersion of waves in

crystals, for they determine for each wave the 3s frequencies
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vi and hence also tell us how the rates of propagation

qf
= vi A depend on the wave-length and the wave-direction.

The dispersion law becomes particularly simple in the region
of long waves : for the three acoustic vibrations the re-

lations 13?

. (49)

hold. In them the three magnitudes q^n), q2 (ri),
and q3(n)

are three, in general different, functions of the wave-
direction. And further, these are the three velocities of

propagation of the three acoustic vibrations. In the region
of long waves, therefore, the three velocities of propagation
of the three slow acoustic vibrations are independent of the

wave-length to a first approximation.
The dispersion law (for long waves) assumes a very

different appearance for the 3(s 1) rapid vibrations

v4 ,
v5 . . . v

3,.
It assumes the form

Vi =v + M^) (t=4,5, . . . 3s) : (50)A

here the v^'s are constants, the pi(n)'s are again certain

functions of the wave-direction. The velocities of propaga-
tion here assume the values

g
. = V<A = vJA + Pi(n) . . . (51)

and would thus be linear functions of the wave-length.
We may summarise thus : the elastic spectrum of the most

general crystal, the basic group of which contains s particles,

consists of 3s separate parts (" branches "). Each part consists

of a finitely extended continuum of frequencies. The three first

parts contain the totality of all slow, acoustic natural fre-

quencies (sometimes called "characteristic"). The remaining

3(s
_

i) parts include the rapid (infra-red and ultra-violet)

natural frequencies, which play the chief part in determining
the optical dispersion and the positions of metallic reflection.

8. Continuation. The Law of Distribution of the Natural

Frequencies

While this knowledge of the general character of the elastic

spectrum is, as we shall soon see, of great value, it is none
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the less insufficient for the question of the energy-content and
molecular heat of the crystal, inasmuch as, even for the

simplest crystal, a strict calculation of the elastic spectrum
is not possible at the present time. We know, however, on
the other hand, that we need not know the whole details of

the elastic spectrum to calculate the energy-content and the

molecular heat, but that it suffices to know the law according
to which the natural frequencies are distributed over the

elastic spectrum (or its individual "branches"). This is

the more true, the closer together the natural frequencies
lie. Now, in reality the finite crystal possesses, if it con-

sists of the basic group (of s particles) N times repeated,
3Ns natural frequencies, which are distributed so that N fre-

quencies fall to each of the 3s branches of the spectrum. If N
becomes infinite, the N individual natural frequencies of each

branch merge into one another to form a continuum, and we

get exactly the elastic spectrum that we have just been con-

sidering. We see from this, that the more we are justified
in replacing the finite crystal by one of infinite extent the

better our results if we know only the distribution law of the

natural frequencies (without knowing their position exactly).
The law of distribution of the natural frequencies, which

was discovered by Born and Kdrmdn and extended by Born
in his "

Dynamics of the Crystal Lattice
"

to the most general

type of crystal, may be formulated thus : Select from the

totality of all elastic waves the small group, whose lengths lie

betioeen X and A. + d\, and luhose normal direction lies in the

elementary solid angle
138 dO. Each of the 3s branches of the

y
spectrum then contribute dXdQ, natural frequencies to this

A

group. Here V denotes the volume of the finite crystal.

9. Continuation. The Atomic Heats at Low, very Low, and

High Temperatures

The knowledge of this law of distribution allows us to

write down at once the thermal capacity of the crystal con-

sisting of Ns particles. From (42) it is :
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r,,=

%)
. (52)

i = io

This formula is to be interpreted as follows : the natural fre-

quencies vi are, by (48), to be expressed as functions of the

wave-length \ and the wave-direction n : then the integra-
tion is to be performed with respect to A from the smallest

wave-length Xm(n), which itself depends upon the wave-

direction n, up to the maximum X = oo . The result of this

integration still depends on the wave-direction and the index

i. Finally, integration is to be performed over all directions

(that is, over all elementary solid angles between and
4?r)

and summation over all 3s branches of the spectrum. But
we have seen that the 3s branches of the spectrum fall into

two groups. The first 3 branches (i
=

1, 2, 3) contain the

totality of slow acoustic natural frequencies; for these

branches we have the dispersion law (49) which is valid for

long waves. The remaining 3(s
-

1) branches contain the

totality of the quick (infra-red and ultra-violet) natural fre-

quencies, with the entirely different type of dispersion law

(50), which also holds for long waves. Hence the sug-
3*

gestion naturally occurs of dividing the sum ^ of (52) into

two parts, corresponding to the two different groups of fre-

quencies and of writing

r - r(1) + r (2)
L v L v

~
1 v

where

(53)

These still very complicated formulas may, according to

Born, be brought into a very simple and comprehensive form
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by limiting our considerations to low temperatures and in-

troducing certain approximations. As we have already re-

cognised, at low temperatures only the long waves contribute

to the energy-content. Hence we shall apply in formula (53)

all those approximations which are introduced by confining

ourselves to long waves. Let us consider first T^?. Here we
set in place of the v/s of (50) the constant values v., which

are independent of the wave-length X and of the wave-

direction. If we do this, we can place the constant factors

\rri
-r in front of both integration signs, and write

FkZOL^
M)

,

'
W Xi =

The factor in square brackets has, however, a simple meaning.
From the law of distribution of the natural periods we see,

namely, that this factor gives the sum-total of all natural

frequencies that occur in one of the 3s branches of the

spectrum ;
it therefore has the value N, which as has already

been said, is the number of basic groups which go to make

up the crystal. If we choose the piece of crystal under con-

sideration such that its size is so that N is equal to the

Avogadro number, then if we remember that Nk = E for

r<2
), the expression

3
x* exi hv

where Xi =

follows. If we compare this result with (34) we see that IX2)

excepting for the missing factor 3 consists of 3(s
-

1)

Einstein functions. We write the expression in the form

3*

where ^=J^ . (55)

in which the abbreviation is obvious. The fact that, in using
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these approximations, we come across Einstein factors, i.e.

that we encounter the " monochromatic "
theory, might have

been anticipated. For since we treated
v
the v/s here as con-

stants that are quite independent of wave-length and wave-

direction, these vibrations represent processes which have

nothing to do with the propagation of elastic waves in the

crystal as a whole : and this means that the individual

particles, uncoupled as it were, perform 3(s
-

1) mono-
chromatic vibrations.

The approximate evaluation of the first part TO) is quite

different. For here we have to use for the frequencies
v
i

V
2>

V
3>

*ne relations (4=9), which connect the three acoustic

natural frequencies with wave-length and wave-direction.

Here we have therefore to deal with three real elastic oscilla-

tions, which are propagated in the crystal with the three

different acoustic velocities q-^n), q.2 (n), qs (n), each of which

depends on the direction (). The crystal acts here as a

dynamic whole, exactly as in Debyes point of view. Hence
we may conjecture that r (

J
} allows itself to be brought

into the form of three Debye functions (45). The more
exact calculation confirms this supposition, and gives us 1W

which, taking Debye's formula (45) into consideration, we

may write in the following immediately intelligible form :

. . - (57)

The three magnitudes X{ here play the part of three upper
limits of frequency. Their values are

where the three magnitudes qi represent certain mean direc-

tions of the acoustic velocities, which therefore no longer
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depend on the wave-direction. From (55) and (57) we get for

the thermal capacity of the piece of crystal considered

Now, since N particles of each of the s different kinds of

particles are present, that is one gramme-atom of each kind

of particle exactly for N is the Avogadro number the piece
of crystal contains s gramme-atoms of different sorts of

particles. If, therefore, we cut the crystal into s equal
N

pieces in such a manner, that each piece comprises only
-

s

basic groups, then each of these pieces contains a so-called

"mean" gramme-atom. Hence if we now consider only a

p
single one of these pieces, its thermal capacity is

; we call
s

it the " mean atomic heat
" CV) and we may write

Here the rc's have the same meaning as in (58). For the

piece of crystal now under consideration consists of basic
S

groups, and has therefore the volume -. Formula (58),
S

however, obviously remains unchanged when we replace in

it N and V by and . The quantity -, the volume of a
S S S

mean gramme-atom, is also called the mean atomic volume.

In the case of chemical compounds, in which several sorts

of atoms occur in the basic group, and also in the case of

polyatomic elements, in which the basic group contains several

particles of a like sort, we frequently speak of the molecular

heat. In doing so, we follow the usual chemical conception,
inasmuch as we imagine the s particles of the basic group
divided into one or several sub-groups, and regard each sub-

group, taken alone, as a molecule. If then the molecule



54. THE QUANTUM THEORY

contains q atoms, then qCv is the mean molecular heat ; for

example, the basic group of rock-salt (NaCl) contains one

sodium ion and one chlorine ion. The whole piece of crystal,

JV N
which, by definition, contains = basic groups, comprises

N
therefore sodium ions and the same number of chlorine

Zi

ions, that is to say -^

" NaCl-molecules." q is in this special

case equal to 2. Hence 2(7,, represents the thermal capacity
of JV "

NaCl-molecules," that is, the mean molecular heat of

rock-salt.

If among the s particles of the basic group there are p
atomic residues and s -

p electrons, the number of Einstein

factors in (59) reduces to 3(p 1), since the 3(s p) ultra-

violet frequencies arising from the s p electrons contribute

only in a vanishingly small degree to the atomic heat as com-

pared with the infra-red. We thus arrive at the law : the

mean molecular heat of a crystal whose basic group includes p

(similar or different] atomic residues, is made up, at a suf-

ficiently loiv temperature, of three Debye terms (with, in general,

three different upper limits offrequency] and 3(p- 1) Einstein

terms (in which the 3(p 1) infra-red natural frequencies for

long waves appear as frequency numbers).
When we descend to the lowest temperatures, the Einstein

terms disappear exponentially, and only the three Debye terms

remain, for these, as we know, decrease much more slowly.
In them we can further replace all the upper limits of the

three integrals (see (56)) by GO
,
so that the integrals thereby

become numerical constants. Eemembering (58) we get the

fundamental law, that the molecular heat of every crystal at

the lowest temperatures is proportional to the third power of
the absolute temperature. So the general lattice theory con-

firms Debye's result. The formula obtained has the following

simple form :
wl

CL-

where VA is the " mean atomic volume
"

an atomic wei

mean density

/ _ mean atomic weightX

\ mean density /
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and q represents a quantity which, if suitably denned, may be

called the mean acoustic velocity, introduced in place of the

three different acoustic velocities qlt qz , qs
.

Also in the other extreme case, for high temperatures, a

very useful formula can be obtained, as H. Thirring
1*2

showed. He started from (52) and developed the exponential
functions in series. The following value is then obtained for

the mean atomic heat :

C,.
= 3

where the coefficients J
lt
J

2 ,
/

3 ,
. . . depend in a complicated

manner on the elastic constants of the crystals, the atomic

masses, and the atomic distances.

10. Tests of the Born-Karman Theory

How do matters stand with regard to the testing of the

Born-Kdrmdn Theory? We see at once that it is incom-

parably more difficult than in the case of Debye's Theory : for

even in simple cases, the calculation of the mean atomic

heat of a crystal is very complicated, and requires above all

a more exact knowledge of its elastic behaviour than we at

present possess. Only by restricting our attention to low
and very low temperatures on the one hand, where the

formulae (60) and (61) may be applied, and, on the other,

to the region of high temperatures, within the limits of

applicability of Thirring's formula (62), are we enabled to

carry our calculations for a number of simple substances to

the point of comparison with experimental results. Born
and Kdrmdn themselves, in one of their first publications

1*3

tested the formula (61), valid for the lowest temperatures

(Debye's TMaw), by comparing its results with those of

experiment. They limited themselves in this case to metals

(Al, Cu, Ag, Pb) which, however at any rate in the usual

form are not proper crystals, but irregular crystalline

aggregates. For this reason, they proceeded as if the metal

were an isotropic body, and obtained the mean acoustic

velocity the only quantity in (61) which in general requires
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extensive calculation from the following relation which

holds for isotropic bodies :
*

I
. ?

=
g?
+

9?'
'

;,
(63)

Here ql
and qt

are the velocities of propagation of the

longitudinal and transverse elastic waves, magnitudes, there-

fore, which may be simply calculated from the two elastic

constants of the isotropic body and its density.!** The

agreement of the values of Cv thus found with the experi-

mental data is, especially in the case of Al and Cu (and also Pb),

quite good. A. Eucken 146 has, however, pointed out rightly,

that no weight should be attached to this agreement. For

the values of the elastic constants which Born and Kdrmdn
used for calculating ql

and qt
are those which are correct at

the ordinary room temperature. If we take their dependence
on temperature into account, the good agreement between

theory and experiment disappears. Metals are, indeed, not

isotropic bodies, and hence it is not permissible to use the

observable elastic constants, which depend upon temperature,
in calculating q.

Matters are much more favourable in the case of real

crystals, in which, as experiments by E. Modelling
147 show,

the elastic constants vary very little with temperature. But
here the calculation of the mean acoustic velocity q gives rise

in general to notable difficulties,
148 which may, however,

be cleared away in simple cases by a very practical method
due to L. Hopf and G. LechnerW Eopf and Lechner were

thus enabled successfully to carry out the calculations for

sylvin (KC1), rock-salt (NaCl) fluor-spar (CaF2)
and pyrites

(FeSj). They proceeded to calculate the quantity q from the

observed values of Cv , assuming the correctness of formula

(61), and they then compared these with the value of q
calculated from elastic data. The result showed very satisfac-

tory agreement. 180

It is of particular interest to test the very clear formula

(60) which gives the mean atomic heat as a sum of three

Debye functions and 3(s
-

1) Einstein functions. Here the

three infra-red natural frequencies vj,
v

t
v coincide, and the
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three Einstein functions become equal to one another. If we
introduce the further approximation of replacing the three

different quantities xt in the Debye formula by a mean value

x, it follows that

+ E(x)} . . (64)

In this we use the value of x deduced from formula (58)

by merely replacing fa in it by a mean value q, which can be

calculated by the method of Hop/ and Lechner just mentioned.

x, on the other hand, according to (54),
= -^ ,

where v is the
fcJ-

infra-red natural frequency of the crystal (for long waves),
which may be determined from the dispersion in the infra-

red or by the method of residual rays.

Formula (64) had already been given, previously to Born,

by W. Nernstw who, however, based his argument on a

supposition which is no longer tenable. Nernst started

from the conception that, for example, in the case of rock-

salt, the NaCl-molecules are located upon the points of the

space-lattice, and that the most general state of oscillation

of the lattice arises from the superposition of two modes of

motion, firstly the oscillation of the whole molecules in the

lattice-structure, which give a Debye term, and secondly the

intra-molecular oscillations of the two atoms, which, being
almost monochromatic, lead to an Einstein term. The

agreement of the Born-Nernst formula (64) with the ex-

perimental data is not very satisfactory in the case of NaCl

and KC1, but much better in the case of AgCl, which belongs
to the same crystal type.

192 The reason for this is believed

by E. Schrodinger
183 to lie in the excessively rough ap-

proximation inherent in formula (64).

Finally, Thirring's formula (62) has also been tested, by

Thirring himself, 134 for NaCl, KC1, and, by neglecting certain

factors, for CaF
2
and FeS

2
. Taking into account the variation

of the elastic constants with temperature (which, however, is

to be regarded as uncertain and provisional since the values

are only obtained by interpolation) he found good agreement
between theory and experiment. In connection with the

Thirring formula, .Born 188 has also calculated the atomic

heat of diamond and compared it with experiment. Since in
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this case, however, the elastic constants were unknown, Born

proceeded to evaluate the curves of atomic heat for various

possible values, and to select from them that curve which
conformed most closely to the results of observations. Thus,

for example, the value O63 x 10 ~ 12 ^ was obtained for

LdyneJ
the compressibility ;

this is in satisfactory agreement with the

value, probably too small, measured by W. Richards, viz.

0-5x10-4 "I
LdyneJ

From all this we see that the possibilities of testing the

Born-Kdrmdn Theory of Atomic Heats, partly on account of

the great difficulties of calculation, partly on account of our

insufficient knowledge of the elastic behaviour of crystals, are

exceedingly sparse, so that for the present Debyes much more
tractable formula (if necessary, with the addition of Einstein

terms) appears more useful. If, in spite of this fact, so much

space has been devoted here to the Born-Kdrmdn Theory, the

reason is to be sought in the conviction that this theory has

gone much further than that of Debye into the kernel of the

matter. For, without a more exact treatment of the structure

of the space-lattice and its dynamics, our knowledge of the

nature of the solid state must without doubt remain faulty.

ii. The Equation of State of a Solid Body

Linking up with this new development of the theory
of atomic heats, a number of investigators, chiefly E.

Griineisen,
15Q S. Ratnowski,1*1 and P. Debye,

158 have worked
out a theory of the solid state with the object of creating as

a counterpart to the Kinetic Theory of Gases a Kinetic

Theory of Solids. One of the main problems in this con-

nexion is to formulate an "Equation of State," that is, a

relation between pressure (p), volume (F), and temperature

(T), a problem, which, according to the doctrine of thermo-

dynamics, is to be regarded as solved as soon as the "
free

energy
" F of the body is known as a function of the tempera-

ture and the volume.159 Then the pressure, for example, will

follow from the simple equation
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which, as a relation between p, V, and T, gives the equation
of state at once. If this is known, we have mastered quanti-

tatively the behaviour of the body for all changes of state.

For example, the coefficients of expansion a, and the com-

pressibility K, result from the well-known formulae

T
-

(F is the volume at the zero-point.)

P. Debye 16 was the first to draw attention to the fact that

the model of the solid body which forms the basis of the

atomic heat theories of Einstein, Debye, and Born-Kdrmdn,
is necessarily too highly idealised

; for this idealised solid

body has, as is easily seen, a zero coefficient of expansion. In

fact, if, as has always been assumed hitherto, the forces

which pull the atoms back into their position of equilibrium
are proportional to the first power of their relative displace-
ments (assumption of quasi-elasticity, Hooke's Law), then

the atoms will execute symmetrical oscillations about this

position of rest. If this supposition, viz. Hooke's Law, be

valid for all temperatures, then the mean volume of the

body that is, the volume that it possesses when all atoms are

exactly in their positions of rest must be just as often over-

shot as undershot, however great the amplitude of the heat-

vibrations may be. Hence, if we warm the body from zero

until it possesses the volume FO, and if we assume that all

atoms are at rest at zero, then its mean volume at any tem-

perature will also be equal to F . The body, therefore, does

not change its mean, observable volume with rise of tempera-
ture

;
its coefficient of expansion is therefore 0. If we desire to

represent the actual behaviour of the solid body, namely, its

expansion when heated, as known to us from thousandfold ex-

perience, we are necessarily obliged, according to Debye, to re-

place Hooke's Law of Force by an expression involving higher

powers of the variation of atomic distance. Then the oscilla-

tions of the atoms become unsymmetrical, and there occurs a

displacement of their position of rest as the energy of vibration

increases. If we arrange the generalisation of Hooke's Law
so that a greater force is necessary to bring the atoms nearer

together than to separate them, then the change in the
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position of rest occurs in such a manner that for increasing

energy of vibration, that is, for rise of temperature, the

relative distances of the atoms increase, and hence the body
increases in volume. Debye has extended the theory in this

sense. Among other things this gives us the law previously de-

duced by Griineisen 1 that at sufficiently low temperatures the

thermal coefficient of expansion a is proportional to the specific

heat. Moreover, the very small change in compressibility
with temperature is well accounted for on Debye s Theory.

12. The Thermal Conductivity of Solid Bodies according to Debye

The importance of Debye s Theory is by no means confined

to thermal expansion. On the contrary, it became manifest

that another important group of phenomena require this

generalisation of Hooke's Law. In the idealised solid body,
in which the elastic forces obey Hooke's Law% the elastic

waves will become superposed without disturbance, and will

penetrate the whole body without becoming weakened. If

we imagine the idealised body as a horizontal, infinitely

extended plate of finite thickness, and if we transmit a

powerful motion (high temperature) to the upper layer of

atoms, while we keep the lower layer at rest
(i.e.

at zero

temperature), then an elastic energy current (heat current)
will pass continually from above to below. An energy

gradient (temperature gradient) does not, however, exist

in the body, since, on account of the undamped character

of the wave, the mean density of energy is everywhere the

same. Since, in general, the conductivity for heat is equal
to the flux of heat divided by the gradient of temperature,
it follows that the idealised solid body possesses an infinite

thermal conductivity. The case becomes different, however,

if we extend Hooke's Law in the manner described, and thus

pass over to the " real
"

solid body. The waves in the body
will then, on account of the departure of the equations of

motion from linearity, no longer pass over one another un-

disturbed. On the contrary, an oscillation already present

will, in consequence of the fluctuations in density caused by

it, disturb the oscillations superimposed upon it, with the

effect that a scattering, and therefore a weakening of the

waves in the body results, in precisely the same way as a
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"
cloudy

" medium scatters and weakens light passing through
it. Hence, in the case taken, a temperature gradient is set

up in the plate from the top to the bottom. In the case of

the real body we thus arrive at a finite thermal conductivity.

The mathematical development of this conception led Debye to

the law 162 that the thermal conductivity of crystals is inversely

proportional to the absolute temperature (if we confine ourselves

to temperatures which are so high that classical statistics are

applicable). This deduction seems to be in excellent agree-

ment wiih experimental results obtained by A. Eucken

13. The Electron Theory of Metals and its Modification by the

Quantum Theory

If matters are already complicated in the intrinsically

clear case of crystals, the position becomes still more
difficult when we turn to metals which, in general, con-

sist of an irregular conglomerate of crystallites. In this

case the conductivities, namely, of heat and electricity, are

particularly deceptive. According to the classical theories of

P. Drude, S. Biecke,m and H. A. Lorentz, these pheno-
mena are brought about by the free conductivity-electrons,

which, like gas-molecules, fly about in the space between the

fixed atomic residues, exchange energy with these upon
collision, and so take part in the establishment of thermal

equilibrium. Thus the conduction of electricity is explained
as follows : in a piece of metal of uniform temperature, an

equal number of electrons fly, on the average, in each

direction through an element of surface. Hence, on the

average, there is no transport of electrical charges through
this element of surface, that is, no electric current is flowing
in the piece of metal. If now we apply a potential difference

to the ends of the metal, an electric field exists in the metal,

and this field impresses upon the electrons during their
"
free

paths
"

(i.e. their paths between two encounters with atoms)
a certain one-sided additional velocity which is super-

imposed upon the irregular heat-motion. Now, therefore,

more electrons will pass per second through the element of

surface in one direction than in the other, and since the

electrons carry a negative charge, and so move against the

field, i.e. in a direction opposite to the field, we have now an
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electric current in the metal. The mathematical calculation

of this simple conception gives for the electrical conductivity
a- of the metal iw

'

Here N is the number of electrons per unit of volume, e and

m charge and mass of the electrons, q their average velocity,

and I their free path. If we write the expression (67) in the

form
*

(K1 .

. . . (67)

we may, according to the assumptions of the classical theory,

replace the mean kinetic energy fynq
2 of the electrons by $kT.

For since, as we assumed, the electrons take part in

establishing heat-equilibruim, the law of equipartition of

kinetic energy applies to their motion, and there is thus

allocated to each of the three degrees of freedom of the

electrons the energy J&T'. In this way we arrive at the

formula

Analogously, we get from Drude's Theory the coefficient of

thermal conductivity
168

. . , . (68)

so that a combination of the two formulae leads to the

fundamental relation

I-*.T .. . (69)
<r e2

which is the law of Wiedemann-Franz and of Lorenz. It

states that the ratio of the thermal to the electrical conductivity
has the same value for all pure metals and is proportional to

the absolute temperature.
Thus all appeared in the best of order. The classical

theory appeared here also to have worked successfully and
the law of equipartition celebrated a triumph. But upon
closer inspection, gaps appeared in the apparently solid

theoretical structure, and serious doubts arose. For if the
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free electrons really took part in the thermal equilibrium,
and hence claimed their full share, -fN&T (per unit of

volume), in the equal division of kinetic energy, then this

share of energy should be plainly noticeable in the atomic

heat of the body, namely, to the extent of fN*&, where N*
denotes the number of electrons in a gramme-atom. Such
an increase in the atomic heat of the metals as compared
with the non-metals (which contain no, or vanishingly few,

free electrons) has never been observed. This difficulty could

be avoided by assuming that the number of electrons is small

compared with the number of atoms per unit volume, and
then their contribution to the atomic heat would be relatively

small. But then we should expect from (676) much smaller

conductivities than experiment has disclosed, unless we were

to assume high values, that are improbable, for the mean free

path.
170

Further, H. A. Lorentz 1 has shown, as we have seen,

that, if the law of equipartition for the motion of the electrons

is assumed, the metals would radiate in the region of long
waves according to Bayleigh's Law, whereas we have un-

questionably to expect, especially at low temperatures, the

radiation to take place according to Planck's Law.
The calculated dependence of the conductivity on tempera-

ture can only be made to agree with experience by making
particular assumptions at high temperatures, whereas no

assumptions seem to be able to make calculation and obser-

vation agree for low temperatures. At high temperatures
the resistance of the metals increases proportionally to

the temperature, that is, o- decreases with . This can

only be reconciled with (676), if the product Nlq is inde-

pendent of the temperature. If we assume with J. /.

Thomson 112 that N increases proportionately to \fl\ then,

since q is likewise proportional to >JT, I must decrease with

=, a hypothesis which, as we shall see, has latterly been

upheld by several investigators.

Now, although the agreement between theory and experi-
ment could thus be compelled by special assumptions at high

temperatures, the region of low temperatures revealed itself
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as the vulnerable point of the theory. For experiments by
H. Kamerlingh-Onnes 17S in the laboratory for low tempera-
tures at Leyden had shown that the resistance of metals

at very low temperatures (the experiments extended as far

down as 1*6 abs.) falls away to a quite extraordinary degree,
and practically disappears before the zero-point is reached.

At any rate, the resistance cannot, as follows in view of what
has just been said from formula (676), sink proportionately
to only the first power of the temperature ; on the contrary
the fall is without doubt proportional to a higher power.
That the Wiedemann-Franz Law also ceases to be valid in

this region, has been proved by experiments of C. H. Lees 174

and W. Meissner.

