











#### THE SPECIALISTS' SERIES.

Works in Preparation.

- LIGHTNING CONDUCTORS AND LIGHTNING GUARDS. By Professor OLIVER J. LODGE, D.Sc., F.R.S., M.Inst.E.E. With numerous Illustrations.
- THE DYNAMO. By C. C. HAWKINS, A.M.Inst.C.E., and J. [Preparing.
- CABLES AND CABLE LAYING. By STUART A. RUSSELL, A.M.Inst.C.E. [Preparing.
- COLD PRODUCTION. By H. G. HARRIS, M.Inst.C.E.
- THE ALKALI MAKERS' HANDBOOK. By Professor Dr. George Lunge and Dr. Ferdinand Hurter. Second Edition, revised, and in great part rewritten. [In the press.
- ARC AND GLOW LAMPS. New and Revised Edition.

[Preparing.

- THE DRAINAGE OF HABITABLE BUILDINGS. By W. LEE BEARDMORE, A.M.Iust.C.E., Member of Council and Hon. Sec. of the Civil and Mechanical Engineers' Society.

  [In the press.]
- ALTERNATING CURRENTS OF ELECTRICITY. By THOMAS H. BLAKESLEY, M.A., M.Inst.C.E., Hon. Sec. of the Physical Society. Second Edition, enlarged. 4s. 6d.
- ELECTRIC TRANSMISSION OF ENERGY, AND ITS TRANS-FORMATION, SUBDIVISION, AND DISTRIBUTION. A practical handbook, with numerous Illustrations. By GISBERT KAPP, M.Inst.C.E., M.I.E.E. (Member of the Council). Third Edition, thoroughly revised and enlarged. Crown 8vo. 7s. 6d.
- THE TELEPHONE. By W. H. PREECE, F,R.S., and JULIUS MAIER, PH.D. With 290 Illustrations, Appendix, Tables, and Full Index. 12s. 6d.
- HYDRAULIC MOTORS: Turbines and Pressure Engines.
  By G. R. Bodmer, A.M. Inst. C.E. With 179 Illustrations. Tables and Index.
  14s.
- ON THE CONVERSION OF HEAT INTO WORK. A Practical Handbook on Heat-Engines. By William Anderson, F.R.S., D.C.L., Member of the Council of the Institution of Civil Engineers, M.I.M.E., and Director-Gereral of Ordnance Factories, Royal Arsenal, Woolwich. With sixty-two Illustrations. Second Edition, revised and enlarged. 68.

# J. CORTIN,

# Chemical Plant Manufacturer,

MUSHROOM QUAY, NEAR NEWCASTLE-ON-TYNE.

Telegraphic Address: -- "CORTIN, NEWCASTLE-ON-TYNE."

#### CORTIN'S PATENT NON-ROTATIVE ACID VALVE.

The only Valve which gives entire satisfaction and ensures perfect safety in working with Acids or other corrosive fluids.

SAFE, DURABLE, INEXPENSIVE.

THE ONLY PERFECT VALVE YET INVENTED.
SEVERAL THOUSANDS ALREADY IN USE.

Highest Testimonials by Leading Chemical Manufacturing Firms throughout the World.

CORTIN'S LATEST NEW PATENT REGULUS SCREW-DOWN JUG VALVE,
For Acid Egg.

Since the invention of this Valve, all the leading Chemical Manufacturers have adopted its use, as it is the only safe and reliable Valve yet invented for its purpose. Thousands in use now.

#### CORTIN'S SPECIAL PLUMBERS' AIR PUMP

for Hydrogen Lead Burning.

The Latest Improvement, and the Best Pump in use.

### CORTIN'S SPECIAL REGULUS ACID INJECTOR,

for Lifting Acids.

Works by Steam Power, and will throw Acids or other Liquids to a great height.

CORTIN'S SPECIAL REGULUS BIB AND STOP COCKS, for Acids, etc.

CORTIN'S SPECIAL REGULUS BIB AND STOP COCKS, with Stoneware Keys, for Acids, etc.

CORTIN'S SPECIAL IMPROVED GUN-METAL COCK, with Index handle for Chambers, etc.

CORTIN'S SPECIAL NEW IMPROVED REGULUS AND BRASS AIR COCKS, Used in Pumping Acids.

CORTIN'S SPECIAL STRONG (CAST GUN-METAL BARREL)
PLUMBERS' FORCE PUMP.

And all other Small Plant for use in Chemical Manufactories.

The goods are made from my own Special Mixture of Metals, and are now in use in most of the Leading Chemical Manujactories throughout the United Kingdom, and are everywhere acknowledged to be the best and most durable yet introduced.

Brass, Regulus, and White Metal Castings, or in Ingots.

ILLUSTRATED PRICE LIST ON APPLICATION.

### THE ALKALI MAKERS' HANDBOOK.

LUNGE AND HURTER.

THE
SPECIALISTS'
SERIES.

## ALKALI-MAKERS' HANDBOOK.

TABLES AND ANALYTICAL METHODS FOR MANUFACTURERS
OF SULPHURIC ACID, NITRIC ACID, SODA, POTASH,
AND AMMONIA.

BY

### GEORGE LUNGE, PH.D.,

Professor of Technical Chemistry, Zurich;

AND

#### FERDINAND HURTER, PH.D.,

Consulting Chemist to the United Alkali Co., Limited.

SECOND EDITION,
ENLARGED AND THOROUGHLY REVISED.

LONDON: WHITTAKER & CO., 2, WHITE HART STREET,
PATERNOSTER SQUARE.

GEORGE BELL & SONS: YORK STREET, COVENT GARDEN.

1891.

TP151 L82 1891

49634

BUTLER & TANNER,
THE SELWOOD PRINTING WORKS,
FROME, AND LONDON.

#### PREFACE TO THE FIRST EDITION.

Most practical chemists and manufacturers have long felt the want of uniformity in analytical methods, tables of specific gravities, etc., employed by buyers and sellers for the valuation of chemicals, and by manufacturers for controlling and superintending their various processes. Want of uniformity in this respect is constantly leading to disagreements, and prevents exact comparison of results.

In order to terminate the confusion, Mr. Stroof, manager of the Griesheim Alkali Works, suggested to the German Society of Alkali Makers that they should have a standard manual published. This suggestion was adopted, a committee of seven, of owners and managers of high reputation, was appointed, and the first of the undersigned was induced to collect and sift the material for such a manual.

The first condition imposed upon him was to state only one method for each analytical operation for the preparation of standard solutions and for sampling the materials. Only one method was to be chosen, in order that no discrepancies might arise, which would certainly happen if two or more methods had been introduced.

In selecting the one standard method, the first and most important consideration was, that the method should permit a certain indispensable degree of accuracy. No pains were spared to arrive at a satisfactory result in this respect. Where there was a choice between several equally accurate methods, the one occupying least time and requiring least apparatus, or one already widely known and employed, was preferred.

The author prepared a draft, which, together with various suggestions from others, was fully discussed at the several meetings of the committee. These meetings were held at intervals of six and twelve months respectively, in order to give the author and his assistants time to carry out experimental researches, to clear up any

7,

doubtful points. Most of these experiments have been described in a report published partially in the *Journal of the Society of Chemical Industry*, 1882, pp. 12, 55, and 91. Public criticism was then invited, and several important contributions were thus obtained. Ultimately, after the complete manuscript had been circulated among the members of the committee, it was agreed to on all points.

The methods described in this little work are thus acknowledged by the united voice of the German Alkali and Ammonia manufacturers as the most suitable, and are not the arbitrary choice of the author. Many of the processes, the description of which frequently only occupies a few lines, are the result of many a month of arduous labour, and of subsequent anxious discussion by all concerned.

The want of standard tables of specific gravities of various solutions, was felt quite as much as the want of standard analytical methods. For some substances such tables had never been constructed, and for very few substances indeed were the data provided to reduce the specific gravity of the solution to a normal temperature. The author and his colleagues have striven to remedy this defect by a careful examination of the existing tables, and by supplying new ones where required.

In addition a number of general tables, useful to alkali manufacturers, have been provided. Every care has been taken to ensure the accuracy of these tables, many of them, particularly those referring to atomic weights, percentage composition, and analytical factors, having been entirely recalculated.

The German edition, the small compass of which but little betrays the labour expended upon it, was issued with the expectation that it would be accepted as a standard work by all German Alkali manufacturers, by their customers, and by commercial analysts. This expectation has already been realized in a great measure. It has already become customary to make these analytical methods and specific gravity tables binding in all transactions between buyers and sellers, until the progress of science necessitates the substitution of more accurate methods and tables in future editions.

From many sides the desire has been expressed that this little work should be made accessible to the English public. For this purpose the co-operation of the second of the undersigned was obtained. To him is due the extensive labour of recalculating all the tables for English weights and measures. In making these calculations every one of the tables was, as far as possible, reconstructed from the original data

by graphic interpolation. Errors of computation were avoided as much as possible by the use of Thomas' Arithmometer and Fuller's Calculator; and the hope is expressed that the tables, based on the English weights and measures, will be found equally reliable as those based on the metric system. The chapters on Deacon's process and on chimney-testing are also due to him, and in general he has adapted the work to suit the wants of English manufacturers. But in no essential particular does this edition deviate from the German, a few additions excepted.

#### PREFACE TO THE SECOND EDITION.

In this edition numerous small errors of the first edition, almost unavoidable in such a case, have been corrected, and many minor improvements have been made. Moreover, for reasons explained by one of us in the *Journal of the Society of Chemical Industry* (1890, p. 1013), a considerable number of new methods for analysis have been introduced.

The new tables for specific gravities of sulphuric, hydrochloric, and nitric acid, and of liquor ammoniæ, constructed with extreme care by one of us, with his assistants, have been substituted for the tables of Kolb and Carius contained in the first edition.

All suggestions for alterations which have reached us since the publication of the first edition have been carefully considered, and have been adopted wherever it was possible and consistent with our endeavour to maintain unchanged the general scope and character of the book.

As the size of the page has been somewhat increased, the designation "handbook" has been substituted for "pocketbook" in the title.

G. LUNGE.

F. HURTER.

ZURICH AND WIDNES, August, 1891.

#### NOTE.

ALL temperatures are indicated in degrees centigrade, unless the contrary is expressed.

The atomic weights are stated in table No. 1 in round numbers, and these are made use of in all calculations contained in this book. This has been done because the so-called correct atomic weights are not accepted equally by all chemists, and are subject to alteration by new researches, whilst there is practically no disagreement concerning the rounded-off atomic weights of the more important elements, and these are, at any rate, sufficiently near the truth for all technical purposes. An exception has been made for platinum, for which the figure adopted by all German potash manufacturers and analytical chemists has been retained.

We have, however, also added a table giving the values of atomic weights assumed by Ostwald to be the nearest approximations to the truth.

## CONTENTS.

|                                                                  | PAGE |
|------------------------------------------------------------------|------|
| Preface to First Edition                                         | v    |
| Preface to Second Edition                                        | vii  |
| Preliminary Note                                                 | viii |
| Contents                                                         | ix   |
|                                                                  |      |
| GENERAL TABLES                                                   | 1    |
| Table 1.—Atomic Weights, Equivalent Weights (in round numbers),  |      |
| and Valency of Elements                                          | 2    |
| 1. A correcte eternia regialita (Ostrold)                        | 3    |
| O Campbels melecules and conjugatest mainbes and newcontage      |      |
|                                                                  |      |
| composition of chemical compounds important to the               |      |
| Alkali industry                                                  | 4    |
| " 3.—Factors for calculating gravimetric analyses                | 12   |
| " 4.—Solubility of different salts                               | 16   |
| " 5.—Solubility of different salts at different temperatures     | 17   |
| " 6.—Solubility of some gases in water                           | 20   |
| " 7.—Solubility of Ammonia in water by weight                    | 21   |
| " 8.—Solubility of Chlorine in water                             |      |
| " 9.—Solubility of Hydrogen Chloride in water                    | _    |
| " 10.—Specific gravities of different solids                     | 22   |
| 11 Weight of aubatan and ag atomod                               | 24   |
| 19 Specific gravity of different liquida                         | 25   |
| 12 Specific gravity and persentage of caturated colutions        | 20   |
| " 13.—Specific gravity and percentage of saturated solutions     | 00   |
| " 14.—Specific gravity of gases and vapours                      | 26   |
| " 15.—Linear expansion of different substances                   | . 27 |
| " 16.—Comparison of different thermometric scales by Centigrade  |      |
| degrees as units                                                 | . 28 |
| " 16s.—By Fahrenheit degrees as units                            | . 29 |
| " 17.—Conversion of Centigrade into Fahrenheit degrees above 100 | ,    |
| and vice versa                                                   | . 30 |
| " 18.—Fusing points                                              | . 31 |
| " 19.—Boiling points                                             | . 32 |
| " 20.—Reduction of volumes of gases to a temperature of 0° C     | . 34 |
| ,, 21.—Reduction of volumes of gases to a pressure of 760 mm.    | . 40 |
| " 21B.—Factors for reducing a given volume of gas to normal tem- |      |
| perature and pressure                                            | . 46 |
| 99 Valumos of water at different temporatures                    | 49   |
|                                                                  | 40   |
| 22B.—Reduction of water pressure to mercurial pressure           | 50   |
| " 23.—Tensions of aqueous vapour between – 20 and +118° C.       |      |
| " 23B.—Tensions of aqueous vapour for temperatures above 40° C.  | . 51 |
| " 24.—Tension of aqueous vapour in inches of mercury from 1° to  | ) ~~ |
| 100° Fah.                                                        | . 52 |
| " 24s.—Tension of aqueous vapour from 100° to 440° Fah.          | . 54 |
| " 25.—Variation of boiling point of water with different baro-   | 1    |
| metric pressures                                                 | . 55 |
| " 26.—Specific heats                                             | . 56 |
|                                                                  |      |

|                                                                                                                 | PAGE  |
|-----------------------------------------------------------------------------------------------------------------|-------|
| Table 27.—Mathematical tables (circumference and area of circles,                                               |       |
| squares, cubes, square and cube roots)                                                                          | 57    |
| 28 _ Formula for mensuration of areas and solid contents                                                        | 71    |
| " 99 Weights and massures of different countries                                                                | 73    |
| 30.—Tables for reducing English to metrical weights and mea-                                                    |       |
|                                                                                                                 | =0    |
| sures, and vice versâ                                                                                           | 76    |
| " 31.—Weight of sheet metals                                                                                    | 80    |
| " 32.—Coinage of different countries                                                                            | _     |
| " 22 Air compression                                                                                            | 82    |
| " 55.—Air-compression                                                                                           |       |
| CDECIAL DADO                                                                                                    | 83    |
| SPECIAL PART                                                                                                    |       |
| 1. Fuel and Furnaces                                                                                            | 85    |
| A. Fuel (Moisture, fixed carbon, ash)                                                                           |       |
| B. Furnaces                                                                                                     | 86    |
| 1. Chimney gases                                                                                                | _     |
| O Can from Dundrager                                                                                            |       |
|                                                                                                                 | 07    |
| 3. Speed of draught                                                                                             | 87    |
| C. Temperature (Pyrometers)                                                                                     | 90    |
| 2. SULPHURIC ACID MANUFACTURE                                                                                   | 91    |
| A. Brimstone                                                                                                    |       |
| B. Spent oxide of gas works                                                                                     | 92    |
| B. Spen oxide of gas norths.                                                                                    |       |
| C. Pyrites. Moisture. Sulphur                                                                                   | 93    |
| Copper. Zinc                                                                                                    | 94    |
| Carbonic Acid                                                                                                   | 95    |
| T T ' C 1 1 C                                                                                                   | 96    |
| W Cases Rumper cases Chamber svit cases Sulphur and                                                             |       |
| P. Guses, Bullet gases, Chamber exit gases, Sulpitut and                                                        | 97    |
| E. Gases. Burner gases. Chamber exit gases. Sulphur and<br>Nitrogen Acids. Rules of Alkali Makers' Association. | 91    |
| Nitric Oxide                                                                                                    | 99    |
| F. Sulphuric Acid                                                                                               | 100   |
| 1. Specific gravity of Sulphuric Acid at 60° F                                                                  |       |
| 2. Specific gravity of highly concentrated Sulphuric Acid                                                       | 103   |
| 2. Specific gravity of mg my content and furning (Northeaucon) Oil                                              | 100   |
| 3. Specific gravities and percentage of fuming (Nordhausen) Oil                                                 | 101   |
| of Vitriol at different temperatures                                                                            | 104   |
| 4. Table for reducing the specific gravities of Sulphuric Acid                                                  |       |
| to any other temperature                                                                                        | 105   |
|                                                                                                                 | 107   |
| 6. Boiling points of Sulphuric Acid                                                                             | 108   |
|                                                                                                                 | 109   |
|                                                                                                                 |       |
|                                                                                                                 | 110   |
| 8. Examination of Sulphuric Acid for other substances                                                           |       |
| (a) Nitrous Acid                                                                                                | _     |
| (b) Total Nitrogen acids. Nitrometer                                                                            | 111   |
| Gas-Volumeter                                                                                                   | 113   |
|                                                                                                                 | 114   |
|                                                                                                                 | 114   |
| (c) Lead                                                                                                        |       |
| (d) Iron                                                                                                        | -     |
| 9. Analysis of fuming Sulphuric Acid (Nordhausen Acid, An-                                                      |       |
| hydride)                                                                                                        | 115   |
|                                                                                                                 | 116   |
|                                                                                                                 | 110   |
| A. Salt (Common Salt, Rock-salt)                                                                                | _     |
| Moisture, Insoluble, Chlorine                                                                                   |       |
| Lime                                                                                                            | . 117 |
| B. Saltcake. Free Acid, NaCl, Iron, Residue, Lime, Magnesia.                                                    |       |
| Alumina Sadium Sulphata                                                                                         | . 118 |
| Alumna, Soutam Surphase                                                                                         |       |

|    |                                                                   | PAGE |
|----|-------------------------------------------------------------------|------|
|    | C. Chimney-testing                                                | 118  |
|    | Act of Parliament, Hydrochloric Acid                              | _    |
|    | D. Hudrochloric Acid                                              | 120  |
|    | 1. Specific gravities at 15° C                                    |      |
|    | 2. Influence of temperature on specific gravity                   | 121  |
|    | 3. Analysis: HCl, Sulphuric Acid, Iron                            | 122  |
|    | BLEACHING POWDER AND CHLORATE OF POTASH                           |      |
|    | A. Natural Manganese Ore                                          | _    |
|    | 1. Manganese Dioxide                                              | _    |
|    | 2. Carbon Dioxide                                                 | 123  |
|    | 3. Hydrochloric Acid required for decomposing                     |      |
|    | B. Recovered Manganese Mud and Weldon Liquors                     |      |
|    | 1. MnO <sub>2</sub>                                               |      |
|    | 2. Total Manganese                                                |      |
|    | 3. Base                                                           | 124  |
|    | C. Limestone: Insoluble, Lime                                     |      |
|    | Magnesia, Iron                                                    | 125  |
|    | D. Quicklime: Free CaO, CO,                                       |      |
|    | DA. Slaked Lime                                                   | _    |
|    | Table showing amount of Lime in milk of lime                      |      |
|    |                                                                   | 126  |
|    | Comparison of percentage with French degrees                      |      |
|    | F. Deacon process: HCl, free Cl.                                  | 126  |
|    | G. Chlorate of Potash: Chlorate, Chloride                         | 127  |
|    | Commercial Chlorate                                               | 128  |
| ١. | Soda-ash Manufacture                                              |      |
| •  | A. Raw Materials: Saltcake, Limestone, Coal (Sulphur)             |      |
|    | B. Black Ash.                                                     |      |
|    | I. Tests made with the muddy mixture                              |      |
|    | Free Lime, Total Lime                                             | 129  |
|    | II. Tests made with the clear portion                             |      |
|    | Sodium Carbonate, Caustic, Sulphide                               |      |
|    | Sodium Chloride, Sulphate, Carbonated sample.                     | 130  |
|    | C. Tank Waste (Vat Waste)                                         | 100  |
|    | Avoilable Sode Wetal Sode                                         |      |
|    | Available Soda, Total Soda                                        | 191  |
|    |                                                                   | 131  |
|    | D. Tank Liquor (Vat Liquor)                                       |      |
|    | Sodium Ferrocyanide                                               | 100  |
|    |                                                                   | 132  |
|    | E. Carbonated Liquors                                             | -    |
|    | Bicarbonate                                                       | 100  |
|    | F. Specific gravities of solutions of Sodium Carbonate, at 15° C. | 133  |
|    | Ditto, at 30° C.                                                  | 134  |
|    |                                                                   | 136  |
|    | G. Commercial Soda-ash                                            | 138  |
|    | Comparison of French, German, and English Alkalimetrical          | 100  |
|    | degrees                                                           | 139  |
|    | II. Caustic Soda                                                  | 141  |
|    | 1. Caustic liquor                                                 |      |
|    | Specific gravities of solutions of Sedium Hydrate                 |      |
|    | Influence of temperature on specific gravities                    | 143  |
|    | 2. Lime Mud                                                       |      |
|    | 3. Fished salts                                                   | 145  |
|    | 4. Caustic bottoms                                                |      |
|    | 5. Commercial Caustic Soda                                        | _    |

| 6 Communa December (Communa December)                                                                                                                                                                                                                                                                                                                                                                                        | PAGE               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| 6. SULPHUR RECOVERY (CHANCE PROCESS)                                                                                                                                                                                                                                                                                                                                                                                         | . 145              |
| 1. Sulphur as Sulphides in vat waste 2. Sulphur as Sulphides in carbonated mud 3. Sulphide-Sulphur + CO <sub>2</sub> in vat waste 4. Sulphur as Sulphide in solutions 5. Soda, Lime, and Thiosulphate in liquors 6. Lime-kiln gases 7. Gas from Gas-holder (H <sub>2</sub> S) 8. Exit-gases from the Claus kilns (H <sub>2</sub> S, SO <sub>2</sub> ) 7. Nitric Acid Manufacture.                                            | 140                |
| 2. Surprier as Surpries in carbonated mud.                                                                                                                                                                                                                                                                                                                                                                                   | . 146              |
| 3. Sulphide-Sulphur + CO <sub>2</sub> in vat waste 4. Sulphur as Sulphide in solutions                                                                                                                                                                                                                                                                                                                                       | . —                |
| 5. Code Time and Thiombule to in linear                                                                                                                                                                                                                                                                                                                                                                                      | . —                |
| 5. Soda, Lime, and Thiosulphate in liquors                                                                                                                                                                                                                                                                                                                                                                                   |                    |
| 7. Gentlem Gases                                                                                                                                                                                                                                                                                                                                                                                                             | . 147              |
| Gas from Gas-holder (H <sub>2</sub> S)                                                                                                                                                                                                                                                                                                                                                                                       | . —                |
| 8. Exit-gases from the Claus Kilns (H <sub>2</sub> S, SO <sub>2</sub> )                                                                                                                                                                                                                                                                                                                                                      |                    |
| 7. NITRIC ACID MANUFACTURE                                                                                                                                                                                                                                                                                                                                                                                                   | . 148              |
| A. Nitrate of Soda B. Nitre-Cake C. Nitric Acid 1. Specific gravities at 15° C. 2. Influence of temperature on specific gravity 3-8. Impurities D. Mixtures of Sulphuric and Nitric Acid 8. Potasii Manufacture A. Potassium Chloride B. Potassium Sulphate CH. Limestone, Coal, Black Ash, Tank Waste, Tank Liquor, Carbon ated Liquor.                                                                                     | · <del>-</del> 149 |
| B. Nure-Cake                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |
| C. Nuric Acid                                                                                                                                                                                                                                                                                                                                                                                                                | . 150              |
| 1. Specific gravities at 15° C.                                                                                                                                                                                                                                                                                                                                                                                              | . —<br>. 153       |
| 2. Influence of temperature on specific gravity                                                                                                                                                                                                                                                                                                                                                                              |                    |
| 5–8. Impurities                                                                                                                                                                                                                                                                                                                                                                                                              | . 155              |
| D. Mixtures of Sulphuric and Nitric Acid                                                                                                                                                                                                                                                                                                                                                                                     | . —                |
| 8. Potassi Manufacture                                                                                                                                                                                                                                                                                                                                                                                                       | . —                |
| A. Potassium Chloride                                                                                                                                                                                                                                                                                                                                                                                                        |                    |
| B. Potassium Sulphate                                                                                                                                                                                                                                                                                                                                                                                                        | . 157              |
| CH. Limestone, Coal, Black Ash, Tank Waste, Tank Liquor, Carbon                                                                                                                                                                                                                                                                                                                                                              | <b>!-</b>          |
| ated Liquor                                                                                                                                                                                                                                                                                                                                                                                                                  | . —                |
| I. Commercial Carbonate of Potash                                                                                                                                                                                                                                                                                                                                                                                            |                    |
| Specific gravities of solutions at 15° C                                                                                                                                                                                                                                                                                                                                                                                     | . 158              |
| I. Commercial Carbonate of Potash  Specific gravities of solutions at 15° C.  Influence of temperature on specific gravities  9. ANMONIA MANUFACTURE                                                                                                                                                                                                                                                                         | . 160              |
| 9. Ammonia Manufacture                                                                                                                                                                                                                                                                                                                                                                                                       | . 162              |
| 9. Ammonia Manufacture A. Gas Liquor 1. Volatile Ammonia (distillation method) 2. Total Ammonia                                                                                                                                                                                                                                                                                                                              | . —                |
| 1. Volatile Ammonia (distillation method)                                                                                                                                                                                                                                                                                                                                                                                    | . —                |
| 2. Total Ammonia                                                                                                                                                                                                                                                                                                                                                                                                             |                    |
| 3. Total Sulphur                                                                                                                                                                                                                                                                                                                                                                                                             | . 163              |
| 4. Sulphocyanide                                                                                                                                                                                                                                                                                                                                                                                                             | . —                |
| 2. Total Ammonia 3. Total Sulphur 4. Sulphocyanide B. Sulphate of Ammonia 1. Estimation of Ammonia (bromine methol) 2. Sulphocyanide C. Specific gravities of Liquor Ammonia                                                                                                                                                                                                                                                 | . —                |
| 1. Estimation of Ammonia (bromine method)                                                                                                                                                                                                                                                                                                                                                                                    | . —                |
| 2. Sulphocyanide                                                                                                                                                                                                                                                                                                                                                                                                             | . 164              |
| C. Specific gravities of Liquor Ammonia                                                                                                                                                                                                                                                                                                                                                                                      | . 165              |
| D. Specific gravities of Solutions of Commercial Ammonium Carbonal                                                                                                                                                                                                                                                                                                                                                           | e 166              |
| APPENDIX                                                                                                                                                                                                                                                                                                                                                                                                                     | . 167              |
| A. Preparation of Standard Solutions                                                                                                                                                                                                                                                                                                                                                                                         |                    |
| Introductory                                                                                                                                                                                                                                                                                                                                                                                                                 | . —                |
| 1. Normal Acid and Alkali                                                                                                                                                                                                                                                                                                                                                                                                    | . 168              |
| 2. Potassium Permanganate                                                                                                                                                                                                                                                                                                                                                                                                    | . 170              |
| 3. Iodine Solution                                                                                                                                                                                                                                                                                                                                                                                                           | . 171              |
| 4. Sodium Arsenite Solution                                                                                                                                                                                                                                                                                                                                                                                                  | . —                |
| 5. Silver Solution                                                                                                                                                                                                                                                                                                                                                                                                           | . 172              |
| 6. Copper Solution                                                                                                                                                                                                                                                                                                                                                                                                           | . —                |
| 7. Oxalic Acid Solution                                                                                                                                                                                                                                                                                                                                                                                                      |                    |
| B. Rules for Sampling                                                                                                                                                                                                                                                                                                                                                                                                        | . —                |
| 1. Ores and Minerals                                                                                                                                                                                                                                                                                                                                                                                                         | . —                |
| 2. Chemicals                                                                                                                                                                                                                                                                                                                                                                                                                 | . 174              |
| C. Comparison of the Hydrometer degrees                                                                                                                                                                                                                                                                                                                                                                                      | . 175              |
| A. Preparation of Standard Solutions Introductory 1. Normal Acid and Alkali 2. Potassium Permanganate 3. Iodine Solution 4. Sodium Arsenite Solution 5. Silver Solution 6. Copper Solution 7. Oxalic Acid Solution B. Rules for Sampling 1. Ores and Minerals 2. Chemicals C. Comparison of the Hydrometer degrees D. Value of Alkali per ton Addendum to p. 86. Checking working of fireplaces and fireme Erratum on page 3 | . 177              |
| Addendum to p. 86. Checking working of fireplaces and fireme                                                                                                                                                                                                                                                                                                                                                                 | n 181              |
| Erratum on page 3                                                                                                                                                                                                                                                                                                                                                                                                            | . —                |
| Alphabetical Index                                                                                                                                                                                                                                                                                                                                                                                                           | . 182              |



