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This study involves the generation of gold nanoparticles (Au
NPs) via a novel natural/non-toxic methodology using tea
and orange-peel extracts. These were then embedded into a
novel blend composed of a polyethylene oxide and gelatin
(PEO-Gel) fibre mat. The scanning electron microscopy
results indicated that the addition of both collagen (COL)
and ascorbic acid (AA) into the PEO-Gel system (PEO-Gel-
AA-COL system) enhances the Au NP incorporation into
nanofibres leading to a diameter of 164.60 ± 20.95 and 192.43
± 39.14 nm in contrast to the spraying observed with the Au
PEO-Gel system alone. Releasing studies conducted over
30 min indicated that the PEO-Gel-AA-COL-orange peel Au
(OpAu) system accounts for a higher content of Au release
than the green tea Au (GtAu) NP system where a maximum
release could be attained within 10–30 min depending on the
amount of Au NPs that have been incorporated. Moreover,
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the transdermal diffusion studies conducted using Strat membrane indicated that Au NPs from both

formulations (PEO-Gel-AA-COL-GtAu nanofibre, PEO-Gel-AA-COL-OpAu nanofibre) have diffused
through the stratum corneum and trapped in the dermis and epidermis indicating its transdermal
deliverability. Additionally, 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay revealed that nanofibres
have similar radical scavenging activity like AA standard. Toxicity evaluation on a zebra fish
embryo model confirmed that both GtAu NPs and OpAu NPs do not induce any teratogenic
activity and are safe to be used in the range of 1.0–167 µg ml−1.
.org/journal/rsos
R.Soc.Open

Sci.7:201266
1. Introduction
As in every field, within the area of cosmetics, there is a huge diversification to improve the quality and to
meet the demands of clients who prefer good and well-groomed personal care products. Among the vast
number of cosmetic items, insertion of nanomaterials has given a better scope [1] and are widely used in
sunscreen creams [2,3], anti-ageing creams [4,5], hair products [6,7], facial masks [8,9] also in lipsticks
[10]. The cosmetic application of electrospun nanofibres is an emerging area where much attention has
been devoted on developing facial masks or membranes capable of releasing skincare products [11,12].

Electrospinning is a simple, low cost, versatile technique [13,14] of obtaining nanofibres for different
cosmetic applications with a diameter in the micrometre to nanometre range using polymer solutions such
as cellulose acetate [15], chitosan [16,17], hyaluronic acid [18,19] as well as synthetic polymers, namely,
polyvinyl alcohol (PVA) [9], polyvinyl pyrrolidone (PVP) [20], and polyethylene oxide (PEO) [21]. The
main advantage of the electrospinning technique is its ability to incorporate any active compounds of
interest while fabricating the fibrous mat. Further, electrospun fibre masks require no preservatives, and
are efficient in releasing active compounds and they could also be packed as dry sheets [22]. In order to
release active compounds, they need to be wetted only at the required time [23]. Owing to their ability to
allow better contact with the skin aiding a deeper penetration of the active agent [11], these have been
mainly targeted to release compounds for skin healing [24], therapy [25] and cleansing [26].

The importance of gold nanoparticles (Au NPs) in skin care has been identified over the years as they
are known to reduce the wrinkling of the skin [27], improve brightening, provide anti-bacterial, anti-
inflammatory, skin healing, and a cleansing effect while slowing down the collagen depletion [28] and
elastin breakdown [29,30]. Nevertheless, most of the applications of Au NPs have been carried out in
the field of drug delivery [31–34], heavy metal removal [35] and as biosensors of Au nanofibres with
various polymers [36–42]. Skin care products such as hydrogels [29], conventional Au facial masks
[43], night cream, eye cream, whitening cream [28,44], using bulk and nano Au are reported [45].
After careful analysis of the reported data we found not much work on the electrospun Au nanofibres
for skin care application. Work conducted by Fathi-Azarbayjani and colleagues [9], have used PVA,
cyclodextrin to develop a nanofibre mask for the topical delivery of retinoic acid, ascorbic acid (AA),
collagen (COL) and Au NPs that has been synthesized chemically.