In order to escape from all these difficulties the quantum
theory was appealed to, and attempts were made, in the most
varied ways, to make it harmonise with the existing theory.
A first attack was ventured by W. Nernst 176 and Kamerlingh-
Onnes, 111 who gave for the resistance of the metals empirical
formulae which linked up directly with the form of Planck's

energy equation (9) and which gave the change in the resist-

ance with temperature satisfactorily. F. A. Lindemann 178

and W. Wien conceived more detailed theories. Linde-

mann accepts in his first paper J. J. Thomson's hypothesis,

according to which N is proportional to JT, and retains the

equipartition law for the motion of the electrons, so that q
also becomes proportional to *JT. Then, according to (676),

the variation of the resistance - with the temperature depends
cr

entirely on the mean free path I. But this is, according to

well-known considerations of the theory of gases, the greater
the smaller the " radius of action

"
of the metallic atoms ; for

the electrons can pursue greater paths freely, i.e. without

collisions, the smaller the hindrances set in their path. The
novel part of Lindemann 's The'ory is the fact that he brings
the radius of action of the atom into relation with its ampli-
tude of swing in its heat-motion. For it is at once obvious

that the atoms in this heat-motion will cover a greater space
in a given time, and their sphere of action will be the greater,

the larger their amplitude of oscillation, i.e. the higher the

temperature. Thus the mean free path also becomes a
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function of the temperature, inasmuch as it is brought into

relation with the energy of vibration of the atoms. But, for

the latter term, Lindemann inserts the value given by the

quantum theory, and finds for the resistance the formula 18

(70)

rT-l

where v denotes the frequency of the atoms (again the mono-
chromatic theory) ;

A and B are constants. For high tem-

peratures W then becomes proportional to the temperature
T; for low temperatures W decreases exponentially with

_
hv

e zkT to a constant value B2
. With the help of this formula,

Lindemann succeeds in representing the observations quite
well (the formula contains two constants which can be mani-

pulated) ; but, since the law of equipartition has been retained

for the electrons, the difficulties of the excessive atomic heat

and of Rayleigtis radiation formula remain. Moreover, this

theory is unable to explain the departures from the Wiede-

mann-Franz Law at low temperatures; for the mean free

path I the only quantity dependent on T which occurs in a-

disappears entirely from the formula (69).

W. Wien attacked the question much more radically than
Lindemann. In order once and for all to get rid of the

contribution of the electrons to the atomic heat this is the

weak point of all theories which make use of the law of

equipartition he assumed that the electrons do not take

part in the thermal equilibrium, but possess a velocity q
which is independent of the temperature. Moreover, he
makes the number N of the electrons per unit volume equal
for all temperatures. Then, according to (67), the variation

of - with temperature is again determined only by the

dependence of the mean free path I on the temperature.
Wien, in a manner similar to that of Lindemann, connects I

with the energy of vibration of the metallic atoms, taking,

however, the complete elastic spectrum into account accord-

ing to Debye. He thus gets for the resistance the value

5
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vm

f vdv

W = const. I A* ... (71)

f vdv

i. I A*

J e
rr - 1

For high temperatures this formula gives W = const. T, i.e.

proportionality with the temperature. For low temperatures
it follows that W == const. Z72

,
i.e. a parabolic decrease.

The observations are very well represented by Wien's formula.

But, above all, the unsatisfactory fact remains that this

method does not lead us on to a theory of heat-conduction,

unless we make new assumptions, nor to the Wiedemann-
Franz Law. For, by the condition that the motion of the

electrons takes place quite independently of the temperature,
Wien has taken away the possibility of also ascribing the

transport of heat to the electrons.

This difficulty arises again in a more recent paper of

F. A. Lindemann 181 in which, in continuation of the con-

ceptions of Born and Kdrmdn, the supposition is introduced

that just as the atoms in a crystal the electrons in a metal

form a lattice. F. Haber iw has also adopted a similar hypo-
thesis. The conduction of electricity is then explained by

supposing this electron lattice to move practically as a rigid

structure relatively to the atomic lattice and so through the

metal. This model has many advantages. Since, in the

heat-motion, in which the electron lattice naturally takes

part, the electronic vibrations, on account of their mass, are

extremely rapid (high frequency), these vibrations of the

electron, according to Planck's formula for the energy, make
no appreciable contribution to the atomic heat. In addition

the abnormal conductivity (supra-conductivity) which has

been observed at very low temperatures may, if we use

earlier considerations by /. Stark^ be explained without

difficulty by the conception that at these very low tempera-
tures at which the atomic space-lattice is practically at rest,

the electronic lattice glides almost unimpeded through the

gaps of the atomic lattice.

Gr. Borelius^ in a sketch which was recently published,
uses ideas similar to those of Lindemann.

Finally, we may refer to a paper by K. Herzfeld
1M which,
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in contrast to the preceding investigations, attacks the ques-
tion from a more phenomenological point of view without

making use of a particular model. For if, in the formulae

for or and y, (67) and (68), we bring into evidence the energy
E -Jrag

2 of the electrons by writing the equations thus :
188

. . - (72)

we get

as the expression which represents the Wiedemann-Franz
Law. Herzfeld then shows that, if we compare the result

with observation, the formula (73) can be made to agree well

with the actual measurements if we set Planck's expression

for E. (The factor
-J
has been introduced because

- 1

the energy of the electrons is solely kinetic.) The values for

v which have to be used stand in no recognisable relation to

the atomic frequencies. A paper by F. v. Hauer 1*6 works

along similar lines.

If we survey the whole field of the conduction of heat and

electricity in metals we recognise that here the last word
has not been spoken, and that a great deal of hard work will

be necessary to clear up finally the extraordinarily com-

plicated relationships* But much would doubtless be gained
for the theory if in future the observations, as far as possible,
are no longer made on crystal aggregates, but on metal

crystals that are pure and homogeneous.



CHAPTER V

The Intrusion of Quanta into the Theory of Gases

i. The Heat of Rotation of Diatomic Gases according to the

Quantum Theory

WHILE
the molecular theory of the solid state thus

gained new nourishment from the doctrine of quanta,
the kinetic theory of gases could no longer be preserved from

the influx of .the new views. W. Nernst 187 had pointed out

quite early that quantum-effects are to be expected in the

rotation of di- and polyatomic gas-molecules, and also in the

oscillation of atoms in the

molecule. Let us take as

an example the diatomic

gas hydrogen, the mole-

cule of which we may
picture provisionally as a

rigid
" dumb-bell

"
(Fig. 6).

The knobs of the dumb-bell

are the hydrogen atoms,
the grip represents their

chemical bond. Such a

molecule is known to

possess, besides its transla-

tory motion (three degrees
of freedom), the possibility

of rotating about an axis at right angles to the line joining the

atoms (two degrees of freedom, corresponding to the two axes

dotted in the figure). Rotation about the line joining the

atoms does not if we accept Boltzmann's conception of the

absolutely rigid smooth atom come into play in the ex-

change of energy by collision and hence in the distribution

of energy among the separate degrees of freedom : for this

68

FIG. 6.
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rotation cannot be changed by collision. Considered from

the new point of view of quanta, which rejects
"
rigidity

"
and

" smoothness
"
as an unjustified idealisation, the position is as

follows : The moment of inertia of the molecule relatively to

the line joining the atoms is extremely small compared with

the moment of inertia about either of the axes at right angles
to this line. But it is known that rotations which take place
about axes with small moments of inertia occur with much

greater rapidity than those about axes with large moments of

inertia (the same energy having been imparted in each case).

If, therefore, we identify the revolutions per second with fre-

quencies, and use the Planck energy expression for the energy
of rotation (which is not strictly correct quantitatively), a line

of argument which has already been frequently applied shows
us that the rotation about the line joining the atoms possesses

only a vanishingly small share of the energy. * For the same
reason (high frequencies) the degrees of freedom, which

correspond to the vibration of the atoms in the molecule,
become of importance only at high temperatures. As a result

kT
of all this, classical statistics gives us the value 2 = kT

2 .

for the mean energy of rotation of the hydrogen molecule^

per gramme-molecule it therefore becomes NkT = RT.
Hence that part of the molecular heat which arises from

rotation is equal to R, that is, about T98 ^-1, and it is in-

deg.

dependent of tJie temperature. In crass contradiction to this,

A. Eucken 18* found experimentally that the rotation part of

the molecular heat of hydrogen has the value R demanded by
the classical theory only at high temperatures. On the other

hand, it gradually decreases as we pass to lower temperatures,
and approaches asymptotically the value zero at the abso-

lute zero. In the immediate neighbourhood of absolute zero,

hydrogen behaves as a monatomic gas. Euckens result was
confirmed by experiments conducted by K. Scheel and W.
HeuseW* who, however, measured the values of the molec-

ular heat only for three temperatures (92, 197, and 289

on the absolute scale). This falling off of the* rotational heat

is without doubt a quantum-effect, similar to the decrease in

the atomic heat of solid bodies.
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The first attempt to calculate this phenomenon theoretically,

is due to A. Einstein and 0. 6'terw,
190 who proceeded as

follows : If / and v are the moment of inertia and the

number of revolutions per second of the molecule respectively,
then its rotational energy is

^-^(2W)2 . . . (74)

If, to simplify matters, we now suppose that all molecules

rotate with the same mean number of revolutions v per second,
then we can introduce for the corresponding mean energy of

rotation

Er =
$(2*7)*

... (75)

the theoretical quantum value 191

Er
= -= -

(according to Planck's first-theory) (76)

or

-
(Planck's second theory) . (77)

From (76) or (77), by combining with (75), we obtain v as a

dE
function of T. If finally we form ~

,
and multiply by the

d/T

Avogadro number N, then we get the share of the energy of

rotation in the molecular heat, and we see how it depends on

the temperature. It thus appeared that only by using the

expression (77) for Er would we be enabled to get a satis-

factory connexion agreeing with Eucken's measurements, a

fact which Einstein and Stern used at the time as an argu-
ment for the existence of a zero-point energy. It must, how-

ever, be emphasised that this theory can only be regarded as

a first attempt to find general bearings and that it does not

fulfil more rigorous requirements. For the Planck energy
formulae used, (76) or (77) are valid, as is shown by their

genesis, only for configurations whose frequency v is a con-

stant quantity independent of the temperature. Here, on
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the contrary, we have made use of a mean speed of rotation

v, dependent on the temperature.
P. Ehrenfest

192 in 1913 built up a theory of the heat due to

rotation on a stricter basis. He had, however, to confine

himself to configurations with one degree of freedom, that is,

to rotations of the molecule around a fixed axis, as at that

time an extension 'of the quantum theory to several degrees
of freedom had not yet been worked out. The expression
thus obtained for the heat of rotation was then, in order to

take into account both degrees of freedom, simply multiplied

by 2, a method which readily suggests itself, but is not justi-

fiable. Ehrenfest started, in his calculation, from the original
form of the quantum hypothesis, according to which the

energy of linear oscillators may only be whole multiples of hv,

and accordingly made the condition that the rotational energy
of a configuration with one degree of freedom (fixed axis) may

hv
only consist of whole multiples of

-^.
The factor appears,

because the energy of rotation in contrast with the vibra-

tional energy of the oscillator is solely kinetic by nature.

The Ehrenfest condition is, therefore, according to (74) :

Er = 2 (2) 2 = n . ^ (
=, 0, 1, 2, 3 . .

.)
. (78)

hence

" -& (
= 0, 1, 2, 3 . . .) . (79)

and by substitution in (78)

(n
= 0, 1, 2, 3 . .

.)
. (80)

Hence the molecules can only rotate with quite definite, discrete

speeds VH ,
and correspondingly acquire only a series of discrete

rotational energies E^\ quite in agreement with the sense of

Planck's quantum theory. It is noteworthy that these dis-

crete rotational energies are related to one another as the

squares of the whole numbers, whereas the energies of the

Planck oscillators are proportional to the whole numbers

themselves. With the discovery of the discrete values (80)

of the energy, the dynamical part of the problem was solved.
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But we require the mean energy Er of a totality of N similar

molecules. It is here, then, that the second, statistical part
of the calculation begins. If wn denotes the probability that

a molecule possesses the rotational energy E(v

p at the tempera-
ture T (wn is therefore the "

distribution-function
"
which has

been extended in accordance with the quantum theory), then

the mean rotational energy of a molecule is known to be equal

^)
' wn . Multiplication by N and differentiation with

respect to T give us immediately the heat due to rotation.198

Ehrenfest thus obtained for the relationship between the

rotational heat and the temperature a curve which could, it is

true, be made to agree well with the measurements obtained

at low temperatures by choosing the arbitrary constant / (the

moment of inertia) suitably, but at high temperatures it showed,
before reaching the classical value R, a maximum and a sub-

sequent minimum, which did not correspond with the existing

observations.

We may note here an important consequence of equation

(79), since it has played a noteworthy r6le in the further

development of the quantum theory. If, namely, we write

down the angular momentum (the moment of momentum 1M
)

of the molecule, that is, the quantity p = J x %irv, then it

follows from (79) that only the special quantum values

P -
(

-
0, 1, 3, 8 . . .) (81)

of the turning-moment exist. This relation may also be

deduced directly from the theory of the quantum of action as

formulated in (30). For, if we select as our general co-

ordinate, in this case q, the angle of rotation <, then the

corresponding momentum or impulse p is known to be

none other than the moment of momentum.195 It follows

from this, since p is independent of <, that

nh . ; . (82)

i

in agreement with (81).
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In the same way, on the basis of Planck's first theory,

namely, the conception that the special quantum rates of

rotation vn are the only possible ones, and using the dumb-bell

model, the author iw has recently carried out the strict calcula-

tion for structures with two degrees of freedom (free axes of

rotation), making use of the later ideas of the quantum theory.
This stricter method likewise gives us curves for the rotational

heat which are useless, for they also have a maximum and
a subsequent minimum, as in Ehrenfest's case. Only by

making special subsidiary assumptions, such as excluding
certain quantum states, can we get curves which rise steadily
with increasing temperature, and which agree, at least to a

certain extent, with observation.?

f'> ff" em cw ** */
*y> / Lft (rfl t-f

FIG. 7.

Not much more satisfactory results were obtained in those

investigations which, again with the use of the dumb-bell

model, were based on Planck's second theory. According to

this theory, the discrete values vn of the rotational speeds are

not the only possible ones ;
on the contrary, the molecule can

rotate with all rotational speeds between and GO
,
and hence

can assume all values of rotational energy between and co,

exactly like the Planck oscillators in Planck's second theory.
The peculiarity of the special quantum values (80) for the

energy here consists in the following : imagine the energies
Er plotted as abscissae (Fig. 7) and the corresponding prob-
abilities w as ordinates

;
then a step-ladder curve results,
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the steps of which lie exactly at the values E^\ The prob-

ability that a given value Er of the rotational energy will

appear is therefore constant within the range of energy betiveen

E(

r
] and E^ +l

\ but changes suddenly at the ends of this range.

According to Planck's first theory, which allows only the

quantum values JS> , the encircled points alone have a

meaning. Only at those points is the probability other than

zero, while all intermediate values of the energy possess the

probability zero, that is, do not occur.

In this case, too, the problem was first solved for one

degree of freedom (fixed axis of rotation). E. HoZra 198 and

/. v. Weyssenhofftw found, in agreement with one another, a

steadily rising curve for the rotational heat, which fitted the

observations well at low temperatures, but undoubtedly went
too high at higher temperatures (from about 140 abs. up-

wards).
But when the modern development of the quantum hypo-

thesis for several degrees of freedom, to which we shall be

introduced later, was available, a stricter calculation for

free axes of rotation, i.e. for two degrees of freedom, could be

carried out. This problem was attacked on the one hand by
M. Planck? on the other by Frau S. Botszayn\ but was

treated differently in each case. Planck started with the

premise that this problem belongs to the category of so-called
"
degenerate

"
problems. This term is to convey the follow-

ing : the molecule rotates, when no external forces act

on it, according to the doctrines of mechanics, with con-

stant speed in a spatially-fixed plane. The position of

this plane in space must, so Planck argues, be of no im-

portance for the statistical state of the molecule. Hence the

condition of rotation of the molecule in the sense of the

quantum theory is determined by a single quantity, namely,
the rotational energy. In spite of the fact, therefore, that

the problem is originally and naturally a problem of two

degrees of freedom for the position of the molecule in space
is determined by two angles we must, according to Planck,

treat it in the quantum theory as a problem of only one

degree of freedom. The two degrees of freedom coalesce, as

it were; they are "coherent"

In contrast to this, Frau Rotszayn proceeds to turn the
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problem into a non-degenerate one by the addition of an ex-

ternal field, and after solving this problem, reduces the field

of force till it vanishes. This method which was also used

by the author in the paper above cited, appears to be par-

ticularly advantageous, when the calculation is based on

Planck's first theory, for peculiar difficulties arise in "degen-
erate" cases. Success here decides in favour of the second

method. For while Planck finds a curve 202 which rises above

the classical value to a maximum, and then descends asymp-

totically towards the value K and is therefore of no use

the calculation of Frau Rotszayn gives a steadily rising curve,

which agrees well with the measurements for lower and higher

temperatures ; only the value observed at T = 197 abs. lies

about 10 per cent too low.203

While all the above-mentioned investigations are based on

the dumb-bell model, which can only be regarded as a pro-

visional, schematic construction, P. S. Epstein
20* in 1916

carried out the corresponding calculations for another mole-

cular model proposed by N. Bohr* This model of the

hydrogen molecule, to which we shall return later, is built up
of two positive hydrogen atoms, each of which carry a single

positive charge, and around the connecting line of which two

electrons, diametrically opposite, rotate in a fixed circle at a

fixed rate (see Fig. 8). Since the equilibrium in this purely
electrical system is determined by the play of the Coulomb

attractions and the centrifugal forces, and since the radius of

the electron is determined by a quantum condition, this model

possesses the advantage that all its dimensions are completely
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fixed, so that there is no longer any question of the arbitrari-

ness of the moment of inertia. The " dumb-bell knobs
"
are

represented here by the two positively-charged hydrogen
atoms; the rotations of the molecule hitherto considered

would therefore correspond to those motions in which the

molecule rotates with a moment of inertia J about an axis

at right angles to the line joining the atoms. But to this

there must very plainly be added the rotation of the system
about the axis of symmetry (i.e. the line joining the atoms),
which results from the extremely rapid rotation of the elec-

trons. The moment of inertia corresponding to this axis is,

in consequence of the extremely small mass of the electrons,

very small compared with /. The whole system obviously

possesses, if we regard it approximately as rigid, the properties
of a symmetrical top. Its motion is therefore, in consequence
of its own rotation about the axis of symmetry, not a rotation,

but instead the well-known motion, "regular precession."
206

Epstein treated the problem from this point of view but could

not obtain agreement at low temperatures with the moment
of inertia calculated from the model itself,

207
namely, / = 2*82

x 10
~ 41

. Presumably, this failure depends on the fact that

the model does not correspond with reality, and in fact we
shall see later, that well-founded doubts have arisen as to the

correctness of the Bohr model. We must therefore admit,

unfortunately as one of a number of instances in the quantum
theory, that the important problem of the rotational heat of

hydrogen still awaits solution.

2. The Bjerrum Infra-red Rotation-spectrum

N. Bjerrum^* has applied the relation (79) in a very

interesting manner to the infra-red absorption of polyatomic

gaseous compounds. These gases (for example HC1, HBr,
CO, H2

O in the form of steam, but on the other hand not

the elementary gases H2 ,
O

2 ,
N

2 ,
C1

2) show, according to the

investigations of S. P. Langley, F, Paschen, H. Bubens*11

If. Eubens and E. Aschkinass, H. Bubens&nd G. Hettner,21*

W. Burmeister, Eva v. BahrW extensive absorption bands
in the short- and long-wave infra-red. While in the long-
wave infra-red we account for the absorption by the rotating

molecule, which, composed of positively and negatively
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charged atoms, act like electric double poles and hence in

turning emit and absorb radiation, Bjerrum was the first to

point out that the molecular rotation must also make itself

noticeable in the short-wave infra-red. For if there exists

in this region a linear vibration VQ of the ions in the molecule

relatively to one another and hence an absorption at this

point and if, in addition, the whole molecule rotates at the

speed vr ,
then it is known that there will be produced as a

result of the composition of the vibration with the rotation 2*6

two new vibrations (and, correspondingly, two new regions
of absorption) having the periods v + vr and vo

- vr , sym-
metrically disposed on both sides of the ionic vibration i/ .

On the whole, then, we have three points of absorption :

vr, VQ
~ vr> vo + vr,

to which we must add the non-rotational

state VQ as a fourth. But if now, according to Planck's first

theory, the molecule can only rotate with discrete speeds of

rotation vn [see (79)], we get symmetrically to the original

position of absorption v = vo and, on both sides of it, a series

of further discrete equidistant positions of absorption :

v = VQ + vn = VQ + n

(n =
1, 2, 3 . .

.)
. (83)

These discrete equidistant positions of absorption have

actually been found by Eva v. Bahr in the case of water

vapour and gaseous hydrochloric acid, and were measured
later with still greater accuracy by H. Rubens and G. Hettner

for water vapour. In an examination carried out on an

extensive scale E. S. Jmes 217 has once more thoroughly

investigated the hydrogen halides (HC1, HBr, HF) and con-

firmed the law (83) for the position of the absorption lines.

It was thereby found that the middle line VQ was always

missing. From the standpoint of the theory here described

this would mean that the non-rotational state does not exist,

that is, that the molecules always rotate (zero-point rotation).

A. Euckenp* who discussed the results of E. v. Bahr,
which were at that time the only ones known, deduced from

the good agreement between observation and calculation that

Planck's second theory is not valid, for the experiments
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seemed so obviously to prove that the molecule can actually

only rotate with the discrete speeds vn . This conclusion,

however, is not inevitable, as Planck 219 showed in a pene-

trating investigation. On the contrary, the observations

may after all be explained, surprising as it may seem, on the

basis of his second theory (continuous "classical" absorp-
tion

;
all speeds of rotation possible). This curious result is

explained as follows : Let w(Er)dEr be the probability that

a molecule possesses exactly the rotational energy Er ;
hence

for N molecules Nw(Er)dEr will be the number that will

possess exactly the rotational energy Er . These molecules

rotate therefore according to (78) with the speed

The quantity w(Er) is here, according to Planck's second

theory, the step-ladder curve pictured in Fig. 7. Planck's

calculation then leads to the following result : the absorption

of an external radiation offrequency v* is not as one should

expect -proportional to the number of molecules having a

rotational speed vr = v*, that is, to the quantity w(Er) but to

its differential coefficient
_JL_!z t Truss differential coefficient

is, however, as Fig. 7 shows, everywhere equal to zero,

excepting at the special quantum energy-values E(

"\ that
is,

at the rotational speeds vn . It follows from this, that here

also, from the standpoint of Planck's second theory, absorption
takes place only at the special quantum rates of rotation vn .

It thus comes about that, at present at any rate, the infra-

red absorption spectra of the polyatomic gases, contrary to

all expectation, do not decide one of the most fundamental

questions of the whole quantum theory, whether, namely,
Planck's first or second theory is correct. An important
remark must be added here. The deductions of the relation

which gives the position of the infra-red absorption bands is

half in accordance with the classical and half in accordance

with the quantum theory. For although the rotational

speeds vn are determined by the quantum theory, the resolu-

tion of the oscillation v into the two components v vn

are determined by the classical methods. How to attack this
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problem from a point of view entirely consistent with the

quantum theory will be seen later in Chapter VIII.

3. The Degeneration of Gases

The phenomena described above which were observed in

the case of polyatomic gases (falling-off of the molecular heat,

and infra-red absorption) justify fully the application of the

quantum theory to motions of rotation. On the other hand,

the attempts to go a step farther and to apply it to the

translational energy of gases rest upon a much more insecure

basis. If this step is taken, the hitherto exceptional position

occupied by the monatomic gases, whose molecules contain

only translational energy, becomes destroyed, for then they,

too, must succumb to the quantum law. This problem
has been attacked from various quarters [0. Sackur,230 H.

Tetrode,
1221 W. H. Keesom, W. Lenz and A. Sommerfeld,

22*

P. Scherrer w M. Planck.*] Thus, for example, Tetrode,

Keesom, Lenz and Sommerfeld imagine the thermal motion

of the gas split up into a spectrum of natural frequencies, and

they then distribute the energy in quanta, that is, according
to formula (9), over the individual natural frequencies, quite

analogously to the manner of Debye and Born-Kdrmdn in

the case of solid bodies. Scherrer and Planck, on the other

hand, apply the quantum hypothesis directly to the motion

of the individual gas-atoms, basing their argument on the

modern formulation of the quantum conditions for several

degrees of freedom. How such a quantum resolution of the

translatory motion is effected, is perhaps most easily seen

by the following simple example (Scherrer) : Let a gas-atom
of mass m fly to and fro in a cube-shaped space of side a

with the speed v parallel to one of the edges. It then

executes a sort of oscillation with the period v = . If we

set its kinetic energy, E = ^mvz
, according to Planck's first

hv
theory = n- (n

= 0, 1, 2, 3 . .
.)
then it follows that
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hence

nh
and E =

Hence the velocity of the atom and its translatory energy
can acquire only discrete, quantum-determined values.

The calculations of the above-named investigators lead to

two important main results, at least in qualitative agreement ;

in the first place, there results an alteration in the gas laws

at very low temperatures. The necessity for this
"
degenera-

tion" of the monatomic gases had already been recognised by
Nernst, who deduced it on the basis of his new heat theorem.226

For if the equation of state of ideal gases

= pressure \

= volume of a gramme-atom \

= absolute gas-constant I

= temperature

were exactly true for all temperatures down to the lowest,

then the maximum work A, which could be gained from

the isothermal expansion of the gas from the volume V
l
to

the volume F2 ,
would have, as we know, for all temperatures

the value
V V

For all temperatures down to absolute zero, -jm

would differ from zero, in direct contradiction to the condition

(38) of Nernst's Theorem. Hence it follows that in the region

of the lowest temperatures, the equation of state (85) must

undergo modification. In fact, experiments of 0. Sackurwi

on hydrogen and helium appear to speak in favour of the

existence of this
"
degeneration."

4. The Chemical Constants of Monatomic Gases

The second main result given by the application of the

quantum theory to monatomic gases, is an extremely in-

teresting relation of the Planck constant h to the so-called
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"chemical constant" of the gas, a quantity which plays

an important part in changes of the state of aggregation

(vaporisation, sublimation) and in chemical states of equi-

librium. But it is here specially emphasised that the re-

lationship just mentioned is not bound to the undeniably

hypothetical resolution of the translatory energy into quanta.
On the contrary, 0. Stern 228 has succeeded in deducing it un-

objectionably, without applying the quantum theory to the gas.

The original method, which Stern adopts, may be shortly

sketched here. Consider the process of sublimation, i.e. the

passage from the solid into the vapour state. Let the

vapour obey the gas laws, and let its density be negligible

compared with that of the condensed solid. Then classical

thermodynamics gives for the pressure p of the saturated

vapour as a function of the temperature the following

equation :

m

logp = - - + 4 log T - ^T + . (86)

Here X is the heat of vaporisation (per gramme-atom) at

absolute zero, JBrjP is the energy of the condensed solid (per

gramme-atom) at the temperature T', the constant 0, which

is the chemical constant of the vapourising substance,

remains undetermined, according to thermodynamics. On
the other hand, the integral on the right-hand side of

equation (86), which contains the energy of the solid

material, may be completely calculated upon the basis of

our assured knowledge of the energy-content of the solids.

