
Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2013-03

ANALYZING NAVAL STRATEGY FOR

COUNTER-PIRACY OPERATIONS, USING THE

MASSIVE MULTIPLAYER ONLINE WAR GAME

LEVERAGING THE INTERNET (MMOWGLI) AND

DISCRETE EVENT SIMULATION (DES)

Hutchins, Chad R.

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/32838

Downloaded from NPS Archive: Calhoun

NAVAL

POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

This thesis was performed at the MOVES Institute

Approved for public release; distribution is unlimited

ANALYZING NAVAL STRATEGY FOR COUNTER-
PIRACY OPERATIONS, USING THE MASSIVE

MULTIPLAYER ONLINE WAR GAME LEVERAGING
THE INTERNET (MMOWGLI) AND DISCRETE EVENT

SIMULATION (DES)

by

Chad R. Hutchins
March 2013

Thesis Advisor: Donald Brutzman
Thesis Co–Advisor: Arnold Buss
Second Reader Terry Norbraten

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704–0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202–4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704–0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
March 2013

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE
ANALYZING NAVAL STRATEGY FOR COUNTER-PIRACY OPERATIONS,
USING THE MASSIVE MULTIPLAYER ONLINE WAR GAME LEVERAGING
THE INTERNET (MMOWGLI) AND DISCRETE EVENT SIMULATION (DES)

5. FUNDING NUMBERS

6. AUTHOR Chad R. Hutchins

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943–5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government. IRB Protocol number ____N/A____.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE
A

13. ABSTRACT
Combating piracy is an age-old mission for international navies, as piracy has troubled ocean-going vessels for
centuries. Somali piracy, like all piracy uprisings in the past, is a land-based problem stemming from a dysfunctional
government that cannot enforce the laws of the land. This lack of law enforcement is what provides pirates a safe
harbor to operate, which allows the problem to trickle into international waters and become a maritime problem.
However, in the case of Somali piracy, leaders from the U.S. State Department and the U.S. Navy have said there is
too much water in the Indian Ocean for the coalition navies to effectively patrol.

This thesis first demonstrates how the MMOWGLI platform can be used for crowd-sourced brainstorming of
strategic options for counter-piracy, yielding valuable action plans that can be modeled, simulated, and analyzed to
make strategic decisions. Three highly rated Action Plans from the 2012 Piracy MMOWGLI game were then
modeled and simulated using Discrete Event Simulation (DES). Simulation analysis suggests that the amount of
ocean is not a factor if coalition navies aggressively patrol the Somali coast, either directly off shore from active
pirate camps or by the use of a naval quarantine.

Strategy development for counter-piracy, like any other wicked strategic problem, is usually conducted by
senior naval leaders in the upper echelons of specific commands. The MMOWGLI game-play from Piracy
MMOWGLI and other MMOWGLI games suggests the U.S. Navy needs to consider utilizing a broader range of
officers, enlisted personnel and civilians for brainstorming strategic options. There are an unprecedented number of
enlisted sailors with degrees and junior officers educated in joint professional military education. It is time the
military taps into this knowledge base for help in planning and implementing strategy.

14. SUBJECT TERMS Crowd-sourcing, Discrete Event Simulation (DES), MMOWGLI, Somali
Piracy, Simkit, Viskit, Java, KML, X3D, X3D-Edit, OpenMap, Wicked Problems

15. NUMBER OF
PAGES

225

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU

NSN 7540–01–280–5500 Standard Form 298 (Rev. 2–89)
 Prescribed by ANSI Std. 239–18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

ANALYZING NAVAL STRATEGY FOR COUNTER-PIRACY OPERATIONS,
USING THE MASSIVE MULTIPLAYER ONLINE WAR GAME LEVERAGING
THE INTERNET (MMOWGLI) AND DISCRETE EVENT SIMULATION (DES)

Chad R. Hutchins
Lieutenant, United States Navy

B.S. The Citadel, 2007

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN
MODELING, VIRTUAL ENVIRONMENTS, AND SIMULATION (MOVES)

from the

NAVAL POSTGRADUATE SCHOOL
March 2013

Author: Chad R. Hutchins

Approved by: Donald Brutzman

Thesis Advisor

Arnold Buss
Thesis Co–Advisor

Terry Norbraten
Second Reader

Christian Darken
Chair, MOVES Academic Committee

Peter J. Denning
Chair, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Combating piracy is an age-old mission for international navies, as piracy has troubled

ocean-going vessels for centuries. Somali piracy, like all piracy uprisings in the past, is a

land-based problem stemming from a dysfunctional government that cannot enforce the

laws of the land. This lack of law enforcement is what provides pirates a safe harbor to

operate, which allows the problem to trickle into international waters and become a

maritime problem. However, in the case of Somali piracy, leaders from the U.S. State

Department and the U.S. Navy have said there is too much water in the Indian Ocean for

the coalition navies to effectively patrol.

This thesis first demonstrates how the MMOWGLI platform can be used for

crowd-sourced brainstorming of strategic options for counter-piracy, yielding valuable

action plans that can be modeled, simulated, and analyzed to make strategic decisions.

Three highly rated Action Plans from the 2012 Piracy MMOWGLI game were then

modeled and simulated using Discrete Event Simulation (DES). Simulation analysis

suggests that the amount of ocean is not a factor if coalition navies aggressively patrol the

Somali coast, either directly off shore from active pirate camps or by the use of a naval

quarantine.

Strategy development for counter-piracy, like any other wicked strategic problem,

is usually conducted by senior naval leaders in the upper echelons of specific commands.

The MMOWGLI game-play from Piracy MMOWGLI and other MMOWGLI games

suggests the U.S. Navy needs to consider utilizing a broader range of officers, enlisted

personnel and civilians for brainstorming strategic options. There are an unprecedented

number of enlisted sailors with degrees and junior officers educated in joint professional

military education. It is time the military taps into this knowledge base for help in

planning and implementing strategy.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. PROBLEM STATEMENT ...1
B. OVERVIEW ...2
C. MINDSET AND APPROACH OF CURRENT COUNTER–PIRACY

EFFORTS ...3
D. MOTIVATION ..4

1. Personal Experience...4
E. RESEARCH QUESTIONS AND OBJECTIVES ...6
F. SCOPE OF THESIS ..6
G. THESIS ORGANIZATION ..7

II. BACKGROUND AND RELATED WORK ..9
A. INTRODUCTION..9
B. DISCRETE EVENT SIMULATION (DES) ..9

1. Methodology ...9
2. Simkit ..12
3. Viskit ...15

C. VISUALIZATION ...18
1. X3D–Edit ..18
2. Keyhole Markup Language (KML) ...19
3. OpenMapTM, OpenStreetMap and OpenSeaMap20
4. JAVA Swing Graphical User Interface (GUI)21

D. PREVIOUS RESEARCH USING DES/SIMKIT MODELING21
1. Viskit Modeling of ANTI–TERRORISM/FORCE

PROTECTION (AT/FP) ...22
2. Simkit and GIS visualization ..22

E. MODELING AND SIMULATING MARITIME PIRACY22
1. Agent Technology Center’s AgentC Project23
2. Piracy Attack Risk Surface (PARS) Model24
3. Piracy Asymmetric Naval Operations Patterns Modeling for

Education and Analysis (PANOPEA) Project by Simulation
Team ..26

4. Naval Postgraduate School (NPS) Research on Somali Piracy27
F. SUMMARY ..29

III. CROWD-SOURCING WITH MASSIVE MULTIPLAYER ONLINE WAR
GAME LEVERAGING THE INTERNET (MMOWGLI)31
A. INTRODUCTION..31
B. WHAT IS MMOWGLI? ...31
C. TECHNICAL OVERVIEW ..32
D. MMOWGLI GAME HISTORY ...33

1. Piracy MMOWGLI 2011–Open to Public33

 viii

2. Piracy MMOWGLI 2012–Maritime Experts and Stakeholders
Only ...34

3. Energy MMOWGLI ..35
4. EDGE Virtual Training Program (EVTP) MMOWGLI36
5. Business Innovation Initiative (BII) MMOWGLI36
6. Electromagnetic Maneuver (EM2) MMOWGLI37

E. MMOWGLI PORTAL ..37
1. Piracy Portal ...38

F. SUMMARY ..39

IV. DETAILED PROBLEM DESCRIPTION ...41
A. INTRODUCTION..41
B. PIRACY PROBLEMS AND CHALLENGES ..41
C. MODELING PIRACY AND COUNTER–PIRACY TACTICS43

1. Data Limitations...43
2. MMOWGLI Action Plans ...44

D. SUMMARY ..45

V. SIMULATION DESIGN AND MODELING ..47
A. INTRODUCTION..47
B. SIMULATION DESIGN ...47
C. SIMKIT ENTITIES ...48

1. Pirate Mover Manager ..48
2. Navy Ship Mover Manager ...49
3. Merchant Ship Mover Manager ...50
4. Adjudicator ...51

D. SIMKIT PROCESSES ..52
1. Pirate Departure Processes ...52
2. Pirate Camps ..52
3. Merchant Ship Departure Processes ..52
4. Merchant Ship Port of Origin ...53

E. SIMKIT SCENARIO ASSEMBLIES ..53
1. Defense Scenario One: Transit Lane Patrols54
2. Defense Scenario Two: Naval Quarantine54
3. Defense Scenario Three: Pirate Camp Operations56

F. JAVA SUPPLEMENTAL CLASSES ..57
G. DETAILED DESCRIPTION OF VISUALIZATION

IMPLEMENATION ..58
1. X3D-Edit and KML ...58
2. Open-source Geographical Information Systems (GIS)62
3. Java Swing ..63

H. SUMMARY ..64

VI. SIMULATION ANALYSIS ..65
A. INTRODUCTION..65
B. SIMULATION ANALYSIS ..65
C. SUMMARY ..68

 ix

VII. CONCLUSION AND RECOMMENDATIONS ...69
A. RECOMMENDATIONS FOR COUNTER-PIRACY STRATEGY69
B. RECOMMENDATIONS FOR FUTURE WORK70
C. FINAL THOUGHTS AND CONSIDERATIONS71

APPENDIX A. PIRATE MOVER MANAGER JAVA CODE ...73

APPENDIX B. NAVY MOVER MANAGER JAVA CODE ...89

APPENDIX C. MERCHANT MOVER MANAGER JAVA CODE.................................97

APPENDIX D. BAYLA PIRATE DEPARTURE PROCESS JAVA CODE.107

APPENDIX E. BAYLA PIRATE CAMP JAVA CODE. ...111

APPENDIX F. SUEZ TO OMAN MERCHANT DEPARTURE JAVA CODE115

APPENDIX G. SUEZ TO OMAN ORIGIN PORT JAVA CODE119

APPENDIX H. MMOWGLI ACTION PLAN 16: TRANSIT LANE PATROLS BY
INTERNATIONAL NAVIES ...123

APPENDIX I. MMOWGLI ACTION PLAN 6: NAVAL QUARANTINE OF
SOUTHEASTERN SOMALIA COAST CAN PREVENT SUCCESSFUL
PIRATE CAPTURE AND RANSOM OF HOSTAGE VICTIMS AND
MERCHANT SHIPS. ..125

APPENDIX J. MMOWGLI ACTION PLAN 9: PIRATE CAMP OPERATIONS133
ACTION PLAN 9 ...133

APPENDIX K. PIRATE CAMP OPERATIONS SIMKIT ASSEMBLY137

APPENDIX L. PLATFORM CLASS JAVA CODE ..175

APPENDIX M. PLATFORM TYPE CLASS JAVA CODE ...177

APPENDIX N. NAVY STATE JAVA CODE ...179

APPENDIX O. PIRATE STATE JAVA CODE ...181

APPENDIX P. MERCHANT STATE JAVA CODE ...183

APPENDIX Q. OPENMAPTM SIMULATION LAYER JAVA CODE185

APPENDIX R. JAVA SWING SANDBOX FRAME IMPLEMENTATION CODE
SNIPPET ...193

APPENDIX S. JAVA SWING WAYPOINT BUILDER JAVA CODE195

APPENDIX T. MOUSE LISTENER JAVA CODE ...197

LIST OF REFERENCES ..199

INITIAL DISTRIBUTION LIST ...203

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF FIGURES

Figure 1. The logic for the Next Event Algorithm for Discrete Event Simulation
(DES) (From Buss, 2011). ...10

Figure 2. An Example Event Graph of an Arrival Process showing how entities
arrive in a system (From Discrete Event Simulation Modeling by Dr.
Arnold Buss). ...11

Figure 3. A Depiction of the SimEvenListener Pattern for a DES system (From
Discrete Event Simulation Modeling by Dr. Arnold Buss).12

Figure 4. A simple GUI featuring a Property Change Frame displaying Detection
and Undetection events. ...13

Figure 5. A graphical depiction of a Simkit Cookie cutter sensor model. From (Buss
& Sanchez, 2005). Moving sensors are also possible.14

Figure 6. Arrival Process event graph using Viskit. ..15
Figure 7. Viskit XML output of an ArrivalProcess. Viskit displays the XML in two

views, a tree graph and standard XML format. ...16
Figure 8. Viskit Java source code of an ArrivalProcess autogenerated from XML.17
Figure 9. A screen snapshot of X3D-Edit with Xj3D browser displaying Hello

World scene (From X3D-Edit Home Page). ..19
Figure 10. Java Swing functionality of Simkit depicting pirates in the Gulf of Aden

and Navy ships patrolling the IRTC, using a Google Earth image as
background. ..21

Figure 11. AgentC Google Earth visualization of risk modeling. (From Agent
Technology Center’s AgentC website, March 15, 2013)24

Figure 12. Visual display of the Piracy Performance Surface model on
11February2012 (From ONI Piracy Analysis and Warning Weekly
(PAWW) report from 02 – 08 February 2012.) ...25

Figure 13. Oceans Beyond Piracy’s Independent Assessment (From Oceans Beyond
Piracy website, February 15, 2013). ..34

Figure 14. The MMOWGLI Portal Home Page is the home for all current and past
MMOWGLI games. (From MMOWGLI Portal, February 4, 2013).38

Figure 15. The MMOWGLI Piracy Portal Welcome Page is the start point for
accessing Piracy MMOWGLI. (From MMOWGLI Portal, February 4,
2013). ...39

Figure 16. Excerpt from example Action Plan #3 outlines a plan for enforcing the
fishing zones around Somalia. (From Piracy MMOWGLI 2012 Action
Plan #3). ...45

Figure 17. PirateMoverManager Viskit Event Graph shows the modeled behavior of
a Somali pirate. ..49

Figure 18. NavyMoverManager Viskit Event Graph shows the behavior modeled for
a navy vessel conducting counter-piracy operations.50

Figure 19. MerchantMoverManager Viskit Event Graph shows the modeled behavior
of a merchant vessel transiting from its port of orgin to a its destination.51

 xii

Figure 20. Visual depiction of a Pirate Departure Process and Pirate Camp
SimEventListener Pattern ..52

Figure 21. Merchant Departure Process and Merchant Origin Port SimEventListener
Pattern ..53

Figure 22. Illustration of Transit Lane Patrol (From Piracy MMOWGLI 2012 Action
Plan Report, February 10, 2012). ...54

Figure 23. Illustration of a 200NM Naval Quarantine off the Southern coast of
Somalia(From Piracy MMOWGLI 2012 Action Plan Report, February 10,
2012). ...55

Figure 24. An illustration of Pirate Camp Operations modeled for this thesis.57
Figure 25. X3D-Edit with PiratePath.kml and the KML Palette59
Figure 26. Pirate Path History of single pirate viewed in Google Earth60
Figure 27. Pirate Successful Attack History for one simulation replication viewed in

Google Earth ..61
Figure 28. OpenMapTM GUI with Simulation Layer Implemented62
Figure 29. Histogram comparing the results of the Naval Effectiveness MOE of each

defense scenario. ..67
Figure 30. Histogram comparing the results of the Pirate Effectiveness MOE for each

defense scenario. ..67

 xiii

LIST OF TABLES

Table 1. Game statistics for the Piracy MMOWGLI 2011 game that was open to
the public. Retrieved from MMOWGLI Game for Crowd –Sourcing
Problem (PPT) Solutions by Don Brutzman ..33

Table 2. Game statistics for the all the MMOWGLI games run in 2012. Retrieved
from MMOWGLI Game for Crowd –Sourcing Problem Solutions (PPT)
by Don Brutzman ...36

Table 3. Game statistics for the all the MMOWGLI games run in 2013, including
totals for all games in 2012 and 2013. Retrieved from MMOWGLI Game
for Crowd –Sourcing Problem Solutions (PPT) by Don Brutzman37

Table 4. Comparison of the Naval Effectiveness MOE simulation results among all
three defense scenarios ..66

Table 5. Comparison of the Pirate Effectiveness MOE simulation results among all
three defense scenarios ..66

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

LIST OF ACRONYMS AND ABBREVIATIONS

3D Three Dimensional

AMISOM African Union Mission in Somalia

API Application Programming Interface

APS African Partnership Station

ATC Agent Technology Center

BII Business Innovation Initiative

CDS Commander Destroyer Squadron

CNMOC Commander Naval Meteorology and Oceanography Command

CTF Commander Task Force

DES Discrete Event Simulation

DHS Department of Homeland Security

DOE Design of Experiments

DTS Discrete Time Simulation

EEZ Economic Exclusion Zone

EU European Union

EVT EDGE Virtual Training

FEL Future Event List

GPS Global Positioning System

GUI Graphical User Interface

GWT Google Web Toolkit

HOA Horn of Africa

HTTP Hypertext Transfer Protocol

HSDL Homeland Security Digital Library

IA–CGF Intelligent Agent Simulation Computer Generated Force

ICC International Chamber of Commerce

IFTF Institute for the Future

IMB International Maritime Bureau

IRTC Internationally Recommended Traffic Corridor

 xvi

JCA Joint Campaign Analysis

MMOWGLI Massive Multiplayer Online War–game Leveraging the Internet

MOE Measure of Effectiveness

NAVO Naval Oceanographic Command

NCIS Naval Criminal Investigative Service

NEC C2 M2 Network Centric Command and Control Maturity Models

NMCI Navy/Marine Corps Intranet

NPS Naval Postgraduate School

OBP Oceans Beyond Piracy

ONR Office of Naval Research

OSA Open System Architecture

PANOPEA Piracy Asymmetric Naval Operations Patterns modeling for Education

 and Analysis

PARS Pirate Attack Risk Surface

PPS Piracy Performance Surface

PPSN Piracy Performance Surface Model

RF Royalty Free

SWDG Surface Warfare Development Group

TCP Transmission Control Protocol

VV&A Verification, Validation, and Accreditation

X3D Extensible 3D Graphics Language

XML Extensible Markup Language

 xvii

ACKNOWLEDGMENTS

First and foremost I want to thank my family for their continued support while I

was on this time-consuming endeavor. To my beautiful wife, Elizabeth, although it was a

tough 27 months, we made it and without a doubt have a stronger relationship because of

what we endured during the process. Thank you for believing in me and always pushing

me to be my best. To my three amazing children, thank you for all the love and hugs that

got me through each day. I’m so proud of each of you in all that you have accomplished

the past 27 months.

This thesis work would not have been possible without my advisors, Dr.

Brutzman, Dr. Buss, and Terry Norbraten. Dr. Brutzman, you are an innovator of great

thoughts and higher learning. You always ensured I went above and beyond my potential

and showed me the value of thinking outside the bounds of all problems. The benefit of

your advising went well beyond simply modeling and simulation, I will forever benefit

professionally and personally from you efforts during this thesis process. Dr. Buss, your

methodology for conquering large problems is the reason this thesis is complete, but also

a methodology I will take with me to tackle all problems in the future. Thank you for

your patience and time. Terry, without your technical assistance I would not have been

able to complete this thesis. I came here without a day of programming in my life, but

your help in class and on this thesis allowed me to conquer Java and produce work I

never thought I was capable of performing. Thanks for all your time with my questions

and listening while I vented my frustrations.

Finally, I would like to thank my fellow King Cobras, at the Monterey Tennis

Center. It was always a great stress relief to get out and dominate the tennis courts with

each of you. I will never forget the memories and friendship developed during the time of

our undefeated season. Slither on to further greatness!

 xviii

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

“A genuine leader is not a searcher for consensus, but a molder of consensus.” 1

—Martin Luther King Jr.

A. PROBLEM STATEMENT

Piracy around the HOA has plagued the international community for the last six

years. Since 2008, Somali pirates have continuously adapted to naval tactics and

merchant ship best management practices; they have increased the distance in which they

operate from shore, become more aggressive, and begun using more sophisticated

technology, such as GPS and satellite telephones. This has resulted in increased number

of piracy incidents, increased number of mariners who have been taken hostage and

killed, and billions of dollars in economic cost for the international community (Bowden

& Basnet, 2011). However, as of early 2012, there has been a drastic decrease in piracy

incidents and successful hijackings. This decrease can be mainly attributed to the use of

armed guards on merchant vessels, as well as continued presence and operations of naval

forces (Major, Kline, & Fricker, 2012). With this dramatic decrease in pirate success

corresponding to merchants being able to protect themselves, many analysts are asking if

the international navies are still worth the cost of operations around the Horn of Africa.

This thesis analyzes and evaluates naval patrol strategies for counter–piracy

operations in the Gulf of Aden and Indian Ocean. Since pirates have continually changed

their tactics based on military and merchant tactics this thesis demonstrates numerous

options for naval leaders to consider for future planning. These options include, a means

to war game and easily model, simulate, and analyze naval strategy should new pirate

tactics arise. This thesis provides analysis on how international naval strategy can

continue to support policy for piracy around the Horn of Africa. The system design and

methodology is also applicable for the west coast of Africa piracy, future areas that

piracy may arise, and other strategic problems.

1 From http://www.aavw.org/special_features/speeches_speech_king03.html.

 2

B. OVERVIEW

Maritime piracy is not a new mission for the navies around the world; in fact

maritime piracy has been around since at least the 14th century BC (Konstam, 2008, p.

10). However, piracy is still a real struggle for policy makers and naval strategists.

Modern-day piracy around the Horn of Africa poses a serious threat to international

shipping and merchant mariners in some of the busiest shipping waters in the world. It is

estimated that between 20 and 30 naval vessels patrol daily around the Horn of Africa

and over 42,000 merchant ships travel through the region annually (Bowden & Basnet,

2011).

Somali piracy has had a few ebbs and flows of incident frequency. Toward the

end of 2008 the Internationally Recommended Traffic Corridor (IRTC) was implemented

in the Gulf of Aden, which had great success in disrupting the pirate business model.

Subsequently once the pirate success rate fell in the Gulf of Aden they quickly adapted

and began more operations with large motherships in the Indian Ocean at distances over

1,000 nautical miles from the coasts of Somalia. In 2012, the international community

has seen a substantial drop in piracy, only 75 incidents and 14 successful hijackings

compared to 237 incidents and 49 successful in 2011 (ICC International Maritime

Bureau, 2013). The major contributor to this success was armed security teams embarked

on merchant ships to thwart pirates from successfully boarding vessels, as described in a

published Proceedings article by (Major et al., 2012). This fact raises the obvious

question, “Does the international community need to continue investing money in navies

to patrol the Horn of Africa for piracy?” Naval leaders, government officials, and

merchant companies all agree that the Navy plays a vital role in countering piracy.

Therefore, it is important to ensure that navies effectively recognize, prepare, and employ

the appropriate strategy that continues to contain the always evolving piracy threat and to

ensure the naval strategy matches the policy objectives for counter–piracy efforts.

In these times of budget cuts and need for efficiency in the military it is

imperative that simulation and war gaming play a vital role in policy and strategic

planning. Simulation can assist in determining if missions are feasible, forces are being

employed smartly, and all strategic options have been compared and analyzed.

 3

Meanwhile war gaming, especially through crowd-sourcing, can ensure that all ideas are

on the table and given adequate attention and consideration. The current force structure of

the Navy is at a time where it is smarter and more capable than ever. However, the ideas

of junior officers and enlisted personnel are often suppressed by hierarchical command

structures. This thesis provides a methodology to take advantage of this high level of

intellect in the Navy and a methodology to rapidly simulate and analyze the results.

C. MINDSET AND APPROACH OF CURRENT COUNTER–PIRACY
EFFORTS

When Somali piracy began to peak in 2008, the international community turned to

the military to defeat piracy. However, dating backing to the origins of piracy it is well

known the root causes of piracy are on land. However, no one wanted to suggest any

civilian or military action on the ground, due to complicated international diplomacy

considerations and past military difficulties, e.g. Blackhawk Down

(http://www.history.com/videos/the-true-story-of-blackhawk-down). The IRTC was

implemented and the military began heavy patrols of it and piracy diminished, until the

innovative use of “mother ships” allowed pirates to extend their range to over 1,000

nautical miles off the coasts of Somalia. At that time, policy makers at the U.S. State

Department began making statements that suggested, the area of water off Somalia is too

large to adequately patrol (Shapiro, 2009). Broad qualitative statements like those are

what drives the motivation for a good portion of this thesis. It is easy to agree that there is

a lot of water in the Indian Ocean, however it is most definitely not necessary to patrol

every square mile of ocean in order to protect mariners on the high sea and disrupt pirate

activities. Modeling and simulation can help quantify the analysis of alternatives (AoA).

The current U.S. naval strategy is to “deter, disrupt, and suppress piracy,” as

stated on the Commander Task Force 151 (CTF–151) website

(http://www.cusnc.navy.mil/cmf/151/index.html). In the broadest sense this is a bold and

probably unachievable strategy for naval forces given the current policy. To “suppress” is

defined as “to put down by authority or force” (http://www.merriam–

webster.com/dictionary/suppress). Without a policy of fixing the problems of Somalia or

a policy that requires direct military action on the ground (which is not popular or

 4

necessary), piracy will continue and the Navy will not be able to effectively suppress

piracy. The Navy needs to redefine its strategy to match the current policy. For example,

Clausewitz notes the importance of policy driving strategy, not the other way around

(Clausewitz, 1984/ 1780–1831, pp. 69, 81, 605). A better strategic plan for counter–

piracy forces is:

1.) Disrupt pirate activities, by naval and law enforcement means,

2.) Protect merchant shipping, and

3.) Train Africans, including Somalis on counter-piracy approaches.

This new strategy suggestion is achievable, measurable, and matches current policy

objectives.

D. MOTIVATION

1. Personal Experience

In 2010, the author was deployed on USS NICHOLAS (FFG–47) as Force

Protection Officer, Visit Board Search and Seizure Officer, and Legal Officer.

NICHOLAS was assigned to Africa Partnership Station (APS) – East for three months of

training East African military and police forces. During the APS mission he was able to

gain a better understanding of the African culture, the attitudes toward piracy in Africa,

and how piracy affects the countries on the east coast of Africa. Upon completion of APS

NICHOLAS was assigned to CTF–67 and conducted counter–piracy operations in the

sixth fleet AOR of the Indian Ocean. During this time a group of Somali pirates

mistakenly identified NICHOLAS as a merchant vessel and attacked her with the intent

to board her. The pirates came alongside shooting AK–47 machine guns; with the help of

.50 caliber machine guns on NICHOLAS the pirates realized that, in fact, NICHOLAS

was a warship. NICHOLAS was able to arrest and apprehend five pirates, where they

stayed on board for 21 days at sea. The attack on NICHOLAS prompted a major

investigation and federal court trial for the five pirates. The author worked closely with

Naval Criminal Investigative Service (NCIS) and the Department of Justice until

NICHOLAS returned to homeport upon completion of her deployment. After deployment

 5

he went to work with Surface Warfare Development Group (SWDG), now the tactical

development staff of Commander Destroyer Squadron Twenty–Six (CDS–26), and

assisted in updating the Counter–Piracy Tactical Bulletin for the fleet. Simultaneously he

worked extensively for the United States Attorneys (USA) who were prosecuting the

case. He handled various matters for the USA including witness preparations, aiding with

naval matters that arose in preparation for the trial, and worked on presentations for the

trial. The author was then named the government’s “Case Agent” for the trial and sat with

the attorneys for its duration. The verdict of the trial was the first guilty prosecution of

piracy in the U.S. since the Civil War. The trial had major effects on the definition of

piracy from a law standpoint; mainly that it is possible to be guilty of piracy without

having successfully plundered the vessel (U.S. Library of Congress, 2010). Since the trial

he has authored the newest Counter–Piracy Tactical Bulletin for CDS–26 (Commander

Destroyer Squadron Twenty-Six, 2012) and continue assisting the U.S. Attorney’s Office

in prosecuting pirates from the USS ASHLAND Case and the Yacht Quest case. He had

the opportunity to assist NCIS and the FBI in interviewing pirates, which has allowed the

Navy to gain a better understanding on pirate tactics and strategies. During this time he

also was able to tour the Yacht Quest and shown how the four Americans on board were

brutally murdered by Somali pirates.

Through these experiences the author has learned a lot about Somali piracy and

considered numerous ways that the Navy can improve its counter–piracy efforts. There

are many people that believe the U.S. should not be patrolling the waters off Somalia and

that the easiest solution is to kill them, similar to how pirates were in the old days of

piracy. However, after spending time in Africa training Africans, talking with over 30

pirates, and visiting a yacht in which four Americans were brutally murdered by ruthless

pirates, the author believes navy vessels do need to be actively patrolling the waters off

Somalia, but in a more efficient manner that better aligns with current policies. The

author also believes that the international community must dedicate more efforts in

Somalia with relief, security, training, and aide to government of Somalia and the African

Union. The problem of piracy will not stop without a stable environment in Somali; an

 6

environment that can fulfill the basic needs of the majority of its citizens and maintain

peace independent of the international community.

E. RESEARCH QUESTIONS AND OBJECTIVES

This thesis addresses the following questions:

 What are the best patrol strategies for disrupting pirates and protecting
merchant shipping in the Gulf of Aden and Indian Ocean?

 Is patrolling only the transit lanes a more effective strategy for detecting
and disrupting pirate attacks?

 Is the Somali coastline truly too large to implement an effective
quarantine, as most “experts” suggest? Does the whole coast necessarily
need to be quarantined to be effective?

 Is operating closer to the Somali shore more effective at disrupting pirate
activities?

 Can the online MMOWGLI game be used for crowd–sourcing innovative
new ideas for long–standing difficult problems?

 Can the Massive Multiplayer Online War–Game Leveraging the Internet
(MMOWGLI) action plans be simulated and analyzed?

 Can Discrete Event Simulation (DES) be used to effectively model and
simulate Somali piracy?

 Does Agent Based Modeling utilizing DES provide a feasible technique
for modeling multiple “moving and sensing” agents in a maritime
environment?

F. SCOPE OF THESIS

This thesis leverages discrete event simulation (DES), open–source modeling and

simulation software created by faculty and staff of the Naval Postgraduate School, Simkit

and Viskit, the MMOWGLI innovation-game platform, and open-source X3D and GIS

software for visualization. The MMOWGLI platform allows for policy and strategy ideas

to be brainstormed and the leading ideas to form into action plans that give the specific

details of what the policy or strategy entails. These actions plans provide the framework

for the simulations for this thesis. This thesis does not aim to provide all the answers to

solve piracy around the Horn of Africa. It does however demonstrate a powerful

methodology and tools for policy and strategy planners to consider as the international

 7

community moves forward in creating a policy–strategy match for counter–piracy

operations and other strategic objectives.

G. THESIS ORGANIZATION

Chapter I discusses the problem statement, the motivation for the research, and

the research questions for the thesis. Chapter II provides an overview of the technologies

used for this thesis and past work using these technologies, as well as published work in

modeling efforts for Somali Piracy. Chapter III discusses crowd-sourcing with

MMOWLGI. It provides the basic overview of what the MMOWGLI game platform can

enable, how it is relevant to strategy planning, and how it has been used to assist other

innovators and planners. Chapter IV gives the detailed problem description and examines

both the data and the MMOWGLI authored action plans that assist in modeling Somali

Piracy. Chapter V provides details on the modeling and simulation of key scenarios of

interest. It shows the simulation event graphs for all the major entities and discusses the

major scenarios analyzed. Chapter VI gives the detailed simulation analysis for this

challenging problem. Chapter VII provides thesis conclusions and recommendations for

future work, emphasizing how strategy for counter–piracy operations around the Horn of

Africa can be improved.

 8

THIS PAGE INTENTIONALLY LEFT BLANK

 9

II. BACKGROUND AND RELATED WORK

“Conformity is the jailer of freedom and the enemy of growth”2

—John F. Kennedy

A. INTRODUCTION

This chapter provides an overview of the technologies used for this thesis and past

work using these technologies. It also acknowledges other modeling and simulation

research performed on maritime piracy. The descriptions are not meant to be all–

inclusive, rather give the reader a general understanding and provide references for

further research. All technologies used in this thesis are open–source, royalty free (RF),

and repeatable. The majority of the tools used were developed by NPS faculty, staff, and

students.

B. DISCRETE EVENT SIMULATION (DES)

1. Methodology

Discrete event simulation (DES) in its simplest terms can be described with states,

events, and scheduling relationships between events (Buss, 2011, p. 1–1). DES modeling

represents a system as it evolves by state variables changing at distinct points in time;

these points in time are where events occur. An example of a state variable from this

thesis is the number of successful pirate attacks; this value increases by one e time a

pirate attack is successful. An event is an instantaneous occurrence that may change the

state of the system, the word may is used here because the event could simply schedule

another event and not change a state variable. Along with this possible state change

within an event there also needs to be a scheduling relationship between events. This is

what allows the system to progress from one state to another and advance time within the

system (Law, 2007, pp. 6 – 8).

2From http://millercenter.org/president/speeches/detail/5741.

 10

Time advance in a DES model is called Next Event, similar names in related DES

systems are called Event Queue Management and Simulation Time Clock. For each event

state transition an event is scheduled with a given time delay. The basic next-event

algorithm for a DES event queue is depicted in Figure 1.

Figure 1. The logic for the Next Event Algorithm for Discrete Event
Simulation (DES) (From Buss, 2011).

Two other fundamental parts of a DES model is the Future Event List (FEL) and

parameters. The FEL is a structure in which pending events are stored. Each event is

stored in the FEL based on time, with the nearest time on top. The structure used for the

FEL must be able to add events, store them in time order, and remove an event that is due

up to be processed. Parameters, also called Simulation Parameters in a DES model, are

variables that do not change during the course of the simulation run (Buss, 2011, pp. 1– 4

to 1–5). An example of two simulation parameters from this thesis is the number of Navy

ships and the maximum speed of a Navy ship. These values are locked and do not change

during the course of a simulation run.

Event graphs are commonly used to represent a DES model (Schruben, 1983). An

event graph contains nodes and edges. Each node represents a specific event, or state

transition, and an edge represents the scheduling of other events. The event graph in

 11

Figure 2 depicts a simple (yet common) event process for a DES system, an Arrival

Process (Buss, 2011, pp. 3–1 to 3–3). An arrival process is a process that models how

entities appear in a simulation. The Run event simply initializes the state variable for

number of replications, N, to zero and schedules an arrival with a time delay of tA. The

Arrival event adds one to the state variable, N, and schedules another Arrival with a time

delay of tA. The arrival rates can be any statistical distribution and is determined based on

the data for the particular model. Event graphs can also include additional functionality

such as cancelling edges, assigning priorities, and implementation that functions as a

“for” loop, to name a few (Buss, 2011, pp. 4–4 to 4–5).

Figure 2. An Example Event Graph of an Arrival Process showing
how entities arrive in a system (From Discrete Event Simulation
Modeling by Dr. Arnold Buss).

An event graph model such as in Figure 2 is referred to as a component. Each

component has its own set of parameters and state variables. A component allows the

modeler to decompose and implement the model in pieces, rather than having one

gigantic and confusing (and error prone) event graph. Therefore, the components need the

ability to communicate with one another. This is done by using SimEventListeners. The

SimEventListener pattern allows one, or many, components to listen for state changes in

another component. Once the state change occurs in one component it triggers a state

change in the listening component (Buss, 2011, pp. 5–1 to 5–2). The listening pattern is

depicted in Figure 3. SimEventListeners play a huge part in the simulations of this thesis

by allowing interaction between entities. More detail on on DES is provided in

Chapter V.

 12

Figure 3. A Depiction of the SimEvenListener Pattern for a DES
system (From Discrete Event Simulation Modeling by Dr. Arnold
Buss).

2. Simkit

Simkit is an open–source application programming interface (API) that is used for

creating Discrete Event Simulation models. It was developed by NPS faculty, mainly Dr.

Arnold Buss, and is regularly upgraded and modified by NPS students and faculty.

Simkit started out as a Java API, but has recently been implemented in the Python, Ruby,

and JavaScript programming languages. The main functions of Simkit are to allow for

straightforward implementation of event graphs and provide statistical analysis of

simulations. Simkit allows for 2D modeling and provides a basic graphical user interface

(GUI) to visualize entity level simulations, Figure 4 shows an example of this GUI.

Simkit has been used in numerous theses and research projects, a few of which are

discussed below (Buss, 2011, pp. 8–1 to 8–2).

 13

Figure 4. A simple GUI featuring a Property Change Frame
displaying Detection and Undetection events.

There are two highly essential elements of DES modeling that are implemented in

Simkit and used extensively for this thesis: movement and detection. It was once believed

that one could not adequately model movement in a DES system, however as shown by

(Buss & Sanchez, 2005) and others, modeling time-consuming movements in DES is

often more desirable than utilizing more time-consuming time–step approach. The

entities in this thesis model uniform linear motion by subclassing Simkit’s

BasicLinearMover class. For a DES model to move, it must know its initial starting

location at time t0 and a velocity v in which to move. The use of dead reckoning, or

calculating the current position by utilizing past positions, can be easily computed by

storing initial location, the velocity vector, and time which movement began (Buss &

Sanchez, 2005). Detection is modeled in this thesis using a “cookie cutter” sensor. The

sensor is given a range and if an entity comes within the range, called “enter range” of the

sensor a detection event is scheduled with a time delay of zero. When the entity leaves

this range, called “exit range, an undetection event is scheduled with a time delay of zero

 14

(Buss & Sanchez, 2005). Figure 5 depicts how a cookie cutter sensor is modeled. Both

movement and detection is thoroughly described in (Buss & Sanchez, 2005) if more

detail is desired.

Figure 5. A graphical depiction of a Simkit Cookie cutter sensor
model. From (Buss & Sanchez, 2005). Moving sensors are also
possible.

Figure 5 shows many important concepts for movement and detection in DES.

 StartMove Event: The event to begin movement of an entity. It sets the

velocity and destination of a mover and/or sensor. This event is also heard

by listeners in order to know which sensor started moving.

 EnterRange Event: Is scheduled by the SensorMoverReferee when a

mover enters the maximum range of a the sensor.

 Detection Event: The mover is detected and added to the contact list.

 Undetection Event: The mover is undetected (exits the maximum sensor

range)

 15

 ExitRange Event: Is scheduled by the SensorMoverReferee when a mover

exits the maximum range of the senor. The event gives the mover that

exited the ranged and the sensor that was exited.

 EndMove Event: The mover has reached its destination. The mover may

immediately be ordered to startMove, if necessary.

3. Viskit

One potential hindrance of Simkit is that users are required to be proficient in

computer programming. It has been noted that there is a need for students, researchers,

and analysts to be able to create models and run simulations without having to be

proficient at programming. An attempt to alleviate this requirement, as well as, allow for

more rapid development of models and simulations, the developers of Simkit and other

NPS faculty and students developed Viskit. Viskit is an open–source visual programming

methodology and API. Viskit allows the user to graphically implement a normally hand-

drawn event graph. Figure 6 shows the same Arrival Process as Figure 2, except the

figure is drawn using Viskit.

Figure 6. Arrival Process event graph using Viskit.

 16

The event graph components are formatted into Extensible Markup Language

(XML), as shown in Figure 7, and with the XML one can generate Simkit Java source

code.

Figure 7. Viskit XML output of an ArrivalProcess. Viskit displays
the XML in two views, a tree graph and standard XML format.

Figure 8 shows the product of this powerful feature (Buss, n.d.).

 17

Figure 8. Viskit Java source code of an ArrivalProcess autogenerated
from XML.

Viskit is still a work in progress and has the potential to be a powerful tool for military

analysts and decision makers. Further programmer labor is needed to finish this effort.

Sadly, an adequate sponsor has not been made aware of how powerful rapid modeling,

without the use of computer programing skills can be to future military systems analysis.

Fortunately, many features of Viskit are already fully functional and (as shown in several

screen shots) were helpful in designing and documenting the event-graph models needed

for this thesis. The corresponding auto-generated source code was also helpful for

debugging and improving the human-authored source code.

 18

C. VISUALIZATION

Visualization plays an important part in combat simulations, especially with

helping leaders understand the problem and results. The phrase “a picture is worth a

thousand words,” is quite true when the results of a simulation can be visualized in a

simple and logical manner. Visualization can be as simple as a graph or as complex as 3D

models interacting in a virtual environment. The key is to utilize the visualization tool

that best expresses the simulation and supports the analysis in a manner that helps lead to

confident decisions by decision makers. This thesis describes various methods for

visualizing discrete event simulations, and this section presents the overview of the

technologies. Chapter V shows the implementations of this thesis.