Therefore, in our work we thought of developing Au NPs using natural plant extract and to integrate
this with the electrospun fibremat to obtain an extremely biocompatible face mask for beauty treatments.
For this purpose, we designed a nanofibrous facial mask containing green tea extract and orange-peel
extract derived Au NPs (GtAu NPs and OpAu NPs respectively) blended with biocompatible polymers
of PEO and gelatin via an electrospinning technique. PEO is a cheap synthetic amphiphilic block co-
polymer used in a wide range of applications and in cosmetic formulations mainly owing to its
hydrophilic, biocompatible, biodegradable and non-toxic behaviour [21,46]. On the other hand, gelatin,
which has widely been used as a gelling agent in drugs, food and cosmetics, is a natural, elastic,
biocompatible polymer that exhibits a hydrophilic, biocompatible and biodegradable nature [47–50].
However, the electrospinning of gelatin is reported to be difficult [47] and therefore, gelatin is generally
mixed with high molecular weight polymers like PVA [51], polycaprolactone (PCL) [52] or PEO [47] to
improve the spinnability and physico-chemical properties of gelatin [53].

In general, cosmetic facial masks also contain brightening agents, vitamins, moisturizers, minerals,
protein and herbal ingredients, out of which COL is used as a skin nutrient to reduce skin wrinkling
while L-AA is to reduce pigmentation [43]. COL contains a higher surface charge which makes it
harder for electrospinning [54]. This has been overcome by blending collagen with polymers such as
PEO [54]. Therefore, ability of incorporation of COL and AA to develop a complete beauty care facial
mask was aimed at in our study. Hence the final objective of this study can be stated as producing a
dry mask, containing a novel blend of Au NPs, COL, AA, PEO gelatin (PEO-Gel), via a water-based
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electrospinning technique which shows the ability of releasing ingredients by simple wetting. Green

synthesized Au NPs were obtained using tea and orange-peel extracts and these were later blended
with a PEO-Gel, COL and AA mixture to obtain a nanofibrous system. The developed facial mask
was subjected to release studies and transdermal diffusion studies to analyse the Au NP release and
skin permeation. Furthermore, the antioxidant property and toxicity evaluation of the Au NPs were
conducted using DPPH assay and zebra embryo model-based toxicity studies, respectively.
lishing.org/journal/rsos
R.Soc.Open

Sci.7:201266
2. Material and methods
HAuCl4 . 3H2O, PEO (100 000 gmol−1), gelatin (Type B, gel strength 225 g), L-AA, and COL were
purchased from SIGMA Aldrich. Green tea leaves were purchased from Watawala Tea Ceylon Ltd,
whereas orange peel was collected from fresh oranges and dried under a dark environment. Double-
distilled water (DDW) was used throughout the experiment.

2.1. Green tea extract and orange peel extracted mediated synthesis of gold nanoparticles and
characterization

Au NPs were prepared by adapting an already reported procedure with some modifications. Green tea
extract was prepared by boiling tea leaves for 15 min in DDW. The obtained yellow orange extract was
centrifuged at 3500 r.p.m. for 10 min and filtered through the whatmann paper (110 mm) to obtain a
concentrated 1.0% (w/v) tea extract solution. This was then diluted to obtain 0.1% working solution to
react with the Au precursor. To a 3.0 ml of 1 mM Au(III) solution, 1.6 ml (optimized value obtained) of
the 0.1% green tea extract was added and stirred vigorously (800 r.p.m.) at 40°C. After a red wine colour
is developed the reaction was allowed to take place at room temperature and provided with vigorous
stirring (1100 rpm). At the end of 15 min the obtained red wine colour solution was centrifuged at
3500 r.p.m. for 20 min followed with a washing step to remove unreacted constituents. It was then
redispersed in DDW to obtain a 10 mg/7.5 ml GtAu NPs working solution for electrospinning purposes.

Similarly, the dried orange peel was cut into small pieces and boiled in DDW for 15 min to obtain 10%
(w/v) orange peel extract. This was then centrifuged (3500 rpm for 10 min), filtered and later pH was
adjusted to 7. From this extract 1.0 ml was added in to 2.0 ml of Au (III) solution kept at 40°C. This
was vigorously stirred at 800 rpm until the red wine colour is obtained, later on the temperature of
the system was reduced to room temperature and the stirring was continued at 1100 r.p.m. for 15 min.
The end product was a similar procedure as in GtAu NPs to obtain 10 mg/7.5 ml OpAu NPs working
solution for electrospinning purposes.