We only require to assume the solid to be a Born-Kdrmdn

crystal, and hence to use the quantum-theoretical value (41)

for E (

T\ If we now restrict ourselves to high temperatures,
to a region, therefore, in which the classical theory is valid,

(86) assumes the form

oav

"*
5g p - -

ftfp
~

10g *' + ^
10g^

*'

6

log p - - -

-Jj^f-
- i log T+ 3

Ipg^j
+ 6' (87)
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(The 3N quantities vi here form the elastic spectrum of the

solid body ; v is their geometric mean.) The formulation of

this equation constitutes the first step of Sterns deduction.

It gives the result of thermodynamics, extended by the

application of the quantum theory to the condensed sub-

stance. The second step is the formulation, in accordance

with molecular theory, of a vapour-pressure formula for high

temperatures, in the region therefore of classical statistics.

Here, also, the Born-Kdrmdn solid model is used for the con-

densed substance, and, on the basis of known laws of

probability, the number of the atoms is calculated which are

in statistical equilibrium in the vapour phase. In this way
the density of the vapour, and hence, as a result of the gas

laws, its pressure, are given. So Stern finds

= -4S-i Io8 T +

Here m denotes the mass of an atom, and A' is the work
which is necessary to bring N atoms (N is the Avogadro

number) from complete rest to the gaseous state. An un-

determined constant naturally does not appear in this formula

deduced from pure molecular theory. For the molecular

model is completely determinate, and hence gives the absolute

value of the vapour pressure, not only its temperature co-

efficient, as in the case of thermodynamics. A comparison
of (87) with (88) shows, firstly, that

F (89)

and secondly, that the chemical constant C has the value

S

. . . (90)

Eelation (89) may be interpreted by making the supposition
that the solid body already possesses an energy amounting to

-jr at the absolute zero, that is, a "zero-point energy," to

i

which the latent heat of vaporisation X must be added, i
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order to set the atoms completely free from their union in the

crystal. Equation (90) gives us the solution of the problem
before us. It gives the chemical constant of the monatomic

gases as a function of the atomic mass and the universal

constants h and k. Nowhere, however, in the whole

deduction this should be emphasised once more has the

quantum hypothesis been applied to the gas itself.

In order to make formula (90) available for comparison
with experiment

m we may expediently introduce the molec-
7->

ular weight M = mN, and set k = -: then

C = C + I log M, where C =
log -^r - 10 '17

If we finally use the base 10 instead of the natural base e for

our logarithms, and measure the vapour pressure not in

absolute measure but in atmospheres, we get the chemical

constant C' used by Nernst, which is related to Sterns value

for C thus :

C ' = 2W6 = 6 '0057

For it we finally get the simple expression
C' = C' + f Iogi M, where C' = - 1-59 . (91)

This formula has been brilliantly verified by experiment. The

hitherto most trustworthy measurements of vapour pressure
and chemical states of equilibrium give in the case of hydro-

gen, argon, and mercury the values
- 1-69 0-15,

- 1-65 0-06,
- 1'62 0'03

We are therefore justified in saying with Stern that the

expression (90) for the chemical constant of the monatomic

gases is theoretically and experimentally one of the best

founded results of the Quantum Theory.



CHAPTEE VI

The Quantum Theory of the Optical Series. The
Development of the Quantum Theory for several

Degrees of Freedom 23

i. The Thomson and the Rutherford Atomic Models

r
I ^HB greatest advance since M. v. Laue's discovery of the

JL method of Rontgen-spectroscopy for determining crystal
structure was made in the realm of atomic theory in 1913,
when the Danish physicist Niels Bohr placed the atomic

models in the service of the quantum theory. Bohr's labours

have in their turn reacted on the quantum theory and fertil-

ised it, and thus a marvellous abundance of notable successes

have been achieved in recent years through the interaction be-

tween the dynamics of the atom and the quantum hypothesis.

Among serviceable atomic models, the one proposed by
/. /. Thomson long occupied a much favoured position ; accord-

ing to it, the electropositive part of an atom, which constitutes

the most important part of its mass, is supposed to be a

sphere of
" atomic dimensions

"
(radius about 10 - 8

cms.)
filled with a positive space charge in the interior of which the

negative parts, the electrons, rest in a stable position of equi-
librium. This model has the great advantage of explaining
on purely electrical grounds the possibility of "

quasi-elastic-

ally bound
"

electrons, i.e. such electrons as, being displaced
from their position of rest, are drawn back into it by a force
which is proportional to the displacement.! And it was just
with the help of such electrons that, as is well known, P.

Driide, W. Voigt** M. Planck and H. A. Lorentz

succeeded in building up large regions of theoretical optics,

namely, the theory of dispersion and absorption, and the

magneto-optical effects (magneto-rotation and Zeeman effect).

84
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Moreover, the Thomson atomic model was able, by following
the classical doctrine of the theory of electrons, to dp what
must be demanded of every serviceable atomic model, viz. to

explain the emission, as a result of the oscillation of its

electrons, of sharp, i.e. essentially monochromatic "
spectral

lines," the position of which, on account of the quasi-elastic

restoring force,236 was independent of the intensity of the

excitation, that is, of the energy of the oscillations.

In three important points, on the other hand, the model

failed completely. In the first place no success at all, unless

with complicated and artificial hypotheses invented ad hoc,

attended efforts to deduce from Thomson's model the formulae

for the optical series, for example, the simple formula for the

Palmer series of hydrogen.
237

Secondly, the model could not

account for the division of the spectral lines in an electric

field as observed and closely studied by /. Stark 236
(Stark

sffect), in spite of the fact that it had been found most

valuable, in the hands of H. A. Lorentz, for explaining and

calculating the Zeeman effect.239 Thirdly, it was not in a

position to explain the large individual deflections, sometimes

exceeding 90, which, according to H. Geiger and Marsden,z*Q

i-particles undergo in passing through thin metallic foils.^

Por on their way through the metallic foil, the a-particles,

which are known to be doubly charged helium atoms, come
.nto the neighbourhood of the metallic atoms and are more
or less deflected from their straight paths by the electric fields

of the atoms. If, now, the metallic atoms were Thomson

atoms, the electric field of these atoms would attain its

greatest value at the surface of the positive sphere, at a

distance therefore of about 10
~ 8 cms. from the centre of the

atom. For from the surface outwards the field decreases,

according to Coulomb's Law, with ^ while it grows from the

centre to the surface proportionately to r. Those a-particles,

therefore, which pass close to the surface of the positive

sphere, must undergo the greatest deflection. An easy ap-

proximate calculation shows, however, that the field at this

distance from the centre is far from being strong enough to

explain the great deflections which Geiger and Marsden have
observed. This weighty reason led E. Rutherford

m to set up,
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instead of the Thomson model, a new one, which was able to

explain the large deflections of the a-rays. According to the

Rutherford atomic picture, the electropositive part of the

atom is compressed into an extremely small space
2i2 the so-

called nucleus. Its charge E consists in general of z positive

elementary charges e, so that E ze. Here z is, according to

a hypothesis of van den Broek,2*^ the atomic number of the

element, i.e. the number which gives the position of the

element in the series of the periodic table. Thus, for example,
z = I for hydrogen, 2 for helium, 3 for lithium, and so on.

About this nucleus the electrons describe planetary paths,

that is, circles or Kepler ellipses with the nucleus
-

as focus,

since the electrons are attracted by it in accordance with

Coulomb's Law (inversely proportional to the square of the

distance).
In the electrically neutral atom having the atomic number

#, z electrons circle round the nucleus. For example, the

neutral hydrogen atom consists of a singly charged nucleus

(E =
e) around which one electron revolves in a circular or

elliptic path.
That this Rutherford model is actually able to explain the

cause of large deflections of the a-particles is seen at once
;

for the field-strength of the nucleus, in contrast to Thomson's

model, increases strongly up to the immediate neighbourhood
of the nucleus, in accordance with Coulomb's Law; hence,

if the positively charged a-particles come very close to the

nucleus that is, muoh nearer than 10 ~ 8 cms. then they are

exposed to the extremely powerful repulsion of the nucleus.

On closer examination, the Rutherford atomic model dis-

appoints us seriously : for the revolutions per second, v, of

the electrons depend on the energy of the system.
2**

If,

therefore, we suppose, according to the classical electron

theory, that an electron revolving at v revolutions sends out

an electromagnetic radiation of frequency v, then, since the

system loses energy by this radiation, v must diminish cor-

respondingly. But this means that the atom is unable to emit

a sharp, homogeneous spectral line.

2. Bohr's Model of the Atom

It thus appears that we are obliged to reject this model at

the very outset. But the history of physics has decided
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otherwise. With deep-sighted intuition, Niels Bohr saw the

possibilities of Rutherford's model and brought it under the

quantum theory by making three bold hypotheses.
248 In the

first place, he assumed that the electron (or electrons) cannot

revolve around the nucleus in all paths possible according to

the view of mechanics, but only in certain discrete orbits

determined by the quantum theory. If we restrict ourselves,

as Bohr did initially, to circular paths, then only those paths
of an electron are allowable from the view of the quantum
theory for which the moment of momentum (angular mo-

mentum) of the revolving electron is a whole multiple of

,
in exact agreement with the quantum condition (81) or

^7T

(82) for the rotating molecule.

This gives, in the simplest
case for the quantum paths of

the electrons, a discrete family
of concentric circles around

the nucleus, with radii, which
are related to one another as

the squares of the whole

numbers (1 : 4 : 9 : 16 :

). See Fig. 9.

Secondly, these "allow-

able" orbits are stationary;

they are in a certain sense

stable states of motion. This stability is gained by making
the radical condition that the electron in striking contrast

with everything that the classical theory has taught us

shall not radiate when in the stationary paths. Since by
this "decree" the loss of energy is abolished, the electron

can continually revolve in such a "quantum path." That
there are such "non-radiating" paths in the atom, is be-

yond doubt. Among other things, the constancy, in time,

of the para- and ferro-magnetism of bodies, which is

generated by revolving electrons, speaks in favour of this

view. But how electrodynamics must be altered in order to-

guarantee the non-radiation of the quantum paths, and only
of these, is a question which as yet remains unanswered. As
we have now abolished the "classical" radiation of the

FIG. 9.
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atom, the actually observed emission must be accounted for

by a new hypothesis. Here, again in direct connexion

with Planck's original quantum rule, Bohr's third condition

takes effect : when the electron passes from one allowable

quantum orbit, in which the energy is W
2 ,

into another

allowable quantum path of energy Wlt energy amounting to

Wz W\ is radiated in the form of an energy-quantum hv of

homogeneous, monochromatic radiation. The frequency of

the radiation emitted is determined by
" Bohr's Frequency

Condition :

"

= ^-^ .... (92)

We can follow Einstein 2*6 in imagining the passage from

the state of higher energy to the state of lower energy as a

sort of radio-active disintegration, the occurrence of which in

time is determined by chance. The details of this passage and

the release of energy accompanying it are, however, entirely

obscure up to the present.

3. The Hydrogen Type of Series according to Bohr's Atomic
Model

However bold and unorthodox Bohr's three hypotheses

may have appeared, their success was surprising. If we apply
them to a "

hydrogen type" of Butherford-^iom in which
a single electron revolves around a positive nucleus with a

2-fold charge, we get
2*7 for the frequencies of the spectral

lines, which the electron emits in passing from the wth to the

sth quantum path, the following values :

, m chare and mass
- of electrons

(93)
= Nz1 (

'

~~\ [s,
n whole numbers I

Vs M /

If we here set z = 1 (hydrogen), s = 2, n = 3, 4, 5 . . . we

get in exactly the same form the empirical expression for the

Balmer series of glowing hydrogen
248

(n = 3, 4, 5 . .
.)

. (94)
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For the constant N which appears in the empirical formula,
the so-called Bydberg number, Bohr's Theory therefore gives
the expression

.#-* .... (95)

If we use here the well-known values

e = 4-774 x 10 - 10
(Millikan) h = 6-55 x 10 ~ 27

(Planck)

= 1-77 . 107

me

then it follows from (95) that

N = 3-27 . 1015

while the empirical Rydberg number has the value 3 '29 . 1015
.

This striking agreement and the resolution of the Rydberg
number into universal constants is one of the main achieve-

ments of Bohr's Theory,
249 and forms a strong argument for

its innate power. We may say that, according to Bohr's

original theory, the individual lines of the Balmer s'eries (Ha ,

Hp, Hy ,
. . .)

are emitted when the electron jumps from the
'

3rd, 4th, 5th ... orbit into the 2nd.

With this statement, however, the achievements of formula"

(93) are not exhausted. For it includes, as we easily see,

further spectral series of hydrogen. Namely, if we set s = I,

n = 2, 3, 4 . . . we get the ultra-violet series that was found

and measured by Lyman.250 If on the other hand we set

s = 3, n = 4, 5, 6 . . . we get the infra-red Bergmann series,

the first two lines of which were measured by F. Paschen.**1

The element which follows hydrogen in the Periodic System
is helium (atomic number z = 2). While, however, the con-

stitution of the neutral helium atom with its two electrons

is already more complicated according to the latest investi-

gations, the two electrons circle around the nucleus in two
different orbits the simply ionised helium atom, which has

therefore a single positive charge, is entirely
" of the hydrogen

type ;

"
for it consists of a doubly-charged positive nucleus

around which an electron rotates. The sole difference, as

compared with the hydrogen atom, thus consists in the

doubling^of the nuclear charge, z = 2. The series emitted
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from the positive helium atom may therefore, according to

(93), be comprised in the formula

- - - 06)

where N is again the Rydberg number as denned in (98). If

we here set s = 3, n = 4, 5, 6 ... we get the so-called
"
principal series of hydrogen

"
which was observed by

Fowler 282 and very recently measured with great care by F.

Paschen^ For s = 4, n = 5, 6, 7 . . . we get the so-called
" second subsidiary series of hydrogen," which was observed

by Pickering w* and Evans.
1

5 Both series were, before the

advent of Bohr's Theory, falsely ascribed to hydrogen.
A new and extremely noteworthy result of Bohr's Theory is

revealed, if we allow for the movement of the nucleus in our

calculations. For, in reality, the nucleus is not stationary,
but nucleus and electron revolve about their common centre

of gravity. By taking this fact into account we are led to

a slightly altered expression for the Rydberg constant. In

place of (95) we get the formula

N = a ""

^
. . . (97)

K1 + S
in which M denotes the mass of the nucleus. It follows

from this that for different elements, for instance, hydrogen
and helium, the Rydberg constant differs somewhat and is

smaller for hydrogen than for helium (since MH <[ M-se)- In

general, the value of the Rydberg constant increases with

increase of atomic weight tending towards a limiting value.

All this is in perfect agreement with the results of many
years of spectroscopic research.

In the same way as emission, absorption has a quantum-
like character, according to Bohr's model. If light, say of

the first Balmer line (Ha), falls upon a hydrogen atom, a

quantum hv of this external Ha radiation is used to
"
raise

"

the electron into the third quantum orbit. An amount of

energy hvffa is taken from the external radiation, that is, light

from the line Ea is absorbed.
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4. The Structure of the Periodic System

Even in his earliest papers Bohr endeavoured to construct

for the higher elements as well (Li, Be, B, C, etc.), in con-

nexion with the Periodic System, suitable atomic models

with several rings of electrons, each occupied by several

electrons, in which, for example, the well-known octaves of

the system are reproduced by a regular arrangement of the

external electrons which recurs at every eighth element,
while the number of the electrons revolving in the outermost

ring is equal to the valency of the element in question.

W. Kosselm arrived at a similar structure of the atoms as

a result of a profound investigation of the formation of mole-
,

cules from atoms. Also, L. Vegard,
251 A. Sommerfeld,

m and

E. Ladenburg wg have constructed analogous atomic models,

particularly taking into account the well-known up-and-down
curve of atomic volumes, and using them to explain other

periodically varying properties (paramagnetism, ionic colour).

These considerations, although they are tending indisputably

along the right lines as far as the general principles are con-

cerned, are not yet firmly established in detail.

5. The Quantum Hypothesis for Several Degrees of Freedom

While the quantum hypothesis in its most primitive form
demonstrated in this way its innate power by entering the

field of atomic dynamics, it had, in doing so, gained little as

far as its own development was concerned. But the fruits of

Bohr's Theory ripened more rapidly than could have been

divined. Already the year 1915 brought a decisive develop-
ment : almost simultaneously, Planck and Sommerfeld inde-

pendently found the solution of a problem that had long been

a burning question, namely, the extension of the quantum
theory to several degrees offreedom. Sommerfeld 260 retained a

close connexion with Bohr's Theory in attacking the problem.
The first main condition of this theory related to the choice

of
" allowable

"
stationary orbits among all those mechanically

possible. According to this, as we saw, only those orbits

were allowed for which the moment of momentum (Impuls-

moment) p is a whole multiple of ^-. This may also be
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expressed according to (81) and (82) thus : among all mechan-

ically possible paths, only those are allowable and stationary
for which the phase-integral fulfils the condition :

pdq = nh . . . . (98)

In this quantum condition we are to replace according to

(82) the general co-ordinate q by the angle of rotation (the
" azimuth ") </>,

the impulse^? by the "
impulse (or momentum)

corresponding to </>," namely, p^ (the moment of momentum).
The integration is thereby to be extended over the whole range
of values of the variable q, that is, in the present case, from

tO 27T.

In the case of the original Bohr Theory, which considers

only circular orbits, there naturally exists only a single

quantum condition, namely, that for the case q = <, since

the angle of rotation < is the only variable of the path.
Matters are otherwise, when we reject the limitation to

circular orbits, and hence take Kepler-ellipses into account.

Then each point of the path is determined by two variables,

namely, by the distance r of the electron from the nucleus,

which is at the focus of the ellipse, and by the angle < (the
" azimuth ") which r makes with a fixed direction (say with the

straight line, which joins the nucleus to the perihelion). In

this case we are presented with a problem of two degrees of

freedom, with two generalised co-ordinates, r and < (polar

co-ordinates). The simple extension of the quantum hypo-
thesis by Sommerfeld now consists in setting up in this case

two quantum conditions of the form (98), one for the co-

ordinate <, which agrees with the single quantum condition of

Bohr's Theory, and a new one for the co-ordinate r, so that

the selection of the stationary orbits is here determined by
the two following equations :

2n-

nh . . . . (99)

dr = rih. . . . (100)

n and ri are here whole numbers, p$ and pr are the impulses

(momenta) corresponding to the co-ordinates
<f>
and r.261 The
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integration in (100) is to be taken over the full range of

values of r, that is, from the smallest value rmin (perihelion)
to the greatest value rmax (aphelion) and back to the smallest

'>'min. (99) is called the azimuthal quantum condition, n being
the azimuthal quantum number ; (100) is the radial quantum
condition, ri the radial quantum number.

In a corresponding manner the extension may be carried

out for more than two degrees of freedom. If the system has

/ degrees of freedom, and if it is therefore characterised by
the / generalised co-ordinates qlt q%, q% . . . and the corre-

sponding impulses pv p2 , p&
. . ., then the "allowable"

movements of the system are limited by the / quantum
conditions :

nA - \

(nv n.
2

. . . % are positive whole numbers).

In every one of the / phase-integrals the integration is to

be performed over the full range of values of the co-ordinate

in question.
A difficulty, which arose here from the outset, was the

question as to which co-ordinates ought to be chosen for the

application of the quantum rule (101), or whether the choice

is immaterial. In general, we may characterise a system of

several degrees of freedom by various types of co-ordinates ;

for instance, we may describe the Kepler movement of the

electron either by polar co-ordinates r and
<f>,

or by Cartesian

co-ordinates x and y. This question is the more urgent,

when one considers that the separate phase-integrals |

not really become constants for every choice of co-ordinates,

as is required by the quantum rule (101).
282 P. S. Epstein*

and K. SchwarzschildM* have solved, independently of one

another, this problem of the "
correct choice of co-ordinates

"

to a certain extent. Incidentally, an interesting and sur-

prising relation of the quantum rules (101) to a long-known
theorem of classical dynamics was revealed, which had been

propounded by Jacobi and Hamilton, and had hitherto been

successfully applied in celestial mechanics. Finally, quite

lately, A. Einstein, by modifying the expression (101), has
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put forward a quantum hypothesis which has the advantage
of being independent of the choice of co-ordinates. But a

closer discussion of these abstract investigations would lead

us too far here.

The second formulation of the quantum hypothesis for

several degrees of freedom is due, as already mentioned, to

M. Planck.MQ It is, as it were, more cautious in its nature

than the more radical attack of Sommerfeld. Planck, con-

tinuing directly from the division of the phase-plane of linear

oscillators already discussed, starts from the so-called Gibbs

phase-space to deal with more complicated systems. For a

system of /degrees of freedom, which is characterised by the

co-ordinates qlt q2
. . . qj and the impulses plt p2

. . . p/,

the Gibbs phase-space is that 2/ dimensional space, the points
of which possess the 2/ co-ordinates q1

. . . p/. Bach point
of the phase-space (phase-points) represents, therefore, a

definite momentary state of the system in question. Planck

now gives this phase-space, in exact analogy to the phase-

plane, a cellular structure, by bringing into prominence
certain specially distinguished boundary surfaces. At the

same time the size of the cells is proportional to In/. The

points of intersection of those boundary surfaces then repre-
sent the distinctive quantum states or phases of the system

(that is, according to Planck's first theory the only possible,

the "allowable" conditions). In contrast with Sommerfeld' s

Theory, in which the motion of a system of / degrees of

freedom is always determined by / quantum conditions, in

Planck's, under certain circumstances, the case may occur

that fewer quantum conditions than degrees of freedom exist,

so that several (" coherent ") degrees of freedom are limited

by a single quantum condition.

6. Sommerfeld's Theory of Relativistic Fine-structure

That these theories had found the kernel of the matter was
soon to be shown by applying them to Bohr's atomic model.

According to them from among all the mechanically possible

paths, which the electron can describe about the 2-fold

positively charged nucleus, the allowable, stationary paths
must be determined by the two quantum conditions (99) and

(100). This gives, in place of the discrete, quantised circles
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of Bohr, discretely quantised Kepler ellipses, among which

also the Bohr circles are included, as special cases. And

further, the ellipses are quantum-determined, both with re-

ference to their sizes (i.e. to their major axes), and to their

form
(i.e.

the relation of the axes to one another), so that here

every orbit, as compared with Bohr, is characterised by tivo

quantum numbers n and w'.267 In place of formula (93) for

the hydrogen type of series, we get the general formula :
268

v = Nz*[, ,-,-
-

,

l
, ,1 (102)

L(s + sj (n + nj\

Here again N, the Bydberg constant, is given by (95), or

more exactly (the motion of the nucleus being taken into

account) by (97) ; s and s' are the two quantum numbers

(azimuthal and radial) of the final orbit of the electron ;
n

and n' are the quantum numbers of its initial orbit. Since

also, as a result of this more complete view of Sommerfeld,
the number of allowable orbits is greatly increased, as com-

pared with those arising from Bohr's Theory (owing to the

addition of the ellipses), the electrons have a great many
more possibilities in passing from one orbit to another, that is,

the chances of generating spectral lines are multiplied. But
we easily recognise the following fact : if we choose as the

final orbit of the electron any one of those orbits, for which
the sum of the quantum numbers s + s' has a definite value,

say s + s' = 2, and as initial orbit, any one of those paths,
for which n + n' has a definite value, say n 4- n' 3, then

all the different transitions of the electrons from any one of

these initial orbits to any one of these final orbits generate

always the same line (in the case of the figures above chosen

it will be the first Balmer line) ; for according to (102) the

frequency of the line emitted depends only upon the sum
s + s', and the sum n + n', and on the other hand not on the

separate values of s, s', n, n. It would thus appear as if

nothing is gained physically by Sommerfeld's elaboration of

the theory as compared with Bohr's original theory. How-
ever, as Bohr had already pointed out, the calculations are

incomplete inone important respect, which become of funda-

mental importance when consistently taken into account,

and which represents the main achievement of Sommerfeld's
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theory of spectral lines. Namely, the velocities of the

electrons, which appear in these problems, cannot be con-

sidered negligibly small compared with the velocity of light.

In this case, however, we cannot, as we know, calculate by
the methods of classical mechanics, which regards the mass
of the electron as constant, but must take our stand upon the

theory of relativity, and hence take into account the variations

of the mass of the electron with its speed. Sommerfeld com-

pleted the calculation in this respect. The paths of the

electron and the nucleus differ, in this refinement of the

theory, from the ordinary Kepler ellipse in that the perihelion
of the orbit advances in the course of time, and that the path
loses its closed character. This has the effect that the energy
of the electron in the stationary quantum-chosen orbits which

here also are determined by (99) and (100) are no longer

solely dependent on the sum of the quantum numbers as in

the case of the non-relativistic Kepler motion, but that the

quantum numbers n and n' also enter, separately, into the

expression for the energy. Only as a first approximation,

therefore, i.e. when the relativity correction is neglected,
will the frequency v of the spectral line emitted depend on

the quantum sums s + s' and n + n' alone, as (102) shows.

If we take into account the relativistic change of mass of the

electron, on the other hand, v will also depend on the

individual values of s, s', n, w'.269 It follows, therefore, that

the various possibilities, above considered, of the generation of a

definite spectral line, that is, the passage of an electron from

any one of the initial orbits s + s' = constant to any one of the

final orbits n + n' = constant, no longer produce exactly the

same line, but give rise to slightly different lines, which, how-

ever, on account of the smallness of the relativity effect, lie

very close together. This is Sommerfeld's explanation of the

fine-structure of the spectral lines in the case of the hydrogen

type of spectra. For example, according to Sommerfeld, the

first line of the Balmer series (the red hydrogen line Ha) must

consist of five components, which are arranged in two chief

groups (of two and three each). The mean distance of these

two groups from one another should amount, according to the

theory,
270 to about 0*126A ;

the best measurements of the

hydrogen doublet gave the value 0*124A (Paschen, Meissner).
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If this agreement already speaks strongly in favour of Sommer-

feld's Theory, the exact measurements, by F. Paschen, of the'

fine-structure of the lines of positive helium (Fowler series) have

given a still more convincing proof of its correctness
; almost

without an exception, all the components required by the

theory of the fine-structure appeared on the photographic plate,
and thus proved strikingly the existence of the stationary paths

of the electron and its relativistic change of mass.

Two interesting consequences may yet be mentioned here
;

they are directly connected with Sommerfeld's Theory and
Paschens observations. First of all they have rendered

possible the use of the fine-structure measurements for a

direct "
spectroscopic

"
determination of the three funda-

mental constants e, w (mass of the electron at infinitely low

speeds), and h*n Secondly, K. Glitscher was able to

show that we only find the spectroscopic observations, for

example, the size of the hydrogen doublet, in agreement with

the theory, when we use for the variation in the mass of the

electron the formula given by the theory of relativity. On
the other hand, Abraham's Theory of the rigid electron leads

to formulae which do not agree with experiment.