1. X3D–Edit

X3D–Edit is an authoring tool for X3D graphics. It is an open–source Java and

XML program leveraging the Netbeans platform. X3D–Edit can launch X3D scenes for

rendering in any X3D compliant 3D browser, including Xj3D, a Java-based 3D browser

for VRML 97 and X3D authored scenes (X3D–Edit, 2013). Figure 9 shows Xj3D

embedded into the X3D–Edit GUI. Recently the developers of X3D-Edit added

functionality that allows users to create, edit, and validate KML. Chapter V describes

how the simulations in this thesis utilize X3D–Edit to visualize KML.

 19

Figure 9. A screen snapshot of X3D-Edit with Xj3D browser
displaying Hello World scene (From X3D-Edit Home Page).

2. Keyhole Markup Language (KML)

KML is XML based markup language that displays information in geographic

applications, such as Google Earth. KML is a rather simple language to read, as seen in

the code snippet below, and it is relatively easy to master the basics (Wernecke, 2009).

The following example KML code shows a simple placemark of a known pirate camp in

Somalia, Eyl.

 20

<?xml version=“1.0” encoding=“UTF-8”?>

<kml xmlns=“http://www.opengis.net/kml/2.2”>

 <Placemark>

 <name>Pirate Camp Eyl</name>

<description>Simple Placemark example of the location of the city Eyl,
which is known pirate camp</description>

<Point>

 <coordinates>49.85000,7.76575</coordinates>

</Point>

 </Placemark>

 </kml>

The main appeal of KML for this thesis is the ability to create and view KML

within the NMCI network. KML can be written in a simple text editor or a more capable

editor (such as X3D-Edit). Google Earth is an approved application on NMCI networks

and KML can also be run inside a web browser. The value of this approach is great and

there are numerous potential applications for KML on a ship or another station within an

NMCI network. There is more information on KML in the AgentC project. Chapter V

demonstrates how KML was used to visualize simulation data in this thesis.

3. OpenMapTM, OpenStreetMap and OpenSeaMap

OpenMapTM, OpenStreetMap, and OpenSeaMap are all Java-based GIS systems

that are also other alternatives for visualizing and analyzing simulations. Both are open

source and provide unique capabilities for simulation and analysis. They are more

complex to utilize; one has to create layer files and implement a link between the

simulation code and layer file. However, they are practical and since both are open–

source it makes access to the source code and development easier. OpenMapTM and

OpenSeaMap are ongoing projects and both have a wealth of information on their

websites: http://OpenMaptm.bbn.com, http://www.openstreetmap.org, and

http://www.openseamap.org.

 21

4. JAVA Swing Graphical User Interface (GUI)

Simkit leverages the UI windowing functionality of Java Swing in its framework.

Java Swing is a simple choice for basic simulation runs or troubleshooting interactions of

entities. It is relatively easily programmed and is well documented. One can easily take a

simple scenario, such as Figure 4, and turn it into a more aesthetically pleasing scenario,

as seen in Figure 10, with a couple lines of code that adds a background image. An

unfortunate limitation of this approach, at least so far, is the need to use Cartesian X-Y

coordinates rather than geospatial latitude/longitude coordinates.

Figure 10. Java Swing functionality of Simkit depicting pirates in the
Gulf of Aden and Navy ships patrolling the IRTC, using a Google
Earth image as background.

D. PREVIOUS RESEARCH USING DES/SIMKIT MODELING

Many outstanding theses have emerged from NPS that utilized DES and Simkit.

A simple search in the NPS library’s Calhoun database or through DTIC reveals all of

them. The following theses were influential to the work in this thesis.

 22

1. Viskit Modeling of ANTI–TERRORISM/FORCE PROTECTION
(AT/FP)

Harney (2003) and Sullivan (2006) laid the foundation for how AT/FP measures

can be analyzed and visualized in order to provide surface vessels with a better way to

train and maintain robust security. Harney (2003) produced the framework, including 3D

visualization. Sullivan (2006) adds to the work of Harney and the simulation and analysis

capability using DES and Viskit. Sullivan (2006) shows how large–scale scenarios can be

easily managed, simulated, and analyzed in Viskit and visualized in 3D using X3D.

2. Simkit and GIS visualization

Mack (2000) uses the output of Simkit models to run in OpenMapTM. It

demonstrates how to use OpenMapTM layers to execute simulation code. The work of

Mack (2000) was also used at the Turkish Naval Academy and published in Gurat

(2010). This publication demonstrates a small–scale naval simulation using Simkit and

OpenMapTM. Both publications offer a great deal of information for getting a Simkit

model running in OpenMapTM. More detail is provided in Chapter IV.

Seguin (2007) creates a simulation that analyzes the capabilities and effectiveness

of a Seadiver Unmanned Underwater Vehicle (UUV) utilizing Simkit, Viskit, and the

Autonomous Unmanned Vehicle (AUV) workbench. The AUV workbench allows for

physics-based models to perform mission rehearsals and real-time task level contols for

robot missions with X3D (https://savage.nps.edu/AuvWorkbench) .

E. MODELING AND SIMULATING MARITIME PIRACY

The maritime community and international navies are increasingly utilizing

modeling and simulation technologies. There has been some significant M&S research

conducted on piracy around the Horn of Africa. As budgets get tighter and scrutiny grows

by those who believe piracy is suppressed around the Horn of Africa (HOA), M&S will

become more heavily relied on to assist in planning for shipping companies and military

combatant commanders. The following are some of the most influential research

initiatives in the area to date.

 23

1. Agent Technology Center’s AgentC Project

The Agent Technology Center (ATC) located at the Czech Technical University

in Prague is a research center devoted to research in agent–based computing, multi–agent

systems, and agent technologies (http://agents.felk.cvut.cz). While ATC has numerous

exceptional projects and areas of research this thesis is interested in their AgentC project.

The AgentC project is sponsored by the Office of Naval Research (ONR) and explores

how multi–agent systems can be utilized to improve maritime security, in particularly

maritime piracy. The basic principal of the research is to “develop an integrated set of

algorithmic techniques for maximizing transit security given the limited number

protection resources available.” The project consists of a simulation engine that receives

information from real–world systems and allows for visualization via Google Earth, as

seen in Figure 11 (http://agents.felk.cvut.cz/projects/agentc). The research has produced

stellar results in three areas of research:

(1) Data integration and analysis: a data–based piracy risk model and a

probabilistic modeling of vessel trajectories have been developed.

(2) Computational modeling and simulation: a global merchant shipping model,

utility based model of piracy, and an integrated model of a maritime transportation

system with piracy has been produced.

(3) Computational optimization and planning: a group transit timetable

optimization method, dynamic on–demand group transit scheme, traffic–coverage

maximizing patrol deployment, game–theoretically optimum policies for mobile patrols

and an optimum randomized transit routing have been developed (Jakob, Vanek, Hrstka,

Bosansky, & Pechoucek, 2011).

 24

Figure 11. AgentC Google Earth visualization of risk modeling. (From
Agent Technology Center’s AgentC website, March 15, 2013)

The faculty and researchers at ATC have published numerous reports and

publications outlining their work and success. The year–end reports are detailed and are a

great resource for obtaining the latest efforts and on–going work. It is beyond the scope

of this thesis to include, but all publications can be found on their website:

http://agents.felk.cvut.cz/projects/agentc.

The author of this thesis considers the work being done at ATC to be the best in

the field for piracy and other research. There has been quite a bit of collaboration

between the author and researchers at ATC. ATC has also been collaborating with the

developers of Pirate Attack Risk Surface (PARS) at the Naval Research Laboratory

(NRL); this research is discussed in the next section. Currently efforts are being made to

include the work from the AgentC project into the current U.S. Navy operational model,

PARS.

2. Piracy Attack Risk Surface (PARS) Model

The research leading the way for PARS was called Piracy Performance Surface

(PPS) model. Naval Oceanographic Command (NAVO) was directed to research piracy

 25

by the current Oceanographer and Navigator of the Navy, Rear Admiral Titley, just days

after the Maersk Alabama pirate incident occurred in 2009

(http://topics.cnn.com/topics/maersk_alabama). It was obvious at the time that weather

around the HOA, in particular, two distinct monsoon seasons was a major factor in pirate

success. The purpose of PPS was to produce a tool for navies and merchants to determine

which areas were more susceptible to pirate attack. The model uses environmental data

and historic attack data, weights each of them and displays the data on a color–coded

map, as seen in Figure 12 (Slootmaker, 2011).

Figure 12. Visual display of the Piracy Performance Surface model on
11February2012 (From ONI Piracy Analysis and Warning Weekly
(PAWW) report from 02 – 08 February 2012.)

PPS had great initial success, but needed a more advanced model in order to

provide more accurate predictive power. The Naval Meteorology and Oceanography

 26

Command (CNMOC) decided to produce a more advanced model, was called Next

Generation Piracy Performance Surface Model (PPSN). To accomplish this CNMOC

asked Dr. Jim Hansen at the Naval Research Laboratory in Monterey, CA to develop this

new model. The PPSN is a stochastic Monte Carlo forecasting model with probabilistic

weighing factors that is programmed in Python. The main functionality of PPSN included

simulated pirate behavior, pirate knowledge about environmental conditions, a time-

integrated environment with recurring pirate CONOPS distributions to produce relative

forecast of pirate presence, and operator inputs for observed pirate locations, pirate

camps, and length of time pirate can operator. The PPSN is one of the first models to

combine real–time METOC and INTEL into an operational model. LT Leslie Slootmaker

performed further work on the PPSN model in her 2011 Naval Postgraduate School thesis

(Slootmaker, 2011). She was able to utilize design of experiments (DOE) to identify key

parameters that affect the PPSN output, as well as, some optimization for memory and

run–time requirements.

The PPSN model has recently changed its name to PARS and is currently an

operational model that assists commanders of counter–piracy forces and units conducting

counter–piracy operations in the Gulf of Aden and Indian Ocean. PARS is used by

Combined Maritime Forces, European Union’s (EU) Operation Atalanta, and North

Atlantic Treaty Organization’s (NATO) Operation Ocean Shield (Slootmaker, 2011).

PARS is continually being improved and recently just passed its Verification, Validation,

and Accreditation process (VV&A) (J. Hansen, personal communication, August 23,

2012). PARS is an excellent example of how valuable modeling and simulation can be to

maritime security; it has been a true benefit to the fight against piracy, in both operational

effectiveness and cost effectiveness.

3. Piracy Asymmetric Naval Operations Patterns Modeling for
Education and Analysis (PANOPEA) Project by Simulation Team

The Simulation Team is a network of international institutions involved in M&S.

They have been involved in numerous research projects and efforts scaling a broad range

of interests, from business, health care, energy, telecommunications, homeland security,

military, and many more (http://www.simulationteam.com). The PANOPEA project is a

 27

discrete event simulator that is integrated with another Simulation Team project,

Intelligent Agent Simulation Computer Generated Force (IA–CGF). PANOPEA models

pirate activity around the Horn of Africa in an effort to evaluate various Network Centric

Command and Control Maturity Models (NEC C2 M2). PANOPEA provides valuable

insight on the benefit of having a robust communication network that allows for rapid

information sharing during counter-piracy operations (Bruzzone, Tremori, and

Merkuryev, 2011). Further research is needed to determine if such a robust network can

feasibly be utilized by coalition forces. Research efforts on C2 Maturity models are

ongoing by the PANOPEA researchers.

4. Naval Postgraduate School (NPS) Research on Somali Piracy

Research has also been accomplished on the subject of Somali piracy at NPS. The

Joint Campaign Analysis (JCA) course, OA 4602, has produced two highly significant

pieces of analysis on Somali piracy. In 2009, a team of students, two from the U.S. and

one from Turkey, performed an analysis on the current state of piracy and made two

foresighted recommendations: change the group transit schedule for the IRTC and for

ships to defend themselves with armed guards (Bloye, Yildiz, & Scherer, 2009). The first

recommendation was quickly acted upon by the EU. The second took some time to

become politically popular, but in 2011 armed guards became heavily relied upon and

have drastically reduced the amount of successful attacks around the Horn of Africa.

More recently, analysis from the JCA class by LCDR William Major, suggested that

ships with self–protection were more effective at thwarting pirates than U.S. Naval

patrols (Major et al., 2012). The JCA course is a true prize for the school, the students,

and sponsoring commands. Students from all services, including internationals, are given

current real–world problems to analyze using the tools they have acquired thus far in their

studies. Each quarter a new problem or set of problems are posed by different military

commands. At the course conclusion the analysis and the recommendations are sent

directly to the command where the question(s) originated for insight and consideration.

Most quarters, students are able to accomplish such superb analysis that they invited to

publish their work in peer reviewed journals such as PROCEEDINGS

 28

(http://www.usni.org/magazines/proceedings), INFORMS (https://www.informs.org), or

PHYLANX (http://www.mors.org).

There have been 13 graduate level theses conducted on Somali piracy at NPS

since 2009, including the Slootmaker thesis that was discussed previously. There is a

broad range of research areas:

 “Stopping Piracy: Refocusing on Land-based Governanc,” June 2012, by

Fredik Borchgrevink, http://hdl.handle.net/10945/7310.

 “Case Study of European Union Antipiracy Operation Naval Force

Somalia Successes, Failures and Lessons Learned for the Hellenic Navy,”

September 2012, by Evangelos Soufis, http://hdl.handle.net/10945/17461.

 “Piracy in the Horn of Africa the Role of Somalia’s Fishermen,”

December 2011, by Emmanuel Sone, http://hdl.handle.net/10945/4989.

 “Counter-piracy escort operations in the Gulf of Aden,” June 2011, by

Thomas Tsilis, http://hdl.handle.net/10945/5633.

 “Countering Piracy with the Next Generation Piracy Performance Surface

Model,” March 2011, by Leslie Slootmaker,

http://hdl.handle.net/10945/5747.

 “Capacity building as an answer to piracy in the Horn of Africa,”

December 2010, by Loannis Nellas, http://hdl.handle.net/10945/5095.

 “Piracy and its Impact on the Economy,” December 2010, by Rami Islam,

http://hdl.handle.net/10945/5063.

 “Trading nets for guns the impact of illegal fishing on piracy in Somalia,”

September 2010, by Aaron Arky, http://hdl.handle.net/10945/5115.

 “Decreasing variance in response time to singular incidents of piracy in

the horn of Africa area of operation,” June 2010, by Christopher

Descovich, http://hdl.handle.net/10945/5258.

 29

 “Modern piracy and regional security cooperation in the maritime domain

the Middle East and Southeast Asia,” March 2010, by Michael King,

http://hdl.handle.net/10945/5367.

 “Piracy in the Horn of Africa a Comparative Study with Southeast Asia,”

December 2009, by Stephen Riggs, http://hdl.handle.net/10945/4373.

 “Counter piracy a repeated game with asymmetric information,”

September 2009, by Christopher Marsh, http://hdl.handle.net/10945/4542.

 “Disrupting Somali Piracy Via Trust and Influence Operations,” June

2009, by Robert Bair, http://hdl.handle.net/10945/4703.

F. SUMMARY

This chapter familiarized the reader with all the technologies utilized in this thesis

in order to allow for a better understanding of the methodology utilized, especially in

DES with Simkit and visualization. The chapter also highlighted some recent research

conducted on Somali piracy, including theses and other institutional research projects.

 30

THIS PAGE INTENTIONALLY LEFT BLANK

 31

III. CROWD-SOURCING WITH MASSIVE MULTIPLAYER
ONLINE WAR GAME LEVERAGING THE INTERNET

(MMOWGLI)

“One thing a person cannot do, no matter how rigorous his analysis or heroic his

imagination, is to draw up a list of things that would never occur to him.” 3

—Thomas Schelling

A. INTRODUCTION

Crowd-sourcing and serious games are being used by some of the most successful

corporations in the world (http://www.iftf.org/iftf–you/clients–sponsors). Serious games

are games that are developed for a purpose more than just entertainment, such as

learning, problem solving, simulation, training, collaboration, networking, etc

(http://www.seriousgamesinstitute.co.uk/about.aspx?section=18&item=41&category=16.

The DoD, especially the Army, utilizes serious games frequently for training. However,

Jensen and Cook (2010) suggest that these serious games can possibly play a bigger role

in DoD decision–making and strategic planning. The traditional methods of decision–

making and strategic planning indeed work, however, Jensen & Cook (2010) argue that

there is a need to expand the participants involved and utilize a broader knowledge base.

This chapter discusses how the MMOWGLI platform uses crowd-sourcing as a

means to collect ideas and information, then collaboratively produce action plans for

extremely complex and wicked problems.

B. WHAT IS MMOWGLI?

MMOWGLI is message–based serious game that allows players to work together

through idea generation, brainstorming, and action plan development in order to

encourage innovative solutions to extremely complex and wicked problems. A wicked

problem as defined by Camillus (2008) is a problem that cannot be solved by traditional

3 From “Gaming for innovation: An open source approach to generating insight” by G. Jensen and .M.

Cook, 2010, ONR Director of Innovation Newsletter, Volume 5, pp 8 – 10.

 32

processes. He describes the problem as “tough to describe and doesn’t have a right

answer.” Roberts (2000) describes a wicked problem as a problem with no consensus

that is merely defined from the point-of-view of the analyst. She also describes that a

wicked problem has many stakeholders from a very diverse group, all of which have to

continually work together to define the continuously changing constraints of the problem

(Roberts, 2000). The game seeks to solve these wicked problems by gathering ideas from

all persons of an organization without regard for rank or seniority (MMOWGLI Players

Portal, n.d.). The idea of MMOWGLI came from Dr. Garth Jensen, who at the time was

the Director of Innovation at the Caderock Division, Naval Surface Warfare Center. His

original vision was aimed at bridging the disconnect between technologists and

warfighters. To turn his vision into reality Dr. Jensen led a team comprised of the ONR,

NPS, and The Institute for the Future (IFTF) to form MMOWGLI (Ohab, 2011). The

MMOWGLI Game design is mainly architected by IFTF and implemented by NPS

MOVES (MMOWGLI Players Portal, n.d.).

C. TECHNICAL OVERVIEW

MMOWGLI is an open–source serious game platform that utilizes some of the

latest web–based technologies. MMOWGLI had some significant technological hurdles

to overcome in order to launch. The biggest hurdle was how to allow NMCI users to

participate without installing software on a government computer. The solution to

working within the NMCI is to build an interactive game that uses an approved web

browser and works over Transmission Control Protocal (TCP) port 80, or Hypertext

Transfer Protocol (HTTP). The development team used HTML and Javascript based

content, with help from tools such as the Java Vaadin GUI, Java Google Web Toolkit

(GWT), and Tomcat server technology, to name a few (Brutzman, 2011). There are

plenty of references for all these tools available online or in books, but their specifics are

beyond the scope of this thesis. The complete list of software, operating instructions, and

software details are maintained on the MMOWGLI portal.

 33

D. MMOWGLI GAME HISTORY

1. Piracy MMOWGLI 2011–Open to Public

The initial MMOWGLI game aimed to test the MMOWGLI idea and technology

on one of the Navy’s most wicked and predominately unclassified problems, Somalia

Piracy. It was open to military, government employees, and civilians. The 2011 piracy

game had three iterations and consisted of 2,165 players, 14,978 idea cards, and 68 action

plans, additional game statistics can be viewed in Table 1. Further information, including

HTML pages of all action plans and idea cards for piracy MMOWGLI 2011 can be found

at:

 https://portal.mmowgli.nps.edu

 select the Piracy MMOWGLI Games link,

 in the table of contents select Piracy MMOWGLI Game 2011.1.

There is also more detail on a few of the Action Plans in Section IV of this thesis.

Table 1. Game statistics for the Piracy MMOWGLI 2011 game that was open to the
public. Retrieved from MMOWGLI Game for Crowd –Sourcing Problem (PPT)

Solutions by Don Brutzman

 34

2. Piracy MMOWGLI 2012–Maritime Experts and Stakeholders Only

Throughout the 2011 MMOWGLI game it became apparent to those at Oceans

Beyond Piracy (OBP) and those at NPS working on MMOWGLI and researching Somali

piracy that MMOWGLI could be a major asset for the policy makers and strategic

planners concerned with Somali piracy. The game was organized around OBP’s

Independent assessment and asked players to brainstorm ideas to improve each line of

effort. Figure 13 shows the lines of effort in the Independent Assessment. The action

plans developed by this group of experts during the “Naval Operations” week of

MMOWGLI are used in this thesis to analyze and assess.

Figure 13. Oceans Beyond Piracy’s Independent Assessment (From
Oceans Beyond Piracy website, February 15, 2013).

 35

Further information, including HTML pages of all action plans and idea cards for

piracy MMOWGLI 2012 can be found at:

 https://portal.mmowgli.nps.edu

 select the Piracy MMOWGLI Games link,

 in the table of contents select Piracy MMOWGLI Game 2012 - 2013.

There is also more detail on the analysis of the top action plans in Section IV of

this thesis.

The Piracy MMOWGLI game caught attention internationally among maritime

progessional. Dr. Don Brutzman was invited to speak and hold a workshop at the 16th

Hanson Wade Combating Piracy 22 – 26 October 2012 in London . Hanson Wade is a

company who strives to progress organizations and businesses through conferences and

workshops, which bring together top leaders and thinkers in their respected domain

(http://hansonwade.com/corporate/about-us). The Combating Piracy series of conferences

brings together maritime professionals, including international navies, international

governments, including Somali government officials, maritime shipping companies the

maritime security industry, and non-profit organizations (http://combating-piracy.com).

The initial effort between NPS and OBP never fully developed fully, as originally

planned, but the individuals involved with Piracy MMOWGLI plan to continue further

work on the effort. There are plans being developed to continue engaging the maritime

community and developing ideas on how navies, policy makers, and industry should

proceed in the fight against Somali piracy.

3. Energy MMOWGLI

Energy MMOWGLI was sponsored OPNAV N45 – Task Force Energy, the game

was used MMOWGLI to gather ideas and action plans on how to secure the Navy’s

energy future. Energy MMOWGI produced 5,121 idea cards and 38 action plans,

additional game statistics can be viewed in Table 2. Additional information on both the

Energy MMOWGLI can be found at https://portal.mmowgli.nps.edu/energy and

https://mmowgli.nps.edu/energy/reports.

 36

4. EDGE Virtual Training Program (EVTP) MMOWGLI

The U.S. Department of Homeland Security (DHS) Department Science and

Technology department conducted a game in order to develop a new partnership program

with the U.S. Army on the EDGE Virtual Training Program (EVTP). This platform will

eventually be used to train first responders. EVTP MMOWGLI produced 263 idea cards

and 4 action plans, additional game statistics can be viewed in Table 2. More information

can be found at: https://portal.mmowgli.nps.edu/evtp and

https://mmowgli.nps.edu/evtp/reports.

Table 2. Game statistics for the all the MMOWGLI games run in 2012. Retrieved from
MMOWGLI Game for Crowd –Sourcing Problem Solutions (PPT) by Don

Brutzman

5. Business Innovation Initiative (BII) MMOWGLI

The Navy acquisition community utilized MMOWGLI to explore how to best

achieve the Navy’s new Open System Architecture (OSA) strategy, called The Business

Innovation Initiative (BII). This game was for navy personnel and contracting companies.

 37

BII MMOWGLI produced 900 idea cards and 12 action plans. More information can be

found at: https://portal.mmowgli.nps.edu/bii and https://mmowgli.nps.edu/bii/reports.

6. Electromagnetic Maneuver (EM2) MMOWGLI

EM2 MMOWGLI was sponsored by Naval Warfare Development Command

(NWDC), ONR, and NPS to crowd-source ideas on how to innovate concept

development and experimentation efforts for how the Navy should operate in the EM

Environment. EM2 MMOWGLI was run for three weeks and produced 5,496 idea cards

and 40 action plans. Additional information on EM2 MMOWGLI can be found at

https://portal.mmowgli.nps.edu/em2 and https://mmowgli.nps.edu/em2/reports.

Table 3. Game statistics for the all the MMOWGLI games run in 2013, including totals
for all games in 2012 and 2013. Retrieved from MMOWGLI Game for Crowd –

Sourcing Problem Solutions (PPT) by Don Brutzman

E. MMOWGLI PORTAL

The developers of MMOWGLI implemented a portal in order to enable players to

access information about the game, information on the current game topic, current news,

 38

past research and publications on the current topic, and various other research tools to

help make game play more valuable and informed. The portal was built using Liferay

portal engine and allows for reference storage, blog pages, and other wiki pages. Figure

14 shows the main player’s portal page for MMOWGLI.

Figure 14. The MMOWGLI Portal Home Page is the home for all
current and past MMOWGLI games. (From MMOWGLI Portal,
February 4, 2013).

1. Piracy Portal

The piracy portal, seen in Figure 15, has greatly contributed to the success of

piracy MMOWGLI. The portal enables quick access to research on piracy, relevant

information sources, current news, and even the Homeland Security Digital Library

(HSDL), which includes sources for maritime security and piracy. The portal also enables

players to be able to access the idea cards and action plans from past piracy games

(http://portal.mmowgli.nps.edu/piracy–welcome).

 39

Figure 15. The MMOWGLI Piracy Portal Welcome Page is the start
point for accessing Piracy MMOWGLI. (From MMOWGLI Portal,
February 4, 2013).

F. SUMMARY

This chapter has described crowd-sourcing utilizing the MMOWGLI platform.

Numerous MMOWGLI games have been run and many other possibilities exist for the

military utilize MMOWGLI. Play the game, change the game!

 40

THIS PAGE INTENTIONALLY LEFT BLANK

 41

IV. DETAILED PROBLEM DESCRIPTION

“If I had an hour to save the world I would spend 59 minutes defining the
problem and one minute finding the solutions.”4

– Albert Einstein

A. INTRODUCTION

Piracy has been around for centuries and there are many lessons that strategists

can utilize to help combat modern day piracy and future piracy. Modern day piracy is

without a doubt a wicked problem, and although as of 2012 piracy has been drastically

reduced around the Horn of Africa (HOA) there is still a need to analyze strategy for

combating piracy. Whether it be another surge in Somali pirates, continued violence of

West Africa piracy, or a rise in piracy in another part of the world, analyzing various

strategy options can help rid the problem in a more cost effective and timely manner.

B. PIRACY PROBLEMS AND CHALLENGES

Throughout history there have been four requirements for maritime piracy to

exist: (1) Non–existent or weak government on land, (2) Ungoverned territorial seas, (3)

Access to shipping lanes, and (4) Access to boats, manpower, and arms (J. Kline,

personal communication, 24 January 2011). The same is true for Somali piracy; Somalia

does not have a functional government that can adequately govern and uphold the laws

on land or on their territorial seas. Somalia is positioned on the busiest sea route in the

world, including a major chokepoint at the Straits of Bab El Mandeb. The majority of

people in Somali are poor, desperate for an opportunity, and highly susceptible to being

coerced into piracy. Analyzing this historical correlation it is not difficult to see that the

root causes of piracy are on land and major diplomatic and political objectives are needed

to rectify the main problems. Clausewitz and Mahan would both argue the need for a

military effort to engage piracy. Mahan said naval forces are what allow for sea trade

(Mahan, 1918, p. 22). Clausewitz argues, military force is an instrument of policy

4 From “Open Innovation and Crowdsourcing: Advice from Leaders Advice from Leading Experts”,
2011, by Paul Sloane, p. 204.

 42

(Clausewitz, 1984/ 1780–1831, pp. 87 & 605), and until sailors are not in danger and

sea–lanes are safe, the international community needs to figure out how to use this

instrument in a manner that is consistent with its policies.

In 2008, after a few high–value merchant vessels were hijacked off the coast of

Somalia the international spotlight began to shine on the coasts of Somalia. NATO

formed Operation OCEAN SHIELD, the EU formed Operation Atalanta, and in 2009 the

Combined Maritime Force formed CTF–151 (Haywood & Spivak, pp. 50–51). Operation

Ocean Shield’s mission is to deter and disrupt piracy, protect merchant vessels, and

provide security around the HOA (http://www.mc.nato.int/ops/Pages/OOS.aspx).

Operation Atalanta’s mission is to deter, prevent and repress acts of piracy. Operation

Atalanta also protects the World Food Program shipping and the African Union Mission

in Somalia (AMISOM) shipping (http://eunavfor.eu). CTF-151’s mission, as discussed in

Chapter I, is to deter, detect, and disrupt piracy

(http://www.cusnc.navy.mil/cmf/151/index.html). There were also independent nations

such as China, Russia, Iran, and Japan sending warships to the area to escort and patrol.

This was the beginning of a military approach to suppress piracy. The “big three” have

had numerous criticisms for not working together and not being under one central

operational commander. They tried to circumvent some of the coordination issues with

the creation of Shared Awareness and De–Confliction (SHADE), a group which

attempted to bridge the gaps and share information and intelligence (Haywood & Spivak,

pp. 51–52). The major issue is that all three operations have different mandates and

defined missions, thus making it near impossible to organize a true central command.

Clausewitz often reminded military and political leaders of the need to seek unity of

command and unity of effort (Clausewitz, 1984/ 1780–1831, pp. 205 – 209).

Although the international community and its navies struggled to suppress piracy

from 2008 – 2011, the year 2012 was a huge success in decreasing successful attacks and

attempted attacks around the HOA. The use of armed security teams on board merchants,

navies operating closer to the shores of Somalia, and other law-enforcement agencies

tracking and targeting the financial flows of pirate financiers have all had a significant

impact on the pirate business model. However, the shared counter-piracy mission is still

 43

not accomplished. The non-government organization Oceans Beyond Piracy (OBP) has

followed piracy more closely than any other organization and provided numerous

detailed and highly utilized research efforts. Their continually updated Independent

Assessment of the current state of piracy efforts show there is still quite a bit of work to

be done (http://oceansbeyondpiracy.org/independent_assessment). Figure 13 in the

previous chapter shows the lines of effort that OBP analyzes and their current status.

With the past struggles to suppress piracy and now the recent success in

protecting the sea–lanes around the Horn of Africa, policy makers and strategist are left

with the most challenging decisions: How will the international community proceed now

that piracy is down? Will funding continue to be available to support a counter–piracy

mission? Are international navies still needed? If so, how should we deploy navy fleet

assets in order to match current policy? Does our current strategy match current policy?

These questions and many others are what need to be discussed, analyzed, and agreed

upon.

C. MODELING PIRACY AND COUNTER–PIRACY TACTICS

1. Data Limitations

Gathering data on Somali piracy is a difficult task. There are many variables,

some of which are impossible to gather data on, so many assumptions have to be made.

The data used for this thesis is all unclassified. Most of the data used for the models come

from IMB data. Cyrus Moody, the Assistant Director at the IMB, graciously provided the

author with all pirate incident data that IMB has record dating back to 2006. The author

also relied heavily on his research from writing the U.S. Navy’s unclassified TACBUL

for counter–piracy, as well as, the numerous interviews he has conducted with Somali

pirates. The members of the AgentC project at ATC also provided data on pirate attacks,

“mother ship” movements, and merchant shipping. It is definitely difficult to gather all of

the data on Somali piracy and this thesis does not claim to have it all. However, the data

used for this thesis allows the author to feel confident that the processes and behaviors

that occur during counter–piracy operations are captured in the models created.

 44

2. MMOWGLI Action Plans

Although raw data can be hard to gather, it is highly beneficial to utilize a large

diverse group to discuss new ideas and brainstorm methods on how to defeat piracy.

After days of brainstorming ideas in the MMOWGLI platform, the major themes and

highly debated topics that arose from the idea chains were formed into action plans.

These action plans lay the foundation for how to solve the problem or a subset of the

problem in the point of view of the authors of the action plan. As seen in Action Plan in

Figure 16, the action plans give the Who, What, When, Why, and How to make the plan

work. For this thesis the author selected the top three actions plans that showed the best

potential for actually being implemented into naval strategy. These three action plans are

measurable and they match current policy objectives. The three selected were transit lane

operations, naval quarantine, and pirate camp operations. Each of these are described in

depth in Chapter V.

 45

Figure 16. Excerpt from example Action Plan #3 outlines a plan for
enforcing the fishing zones around Somalia. (From Piracy
MMOWGLI 2012 Action Plan #3).

D. SUMMARY

This chapter discussed the complexities of combating piracy and the difficult

strategic decisions that still need to be made to ensure piracy around the Horn of Africa

remains disrupted. Analyzing piracy can be difficult because data is hard to collect, but

crowd-sourcing ideas and utilizing large groups of people to develop actions plans can

assist in developing cohesive strategy options that can be rapidly modeled and analyzed.

 46

THIS PAGE INTENTIONALLY LEFT BLANK

 47

V. SIMULATION DESIGN AND MODELING

“All models are wrong, some are useful.” 5

 –George Box

A. INTRODUCTION

Agent modeling has been a field of extensive research since the early 1990s,

especially in the military. Most military agent systems are Discrete Time Simulation

(DTS) based, also referred to as time step, rather than DES, or next-event based,

(Alrowaei, 2011, p. 2). However, (Alrowaei, 2011) shows that there are many risks in

using DTS if the modeler is not careful with the specified time step size, even at small

time steps the analysis can be degraded (Alrowaei, 2011, pp. 244–247). This thesis

utilizes a DES approach to agent based modeling, and shows that movement, sensing, and

detecting is a practical and useful methodology for rapidly simulating and analyzing

military applications. Alrowaei, (2011) did note that the DES approach, on average, did

take more time in the coding phases of modeling (Alrowaei, 2011, pp. 244–245).

However, utilizing Viskit would ensure a more rapid development of models with little to

no coding. However, the Viskit code base needs further support in order to allow this

methodology to be more widely used. This chapter explains the DES models used for this

thesis, simulation design, and visualization implementation.

B. SIMULATION DESIGN

The simulations in this thesis are all agent-based with DES and implemented

using Simkit. There are three main groups of entities modeled, pirates, navy ships, and

merchant ships. Each of these groups are controlled by a Simkit Mover Manager,

uniquely named, PirateMoverManager, NavyShipMoverManager, and

MerchantShipMoverManager. The Mover Managers model all the logic for each entity

and allow movement by scheduling “Move” events, as well as carry out entity specific

5 From https://www.math.umass.edu/~jstauden/notes1114.pdf .

 48

tasks, such as “Attack” or “Evade.” Each entity has a senor that is modeled by a Simkit

CookieCutter Sensor. The CookieCutter Sensor has a specified range and detects any

mover that enters the range. The Mover Managers and their sensors are then programmed

into a Simkit assembly, as seen in Appendix L, and connected via listeners that allow

interactions and detections. Using this listener pattern allows for statistics to be easily

collected for the simulation analysis.

C. SIMKIT ENTITIES

1. Pirate Mover Manager

The PirateMoverManager class models the behavior of a Somali pirate. The pirate

is given a pirate camp to start from and leaves the pirate camp at a specified interval by a

pirate departure process. The pirate heads to a random point in either the Gulf of Aden or

Indian Ocean, where it hunts for merchant vessels. If no merchant is found after all fuel

and supplies are depleted the pirate returns to its pirate camp. If a merchant is located it

makes a decision as to whether to attack the vessel or not. If the pirate makes the decision

to attack the adjudicator will determine whether or not the pirate is successful, based on

historical data and whether or not a navy vessel is within distance to disrupt the attack. If

the pirate is successful it returns to the pirate camp with the merchant. If it is not

successful it flees the area and continues searching for other merchants. If a pirate is

detected by a navy vessel it stop and be boarded by the navy vessel. The navy either

returns the pirate to the coast of Somalia or apprehends the pirate.

The above logic can be followed in the event graph depicted in Figure 17 and the

java source code can be found in Appendix B.

 49

Figure 17. PirateMoverManager Viskit Event Graph shows the
modeled behavior of a Somali pirate.

2. Navy Ship Mover Manager

The NavyMoverManager class models naval vessels on patrol. They are given a

patrol box to patrol and patrols the box with a random search pattern. If a pirate is

detected it signals the pirate and conducts a boarding. The pirate is returned to port if not

in the act of attacking a merchant. But if the pirate is caught in the act of attacking the

navy vessel detains the pirate. The navy vessels also receive distress calls from

merchants. Once they get a distress call the closest vessel intercepts the merchant’s

location to search for pirates. It is assumed that navy vessels have helicopter capability,

 50

but this is not explicitly modeled. However, it is taken into account when determining if

the navy can respond to a distress call in a sufficient amount of time.

The above logic can be followed in the event graph depicted in Figure 18 and the

java source code can be found in Appendix C.

Figure 18. NavyMoverManager Viskit Event Graph shows the
behavior modeled for a navy vessel conducting counter-piracy
operations.

3. Merchant Ship Mover Manager

The MerchantMoverManager class is the simplest of the MoverManagers. A

merchant is given a starting location and a path to its destination. The merchant proceeds

at a specified speed from its starting location to the destination. It leaves its starting

 51

location at specified intervals via a departure process. If the merchant detects a pirate

vessel it radios the navy and attempt to evade the pirate attack. If hijacked it first stops,

then be taken to the pirate camp.

The above logic can be followed in the event graph depicted in Figure 19 and the

java source code can be found in Appendix D.

Figure 19. MerchantMoverManager Viskit Event Graph shows the
modeled behavior of a merchant vessel transiting from its port of
orgin to a its destination.

4. Adjudicator

The Adjudicator class acts as the referee between the entities. It processes the

pirate attacks and determines whether or not the attack was successful. Once this

determination is made it schedules the appropriate events for the pirate and merchant.

 52

D. SIMKIT PROCESSES

1. Pirate Departure Processes

The pirate departure processes are just like the arrival processes described in

Figure 2. Their interarrival times are Poisson distributions with a given lambda, which is

defined before runtime. Since no real data exists for how many pirates depart a given

port, the ability to analyze various departure rates is highly valuable.

2. Pirate Camps

Each pirate camp is modeled separately and all listen to a separate pirate

departure process, as seen in Figure 20. This gives the modeler explicit control of each

pirate camps rate of pirate departure. The author used information from Piracy

MMOWGLI action plans and other open-source data to choose which pirate camps to

model. The pirate camp component is also coded in a way that allows for pirates to leave

the camp separately instead of in groups the size of the defined number of pirates. The

code for one pirate camp departure process and pirate camp can be viewed in Appendices

E and F, respectively.

Figure 20. Visual depiction of a Pirate Departure Process and Pirate
Camp SimEventListener Pattern

3. Merchant Ship Departure Processes

The merchant ship departure processes are also modeled with a typical departure

process. Their inter-arrival times are Poisson distributions with a given lambda, which

can be defined before runtime. This simulation utilized a lambda based on 42,000 ships

per year transiting around the Horn of Africa. This thesis currently does not take into

account any seasonal variation or varying intensities.

 53

4. Merchant Ship Port of Origin

Each merchant ship leaves from one of three locations: the Red Sea, the Gulf of

Oman, or just North of the Maldives. For the purpose of these models it is not important

which port the ships left from, but rather the direction the ship was heading. The ports of

origin components play the same role as the pirate camp components. The merchant ship

acts almost identical to the pirate camp and communicates with the departure process the

same way, as seen from Figure 21. The code for one merchant ship departure process and

merchant port origin can be viewed in Appendices G and H, respectively.

Figure 21. Merchant Departure Process and Merchant Origin Port
SimEventListener Pattern

E. SIMKIT SCENARIO ASSEMBLIES

The scenarios chosen to model were based upon action plans created by players in

the Piracy MMOWGLI 2012, expert only game. These scenarios give decision makers

three distinct options for implementing naval strategy around the Horn of Africa. All

images and concepts are taken directly from the Piracy MMOWGLI 2012 Action Plan

Report. There are many ways to model and analyze these scenarios, but this thesis

focuses on two measures of effectiveness (MOEs), how likely naval ships are to detect

pirates and how likely pirates are to successfully hijack a merchant in each scenario.

These were the most feasible MOEs given the time constraints to complete a Master’s

thesis. Due to these constraints the MMOWGLI action plans are not fully modeled and

evaluated as the authors describe. However, enough detail is modeled in order to provide

a sound analysis on which scenarios are best for the chosen MOEs, as well as give

valuable insight on how to best combat pirates.

 54

1. Defense Scenario One: Transit Lane Patrols

The transit lane operation action plan calls for naval vessels to continue patrols

along the IRTC, but also implements another transit lane that extends the IRTC toward

Maldives. Naval patrols are close to the merchants, but also provide a barrier of

protection to merchant traffic off the coasts of Oman and India. The barrier of protection

provides quarantine-like patrols without the legal framework of a traditional naval

quarantine. This plan recommends that merchants travel via the specified transit lanes or

provide their own security. The general concept modeled in this thesis can be viewed in

Figure 22 and the full action plan can be viewed in Appendix I. The Simkit source code

for the assembly is similar to what is provided in Appendix L, with the only notable

difference is the location and patrol boxes of navy vessels.