As synthesized, GtAu NPs and OpAu NPs were characterized using ultraviolet–visible
spectrophotometry (UV–Vis) measurements (Carry 300, USA) to identify the characteristic plasmonic
bands [50]. The shape of the NPs was observed by transmission electron microscopy (TEM). Samples of
the AU NPs were prepared by placing drops of the product solution onto carbon-coated copper grids and
allowing the solvent to evaporate. TEM measurements were performed on a JEOL model JEM-2010 and
JEM- 2100 instrument models (Tokyo, Japan) operated at an accelerating voltage of 200 kV. Fourier
transform infrared (FTIR) spectrawere recorded (Perkin Elmer Spectrum 100) in the range of 400–4000 cm−1.

2.2. Preparation of electrospinning solutions
In this study, PEO was used as the base material into which gelatin and other compounds were added to
obtain the electrospinnable solution. In order to spin PEO individually, 4.5% (w/v) of PEO viscous
solution was prepared in DDW. To prepare PEO-Gel blends, PEO and gelatin was mixed in 9 : 1 ratio
with a total polymer weight of 4.5%. Subsequently to prepare the PEO-Gel-AA-COL blend 27.7% (w/
w) of PEO, 3.08% (w/w) of Gel, 6.84% (w/w) of AA and 0.68% (w/w) of COL were mixed together
to obtain a total polymer weight of 4.5%.

Likewise to prepare the Au NPs incorporated nanofibres, 0.5 mg, 0.75 mg and 1.0 mg of Au NPs
from the two systems (GtAu NPs and OpAu NPs) were first mixed with PEO-Gel blend having 9 : 1
PEO : Gel in 4.5% (w/v) polymer weight. Similarly, 0.5 mg, 0.75 mg and 1.0 mg of Au NPs were also
mixed with PEO-Gel-AA-COL optimized blend having total polymer weight of 9.65% for GtAu NPs
and 10.7% for OpAu NPs, respectively (total polymer weights were obtained based on the
spinnability studies conducted with different total polymer weight amounts). All solutions were
stirred magnetically in closed bottles at room temperature for 12 h and the viscosity measurements
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were obtained using a viscometer (LVT, Brookfield, USA). The conductivities were measured by a

conductivity metre (Orion star A112, Thermoscientific, USA). Full details of the solutions prepared are
listed in the electronic supplementary material, table S1.

2.3. Electrospinning of PEO-Gel, PEO-Gel-COL-AA and gold nanoparticles incorporated PEO-Gel,
PEO-Gel-COL-AA and characterization

The respective solutions were loaded in to a 5 ml syringe (Terumo) fitted with a metal spinneret (20G)
and mounted on a syringe pump (KDS100, Cole-Parmer, USA). The solution was expelled from the syringe
at a rate of 0.3 ml h−1 provided with a high voltage power supply (ZGF-2000, Shanghai Sute Electrical Co.
Ltd., China) of 11.9–15.9 kV, in between the needle and a grounded collector covered with aluminium foil.
The distance between the needle and collector was 13–18 cm depending on the system used for spinning.
Electrospinning was carried out at a temperature of 21°C. After electrospinning for 6 h, the products were
stored in a vacuum desiccator at room temperature for 24 h to remove residual moisture.

Fibre diameters were determined from scanning electron microscopy (SEM) images obtained using a
SEM Carl Zeiss Evo 18 (Accel voltage: 10–20 kV, probe current: 1–25 pA). Moreover, the presence of Au
NPs in the fibres were identified using the back scattering mode of SEM. FTIR spectra of the neat
nanofibres and Au NPs incorporated nanofibres were taken with a Perkin Elmer (Spectrum 100) in the
wavelength region 400–4000 cm−1 using the attenuated transmission (ATR) mode with a 1 cm−1

resolution and the signals are averaged from 32 scans. Powder X-ray diffraction (XRD) patterns of the
produced fibres and the starting materials were obtained using a powder X-ray diffractometer
(Rigako, SmartLab SE, Japan) using Cu Kα radiation, with a step size of 2θ = 5° min−1 over the range
of 2°–80°. The differential scanning calorimetry (DSC) thermograms of the nanofibres and the starting
materials, were measured using a differential scanning calorimeter (SETARAM DSC 131 evo) by
running the samples in the range of 20°C–350°C at 10°C min−1 under a flow of nitrogen.

2.4. Release studies of gold nanoparticles via dialysis membrane
Release of Au NPs from best-performing Au NPs incorporated PEO-Gel nanofibres systems was assessed
by incubating 30 mg of the Au nanofibres in 15 ml of phosphate saline buffer with (PBS) pH 7.4. In here
the Au nanofibres were first entrapped inside a dialysis tubing (Thermo Snake Dialysis Tubing MWCO
7000 Da) which was then dipped in the receiving buffer solution. At specific time intervals (up to
30 min), 1.0 ml of the sample was withdrawn and replaced with fresh buffer and release of Au
content was analysed via UV–Vis.