7. Higher Elements

We thus see that Rutherford's atomic model as further

developed by Bohr and Sommerfield far exceeded the ex-

pectations which it could reasonably be expected to fulfil. At

any rate, it has revealed to us the optical series of hydrogen
and helium with undreamed-of precision as far as the finest

details. But beyond these primary gains, it has undertaken

a further series of successful attacks. Thus Landed* was
successful in calculating the two series-systems of neutral

helium (helium and parhelium) by taking, in contra-

distinction to Bohr, a model of the neutral helium atom in

which the two electrons circle around the double positive
nucleus in two different orbits, either co-planar or else

inclined at an angle to one another. In this case then, the

external electron, the leaps of which generate the radiation,

moves in a field in which the simple Coulomb Law no longer

holds, on account of the disturbing influence of the inner

electron. Examples of this type which differ from that of

7
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hydrogen have been generally investigated by Sommerfeld,
who has shown 275 that by giving up the Coulomb field we

arrive, to a first and second approximation, at the Eydberg
and Hitz forms of the series laws. A very promising

beginning in setting up a quantum theory of the spectral

lines was thus made.

8. The Stark Effect and the Zeeman Effect in Bohr's Theory
of the Atom

Under the circumstances the question forces itself upon us,

whether the atomic model in its present state of development
is able to account for the Stark effect, that is, the splitting up of

the spectral lines as a result of the action of an external electric

field on the electrons emitting the lines. For, as we may
remember, the original Thomson model had completely failed

just at this point. And how do matters stand as regards the

Zeeman effect, the splitting up of spectral lines as a result of

an external magnetic field? Could the new model explain
these phenomena as well as the old? Both questions have

fortunately been answered in the affirmative. As regards the

Stark effect, P. S. Epstein, in an important paper, succeeded

in demonstrating the following : if we calculate the motion of

the electron under the influence of the nucleus and the

external field, according to the methods usual in celestial

mechanics, and then choose from among all mechanically

possible motions the allowable stationary orbits by applying
the modern quantum rules for several degrees of freedom, and

if, thirdly, we allow the electron to leap from one of these

stationary paths into another (whereby we limit the infinite

number of possible passages by a "principle of selection"

presently to be discussed), then the Bohr frequency formula (92)

gives with the most admirable accuracy and completeness, both

as regards position and number, all the components of the

resolved lines as observed by Stark in the cases of hydrogen
and positive helium. This astonishing result must be re-

garded as a further strong support of the correctness of

Bohr's model and its system of quanta. The theory of the

explanation of the Zeeman effect has up to the present not

been quite so successful, It is true that Debye 277 and
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Sommerfield
278 have been able to derive the normal Zeeman

effect (division of the original line into a triplet when the

line of observation is perpendicular to the lines of force) by
calculation from the model. The explanation, however, of

two important phenomena in this field has not yet been

accomplished : firstly, the anomalous Zeeman effect and its

laws (Runge-Preston rule), and secondly, the fact, discovered

by Paschen and Back, that even in the case of lines with a

complicated fine-structure, the normal triplet is formed as

the magnetic field grows. Further investigation will, it may
be hoped, unravel those difficulties.

g. The Principles of Selection of Rubinowicz and Bohr

Inasmuch as the foregoing considerations deal only with

the position of lines in the spectrum, i.e. with their frequency,
we are still confronted with the problem of their form of

vibration, i.e. their intensity and polarisation. Moreover, the

important question had yet to be answered, whether all leaps
of the electron from any one stationary path to any other

are possible, or whether the number of allowable transitions

must be limited by some "
principle of selection." This

also is, fundamentally, a question of intensity, for the position

may be regarded as follows : the forbidden transitions corre-

spond to zero intensity. The solution of this whole complex
of problems has been greatly advanced quite recently. In

the first place, A. Eubinowicz by applying the law of the

conservation of the moment of momentum (impuls-moment)
to the system atom + radiated wave, arrived at a principle
of selection and a rule of polarisation of the following form :

in atoms of the hydrogen type, which are removed from the

influence of external fields of force, the azimuthal quantum
number n of the electron [see formula (99)] can only alter by
0, + 1, or 1, when emission takes place. In the first case,

the light radiated is linearly polarised, in the two other

cases circularly. The position of the plane of the orbit

remains unchanged during the process of emission. In

the case of atoms differing from the hydrogen type, and
of more complicated structure, the position is less simple ;

if we set the total moment of momentum of all the

masses forming part of the system (we know that this
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impulse remains constant during the motion), equal to a

whole number, n*, times
<^,

it is just the changes in this

number n* during the emission which must be limited by the

principle of selection in the same manner, as, in the case

above, the alterations in the azimuthal quantum number of

the individual electron in its leaps were limited. Here also,

zero change in the azimuthal quantum number gives linear

polarisation, changes by +1, on the other hand, lead to

circular polarisation. In place of the orbital plane we get
the " invariable plane

"
(at right angles to the total moments

of momentum or impulse-moments), the position of which in

space remains unaltered. If, finally, the atom is exposed to

an external field, say a homogeneous electric field (Stark

effect) or a homogeneous magnetic field (Zeeman effect), then,

as we know, only that component of the total turning

impulse remains constant during the motion of the masses

forming parts of the atom which is parallel to the external

field. If we set these components of impulse = ^io~, then

only the alteration of this number n^ will be limited by the

principle of selection (that is, the alterations must be
1 1).

The principle of selection is thus clearly weakened in its

action by the external field, and can, if fields of irregular

strength and direction act on the atom, become completely

illusory, as, for example, in the case of electric discharges.

By means of entirely different considerations, N. Bohr 281

arrived at results which coincide, in essentials, with those of

Rubinowicz, but exceed them greatly in range. Bohr started

from the fact that in the limit for large quantum numbers,
when the successive stationary states of the atom differ very
little in the energy they involve, the frequency that the

electron emits in its passage between neighbouring states

becomes identical with the rate of revolution in the stationary
orbit.282 The electron therefore emits, according to Bohr's

frequency condition, the same line that it sends out accord-

ing to the classical theory of electrons. In other words, for

very high quantum numbers, the quantum theory passes over

into the classical theory. (Bohr's "Principle of Correspon-
dence or Analogy.") Arguing from this principle, Bohr pro-
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ceeds as follows : according to classical mechanics, the motion

of the electron in Bohr's atom may be represented as the super-

position of component harmonic vibrations of the frequency ;

Vkl = TI(OI
4- T

2
w

2 + . . . + TjWf . . (103)

Here, T
X

. . . T/ are whole numbers which in general may
have all values between oo and + oo

;
the ^ ... CD/ are

certain constants which depend on the character of the

motion : / is the number of degrees of freedom. Let the

amplitude of the partial vibration characterised by the

numbers T
X
to T/ be A Ti . . . A Tj\ Then, according to classical

electrodynamics, vki is the frequency of the radiated partial

wave (rl . . . Tf)
and A 2

rl ... A^ is a measure of its in-

tensity. On the other hand, the following result is derived

from the quantum theory (Bohr's frequency formula) for high

quantum numbers : in the transition from an initial state

characterised by the quantum numbers m
l}
m

2 . . . mf into a

final state corresponding to the quantum numbers n
x

. . . nf,

a line of frequency

VQU
= (% -

wjcoj + (m2
- w

2)o>2 + . . . + (ra/- %)a>/ . . . (104)

is emitted. Here the quantities ooj
. . . o>/ are the same

constants as in (103). But, according to Bohr's Principle of

Analogy, for high quantum numbers i/ki
= VQU . Hence there

follows from a comparison of (103) with (104)

TI
= m

l
- nv T

2
= m.2

- n
2

. . ., . . . T/
= m/ -

%/ . . . (105)

i.e. the "
classical

"
partial vibration (TJ . . . T/) corresponds to

that quantum transition, in which the quantum numbers alter

by exactly T
X

. . .
T/. The polarisation and intensity of the

wave emitted during this quantum transition may be calculated

from the form of vibration and amplitude of the
"
corresponding

classical
"
partial oscillation. This principle which has been

derived for high quantum numbers is extrapolated by Bohr
with great boldness over the region of all quantum numbers.
Thus the important

"
principle of correspondence

"
is obtained.

If in the development of the electronic motion in terms of

partial vibrations the term (TX , r2
. . . T/) is missing, then

the corresponding transition

m
i
~ n

i
^

TI m
z
~ nz ^2 t mf nf T/
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is not present. Hence there follows, for example, for atoms
of the hydrogen type in a field free from force, the law that

the azimuthal quantum number can in all emissions only change

by + 1 or -
1, both of which lead to circularly polarised

radiation. This law is somewhat more limited in form than

that of Rubinowicz.

Both the principles of selection and the rules for the

polarisation and the intensity have stood the test of compari-
son with experiment. Rubinowicz himself showed that his

principle of selection and the rule of polarisation are in agree-
ment with Paschen's measurements of the fine-structure of

the helium lines, and further with the observations of the

Stark effect and the normal Zeeman effect. P. S. Epstein
2SS

and H. A. Kramersm went still further, and were able to

prove by profound investigations, based on Bohr's Theory, that

the calculations of intensity along the lines sketched above

were also in surprising agreement with observation. Finally,

Sommerfeld and Kossel 28S in an interesting study have applied
the Rubinowicz principle of selection to spectra differing from

the hydrogen type as well, and have shown that it is able to

explain why certain series appear more readily and are more
favoured than others, as it were, and that, by the selection of

the "
possible

"
transitions, it sets a limit to the multiplicity

of possible combinations in a manner which, so it appears,

entirely agrees with experience.

m Collision of Electrons on the Basis of the Bohr Atom

While in this way, through the interpretation and unravell-

ing of the universe and the almost bewildering abundance of

spectroscopic observations, the conviction of the correctness

of Bohr's atomic model deepened more and more, a series of

observations of quite another kind became known and contri-

buted considerably to the consolidation of Bohr's Theory.
These were the investigations already mentioned earlier in

connexion with the light-quantum hypothesis, which dealt

with the collision of free electrons with gas molecules and

atoms. These researches were conducted particularly by
J. Franck and G. Hertz 286 and, in succession, by a considerable

number of American investigators in a systematic manner.

The manifold results of these interesting researches may be
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sketched here schematically by a simple example. What
have we to expect when electrons collide with a Bohr Atom ?

As a simple type of Bohr atom, let us choose a model in which

z electrons revolve around a 2-fold positively charged nucleus

in stationary quantum paths. The nature and spatial arrange-

ment of these paths, as well as the distribution of the electrons

among the individual paths will be left open, and we shall

FIG. 10.

make only the simplifying assumption that one electron the

so-called valency electron revolves alone in the outermost

orbit (1) (see Fig. 10). Let this be the "normal," unexcited

state of the atom. The hydrogen atom (z
=

1) is, as we know,
constituted in this way, and, of the neutral complicated atoms,
the atoms of the vapours of the alkali metals (Li, Na, K, Eb,

Cs) very probably also fall under this scheme. If by any
addition of energy the electron is

" raised
"
from its normal
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orbit (1) to a higher orbit (that is, one having more energy),

say into the orbit (2), (3), (i) and so forth, and if it "falls"

from these back into orbit (1), then the 1, 2, 3 . . . line of the

so-called "
Absorption-series of the unexcited atom

"
(principal

series) is emitted. The frequencies of the lines emitted are

regulated by Bohr's frequency condition (92), i.e. that the loss

of energy Wn - W
l
incurred in passing from the roth to the

first orbit is equal to a quantum hvn>l of the line emitted :

Wn - W
l
= hv

nil
.... (106)

The additional energy required to "
raise

"
the electron to the

higher energy level can be obtained in two ways : firstly by

absorption of external radiation ; secondly (and that is the case

we are dealing with here) by electronic impact. If external

radiation of frequency v
Htl

falls upon the atom, a quantum
hvnti of this radiation is absorbed and is used to raise the

electron from the energy level W
l

to the higher level Wn

= W
l + hvn,i-

In falling from this to the original level, the

electron then emits the light corresponding to the line absorbed.

The circumstance is further noteworthy, that the electron,

when it is raised to the level (2), has no other choice than to

return to the initial level, whereas from orbit (4) it can make
one of three possible transitions to (3), (2), and (1). If,

therefore, the atom has absorbed light corresponding to the

line v
2>1

from the external radiation, it will re-emit this line

with its full complement of energy. The first line of the

absorption series is, therefore, in contrast with all other lines,

a so-called resonance line.

If the energy required to raise the electron is furnished by
tiLe impact of an outside electron, then as Franck and Hertz

were the first to prove the intruding foreign electron will be

reflected from the atom perfectly elastically (according to the

mechanical laws of elastic impact), as long as its energy
remains below a certain critical value ER . If this energy
value is reached, the impinging electron loses all its energy,
and gives it up to the electron of the atom which has been

struck ("inelastic impact"). What does this mean according
to Bohr's view of the atom ? Obviously ER is nothing other

than "PF"
2
Wv that is, the energy which is necessary to raise

the electron from its normal state in the atom to the orbit (2.
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The result of this electronic impact, which adds energy of

amount ER to the atom must therefore be the emission of

the resonance line. If this view represents the kernel of the

matter, then the energy ER must be connected with the

frequency v^n of the resonance line by the quantum relation

ER = hv^ .... (107)

This relationship has been excellently verified by experiment.
Thus Tate and Foote for example, find in the case of

sodium, that the first inelastic electronic impact takes place
when the impinging electron is accelerated by a potential

of VR = 2-2 volts, the so-called resonance potential. The

energy communicated by this potential to the impinging
electron is

eVR 4-774 1Q-" x 2-12
q .q? in _ 12

3xlO

On the other hand, the resonance line that is under con-

sideration here is the D-line, hence

6-545- 10 -".3
5-893. 10-*

In _i2

We thus see that the relation (107) is fulfilled with great

accuracy. The same holds for potassium (VR = 1*55 volts,

.'.ER = 247 10- 12
,
A
21
= 7-685 1Q- 5

/. &v21 = 2-55 10~ 12
).

In the case of the inert gases (helium, neon, etc.) and the

vapours of mercury, zinc and cadmium, similar qualitative and

quantitative relations with some modifications occur. The

excitation, by electronic impact, of the mercury resonance line

A. = 2-536 10 - 5
,
that is 2*536/, discovered by Franck and

Hertz, and already referred to, presents a characteristic

example. The observed resonance potential is here 4-9 volts,

while from the relation

T7 300,. 300, 300/ic
VR = --ER = --hv.2n

=
e e eA

2>1

the value VR = 4-86 volts is deduced.

If the energy of the impinging electron is increased beyond
ER, then an "

inelastic
"

impact, accompanied by complete
loss of the energy, is to be expected every time as soon as E
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has become equal to Wn - W

l (n
= 3, 4, 5 . .

.). By these

various additions of energy the electron attached to the atom
is raised successively to the 3rd, 4th, 5th . . . level of energy.

If, finally, E = E& = W& - Wv then the energy of the

impinging electron is just sufficient to remove the electron

attached to the atom to infinity, i.e. to ionise the atom. E^
is thus the ionisation energy, and the voltage corresponding

OAATyT
to it, FOQ = 5Q_

t
js called the ionisation potential. From

Q

the relation (106) we get immediately the important equation

That is to say, the ionisation energy is equal to the quantum
which corresponds to the last line of the absorption series, that is,

to the "
series limit." This quantum relation has also been

excellently confirmed in all cases. For sodium, for example,
Tate and Foote found : FQQ = 5*13 volts, which gives an

ionisation energy of the value E^ = 8*17 10 ~ 12
. On the

other hand, the limit of the principal series has the wave-

length XQO j
= 2-413 10 - 5

,
from which hV(O 1

= 8-14 10
~ 12

,

in striking' agreement with the value of E& .

For mercury vapour, the limit in question of the principal
series A^ = 1-188 10 - 5

. From this follows, according to

(108), FQQ = 10*4 volts while the measurements of various

workers gave the value 10*2 to 10'3 volts (Tate, Bergen,
Davis and Goucher ; Hughes and Dixon ; Bishop

m
).

From
all these examples, which could be considerably multiplied,
the conclusion may be drawn with convincing clearness that

the Bohr conceptions have laid bare the nature of the con-

struction and the mode of action of the atom with un-

precedented lucidity.

u. Einstein's Deduction of Planck's Law of Radiation on the

Basis of the Bohr Atom

Under these circumstances the suggestion naturally arises to

refound the law of black-body radiation by taking as the ele-

mentary absorbing and emitting structure Bohr's model in

place of the linear oscillator used by Planck. Einstein 289 has

taken this step. In a highly important study he investigated
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the equilibrium of energy and momentum between black-body
radiation and a generalised Bohr model, which, stripped of all

special properties, has only to fulfil the quantum condition of

being able to assume a discrete series of different states. For

the interaction between the radiation and the atom absorption

(Einstrahlung) and emission (Ausstrahlung) Einstein intro-

duces the following simple hypotheses : the frequency of the

emissions, i.e. the transitions, accompanied by loss of energy,
of the atom from a condition (2) of higher energy, E%, to

a condition (1) of lower energy, Ev shall follow the same
statistical law as that which governs the disintegration of

radioactive bodies, i.e. the number of transitions 2 -> 1 in the

time dt, or, as we may say, the number of atoms (2) that "
dis-

integrate" in this time is proportional to dt ' N
2 ,

where N
z

denotes the number of atoms momentarily in the state (2).

But, according to Einstein, a different law regulates the

processes called into existence by the effect of external radi-

ation. Under the influence of external radiation two things

may happen : either an atom may pass from state (1) to state

(2) by taking up energy, this is the "proper positive absorp-
tion." Or the case may also occur, that, as a result of the

phase-relation between the field of the external radiation and
the atom, the atom loses energy through the action of the im-

pinging radiation, and hence passes from state (2) to state (1)

("negative absorption"). The rate at which both kinds of

transition are repeated is then proportional to the intensity

Kv of the external radiation : the number of transitions 1 - 2

associated with positive absorption in the time dt is therefore

proportional to N^tKv ',
the number of transitions 2 -> 1 as-

sociated with negative absorption is proportional to N
2dtKv .

Here N-^ is the number of atoms momentarily in the state (1).

N
L
and N

2
are determined by the laws of distribution known

from the theory of gases and statistical mathematics and en-

larged in conformity with the quantum theory. There follows

from the energy equilibrium between in-coming and out-going
radiation at the temperature T

. (109)

_ 1
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where k is Boltzmann's constant, and A is a constant inde-

pendent of the temperature. From Wieris Displacement Law
(4) it follows, firstly that A is proportional to v3 and secondly
that E

2
E

l
is proportional to v. If, therefore, we write

E
2
- E

l
= hv . . . (110)

we recognise in this expression Bohr's frequency condition (92).

In this way K,, assumes the form of Planck's Law of Badia-

tion, arising in a surprisingly simple and elegant manner from

a minimum of hypotheses of a general character. Einstein,

in pursuing and deepening these conceptions by writing down
the expression for the equilibrium of the momenta in addition

to the energies of the in-coming and out-going radiation, was led

to the remarkable conclusion that the radiation of Bohr atoms

cannot take place in spherical waves, as the classical theory
of electrons requires, but that the process of emission must

have a particular direction like the shot from a cannon. We
cannot fail to recognise that this brings the conception that

radiation has a quantum-like structure (light-quantum hypo-

thesis) within realisable bounds.
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CHAPTEE VII

The Quantum Theory of Rontgen Spectra

i. The Analysis of Rontgen Spectra

AEALLBL with the development of the science of optical

spectra, a theory of Eontgen spectra has been developed of

late years upon the same basis. This theory has already shed

much light on the structure of atoms and thus forms a

desirable extension of the theory of optical spectra. The

investigations of Ch. BarHa, W. H. and W. L. Bragg, Moseley
and Darwin, Siegbahn and Friman^ among others, have

shown that by the impact of cathode rays upon the anti-

cathode of a Eontgen tube two kinds of Eontgen rays arise :

first, the so-called
"
impact radiation

"
(Bremsstrahlung) con-

sisting of an extensive and continuous range of wave-lengths

(similar to the continuous background of visible spectra) ;

secondly, the " characteristic radiation," a typical line-spectrum,
the structure of which depends so essentially on the material

of the anti-cathode that a glance at this spectrum suffices us

to deduce immediately and unmistakably the nature of the

material of which the anti-cathode is composed. Thus along-
side the optical spectrum analysis of Bunsen and Kirchhoff a

Eontgen- or X-ray analysis presents itself. It has further

been shown that the characteristic X-ray spectrum is a

purely atomic property, and, indeed, an additive one. If we

examine, for example, the X-ray spectrum, which is emitted

by an anti-cathode of brass (copper + zinc), we find the

lines of both copper and zinc unaltered and occupying the

same positions as if only one metal were present in turn. No
new lines appear. Accordingly we are led to suppose that

the line-spectrum arises in the atoms of the anti-cathode, and

is generated there by the impinging electrons of the cathode

109
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rays. The further important fact appeared that the lines of

the characteristic spectrum may be arranged in series, just
like those of the optical spectrum. Thus we have discovered

up to the present a short-wave j/T-series, a long-wave .L-series,

and a still longer-wave ./If-series.

The most curious feature of these spectra is their connexion,

by a definite law, with the atomic number of their element in

the periodic system. If we plot the position of a certain line

(say the first line Ka of the ^-series) for the successive

elements of the periodic system, a perfectly regular progres-
sive shift is revealed : the line advances with increasing
atomic number steadily towards the shorter waves. The re-

gularity of this advance is such that we can recognise gaps or

false positions of elements in the periodic system immediately
by an excessive jump. Now, according to the hypothesis,

already mentioned, of Rutherford, v. d. Broek, and Bohr, the

atomic number of an element is nothing other than the

number of its nuclear charge, that is, the number of elemen-

tary positive charges of its nucleus. If to this we add the

phenomenon just discussed, according to which the steady
advance of the nuclear charge in the series of the elements is

reflected in the steady displacement of the X-ray lines, then

we are forced to the view that the origin of the X-ray spectra
must be localised in the immediate neighbourhood of the nucleus,

that is, in the inmost part of the atom. For in this region the

nucleus clearly has the greatest power and is least disturbed

by external electrons, and hence it is here, too, that the growth
of the nuclear charge will make itself most felt.

The connexion between the position of the X-ray lines and
the atomic number z was first formulated by G. Moseley.

He found for the frequency of Ka (first line of the JfjT-series)

and Z/a (first line of the L-series) the empirical relation

where N is the Rydberg number.

The similarity of these relations, which are only approxi
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mately valid, with Bohr's formula (93) for the series of the

hydrogen type is so striking, that it was an obvious step to

seek to find the explanation of the Eontgen series by arguing
on the basis of Bohr's model.

This problem was attacked chiefly by W. Kossel, 2 A.

Sommerfeldw L. Vegard** P. Debye, J. Kroo, and A.

Smekal.291 And thus, in addition to the theory of the optical

spectra which take their origin at the periphery of the atom,
a theory of the Eontgen spectra has arisen which leads us

FIG. 11.

into the inmost regions of the atom. According to this theory
we may picture to ourselves, in general terms, the emission

of the Eontgen spectra as follows : we consider a neutral

Bohr atom, consisting of a -2-fold nucleus, around which

z electrons revolve. These z electrons may be arranged in

different rings. The innermost, single-quantum ring, the so-

called K-ring, carries, let us say, p 1
electrons in its normal

state
;
let the second ring, the .L-ring, be a two-quantum ring

occupied by^2 electrons, the third, three-quantum, the .M-ring

withy?3 electrons, and so on (Fig. 11). The question whether
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we can reach our goal with this conception of the ring by
assuming the quantum numbers to increase as we go outwards,
and whether we are to take the rings as co-planar or inclined

to one another will be left open. The preparation for the
emission of the ^-series consists in this, that by the addition
of energy whether by absorption of external radiation or by
electronic impact an electron of the .ST-ring is removed to in-

finity, that is, the atom is, so to speak, ionised "
inside," i.e.

in the ^-ring. If the energy of the atom before this inner
ionisation = W

,
and after the ionisation = WK ,

then the
amount WK - W of energy must be provided. Hence every
radiation, the energy quantum of which satisfies the condition
hv J> WK - W

,
can on being absorbed effect the tearing of the

electron out of the JT-ring. If we allow the v of the external

radiation to grow slowly from small values, then, at the point
~W TF"

VK = ~ T '
a su^en increase of the absorption occurs,

because from this point onwards the external radiant energy
is used for the " ionisation of the JfT-ring." Thus an absorp-
tion-band extends from v = VK towards higher frequencies, the

edge of the band lying at VK . This phenomenon of the "
edge

of the absorption-band
"

has already been interpreted above
in the sense of the hypothesis of light-quanta. If the addition

of energy is provided by the impact of a strange electron,

coming from without, then its energy must be E>WK W
,

that is, E ^> hvK,
a relation, which we have already deduced

earlier from' the standpoint of the quantum hypothesis of light.

By ionisation of the J5T-ring the atom is now prepared for

.^-emission. If now an electron falls from the 2-quantum
_L-ring into the 1-quantum K-img, filling up, so to speak, the

gap produced there, then the first line of the JT-series, Ka ,

will be emitted. If on the other hand the gap in the .ST-ring

is filled by an electron of the 3-quantum M-ring, or the

4-quantum .N"-ring, Kp or K
y
result respectively. The position

is quite analogous as regards the L- and M- series. If, by the

addition of energy (absorption or electron-impact), an electron

of the i-ring is battered off, that is if the .L-ring is ionised,

then the atom is prepared for the emission of the IJ-series.

If, now, the gap in the 2-quantum L-ring is filled by an

electron of the 3-quantum M-ring, the first line of the ^-series,
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La,

results ;
if it is filled by an electron of the N-r'mg, the

second line of the Z/-series, Ly ,
results (the notation is not

quite consistent but will serve the present purpose), and so

forth.

The converse phenomenon to line emission, viz. line absorp-
tion, with which we are acquainted in visible spectra, appears
at first sight to be missing here. That is, however, as W.
Kossel 298

recently showed, an error. It is true that the ejected
electron of the jfiT-ring, for example, cannot in general be

caught upon the L-, M-, or N-iing, because all places on them
are already occupied. An absorption of the lines Ka , Kp, Ky ,

is therefore in this case impossible. But the electron of the

-ZT-ring can certainly come to rest on an unoccupied quantum
orbit outside the occupied rings, that is, outside the surface

of the atom. In this process a "
line

"
is actually absorbed,

namely, that line of which the hv is equal to the energy-
difference between the If-ring and the final orbit of the ejected
electron. This refinement of our considerations shows, then,

that the electron from the IC-ring does not need to be raised

immediately to infinity, but that line absorptions may occur

before the edge of the band of absorption is reached.