# GENERAL TABLES.

## TABLE I.—ATOMIC WEIGHTS, EQUIVALENT WEIGHTS (IN ROUND NUMBERS), AND VALENCY OF ELEMENTS.

| ROUND NUMBERS), | AND VALE                             | OF ELE          | MEN 19.               |
|-----------------|--------------------------------------|-----------------|-----------------------|
|                 | Symbol and<br>Valency.               | Atomic Weight.* | Equivalent<br>Weight. |
| Aluminium       | Aliv                                 | 27.5            | 13.75                 |
| Antimony        | Sb <sup>III</sup> v                  | 122             | 122                   |
| Arsenic         | As <sup>III</sup> V                  | 75              | 75                    |
| Barium          | Ball                                 | 137             | 68.2                  |
| Bervllium       | Ben                                  | 9.4             | 4.7                   |
|                 | Bim v                                | 208             | 208                   |
| Bismuth         | Вош                                  |                 | 11                    |
| Boron           | Bri vii                              | 11              | 80                    |
| Bromine         | Cdn                                  | 80              | 53                    |
| Cadmium         | CsI                                  | 133             | 133                   |
| Caesium         | Can                                  |                 | 20                    |
| Calcium         | Civ II                               | 40<br>12        | 6                     |
| Carbon          | Cerv                                 |                 | 68.2                  |
| Cerium          | Cli vii                              | 137             |                       |
| Chlorine        | Crit iv vi                           | 35.5            | 35.2                  |
| Chromium        | Cou vi                               | 52.5            | 26.25                 |
| Cobalt          | Con 11                               | 59              | 29.5                  |
| Copper          |                                      | 63.5            | 31.75                 |
| Didymium        | Di <sup>IV</sup>                     | 144             | 72                    |
| Erbium          | EL                                   | 170.6           | 85.3                  |
| Fluorine        | _                                    | 19              | 19                    |
| Gold            | An <sup>III</sup><br>Hi <sup>I</sup> | 197             | 197                   |
| Hydrogen        | Inm                                  | 1 1             | 1                     |
| Indium          | II VII                               | 113             | 56.5                  |
| Iodine          | Iriv vi                              | 127<br>193      | 127                   |
| Iridium         | Fen is si                            | 193<br>56       | 96·5<br>28            |
| Iron            | Laiv                                 | 139             | 69.5                  |
| Lanthanum       | Рыч                                  | 207             | 103.2                 |
| Lead            | Lit                                  | 7               | 7                     |
| Lithium         | MgII                                 | 24              | 12                    |
| Magnesium       | Mn <sup>II</sup> vII                 | 55              | 27.5                  |
| Manganium       | HgII                                 | 200             | 100                   |
| Mercury         | Movi                                 | 96              | 48                    |
| Molybdenum      | NiII                                 | 59              | 29.5                  |
| Niobium         | Nbv                                  | 94              | 47                    |
| Nitrogen        | Niii v                               | 14              | 14                    |
| Osmium          | Osiv vi                              | 199             | 99.5                  |
| Oxygen          | On                                   | 16              | 8                     |
| Palladium       | Pdn is si                            | 106             | 53                    |
| Phosphorus      | рш у                                 | 31              | 31                    |
| Platinum        | Ptu w M                              | 197:18+         | 98.59                 |
| Potassium.      | Ki                                   | 39              | 39                    |
| Rhodium         | Rhii iv vi                           | 104             | 52                    |
| Rubidium        | Rhi                                  | 85              | 85                    |
| Ruthenium       | Ru iv viii                           | 104             | 52                    |
| Selenium        | Sell IV VI                           | 79              | 39.5                  |
| Silicium        | Silv                                 | 28              | 14                    |
| Silver          | AgI                                  | 108             | 108                   |
| Sodium          | NaI                                  | 23              | 23                    |
| Strontium       | SrII                                 | 87.5            | 43.75                 |
| Sulphur         | Sii iv vi                            | 32              | 16                    |
| -               |                                      |                 |                       |

<sup>\*</sup> These atomic weights are used throughout this book.
† Adopted by Potash Convention for calculating Analyses of Potassium salts.

#### TABLE I.—ATOMIC WEIGHTS, ETC. (continued).

|            | Symbol and<br>Valency. | Atomic Weight.* | Equivalent<br>Weight. |
|------------|------------------------|-----------------|-----------------------|
| Tantalium  | Tav                    | 182             | 182                   |
| Tellurium  | Tell iv vi             | 125             | 62.5                  |
| Thallium   | Tli III                | 204             | 204                   |
| Thorium    | $Th^{IV}$              | 231.5           | 231.5                 |
| Tin        | SnIV                   | 118             | 59                    |
| Titanium   | Tilv                   | 48              | 24                    |
| Uranium    | $Ur^{vt}$              | 240             | 240                   |
| Vanadium   | Vv                     | 51              | 25.5                  |
| Wolframium | WAI                    | 184             | 92                    |
| Yttrium    | YIII                   | 88              | 44                    |
| Zinc       | $Zn^{II}$              | 65              | 32.5                  |
| Zirconium  | $Z_{r^{IV}}$           | 90              | 45.0                  |

<sup>\*</sup> These atomic weights are used throughout this book.

#### TABLE I(a).—ACCURATE ATOMIC WEIGHTS (OSTWALD).

| Elements.     | O=16   | H=1     | Elements.  | O=16    | H=1    |
|---------------|--------|---------|------------|---------|--------|
| Aluminium     | 27.1   | 27.01   | Molybdenum | 95.9    | 95.6   |
| Antimony      | 120.3  | 119.92  | Nickel     | 59.0    | 58.82  |
| Arsenic       | 75.0   | 74.78   | Niobium    | 97.2    | 96.9   |
| Barium        | 137.0  | 136.6   | Nitrogen   | 14:041  | 14.00  |
| Beryllium     | 9.10   | 9.07    | Osmium     | 192.0   | 191.40 |
| Bismuth       | 208.0  | 207.3   | Oxygen     | 16.0    | 15.95  |
| Boron         | 11.01  | 10.97   | Palladium  | 106.0   | 105.7  |
| Bromine       | 79 963 | 79.71   | Phosphorus | 31.03   | 30.93  |
| Cadmium       | 112.1  | 111.75  | Platinum   | 194.8   | 194.2  |
| Caesium       | 132.9  | 132 50  | Potassium  | 39.14   | 39.02  |
| Calcium       | 40.0   | 39.87   | Rhodium    | 103.0   | 102.7  |
| Carbon        | 12.00  | 11.96   | Rubidium   | 85.4    | 85.14  |
| Cerium        | 140.2  | 139.75  | Ruthenium  | 103.8   | 103.48 |
| Chlorine      | 35.45  | 35.34   | Samarium   | 150.0   | 149.5  |
| Chromium      | 52.3   | 52.13   | Scandium   | 44.1    | 43.96  |
| Cobalt        | 59.0   | 58.81   | Selenium   | 79.1    | 78.85  |
| Copper        | 63.3   | 63.10   | Silicium   | 28.40   | 28.31  |
| Didymium { Pr | 143.6  | 143.14  | Silver     | 107.938 | 107.60 |
| Didymidm & Nd | 140.8  | 140.37  | Sodium     | 23.06   | 22.99  |
| Erbium        | 166.0  | 165.5   | Strontium  | 87.5    | 87.2   |
| Fluorine      | 19.00  | 18.94   | Sulphur    | 32.06   | 31.96  |
| Gallium       | 69.9   | 69 68   | Tantalium  | 129.0   | 128.60 |
| Germanium     | 72.3   | 72.08   | Tellurium  | 125:0   | 124.60 |
| Gold          | 197.2  | 196.60  | Thallium   | 204.1   | 203.5  |
| Hydrogen      | 1.0032 | 1.00    | Thorium    | 232.4   | 231.7  |
| Indium        | 113.7  | 113.33  | Thulium    | 171.0   | 170.4  |
| Iodine        | 126.86 | 126.466 | Tin        | 118.1   | 117.72 |
| Iridium       | 193.2  | 192.6   | Titanium   | 48.1    | 47.95  |
| Iron          | 26.0   | 55.83   | Uranium    | 239.4   | 238.65 |
| Lanthanum     | 138.5  | 138.0   | Vanadium   | 51.2    | 51.04  |
| Lead          | 206.91 | 206.3   | Wolframium | 184.0   | 183.40 |
| Lithium       | 7.03   | 7.01    | Ytterbium  | 173.2   | 172.65 |
| Magnesium     | 24.38  | 24.30   | Yttrium    | 88.7    | 88.4   |
| Manganium     | 55.0   | 54.83   | Zine       | 65.5    | 65.3   |
| Mercury       | 200.4  | 199.8   | Zirconium  | 90.7    | 90.42  |
|               |        | ,       | 1          |         |        |

# TABLE 2.—SYMBOLS, MOLECULAR AND EQUIVALENT COMPOUNDS, IMPORTANT

| No.                   | COMPOUNDS.                 | Molecular Formula.*                                                                                                                                                                                                | Moler.<br>weight.               |
|-----------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| 1<br>2<br>3<br>4<br>5 | Aluminium oxide            | Al <sub>2</sub> O <sub>3</sub><br>Al <sub>2</sub> 'HO) <sub>6</sub><br>Al <sub>2</sub> Cl <sub>6</sub><br>Al <sub>2</sub> (SO <sub>4</sub> ) <sub>3</sub><br>Al <sub>2</sub> (SO <sub>4</sub> ) <sub>3</sub> +18aq | 103<br>157<br>268<br>343<br>667 |
| 6                     | Ammonia                    | NH <sub>3</sub>                                                                                                                                                                                                    | 17                              |
| 7                     | alum                       | Al(NH <sub>4</sub> )(SO <sub>4</sub> ) <sub>2</sub> +12aq                                                                                                                                                          | 453.5                           |
| 8                     | Ammonium carbonate         | H (NH4) CO3+(NH4))                                                                                                                                                                                                 | 157                             |
| 9                     | chloride                   | $\widetilde{\mathrm{CO_{2}NH_{2}'}}$                                                                                                                                                                               | 53.5                            |
| 10                    | magnesium arsenate         | $Mg(NH_4)AsO_4 + \frac{1}{2}aq$ .                                                                                                                                                                                  | 190                             |
| 11                    | magnesium phosphate,       | Mg(NH <sub>4</sub> )PO <sub>4</sub> +6aq                                                                                                                                                                           | 245                             |
| 12                    | cryst                      | 0, 7, -                                                                                                                                                                                                            | 80                              |
| 13                    | phosphate                  | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                              | 132                             |
| 14                    | sodium phosphate           | $(NH_4)NaHPO_4+4aq$ .                                                                                                                                                                                              | 209                             |
| 15<br>16              | platinum chloridesulphate  | $(NH_4)_2PtCl_6$                                                                                                                                                                                                   | 446·18<br>132                   |
| 17                    | sulphocyanate              | NH <sub>4</sub> CNS                                                                                                                                                                                                | 76                              |
| 18                    | Arsenic oxide              | As <sub>2</sub> O <sub>5</sub>                                                                                                                                                                                     | 230                             |
| 19<br>20              | Arsenious oxidetrisulphide | $As_2O_3$                                                                                                                                                                                                          | 198<br>246                      |
| 3677                  |                            |                                                                                                                                                                                                                    |                                 |
| 21<br>22              | Barium monoxidehydrate     | BaO<br>Ba(HO)                                                                                                                                                                                                      | 153<br>171                      |
| 23                    | hydrate, cryst             | Ba(HO) +8aq                                                                                                                                                                                                        | 315                             |
| 24                    | carbonate                  | BaCO <sub>3</sub>                                                                                                                                                                                                  | 197                             |
| 25                    | chloride                   | BaCl <sub>2</sub> +2aq                                                                                                                                                                                             | 244                             |
| 26                    | sulphate                   | BaSO <sub>4</sub>                                                                                                                                                                                                  | 233                             |
| 27                    | Calcium monoxide           | CaO                                                                                                                                                                                                                | 56                              |
| 28                    | hydrate                    | Ca(HO) <sub>2</sub>                                                                                                                                                                                                | 74                              |
| 29                    | carbonate                  | CaCO <sub>3</sub>                                                                                                                                                                                                  | 100                             |
| 30                    | chloride                   | CaCl <sub>2</sub>                                                                                                                                                                                                  | 111                             |
| 31                    | chloride, cryst            | CaCl2+6aq                                                                                                                                                                                                          | 219                             |
| 32                    | chlorate                   | Ca (ClO <sub>3</sub> ) <sub>2</sub>                                                                                                                                                                                | 207                             |
| 33                    | hypochlorite               | Ca(OCl) <sub>2</sub>                                                                                                                                                                                               | 143                             |
| 34<br>35              | phosphate, monobasic       | $CaH_4(PO_4)_2$                                                                                                                                                                                                    | 234<br>136                      |
| 36                    | phosphate, dibasic         | $Ca_3(PO_4)$ ,                                                                                                                                                                                                     | 310                             |
| 37                    | sulphate, anhydrous        | CaSO <sub>4</sub>                                                                                                                                                                                                  | 136                             |
| 01                    | surpliate, annyarous       | 04.004                                                                                                                                                                                                             | 100                             |
|                       |                            |                                                                                                                                                                                                                    |                                 |

<sup>\*</sup> Modern notation and atomic weights.

# WEIGHTS, AND PERCENTAGE COMPOSITION OF CHEMICAL TO THE ALKALI INDUSTRY.

| ormula.† Equivit. Percentage Composition.                                                                                                                                                                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                         |
| HO 157<br>53·5<br>58·5<br>190<br>MH <sub>3</sub> 32·49, CO <sub>2</sub> 56·05, H <sub>2</sub> O 11·46<br>NH <sub>3</sub> 31·77, H Cl 68·29<br>MgO 21·05, As <sub>2</sub> O <sub>5</sub> 60·53, NH <sub>3</sub> 8·95, H <sub>2</sub> O<br>9·47 |
| $O_5 + 12 \} $ 245 MgO 16·30, NH <sub>3</sub> 6·93, P <sub>2</sub> O <sub>5</sub> 29·09, H <sub>2</sub> O 47·68                                                                                                                               |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                         |
|                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                               |
| 76·5 Ba 89·54, O 10·46  85·5 BaO 89·47, H <sub>2</sub> O 10·53  157·5 BaO 48·60, H <sub>2</sub> O 51·40  98·5 BaO 77·60, CO <sub>2</sub> 22·40  122 Ba Cl <sub>2</sub> 85·24, H <sub>2</sub> O 14·76  116·5 BaO 65·67, SO <sub>3</sub> 34·33  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                         |

### SYMBOLS, MOLECULAR AND EQUIVALENT WEIGHTS, AND PER-

| No.                                          | COMPOUNDS.                                                                                                                            | Molecular formula.                                                                                                                                          | Molcr.<br>weight.                                   |
|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| 38<br>39<br>40<br>41<br>42                   | Calcium sulphate, cryst. (gypsum) sulphite thiosulphate sulphide pentasulphide                                                        | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                        | 172<br>120<br>152<br>72<br>200                      |
| 43<br>44<br>45<br>46                         | Carbonic acid, dioxide                                                                                                                | CO <sub>2</sub>                                                                                                                                             | 44<br>28<br>16<br>28                                |
| 47<br>48<br>49<br>50<br>51                   | Copper chloride oxide sulphide Copper (cuprous) sulphide sulphate                                                                     | $\begin{array}{c} \operatorname{CuCl_2} \\ \operatorname{CuO}. \\ \operatorname{CuS} \\ \operatorname{Cu_2S} \\ \operatorname{CuSO_45aq} \end{array}$       | 134·5<br>79·5<br>95·5<br>159<br>249·5               |
| 52<br>53<br>54                               | Hydrochloric acid Hypochlorous anhydride acid                                                                                         | HCl<br>Cl <sub>2</sub> O.<br>HClO                                                                                                                           | 36·5<br>87<br>52·5                                  |
| 55<br>56<br>57<br>58<br>59<br>60<br>61<br>62 | Iron, oxide, ferric ferric hydrate. ferrous chloride cryst. ferric chloride Iron, ferrous sulphide bisulphide (pyrites) protosulphate | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                        | 160<br>214<br>127<br>199<br>325<br>88<br>120<br>278 |
| 63<br>64<br>65<br>66<br>67<br>68             | Lead monoxide (litharge) carbonate chloride sulphate sulphide dioxide.                                                                | PbO                                                                                                                                                         | 223<br>267<br>278<br>303<br>239<br>239              |
| 69<br>70<br>71<br>72<br>73<br>74<br>75       | Magnesium oxide                                                                                                                       | $\begin{array}{l} {\rm MgO} \\ {\rm Mg(HO)_2} \\ {\rm MgCl_2} \\ {\rm MgCl_2} + 6.1 \\ {\rm MgCO_3} \\ {\rm MgSO_4} + 7aq \\ {\rm Mg_2P_2O_7}. \end{array}$ | 40<br>58<br>95<br>203<br>84<br>246<br>222           |
| 76<br>77                                     | Manganous oxide                                                                                                                       | MnO<br>Mn <sub>8</sub> O <sub>4</sub>                                                                                                                       | 71<br>229                                           |

### CENTAGE COMPOSITION OF CHEMICAL COMPOUNDS—Continued.

| No. | Equivalent Formula.                                                                                                           | Equivlt.<br>weight. | Percentage Composition.                                         |
|-----|-------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------------------------------------------------------|
| 38  | CaOSO <sub>3</sub> +2HO                                                                                                       | 86                  | CaO 32·56, SO <sub>3</sub> 46·51, H <sub>2</sub> O 20·93        |
| 39  |                                                                                                                               | 60                  | CaO 46·67, SO <sub>2</sub> 53·33                                |
| 40  |                                                                                                                               | 76                  | CaO 36·84, SO <sub>2</sub> 42·11, S 21·05                       |
| 41  |                                                                                                                               | 36                  | Ca 55·56, S 44·44                                               |
| 42  |                                                                                                                               | 100                 | Ca 20·00, S 80·00                                               |
| 43  | $\begin{array}{cccc} {\rm CO_2} & & & {\rm CO} \\ {\rm CO} & & & {\rm C_2H_4} \\ {\rm C_4H_4} & & & {\rm C_4H_4} \end{array}$ | 22                  | C 27·27, O 72·73                                                |
| 44  |                                                                                                                               | 14                  | C 42·85, O 57·15                                                |
| 45  |                                                                                                                               | 16                  | C 75·00, H 25·00                                                |
| 46  |                                                                                                                               | 28                  | C 85·72, H 14·28                                                |
| 47  | $\begin{array}{c} CuCl \\ CuO \\ CuS \\ Cu_2S \\ CuOSO_55HO \end{array}$                                                      | 67·25               | Cu 47·21, Cl 52·79                                              |
| 48  |                                                                                                                               | 39·75               | Cu 79·87, O 20·13                                               |
| 49  |                                                                                                                               | 47·75               | Cu 66·49, S 33·51                                               |
| 50  |                                                                                                                               | 79·5                | Cu 79·87, S 20·13                                               |
| 51  |                                                                                                                               | 124·75              | CuO 31·86, SO <sub>3</sub> 32·06, H <sub>2</sub> O 36·03        |
| 52  | HClClOClOHO                                                                                                                   | 36·5                | Cl 97·26, H 2·74                                                |
| 53  |                                                                                                                               | 43·5                | Cl 81·61, O 18·39                                               |
| 54  |                                                                                                                               | 52·5                | Cl 67·62, O 30·48, H 1·90                                       |
| 55  | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                          | 80                  | Fe 70·0, O 30·0                                                 |
| 56  |                                                                                                                               | 107                 | Fe <sub>2</sub> O <sub>3</sub> 74·77, H <sub>2</sub> O 25·23    |
| 57  |                                                                                                                               | 63·5                | Fe 44·09, Cl 55·91                                              |
| 58  |                                                                                                                               | 99·5                | FeCl <sub>2</sub> 63·82, H <sub>2</sub> O 36·18                 |
| 59  |                                                                                                                               | 162·5               | Fe 34·46, Cl 65·54                                              |
| 60  |                                                                                                                               | 44                  | Fe 63·64, S 36·36                                               |
| 61  |                                                                                                                               | 60                  | Fe 46·67, S 53·33                                               |
| 62  |                                                                                                                               | 139                 | Fe 20·14, O 5·76, SO <sub>3</sub> 28·78, H <sub>2</sub> O 45·32 |
| 63  | PbO                                                                                                                           | 111·5               | Pb 92·38, O 7·17                                                |
| 64  |                                                                                                                               | 133·5               | PbO 83·52, CO <sub>2</sub> 16·48                                |
| 65  |                                                                                                                               | 139                 | Pb 74·46, Cl 25·54                                              |
| 66  |                                                                                                                               | 151·5               | PbO 73·60, SO <sub>3</sub> 26·40                                |
| 67  |                                                                                                                               | 118·5               | Pb 86·61, S 13·39                                               |
| 63  |                                                                                                                               | 119·5               | Pb 86·61, O 13·39                                               |
| 69  | MgO                                                                                                                           | 20                  | Mg 60·00, O 40·00                                               |
| 70  |                                                                                                                               | 29                  | MgO 68·96, H <sub>2</sub> O 31·04                               |
| 71  |                                                                                                                               | 47·5                | Mg 25·26, Cl 74·74                                              |
| 72  |                                                                                                                               | 101·5               | MgCl <sub>2</sub> 46·80, H <sub>2</sub> O 53·2                  |
| 73  |                                                                                                                               | 42                  | MgO 47·62, CO <sub>2</sub> 52·38                                |
| 74  |                                                                                                                               | 123                 | MgO 16·26, SO <sub>3</sub> 32·52, H <sub>2</sub> O 51·22        |
| 75  |                                                                                                                               | 111                 | MgO 36·04, P <sub>2</sub> O <sub>5</sub> 63·96                  |
| 76  | MnO                                                                                                                           | 35·5                | Mn 77·47, O 22·58                                               |
| 77  |                                                                                                                               | 114·5               | Mn 72·05, O 27·95                                               |

#### SYMBOLS, MOLECULAR AND EQUIVALENT WEIGHTS, AND PER-

| No.      | COMPOUNDS.                                                  | Molecular formula.                            | Molcr.<br>weight. |
|----------|-------------------------------------------------------------|-----------------------------------------------|-------------------|
| 78       | Manganic oxide                                              | Mn <sub>2</sub> O <sub>3</sub>                | 158               |
| 79       | Manganese dioxide                                           | MnO,                                          | 87                |
| 80       | Manganous chloride                                          | MnCl <sub>2</sub>                             | 126               |
| 81       | sulphate                                                    | MnSO <sub>4</sub>                             | 151               |
| 82       | Nitrosulphonicacid, nitrososulphuric acid, chamber crystals | SO <sub>2</sub> (OH)(ONO)                     | 127               |
| 83       | Nitrous oxide                                               | N <sub>2</sub> O                              | 44                |
| 84       | Nitric oxide                                                | NO                                            | 30                |
| 85       | Nitrous anhydride                                           | N <sub>2</sub> O <sub>3</sub>                 | 76                |
| 86       | Nitric peroxide, tetroxide                                  | $NO_{2}[N_{2}O_{4}]$                          | 46                |
| 87       | Nitric acid                                                 | $HNO_3$                                       | 63                |
| 88<br>89 | Phosphoric anhydride                                        | P <sub>2</sub> O <sub>5</sub>                 | 142               |
| 90       | acid, ortho                                                 | H <sub>3</sub> PO <sub>4</sub>                | 98                |
| 91       |                                                             | $H_4^{-1}P_2O_7$ HPO <sub>3</sub>             | 178               |
|          | acid, meta                                                  |                                               | 80                |
| 92       | Platinum chloride                                           | PtCl <sub>4</sub>                             | 339.18            |
| 93       | Potassium oxide                                             | K <sub>2</sub> O                              | 94                |
| 94       | hydrate                                                     | кон                                           | 56                |
| 95       | bichromate                                                  | K <sub>2</sub> Cr <sub>2</sub> O <sub>7</sub> | 295               |
| 96       | carbonate                                                   | $K_2^2CO_3$                                   | 138               |
| 97       | bicarbonate                                                 | KHCÖ <sub>3</sub>                             | 100               |
| 98       | chlorate                                                    | KClO <sub>3</sub>                             | 122.5             |
| 99       | chloride                                                    | KCl                                           | 74.5              |
| 100      | ferricyanide, red prussiate                                 | $K_6Fe_2(NC)_{12}$                            | 658               |
| 101      | ferrocyanide, yellow prus-<br>[siate                        | $K_4$ Fe(NC) <sub>6</sub> 3aq                 | 422               |
| 102      | iodide                                                      | KJ                                            | 166               |
| 103      | nitrate                                                     | KNO <sub>3</sub>                              | 101               |
| 104      | permanganate                                                | KMnO <sub>4</sub>                             | 158               |
| 105      | phosphate                                                   | K <sub>2</sub> HPO <sub>4</sub>               | 174               |
| 106      | platinum chloride                                           | K.PtCl.                                       | 488.18            |
| 107      | silicate                                                    | K <sub>2</sub> SiO <sub>3</sub>               | 154               |
| 108      | sulphate                                                    | K <sub>2</sub> SO <sub>4</sub>                | 174               |
| 109      | bisulphate                                                  | KHSO <sub>4</sub>                             | 136               |
| 110      | sulphide                                                    | K <sub>2</sub> S                              | 110               |
| 111      | sulphite                                                    | K <sub>2</sub> SO <sub>3</sub> 2aq            | 194               |
| 112      | bisulphite                                                  | KHSO <sub>3</sub>                             | 120               |
| 113      | sulphocyanate                                               | KCNS                                          | 97                |
| 114      | Potash, alum                                                | $KAl(SO_4)_212$ aq                            | 474.5             |
| 115      | Selenious anhydride                                         | SeO <sub>2</sub>                              | 111               |
| 116      | Silicic acid, anhydride                                     | SiO <sub>2</sub>                              | 60                |
| 117      | Silver chloride                                             | AgCl                                          | 143.5             |
|          |                                                             |                                               |                   |