Figure 22. Illustration of Transit Lane Patrol (From Piracy
MMOWGLI 2012 Action Plan Report, February 10, 2012).

2. Defense Scenario Two: Naval Quarantine

The naval quarantine action plan calls for a quarantine of the entire southeastern

coast of Somalia, from Bargal to the southernmost part of Somalia. The quarantine is 200

nautical miles (NM) from the Somali coast and aims not to impede non-hijacked

 55

merchant traffic. All vessels detected trying to enter the 200 NM quarantine zone is

challenged and boarded. Vessels that have been hijacked are not allow to enter into the

200 nautical mile zone and head toward the Somali coast. If the pirates do not cooperate

with naval forces then the merchant vessel is disabled in order to restrict any further

movement. The aim of this plan is to ensure no merchant vessel has the opportunity to be

ransomed off near the shores of Somalia. The simulated pirates do not have access to a

resupply of food or additional pirate support. The concept of this plan can be viewed in

Figure 23 and the full action plan can be viewed in Appendix J. The Simkit source code

for the assembly is similar to what is provided in Appendix M, with the only notable

difference is the location and patrol boxes of naval vessels.

Figure 23. Illustration of a 200NM Naval Quarantine off the Southern
coast of Somalia(From Piracy MMOWGLI 2012 Action Plan Report,
February 10, 2012).

 56

The MMOWGLI game is not the first time the idea of a naval quarantine has

been published. Law (2011) suggests the use of a quarantine in a published Master’s

thesis for California State Univeristy, Monterey Bay’s Panetta Institue of Health and

Human Services and Public Policy. The thesis is an applied policy report that gives three

alternatives for countering piracy:

1. Keep the status quo (Law, 2011, pp 23 -24).

2. Provide methods of alternative livelihood for Somalis,

including a moratorium on fishing in the Somalia EEZ (Law,

2011, pp 24 -26),

3. A naval quarantine (Law, 2011, pp 27 -28).

3. Defense Scenario Three: Pirate Camp Operations

The pirate camp operation action plans are six different plans that evaluate how

vulnerable specific pirate camps are to naval intervention. The assumptions used to

model this are that INTEL exists on each camp and that ISR assets are continually

available to identify pirate activity along the coasts of Somalia. Naval ships would

operate in sight of the shoreline and actively deter pirates from launching their vessels.

The concept of this plan can be viewed in Figure 24 and the full action plan can be

viewed in Appendix K. The Simkit source code for the assembly can be viewed in

Appendix M.

 57

Figure 24. An illustration of Pirate Camp Operations modeled for this
thesis.

The pirate camp operations described in this Action Plan can also be used for

operations such as those that were conducted by EU forces in May 2012. These

operations included bombing the shore basing efforts of pirates on the Somali coast

(http://worldnews.nbcnews.com/_news/2012/05/15/11711225-eu-forces-attack-somali-

pirates-on-land-for-first-time?lite).

F. JAVA SUPPLEMENTAL CLASSES

There are a few other classes that are highly important to the functionality of all

the models and simulations in this thesis.

The Platform.java class is a subclass of Simkit’s BasicLinearMover class and is

used in order allow each entity to have a state implementation and to disable the

functionality of the entity after it is captured or disabled, i.e., a pirate ship after it has

been apprehended by the navy. Each entity mover is of class Platform, which allows it to

inherit its functionality. The Java source code for Platform.java can be viewed in

Appendix M.

 58

In order to assign each Platform (or entity) their specified type, i.e., navy,

merchant, or pirate, a simple enum class was created, PlatformType.java. This enum

contains only enum types, NAVY, MERCHANT, and PIRATE. The assignment is made

in the Simkit assembly and passed into the MoverManager’s constructor. The simple

enum class can be viewed in Appendix N.

Each entity also has a state class: NavyState.java, PirateState.java, and

MerchantState.java. These classes also are the trigger for state transitions in the

simulation. Each class accounts for all possible states the particular entity can encounter

during the simulation. The java source code for all the entity state classes can be viewed

in Appendix O – Appendix Q.

G. DETAILED DESCRIPTION OF VISUALIZATION IMPLEMENATION

1. X3D-Edit and KML

X3D-Edit was utilized to author and validate KML code in order to visualize

simulation data. KML can be used for many purposes, in this thesis it was utilized to

visualize pirate path history and attack history. To view pirate path history a KML

<LineString> is used to create a path. In order to obtain a pirate’s position during its

mission a Java LinkedList was created in the PirateMoverManager. Then in e event that

includes a change in movement for the pirate the current position is taken and put into the

LinkedList. The following code snippet shows this functionality:

wayPoint = new WayPoint(myMover.getCurrentLocation());

wayPointList.add(wayPoint);

Then at the end of Simkit scenario assembly simply iterate through the LinkedList

using a java for-each loop to put the coordinates into a KML format (in KML coordinates

<LineString> are expressed as longitude, latitude, elevation), as seen with the following

code snippet:

 59

for (Iterator it = ioPmm.getWayPointList().iterator();

it.hasNext();)

 {

WayPoint output = (WayPoint) it.next();

System.out.println(output.getWayPoint().getY() + ,”“ +

output.getWayPoint().getX() + ,”“ + 0);

 }

This output can then be copied and pasted into X3D-Edit as shown in Figure 25.

Figure 25. X3D-Edit with PiratePath.kml and the KML Palette

Once the KML file is validated in X3D-Edit it can be easily viewed in Google Earth.

Figure 26 shows a simple example of a pirate that left the pirate camp of Bayla, searched

a destination in the Indian Ocean and returned to camp.

 60

Figure 26. Pirate Path History of single pirate viewed in Google Earth

Pirate attack history can also be visualized with KML. This visualization can be

helpful for decision makers in order to see if there are any specific patterns of where

pirates are able to gain access to merchant vessels. This implementation is similar to the

pirate path history implementation, but instead of using a <LineString>, it is a

<Placemark> for each attempted attack. A Java LinkedList is created and etime there is

an attack and the location of the merchant at the time of attack is stored in the LinkedList.

The optimal location for this implementation was in the Adjudicator.java class. Then to

output the data a Java for-each loop can be used as shown in the following code snippet:

 61

for (Iterator it = adj.getWayPointList().iterator();
it.hasNext();)

 {

 WayPoint output = (WayPoint) it.next();

 System.out.println(“<Placemark>“);

System.out.println(“<name>Successful Pirate
attack</name>“);

System.out.println(“<descritpion>Successful Pirate
Attack</description>“);

 System.out.println(“<Point>“);

System.out.println(“<coordinates>“ +
output.getWayPoint().getY() + ,”“ +

 output.getWayPoint().getX() + “</coordinates>“);

 System.out.println(“</Point>“);

 System.out.println(“</Placemark>“);

 }

Figure 27 shows the successful attack history of the first replication of the naval

quarantine scenario.

Figure 27. Pirate Successful Attack History for one simulation
replication viewed in Google Earth

 62

2. Open-source Geographical Information Systems (GIS)

Since OpenMapTM and Open Street Map are both open-source they are appealing

platforms to learn and connect Simkit to. Another benefit of OpenMapTM is the ability to

utilize the Mil-Std 2525 symbology. Although Mil-Std 2525 was not demonstrated as a

part of this thesis, it is something that is of value and worth knowing. For a detailed

description on implementing Simkit models into OpenMapTM and creating a simulation

layer for GIS systems, refer to (Gunal, 2010). He provides a superb explanation, with

code snippets, that is easy to follow and implement. Figure 28 shows a basic model of a

quarantine implemented in OpenMapTM.

Figure 28. OpenMapTM GUI with Simulation Layer Implemented

The source code for the Simulation Layer can be viewed in Appendix R. To setup

and assembly to run the simulation in OpenMapTM it is similar to the Simkit assembly in

Appendix L, the two major difference are all locations are in latitude and longitude and

the utilization of the number to degree function, as discussed (Gunal, 2010).

 63

public double nmToDeg(int latOrLon, double distance)

 {
 DistanceMouseMode xx = new DistanceMouseMode();
 if (latOrLon == 1)
 {

 double lonCoefficient = xx.getGreatCircleDist(
20.0, 13.0, 20.0, 14.0, 2);

 return distance / lonCoefficient;
 }
 else
 {
 double latCoefficient = xx.getGreatCircleDist(

20.0, 13.0, 21.0, 13.0, 2);
 return distance / latCoefficient;
 }
 }

This function uses the great circle distance equation to calculate the number of degrees in

a distance based on where the entity is in the world. This is required by OpenMapTM

when calculating distances.

3. Java Swing

Implementation of Java Swing visualization is made real simple with Simkit. In

the Simkit library the “smd” package has an “animate” package. This package allows for

basic animations to be performed using Java Swing. The first piece to implementing this

is ensuring the “Actions.jar” is included by adding to the Netbeans or Eclipse library for

the project. Once this is done creating a Sandbox Frame and a Sandbox is a

straightforward process. The code snippet to implement this is found in Appendix S.

Once the Sandbox Frame is set up the only part left is adding the movers and sensors.

This is done with only a couple lines of code.

To add a single mover and sensor:

sandboxFrame.addMover(elaayoPirateMover], Color.RED);

sandboxFrame.addSensor(elaayoPirateSensor, Color.RED);

To add an array of movers and sensors:

for (int i = 0 ; i < elaayoPirateMover.length ; ++i)

{

sandboxFrame.addMover(elaayoPirateMover[i], Color.RED);

sandboxFrame.addSensor(elaayoPirateSensor[i], Color.RED);

}

 64

As seen from the code in Appendix S, a waypoint generator and mouse listener is

easily implemented for added functionality. The WaypointBuilder source code can be

found in Appendix T and the MouseListener in Appendix U.

H. SUMMARY

Modeling piracy around the Horn of Africa is made easier and more logical using

DES and the event graph methodology. MMOWGLI action plans can indeed be modeled

and are highly beneficial to decision makers. The action plans layout all the required

details needed by both the decision maker and modeler. Many options exist for

visualizing DES models; as such three different approaches were discussed in the

chapter. This chapter also discussed how to implement simulation in each visualization

technology, but the best choice as to which visualization technology to use is highly

dependent on the resources available, the modeler’s capabilities, and the end product

detail desired.

 65

VI. SIMULATION ANALYSIS

A. INTRODUCTION

The simulation and models in this thesis are stochastic, meaning they involve

probability, therefore have random inputs that change every run. In order to make

confident predictions using a stochastic simulation many replications are needed. If the

model is run only a few times, then modeler sees only few random scenarios. So, for

example, if a pirate has the ability to go anywhere in the Indian Ocean and the modeler

only runs the model five times, then the result of the simulation is based on where the

pirate was at those five times and does not take into account the other thousands of

locations possible. However, if the simulation is run 10,000 times, it gives the modeler a

good sense of exactly what can happen, i.e., the pirate can in reality go anywhere in the

Indian Ocean. However, 10,000 runs may not be feasible due to computational cost or

equipment limitations, so the analyst must decide how many runs yield enough data to

ensure informed decisions can be made from the simulation data. Once these simulation

runs are complete simulation analysis can be conducted. The analysis allows the modeler

to analyze the data collected from the simulation runs, in order to make accurate

predictions or decisions about the model. This chapter discusses the simulation analysis

techniques performed for this thesis and recommendations for naval strategy around the

Horn of Africa.

B. SIMULATION ANALYSIS

Each of the three scenarios, Transit Lane Operations, Naval Quarantine, and

Pirate Camp Operations, were run 30 times. This thesis used 30 runs of each scenario

because 30 is the minimal amount of runs needed for the data to have the needed

properties for statistical significance. For each scenario the following MOEs were

evaluated:

 Naval Effectiveness =
௡௨௠௕௘௥	௣௜௥௔௧௘௦	ௗ௘௧௘௖௧௘ௗ	

௡௨௠௕௘௥	௣௜௥௔௧௘௦	ௗ௘௣௔௥௧௘ௗ	௖௔௠௣

 Pirate Effectiveness =
௡௨௠௕௘௥	௦௨௖௖௘௦௦௙௨௟	௣௜௥௔௧௘	௔௧௧௔௖௞௦

௡௨௠௕௘௥	௣௜௥௔௧௘௦	ௗ௘௣௔௥௧௘ௗ	௖௔௠௣

 66

In order to evaluate which scenario offered the “best” choice a simple selection

procedure was conducted. For the simple selection both naval effectiveness and pirate

effectiveness values were calculated and recorded. The sample mean (or X-bar), the

standard deviation, and standard error were calculated for each MOE. For the Naval

Effectiveness MOE, the highest X-bar is the “best” option and for Pirate Effectiveness

MOE the lowest X-bar is the “best” option. Table 4 shows the results for the Naval

Effectiveness MOE and Table 5 shows the results for the Pirate Effectiveness MOE.

Scenario Pirate Camp

Operations

Naval

Quarantine

Transit Lane

Operations

Mean 0.90 0.54 0.40

Standard Deviation 0.06 0.07 0.06

Standard Error. 0.01 0.01 0.01

Table 4. Comparison of the Naval Effectiveness MOE simulation results among all three
defense scenarios

Scenario Pirate Camp

Operations

Naval

Quarantine

Transit Lane

Operations

Mean 0.05 0.14 0.16

Standard Deviation 0.04 0.06 0.06

Standard Error. 0.01 0.01 0.01

Table 5. Comparison of the Pirate Effectiveness MOE simulation results among all three
defense scenarios

Figure 29 shows that the Pirate Camp Operation scenario performed much better

than the other two scenarios in Naval Effectiveness and pirates performed worst in Pirate

Camp Operation, as seen in Figure 30.

 67

Figure 29. Histogram comparing the results of the Naval Effectiveness
MOE of each defense scenario.

Figure 30. Histogram comparing the results of the Pirate Effectiveness
MOE for each defense scenario.

An interesting observation is noted in looking at how close the Pirate

Effectiveness MOE was in Naval Quarantine and Transit Lane Operations, although in

Naval Quarantine performed significantly better in Naval Effectiveness. This can be

attributed to the close proximity of naval vessels during Transit Lane Operations. During

0.90

0.54

0.39

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Pirate Camp Operations
Effectiveness

Naval Quarantine Effectiveness Transit Lane Operations
Effectiveness

Naval Effectiveness MOE

0.05

0.14 0.16

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Pirate Camp Operations
Effectiveness

Naval Quarantine Effectiveness Transit Lane Operations
Effectiveness

Pirate Effectiveness MOE

 68

these types of operations the probability of having a naval ship close enough to either

interdict or launch a helicopter to interdict after receiving a merchant distress call is

greater since the ships are patrolling on the transit lanes.

C. SUMMARY

Simulation analysis is the most important aspect of simulation modeling. It allows

decision makers to make sense of what went on behind the scenes of the simulation and

how they can use that information to make better decisions. There are many simulation

techniques, ranging from simple ones, such as the simple selection process, to complex

ones. The right analysis technique is dependent on what is being modeled, valid input

data, and what assets are available to the analyst to achieve a desired result.

 69

VII. CONCLUSION AND RECOMMENDATIONS

A. RECOMMENDATIONS FOR COUNTER-PIRACY STRATEGY

The scenarios modeled in this thesis gives decision makers three distinctly

different approaches to combat piracy. However, as seen from Tables 1 and 2, Pirate

Camp Operations performed significantly better than Naval Quarantine and Transit Lane

Operations, when analyzing the Naval Effectiveness and Pirate Effectiveness MOEs. The

Pirate Camp Operation was not only superior in performance, but also utilized two fewer

ships than the other scenarios.

Assistant Secretary Shapiro and others who claimed there is too much ocean for

naval ships to patrol (Shapiro, 2009) were correct in their assessment, however the real

question is, why are naval forces trying to patrol that much water? Piracy has been a

land problem since 14th century BC and still today in the 21st century it is being

combated from the sea. Whether it be another surge in Somali piracy or a rise in maritime

piracy in another region, naval forces need to cut the amount of water patrolled and attack

the problem before it even reaches international waters. Not only do the simulations for

this thesis show the superior effectiveness of combating piracy closer to shore, it would

more than likely play a major deterrent for pirates to physically see naval vessels

patrolling off their coasts. Operations like the pirate camp operation also allow for easier

opportunity for capacity building engagements with Somali coast guard forces, which

allows the Somali people to defeat piracy once and for all.

1. It is recommended that counter-piracy forces consider a pirate camp

operation approach to prevent pirates from reaching into the merchant transit lanes.

However, this approach does have some drawbacks, the major one being that navy

vessels would have to operate inside the Somali Economic Exclusion Zone (EEZ). This

approach might have a negative impact on current efforts to rebuild the Somali fishing

industry.

 70

2. If it is determined that the impact of navy patrols within the Somalia EEZ

might negatively impact efforts to rebuild the fishing industry off the coast of Somalia,

then the use of a naval quarantine provides the best strategic option. The naval quarantine

does have lots of benefits as well. It not only cuts down the amount of ocean required to

patrol, but it also keeps naval vessels out of the EEZ. Another key aspect to the naval

quarantine is that it prevents pirated vessels from making it back to the shores of Somalia.

The pirates are then forced to conduct all negotiations away from its land, financiers, and

supplies.

3. Both of these solutions demonstrate that affordable naval operations are

feasible for combined maritime forces to prevent the resurgence of Somali piracy on the

high seas. Similar approaches are likely feasible for other regions plagued by piracy

around the world.

B. RECOMMENDATIONS FOR FUTURE WORK

The following is future work that can be accomplished to add to the body of work

in this thesis.

1. Implement UAVs and determine if the use of UAVs can lower the need
for ships or limit the use of the ships helicopter.

2. Conduct cost/benefit analysis of each scenario.

3. Determine fuel consumption and savings for each scenario using ship’s
helo or UAV.

4. Conduct a comparison of pirate effectiveness when merchants traverse by
routes other than dedicated transit lanes.

5. Conduct a more robust simulation analysis that includes a design of
experiment

6. Create a tactical decision aid (TDA) for use by ships and shore commands
that utilize simulation and visualization for better operations planning.

7. Conduct a follow-on MMOWGLI counter-piracy game to perform a
renewed exploration of these operations, recent developments, and future
counter-piracy strategies.

 71

C. FINAL THOUGHTS AND CONSIDERATIONS

Maritime piracy is one of many wicked problems faced by military decision

makers. However, the U.S. military is fully equipped with highly educated and trained

enlisted personnel and officers to come up with the best approach to combat these

problems. With this valuable asset the strategy sessions used to formulate strategic

options needs to include a much broader audience, rather than simply the top echelon of

the chain-of-command and its staff. War gaming via crowd sourcing affords military

leaders the opportunity to tap into this precious resource. The MMOWGLI platform was

designed to tackle these wicked problems and discrete event simulation allows for

analysis of the action plans formed during these brainstorming sessions. This thesis has

demonstrated how this methodology can be used to formulate strategically valuable

options from experts in maritime piracy and the action plans can be modeled using

discrete event simulation and analyzed using simulation analysis. It is highly

recommended that military leaders utilize this methodology in their planning and

evaluation of current efforts.

 72

THIS PAGE INTENTIONALLY LEFT BLANK

 73

APPENDIX A. PIRATE MOVER MANAGER JAVA CODE

 1 /*
 2 * PirateMoverManager.java
 3 *
 4 */
 5 package entities;
 6
 7 import java.awt.geom.Point2D;
 8 import java.util.LinkedList;
 9 import simkit.Priority;
 10 import simkit.SimEntityBase;
 11 import simkit.random.DiscreteRandomVariate;
 12 import simkit.random.RandomVariate;
 13 import simkit.random.RandomVariateFactory;
 14 import simkit.smd.CookieCutterSensor;
 15 import supplemental.PirateState;
 16 import supplemental.Platform;
 17 import supplemental.PlatformType;
 18
 19 /**
 20 *
 21 * Models the behavior of a Somali Pirate.
 22 *
 23 * @version $Id: PirateMoverManager.java 199 2013–03–03 06:10:24Z crhutchi $
 24 * @author Chad R Hutchins
 25 *
 26 */
 27 public class PirateMoverManager extends SimEntityBase {
 28
 29 /**
 30 * Parameters. Contains Setters and Getters
 31 *
 32 */
 33 private Platform myMover;
 34 private CookieCutterSensor sensor;
 35 private Point2D baseLocation;
 36 private RandomVariate[] pathGenerator;
 37 private RandomVariate[] patrolBoxGenerator;

 74

 38 private double timeOnPatrol;
 39 private PlatformType platformType;
 40 private DiscreteRandomVariate attackDecision;
 41 private DiscreteRandomVariate successOrFailGenerator;
 42 private RandomVariate[] unsuccessfulAttackTime;
 43 private Point2D patrolBoxStartX;
 44 private Point2D patrolBoxStarY;
 45 private Point2D nextPathWaypoint;
 46 /**
 47 * State Variables. Contains only getters, no setters.
 48 *
 49 */
 50 protected PirateState myMovementState;
 51 protected double numberAttemptedAttacks; //number of attempted attacks
 52 protected double numberSuccessfulAttacks; //number of successful attacks
 53 protected double numberUnsuccessfulAttacks; //number of unsuccessful attacks
 54 protected double numberMerchantsDetected; //number of merchants detected
 55 protected double numberDetectedBeforeAction; //
 56 protected boolean isAlive; //
 57 /**
 58 * String constant for firePropertyChange modification of the state
 59 * variable, not visible outside this class
 60 *
 61 */
 62 private final String MY_MOVEMENT_STATE = “myMovementState”;
 63 private final String NUMBER_ATTEMPTED_ATTACKS = “numberAttemptedAttacks”;
 64 private final String NUMBER_MERCHANTS_DETECTED = “numberMerchantsDetected”;
 65 private final String NUMBER_UNSUCCESSFUL_ATTACKS =
 66 “numberUnsuccessfulAttacks”;
 67 private final String NUMBER_SUCCESSFUL_ATTACKS = “numberSuccessfulAttacks”;
 68 private final String IS_ALIVE = “isAlive”;
 69
 70 /**
 71 * String constant for waitDelay method scheduling, visible to other classes
 72 *
 73 */
 74 protected final String MOVE_TO = “MoveTo”;
 75 protected final String SEARCH_FOR_MERCHANTS = “SearchForMerchants”;
 76 protected final String DECIDE_COA = “DecideCOA”;
 77 protected final String ATTACK = “Attack”;
 78 protected final String RETURN_TO_PIRATE_CAMP = “ReturnToPirateCamp”;

 75

 79 protected final String STOP = “Stop”;
 80 protected final String BOARDED_BY_NAVY = “BoardedByNavy”;
 81 protected final String DIE = “Die”;
 82 /**
 83 * String constant for all other cases.
 84 *
 85 */
 86 protected final String MERCHANT = “Merchant”;
 87
 88 //Local patrolbox distance coordinates
 89 double scale = 0.5;
 90 double localDistance = 10 * scale; //10NM
 91 double transitSpeed = 10 * scale;
 92 double searchSpeed;
 93 double successfulAttackTimeDelay;
 94 double timeOfNavyBoarding = 2.0;
 95
 96 /**
 97 * Default Constructor
 98 *
 99 */
100 public PirateMoverManager()
101 {
102 //Does not set anything
103 }
104
105 /**
106 * Main constructor: Sets mover, sensor, base location, path, patrol box,
107 * attack decision random variate, and success or Fail random variate.
108 *
109 * @param myMover
110 * @param sensor
111 * @param baseLocation
112 * @param pathGenerator
113 * @param localPatrolBoxGenerator
114 * @param attackDecision
115 * @param successOrFailGenerator
116 */
117 public PirateMoverManager(Platform myMover,
118 CookieCutterSensor sensor,
119 Point2D baseLocation,

 76

120 RandomVariate[] pathGenerator,
121 DiscreteRandomVariate attackDecision,
122 RandomVariate[] unsuccessfulAttackTime)
123 {
124 this.setMyMover(myMover);
125 this.setSensor(sensor);
126 this.setBaseLocation(baseLocation);
127 this.setPathGenerator(pathGenerator);
128 this.setAttackDecision(attackDecision);
129 this.setUnsuccessfulAttackTime(unsuccessfulAttackTime);
130 }
131
132 /**
133 * Reset: Resets state variables at end of each replication
134 *
135 */
136 @Override
137 public void reset()
138 {
139 super.reset();
140 myMovementState = PirateState.WAITING_AT_BASE;
141 myMover.setInitialLocation(baseLocation);
142 numberAttemptedAttacks = 0;
143 numberSuccessfulAttacks = 0;
144 numberUnsuccessfulAttacks = 0;
145 numberMerchantsDetected = 0;
146 isAlive = true;
147 }
148
149 /**
150 * Run: FirePropertyChange for all state variables in reset method
151 *
152 */
153 public void doRun()
154 {
155 firePropertyChange(MY_MOVEMENT_STATE, getMyMovementState());
156 // firePropertyChange(NUMBER_ATTEMPTED_ATTACKS,
157 // getNumberAttemptedAttacks());
158 firePropertyChange(NUMBER_SUCCESSFUL_ATTACKS,
159 getNumberSuccessfulAttacks());
160 firePropertyChange(NUMBER_UNSUCCESSFUL_ATTACKS,

 77

161 getNumberUnsuccessfulAttacks());
162 firePropertyChange(NUMBER_MERCHANTS_DETECTED,
163 getNumberMerchantsDetected());
164 }
165
166 /**
167 * LeavePirateIoPirateCamp Event: Changes myMovementState to
168 * ENROUTE_TO_PATROL, generates the next way points, and schedules MoveTo
169 * event for pirates departing from pirate camps in the Indian Ocean side of
170 * Somalia.
171 *
172 */
173 public void doLeaveIoPirateCamp()
174 {
175 PirateState oldMyMovementState = getMyMovementState();
176 myMovementState = PirateState.ENROUTE_TO_PATROL;
177 firePropertyChange(MY_MOVEMENT_STATE, oldMyMovementState,
178 getMyMovementState());
179
180 RandomVariate[] transitSpeedGenerator = new RandomVariate[2];
181 transitSpeedGenerator[0] = RandomVariateFactory.
182 getInstance(“Uniform,” 8 * scale, 12 * scale);
183
184 transitSpeed = transitSpeedGenerator[0].generate();
185
186 myMover.setMaxSpeed(transitSpeed);
187
188 nextPathWaypoint = new Point2D.Double(
189 getPathGenerator()[0].generate(),
190 getPathGenerator()[1].generate());
191
192 waitDelay(MOVE_TO, 0.0, nextPathWaypoint);
193 }
194
195 /**
196 * LeavePirateGoaPirateCamp Event: Changes myMovementState to
197 * ENROUTE_TO_PATROL, generates the next way points, and schedules MoveTo
198 * event for pirates departing from pirate camps in the Gulf of Aden side of
199 * Somalia.
200 */
201 public void doLeaveGoaPirateCamp()

 78

202 {
203 PirateState oldMyMovementState = getMyMovementState();
204 myMovementState = PirateState.ENROUTE_TO_PATROL;
205 firePropertyChange(MY_MOVEMENT_STATE, oldMyMovementState,
206 getMyMovementState());
207
208 RandomVariate[] transitSpeedGenerator = new RandomVariate[2];
209 transitSpeedGenerator[0] = RandomVariateFactory.
210 getInstance(“Uniform,” 8 * scale, 12 * scale);
211
212 transitSpeed = transitSpeedGenerator[0].generate();
213
214 myMover.setMaxSpeed(transitSpeed);
215
216 nextPathWaypoint = new Point2D.Double(
217 getPathGenerator()[0].generate(),
218 getPathGenerator()[1].generate());
219
220 waitDelay(MOVE_TO, 0.0, nextPathWaypoint);
221 }
222
223 /**
224 * EndMove Event: Generates nextWayPoint and if myMovementState is
225 * PATROLLING it schedules MoveTo. If myMovementState is ENROUTE_TO_PATROL
226 * it schedules SEARCH_FOR_MERCHANTS.
227 *
228 * @param mover
229 */
230 public void doEndMove(Platform mover)
231 {
232 double xVal = nextPathWaypoint.getX();
233 double yVal = nextPathWaypoint.getY();
234
235 RandomVariate[] localPatrolBoxGenerator = new RandomVariate[2];
236 localPatrolBoxGenerator[0] = RandomVariateFactory.
237 getInstance(“Uniform,”
238 (xVal - localDistance),
239 (xVal + localDistance));
240 localPatrolBoxGenerator[1] = RandomVariateFactory.
241 getInstance(“Uniform,”
242 (yVal - localDistance),

 79

243 (yVal + localDistance));
244
245 Point2D nextWaypoint = new Point2D.Double(
246 localPatrolBoxGenerator[0].generate(),
247 localPatrolBoxGenerator[1].generate());
248
249 if (myMovementState == PirateState.ENROUTE_TO_PATROL)
250 {
251 waitDelay(SEARCH_FOR_MERCHANTS, 0.0, nextWaypoint);
252 }
253
254 if (myMovementState == PirateState.PATROLLING)
255 {
256 waitDelay(MOVE_TO, 0.0, nextWaypoint);
257 }
258 }
259
260 /**
261 * SearchForMerchants Event: Changes myMovementState to PATROLLING.
262 * Generates patrolBox to hunt for merchant ships, and schedules MOVE_TO
263 * with nextWaypoint in patrol box.
264 *
265 */
266 public void doSearchForMerchants(Point2D nextWaypoint)
267 {
268 PirateState oldMyMovementState = getMyMovementState();
269 myMovementState = PirateState.PATROLLING;
270 firePropertyChange(MY_MOVEMENT_STATE, oldMyMovementState,
271 getMyMovementState());
272
273 RandomVariate[] searchSpeedGenerator = new RandomVariate[2];
274 searchSpeedGenerator[0] = RandomVariateFactory.
275 getInstance(“Uniform,” 2 * scale, 8 * scale);
276
277 searchSpeed = searchSpeedGenerator[0].generate();
278
279 myMover.setMaxSpeed(searchSpeed);
280
281 double xVal = nextWaypoint.getX();
282 double yVal = nextWaypoint.getY();
283

 80

284 // System.out.println(myMover.getName() + “ Next WayPoint X Value: “ + xVal);
285 // System.out.println(“Next WayPoint Y Value: “ + yVal);
286
287 RandomVariate[] localPatrolBoxGenerator = new RandomVariate[2];
288 localPatrolBoxGenerator[0] = RandomVariateFactory.
289 getInstance(“Uniform,”
290 xVal - localDistance,
291 xVal + localDistance);
292 localPatrolBoxGenerator[1] = RandomVariateFactory.
293 getInstance(“Uniform,”
294 yVal - localDistance,
295 yVal + localDistance);
296
297 Point2D nextPatrolWaypoint = new Point2D.Double(
298 localPatrolBoxGenerator[0].generate(),
299 localPatrolBoxGenerator[1].generate());
300
301 waitDelay(MOVE_TO, 0.0, nextPatrolWaypoint);
302
303 //IO pirates: Fuel is a RV from 2 weeks - 2 months
304 if (myMover.getInitialLocation().getY () <= 300.0)
305 {
306 RandomVariate[] lowFuelIOGenerator = new RandomVariate[1];
307 lowFuelIOGenerator[0] = RandomVariateFactory.
308 getInstance (“Uniform,” 336.0, 1460.0);
309
310 double lowFuelIO = ((lowFuelIOGenerator[0].generate ()) -
311 (getEventList().getSimTime()));
312
313 if (lowFuelIO < 0)
314 {
315 lowFuelIO = 12.0;
316 }
317
318 //If fuel is low go back to camp
319 waitDelay (RETURN_TO_PIRATE_CAMP, lowFuelIO, Priority.HIGH);
320 }
321
322 //GOA pirates: Fuel is a RV from 3 days - 3 weeks
323 if (myMover.getInitialLocation().getY () > 300.0)
324 {

 81

325 RandomVariate[] lowFuelGOAGenerator = new RandomVariate[1];
326 lowFuelGOAGenerator[0] = RandomVariateFactory.
327 getInstance (“Uniform,” 72.0, 504.0);
328
329 double lowFuelGOA = ((lowFuelGOAGenerator[0].generate ()) -
330 (getEventList().getSimTime()));
331
332 if (lowFuelGOA < 0)
333 {
334 lowFuelGOA = 12.0;
335 }
336
337 //If fuel is low go back to camp
338 waitDelay (RETURN_TO_PIRATE_CAMP, lowFuelGOA, Priority.HIGH);
339 }
340 }
341
342 /**
343 * ReturnToPirateCamp Event: Changes myMovementState to RETURNING_TO_BASE.
344 * Schedules MOVE_TO with baseLocation coordinate.
345 *
346 */
347 public void doReturnToPirateCamp()
348 {
349 PirateState oldMyMovementState = getMyMovementState();
350 myMovementState = PirateState.RETURNING_TO_BASE;
351 firePropertyChange(MY_MOVEMENT_STATE, oldMyMovementState,
352 getMyMovementState());
353
354
355
356 RandomVariate[] transitSpeedGenerator = new RandomVariate[2];
357 transitSpeedGenerator[0] = RandomVariateFactory.
358 getInstance(“Uniform,” 8 * scale, 12 * scale);
359
360 transitSpeed = transitSpeedGenerator[0].generate();
361
362 myMover.setMaxSpeed(transitSpeed);
363
364 waitDelay(MOVE_TO, 0.0, Priority.HIGH, myMover.getInitialLocation());
365 }

 82

366
367 /**
368 * Detection Event: Detects any mover within the sensor range. If contact is
369 * a Merchant and the merchant hasn’t been detected before increments
370 * numberMerchantsDetected. Schedules DecideCOA. Adds merchant to list of
371 * detectedMerchants.
372 *
373 * @param contact
374 */
375 public void doDetection(Platform contact)
376 {
377 LinkedList<Platform> detectedMerchants = new LinkedList();
378
379 // System.out.println(“I “ + myMover.getName () +” got a detection”);
380 //
381 // System.out.println(“Contact detected by Pirate: “ + contact);
382
383 if ((contact.getType() == PlatformType.MERCHANT &&
384 !detectedMerchants.contains(contact))
385
386 (myMovementState == PirateState.ENROUTE_TO_PATROL ||
387 myMovementState == PirateState.PATROLLING ||
388 myMovementState == PirateState.RETURNING_TO_BASE))
389 {
390 // System.out.println(“Detected a Merchant”);
391
392 detectedMerchants.add(contact);
393
394 numberMerchantsDetected = getNumberMerchantsDetected() + 1;
395
396 waitDelay(DECIDE_COA, 0.0, Priority.HIGH, contact);
397 }
398 }
399
400 /**
401 * DecideCOA Event: generates attack decision based on Bernoulli random
402 * variable. If choice does not equal 1 the decision is to attack, and
403 * cancels (interrupts) prior MOVE_TO events and schedules ATTACK event. If
404 * choice equals 1 then the decision is not to attack. This logic is based
405 * on size of merchant, weather, and various statistics.
406 *

 83

407 * @param target
408 */
409 public void doDecideCOA(Platform contact)
410 {
411 int choice = attackDecision.generateInt();
412 // System.out.println(“Attack Decision: “ + choice);
413
414 if (choice == 0)
415 {
416 // System.out.println(“Decided not to attack”);
417
418 double xValue = myMover.getCurrentLocation().getX();
419 double yValue = myMover.getCurrentLocation().getY();
420
421 RandomVariate[] localPatrolBoxGenerator = new RandomVariate[2];
422 localPatrolBoxGenerator[0] = RandomVariateFactory.
423 getInstance(“Uniform,”
424 xValue - localDistance,
425 xValue + localDistance);
426 localPatrolBoxGenerator[1] = RandomVariateFactory.
427 getInstance(“Uniform,”
428 yValue - localDistance,
429 yValue + localDistance);
430
431 Point2D nextWaypoint = new Point2D.Double(
432 localPatrolBoxGenerator[0].generate(),
433 localPatrolBoxGenerator[1].generate());
434
435
436 waitDelay(SEARCH_FOR_MERCHANTS, 0.0, nextWaypoint);
437
438 }
439 if (choice == 1)
440 {
441 // System.out.println(“Decided to Attack!!”);
442
443 waitDelay(ATTACK, 0.0, Priority.HIGH, myMover, contact);
444 }
445 }
446
447 /**

 84

448 * Attack Event: Change myMovementState to ATTACKING. Generates success or
449 * fail Bournoulli random variable, based upon statistics on merchant BMP
450 * practices, armed guards on board, etc. If successOrFail does not equal 1
451 * it is a successful attack and schedules SuccessfulAttack event. If the
452 * random variable does equal 1 it is an unsuccessful attack and schedules
453 * UnsuccessfulAttack event. Increments numberAttemptedAttacks.
454 *
455 * @param target
456 */
457 public void doAttack(Platform myMover, Platform contact)
458 {
459 PirateState oldMovementState = getMyMovementState();
460
461 myMovementState = PirateState.ATTACKING;
462
463 double oldNumberAttemptedAttacks = getNumberAttemptedAttacks();
464 numberAttemptedAttacks = getNumberAttemptedAttacks() + 1;
465
466 // System.out.println(“I am attacking yer ship!!!”);
467
468 firePropertyChange(MY_MOVEMENT_STATE, oldMovementState,
469 getMyMovementState());
470
471 firePropertyChange(NUMBER_ATTEMPTED_ATTACKS, oldNumberAttemptedAttacks,
472 getNumberAttemptedAttacks());
473 }
474
475 /**
476 * UnsuccessfulAttack Event: Increments numberUnsuccessfulAttacks. Schedules
477 * SEARCH_FOR_MERCHANTS with a delay determined by random variate.
478 *
479 */
480 public void doUnsuccesfulAttack()
481 {
482 double oldNumberUnSuccessfulAttacks = getNumberUnsuccessfulAttacks();
483 numberUnsuccessfulAttacks = getNumberUnsuccessfulAttacks() + 1;
484
485 // System.out.println(“My attack has been foiled!!”);
486
487 double timeOfAttack = unsuccessfulAttackTime[0].generate();
488

 85

489 // System.out.println(“Duration of Pirate Attack: “ + timeOfAttack);
490
491 waitDelay(SEARCH_FOR_MERCHANTS, timeOfAttack, Priority.HIGH);
492
493 firePropertyChange(NUMBER_UNSUCCESSFUL_ATTACKS,
494 oldNumberUnSuccessfulAttacks,
495 getNumberUnsuccessfulAttacks());
496 }
497
498 /**
499 * A successful attack equals a successful hijacking. Increments
500 * numberSuccessfulAttacks. Schedules returnToPirateCamp.
501 *
502 */
503 public void doSuccessfulAttack()
504 {
505 double oldNumberSuccessfulAttacks = getNumberSuccessfulAttacks();
506 numberSuccessfulAttacks = getNumberSuccessfulAttacks() + 1;
507
508 PirateState oldMovementState = getMyMovementState();
509
510 myMovementState = PirateState.RETURNING_WITH_MERCHANT;
511
512 firePropertyChange(MY_MOVEMENT_STATE, oldMovementState,
513 getMyMovementState());
514
515 System.out.println(“I got me a ship... aaarrrgghhh!!”);
516
517 RandomVariate[] successfulAttackTimeGenerator = new RandomVariate[2];
518 successfulAttackTimeGenerator[0] = RandomVariateFactory.
519 getInstance (“Uniform,” 1.0, 3.0);
520
521 successfulAttackTimeDelay =
522 successfulAttackTimeGenerator[0].generate ();
523
524 firePropertyChange(NUMBER_SUCCESSFUL_ATTACKS,
525 oldNumberSuccessfulAttacks,
526 getNumberSuccessfulAttacks());
527
528 waitDelay(STOP, 0.0, Priority.HIGH);
529

 86

530 waitDelay(RETURN_TO_PIRATE_CAMP, successfulAttackTimeDelay,
531 Priority.HIGH);
532
533 }
534
535
536 /**
537 * DetectedByNavy Event: Is triggered when a Navy vessel detects it... this
538 * is setup in main class via adapter. Schedules STOP event and
539 * BOARDED_BY_NAVY event.
540 *
541 * @param contact
542 */
543 public void doDetectedByNavy(Platform contact, double boardingTime)
544 {
545 // System.out.println(“Contact:” + contact);
546 //
547 // System.out.println(“Pirate Speed after detection: “ + myMover.
548 // getCurrentSpeed());
549
550 waitDelay(STOP, 0.0, Priority.HIGH);
551
552 contact.waitDelay(BOARDED_BY_NAVY, 0.0, Priority.HIGH, boardingTime);
553 }
554
555 /**
556 * BoardedByNavy Event: Changes myMovementState to NAVY_BOARDED. If pirate
557 * is attacking when detected schedule DIE event. In all other conditions
558 * schedule pirate to RETURN_TO_CAMP.
559 *
560 */
561 public void doBoardedByNavy(double boardingTime)
562 {
563 PirateState oldMyMovementState = getMyMovementState();
564
565 myMovementState = PirateState.NAVY_BOARDED;
566 firePropertyChange(MY_MOVEMENT_STATE, oldMyMovementState,
567 getMyMovementState());
568
569 // System.out.println(“I’m being boarded”);
570