2. The Fine-structure of Rontgen Lines

It is particularly noteworthy that Sommerfeld succeeded

also in the field of X-ray spectra in explaining the fine-

structure of the lines by calling in the aid of the theory of

relativity. Thus, for example, the 2-quantum Zy-orbit is

"double"; it can occur as a circle (n
= 0, n =

2) or as an

ellipse
299

(n = 1, n =
1). Hence the line which is emitted

by the electron of which the .L-ring is the initial orbit, namely,
Ka ,

is a doublet (Ka and Ka-). In just the same way, those

lines for which the L-orbit is the final orbit of the electron

are doublets, namely, the line La (more exactly La>) to which

LP is added to make a doublet; further, Ly which forms

a doublet with L&, and so forth. The distance between the

components of the doublets (expressed in frequencies) comes

out, according to Sommerfeld's Theory, as approximately pro-

portional to the fourth power of the atomic number z. Hence

here, in the X-ray region, where we are dealing for the most

part with elements having fairly high atomic numbers, the

8



114 THE QUANTUM THEORY
doublets appear macroscopically enlarged as compared with

the microscopic hydrogen-doublet (z
=

1). During the emis-

sion of X-rays the electron approaches very near to the

highly-charged nucleus, and hence the relativistic effects of

the resolution of the lines are much greater than in the case

of the optical spectra, in which the electron is moving at the

surface of the atom, where it is almost entirely screened from

the action of the strong nucleus by the remaining electrons.

With the help of the following relation deduced theoretically

and adapted to experimental evidence,

^-doublet
Z _

Sommerfeld was able to calculate the hydrogen-doublet from

the observed .L-doublets, and compare it with the results of

experiment. The agreement is very satisfactory.

3. The Distribution of Electrons among the Rings. Objections
to the Ring-arrangement of Electrons

The quantitative calculation of the simplest case, namely,
the emission of Ka ,

led Debye to the conclusion that the

jfiT-ring in the normal state consists of three electrons. To
this Kroo, by elaborating the calculation, adds the con-

clusion that the .L-ring contains in its normal state nine

electrons. With these two distribution numbers, pl
= 3,

jp2
= 9, the position of Ka could be represented as a function

of the atomic number z for all elements. The emission of Ka

takes place according to the following obvious scheme :

.fi^ring i-ring

Normal state
|

3_] 9 . .

Initial state
| 2T"9"1

lomsation of the tf-nng.

Final state
|

3
|

8 >
EmiS81On f *"

The two distribution numbers (Besetzungszahleri) thus found

for the two innermost rings excite our attention. For on

the basis of the Periodic System with its periods of eight

we ought to expect, according to Kossel, the numbers 2 and 8.
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The strange occurrence of the numbers 3 and 9 becomes
an objection, when we consider the case of sodium (z

=
11).

Here, according to Kossel, we should expect the numbers 2,

8, 1, since in all probability an electron (the valency electron)
revolves alone, as in the case of all alkali metals, around the

outside quantum orbit (Jf-ring). In any case it is impossible
that the two innermost rings together should, in the normal

state, contain 12 (= 3 -h 9) electrons. If we attempt to go
a step further still on the basis of Kroos numbers 3 and 9,

and to set up a formula which represents for all z's the

position of La in conformity with observation, and thereby
to determine the number of electrons j/3 on the M-ring, we
find, as A. Smekalm showed, that this mode of representation
is impossible with any combination 3, 9, p3

. Nor do we fare

better if we incline the various rings to one another, and take

their interaction into account. The suspicion is forced upon
us, that perhaps the whole conception of the arrangement
into plane rings does not correspond with fact, but that, rather,

the electrons in the atom form spatially symmetrical figures.

This suspicion is very much strengthened by a series of pro-
found investigations carried out by M. Born and A. Landed

Following on M. Horn's investigations of the dynamics of

the crystal-lattice, which we discussed in detail earlier in

connection with the atomic heat of solids, the two in-

vestigators asked themselves the question, whether it is

possible to build up the cubic crystal-lattice of the alkaline

halides (NaCl, NaBr, Nal ; KC1, KBr, KI, etc.) from ions of

Bohr atoms, by taking into account only the mutual electro-

static forces; and whether this method, if possible, would
enable them to prophesy the crystal properties (lattice-con-

stant, compressibility) from the atomic models of the two

constituent ions. The answer to this question has been, on

the whole, in the affirmative. But when the calculation of

the compressibility of these crystals was carried out, the

remarkable result manifested itself that crystals are found to

be too soft, that is, insufficiently rigid, if the conception of the

ring-arrangement of electrons in the atom is maintained. On
the other hand, we get good agreement with the observations

if, following Born, we introduce the hypothesis that the

electrons are arranged spatially. A complex of eight electrons,
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as occurs in sodium, potassium, etc., does not therefore occupy
a plane 8 -ring; the eight electrons describe paths of cubical

symmetry. Into the still obscure region of these "
spatial

"

electron paths, A. Lande*02 has made some successful in-

cursions.

From all that has been said it would appear to be certain

that in dealing with Bontgen spectra, too, we can no longer be

content with the arrangement of the electron rings in planes,
and that the whole quantitative theory of the Kontgen series,

including Sommerfeld's fine-structure of the K- and the L-

doublets, must be built up on a fresh foundation.



CHAPTEK VIII

Phenomena of Molecular Models

i. Dispersion and Magneto-rotation of the H 2 Molecule

WHILE
the X-ray spectra and the spectra of the optical

series arise from the atoms of the elements (and hence

their theory links up with the atomic models'), there is a series

of phenomena which, in the case of polyatomic substances,

are peculiar to the molecules, and the theory of which,

therefore, is founded on the molecular models. Chief among
these are the normal dispersion, the rotation of the plane of

polarisation in the magnetic field (magneto-rotation), and,

further, the great and complicated subject of band-spectra.

Up till a few years ago, dispersion and magneto-rotation had
been exclusively treated from the standpoint of the Thomson

model, that is, with the help of quasi-elastically bound

electrons, and this explanation had served in turn as a

powerful support for this model. Nevertheless, discrepancies
in these theories had long been known. For example,
measurements calculated upon the basis of the dispersion
theories of Drude, Voigt, or Planck led to values for the ratio

of the charge to the mass of the electron
( j which, in com-
\mcj

parison with the direct measurements of this quantity (based

upon the deflection of the cathode- or y8-rays in the electric

and magnetic fields) which were much too small. When,
however, the Thomson model became displaced by the

Rutherford-Bohr model, and the successes of the Bohr atomic
model increased at an undreamed-of rate, the question arose

whether an unobjectionable theory of dispersion and magneto-
rotation could not be founded upon these new views. The
difficult position, into which we are brought by this problem,

117
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arises from the fact that we do not actually know a single
instance of the exact manner in which a polyatomic Bohr
molecule is built up from its nuclei and electrons. The
exact knowledge of this structure, and the motion of all the

electrons is absolutely necessary, if we desire to know how
the molecule reacts upon external waves (dispersion). It is

true that W. Kosselm has, in a detailed study already
referred to above, pointed out the general guiding lines along
which, from the chemical point of view, the building-up of

the atom from molecules must be carried out, but the details

of this construction remain open. Only in a few of the

simplest cases have detailed molecular pictures been con-

structed and closely tested. Thus Bohr, as we remarked in

discussing the atomic heat of gases, has already proposed a

model of the diatomic hydrogen molecule. It has the follow-

ing construction (see Fig. 8) : two singly-positive nuclei (that

is, each consisting of only a single positive charge) are

separated by the distance 26. In the vertical plane which
bisects the line joining the nuclei, two electrons rotate,

diametrally opposite one another, on a circle of diameter 2a.

The equilibrium of the Coulomb and the centrifugal forces

requires that a =
b^/3. By means of this relation, and by the

quantum condition that each electron must have the moment

of momentum
,
the model is completely determined in all

ATT

its dimensions and speeds. It was this model which was
the first to be proposed : it was examined by P. Debye 3M

with reference to its dispersion. On account of its sym-
metrical structure the molecule possesses no electrical mo-
ment in its normal state. If, on the other hand, it is struck

by an external light wave, the motion of its electrons is

periodically disturbed ; they depart from the normal quantum
path, fall into forced vibration, and thus generate an electric

moment which changes periodically in step with the external

wave. Thus the original motion of the primary wave is

changed, and dispersion results. We may conceive this as

follows : Let c be the velocity of the primary wave in vacuo.

The oscillations of the electrons generate a secondary wave

which spreads out from the molecules. All these secondary
waves combine with the primary wave to a form new wave



OBJECTIONS TO BOHR'S MODEL 119

which moves with the altered velocity q, the value of which

depends on the frequency of the primary wave. But just

this is the phenomenon of dispersion. The electronic vibra-

tions which occur here are not oscillations about positions of

equilibrium, as in the case of the quasi-elastic model, but

oscillations about stationary paths. Moreover, here, the force

holding the electrons, as opposed to the usual classical

theories of dispersion, is anisotropic (that is, the electron is

held by different forces in different directions) ; above all, by
means of this anisotropy, it was possible to explain away the

disagreement in the value of ,
which had previously been

found to be too small ; and Debye succeeded, on the basis of

the normal value of
,
in deducing from the theory the

me
observed dispersion curve of hydrogen, that is, the curve

which shows how its coefficient of refraction depends on the

wave-length. It should be noted that in the formula for the

coefficient of refraction, no single constant is arbitrary, but

that the dispersion formula is made up entirely of universal

constants.

Using the same method (calculus of disturbances), P.

Scherrer*05 has calculated the rotation of the plane of

polarisation which linearly polarised light undergoes in its

passage through hydrogen under the influence of a magnetic
field. His efforts were equally successful.

2. Objections to Bohr's Model of the Hydrogen Molecule

In spite of the successes which the Bohr model of the

hydrogen molecule has won, a list of weighty objections to

it has accumulated in the course of time. That the con-

tribution which the rotation (more accurately, the regular

precession) of this molecule makes to the molecular heat at

low temperatures, does not correspond with the observations

of Eucken, has been shown by P. S. Epstein, as we have

already mentioned. Also at high temperatures, when the

oscillations of the two nuclei relatively to one another con-

tribute to the molecular heat, no agreement between theory
and observation has been found in the case of the Bohr model,

as G. Laski 306
recently showed.
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Further, the model must possess, in consequence of the

revolving electrons, an almost fixed magnetic moment parallel

to the axis of the nucleus, that is to say, it must be equivalent
to a molecular elementary magnet, which endeavours to set

itself, in an external magnetic field, parallel to the lines

of force. Hydrogen ought, therefore, to be paramagnetic,
whereas it is diamagnetic.

Another very important objection, to which Nernst in

particular drew attention, is the following : if we calculate

the work which is necessary to separate the molecule into

its two atoms, the so-called heat of dissociation, we get
307 the

value, 61,000 calories. On the other hand, Langmuir 308 found

84,000 cals., Isnardiw* 95,000 cals., /. Franck, P. Knipping
and Thea Kriiger 81,000 ( 5700) cals. In any case, the

calculated heat of dissociation comes out 25 per cent, too

Finally, W. Lenz 311 has recently increased the objections
to the hydrogen model by an important one based on a

theory of band-spectra, which we shall discuss below. He
proved that the band-lines of hydrogen and nitrogen can

exhibit the observed Zeeman effect, only if these molecules

possess no moment of momentum around the nuclear axis.

The fact that the two electrons in Bohr's molecular model

revolve in the same sense, however, endows it with just such

a moment of momentum. On the whole, the Bohr model does

not seem to correspond to reality ; the arrangement of the two

nuclei and electrons must plainly be quite different. No

satisfactory model, however, has yet been found.

3. Models of Higher Molecules

Matters are no better in the case of models of the more

complicated molecules. It is true that Sommerfeld 312 and
F. Pawer 313 have also worked out the theories of dispersion
and magneto-rotation in the case of the more general Bohr
models (N 2

and O
2)
which are constiaicted on the lines of the

hydrogen model. According to Sommerfeld, four electrons

revolve about the line joining the two nuclei in the case of

oxygen, each of which acts with an effective charge + 2e
;
in

the case of nitrogen, a ring of six electrons rotates about the

nuclear axis, while the nuclei carry triple effective charges.
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Sommerfeld was able to obtain agreement with observation only

by setting up for each electron of a valency ring of 2s-electrons

the unaccountably strange quantum condition : moment of

momentum =
g^ \/s, undoubtedly a most unsatisfactory

result. Gerda LasJci 314 obtained better results with some-

what different models, which she chose in such a way that

the specific heat of the two gases at high temperatures agreed
with the observations of Pier.318 According to her ideas, the

nitrogen molecule must consist of two seven-fold positive nuclei,

each of which is closely surrounded by a 1-quantum ring of

two (or three) electrons. The "valency ring" in the central

vertical plane is 2-quantum and contains ten (or eight)
electrons. Analogously, the oxygen molecule consists of two

eight-fold positive nuclei, each encircled by a 1-quantum ring
of two (or three) electrons, whereas the 2-quantum valency

ring contains twelve (or ten) electrons. The same objections

apply to some extent to these models of Sommerfeld and Laski

as to the hydrogen model. For example, they give no account

of why oxygen should be paramagnetic, and nitrogen, on the

other hand, diamagnetic. Moreover, the above-mentioned

objection of Lenz applies in full force to these models
; for

they all possess moments of momentum around the nuclear

axis. In conclusion, we feel bound to admit that the exact

constitution of even the simplest models is at present unknown
to us.

4. The Quantum Theory of Band-spectra

To conclude this chapter, we shall turn our attention to the

band-spectra, and collect together shortly what the quantum
theory has been able to assert about them up to the present
time. That they belong to molecules and compounds may
nowadays be regarded as certain. The first attempt to con-

struct a logical quantum theory of band-spectra was under-

taken by K. Schwarzschild 316 who clearly recognised the

importance of the rotation of the molecule in the production
of these spectra. His conceptions may be defined as follows :

a system of electrons revolves at a definite quantum distance

around a molecule which itself rotates according to quantum
conditions, the assumption being made for the sake of
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simplicity that the motion of the electrons is not influenced

by the motion of the molecule. If E
Q is the quantum energy

of the electrons, Er the quantised rotational energy of the

molecule, then E + Er = E is the total energy of the system.
If the three chief moments of inertia of the molecule / are

equal to one another, then it follows, just as in (80), that

where n denotes the rotational quantum number. Therefore

If, now, the system passes from one quantum state having
the electronic energy EQ

and the rotational quantum number
n into another quantum state having the electronic energy E'
and the rotational quantum number n', then it follows from
Bohr's frequency formula (92) that the frequency of the line

radiated is given by

If we keep all the quantum numbers which occur here, except-

ing n, constant, and allow n to vary, then we get a series of

lines progressing towards the violet and having the frequencies

v = a + bn2
(a and b are constants) . (115)

This is a formula which had already been given empirically

by Deslandres*11 and which is approximately true for the lines

of many bands.

Following Schwarzschild, T. Heurlinger
318 and W. Lenz*1*.

in particular, have further developed and refined the quantum
theory of band-spectra. For example, Lenz has pictured the

molecule as a symmetrical top having two moments of inertia

and a rotational rigidity (moment of momentum) around the

axis of the figure, and hence deals from the outset with a regular

precession of the molecule in' place of a rotation. Using
Bohr's frequency formula, and applying the principles of

selection, he obtained the following general formula for the

lines of a band :

v = a + bn + en2
(a, b, c are constants) . (116)
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which is obeyed, according to Heurlinger, in the case of the

so-called
"
cyanogen

"
lines of nitrogen, for example. In

addition to the lines given by (116), Lenzs Theory requires the

occurrence of the series given by the formula

c* . . (117)

for the case that the molecule really possesses a finite moment

of momentum about its axis of figiire. A series which follows

this law does not, however, exist in the cyanogen bands, ac-

cording to Heurlinger. Lenz deduces from this the conclusion

already mentioned, that the nitrogen model does not possess
a rotational rigidity about its axis. By calculating the

Zeeman effects of the band lines, and comparing them with

observation, Lenz was able to confirm this, and to extend it to

the hydrogen molecule.

The infra-red Bjerrum absorption bands of the diatomic and

polyatomic gas compounds, which we had discussed at length
in Chapter V, belong to the general type of band-spectra. If

we are to deduce them from a theory consistently founded on

quanta and not, as we did earlier, half according to the

quantum, half according to the classical theory we must

follow closely the course pursued above, with the difference

that, in place of the energy of the electronic system there will

appear the energy of the atoms,320 with which the rotational

energy of the molecule is combined, as a first approximation,

additively. The logical carrying out of this calculation (in

which Bohr's frequency formula and the principle of corre-

spondence are applied), which was undertaken by Heurlinger 321

and the author,322
gives for the structure of the " fluted

"
ab-

sorption bands an arrangement of lines which at first sight

does not appear to agree with the beautiful and exact measure-

ments of Iraes.323 The theory gives for the position of the

absorption lines a formula

(- 1,2,3...) (118)

and therefore requires that all neighbouring lines be equi-

distant, including the two in the middle (n
=

0). On the other

hand, Imes observations show with indubitable clearness that

the interval between the two middle lines is twice as great as
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the interval between all neighbouring lines. This apparent
contradiction is explained, as A. Kratzer*2*

recently showed,
in a surprising fashion, if we take into account the intensity

of the absorption lines according to Bohr's Principle of Analogy.
For it then appears that the first absorption line to the right

of the middle v -line, namely, the line

h

(which is derived from formula (118) by setting n = and

using the positive sign for the second term) is of vanishingly
small intensity. This line is generated when the molecule

passes over from an initial rotationless and vibrationless state

into the final state in which the two ions oscillate relatively

to one another with one quantum, and in which, at the same

time, the molecule rotates as a whole with one quantum. The
rotationless and vibrationless state has, however, a vanishingly
small probability ;

the number of transitions from this initial

state per second, and therefore the intensity of the correspond-

ing absorption line, is hence vanishingly small. By the dis-

appearance of the first line to the right of the middle position
i/

,
the structure of the lines as observed by lines is actually

reproduced, as one may easily recognise ;
in the formula, the

" middle
"

of the line structure is displaced from the point v

to the right by the amount
Q~2j-

The absorption lines group

themselves equidistantly and symmetrically on both sides of

the missing
"
middle," v = v + Q-OT- This state of affairs

O7T J

may be expressed by writing, in formal agreement with (83),

nh , -too

where . (119)

From the constant interval between neighbouring lines, namely

AV = -A-
. . . (120)

the moment of inertia of the rotating molecule can be cal-

culated with great accuracy.
323



CHAPTER IX

The Future

IN
the preceding pages the author has attempted to give

in broad outline the most important features of the

doctrine of quanta, its origin, its development, and its

ramifications. If we now survey the whole structure, as

it stands before us, from its foundations to the highest story,

we cannot avoid a feeling of admiration
; admiration for the

few who clear-sightedly recognised the necessity for the new
doctrine and fought against tradition, thus laying the founda-

tions for the astonishing successes which have sprung from
the quantum theory in so short a time.

None the less, no one who studies the quantum theory
will be spared bitter disappointment. For we must admit

that, in spite of a comprehensive formulation of quantum
rules, we have not come one step nearer to understanding
the heart of the matter. That there are discrete mechanical

and electrical systems, characterised by quantum conditions

and marked out from the infinite continuity of
"
classically"

possible states, appears certain. But where does the deeper
cause lie, which brings about this discontinuity in nature?

Will a knowledge of the nature of electricity and of the con-

stitution of the electromagnetic field serve to read the riddle ?

And even if we do not set ourselves so distant a goal, there

remains an abundance of unanswered questions. The
decision has not yet been made, as to whether, as Planck's

first theory requires, only quantum-allowed states exist (or

are stable), or whether, according to Planck's second formula-

tion, the intermediate states are also possible. We are still

completely in the dark about the details of the absorption
and emission process, and do not in the least understand
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why the energy quanta ejected explosively as radiation

should form themselves into the trains of waves which we
observe far away from the atom. Is radiation really pro-

pagated in the manner claimed by the classical theory, or

has it also a quantum character ?

Over all these problems there hovers at the present time

a mysterious obscurity. In spite of the enormous empirical
and theoretical material which lies before us, the flame of

thought which shall illumine the obscurity is still wanting.
Let us hope that the day is not far distant when the mighty
labours of our generation will be brought to a successful

conclusion.
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6 0. Lummer and W. Wien, Wiedem. Ann. 56, 451 (1895). Of. also

0. Lummer and F. Kurlbaum, Verhandl. d. deutsch. physikal. Ges. 17,

106 (1898).
7 Of. NoteS.
8 L. Boltzmann, Wiedem. Ann. 22, 291 (1884).

9/. Stefan, Wiener Ber. 79, 391 (1879).
10 The Stefan-Boltamann Law is deduced as follows : Let the energy

of black-body radiation at the temperature T, which is enclosed in a

space of volume V having a movable piston, be U = Vu, where u is

the "spatial" density of the radiant energy. The pressure, equal in

all directions, which the radiation exerts upon the piston and walls is,

according to electrodynamics,^? = ^u. If we supply to this system at

the temperature T (that is, isothermally) an amount of heat d'Q, then
its energy increases by dU, and the radiation does work pdV in push-
ing back the piston. Therefore, according to the first law of thermo-

dynamics, and owing to the two relations above :

d'Q = dU + pdV = udV + Vdu + -dV = -|
udV + Vdu.

3

According to the second law of thermodynamics, -Q must be a com-

plete differential. Hence the following relation holds :

3 **\_ 9 V . 4 d u\dT
'

4/1^ __M^ = L
3\TdT

"
T*jdu T

127
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i.e. Ji =
4^, which, integrated, gives u = aT*

where a is a constant. Now, as we can easily see, the total radiation
oo

-K" = 2 / K.vdv is distinguished from the density of radiation u only by

a constant factor (see M. Planck, Lectures in Kadiation (1906), 22),

hence the total radiation is proportional to the fourth power of the

absolute temperature and this is the Stefan-Boltzmann Law.
11 W. Wien, Sitzungsber. d. Akad. d. Wissensch. Berlin, 9 Feb. 1893,

p. 55
;
Wiedem. Ann. 52, 132 (1894). Cf. also Max Abraham, Theorie

der Elektrizitat II, 48 (1914); M. Planck, Vorlesungen iiber die

Theorie der Warmestrahlung (Leipzig 1906), pp. 68 etseq. ; W. Westphal,
Verhandl. d. deutsch. physikal. Ges. 1914, p. 93; H. A. Lorentz, Akad.
d. Wissensch. Amsterdam, 18 May 1901, p. 607.

12 Formula (4) of the text (Wien's Law of Displacement) may be

obtained by means of a simple dimensional calculation, as L. Hopf
recently showed in the " Naturwissenschaften "

(8, 109, 110 (1920)).
We assume that Kf depends only on v, T, and the velocity of light c.

The dimensions of Kv are obtained from the fact that, according to (1),

..
surface x time

From this it follows that

[K,] = M- 2
].

If we set

Kv = const. v
x ^ ' c

z

then, remembering that T has the dimensions of energy, we get

[mi-
2
]
= const. [*-* my-W - t~

*y f -
1 "*]

~ x ~ ^-= const. [m
y - fy+z -

t

Hence a = 2 ; # = 1 ;
z = - 2

which gives us, K = const. . -
2

. T.

This relation is not, however, as we shall see, generally valid. In fact,
oo

it would give no finite value for K = 2/Ki^. But, according to the

6

Stefan-Boltzmann Law (3), K = y T4
. Hence the constant of "Kv may

still depend on a dimensionless combination of the four variables

7, v,'T, c. If, therefore, we set const. = /(^2n?
c^y

w
)
then the argument

of the function / must have the dimension 0. If, further, we remember
that

r energy
surface x time

L
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it then follows that

|
= -

3o>; TJ
= 3o; = 2o>.

Hence const. = ~

Therefore - r

or, finally, K^ = ^

13 If we plot K v
=

-^
F (

*

)

as a function of v, keeping T constant, the

maximum of this curve if one is present lies at that point at which

= 0. This gives

where F1 is the differential coefficient of F with respect to the argument.

This equation, in which only ~ occurs as unknown, gives a definite value

for ~. In other words, for v = rmax, it follows that '-^ = const.

14 W. Wien, Wied. Ann. 58, 662 (1896).
15 O. Lummer and E. Pringsheim, Wied. Ann. 63, 395 (1897) ; Drude's

Ann. 3, 159 (1900) : Verh. d. deutsch. phys. Ges. 1, 23 and 215 (1899).

The total radiation emitted per second from 1 cm.2 in one direction is,

by formula (1)

S =

According to the Stefan-Boltzmann Law, S is proportional to T4
, there-

fore S = ffT*. (The constant of proportionality a is related to the

constant 7 occurring in (3) by the equation a = iry.) The absolute

measurement of S gave the following values for or, in chronological order :

<r = 5-45 ip-iaf ^
a
^ "I according to F. Kurlbaum [Wiedem. Ann.

Lcm. deg.
4J

65, 746 (1898); Verhandl. d. deutsch.

physikal. Ges. 14, 576, 792 (1912)].

= 5 458.10~ 12
> according to S. Valentiner [Ann. d. Phys.

31, 255 (1910) ; 39, 489 (1912)].

= 5-90 . 10
" 12

, according to W. Oerlach [Ann. d. Phys.
38, 1 (1912)].
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<r= 5-30. 10
~ 12

cm 2 de 41 according to & Bauer and M. Moulin

[Soc. Franc, de Phys. Nr. 301, 2-3

(1909)].

= 6*30. 10
~ 12

. according to Ch. Ftry [Bull. Soc. Franc.

Phys. 4 (1909)].

= 6-51. 10
~ 12 according to Ch. Fery and M. Drecq

[Journ. de Phys. (5) 1, 551 (1911)].

= 5*67 . 10
~ 12

> according to G. A. Shakespear [Proc. Roy.
Soc. (A) 86, 180 (1911)].

= 5*54. 10
~ 12

> according to W. H. Westphal [Verhandl.
d. deutsch. physikal. Ges. 14, 987 (1912)].

= 6-05. 10
~ 12 according to L. Puccianti [Cim. (6) 4 31

(1912)].
= 5-89. 10 ~ 12

> according to Keene [Proc. Roy. Soc. (A)

88, 49 (1913)].
= 5-57.10-12 according to W. H. Westphal [Verhandl,

d. deutsch. physikal. Ges. 15, 897 (1913)].

= 5*85. 10
~ 12 according to W. Gerlach [Phys. Zeitschr.

17, 150 (1916)].

As regards Wierfs Law of Displacement, the relation (5a) was tested

and found to be confirmed. From Fig. 1, in which E\ is plotted as a

function of A. for different values of A, we see clparly how the maximum
of the curve becomes displaced towards shorter wave-lengths as the

temperature rises.