### CENTAGE COMPOSITION OF CHEMICAL COMPOUNDS—Continued.

| No. | Equivalent Formula.                                | Equivit.<br>weight. | Percentage Composition.                                                                                                                       |
|-----|----------------------------------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| 78  | Mn <sub>2</sub> O <sub>3</sub>                     | 79                  | Mn 69·62, O 30·38                                                                                                                             |
| 79  | $Mn\mathring{O}_2$                                 | 43.5                | Mn 63·22, O 36·78                                                                                                                             |
| 80  | MnCl                                               | 63                  | Mn 43·65, Cl 56·35                                                                                                                            |
| 81  | MnOSO <sub>3</sub>                                 | 75·5                | MnO 47·02, SO <sub>3</sub> 52·98                                                                                                              |
| 82  | 2SO <sub>3</sub> HONO <sub>3</sub>                 | 127                 | $SO_3$ 62-99, $N_2O_3$ 29-92, $H_2O$ 7-09                                                                                                     |
| 83  | NO                                                 | 22                  | N 63·64, O 36·36                                                                                                                              |
| 84  | NO <sub>2</sub>                                    | 30                  | N 46·67, O 53·33                                                                                                                              |
| 85  | NO <sub>3</sub>                                    | 38                  | N 36·84, O 63·16<br>N 30·44, O 69·56                                                                                                          |
| 86  | NO <sub>4</sub>                                    | 46                  | N 30·44, O 69·56                                                                                                                              |
| 87  | NO <sub>5</sub> HO                                 | 63                  | N <sub>2</sub> O <sub>5</sub> 85·71, H <sub>2</sub> O 14·29                                                                                   |
| 88  | PO <sub>5</sub>                                    | 71                  | P 43·66, O 56·34                                                                                                                              |
| 89  | PO <sub>5</sub> 3HO                                | 98                  | P <sub>2</sub> O <sub>5</sub> 72·45, H <sub>2</sub> O 27·55                                                                                   |
| 90  | PO <sub>5</sub> 2HO                                | 89                  | P <sup>2</sup> O <sub>5</sub> 79·77, H <sub>2</sub> O 20·23                                                                                   |
| 91  | PO5HO                                              | 80                  | P <sub>2</sub> O <sub>5</sub> 88·75, H <sub>2</sub> O 11·25                                                                                   |
| 92  | PtCl <sub>2</sub>                                  | 169.59              | Pt 58·13, Cl 41·7                                                                                                                             |
| -   |                                                    |                     |                                                                                                                                               |
| 93  | ко                                                 | 47                  | K 82.98, O 17.02                                                                                                                              |
| 94  | КОНО                                               | 56                  | K <sub>2</sub> O 83·93, H <sub>2</sub> O 16·07                                                                                                |
| 95  | KO2CrO <sub>3</sub>                                | 147.5               | K <sub>2</sub> O 31·86, CrO <sub>3</sub> 63·14                                                                                                |
| 96  | KOCO <sub>2</sub>                                  | 69                  | K <sub>2</sub> O 68·12, CO <sub>2</sub> 31·88                                                                                                 |
| 97  | KOHOCO <sub>2</sub>                                | 100                 | K <sub>2</sub> O 47·00, CO <sub>2</sub> 44·00, H <sub>2</sub> O 9·00                                                                          |
| 98  | KOClO <sub>5</sub>                                 | 122.5               | K <sub>2</sub> O 38·37, Cl 28·98, O 32·65                                                                                                     |
| 99  | KCl                                                | 74·5<br>329         | K 52·35, Cl 47·65<br>K 35·56, Fe 17·02, CN 47·42                                                                                              |
| 100 | 3KCyFe <sub>2</sub> Cy <sub>3</sub><br>2KCyFeCy3HO | 211                 | K 37.03, Fe 13.25, CN 36.93, H <sub>2</sub> O 12.79                                                                                           |
| 101 | ZKCyreCybiiO                                       | 211                 | 1 31 05, Fe 15 25, CN 50 55, 11 <sub>2</sub> O 12 15                                                                                          |
| 102 | кЈ                                                 | 166                 | K 23·49, J 76·51                                                                                                                              |
| 103 | KONO <sub>5</sub>                                  | 101                 | K <sub>2</sub> O 46·54, N <sub>2</sub> O <sub>5</sub> 53·46                                                                                   |
| 104 | KOMn <sub>2</sub> O <sub>7</sub>                   | 158                 | K <sub>2</sub> O 29.75, Mn <sub>2</sub> O <sub>7</sub> 70.25                                                                                  |
| 105 | 2KOHOPO <sub>5</sub>                               | 174                 | K <sub>2</sub> O 54·02, P <sub>2</sub> O <sub>5</sub> 40·81, H <sub>2</sub> O 5·17                                                            |
| 106 | KClPtCl <sub>2</sub>                               | 244.09              | Pt 40·39, Cl 43·63, K 15·98 (KCl 30·52)                                                                                                       |
| 107 | KOSiO <sub>2</sub>                                 | 77                  | K <sub>2</sub> O 61·04, SiO <sub>2</sub> 38·96                                                                                                |
| 108 | KOSO <sub>3</sub>                                  | 87<br>136           | K <sub>2</sub> O 54·02, SO <sub>3</sub> 45·98                                                                                                 |
| 109 | KOHO2SO <sub>3</sub>                               | 55                  | K <sub>2</sub> O 34·56, SO <sub>3</sub> 58·83, H <sub>2</sub> O 6·62<br>  K 70·91, S 29·09                                                    |
| 111 | KS                                                 | 97                  | K <sub>2</sub> O 48·45, SO <sub>2</sub> 33·00, H <sub>2</sub> O 18·55                                                                         |
| 112 | KOHO2SO <sub>2</sub>                               | 120                 | K <sub>2</sub> O 30·17, SO <sub>2</sub> 53·00, H <sub>2</sub> O 18·35<br>K <sub>2</sub> O 30·17, SO <sub>2</sub> 53·33, H <sub>2</sub> O 7·50 |
| 113 | KC2NS2                                             | 97                  | K 40·21, C 12·37, N 14·43, S 32·99                                                                                                            |
| 114 | $\int KOSO_3 + Al_2O_33SO_3$                       | 474.5               | K <sub>2</sub> O 9·91, Al <sub>2</sub> O <sub>3</sub> 10·84, SO <sub>3</sub> 33·73, H <sub>2</sub> O                                          |
| 115 | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\              | 55.5                | Se 71·17, O 28·83                                                                                                                             |
| 116 | SiO <sub>2</sub>                                   | 30.0                | Si 46·67, O 53·33                                                                                                                             |
|     | March Co.      | 143.5               | Ag 75·26, Cl 24·74                                                                                                                            |
| 117 | AgCl                                               | 149.9               | Ag 10 20, 01 24 14                                                                                                                            |
|     |                                                    | -                   |                                                                                                                                               |

#### SYMBOLS, MOLECULAR AND EQUIVALENT WEIGHTS, AND PER-

| No.                                                                | COMPOUNDS.                                                                                                                                    | Molecular formula.                                                                                                                                                                                                                                                                                       | Moler.<br>weight.                                                  |
|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| 118<br>119                                                         | Silver nitrate sulphide                                                                                                                       | AgNO <sub>3</sub>                                                                                                                                                                                                                                                                                        | 170<br>248                                                         |
| 120<br>121<br>122<br>123<br>124<br>125<br>126<br>127<br>128<br>129 | Sodium oxide hydrate chloride aluminate borate carbonate, anhydrous carbonate, monohydrated carbonate decahydrated crst. bicarbonate chlorate | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                     | 62<br>40<br>58·5<br>289<br>382<br>106<br>124<br>286<br>84<br>106·5 |
| 130<br>131<br>132<br>133<br>134<br>135<br>136<br>137<br>138        | hypochlorite nitrate. phosphate silicate. sulphate cryst. bisulphate sulphite bisulphite                                                      | NaOCl NaNO <sub>3</sub> Na <sub>2</sub> HPO <sub>4</sub> 12aq Na <sub>2</sub> SiO <sub>3</sub> Na <sub>2</sub> SO <sub>4</sub> Na <sub>2</sub> SO <sub>4</sub> Na <sub>2</sub> SO <sub>4</sub> Na <sub>2</sub> SO <sub>4</sub> NaHSO <sub>4</sub> Na <sub>2</sub> SO <sub>3</sub> 6aq NaHSO <sub>3</sub> | 74·5<br>85<br>358<br>122<br>142<br>322<br>120<br>234<br>104        |
| 139<br>140<br>141<br>142                                           | thiosulphate, hyposulphite sulphide pentasulphide hydrogen sulphide                                                                           | Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> 5aq<br>Na <sub>2</sub> S<br>Na <sub>2</sub> S <sub>5</sub><br>NaSH                                                                                                                                                                                         | 248<br>78<br>206<br>56                                             |
| 143<br>144<br>145<br>146<br>147                                    | Sulphurous anhydride Sulphuric anhydride Sulphuric acid, monohydrate pyro Thiosulphuric acid, hyposulphurous acid                             | SO <sub>2</sub><br>SO <sub>3</sub><br>H <sub>2</sub> SO <sub>4</sub><br>H <sub>2</sub> S <sub>2</sub> O <sub>7</sub><br>H <sub>2</sub> S <sub>2</sub> O <sub>3</sub>                                                                                                                                     | 61<br>80<br>98<br>178<br>114                                       |
| 148<br>149<br>150<br>151                                           | Trithionic acid Tetrathionic acid Pentathionic acid Sulphuretted hydrogen                                                                     | H <sub>2</sub> S <sub>3</sub> O <sub>6</sub>                                                                                                                                                                                                                                                             | 194<br>226<br>258<br>34                                            |
| 152                                                                | Stannous chloride                                                                                                                             | SnCl <sub>2</sub> 2aq                                                                                                                                                                                                                                                                                    | 225                                                                |
| 153<br>154<br>155<br>156<br>157<br>158                             | Water Zinc oxide                                                                                                                              | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                     | 18<br>81<br>136<br>161<br>287<br>97                                |

#### CENTAGE COMPOSITION OF CHEMICAL COMPOUNDS-Continued.

| No.                                                                              | Equivalent Formula.                                                                                                                                                                                                            | Equivit.<br>weight.                                                                       | Percentage Composition.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 118<br>119                                                                       | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                           | 170<br>124                                                                                | $\begin{array}{c} {\rm Ag~63\cdot53, NO_3~36\cdot47} \\ {\rm Ag~87\cdot09, S~12\cdot91} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| 120<br>121<br>122<br>128<br>124<br>125<br>126<br>127<br>128<br>129<br>130<br>131 | NaO                                                                                                                                                                                                                            | 31<br>40<br>58·5<br>144·5<br>191·0<br>53<br>62<br>143<br>84<br>106·5<br>74·5<br>85<br>358 | Na $74 \cdot 19$ , O $25 \cdot 81$<br>Na <sub>2</sub> O $77 \cdot 50$ , H <sub>2</sub> O $22 \cdot 50$<br>Na $39 \cdot 32$ , Cl $60 \cdot 68$<br>Na <sub>2</sub> O $46 \cdot 23$ , B <sub>2</sub> O <sub>3</sub> $36 \cdot 64$<br>Na <sub>2</sub> O $16 \cdot 23$ , B <sub>2</sub> O <sub>3</sub> $36 \cdot 65$ , H <sub>2</sub> O $47 \cdot 12$<br>Na <sub>2</sub> O $58 \cdot 49$ , CO <sub>2</sub> $41 \cdot 51$<br>Na <sub>2</sub> O $50 \cdot 00$ , CO <sub>2</sub> $35 \cdot 48$ , H <sub>2</sub> O $14 \cdot 52$<br>Na <sub>2</sub> O $21 \cdot 68$ , CO <sub>2</sub> $15 \cdot 39$ , H <sub>2</sub> O $62 \cdot 93$<br>Na <sub>2</sub> O $36 \cdot 90$ , CO <sub>2</sub> $52 \cdot 38$ , H <sub>2</sub> O $10 \cdot 71$<br>Na <sub>2</sub> O $29 \cdot 10$ , Cl <sub>2</sub> O <sub>5</sub> $70 \cdot 90$<br>Na <sub>2</sub> O $41 \cdot 61$ , Cl <sub>2</sub> O $58 \cdot 39$<br>Na <sub>2</sub> O $36 \cdot 47$ , N <sub>2</sub> O <sub>5</sub> $63 \cdot 53$<br>Na <sub>2</sub> O $17 \cdot 32$ , P <sub>2</sub> O <sub>5</sub> $19 \cdot 84$ , H <sub>2</sub> O $62 \cdot 84$ |  |  |  |  |
| 133                                                                              | NaOSiO <sub>2</sub>                                                                                                                                                                                                            | 61                                                                                        | Na <sub>2</sub> O 50·82, SO <sub>2</sub> 49·18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| 134                                                                              |                                                                                                                                                                                                                                | 71                                                                                        | Na <sub>2</sub> O 43·66, SO <sub>3</sub> 56·34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| 135                                                                              |                                                                                                                                                                                                                                | 161                                                                                       | Na <sub>2</sub> O 19·25, SO <sub>3</sub> 24·84, H <sub>2</sub> O 55·91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| 136                                                                              |                                                                                                                                                                                                                                | 120                                                                                       | Na <sub>2</sub> O 25·83, SO <sub>3</sub> 66·67, H <sub>2</sub> O 7·50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| 137                                                                              |                                                                                                                                                                                                                                | 117                                                                                       | Na <sub>2</sub> O 26·50, SO <sub>2</sub> 27·35, H <sub>2</sub> O 46·15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| 138                                                                              |                                                                                                                                                                                                                                | 104                                                                                       | Na <sub>2</sub> O 29·81, SO <sub>2</sub> 61·54, H <sub>2</sub> O 8·65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| 139                                                                              |                                                                                                                                                                                                                                | 124                                                                                       | Na <sub>2</sub> O 25·00, S 12·90, SO <sub>2</sub> 25·80, H <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| 140                                                                              |                                                                                                                                                                                                                                | 39                                                                                        | Na 58·97, S 41·03, corresponding to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| 141                                                                              |                                                                                                                                                                                                                                | 103                                                                                       | Na <sub>2</sub> S 37·86, S <sub>4</sub> 62·14 [79·49 Na <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| 142                                                                              | NaSHS  SO <sub>2</sub> SO <sub>3</sub> HOSO <sub>3</sub> HO2SO <sub>3</sub> HO2SO <sub>3</sub> HOS <sub>2</sub> O <sub>2</sub> HOS <sub>4</sub> O <sub>5</sub> HOS <sub>4</sub> O <sub>5</sub> HOS <sub>4</sub> O <sub>5</sub> | 56                                                                                        | Na <sub>2</sub> S 69-65, H <sub>2</sub> S 30-35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| 143                                                                              |                                                                                                                                                                                                                                | 32                                                                                        | S 50-00, O 50-00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| 144                                                                              |                                                                                                                                                                                                                                | 40                                                                                        | S 40-00, O 60-00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| 145                                                                              |                                                                                                                                                                                                                                | 49                                                                                        | SO <sub>3</sub> 81-63, H <sub>2</sub> O 18-37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| 146                                                                              |                                                                                                                                                                                                                                | 89                                                                                        | H <sub>2</sub> SO <sub>4</sub> 55-06, SO <sub>3</sub> 44-94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| 147                                                                              |                                                                                                                                                                                                                                | 57                                                                                        | SO <sub>2</sub> 56-14, S 28-07, H <sub>2</sub> O 15-79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| 148                                                                              |                                                                                                                                                                                                                                | 97                                                                                        | SO <sub>3</sub> 41-24, SO <sub>2</sub> 32-99, S 16-49, H <sub>2</sub> O 9-23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| 149                                                                              |                                                                                                                                                                                                                                | 113                                                                                       | SO <sub>3</sub> 35-39, SO <sub>2</sub> 28-32, S 28-32, H <sub>2</sub> O 7-97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| 150                                                                              |                                                                                                                                                                                                                                | 129                                                                                       | SO <sub>3</sub> 31-01, SO <sub>2</sub> 24-81, S 37-20, H <sub>2</sub> O 6-93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| 151                                                                              | HS                                                                                                                                                                                                                             | 17                                                                                        | S 94·12, H 5·88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| 152                                                                              |                                                                                                                                                                                                                                | 112·5                                                                                     | Sn 52·44, Cl 31·56, H <sub>2</sub> O 16·00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| 153                                                                              |                                                                                                                                                                                                                                | 9                                                                                         | H 11·11, O 88·89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| 154                                                                              | ZnO                                                                                                                                                                                                                            | 40·5                                                                                      | Zn 80·25, O 19·75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| 155                                                                              | ZnCl                                                                                                                                                                                                                           | 68                                                                                        | Zn 47·79, Cl 52·21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| 156                                                                              | ZnOSO <sub>3</sub>                                                                                                                                                                                                             | 80·5                                                                                      | ZnO 50·31, SO <sub>3</sub> 49·69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| 157                                                                              | ZnOSO <sub>2</sub> +7HO                                                                                                                                                                                                        | 143·5                                                                                     | ZnO 28·22, SO <sub>3</sub> 27·87, H <sub>2</sub> O 43·91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| 158                                                                              | ZnS                                                                                                                                                                                                                            | 48·5                                                                                      | Zn 67·01, S 32·99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |

#### TABLE 3.-FACTORS FOR CALCULATING

| Substance Weighed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Substance to be determined.                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Ammonium.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                 |
| Ammonium Chloride, NH4Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ammonia, NH3                                                                                                    |
| $\begin{array}{cccc} \mathbf{Ammonium} & \mathrm{platinum} & \mathrm{chloride,} \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$ | Ammonium oxide (NII <sub>4</sub> ) <sub>2</sub> ()                                                              |
| Arsenic.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Arsenic, As                                                                                                     |
| Arsenic trisulphide, As <sub>2</sub> S <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Arsenic trioxide, $A_{52}O_3$                                                                                   |
| Ammonium magnesium arsenate, $Mg(NH_4)AsO_4 + \frac{1}{2}aq$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Arsenic, As. Arsenic trioxide, As <sub>2</sub> O <sub>3</sub> Arsenic anhydride, As <sub>2</sub> O <sub>5</sub> |
| Barium.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |
| Barium sulphate, $BaSO_4$ Barium carbonate, $BaCO_3$ Barium silico fluoride, $BaSiF_6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 |
| Calcium.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                 |
| Calcium sulphate, CaSO <sub>4</sub><br>Calcium carbonate, CaCO <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Calcium oxide, CaO                                                                                              |
| Carbon.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |
| Carbonic anhydride, CO Calcium carbonate, CaCO <sub>3</sub> Barium carbonate, BaCO <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Carbon, C                                                                                                       |
| Mhlanina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | GIA I GI                                                                                                        |
| Silver chloride, AgCl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Chlorine, Cl Hydrochloric acid, HCl Chloric anhydride, Cl <sub>2</sub> O <sub>5</sub> Sodium chloride, NaCl     |
| Copper.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |
| Copper oxide, CuO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Copper, Cu<br>Copper, Cu<br>Cupric oxide, CuO                                                                   |
| Iron.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                 |
| Ferric oxide, Fe <sub>2</sub> O <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Iron, FeFerrous oxide, FeO                                                                                      |
| Lead.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                 |
| Lead monoxide, PbO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Lead, Pb                                                                                                        |
| Lead sulphate, PbSO <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Lead, Pb<br>Lead oxide, PbO                                                                                     |
| Lead su'phide, PbS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Lead, Pb                                                                                                        |
| Lead, Pb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Lead oxide, PbOLead oxide, PbO                                                                                  |

#### GRAVIMETRIC ANALYSES.

| 1       | 2       | 3       | 4       | 5       | 6 -     | 7       | 8       | 9       |
|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| 0·31776 | 0·63552 | 0·95328 | 1·27104 | 1.58880 | 1·90656 | 2·22432 | 2·54208 | 2·85984 |
| 0·11654 | 0·23308 | 0·34962 | 0·46616 | 0.58270 | 0·69924 | 0·81578 | 0·93232 | 1·04886 |
| 0·07620 | 0·15240 | 0·22860 | 0·30480 | 0.38100 | 0·45720 | 0·53340 | 0·60960 | 9·68580 |
| 0·06276 | 0·12552 | 0·18828 | 0·25104 | 0.31380 | 0·37656 | 0·43932 | 0·50208 | 0·56484 |
| 0.60975 | 1·21950 | 1·82925 | 2·43900 | 2·04875 | 3.65850 | 3·26825 | 4·87800 | 5·48775 |
| 0.80488 | 1·60976 | 2·41464 | 3·21552 | 4·02140 | 4.82928 | 5·63416 | 6·43904 | 7·24392 |
| 0.93496 | 1·86992 | 2·80488 | 3·73984 | 4·67480 | 5.60976 | 6·54472 | 7·47968 | 8·41464 |
| 0.39473 | 0·78946 | 1·18419 | 1·57892 | 1·97365 | 2.36838 | 2·76311 | 3·15784 | 3·55257 |
| 0.52105 | 1·04210 | 1·56315 | 2·08420 | 2·60525 | 3.12630 | 3·64735 | 4·16840 | 4·68945 |
| 0.60526 | 1·21052 | 1·81578 | 2·42104 | 3·02630 | 3.63156 | 4·23682 | 4·84208 | 5·44734 |
| 0.65665 | 1·31330 | 1·96995 | 2·62660 | 3·28325 | 3·93990 | 4·59655 | 5·25320 | 5·90985 |
| 0.77655 | 1·55310 | 2·32965 | 3·10620 | 3·88275 | 4·65930 | 5·43585 | 6·21240 | 6·98895 |
| 0.54839 | 1·09678 | 1·64517 | 2·19356 | 2·74195 | 3·29034 | 3·83873 | 4·38712 | 4·93551 |
| 0·41176 | 0·82352 | 1·23528 | 1·64704 | 2·05880 | 2·47056 | 2·88232 | 3·29408 | 3·70584 |
| 0·56000 | 1·12000 | 1·68000 | 2·24000 | 2·80000 | 3·36000 | 3·92000 | 4·48000 | 5·04000 |
| 0·27273 | 0.54546 | 0.81819 | 1·09092 | 1·36365 | 1.63638 | 1.90911 | 2·18184 | 2·45457 |
| 0·44000 | 0.88000 | 1.32000 | 1·76000 | 2·20000 | 2.64000 | 3.08000 | 3·52000 | 3·96000 |
| 0·22335 | 0.44670 | 0.67005 | 0·89340 | 1·11675 | 1.34010 | 1.56345 | 1·78680 | 2·01015 |
| 0·24739 | 0·49478 | 0·74217 | 0.98956 | 1·23695 | 1·48434 | 1·73173 | 1·97912 | 2·22651 |
| 0·25435 | 0·50870 | 0·76305 | 1.01740 | 1·27175 | 1·52610 | 1·78045 | 2·03480 | 2·28915 |
| 0·52613 | 1·05226 | 1·57839 | 2.10452 | 2·63065 | 3·15678 | 3·68291 | 4·20904 | 4·73517 |
| 0·40767 | 0·81534 | 1·22301 | 1.63068 | 2·03835 | 2·44602 | 2·85369 | 3·26136 | 3·66903 |
| 0·79874 | 1·59748 | 2·39622 | 3·19496 | 3·99370 | 4·79244 | 5·59118 | 6:38992 | 7·18866 |
| 0·79874 | 1·59748 | 2·39622 | 3·19496 | 3·99370 | 4·79244 | 5·59118 | 6:38992 | 7·18866 |
| 1·00000 | 2·00000 | 3·00000 | 4·00000 | 5·00000 | 6·00000 | 7·00000 | 8:00000 | 9·00000 |
| 0·70000 | 1·40000 | 2·10000 | 2·80000 | 3·50000 | 4·20000 | 4·90000 | 5·60000 | 6·30000 |
| 0 90000 | 1·80000 | 2·70000 | 3·60000 | 4·50000 | 5·40000 | 6·30000 | 7·20000 | 8·10000 |
| 0·92825 | 1·85650 | 2·78475 | 3·71300 | 4·64125 | 5·56950 | 6·49775 | 7·42600 | 8·35425 |
| 0·68317 | 1·36634 | 2·04951 | 2·73268 | 3·41585 | 4·09902 | 4·78219 | 5·46536 | 6·14853 |
| 0·73597 | 1·47194 | 2·20791 | 2·94388 | 3·67985 | 4·41582 | 5·15179 | 5·88776 | 6·62373 |
| 0·86611 | 1·73222 | 2·59833 | 3·46444 | 4·33055 | 5·19666 | 6·06277 | 6·92888 | 7·79499 |
| 0·93305 | 1·86610 | 2·79915 | 3·73220 | 4·66525 | 5·59830 | 6·53135 | 7·46440 | 8·39745 |
| 1·07730 | 2·15460 | 3·23190 | 4·30920 | 5·38650 | 6·46380 | 7·54110 | 8·61840 | 9·69570 |