 87

571 if (oldMyMovementState == PirateState.ENROUTE_TO_PATROL
572 || oldMyMovementState == PirateState.RETURNING_TO_BASE)
573 {
574
575 waitDelay(RETURN_TO_PIRATE_CAMP, boardingTime,
576 Priority.HIGH);
577
578 System.out.println(“DETECTED AND RELEASED TO CAMP”);
579 }
580
581 if (oldMyMovementState == PirateState.ATTACKING ||
582 oldMyMovementState == PirateState.PATROLLING)
583 {
584 sensor.interruptAll();
585 myMover.interruptAll();
586 myMover.removeMover(myMover);
587
588 waitDelay(DIE, 0.0, Priority.HIGHEST, sensor);
589 waitDelay(DIE, 0.0, Priority.HIGHEST, myMover);
590 myMover.removeMover(myMover);
591
592 System.out.println(“DETECTED AND APPREHENDED”);
593 }
594 }
595
596 /**
597 * Returns a String containing the type of Player.
598 */
599 @Override
600 public String toString()
601 {
601 return “I am a (“ + myMover.getType() + “)”;
603 }
604
605 ///*************************REMOVED ALL SETTERS AND GETTERS******************//

 88

THIS PAGE INTENTIONALLY LEFT BLANK

 89

APPENDIX B. NAVY MOVER MANAGER JAVA CODE

 1 /*
 2 * NavyShipMoverManager.java
 3 */
 4 package entities;
 5
 6 import java.awt.geom.Point2D;
 7 import java.util.LinkedList;
 8 import simkit.Priority;
 9 import simkit.SimEntityBase;
 10 import simkit.random.RandomVariate;
 11 import simkit.random.RandomVariateFactory;
 12 import simkit.smd.CookieCutterSensor;
 13 import supplemental.NavyState;
 14 import supplemental.Platform;
 15 import supplemental.PlatformType;
 16
 17 /**
 18 * Models the behavior of a Navy ship on patrol in the Indian Ocean and Gulf of
 19 * Aden
 20 *
 21 * @version $Id: NavyShipMoverManager.java 199 2013–03–03 06:10:24Z crhutchi $
 22 * @author Chad R Hutchins
 23 *
 24 */
 25 public class NavyShipMoverManager extends SimEntityBase {
 26
 27 /**
 28 * Parameters: Contains getters and setters
 29 *
 30 *
 31 */
 32 private Platform myMover;
 33 private Point2D startLocation;
 34 private RandomVariate[] patrolBoxGenerator;
 35 private double maxSpeed;
 36 private PlatformType platformType;
 37 private CookieCutterSensor sensor;

 90

 38 public static final double EPSILON = 1.0E-5;
 39 //Scales all distances and speeds for Java Swing. This works for this
 40 //particular set of simulations. You need to ensure proper scale of any
 41 //area other than the exact same location as this sim.
 42 double scale = 0.5;
 43 double patrolSpeed = 8 * scale;
 44 /**
 45 * State Variables: Contains only getters, no setters.
 46 */
 47 protected NavyState myMovementState;
 48 protected double timeOnPatrol;
 49 protected double numberPiratesDetected;
 50 protected double numberDistressCallRcv;
 51 protected Platform target;
 52 protected Point2D interceptPoint;
 53 protected double timeOfBoarding;
 54 /**
 55 * String constant for firePropertyChange modification of the state
 56 * variable, not visible outside this class
 57 *
 58 */
 59 private final String MY_MOVEMENT_STATE = “myMovementState”;
 60 private final String TARGET = “target”;
 61 private final String INTERCEPT_POINT = “interceptPoint”;
 62 private final String NUMBER_PIRATES_DETECTED = “numberPiratesDetected”;
 63 private final String NUMBER_DISTRESS_CALL_RCV = “numberDistressCallRcv”;
 64 /**
 65 * String constant for waitDelay method scheduling, visible to other classes
 66 *
 67 */
 68 protected final String MOVE_TO = “MoveTo”;
 69 protected final String START_PATROLLING = “StartPatrolling”;
 70 protected final String STOP = “Stop”;
 71 protected final String SIGNAL_PIRATE = “SignalPirate”;
 72 protected final String START_INTERCEPT = “StartIntercept”;
 73
 74 /**
 75 * String constant for all other cases.
 76 *
 77 */
 78 protected final String PIRATE = “Pirate”;

 91

 79
 80 /**
 81 * Main constructor: Sets mover, sensor, starting location, and patrol box,
 82 * id, and max speed of ship
 83 *
 84 * @param myMover
 85 * @param sensor
 86 * @param startLocation
 87 * @param patrolBoxGenerator
 88 * @param maxSpeed
 89 */
 90 public NavyShipMoverManager(Platform myMover,
 91 CookieCutterSensor sensor,
 92 Point2D startLocation,
 93 RandomVariate[] patrolBoxGenerator,
 94 double maxSpeed)
 95 {
 96 this.setMyMover(myMover);
 97 this.setSensor(sensor);
 98 this.setStartLocation(startLocation);
 99 this.setPatrolBoxGenerator(patrolBoxGenerator);
100 this.setMaxSpeed(maxSpeed);
101 }
102
103 /**
104 * Default Constructor
105 *
106 */
107 public NavyShipMoverManager()
108 {
109 //Does not set anything
110 }
111
112 /**
113 * Reset: Resets state variables at end of each replication
114 *
115 */
116 @Override
117 public void reset()
118 {
119 super.reset();

 92

120 myMovementState = NavyState.DEAD_IN_WATER;
121 numberPiratesDetected = 0;
122 numberDistressCallRcv = 0;
123 myMover.setInitialLocation(startLocation);
124 this.target = null;
125 this.interceptPoint = Platform.NaP;
126 }
127
128 /**
129 * Run: FirePropertyChange for all state variables in reset method.
130 * Schedules StarPatrolling.
131 *
132 */
133 public void doRun()
134 {
135 firePropertyChange(MY_MOVEMENT_STATE, getMyMovementState());
136 firePropertyChange(TARGET, getTarget());
137 firePropertyChange(INTERCEPT_POINT, getInterceptPoint());
138 waitDelay(START_PATROLLING, 0.0, Priority.HIGH);
139 }
140
141 /**
142 * StartPatrolling: Changes state to PATROLLING, generates next way point in
143 * patrol box, and schedules MoveTo.
144 *
145 */
146 public void doStartPatrolling()
147 {
148 NavyState oldMyMovementState = getMyMovementState();
149 myMovementState = NavyState.PATROLLING;
150 firePropertyChange(MY_MOVEMENT_STATE, oldMyMovementState,
151 getMyMovementState());
152
153 myMover.setMaxSpeed(patrolSpeed);
154
155 Point2D nextWaypoint = new Point2D.Double(
156 patrolBoxGenerator[0].generate(),
157 patrolBoxGenerator[1].generate());
158
159 waitDelay(MOVE_TO, 0.0, nextWaypoint);
160 }

 93

161
162 /**
163 * EndMove: Generates nextWayPoint and if myMovementState is PATROLLING it
164 * schedules MoveTo. If myMovementState is INTERCEPTING it schedules MoveTo
165 * with intercept point
166 *
167 * @param mover
168 */
169 public void doEndMove(Platform mover)
170 {
171 Point2D nextWaypoint = new Point2D.Double(
172 patrolBoxGenerator[0].generate(),
173 patrolBoxGenerator[1].generate());
174
175 if (myMovementState == NavyState.PATROLLING)
176 {
177 waitDelay(MOVE_TO, 0.0, nextWaypoint);
178 }
179 }
180
181 /**
182 * Detection Event: Detects any mover within the sensor range. If it is a
183 * pirate while PATROLLING it increments numberPiratesDetected, adds pirate
184 * to list of detected pirates, stops the ship, and signals the pirate
185 * (which stops the pirate vessel) by an adapter in main class. Schedules
186 * StartPatrolling after a determined amount of time via a random variate.
187 * Schedules: Stop, SignalPirate, and Start Patrolling.
188 *
189 * @param contact
190 */
191 public void doDetection(Platform contact)
192 {
193 double oldNumberPiratesDetected = getNumberPiratesDetected();
194
195 LinkedList detectedPirates = new LinkedList();
196
197 if (contact.getType() == PlatformType.PIRATE &&
198 myMovementState == NavyState.PATROLLING &&
199 !detectedPirates.contains(contact))
200 {
201 detectedPirates.add(contact);

 94

202
203 numberPiratesDetected = getNumberPiratesDetected() + 1;
204 firePropertyChange(NUMBER_PIRATES_DETECTED,
205 oldNumberPiratesDetected,
206 getNumberPiratesDetected());
207
208 RandomVariate[] timeOfBoardingGenerator = new RandomVariate[2];
209 timeOfBoardingGenerator[0] = RandomVariateFactory.
210 getInstance (“Uniform,” 1.0, 3.0);
211
212 timeOfBoarding = timeOfBoardingGenerator[0].generate ();
213
214 contact.waitDelay(“OrderStop,” 0.0, Priority.HIGHEST, contact);
215
216 NavyState oldMyMovementState = getMyMovementState ();
217 myMovementState = NavyState.BOARDING;
218 firePropertyChange (MY_MOVEMENT_STATE, oldMyMovementState,
219 getMyMovementState ());
220
221 waitDelay(STOP, 0.0, Priority.HIGHER, myMover);
222 waitDelay(SIGNAL_PIRATE, 0.0, Priority.HIGHER, contact,
223 timeOfBoarding);
224
225 // System.out.println(“Detected you dirty Pirate “ + contact.getName()
226 // + “ by “ + myMover.getName());
227
228 waitDelay(START_PATROLLING, getTimeOfBoarding (), Priority.HIGH);
229
230 }
231 }
232
233 /**
234 * SignalPirate: Signals pirate that it has been detected.
235 *
236 * @param contact
237 *
238 */
239 public void doSignalPirate(Platform contact, double boardingTime)
240 {
241 // System.out.println(“I see you!!!”);
242 //Does nothing but signals to pirate

 95

243 }
244
245 /**
246 * RcvDistressCall: Receives call from Merchant using adapter in main class.
247 * If Navy within 40NM increments numberDistressCallRcv. Assumes helo on
248 * board and can respond to distress in less than 30 min.
249 *
250 * @param caller
251 */
252 public void doRcvDistressCall(Platform caller)
253 {
254 // System.out.println(“Caller: “ + caller);
255 // System.out.println(“Here I come to save the day!!”);
256
257
258
259 double upperBoundCallerX = caller.getCurrentLocation().getX() + 20;
260 double lowerBoundCallerX = caller.getCurrentLocation().getX() - 20;
261 double upperBoundCallerY = caller.getCurrentLocation().getY() + 20;
262 double lowerBoundCallerY = caller.getCurrentLocation().getY() - 20;
263
264
265
266 if ((myMover.getCurrentLocation().getX() <= upperBoundCallerX &&
267 myMover.getCurrentLocation().getX() >= lowerBoundCallerX) &&
268 (myMover.getCurrentLocation().getY() <= upperBoundCallerY &&
269 myMover.getCurrentLocation().getY() >= lowerBoundCallerY))
270 {
271 double oldNumberDistressCallRcv = getNumberDistressCallRcv();
272 numberDistressCallRcv = getNumberDistressCallRcv() + 1;
273
274 // System.out.println(“Navy Received Distress Call: “ + myMover +
275 // “ From: “ + caller);
276
277 firePropertyChange(NUMBER_DISTRESS_CALL_RCV,
278 oldNumberDistressCallRcv,
279 getNumberDistressCallRcv());
280 }
281 }
282
283 /**

 96

284 * Returns a String containing the type of Player.
285 */
286 @Override
287 public String toString()
288 {
289 return “(“ + myMover.getType() + “)”;
290 }
291 ///*************************REMOVED ALL SETTERS AND GETTERS******************//

 97

APPENDIX C. MERCHANT MOVER MANAGER JAVA CODE

 1 /*
 2 * MerchantShipMoverManager.java
 3 */
 4 package entities;
 5
 6 import java.awt.geom.Point2D;
 7 import java.util.LinkedList;
 8 import java.util.ListIterator;
 9 import simkit.Priority;
 10 import simkit.SimEntityBase;
 11 import simkit.random.RandomVariate;
 12 import simkit.smd.CookieCutterSensor;
 13 import supplemental.MerchantState;
 14 import supplemental.Platform;
 15 import supplemental.PlatformType;
 16
 17 /**
 18 * Models the behavior of merchant traffic in the GOA and Indian Ocean.
 19 *
 20 * @version $Id: MerchantShipMoverManager.java 70 2012–07–11 15:48:44Z crhutchi
 21 * $
 22 * @author Chad R Hutchins
 23 **/
 24 public class MerchantShipMoverManager extends SimEntityBase {
 25
 26 /**
 27 * Parameters. Contains Setters and Getters
 28 **/
 29 private Platform myMover;
 30 private CookieCutterSensor sensor;
 31 private Point2D startLocation;
 32 private RandomVariate[] pathGenerator;
 33 private PlatformType platformType;
 34 private LinkedList<Point2D> wayPoint;
 35
 36 /**
 37 * State Variables. Contains only getters, no setters.

 98

 38 **/
 39 protected MerchantState myMovementState;
 40 protected ListIterator<Point2D> nextWayPointIter;
 41 protected double numberPiratesEncountered;
 42 protected double numberPiratesEvaded;
 43 protected double numberHijacked;
 44 protected double numberSuccessfulTransits;
 45 protected Point2D wayPointOne;
 46 protected Point2D wayPointTwo;
 47 protected Point2D wayPointThree;
 48 protected Point2D wayPointFour;
 49 protected boolean isAlive;
 50
 51 private double scale = 0.5;
 52 private double transitSpeed = 15 * scale;
 53
 54 /**
 55 * String constant for firePropertyChange modification of the state
 56 * variable, not visible outside this class
 57 **/
 58 private final String MY_MOVEMENT_STATE = “myMovementState”;
 59 private final String NUMBER_PIRATES_ENCOUNTERED =
 60 “numberPiratesEncountered”;
 61 private final String NUMBER_PIRATES_EVADED = “numberPiratesEvaded”;
 62 private final String NUMBER_HIJACKED = “numberHijacked”;
 63 private final String NUMBER_SUCCESSFUL_TRANSITS =
 64 “numberSuccessfulTransits”;
 65 private final String NEXT_WAY_POINT = “nextWaypoint”;
 66 private final String IS_ALIVE = “isAlive”;
 67
 68 /**
 69 * String constant for waitDelay method scheduling, visible to other classes
 70 **/
 71 protected final String MOVE_TO = “MoveTo”;
 72 protected final String STOP = “Stop”;
 73 protected final String ORDER_STOP = “OrderStop”;
 74 protected final String RADIO_NAVY = “RadioNavy”;
 75 protected final String DIE = “Die”;
 76
 77 /**
 78 * String constant for all other cases.

 99

 79 **/
 80 protected final String PIRATE = “Pirate”;
 81
 82 /**
 83 * Main constructor. Sets mover, sensor, starting location, and path
 84 *
 85 * @param myMover
 86 * @param sensor
 87 * @param startLocation
 88 * @param pathGenerator
 89 */
 90 public MerchantShipMoverManager(Platform myMover,
 91 CookieCutterSensor sensor,
 92 Point2D startLocation,
 93 RandomVariate[] pathGenerator)
 94 {
 95 this.setMyMover(myMover);
 96 this.setSensor(sensor);
 97 this.setStartLocation(startLocation);
 98 this.setPathGenerator(pathGenerator);
 99 }
100
101 /**
102 * Default constructor
103 **/
104 public MerchantShipMoverManager()
105 {
106 }
107
108 /**
109 * Reset: Resets state variables at end of each replication
110 **/
111 @Override
112 public void reset()
113 {
114 super.reset();
115 myMovementState = MerchantState.DEAD_IN_WATER;
116 numberPiratesEncountered = 0;
117 numberPiratesEvaded = 0;
118 numberHijacked = 0;
119 wayPoint = wayPoint = new LinkedList<>();;

 100

120 myMover.setInitialLocation(startLocation);
121 wayPointOne = new Point2D.Double(
122 getPathGenerator()[0].generate(),
123 getPathGenerator()[1].generate());
124 wayPointTwo = new Point2D.Double(
125 getPathGenerator()[2].generate(),
126 getPathGenerator()[3].generate());
127 wayPointThree = new Point2D.Double(
128 getPathGenerator()[4].generate(),
129 getPathGenerator()[5].generate());
130 wayPointFour = new Point2D.Double(
131 getPathGenerator()[6].generate(),
132 getPathGenerator()[7].generate());
133 isAlive = true;
134
135 }
136
137 /**
138 * Run Event: FirePropertyChange for all state variables in reset method
139 **/
140 public void doRun()
141 {
142 firePropertyChange(MY_MOVEMENT_STATE, getMyMovementState());
143 firePropertyChange(NUMBER_PIRATES_ENCOUNTERED,
144 getNumberPiratesEncountered());
145 firePropertyChange(NUMBER_PIRATES_EVADED, getNumberPiratesEvaded());
146 firePropertyChange(NUMBER_HIJACKED, getNumberHijacked());
147 firePropertyChange(IS_ALIVE, getIsAlive());
148
149 }
150
151 /**
152 * Start Transit: Changes myMovementState to TRANSITTING, set the path and
153 * schedule MoveTo to move merchant to next point on path.
154 **/
155 public void doStartTransit()
156 {
157 MerchantState oldMyMovementState = getMyMovementState();
158 myMovementState = MerchantState.TRANSITTING;
159
160 myMover.setMaxSpeed (transitSpeed);

 101

161
162 wayPoint.add(0, wayPointOne);
163 wayPoint.add(1, wayPointTwo);
164 wayPoint.add(2, wayPointThree);
165 wayPoint.add(3, wayPointFour);
166
167 nextWayPointIter = getWayPoint().
168 listIterator();
169
170 Point2D nextWaypoint = nextWayPointIter.hasNext() ? nextWayPointIter.
171 next() : null;
172
173 firePropertyChange(MY_MOVEMENT_STATE, oldMyMovementState,
174 getMyMovementState());
175 firePropertyChange(NEXT_WAY_POINT, nextWaypoint);
176
177 if (nextWaypoint != null)
178 {
179 waitDelay(MOVE_TO, 0.0, nextWaypoint);
180 }
181 }
182
183 /**
184 * End Move: Checks if at the end of the path. If not it schedules MoveTo,
185 * if it is at the end of that path it stops the merchant.
186 *
187 * @param mover
188 */
189 public void doEndMove(Platform mover)
190 {
191 Point2D next = nextWayPointIter.hasNext() ?
192 nextWayPointIter.next() : null;
193 firePropertyChange(NEXT_WAY_POINT, next);
194
195 if (myMovementState == MerchantState.TRANSITTING)
196 {
197
198 if (next != null)
199 {
200 waitDelay(MOVE_TO, 0.0, next);
201 }

 102

202
203 if (next == null)
204 {
205 waitDelay(STOP, 0.0, myMover);
206
207 double oldNumberSuccessfulTransits = getNumberSuccessfulTransits();
208 numberSuccessfulTransits = numberSuccessfulTransits + 1;
209
210 firePropertyChange(NUMBER_SUCCESSFUL_TRANSITS,
211 oldNumberSuccessfulTransits,
212 numberSuccessfulTransits);
213 }
214 }
215
216 if (myMovementState == MerchantState.HIJACKED)
217 {
218 //System.out.println(“Merchant Location: “ +
219 //myMover.getCurrentLocation());
220 }
221 }
222
223
224 /**
225 * Detection: Detects any mover within the sensor range. If it is a pirate
226 * the merchant will radio the Navy, increment numberPiratesEncountered, and
227 * add the pirate to detectedPirates list.
228 *
229 * @param contact
230 */
231 public void doDetection(Platform contact)
232 {
233 LinkedList detectedPirates = new LinkedList();
234
235 if (contact.getType() == PlatformType.PIRATE &&
236 !detectedPirates.contains(contact) &&
237 (myMovementState == MerchantState.TRANSITTING ||
238 myMovementState == MerchantState.EVADING))
239 {
240 detectedPirates.add(contact);
241
242 double oldNumberPiratesEncountered = getNumberPiratesEncountered();

 103

243
244 numberPiratesEncountered = getNumberPiratesEncountered() + 1;
245
246 //System.out.println(“I see you Pirate! “ + contact);
247
248 waitDelay(RADIO_NAVY, 0.0, Priority.HIGHER, this.myMover);
249
250 firePropertyChange(NUMBER_PIRATES_ENCOUNTERED,
251 oldNumberPiratesEncountered,
252 getNumberPiratesEncountered());
253 }
254 }
255
256 /**
257 * RadioNavy: Signals nearest Navy vessel for help. This is done via an
258 * adapter in the “main” file.
259 *
260 * @param merchant
261 */
262 public void doRadioNavy(Platform merchant)
263 {
264 MerchantState oldMyMovementState = getMyMovementState();
265 myMovementState = MerchantState.EVADING;
266
267 //System.out.println(“Help me!!!”);
268 //Send message to nearest Navy vessel
269
270 firePropertyChange(MY_MOVEMENT_STATE, oldMyMovementState,
271 getMyMovementState());
272 }
273
274 /**
275 * EvadeSuccessfully: Increments numberPiratesEvaded. Merchant continues on
276 * voyage.
277 **/
278 public void doEvadeSuccessfully()
279 {
280 double oldNumberPiratesEvaded = getNumberPiratesEvaded();
281 numberPiratesEvaded = getNumberPiratesEvaded() + 1;
282
283 firePropertyChange(NUMBER_PIRATES_EVADED,

 104

284 oldNumberPiratesEvaded,
285 getNumberPiratesEvaded());
286
287 }
288
289 /**
290 * Hijacked: Increments numberHijacked. Takes merchant back to pirate base
291 * camp for ransom negotiations.
292 **/
293 public void doHijacked(Platform pirate)
294 {
295 double oldNumberHijacked = getNumberHijacked();
296 numberHijacked = getNumberHijacked() + 1;
297
298 MerchantState oldState = getMyMovementState();
299 myMovementState = MerchantState.HIJACKED;
300
301 isAlive = false;
302
303 myMover.setIsAlive(isAlive);
304
305 waitDelay(STOP, 0.0, Priority.HIGH);
306
307 double pirateCampX = pirate.getInitialLocation ().getX ();
308 double pirateCampY = pirate.getInitialLocation ().getY();
309
310 //If pirate Camp is on GOA
311 if(pirateCampY > 285)
312 {
313 double hijackedIOMerchantX;
314 double hijackedIOMerchantY;
315 hijackedIOMerchantX = pirateCampY + 5;
316 hijackedIOMerchantY = pirateCampX;
317
318 Point2D merchantIOHijackLocation = new Point2D.Double (
319 hijackedIOMerchantX, hijackedIOMerchantY);
320
321 waitDelay (MOVE_TO, 2.0, merchantIOHijackLocation);
322 }
323 //IF pirate camp is on Indian Ocean
324 else

 105

325 {
326 double hijackedGOAMerchantX;
327 double hijackedGOAMerchantY;
328
329 hijackedGOAMerchantX = pirateCampX +5;
330 hijackedGOAMerchantY = pirateCampY;
331
332 Point2D merchantGOAHijackLocation = new Point2D.Double (
333 hijackedGOAMerchantX, hijackedGOAMerchantY);
334
335 waitDelay (MOVE_TO, 2.0, merchantGOAHijackLocation);
336 }
337
338 firePropertyChange(NUMBER_HIJACKED, oldNumberHijacked,
339 getNumberHijacked());
340 firePropertyChange(MY_MOVEMENT_STATE, oldState, getMyMovementState());
341 }
342
343 /**
344 * Returns a String containing the type of Player.
345 *
346 **/
347 @Override
348 public String toString()
349 {
350 return “I am a (“ + myMover.getType() + “)”;
351 }
352 ///*************************REMOVED ALL SETTERS AND GETTERS******************//

 106

THIS PAGE INTENTIONALLY LEFT BLANK

 107

APPENDIX D. BAYLA PIRATE DEPARTURE PROCESS JAVA CODE.

 1 /*
 2 * PirateGoaDepartureProcess.java
 3 */
 4 package process;
 5
 6 import simkit.SimEntityBase;
 7 import simkit.random.RandomVariate;
 8
 9 /**
 10 * Generates departure times for pirates leaving the Gulf of Aden(GOA).
 11 *
 12 * @version $Id: BaylaPirateDepartureProcess.java 168 2013–02–14 06:59:16Z crhutchi $
 13 * @author Chad R Hutchins
 14 */
 15 public class BaylaPirateDepartureProcess extends SimEntityBase {
 16
 17 /**
 18 * Parameters. Contains Setters and Getters
 19 **/
 20 private RandomVariate IoDepartureTimeGenerator; //Generates depature times
 21
 22 /**
 23 * State Variables. Contains only getters, no setters.
 24 **/
 25 protected int numberDepartedIO;
 26
 27 /**
 28 * String constant for firePropertyChange modification of the state
 29 * variable, not visible outside this class
 30 **/
 31 private final String NUMBER_DEPARTED_IO = “numberDepartedIO”;
 32
 33 /**
 34 * String constant for waitDelay method scheduling, visible to other classes
 35 **/
 36 protected final String DEPART = “Depart”;
 37

 108

 38 /**
 39 * Main constructor. Sets IoDepartureTimeGenerator.
 40 *
 41 * @param rv The RandomVariate instance for DepartureTimeGeneratorSB times
 42 */
 43 public BaylaPirateDepartureProcess(RandomVariate rv)
 44 {
 45 this.setIoDepartureTimeGenerator(rv);
 46 }
 47
 48 /**
 49 * Reset Event: resets all state variables after each replication.
 50 */
 51 @Override
 52 public void reset()
 53 {
 54 super.reset();
 55 numberDepartedIO = 0;
 56 }
 57
 58 /**
 59 * Run Event: Initial event - put on event list at the start of e run.
 60 * State Transition: in reset() Schedule: First LeaveCampIo event with
 61 * departureTime delay
 62 */
 63 public void doRun()
 64 {
 65 firePropertyChange(NUMBER_DEPARTED_IO, getNumberDepartedIO());
 66
 67 waitDelay(DEPART, IoDepartureTimeGenerator.generate());
 68 }
 69
 70 /**
 71 * LeaveGoaPirateCamp Event: increments numberDepartedSB and schedules
 72 * it’s self with delay of departureTime.
 73 */
 74 public void doDepart()
 75 {
 76 int oldState = getNumberDepartedIO();
 77 numberDepartedIO = getNumberDepartedIO() + 1;
 78 firePropertyChange(NUMBER_DEPARTED_IO, oldState,

 109

 79 getNumberDepartedIO());
 80
 81 //**Comment for visual testing**//
 82 waitDelay(DEPART, IoDepartureTimeGenerator.generate());
 83 }
 84
 85 /**
 86 * @return the IoDepartureTimeGenerator
 87 */
 88 public RandomVariate getIoDepartureTimeGenerator()
 89 {
 90 return IoDepartureTimeGenerator;
 91 }
 92
 93 /**
 94 * @param IoDepartureTimeGenerator the IoDepartureTimeGenerator to set
 95 */
 96 public void setIoDepartureTimeGenerator(
 97 RandomVariate goaDepartureTimeGenerator)
 98 {
 99 this.IoDepartureTimeGenerator = goaDepartureTimeGenerator;
100 }
101
102 /**
103 * @return the numberDepartedIO
104 */
105 public int getNumberDepartedIO()
106 {
107 return numberDepartedIO;
108 }
109 }

 110

THIS PAGE INTENTIONALLY LEFT BLANK

 111

APPENDIX E. BAYLA PIRATE CAMP JAVA CODE.

1 /*
 2 * BaylaPirateCamp.java
 3 */
 4 package process;
 5
 6 import entities.PirateMoverManager;
 7 import java.util.Arrays;
 8 import java.util.LinkedList;
 9 import simkit.Priority;
 10 import simkit.SimEntityBase;
 11
 12 /**
 13 *
 14 * @author Chad R Hutchins
 15 *
 16 */
 17 public class BaylaPirateCamp extends SimEntityBase
 18 {
 19
 20 private PirateMoverManager[] pirateMM;
 21
 22 protected LinkedList<PirateMoverManager> myPirates;
 23 protected int numberDepartedIO;
 24
 25 /**
 26 * String constant for firePropertyChange modification of the state
 27 * variable, not visible outside this class
 28 **/
 29 private final String NUMBER_DEPARTED_IO = “numberDepartedIO”;
 30
 31 /**
 32 * String constant for waitDelay method scheduling, visible to other classes
 33 **/
 34 protected final String LEAVE = “Leave”;
 35 protected final String LEAVE_IO_PIRATE_CAMP = “LeaveIoPirateCamp”;
 36
 37 public BaylaPirateCamp(PirateMoverManager[] pirateMM)

 112

 38 {
 39 this.setPirateMM(pirateMM);
 40 this.myPirates = new LinkedList<PirateMoverManager>();
 41 }
 42
 43 /**
 44 * Reset Event: resets all state variables after each replication.
 45 */
 46 @Override
 47 public void reset()
 48 {
 49 super.reset();
 50 numberDepartedIO = 0;
 51 myPirates.clear();
 52 myPirates.addAll(Arrays.asList(pirateMM));
 53 }
 54
 55 public void doRun()
 56 {
 57 //firePropertyChange(NUMBER_DEPARTED_IO, getNumberDepartedIO());
 58 }
 59
 60
 61 public void doDepart()
 62 {
 63 if(!myPirates.isEmpty())
 64 {
 65 //System.out.println(“myPirate size: “ + myPirates.size());
 66 waitDelay(LEAVE, 0.0);
 67 }
 68 }
 69
 70 public void doLeave()
 71 {
 72 PirateMoverManager p = myPirates.removeFirst();
 73 p.waitDelay(LEAVE_IO_PIRATE_CAMP, 0.0, Priority.HIGH);
 74
 75 int oldState = getNumberDepartedIO();
 76 numberDepartedIO = getNumberDepartedIO() + 1;
 77 firePropertyChange(NUMBER_DEPARTED_IO, oldState,
 78 getNumberDepartedIO());

 113

 79
 80 // System.out.println(
 81 // “Number Pirate Departures from Bayla “ +
 82 // getNumberDepartedIO());
 83
 84 }
 85
 86 /**
 87 * @return the myPirates
 88 */
 89 public LinkedList<PirateMoverManager> getMyPirates() {
 90 return myPirates;
 91 }
 92
 93 /**
 94 * @return the numberDepartedIO
 95 */
 96 public int getNumberDepartedIO() {
 97 return numberDepartedIO;
 98 }
 99
100 /**
101 * @return the pirateMM
102 */
103 public PirateMoverManager[] getPirateMM() {
104 return pirateMM.clone();
105 }
106
107 /**
108 * @param pirateMM the pirateMM to set
109 */
110 public void setPirateMM(PirateMoverManager[] pirateMM) {
111 this.pirateMM = pirateMM.clone();
112 }
113
114 }
115

 114

THIS PAGE INTENTIONALLY LEFT BLANK

 115

APPENDIX F. SUEZ TO OMAN MERCHANT DEPARTURE JAVA CODE

 1 /*
 2 * SuezToOmanDepartureProcess.java
 3 */
 4 package process;
 5
 6 import simkit.SimEntityBase;
 7 import simkit.random.RandomVariate;
 8
 9 /**
 10 * Generates departure times for merchants sailing out of the Suez to Oman.
 11 *
 12 * @version $Id: SuezToOmanMerchantDepartureProcess.java 169 2013–02–14
 13 * 20:56:17Z crhutchi $
 14 * @author Chad R Hutchins
 15 */
 16 public class SuezToOmanMerchantDepartureProcess extends SimEntityBase {
 17
 18 /**
 19 * Parameters. Contains Setters and Getters
 20 **/
 21 //Generates depature times
 22 private RandomVariate merchantDepartureTimeGenerator;
 23
 24 /**
 25 * State Variables. Contains only getters, no setters.
 26 **/
 27 protected int numberDeparted;
 28
 29 /**
 30 * String constant for firePropertyChange modification of the state
 31 * variable, not visible outside this class
 32 **/
 33 private final String NUMBER_DEPARTED = “numberDeparted”;
 34
 35 /**
 36 * String constant for waitDelay method scheduling, visible to other classes
 37 **/

 116

 38 protected final String DEPART = “Depart”;
 39
 40 /**
 41 * Main constructor. Sets merchantDepartureTimeGenerator.
 42 *
 43 * @param rv The RandomVariate instance for DepartureTimeGeneratorSB times
 44 */
 45 public SuezToOmanMerchantDepartureProcess(RandomVariate rv)
 46 {
 47 this.setMerchantDepartureTimeGenerator(rv);
 48 }
 49
 50 /**
 51 * Reset Event: resets all state variables after each replication.
 52 */
 53 @Override
 54 public void reset()
 55 {
 56 super.reset();
 57 numberDeparted = 0;
 58 }
 59
 60 /**
 61 * Run Event: Initial event - put on event list at the start of e run.
 62 * State Transition: in reset() Schedule: First LeaveCampIo event with
 63 * departureTime delay
 64 */
 65 public void doRun()
 66 {
 67 firePropertyChange(NUMBER_DEPARTED, getNumberDeparted());
 68
 69 waitDelay(DEPART, merchantDepartureTimeGenerator.generate());
 70 }
 71
 72 /**
 73 * Depart Event: increments numberDeparted and schedules
 74 * it’s self with delay of departureTime.
 75 */
 76 public void doDepart()
 77 {
 78 int oldState = getNumberDeparted();

 117

 79 numberDeparted = getNumberDeparted() + 1;
 80 firePropertyChange(NUMBER_DEPARTED, oldState,
 81 getNumberDeparted());
 82
 83 //**Comment for visual testing**//
 84 waitDelay(DEPART, merchantDepartureTimeGenerator.generate());
 85 }
 86
 87 /**
 88 * @return the merchantDepartureTimeGenerator
 89 */
 90 public RandomVariate getMerchantDepartureTimeGenerator()
 91 {
 92 return merchantDepartureTimeGenerator;
 93 }
 94
 95 /**
 96 * @param merchantDepartureTimeGenerator the merchantDepartureTimeGenerator
 97 * to set
 98 */
 99 public void setMerchantDepartureTimeGenerator(
100 RandomVariate merchantDepartureTimeGenerator)
101 {
102 this.merchantDepartureTimeGenerator = merchantDepartureTimeGenerator;
103 }
104
105 /**
106 * @return the numberDeparted
107 */
108 public int getNumberDeparted()
109 {
110 return numberDeparted;
111 }
112 }

 118

THIS PAGE INTENTIONALLY LEFT BLANK

 119

APPENDIX G. SUEZ TO OMAN ORIGIN PORT JAVA CODE

 1 /*
 2 * SuezToOmanOrginPort.java
 3 */
 4 package process;
 5
 6 import entities.MerchantShipMoverManager;
 7 import java.util.Arrays;
 8 import java.util.LinkedList;
 9 import simkit.Priority;
 10 import simkit.SimEntityBase;
 11
 12 /**
 13 * Port of Origin for merchants sailing from Suez to Oman.
 14 *
 15 * @author Chad R Hutchins
 16 *
 17 */
 18 public class SuezToOmanOriginPort extends SimEntityBase
 19 {
 20 private MerchantShipMoverManager[] merchantMM;
 21
 22 protected LinkedList<MerchantShipMoverManager> myMerchants;
 23 protected int numberDepartedPort;
 24
 25 /**
 26 * String constant for firePropertyChange modification of the state
 27 * variable, not visible outside this class
 28 **/
 29 private final String NUMBER_DEPARTED_PORT = “numberDepartedPort”;
 30
 31 /**
 32 * String constant for waitDelay method scheduling, visible to other classes
 33 **/
 34 protected final String LEAVE = “Leave”;
 35 protected final String START_TRANSIT = “StartTransit”;
 36
 37 public SuezToOmanOriginPort(MerchantShipMoverManager[] merchantMM)

 120

 38 {
 39 this.setMerchantMM(merchantMM);
 40 this.myMerchants = new LinkedList<MerchantShipMoverManager>();
 41
 42 }
 43
 44 /**
 45 * Reset Event: resets all state variables after each replication.
 46 */
 47 @Override
 48 public void reset()
 49 {
 50 super.reset();
 51 numberDepartedPort = 0;
 52 myMerchants.clear();
 53 myMerchants.addAll(Arrays.asList(getMerchantMM()));
 54 }
 55
 56 public void doRun()
 57 {
 58 //firePropertyChange(NUMBER_DEPARTED_PORT, getNumberDepartedPort());
 59 }
 60
 61
 62 public void doDepart()
 63 {
 64 if(!myMerchants.isEmpty())
 65 {
 66 waitDelay(LEAVE, 0.0);
 67 }
 68 }
 69
 70 public void doLeave()
 71 {
 72 MerchantShipMoverManager m = myMerchants.removeFirst();
 73 m.waitDelay(START_TRANSIT, 0.0, Priority.HIGH);
 74
 75 int oldState = getNumberDepartedPort();
 76 numberDepartedPort = getNumberDepartedPort() + 1;
 77 firePropertyChange(NUMBER_DEPARTED_PORT, oldState,
 78 getNumberDepartedPort());

 121

 79
 80 // System.out.println(
 81 // “Number Merchant Ship Departures from SuezToMaldives Port “ +
 82 // getNumberDepartedPort());
 83
 84 }
 85
 86 /**
 87 * @return the myMerchants
 88 */
 89 public LinkedList<MerchantShipMoverManager> getMyMerchants() {
 90 return myMerchants;
 91 }
 92
 93 /**
 94 * @return the numberDepartedPort
 95 */
 96 public int getNumberDepartedPort() {
 97 return numberDepartedPort;
 98 }
 99
100 /**
101 * @return the merchantMM
102 */
103 public MerchantShipMoverManager[] getMerchantMM() {
104 return merchantMM.clone();
105 }
106
107 /**
108 * @param merchantMM the merchantMM to set
109 */
110 public void setMerchantMM(MerchantShipMoverManager[] merchantMM) {
111 this.merchantMM = merchantMM.clone();
112 }
113
114 }
115

 122

THIS PAGE INTENTIONALLY LEFT BLANK

 123

APPENDIX H. MMOWGLI ACTION PLAN 16: TRANSIT LANE PATROLS BY INTERNATIONAL
NAVIES

 124

Image
1

https://mmowgli.nps.edu/piracy/images/16/Opti
mized-TransitLane.jpg

(From Piracy MMOWGLI 2012 Action Plan Report)

 125

APPENDIX I. MMOWGLI ACTION PLAN 6: NAVAL QUARANTINE OF SOUTHEASTERN SOMALIA
COAST CAN PREVENT SUCCESSFUL PIRATE CAPTURE AND RANSOM OF HOSTAGE VICTIMS

AND MERCHANT SHIPS.

URL: https://mmowgli.nps.edu/piracy/reports/ActionPlanList_Piracy2012.html#ActionPlan6

Action Plan 6
ID

Action Plan 6 for piracyMMOWGLI 2012
Description

Naval Quarantine of southeastern Somalia coast can prevent successful pirate capture and ransom of hostage victims and
merchant ships.

Rating
2.7 ”thumbs up” average score from 0 to 3

Idea Card Chain
Idea Card Chain 209 started by player EdwardPreble: A naval quarantine along the southern Somali coast can prevent
captured ships from returning to pirate havens for ransom

Who Is Involved
Combined maritime forces and the merchant marine industry can cooperate directly. Large commercial ships above an agreed-
upon tonnage (which are easily detected using AIS, radar or remote sensing) are considered to be commandeered against their
will unless they have registered their intent to visit Somalia prior to approaching the 200nm limit.

What Is It
Naval forces can significantly reduce patrol and response requirements by establishing a naval quarantine on large merchant
vessels along the southern Somalia coastline. Unless it has filed prior notification of intent, merchant ships approaching within
200 nautical miles of shore are considered pirate captives and in need of rescue. Naval intervention on the high seas can
prevent captured ships from reaching pirate camps, where hostage ransom negotiations can take years to resolve.

What Will It Take
Merchant ships within 200 nm of the Somali coastline are considered captured, and naval forces can intervene to prevent

 126

hostages being held ransom ashore. Needed: reporting mechanism for commercial ships to combined maritime forces. Other
aspects of this simple plan fit well with current naval operations, simplifying detection of piracy capture. Pirates have no way
to reinforce and are contained within the vessel until they surrender. International law then takes over.

How Will It Change Things
Reduced cost and greater effectiveness for naval forces. Reduced risk and greater protection for merchant ships. Greatly
reduced protection and income for pirates, undercutting their profits and business model. Criminal threats against the crew are
possible at sea or ashore - international forces are able to act against pirates with much greater impact while at sea.