2.5. Skin permeation studies of gold nanoparticles
To assess the transdermal penetration of Au NPs through the skin, an artificial skin model (Merck Strat
-M- membrane) was clamped between the donor and the receptor chamber of the Franz diffusion cell
with an effective permeation area of 4.9 cm2 (25 mm diameter) while having a receiver cell volume of
5.0 ml. PBS was used as both a donor and receiver solution while the donor compartment contained
53 mg of PEO-Gel-AA-COL-Au NPs. The whole set up was incubated at 37°C provided with stirring
at 200 r.p.m. After 5 days of incubation, permeation of Au NPs through the skin layers was assessed
by subjecting to cross-sectional SEM analysis and energy dispersive X-ray (EDX) analysis.

2.6. Free radical scavenging ability of the PEO-Gel-AA-COL-gold nanoparticle fibres
The potential antioxidant activity of the Au NP loaded fibres was determined based on the free radical
scavenging activity of DPPH, with some modifications to the protocol described by Brand Williams et al.
[55]; 200 µl aliquots of the samples with varying concentrations of Au NPs extracted from fibre pieces in
ethanol were incubated with 1800 µl of 48 ppm DPPH solution prepared in ethanol. AA was used as a
positive control. Absorbance values at 515 nm were determined after 10 min incubation in the dark. The
per cent inhibition activity was calculated as follows:

(absorbance of DPPH� (absorbance of the sample� absorbance of the control))
(absorbance of DPPH)

� 100,

where absorbance of sample is the absorbance of the DPPH solution with the released content from
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nanofibres and absorbance of control is the absorbance of the released content from nanofibres in ethanol

in the absence of DPPH.

2.7. Toxicity assessment via zebra fish embryo model
Sexually matured male and female zebra fish (Danio rerio) were sorted and prepared for breading and
reared in mini-zebra fish facility at Biotechnology Laboratory, University of Colombo, as described
elsewhere [52]. The 48 < hours post-fertilization (hpf) embryos were collected from overnight breeding
rounds (in freshly prepared embryo (E3) medium) and the embryos sorted (for unfertilized or
coagulated, damaged, opaque, asymmetric and no transparency) in Petri dishes, were washed twice
or trice gently with distilled water while being carefully observed under an Olympus BX53
microscope (Olympus BX51, Japan). Subsequently, embryos were seeded in the wells of a 96 well
plate in 20 µl of zebra fish culture medium. The embryos were exposed with different concentrations
of GtAu NPs and OpAu NPs (1.67 ppm, 16.67 ppm, 33.3 ppm, 166.67 ppm, 208.32 ppm). Cd (II)
solution with an effective concentration of 100 µg ml−1 was used as a positive control where the wells
with zebra fish culture medium served as the negative control. All the treatments were carried out in
triplicate in approximately 28.5°C. Ultimately, developmental anomalies or teratogenicity parameters
(pericardial edema, yolk sac edema, pericardial edema, bent trunk, tail malformation, and an
uninflated swim bladder) were recorded at 24, 48, 72 hpf [53,54] under an Olympus BX53microscope
(Olympus BX51, Japan) with a microscope digital camera (6.3MP Sony CMOS sensor).

3. Results and discussion
3.1. Synthesis of gold nanoparticles and characterization using ultraviolet–visible

spectrophotometry and transmission electron microscopy analysis
In this study phytochemicals present in green tea extract and orange-peel extractwere used for the reduction
of Au precursor salt and to produce Au NPs. With the addition of the plant extracts to 1 mM HAuCl4
solution, a colour change was observed from yellow to wine red/ruby red (figure 1a) indicating the
formation of Au NPs. As given in figure 1b, the presence of the characteristic plasmon resonance band
[56,57] centred at λmax of 527 nm for the GtAu NPs and 529 nm for the OpAu NPs confirmed the
formation of the Au NPs. It is clear that the full width of half maximum (FWHM) of the plasmon peak
of OpAu NPs is much wider than that of GtAu NPs, highlighting the increased particle size [58] of the
OpAu NPs. A study on different amounts of reducing agents and different reaction temperatures was
also carried out to select the optimum conditions for the preparation of the Au NPs (electronic
supplementary material). The results (electronic supplementary material, figure S1) indicated that
excessive amounts of the reducing agents and at high temperatures, the broadening and red shifting of
the plasmonic band owing to the increase of particle size was as observed in previous studies [57,59].