#### FACTORS FOR CALCULATING

| Substance Weighed.                                                                                                                                    | Substance to be determined.                                                                                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Hydrogen.<br>Water, H <sub>2</sub> O                                                                                                                  | Hydrogen, H                                                                                                                                     |
| Magnesium.  Magnesium sulphate, MgSO <sub>4</sub> Magnesium pyrophosphate, Mg2P <sub>2</sub> O <sub>7</sub>                                           | Magnesia, MgO                                                                                                                                   |
| Manganese.                                                                                                                                            |                                                                                                                                                 |
| Mangano-manganic oxide, Mn <sub>3</sub> O <sub>4</sub> Manganese sulphide, MnS                                                                        | Manganese, Mn                                                                                                                                   |
| Nitrogen.  Ammonium platinum chloride,                                                                                                                |                                                                                                                                                 |
| (NH <sub>4</sub> ) <sub>2</sub> PtĈ  <sub>6</sub> Platinum, Pt                                                                                        | Nitrogen, N<br>Nitrogen, N                                                                                                                      |
| Phosphorus.  Magnesium pyrophosphate, Mg <sub>2</sub> P <sub>2</sub> O <sub>7</sub>                                                                   | Sphosphoric anhydride, P2O5                                                                                                                     |
| , ,                                                                                                                                                   | ( Phosphorus, P                                                                                                                                 |
| Potassium.  Potassium sulphate, K <sub>2</sub> SO <sub>4</sub> Potassium chloride, KCl  Potassium platinum chloride, K <sub>2</sub> PtC! <sub>6</sub> | Potassium oxide, K <sub>2</sub> O                                                                                                               |
| Sodium.  Sodium sulphate, Na <sub>2</sub> SO <sub>4</sub> Sodium carbonate, Na <sub>2</sub> CU <sub>3</sub> Sodium chloride, NaCl                     | Sodium oxide, Na <sub>2</sub> O<br>Sodium oxide, Na <sub>2</sub> O<br>Sodium oxide, Na <sub>2</sub> O                                           |
| Sulphur.  Barium sulphate, BaSO <sub>4</sub>                                                                                                          | Sulphur, S<br>Sulphuric anhydride, SO <sub>5</sub><br>Sulphurous anhydride, SO <sub>2</sub><br>Sodium sulphate, Na <sub>2</sub> SO <sub>4</sub> |
| Zinc.  Zinc oxide, ZnO  Zinc sulphide, ZnS                                                                                                            | Zinc, Zn<br>Zinc, Zn<br>Zinc oxide, ZnO                                                                                                         |

#### GRAVIMETRIC ANALYSES-continued.

| 2       | 3                                                                                                                                                                              | 4                                                                                                                                                                                                                                                                                                                                                                                                       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.22222 | 0.33333                                                                                                                                                                        | 0.41111                                                                                                                                                                                                                                                                                                                                                                                                 | 0.22222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.06666                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.77777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.88888                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.66666 | 1.00000                                                                                                                                                                        | 1·33333                                                                                                                                                                                                                                                                                                                                                                                                 | 1.66666                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2·00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2·33333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2·66666                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3·00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.72072 | 1.08108                                                                                                                                                                        | 1·44144                                                                                                                                                                                                                                                                                                                                                                                                 | 1.80180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2·16216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2·52252                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2·88288                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3·24324                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1·44104 | 2·16156                                                                                                                                                                        | 2·88208                                                                                                                                                                                                                                                                                                                                                                                                 | 3·60260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4·32312                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5·04364                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5·76416                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6·48468                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1·26436 | 1·89654                                                                                                                                                                        | 2·52872                                                                                                                                                                                                                                                                                                                                                                                                 | 3·16090                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3·79308                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4·42526                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5·05744                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5·68962                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1·63218 | 2·44827                                                                                                                                                                        | 3·26436                                                                                                                                                                                                                                                                                                                                                                                                 | 4·08045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4·89654                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5·71263                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6·52872                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7·34481                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0·12552 | 0·18828                                                                                                                                                                        | 0·25104                                                                                                                                                                                                                                                                                                                                                                                                 | 0·313S0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0·37656                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0·43932                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0·50208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0 <sup>5</sup> 56484                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0·28400 | 0·42600                                                                                                                                                                        | 0·56800                                                                                                                                                                                                                                                                                                                                                                                                 | 0·71000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0·85200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0·99400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1·13600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 <sup>2</sup> 7800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1·27928 | 1·91892                                                                                                                                                                        | 2·55856                                                                                                                                                                                                                                                                                                                                                                                                 | 3·19820                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3·83784                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4·47748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5·11712                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5·75676                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0·55856 | 0·83784                                                                                                                                                                        | 1·11712                                                                                                                                                                                                                                                                                                                                                                                                 | 1·39640                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1·67568                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1·95496                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2·23424                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2·51352                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1·08046 | 1.62069                                                                                                                                                                        | 2·16092                                                                                                                                                                                                                                                                                                                                                                                                 | 2:70115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3·24138                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3:78161                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4:32184                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4·86207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1·26174 | 1.89261                                                                                                                                                                        | 2·52348                                                                                                                                                                                                                                                                                                                                                                                                 | 3:15435                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3·78522                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4:41609                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5:04696                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5·67783                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0·38510 | 0.57765                                                                                                                                                                        | 0·77020                                                                                                                                                                                                                                                                                                                                                                                                 | 0:96275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1·15530                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1:34785                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1:54040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1·73295                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0·61042 | 0.91563                                                                                                                                                                        | 1·22084                                                                                                                                                                                                                                                                                                                                                                                                 | 1:52605                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1·83126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2:13647                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2:44168                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2·74689                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0·87324 | 1·30986                                                                                                                                                                        | 1:74648                                                                                                                                                                                                                                                                                                                                                                                                 | 2·18310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2·61972                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3·05634                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3·49296                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3·92958                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1·16982 | 1·75473                                                                                                                                                                        | 2:33964                                                                                                                                                                                                                                                                                                                                                                                                 | 2·92455                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3·50946                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4·09437                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4·67928                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5·26419                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1·05982 | 1·58973                                                                                                                                                                        | 2:11964                                                                                                                                                                                                                                                                                                                                                                                                 | 2·64955                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3·17946                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3·70937                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4·23928                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4·76919                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0·27468 | 0·41202                                                                                                                                                                        | 0·54936                                                                                                                                                                                                                                                                                                                                                                                                 | 0.68670                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0·82404                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0·96138                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1·09872                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1·23606                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0·68670 | 1·03005                                                                                                                                                                        | 1·37340                                                                                                                                                                                                                                                                                                                                                                                                 | 1.71675                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2·06010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2·40345                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2·74680                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3·09015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0·54934 | 0·82401                                                                                                                                                                        | 1·09868                                                                                                                                                                                                                                                                                                                                                                                                 | 1.37335                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1·64802                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1·92269                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2·19736                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2·47203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1·21888 | 1·82832                                                                                                                                                                        | 2·43776                                                                                                                                                                                                                                                                                                                                                                                                 | 3.04720                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3·65664                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4·26608                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4·87552                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5·48496                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1.60590 | 2·40885                                                                                                                                                                        | 3·21180                                                                                                                                                                                                                                                                                                                                                                                                 | 4·01475                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4·81770                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5·62065                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6·42360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7·22655                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1.34156 | 2·01234                                                                                                                                                                        | 2·68312                                                                                                                                                                                                                                                                                                                                                                                                 | 3·35390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4·02468                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4·69546                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5·36624                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6·03702                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1.67078 | 2·50617                                                                                                                                                                        | 3·34156                                                                                                                                                                                                                                                                                                                                                                                                 | 4·17695                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5·01234                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5·84773                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6·68312                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7·51851                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         | 0·22222  0·66666 0·72072  1·44104 1·26436 1·63218  0·12552 0·28400  1·27928 0·55856  1·08046 1·26174 0·38510 0·61042  0·87324 1·16982 1·05982  0·27468 0·68670 0·54934 1·21888 | 0·22222 0·33333  0·66666 1·00000 0·72072 1·08108  1·44104 2·16156 1·26436 1·89654 1·63218 2·44827  0·12552 0·18828 0·28400 0·42600  1·27928 1·91892 0·55856 0·83784  1·08046 1·62069 1·26174 1·89261 0·38510 0·57765 0·61042 0·91563  0·87324 1·30986 1·16982 1·75473 1·05982 1·75473 1·05982 1·58973  0·27468 0·41202 0·68670 1·03005 0·54934 0·82401 1·21888 1·82832  1·60590 2·40885 1·34156 2·01234 | 0·22222 0·33333 0·44444  0·66666 1·00000 1·33333 0·72072 1·08108 1·44144  1·44104 2·16156 2·88208 1·26436 1·89654 2·52872 3·26436  0·12552 0·18828 0·25104 0·56800  1·27928 1·91892 0·56800  1·27928 1·91892 2·55856 0·83784 1·11712  1·08046 1·62069 2·16092 1·26174 1·89261 0·37765 0·77020 0·61042 0·91563 1·22084  0·87324 1·30986 1·74648 1·16982 1·75473 2·33964 1·05982 1·58973 2·11964  0·87324 1·30986 1·74648 1·16982 1·75473 2·33964 1·05982 1·58973 2·11964  0·87324 1·30986 1·74648 1·16982 1·75473 2·33964 1·05982 1·58973 2·11964 | 0·22222         0·33333         0·44444         0·55555           0·66666         1·00000         1·33333         1·66666           0·72072         1·08108         1·44144         1·80180           1·44104         2·16156         2·88208         3·60260           1·26436         1·89654         2·52872         3·16090           1·63218         2·44827         3·26436         4·08045           0·12552         0·18828         0·25104         0·31380           0·28400         0·42600         0·56800         0·71000           1·27928         1·91892         2·55856         3·19820           0·55856         0·83784         1·11712         1·39640           1·08046         1·62069         2·16092         2·70115           0·33510         0·57765         0·77020         0·96275           0·61042         0·91563         1·22084         1·52605           0·87324         1·30986         1·74648         2·18310           1·16982         1·58973         2·11964         2·64955           0·27468         0·41202         0·54936         0·68670         1·3005         1·37340         1·71675           0·54934         0·82401 | 0·22222         0·33333         0·44444         0·55555         0·66666           0·66666         1·00000         1·33333         1·66666         2·00000           0·72072         1·08108         1·44144         1·80180         2·16216           1·44104         2·16156         2·88208         3·60260         4·32312           1·26436         1·89654         2·52872         3·16090         3·79308           1·63218         2·44827         3·26436         4·89045         4·89654           0·12552         0·18828         0·25104         0·31380         0·37656           0·28400         0·42600         0·56800         0·71000         0·85200           1·27928         1·91892         2·55856         3·19820         3·83784           1·39640         1·67568           1·08046         1·62069         2·16092         2·70115         3·24138           3·15413         3·15435         3·78526         0·61042         0·91563         1·22084         1·52605         1·83126           0·87324         1·30986         1·74648         2·18310         2·61972         3·59946           1·6982         1·58973         2·11964         2·64955         3·17946 | 0·22222         0·33333         0·44444         0·55555         0·66666         0·77777           0·66666         1·00000         1·33333         1·66666         2·00000         2·33333           0·72072         1·08108         1·44144         1·80180         2·16216         2·52252           1·44104         2·16156         2·88208         3·60260         4·32312         5·04364           1·26436         1·89654         2·52872         3·16090         3·79308         4·42526           1·63218         2·44827         3·26436         4·80945         4·89654         5·71263           0·12552         0·18828         0·25104         0·31380         0·37656         0·43932           0·23400         0·42600         0·56800         0·71000         0·85200         0·99400           1·27928         1·91892         2·55856         3·19820         3·83784         4·47748           1·26174         1·89261         2·52848         3·15435         3·78522         4·41696           1·26174         1·89261         2·52348         3·15435         3·78522         1·1530         1·34785           0·61042         0·91563         1·22084         1·52605         1·83126         2·13647 | 0·22222         0·33333         0·44444         0·55555         0·66666         0·77777         0·88888           0·66666         1·00000         1·33333         1·66666         2·00000         2·33333         2·66666           0·72072         1·08108         1·44144         1·80180         2·16216         2·52252         2·88288           1·44104         2·16156         2·88208         3·60260         4·32312         5·04364         5·76416           1·26436         1·89654         2·52872         3·16090         3·79308         4·42526         5·05744           1·63218         2·44827         3·26436         4·08045         4·89654         5·71263         6·52872           0·12552         0·18828         0·25104         0·31380         0·37656         0·43932         0·50208           0·28400         0·42600         0·56800         0·71000         0·85200         0·99400         1·13600           1·27928         1·91892         2·55856         3·19820         3·83784         4·47748         5·11712           1·03046         1·62069         2·16092         2·70115         3·24188         3·78161         4·32184           1·26174         1·89261         0·57765         0·77020< |

#### TABLE 4.-SOLUBILITY OF DIFFERENT SALTS.

Remark.—The solubility is given in parts of the anhydrous salt dissolved by 100 parts of water.

|          | 100 Water Dissolve. | Cold.        | Boiling.      |
|----------|---------------------|--------------|---------------|
| Alum, a  | ammonia             | 9            | 422           |
|          | potash              | 9.5          | 357           |
| Alumir   | ium sulphate        | 33           | 89            |
| Ammor    | nium oxalate        | 4.5          | 40.8          |
|          | nitrate             | 199          |               |
|          | sulphate            | 66           | 100           |
| Barium   | chloride            | 35           | 60            |
|          | hydrate             | 5            | 10            |
|          | nitrate             | 8            | 35            |
| Boric a  | eid                 | 2            | 21            |
| Bromin   | e                   | 3            | •••           |
| Calciun  | a carbonate         | 0.0036       | •••           |
|          | chloride            | 400          | •••           |
|          | hydrate             | 0.128        | 0.079         |
|          | nitrate             | 400          |               |
|          | sulphate            | 0.23         | 0.21          |
| Copper   | acetate             | 7            | 19.8          |
|          | nitrate             | 127          |               |
|          | sulphate            | 21           | 75            |
| Iron pre | otosulphate         | 20           | 178           |
|          | etate               | 46           | 71            |
| cl       | nloride             | 3            | 5             |
| ni       | itrate              | 48           | 139           |
| SU       | llphate             | •008         |               |
|          | sium oxide          | .002         | .002          |
|          | carbonate           | .02          |               |
|          | chloride            | 200          | 400           |
| Mangar   | nous chloride       | 62           | 123           |
| Oxalic   | acid                | 11.5         | 100           |
| Potassi  | um hydrate          | 200          |               |
|          | chromate (neutral)  | 48           |               |
|          | bichromate          | 10           | 102           |
|          | oxalate (acid)      | 2.5          | 10            |
|          | sulphite            | 100          |               |
|          | thiosulphate        | deliquescent | •••           |
|          | bitartrate          | 0.4          | 10.5          |
|          | tartrate (neutral)  | 133          | 296           |
|          | cyanide             | 122          |               |
|          | ferrocyanide        | 28           | 91            |
|          | ferricyanide        | 40           | 82            |
|          | iodide              | 141          | 221           |
| Sodium   | acetate             | 35           | 150           |
|          | borate              | 4            | 55            |
|          | hydrate             | 61           |               |
|          | thiosulphate        | 50           | more than 200 |

### SOLUBILITY OF DIFFERENT SALTS-continued.

| 12<br>25<br>1·6<br>20<br>53<br>76<br>270<br>300<br>50 | 100<br>34·8<br>113<br>102<br>200<br> |
|-------------------------------------------------------|--------------------------------------|

### TABLE 5 .- SOLUBILITY OF CERTAIN SALTS AT DIFFERENT TEMPERATURES.

### Ammonium Carbonate.

100 parts water dissolve (Berzelius)

13° 25 parts

17 30

32 37

41 40 49 50

### Ammonium Chloride.

100 parts water dissolve at

15° 35.68 parts NH<sub>4</sub>Cl (Gerlach) (Schiff)

19 36.8 100 100

### Calcium Chloride.

1 part anhydrous CaCl, dissolves (Kremers) at

10.2° in 1.58 parts water

20 1.35

40 0.83

60 0.72

1 part CaCl2, 6aq., dissolves at 10° in 0.5 parts water

16 0.25

100 every proportion

### Magnesium Sulphate (Epsom Salts).

100 parts water dissolve (Gay-Lussac and Tobler) at

00 24.7 MgSO<sub>4</sub> as cryst. salt

10 30.5 20 35.0

25 37.1

39.8 30

47.0 40

50 49.7

ถ้อ 52.8

60 55.9

70 60.4

80 65.1

90 70.3

(Griffiths) 105.5 132.50

### Potassium Carbonate.

(1) Anhydrous (Osann). 1 part dissolves at

3° in 1.05 parts water

0.962 6

12.6 0.900

0.747 26 70 0.490

15 0.922 (Gerlach).

# SOLUBILITY OF CERTAIN SALTS AT DIFFERENT TEMPERATURES—continued.

| (2) Crystall               | ized (Poggiale).                  | Potassium Nitrate.                                                                 |
|----------------------------|-----------------------------------|------------------------------------------------------------------------------------|
|                            | water dissolves at                | 100 parts water dissolve at                                                        |
|                            | $O_3 = 131.15 K_2 CO_3, 2aq.$     | 0° 13.32 parts KNO <sub>3</sub> (Gay-Lus-                                          |
| 10 88.72                   | 142.50                            | 5.01 16.72 sac)                                                                    |
| 20 94.06                   | 153.70                            | 11.67 22.23                                                                        |
| 30 100.03                  | 166.85                            | 17.91 29.31                                                                        |
| 40 106.20                  | 180 07                            | 24.94 38.40                                                                        |
| 50 112.90                  | 196.60                            | 35.13 54.82                                                                        |
| 60 119.24                  | 212.35                            | 45.10 74.66                                                                        |
| 70 127.10                  | 232.84                            | 54.72 97.05                                                                        |
| 80 134.25                  | 252.57                            | 65.45 125.42                                                                       |
| 90 143.18                  | 278.72                            | 79.72 169.27                                                                       |
| <b>1</b> 00 <b>1</b> 53·66 | 311.85                            | 97.66 236.45                                                                       |
| 135 205.11                 | 526·10                            | 114.5 284.61                                                                       |
|                            | um Bicarbonate.                   |                                                                                    |
|                            | r dissolve (Poggiale) at          | Potassium Sulphate.                                                                |
| 0° 19.61 parts<br>10 23.23 | KHCO3                             | 100 parts water dissolve at                                                        |
| 20 26.91                   |                                   | 12.5° 10 K <sub>2</sub> SO <sub>4</sub> (Brandes and Firn-                         |
| 30 30.57                   |                                   | 15 10·38 haber)                                                                    |
| 40 34.15                   |                                   | 31.25 14                                                                           |
| 50 37.92                   |                                   | 37.5 17                                                                            |
| 60 41.35                   |                                   | 50 25                                                                              |
| 70 45.24                   |                                   | 56.25 22                                                                           |
| Poten                      | sium Chlorate.                    | 68.75 21.95                                                                        |
|                            |                                   | 87.5 25                                                                            |
|                            | water dissolve at                 | 100 26                                                                             |
| 0° 3.33 p                  | oarts KClO <sub>3</sub> (Gay-Lus- | 101.7 21.21                                                                        |
| 13.32 5.60                 | sac)                              |                                                                                    |
| 15.37 6.03                 |                                   | Sodium Carbonate.                                                                  |
| 24·43 8·44<br>35·02 12·05  |                                   | 100 parts water dissolve at                                                        |
| 49.08 18.96                |                                   |                                                                                    |
| 74.89 35.40                |                                   | [(Loewel)                                                                          |
| 104.78 60.24               |                                   | 0° 6.97 Na <sub>2</sub> CO <sub>3</sub> 21·33Na <sub>2</sub> CO <sub>3</sub> 10aq. |
| 17 6.68                    | (V. Meyer)                        | 10 12.06 40.94                                                                     |
| 18 6.82                    | ( ===5 )                          | 15 16.20 63.20                                                                     |
| 98 55.50                   |                                   | 20 21.71 92.82                                                                     |
|                            |                                   | 25 28·50 149·13<br>30 37·24 273·64                                                 |
|                            | sium Chloride.                    | 32 59 (Mulder)                                                                     |
| 100 parts                  | water dissolve at                 | 34—79 46·2                                                                         |
| 0° 29·21                   | KCl (Gay-Lussac)                  | 80 45.9                                                                            |
| 11.8 34.6                  | (Kopp)                            | 85 45.7                                                                            |
| 13.8 34.9                  |                                   | 90 45.6                                                                            |
| 15.6 35                    |                                   | 95 45.4                                                                            |
| 19 34.53                   | (Gay-Lussac)                      | 100 45.1                                                                           |
| 52 43.59                   |                                   |                                                                                    |
|                            |                                   |                                                                                    |
| 79 50·93<br>109·6 59·26    |                                   | Boiling point of the saturated solution 106°                                       |

# SOLUBILITY OF CERTAIN SALTS AT DIFFERENT TEMPERATURES—continued.

| IBMIBIAI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SICES—comenaea.                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| Sodium Bicarbonate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20. 89.55                                                            |
| 100 parts water dissolve at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 30 95.37                                                             |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 40 102:31                                                            |
| 0° 6·90 NaHCO <sub>3</sub> (Dibbits)<br>10 8·15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50 111.13                                                            |
| 20 9.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 60 119.94                                                            |
| 30 11.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 70 129-63                                                            |
| 40 12:70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 80 140.72                                                            |
| 50 14:45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 90 153 63                                                            |
| 60 16:40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100 168·20<br>120 225·30                                             |
| Sodium Chloride.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | The saturated solution boils at 122°                                 |
| 100 parts water dissolve at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                      |
| -15° 32.73 NaCl (Poggiale)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sodium Sulphate.                                                     |
| -10 33·49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100 parts water dissolve (Gay-                                       |
| -5 34·22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Lussac) at                                                           |
| 0 35.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0° 5.02Na SO412.17Na SO4,10aq                                        |
| +5 $35.63$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11.67 10.12 26.38                                                    |
| 9 35.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13.30 11.74 31.33                                                    |
| 14 35·87<br>25 36·13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17.91 16.73 48.28                                                    |
| 25 36·13<br>40 36·64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25·05 28·11 99·48<br>28·76 37·35 161·53                              |
| 50 36.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 30.75 43.05 215.77                                                   |
| 60 37.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 31.84 47.37 270.22                                                   |
| 70 37.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 32.73 50.65 322.12                                                   |
| 80 38.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 33.88 50.04 312.11                                                   |
| 90 38.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 40.15 48.78 291.44                                                   |
| 100 39.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 45.04 47.81 276.91                                                   |
| 109.7 40.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 50.40 46.82 262.35                                                   |
| Sodium Chlorate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 59·79 45·42<br>70·61 44·35                                           |
| 100 parts water dissolve at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 84.42 42.96                                                          |
| 0° 81.9 NaClO <sub>3</sub> (Kremers)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 103.17 42.65                                                         |
| 20 99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                      |
| 40 123-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sodium Thiosulphate (hyposulphite).                                  |
| 60 147.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100 parts water dissolve (Mulder) at                                 |
| 80 175.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0° 47.6 Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> as cryst. salt |
| 100 232.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 16 65                                                                |
| 120 333·3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20 69                                                                |
| Sodium Nitrate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25 75                                                                |
| 100 parts water dissolve at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 30 82                                                                |
| BEAT CONTROL FOR A CONTROL OF THE PARTY OF T | 35 89                                                                |
| -6° 68.80 NaNO <sub>3</sub> (Poggiale)<br>+0 79.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 40 98<br>45 109                                                      |
| 10 84:30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 47 114                                                               |
| 16 87:63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 60 192 (Kremers)                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (122                                                                 |

# TABLE 6.—SOLUBILITY OF SOME GASES IN WATER.

At a pressure of 760mm. = 29.92in. (Bunsen).

|                                        |                                                     |                                                     | BAITL, AL.                                          |                                                                |
|----------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------|
| Atmosph.                               | 0.02471<br>0.02406<br>0.02845<br>0.02287<br>0.02287 | 0.02179<br>0.02128<br>0.02080<br>0.02084<br>0.01992 | 0.01953<br>0.01916<br>0.01882<br>0.01851<br>0.01822 | 0.01795<br>0.01771<br>0.01750<br>0.01732<br>0.01717            |
| Ammonia.                               | 1049-6<br>1020-8<br>998-8<br>967-0<br>941-9         | 917-9<br>895-0<br>873-1<br>852-1<br>832-0           | 812.8<br>794.3<br>776.6<br>759.6<br>748.1           | 727-2<br>711-8<br>696-9<br>682-3<br>668-0<br>654-0             |
| Sulphur<br>Dioxide.                    | 68-861<br>67-003<br>65-169<br>63-360<br>61-576      | 59-816<br>58-080<br>56-369<br>54-683<br>53-021      | 51-383<br>49-770<br>48-182<br>46-618<br>45-079      | 43·504<br>42·073<br>40·608<br>39·165<br>37·749<br>36·216       |
| Hydrogen<br>Sulphide.                  | 4·2874<br>4·2874<br>4·2053<br>4·1243<br>4·0442      | 3-9652<br>3-8872<br>3-8103<br>3-7345<br>3-6596      | 3.5858.<br>3.5132<br>3.4415<br>4.3708<br>3.3012     | 3.2326<br>3.1651<br>3.0986<br>3.0881<br>2.9687<br>2.9053       |
| Nitrio<br>Oxide.<br>(In<br>Alcohol.)   | 0.30290<br>0.30290<br>0.30290<br>0.30290            | 0-29985<br>0-29690<br>0-29405<br>0-29130<br>0-28865 | 0.28869<br>0.28363<br>0.28127<br>0.27901<br>0.27685 | 0-27478<br>0-27281<br>0-27094<br>0-26917<br>0-26750            |
| Nitrons<br>Oxide.                      | 1.2605<br>1.2605<br>1.2172<br>1.1752<br>1.1346      | 1.0954<br>1.0575<br>1.0210<br>0.9858<br>0.9520      | 0-9196<br>0-8885<br>0-8588<br>0-8304<br>0-8034      | 0-7778<br>0-7535<br>0-7306<br>0-7090<br>0-6888<br>0-6700       |
| Carbon<br>Monoxide                     | 0.03287<br>0.03207<br>0.03131<br>0.03057<br>0.02987 | 0-02920<br>0-02857<br>0-02796<br>0-02739<br>0-02686 | 0.02635<br>0.02588<br>0.02544<br>0.02504<br>0.02466 | 0.02432<br>0.02402<br>0.02874<br>0.02850<br>0.02829            |
| Carbon<br>Dioxide.                     | 1.7967<br>1.7207<br>1.6481<br>1.5787<br>1.5126      | 1.4497<br>1.8901<br>1.8839<br>1.2809<br>1.2311      | 1.1847<br>1.1416<br>1.1018<br>1.0653<br>1.0821      | 1-0020<br>0-9753<br>0-9519<br>0-9818<br>0-9150                 |
| Oxygen.                                | 0.04114<br>0.03907<br>0.03810<br>0.03717            | 0-03628<br>0-03554<br>0-03465<br>0-03389<br>0-03317 | 0.03250<br>0.03189<br>0.03133<br>0.03082<br>0.03034 | 0.02989<br>0.02949<br>0.02914<br>0.02884<br>0.02858            |
| Nitrogen. Hydrogen.                    | 0.0193<br>0.0193<br>0.0193<br>0.0193<br>0.0193      | 0-0198<br>0-0198<br>0-0198<br>0-0198<br>0-0198      | 0-0193<br>0-0193<br>0-0193<br>0-0193<br>0-0193      | 0.0193<br>0.0193<br>0.0193<br>0.0193<br>0.0193<br>0.0193       |
|                                        | 0.02035<br>0.01981<br>0.01982<br>0.01884<br>0.01838 | 0.01794<br>0.01752<br>0.01713<br>0.01675<br>0.01640 | 0.01607<br>0.01577<br>0.01549<br>0.01528<br>0.01500 | 0.01478<br>0.01458<br>0.01441<br>0.01426<br>0.01428<br>0.01408 |
| 1 Vol.<br>Water<br>dissolves<br>at °C. | 0H0224                                              | 20780                                               | 0<br>1<br>1<br>2<br>1<br>2<br>1<br>4                | 15<br>16<br>18<br>19<br>20<br>20                               |

### TABLE 7 .- SOLUBILITY OF AMMONIA IN WATER BY WEIGHT.

(Solubility by Volume in Table 6.) 1g. Water Dissolves at 760 mm. pressure (Roscoe and Dittmar).

| At       | g NH,          | At       | g NII3         | At       | 'g NII3        | At       | g NII,         |
|----------|----------------|----------|----------------|----------|----------------|----------|----------------|
| 0°       | 0.875          | 16°      | 0.582          | 30°      | 0.403          | 44°      | 0.275          |
| 2 4      | 0.833<br>0.792 | 18 20    | 0·554<br>0·526 | 32       | 0·382<br>0·362 | 46 48    | 0·259<br>0·244 |
| 6        | 0·751<br>0·713 | 22 24    | 0·499<br>0·474 | 36<br>38 | 0·343<br>0·324 | 50<br>52 | 0·229<br>0·214 |
| 10<br>12 | 0.679<br>0.645 | 26<br>28 | 0·449<br>0·426 | 40 42    | 0·307<br>0·290 | 54<br>56 | 0·200<br>0·185 |
| 12<br>14 | 0·645<br>0·612 | 28       | 0.426          | 42       | 0.290          | 56       |                |

### TABLE 8 .- SOLUBILITY OF CHLORINE IN WATER.

(Schönfeld.)