Authors
EdwardPreble, gm_becca, LawDawg, briefer, WillyRobert, Banaadirre

 127

Images

 Proposed Naval Quarantine of Southern Somali Coastline

https://mmowgli.nps.edu/piracy/images/6/NavalQuarantineSouthernS
omalia.reduced.png

Naval forces can significantly reduce patrol and response
requirements by establishing a naval quarantine on large merchant
vessels along the southern Somalia coastline. Unless it has filed prior
notification of intent, merchant ships approaching within 200 nautical
miles of shore are considered pirate captives and in need of rescue.
This prevents ships from reaching port where hostage ransoms can
take years to resolve.

 128

 Satellites and Piracy on the High Seas: Wind Speed and Pirate Attacks

http://www.esa.int/images/Wind_speed_and_attacks_H.jpg

Mean daily wind speed at Socotra (Yemen) and pirate attacks by latitude for
April 2010 to July 2011. When the wind speed dropped, pirate attacks
increased. Credits: D. Cook, S. Garrett and M. Rutherford, 2011.

 129

 Satellites and Piracy on the High Seas: Wave Height and Pirate
Attacks

http://www.esa.int/images/Wave_height_and_attackes_H.jpg

Satellite observations of wind speed (left) and significant wave height
(right) for 2010–2011 attempted and successful pirate attacks off
Somalia. The GlobWave databases provided observations of
significant wave height and surface wind speed for 54% of all pirate
attacks. Wind speeds during pirate attacks were mainly low but once
wind speeds exceeded 9 m/s, no successful attacks occurred. Nearly
all piracy was in seas with wave height less than 2.5 m, and most
attacks were conducted in calm oceans with waves less than 1 m in
height. No successful attacks occurred on days where wave height
exceeded 2.5 m. Credits: D. Cook, S. Garrett and M. Rutherford,
2011.

 130

 Piracy Coasts of Somalia: Situation March 2011

https://mmowgli.nps.edu/piracy/images/6/Somalia_Piracy_Camps.png

Political map, hostage holding grounds, launching sites, and other
information.

Video
 Dangerous Waters

https://www.youtube.com/watch?v=tb0R1JVvzic

STORY: The waters off Somalia are the most dangerous in the world. Piracy has flourished in lawless Somalia since the collapse of
central government 17 years ago. In an effort to combat the problem, the U.N. Security Council earlier this year passed a resolution
allowing foreign warships to enter Somalia’s territorial waters to fight piracy. But it hasn’t made Somali waters any safer. Attacks at
sea have soared this year. This is the pirate’s base - Eyl is a lawless former fishing outpost, part of the self-declared autonomous
Puntland region within Somalia. The Puntland authorities are critical of foreign efforts to stamp out piracy. [Abdul-Kadir Yusuf
Muse, Puntland Region Fishing and Ports Assistant Minister]: “We know they have been given full mandate by the security council to
intervene when the pirates strikes on Somali waters.” The Puntland authorities want the United Nations to set up an international
force to police Somali territorial waters. Dozens of ships have been hijacked for ransom this year. It’s a lucrative business. Most
captured vessels fetch thousands sometime millions of dollars in ransoms. Hostages are usually treated well. Shipping companies are
urged not to pay...but most do. On Thursday, a German ship and Japanese tanker were freed along with their crew, but pirates are
currently holding about 10 ships for ransom and more than 130 crew members.

 131

Author-to-Author Chat Messages
1 Monday, 25 June 2012

11:36:38-PDT
LawDawg: Would you include the UN in this?

2 Saturday, 30 June 2012
09:20:19-PDT

EdwardPreble: not sure. thanks for initial setup - finally had a chance to elaborate this plan. maybe we should
explore UN and diplomatic issues during Rule of Law discussions.

3 Friday, 6 July 2012
10:39:43-PDT

gm_donb: Needed: openly available maps of where ships are being held for ransom, and tracks taken when
captured ships are brought back to Somaiia by the pirates.

4 Tuesday, 17 July 2012
10:54:38-PDT

LawDawg: Would the use of weather ballons be beneficial in this scenario? They would be less expensive then
maintaining a multi-force naval presence to quarantine the area, is perceived as ‘less threatening’ by pirates (and
thus helps “protect” the hostages), and would probably require less political will to put into action.

5 Monday, 23 July 2012
16:16:30-PDT

LawDawg: http://www.esa.int/esaEO/SEMATD8X73H_index_0.html This article explores how environmental
conditions limit pirate activity. Conclusions show that wave hight and pirate attacks were correlated as well as
wind speed and pirate activty. (Once wind speeds exceeded 9 m/s, no successful attacks occurred. Nearly all
piracy was in seas with wave height less than 2.5 m, and most attacks were conducted in calm oceans with waves
less than 1 m in height. No successful attacks occurred on days where wave height exceeded 2.5 m.) Weather
patterns (and proper weather balloon placement) could help determine the correct boundaries for the naval
quarantine.

6 Tuesday, 24 July 2012
13:35:56-PDT

WillyRobert: interesting and something that we can without a doubt simulate! Thanks.

7 Sunday, 29 July 2012
11:46:21-PDT

WillyRobert: As I’m working on a model for this, we need to consider how we handle patrols around Socotra
Islands. It is within the 200NM zone, but thinking we need to add units between it and Somalia which stops easy
access to this key location. I am thinking at least 2 units need to be placed on the inside of the 200NM zone and
between the island and Somali mainland. Thoughts??

8 Sunday, 29 July 2012
11:47:44-PDT

WillyRobert: I’ll hopefully have a pic up within the next day or so to give example of what I’m thinking.

9 Thursday, 2 August 2012
09:32:52-PDT

LawDawg: I think the Socotra Islands would make an potential “check point” in the quarantine. Obviously
shippers don’t want to navigate around it (greater fuel costs, etc.) but with proper tracking and reporting it would
be known when ships travel through this particular area. This could result in increased vigulance on the part of
naval ships enforcing the quarantine. As for those who don’t report or check in, enter at your own risk.

10 Thursday, 2 August 2012
09:33:30-PDT

LawDawg: This could all be enforced through insurance rates as well...something to consider.

11 Thursday, 2 August 2012
11:56:04-PDT

LawDawg: I’m working on information sharing and coordination efforts which could tie nicely into this. I would
also look into the where Lloyds of London specifically defines their War Risk Zone for that area. Could hold
some impliacations for placement of naval vessels.

 132

12 Friday, 23 November 2012
13:33:45-PST

gm_donb: The maps of pirate camps don’t really pertain to this plan. They should be in separate plans for each
pirate camp.

13 Friday, 23 November 2012
16:56:59-PST

gm_donb: Multiple separate idea cards and action plans have been spun off for each pirate camp.

14 Thursday, 31 January 2013
21:40:05-PST

WillyRobert: Will the patrols in the IRTC remain the same? Or will they more of a quarantine role as well?

Player Comments
1 Saturday, 30 June 2012 08:32:02-

PDT
EdwardPreble: Smaller ships might also seek protection by registering prior intent to NEVER cross the
quarantine barrier. This allows naval forces to have a clear indication of a smaller ship’s intent if it appears
to be heading towards a pirate sanctuary.

2 Sunday, 1 July 2012 19:51:31-PDT Finius Stormfroth: Boarding ships full of hostages at sea is a risky business. Does the quarantine continue
if the pirates execute hostages or rig ships to sink to deter rescue attempts?

3 Monday, 2 July 2012 13:48:56-PDT EdwardPreble: Executing hostages and sinking ransomed ships can also occur while the ship is held at a
pirate camp ashore. So it is always a pirate option. The difference in the situation is that pirate captors have
no shore infrastructure at sea, no help from other pirates, no communications with the crime bosses, and no
other exit (for themselves personally) besides capture by naval forces.

4 Thursday, 31 January 2013
21:41:51-PST

WillyRobert: Should we consider this along Northern Somalia too? Not just Southern? It
wouldn’t be much different than the normal IRTC patrols.

(From Piracy MMOWGLI 2012 Action Plan Report)

 133

APPENDIX J. MMOWGLI ACTION PLAN 9: PIRATE CAMP OPERATIONS

URL: https://mmowgli.nps.edu/piracy/reports/ActionPlanList_Piracy2012.html#ActionPlan9

ACTION PLAN 9

ID
Action Plan 9 for piracyMMOWGLI 2012

Title
How vulnerable are pirate camps at Eyl Somalia to naval quarantine or hostage rescue?

Rating
1.5 ”thumbs up” average score from 1 to 3

Idea Card Chain
Idea Card Chain 480 started by player EdwardPreble: It will be interesting to look at each publicly reported pirate camp to see
how vulnerable they are to recapture of hostages.

Who Is Involved
Combined maritime forces, EU, NATO, DoS, DoJ, African Union. These are most of the “players” involved, however, the
exact mix and other agency involvement is dependent on other policy mandates.

What Is It
Eyl Somalia has been publicly identified as a place where pirates keep hostages and hold ships ransom. For more details
see card 482 . Naval assets and other law enforcement agencies actively patrolling and disrupting pirate activities on shore or
before pirates reach international waters. It could be as aggressive as the EU bombings of pirate camps
(http://www.bloomberg.com/news/2012–05–15/eu-navy-destroys-somali-pirates-supplies-in-shore-attack-1-.html) or like the
French hostage rescue from Somali pirates (http://articles.washingtonpost.com/2008–04–12/world/36840240_1_somali-
pirates-semiautonomous-puntland-region-french-luxury-yacht). Or it could simply be more passive as a deterrent for pirates by
having naval ships patrolling within view of the shorelines.

 134

What Will It Take
It will need persistent ISR assets patrolling the Somali coasts, identifying actual pirates from fishermen. INTEL is
continuously needed to track pirate activity on shore and notifying task force commanders of probable pirate activity.

How Will It Change Things
It stops pirates from leaving the shores and getting into international waters. It also allows for a deterrent effect and a means to
train Somali coast guard.

Authors
LawDawg, gm_chad, EdwardPreble, gm_becca, WillyRobert

Images
1

Pirate camps identified in public press
“GIS & Satellite: Applications for Piracy-Monitoring” by Josh
Lyons, Freedom From Fear magazine, 17 July 2012.
https://mmowgli.nps.edu/piracy/images/9/SomaliaPirateCamps.
png

 135

2

Horn of Africa, Socotra Island, Garaad, Eyl Somalia
Horn of Africa closeup showing one northern camp at Garaad
Somalia, Socotra Island (Yemen) and eastern camp at Eyl
Somalia.
https://mmowgli.nps.edu/piracy/images/9/HornOfAfricaSocotraI
slandGaraadEylSomalia.png

3

Shoreline Eyl Somalia: Dinghies, Merchant Ship
More information on Eyl Somalia can be found on Wikipedia at
 http://en.wikipedia.org/wiki/Eyl
https://mmowgli.nps.edu/piracy/images/9/ShorelineEylSomalia
DinghiesMerchantShip.png

 136

4

Shoreline Eyl Somalia: Dinghies On Sand
Port facilities could not be much simpler, skiffs are dragged up
on the sand. Not a single pier is present. Captive freighters are
kept offshore at anchor.
https://mmowgli.nps.edu/piracy/images/9/ShorelineEylSomalia
DinghiesOnSand.reduced.png

5

Fishin Boats (near Eyl) with Freighter in Background
Publicly posted photograph gives beach perspective of fishing
boats, also shows freighter just offshore
 http://www.panoramio.com/photo/15898870
https://mmowgli.nps.edu/piracy/images/9/FishinBoatsFreighterI
nBackground0.png

(From Piracy MMOWGLI 2012 Action Plan Report)

 137

APPENDIX K. PIRATE CAMP OPERATIONS SIMKIT ASSEMBLY

 1 /*
 2 * PirateCampOperations.java
 3 */
 //****************Imports Removed***//
 58
 59 /**
 60 *
 61 * @author Chad R Hutchins
 62 * @version $Id:
 63 */
 64 public class PirateCampOperations {
 65
 66 /**
 67 * @param args the command line arguments
 68 */
 69 public static void main(String[] args) {
 70 //******Constants for Scenario***//
 71
 72 //**Simulation specific contants**//
 73 double simTime = 730.0;//1 Month //2208.0;// 3 months//8765.81 = 1 year;
 74 double scaleDistance = 0.5; //scales the distances in the simulation
 75
 76 //**Pirate Constants**//
 77 int numElaayoPirates = 6;
 78 int numQandalaPirates = 8;
 79 int numAluulaPirates = 6;
 80 int numBargalPirates = 6;
 81 int numHafunPirates = 8;
 82 int numBaylaPirates = 6;
 83 int numEylPirates = 6;
 84 int numGaracadPirates = 8;
 85 int numHobyoPirates = 6;
 86 int numHarardherePirates = 8;
 87 double pirateMaxSpeed = 15 * scaleDistance;
 88 double pirateVisualSensorRange = 15 * scaleDistance;
 89 //**Navy Constants**//
 90 int numIoNavyShips = 7;
 91 int numGoaNavyShips = 3;
 92 double navyMaxSpeed = 30.0 * scaleDistance;
 93 double navySurfaceRadarRange = 25 * scaleDistance;
 94 //**Merchant Constants**//
 95 int numSuezToOmanMerchants = 370;
 96 int numSuezToMaldivesMerchants = 370;
 97 int numOmanToSuezMerchants = 370;
 98 int numOmanToMaldivesMerchants = 370;
 99 int numMaldivesToSuezMerchants = 370;
 100 int numMaldivesToOmanMerchants = 370;
 101 double merchantSurfaceRadarRange = 20 * scaleDistance;
 102 double merchantMaxSpeed = 20 * scaleDistance;
 103
 104 //**Probability Distribution Constants**//
 105 double elaayoInterarrivalTimeLambda = 150.0;
 106 double qandalaInterarrivalTimeLambda = 100.0;
 107 double aluulaInterarrivalTimeLambda = 150.0;
 108 double bargalInterarrivalTimeLambda = 150.0;
 109 double hafunInterarrivalTimeLambda = 100.0;

 138

 110 double baylaInterarrivalTimeLambda = 150.0;
 111 double eylInterarrivalTimeLambda = 150.0;
 112 double garacadInterarrivalTimeLambda = 100.0;
 113 double hobyoInterarrivalTimeLambda = 150.0;
 114 double harardhereInterarrivalTimeLambda = 100.0;
 115 double stoInterarrivalTimeLambda = 2.2;
 116 double stmInterarrivalTimeLambda = 2.21;
 117 double otsInterarrivalTimeLambda = 2.22;
 118 double otmInterarrivalTimeLambda = 2.23;
 119 double mtsInterarrivalTimeLambda = 2.24;
 120 double mtoInterarrivalTimeLambda = 2.25;
 121 double probOfAttackingDecision = 0.75;
 122 double minUnsuccessfulAttackTime = 0.1;
 123 double maxUnsuccessfulAttackTime = 0.75;
 124
 125
 126 //*****Constants FOR INTIIAL LOCATIONS OF ENTITIES****************************//
 127 //**Pirate Camps**//
 128 Point2D pirateCampElaayo = new Point2D.Double(306.0, 301.0);
 129 Point2D pirateCampQandala = new Point2D.Double(339.0, 310.0);
 130 Point2D pirateCampAluula = new Point2D.Double(367.0, 323.0);
 131 Point2D pirateCampBargal = new Point2D.Double(379.0, 300.0);
 132 Point2D pirateCampHafun = new Point2D.Double(384.0, 273.0);
 133 Point2D pirateCampBayla = new Point2D.Double(370.0, 240.0);
 134 Point2D pirateCampEyl = new Point2D.Double(345.0, 183.0);
 135 Point2D pirateCampGaracad = new Point2D.Double(322.0, 155.0);
 136 Point2D pirateCampHobyo = new Point2D.Double(305.0, 103.0);
 137 Point2D pirateCampHarardhere = new Point2D.Double(283.0, 79.0);
 138
 139 //**Navy Ships**//
 140 Point2D initialLocationNavyPB1 = new Point2D.Double(294.0, 325.0);
 141 Point2D initialLocationNavyPB2 = new Point2D.Double(331.0, 337.0);
 142 Point2D initialLocationNavyPB3 = new Point2D.Double(365.0, 346.0);
 143 Point2D initialLocationNavyPB4 = new Point2D.Double(408.0, 313.0);
 144 Point2D initialLocationNavyPB5 = new Point2D.Double(410.0, 276.0);
 145 Point2D initialLocationNavyPB6 = new Point2D.Double(396.0, 243.0);
 146 Point2D initialLocationNavyPB7 = new Point2D.Double(370.0, 185.0);
 147 Point2D initialLocationNavyPB8 = new Point2D.Double(344.0, 154.0);
 148 Point2D initialLocationNavyPB9 = new Point2D.Double(330.0, 101.0);
 149 Point2D initialLocationNavyPB10 = new Point2D.Double(310.0, 76.0);
 150
 151 //**Merchant Ships starting**//
 152 Point2D initialLocationMerchantSuezToMaldives =
 153 new Point2D.Double(145.0, 345.0);
 154 Point2D initialLocationMerchantSuezToOman =
 155 new Point2D.Double(145.0, 345.0);
 156 Point2D initialLocationMerchantMaldivesToSuez =
 157 new Point2D.Double(1135.0, 250.0);
 158 Point2D initialLocationMerchantMaldivesToOman =
 159 new Point2D.Double(1135.0, 250.0);
 160 Point2D initialLocationMerchantOmanToMaldives =
 161 new Point2D.Double(655.0, 725.0);
 162 Point2D initialLocationMerchantOmanToSuez =
 163 new Point2D.Double(655.0, 725.0);
 164
 165 //**Pirate Paths**//
 166 double minLatGoaPiratePath = 145.00;
 167 double maxLatGoaPiratePath = 465.00;
 168 double minLonGoaPiratePath = 340.0;
 169 double maxLonGoaPiratePath = 460.0;
 170 double minLatIoPiratePath = 400.0;

 139

 171 double maxLatIoPiratePath = 1060.0;
 172 double minLonIoPiratePath = 0.0;
 173 double maxLonIoPiratePath = 720.0;
 174 double minLatGoaAndIoPiratePath = 145.0;
 175 double maxLatGoaAndIoPiratePath = 1060.0;
 176 double minLonGoaAndIoPiratePath = 0.0;
 177 double maxLonGoaAndIoPiratePath = 720.0;
 178
 179 //**Merchant Paths**//
 180 double minLatSuezToMaldivesMerchantWaypoint1 = 170.00;
 181 double maxLatSuezToMaldivesMerchantWaypoint1 = 194.0;
 182 double minLonSuezToMaldivesMerchantWaypoint1 = 320.0;
 183 double maxLonSuezToMaldivesMerchantWaypoint1 = 328.0;
 184 double minLatSuezToMaldivesMerchantWaypoint2 = 425.0;
 185 double maxLatSuezToMaldivesMerchantWaypoint2 = 450.0;
 186 double minLonSuezToMaldivesMerchantWaypoint2 = 390.0;
 187 double maxLonSuezToMaldivesMerchantWaypoint2 = 415.0;
 188 double minLatSuezToMaldivesMerchantWaypoint3 = 1055.0;
 189 double maxLatSuezToMaldivesMerchantWaypoint3 = 1090.0;
 190 double minLonSuezToMaldivesMerchantWaypoint3 = 250.0;
 191 double maxLonSuezToMaldivesMerchantWaypoint3 = 265.0;
 192 double minLatSuezToMaldivesMerchantWaypoint4 = 1115.0;
 193 double maxLatSuezToMaldivesMerchantWaypoint4 = 1140.0;
 194 double minLonSuezToMaldivesMerchantWaypoint4 = 220.0;
 195 double maxLonSuezToMaldivesMerchantWaypoint4 = 260.0;
 196 double minLatSuezToOmanMerchantWaypoint1 = 170.00;
 197 double maxLatSuezToOmanMerchantWaypoint1 = 194.00;
 198 double minLonSuezToOmanMerchantWaypoint1 = 320.0;
 199 double maxLonSuezToOmanMerchantWaypoint1 = 328.0;
 200 double minLatSuezToOmanMerchantWaypoint2 = 425.0;
 201 double maxLatSuezToOmanMerchantWaypoint2 = 450.0;
 202 double minLonSuezToOmanMerchantWaypoint2 = 390.0;
 203 double maxLonSuezToOmanMerchantWaypoint2 = 415.0;
 204 double minLatSuezToOmanMerchantWaypoint3 = 625.0;
 205 double maxLatSuezToOmanMerchantWaypoint3 = 645.0;
 206 double minLonSuezToOmanMerchantWaypoint3 = 515.0;
 207 double maxLonSuezToOmanMerchantWaypoint3 = 530.0;
 208 double minLatSuezToOmanMerchantWaypoint4 = 685.0;
 209 double maxLatSuezToOmanMerchantWaypoint4 = 700.0;
 210 double minLonSuezToOmanMerchantWaypoint4 = 720.0;
 211 double maxLonSuezToOmanMerchantWaypoint4 = 725.0;
 212 double minLatMaldivesToSuezMerchantWaypoint1 = 1065.0;
 213 double maxLatMaldivesToSuezMerchantWaypoint1 = 1090.00;
 214 double minLonMaldivesToSuezMerchantWaypoint1 = 265.0;
 215 double maxLonMaldivesToSuezMerchantWaypoint1 = 280.0;
 216 double minLatMaldivesToSuezMerchantWaypoint2 = 425.0;
 217 double maxLatMaldivesToSuezMerchantWaypoint2 = 460.0;
 218 double minLonMaldivesToSuezMerchantWaypoint2 = 410.0;
 219 double maxLonMaldivesToSuezMerchantWaypoint2 = 420.0;
 220 double minLatMaldivesToSuezMerchantWaypoint3 = 170.0;
 221 double maxLatMaldivesToSuezMerchantWaypoint3 = 200.0;
 222 double minLonMaldivesToSuezMerchantWaypoint3 = 325.0;
 223 double maxLonMaldivesToSuezMerchantWaypoint3 = 340.0;
 224 double minLatMaldivesToSuezMerchantWaypoint4 = 140.0;
 225 double maxLatMaldivesToSuezMerchantWaypoint4 = 155.0;
 226 double minLonMaldivesToSuezMerchantWaypoint4 = 330.0;
 227 double maxLonMaldivesToSuezMerchantWaypoint4 = 350.0;
 228 double minLatMaldivesToOmanMerchantWaypoint1 = 1065.0;
 229 double maxLatMaldivesToOmanMerchantWaypoint1 = 1090.0;
 230 double minLonMaldivesToOmanMerchantWaypoint1 = 265.0;
 231 double maxLonMaldivesToOmanMerchantWaypoint1 = 280.0;

 140

 232 double minLatMaldivesToOmanMerchantWaypoint2 = 890.0;
 233 double maxLatMaldivesToOmanMerchantWaypoint2 = 900.0;
 234 double minLonMaldivesToOmanMerchantWaypoint2 = 500.0;
 235 double maxLonMaldivesToOmanMerchantWaypoint2 = 515.0;
 236 double minLatMaldivesToOmanMerchantWaypoint3 = 695.0;
 237 double maxLatMaldivesToOmanMerchantWaypoint3 = 715.0;
 238 double minLonMaldivesToOmanMerchantWaypoint3 = 700.0;
 239 double maxLonMaldivesToOmanMerchantWaypoint3 = 720.0;
 240 double minLatMaldivesToOmanMerchantWaypoint4 = 685.0;
 241 double maxLatMaldivesToOmanMerchantWaypoint4 = 695.0;
 242 double minLonMaldivesToOmanMerchantWaypoint4 = 725.0;
 243 double maxLonMaldivesToOmanMerchantWaypoint4 = 730.0;
 244 double minLatOmanToMaldivesMerchantWaypoint1 = 700.0;
 245 double maxLatOmanToMaldivesMerchantWaypoint1 = 720.0;
 246 double minLonOmanToMaldivesMerchantWaypoint1 = 685.0;
 247 double maxLonOmanToMaldivesMerchantWaypoint1 = 695.0;
 248 double minLatOmanToMaldivesMerchantWaypoint2 = 890.0;
 249 double maxLatOmanToMaldivesMerchantWaypoint2 = 900.0;
 250 double minLonOmanToMaldivesMerchantWaypoint2 = 470.0;
 251 double maxLonOmanToMaldivesMerchantWaypoint2 = 490.0;
 252 double minLatOmanToMaldivesMerchantWaypoint3 = 1060.0;
 253 double maxLatOmanToMaldivesMerchantWaypoint3 = 1085.0;
 254 double minLonOmanToMaldivesMerchantWaypoint3 = 245.0;
 255 double maxLonOmanToMaldivesMerchantWaypoint3 = 265.0;
 256 double minLatOmanToMaldivesMerchantWaypoint4 = 1110.0;
 257 double maxLatOmanToMaldivesMerchantWaypoint4 = 1125.0;
 258 double minLonOmanToMaldivesMerchantWaypoint4 = 230.0;
 259 double maxLonOmanToMaldivesMerchantWaypoint4 = 250.0;
 260 double minLatOmanToSuezMerchantWaypoint1 = 700.0;
 261 double maxLatOmanToSuezMerchantWaypoint1 = 720.0;
 262 double minLonOmanToSuezMerchantWaypoint1 = 685.0;
 263 double maxLonOmanToSuezMerchantWaypoint1 = 695.0;
 264 double minLatOmanToSuezMerchantWaypoint2 = 620.0;
 265 double maxLatOmanToSuezMerchantWaypoint2 = 635.0;
 266 double minLonOmanToSuezMerchantWaypoint2 = 530.0;
 267 double maxLonOmanToSuezMerchantWaypoint2 = 545.0;
 268 double minLatOmanToSuezMerchantWaypoint3 = 170.0;
 269 double maxLatOmanToSuezMerchantWaypoint3 = 200.00;
 270 double minLonOmanToSuezMerchantWaypoint3 = 325.0;
 271 double maxLonOmanToSuezMerchantWaypoint3 = 340.0;
 272 double minLatOmanToSuezMerchantWaypoint4 = 140.0;
 273 double maxLatOmanToSuezMerchantWaypoint4 = 155.0;
 274 double minLonOmanToSuezMerchantWaypoint4 = 335.0;
 275 double maxLonOmanToSuezMerchantWaypoint4 = 350.0;
 276
 277 //**********PROBABILITY DISTRIBUTIONS FOR ENTIRE SIMULATION******************//
 278 //Arrival and Departure Processes
 279 /*
 280 * TODO: Discuss this distribution
 281 */
 282 RandomVariate elaayoInterarrivalTime = RandomVariateFactory.
 283 getInstance(“Poisson,” elaayoInterarrivalTimeLambda);
 284 RandomVariate qandalaInterarrivalTime = RandomVariateFactory.
 285 getInstance(“Poisson,” qandalaInterarrivalTimeLambda);
 286 RandomVariate aluulaInterarrivalTime = RandomVariateFactory.
 287 getInstance(“Poisson,” aluulaInterarrivalTimeLambda);
 288 RandomVariate bargalInterarrivalTime = RandomVariateFactory.
 289 getInstance(“Poisson,” bargalInterarrivalTimeLambda);
 290 RandomVariate hafunInterarrivalTime = RandomVariateFactory.
 291 getInstance(“Poisson,” hafunInterarrivalTimeLambda);
 292 RandomVariate baylaInterarrivalTime = RandomVariateFactory.

 141

 293 getInstance(“Poisson,” baylaInterarrivalTimeLambda);
 294 RandomVariate eylInterarrivalTime = RandomVariateFactory.
 295 getInstance(“Poisson,” eylInterarrivalTimeLambda);
 296 RandomVariate garacadInterarrivalTime = RandomVariateFactory.
 297 getInstance(“Poisson,” garacadInterarrivalTimeLambda);
 298 RandomVariate hobyoInterarrivalTime = RandomVariateFactory.
 299 getInstance(“Poisson,” hobyoInterarrivalTimeLambda);
 300 RandomVariate harardhereInterarrivalTime = RandomVariateFactory.
 301 getInstance(“Poisson,” harardhereInterarrivalTimeLambda);
 302
 303
 304 RandomVariate stoMerchantInterarrivalTime = RandomVariateFactory.
 305 getInstance(“Poisson,” stoInterarrivalTimeLambda);
 306 RandomVariate stmMerchantInterarrivalTime = RandomVariateFactory.
 307 getInstance(“Poisson,” stmInterarrivalTimeLambda);
 308 RandomVariate otsMerchantInterarrivalTime = RandomVariateFactory.
 309 getInstance(“Poisson,” otsInterarrivalTimeLambda);
 310 RandomVariate otmMerchantInterarrivalTime = RandomVariateFactory.
 311 getInstance(“Poisson,” otmInterarrivalTimeLambda);
 312 RandomVariate mtsMerchantInterarrivalTime = RandomVariateFactory.
 313 getInstance(“Poisson,” mtsInterarrivalTimeLambda);
 314 RandomVariate mtoMerchantInterarrivalTime = RandomVariateFactory.
 315 getInstance(“Poisson,” mtoInterarrivalTimeLambda);
 316
 317 //**Applies to both IO and GOA pirates**//
 318
 319 /*
 320 * This distribution attempts to capture whether or not the pirate will
 321 * attack a detected merchant vessel. We attempt to capture the types
 322 * of vessels the proportion of the types of vessels that traverse
 323 * around the Horn of Africa and weather factors. However, without any
 324 * real data, which no one will ever have, this is just an educated
 325 * guess, and the best COA is to either say 50/50 or that the pirates
 326 * are more likely to attack than not.
 327 */
 328 DiscreteRandomVariate attackDecision =
 329 RandomVariateFactory.
 330 getDiscreteRandomVariateInstance(“Bernoulli,”
 331 probOfAttackingDecision);
 332
 333 //Random variable for how long an attack on a merchant takes
 334 RandomVariate[] unsuccessfulAttackTime = new RandomVariate[1];
 335 unsuccessfulAttackTime[0] =
 336 RandomVariateFactory.getInstance(“Uniform,”
 337 minUnsuccessfulAttackTime,
 338 maxUnsuccessfulAttackTime);
 339
 340 //**GOA Pirates probability distributions**//
 341 RandomVariate[] goaPiratePathGenerator = new RandomVariate[2];
 342 goaPiratePathGenerator[0] =
 343 RandomVariateFactory.getInstance(“Uniform,”
 344 minLatGoaPiratePath,
 345 maxLatGoaPiratePath);
 346 goaPiratePathGenerator[1] =
 347 RandomVariateFactory.getInstance(“Uniform,”
 348 minLonGoaPiratePath,
 349 maxLonGoaPiratePath);
 350
 351 //**IO Pirates probability distributions**//
 352 /*
 353 * TODO: Discuss this distribution

 142

 354 */
 355 RandomVariate[] ioPiratePathGenerator = new RandomVariate[2];
 356 ioPiratePathGenerator[0] =
 357 RandomVariateFactory.getInstance(“Uniform,”
 358 minLatIoPiratePath,
 359 maxLatIoPiratePath);
 360 ioPiratePathGenerator[1] =
 361 RandomVariateFactory.getInstance(“Uniform,”
 362 minLonIoPiratePath,
 363 maxLonIoPiratePath);
 364 /*
 365 * Bargal pirates are known to attack in GOA and in IO so their paths are
 366 * distributed over both areas.
 367 */
 368 /*
 369 * TODO: Discuss this distribution
 370 */
 371 RandomVariate[] bargalPiratePathGenerator = new RandomVariate[2];
 372 bargalPiratePathGenerator[0] =
 373 RandomVariateFactory.getInstance(“Uniform,”
 374 minLatGoaAndIoPiratePath,
 375 maxLatGoaAndIoPiratePath);
 376 bargalPiratePathGenerator[1] =
 377 RandomVariateFactory.getInstance(“Uniform,”
 378 minLonGoaAndIoPiratePath,
 379 maxLonGoaAndIoPiratePath);
 380
 381 /*
 382 * The successOrFailGenerator distributions captures the probability
 383 * that an attack is successful or not. We utilize IMB data from 2008 -
 384 * 2011 in order to obtain the probability.
 385 */
 386 DiscreteRandomVariate successOrFailGenerator = RandomVariateFactory.
 387 getDiscreteRandomVariateInstance(“Bernoulli,” 0.26);
 388
 389 //*****************END OF PROBABILITY DISTRIBUTIONS**************************//
 390
 391 //*****************START OF STAT KEEPING VARIABLES****************************//
 392 double totalNumDepartedGOA = 0;
 393 double totalNumDepartedIO = 0;
 394 double totalNumberPiratesDeparted = 0;
 395 double numberOfGoaPiratesDetected = 0;
 396 double numberOfIoPiratesDetected = 0;
 397 double totalNumberPiratesDetected = 0;
 398 double numberAttemptedAttacksEllayoPirate = 0;
 399 double numberAttemptedAttacksQandalaPirate = 0;
 400 double numberAttemptedAttacksAluulaPirate = 0;
 401 double numberAttemptedAttacksBargalPirate = 0;
 402 double numberAttemptedAttacksHafunPirate = 0;
 403 double numberAttemptedAttacksBaylaPirate = 0;
 404 double numberAttemptedAttacksEylPirate = 0;
 405 double numberAttemptedAttacksGaracadPirate = 0;
 406 double numberAttemptedAttacksHobyoPirate = 0;
 407 double numberAttemptedAttacksHarardherePirate = 0;
 408 double totalAttemptedAttacks = 0;
 409 double totalNumberSuccessfulHijacksStM = 0;
 410 double totalNumberSuccessfulHijacksStO = 0;
 411 double totalNumberSuccessfulHijacksOtM = 0;
 412 double totalNumberSuccessfulHijacksOtS = 0;
 413 double totalNumberSuccessfulHijacksMtS = 0;
 414 double totalNumberSuccessfulHijacksMtO = 0;

 143

 415 double totalNumberSuccessfulHijacks = 0;
 416 double numberStOMerchantTransits = 0;
 417 double numberStMMerchantTransits = 0;
 418 double numberOtSMerchantTransits = 0;
 419 double numberOtMMerchantTransits = 0;
 420 double numberMtSMerchantTransits = 0;
 421 double numberMtOMerchantTransits = 0;
 422 double totalNumberMerchantTransits = 0;
 423 double numberStOSuccessfulTransits = 0;
 424 double numberStMSuccessfulTransits = 0;
 425 double numberOtSSuccessfulTransits = 0;
 426 double numberOtMSuccessfulTransits = 0;
 427 double numberMtSSuccessfulTransits = 0;
 428 double numberMtOSuccessfulTransits = 0;
 429 double totalNumberSuccessfulMerchantTransits = 0;
 430 double navalEffectiveness = 0;
 431 double pirateEffectiveness1 = 0;
 432 double pirateEffectiveness2 = 0;
 433 double merchantSuccessRate = 0;
 434
 435 //********************START OF PIRATE ENTITIES********************************//
 436 PlatformType typePirate = PlatformType.PIRATE;
 437 //********************START OF GOA Pirates************************************//
 438
 439 //*****************START OF ELAAYO PIRATE IMPLEMENTATION**********************//
 440 ElaayoPirateDepartureProcess elaayoDepartureTimeProcess=
 441 new ElaayoPirateDepartureProcess(elaayoInterarrivalTime);
 442
 443 Platform[] elaayoPirateMover = new Platform[numElaayoPirates];
 444 for (int i = 0; i < numElaayoPirates; ++i) {
 445 elaayoPirateMover[i] = new Platform(“Pirate-Ellayo” + i,
 446 pirateCampElaayo,
 447 pirateMaxSpeed, typePirate);
 448 }
 449
 450 System.out.println(“Pirate: “ + elaayoPirateMover[0].paramString());
 451
 452 CookieCutterSensor[] elaayoPirateSensor =
 453 new CookieCutterSensor[elaayoPirateMover.length];
 454 for (int i = 0; i < elaayoPirateMover.length; ++i) {
 455 elaayoPirateSensor[i] =
 456 new CookieCutterSensor(elaayoPirateMover[i],
 457 pirateVisualSensorRange);
 458 }
 459
 460 PirateMoverManager[] elaayoPirateManager =
 461 new PirateMoverManager[elaayoPirateMover.length];
 462 for (int i = 0; i < elaayoPirateMover.length; ++i) {
 463 elaayoPirateManager[i] =
 464 new PirateMoverManager(elaayoPirateMover[i],
 465 elaayoPirateSensor[i],
 466 pirateCampElaayo,
 467 goaPiratePathGenerator,
 468 attackDecision,
 469 unsuccessfulAttackTime);
 470 }
 471
 472 ElaayoPirateCamp epc = new ElaayoPirateCamp(elaayoPirateManager);
 473 elaayoDepartureTimeProcess.addSimEventListener(epc);
 474
 475

 144

 476 //*****************END OF ELAAYO PIRATE IMPLEMENTATION************************//
 477 //*****************START OF QANDALA PIRATE IMPLEMENTATION*********************//
 478 QandalaPirateDepartureProcess qandalaDepartureTimeProcess=
 479 new QandalaPirateDepartureProcess(qandalaInterarrivalTime);
 480
 481 Platform[] qandalaPirateMover = new Platform[numQandalaPirates];
 482 for (int i = 0; i < numQandalaPirates; ++i) {
 483 qandalaPirateMover[i] = new Platform(“Pirate-Qandala” + i,
 484 pirateCampQandala,
 485 pirateMaxSpeed, typePirate);
 486 }
 487
 488 System.out.println(“Pirate: “ + qandalaPirateMover[0].paramString());
 489
 490 CookieCutterSensor[] qandalaPirateSensor =
 491 new CookieCutterSensor[qandalaPirateMover.length];
 492 for (int i = 0; i < qandalaPirateMover.length; ++i) {
 493 qandalaPirateSensor[i] =
 494 new CookieCutterSensor(qandalaPirateMover[i],
 495 pirateVisualSensorRange);
 496 }
 497
 498 PirateMoverManager[] qandalaPirateManager =
 499 new PirateMoverManager[qandalaPirateMover.length];
 500 for (int i = 0; i < qandalaPirateMover.length; ++i) {
 501 qandalaPirateManager[i] =
 502 new PirateMoverManager(qandalaPirateMover[i],
 503 qandalaPirateSensor[i],
 504 pirateCampQandala,
 505 goaPiratePathGenerator,
 506 attackDecision,
 507 unsuccessfulAttackTime);
 508 }
 509
 510 QandalaPirateCamp qpc = new QandalaPirateCamp(qandalaPirateManager);
 511 qandalaDepartureTimeProcess.addSimEventListener(qpc);
 512
 513 //*****************END OF QANDALA PIRATE IMPLEMENTATION***********************//
 514 //****************START OF ALUULA PIRATE IMPLEMENTATION***********************//
 515
 516 AluulaPirateDepartureProcess aluulaDepartureTimeProcess=
 517 new AluulaPirateDepartureProcess(aluulaInterarrivalTime);
 518
 519 Platform[] aluulaPirateMover = new Platform[numAluulaPirates];
 520 for (int i = 0; i < numAluulaPirates; ++i) {
 521 aluulaPirateMover[i] = new Platform(“Pirate-Aluula” + i,
 522 pirateCampAluula,
 523 pirateMaxSpeed, typePirate);
 524 }
 525
 526 System.out.println(“Pirate: “ + aluulaPirateMover[0].paramString());
 527
 528 CookieCutterSensor[] aluulaPirateSensor =
 529 new CookieCutterSensor[aluulaPirateMover.length];
 530 for (int i = 0; i < aluulaPirateMover.length; ++i) {
 531 aluulaPirateSensor[i] =
 532 new CookieCutterSensor(aluulaPirateMover[i],
 533 pirateVisualSensorRange);
 534 }
 535
 536 PirateMoverManager[] aluulaPirateManager =