The morphology and size of the synthesized Au NPs were determined using TEM and images
obtained are shown in figure 1c,d. Particle sizes of GtAu NPs and OpAu NPs range from 18 ± 3.5 nm
to 11.88 ± 6.77 nm, respectively. Broadening of the plasmon peak of OpAu NPs (figure 1b) could be
owing to the clustering of smaller NPs leading to different shapes such as star or ellipsoidal creating
agglomerates [60] as confirmed in TEM results (figure 1d ).

3.2. Electrospinning of gold nanoparticles with PEO-Gel and PEO-Gel-AA-COL systems and
morphological characterization

During the electrospinning process the total polymer weight of neat nanofibres (PEO, PEO-Gel) was
maintained at 4.5% which was changed to 9.0% with the addition of AA and COL as additional
constituents to prepare the facial mask. According to the results given in the electronic supplementary
material, table S1, the presence of AA would have led to a reduction of the viscosity owing to the
acid catalysed scissoring of PEO molecules [61]. By contrast, the addition of Gel alone has led to an
increase of the viscosity of the PEO, as it acts as a gelling agent in aqueous medium [62]. However,
the addition of Gel, AA and COL led to an increase in the conductivity of the PEO polymer solutions,
and by combining with Au NPs it enhanced its electrospinnability [63]. The best results for
electrospinning were achieved with 0.3 ml h–1 flow rate, 18 cm distance between tip and collector, and
11.9 kV voltage for neat PEO nanofibres, whereas it was 0.3 ml h–1, 18 cm, 18 kV for 4.5% wt PEO-Gel
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blend (electronic supplementary material, table S2). Similarly, when AA and COL were incorporated in to
the PEO-Gel, spinning conditions were drastically changed as specified in the electronic supplementary
material, table S1. The results of optimization studies were analysed by visual observations via optical
microscope (data not shown). The images of the electrospinning apparatus and the resulting fibre
mask are given in the electronic supplementary material, figure S2.