1 Vol. Water absorbs Vols. Chlorine, calculated at 10° and 760 mm. pressure.

| At                       | Vol. Chlor.                                                                  | At                       | Vol. Chlor.                                                                  | At                                            | Vol. Chlor.                                                                  | At                                       | Vol. Chlor.                                                        |
|--------------------------|------------------------------------------------------------------------------|--------------------------|------------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------|
| 10° 11 12 13 14 15 16 17 | 2·5852<br>2·5413<br>2·4977<br>2·4543<br>2·4111<br>2·3681<br>2·3253<br>2·2828 | 18° 19 20 21 22 23 24 25 | 2·2405<br>2·1984<br>2·1565<br>2·1148<br>2·0784<br>2·0322<br>1·9912<br>1·9504 | 26°<br>27<br>28<br>29<br>30<br>31<br>32<br>33 | 1-9099<br>1-8695<br>1-8295<br>1-7895<br>1-7499<br>1-7104<br>1-6712<br>1-6322 | 34°<br>35<br>36°<br>37<br>38<br>39<br>40 | 1·5934<br>1·5555<br>1·5166<br>1·4785<br>1·4406<br>1·4029<br>1·3655 |

## TABLE 9.—SOLUBILITY OF HYDROGEN CHLORIDE IN WATER.

1. By Weight (Roscoe and Dittmar). 1g. Water absorbs at 760mm.
pressure.

| At | g HCl | At  | g HCl | At  | g HCl | At  | g HCl   |
|----|-------|-----|-------|-----|-------|-----|---------|
| 0° | 0·825 | 16° | 0·742 | 32° | 0.665 | 48° | 0·603   |
| 4  | 0·804 | 20  | 0·721 | 33  | 0.649 | 52  | 0·589   |
| 8  | 0·783 | 24  | 0·700 | 40  | 0.633 | 56  | 0·575   |
| 12 | 0·762 | 28  | 0·682 | 44  | 0.618 | 60  | - 0·561 |

### SOLUBILITY OF HYDROGEN CHLORIDE IN WATER-continued.

2. By Volume (Deicke).—1ccm. Water absorbs at a pressure of 760mm.

| At    | ccm. HCl | Spec. Grav. of the Acid<br>Formed. | Percentage of HCl in same. |
|-------|----------|------------------------------------|----------------------------|
| 0°    | 525.2    | 1.2257                             | 45.148                     |
| 4     | 497.7    | 1.2265                             | 44.361                     |
| 8     | 480.3    | 1.2185                             | 43.828                     |
| 12    | 471.3    | 1.2148                             | 43.277                     |
| 14    | 462.4    | 1.2074                             | 42.829                     |
| 18    | 451.2    | 1.2064                             | 42.344                     |
| 18.25 | 450.7    | 1.2056                             | 42.283                     |
| 23    | 435.0    | 1.2014                             | 41.536                     |

### TABLE 10.-SPECIFIC GRAVITIES OF DIFFERENT SOLIDS.

| Alderwood                 | 0.5-0.6 | Brickwork               | 1.5-1.7   |
|---------------------------|---------|-------------------------|-----------|
| Alumina, anhydrous        | 4.15    | Bricks, ordinary        | 1.4-2.2   |
| Alum, ammonia             | 1.626   | Brass                   | 8.4-8.7   |
| potash                    | 1.724   | Calamine                | 4.1-4.5   |
| Alumina sulphate, cryst   | 1.596   | Chalk                   | 1.8-2.7   |
| Aluminium                 | 2.76    | Calcium chloride, cryst |           |
| Alumstone                 | 2.8     | chloride, anhydrous     |           |
| Ammonium nitrate          | 1.707   | silicate                | 2.9       |
| sulphate                  |         | carbonate               | 2.7       |
| chloride                  | 1.528   | phosphate               | 3.18      |
|                           | 2.96    | sulphate, anhydrous     | 0         |
| Anthracite                | 1.4-1.7 |                         |           |
|                           | 6.7     | Calcspar                | 1.16-1.27 |
| Antimony                  | 3.884   | Cement                  | 2.7-3.05  |
| Arsenic acid              | 4.250   | China clay, kaolin      |           |
|                           | 1.1-1.2 |                         | 1.57      |
| Asphalt                   | 0.7-0.8 | Charcoal, organicwood   |           |
| Ashwood                   | 0.0-    |                         |           |
| Barium chloride, cryst    |         | Coke, porous            |           |
| carbonate                 | 4.56    | Coal, porous            |           |
| sulphate (spar)           | 4.73    | Copper, metallic, cast  |           |
| hydrate, cryst            | 1.66    | hammered                |           |
| Bauxite                   | 0000    | pyrites                 |           |
| Basalt                    | 2.8-3.2 | oxide                   |           |
| Beechwood, dry            | 0.7-0.8 | sulphate                |           |
| Birchwood, dry            | 0.7-0.8 | Cuprous sulphide        |           |
| Bismuth                   | 9.85    | Clay                    |           |
| Borate of magnesia (bora- |         | Cryolite                |           |
| cite)                     | 2.9     | Elmwood                 |           |
| Borax, crystallised       |         | Fat, animal             |           |
| Boric acid, crystallised  |         | Felspar                 |           |
| fused                     |         | Fibres, vegetable       |           |
| Brown coal, lignite       | 1.2-1.4 | Firwood, dry            | 0.6       |
|                           |         |                         |           |

### SPECIFIC GRAVITIES OF DIFFERENT SOLIDS-continued.

|                          |           | 1                     |          |
|--------------------------|-----------|-----------------------|----------|
| Firebricks               | 1.85      | Pinewood, red         | 0.5      |
| Flint                    | 2.7       | Platinum              | 21.1     |
|                          | 2.642     | Pockwood              | 1.263    |
| Glass, green             | 2.450     |                       | 0.38     |
| plate                    |           | Poplar                | 2.1-2.5  |
| crystal, Bohem           | 2.9-3.0   | Porcelain             |          |
| flint, Engl              | 3.4-3.44  | Porphyry              | 2.8      |
| Glauber's salt, cryst    | 1.52      | Potash                | 2.3      |
| anhydrous                |           | Potassium carbonate   | 2.264    |
| Granite                  | 2.5-2.9   | chlorate              | 2.35     |
| Gypsum, plaster-of-paris |           | chloride              | 1.945    |
| cast, dry                | •97       | chromate              | 2.603    |
| Heavy spar               | 4.3-4.48  | nitrate               | 2.058    |
| Iodine                   | 4.948     | sulphate              | 2.66     |
| Iron, wrought            | 7.4-7.9   | bisulphate            | 2.277    |
| grey, cast               | 6.6-7.3   | hydrate               | 2.044    |
| white, cast              | 7.1-7.9   | Quartz                | 2.7      |
| peroxide                 | 5.22      | Resin                 | 1.07     |
| hydrated oxide           | 3.94      | Rock salt             | 2.1-2.2  |
| magnetic oxide           | 5.4       | Sal-ammoniae          | 1.528    |
|                          |           |                       | 1.4-1.6  |
| carbonate                | 3.87      | Sand, dry             |          |
| sulphate, cryst          | 1.904     | damp                  | 1.9-2.0  |
| pyrites, white           | 4.65-4.88 | Sandstone             | 1.9-2.5  |
| pyrites                  | 5.18      | Silver                | 10.6     |
| Larchwood                | 0.44-0.5  | Silver chloride       | 5.501    |
| Lignite                  | 1.2-1.4   | Slate                 | 2.7      |
| Lime, burnt, quick       | 3.08      | Sodium carbonate, anh | 2.509    |
| Limewood                 | 0.5       | carbonate cryst       | 1.454    |
| Litharge                 | 9.36      | chloride              | 2.078    |
| Lead, cast               | 11.3      | nitrate               | 2.226    |
| red                      | 8.62      | sulphate              | 2.63     |
| chromate                 | 6.00      | sulphide              | 2.471    |
| acetate, cryst           | 2.395     | thiosulphate          | 1.736    |
| carbonate                | 6.47      | hydrate               | 2.130    |
| nitrate                  | 4.40      | Steel                 | 7.80     |
| sulphide                 | 7.505     | Steel, cast           | 7.92     |
|                          | 6.169     | hardened              | 7.66     |
| sulphate<br>chloride     | 5.802     |                       | 2.069    |
|                          |           | Sulphur, native       | 1.98     |
| Magnesia, calcined       | 3.2       | sticks, fresh         |          |
| carbonate                |           | sticks, old           | 2.05     |
| Magnesite                | 2.9-3.1   | soft, amorphous       | 1.96     |
| Magnesium sulph., cryst. | 1.751     | Sulphuric anhydride   | 1.97     |
| chloride, cryst.         |           | Tin, cast             | 7.21-7.4 |
| Manganese peroxide       | 2.94      | hammered              | 7.475    |
| native                   | 4.7-5.0   | Willowwood            | 0.5-0.58 |
| Marble                   | 2.5-2.8   | Witherite             | 4.30     |
| Nickel                   | 8.9       | Zinc, cast            | 6.8      |
| Oakwood, dry             | 0.85-0.95 | rolled                | 7.2      |
| Phosphorus, yellow       | 1.826     | blende                | 3.9-4.2  |
| red                      | 2.106     | oxide                 | 5.73 -   |
| Pinewood, white          | 0.55      | sulphate              | 2.036    |
|                          | 1200-00   | 19.00                 | SEE LES  |
|                          | 1         |                       |          |

### TABLE II.-WEIGHT OF SUBSTANCES AS STORED.

| SUBSTANCE.                                                                                      | 1 Cub.<br>Metre<br>Weighs | 1 Cub.<br>Foot<br>Weighs | Tons<br>per<br>Cub. Foot. |
|-------------------------------------------------------------------------------------------------|---------------------------|--------------------------|---------------------------|
|                                                                                                 | Kilo,                     | lb. a.d.p.               |                           |
| Bricks                                                                                          | 2100                      | 131                      | .0584                     |
| Cement                                                                                          | 1200                      | 75                       | .0335                     |
| Clay, damp                                                                                      | 1650                      | 103                      | .0459                     |
| dry                                                                                             | 1570                      | 98                       | •0437                     |
| Limestone and other Building Stones                                                             | 2000                      | 125                      | .0558                     |
| Mortar (lime and sand)                                                                          | 1800                      | 112                      | .0500                     |
| Quicklime                                                                                       | 1000                      | 62.5                     | .0279                     |
| Sand, dry                                                                                       | 1330                      | 83                       | .0370                     |
| damp                                                                                            | 1770                      | 110                      | ·0491                     |
| Wood, Beech Logs                                                                                | 400                       | 24.5                     | .0107                     |
| Fir Logs                                                                                        | 330                       | 20.5                     | .0091                     |
| Oak Logs                                                                                        | 420                       | 26                       | .0116                     |
| S                                                                                               |                           |                          |                           |
| RAW MATERIALS, ETC., FOR ALKALI WORKS.                                                          |                           |                          |                           |
| Pyrites, broken pieces                                                                          | 2500                      | 156                      | .0696                     |
| smalls                                                                                          | 2340                      | 146.5                    | $\cdot 0654$              |
| burnt                                                                                           | 1520                      | 95.0                     | .0424                     |
| Nitre                                                                                           | 1310                      | 81.5                     | .0364                     |
| Nitrecake (acid Sulphate of Soda)                                                               | 1335                      | 83                       | .0375                     |
| Salt                                                                                            | 689                       | 43                       | .0192                     |
| Saltcake                                                                                        | 1180                      | 73.5                     | .0328                     |
| Limestone (small pieces)                                                                        | 1400                      | 87.5                     | .0391                     |
| Black Ash (lumps)                                                                               | 962                       | 60                       | .0268                     |
| Alkali Waste (wet)                                                                              | 1268                      | 79                       | .0352                     |
| Soda Salts (Na <sub>2</sub> CO <sub>2</sub> +H <sub>2</sub> O) (drained)                        | 810                       | 50.5                     | .0225                     |
| Soda Salts (Na <sub>2</sub> CO <sub>3</sub> +H <sub>2</sub> O) (drained)<br>Soda Ash (unground) | 1195                      | 74.5                     | .0332                     |
| Soda Crystals                                                                                   | 1010                      | 63                       | .0281                     |
| Bicarbonate (ground)                                                                            | 986                       | 61.5                     | .0274                     |
| Quicklime (small lumps)                                                                         | 1058                      | 66                       | .0295                     |
| Sieved Lime (for Bleaching Powder)                                                              | 497-593                   | 31-37                    | .0151                     |
| Bleaching Powder                                                                                | 721-834                   | 45-52                    | .0216                     |
| Manganese, Native                                                                               | 2210                      | 138                      | .0616                     |
| Limestone Dust                                                                                  | 1550                      | 96.5                     | .0431                     |
| Coke (for filling towers)                                                                       | 417-534                   | 26-33                    | ·0131                     |
| Flints ,, ,.                                                                                    | 1600                      | 100                      | .0446                     |
| Cinders (ashes)                                                                                 | 738                       | 46                       | .0205                     |
|                                                                                                 |                           |                          |                           |

### TABLE 12.- SPECIFIC GRAVITY OF DIFFERENT LIQUIDS.

|                                                                                               | Specific<br>Gravity.           | At<br>Temp.                                           |                                                                                                                           | Specific Gravity.                                                  | At<br>Temp.                             |
|-----------------------------------------------------------------------------------------------|--------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------|
| Alcohol Acetic acid Bisulphide of carbon Benzene Coal tar Ether Glycerine Linseed Oil Mercury | 0·85<br>1·15<br>0·723<br>1·260 | 12·5<br>17<br><br>15·5<br>15<br>12·5<br>15<br>15<br>0 | Nitrogen peroxide (liquid) Olive oil Petroleum Rapeseed oil Sulphurous anhydride (liquid) Sea water Spirits of turp'ntine | 1·45<br>0·917<br>0·78-0·81<br>0·9136<br>1·45<br>1·02-1·04<br>0·865 | 15<br>15<br>15<br>15<br>-20<br>15<br>15 |

# TABLE 13.—SPECIFIC GRAVITY AND PERCENTAGE OF SATURATED SOLUTIONS.

The percentage refers to anhydrous salt.

|                    | Tem-<br>perature. | Per-<br>centage<br>of Salt. | Specific Gravity. | Degrees<br>Twaddell. |
|--------------------|-------------------|-----------------------------|-------------------|----------------------|
| Ammonium chloride  |                   | 26·30<br>50·00              | 1.0776<br>1.2890  | 15·5<br>57·8         |
| Barium chloride    | 15                | 25.97                       | 1.2827            | 56.5                 |
| Calcium chloride   | 15                | 40.66<br>25.25              | 1·4110<br>1·2880  | 82·2<br>57·6         |
| Potassium chloride |                   | 24·90<br>52·02              | 1·1723<br>1·5708  | 34.4                 |
| nitratesulphate    |                   | 21·07<br>9·92               | 1·1441<br>1·0831  | 28.8                 |
| Sodium chloride    | 15                | 26·395<br>14·35             | 1·2043<br>1·1535  | 40·8<br>30·7         |
| nitratesulphate    | 195               | 46·25<br>11·95              | 1.3804            | 76<br>22·3           |
| Bulphare           | 100               | 11.00                       | 11111             | 22.0                 |

### TABLE 14.-SPECIFIC GRAVITY OF GASES AND VAPOURS.

North Latitude, 52° 30′, 130 feet above sea level.

| Gas.                                                           | -                                                                              | Mole-<br>cular<br>weight.    | Specific gravity. Air=1.                            | Grams per<br>litre at<br>760mm. &<br>0° C.           | Grains per<br>cub. foot.<br>29.92" & 32° F.      | Lbs. per * cub. foot 20.92" & 32° F.           |
|----------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------|-----------------------------------------------------|------------------------------------------------------|--------------------------------------------------|------------------------------------------------|
| Ammonia Atmospheric air Bromine Chlorine Carbonic oxide        | $\mathrm{NH_3}$ $\mathrm{Br_2}$ $\mathrm{Cl_2}$ $\mathrm{CO}$                  | 17<br><br>160<br>71<br>28    | 0.58890<br>1.00000<br>5.52271<br>2.44921<br>0.96709 | 0·76199<br>1·293909<br>7·14588<br>3·16906<br>1·25133 | 332·96<br>565·16<br>3122·1<br>1384·73<br>546·78  | ·04757<br>·08074<br>·4460<br>·1978<br>·07811   |
| Carbonic anhydride Ethylene Hydrogen Hydrogen chloride Iodine  | $CO_2$ $C_2H_4$ $H_2$ $HCl$ $I_2$                                              | 44<br>28<br>2<br>36.5<br>254 | 1.51968<br>0.96744<br>0.06923<br>1.25922<br>8.756   | 1.96633<br>1.25178<br>0.08958<br>1.62932<br>11.328   | 859·21<br>546·98<br>39·1439<br>711·94<br>4949·90 | •12274<br>•07814<br>•0055919<br>•1017<br>•7071 |
| Methane                                                        | $\mathrm{CH_4} \\ \mathrm{Hg} \\ \mathrm{N_2} \\ \mathrm{N_2O} \\ \mathrm{NO}$ | 16<br>200<br>28<br>44<br>30  | 0.55297<br>0.97010<br>1.52269<br>1.03767            | 0·71549<br>8·9582<br>1·25523<br>1·97023<br>1·34261   | 312·64<br>3914·39<br>548·47<br>860·90<br>586·66  | ·04466<br>·5592<br>·07835<br>·1229<br>·08381   |
| Nitrous anhydride<br>Nitric peroxide<br>Oxygen<br>Sulphuretted | $egin{array}{c} N_2O_3 \\ NO_2 \\ N_2O_4 \\ O_2 \\ H_2S \end{array}$           | - 76<br>46<br>92<br>32<br>34 | 2·630<br>1·592<br>3·184<br>1·10521<br>1·17697       | 3·40412<br>2·06039<br>4·12078<br>1·43003             | 1487·46<br>900·31<br>1800·63<br>624·85<br>665·44 | •2125<br>•1286<br>•2572<br>•08926<br>•09506    |
| hydrogen Sulphurous anhydride Sulphur Water                    | $SO_3$ $S_2$ $H_2O$                                                            | 64<br>64<br>18               | 2·21295<br>2·2155<br>0·62182                        | 2 86336<br>2 86663<br>0 80458                        | 1251·19<br>1252·59<br>351·57                     | ·1787<br>·1789<br>·05022                       |

<sup>\*</sup> For calculations with large quantities of gas, it is sufficiently accurate to assume that 10,000 cubic feet weigh as many cwt. as the molecular weight of the gas divided by 4 indicates. For example, 10,000 cubic feet of sulphuretted hydrogen weigh \( \frac{3.5}{4} = 8.5 \) cwt. (Exactly, it would be 8.488 cwt.)

# TABLE 15.—LINEAR EXPANSION OF DIFFERENT SUBSTANCES.

By variation of temperature from 0° to 100° C. (32°-212° F.)

| Brass             | 0.001868 | 1:535  |
|-------------------|----------|--------|
| Charcoal from oak | 0.001200 | 1:833  |
| fir               | 0.00100  | 1:1000 |
| Copper            | 0.001718 | 1:582  |
| Glass, flint      | 0.000817 | 1:1219 |
| white             | 0.000861 | 1:1161 |
| green             | 0.000766 | 1:1305 |
| Gold              | 0.001466 | 1:682  |
|                   | 0.001235 | 1:812  |
| Iron, wrought     | 0.001233 |        |
| cast              |          | 1:901  |
| Lead              | 0.002848 | 1:351  |
| Marble of Carrara | 0.000849 | 1:1178 |
| St. Beat          | 0.000418 | 1:2392 |
| Platinum          | 0.000884 | 1:1132 |
| Silver            | 0.001908 | 1:524  |
| Solder, hard      | 0.002058 | 1:486  |
| Steel, hardened   | 0.001240 | 1:807  |
| not hardened      | 0.001079 | 1:927  |
| Tin               | 0.001073 |        |
|                   |          | 1:516  |
| Water             | 0.015538 | 1:71.4 |
| Zine              | 0.002942 | 1:340  |
|                   |          |        |

# TABLE 16. - COMPARISON OF DIFFERENT THERMOMETRIC SCALES. $t^{\circ}\mathsf{C} = \tfrac{4}{5}t^{\circ}\mathsf{R} = \tfrac{9}{5}t + 32^{\circ}\mathsf{F} \ ; \ t^{\circ}\mathsf{R} = \tfrac{4}{5}t^{\circ}\mathsf{C} = \tfrac{9}{4}t + 32^{\circ}\mathsf{F} \ ; \ t^{\circ}\mathsf{F} = \tfrac{9}{9}(t - 32)^{\circ}\mathsf{C} = \tfrac{9}{9}(t - 32)^{\circ}\mathsf{R}.$

By Celsius's (Centigrade) degrees as units.

|   | Fahr.        | 172424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>17742<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>17742<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>177424<br>1774 |
|---|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | Réaum.       | +<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0                                                                                                                                                                                                   |
|   | Cels.        | 25282888888888888888888888888888888888                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | Fahr.        | +131<br>138.4.6<br>138.4.6.1<br>143.4.6.1<br>143.4.6.1<br>143.4.6.1<br>150.6.1<br>150.6.1<br>161.6.2<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>161.6.3<br>1                                                                                                                |
|   | Réaum.       | +<br>444444444444444444444444444444444444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|   | Cels.        | +<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | Fahr.        | +89.6<br>91.4<br>93.2<br>98.8<br>98.8<br>98.6<br>100.4<br>100.4<br>111.2<br>111.2<br>111.2<br>112.3<br>112.3<br>112.3<br>112.3<br>112.3<br>112.3<br>112.3<br>112.3<br>112.3<br>112.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   | Cels. Réaum. | +<br>5029298888888888888888888888888888888888                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|   | Cels.        | +<br>88388888894484444448523333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   | Fahr.        | + 4 4 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ' | Réaum.       | + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|   | Cels.        | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|   | Fahr.        | + 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|   | Réaum.       | 21111<br>21111<br>21111<br>2000<br>2400<br>2400<br>2400<br>24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|   | Cels.        | 1<br>1144831110<br>2000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|   | Fahr.        | 4.6<br>6.8<br>6.8<br>6.8<br>6.8<br>6.8<br>6.8<br>6.8<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|   | Réaum.       | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|   | Cels.        | 488888888888888888888888888888                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