 145

 537 new PirateMoverManager[aluulaPirateMover.length];
 538 for (int i = 0; i < aluulaPirateMover.length; ++i) {
 539 aluulaPirateManager[i] =
 540 new PirateMoverManager(aluulaPirateMover[i],
 541 aluulaPirateSensor[i],
 542 pirateCampAluula,
 543 goaPiratePathGenerator,
 544 attackDecision,
 545 unsuccessfulAttackTime);
 546 }
 547
 548 AluulaPirateCamp apc = new AluulaPirateCamp(aluulaPirateManager);
 549 aluulaDepartureTimeProcess.addSimEventListener(apc);
 550
 551 //*****************END OF ALUULA PIRATE IMPLEMENTATION************************//
 552 //************************END OF GOA Pirates**********************************//
 553 //*******************START OF IO Pirates**************************************//
 554
 555 //*****************START OF BARGAL Pirate Implemenation***********************//
 556 BargalPirateDepartureProcess bargalDepartureTimeProcess=
 557 new BargalPirateDepartureProcess(bargalInterarrivalTime);
 558
 559 Platform[] bargalPirateMover = new Platform[numBargalPirates];
 560 for (int i = 0; i < numBargalPirates; ++i) {
 561 bargalPirateMover[i] = new Platform(“Pirate-Bargal” + i,
 562 pirateCampBargal,
 563 pirateMaxSpeed, typePirate);
 564 }
 565
 566 System.out.println(“Pirate: “ + bargalPirateMover[0].paramString());
 567
 568 CookieCutterSensor[] bargalPirateSensor =
 569 new CookieCutterSensor[bargalPirateMover.length];
 570 for (int i = 0; i < bargalPirateMover.length; ++i) {
 571 bargalPirateSensor[i] =
 572 new CookieCutterSensor(bargalPirateMover[i],
 573 pirateVisualSensorRange);
 574 }
 575
 576 PirateMoverManager[] bargalPirateManager =
 577 new PirateMoverManager[bargalPirateMover.length];
 578 for (int i = 0; i < bargalPirateMover.length; ++i) {
 579 bargalPirateManager[i] =
 580 new PirateMoverManager(bargalPirateMover[i],
 581 bargalPirateSensor[i],
 582 pirateCampBargal,
 583 bargalPiratePathGenerator,
 584 attackDecision,
 585 unsuccessfulAttackTime);
 586 }
 587
 588 BargalPirateCamp bpc = new BargalPirateCamp(bargalPirateManager);
 589 bargalDepartureTimeProcess.addSimEventListener(bpc);
 590
 591 //*****************END OF BARGAL PIRATE IMPLEMENTATION************************//
 592 //*****************START OF HAFUN PIRATE IMPLEMENTATION***********************//
 593 HafunPirateDepartureProcess hafunDepartureTimeProcess=
 594 new HafunPirateDepartureProcess(hafunInterarrivalTime);
 595
 596 Platform[] hafunPirateMover = new Platform[numHafunPirates];
 597 for (int i = 0; i < numHafunPirates; ++i) {

 146

 598 hafunPirateMover[i] = new Platform(“Pirate-Hafun” + i,
 599 pirateCampHafun,
 600 pirateMaxSpeed, typePirate);
 601 }
 602
 603 System.out.println(“Pirate: “ + hafunPirateMover[0].paramString());
 604
 605 CookieCutterSensor[] hafunPirateSensor =
 606 new CookieCutterSensor[hafunPirateMover.length];
 607 for (int i = 0; i < hafunPirateMover.length; ++i) {
 608 hafunPirateSensor[i] =
 609 new CookieCutterSensor(hafunPirateMover[i],
 610 pirateVisualSensorRange);
 611 }
 612
 613 PirateMoverManager[] hafunPirateManager =
 614 new PirateMoverManager[hafunPirateMover.length];
 615 for (int i = 0; i < hafunPirateMover.length; ++i) {
 616 hafunPirateManager[i] =
 617 new PirateMoverManager(hafunPirateMover[i],
 618 hafunPirateSensor[i],
 619 pirateCampHafun,
 620 ioPiratePathGenerator,
 621 attackDecision,
 622 unsuccessfulAttackTime);
 623 }
 624
 625 HafunPirateCamp hpc = new HafunPirateCamp(hafunPirateManager);
 626 hafunDepartureTimeProcess.addSimEventListener(hpc);
 627
 628 //*****************END OF HAFUN PIRATE IMPLEMENTATION************************//
 629 //****************START OF BAYLA PIRATE IMPLEMENTATION************************//
 630 BaylaPirateDepartureProcess baylaDepartureTimeProcess=
 631 new BaylaPirateDepartureProcess(baylaInterarrivalTime);
 632
 633 Platform[] baylaPirateMover = new Platform[numBaylaPirates];
 634 for (int i = 0; i < numBaylaPirates; ++i) {
 635 baylaPirateMover[i] = new Platform(“Pirate-Bayla” + i,
 636 pirateCampBayla,
 637 pirateMaxSpeed, typePirate);
 638 }
 639
 640 System.out.println(“Pirate: “ + baylaPirateMover[0].paramString());
 641
 642 CookieCutterSensor[] baylaPirateSensor =
 643 new CookieCutterSensor[baylaPirateMover.length];
 644 for (int i = 0; i < baylaPirateMover.length; ++i) {
 645 baylaPirateSensor[i] =
 646 new CookieCutterSensor(baylaPirateMover[i],
 647 pirateVisualSensorRange);
 648 }
 649
 650 PirateMoverManager[] baylaPirateManager =
 651 new PirateMoverManager[baylaPirateMover.length];
 652 for (int i = 0; i < baylaPirateMover.length; ++i) {
 653 baylaPirateManager[i] =
 654 new PirateMoverManager(baylaPirateMover[i],
 655 baylaPirateSensor[i],
 656 pirateCampBayla,
 657 ioPiratePathGenerator,
 658 attackDecision,

 147

 659 unsuccessfulAttackTime);
 660 }
 661
 662 BaylaPirateCamp baypc = new BaylaPirateCamp(baylaPirateManager);
 663 baylaDepartureTimeProcess.addSimEventListener(baypc);
 664
 665 //******************END OF BAYLA PIRATE IMPLEMENTATION************************//
 666 //*****************START OF EYL PIRATE IMPLEMENTATION*************************//
 667 EylPirateDepartureProcess eylDepartureTimeProcess=
 668 new EylPirateDepartureProcess(eylInterarrivalTime);
 669
 670 Platform[] eylPirateMover = new Platform[numEylPirates];
 671 for (int i = 0; i < numEylPirates; ++i) {
 672 eylPirateMover[i] = new Platform(“Pirate-Eyl” + i,
 673 pirateCampEyl,
 674 pirateMaxSpeed, typePirate);
 675 }
 676
 677 System.out.println(“Pirate: “ + eylPirateMover[0].paramString());
 678
 679 CookieCutterSensor[] eylPirateSensor =
 680 new CookieCutterSensor[eylPirateMover.length];
 681 for (int i = 0; i < eylPirateMover.length; ++i) {
 682 eylPirateSensor[i] =
 683 new CookieCutterSensor(eylPirateMover[i],
 684 pirateVisualSensorRange);
 685 }
 686
 687 PirateMoverManager[] eylPirateManager =
 688 new PirateMoverManager[eylPirateMover.length];
 689 for (int i = 0; i < eylPirateMover.length; ++i) {
 690 eylPirateManager[i] =
 691 new PirateMoverManager(eylPirateMover[i],
 692 eylPirateSensor[i],
 693 pirateCampEyl,
 694 ioPiratePathGenerator,
 695 attackDecision,
 696 unsuccessfulAttackTime);
 697 }
 698
 699 EylPirateCamp eylpc = new EylPirateCamp(eylPirateManager);
 700 eylDepartureTimeProcess.addSimEventListener(eylpc);
 701
 702 //*****************END OF EYL PIRATE IMPLEMENTATION***************************//
 703 //**************START OF GARACAD PIRATE IMPLEMENTATION************************//
 704 GaracadPirateDepartureProcess garacadDepartureTimeProcess=
 705 new GaracadPirateDepartureProcess(garacadInterarrivalTime);
 706
 707 Platform[] garacadPirateMover = new Platform[numGaracadPirates];
 708 for (int i = 0; i < numGaracadPirates; ++i) {
 709 garacadPirateMover[i] = new Platform(“Pirate-Garacad” + i,
 710 pirateCampGaracad,
 711 pirateMaxSpeed, typePirate);
 712 }
 713
 714 System.out.println(“Pirate: “ + garacadPirateMover[0].paramString());
 715
 716 CookieCutterSensor[] garacadPirateSensor =
 717 new CookieCutterSensor[garacadPirateMover.length];
 718 for (int i = 0; i < garacadPirateMover.length; ++i) {
 719 garacadPirateSensor[i] =

 148

 720 new CookieCutterSensor(garacadPirateMover[i],
 721 pirateVisualSensorRange);
 722 }
 723
 724 PirateMoverManager[] garacadPirateManager =
 725 new PirateMoverManager[garacadPirateMover.length];
 726 for (int i = 0; i < garacadPirateMover.length; ++i) {
 727 garacadPirateManager[i] =
 728 new PirateMoverManager(garacadPirateMover[i],
 729 garacadPirateSensor[i],
 730 pirateCampGaracad,
 731 ioPiratePathGenerator,
 732 attackDecision,
 733 unsuccessfulAttackTime);
 734 }
 735
 736 GaracadPirateCamp gpc = new GaracadPirateCamp(garacadPirateManager);
 737 garacadDepartureTimeProcess.addSimEventListener(gpc);
 738
 739 //*****************END OF GARACAD PIRATE IMPLEMENTATION***********************//
 740 //***************START OF HOBYO PIRATE IMPLEMENTATION*************************//
 741 HobyoPirateDepartureProcess hobyoDepartureTimeProcess=
 742 new HobyoPirateDepartureProcess(hobyoInterarrivalTime);
 743
 744 Platform[] hobyoPirateMover = new Platform[numHobyoPirates];
 745 for (int i = 0; i < numHobyoPirates; ++i) {
 746 hobyoPirateMover[i] = new Platform(“Pirate-Hobyo” + i,
 747 pirateCampHobyo,
 748 pirateMaxSpeed, typePirate);
 749 }
 750
 751 System.out.println(“Pirate: “ + hobyoPirateMover[0].paramString());
 752
 753 CookieCutterSensor[] hobyoPirateSensor =
 754 new CookieCutterSensor[hobyoPirateMover.length];
 755 for (int i = 0; i < hobyoPirateMover.length; ++i) {
 756 hobyoPirateSensor[i] =
 757 new CookieCutterSensor(hobyoPirateMover[i],
 758 pirateVisualSensorRange);
 759 }
 760
 761 PirateMoverManager[] hobyoPirateManager =
 762 new PirateMoverManager[hobyoPirateMover.length];
 763 for (int i = 0; i < hobyoPirateMover.length; ++i)
 764 {
 765 hobyoPirateManager[i] =
 766 new PirateMoverManager(hobyoPirateMover[i],
 767 hobyoPirateSensor[i],
 768 pirateCampHobyo,
 769 ioPiratePathGenerator,
 770 attackDecision,
 771 unsuccessfulAttackTime);
 772 }
 773
 774 HobyoPirateCamp hobpc = new HobyoPirateCamp(hobyoPirateManager);
 775 hobyoDepartureTimeProcess.addSimEventListener(hobpc);
 776 //*****************END OF HOBYO PIRATE IMPLEMENTATION*************************//
 777 //**************START OF HARARDHERE PIRATE IMPLEMENTATION*********************//
 778 HarardherePirateDepartureProcess harardhereDepartureTimeProcess=
 779 new HarardherePirateDepartureProcess(harardhereInterarrivalTime);
 780

 149

 781 Platform[] harardherePirateMover = new Platform[numHarardherePirates];
 782 for (int i = 0; i < numHarardherePirates; ++i) {
 783 harardherePirateMover[i] = new Platform(“Pirate-Harardhere” + i,
 784 pirateCampHarardhere,
 785 pirateMaxSpeed, typePirate);
 786 }
 787
 788 System.out.println(“Pirate: “ + harardherePirateMover[0].paramString());
 789
 790 CookieCutterSensor[] harardherePirateSensor =
 791 new CookieCutterSensor[harardherePirateMover.length];
 792 for (int i = 0; i < harardherePirateMover.length; ++i) {
 793 harardherePirateSensor[i] =
 794 new CookieCutterSensor(harardherePirateMover[i],
 795 pirateVisualSensorRange);
 796 }
 797
 798 PirateMoverManager[] harardherePirateManager =
 799 new PirateMoverManager[harardherePirateMover.length];
 800 for (int i = 0; i < harardherePirateMover.length; ++i) {
 801 harardherePirateManager[i] =
 802 new PirateMoverManager(harardherePirateMover[i],
 803 harardherePirateSensor[i],
 804 pirateCampHarardhere,
 805 ioPiratePathGenerator,
 806 attackDecision,
 807 unsuccessfulAttackTime);
 808 }
 809
 810 HarardherePirateCamp harpc = new HarardherePirateCamp(
 811 harardherePirateManager);
 812 harardhereDepartureTimeProcess.addSimEventListener(harpc);
 813
 814 //*****************END OF HARARDHERE PIRATE IMPLEMENTATION********************//
 815 //************************END OF IO PIRATES***********************************//
 816 //*******************END OF PIRATE IMPLEMENTATION*****************************//
 817 //*******************START OF NAVY IMPLEMENTATION*****************************//
 818 PlatformType typeNavy = PlatformType.NAVY;
 819 //**Navy Patroling in Indian Ocean**//
 820 //Navy patrol points Box 1
 821 RandomVariate[] navyPatrolBox1Generator = new RandomVariate[2];
 822 navyPatrolBox1Generator[0] = RandomVariateFactory.getInstance(
 823 “Uniform,”
 824 290.00,
 825 300.00);
 826 navyPatrolBox1Generator[1] = RandomVariateFactory.getInstance(
 827 “Uniform,”
 828 325.00,
 829 328.00);
 830
 831 //Navy patrol points Box 2
 832 RandomVariate[] navyPatrolBox2Generator = new RandomVariate[2];
 833 navyPatrolBox2Generator[0] = RandomVariateFactory.getInstance(
 834 “Uniform,”
 835 326.00,
 836 336.00);
 837 navyPatrolBox2Generator[1] = RandomVariateFactory.getInstance(
 838 “Uniform,”
 839 335.00,
 840 338.00);
 841

 150

 842 //Navy patrol points Box 3
 843 RandomVariate[] navyPatrolBox3Generator = new RandomVariate[2];
 844 navyPatrolBox3Generator[0] = RandomVariateFactory.getInstance(
 845 “Uniform,”
 846 360.00,
 847 370.00);
 848 navyPatrolBox3Generator[1] = RandomVariateFactory.getInstance(
 849 “Uniform,”
 850 344.00,
 851 347.00);
 852
 853 //Navy patrol points Box 4
 854 RandomVariate[] navyPatrolBox4Generator = new RandomVariate[2];
 855 navyPatrolBox4Generator[0] = RandomVariateFactory.getInstance(
 856 “Uniform,”
 857 407.00,
 858 410.00);
 859 navyPatrolBox4Generator[1] = RandomVariateFactory.getInstance(
 860 “Uniform,”
 861 310.00,
 862 320.00);
 863
 864 //Navy patrol points Box 5
 865 RandomVariate[] navyPatrolBox5Generator = new RandomVariate[2];
 866 navyPatrolBox5Generator[0] = RandomVariateFactory.getInstance(
 867 “Uniform,”
 868 408.00,
 869 410.00);
 870 navyPatrolBox5Generator[1] = RandomVariateFactory.getInstance(
 871 “Uniform,”
 872 270.00,
 873 280.00);
 874
 875 //Navy patrol points Box 6
 876 RandomVariate[] navyPatrolBox6Generator = new RandomVariate[2];
 877 navyPatrolBox6Generator[0] = RandomVariateFactory.getInstance(
 878 “Uniform,”
 879 395.00,
 880 398.00);
 881 navyPatrolBox6Generator[1] = RandomVariateFactory.getInstance(
 882 “Uniform,”
 883 238.00,
 884 248.00);
 885
 886 //Navy patrol points Box 7
 887 RandomVariate[] navyPatrolBox7Generator = new RandomVariate[2];
 888 navyPatrolBox7Generator[0] = RandomVariateFactory.getInstance(
 889 “Uniform,”
 890 363.00,
 891 366.00);
 892 navyPatrolBox7Generator[1] = RandomVariateFactory.getInstance(
 893 “Uniform,”
 894 180.00,
 895 190.00);
 896
 897 //Navy patrol points Box 8
 898 RandomVariate[] navyPatrolBox8Generator = new RandomVariate[2];
 899 navyPatrolBox8Generator[0] = RandomVariateFactory.getInstance(
 900 “Uniform,”
 901 342.00,
 902 345.00);

 151

 903 navyPatrolBox8Generator[1] = RandomVariateFactory.getInstance(
 904 “Uniform,”
 905 150.00,
 906 160.00);
 907
 908 //Navy patrol points in IO Box 9
 909 RandomVariate[] navyPatrolBox9Generator = new RandomVariate[2];
 910 navyPatrolBox9Generator[0] = RandomVariateFactory.getInstance(
 911 “Uniform,”
 912 322.00,
 913 325.00);
 914 navyPatrolBox9Generator[1] = RandomVariateFactory.getInstance(
 915 “Uniform,”
 916 96.00,
 917 106.00);
 918
 919 //Navy patrol points Box 10
 920 RandomVariate[] navyPatrolBox10Generator = new RandomVariate[2];
 921 navyPatrolBox10Generator[0] = RandomVariateFactory.getInstance(
 922 “Uniform,”
 923 301.00,
 924 304.00);
 925 navyPatrolBox10Generator[1] = RandomVariateFactory.getInstance(
 926 “Uniform,”
 927 71.00,
 928 81.00);
 929
 930 Platform[] ioNavyMover = new Platform[numIoNavyShips];
 931 ioNavyMover[0] = new Platform(“IO Navy-6,” initialLocationNavyPB4,
 932 navyMaxSpeed, typeNavy);
 933 ioNavyMover[1] = new Platform(“Navy-7,” initialLocationNavyPB5,
 934 navyMaxSpeed, typeNavy);
 935 ioNavyMover[2] = new Platform(“Navy-8,” initialLocationNavyPB6,
 936 navyMaxSpeed, typeNavy);
 937 ioNavyMover[3] = new Platform(“Navy-9,” initialLocationNavyPB7,
 938 navyMaxSpeed, typeNavy);
 939 ioNavyMover[4] = new Platform(“Navy-10,” initialLocationNavyPB8,
 940 navyMaxSpeed, typeNavy);
 941 ioNavyMover[5] = new Platform(“Navy-11,” initialLocationNavyPB9,
 942 navyMaxSpeed, typeNavy);
 943 ioNavyMover[6] = new Platform(“Navy-12,” initialLocationNavyPB10,
 944 navyMaxSpeed, typeNavy);
 945
 946 CookieCutterSensor[] ioNavySensor =
 947 new CookieCutterSensor[numIoNavyShips];
 948 ioNavySensor[0] = new CookieCutterSensor(ioNavyMover[0],
 949 navySurfaceRadarRange);
 950 ioNavySensor[1] = new CookieCutterSensor(ioNavyMover[1],
 951 navySurfaceRadarRange);
 952 ioNavySensor[2] = new CookieCutterSensor(ioNavyMover[2],
 953 navySurfaceRadarRange);
 954 ioNavySensor[3] = new CookieCutterSensor(ioNavyMover[3],
 955 navySurfaceRadarRange);
 956 ioNavySensor[4] = new CookieCutterSensor(ioNavyMover[4],
 957 navySurfaceRadarRange);
 958 ioNavySensor[5] = new CookieCutterSensor(ioNavyMover[5],
 959 navySurfaceRadarRange);
 960 ioNavySensor[6] = new CookieCutterSensor(ioNavyMover[6],
 961 navySurfaceRadarRange);
 962
 963 NavyShipMoverManager[] ioNavyManager =

 152

 964 new NavyShipMoverManager[numIoNavyShips];
 965 ioNavyManager[0] = new NavyShipMoverManager(ioNavyMover[0],
 966 ioNavySensor[0], initialLocationNavyPB4,
 967 navyPatrolBox4Generator, navyMaxSpeed);
 968 ioNavyManager[1] = new NavyShipMoverManager(ioNavyMover[1],
 969 ioNavySensor[1], initialLocationNavyPB5,
 970 navyPatrolBox5Generator, navyMaxSpeed);
 971 ioNavyManager[2] = new NavyShipMoverManager(ioNavyMover[2],
 972 ioNavySensor[2], initialLocationNavyPB6,
 973 navyPatrolBox6Generator, navyMaxSpeed);
 974 ioNavyManager[3] = new NavyShipMoverManager(ioNavyMover[3],
 975 ioNavySensor[3], initialLocationNavyPB7,
 976 navyPatrolBox7Generator, navyMaxSpeed);
 977 ioNavyManager[4] = new NavyShipMoverManager(ioNavyMover[4],
 978 ioNavySensor[4], initialLocationNavyPB8,
 979 navyPatrolBox8Generator, navyMaxSpeed);
 980 ioNavyManager[5] = new NavyShipMoverManager(ioNavyMover[5],
 981 ioNavySensor[5], initialLocationNavyPB9,
 982 navyPatrolBox9Generator, navyMaxSpeed);
 983 ioNavyManager[6] = new NavyShipMoverManager(ioNavyMover[6],
 984 ioNavySensor[6], initialLocationNavyPB10,
 985 navyPatrolBox10Generator, navyMaxSpeed);
 986
 987 System.out.println (“ioNavyManager Length: “ +
 988 ioNavyManager.length);
 989
 990 //**Navy Patrols in the Gulf of Aden**//
 991 Platform[] goaNavyMover = new Platform[numGoaNavyShips];
 992 goaNavyMover[0] = new Platform(“IO Navy-1,” initialLocationNavyPB1,
 993 navyMaxSpeed, typeNavy);
 994 goaNavyMover[1] = new Platform(“Navy-2,” initialLocationNavyPB2,
 995 navyMaxSpeed, typeNavy);
 996 goaNavyMover[2] = new Platform(“Navy-3,” initialLocationNavyPB3,
 997 navyMaxSpeed, typeNavy);
 998
 999 CookieCutterSensor[] goaNavySensor =
1000 new CookieCutterSensor[numGoaNavyShips];
1001 goaNavySensor[0] = new CookieCutterSensor(goaNavyMover[0],
1002 navySurfaceRadarRange);
1003 goaNavySensor[1] = new CookieCutterSensor(goaNavyMover[1],
1004 navySurfaceRadarRange);
1005 goaNavySensor[2] = new CookieCutterSensor(goaNavyMover[2],
1006 navySurfaceRadarRange);
1007
1008 NavyShipMoverManager[] goaNavyManager =
1009 new NavyShipMoverManager[numGoaNavyShips];
1010 goaNavyManager[0] = new NavyShipMoverManager(goaNavyMover[0],
1011 goaNavySensor[0], initialLocationNavyPB1,
1012 navyPatrolBox1Generator, navyMaxSpeed);
1013 goaNavyManager[1] = new NavyShipMoverManager(goaNavyMover[1],
1014 goaNavySensor[1], initialLocationNavyPB2,
1015 navyPatrolBox2Generator, navyMaxSpeed);
1016 goaNavyManager[2] = new NavyShipMoverManager(goaNavyMover[2],
1017 goaNavySensor[2], initialLocationNavyPB3,
1018 navyPatrolBox3Generator, navyMaxSpeed);
1019
1020 System.out.println(“goaNavyManager length: “ +
1021 goaNavyManager.length);
1022
1023
1024 //*******************END OF NAVY IMPLEMENTATION*******************************//

 153

1025 //****************START OF MERCHANT SHIP IMPLEMENTATION***********************//
1026 PlatformType typeMerchant = PlatformType.MERCHANT;
1027 //Creates Instance of ArrivalProcess w/ interarrival time passed in
1028 SuezToMaldivesMerchantDepartureProcess stmDepartureTimeProcess = new
1029 SuezToMaldivesMerchantDepartureProcess(
1030 stmMerchantInterarrivalTime);
1031
1032 //*********START OF SUEZ TO MALDIVES MERCHANT SHIP IMPLEMENTATION*************//
1033 RandomVariate[] suezToMaldivesMerchantPathGenerator =
1034 new RandomVariate[8];
1035 suezToMaldivesMerchantPathGenerator[0] = RandomVariateFactory.getInstance(
1036 “Uniform,”
1037 minLatSuezToMaldivesMerchantWaypoint1,
1038 maxLatSuezToMaldivesMerchantWaypoint1);
1039 suezToMaldivesMerchantPathGenerator[1] = RandomVariateFactory.getInstance(
1040 “Uniform,”
1041 minLonSuezToMaldivesMerchantWaypoint1,
1042 maxLonSuezToMaldivesMerchantWaypoint1);
1043 suezToMaldivesMerchantPathGenerator[2] = RandomVariateFactory.getInstance(
1044 “Uniform,”
1045 minLatSuezToMaldivesMerchantWaypoint2,
1046 maxLatSuezToMaldivesMerchantWaypoint2);
1047 suezToMaldivesMerchantPathGenerator[3] = RandomVariateFactory.getInstance(
1048 “Uniform,”
1049 minLonSuezToMaldivesMerchantWaypoint2,
1050 maxLonSuezToMaldivesMerchantWaypoint2);
1051
1052 suezToMaldivesMerchantPathGenerator[4] = RandomVariateFactory.getInstance(
1053 “Uniform,”
1054 minLatSuezToMaldivesMerchantWaypoint3,
1055 maxLatSuezToMaldivesMerchantWaypoint3);
1056 suezToMaldivesMerchantPathGenerator[5] = RandomVariateFactory.getInstance(
1057 “Uniform,”
1058 minLonSuezToMaldivesMerchantWaypoint3,
1059 maxLonSuezToMaldivesMerchantWaypoint3);
1060
1061 suezToMaldivesMerchantPathGenerator[6] = RandomVariateFactory.getInstance(
1062 “Uniform,”
1063 minLatSuezToMaldivesMerchantWaypoint4,
1064 maxLatSuezToMaldivesMerchantWaypoint4);
1065 suezToMaldivesMerchantPathGenerator[7] = RandomVariateFactory.getInstance(
1066 “Uniform,”
1067 minLonSuezToMaldivesMerchantWaypoint4,
1068 maxLonSuezToMaldivesMerchantWaypoint4);
1069
1070 Platform [] suezToMaldivesMerchantMover =
1071 new Platform[numSuezToMaldivesMerchants];
1072 for (int i = 0; i < suezToMaldivesMerchantMover.length; ++i)
1073 {
1074 suezToMaldivesMerchantMover[i] =
1075 new Platform(“Merchant: SuezToMaldives “ + i,
1076 initialLocationMerchantSuezToMaldives,
1077 merchantMaxSpeed, typeMerchant);
1078 }
1079
1080 CookieCutterSensor[] suezToMaldivesMerchantSensor =
1081 new CookieCutterSensor[suezToMaldivesMerchantMover.length];
1082 for (int i = 0; i < suezToMaldivesMerchantMover.length; ++i)
1083 {
1084 suezToMaldivesMerchantSensor [i] =
1085 new CookieCutterSensor(suezToMaldivesMerchantMover[i],

 154

1086 merchantSurfaceRadarRange);
1087 }
1088
1089 MerchantShipMoverManager [] suezToMaldivesMerchantManager =
1090 new MerchantShipMoverManager[suezToMaldivesMerchantMover.length];
1091 for (int i = 0; i < suezToMaldivesMerchantMover.length; ++i)
1092 {
1093 suezToMaldivesMerchantManager[i] =
1094 new MerchantShipMoverManager (
1095 suezToMaldivesMerchantMover[i],
1096 suezToMaldivesMerchantSensor[i],
1097 initialLocationMerchantSuezToMaldives,
1098 suezToMaldivesMerchantPathGenerator);
1099 }
1100
1101 SuezToMaldivesOriginPort stm = new
1102 SuezToMaldivesOriginPort(suezToMaldivesMerchantManager);
1103 stmDepartureTimeProcess.addSimEventListener(stm);
1104
1105
1106 //************END OF SUEZ TO MALDIVES MERCHANT IMPLEMENTATION*****************//
1107 //***********START OF SUEZ TO OMAN MERCHANT SHIP IMPLEMENTATION***************//
1108 //Creates Instance of ArrivalProcess w/ interarrival time passed in
1109 SuezToOmanMerchantDepartureProcess stoDepartureTimeProcess = new
1110 SuezToOmanMerchantDepartureProcess(stoMerchantInterarrivalTime);
1111
1112 RandomVariate[] suezToOmanMerchantPathGenerator =
1113 new RandomVariate[8];
1114 suezToOmanMerchantPathGenerator[0] = RandomVariateFactory.getInstance(
1115 “Uniform,”
1116 minLatSuezToOmanMerchantWaypoint1,
1117 maxLatSuezToOmanMerchantWaypoint1);
1118 suezToOmanMerchantPathGenerator[1] = RandomVariateFactory.getInstance(
1119 “Uniform,”
1120 minLonSuezToOmanMerchantWaypoint1,
1121 maxLonSuezToOmanMerchantWaypoint1);
1122 suezToOmanMerchantPathGenerator[2] = RandomVariateFactory.getInstance(
1123 “Uniform,”
1124 minLatSuezToOmanMerchantWaypoint2,
1125 maxLatSuezToOmanMerchantWaypoint2);
1126 suezToOmanMerchantPathGenerator[3] = RandomVariateFactory.getInstance(
1127 “Uniform,”
1128 minLonSuezToOmanMerchantWaypoint2,
1129 maxLonSuezToOmanMerchantWaypoint2);
1130
1131 suezToOmanMerchantPathGenerator[4] = RandomVariateFactory.getInstance(
1132 “Uniform,”
1133 minLatSuezToOmanMerchantWaypoint3,
1134 maxLatSuezToOmanMerchantWaypoint3);
1135 suezToOmanMerchantPathGenerator[5] = RandomVariateFactory.getInstance(
1136 “Uniform,”
1137 minLonSuezToOmanMerchantWaypoint3,
1138 maxLonSuezToOmanMerchantWaypoint3);
1139
1140 suezToOmanMerchantPathGenerator[6] = RandomVariateFactory.getInstance(
1141 “Uniform,”
1142 minLatSuezToOmanMerchantWaypoint4,
1143 maxLatSuezToOmanMerchantWaypoint4);
1144 suezToOmanMerchantPathGenerator[7] = RandomVariateFactory.getInstance(
1145 “Uniform,”
1146 minLonSuezToOmanMerchantWaypoint4,

 155

1147 maxLonSuezToOmanMerchantWaypoint4);
1148
1149 Platform [] suezToOmanMerchantMover =
1150 new Platform[numSuezToOmanMerchants];
1151 for (int i = 0; i < suezToOmanMerchantMover.length; ++i)
1152 {
1153 suezToOmanMerchantMover[i] =
1154 new Platform(“Merchant: SuezToOman “ + i,
1155 initialLocationMerchantSuezToOman,
1156 merchantMaxSpeed, typeMerchant);
1157 }
1158
1159 CookieCutterSensor[] suezToOmanMerchantSensor =
1160 new CookieCutterSensor[suezToOmanMerchantMover.length];
1161 for (int i = 0; i < suezToOmanMerchantMover.length; ++i)
1162 {
1163 suezToOmanMerchantSensor [i] =
1164 new CookieCutterSensor(suezToOmanMerchantMover[i],
1165 merchantSurfaceRadarRange);
1166 }
1167
1168 MerchantShipMoverManager [] suezToOmanMerchantManager =
1169 new MerchantShipMoverManager[suezToOmanMerchantMover.length];
1170 for (int i = 0; i < suezToOmanMerchantMover.length; ++i)
1171 {
1172 suezToOmanMerchantManager[i] =
1173 new MerchantShipMoverManager (
1174 suezToOmanMerchantMover[i],
1175 suezToOmanMerchantSensor[i],
1176 initialLocationMerchantSuezToOman,
1177 suezToOmanMerchantPathGenerator);
1178 }
1179
1180 SuezToOmanOriginPort sto = new
1181 SuezToOmanOriginPort(suezToOmanMerchantManager);
1182 stoDepartureTimeProcess.addSimEventListener(sto);
1183
1184 //************END OF SUEZ TO OMAN MERCHANT IMPLEMENTATION*****************//
1185 //***********START OF MALDIVES TO SUEZ MERCHANT SHIP IMPLEMENTATION***********//
1186 //Creates Instance of ArrivalProcess w/ interarrival time passed in
1187 MaldivesToSuezMerchantDepartureProcess mtsDepartureTimeProcess = new
1188 MaldivesToSuezMerchantDepartureProcess(
1189 mtsMerchantInterarrivalTime);
1190
1191 RandomVariate[] maldivesToSuezMerchantPathGenerator =
1192 new RandomVariate[8];
1193 maldivesToSuezMerchantPathGenerator[0] = RandomVariateFactory.getInstance(
1194 “Uniform,”
1195 minLatMaldivesToSuezMerchantWaypoint1,
1196 maxLatMaldivesToSuezMerchantWaypoint1);
1197 maldivesToSuezMerchantPathGenerator[1] = RandomVariateFactory.getInstance(
1198 “Uniform,”
1199 minLonMaldivesToSuezMerchantWaypoint1,
1200 maxLonMaldivesToSuezMerchantWaypoint1);
1201 maldivesToSuezMerchantPathGenerator[2] = RandomVariateFactory.getInstance(
1202 “Uniform,”
1203 minLatMaldivesToSuezMerchantWaypoint2,
1204 maxLatMaldivesToSuezMerchantWaypoint2);
1205 maldivesToSuezMerchantPathGenerator[3] = RandomVariateFactory.getInstance(
1206 “Uniform,”
1207 minLonMaldivesToSuezMerchantWaypoint2,

 156

1208 maxLonMaldivesToSuezMerchantWaypoint2);
1209
1210 maldivesToSuezMerchantPathGenerator[4] = RandomVariateFactory.getInstance(
1211 “Uniform,”
1212 minLatMaldivesToSuezMerchantWaypoint3,
1213 maxLatMaldivesToSuezMerchantWaypoint3);
1214 maldivesToSuezMerchantPathGenerator[5] = RandomVariateFactory.getInstance(
1215 “Uniform,”
1216 minLonMaldivesToSuezMerchantWaypoint3,
1217 maxLonMaldivesToSuezMerchantWaypoint3);
1218
1219 maldivesToSuezMerchantPathGenerator[6] = RandomVariateFactory.getInstance(
1220 “Uniform,”
1221 minLatMaldivesToSuezMerchantWaypoint4,
1222 maxLatMaldivesToSuezMerchantWaypoint4);
1223 maldivesToSuezMerchantPathGenerator[7] = RandomVariateFactory.getInstance(
1224 “Uniform,”
1225 minLonMaldivesToSuezMerchantWaypoint4,
1226 maxLonMaldivesToSuezMerchantWaypoint4);
1227
1228 Platform [] maldivesToSuezMerchantMover =
1229 new Platform[numMaldivesToSuezMerchants];
1230 for (int i = 0; i < maldivesToSuezMerchantMover.length; ++i)
1231 {
1232 maldivesToSuezMerchantMover[i] =
1233 new Platform(“Merchant: MaldivesToSuez “ + i,
1234 initialLocationMerchantMaldivesToSuez,
1235 merchantMaxSpeed, typeMerchant);
1236 }
1237
1238 CookieCutterSensor[] maldivesToSuezMerchantSensor =
1239 new CookieCutterSensor[maldivesToSuezMerchantMover.length];
1240 for (int i = 0; i < maldivesToSuezMerchantMover.length; ++i)
1241 {
1242 maldivesToSuezMerchantSensor [i] =
1243 new CookieCutterSensor(maldivesToSuezMerchantMover[i],
1244 merchantSurfaceRadarRange);
1245 }
1246
1247 MerchantShipMoverManager [] maldivesToSuezMerchantManager =
1248 new MerchantShipMoverManager[maldivesToSuezMerchantMover.length];
1249 for (int i = 0; i < maldivesToSuezMerchantMover.length; ++i)
1250 {
1251 maldivesToSuezMerchantManager[i] =
1252 new MerchantShipMoverManager (
1253 maldivesToSuezMerchantMover[i],
1254 maldivesToSuezMerchantSensor[i],
1255 initialLocationMerchantMaldivesToSuez,
1256 maldivesToSuezMerchantPathGenerator);
1257 }
1258
1259 MaldivesToSuezOriginPort mts = new
1260 MaldivesToSuezOriginPort(maldivesToSuezMerchantManager);
1261 mtsDepartureTimeProcess.addSimEventListener(mts);
1262
1263
1264 //************END OF MALDIVES TO SUEZ MERCHANT IMPLEMENTATION*****************//
1265 //***********START OF MALDIVES TO OMAN MERCHANT SHIP IMPLEMENTATION***********//
1266 //Creates Instance of ArrivalProcess w/ interarrival time passed in
1267 MaldivesToOmanMerchantDepartureProcess mtoDepartureTimeProcess = new
1268 MaldivesToOmanMerchantDepartureProcess(

 157

1269 mtoMerchantInterarrivalTime);
1270
1271 RandomVariate[] maldivesToOmanMerchantPathGenerator =
1272 new RandomVariate[8];
1273 maldivesToOmanMerchantPathGenerator[0] = RandomVariateFactory.getInstance(
1274 “Uniform,”
1275 minLatMaldivesToOmanMerchantWaypoint1,
1276 maxLatMaldivesToOmanMerchantWaypoint1);
1277 maldivesToOmanMerchantPathGenerator[1] = RandomVariateFactory.getInstance(
1278 “Uniform,”
1279 minLonMaldivesToOmanMerchantWaypoint1,
1280 maxLonMaldivesToOmanMerchantWaypoint1);
1281 maldivesToOmanMerchantPathGenerator[2] = RandomVariateFactory.getInstance(
1282 “Uniform,”
1283 minLatMaldivesToOmanMerchantWaypoint2,
1284 maxLatMaldivesToOmanMerchantWaypoint2);
1285 maldivesToOmanMerchantPathGenerator[3] = RandomVariateFactory.getInstance(
1286 “Uniform,”
1287 minLonMaldivesToOmanMerchantWaypoint2,
1288 maxLonMaldivesToOmanMerchantWaypoint2);
1289
1290 maldivesToOmanMerchantPathGenerator[4] = RandomVariateFactory.getInstance(
1291 “Uniform,”
1292 minLatMaldivesToOmanMerchantWaypoint3,
1293 maxLatMaldivesToOmanMerchantWaypoint3);
1294 maldivesToOmanMerchantPathGenerator[5] = RandomVariateFactory.getInstance(
1295 “Uniform,”
1296 minLonMaldivesToOmanMerchantWaypoint3,
1297 maxLonMaldivesToOmanMerchantWaypoint3);
1298
1299 maldivesToOmanMerchantPathGenerator[6] = RandomVariateFactory.
1300 getInstance(“Uniform,” minLatMaldivesToOmanMerchantWaypoint4,
1301 maxLatMaldivesToOmanMerchantWaypoint4);
1302 maldivesToOmanMerchantPathGenerator[7] = RandomVariateFactory.
1303 getInstance(“Uniform,” minLonMaldivesToOmanMerchantWaypoint4,
1304 maxLonMaldivesToOmanMerchantWaypoint4);
1305
1306 Platform [] maldivesToOmanMerchantMover =
1307 new Platform[numMaldivesToOmanMerchants];
1308 for (int i = 0; i < maldivesToOmanMerchantMover.length; ++i)
1309 {
1310 maldivesToOmanMerchantMover[i] =
1311 new Platform(“Merchant: MaldivesToOman “ + i,
1312 initialLocationMerchantMaldivesToOman,
1313 merchantMaxSpeed, typeMerchant);
1314 }
1315
1316 CookieCutterSensor[] maldivesToOmanMerchantSensor =
1317 new CookieCutterSensor[maldivesToOmanMerchantMover.length];
1318 for (int i = 0; i < maldivesToOmanMerchantMover.length; ++i)
1319 {
1320 maldivesToOmanMerchantSensor [i] =
1321 new CookieCutterSensor(maldivesToOmanMerchantMover[i],
1322 merchantSurfaceRadarRange);
1323 }
1324
1325 MerchantShipMoverManager [] maldivesToOmanMerchantManager =
1326 new MerchantShipMoverManager[maldivesToOmanMerchantMover.length];
1327 for (int i = 0; i < maldivesToOmanMerchantMover.length; ++i)
1328 {
1329 maldivesToOmanMerchantManager[i] =