For the constant on the right-hand side of relation (5a) the measure-

ments gave the following values :

const. = 0-294 [cm. deg.] according to 0. Lummer and E. Pringsheim

[Verhandl. d. deutsch. physikal. Ges. 1, 23

and 215 (1899)].
= 0-292 according to F. Paschen [Drude's Ann. 6, 657

(1901)].
= 0-2911 according to Coblentz [Bull. Bur. of Stand. 10,

1 (1914)].

160. Lummer and E. Pringsheim, Verhandl. d. deutsch. physikal.
Ges. 1, 215 (1899).

nF. Paschen, Berliner Ber. 1899, pp. 405, 959.

18 M. Planck, Absorption und Emission elektr. Wellen durch Resonanz.

Sitzungsber. d. Berl. Akad. d. Wiss. 21 March 1895, pp. 289-301 ; Wiedem.
Ann. 57, 1-14 (1896). t)ber elektr. Schwingungen, welche durch Re-

sonanz erregt und durch Strahlung gedampft werden. Sitzungsber. d.

Berl. Akad. d. Wiss. 20 Febr. 1896, pp. 151-170 ; Wiedem. Ann. 60, 577-599

(1897). tJber irreversible Strahlungsvorgange. (1. Mitteilung.) Sitzungs-
ber. d. Berl. Akad. d. Wiss., 4 Febr. 1897, pp. 57-68. (2. Mitteilung) ibid.,

8 July 1897, pp. 715-717. (3. Mitteilung) ibid. t
16 Dec. 1897, pp. 1122-

1145. (4 Mitteilung) ibid., 1 July 1898, pp. 449-476. (5. Mitteilung) ibid.,

18 May 1899, pp. 440-480. (Supplement.) ibid., 9 May 1901, pp. 544-555 ;
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Drudes Ann. 1, 69-122 (1900). (Supplement.) Drudes Ann. 6, 818-831

(1901). Entropie und Temperatur strahlender Warme. Drudes Ann. 1,

719-737 (1900).
19 In place of the mean value, with respect to time, of the energy of a

single oscillator, we may use the spatial mean value of the momentary
energy of a whole system consisting of very many oscillators.

20 In this second, more difficult part of the calculation, Planck takes his

stand upon the second law of thermodynamics, and seeks, from this view,
to determine a phase-quantity 8 of the oscillator, which possesses the

well-known property of the entropy, that it increases in all irreversible

processes. He arrived at the solution :

This function possessed, as Planck showed, the required property of en-

tropy, but it was not the only function with this property. And in fact

it appeared later, that in the deduction of the above expression, a readily

suggested but unjustified supposition had been made. The expression

given in the text, formula (8), for the mean energy U follows from S by
applying the second law in the form :

~T dU T

21 0. Lummer and E. Pringsheim, Verhandl. d. deutsch. physikal.
Ges. 1900, p. 163.

22 M. Planck, Verh. d. deutsch. phys. Ges. 1900, p. 237. It is of

historic interest to note that Planck had already, in a somewhat earlier

paper (Verh. d. deutsch. phys. Ges. 1900, p. 202), arrived at the true

law of radiation by a purely formal alteration of Wien's formula, which
was not further explained. Cf . also Ann. d. Phys. 4, 553 (1901) ; 4, 564

(1901) ; 6, 818 (1901) ; 9, 629 (1902).
23 Let N oscillators be present. Let the total energy to be divided

among them be UN = NU. The " state
" or phase of the oscillator-

system, the probability of which is to be calculated, is then defined by the

fact that N oscillators possess the energy UN. We divide UN into P
energy elements e, so that

UN = N . U = Pe.

The number of possible ways of distributing P balls among N boxes is,

however,

(N+P-1)\'

(N -
1) ! P !

'

This is therefore the probability of the state, which corresponds to the

distribution of P energy elements among N oscillators. P. Ehrenfest and

H. Kamerlingh-Onnes give a very simple deduction of this formula in

Ann. d. Phys. 46, 1021 (1915).

The rule mentioned in the text, which is due to Boltzmann, states
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that the entropy SN of the oscillator system is connected with the prob-

ability W by the fundamental relation

SN = k log W
where k is a constant.

In this theorem of Boltzmann the following law of the growth of en-

tropy (second law of thermodynamics) is contained : if a system passes
from an improbable condition into a more probable one, then by this

transition W, and therefore the entropy S, increases. If we here insert the
value of W, and, since N and P are very large numbers, use Stirling's

approximation formula

loge (N\)=N(logeN- 1)

then, if we set for P, N 2, we get by an easy calculation

and hence the entropy S of one oscillator becomes :

But according to the Second Law (see note 20)

d
\S_ _ 1

dU~ T'

If we carry out the differentiation on the left-hand side, and solve the re-

sulting relation between U, T, and c, with respect to U, we get the ex-

pression (9) of the text.

2* Of. the paper by Ehrenfest and Kamerlingh-Onnes cited in the

previous note.

25 This law is essentially identical with Boltzmann's H-Theorem. Cf .

L. Boltzmann, Vorlesungen iiber Gastheorie Bd. I, p. 38 (1896); Sit-

zungsber. d. Wiener Akad. d. Wiss. (II) 76, 373 (1877). Cf. also P.

Ehrenfest, Phys. Zeitschr. 15, 657 (1914).
26 H. Rubens and F. Kurlbaum, Sitzungsber. d. Berl. Akad. d. Wiss.

1900, p. 929 ; Ann. d. Phys. 4, 649 (1901).

ZIP. Paschen, Ann. d. Phys. 4, 277 (1901).
28 L. Holborn and 8. Valentiner, Ann. d. Phys. 22, 1 (1907) ; Coblentz,

Physical Keview, 31, 317 (1910) ; E. Baisch, Ann. d. Phys. 35, 543 (1911) ;

E. Warburg, G. Leithauser, E. Hupka and C. Miiller, Ann. d. Phys. 40,

609 (1913) ;
E. Warburg and C. MUller, Ann. d. Phys. 48, 410 (1915).

29 W. Nernst and Th. Wulf, Ber. d. deutsch. phys. Ges. 21, 294 (1919).

30 Lord Rayleigh, Phil. Mag. 49, 539 (1900).
31 The *

Stefan-Boltzmann constant of total radiation" or, introduced

in note 15, has therefore the value
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32 In order to determine the constants h and k which occur in the

radiation formula, we can, instead of using the equation : Xmax . T =
const., compare other relations with the measurement of the total

radiation. For example, we can proceed as follows : At a constant

temperature T we measure the ratio of the intensity of radiation for two
different wave-lengths A

a
and \2 (isothermal method). Now this ratio

is, according to (15)

where

From this relation, since everything excepting C is known, C, that is,

y. may be calculated. Another method is the following : we measure for
rC

a fixed wave-length A the ratio of the intensity of radiation at two
different temperatures T^ and T2 (isochromatic method). Then it follows

that

C

This is a relation from which C, that is, can again be calculated.
rC

With the help of these methods, the researches, for example, of

Warburg and his co-workers cited in note 28 have yielded values for

C = ~ which lie in close proximity to C = 1*430. This value was taken

by Nernst and Wulf (see note 29) for their critical investigation.
For the constant of Wien's Law of Displacement in the form \max . T

= 6 we would accordingly get from (16) :

6 "
433*

* '288

a value smaller, therefore, than that given by direct measurement (see

nofe 15). Whether Warburg's value, C = 1*430, or the measured values

of &(> 0'29) or both, are seriously affected by experimental error, or

whether after all as Nernst and Wulf maintain Planck's formula is

not right, must be left for the future to decide.

33714". Planck, Ann. d. Phys. 4, 553 (1901).
34 If we apply Boltzmann's relation S = k log W (quoted in note 15),

which connects the entropy S with the probability of state W, to one

gramme-molecule of an ideal gas, then by calculating the probability of

a certain state, i.e. a certain distribution of velocities among the

molecules, we arrive at the following value for the entropy of the gas

S = kN(% loge U + log 7) + const.
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(Of., for example, M. Planck, Lectures on the Theory of Radiation
(1906), 143.) Here N is the number of molecules in a gramme-
molecule (Avogadro's number), 7 the energy, V the volume of the gas.
Now, according to the Second Law of Thermodynamics,

must be a complete differential, where p and T denote pressure and
temperature of the gas. Hence the relation

\dv)u
must hold. This gives

If we compare this with the equation of state of an ideal gas in thermo-
75/77

dynamics, p = _, we get for the absolute gas constant JB the value

from which formula (19) of the text follows.
3Si". Planck, Ann. d. Phys. 4, 564-566 (1901).
86 Compare, for example, the table of the values of Avogadro's number

given in the report of J. Perrin at the Solvay Congress in Brussels

(1911). [A. Eucken, Die Theorie der Strahlung und der Quanten.
Abhandlungen der Bunsen-Gesellschaft Nr. 7, Wilh. Knapp, Halle 1914.]

37 B. A. Millikan, Phil. Mag. (6) 34, 13 (1917).
38 Ibid., from the values given by Millikan for the electronic charge

e = 4-774 x 10
" 10

(electrostatic units) and from the electrochemical

constant F = 969-4 . 2-999 . 1010 electrostatic units, there follows for

Avogadro's number the value N = 6-0617 . 1023.

39 Of., for example, W. Gibbs' Elements of Statistical Mechanics,

Chapter V.

WThe term "mean value" may be taken as referring to time or to

space. If we select a definite atom, and follow it a long time upon its

zig-zag path, and from the mean of the values which its kinetic energy
assumes in the course of time, we get the "time-mean." If, on the

other hand, we select a large number of identical atoms of the gas at a

particular instant and again form the mean of the values of the kinetic

energies which these atoms possess at the instant in question, we get
the "space-mean."

*1 If x is the elongation of the oscillator (electron) vibrating with the

natural frequency, then x = A sin (%wvt) t
where A is the amplitude and

t the time
;
the mean kinetic energy becomes
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The mean potential energy is :

Hence, as stated, L = V: i.e. the mean kinetic energy = the mean
potential energy.

42 J. H. Jeans, Phil. Mag. 10, 91 (1905).
43 H. A. Lorentz, Proc. Ron. Akad. v. Wet., Amsterdam 1903, p. 666.

The theory of electrons (Teubner, Leipzig 1909), Ch. II.

44.4. Einstein and L. Hop/, Ann. d. Phys. 33, 1106 (1910).

toA.D. Fokker, Ann. d. Phys. 43, 810 (1914).
46 M. Planck, Ber. d. Berl. Akad. d. Wiss., 8 July 1915, p. 512.

47 H. A. Lorentz. Die Theorie d. Strahlung u. d. Quanten ;
Abhand-

lungen der Deutschen Bunsen-Gesellschaft. Nr. 7. v. A. Eucken.

Halle, W. Knapp 1914 pp. 10 et seq.

48 By a suitable modification of classical statistics in the sense of the

quantum theory, we can obtain the expression (9) for the mean energy
of an oscillator in the following manner which is worthy of notice.

Let a number N of similar oscillators with the most varied values for

the energy be given. We require to find how great is the probability

w, that an oscillator possess a certain energy value U"; or, otherwise

expressed, how many of the N oscillators possess the energy U. In

order to answer this question, we find it best to take first of all the

standpoint of Gibbs' statistical mechanics, that is, of "classical"

statistics. In place of the special case in question, namely, that of the

linear oscillator, let us consider at once quite generally a system of /

degrees of freedom, and characterise it by / generalised co-ordinates

2i22 2^ and by the corresponding impulses or momenta 2hP^ Pf*

(Here, the impulse pi is thus defined: form the kinetic energy of

the system as a function of the generalised velocities qt =
-j

then

pi Sjr.j In particular, the linear oscillator (vibrating electron) will

be described by a co-ordinate q, namely, the elongation of the electron,

and the impulse p = m
-jL

In general, therefore, 2/ quantities are

necessary in order to define completely the momentary state of a

system. Hence we can represent this momentary state by a point
(" phase-point ") in the 2/-dimensional space in which ql

. . . p/ (of the
"
phase-space ") are co-ordinates.

We now consider a number N of similar systems of this kind,
which are in thermodynamic equilibrium with a very large reservoir

at the temperature T. Then the probability that the co-ordinates

and impulses lie in the small intervals q1 . . . q l + dqv etc., and

Pi ' - Pi + dpv etc., that is, that the "
phase-point

"
of the system lie

in the element dtl = dq-^dq^ . . . dqj, dp:dp2 . . . dpf of the phase-
space is, according to Gibbs,
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Here E is the energy of the system, and k is the constant defined in

(19). The integration in the denominator is to be taken over all

possible values of the 2/ quantities ql
. . . pf, or, as we may say, over

all possible
"
phases," or over the whole region of the phase-space

concerned.

Among the N systems there are then Nw, whose phase-points lie in

the element do. of the phase-space. This is therefore a " distribution
"

of the N systems over the phase-space. This distribution is called

Canonical ; it represents a generalisation of Maxwell's familiar law of

distribution of velocities which may be deduced from it by special-

ising it for the case of the gas atom, that is, by setting / = 3.

The sum of all probabilities is naturally 1. Indeed, it is at once

clear that
E

//*!kTdn

For the mean value of the energy E we get

Jn -^ra... / &&

If we apply this equation to the linear oscillator we get

3
kT
dqdp

r
dqdp

i.e. U = *L + 2wVmga
.

If we introduce the auxiliary variables and 77, defined by

1

r- , and hence dqdp
'9.<m. TTV

we get

and, therefore, it suggests itself to us to write

|=

where
<f>

is a parametric angle. If we interpret | and 77 as Cartesian co-

ordinates of a point in the plane, then *JU and <p are the polar co-ordinates
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of this point. The element of surface ddt) is written in polar co-ordinates,

as we know, thus

hence

dqdp =
TTV

Hence

00 2TT

_ ,?>

Ue kTdUd$

jj _ 17=0 <ft=0 _ ^.y
2n-

~~
oo

F

J
[7=0

<J>
=

in agreement with (24). This is the standpoint of classical statistics.

The quantum statistics of the oscillator may be immediately deduced
from this, if we elaborate the canonical law of distribution

=

/ _e
r
^dju

in a suitable manner

If we here again introduce dqdp = dUd<p, and integrate with respect

to
<J>,

we get

WCT = e krdU

"dU
t --
Je **<

as the probability that the energy of the oscillators lies between U and
U+dU.
Now the quantum theory demands that the energy U shall assume only

the discrete values Z7
, U"

lf
Z72 , . . . Un . The transition may best be

effected by laying down the condition : E shall only be able to assume the

values contained in the narrow intervals between U and U + a, Ul
and

Uj + a, and generally Un and Un + a. Then dU = a, and the integral in

the denominator changes into a sum. Thus it follows that

--?
kT

thus a is eliminated
; if we now proceed to the limit a = 0, w remains
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unaltered. Hence wn is the canonical distribution function generalised
for quantum conditions, and hence, among N oscillators, Nwn have an
energy of the value Un .

We now get for the mean energy

n ~^
2# kT

n

Now, according to the first form of the quantum theory,
Un = we = nhv (n = 0, 1, 2, 3 ... oo

).

Therefore

o

If we set kT, for convenience, = x, then

Further,

from which we get

in agreement with (9)

The canonical distribution may be still further generalised by the intro-

duction of certain "weight factors," which are intended to express the

fact that the individual quantum states of the system considered have,
a priori, different probabilities. This happens, for example, if each quantum
state may be realised in different ways, and if the number of these possi-

bilities of realisation is different for the different quantum states. Then,
the different states will have different "weights," and a "weight factor"

J_n
pn has to be included in the exper mental function e ~~*T so that the can-

onical distribution function assumes the form

Here G depends on the temperature ; pn > on the other hand, does not.
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49 A. Einstein, Ann. d. Phys. 17, 132 (1905) ; 20, 199 (1906) ; Verhandl.

d. deutsch. physikal. Ges. 11, 482 (1909) ;
Bericht Einstein auf dem

Solvay-Kongress in Brussels 1911 ; cf. A. Eucken, Die Theorie der

Strahlung und der Quanten ; Abhandl. d. deutsch. Bunsen-Gesellschaft,
Nr. 7 (Halle, W. Knapp 1914), pp. 330 et seq. Cf. also W. Wien,

Vorlesungen iiber neuere Probleme der theoretischen Physik (Teubner,

Leipzig and Berlin 1913), 4. Vorlesung. H. A. Lorentz, Les theories

statistiques en thermodynamique (Teubner, Leipzig and Berlin 1916),

42 et seq.

50 A. Einstein, Ann. d. Phys. 17, 132 (1905).
51 A. Einstein, Phys. Zeitschr. 10, 185 (1909).

52 This formula may be deduced as follows : Firstly, from e = E - E
the frequently used relation

follows. In order now to calculate the two quantities E* (mean of the

squares ,of the energy) and (E)"* (square of the mean energy), which
arc known to differ from each other in general, we do best to take the

standpoint of Gibbs' statistical mechanics (see note 48). According to

this, the probability that the co-ordinates and impulses lie in the small

intervals g x
. . . q1 + dqv etc., xj \ Pi + ^Pi> etc, that is, that the

"
phase-point

"
lies in the element dq^dq^ . . . dqjdp^p^ . . . dpj = dfl

of the "
phase-space

"
:

w

Then the moan of the energy follows in the usual way :

Likewise,

We then form

_ s . f E * / t E \2

dE

Je

!* -
(J7fl = pL
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Therefore,

jr.**.*

We also arrive at the same formula, if instead of the classical

canonical distribution function, we start from the quantum distribution

function

M kT

53 The mean energy of radiation of frequency v in the volume v is

' =vuvdv, where the monochromatic density of radiation is

If we eliminate T on the right-hand side by substituting for ekT its

lows that

^ uvvdv . hv +

if Planck's Law is taken as the basis. (Of., for example, M. Planck,
Lectures on the Theory of Radiation, Engl. Transl.)

According to formula (28) deduced in the previous note, it therefore

follows that

hv

3 *.&*<& fcA,^S torfeVvdi- kl
dT

value 1 +
h~

t
it follows that

C3UV

The second term on the right is required by the Undulatory Theory
for at each point of the volume v the most varied trains of waves of

radiation cross one another's paths with every possible amplitude and

phase. The interference of all these waves thus generates at the point
considered an intensity, which varies continually, and hence the energy
of the volume v also varies. If we calculate the mean of the square
of the energy, i.e. e

a
, we find precisely the second term of the above

formula. (Of., for example, H. A. Lorentz, Les the'ories statistiques en

thermodynamique (Teubner, Leipzig and Berlin), 1916. pp. 114 et seq.)

The first term is not, however, explained by the classical undulatory
theory. On the other hand, it becomes endowed with meaning if we

suppose that the radiant energy consists of a certain whole number
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(n) of finite energy complexes of the value hv. For then E = n hv,

and therefore E = n hv, where n is the mean about which the number
n varies. If 8 = n - n be the variation of the number n, then it

follows that f = E - E =
57ij^

where e
2

"

= S2 feV. But, according to

a well-known law of statistics, 52 = n. (Cf., for example, H. A. Lorentz,
loc. tit., 26 and 27.) Hence ? = ^frV = ~E hv. This is exactly the

first term in the above formula.
54A Einstein, Ann. d. Phys. 17, 144 (1905).
53 J. J. Thomson, Conduction of Electricity through Gases.

564. Einstein, Ann. d. Phys. 17, 147 (1905).
57 Of. R. Pohl and P. Pringsheim, Die lichtelektrischen Erschein-

ungen. Sammlung Vieweg Heft 1 (Braunschweig 1914).

58 A. Einstein, Ann. d. Phys. 17, 145 (1905).
59 R. A. Millikan, Phys. Zeitschr. 17, 217 (1916).
60 According to Pohl and Pringsheim, we have to distinguish between

the normal and the selective photo-effect : in the case of the normal
effect the number of electrons torn off (per calorie of the light-energy

absorbed) is independent of the orientation of the electrical vector of the

light-wave, and increases, starting from an upper limit of the wave-

length, in general uniformly as the wave-length decreases. In the case

of the selective effect, on the other hand, which only appears when the

electrical vector of the light-wave possesses a component vertical to the

metallic surface, the number of electrons torn off (per calorie of light-

energy absorbed) shows a decided maximum at a definite wave-length.
61 Ch. Barkla, Phil. Mag. 7, 543, 812

; 15, 218. Jahrb. d. Radioak-

tivitat u. Elektronik, 5, p. 239, 1908. Ch. Barkla and Sadler, Phil. Mag.
17, 739. Ch. Barkla, Jahrb. d. Radioaktivitat u. Elektronik, 1910, p.

12. M. de Broglie, 0. R. 25 May and 15 June 1914, p. 1785. Ch. Barkla,
Phil. Mag. 16, 550. E. Wagner. Ann. d. Phys. 46, 868 (1915); Sit-

zungsber. d. bayer. Akad. 1916, p. 33.

62 D. L. Webster, Proc. Americ. Acad. 2, 90(1916); Physic. Review, 7,

587 (1916).
63 E. Wagner, Ann. d. Phys. 46, 868 (1915).
64 Of., for example, E. Wagner, Phys. Zeitschr. 18, 443 (1917). The

value that Wagner calculates for h is : h = 6-62 . 10-27.

65 W. Duane and F. L. Hunt, Physic. Review, 6, 166 (1915).
664. W. Hull and M. Rice, Proc. Americ. Acad. 2, 265 (1916).
67 .E. Wagner, Phys. Zeitschr. 18, 440 et seq. (1917) ;

Ann. d. Phys. 57,

401 (1918).
68 F. Dessauer and E. Back, Ber. d. deutsch. physikal. Ges. 21, 168

(1919).
89 J. Franck and O. Hertz, Verhandl. d. deutsch. physikal. Ges. 16,

512 (1914).
70 The critical potential measured by Franck and Hertz amounted to

V 4 '9 volts = electrostatic units, and therefore the critical energy
300

of the electron is

v _ 4-774.10-io.4-9

300
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The wave-length A. of the mercury line emitted is

A = 25361 =2-536. 10 -5.

Hence we must get

v ,c . , eV\ 4-774. 10 -10. 4-9. 2-536. 10 -5eV= fc-., U, h =_ = - _____
= 6-59.10-27

and this is in good agreement with the results of other measurements.
71 Of., for example, J. Stark, Prinzipien der Atomdynamik II. (S.

Hirzel, Leipzig 1911), Chs. IV and V.
72 J. Stark, Ber. d. deutsch. phys. Ges. 10, 713 (1908) ; Phys. Zeitschr.

8, 913 (1907) ; 9, 767 (1908).

Canal-rays are positively charged particles of matter, which move in a

vacuum tube in the direction : anode to cathode
;
the latter is pierced

with holes through which the canal-rays pass into the space behind the

cathode. If we generate such canal-rays in a vacuum tube filled with

hydrogen, we find that the series lines of hydrogen are emitted. Now,
if we observe this emission spectroscopically "from the front," that is, so

that the canal-rays are moving towards the observer, we see, firstly, at

its usual place in the spectrum, the sharp series line (line of rest, "in-

tensity of rest ") ; secondly, we see displaced towards the violet, a

broadened strip (line of motion,
"
intensity of motion " or "

dynamic
intensity"). These lines represent the series line emitted by the

moving canal-ray particles, which is displaced towards the region of

higher frequencies on account of the Doppler effect. Since the canal-rays
do not possess a single uniform velocity, and since particles with all

possible velocities occur, the displaced strip is not sharp, but softened

and broadened. The "
intensity at rest

"
is therefore emitted when the

quickly moving canal particles strike "
resting

"
molecules, i.e. gas-

molecules which are moving comparatively slowly and irregularly, and
excite these to emit the series lines. The "

intensity of motion," on the

other hand, is excited by the unidirectionally moving canal particles

themselves, when they hit gas-molecules.

Now, it is very remarkable that the interval between the intensity of

rest and that of motion is not filled in, but that the emission of the in-

tensity of motion becomes observable only above a certain velocity.

Stark interpreted this fact in terms of the light-quantum hypothesis
thus : If fynv* is the kinetic energy of a canal-ray particle, and if the

fraction a%mv
2
(a > 1) is transformed into a light-quantum hv upon

collision with a gas-molecule, then we must have hv <T -wu2
; that is, the

spectral line of
frequency^

v can be generated only by canal-rays, the

velocity of which >/vfe.
V am

The proportionality between the critical velocity and Jv has been

fairly well borne out.

It should be remarked here that /. Stark has lately abandoned the

theory of light-quanta. (Of. J. Stark, Verh. d. deutsch. physik. Ges. 16,
304 (1904) ; 18, 42 (1916).)
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73 J. Stark, Phys. Zeitschr. 9, 85, 356 (1908). J. Stark and W.

Steubing, Phys. Zeitschr. 9, 481 (1908). J". Stark, Phys. Zeitschr. 9,

889 (1908).
In these papers J. Stark defends the view that the band-spectra are

emitted when a "valency electron" belonging to the atom or molecule

is pushed out of its normal position and then returns again to its initial

position, counterbalancing the work done in displacement. If the

energy of deformation (valency energy) E is changed into a light-
TTf

quantum, then we must have hv = E, i.e. v < . All lines of the

pi
band must therefore lie below the edge v . If the valency energy

E is changed by chemical processes, the band-spectrum must be dis-

placed accordingly.
It A Einstein, Ann. d. Phys. 17, 148 (1905).
78,7. Stark, Phys. Zeitschr. 9, 889 (1908) ;

Ann. d. Phys. 38, 467 (1912).

The fundamental law of photochemical decomposition enunciated by
Stark and Einstein states : If a molecule dissociates at all owing to the

absorption of radiation of frequency v, then it will absorb an amount of

energy hv when it dissociates. This energy, therefore, represents the

heat of reaction, which will be set free upon recombination of the

products of decomposition.
This law was later deduced by A. Einstein for the range of validity of

Wien's Law of Radiation without the assistance of the light-quantum

hypothesis, by purely thermodynamical methods. (Of. Ann. d. Phys.

37, 832 (1912), and 38, 881 (1912).)
76 .E. Warburg, Ber. d. Berl. Akad. d. Wiss. 1911, p. 746; 1913, p.

644
; 1914, p. 872 ; 1915, p. 230

; 1916, p. 314
; 1918, pp. 300, 1228. Of.

also "
Naturwissenschaften," 5, 489 (1917).

77 E. A. Lorentz, Phys. Zeitschr. 11, 1250 (1910).
78 M. Planck, Ber. d. deutsch. physikal. Ges. 13, 138 (1911); Ann. d.

Phys. 37, 642 (1912).
79 On account of the continuous (classical) absorption, all energy values

of the oscillator in an elementary region, say between nc and (n + l)e,

are equally probable. The mean energy in the nth elementary region

is, therefore,

jfU

From the canonical law of distribution extended in the sense of the

quantum theory, it then follows that

P = -2-
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00

2716-**

(of. note 48). If we further set e = fey it follows that

Tf
fev

.

hv
u = +

In place of relation (7) of the text we get here

K*-"

and this leads to Planck's Law of Radiation.