# TABLE 168.-BY FAHRENHEIT DEGREES AS UNITS.

|   |       |               |        |                                              |      |      |              |            |       |            |       |      |                |      |      |       |      | 1    | 1.   | 40    | - 6  |      |      | 0    | 77   |           |  |
|---|-------|---------------|--------|----------------------------------------------|------|------|--------------|------------|-------|------------|-------|------|----------------|------|------|-------|------|------|------|-------|------|------|------|------|------|-----------|--|
|   | Réau. | 64.4          | 65.8   | 66.7                                         | 9.29 | 68.4 | 68.9         | 8.69       | 20.2  | 11.1       | 72.0  | 72.4 | 72.9           | 73.8 | 2.47 | 7.4.7 | 75.1 | 26.0 | 76.4 | 6.92  | 77.0 | 78.5 | 78.7 | 1.64 | 9.62 | 0.08      |  |
|   | Cel.  | 81.1          | 82.5   | 20 00 00<br>00 00 00<br>00 00 00<br>00 00 00 | 84.4 | 85.6 | 86.1         | 87.2       | 88.3  | 6.88       | 0.06  | 9.06 | 91.1           | 65.5 | 8.50 | 93.3  | 93.9 | 95.0 | 95.6 | 1.96  | 96.7 | 27.6 | 98.3 | 6.86 | 99.4 | 100.0     |  |
|   | Fah.  | 177           | 180    | 182                                          | 187  | 186  | 187          | 180        | 191   | 192        | 194   | 195  | 196            | 198  | 199  | 200   | 201  | 203  | 204  | 202   | 206  | 208  | 209  | 210  | 211  | 212       |  |
|   | Réau. | 48.4          | 40.8   | 20.7                                         | 51.6 | 52.4 | 53.3         | 53.8       | 54.7  | 55.1       | 56.0  | 26.4 | 50.3           | 22.8 | 58.5 | 28.2  | 59.1 | 0.09 | 60.4 | 6.09  | 61.3 | 62.2 | 63.7 | 63.1 | 63.6 | 0.19      |  |
|   | Cel.  | 61.1          | 62.3   | 23.3                                         | 7.79 | 65.6 | 66-1         | 67.2       | 68.3  | 6.89       | 10.07 | 9.04 | 71.1           | 72.5 | 72.8 | 73.3  | 73.9 | 0.92 | 9.92 | 76.1  | 101  | 200  | 78.3 | 3.84 | 79.4 | 2.08      |  |
|   | Fah.  | 77            | 141    | 146                                          | 148  | 150  | 151          | 153        | 155   | 156        | 158   | 159  | 160            | 162  | 163  | 164   | 165  | 167  | 168  | 169   | 275  | 172  | 173  | 174  | 175  | 176       |  |
|   | Réau. | 132.4         | 33.0   | 34.7                                         | 30.0 | 36.4 | 36.9<br>37.3 | 37.8       | 38.7  | 39.1       | 0.04  | 40.4 | 9.04           | 41.8 | 42.5 | 42.7  | 43.1 | 44.0 | 44.4 | 44.9  | 45.8 | 46.2 | 46.7 | 47.1 | 47.6 | 48.0      |  |
|   | Cel.  | 40.6          | 42.5   | 24.5                                         | 44.4 | 45.6 | 46.1         | 47.2       | 48.0  | 6.84       | 20.0  | 9.09 | 1.19           | 52.5 | 52.8 | 53.3  | 53.9 | 55.0 | 9.99 | 56.1  | 57.9 | 8.29 | 58.3 | 58.8 | 20.4 | 0.00      |  |
|   | Fah.  | 105           | 108    | 201                                          | 113  | 111  | 116          | 117        | 110   | 120        | 122   | 123  | 124            | 126  | 127  | 128   | 120  | 131  | 132  | 133   | 135  | 136  | 137  | 138  | 139  | 140       |  |
|   | Réau. | 16.4          | 17.8   | 18.7                                         | 19.6 | 20.4 | 21.3         | 21.8       | 222.7 | 23.1       | 24.0  | 24.4 | 24.9           | 25.8 | 26.2 | 26.7  | 27.1 | 28.0 | 28.4 | 28.9  | 20.8 | 30.5 | 30.7 | 31.1 | 31.6 | 220       |  |
|   | Cel.  | 20.6          | 22.3   | 23.3                                         | 24.4 | 25.6 | 26.7         | 27.2       | 28.3  | 28.0       | 30.0  | 30.6 | 31.7           | 32.2 | 32.8 | 33.3  | 33.9 | 35.0 | 35.6 | 36.1  | 37.9 | 37.8 | 38.3 | 38.9 | 39.4 | 0.0       |  |
| - | Fab.  | 469           | 121    | 24.5                                         | 199  | 18:  | 8.3          | 81         | 8 8   | \$ 00 00   | 88    | 87   | 20 00          | 8    | 16   | 88    | 200  | 95   | 96   | 97    | 0 0  | 100  | 101  | 102  | 103  | 10#<br>10 |  |
|   | Réau. | 4.0+          | 1.0    | 2000                                         | 3.0  | 4.4  | 4.0<br>0.0   | 9.9        | 6.7   | 7.1        | 8.0   | 8.4  | о с<br>Э       | 8.6  | 10.2 | 10.7  | 11:0 | 12.0 | 12.4 | 12.9  | 13.0 | 14.2 | 14.7 | 15.1 | 9.91 | 0.91      |  |
|   | Cel.  | +0.6          | 22.5   | 2 es e                                       | 4.4  | 200  | 6.1          | 7 7<br>7 0 | . 00  | 6.8        | 10.0  | 10.6 | 11.1           | 12.5 | 12.8 | 13.3  | 13.9 | 15.0 | 15.6 | 16.1  | 17.2 | 17.8 | 18.3 | 18.0 | 19.4 | 20.0      |  |
|   | Fab.  | + 33          |        |                                              |      |      | Ĺ            |            |       |            |       |      |                |      |      |       | 11   |      |      |       |      |      |      |      |      | -         |  |
|   | Réau. | -15.6         | 14.2   | 13.3                                         | 12.5 | 11.6 | 10.7         | 10.5       | 0.00  | 8.3<br>6.4 | 8.0   | 9.2  | 6.7            | 6.5  | 2.8  | 5.3   | 2.4  | 4.0  | 3.6  | 3.1   | 2.5  | 1.8  | 1.3  | 6.0  | F-0  | 40.0      |  |
|   | Cel.  | 18.9          | 17.8   | 16.7                                         | 15.6 | 14.4 | 13.3         | 12.8       | 11.7  | 11.1       | 10.0  | 7.6  | 00 00<br>00 00 | 2.8  | 7.5  | 2.9   | 1.0  | 2.0  | 4.4  | 000   | 200  | 2.2  | 1.7  | 1:1  | 9.0  | 100+      |  |
|   | Fah.  | 200           | 10:    | + 010                                        | 41   | 100  | r 00         | 9 5        | 11    | 122        | 14    | 12   | 17             | 18   | 19   | 20    | 17   | 131  | 21   | 22    | 27   | 28   | 29   | 8    | 31   | 70        |  |
|   | Réau. | -32.0<br>31.6 | 30.7   | 20.00                                        | 28.0 | 28.0 | 27.1         | 26.5       | 25.8  | 25.3       | 24.4  | 24.0 | 23.1           | 22.7 | 22.5 | 21.2  | 90.0 | 20.4 | 20.0 | 10.1  | 18.7 | 18.2 | 17.8 | 17.3 | 16.9 | 16.0      |  |
|   | Cel.  | 39.4          | 0 00 0 | 37.2                                         | 36.1 | 35.0 | 33.9         | 33.3       | 33.0  | 31.7       | 30.6  | 30.0 | 28.9           | 28.3 | 27.8 | 27.5  | 1.07 | 25.6 | 25.0 | 5.4.7 | 23.5 | 22.8 | 22.5 | 21.7 | 1.17 | 20.0      |  |
| - | ah.   | 988           | 37     | 35.                                          | 6 63 | 31   | 29           | 28         | 26    | 250        | 23    | 553  | 202            | 19   | 18   | 17    | 919  | 14   | 133  | 71    | 10   | 6    | 00   | -    | 0 10 | 3 4       |  |

# TABLE 17.—CONVERSION OF CELSIUS INTO FAHRENHEIT DEGREES ABOVE 100 AND VICE VERSA.

Divide the degrees above 100 into hundreds and a remainder. The figure corresponding to the hundreds is taken from the following tables and added to that corresponding to the remainder as taken from Table 17. If, on converting Fahrenheit into Celsius, the "remainder" amounts to 32°, or below this, the degrees Celsius corresponding to it are negative (below freezing point), and hence must be *deducted* from the figures of the following table. Also take notice, for example, that 300° F. is not = 166·7° C., but =  $166\cdot7 - 17\cdot8$ , or =  $111\cdot1 + 37\cdot7 = 148\cdot9$ ° C.

### A.

| Cels. | Cels Fahr. |      | - Fahr. Cels. |      | Fahr. | Fahr. Cels. |      | Cels. | Fahr. |  |  |
|-------|------------|------|---------------|------|-------|-------------|------|-------|-------|--|--|
| 100   | 180        | 600  | 1080          | 1100 | 1980  | 1600        | 2880 |       |       |  |  |
| 200   | 360        | 700  | 1260          | 1200 | 2160  | 1700        | 3060 |       |       |  |  |
| 300   | 540        | 800  | 1440          | 1300 | 2340  | 1800        | 3240 |       |       |  |  |
| 400   | 720        | 900  | 1620          | 1400 | 2520  | 1900        | 3420 |       |       |  |  |
| 500   | 900        | 1000 | 1800          | 1500 | 2700  | 2000        | 3600 |       |       |  |  |

B:

| Fahr.                                                       | Cels.                                                                      | Fahr.                                                                | Cels.                                                                        | Fabr.                                                                | Cels.                                                                                | Fahr.                                                        | Cels.                                                                        |
|-------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------|
| 100<br>200<br>300<br>400<br>500<br>600<br>700<br>800<br>900 | 55·6<br>111·1<br>166·7<br>222·2<br>277·8<br>333·3<br>388·9<br>444·4<br>500 | 1000<br>1100<br>1200<br>1300<br>1400<br>1500<br>1600<br>1700<br>1800 | 556·6<br>611·1<br>666·7<br>722·2<br>777·8<br>833·3<br>888·9<br>944·4<br>1000 | 1900<br>2000<br>2100<br>2200<br>2300<br>2400<br>2500<br>2600<br>2700 | 1055·6<br>1111·1<br>1166·7<br>1222·2<br>1277·8<br>1333·3<br>1388·9<br>1444·4<br>1500 | 2800<br>2900<br>3000<br>3100<br>3200<br>3300<br>3400<br>3500 | 1555·6<br>1611·1<br>1666·7<br>1722·2<br>1777·8<br>1833·3<br>1888·9<br>1944·4 |

### TABLE 18.-FUSING POINTS.

|                       | ·              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                       | С.             | F.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Aluminium             | 700°           | 1292°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Antimony              | 432            | 809                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Asphalt               | 100            | 212                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Aspirate              | 100            | 212                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Bismuth               | 260            | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Boric Acid            | 186            | 367                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Brass                 | 900            | 1652                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Bromine               | -22            | -7.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Bronze                | 900            | 1652                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.1                   | 010            | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Cadmium               | 316            | 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Cobalt                | 1500           | 2732                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Colophonium           | 135            | 275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Copper                | 1100           | 2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Cupric chloride       | 498            | 928                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Cuprous chloride      | 434            | 813                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Fot over              | 40             | 104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Fat, oxen             | 42             | 107.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| sheep                 | 27             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| pig                   |                | 80.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Fluorspar             | 902            | 1655                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Glass                 | 1200           | 2192                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Glass containing lead | 1000           | 1832                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Gold                  | 1075           | 1967                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                       | 1010           | 2001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Iron, cast, white     | 1075           | 1967                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| grey                  | 1275           | 2327                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| wrought               | 1550           | 2822                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Iodine                | 113            | 235.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                       |                | 200 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Lead                  | 326            | 618                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| oxide                 | 954            | 1749                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| chloride              | 498            | 928                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Magnesium             | 500            | 932                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                       | <del>-39</del> | -38·2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Mercury               | 293            | 560                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Mercuric chloride     | 293            | 900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Naphthalene           | 79             | 174.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Nickel.               | 1500           | 2732                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                       | 2000           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Palm oil              | 29             | 84.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Paraffin              | 45-60          | 113-140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Pitch (coal tar)      | 150-200        | 300-400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Phosphorus            | 44             | 111.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                       |                | The state of the s |

### FUSING POINTS-continued.

|                    | С.    | F.      |
|--------------------|-------|---------|
| Platinum           | 1775  | 3227    |
| Potassium chlorate | 359   | 678     |
| iodide             | 634   | 1173    |
| carbonate          | 834   | 1533    |
| nitrate            | 329   | 624     |
| Stearic acid       | 70    | 158     |
| Steel              | 1375  | 2507    |
| Silver, metallic   | 960   | 1760    |
| chloride           | 451   | 843.8   |
| nitrate            | 217   | 422     |
| Strontium chloride | 825   | 1517    |
| Selenium           | 217   | 422     |
| Sodium chloride    | 772   | 1421    |
| sulphate           | 861   | 1581    |
| nitrate            | 316   | 600     |
| chlorate           | 302   | 575     |
| carbonate          | 814   | 1497    |
| Spermaceti         | 45-50 | 113-122 |
| Thallium           | 290   | 554     |
| Tin                | 230   | 446     |
| Wax, bee's         | 62-70 | 143-158 |
| Zinc               | 412   | 773     |

### TABLE 19.-BOILING POINTS.

|                                                               | С.                            | F.                           |
|---------------------------------------------------------------|-------------------------------|------------------------------|
| Alcohol, absolute Ammonia, anhydrous nitrate, satur. solution | 78°<br>-38·5<br>164           | 172·4°<br>-37·3<br>327       |
| Barium chloride, satur. solution                              | 104·4<br>47·0<br>80·4<br>63·0 | 220<br>116·6<br>177<br>145·4 |
| Calcium chloride, satur. solution                             | 179·5<br>156<br>128           | 355·1<br>312·8<br>262·4      |

### BOILING POINTS .- Continued.

|                                                                                                            | C.                                                                     | F.                                                |
|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------|
| Calcium nitrate, satur. solution                                                                           | 152<br>-78                                                             | 305·6<br>-108                                     |
| Ether                                                                                                      | 85                                                                     | 95                                                |
| Hydrochloric acid, 20.2 per cent. HCl                                                                      | 110                                                                    | 230                                               |
| Iodineabove                                                                                                | 200                                                                    | 392                                               |
| Methylic alcohol                                                                                           | 60<br>357                                                              | 140<br>674·6                                      |
| Naphthalene Nitric acid, most concentrated specific gravity 1·42 Nitrous anhydride oxide Nitrogen peroxide | 217<br>86<br>121<br>-2<br>-88<br>28                                    | 422·6<br>186·8<br>249·8<br>28·4<br>-126<br>82·4   |
| Potassium chloride, satur. solution                                                                        | 110<br>105<br>169·4<br>135<br>118                                      | 230<br>221<br>336·9<br>275<br>244·4               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                       | 108·4<br>124·4<br>106<br>106·6<br>122<br>448<br>326<br>15<br>50<br>—10 | 227·1 255·9 222·8 223·8 251·6 838 618·8 59 122 14 |
| Turpentine, spirits of                                                                                     | 160                                                                    | 320                                               |

### TABLE 20.-REDUCTION OF THE VOLUME OF

I. Table for reducing the volumes

| 0°       | 1°             | 2°             | 3°             | 4°             | 5°             | 6°             | 7°             | 8°               | 9°             | 10°            | 00       |
|----------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|------------------|----------------|----------------|----------|
| 1        | 0.996          | 0.993          | 0.989          | 0.986          | 0.982          | 0.978          | 0.975          | 0.972            | 0.968          | 0.965          | 1        |
| 2        | 1.993          | 1.985          | 1.978          | 1.971          | 1.964          | 1.957          | 1.950          | 1.943            | 1.936          | 1.929          | 2        |
| 3        | 2.989          | 2.978          | 2.967          | 2.957          | 2.946          | 2.936          | 2.925          | 2.915            | 2.904          | 2.894          | 3        |
| 4        | 3.985          | 3.971          | 3.956          | 3.942          | 3.928          | 3.914          | 3.900          | 3.886            | 3.872          | 3.859          | 4        |
| 5        | 4.982          | 4.964          | 4.946          | 4.928          | 4.910          | 4.893          | 4.876          | 4.858            | 4.841          | 4.824          | 5        |
| 6        | 5.978          | 5.956          | 5.935          | 5.913          | 5.892          | 5.871          | 5.850          | 5.830            | 5.809          | 5.788          | 6        |
| 7        | 6.974          | 6.949          | 6.924          | 6.899          | 6.874          | 6.820          | 6.825          | 6.801            | 6.777          | 6.753          | 7        |
| 8        | 7.970          | 7.942          | 7.913          | 7.885          | 7.856          | 7.828          | 7.800          | 7.773            | 7.745          | 7.718          | 8        |
| 9        | 8.967          | 8.934          | 8.905          | 8.870          | 8.838          | 8.807          | 8.775          | 8.744            | 8.713          | 8.682          | 9        |
| 10       | 9.963          | 9.927          | 9.891          | 9.856          | 9.820          | 9.785          | 9.750          | 9.716            | 9.681          | 9.647          | 10       |
| 11       | 10.96          | 10.92          | 10.88          | 10.84          | 10.80          | 10.76          | 10.73          | 10.69            | 10.65          | 10.61          | 11       |
| 12       | 11.96          | 11.91          | 11.87          | 11.83          | 11.78          | 11.74          | 11.70          | 11.66            | 11.62          | 11.57          | 12       |
| 13       | 12.95          | 12.91          | 12.86          | 12.81          | 12.76          | 12.72          | 12.68          | 12.63            | 12.59          | 12.54          | 13       |
| 14       | 13.95          | 13.90          | 13.85          | 13.80          | 13.75          | 13.70          | 13.65          | 13.60            | 13.55          | 13.50          | 14       |
| 15       | 14.95          | 14.89          | 14.84          | 14.78          | 14.73          | 14.68          | 14.63          | 14.57            | 14.52          | 14.47          | 15       |
| 16       | 15.94          | 15.88          | 15.83          | 15.77          | 15.71          | 15.66          | 15.60          | 15.55            | 15.49          | 15.43          | 16       |
| 17       | 16.94          | 16.87          | 16.82          | 16·75<br>17·74 | 16.69          | 16.64<br>17.61 | 16.58<br>17.55 | $16.52 \\ 17.49$ | 16·46<br>17·43 | 16·40<br>17·36 | 17       |
| 18       | 17:93          | 17.87<br>18.86 | 17.81          |                | 17.67          | 18.59          |                | 18:46            |                |                | 18<br>19 |
| 19<br>20 | 18.93<br>19.93 | 19.85          | 18·79<br>14·78 | 18·72<br>19·71 | 18.65<br>19.64 | 19.57          | 18.53<br>19.50 | 19.43            | 18·39<br>19·36 | 18·33<br>19·29 | 20       |
|          |                | 20.84          | 20.77          | 20.69          | 20.62          | 20.55          | 20.48          | 20.40            | 20.33          | 20.26          | 21       |
| 21<br>22 | 20.93          | 21.84          | 21.76          | 21.68          | 21.60          | 21.23          | 21.45          | 21.37            | 21.30          | 21.22          | 22       |
| 23       | 21 92          | 22.83          | 22.75          | 22.66          | 22.58          | 22.21          | 22.43          | 22.35            | 22.26          | 22.18          | 23       |
| 24       | 23.92          | 23.82          | 23.74          | 23.65          | 23.26          | 23.48          | 23.40          | 23.32            | 23.23          | 23.15          | 24       |
| 25       | 24.91          | 24.81          | 24.73          | 24.64          | 24.55          | 24.46          | 24.38          | 24.29            | 24.50          | 24.11          | 25       |
| 26       | 25.91          | 25.81          | 25.72          | 25.62          | 25.23          | 25.44          | 25.35          | 25.26            | 25.17          | 25.08          | 26       |
| 27       | 26.90          | 26.80          | 26.71          | 26.61          | 26.2           | 26.42          | 26.33          | 26.23            | 26.13          | 26.04          | 27       |
| 28       | 27.90          | 27.79          | 27.69          | 27.59          | 27.50          | 27.40          | 27.30          | 27.20            | 27.10          | 27.01          | 28       |
| 29       | 28.90          | 28.78          | 28.68          | 28.58          | 28.48          | 28.38          | 28.28          | 28.17            | 28.07          | 27.97          | 29       |
| 30       | 29.89          | 29.78          | 29.67          | 29.57          | 29.46          | 29.36          | 29.25          | 29.15            | 29.04          | 28.94          | 30       |
| 31       | 30.89          | 30.77          | 30.66          | 30.55          | 30.44          | 30.34          | 30:23          | 30.12            | 30.01          | 29.91          | 31       |
| 32       | 31.88          | 31.76<br>32.76 | 31.65          | 31.24          | 31.42          | 31.32          | 31.20          | 31.09            | 30.98          | 30.87          | 32       |
| 33       | 32.88          | 32.76          | 32.64          | 32.52          | 32.40          | 32.30          | 32.18          | 32.06            | 31.94          | 31.84          | 33       |
| 34       | 33.88          | 33.75          | 33.63          | 33.21          | 33.38          | 33.27          | 33.12          | 33.03            | 32.91          | 32.80          | 34       |
| 35       | 34.87          | 34.74          | 34.62          | 34.20          | 34.37          | 34.25          | 34.13          | 34.01            | 33.88          | 33.77          | 35       |
| 36       | 35.87          | 35.74          | 35.61          | 35.48          | 35.32          | 35.23          | 35.10          | 34.98            | 34.85          | 34.73          | 36       |
| 37       | 36.87          | 36.73          | 36.60          | 36.47          | 36.33          | 36.21          | 36.08          | 35.95            | 35.82          | 35.70          | 37       |
| 38       | 37.86          | 37.72          | 37.59          | 37.45          | 37.32          | 37.19          | 37.05          | 36.92            | 36.79          | 36.66          | 38       |
| 39       | 38.86          | 38.71          | 38.58          | 38.44          | 38.30          | 3846           | 38.03          | 37.89            | 37.75          | 37.62          | 39       |
| 40       | 39.85          | 39.71          | 39.56          | 39.42          | 39.28          | 39.14          | 39.00          | 38.86            | 38.72          | 38.59          | 40       |
| 41       | 40.85          | 40.70          | 40.55          | 40.41          | 40.26          | 40.12          | 39.98          | 39.83            | 39.69          | 39.55          | 41       |
| 42       | 41.85          | 41.69 42.68    | 41.54 42.53    | 41.39          | 41.24          | 41.10          | 40.95          | 40.80<br>41.78   | 40.66          | 40.52          | 42 43    |
| 43       | 43.84          | 43.68          | 43.52          | 43.37          | 43.20          | 43.05          | 42.90          | 42.75            | 42.59          | 42.45          | 44       |
| 45       | 44.84          | 44.67          | 44.51          | 44.35          | 44.19          | 44.03          | 43.88          | 43.72            | 43.56          | 43.41          | 45       |
| 46       | 45.83          | 45.66          | 45.20          | 45.34          | 45.17          | 45.01          | 44.85          | 44.69            | 44.53          | 44.38          | 46       |
| 47       | 46.83          | 46.65          | 46.48          | 46.32          | 46.12          | 45.99          | 45.83          | 45.66            | 45.50          | 45.34          | 47       |
| 48       | 47.83          | 47.65          | 47.48          | 47.31          | 47.13          | 46.97          | 46.80          | 46.63            | 46.47          | 46.31          | 48       |
| 49       | 48.82          | 48.64          | 48.47          | 48.29          | 48.12          | 47.95          | 47.78          | 47.60            | 47.44          | 47.27          | 49       |
| 50       | 49.82          | 49.64          | 49.46          | 49.28          | 49.10          | 48.93          | 48.75          | 48.58            | 48.41          | 48.24          | 50       |
|          | 1              | 1              | 1              |                |                |                |                |                  |                |                |          |

### GASES TO NORMAL TEMPERATURE AND PRESSURE.

of gases to a temperature of 0° C.

| or ga | 363 60 8 | · comp |       |       |       |       |       |       |       |                   |     |
|-------|----------|--------|-------|-------|-------|-------|-------|-------|-------|-------------------|-----|
| 0°    | 1°       | 2°     | 3°    | 4°    | 5°    | 6°    | 7°    | 8°    | 9°    | 10°               | 0°  |
| 51    | 50.82    | 50.63  | 50·45 | 50·26 | 50.08 | 49.91 | 49.73 | 49:55 | 49:38 | 49 <sup>2</sup> 1 | 51  |
| 52    | 51.81    | 51.62  | 51·44 | 51·25 | 51.06 | 50.89 | 50.70 | 50:52 | 50:35 | 50 <sup>1</sup> 7 | 52  |
| 53    | 52.81    | 52.62  | 52·43 | 52·24 | 52.05 | 51.87 | 51.68 | 51:49 | 51:31 | 51 <sup>1</sup> 3 | 53  |
| 54    | 53.81    | 53.61  | 53·42 | 53·22 | 53.03 | 52.84 | 52.65 | 52:46 | 52:28 | 52 <sup>1</sup> 0 | 54  |
| 55    | 54.80    | 54.60  | 54·41 | 54·21 | 54.01 | 53.82 | 53.63 | 53:44 | 53:25 | 53 <sup>0</sup> 6 | 55  |
| 56    | 55:80    | 55.60  | 55·40 | 55:19 | 54·99 | 54·80 | 54.60 | 54·41 | 54·22 | 54·03             | 56  |
| 57    | 56:80    | 56.59  | 56·39 | 56:18 | 55·97 | 55·78 | 55.58 | 55·38 | 55·19 | 54·99             | 57  |
| 58    | 57:79    | 57.58  | 57·37 | 57:16 | 56·95 | 56·76 | 56.55 | 56·35 | 56·15 | 55·96             | 58  |
| 59    | 58:79    | 58.57  | 58·37 | 58:15 | 57·93 | 57·74 | 57.53 | 57·32 | 57·12 | 56·92             | 59  |
| 60    | 59:78    | 59.56  | 59·35 | 59:13 | 58·92 | 58·71 | 58.50 | 58·30 | 58·00 | 57·88             | 60  |
| 61    | 60.78    | 60.56  | 60:34 | 60·12 | 59.90 | 59.69 | 59.48 | 59·27 | 59.06 | 58.85             | 61  |
| 62    | 61.78    | 61.55  | 61:33 | 61·10 | 60.88 | 60.67 | 60.45 | 60·24 | 60.03 | 59.81             | 62  |
| 63    | 62.77    | 62.54  | 62:32 | 62·09 | 61.86 | 61.65 | 61.43 | 61·21 | 60.99 | 60.77             | 63  |
| 64    | 63.77    | 63.53  | 63:31 | 63·07 | 62.84 | 62.63 | 62.40 | 62·18 | 61.96 | 61.74             | 64  |
| 65    | 64.76    | 64.53  | 64:30 | 64·06 | 63.83 | 63.61 | 63.38 | 63·15 | 62.93 | 62.70             | 65  |
| 66    | 65.76    | 65.52  | 65·29 | 65.04 | 64.81 | 64.58 | 64·35 | 64·13 | 63.89 | 63.67             | 66  |
| 67    | 66.75    | 66.51  | 66·27 | 66.03 | 65.79 | 65.56 | 65·33 | 65·10 | 64.86 | 64.63             | 67  |
| 68    | 67.75    | 67.50  | 67·26 | 67.02 | 66.77 | 66.54 | 66·30 | 66·07 | 65.83 | 65.60             | 68  |
| 69    | 68.75    | 68.50  | 68·25 | 68.01 | 67.75 | 67.52 | 67·28 | 67·04 | 66.80 | 66.56             | 69  |
| 70    | 69.74    | 69.49  | 69·24 | 68.99 | 68.74 | 68.50 | 68·25 | 68·01 | 67.77 | 67.53             | 70  |
| 71    | 70·74    | 70·48  | 70·23 | 69.98 | 69.72 | 69·48 | 69·23 | 68.98 | 68:74 | 68·49             | 71  |
| 72    | 71·74    | 71·48  | 71·22 | 70.96 | 70.70 | 70·46 | 70·20 | 69.95 | 69:71 | 69·46             | 72  |
| 73    | 72·73    | 72·47  | 72·21 | 71.95 | 71.69 | 71·44 | 71·18 | 70.93 | 70:67 | 70·42             | 73  |
| 74    | 73·73    | 73·46  | 73·20 | 72.93 | 72.66 | 72·41 | 72·15 | 71.90 | 71:64 | 71·39             | 74  |
| 75    | 74·72    | 74·45  | 74·19 | 73.92 | 73.65 | 73·39 | 73·13 | 72.87 | 72:61 | 72·35             | 75  |
| 76    | 75·72    | 75·45  | 75·18 | 74.90 | 74.63 | 74·37 | 74·10 | 73·84 | 73.58 | 73·32             | 76  |
| 77    | 76·72    | 76·44  | 76·17 | 75.89 | 75.61 | 75·35 | 75·08 | 74·81 | 74.55 | 74·28             | 77  |
| 78    | 77·71    | 77·43  | 77·15 | 76.87 | 76.59 | 76·33 | 76·05 | 75·78 | 75.51 | 75·25             | 78  |
| 79    | 78·71    | 78·42  | 78·14 | 77.86 | 77.58 | 77·31 | 77·03 | 76·75 | 76.48 | 76·21             | 79  |
| 80    | 79·70    | 79·42  | 79·13 | 78.85 | 78.56 | 78·28 | 78·00 | 77·73 | 77.45 | 77·18             | 80  |
| 81    | 80·70    | 80·41  | 80·12 | 79.83 | 79.54 | 79·26 | 78.98 | 78.70 | 78·42 | 78·14             | 81  |
| 82    | 81·69    | 81·40  | 81·11 | 80.82 | 80.52 | 80·24 | 79.95 | 79.67 | 79·39 | 79·11             | 82  |
| 83    | 82·69    | 82·39  | 82·10 | 81.81 | 81.51 | 81·22 | 80.93 | 80.64 | 80·36 | 80·07             | 83  |
| 84    | 83·69    | 83·39  | 83·09 | 82.79 | 82.49 | 82·20 | 81.90 | 81.61 | 81·32 | 81·04             | 84  |
| 85    | 84·68    | 84·38  | 84·08 | 83.78 | 83.47 | 83·17 | 82.88 | 82.58 | 82·29 | 82·00             | 85  |
| 86    | 85.68    | 85·37  | 85.07 | 84.76 | 84·45 | 84·15 | 83.85 | 83.55 | 83·26 | 82·97             | 86  |
| 87    | 86.68    | 86·37  | 86.06 | 85.75 | 85·43 | 85·13 | 84.83 | 84.53 | 84·23 | 83·93             | 87  |
| 88    | 87.67    | 87·36  | 87.05 | 86.73 | 86·42 | 86·11 | 85.80 | 85.50 | 85·20 | 84·90             | 88  |
| 89    | 88.67    | 88·35  | 88.04 | 87.72 | 87·40 | 87·09 | 86.78 | 86.47 | 86·16 | 85·86             | 89  |
| 90    | 89.67    | 89·34  | 89.02 | 88.70 | 88·38 | 88·07 | 87.75 | 87.44 | 87·13 | 86·82             | 90  |
| 91    | 90.66    | 90·34  | 90.01 | 89.69 | 89·36 | 89.05 | 88.73 | 88·41 | 88·10 | 87·79             | 91  |
| 92    | 91.66    | 91·33  | 91.00 | 90.67 | 90·34 | 90.03 | 89.70 | 89·38 | 89·07 | 88·75             | 92  |
| 93    | 92.66    | 92·32  | 91.99 | 91.66 | 91·33 | 91.01 | 90.68 | 90·36 | 90·03 | 89·72             | 93  |
| 94    | 93.65    | 93·31  | 92.98 | 92.64 | 92·31 | 91.98 | 91.65 | 91·33 | 91·00 | 90·68             | 94  |
| 95    | 94.65    | 94·31  | 93.97 | 93.63 | 93·29 | 92.96 | 92.63 | 92·30 | 91·97 | 91·65             | 95  |
| 96    | 95.65    | 95·30  | 94.96 | 94·61 | 94·27 | 93·94 | 93.60 | 93·27 | 92·94 | 92·61             | 96  |
| 97    | 96.64    | 96·29  | 95.95 | 95·60 | 95·25 | 94·92 | 94.58 | 94·24 | 93·91 | 93·57             | 97  |
| 98    | 97.64    | 97·28  | 96.93 | 96·58 | 96·24 | 95·90 | 95.55 | 95·21 | 94·87 | 94·54             | 98  |
| 99    | 98.64    | 98·27  | 97.92 | 97·57 | 97·22 | 96·87 | 96.53 | 96·18 | 95·84 | 95·50             | 99  |
| 100   | 99.63    | 99·27  | 98.91 | 98·56 | 98·20 | 97·85 | 97.50 | 97·16 | 96·81 | 96·47             | 100 |