 158

1330 new MerchantShipMoverManager (
1331 maldivesToOmanMerchantMover[i],
1332 maldivesToOmanMerchantSensor[i],
1333 initialLocationMerchantMaldivesToOman,
1334 maldivesToOmanMerchantPathGenerator);
1335 }
1336
1337 MaldivesToOmanOriginPort mto = new
1338 MaldivesToOmanOriginPort(maldivesToOmanMerchantManager);
1339 mtoDepartureTimeProcess.addSimEventListener(mto);
1340
1341 //************END OF MALDIVES TO OMAN MERCHANT IMPLEMENTATION*****************//
1342 //***********START OF OMAN TO MALDIVES MERCHANT SHIP IMPLEMENTATION***********//
1343 //Creates Instance of ArrivalProcess w/ interarrival time passed in
1344 OmanToMaldivesMerchantDepartureProcess otmDepartureTimeProcess = new
1345 OmanToMaldivesMerchantDepartureProcess(
1346 otmMerchantInterarrivalTime);
1347
1348 RandomVariate[] omanToMaldivesMerchantPathGenerator =
1349 new RandomVariate[8];
1350 omanToMaldivesMerchantPathGenerator[0] = RandomVariateFactory.
1351 getInstance(“Uniform,” minLatOmanToMaldivesMerchantWaypoint1,
1352 maxLatOmanToMaldivesMerchantWaypoint1);
1353 omanToMaldivesMerchantPathGenerator[1] = RandomVariateFactory.
1354 getInstance(“Uniform,” minLonOmanToMaldivesMerchantWaypoint1,
1355 maxLonOmanToMaldivesMerchantWaypoint1);
1356 omanToMaldivesMerchantPathGenerator[2] = RandomVariateFactory.
1357 getInstance(“Uniform,” minLatOmanToMaldivesMerchantWaypoint2,
1358 maxLatOmanToMaldivesMerchantWaypoint2);
1359 omanToMaldivesMerchantPathGenerator[3] = RandomVariateFactory.
1360 getInstance(“Uniform,” minLonOmanToMaldivesMerchantWaypoint2,
1361 maxLonOmanToMaldivesMerchantWaypoint2);
1362
1363 omanToMaldivesMerchantPathGenerator[4] = RandomVariateFactory.
1364 getInstance(“Uniform,” minLatOmanToMaldivesMerchantWaypoint3,
1365 maxLatOmanToMaldivesMerchantWaypoint3);
1366 omanToMaldivesMerchantPathGenerator[5] = RandomVariateFactory.
1367 getInstance(“Uniform,” minLonOmanToMaldivesMerchantWaypoint3,
1368 maxLonOmanToMaldivesMerchantWaypoint3);
1369
1370 omanToMaldivesMerchantPathGenerator[6] = RandomVariateFactory.
1371 getInstance(“Uniform,” minLatOmanToMaldivesMerchantWaypoint4,
1372 maxLatOmanToMaldivesMerchantWaypoint4);
1373 omanToMaldivesMerchantPathGenerator[7] = RandomVariateFactory.
1374 getInstance(“Uniform,”minLonOmanToMaldivesMerchantWaypoint4,
1375 maxLonOmanToMaldivesMerchantWaypoint4);
1376
1377 Platform [] omanToMaldivesMerchantMover =
1378 new Platform[numOmanToMaldivesMerchants];
1379 for (int i = 0; i < omanToMaldivesMerchantMover.length; ++i)
1380 {
1381 omanToMaldivesMerchantMover[i] =
1382 new Platform(“Merchant: OmanToMaldives “ + i,
1383 initialLocationMerchantOmanToMaldives,
1384 merchantMaxSpeed, typeMerchant);
1385 }
1386
1387 CookieCutterSensor[] omanToMaldivesMerchantSensor =
1388 new CookieCutterSensor[omanToMaldivesMerchantMover.length];
1389 for (int i = 0; i < omanToMaldivesMerchantMover.length; ++i)
1390 {

 159

1391 omanToMaldivesMerchantSensor [i] =
1392 new CookieCutterSensor(omanToMaldivesMerchantMover[i],
1393 merchantSurfaceRadarRange);
1394 }
1395
1396 MerchantShipMoverManager [] omanToMaldivesMerchantManager =
1397 new MerchantShipMoverManager[omanToMaldivesMerchantMover.length];
1398 for (int i = 0; i < omanToMaldivesMerchantMover.length; ++i)
1399 {
1400 omanToMaldivesMerchantManager[i] =
1401 new MerchantShipMoverManager (
1402 omanToMaldivesMerchantMover[i],
1403 omanToMaldivesMerchantSensor[i],
1404 initialLocationMerchantOmanToMaldives,
1405 omanToMaldivesMerchantPathGenerator);
1406 }
1407
1408 OmanToMaldivesOriginPort otm = new
1409 OmanToMaldivesOriginPort(omanToMaldivesMerchantManager);
1410 otmDepartureTimeProcess.addSimEventListener(otm);
1411
1412 //************END OF OMAN TO MALDIVES MERCHANT IMPLEMENTATION*****************//
1413 //***********START OF OMAN TO SUEZ MERCHANT SHIP IMPLEMENTATION***************//
1414 //Creates Instance of ArrivalProcess w/ interarrival time passed in
1415 OmanToSuezMerchantDepartureProcess otsDepartureTimeProcess = new
1416 OmanToSuezMerchantDepartureProcess(
1417 otsMerchantInterarrivalTime);
1418
1419 RandomVariate[] omanToSuezMerchantPathGenerator =
1420 new RandomVariate[8];
1421 omanToSuezMerchantPathGenerator[0] = RandomVariateFactory.getInstance(
1422 “Uniform,”
1423 minLatOmanToSuezMerchantWaypoint1,
1424 maxLatOmanToSuezMerchantWaypoint1);
1425 omanToSuezMerchantPathGenerator[1] = RandomVariateFactory.getInstance(
1426 “Uniform,”
1427 minLonOmanToSuezMerchantWaypoint1,
1428 maxLonOmanToSuezMerchantWaypoint1);
1429 omanToSuezMerchantPathGenerator[2] = RandomVariateFactory.getInstance(
1430 “Uniform,”
1431 minLatOmanToSuezMerchantWaypoint2,
1432 maxLatOmanToSuezMerchantWaypoint2);
1433 omanToSuezMerchantPathGenerator[3] = RandomVariateFactory.getInstance(
1434 “Uniform,”
1435 minLonOmanToSuezMerchantWaypoint2,
1436 maxLonOmanToSuezMerchantWaypoint2);
1437
1438 omanToSuezMerchantPathGenerator[4] = RandomVariateFactory.getInstance(
1439 “Uniform,”
1440 minLatOmanToSuezMerchantWaypoint3,
1441 maxLatOmanToSuezMerchantWaypoint3);
1442 omanToSuezMerchantPathGenerator[5] = RandomVariateFactory.getInstance(
1443 “Uniform,”
1444 minLonOmanToSuezMerchantWaypoint3,
1445 maxLonOmanToSuezMerchantWaypoint3);
1446
1447 omanToSuezMerchantPathGenerator[6] = RandomVariateFactory.getInstance(
1448 “Uniform,”
1449 minLatOmanToSuezMerchantWaypoint4,
1450 maxLatOmanToSuezMerchantWaypoint4);
1451 omanToSuezMerchantPathGenerator[7] = RandomVariateFactory.getInstance(

 160

1452 “Uniform,”
1453 minLonOmanToSuezMerchantWaypoint4,
1454 maxLonOmanToSuezMerchantWaypoint4);
1455
1456 Platform [] omanToSuezMerchantMover =
1457 new Platform[numOmanToSuezMerchants];
1458 for (int i = 0; i < omanToSuezMerchantMover.length; ++i)
1459 {
1460 omanToSuezMerchantMover[i] =
1461 new Platform(“Merchant: OmanToSuez “ + i,
1462 initialLocationMerchantOmanToSuez,
1463 merchantMaxSpeed, typeMerchant);
1464 }
1465
1466 CookieCutterSensor[] omanToSuezMerchantSensor =
1467 new CookieCutterSensor[omanToSuezMerchantMover.length];
1468 for (int i = 0; i < omanToSuezMerchantMover.length; ++i)
1469 {
1470 omanToSuezMerchantSensor [i] =
1471 new CookieCutterSensor(omanToSuezMerchantMover[i],
1472 merchantSurfaceRadarRange);
1473 }
1474
1475 MerchantShipMoverManager [] omanToSuezMerchantManager =
1476 new MerchantShipMoverManager[omanToSuezMerchantMover.length];
1477 for (int i = 0; i < omanToSuezMerchantMover.length; ++i)
1478 {
1479 omanToSuezMerchantManager[i] =
1480 new MerchantShipMoverManager (
1481 omanToSuezMerchantMover[i],
1482 omanToSuezMerchantSensor[i],
1483 initialLocationMerchantOmanToSuez,
1484 omanToSuezMerchantPathGenerator);
1485 }
1486
1487 OmanToSuezOriginPort ots = new
1488 OmanToSuezOriginPort(omanToSuezMerchantManager);
1489 otsDepartureTimeProcess.addSimEventListener(ots);
1490
1491 //************END OF OMAN TO SUEZ MERCHANT IMPLEMENTATION*********************//
1492 //****************END OF MERCHANT SHIP IMPLEMENTATION*************************//
1493 //*****************START OF ADUDICATOR IMPLEMENTATION*************************//
1494 Adjudicator adj = new Adjudicator(successOrFailGenerator);
1495
1496 //*****************END OF ADUDICATOR IMPLEMENTATION*************************//
1497 //***************Referees, Mediators, and EventListeners*********************//
1498 //Create a SensorMoverReferee
1499 SensorMoverReferee smr = new SensorMoverReferee();
1500
1501 //Add a mediator for each sesnor and mediator
1502 smr.addMediator(CookieCutterSensor.class, Platform.class,
1503 new CookieCutterMediator());
1504
1505 adj.addSimEventListener(smr);
1506
1507 for (int i = 0 ; i < elaayoPirateMover.length ; ++i)
1508 {
1509 elaayoPirateMover[i].addSimEventListener(smr);
1510 elaayoPirateManager[i].addSimEventListener(smr);
1511 elaayoPirateSensor[i].addSimEventListener(smr);
1512 elaayoPirateSensor[i].addSimEventListener(elaayoPirateManager[i]);

 161

1513 }
1514
1515 for (int i = 0 ; i < qandalaPirateMover.length ; ++i)
1516 {
1517 qandalaPirateMover[i].addSimEventListener(smr);
1518 qandalaPirateManager[i].addSimEventListener(smr);
1519 qandalaPirateSensor[i].addSimEventListener(smr);
1520 qandalaPirateSensor[i].addSimEventListener(qandalaPirateManager[i]);
1521 }
1522
1523 for (int i = 0 ; i < aluulaPirateMover.length ; ++i)
1524 {
1525 aluulaPirateMover[i].addSimEventListener(smr);
1526 aluulaPirateManager[i].addSimEventListener(smr);
1527 aluulaPirateSensor[i].addSimEventListener(smr);
1528 aluulaPirateSensor[i].addSimEventListener(aluulaPirateManager[i]);
1529 }
1530
1531 for (int i = 0 ; i < bargalPirateMover.length ; ++i)
1532 {
1533 bargalPirateMover[i].addSimEventListener(smr);
1534 bargalPirateManager[i].addSimEventListener(smr);
1535 bargalPirateSensor[i].addSimEventListener(smr);
1536 bargalPirateSensor[i].addSimEventListener(bargalPirateManager[i]);
1537 }
1538
1539 for (int i = 0 ; i < hafunPirateMover.length ; ++i)
1540 {
1541 hafunPirateMover[i].addSimEventListener(smr);
1542 hafunPirateManager[i].addSimEventListener(smr);
1543 hafunPirateSensor[i].addSimEventListener(smr);
1544 hafunPirateSensor[i].addSimEventListener(hafunPirateManager[i]);
1545 }
1546
1547 for (int i = 0 ; i < baylaPirateMover.length ; ++i)
1548 {
1549 baylaPirateMover[i].addSimEventListener(smr);
1550 baylaPirateManager[i].addSimEventListener(smr);
1551 baylaPirateSensor[i].addSimEventListener(smr);
1552 baylaPirateSensor[i].addSimEventListener(baylaPirateManager[i]);
1553 }
1554
1555 for (int i = 0 ; i < eylPirateMover.length ; ++i)
1556 {
1557 eylPirateMover[i].addSimEventListener(smr);
1558 eylPirateManager[i].addSimEventListener(smr);
1559 eylPirateSensor[i].addSimEventListener(smr);
1560 eylPirateSensor[i].addSimEventListener(eylPirateManager[i]);
1561 }
1562
1563 for (int i = 0 ; i < garacadPirateMover.length ; ++i)
1564 {
1565 garacadPirateMover[i].addSimEventListener(smr);
1566 garacadPirateManager[i].addSimEventListener(smr);
1567 garacadPirateSensor[i].addSimEventListener(smr);
1568 garacadPirateSensor[i].addSimEventListener(
1569 garacadPirateManager[i]);
1570 }
1571
1572 for (int i = 0 ; i < hobyoPirateMover.length ; ++i)
1573 {

 162

1574 hobyoPirateMover[i].addSimEventListener(smr);
1575 hobyoPirateManager[i].addSimEventListener(smr);
1576 hobyoPirateSensor[i].addSimEventListener(smr);
1577 hobyoPirateSensor[i].addSimEventListener(hobyoPirateManager[i]);
1578 }
1579
1580 for (int i = 0 ; i < harardherePirateMover.length ; ++i)
1581 {
1582 harardherePirateMover[i].addSimEventListener(smr);
1583 harardherePirateManager[i].addSimEventListener(smr);
1584 harardherePirateSensor[i].addSimEventListener(smr);
1585 harardherePirateSensor[i].addSimEventListener(
1586 harardherePirateManager[i]);
1587 }
1588
1589 for (int i = 0 ; i < goaNavyMover.length ; ++i)
1590 {
1591 goaNavyMover[i].addSimEventListener(smr);
1592 goaNavyManager[i].addSimEventListener(smr);
1593 goaNavySensor[i].addSimEventListener(smr);
1594 goaNavySensor[i].addSimEventListener(goaNavyManager[i]);
1595 }
1596
1597 for (int i = 0 ; i < ioNavyMover.length ; ++i)
1598 {
1599 ioNavyMover[i].addSimEventListener(smr);
1600 ioNavyManager[i].addSimEventListener(smr);
1601 ioNavySensor[i].addSimEventListener(smr);
1602 ioNavySensor[i].addSimEventListener(ioNavyManager[i]);
1603 }
1604
1605 for (int i = 0 ; i < suezToOmanMerchantMover.length ; ++i)
1606 {
1607 suezToOmanMerchantMover[i].addSimEventListener(smr);
1608 suezToOmanMerchantManager[i].addSimEventListener(smr);
1609 suezToOmanMerchantSensor[i].addSimEventListener(smr);
1610 suezToOmanMerchantSensor[i].addSimEventListener(
1611 suezToOmanMerchantManager[i]);
1612 }
1613
1614 for (int i = 0 ; i < suezToMaldivesMerchantMover.length ; ++i)
1615 {
1616 suezToMaldivesMerchantMover[i].addSimEventListener(smr);
1617 suezToMaldivesMerchantManager[i].addSimEventListener(smr);
1618 suezToMaldivesMerchantSensor[i].addSimEventListener(smr);
1619 suezToMaldivesMerchantSensor[i].addSimEventListener(
1620 suezToMaldivesMerchantManager[i]);
1621 }
1622
1623 for (int i = 0 ; i < omanToSuezMerchantMover.length ; ++i)
1624 {
1625 omanToSuezMerchantMover[i].addSimEventListener(smr);
1626 omanToSuezMerchantManager[i].addSimEventListener(smr);
1627 omanToSuezMerchantSensor[i].addSimEventListener(smr);
1628 omanToSuezMerchantSensor[i].addSimEventListener(
1629 omanToSuezMerchantManager[i]);
1630 }
1631
1632 for (int i = 0 ; i < omanToMaldivesMerchantMover.length ; ++i)
1633 {
1634 omanToMaldivesMerchantMover[i].addSimEventListener(smr);

 163

1635 omanToMaldivesMerchantManager[i].addSimEventListener(smr);
1636 omanToMaldivesMerchantSensor[i].addSimEventListener(smr);
1637 omanToMaldivesMerchantSensor[i].addSimEventListener(
1638 omanToMaldivesMerchantManager[i]);
1639 }
1640
1641 for (int i = 0 ; i < maldivesToSuezMerchantMover.length ; ++i)
1642 {
1643 maldivesToSuezMerchantMover[i].addSimEventListener(smr);
1644 maldivesToSuezMerchantManager[i].addSimEventListener(smr);
1645 maldivesToSuezMerchantSensor[i].addSimEventListener(smr);
1646 maldivesToSuezMerchantSensor[i].addSimEventListener(
1647 maldivesToSuezMerchantManager[i]);
1648 }
1649
1650 for (int i = 0 ; i < maldivesToOmanMerchantMover.length ; ++i)
1651 {
1652 maldivesToOmanMerchantMover[i].addSimEventListener(smr);
1653 maldivesToOmanMerchantManager[i].addSimEventListener(smr);
1654 maldivesToOmanMerchantSensor[i].addSimEventListener(smr);
1655 maldivesToOmanMerchantSensor[i].addSimEventListener(
1656 maldivesToOmanMerchantManager[i]);
1657 }
1658
1659 //*************END OF Referees, Mediators, and EventListeners*****************//
1660
1661 //****************Start of Adapters for Simulation***************************//
1662 Adapter decision = new Adapter(“Attack,” “DecideSuccessOrFail”);
1663
1664 for(int i = 0; i < eylPirateManager.length; ++i)
1665 {
1666 decision.connect(eylPirateManager[i], adj);
1667 }
1668
1669 for(int i = 0; i < qandalaPirateManager.length; ++i)
1670 {
1671 decision.connect(qandalaPirateManager[i], adj);
1672 }
1673
1674 for(int i = 0; i < aluulaPirateManager.length; ++i)
1675 {
1676 decision.connect(aluulaPirateManager[i], adj);
1677 }
1678
1679 for(int i = 0; i < bargalPirateManager.length; ++i)
1680 {
1681 decision.connect(bargalPirateManager[i], adj);
1682 }
1683
1684 for(int i = 0; i < hafunPirateManager.length; ++i)
1685 {
1686 decision.connect(hafunPirateManager[i], adj);
1687 }
1688
1689 for(int i = 0; i < baylaPirateManager.length; ++i)
1690 {
1691 decision.connect(baylaPirateManager[i], adj);
1692 }
1693
1694 for(int i = 0; i < eylPirateManager.length; ++i)
1695 {

 164

1696 decision.connect(eylPirateManager[i], adj);
1697 }
1698
1699 for(int i = 0; i < garacadPirateManager.length; ++i)
1700 {
1701 decision.connect(garacadPirateManager[i], adj);
1702 }
1703
1704 for(int i = 0; i < hobyoPirateManager.length; ++i)
1705 {
1706 decision.connect(hobyoPirateManager[i], adj);
1707 }
1708
1709 for(int i = 0; i < harardherePirateManager.length; ++i)
1710 {
1711 decision.connect(harardherePirateManager[i], adj);
1712 }
1713
1714 //**Allows Navy vessels to signal pirates when detections occur**//
1715 Adapter signalPiarteAdapter = new Adapter(“SignalPirate,”
1716 “DetectedByNavy”);
1717 for (int i = 0 ; i < elaayoPirateManager.length ; ++i)
1718 {
1719 for (int j = 0 ; j < goaNavyManager.length ; ++j)
1720 {
1721 signalPiarteAdapter.connect(goaNavyManager[j],
1722 elaayoPirateManager[i]);
1723 }
1724 }
1725 for (int i = 0 ; i < elaayoPirateManager.length ; ++i)
1726 {
1727 for (int j = 0 ; j < ioNavyManager.length ; ++j)
1728 {
1729 signalPiarteAdapter.connect(ioNavyManager[j],
1730 elaayoPirateManager[i]);
1731 }
1732 }
1733
1734 for (int i = 0 ; i < qandalaPirateManager.length ; ++i)
1735 {
1736 for (int j = 0 ; j < goaNavyManager.length ; ++j)
1737 {
1738 signalPiarteAdapter.connect(goaNavyManager[j],
1739 qandalaPirateManager[i]);
1740 }
1741 }
1742
1743 for (int i = 0 ; i < qandalaPirateManager.length ; ++i)
1744 {
1745 for (int j = 0 ; j < ioNavyManager.length ; ++j)
1746 {
1747 signalPiarteAdapter.connect(ioNavyManager[j],
1748 qandalaPirateManager[i]);
1749 }
1750 }
1751
1752 for (int i = 0 ; i < aluulaPirateManager.length ; ++i)
1753 {
1754 for (int j = 0 ; j < goaNavyManager.length ; ++j)
1755 {
1756 signalPiarteAdapter.connect(goaNavyManager[j],

 165

1757 aluulaPirateManager[i]);
1758 }
1759 }
1760
1761 for (int i = 0 ; i < aluulaPirateManager.length ; ++i)
1762 {
1763 for (int j = 0 ; j < ioNavyManager.length ; ++j)
1764 {
1765 signalPiarteAdapter.connect(ioNavyManager[j],
1766 aluulaPirateManager[i]);
1767 }
1768 }
1769
1770 for (int i = 0 ; i < bargalPirateManager.length ; ++i)
1771 {
1772 for (int j = 0 ; j < goaNavyManager.length ; ++j)
1773 {
1774 signalPiarteAdapter.connect(goaNavyManager[j],
1775 bargalPirateManager[i]);
1776 }
1777 }
1778
1779 for (int i = 0 ; i < bargalPirateManager.length ; ++i)
1780 {
1781 for (int j = 0 ; j < ioNavyManager.length ; ++j)
1782 {
1783 signalPiarteAdapter.connect(ioNavyManager[j],
1784 bargalPirateManager[i]);
1785 }
1786 }
1787
1788 for (int i = 0 ; i < hafunPirateManager.length ; ++i)
1789 {
1790 for (int j = 0 ; j < goaNavyManager.length ; ++j)
1791 {
1792 signalPiarteAdapter.connect(goaNavyManager[j],
1793 hafunPirateManager[i]);
1794 }
1795 }
1796
1797 for (int i = 0 ; i < hafunPirateManager.length ; ++i)
1798 {
1799 for (int j = 0 ; j < ioNavyManager.length ; ++j)
1800 {
1801 signalPiarteAdapter.connect(ioNavyManager[j],
1802 hafunPirateManager[i]);
1803 }
1804 }
1805
1806 for (int i = 0 ; i < baylaPirateManager.length ; ++i)
1807 {
1808 for (int j = 0 ; j < goaNavyManager.length ; ++j)
1809 {
1810 signalPiarteAdapter.connect(goaNavyManager[j],
1811 baylaPirateManager[i]);
1812 }
1813 }
1814
1815 for (int i = 0 ; i < baylaPirateManager.length ; ++i)
1816 {
1817 for (int j = 0 ; j < ioNavyManager.length ; ++j)

 166

1818 {
1819 signalPiarteAdapter.connect(ioNavyManager[j],
1820 baylaPirateManager[i]);
1821 }
1822 }
1823
1824 for (int i = 0 ; i < eylPirateManager.length ; ++i)
1825 {
1826 for (int j = 0 ; j < goaNavyManager.length ; ++j)
1827 {
1828 signalPiarteAdapter.connect(goaNavyManager[j],
1829 eylPirateManager[i]);
1830 }
1831 }
1832
1833 for (int i = 0 ; i < eylPirateManager.length ; ++i)
1834 {
1835 for (int j = 0 ; j < ioNavyManager.length ; ++j)
1836 {
1837 signalPiarteAdapter.connect(ioNavyManager[j],
1838 eylPirateManager[i]);
1839 }
1840 }
1841
1842 for (int i = 0 ; i < garacadPirateManager.length ; ++i)
1843 {
1844 for (int j = 0 ; j < goaNavyManager.length ; ++j)
1845 {
1846 signalPiarteAdapter.connect(goaNavyManager[j],
1847 garacadPirateManager[i]);
1848 }
1849 }
1850
1851 for (int i = 0 ; i < garacadPirateManager.length ; ++i)
1852 {
1853 for (int j = 0 ; j < ioNavyManager.length ; ++j)
1854 {
1855 signalPiarteAdapter.connect(ioNavyManager[j],
1856 garacadPirateManager[i]);
1857 }
1858 }
1859
1860 for (int i = 0 ; i < hobyoPirateManager.length ; ++i)
1861 {
1862 for (int j = 0 ; j < goaNavyManager.length ; ++j)
1863 {
1864 signalPiarteAdapter.connect(goaNavyManager[j],
1865 hobyoPirateManager[i]);
1866 }
1867 }
1868
1869 for (int i = 0 ; i < hobyoPirateManager.length ; ++i)
1870 {
1871 for (int j = 0 ; j < ioNavyManager.length ; ++j)
1872 {
1873 signalPiarteAdapter.connect(ioNavyManager[j],
1874 hobyoPirateManager[i]);
1875 }
1876 }
1877
1878 for (int i = 0 ; i < harardherePirateManager.length ; ++i)

 167

1879 {
1880 for (int j = 0 ; j < goaNavyManager.length ; ++j)
1881 {
1882 signalPiarteAdapter.connect(goaNavyManager[j],
1883 harardherePirateManager[i]);
1884 }
1885 }
1886
1887 for (int i = 0 ; i < harardherePirateManager.length ; ++i)
1888 {
1889 for (int j = 0 ; j < ioNavyManager.length ; ++j)
1890 {
1891 signalPiarteAdapter.connect(ioNavyManager[j],
1892 harardherePirateManager[i]);
1893 }
1894 }
1895
1896 //Allows Merchants to send distress call to Navy
1897 Adapter merchantDistressAdapter = new Adapter(“RadioNavy,”
1898 “RcvDistressCall”);
1899 for (int i = 0 ; i < suezToOmanMerchantManager.length ; ++i)
1900 {
1901 for (int j = 0 ; j < goaNavyMover.length ; ++j)
1902 {
1903 merchantDistressAdapter.connect(suezToOmanMerchantManager[i],
1904 goaNavyManager[j]);
1905
1906 }
1907 }
1908
1909 for (int i = 0 ; i < suezToOmanMerchantManager.length ; ++i)
1910 {
1911 for (int j = 0 ; j < ioNavyMover.length ; ++j)
1912 {
1913 merchantDistressAdapter.connect(suezToOmanMerchantManager[i],
1914 ioNavyManager[j]);
1915
1916 }
1917 }
1918
1919 for (int i = 0 ; i < suezToMaldivesMerchantManager.length ; ++i)
1920 {
1921 for (int j = 0 ; j < goaNavyMover.length ; ++j)
1922 {
1923 merchantDistressAdapter.connect(
1924 suezToMaldivesMerchantManager[i], goaNavyManager[j]);
1925
1926 }
1927 }
1928
1929 for (int i = 0 ; i < suezToMaldivesMerchantManager.length ; ++i)
1930 {
1931 for (int j = 0 ; j < ioNavyMover.length ; ++j)
1932 {
1933 merchantDistressAdapter.connect(
1934 suezToMaldivesMerchantManager[i], ioNavyManager[j]);
1935
1936 }
1937 }
1938
1939 for (int i = 0 ; i < omanToSuezMerchantManager.length ; ++i)

 168

1940 {
1941 for (int j = 0 ; j < goaNavyMover.length ; ++j)
1942 {
1943 merchantDistressAdapter.connect(omanToSuezMerchantManager[i],
1944 goaNavyManager[j]);
1945
1946 }
1947 }
1948
1949 for (int i = 0 ; i < omanToSuezMerchantManager.length ; ++i)
1950 {
1951 for (int j = 0 ; j < ioNavyMover.length ; ++j)
1952 {
1953 merchantDistressAdapter.connect(omanToSuezMerchantManager[i],
1954 ioNavyManager[j]);
1955
1956 }
1957 }
1958
1959 for (int i = 0 ; i < omanToMaldivesMerchantManager.length ; ++i)
1960 {
1961 for (int j = 0 ; j < goaNavyMover.length ; ++j)
1962 {
1963 merchantDistressAdapter.connect(
1964 omanToMaldivesMerchantManager[i],goaNavyManager[j]);
1965 }
1966 }
1967
1968 for (int i = 0 ; i < omanToMaldivesMerchantManager.length ; ++i)
1969 {
1970 for (int j = 0 ; j < ioNavyMover.length ; ++j)
1971 {
1972 merchantDistressAdapter.connect(
1973 omanToMaldivesMerchantManager[i], ioNavyManager[j]);
1974 }
1975 }
1976
1977 for (int i = 0 ; i < maldivesToSuezMerchantManager.length ; ++i)
1978 {
1979 for (int j = 0 ; j < goaNavyMover.length ; ++j)
1980 {
1981 merchantDistressAdapter.connect(
1982 maldivesToSuezMerchantManager[i], goaNavyManager[j]);
1983 }
1984 }
1985
1986 for (int i = 0 ; i < maldivesToSuezMerchantManager.length ; ++i)
1987 {
1988 for (int j = 0 ; j < ioNavyMover.length ; ++j)
1989 {
1990 merchantDistressAdapter.connect(
1991 maldivesToSuezMerchantManager[i], ioNavyManager[j]);
1992
1993 }
1994 }
1995
1996 for (int i = 0 ; i < maldivesToOmanMerchantManager.length ; ++i)
1997 {
1998 for (int j = 0 ; j < goaNavyMover.length ; ++j)
1999 {
2000 merchantDistressAdapter.connect(

 169

2001 maldivesToOmanMerchantManager[i], goaNavyManager[j]);
2002
2003 }
2004 }
2005
2006 for (int i = 0 ; i < maldivesToOmanMerchantManager.length ; ++i)
2007 {
2008 for (int j = 0 ; j < ioNavyMover.length ; ++j)
2009 {
2010 merchantDistressAdapter.connect(
2011 maldivesToOmanMerchantManager[i],ioNavyManager[j]);
2012
2013 }
2014 }
2015
2016
2017 //****************End of Adapters for Simulation******************************//
2018
2019 //************Start of Property Change Listeners for Stats********************//
2020
2021 SimpleStatsTally elaayoDepartStat =
2022 new SimpleStatsTally(“numberDepartedGOA”);
2023 epc.addPropertyChangeListener(“numberDepartedGOA,”
2024 elaayoDepartStat);
2025
2026 SimpleStatsTally qandalaDepartStat =
2027 new SimpleStatsTally(“numberDepartedGOA”);
2028 qpc.addPropertyChangeListener (“numberDepartedGOA,”
2029 qandalaDepartStat);
2030
2031 SimpleStatsTally aluulaDepartStat =
2032 new SimpleStatsTally(“numberDepartedGOA”);
2033 apc.addPropertyChangeListener (“numberDepartedGOA,”
2034 aluulaDepartStat);
2035
2036 SimpleStatsTally bargalDepartStat =
2037 new SimpleStatsTally(“numberDepartedIO”);
2038 bpc.addPropertyChangeListener (“numberDepartedIO,”
2039 bargalDepartStat);
2040
2041 SimpleStatsTally hafunDepartStat =
2042 new SimpleStatsTally(“numberDepartedIO”);
2043 hpc.addPropertyChangeListener (“numberDepartedIO,”
2044 hafunDepartStat);
2045
2046 SimpleStatsTally baylaDepartStat =
2047 new SimpleStatsTally(“numberDepartedIO”);
2048 baypc.addPropertyChangeListener (“numberDepartedIO,”
2049 baylaDepartStat);
2050
2051 SimpleStatsTally eylDepartStat =
2052 new SimpleStatsTally(“numberDepartedIO”);
2053 eylpc.addPropertyChangeListener (“numberDepartedIO,”
2054 eylDepartStat);
2055
2056 SimpleStatsTally garacadDepartStat =
2057 new SimpleStatsTally(“numberDepartedIO”);
2058 gpc.addPropertyChangeListener (“numberDepartedIO,”
2059 garacadDepartStat);
2060
2061 SimpleStatsTally hobyoDepartStat =

 170

2062 new SimpleStatsTally(“numberDepartedIO”);
2063 hobpc.addPropertyChangeListener (“numberDepartedIO,”
2064 hobyoDepartStat);
2065
2066 SimpleStatsTally harardhereDepartStat =
2067 new SimpleStatsTally(“numberDepartedIO”);
2068 harpc.addPropertyChangeListener (“numberDepartedIO,”
2069 harardhereDepartStat);
2070
2071 SimpleStatsTally goaNavyDetectionStat =
2072 new SimpleStatsTally(“numberPiratesDetected”);
2073 for (int i = 0; i < goaNavyManager.length; i++)
2074 {
2075 goaNavyManager[i].addPropertyChangeListener(
2076 “numberPiratesDetected,”goaNavyDetectionStat);
2077 }
2078
2079 SimpleStatsTally ioNavyDetectionStat =
2080 new SimpleStatsTally(“numberPiratesDetected”);
2081 for (int i = 0; i < ioNavyManager.length; i++)
2082 {
2083 ioNavyManager[i].addPropertyChangeListener(
2084 “numberPiratesDetected,”ioNavyDetectionStat);
2085 }
2086
2087 SimpleStatsTally elaayoAttemptStat =
2088 new SimpleStatsTally(“numberAttemptedAttacks”);
2089 for (int i = 0; i < elaayoPirateManager.length; i++)
2090 {
2091 elaayoPirateManager[i].addPropertyChangeListener(
2092 “numberAttemptedAttacks,” elaayoAttemptStat);
2093 }
2094
2095 SimpleStatsTally aluulaAttemptStat =
2096 new SimpleStatsTally(“numberAttemptedAttacks”);
2097 for (int i = 0; i < aluulaPirateManager.length; i++)
2098 {
2099
2100 aluulaPirateManager[i].addPropertyChangeListener(
2101 “numberAttemptedAttacks,” aluulaAttemptStat);
2102 }
2103
2104 SimpleStatsTally qandalaAttemptStat =
2105 new SimpleStatsTally(“numberAttemptedAttacks”);
2106 for (int i = 0; i < qandalaPirateManager.length; i++)
2107 {
2108
2109 qandalaPirateManager[i].addPropertyChangeListener(
2110 “numberAttemptedAttacks,” qandalaAttemptStat);
2111 }
2112
2113 SimpleStatsTally bargalAttemptStat =
2114 new SimpleStatsTally(“numberAttemptedAttacks”);
2115 for (int i = 0; i < bargalPirateManager.length; i++)
2116 {
2117 bargalPirateManager[i].addPropertyChangeListener(
2118 “numberAttemptedAttacks,” bargalAttemptStat);
2119 }
2120
2121 SimpleStatsTally hafunAttemptStat =
2122 new SimpleStatsTally(“numberAttemptedAttacks”);

 171

2123 for (int i = 0; i < hafunPirateManager.length; i++)
2124 {
2125 hafunPirateManager[i].addPropertyChangeListener(
2126 “numberAttemptedAttacks,”
2127 hafunAttemptStat);
2128 }
2129
2130 SimpleStatsTally baylaAttemptStat =
2131 new SimpleStatsTally(“numberAttemptedAttacks”);
2132 for (int i = 0; i < baylaPirateManager.length; i++)
2133 {
2134 baylaPirateManager[i].addPropertyChangeListener(
2135 “numberAttemptedAttacks,” baylaAttemptStat);
2136 }
2137
2138 SimpleStatsTally eylAttemptStat =
2139 new SimpleStatsTally(“numberAttemptedAttacks”);
2140 for (int i = 0; i < eylPirateManager.length; i++)
2141 {
2142 eylPirateManager[i].addPropertyChangeListener(
2143 “numberAttemptedAttacks,” eylAttemptStat);
2144 }
2145
2146 SimpleStatsTally garacadAttemptStat =
2147 new SimpleStatsTally(“numberAttemptedAttacks”);
2148 for (int i = 0; i < garacadPirateManager.length; i++)
2149 {
2150 garacadPirateManager[i].addPropertyChangeListener(
2151 “numberAttemptedAttacks,” garacadAttemptStat);
2152 }
2153
2154 SimpleStatsTally hobyoAttemptStat =
2155 new SimpleStatsTally(“numberAttemptedAttacks”);
2156 for (int i = 0; i < hobyoPirateManager.length; i++)
2157 {
2158 hobyoPirateManager[i].addPropertyChangeListener(
2159 “numberAttemptedAttacks,” hobyoAttemptStat);
2160 }
2161
2162 SimpleStatsTally harardhereAttemptStat =
2163 new SimpleStatsTally(“numberAttemptedAttacks”);
2164 for (int i = 0; i < harardherePirateManager.length; i++)
2165 {
2166 harardherePirateManager[i].addPropertyChangeListener(
2167 “numberAttemptedAttacks,” harardhereAttemptStat);
2168 }
2169
2170 SimpleStatsTally stmDepartStat =
2171 new SimpleStatsTally(“numberDepartedPort”);
2172 stm.addPropertyChangeListener(“numberDepartedPort,”
2173 stmDepartStat);
2174
2175 SimpleStatsTally stoDepartStat =
2176 new SimpleStatsTally(“numberDepartedPort”);
2177 sto.addPropertyChangeListener(“numberDepartedPort,”
2178 stoDepartStat);
2179
2180 SimpleStatsTally mtsDepartStat =
2181 new SimpleStatsTally(“numberDepartedPort”);
2182 mts.addPropertyChangeListener (“numberDepartedPort,”
2183 mtsDepartStat);

 172

2184
2185 SimpleStatsTally mtoDepartStat =
2186 new SimpleStatsTally(“numberDepartedPort”);
2187 mto.addPropertyChangeListener(“numberDepartedPort ,”
2188 mtoDepartStat);
2189
2190 SimpleStatsTally otmDepartStat =
2191 new SimpleStatsTally(“numberDepartedPort”);
2192 otm.addPropertyChangeListener (“numberDepartedPort,”
2193 otmDepartStat);
2194
2195 SimpleStatsTally otsDepartStat =
2196 new SimpleStatsTally(“numberDepartedPort”);
2197 ots.addPropertyChangeListener (“numberDepartedPort,”
2198 otsDepartStat);
2199
2200 //*************End of Property Change Listeners for Stats*********************//
2201 //*******************Start of Stats and Schedule Implementation***************//
2202 LinkedList goaDepartures = new LinkedList();
2203 LinkedList ioDepartures = new LinkedList();
2204 LinkedList numPiratesDetected = new LinkedList();
2205 LinkedList navalEffectivenessList = new LinkedList();
2206 LinkedList pirateAttemptList = new LinkedList();
2207 LinkedList pirateEffectiveness1List = new LinkedList();
2208 LinkedList pirateEffectiveness2List = new LinkedList();
2209 LinkedList merchantTransits = new LinkedList();
2210
2211 for (int i = 0; i < 30; ++i)
2212 {
2213
2214 Schedule.setDecimalFormat(“0.00”);
2215 Schedule.setVerbose(false);
2216 Schedule.setEventSourceVerbose(false);
2217 Schedule.stopAtTime(simTime);
2218 elaayoDepartStat.reset ();
2219 qandalaDepartStat.reset ();
2220 aluulaDepartStat.reset ();
2221 bargalDepartStat.reset ();
2222 hafunDepartStat.reset ();
2223 baylaDepartStat.reset ();
2224 eylDepartStat.reset ();
2225 garacadDepartStat.reset ();
2226 hobyoDepartStat.reset ();
2227 harardhereDepartStat.reset ();
2228 totalNumDepartedGOA = 0;
2229 totalNumDepartedIO = 0;
2230 totalNumberPiratesDeparted = 0;
2231 goaNavyDetectionStat.reset ();
2232 ioNavyDetectionStat.reset ();
2233 totalNumberPiratesDetected = 0;
2234 navalEffectiveness = 0;
2235 elaayoAttemptStat.reset();
2236 qandalaAttemptStat.reset();
2237 aluulaAttemptStat.reset();
2238 bargalAttemptStat.reset();
2239 hafunAttemptStat.reset();
2240 baylaAttemptStat.reset();
2241 eylAttemptStat.reset();
2242 garacadAttemptStat.reset();
2243 hobyoAttemptStat.reset();
2244 harardhereAttemptStat.reset();

 173

2245 stoDepartStat.reset();
2246 stmDepartStat.reset();
2247 otmDepartStat.reset();
2248 otsDepartStat.reset();
2249 mtoDepartStat.reset();
2250 mtsDepartStat.reset();
2251 totalNumberMerchantTransits = 0;
2252 totalAttemptedAttacks = 0;
2253 pirateEffectiveness1 = 0;
2254 Schedule.reset();
2255 Schedule.startSimulation();
2256
2257 totalNumberPiratesDetected = goaNavyDetectionStat.getCount()
2258 + ioNavyDetectionStat.getCount();
2259
2260 totalNumDepartedGOA = elaayoDepartStat.getCount()
2261 + aluulaDepartStat.getCount()
2262 + qandalaDepartStat.getCount();
2263
2264 totalNumDepartedIO = baylaDepartStat.getCount()
2265 + hafunDepartStat.getCount()
2266 + baylaDepartStat.getCount()
2267 + eylDepartStat.getCount()
2268 + garacadDepartStat.getCount()
2269 + hobyoDepartStat.getCount()
2270 + harardhereDepartStat.getCount();
2271
2272 totalNumberPiratesDeparted = totalNumDepartedGOA +
2273 totalNumDepartedIO;
2274
2275 System.out.println(“Total Number Pirates Detected: “ +
2276 totalNumberPiratesDeparted);
2277
2278 navalEffectiveness = totalNumberPiratesDetected
2279 / totalNumberPiratesDeparted;
2280
2281 totalAttemptedAttacks = elaayoAttemptStat.getCount()
2282 + aluulaAttemptStat.getCount()
2283 + qandalaAttemptStat.getCount()
2284 + bargalAttemptStat.getCount()
2285 + hafunAttemptStat.getCount()
2286 + baylaAttemptStat.getCount()
2287 + eylAttemptStat.getCount()
2288 + garacadAttemptStat.getCount()
2289 + hobyoAttemptStat.getCount()
2290 + harardhereAttemptStat.getCount();
2291
2292 pirateEffectiveness1 = totalAttemptedAttacks
2293 / totalNumberPiratesDeparted;
2294
2295 totalNumberMerchantTransits = stoDepartStat.getCount()
2296 + stmDepartStat.getCount()
2297 + otmDepartStat.getCount()
2298 + otsDepartStat.getCount()
2299 + mtoDepartStat.getCount()
2300 + mtsDepartStat.getCount();
2301
2302 pirateEffectiveness2 = totalAttemptedAttacks /
2303 totalNumberMerchantTransits;
2304
2305 goaDepartures.add(totalNumDepartedGOA);

