

FEMA REGION III

COASTAL STORM SURGE STUDY

Mike Forte Project Specialist

Jeff Hanson, **Ph.D**. Project Leader

March 2013

Hampton Roads Sea Level Rise/ Flooding Adaptation Forum

FEMA Region III Coastal Study

Region III Population Density

Study Motivation

- Implement New Guidelines:
 - Atlantic Ocean and Gulf of Mexico Guidelines Update (2007)
 - > Sheltered Water Report (2008)
 - > PM 50 Limit of Moderate Wave Action (LiMWA) (2008)

Study Area

- Influenced by six states
- Five metropolitan areas
- Complex coastal geomorphology
- A very ambitious coastal study!

Study Partners

USACE – Project Oversight, DEM, Model Validations, Extratropical Analysis, Mapping review

Renaissance Computing Institute – DEM, Modeling System, Production, GIS Viewer, Analysis

University of North Carolina – Water level modeling guidance

Applied Research Associates – Hurricanes, JPM Return Period Analysis

ARCADIS - DEM, Modeling Mesh

Oceanweather – Extratropical and Hurricane Wind Fields

Elizabeth City State University – GIS Displays

Why Update Now?

Modern Advances

- Longer gage records (20+ years longer)
- Improved models Hurricane Katrina
- High-performance computers
- High-resolution LiDAR survey data

Modeling Foundation: Digital Elevation Model (DEM)

A National Resource

- Most complete, up to date, bathytopo surface available for Mid-Atlantic Region
- Comprised of 120 datasets (~2TB)
- LiDAR used where available
- Consistent elevation surface with 30-ft horizontal resolution
- Provides quality foundation for storm surge modeling

30-ft Resolution ARCADIS Dewberry 🌮 FEMA Renci of NORTH CAROLINA

FEMA Region III Digital Elevation Model (DEM)

Unstructured Modeling Mesh

DEM Interpolated onto Mesh Elements

Western Atlantic Mesh

- Specifies land elevation at each calculation point
- Provides a framework for all model components

Rich Detail in Study Area

A Significant Advancement

1978 Mesh 3-6 mile resolution

2011 Mesh 100 ft Minimum Resolution

Storm Surge Modeling System

Model Components

Circulation Model

- Tides, - Currents

ADCIRC Advanced CIRCulation model

Coupling

Water Levels

Wave Stress

Atmospheric Forcing

- Wind and Pressure Fields

HBL Hurricane Boundary Layer Model Extratropical Storm Reconstructions

Wave Model - Surface waves

unSWAN un-structured Simulating WAves Nearshore model

Modeling System Validation

A Critical Step in the Storm Surge Study

Why Validate?

- Establish credibility
- Quantify expected errors
- Demonstrate accuracy
- Build confidence that model can be applied over range of conditions

Validation Storms

Event Reconstruction

- Three major storms selected
 - > Hurricane Isabel
 - > Hurricane Ernesto
 - Extratropical Storm Ida (Nor'Ida)

Nor'Ida: USGS Rapid Response Water Level Validation

US Army Engineer Research and Development Center

USGS Rapid-Response Storm Surge Validation Stations, Nor'easter Nor'Ida

Rapid Response:

- Water level gauges deployed on land in projected storm path
- Observations and validations include tides
- Four stations inundated by Nor'lda

Nor'Ida: USGS Rapid Response Peak Water Levels

US Army Engineer Research and Development Center

Example Hurricane Isabel Water Levels

Hydrographs (m)

Modeling System Validation

and Development Center

Peak Water levels – NOS Stations

Validation Results

- Modeling system demonstrates an extremely high skill level
- Average offset is < 1 inch</p>
- Mean square error is only 6 inches

Conclusion

System can be applied with confidence across the **Region III** Domain for the **Risk MAP program**

Production Run Storms

Extratropical Storms

- 30 Top ranked storms 1975-2009
- Based on water levels at 10 stations
- Careful reanalysis of wind/pressure fields

Tropical Storms

- Record of 20 hurricanes in 60 years insufficient for 100- yr analysis
- 156 Representative events sampled from ASCE 100,000-year synthetic storm set
- A 1-year effort!
- Intensities range from Tropical Storm to Cat 3

February 4, 1998 Pressure Field

Sample Results

Maximum Water Elevations (m)

Extratropical Storm 2005 10 25

Tropical Storm dp3rlblclh5ll

Reoccurrence Analysis

Combined Analysis

A Projection of Future Flood Risk

Updated 100-yr Water Levels (MSL)

Hurricanes

Extratropicals

Combined

On average, updated results are 0.5-ft lower than published levels

Tidal Contributions

Average High Tide Elevation MHHW above MSL (m)

Study Results DODReports.com

1.1 DEM

2. Model Validation

1.2 Modeling System

3. Final Analysis

1.3 Storm Forcing

- Methods and results
- Multi-tiered review
- Released as formal reports
- Available at http://dodreports.com/