Morphological observation of neat nanofibres and Au NP incorporated nanofibres through SEM
analysis (electronic supplementary material, figure S3a), indicated that PEO nanofibres were
approximately smooth and defect-free with a mean diameter of 234.49 ± 21.49 nm with most of them
falling in between 220 and 240 nm. As given in the electronic supplementary material, figure S3b,
when gelatin Gel was introduced to the PEO polymer system, it led to a reduction of fibre diameter
to an average size of 193.61 ± 21.46 nm giving a branching effect on the nanofibres. This reduction in
diameter could be owing to the increase of the conductivity of the PEO-Gel system resulting from
charged groups in the gelatin structure [64] that creates stronger elongating forces on the polymer jet,
resulting in lowering of the fibre diameter [63]. Moreover, this effect was much more pronounced with
further addition of Au NPs into PEO-Gel system as observed in the electronic supplementary
material, figure S2c–d, owing to the increased conductivity [63]. The resulting nanofibres had a mean
diameter of 178.93 ± 21.33 nm and 126.03 ± 22.99 nm for PEO-Gel-GtAu NPs and PEO-Gel-OpAu NPs
respectively. However, the incorporation of GtAu NPs and OpAu NPs into PEO-Gel nanofibres are
different from each other; GtAu NPs have been trapped in between the PEO-Gel nanofibres (electronic
supplementary material, figure S3c) while OpAu NPs have been slightly embedded in to the PEO-Gel
nanofibres (marked with a yellow arrow). As shown in the circled area of the electronic
supplementary material, figure S3d, nanofibres of the PEO-Gel-OpAu NP system were merged
together with the unspun polymer drops that were ejected occasionally owing to the higher viscosity
of the solution (electronic supplementary material, table S1) which makes it difficult for solution flow
and ejection [53].
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By contrast, PEO-Gel-AA-COL systems were different from PEO-Gel nanofibre systems leading to
less dripping and better Au NP incorporation into the nanofibre system (figure 2a–c). Nevertheless,
the mean diameter of the PEO-Gel-AA-COL was much higher (245.56 ± 24.32 nm) than that of neat
PEO and PEO-Gel systems, which could be owing to the presence of many compounds accounting for
higher total polymer weight. Moreover, the resulting fibres had a mean diameter of 164.60 ± 20.95 nm
and 192.43 ± 39.14 nm for PEO-Gel-AA-COL-GtAu NPs and PEO-Gel-AA-COL-OpAu NPs
respectively (figure 2b,c) Entrapment of the Au NPs within the fibres is very clear owing to the blobs/
beads along the fibres. Using a backscattering mode these Au entrapped areas could be made visible
as marked by arrows in figure 2b,c.
3.3. Fourier transform infrared characterization of PEO-Gel-AA-COL nanofibres
The presence of different functional groups on the GtAu NPs, OpAu NPs, PEO-Gel nanofibres, PEO-Gel-
AA-COL and PEO-Gel-AA-COL-Au NPs nanofibres could be identified using FTIR spectroscopy. As
given in the electronic supplementary material, figure S4, characteristic bands corresponding to
asymmetric and symmetric vibrations of –CH2 at 2949 cm−1 and 2846 cm−1 [65–67] were present in
both GtAu NPs and OpAu NPs (electronic supplementary material, figure S4a and d) which were
closely matched with the vibrational bands of green tea extract and orange-peel extract (electronic
supplementary material, figure S4b,c) which highlighted that Au NPs were capped with plant derived
molecules which might had reduced the Au (III) precursors and provide a stabilization effect [68].
Additionally, the reduction of –OH stretching intensity (3394 cm−1) in coated Au NPs indicted the
possible interaction of alcohols and phenols of plant extract with Au NPs [68]. In addition, the
presence of bands at 1627 cm−1 (–C =C– stretch), 1396 cm−1(–C–N– amide I stretch), 1741 cm−1 (–C–
O–C– stretch) and 1037 cm−1(–C–O– stretch) on top of Au NPs suggested the presence of aromatic
compounds, proteins, polysaccharides and amino acids coming from the plant extracts [69]. The PEO-
Gel nanofibre system, resembles the infrared spectrum of PEO, but it also contain peaks
corresponding to gelatin that appears at 1640 cm−1(amide I of –C=O stretching couples with –C–N
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stretch) and 1540 cm−1 (amide II out of phase) [62]. A broader –OH stretching in the region of 3000–
3500 cm−1 could suggest an H-bond formation in between the two polymers [65,70]. Peaks at
1342 cm−1 of –CH2 symmetric wagging [46], 1466 cm−1 of –OH bending, 1240 cm−1, 1278 cm−1 of –C–
O– stretching [71], 1102 cm−1 of –C–O stretching[46] and 2850 cm−1, 2920 cm−1 of symmetric and
asymmetric stretching [72] suggests the main contribution is coming from PEO backbone. When Au
NPs, COL and AA were blended with the PEO-Gel nanofibre system, there was no significant
difference because the peaks of AA and COL were falling into the same region as PEO and Gel
(electronic supplementary material, figure S4j,k).

3.4. Crystallographic characterization using X-ray diffraction analysis
Figure 3a displays the XRD patterns of PEO, Gel, AA, COL, PEO-Gel nanofibres, PEO-Gel-AA-COL-Au
NP incorporated nanofibre systems. Both Gel and COL have a similar broad XRD patterns [73,74]
highlighting their amorphous nature arising from the random coil conformation [74]. However, the
incorporation of Gel and COL into PEO have not created much difference in the XRD pattern of
respective fibre systems, which might arise owing to the abundance of the PEO molecules. Two sharp
peaks were observed at 19.15° and 23.35° in PEO, PEO nanofibre, PEO-Gel and PEO-Gel-AA-COL
nanofibre systems, corresponding to [120] and [112] facets that accounts for the semi crystalline nature
in PEO [70,75]. When AA has been added to the PEO-Gel-AA-COL nanofibre system, the appearance
of peaks corresponding to crystalline AA [76] was not visible, which could be owing to the lower
content of AA used for the study which might have been hidden by the PEO prevalence. In PEO-Gel-
AA-COL systems, peaks corresponding to [111] and [200] facets [77,78] of Au NPs were appearing at
2θ of 38.31°, 44.46° (figure 3b). Increased intensity at the 38.31° peak of Au NPs is indicative of the
predominance of [111] facet during the formation of Au NPs [79].

3.5. Thermal analysis of PEO-Gel nanofibre systems
The effect of polymer blending and nanofibre formation on the thermal properties of PEO-Gel nanofibre
systems was studied using DSC analysis. As given in figure 4, classic DSC curves were observed for PEO,
Gel, AA and COL. In figure 4a and e–i, the melting point appearing around 74.3°C of neat PEO has
shifted to lower values with lowered intensity when it was blended or formulated into nanofibres
(72.3°C in PEO nanofibres, 73.1°C in PEO-Gel nanofibres, 72.8°C in PEO-Gel-AA-COL nanofibres and
PEO-Gel-AA-COL-GtAu nanofibres, and 65.7°C in PEO-Gel-AA-COL-OpAu). This could be attributed
to the alteration of PEO crystallinity during nanofibre formation [80].