### REDUCTION OF THE VOLUME OF GASES TO

Table for reducing the volumes of gases

| <b>0</b> ° | 11°   | 12°   | 13°   | 14°   | 15°   | 16°   | 17°   | 18°   | 19°   | 20°   | 00  |
|------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-----|
| 1          | 0.961 | 0.958 | 0.955 | 0.951 | 0.948 | 0.945 | 0.941 | 0.938 | 0.935 | 0.932 | 3 4 |
| 2          | 1.923 | 1.916 | 1.909 | 1.903 | 1.896 | 1.889 | 1.883 | 1.876 | 1.869 | 1.864 |     |
| 3          | 2.884 | 2.874 | 2.864 | 2.854 | 2.844 | 2.834 | 2.824 | 2.815 | 2.805 | 2.795 |     |
| 4          | 3.845 | 3.832 | 3.818 | 3.805 | 3.792 | 3.779 | 3.766 | 3.753 | 3.740 | 3.727 |     |
| 5          | 4·807 | 4·790 | 4·773 | 4·757 | 4·740 | 4·724 | 4:707 | 4·691 | 4:675 | 4:659 | 8 9 |
| 6          | 5·768 | 5·747 | 5·728 | 5·708 | 5·688 | 5·668 | 5:648 | 5·629 | 5:609 | 5:591 |     |
| 7          | 6·729 | 6·705 | 6·682 | 6·659 | 6·636 | 6·613 | 6:590 | 6·567 | 6:544 | 6:523 |     |
| 8          | 7·690 | 7·663 | 7·637 | 7·610 | 7·584 | 7·558 | 7:531 | 7·506 | 7:479 | 7:454 |     |
| 9          | 8·652 | 8·621 | 8·591 | 8·562 | 8·532 | 8·502 | 8:472 | 8·444 | 8:414 | 8:386 |     |
| 10         | 9.613 | 9.579 | 9.546 | 9.513 | 9:480 | 9:447 | 9:414 | 9:382 | 9·349 | 9:318 | 10  |
| 11         | 10.57 | 10.53 | 10.50 | 10.46 | 10:43 | 10:39 | 10:35 | 10:32 | 10·28 | 10:25 | 11  |
| 12         | 11.53 | 11.49 | 11.45 | 11.42 | 11:38 | 11:33 | 11:30 | 11:26 | 11·21 | 11:18 | 12  |
| 13         | 12.49 | 12.45 | 12.41 | 12.36 | 12:32 | 12:28 | 12:24 | 12:20 | 12·15 | 12:11 | 13  |
| 14         | 13.45 | 13.41 | 13.36 | 13.31 | 13:27 | 13:22 | 13:17 | 13:13 | 13·08 | 13:04 | 14  |
| 15         | 14.42 | 14.37 | 14.32 | 14.27 | 14:22 | 14:17 | 14:12 | 14:07 | 14·02 | 13:97 | 15  |
| 16         | 15:38 | 15·32 | 15·27 | 15·22 | 15·17 | 15.11 | 15:06 | 15:01 | 14:96 | 14:91 | 16  |
| 17         | 16:34 | 16·28 | 16·23 | 16·17 | 16·12 | 16.06 | 16:00 | 15:95 | 15:89 | 15:84 | 17  |
| 18         | 17:30 | 17·24 | 17·18 | 17·12 | 17·06 | 17.00 | 16:94 | 16:89 | 16:82 | 16:76 | 18  |
| 19         | 18:26 | 18·20 | 18·14 | 18·07 | 18·01 | 17.95 | 17:89 | 17:83 | 17:76 | 17:70 | 19  |
| 20         | 19:23 | 19·16 | 19·09 | 19·03 | 18·96 | 18.89 | 18:83 | 18:76 | 18:69 | 18:64 | 20  |
| 21         | 20·19 | 20·12 | 20·04 | 19·98 | 19:91 | 19:84 | 19.77 | 19:70 | 19.62 | 19·57 | 21  |
| 22         | 21·15 | 21·08 | 21·00 | 20·93 | 20:86 | 20:78 | 20.71 | 20:64 | 20.56 | 20·50 | 22  |
| 23         | 22·11 | 22·03 | 21·95 | 21·88 | 21:80 | 21:73 | 21.65 | 21:58 | 21.50 | 21·43 | 23  |
| 24         | 23·07 | 22·99 | 22·91 | 22·83 | 22:75 | 22:67 | 22.59 | 22:51 | 22.43 | 22·37 | 24  |
| 25         | 24·03 | 23·95 | 23·86 | 23·78 | 23:70 | 23:61 | 23.54 | 23:45 | 23.37 | 23·30 | 25  |
| 26         | 25.00 | 24:91 | 24·81 | 24:73 | 24:65 | 24:56 | 24·48 | 24·39 | 24·30 | 24:23 | 26  |
| 27         | 25.96 | 25:87 | 25·77 | 25:69 | 25:60 | 25:50 | 25·42 | 25·33 | 25·23 | 25:16 | 27  |
| 28         | 26.92 | 26:82 | 26·72 | 26:64 | 26:54 | 26:45 | 26·36 | 26·27 | 26·17 | 26:09 | 28  |
| 29         | 27.88 | 27:78 | 27·68 | 27:59 | 27:49 | 27:39 | 27·30 | 27·20 | 27·10 | 27:02 | 29  |
| 30         | 28.84 | 28:74 | 28·64 | 28:54 | 28:44 | 28:34 | 28·24 | 28·15 | 28·05 | 27:95 | 30  |
| 31         | 29·80 | 29.70 | 29·59 | 29·49 | 29·39 | 29·28 | 29·18 | 29·09 | 28·99 | 28:87 | 31  |
| 32         | 30·76 | 30.66 | 30·55 | 30·44 | 30·34 | 30·23 | 30·12 | 30·03 | 29·92 | 29:81 | 32  |
| 33         | 31·72 | 31.61 | 31·50 | 31·39 | 31·28 | 31·17 | 31·06 | 30·97 | 30·86 | 30:74 | 33  |
| 34         | 32·68 | 32.57 | 32·46 | 32·34 | 32·23 | 32·12 | 32·01 | 31·90 | 31·79 | 31:68 | 34  |
| 35         | 33·65 | 33.53 | 33·41 | 33·30 | 33·18 | 33·06 | 32·95 | 32·84 | 32·73 | 32:61 | 35  |
| 36         | 34·61 | 34·49 | 34·37 | 34·25 | 34·13 | 34·01 | 33·89 | 33·78 | 33.66 | 33·54 | 36  |
| 37         | 35·57 | 35·45 | 35·32 | 35·20 | 35·08 | 34·95 | 34·83 | 34·72 | 34.59 | 34·47 | 37  |
| 38         | 36·53 | 36·40 | 36·28 | 36·15 | 36·02 | 35·90 | 35·77 | 35·66 | 35.53 | 35·40 | 38  |
| 39         | 37·49 | 37·36 | 37·23 | 37·10 | 36·97 | 36·84 | 36·71 | 36·59 | 36.46 | 36·34 | 39  |
| 40         | 38·45 | 38·32 | 38·18 | 38·05 | 37·92 | 37·79 | 37·66 | 37·53 | 37.40 | 37·27 | 40  |
| 41         | 39·41 | 39·28 | 39·14 | 39.00 | 38·87 | 38·73 | 38·60 | 38·47 | 38·34 | 38·20 | 41  |
| 42         | 40·37 | 40·24 | 40·09 | 39.95 | 39·82 | 39·68 | 39·54 | 39·41 | 39·27 | 39·13 | 42  |
| 43         | 41·33 | 41·19 | 41·05 | 40.90 | 40·76 | 40·62 | 40·48 | 40·35 | 40·21 | 40·07 | 43  |
| 44         | 42·30 | 42·15 | 42·00 | 41.86 | 41·71 | 41·57 | 41·43 | 41·28 | 41·14 | 41·00 | 44  |
| 45         | 43·26 | 43·11 | 42·95 | 42.81 | 42·66 | 42·51 | 42·37 | 42·22 | 42·08 | 41·93 | 45  |
| 46         | 44·29 | 44.07 | 43·91 | 43.76 | 43.61 | 43·46 | 43·31 | 43·16 | 43.01 | 42·86 | 46  |
| 47         | 45·18 | 45.03 | 44·86 | 44.71 | 44.56 | 44·40 | 44·25 | 44·10 | 43.94 | 43·79 | 47  |
| 48         | 46·14 | 45.98 | 45·82 | 45.66 | 45.50 | 45·35 | 45·19 | 45·04 | 44.88 | 44·72 | 48  |
| 49         | 47·10 | 46.94 | 46·77 | 46.61 | 46.45 | 46·29 | 46·13 | 45·97 | 45.81 | 45·65 | 49  |
| 50         | 48·07 | 47.90 | 47·73 | 47.57 | 47.40 | 47·24 | 47·07 | 46·91 | 46.75 | 46·59 | 50  |

### NORMAL TEMPERATURE AND PRESSURE.

to a temperature of 0° C.—continued.

| 0°  | 11°   | 12°   | 13°   | 14°   | 15°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16°   | 17°   | 18°   | 19°   | 20*   | 00  |
|-----|-------|-------|-------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|-------|-------|-------|-----|
| 51  | 49.03 | 48.86 | 48.69 | 48·52 | 48:35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 48·18 | 48.01 | 47:85 | 47.68 | 47.52 | 51  |
| 52  | 49.99 | 49.82 | 49.64 | 49·47 | 49:30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 49·13 | 48.95 | 48:79 | 48.62 | 48.45 | 52  |
| 53  | 50.95 | 50.77 | 50.59 | 50·42 | 50:24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50·07 | 49.89 | 49:72 | 49.55 | 49.38 | 53  |
| 54  | 51.91 | 51.73 | 51.55 | 51·37 | 51:19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 51·02 | 50.54 | 50:66 | 50.49 | 50.32 | 54  |
| 55  | 52.87 | 52.69 | 52.50 | 52·33 | 52:14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 51·96 | 51.78 | 51:60 | 51.43 | 51.25 | 55  |
| 56  | 53.84 | 53.65 | 53·46 | 53·28 | 53·09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 52·91 | 52·72 | 52·54 | 52·36 | 52·18 | 56  |
| 57  | 54.80 | 54.61 | 54·41 | 54·23 | 54·04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 53·86 | 53·66 | 53·48 | 53·29 | 53·71 | 57  |
| 58  | 55.76 | 55.56 | 55·37 | 55·18 | 54·98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 54·80 | 54·60 | 54·42 | 54·23 | 54·04 | 58  |
| 59  | 56.72 | 56.52 | 56·32 | 56·13 | 55·93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 55·74 | 55·54 | 55·35 | 55·16 | 54·97 | 59  |
| 60  | 57.68 | 57.47 | 57·28 | 57·08 | 56·88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 56·68 | 56·48 | 56·29 | 56·09 | 55·91 | 60  |
| 61  | 58.64 | 58·43 | 58·23 | 58.03 | 57.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 57.63 | 57·42 | 57·23 | 57.02 | 56.84 | 61  |
| 62  | 59.60 | 59·39 | 59·19 | 58.98 | 58.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 58.57 | 58·36 | 58·17 | 57.96 | 57.77 | 62  |
| 63  | 60.56 | 60·35 | 60·14 | 59.93 | 59.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 59.52 | 59·30 | 59·11 | 58.90 | 58.11 | 63  |
| 64  | 61.53 | 61·31 | 61·10 | 60.88 | 60.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 60.46 | 60·25 | 60·04 | 59.83 | 59.64 | 64  |
| 65  | 62.49 | 62·26 | 62·05 | 61.84 | 61.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 61.40 | 61·19 | 60·98 | 60.77 | 60.57 | 65  |
| 66  | 63·45 | 63·22 | 63.01 | 62:79 | 62·57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 62:35 | 62·13 | 61.92 | 61.70 | 61·50 | 66  |
| 67  | 64·41 | 64·18 | 63.96 | 63:74 | 63·52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 63:29 | 63·07 | 62.86 | 62.63 | 62·43 | 67  |
| 68  | 65·37 | 65·13 | 64.92 | 64:69 | 64·46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 64:23 | 64·01 | 63.80 | 63.57 | 63·36 | 68  |
| 69  | 66·33 | 66·09 | 65.87 | 65:64 | 65·41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 65:18 | 64·95 | 64.73 | 64.50 | 64·30 | 69  |
| 70  | 67·29 | 67·05 | 66.82 | 66:59 | 66·36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 66:13 | 65·90 | 65.67 | 65.44 | 65·23 | 70  |
| 71  | 68·25 | 68.01 | 67.77 | 67:54 | 67:31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 67.07 | 66.84 | 66.61 | 66·38 | 66·16 | 71  |
| 72  | 69·21 | 68.97 | 68.73 | 68:49 | 68:26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 68.02 | 67.78 | 67.55 | 67·31 | 67·09 | 72  |
| 73  | 70·17 | 69.92 | 69.68 | 69:44 | 69:20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 68.96 | 68.72 | 68.49 | 68·26 | 68·03 | 73  |
| 74  | 71·14 | 70.88 | 70.64 | 70:40 | 70:15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 69.91 | 69.66 | 69.42 | 69·18 | 68·96 | 74  |
| 75  | 72·10 | 71.84 | 71.59 | 71:35 | 71:10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 70.85 | 70.61 | 70.37 | 70·12 | 69·89 | 75  |
| 76  | 73.06 | 72·80 | 72.55 | 72:30 | 72.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 71.80 | 71·55 | 71:30 | 71.05 | 70.82 | 76  |
| 77  | 74.02 | 73·76 | 73.51 | 73:25 | 73.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 72.74 | 72·49 | 72:24 | 71.98 | 71.75 | 77  |
| 78  | 74.93 | 74·71 | 74.46 | 74:20 | 73.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 73.69 | 73·43 | 73:18 | 72.92 | 72.68 | 78  |
| 79  | 75.94 | 75·67 | 75.41 | 75:15 | 74.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 74.63 | 74·37 | 74:11 | 73.85 | 73.61 | 79  |
| 80  | 76.90 | 76·63 | 76.37 | 76:10 | 75.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 75.58 | 75·31 | 75:06 | 74.79 | 74.54 | 80  |
| 81  | 77.86 | 77.59 | 77:32 | 77.05 | 76:79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 76.52 | 76·25 | 76.00 | 75:73 | 75·47 | 81  |
| 82  | 78.82 | 78.55 | 78:28 | 78.00 | 77:74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 77.47 | 77·19 | 76.94 | 76:66 | 76·40 | 82  |
| 83  | 79.78 | 79.50 | 79:23 | 78.95 | 78:68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 78.41 | 78·13 | 77.87 | 77:60 | 77·34 | 83  |
| 84  | 80.75 | 80.46 | 80:19 | 79.91 | 79:63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 79.35 | 79·08 | 78.81 | 78:53 | 78·27 | 84  |
| 85  | 81.71 | 81.42 | 81:14 | 80.86 | 80:58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 80.30 | 80·02 | 79.75 | 79:47 | 79·20 | 85  |
| 86  | 82.67 | 82·38 | 82·10 | 81·81 | 81·53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 81·24 | 80.96 | 80.69 | 80·40 | 80·13 | 86  |
| 87  | 83.63 | 83·33 | 83·05 | 82·76 | 82·48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 82·19 | 81.90 | 81.63 | 81·33 | 81·06 | 87  |
| 88  | 84.59 | 84·29 | 84·01 | 83·71 | 83·42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 83·13 | 82.84 | 82.57 | 82·27 | 81·99 | 88  |
| 89  | 85.56 | 85·25 | 84·96 | 84·66 | 84·37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 84·08 | 83.78 | 83.50 | 83·22 | 82·93 | 89  |
| 90  | 86.52 | 86·21 | 85·92 | 85·62 | 85·32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 85·02 | 84.72 | 84.44 | 84·14 | 83·86 | 90  |
| 91  | 87·48 | 87·17 | 86.87 | 86·57 | 86·27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 85.96 | 85.66 | 85·33 | 85.07 | 84·79 | 91  |
| 92  | 88·44 | 88·13 | 87.83 | 87·52 | 87·22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 86.91 | 86.60 | 86·32 | 86.01 | 85·72 | 92  |
| 93  | 89·40 | 89·08 | 88.78 | 88·47 | 88·16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 87.85 | 87.54 | 87·25 | 86.95 | 86·66 | 93  |
| 94  | 90·36 | 90·04 | 89.73 | 89·42 | 89·11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 88.80 | 88.49 | 88·19 | 87.88 | 87·59 | 94  |
| 95  | 91·33 | 91·00 | 90.68 | 90·38 | 90·06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 89.74 | 89.43 | 89·13 | 88.82 | 88·52 | 95  |
| 96  | 92·29 | 91.96 | 91.64 | 91·33 | 91·01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 90.69 | 90·37 | 90.07 | 89 75 | 89·45 | 96  |
| 97  | 93·25 | 92.92 | 92.59 | 92·28 | 91·96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 91.63 | 91·31 | 91.00 | 90 68 | 90·38 | 97  |
| 98  | 94·21 | 93.87 | 93.55 | 93·23 | 92·90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 92.58 | 92·25 | 91.94 | 91 62 | 91·31 | 98  |
| 99  | 95·17 | 94.83 | 94.50 | 94·18 | 93·85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 93.52 | 93·19 | 92.88 | 92 55 | 92·24 | 99  |
| 100 | 96·13 | 95.79 | 95.46 | 95·13 | 94·80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 94.47 | 94·14 | 93.82 | 93 49 | 93·18 | 100 |
| -   |       | 1     | -     |       | White the state of |       | 1     |       | 1     |       | -   |