80 M. Planck, Sitzungsber. d. Kgl. Preuss. Akad. d. Wiss. 3 April,

1913, p. 350; ibid., 30 July 1914, p. 918; ibid., 8 July 1915, p. 512.

81 A. Einstein and O. Stern, Ann. d. Phys. 40, 551 (1913).
82 W. Nernst, Verhandl. d. deutsch. physikal. Ges. 18, 83 (1916).
83 F. Richarz, Wiedem. Ann. 52, 410 (1894).
84 Report by P. Langevin at the Solvay Congress in Brussels, 1911.

Of. A. Eucken, Die Theorie der Strahlung und der Quanten. Abhandl. d.

deutsch. Bunsen-Ges., Nr. 7 (W. Knapp, Halle 1914), pp. 318 et seq.

83A Einstein and W. J. de Haas, Verhandl. d. deutsch. physikal. Ges.

17, 152, 203, 4-20 (1915). A. Einstein ibid., 18, 173 (1916). W. J. de

Haas, ibid., 18, 423 (1916).
86 E. Beck, Ann. d. Phys. 60, 109 (1919).

87 Report by Planck at the Solvay Congress in Brussels, 1911. See

A. Eucken, Die Theorie der Strahlung und der Quanten. Abhandl. d.

deutsch. Bunsen-Ges., Nr. 7 (W. Knapp, Halle 1914), p. 77.

88 If q is the elongation of a linearly vibrating electron of mass m (os-

cillator) and v its period of oscillation, then the energy of this configur-

ation is

The first term represents the kinetic and the second the potential energy.

Now the impulse (the momentum) is p = w-^-. Therefore, we may write

i.e.

P~ = 1.
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The curves U= const., that is, those curves in the phase-plane, which

correspond to the states of constant energy of the oscillator, are therefore

ellipses with the semi-axes

For a definite value of U we get a completely definite ellipse. The
"
phase-point

"
of the oscillators would continually revolve in this ellipse,

if the electron, without emitting or absorbing, were to execute pure har-

monic oscillations : for then its energy would remain permanently constant.

If we allow U to vary continuously, i.e. if we give it other and again
other values in continuous succession, we get an unlimited manifold of

concentric ellipses.

The quantum theory, as formulated in (30) in the text, selects from this

infinite manifold a discrete set of ellipses, and distinguishes them as the
"
quantised

"
ellipses which correspond to the " characteristic states

"
of

the oscillator. To these belong the "quantum energy-values
" UQ ,

U
lt

l/2 ... Un.

Now the nth ellipse encloses an area nh. The area of the nth ellipse

is, however,

hence we must have
Un 7 TT= nh i.e. Un = nhv
v

that is, in the nth quantum state tlie oscillator possesses an amount of

energy we = nhv.

89 A. Sammerfeld, Phys. Zeitschr. 12, 1057 (1911). Report by A.

Sommerfeld at the Solvay Congress in Brussels, 1911. Cf. A. Eucken,
Die Theorie der Strahlung und der Quanten. Abhandl. d. deutsch.

Bunsen-Ges., Nr. 7 (W. Knapp, Halle 1914), p. 252.

90 Report by Sommerfeld at the Solvay Congress, 1911.

91 A. Sommerfeld and P. Debye, Ann. d. Phys. 41, 873 (1913).
92 Cf., for example, the recent summary by E. Schrodinger, Der

Energieinhalt der Festkorper im Lichte der neueren Forschung. Phys.
Zeitschr. 20, 420, 450, 474 (1919). A complete set of references accom-

panies this account.

93 One gramme-atom of a substance, the atomic weight of which is a,

is defined as the quantity a grammes of the substance. For example,
one gramme-atom of copper is equal to 63*57 grammes of copper, since

63-57 is the atomic weight of copper. Exactly analogous is the

definition of the gramme-molecule (also called "
mol"). One gramme-

molecule of oxygen is 32 grammes of oxygen, for the molecular weight
of oxygen (diatomic) is 32.

If c is the specific heat of a substance of atomic weight a, it signifies

that one gramme of the substance requires an amount of heat c to raise

its temperature by 1 C. Hence we must communicate to a gramme-atom
10
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of the substance, i.e. to a grammes of it, an amount of heat C = ca in

order to raise its temperature by 1 C. C is then called the atomic heat.

94 The equality of the mean potential and the mean kinetic energies is

true here as in the case of the linear Planck oscillator (vibrating electron),

of. note 41. This equality is, in general, always present when the forces

which act upon the atoms and restore them to their positions of rest

(zero pQsitions) are linear functions of the relative displacements of the

atoms, that is, when the force is "quasi-elastic," that is, proportional
to the displacement from the zero position. Of. in this connexion

L. Boltzmann, Wiener Ber. 63 (11), 731 (1871), and F. Richarz, Wied.

Ann. 67, 702 (1899).

95Dulong and Petit, Ann. de chim. et de phys. 10, 395 (1819).

96 The quantity usually obtained by measurement is not the atomic

heat at constant volume Cv , but the atomic heat at constant pressure Cp.

For this we get values which in general fluctuate about the value 6*4

cal./deg. The calculation of Cv from Cp is based on the thermo-

dynamically deduced formula

where a is the cubical coefficient of thermal expansion, K the (isothermal)

cubical compressibility, and V the atomic volume = atomic weight
.

density
97 E.g. we find

for silver at C. . ./ . . . Cp = 6'00

aluminium 58 ..... Cp = 5-82

copper
lead

iodine

zinc

17 C Cn = 5-79

17 0. C = 6-33

25 C Cp
= 6-64

17 C. . -. . , C = 6-03

98 F. H. Weber, Poggend. Ann. 147, 311 (1872); 154, 367, 553 (1875).
99 As a possible way out, the "agglomeration hypothesis," supported by

F. Richarz [Marburger Ber. 1904, p. 1], C. Benedicks [Ann. d. Phys. 42,

133 (1913)] and others, has been put forward. According to this, as the

temperature falls the number of degrees of freedom of the system
diminishes by

"
freezing-in," as it were, in that certain linkages become

completely rigid. According to this, however, the compressibility should

decrease greatly as the temperature falls, which, according to E. Gril-

neisen's measurements is not the case [Verh. d. deutsch. phys. Ges. 13,

491 (1911)]. Compare also in this connexion the report of E. Schro-

dinger quoted in note 92.

100 A. Einstein, Ann. d. Phys. 22, 180, 800 (1907).
101 Of. A. Einstein, Ann. d. Phys. 35, 683 ff. (1911), also the report by

Einstein at the Solvay Congress in Brussels, 1911 ; see A. Eucken, Die

Theorie der Strahlung und der Quanten. Abhandl. d. deutsch. Bunsen-Ges.,

Nr. 7 (W. Knapp, Halle 1914), pp. 330 et seq.

102 A. Einstein, Ann. d. Phys. 34, 170, 590 (1911) ; 35, 679 (1911).
103 The nature of the dependence of the frequency v on the three
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quantities A, p, x may, according to Einstein (loc. cit.) t
be obtained by a

simple dimensional calculation. If we assume that v depends only on the

mass m of the atoms, their distance apart d, and the compressibility K of

the body, then an equation of the following form must hold

v - C . mx
. dy . KZ.

C is here a numerical constant ; x, y and z are numbers which remain to

be determined.

The dimensions of the frequency [v] are [t
-
1] ; the dimensions of ni and

d are [TO] and [Z], and the dimensions of the compressibility K follow from
its definition :

__increase in volume_
increase in pressure x original volume

K has therefore the dimensions

f 1 1 _ [surface"] _
[.pressureJ

"
L force J lim

We thus get the following dimensional equation

Hence

03-

from which we get

*

We have therefore,

Let N be Avogadro's number, i.e. the number of atoms in the gramme-
atom. Then the atomic weight of the body is numerically equal to the

mass of the gramme-atom, i.e.

AmmN.
If we imagine the atoms arranged upon a cubical space-lattice with

sides d, then the density must satisfy the equation

m
p== d*

from this it follows that

and hence

- =

from which, it follows that
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Einstein determines the factor C by assuming simply that only the

twenty-six neighbouring atoms act upon the displaced atom.
104 .F. A. Lindemann, Phys. Zeitschr. H, 609 (1910). Lindemann's

formula may be shortly deduced thus : Let r = a sin (2-jrvt) be the elonga-
tion of an atom which is vibrating with the amplitude a and the frequency
v. The mean energy of this atom is

E - f
At the melting-point, according to Lindemann's conception, a is of the

same order as d (distance apart of atoms). On the other hand, the mean
energy of the atoms at high temperatures = 3kT, or, at the melting-point
3kT

M . (The melting-point, as a rule, is high.) From this it follows that

=
/
^ a

. _ const.
zTT-ma-

But we have (see note 103)

m=~- * -4

Hence

/ = const. T^ . J.~*l&i~"iwfy" = const. T,* . A~^ . pi.

1Q5E. Grttneisen, Ann. d. Phys. 39, 291 et seq. (1912).
106 E. Madelung, Nachr. d. kgl. Ges. d. Wiss. zu G6ttingen, mathem.-

physikal. Klasse 1909, p. 100, and 1910, p. 1.

107 W. Sutherland, Phii. Mag. (6), 20, 657 (1910).
108 If n and /c are the coefficients of refraction and extinction of a

substance respectively, then, according to Maxwell's Theory, its reflect-

ing power is

R = (
n ~ 1

)
2 + *2

(n + I)
2 + K8

'

If we require the point of maximum reflection, we have to form the

equation ^~ 0, which gives after reduction the following relation :

From this we see that the position of maximum reflection does not

coincide exactly with the position of maximum absorption |

~ = V

but that it lies the nearer to it, the less the coefficient of refraction

varies with the frequency. On the other hand, the point of maximum
absorption lies, according to the dispersion theory, in the immediate

neighbourhood of the natural frequency vr .

109 H. Rubens and E. F. Nichols, Wiedem. Ann. 60, 418 (1897). Also
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//. Rubens and H. Hollnagel, Ber. d. kgl. preuss. Akad. d. Wiss. 1910,

p. 45; H. Hollnagel, Dissert. Berlin 1910; H. Rubens, Ber. d. kgl.

preuss. Akad. d. Wiss. 1913, p. 513
; H. Rubens and H. v. Wartenberg,

ibid., 1914, p. 169.

As an example we give here the following small table in which A.

denotes the wave-length of the " residual
"

rays, as given by the above

investigators.
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the work done on the system from outside, then the increase of energy
U of the system is given by

The Second Law states : if d'Q is supplied reversibly at the temperature

T, then ^ is the complete differential of the entropy S, hence

Let us follow Helmholtz and introduce the " free energy
" F denned by

F = U- T-S.
Then it follows that

dF = dU - T.dS - S . dT = d'Q + d'A - T.dS - S.dT

i.e. dF = d'A - S . dT
for every reversible process.
H the process is isothermal (dT = 0) then it follows that dF = d'A

or, for a finite change of state, F^ - F
l
= A. If we set A' = - A, so

that A' is the work gained, we get

F
l
- F

2
= A'.

That is, the work gained in the isothermal reversible process which is,

as may be shown, the maximum obtainable is equal to the decrease of

free energy.

Further, it follows, since at constant volume V the work d'A = 0,

that

- s < *,- -"-*-*
Therefore, formulating these expressions for two states, we get

T[^w^lr (F*
-

*V)
-

<tfi
- UJ

or, finally, if we write for short Uj
- U2

= U'

an equation much used in physical chemistry.

Since, now, according to Nernst's heat theorem,

=
ir=o

(A'
-

U') vanishes for T = 0, being above the first order.

Hence ^W^ =

and hence also



NOTES AND REFERENCES 151

This is equation (89) of the text.

From
j|.

- S, it follows further that ^ A~ * = $2 - S
lt

or

Q _3^'S2
-

&1 - ^y
and hence Nernst's Theorem may be formulated thus

lim (82 -
Sj) =

T=o

that is, in the neighbourhood of the absolute zero all processes proceed
without change of entropy.

116 Cf., for example, M. Planck, Lectures on Thermodynamics. Planck

goes further than Nernst inasmuch as he postulates that not only the

difference of the entropies S2
- S

t
is zero at absolute zero (see previous

note) but also that the individual values themselves become zero. Hence,

according to Planck, at the absolute zero of temperature the entropy of

every chemically homogeneous body is equal to zero. From this the con-

clusion given in the text,

lim(^) =

may be deduced immediately. It follows from the relation (occurring
in the last note)

F - U = - TS

and from Planck's version of Nernst's Theorem, that F - U vanishes for

T 0, being of higher order than the first.

Hence

= or
r=o O'-L'

or, finally,

lim

117 For low temperatures, that is, for high values of x = -^ Einstein's
kJ.,

formula (34) takes the following form : Cv = 3Rx*e~
x

. The falh'ng-off at

low temperatures therefore follows an exponential law ;
more exactly, it

varies as

i const

118 W. Nernst and F. A. Lindemann, Sitzungsber. d. kgl. preuss. Akad.

d. Wiss. 1911, p. 494 ;
Zeitschr. f . Elektrochemie, 17, 817 (1911).

1194. Einstein, Ann. d. Phys. 35, 679 (1911).

120 For if we regard the atoms as mass-points, then each atom has three

degrees of freedom ;
the whole body has therefore 3N degrees of freedom.

As is proved in mechanics, however (cf. R. H. Weber and R.
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Repertorium der Physik Bd. I. pp. 175 et seq.), a mechanical system of

3N degrees of freedom has 3N natural frequencies, and the most general
small motion of each atom consists in a superposition of these 3N natural

frequencies.
121 P. Debye, Ann. d. Phys. 39, 789 (1912).
122 M. Born and Th. v. Kdrmdn, Phys. Zeitschr. 13, 297 (1912) ; 14,

15, 65 (1913). Of. also M. Born, Ann. d. Phys. 44, 605 (1914) ;
M. Born,

Dynamik der Kristallgitter (Teubner, Leipzig and Berlin 1915).
123 Of., for example, 12. Ortvay, tjber die Abzahlung der Eigenschwin-

gungen fester Korper. Ann. d. Phys. 42, 745 (1913).

Ortvay considers the natural frequencies of an elastic cube, each side

of which has the length L. There are found to be three groups of natural

frequencies. The first two groups are the transversal frequencies, the

third group is the group of the longitudinal frequencies. That the trans-

versal frequencies form two groups (moreover identical) is easily seen.

For in the case of a transversal vibration, which is propagated in, say, the

direction of the os-axis, two equal alternatives are probable, namely, that

the particles vibrate parallel to the y- or to the s-axis. In the case of the

longitudinal oscillations, however, there is naturally only one group ;
for

in the case of propagation along the -axis there is only one possibility,

namely, that the particles vibrate parallel to the a-axis. The frequencies
of the first two groups are characterised by the values

2L

the third group by

Here e, and c, are the velocities of propagation of transversal and longitu-
t v

dinal waves in the body, whereas a, b, c are arbitrary positive whole

numbers. If therefore we give a, b, c all possible values in all possible com-

binations, we get all the possible transversal and longitudinal natural fre-

quencies, which together form the elastic spectrum of the cube. If now

we inquire how many transversal natural frequencies of the first group

fall below v, this means nothing else than inquiring how many trios of

values (a, b, c) fulfil the condition

+ b' +~c* .~ -- <"

~
Imagine a, b, c as co-ordinates of a point in space. Then all possible trios

(a, b, c) of values are represented by the total "lattice-points" of the

positive space octant, and the above question is answered by counting how

many lattice-points are at a distance less than
v
from the origin (0, 0,0).
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All these lattice-points lie within the positive octant of the sphere whose

radius is ~. Since now one lattice-point is assigned to every volume of

magnitude 1 namely, every elementary cube the required number of

lattice-points, provided that it is sufficiently large, is equal to the volume

of the positive spherical octant of radius
~

", i.e. is equal to

__

8 3\ ct ~~3 ~c*~'

If V = Z>8 is the volume of the given cubical body, then the number
of the transverse natural frequencies below v belonging to the first

group is

The number belonging to the second group is the same, that is

p 4ir -TT v3zz
= z

i
=

-Q
V

-$o c^

Finally, the number of the longitudinal frequencies corresponding to

these is

7 47r V^Zs ~~3
V
c*

We thus get for the total of all natural frequencies below v

The total of natural frequencies in the interval v . . . v + dv follows by
differentiation with respect to v

and this is just formula (43) of the text.

124 In formula (43) for Z(v}dv let us replace, according to formula (44)

of the text, the factor
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If we now set ^ K and ^^ Km ,
we get

fcT KJ.

x

Cv = ??
*--*-

123 A table showing how the Debye function Cv depends on xm is given

by Nernst (Die theoretischen und experimentellen Grundlagen des neuen
Warmesatzes. W. Knapp, Halle 1918, p. 201). In it the simple
Einstein function [formula (34) of the text] is also tabulated.

126 If T is great, then xm is small compared with 1
;
then we may

replace in the integral of (45) ex by 1 in the numerator, and ex - I by x
in the denominator. It then follows that

/^r
yj-C

-5fJ-^--<-X=3it -

127 If Tis small, then xm is large, and we may replace the upper
limit of the integral as a first approximation by oo . The integral will

thus become a numerical constant independent of xm ,
and it follows that

QR 9R ' const. *

vin
Cv = p . const. = . T3 = const. Ts

.

128 From the theory of elasticity it follows that

and

where is the compressibility, p the density, and <r the ratio

transverse contraction

longitudinal dilatation'

If we insert these values in (44) and note further that V = -, formula

(46) of the text follows.

129 As the number of frequencies below v is proportional to v', we get,

for example, the following picture : if we divide the interval from to

vm into 10 parts, and if only one natural frequency lies in the first

division, then in the following divisions there will be 7, 19, 37, 61, 91,

127, 169, 217, 271 natural frequencies ;
i.e. the natural frequencies crowd

continually closer together.
ISO P. Debye, Ann. d. Phys. 39, 789 (1912) ;

W. Nernst and F. A.

Lindemann, Sitzungsber. d. Berl. Akad. d. Wiss. 1912, p. 1160.

181 A. Eucken and F. Schwers, Verhandl. d. deutsch. physikal. Ges.

15, 578 (1913) ; W. Nernst and F. Schwers, Sitzungsber. d. Berl. Akad. d.

Wiss. 1914, p. 355 ;
P. GrUnther, Ann. d. Phys. 51, 828 (1916) ;

W. H.
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Keesom and Kamerlingh-Onnes, Amsterdam Proc. 17, 894 (1915). Of.

also the graphic tables by E. SchrVdinger, Phys. Zeitschr. 20, 4=98 (1919).
182 If we introduce into equation (44) of the text,

a " mean acoustic velocity
"

c, by the obvious definition

3 1 2

then for the order of magnitude of the smallest wave-length Am in , there

follows

If now the atoms in the cubical space-lattice, for example, are arranged
so as to be a distance a apart, then Nas = V, and hence

Vff
133 For references see note 122.

134 Cf . Born, Dynainik der Kristallgitter, 19.

135 F. Haber, Verh. d. deutsch. phys. Ges. 13, 1117 (1911).
For if the atomic residue (mass m) and the electron (mass p) are held

to their zero positions by forces of the same order of magnitude, and if

they vibrate independently of one another (a simplifying supposition) the

equation of vibration of the atom is mx + a?x =0, the solution of which is

x = Asinl ~7=-M. The infra-red frequency of the atom is, therefore,

a
vr=n j> and correspondingly, the ultra-violet frequency of the electron

is Vv = -
j=. Hence Haber's Law follows : vr :vv =\/u.: *Jm. The

2T \ffJL

general space-lattice theory of M. Born confirms this law and shows that

in the lattice, too, atomic residues and electrons appear upon an equal

footing, and are acted upon by forces of the same order of magnitude.
138 Cf. M. Born and Thos. v. Kdrmdn, Phys. Zeitschr. 13, 297 (1912).

We may treat this problem, which is of course one-dimensional, most

simply thus : If we imagine an endless chain of points of equal mass m
disposed along the cc-axis at a distance apart a, and if we suppose for

simplicity that each mass-point only acts upon its two neighbours, then

the equation of motion of the nth point is

mXn = a(xn+i
- Xn )

-
a(Xn

-
Xn-l) = o(zn+1 + Xn -l ~ 203n).

Here a is a constant, and n can assume all values between + GO and - oo .

As a solution let us set for trial
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This represents a process which is periodic in space and time, that is, a

wave which is propagated along the chain in the direction of increasing
x. The frequency of this wave is v, its length is A. Then, if after p
points the same displacement is to recur, pa must = A, and hence it

actually follows that

xn+p = A sin Vnrvi -
(n + p)

~
= 4 sin

In order to find the relation between v and A (that is, the " law of dis-

persion"), let us insert the above formula in the equation of motion.

Then it follows that

= ui
j

= ui sin rf -
(n + I

= - 2aA sin [ton*
-
n?"| .

(l
- cos *2\

L ^ J ^ A /

That is,

= IJfTsin (^]= Vm sin(\ if we set
*J

7T > TO A A 7T \ TO
V

137 Of. Born, Dynamik der Kristallgitter, p. 51.

From the special case treated in the previous note, we also recognise
the truth of law (49) ; for if A is much greater than a, the dispersion law

ltd a
takes the form v = vm~ =

, where q = vmira, represents the velocity of
A A

propagation of the wave, and this is independent of the wave-length.
138 The statement that a given direction lies in the element of solid

angle dti is intended to convey the following sense : about an arbitrary

origin O describe a " unit sphere," i.e. a sphere of radius 1. Now let a cone

of infinitely small angle be constructed of rays passing through O, the point
of the cone lying at O. Let this cone cut out of the surface of the unit

sphere a small element of surface dn. Now let the parallel ray to the

"given direction" be drawn through O (here, for example, the wave-

normals). If this ray lies in the cone just constructed, then we say that

the "
given direction

"
lies in the elementary solid angle dCl.

139 The capacity for heat of a certain finite body is that amount of heat

which must be imparted to the whole body in order that its temperature
be raised by 1 C. If M is the mass of the body, and c its specific heat,

then its capacity for heat is
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From the mean energy content E of the whole body, T follows by
differentiation with respect to the temperature

dE

140 This somewhat complicated calculation runs as follows : we start

from the formula

**'

3 47T ,

and first replace A by
qin Thus we get

_
*'" '<&}

and the integral with respect to A is transformed into one with respect to

vi. The limits of this integral are

[corresponding to A. = Aw(w)]
\rn\n)

and
Ki = (corresponding to A = co

).

If we further set

we get

In place of the quantities g(w) and Am(w) which still depend essenti-

ally on the direction, let certain mean valu&s be introduced. Firstly, let

us set

L (4=1,2,3...).

In this way three mean acoustic velocities glt ga , g3 , independent of the

direction, are defined. We further introduce in place of \m(n) a mean
value independent of the direction, in the following manner. In deduc-

ing formula (55) we saw that

V dfi - =

J J A4
A<)
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If we carry out the integration with respect to \, we get

v, ~.
:N

3N
V'

o

47T

Now, in a way analogous to that used for the acoustic velocities q, we
set

Hence

Into Zt(n)= ^.y
we introduce in place of gi(w) and xm(w) the mean

values gi and \m , which are independent of direction ; thereby xi(n) also

becomes independent of direction, and is transformed into

It follows that

i=l

3 a

=
3E.^?jL.

I

i= l
l

141 At the lowest temperatures

il
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Now the value of the integrals = T
4
Tir

4
. If we further set R = Nk, and

for x^ the value (59), we get

IG-rrWVT'

If we hitroduce_in place of the three acoustic velocities qv g2 ffs
a

acoustic velocity q by means of the definition

it follows that

y
Finally for we can write VA (mean atomic volume) and thus get the

formula

c -

142 H. Thirring, Phys. Zeitsohr. 14, 867 (1913) ; 15, 127, 180 (1914).
143 M. Born and Th. v. Kdrmdn, Phys. Zeitschr. 14, 15 (1913).
144 Of. note 132.

145 Of. note 128.

146A Eucken, Verhandl. d. deutsch. physikal. Ges. 15, 571 (1913). Of.

also A. Eucken, Die Theorie der Strahlung und der Quanten (W. Knapp,
Halle 1914), pp. 386 et seq., Appendix.

147 Of. A. Eucken, Die Theorie der Strahlung und der Quanten (W.
Knapp, Halle 1914), p. 387.

148 To calculate the mean acoustic velocity q, the relation given hi note

141 is used

3 47T

3 ^
i=l

We have therefore to obtain from the "
dispersion equation

"
of the

crystal in question (for long waves) the values of the three acoustic

velocities q^n), q2(n), qs(n) as functions of the wave-direction ; q is then
obtained from the above formula by integration over all directions and

finally summation.
149 L. Hopf and G. Lechner, Verhandl. d. deutsch. physikal. Ges. 16,

648 (1914).
180 The following short table is taken from the paper of Hvpf and

Lechner cited in note 149 :
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Crystal
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Similarly,

fdF\ o

(Vr) v

=

and hence

160 P. Debye, loc. cit., note 158.

161 E. Griineisen, Ann. d. Phys. 26, 211 (1908) ; 33, 65 (1910) ; 39, 285

(1912).
162 P. Debye, loc. cit., note 158.

163A Eucken, Ann. d. Phys. 34, 185 (1911) ;
Verhandl. d. deutsch.

physikal. Ges. 13, 829 (1911).
164 P. Drude, Ann. d. Phys. 1, 566 (1900).
165 E. Riecke, Wiedem. Ann. 66, 353, 545 (1898).
166 Cf., for example, H. A. Lorentz, The Theory of Electrons (Teubner,

Leipzig, and Berlin 1909).
167 Let g be the average velocity of the electrons along the free path I.

Then the electron takes the time r to pass over this free path.

During this time it is exposed to the electrical force E of the external

field. Its increase in velocity due to this force is at the commencement

of the free path = 0, at the end of it = -=. where e and m are them
charge and mass of the electron respectively. In the mean, therefore,

the small additional velocity generated by the field is A0 = -J~- = --
Affl AmCL

The electrons stream unidirectionally with this velocity against the field.

If N is the number of electrons per unit volume, then through unit

area of the surface there streams per second a quantity of electricity

NA<Z =
^
-

. This is, however, the "current density" I which is

known to be connected with the field E by the relation I = <rEt. The

expression (67) for the conductivity a- therefore follows.

A more thorough treatment is due to H. A. Lorentz (see note 166).
He does not give the electrons a single velocity q, but introduces Max-
wells supposition, known from the kinetic theory of gases, that all

possible velocities occur, which are distributed among the electrons

according to a fixed law, the so-called Maxwell Law of Distribution.