Incorporation of Gel into PEO nanofibres, by obtaining an endothermic peak at 58.1°C (helix coil
transformation of Gel) [81], broad peak around 75–100°C (water loss) [82] and final two endothermic
peaks at 225°C (α-helix denaturation), 278°C (β-helix denaturation) [83] in neat Gel (figure 4b) were
not visible in the nanofibres. Instead a plateau in specific regions (in addition to the broader
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endothermic peak of PEO melting) was observed, indicating the reduction of crystallinity and alteration
of the random coil structure of gelatin [62].

Similarly, a change in the thermal properties owing to the introduction of AA and COL in to PEO-Gel
nanofibres was also observed which could be owing to the very low content of respective compounds
added during the synthesis (figure 4g). However, as given in figure 4h,i, the increased nature of
crystallinity was evident after integrating Au NPs into PEO-Gel-AA-COL systems [84].
3.6. Analysis of gold nanoparticles release from PEO-Gel-AA-COL systems
For the release studies of both GtAu and OpAu NPs, the PEO-Gel-AA-COL nanofibre system was
selected out of other systems as it has shown a proper and a stable entrapment of Au NPs inside the
respective nanofibres (figure 2b,c). These release studies were conducted by taking three different
amounts of Au NPs (0.50 mg, 0.75 mg and 1.00 mg mask−1) and obtained results are given in figure 5.
As indicated in figure 5a, in the PEO-Gel-AA-COL-GtAu nanofibre system, a maximum release could
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be attained even at 10 min (0.75 mg GtAu incorporated system), in contrast to the PEO-Gel-AA-COL-

OpAu nanofibre system which requires 20 min or more for a maximum release (figure 5b). However,
when 1.0 mg or 0.50 mg of GtAu NPs are added, the release is much more controlled and a highest
value (80.3% and 63.9%, respectively) is reached only at or after 20 min of contact with the buffer
medium (figure 5a). However, in 0.75 mg of GtAu NP concentration, the highest release of 75.2% was
shown at the tenth minute and then gradual reduction of Au release was observed. In PEO-Gel-AA-
COL-OpAu added systems (figure 5b), the release from the 1.0 mg incorporated sample is much
higher (99.1%) and it reaches a maximum at the twentieth minute, while the 0.75 mg incorporated
system shows a similar release pattern by reaching to a maximum level (84.8%) at the thirtieth
minute. Nevertheless, the Au NP release from the 0.50 mg PEO-Gel-AA-COL-OpAu system is gradual
and similar to the 0.50 mg PEO-Gel-AA-COL-GtAu system owing to the lower loading of Au NPs.
Systems with higher amounts of Au NP always exhibit rapid release. Comparing both GtAu NPs and
OpAu NPs incorporated PEO-Gel-AA-COL systems, it is much clearer that the PEO-Gel-AA-COL-
OpAu system accounts for a higher content of Au release than the GtAu NP system. This indicated
that smaller size GtAu NPs could have strongly implanted and interacted with polymer molecules,
hindering their release in to the buffer medium in contrast to larger size NPs in the OpAu system,
showing weak interaction leading to higher release (figure 5a,b).

3.7. Skin permeation of gold nanoparticles released from PEO-Gel-AA-COL nanofibre system
Permeation of Au NPs released from the PEO-Gel-AA-COL nanofibre systems was analysed using Strat
membrane which has performances similar to the human skin. As observed in cross-sectional analysis
given in the electronic supplementary material, figure S5ai and ii, Strat membrane is consists of three
layers that are made out of polyestersulfones [85] that represents the epidermis including stratum
corneum, dermis and hypodermis of skin [86]. When the Strat membrane was in contact with PEO-
Gel-AA-Col-OpAu nanofibres and PEO-Gel-AA-COL-GtAu nanofibres (electronic supplementary
material, figure S5b) it was subjected to EDX analysis, the peaks appeared indicated that Au NPs are
distributed in the middle membrane layer with varied intensities without diffusing into the outer
layer which is more open and porous (electronic supplementary material, figure S5c,d). This
confirmed that the Au NPs produced from both tea tree extract and orange-peel extract were able to
diffuse into the epidermis or dermis layer which are generally known to be much resistant (more
specifically the stratum corneum) in allowing the permeation of various molecules. Moreover, it was
also clearly evinced that these particles are not reaching into the hypodermis or to the blood
circulation (absence of an ultraviolet absorbance in the receiver compartment-data not shown).