 174

2306 ioDepartures.add(totalNumDepartedIO);
2307 merchantTransits.add (totalNumberMerchantTransits);
2308 numPiratesDetected.add(totalNumberPiratesDetected);
2309 navalEffectivenessList.add(navalEffectiveness);
2310 pirateAttemptList.add(totalAttemptedAttacks);
2311 pirateEffectiveness1List.add(pirateEffectiveness1);
2312 pirateEffectiveness2List.add(pirateEffectiveness2);
2313
2314 System.out.println(“Ellayo Numbers: “ +
2315 epc.getMyPirates ().size ());
2316 System.out.println(“Ellayo Departures: “ +
2317 elaayoDepartStat.getCount());
2318 System.out.println(“Number Merchants: “ + merchantTransits);
2319
2320 }
2321
2322 System.out.println(“Pirate Camp Operations Stats Output”);
2323 System.out.println(“Goa Departures: “ + goaDepartures);
2324 System.out.println(“IO Departures: “ + ioDepartures);
2325 System.out.println(“Merchant Transits: “ + merchantTransits);
2326 System.out.println(“Pirates Detected: “ + numPiratesDetected);
2327 System.out.println(“Naval Effectiveness: “ + navalEffectivenessList);
2328 System.out.println(“Attempted Attacks: “ + pirateAttemptList);
2329 System.out.println(“Pirate Effectiveness 1: “ +
2330 pirateEffectiveness1List);
2331 System.out.println(“Pirate Effectiveness 2: “ +
2332 pirateEffectiveness2List);
2333
2334
2335 //*********************End of Schedule Implementation*************************//
2336 //****************************END OF ASSEMBLY*********************************//
2337
2338 }
2339 }
2340

 175

APPENDIX L. PLATFORM CLASS JAVA CODE

 1 package supplemental;
 2
 3 import java.awt.geom.Point2D;
 4 import simkit.Priority;
 5 import simkit.smd.BasicLinearMover;
 6 import simkit.smd.Mover;
 7
 8 /**
 9 * @version Id
10 * @author Chad R Hutchins & Arnie Buss
11 */
12 public class Platform extends BasicLinearMover {
13
14 private PlatformType type;
15 protected boolean isAlive;
16
17 public Platform(String name, Point2D initialLocation,
18 double maxSpeed, PlatformType type)
19 {
20 super(name, initialLocation, maxSpeed);
21 this.setType(type);
22 }
23
24 /**
25 * @return the type
26 */
27 public PlatformType getType()
28 {
29 return type;
30 }
31
32 /**
33 * @param type the type to set
34 */
35 public void setType(PlatformType type)
36 {
37 this.type = type;
38 }
39
40 /**
41 * @return the isAlive
42 */
43 public boolean getIsAlive ()
44 {
45 return isAlive;
46 }
47
48 /**
49 * removes (just) mover
50 *
51 * @param mover dead Mover
52 */
53 public void doDie(Mover mover)
54 {
55 //isAlive = false;
56 this.removeMover(mover);

 176

57 this.interruptAll();
58
59 waitDelay(“OrderStop,” 0.0, Priority.HIGH, mover);
60 }
61
62 /**
63 * If in movers set, remove. Stop listening to it, and interrupt all pending
64 * events with mover as an argument.
65 *
66 * @param mover Mover to be removed
67 */
68 public void removeMover(Mover mover)
69 {
70 mover.removeSimEventListener(this);
71 this.interruptAllWithArgs(mover);
72 }
73
74 @Override
75 public String toString()
76 {
77 return super.toString().
78 replaceAll(“BasicLinearMover,” “Platform”)
79 + “ “ + getType();
80 }
81 }

 177

APPENDIX M. PLATFORM TYPE CLASS JAVA CODE

 1 /*
 2 * PlatformType.java
 3 *
 4 */
 5 package supplemental;
 6
 7 /**
 8 * All the different entity players in the scenario
 9 *
10 * @version $Id: PlatformType.java 120 2012–11–15 23:36:37Z crhutchi $
11 * @author Chad R Hutchins
12 */
13 public enum PlatformType {
14 NAVY,
15 MERCHANT,
16 PIRATE
17 }
18

 178

THIS PAGE INTENTIONALLY LEFT BLANK

 179

APPENDIX N. NAVY STATE JAVA CODE

 1 /*
 2 * NavyState.java
 3 */
 4 package supplemental;
 5
 6 /**
 7 * Enums that describe the state of a navy ship while conducting counter-piracy
 8 * operations
 9 *
10 * @author Chad R Hutchins
11 * @version $Id: NavyState.java 112 2012–11–07 06:53:20Z crhutchi $
12 */
13 public enum NavyState {
14
15 DEAD_IN_WATER,
16 PATROLLING,
17 INTERCEPTING,
18 BOARDING,
19 RETURNING_TO_PATROL
20 }
21

 180

THIS PAGE INTENTIONALLY LEFT BLANK

 181

APPENDIX O. PIRATE STATE JAVA CODE

 1 /*
 2 * PirateState.java
 3 */
 4 package supplemental;
 5
 6 /**
 7 * Enums that describe the state of Somali pirates
 8 *
 9 * @version $Id:
10 * @author Chad R Hutchins
11 *
12 */
13 public enum PirateState {
14
15 WAITING_AT_BASE,
16 ENROUTE_TO_PATROL,
17 PATROLLING,
18 INTERCEPTING,
19 ATTACKING,
20 RETURNING_TO_BASE,
21 RETURNING_WITH_MERCHANT,
22 NAVY_BOARDED;
23
24 }

 182

THIS PAGE INTENTIONALLY LEFT BLANK

 183

APPENDIX P. MERCHANT STATE JAVA CODE

 1 /*
 2 * MerchantState.java
 3 */
 4 package supplemental;
 5
 6 /**
 7 * Enums that describe the state of a merchant ship around the Horn Of Africa
 8 *
 9 * @version $Id:
10 * @author Chad R Hutchins
11 *
12 */
13 public enum MerchantState {
14
15 DEAD_IN_WATER,
16 TRANSITTING,
17 EVADING,
18 BEEN_ATTACKED,
19 HIJACKED;
20
21 }

 184

THIS PAGE INTENTIONALLY LEFT BLANK

 185

APPENDIX Q. OPENMAPTM SIMULATION LAYER JAVA CODE

 1 package oldStuff;
 2 /*
 3 * Java imports
 4 */
 5
 6 import com.bbn.openmap.Layer;
 7 import com.bbn.openmap.event.LayerStatusEvent;
 8 import com.bbn.openmap.event.MapMouseListener;
 9 import com.bbn.openmap.event.ProjectionEvent;
 10 import com.bbn.openmap.omGraphics.OMCircle;
 11 import com.bbn.openmap.omGraphics.OMGraphicList;
 12 import com.bbn.openmap.omGraphics.OMText;
 13 import com.bbn.openmap.proj.Projection;
 14 import java.awt.Color;
 15 import java.awt.event.ActionEvent;
 16 import java.awt.event.ActionListener;
 17 import java.awt.event.MouseEvent;
 18 import java.awt.geom.Point2D;
 19 import javax.swing.JButton;
 20 import javax.swing.JPanel;
 21 import simkit.SimEvent;
 22 import simkit.SimEventListener;
 23
 24 /**
 25 * This is an OpenMap layer for simulating entities on a map.
 26 *
 27 * @author Murat Gunal Modified by Chad R Hutchins
 28 */
 29 public class SimulationLayer extends Layer implements SimEventListener,
 30 MapMouseListener,
 31 //ModEventListener,
 32 ActionListener {
 33
 34 OMText text1, text2;
 35 OMCircle[] circle;
 36 OMCircle circle1, circle2, circle3, circle4, circle5, circle6, circle7,
 37 circle8, circle9, circle10, circle11, circle12, circle13, circle14,
 38 circle15, circle16, circle17, circle18;//, circle19;
 39 OMCircle moverCircle1;
 40 OMGraphicList graphicList;
 41 // friendly;
 42 private JButton runButton = new JButton(“R U N S I M U L A T I O N”);
 43 public Projection proj;
 44 public OpenMapDemo scn;
 45 public int detectionCounter = 0;
 46
 47 public SimulationLayer()
 48 {
 49 scn = new OpenMapDemo();
 50
 51 graphicList = new OMGraphicList();
 52
 53 Point2D pirateIO = scn.getLocationIoPirateMover(0);
 54 circle1 = new OMCircle((float) pirateIO.getX(),
 55 (float) pirateIO.getY(),
 56 scn.nmToDeg(1, 15.0)); //12NM
 57 circle1.setLinePaint(Color.RED);

 186

 58 // moverCircle1 = new OMCircle((float) pirateIO.getX(),
 59 // (float) pirateIO.getY(), 3, Length.METER);
 60 // moverCircle1.setFillPaint(Color.RED);
 61
 62 Point2D pirateGOA = scn.getLocationGoaPirateMover(0);
 63 circle2 = new OMCircle((float) pirateGOA.getX(),
 64 (float) pirateGOA.getY(),
 65 scn.nmToDeg(1, 15.0)); //12NM
 66 circle2.setLinePaint(Color.RED);
 67
 68 // Point2D pirateGOA2 = scn.getLocationGoaPirateMover(0);
 69 // circle19 = new OMCircle((float) pirateGOA2.getX(),
 70 // (float) pirateGOA2.getY(),
 71 // scn.nmToDeg(1, 5.0f)); //12NM
 72 // circle19.setLinePaint(Color.RED);
 73
 74 Point2D navyIoPB6 = scn.getLocationIoNavyMover(0);
 75 circle16 = new OMCircle((float) navyIoPB6.getX(),
 76 (float) navyIoPB6.getY(),
 77 scn.nmToDeg(1, 20.0)); //25NM
 78 circle16.setLinePaint(Color.BLUE);
 79
 80 Point2D navyIoPB7 = scn.getLocationIoNavyMover(1);
 81 circle17 = new OMCircle((float) navyIoPB7.getX(),
 82 (float) navyIoPB7.getY(),
 83 scn.nmToDeg(1, 20.0f)); //25NM
 84 circle17.setLinePaint(Color.BLUE);
 85
 86 Point2D navyIoPB8 = scn.getLocationIoNavyMover(2);
 87 circle3 = new OMCircle((float) navyIoPB8.getX(), (float) navyIoPB8.
 88 getY(),
 89 scn.nmToDeg(1, 20.0f)); //25NM
 90 circle3.setLinePaint(Color.BLUE);
 91
 92 Point2D navyIoPB9 = scn.getLocationIoNavyMover(3);
 93 circle6 = new OMCircle((float) navyIoPB9.getX(), (float) navyIoPB9.
 94 getY(),
 95 scn.nmToDeg(1, 20.0f)); //25NM
 96 circle6.setLinePaint(Color.BLUE);
 97
 98 Point2D navyIoPB10 = scn.getLocationIoNavyMover(4);
 99 circle7 = new OMCircle((float) navyIoPB10.getX(),
100 (float) navyIoPB10.getY(),
101 scn.nmToDeg(1, 20.0f)); //25NM
102 circle7.setLinePaint(Color.BLUE);
103
104 Point2D navyIoPB11 = scn.getLocationIoNavyMover(5);
105 circle8 = new OMCircle((float) navyIoPB11.getX(),
106 (float) navyIoPB11.getY(),
107 scn.nmToDeg(1, 20.0f)); //25NM
108 circle8.setLinePaint(Color.BLUE);
109
110 Point2D navyIoPB12 = scn.getLocationIoNavyMover(6);
111 circle9 = new OMCircle((float) navyIoPB12.getX(),
112 (float) navyIoPB12.getY(),
113 scn.nmToDeg(1, 20.0f)); //25NM
114 circle9.setLinePaint(Color.BLUE);
115
116 Point2D navyIoPB13 = scn.getLocationIoNavyMover(7);
117 circle10 = new OMCircle((float) navyIoPB13.getX(),
118 (float) navyIoPB13.getY(),

 187

119 scn.nmToDeg(1, 20.0f)); //25NM
120 circle10.setLinePaint(Color.BLUE);
121
122 Point2D navyGoaPB1 = scn.getLocationGoaNavyMover(0);
123 circle11 = new OMCircle((float) navyGoaPB1.getX(),
124 (float) navyGoaPB1.getY(),
125 scn.nmToDeg(1, 20.0f)); //25NM
126 circle11.setLinePaint(Color.BLUE);
127
128 Point2D navyGoaPB2 = scn.getLocationGoaNavyMover(1);
129 circle12 = new OMCircle((float) navyGoaPB2.getX(),
130 (float) navyGoaPB2.getY(),
131 scn.nmToDeg(1, 20.0f)); //25NM
132 circle12.setLinePaint(Color.BLUE);
133
134 Point2D navyGoaPB3 = scn.getLocationGoaNavyMover(2);
135 circle13 = new OMCircle((float) navyGoaPB3.getX(),
136 (float) navyGoaPB3.getY(),
137 scn.nmToDeg(1, 20.0f)); //25NM
138 circle13.setLinePaint(Color.BLUE);
139
140 Point2D navyGoaPB4 = scn.getLocationGoaNavyMover(3);
141 circle14 = new OMCircle((float) navyGoaPB4.getX(),
142 (float) navyGoaPB4.getY(),
143 scn.nmToDeg(1, 20.0f)); //25NM
144 circle14.setLinePaint(Color.BLUE);
145
146 Point2D navyGoaPB5 = scn.getLocationGoaNavyMover(4);
147 circle15 = new OMCircle((float) navyGoaPB5.getX(),
148 (float) navyGoaPB5.getY(),
149 scn.nmToDeg(1, 20.0f)); //25NM
150 circle15.setLinePaint(Color.BLUE);
151
152 Point2D merchantSB = scn.getLocationSbMerchant(0);
153 circle4 = new OMCircle((float) merchantSB.getX(),
154 (float) merchantSB.getY(),
155 0.33459801); //25NM
156 circle4.setLinePaint(Color.MAGENTA);
157
158 Point2D merchantNB = scn.getLocationNbMerchant(0);
159 circle5 = new OMCircle((float) merchantNB.getX(),
160 (float) merchantNB.getY(),
161 scn.nmToDeg(1, 20.0)); //25NM
162 circle5.setLinePaint(Color.MAGENTA);
163
164 //for (int i = 0 ; i < scn.ioPirateMover.length ; ++i)
165
166 graphicList.add(circle1);
167 graphicList.add(circle2);
168 graphicList.add(circle3);
169 graphicList.add(circle4);
170 graphicList.add(circle5);
171 graphicList.add(circle6);
172 graphicList.add(circle7);
173 graphicList.add(circle8);
174 graphicList.add(circle9);
175 graphicList.add(circle10);
176 graphicList.add(circle11);
177 graphicList.add(circle12);
178 graphicList.add(circle13);
179 graphicList.add(circle14);

 188

180 graphicList.add(circle15);
181 graphicList.add(circle16);
182 graphicList.add(circle17);
183 //grafikList.add(moverCircle1);
184 }
185
186 @Override
187 public void processSimEvent(SimEvent e)
188 {
189 fireStatusUpdate(LayerStatusEvent.START_WORKING);
190
191 if (e.getEventName().
192 equals(“Ping”))
193 {
194 OMCircle tempCirc1 = (OMCircle) graphicList.getOMGraphicAt(0);
195 OMCircle tempCirc2 = (OMCircle) graphicList.getOMGraphicAt(1);
196 OMCircle tempCirc3 = (OMCircle) graphicList.getOMGraphicAt(2);
197 OMCircle tempCirc4 = (OMCircle) graphicList.getOMGraphicAt(3);
198 OMCircle tempCirc5 = (OMCircle) graphicList.getOMGraphicAt(4);
199 OMCircle tempCirc6 = (OMCircle) graphicList.getOMGraphicAt(5);
200 OMCircle tempCirc7 = (OMCircle) graphicList.getOMGraphicAt(6);
201 OMCircle tempCirc8 = (OMCircle) graphicList.getOMGraphicAt(7);
202 OMCircle tempCirc9 = (OMCircle) graphicList.getOMGraphicAt(8);
203 OMCircle tempCirc10 = (OMCircle) graphicList.getOMGraphicAt(9);
204 OMCircle tempCirc11 = (OMCircle) graphicList.getOMGraphicAt(10);
205 OMCircle tempCirc12 = (OMCircle) graphicList.getOMGraphicAt(11);
206 OMCircle tempCirc13 = (OMCircle) graphicList.getOMGraphicAt(12);
207 OMCircle tempCirc14 = (OMCircle) graphicList.getOMGraphicAt(13);
208 OMCircle tempCirc15 = (OMCircle) graphicList.getOMGraphicAt(14);
209 OMCircle tempCirc16 = (OMCircle) graphicList.getOMGraphicAt(15);
210 OMCircle tempCirc17 = (OMCircle) graphicList.getOMGraphicAt(16);
211 //OMCircle tempCirc19 = (OMCircle) graphicList.getOMGraphicAt(17);
212
213 tempCirc1.setLatLon((float) scn.getLocationIoPirateMover(0).
214 getX(),
215 (float) scn.getLocationIoPirateMover(0).
216 getY());
217
218 tempCirc2.setLatLon((float) scn.getLocationGoaPirateMover(0).
219 getX(),
220 (float) scn.getLocationGoaPirateMover(0).
221 getY());
222
223 tempCirc3.setLatLon((float) scn.getLocationIoNavyMover(2).
224 getX(),
225 (float) scn.getLocationIoNavyMover(2).
226 getY());
227
228 tempCirc4.setLatLon((float) scn.getLocationSbMerchant(0).
229 getX(),
230 (float) scn.getLocationSbMerchant(0).
231 getY());
232
233 tempCirc5.setLatLon((float) scn.getLocationNbMerchant(0).
234 getX(),
235 (float) scn.getLocationNbMerchant(0).
236 getY());
237
238 tempCirc6.setLatLon((float) scn.getLocationIoNavyMover(3).
239 getX(),
240 (float) scn.getLocationIoNavyMover(3).

 189

241 getY());
242
243 tempCirc7.setLatLon((float) scn.getLocationIoNavyMover(4).
244 getX(),
245 (float) scn.getLocationIoNavyMover(4).
246 getY());
247
248 tempCirc8.setLatLon((float) scn.getLocationIoNavyMover(5).
249 getX(),
250 (float) scn.getLocationIoNavyMover(5).
251 getY());
252
253 tempCirc9.setLatLon((float) scn.getLocationIoNavyMover(6).
254 getX(),
255 (float) scn.getLocationIoNavyMover(6).
256 getY());
257
258 tempCirc10.setLatLon((float) scn.getLocationIoNavyMover(7).
259 getX(),
260 (float) scn.getLocationIoNavyMover(7).
261 getY());
262
263 tempCirc11.setLatLon((float) scn.getLocationGoaNavyMover(0).
264 getX(),
265 (float) scn.getLocationGoaNavyMover(0).
266 getY());
267
268 tempCirc12.setLatLon((float) scn.getLocationGoaNavyMover(1).
269 getX(),
270 (float) scn.getLocationGoaNavyMover(1).
271 getY());
272
273 tempCirc13.setLatLon((float) scn.getLocationGoaNavyMover(2).
274 getX(),
275 (float) scn.getLocationGoaNavyMover(2).
276 getY());
277
278 tempCirc14.setLatLon((float) scn.getLocationGoaNavyMover(3).
279 getX(),
280 (float) scn.getLocationGoaNavyMover(3).
281 getY());
282
283 tempCirc15.setLatLon((float) scn.getLocationGoaNavyMover(4).
284 getX(),
285 (float) scn.getLocationGoaNavyMover(4).
286 getY());
287
288 tempCirc16.setLatLon((float) scn.getLocationIoNavyMover(0).
289 getX(),
290 (float) scn.getLocationIoNavyMover(0).
291 getY());
292
293 tempCirc17.setLatLon((float) scn.getLocationIoNavyMover(1).
294 getX(),
295 (float) scn.getLocationIoNavyMover(1).
296 getY());
297
298 // tempCirc19.setLatLon((float) scn.getLocationGoaPirateMover(1).
299 // getX(),
300 // (float) scn.getLocationGoaPirateMover(1).
301 // getY());

 190

302
303 tempCirc1.generate(proj);
304 tempCirc2.generate(proj);
305 tempCirc3.generate(proj);
306 tempCirc4.generate(proj);
307 tempCirc5.generate(proj);
308 tempCirc6.generate(proj);
309 tempCirc7.generate(proj);
310 tempCirc8.generate(proj);
311 tempCirc9.generate(proj);
312 tempCirc10.generate(proj);
313 tempCirc11.generate(proj);
314 tempCirc12.generate(proj);
315 tempCirc13.generate(proj);
316 tempCirc14.generate(proj);
317 tempCirc15.generate(proj);
318 tempCirc16.generate(proj);
319 tempCirc17.generate(proj);
320 //tempCirc19.generate(proj);
321 }
322 if (e.getEventName().
323 equals(“Detection”))
324 {
325 System.out.println(
326 “___” + getSimTime());
327 detectionCounter++;
328 }
329 if (proj != null)
330 {
331 ((OMGraphicList) graphicList).project((Projection) proj, true);
332 }
333 repaint();
334 fireStatusUpdate(LayerStatusEvent.FINISH_WORKING);
335 }
336
337 @Override
338 public String[] getMouseModeServiceList()
339 {
340 // TODO Auto-generated method stub
341 return null;
342 }
343
344 @Override
345 public boolean mouseClicked(MouseEvent arg0)
346 {
347 // TODO Auto-generated method stub
348 return false;
349 }
350
351 @Override
352 public boolean mouseDragged(MouseEvent arg0)
353 {
354 // TODO Auto-generated method stub
355 return false;
356 }
357
358 @Override
359 public void mouseEntered(MouseEvent arg0)
360 {
361 // TODO Auto-generated method stub
362 }

 191

363
364 @Override
365 public void mouseExited(MouseEvent arg0)
366 {
367 // TODO Auto-generated method stub
368 }
369
370 @Override
371 public void mouseMoved()
372 {
373 // TODO Auto-generated method stub
374 }
375
376 @Override
377 public boolean mouseMoved(MouseEvent arg0)
378 {
379 // TODO Auto-generated method stub
380 return false;
381 }
382
383 @Override
384 public boolean mousePressed(MouseEvent arg0)
385 {
386 // TODO Auto-generated method stub
387 return false;
388 }
389
390 @Override
391 public boolean mouseReleased(MouseEvent arg0)
392 {
393 // TODO Auto-generated method stub
394 return false;
395 }
396
397 @Override
398 public void projectionChanged(ProjectionEvent e)
399 {
400 proj = e.getProjection();
401 System.out.println(“projection Changed”);
402 ((OMGraphicList) graphicList).project(e.getProjection(), true);
403
404 repaint();
405 }
406
407 public void paint(java.awt.Graphics g)
408 {
409 if (graphicList.size() > 0)
410 {
411 graphicList.render(g);
412 }
413 fireStatusUpdate(LayerStatusEvent.FINISH_WORKING);
414 }
415
416 public void findAndInit(Object someObj)
417 {
418 /*
419 * if (someObj instanceof DenizSim.myLayer){
420 * //System.out.println(“myLayer is added !!!!!!!!”); //myLayer myL=
421 * (myLayer)someObj; }
422 */
423 }

 192

424
425 public double getSimTime()
426 {
427 return scn.getSimTime();
428 }
429 //A GUI for the layer
430
431 @Override
432 public java.awt.Component getGUI()
433 {
434 JPanel returnPanel = new JPanel();
435
436 final PingThread2 pt = new PingThread2(0.1, 100, false);
437
438 pt.addSimEventListener(this);
439 for (int i = 0 ; i < scn.ioPirateMover.length ; ++i)
440 {
441 scn.ioPirateMover[i].addSimEventListener(this);
442 }
443
444 for (int i = 0 ; i < scn.ioNavyMover.length ; ++i)
445 {
446 scn.ioNavyMover[i].addSimEventListener(this);
447 }
448
449 for (int i = 0 ; i < scn.ioPirateSensor.length ; ++i)
450 {
451 scn.ioPirateSensor[i].addSimEventListener(this);
452 }
453
454 for (int i = 0 ; i < scn.ioPirateSensor.length ; ++i)
455 {
456 scn.ioNavySensor[i].addSimEventListener(this);
457 }
458
459 runButton.addActionListener(new ActionListener() {
460
461 @Override
462 public void actionPerformed(ActionEvent e)
463 {
464 scn.startScenario();
465 pt.startPinging();
466 }
467 });
468
469 returnPanel.add(runButton);
470
471 return returnPanel;
472 }
473 }

 193

APPENDIX R. JAVA SWING SANDBOX FRAME IMPLEMENTATION CODE
SNIPPET

2218 //*************Start of Sandbox with background image implementation**********//
2219
2220 //Allows for background image
2221 BufferedImage img = null;
2222 File file = new File(“images/test.PNG”);
2223 System.out.println(file.exists());
2224 img = ImageIO.read(file);
2225
2226 //Scale for background image
2227 double scale = 1.0;
2228
2229 //More scaling
2230 int rescaledWidth = (int) (img.getWidth() * scale);
2231 int rescaledHeight = (int) (img.getHeight() * scale);
2232 BufferedImage resizedImage = new BufferedImage(rescaledWidth,
2233 rescaledHeight, img.
2234 getType());
2235
2236 AffineTransform scaleTransform =
2237 AffineTransform.getScaleInstance(scale, scale);
2238
2239 Graphics2D g = resizedImage.createGraphics();
2240 g.drawImage(img, scaleTransform, null);
2241
2242 //Sandbox for simulation
2243 SandboxFrame sandboxFrame = new SandboxFrame();
2244 Sandbox2 sandbox = sandboxFrame.getSandbox();
2245
2246 //Sets the background image to the appropriate scale
2247 sandbox.setBackroundImage(resizedImage);
2248
2249 sandboxFrame.setSize(resizedImage.getWidth(),
2250 resizedImage.getHeight() + 100);
2251
2252 //Sets orgin based on resized image
2253 sandbox.setOrigin(new Point2D.Double(0.0, resizedImage.getHeight()));
2254 sandbox.setDrawAxes(true);
2255
2256 //Listener for moust points
2257 sandbox.addMouseMotionListener(
2258 new MouseLocationListener(sandboxFrame));
2259
2260 //Window for collecting waypoint data
2261 JFrame wayPointFrame = new JFrame();
2262 wayPointFrame.setSize(300, 100);
2263 wayPointFrame.setLocation((int) sandboxFrame.getLocation().
2264 getX() + sandboxFrame.getWidth(),
2265 (int) sandboxFrame.getLocation().
2266 getY());
2267 WaypointBuilder wayPointBuilder = new WaypointBuilder();
2268 JScrollPane jscrollPane = new JScrollPane(wayPointBuilder);
2269 wayPointFrame.getContentPane().
2270 add(jscrollPane);
2271 wayPointFrame.setDefaultCloseOperation(JFrame.DO_NOTHING_ON_CLOSE);
2272 wayPointBuilder.addPropertyChangeListener(new PathBuilder());

 194

2273
2274 //Add listener to your mouse which allows ability to click the mouse at
2275 //a given point in the Sandbox and get the x and y values.
2276 sandbox.addMouseListener(wayPointBuilder);
2277
2278 sandboxFrame.setVisible(true);
2279 wayPointFrame.setVisible(true);
2280 //*************End of Background and Sandbox implementation******************//

 195

APPENDIX S. JAVA SWING WAYPOINT BUILDER JAVA CODE

1 package util;
 2
 3 import animate.Sandbox;
 4 import java.awt.event.MouseEvent;
 5 import java.awt.event.MouseListener;
 6 import java.awt.geom.Point2D;
 7 import java.util.ArrayList;
 8 import javax.swing.DefaultListModel;
 9 import javax.swing.JList;
10 import javax.swing.JPanel;
11 import javax.swing.JScrollPane;
12
13 /**
14 * @version $Id: WaypointBuilder.java 51 2012–06–16 05:20:29Z crhutchi $
15 * @author ahbuss
16 */
17 public class WaypointBuilder extends JPanel implements MouseListener {
18
19 private JList waypointsList;
20 private DefaultListModel waypointListModel;
21
22 public WaypointBuilder() {
23 this.waypointListModel = new DefaultListModel();
24 this.waypointsList = new JList(waypointListModel);
25 this.waypointsList.setVisibleRowCount(10);
26 JScrollPane jscrollPane = new JScrollPane(this.waypointsList);
27 this.add(this.waypointsList);
28 }
29
30 @Override
31 public void mouseClicked(MouseEvent me) {
32 Object source = me.getSource();
33 if (source instanceof Sandbox) {
34 Sandbox sb = (Sandbox) source;
35 double x = me.getX() - sb.getOrigin().getX();
36 double y = sb.getOrigin().getY() - me.getY();
37 Point2D.Double newPoint = new Point2D.Double(x, y);
38 waypointListModel.addElement(newPoint);
39 firePropertyChange(“waypoint,” null, newPoint);
40 }
41 }
42
43 @Override
44 public void mousePressed(MouseEvent me) {
45 }
46
47 @Override
48 public void mouseReleased(MouseEvent me) {
49 }
50
51 @Override
52 public void mouseEntered(MouseEvent me) {
53 }
54
55 @Override

 196

56 public void mouseExited(MouseEvent me) {
57 }
58
59 }

 197

APPENDIX T. MOUSE LISTENER JAVA CODE

 1 package util;
 2
 3 import java.awt.event.MouseEvent;
 4 import java.awt.event.MouseMotionListener;
 5 import java.awt.geom.Point2D;
 6 import simkit.smd.animate.SandboxFrame;
 7
 8 /**
 9 * @version $Id: MouseLocationListener.java 51 2012–06–16 05:20:29Z crhutchi $
10 * @author ahbuss
11 */
12 public class MouseLocationListener implements MouseMotionListener {
13
14 private SandboxFrame sandboxFrame;
15
16 private Point2D origin;
17
18 public MouseLocationListener(SandboxFrame sandboxFrame) {
19 this.setSandboxFrame(sandboxFrame);
20 }
21
22 @Override
23 public void mouseDragged(MouseEvent me) {
24 }
25
26 @Override
27 public void mouseMoved(MouseEvent me) {
28 sandboxFrame.setStatus(me.getX()+ ,” “ + me.getY() + “ => “ +
29 (me.getX() - origin.getX()) + ,” “ + (origin.getY() - me.getY()));
30 }
31
32 /**
33 * @return the sandboxFrame
34 */
35 public SandboxFrame getSandboxFrame() {
36 return sandboxFrame;
37 }
38
39 /**
40 * @param sandboxFrame the sandboxFrame to set
41 */
42 public void setSandboxFrame(SandboxFrame sandboxFrame) {
43 this.sandboxFrame = sandboxFrame;
44 this.origin = sandboxFrame.getSandbox().getOrigin();
45 }
46
47 }

 198

THIS PAGE INTENTIONALLY LEFT BLANK

 199

LIST OF REFERENCES

Alrowaie, A. (2011). The effect of time–advance mechanism in modeling and simulation
(Doctoral Dissertation, Naval Postgraduate School). Retrieved from
http://calhoun.nps.edu/public/handle/10945/10798

Bowden, A., & Basnet, S. (2011). The economic cost of Somalia piracy, 2011. Retrieved
from Oceans Beyond Piracy website:
http://oceansbeyondpiracy.org/sites/default/files/economic_cost_of_piracy_2011.
pdf

Brutzman, D. (2011). MMOWGLI massive multiplayer online wargame leveraging the
Internet: New capabilities for crowd sourcing innovation [PDF document].
Retrieved from
http://portal.mmowgli.nps.edu/c/wiki/get_page_attachment?p_l_id=34310&nodeI
d=17497&title=Communications+and+Outreach&fileName=Communications+an
d+Outreach%2FMmowgliOverviewNps26June2011.pdf

Buss, A. (2011). Discrete event simulation modeling [Word document]. Retrieved from
http://diana.nps.edu/mv4302/Handouts/Discrete%20Event%20Simulation%20Mo
deling.docx

Buss, A. H., & Sanchez, P. J. (Eds.). (2005). Simple movement and detection in discrete
event simulation. Proceeding of the 2005 Winter Simulation Conference

Buss, A. (n.d) Viskit: Rapid modeling of event graph components [PDF document].
Retrieved from http://diana.nps.edu/Viskit/presentations/Viskit.pdf

Camillus, J.C. (2008). Strategy as a wicked problem. Harvard Business Review, May
2008. Retrieved from hbr.org/2008/05/strategy-as-a-wicked-problem/ar/1

Clausewitz, C. V. (1984). On war (Howard, M. E., & Paret, P, Trans.). Princeton, N.J.:
Princeton University Press (Original work published 1780–1831).

Commander Destroyer Squandron Twenty-Six (2012). Tactical Bulletin SUW-12–01:
Anti-piracy and counter-piracy operation. Released for public/partner use.
Retrieved from
http://portal.mmowgli.nps.edu/c/wiki/get_page_attachment?p_l_id=33393&nodeI
d=10773&title=Information+Sources&fileName=Information+Sources%2FSUW-
12–01.pdf

Gunal, M. M. (2010). Notes on naval simulation. Retrieved from
http://www.hospitalsimulation.info/gunal/eBook/NotesOnNavalSimulations.v.0.2.
pdf

 200

Harney, J. W. (2003). Analyzing anti–terrorist tactical effectiveness of picket boats for
force protection of Navy ships using X3D graphics and agent–based simulation
(Master’s thesis, Naval Postgraduate School). Retrieved from
http://calhoun.nps.edu/public/bitstream/handle/10945/1105/03Mar_Harney.pdf?s
equence=1

Haywood, R., & Spivak, R. (2012). Maritime piracy (Global Institutions Series). New
York, NY: Routledge.

ICC International Maritime Bureau (2013). Piracy and armed robbery against ships.
Report for the period 1 January – 31 December 2012. Retrieved from
http://www.icc–ccs.org/piracy–reporting–centre/request–piracy–report

Jakob, M., Vanek, O., Hrstka, O., Bosansky, B., & Pechoucek, M. (2011, December 31).
Adversarial modeling and reasoning in the maritime domain. Year 3 Report.
Retrieved from http://agents.felk.cvut.cz/cgi–
bin/docarc/docarc.pl/document/411/reportY3.pdf

Jensen, G. & Cook, M. (2010). Gaming for innovation: An open source approach to
generating insight. ONR Director of Innovation Newsletter, Volume 5, pp 8 – 10.
Retrieved from:
http://portal.mmowgli.nps.edu/c/wiki/get_page_attachment?p_l_id=34310&nodeI
d=17497&title=Communications+and+Outreach&fileName=Communications+an
d+Outreach%2FOnrOfficeInnovationNewsletterJune2010.MmowgliArticle.pdf

Konstam, A. (2008). Piracy: The complete history. United Kingdom: Osprey Publishing.

Law, A. (2007). Simulation modeling & analysis (4th ed.). New York, NY: McGraw–Hill
Companies.

Law, R. L. (2011). Maritime piracy off the coast of Somalia (Master’s thesis California
State University, Monterey Bay). Retrieved from:
https://portal.mmowgli.nps.edu/c/wiki/get_page_attachment?p_l_id=33393&node
Id=10773&title=Masters+Theses&fileName=Masters+Theses%2FLawThesisSom
aliPiracyCsumbPanettaInstituteJune2011.pdf

Mack, P. V. (2000). THORN: A study in designing a usable interface for a geo–
referenced discrete event simulation (Master’s thesis, Naval Postgraduate
School). Retrieved from
http://calhoun.nps.edu/public/bitstream/handle/10945/9410/00Sep_Mack.pdf?seq
uence=1

Mahan, A. T. (1918). The influence of sea power upon history, 1660 – 1783 (12th ed.).
Boston: Little, Brown.

 201

Major, W. F., Kline, J., & Fricker, R. D (September 2012). Accessing counter–piracy
tactics: Is it better to fight or flee?. MORS PHALANX, 45, no. 3, 22 – 24.
Retrieved from
http://www.mors.org/UserFiles/file/Phalanx/MORS_Phalanx_SEPT2012_web.pd
f

MMOWGLI Players Portal. (n.d.). About MMOWGLI. Retrieved from
https://portal.mmowgli.nps.edu/game–wiki/–
/wiki/PlayerResources/About+MMOWGLI

Ohab, J. (2011). MMOWGLI: An experiment in generating collective intelligence.
Retrieved from Armed with Science website:
http://science.dodlive.mil/2011/04/28/mmowgli–an–experiment–in–generating–
collective–intelligence

Roberts, N. (2000). Wicked problems and network approaches to resolution. International
Public Management Review, 1,1 pp. 1 – 32.

Schruben, L. (1983). Simulation modeling with event graphs. Communications of the
ACM. 26: 957–963.

Seguin, J. M. (2007). Simulating candidate missions for a novel glider unmanned
underwater vehicle (Master’s thesis, Naval Postgraduate School). Retrieved from
http://calhoun.nps.edu/public/bitstream/handle/10945/3664/07Mar_Seguin.pdf?se
quence=1

Shapiro, A., “Taking diplomatic action against piracy.” Remarks to the Global Maritime
Information Sharing Symposium, National Defense University, Washington, D.C.
September 16, 2009. Retrieved from
http://www.state.gov/t/pm/rls/rm/129258.htm

Slootmaker, L. A. (2011). Countering piracy with the next generation piracy
performance surface model (Master’s Thesis, Naval Postgraduate School).
Retrieved from
http://calhoun.nps.edu/public/bitstream/handle/10945/5747/11Mar_Slootmaker.pd
f

Sullivan, P. J. (2006). Evaluating the effectiveness of waterside security alternatives for
force protection of Navy ships and installations using X3D graphics and agent–
based modeling (Master’s thesis, Naval Postgraduate School). Retrieved from
http://calhoun.nps.edu/public/bitstream/handle/10945/2645/06Sep_Sullivan.pdf?s
equence=1

U.S. Library of Congress, Congressional Research Service. (2010). Piracy: A legal
definition by R. Chuck Mason. (CRS Report No. R41455). Washington DC:
Office of Congressional Information and Publishing. Retrieved from
http://www.fas.org/sgp/crs/misc/R41455.pdf

 202

Wernecke, J. (2009). The KML handbook: Geographic visualization for the web. Upper
Saddle River, NJ: Pearson Education.

X3D–Edit authoring tool for extensible 3D (X3D) graphics (2013, January 5). Retrieved
from Savage Developers Guide website: https://savage.nps.edu/X3D–Edit

 203

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

3. Admiral Cecil D. Haney, USN
 U.S. Pacific Fleet
 Pearl Harbor, Hawaii

4. Vice Admiral Mark I. Fox
 Office of the Chief of Naval Operations
 Washington, District of Columbia

5. Donna Hopkins
 U.S. Department of State
 Washington, District of Columbia

6. Jon Huggins
 Oceans Beyond Piracy
 Broomfield, Colorado

7. Jens Vestergaard Madsen
 Oceans Beyond Piracy
 Broomfield, Colorado

8. Dr. Peter Chalk
 RAND Corporation
 Santa Monica, California

9. Cyrus Mody
 ICC International Maritime Bureau
 London, United Kingdom

10. Officer In Charge
 Maritime Liaison Office
 Manama, Bahrain

11. Dr. Jim Hansen
 Navy Research Laboratory
 Monterey, California

 204

12. Dr. John Arquilla
 Naval Postgraduate School
 Monterey, California

13. Wayne Hughes, Capt. USN (Ret)
 Naval Postgraduate School
 Monterey, California

14. Jeffrey Kline, Capt. USN (Ret.)
 Naval Postgraduate School
 Monterey, California

15. Dr. Eva Regnier
 Naval Postgraduate School
 Monterey, California

16. Dr. Donald Brutzman
 Naval Postgraduate School
 Monterey, California

17. Dr. Arnold Buss
 Naval Postgraduate School
 Monterey, California

18. Terry Norbraten
 Naval Postgraduate School
 Monterey, California

19. Lyla Englehorn
 Naval Postgraduate School
 Monterey, California

20. Rebeca Law
 Naval Postgraduate School
 Monterey, California

21. Wendy Walsh

Naval Postgraduate School
 Monterey, California

22. Peter Pham

Atlantic Council
 Washington, D.C.

 205

23. Bronwyn Bruton
Atlantic Council

 Washington, District of Columbia

24. Dan Burns
 Naval Postgraduate School
 Monterey, California

25. Captain James Wyatt
 U.S. Pacific Fleet
 Pearl Harbor, Hawaii