He thus obtained a formula of the following form :

2^

3* mq

which therefore only differs by a numerical factor from Drude's formula

(67) ;
here q = v<?, the root mean square of the velocity.

168 Let a temperature gradient along the x axis be present in the piece

of metal. Let a section be taken (see Fig. 12) at right angles to the

11
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x axis

;
we shall calculate the energy transport across this section per

second. If we suppose that of all electrons wander in each of the three

directions in space, then move in the positive x direction
;
and further,

^_ the number of electrons which

pass through the unit of sur-

face in one second, will be all

those which are contained in

the small shaded cylinder with

the base surface area 1 and the

height q (velocity), namely,
FIG. 12. iN#. We also make the sup-

position, usual in the theory of

gases (although not strictly true), that the energy, which each electron

transports through the cross-section, has the value corresponding to that
which it had at the point where it last collided.

Now the energy in the section itself at temperature T is equal to fkT,

and hence the energy = %kT + ^1- ^ . I at the points which lie at a
dx

distance I in front of and behind the section. Here, on the average, the

electrons coming from the right and the left meet with their last collisions.

The energy transport per second through unit of cross-section is

therefore

ikT- f ft I iN2
- *kT+ fk

Hence y = \J$lqk is the coefficient of thermal conductivity.
Here also H. A. Lorentz has deepened the theory by taking the distri-

bution of velocity into account, and finds that

where again q = v g
8

169 Q. Wiedemann and B. Franz, Poggend. Ann. 89, 497 (1853) ; L.

Lorenz, Wiedem. Ann. 13, 422, 582 (1881). Cf. also Q. Kirchhoff and

O. Hansemann, Wiedem. Ann. 13, 417 (1881); W. Jaeger and H.

Diesselhorst, Abh. d. phys. techn. Beichsanstalt 3, 269 (1900).

The following short table is taken from the paper of the two investi-

gators last named ;
it gives the ratio 2- for various metals at a temperature

of 18 C.
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Metal
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Since the atomic distance is of the order of magnitude 2 . 10~8

, the

electrons would therefore only suffer collision after passing many thou-

sands of atoms. This is unacceptable, since the "radius of molecular

action
"
of the atoms itself has dimensions which fall within the order of

magnitude of about 10~8
.

171 H. A. Lorentz, loc. cit. t
note 43.

172 J. J. Thomson, The Corpuscular Theory of Matter.

173 H. Kammerlingh-Onnes, Leiden Communicat. 1913, 133.

174 C. H. Lees, Phil. Trans. (A) 208, 381-443 (1908).
175 W. Meissner, Ann. d. Phys. 47, 1001 (1915).
176 W. Nernst, Berl. Ber. 1911, p. 310.

177 H. Kammerlingh-Onnes, Leiden Communicat. 119, 22 (1911).
178 F. A. Lindemann, Berl. Ber. 1911, p. 316.

179 W. Wien, Berl. Ber. 1913, p. 184. Cf. also Vorlesungen iiber

neuere Probleme der theoretischen Physik. (Teubner, Leipzig and Berlin

1913.) 3. Vorlesung.
180 If s is the radius of atomic action, N the number of stationary atoms

per unit of volume, then, according to a well-known result of the kinetic

theory of gases, the mean free paths of the electrons

Let us set

s s + a

where s is the radius of atomic action for T = 0, that is, when the atoms
are at rest

; let a be the amplitude of atomic vibration. Now the mean

energy E of this vibration (frequency /),
on the one hand, = ~(27rv)

2a2

(M is the atomic mass) ;
on the other hand, it is, according to Planck-

Einstein,

Bhv

From this it follows that

*-!
7TA/

*
A,

Now, according to formula (67) of the text, the resistance

VOTU/TI
(of. note 170), and for N, accordingm

to J. J. Thomson's supposition, aJT, and for =- the value
I

2as + s)
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it follows that

2irN JSkmnr_

an expression, which contains only a and s as unknown constants. If

we set

then W assumes the form given in the formula (70).
181 F. A. Lindemann, Phil. Mag. 29, 127 (1915).
181a F. Haber, Berl. Akad. Ber. 1919, pp. 506 and 990.

182 J. Stark, Jahrb. d. Radioakt. u. Blektronik 9, 188 (1912).
183 G. Borelius, Ann. d. Phys. 57, 278 (1918).
184 K. HerzfeU, Ann. d. Phys. 41, 27 (1913).

law'
185 If we set %mq* = E, therefore q = A/ , the first of the two for-

mulse (72) follows from (67). If we further take into account that in Drude's

Theory E = f&T, that is, that k = - -
,
then from (68) the second for-

O CuJ.

mula (72) follows.

186 F. v. Hauer, Ann. d. Phys. 51, 189 (1916).
187 W. Nernst, Berl. Ber. 1911, p. 65.

1884. Eucken, Berl. Ber. 1912, p. 141.

189 K. Scheel and W. Heuse, Ann. d. Phys. 40, 473 (1913). Of. also

L. Eolborn, K. Scheel and F. Henning, Warmetabellen der physikal.-
techn. Beichsanstalt (Vieweg 1919).

1904. Einstein and O. Stern, Ann. d. Phys. 40, 551 (1913).
191 The quantum formulae (76) and (77) properly correspond to the

Planck oscillator, that is, to a system of one degree of freedom, while

here, in the case of rotation, we have to do with two degrees of freedom.

But the energy of the Planck oscillator is composed of two equal parts, a

kinetic and a potential part, while in the case of rotation only kinetic

energy comes into question. This is often expressed thus : the Planck

oscillator possesses one potential and one kinetic degree of freedom, while

the rotating molecule possesses two kinetic degrees of freedom.

192 P. Ehrenfest, Verhandl. d. deutsch. physikal. Ges. 15, 451 (1913).

193 According to note 48, the quantum canonical distribution function is

kT
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and the mean energy is

n
E =~

n

If we here set all pn's = 1, and if for En we substitute the value E^\
from (80), there follows for the mean rotational energy of a molecule

oo

2^-ttV

and for the heat of rotation of hydrogen we get the expression

194 The turning impulse (moment of momentum) of a system, the

mass-points of which possess the mass vm t the velocities Vi, and the dis-

tances n from a fixed point (say the origin of co-ordinates), is a vector of

the value

In the present case, the system consists only of the two atoms (mass M) ,

which rotate around a circle of radius r with the constant velocity
v = r 2irv.

Hence here

(U| = p = 2.Mr2
. 27Tj/ = J". 2-irv,

where J = 2Mr2 is the moment of inertia.

195 The impulse (or momentum) pi corresponding to a generalised co-

-3L
ordinate qi is, according to note 48, defined by the relation pi= -x. '

dqi
where qi = -^-,

and L is the kinetic energy of the system. Now here

the angle of rotation
<f>

is chosen as a generalised co-ordinate. But the
kinetic energy of a body rotating about a fixed axis is known to be
= J (moment of inertia) x (angular velocity)

2
, hence

L =
2

Hence
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196 F. Reiche, Ann. d. Phys. 58, 657 (1919).
197 The best curve was obtained by assigning the "

weight
" 2n to the

nth quantum state of rotation. The rotationless state (n = 0) thus
receives the weight zero, i.e. it does not exist. This amounts to the

same thing as the introduction of a zero-point rotation.

198 E. Holm, Ann. d. Phys. 42, 1311 (1913).
199 J. v. Weyssenhoff, Ann. d. Phys. 51, 285 (1916).
200 M. Planck, Ber. d. deutach. physikal. Ges. 17, 407 (1915).
201 8. Rotszayn, Ann. d. Phys. 57, 81 (1918).
202 The curve is not drawn by Planck, but is discussed in the author's

paper cited in note 196.

203 See likewise the author's paper quoted in note 196.

204 P. S. Epstein, Ber. d. deutsch. physikal. Ges. 18, 398 (1916). Of.

also Phys. Zeitschr. 20, 289 (1919).
205 N. Bohr, Phil. Mag. 1913, p. 857.

206 During
"
regular precession

" the top turns uniformly about its

axis of symmetry (axis of its figure), while at the same time this axis

describes a cone of circular section about an axis fixed in space.
207 A compilation of the moments of inertia of the hydrogen molecule

used by the various investigators is as follows :

JM041.

Einstein-Stern . . . , .1-47
Ehrenfest . . * . 0'69

T2-214)
Reiche . . . . .-{ 2-293 f different curves.

1 2 -095 J

, Holm . . . , . . . 1-36

Weyssenhoff . * . . . 0-34

Rotszayn . . . -^ . .2-12
Epstein (Bohr's model) .

'

. . 2-82

208 N. Bjerrum, Nernst Festschrift 1912, p. 90. Bjerrum did not,

by the way, start from formula (79), but calculated with the values

nh
vn

=a
o~Tr since, following a proposal of H. A. Lorentz, he set the rota-

tional energy E^ equal to nhvn ,
in contrast to Ehrenfest's formulation

(78), which rests on a sounder basis.

2095. P. Langley, Annals of the Astrophysical Obseivatory of the

Smithsonian Institution, Vol. I, p. 127, Plate XX (1900).

210 p. Paschen, Wiedem. Ann. 51, 1
; 52, 209 ; 53, 335 (1894).

211 H. Rubens, Berl. Ber. 1913, p. 513.

212 H. Rubens and E. Aschkinass, Wiedem. Ann. 64, 584 (1898).

213 if. Rubens and G. Hettner, Berl. Ber. 1916, p. 167. See also

G. Hettner, Ann. d. Phys. 55, 476 (1918).

214 W. Burmeister, Ber. d. deutsch. physikal. Ges. 15, 589 (1913).

213 Eva v. Bahr, Ber. d. deutsch. physikal. Ges. 15, 710, 731, 1150

(1913).
216 Of. Lord Rayleigh, Phil. Mag. 34, 410 (1892). Let an HC1 mole-

cule, for example, be considered, which consists of a positively charged



168 THE QUANTUM THEORY
hydrogen atom H+ and a negatively chlorine atom Cl~ (see Fig. 13). Let

its centre of gravity be S, and let a be the distance of the H+ atom from
S. Let the line joining the two atoms be the axis of x'

t and let this axis

turn in the positive direction about S at the rate of vr revolutions per
second with respect to the fixed x-y-system. If, now, the two atoms
vibrate relatively to one another with the frequency / and the amplitude
A

,
then the x' co-ordinate of the H+ atoms may be represented thus

x' = a + A sin (2Trv t).

If we project this vibration upon the fixed co-ordinate system, it follows

that

fx = x' cos (1irvrt)
= a cos (2Tri/rt) + A sin (27r>> )

cos (2irvrt)

\y = y' sin (2irvrt)
= a sin (Zirvrt} + A sin (Sir^t) sin (2irvrt)

FIG. 13.

for which we may also write

e
I x = a cos (2irvrt) +

|
I y = a sin (2wrt) -

|- - sin 27r(i/
- vr)t

cos 27r('
- vr)t.

From the point of view of the system at rest we have thus three

oscillations :

(a) the left-circular oscillation

x = a cos (27T

y = a sin (2ir

(b) the left-circular oscillation

with

with the frequency v + vr
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(c) the right-circular oscillation

169

.with the frequency > - vr .

217 E. S. Imes, Astroph. Journ. 50, 251 (1919).
218 A. Eucken, Ber. d. deutsch. phys. Ges. 15, 1159 (1913). Eucken has

here, on account of the asymmetrical form of the hydrogen molecule,

assumed two different moments of inertia

</!
= 0-96 . 10- 40

,
and 72 =2-21 . 1Q- 40

and hence obtained two different series of numbers giving the revolutions

Vr per second, cf . the table given there. See also the table in Rubens and

Hettner, loc. cit., note 213.

219 M. Planck, Ann. d. Phys. 52, 491 ; 53, 241 (1917).
220 0. Sackur, Ann. d. Phys. 36, 958 (1911) ; 40, 67 (1913).
221 H. Tetrode, Phys. Zeitschr. 14, 212 (1913) ; Ann. d. Phys. 38, 434

(1912).
222 W. H. Keesom, Phys. Zeitschr. 15, 695 (1914).

2234. Sommerfeld, Vortrage iiber die kinetische Theorie der Materie

und der Elektrizitat. Wolfskehl-Kongress in Gottingen 1913. (Teubner,

Leipzig and Berlin 1914), p. 125.

224 P. Scherrer, Gottinger Nachr. 8 July, 1916.

228 M. Planck, Berl. Ber. 1916, p. 653.

226 W. Nernst, Die theoretischen und experimentellen Grundlagen des

neuen Warmesatzes. (W. Knapp, Halle 1918), pp. 154 et seq.

227 0. Sackur, Ber. d. deutsch. chem. Ges. 47, 1318 (1914).

228 0. Stern, Phys. Zeitschr. 14, 629 (1913) ;
Zeitschr. f. Elektrochemie

25, 66 (1919).
229 For what follows cf. the paper by 0. Stern quoted in the last note.

Further, W. Nernst, Die theoretischen und experimentellen Grundlagen
des neuen Warmesatzes. (W. Knapp, Halle 1918), Ch. XIII.

230 As regards this and the following chapter, the reader is referred for

more exact details to the article of P. S. Epstein in the Planck number

of " Naturwissenschaften "
(1918, p. 230).

231 As the simplest Thomson atom, we are to imagine a sphere of radius

a
t filled with the unit charge e of posi-

tive electrification, of space-density p, in

the middle of which an electron with

the charge - e rests. This structure is

externally neutral. If we draw the

electron out from the centre to a distance

r (see Fig. 14) the external (shaded)
hollow sphere exerts no force on the

electron, according to the well-known

laws of electrostatics. The inner solid

sphere of radius r, on the other hand,
acts on the electron just as if its total

charge were concentrated at the centre.

The force which draws the electron back into its position of rest is

Fia. 14.
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therefore,

that is, it is proportional to the distance of the electron from its position
of equilibrium.

232 Of. also P. Drude, Lehrbuch der Optik. 2. Aufl., Chs. V and VII

(Hirzel 1906). There is an English edition of this work.
233 Of. W. Voigt, Magneto- und Elektro-optik (Teubner 1908).
234 M. Planck, Ber. d. Berl. Akad. d. Wiss. 1902, p. 470 ; 1903, p. 480 ;

1904, p. 740 ; 1905, p. 382.

235 H. A. Lorentz, The Theory of Electrons, Chs. Ill, IV (Teubner 1909).
236 The electron oscillates, when bound quasi-elastically, according to

the equation of motion ra ? = -
fx, if we restrict ourselves to linear os-

cillations. Here m is the mass of the electron, x is its distance from the

position of rest, and / is a factor of proportionality. The solution of this

differential equation is represented by the pure harmonic motion

x = A cos (nt + 5)

where the frequency is

n = ^-
The frequency n is therefore, as we see, independent of the amplitude and
therefore of the energy of vibration.

237 The frequencies v of those spectral lines of luminous hydrogen,
which are included under the name " TSalmer series," may be represented
with great accuracy by the following formula given by Balmer.

* _ JL\ where n = 3, 4, 5, 6 . . . oo .

22 n2
/

N is here a constant, the so-called Rydberg number. If we set for the

current number n the values 3, 4, 5 ... we get in succession the fre-

quencies of the red line of hydrogen (Ha), the green line (Ho), and the

blue line (Hy)
and so forth.

238 /. Stark, Ann. d. Phys. 43, 965 (1914) ;
J. Stark and G. Wendt, ibid.,

43, 983 (1914) ; J. Stark and H. Kirschbaum, ibid., 43, 991 ; 43, 1017

(1914) ; J. Stark, ibid., 48, 193, 210 (1915) ;
J. Stark, O. Hardtke and G.

Liebert, ibid., 56, 569 (1918) ; J. Stark, ibid., 56, 577 (1918) ; G. Liebert,

ibid., 56, 589, 610 (1918) ; J. Stark and O. Hardtke, ibid.. 58, 712 (1919) ;

J. Stark, ibid., 58, 723 (1919).
239 Cf. H. A. Lorentz, The Theory of Electrons (Teubner, Leipzig and

Berlin 1909), Ch. HI.
240 H. Geiger and Marsden, Phil. Mag. April, 1913.

241 E. Rutherford, Phil. Mag. 21, 669 (1911).

242 According to C. G. Darwin [Phil. Mag. 27, 506 (1914)], the radius

of the nucleus, taken as a sphere, is in the case of gold at the most
= 3 . 10-12 cms., in the case of hydrogen at the most = 2 . 10-13 cms.
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243 A. van den Broek, Phys. Zeitschr. 14, 32 (1913).
244 Cf. note 247.

243 N. Bohr, Phil. Mag. 26, 1, 476, 857 (1913).
246 A. Einstein, Phys. Zeitschr. 18, 121 (1917).
247 The quite elementary calculation is as follows : let an electron of

charge e and mass m rotate around a nucleus of charge E = ez in a

circular orbit : then z is the atomic number (for hydrogen, in particular,
z = 1). If a is the radius of the circle, v the velocity, and the angular

velocity (frequency of rotation) of the electron in the circular orbit, then

the condition for equilibrium between the attraction of the nucleus and

the centrifugal force is

e = mau? or ma3
&>
2 = eE e*z.

aj

According to Bohr's second hypothesis the moment of momentum

p(=mva=ma^w) is a multiple of
,
hence

ma2
o> = n (n = 1, 2, 3 . . .)

From these two equations for a and we get for the discrete radii of the

permissible quantum orbits

and the corresponding frequencies of rotation

_8
*"""

The energy (kinetic + potential) is

pr=^ +
(-f)

therefore the discrete quantum values of the energy are

...wn

If, in this expression, we set

we recognise, that W is a function of w, and hence of v = . The energy
2tTT

of the electron in the Rutherford model therefore depends, as stated in

the text, on its frequency of rotation v.

If the electron passes from the nth to the sth quantum path, then, ac-

cording to Bohr's third hypothesis, a homogeneous spectral line is emitted

of frequency
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where

248 Of. note 237.

249 It is of historical interest to note that, before Bohr, A. E. Haas in

1910 (Sitzungsber. d. Wiener Akad. 10 March, 1910) succeeded in repre-

senting Rydberg's number in terms of the universal constants e, h, m ;

his result differed from that of Bohr only by a factor 8. He deduced his

result as follows. Starting from J. J. Thomson's atomic model, which
was generally accepted at that time, he calculated the maximum oscilla-

tion-frequency (no. of revolutions) rmax of the electron in the simplest
atom (hydrogen atom) for the case when this atom, provided with one

energy-quantum, was circling just on the surface of the positive sphere.
He obtained

This maximum frequency was next identified by Haas with the series

limit (w = oo
) in Balmer's formula

Then it follows that

which is a value 8 times greater than -ZVBohr . Haas used this relation to

calculate from the three quantities, the Rydberg number N, Planck's

constant h, and the ratio -1, all of which he assumed known, the chargem
e of the electron. In consequence of the factor 8 he obtained the value

e = 3-18 . 10
~ 10

, a value that is too small according to our present know-

ledge, but which agreed well with the measurements of J. J. Thomson and
H. A. Wilson, which were available at that time.

280 Th. Lyman, Phil Mag. 29, 284 (1915).
281 F. Paschen, Ann. d. Phys. 27, 565 (1908).
282A Fowler, Month. Not. Roy. Astron. Soc. 73, Dec. 1912.

283 F. Paschen, Ann. d. Phys. 27, 565 (1908).
284 E. C. Pickering, Astroph. Journ. 4, 369 (1896) ; 5, 92 (1897).

2SS.E7. J. Evans, Nature, 93, 241 (1914).
286 W. Kossel, Ann. d. Phys. 49, 229 (1916) ;

Die Naturwissenschaften

7, 339, 360 (1919).
237 L. Vegard, Verhandl. d. deutsch. physikal. Ges. 19, 344 (1917).

2884. Sommerfeld, Atombau und Spektrallinien. (An English edition

translated from the 3rd German edition (1922) is being prepared by
Messrs. Methuen & Co., Ltd.)

289 R. Ladenburg, Die Naturwissenschaften 8, 5 (1920).

260 A. Sommerfeld, Ann. d. Phys. 51, 1 (1916).
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261 Expressed in terms of polar co-ordinates the kinetic energy L as-

sumes the well-known form :

L = (* + rV).
m

In it, m denotes the mass of the electron, the dots represent differentia-

tion with respect to the time. The impulses pr and p^ are then defined as

follows (see note 48) :

262 Only when each impulse pi depends solely on the corresponding

fy (or when it is a constant), and when, in addition, the limits of the

phase-integral are independent of the g/s, does the phase-integral work

out to a constant. This is by no means the case for any arbitrary choice

of the co-ordinate-system.
263 P. S. Epstein, Ann. d. Phys. 50, 489

; 51, 168 (1916).
264 K. Schwarzschild, Sitzungsber. d. fieri. Akad. d. Wiss. 4. Map

1916.

265 A. Einstein, Verhandl. d. deutsch. physikal. Ges. 19, 82 (1917).
266 M. Planck, Verhandl. d. deutsch. physikal. Ges. 17, 407, 438 (1915) ;

Ann. d. Phys. 50, 385 (1916).
267 The semi-major axis of the ellipse, which is characterised by the

values n and n', here has the value

The ratio of the axis is

I>_ n
a
~
n + n'*

We see that n' = corresponds to the case of Bohr's circular orbits.

268 The energy of the electron moving in the Kepler ellipse (n, n') here

has the value

w 27rVs2ra _ _ Nhz*
nn' =

W(n + n'Y
~

(n + n')
2

'

The series formula (102) of the text then follows from Bohr's Law of

Frequency

r _ W,m' - W*

269 If account is taken of the influence of relativity, the series formula

for the spectra of the hydrogen type become to a first approximation
V = VQ + j/j

where
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In these expressions the symbols N and a have the following meaning :

N = 27r
'

2g4w
a = ^f ; a2 is of the order 5-3 .10-5

he

m is the mass of the electron at vanishingly small velocities.

Hence whereas the first term i/ gives the old formula, which was
obtained by neglecting the influence of relativity, the small additional

term vl represents the influence of relativity. As we observe, vl
does not

only depend on the quantum sums s + s' and n + n', but also on the

individual values s, s', n, n'. This member, j/1}
is thus responsible for the

fine-structure.

270 If we apply the formula of the preceding note to Hat we have to set

z = 1, s + s' = 2, n + n' = 3. We then get

[1

s'
n'~\

* * 4

2< 34 I'
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and Sommerfeld (see Chapter VI, 9). Hence 5 components of the

fine-structure remain
;
their position is exhibited in Fig. 15.

As we see, the 5 components arrange themselves into two main groups,

containing 3 and 2 members, respectively. The "
missing

"
line IIa is

dotted in. The distance AVH between Ia and IIa , Ib and lib, Ic and IIC is

called the "theoretical hydrogen doublet."

According to the above formula the frequency-number of the line

la (3, 0->2, 0) is

The frequency-number of the line IIa (3, >1, 1) is

Thus

A>/H
= vlla

~ VIa
= :

T7-
= 1<095 ' 101

corresponding to A\H = CH57A.
The hydrogen-doublet actually observed is measured from about the

middle of Ja and Ib to the middle of lib and IIC , owing to the absence of

IIa. This leads to the value 0'8A\H ,
that is, to 0-126A.

According to a principle of correspondence enunciated by Bohr (see

Chapter VI, 9), as a result of which the azimuthal quantum number can

only vary by + 1, the components Ib and lie are also absent.

271 F. Paschen, Ann. d. Phys. 50, 901 (1916).
272 From formula (97) of the text we get for the two Rydberg constants

for hydrogen and helium :

Moreover, according to note 269, we get the third formula giving the

value of the constant for the fine-structure :

From the first two relations, by using Afne = 4-Mia, we get

e

WH
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and hence

_L = _!_ -^H-j^ne
m c MHC

*

JVne - NH
'

The two Rydberg numbers NH and Nne have been measured by Paschen

with great accuracy :

NH = (109677-691 0'06) . c

Nne = (109722-144 0'04) . c.

Moreover, - = F is the electrochemical equivalent (Faraday's num-
.MH . c

ber), that is, the charge which, in electrolysis, accompanies one gramme-

atom (i.e. N = ~ atoms). This number has the value
MH

F = 9649-4 electromagnetic units.

ft]

deduced, we get

If we insert the three values of NH, NHQ and ,^
e

in the relation above
MH.C

= 1-7686 . 107 electromagnetic units,m c

a value which agrees very well with those values of this quantity which

were obtained by direct methods (deflection of the cathode- and ]8-rays in

the electric and magnetic field). Let us now write

or, using the value of JJl given above,
MH

3

4

The right-hand side of this equation is known. If we combine with it

the value for -^- just found, and also the valuem c

7-290. 10-3
he

which follows from Paschen's measurements of the fine-structure in the

case of helium, we have three equations in three unknowns e t
m

,
h.

From them we get
e = (4-766 0-088) . 1Q- 10

h = (6-526 + 0-200). 10
-27

.

According to Sommerfeld it is more advantageous to use Millikan's value

for e. We then get

fe = (4-774 0-004). 10 - 10

^ =
(6-545 0-009). 10- 27

U = (7-295 + 0-005) . 10-.
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D. Kgl. Danske Vidensk. Seisk. Skrifter, Naturvidensk. og Mathem. Afd.

8, Eaekke IV, 1. Kopenhagen 1918.

282 The number of revolutions of the electron per second in the sth

quantum circle of Bohr is, in the case of hydrogen, according to note 247 :

On the other hand, it follows from formula (93) of the text, if we take s

considerably greater than 1 (high quantum numbers), and n = s + 1

(transition between neighbouring circles), that

_ 2irVw (3 + I)
2 - &2

" ~
h* w2s2

. S. Epstein, Ann. d. Phys. 58, 553 (1919).
284 H. A. Kramers, Intensities of Spectral Lines. D. Kgl. Danske

Vidensk. Selsk. Skrifter, Naturvidensk. og Mathem. Afd. 8, Kaekke III,
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ing to note 48

N being the total number of atoms. 4 31 is a factor of proportionality.
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The introduction of external monochromatic radiation of frequency v

and intensity K,, firstly brings about positive absorption, that is, transi-

tions 1-^2. The number of these in the time dt is, according to

Einstein, N1
BIZ'KV ,

in which B12 is a factor of proportionality, A
T
j

is the

number of atoms in the state 1, and hence

Secondly, the external radiation also effects transitions 2 > 1 (nega-
tive absorption). The number of these that occur in the time dt

= AT2J381Kin where Bzl
is a factor of proportionality. When the energy

exchange is in equilibrium the number of transitions 2 -> 1 must be

equal to the number of transitions 1 -
2, hence

i.e.

kT -

When the temperature increases indefinitely, Kf must also increase to

infinitely great values ; from this it follows that

Finally, if we set j^ = A for shortness, we get the relation given in the

text:

K = A
*fe-*i

e kT _ i
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