3.8. Radical scavenging activity of PEO-Gel-AA-COL-gold nanoparticle nanofibre systems
According to the electronic supplementary material, figure S6, the results of the DPPH assay revealed
that, nanofibres have a much closer activity like the AA standard. More importantly at low
concentrations their activity is even higher than the AA (in the range of 1.5–3.0 µg ml−1). At higher
concentrations the activity of the PEO-Gel-AA-COL-OpAu nanofibre system is much pronounced
compared to the respective GtAu nanofibre system (IC50 of 26.62 µg ml−1 compared to 31.58 µg ml−1

of PEO-Gel-AA-COL-GtAu nanofibre system). A possible explanation of the increased antioxidant
property of the PEO-Gel-AA-COL-OpAu system could be owing to a myriad of phytochemicals
present in the orange peel extract which is much higher in content than in green tea leaf extract [87].
However, in general, the profound radical scavenging activity of the two nanofibre systems could also
be attributed to the presence of plant metabolites, and the synergistic effect of Au NPs with AA. [27].

3.9. Toxicity assessment of gold nanoparticles released from the facial mask
Toxicity studies of the developed facial mask was carried out using zebra fish embryos. Among tested
zebra fish embryos for teratogenicity parameters, yolk sac edema has been significant rather than the
other anomalies. The yolk sac is an excellent model for exposing toxicant disruptions to early
embryonic nutrition and has the potential to discover mechanistic insights into the developmental
origins of health and disease. As depicted in figure 6, zebra fish embryos within the considered
duration have not shown any toxic effect against the GtAu nanoparticles for all concentrations.
However, yolk sac edema has been observed for OpAu NPs with 208.32 ppm and 166.67 ppm
concentrations at 48 hpf and it reveals the comparably higher toxic effect against OpAu NPs at higher
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concentrations. This kind of a phenomenon with OpAu could be explained by the shape and size
dependent toxicity of Au NPs, as OpAu NPs were creating irregular shapes with the huge
aggregation [88]. The positive control, Cd2+ at 100 ppm has affected to increase the motility of
embryos even after 24 hpf, proving its highest toxicity effect. In the final analysis, it proves that any
concentration of GtAu NPs below 208.32 ppm≤ and lower concentration (166.67 ppm<) of OpAu NPs
would not affect the toxicity of zebra fish embryos [89–93].
4. Conclusion
In this work, electrospinning technology has enabled the generation of a paper-like thin hydrogel facial
mask to deliver Au NPs, AA and COL which could provide anti-ageing, whitening and anti-wrinkling
benefits for the user. The presence of corresponding peaks of Au NPs in XRD patterns indicated the
successful incorporation of Au NPs in to the electrospun nanofibre systems. SEM results proved that
the presence of COL and AA during the preparation of nanofibres is beneficial to entrap the Au NPs
into the nanofibre system. DSC results suggested that the shifting of the melting temperature of PEO
to lower values is possible when blended with other molecules and formulated into nanofibres, as it
alters the crystallinity of the neat PEO. Releasing studies indicated that the PEO-Gel-AA-COL-GtAu
nanofibre with 0.75 mg Au NPs is the fastest in releasing entrapped gold at the tenth minute, while a
higher content of Au release was observed with the PEO-Gel-COL-OpAu nanofibre system. It was
also noticed that the higher the Au content, the much faster the release of Au. This rapid Au release
behaviour suggests promising application as a facial mask as it reduces the wearer time below 30 min.
Skin permeation studies carried out with Strat membrane indicated the penetration of Au into the
dermis and epidermis layers of the skin, highlighting its’ potential skin, absorptivity. Similar radical
scavenging activity to AA exhibited by PEO-Gel-AA-COL-Au nanofibres further confirmed the
antioxidant potential of the facial mask. In vivo studies further demonstrated that selecting Au NPs
below the concentration of 208.32 ppm from GtAu NPs and 166.67 ppm from pAu NPs have a
promising non-toxic profile on the zebra fish embryo model. Therefore, we can conclude that PEO-
Gel-AA-COL nanofibres have promising Au NP releasing activity which could allow it to act as an
effective hydrogel mask with proven anti-ageing, whitening, antioxidant and anti-wrinkling benefits.
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