38

### REDUCTION OF THE VOLUME OF GASES TO

Table for reducing the volumes of gases

| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |       |       |       |       | 1            | able 101 | reducii | ig the v | orumes | or gases |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-------|-------|-------|-------|--------------|----------|---------|----------|--------|----------|
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0° | 21°   | 22°   | 23°   | 24°   | $25^{\circ}$ | 26°      | 27°     | 28°      | 29°    | 0°       |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1  | 0.929 | 0.926 | 0.922 | 0.919 | 0.916        | 0.913    | 0.910   | 0.907    | 0.904  | 1        |
| 3         2.786         2.777         2.707         2.788         2.749         2.739         2.730         2.721         2.712         3           4         3.714         3.702         3.603         3.653         3.663         3.652         3.640         3.628         3.610         4           5         4.643         4.628         4.612         4.597         4.581         4.566         4.551         4.535         4.520         5           7         6.500         6.479         6.435         6.543         6.543         6.329         6.371         6.349         6.328         7           8         7.429         7.404         7.370         7.331         7.300         7.305         7.281         7.256         7.232         8           9         8.357         8.330         8.274         8.246         8.218         8.191         9.107         9.040         10           11         10.21         10.18         10.15         10.11         10.07         10.04         10.01         9.98         9.94         11           11         10.27         10.18         10.01         10.90         10.92         10.88         10.85         12.85     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    | 1.857 | 1.851 | 1.845 |       |              | 1.826    | 1.820   |          |        | 2        |
| 4         37,14         37,02         3690         3677         3665         3652         3640         36282         3616         4550         5           6         5572         5553         5534         5516         5497         5479         5461         5422         5421         6           7         6500         6479         6435         6435         6435         6435         6237         6371         6349         6328         7           8         77429         7444         7379         7330         7305         7281         7256         7232         8           9         8357         8330         8302         8274         8246         8218         8191         8163         8136         9           10         9286         9255         9224         913         9162         9131         9101         99070         9040         11           11         10-21         10-18         10-15         10-11         10-07         10-04         10-01         998         944         11           11         10-11         11-11         11-11         11-10         11-10         11-11         11-11         11-11 <td< td=""><td>3</td><td>2.786</td><td>2.777</td><td></td><td>2.758</td><td>2.749</td><td></td><td>2.730</td><td></td><td></td><td>3</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3  | 2.786 | 2.777 |       | 2.758 | 2.749        |          | 2.730   |          |        | 3        |
| 5         4'643         4'628         4'612         4'507         4'581         4'566         4'551         4'552         5'421         5           7         6'500         6'479         6'437         6'435         6'413         6'392         6'311         6'349         6'328         7           8         7'499         7'404         7'379         7'334         7'330         7'305         7'251         7'256         7'232         8           9         8'357         8'330         8'302         8'274         8'246         8'218         8'101         8'136         9           10         9'286         9'255         9'221         9'103         9'102         9'131         9'101         9'070         9'040         10           11         10'21         10'18         10'15         10'10         10'01         10'01         9'070         9'040         10           11         10'21         10'18         10'15         11'11         10'07         10'04         10'01         9'98         9'94         11           12         11'14         11'14         11'15         11'95         11'91         11'87         11'75         13         15'3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4  | 3.714 | 3.702 |       | 3:677 |              |          | 3:640   |          |        | 4        |
| 6   5.572   5.553   5.534   5.516   5.497   5.479   5.461   5.442   5.424   6.7   8   7.429   7.404   7.379   7.334   7.330   7.305   7.281   7.256   7.232   8.9   9   8.337   8.330   8.302   8.274   8.246   8.218   8.191   8.163   8.136   9.10   9.286   9.255   9.224   9.193   9.162   9.131   9.101   9.070   9.040   10   11   10.21   10.18   10.15   10.11   10.07   10.04   10.01   9.98   9.94   11   12   11.14   11.11   11.07   11.03   10.99   10.96   10.92   10.88   10.85   12   13   12.07   12.93   11.99   11.95   11.91   11.87   11.83   11.79   11.75   13   14   13.00   12.96   12.91   12.87   12.83   12.78   12.74   12.70   12.66   14   15   13.93   13.88   13.84   13.79   13.74   13.70   13.65   13.61   13.56   15   16   14.86   14.81   14.76   14.71   14.66   14.61   14.55   14.51   14.46   14.61   14.56   14.51   14.46   14.61   14.56   14.51   14.46   14.61   14.56   14.51   14.46   14.61   14.56   14.51   14.46   14.61   14.56   14.51   14.46   14.61   14.56   14.51   14.60   14.51   14.62   14.51   14.62   14.51   14.62   14.51   14.62   14.51   14.62   14.51   14.62   14.51   14.62   14.51   14.62   14.51   14.62   14.51   14.62   14.51   14.62   14.51   14.62   14.51   14.62   14.51   14.62   14.51   14.62   14.51   14.62   14.51   14.62   14.51   14.62   14.51   14.62   14.51   14.62   14.51   14.62   14.51   14.62   14.51   14.62   14.51   14.62   14.51   14.62   14.51   14.62   14.51   14.62   14.51   14.62   14.51   14.62   14.51   14.62   14.51   14.62   14.51   14.62   14.51   14.62   14.51   14.62   14.51   14.62   14.51   14.62   14.51   14.62   14.51   14.62   14.51   14.62   14.51   14.62   14.51   14.62   14.51   14.62   14.51   14.62   14.51   14.62   14.51   14.62   14.51   14.62   14.51   14.62   14.51   14.62   14.51   14.62   14.51   14.62   14.51   14.62   14.51   14.62   14.51   14.62   14.51   14.62   14.51   14.62   14.51   14.62   14.51   14.62   14.51   14.62   14.51   14.62   14.51   14.62   14.51   14.62   14.51   14.62   14.51   14.62   14.51   14.62   14.51   14.62   14.51 | 5  |       |       |       |       |              |          |         |          |        | 5        |
| 8         7 + 429         7 + 444         7 + 379         7 + 330         7 - 330         7 - 330         7 - 231         7 - 232         8           9         8 357         8 330         8 302         8 - 274         8 - 246         8 - 218         8 - 191         8 - 163         8 - 136         9           10         9 - 286         9 - 255         9 - 128         9 - 101         9 - 101         8 - 163         8 - 136         9           11         10 - 21         10 - 18         10 - 15         10 - 11         10 - 70         10 - 40         10 - 11         9 - 98         9 - 94         11           12         11 - 14         11 - 11         11 - 07         11 - 04         10 - 01         9 - 98         9 - 94         11           13         12 - 07         12 - 06         12 - 91         11 - 19         11 - 07         10 - 04         10 - 11         9 - 98         9 - 94         11           14         13 - 00         12 - 96         12 - 91         11 - 95         11 - 91         11 - 75         11 - 83         11 - 75         11 - 75           15         15 - 23         18 - 38         18 - 34         13 - 79         13 - 74         13 - 70         13 - 65         13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |       |       |       |       |              |          |         |          |        |          |
| 9   8-357   8-330   8-302   8-274   8-246   8-218   8-191   8-163   8-136   9   10   9-286   9-255   9-224   9-193   9-162   9-131   9-101   9-070   9-040   10   11   10-21   10-18   10-15   10-11   10-07   10-04   10-01   9-98   9-94   11   12   11-14   11-11   11-07   11-03   10-99   10-96   10-92   10-88   10-85   12   13   12-07   12-03   11-99   11-95   11-91   11-87   11-83   11-79   11-75   13   14   13-00   12-96   12-91   12-87   12-83   12-78   12-74   12-70   12-66   14   15   13-93   13-88   13-84   13-79   13-74   13-70   13-65   13-61   13-56   15   16   14-86   14-81   14-76   14-71   14-66   14-61   14-56   14-51   14-46   15-79   15-73   15-68   15-63   15-58   15-52   15-47   15-42   15-37   17   18   16-71   16-66   16-60   16-55   16-49   16-44   16-38   16-33   16-27   18   19   17-64   17-58   17-53   17-47   17-41   17-35   17-29   17-23   17-18   19   20   18-57   18-51   18-45   18-39   18-32   18-26   18-20   18-14   18-08   20   21   19-50   19-43   19-37   19-31   19-24   19-17   19-11   19-05   18-98   21   22   20-43   20-36   20-29   20-23   20-15   20-09   20-02   19-95   19-89   22   23   21-36   21-29   21-21   21-15   21-07   21-00   20-93   20-86   20-79   23   24   22-28   22-21   22-14   22-07   21-99   21-91   21-84   21-77   21-70   24   25   23-21   23-14   23-06   22-99   22-90   22-83   22-75   22-68   22-60   25   26   24-14   24-06   23-98   23-91   23-82   23-74   23-66   23-58   23-50   26   27   25-07   24-99   24-90   24-83   24-73   24-65   24-57   24-49   24-41   27   28   26-00   25-91   25-82   25-74   25-67   25-57   25-48   25-40   25-31   28   29   26-93   26-84   26-75   26-67   26-57   26-48   26-39   26-30   26-22   29   29   26-93   26-84   26-75   26-67   26-57   26-48   26-39   26-30   26-22   29   29   26-93   26-84   26-75   26-67   26-57   26-48   26-39   26-30   26-22   29   29   26-93   26-84   26-75   26-67   26-57   26-48   26-39   26-30   26-22   29   29   26-93   26-84   26-75   26-67   26-57   26-48   26-39   26-30   26-22   29   29   26-93 | 0  |       |       |       |       |              |          |         |          |        | 0        |
| 9   8-357   8-330   8-302   8-274   8-246   8-218   8-191   8-163   8-136   9   10   9-286   9-255   9-224   9-193   9-162   9-131   9-101   9-070   9-040   10   11   10-21   10-18   10-15   10-11   10-07   10-04   10-01   9-98   9-94   11   12   11-14   11-11   11-07   11-03   10-99   10-96   10-92   10-88   10-85   12   13   12-07   12-03   11-99   11-95   11-91   11-87   11-83   11-79   11-75   13   14   13-00   12-96   12-91   12-87   12-83   12-78   12-74   12-70   12-66   14   15   13-93   13-88   13-84   13-79   13-74   13-70   13-65   13-61   13-56   15   16   14-86   14-81   14-76   14-71   14-66   14-61   14-56   14-51   14-46   15-79   15-73   15-68   15-63   15-58   15-52   15-47   15-42   15-37   17   18   16-71   16-66   16-60   16-55   16-49   16-44   16-38   16-33   16-27   18   19   17-64   17-58   17-53   17-47   17-41   17-35   17-29   17-23   17-18   19   20   18-57   18-51   18-45   18-39   18-32   18-26   18-20   18-14   18-08   20   21   19-50   19-43   19-37   19-31   19-24   19-17   19-11   19-05   18-98   21   22   20-43   20-36   20-29   20-23   20-15   20-09   20-02   19-95   19-89   22   23   21-36   21-29   21-21   21-15   21-07   21-00   20-93   20-86   20-79   23   24   22-28   22-21   22-14   22-07   21-99   21-91   21-84   21-77   21-70   24   25   23-21   23-14   23-06   22-99   22-90   22-83   22-75   22-68   22-60   25   26   24-14   24-06   23-98   23-91   23-82   23-74   23-66   23-58   23-50   26   27   25-07   24-99   24-90   24-83   24-73   24-65   24-57   24-49   24-41   27   28   26-00   25-91   25-82   25-74   25-67   25-57   25-48   25-40   25-31   28   29   26-93   26-84   26-75   26-67   26-57   26-48   26-39   26-30   26-22   29   29   26-93   26-84   26-75   26-67   26-57   26-48   26-39   26-30   26-22   29   29   26-93   26-84   26-75   26-67   26-57   26-48   26-39   26-30   26-22   29   29   26-93   26-84   26-75   26-67   26-57   26-48   26-39   26-30   26-22   29   29   26-93   26-84   26-75   26-67   26-57   26-48   26-39   26-30   26-22   29   29   26-93 | 0  |       | 0.479 |       | 0.400 |              |          | 7:001   |          |        | 7        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8  |       |       |       |       |              |          |         |          |        |          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9  |       |       |       | 0.109 |              |          |         |          |        |          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |       |       |       |       |              |          |         |          |        | 10       |
| 13         12·07         12·03         11·99         11·95         11·91         11·87         11·83         11·79         11·75         13           14         13·00         12·96         12·91         12·87         12·83         12·78         12·70         12·66         14           15         13·93         13·88         13·81         13·79         13·65         13·65         15·63         15·63         15·58         15·52         15·47         15·42         15·37         17         18         16·71         16·66         16·60         16·50         15·53         15·58         15·52         15·47         15·42         15·37         17         18         16·71         16·66         16·60         16·55         16·49         16·44         16·33         16·27         18         19·71         19·11         19·05         18·37         18·45         18·39         18·32         18·26         18·20         18·14         18·08         20         11·19·10         19·43         19·31         19·31         19·24         19·17         19·11         19·05         18·93         21         22         29·43         20·36         20·29         20·23         20·09         20·02         19·95         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11 |       |       |       |       |              |          |         |          |        |          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |       |       |       |       |              |          |         |          | 10.85  | 12       |
| 15         13·93         13·88         13·81         13·79         13·74         13·70         13·65         13·61         13·56         15           16         14·86         14·81         14·76         14·71         14·66         14·61         14·56         14·51         14·46         16           17         15·79         15·73         15·68         15·63         15·52         15·47         15·42         15·37         17           18         16·71         16·66         16·60         16·55         16·49         16·34         16·33         16·33         16·27         18           19         17·64         17·58         17·53         17·47         17·41         17·35         17·29         17·23         17·18         19           20         18·57         18·35         18·45         18·39         18·32         18·26         18·20         18·11         19·05         18·98         21           21         19·50         19·43         19·37         19·31         19·24         19·17         19·11         19·05         18·98         21           21         19·50         19·43         19·37         19·31         19·24         19·17         19·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13 | 12.07 | 12.03 |       | 11.95 | 11.91        | 11.87    |         | 11.79    | 11.75  | 13       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14 |       | 12.96 |       | 12.87 |              |          | 12.74   | 12.70    | 12.66  | 14       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15 | 13.93 | 13.88 | 13.81 | 13.79 | 13.74        | 13.70    | 13.65   | 13.61    | 13.26  | 15       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16 | 14:86 | 14.81 | 14:76 | 14:71 | 14:66        | 14:61    | 14:56   | 14:51    | 14:46  | 16       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17 |       |       |       |       |              |          |         |          |        |          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18 |       |       |       |       |              |          |         |          | 16.97  |          |
| 20         18·57         18·51         18·45         18·39         18·32         18·26         18·20         18·14         18·08         20           21         19·50         19·43         19·37         19·31         19·24         19·17         19·11         19·05         18·98         21           22         20·43         20·36         20·29         20·23         20·15         20·09         20·02         19·95         18·98         22           23         21·36         21·29         21·21         21·15         21·07         21·00         20·93         20·86         20·79         23           24         22·28         22·21         22·14         22·07         21·99         21·91         21·84         21·77         21·70         24           25         23·21         23·14         23·06         23·93         23·82         23·74         23·66         23·50         26         25           26         24·14         24·06         23·93         23·82         23·74         23·66         23·53         26         25         25·67         24·65         24·57         24·49         24·41         27         28         26·00         25·91         25·83 <td>10</td> <td>17:64</td> <td></td> <td></td> <td>17:47</td> <td></td> <td></td> <td>17.20</td> <td></td> <td>17:18</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10 | 17:64 |       |       | 17:47 |              |          | 17.20   |          | 17:18  |          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |       |       |       | 18:30 |              |          |         |          |        | 90       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |       |       | (     |       |              |          | 1       |          |        |          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |       |       |       |       |              |          |         |          |        | 21       |
| 24         22·28         22·21         22·14         22·07         21·99         21·91         21·84         21·77         21·70         24           25         23·21         23·14         23·06         22·99         22·90         22·83         22·75         22·68         22·60         25           26         24·14         24·06         23·98         23·91         23·82         23·74         23·66         23·53         25·50         26           27         25·07         24·90         24·83         24·73         24·65         24·57         24·49         24·41         27           28         26·00         25·91         25·82         25·74         25·65         25·57         25·48         25·40         25·31         28           29         26·93         26·84         26·77         27·58         27·49         27·39         27·30         27·21         27·12         30           30         27·78         27·77         27·67         27·58         27·49         27·39         27·30         27·21         27·12         30           31         28·79         28·59         28·59         28·50         28·41         28·30         28·21         29·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |       |       |       |       |              |          |         |          |        |          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |       |       |       | 21.12 |              | 21.00    |         | 20.86    |        |          |
| 26         24·14         21·06         23·98         23·91         23·82         23·74         23·66         23·58         23·50         26           27         25·07         24·90         24·83         24·73         24·65         24·57         24·49         24·41         27           28         26·00         25·91         25·82         25·74         25·65         25·57         25·48         25·40         25·81         28           29         26·93         26·84         20·75         26·67         26·57         26·48         26·30         26·30         26·30         26·30         26·30         26·30         26·30         26·30         26·22         29·30         27·86         27·77         27·67         27·58         27·49         27·30         27·21         27·12         30           31         28·79         28·59         28·50         28·41         28·30         28·21         28·02         31           32         29·72         29·62         29·51         29·42         29·32         29·22         29·12         29·02         28·93         32           33         30·65         30·55         30·44         30·34         30·13         30·13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |       |       |       |       |              |          |         |          |        |          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25 | 23.51 | 23.14 |       | 22.99 | 22.90        |          | 22.75   |          | 22.60  | 25       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    | 24.14 | 24.06 |       | 23.91 |              | 23.74    | 23.66   | 23.58    | 23.20  | 26       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 27 | 25.07 | 24.99 | 24.90 | 24.83 | 24.73        | 24.65    | 24.57   | 24.49    | 24.41  | 27       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 28 | 26.00 |       |       |       | 25.65        | 25.57    | 25.48   | 25.40    | 25.31  | 28       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 29 | 26.93 |       |       | 26.67 | 26.57        | 26.48    |         | 26 30    | 26.22  | 29       |
| 32         29·72         29·62         29·51         29·42         29·32         29·22         29·12         29·02         29·33         32           33         30·65         30·55         30·44         30·24         30·13         30·03         29·93         29·33         33           31         31·57         31·47         31·36         31·26         31·10         30·94         30·84         30·74         34           35         32·50         32·40         32·28         32·18         32·07         31·96         31·85         31·75         31·64         35           36         33·43         33·32         33·10         32·90         32·87         32·65         32·54         36           37         34·36         34·25         34·12         34·02         33·90         33·78         33·67         33·56         32·54         36           38         35·29         35·17         35·05         34·93         34·82         34·70         35·47         35·61         37           40         37·14         37·02         36·90         36·77         36·65         36·52         36·40         36·40         36·40         36·40         36·40         36·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 30 | 27.86 | 27.77 | 27.67 | 27.58 | 27 49        | 27:39    | 27.30   | 27.21    | 27.12  | 30       |
| 32         29·72         29·62         29·51         29·42         29·32         29·22         29·12         29·02         29·33         32           33         30·65         30·55         30·44         30·24         30·13         30·03         29·93         29·33         33           31         31·57         31·47         31·36         31·26         31·04         30·94         30·84         30·74         34           35         32·50         32·40         32·28         32·18         32·07         31·96         31·85         31·75         31·64         35           36         33·43         33·32         33·10         32·90         32·87         32·65         32·54         36           37         34·36         34·25         34·12         34·02         33·90         33·78         33·67         33·56         32·54         36           38         35·29         35·17         35·05         34·93         34·82         34·70         35·47         35·61         37           39         36·22         36·10         35·97         35·85         35·74         35·61         35·47         35·26         39           40         37·14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 31 | 28.79 | 28.70 | 28:59 | 28:50 | 28:41        | 28:30    | 28.21   | 28.12    | 28.02  | 31       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |       |       |       |       |              |          |         |          |        |          |
| 34         31:57         31:47         31:36         31:26         31:10         31:04         30:94         30:94         30:74         34           35         32:50         32:40         32:23         32:18         32:07         31:96         31:85         31:75         31:64         35           36         33:43         33:32         33:20         33:10         32:99         32:87         32:76         32:54         36           37         34:36         34:25         34:12         34:02         33:90         33:78         33:67         33:56         33:54         37           38         35:29         35:17         35:05         34:93         34:82         34:70         34:58         34:47         34:35         36:45         37           39         36:22         36:10         35:97         35:85         35:74         35:61         35:49         35:47         35:26         39           40         37:14         37:02         36:90         36:77         36:65         36:52         36:40         36:28         36:16         40           41         38:07         37:95         37:82         37:69         37:57         37:43         37:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |       |       |       |       |              |          |         |          |        |          |
| 35         32:50         32:40         32:23         32:18         32:07         31:96         31:85         31:75         31:64         35           36         33:43         33:32         33:10         32:99         32:87         32:76         32:65         32:54         36           37         34:36         34:25         34:12         34:02         33:90         33:78         33:67         33:56         33:45         37           38         35:29         35:17         35:05         34:93         34:82         34:70         34:58         34:47         34:35         38:45         38           39         36:22         36:10         35:97         35:85         35:74         35:61         35:49         35:47         35:26         39           40         37:14         37:02         36:90         36:77         36:65         36:52         36:40         36:28         36:16         40           41         38:07         37:95         37:82         37:69         37:57         37:43         37:31         37:19         37:06         41           42         30:00         38:87         38:74         38:61         38:48         38:35         38:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |       |       |       |       |              |          |         |          |        |          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |       |       |       |       |              |          |         |          |        |          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |       |       |       |       |              |          |         |          |        |          |
| 38         35·29         35·17         35·05         34·93         34·82         34·70         34·58         34·47         34·35         38           39         36·22         36·10         35·97         35·85         35·74         35·61         35·49         35·47         35·20         39           40         37·14         37·02         36·90         36·77         36·65         36·52         36·40         36·28         36·16         40           41         38·07         37·95         37·82         37·69         37·57         37·43         37·31         37·19         37·06         41           42         39·00         38·87         38·74         38·61         38·48         38·35         38·22         38·99         37·97         42           43         39·93         39·80         39·63         39·53         39·40         39·26         39·13         39·00         38·87         43           41         40·85         40·59         40·45         40·32         40·17         40·43         39·13         39·00         38·87         43           41         40·85         40·51         41·37         41·23         41·09         40·83         40·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |       |       |       |       |              |          |         |          |        |          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3/ |       |       |       |       | 33.90        |          |         |          |        | 3/       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |       |       |       |       | 34.82        |          |         |          |        |          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |       |       |       |       |              |          |         |          |        |          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |       |       |       |       |              |          |         |          |        |          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |       |       | 37.82 |       |              |          | 37.31   |          |        |          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |       |       |       |       |              |          |         |          |        |          |
| 45         41·78         41·65         40·51         41·37         41·23         41·09         40·95         40·82         40·68         45           46         42·71         42·57         42·43         42·29         42·15         42·00         41·86         41·72         41·58         46           47         43·64         43·50         43·35         43·21         43·06         42·91         42·77         42·63         42·19         47           48         44·57         44·42         44·27         44·12         43·93         43·83         43·68         43·54         43·39         48           49         45·50         45·35         45·19         45·04         44·89         44·74         44·59         44·44         44·39         49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |       |       |       |       |              |          |         |          |        |          |
| 46     42·71     42·57     42·43     42·29     42·15     42·00     41·86     41·72     41·58     46       47     43·64     43·50     43·35     43·21     43·06     42·91     42·77     42·63     42·49     47       48     44·57     44·42     44·27     44·12     43·98     43·83     43·63     43·54     43·39     48       49     45·35     45·19     45·19     45·04     44·89     44·74     44·59     44·44     44·59     44·44     44·39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |       |       |       |       |              |          |         |          |        | 44       |
| 47     43·64     43·50     43·35     43·21     43·06     42·91     42·77     42·63     42·49     47       48     44·57     44·42     44·27     44·12     43·98     43·83     43·68     43·54     43·39     48       49     45·50     45·35     45·19     45·04     44·89     44·74     44·59     44·44     44·30     49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 45 | 41.78 | 41.65 | 40.21 | 41.37 | 41.23        | 41.09    | 40.95   | 40.82    | 40.68  | 45       |
| 47     43 64     43 50     43 35     43 21     43 06     42 91     42 77     42 63     42 49     47       48     44 57     44 42     44 27     44 12     43 98     43 83     43 68     43 54     43 39     48       49     45 50     45 35     45 19     45 04     44 89     44 74     44 59     44 44     44 30     49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 46 | 42.71 | 42.57 |       | 42.29 | 42.15        | 42.00    | 41.86   | 41.72    | 41.58  | 46       |
| 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |       |       | 43.35 |       |              |          |         |          |        |          |
| 49   45.50   45.35   45.19   45.04   44.89   44.74   44.59   44.44   44.30   49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |       |       |       |       |              | 43.83    |         |          |        |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |       |       | 45.19 |       |              |          |         |          |        |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |       |       |       |       |              |          |         |          |        |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |       |       |       |       |              |          |         |          |        |          |

### NORMAL TEMPERATURE AND PRESSURE.

to a temperature of 0° C.—continued.

| 0°                         | 21°                                                | 22°                                                | . 23°                                     | 24°                                                | 25°                                       | 26°                                                | 27°                                                | 28°                                                | 29°                                                | 0°                               |
|----------------------------|----------------------------------------------------|----------------------------------------------------|-------------------------------------------|----------------------------------------------------|-------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------|
| 51<br>52<br>53<br>54<br>55 | 47:36<br>48:29<br>49:22<br>50:14                   | 47·20<br>48·13<br>49·06<br>49·98                   | 47.04<br>47.96<br>48.89<br>49.81<br>50.73 | 46.89<br>47.81<br>48.73<br>49.65                   | 46.73<br>47.64<br>48.56<br>49.48<br>50.39 | 46·57<br>47·49<br>48·40<br>49·31                   | 46·42<br>47·33<br>48·24<br>49·15                   | 46·26<br>47·16<br>48·07<br>48·98                   | 46·10<br>47·01<br>47·91<br>48·82                   | 51<br>52<br>53<br>54             |
| 56<br>57<br>58<br>59<br>60 | 51.07<br>52.00<br>52.93<br>53.86<br>54.79<br>55.72 | 50.91<br>51.83<br>52.76<br>53.68<br>54.61<br>55.53 | 51.65<br>52.58<br>53.50<br>54.42<br>55.34 | 50·57<br>51·49<br>52·41<br>53·32<br>54·24<br>55·16 | 51·31<br>52·22<br>53·14<br>54·06<br>54·97 | 50·23<br>51·14<br>52·05<br>52·97<br>53·88<br>54·79 | 50.06<br>50.97<br>51.88<br>52.79<br>53.70<br>54.61 | 49·89<br>50·79<br>51·70<br>52·61<br>53·51<br>54·42 | 49·72<br>50·62<br>51·53<br>52·43<br>53·34<br>54·24 | 55<br>56<br>57<br>58<br>59<br>60 |
| 61                         | 56.65                                              | 56·46                                              | 56·26                                     | 56.08                                              | 55·89                                     | 55.70                                              | 55·52                                              | 55·33                                              | 55·14                                              | 61                               |
| 62                         | 57.58                                              | 57·38                                              | 57·19                                     | 57.00                                              | 56·80                                     | 56.62                                              | 56·43                                              | 56·23                                              | 56·05                                              | 62                               |
| 63                         | 58.51                                              | 58·31                                              | 58·11                                     | 57.92                                              | 57·72                                     | 57.53                                              | 57·34                                              | 57·14                                              | 56·95                                              | 63                               |
| 64                         | 59.42                                              | 59·23                                              | 59·03                                     | 58.84                                              | 58·64                                     | 58.44                                              | 58·25                                              | 58·05                                              | 57·86                                              | 64                               |
| 65                         | 60.36                                              | 60·16                                              | 59·95                                     | 59.76                                              | 59·55                                     | 59.36                                              | 59·16                                              | 58·96                                              | 58·76                                              | 65                               |
| 66                         | 61·29                                              | 61.08                                              | 60.87                                     | 60.68                                              | 60·47                                     | 60·27                                              | 60.07                                              | 59.86                                              | 59.66                                              | 66                               |
| 67                         | 62·22                                              | 62.01                                              | 61.79                                     | 61.60                                              | 61·38                                     | 61·18                                              | 60.98                                              | 60.77                                              | 60.57                                              | 67                               |
| 68                         | 63·15                                              | 62.93                                              | 62.72                                     | 62.51                                              | 62·30                                     | 62·10                                              | 61.89                                              | 61.68                                              | 61.47                                              | 68                               |
| 69                         | 64·08                                              | 63.86                                              | 63.64                                     | 63.43                                              | 63·22                                     | 63·01                                              | 62.80                                              | 62.58                                              | 62.38                                              | 69                               |
| 70                         | 65·00                                              | 64.79                                              | 64.57                                     | 64.35                                              | 64·13                                     | 63·92                                              | 63.71                                              | 63.49                                              | 63.28                                              | 70                               |
| 71                         | 65.93                                              | 65:71                                              | 65·49                                     | 65·27                                              | 65.05                                     | 64·83                                              | 64·62                                              | 64·40                                              | 64·18                                              | 71                               |
| 72                         | 66.86                                              | 66:64                                              | 66·42                                     | 66·19                                              | 65.96                                     | 65·75                                              | 65·53                                              | 65·30                                              | 65·09                                              | 72                               |
| 73                         | 67.79                                              | 67:57                                              | 67·34                                     | 67·11                                              | 66.88                                     | 66·66                                              | 66·44                                              | 66·21                                              | 65·99                                              | 73                               |
| 74                         | 68.61                                              | 68:49                                              | 68·26                                     | 68·03                                              | 67.80                                     | 67·57                                              | 67·35                                              | 67·12                                              | 66·90                                              | 74                               |
| 75                         | 69.64                                              | 69:42                                              | 69·18                                     | 68·95                                              | 68.71                                     | 68·49                                              | 68·26                                              | 68·03                                              | 67·80                                              | 75                               |
| 76                         | 70·57                                              | 70·34                                              | 70·10                                     | 69·87                                              | 69·63                                     | 69·40                                              | 69·17                                              | 68.93                                              | 68·70                                              | 76                               |
| 77                         | 71·50                                              | 71·27                                              | 71·03                                     | 70·79                                              | 70·54                                     | 70·31                                              | 70·08                                              | 69.84                                              | 69·61                                              | 77                               |
| 78                         | 72·43                                              | 72·19                                              | 71·95                                     | 71·70                                              | 71·46                                     | 71·22                                              | 70·99                                              | 70.75                                              | 70·51                                              | 78                               |
| 79                         | 73·36                                              | 73·12                                              | 72·87                                     | 72·62                                              | 72·38                                     | 72·14                                              | 71·90                                              | 71.65                                              | 71·42                                              | 79                               |
| 80                         | 74·29                                              | 74·04                                              | 73·79                                     | 73·54                                              | 73·30                                     | 73·05                                              | 72·81                                              | 72.56                                              | 72·32                                              | 80                               |
| 81                         | 75·22                                              | 74:97                                              | 74:71                                     | 74·46                                              | 74·22                                     | 73·96                                              | 73:72                                              | 73·47                                              | 73·22                                              | 81                               |
| 82                         | 76·15                                              | 75:89                                              | 75:63                                     | 75·38                                              | 75·13                                     | 74·88                                              | 74:63                                              | 74·37                                              | 74·13                                              | 82                               |
| 83                         | 77·08                                              | 76:82                                              | 76:56                                     | 76·30                                              | 76·05                                     | 75·79                                              | 75:54                                              | 75·28                                              | 75·03                                              | 83                               |
| 84                         | 78·00                                              | 77:74                                              | 77:48                                     | 77·22                                              | 76·96                                     | 76·70                                              | 76:45                                              | 76·19                                              | 75·94                                              | 84                               |
| 85                         | 78·93                                              | 78:67                                              | 78:40                                     | 78·14                                              | 77·88                                     | 77·62                                              | 77:36                                              | 77·10                                              | 76·84                                              | 85                               |
| 86                         | 79.86                                              | 79·59                                              | 79·32                                     | 79.06                                              | 78:80                                     | 78·53                                              | 78·27                                              | 78.00                                              | 77·74                                              | 86                               |
| 87                         | 80.79                                              | 80·52                                              | 80·25                                     | 79.98                                              | 79:71                                     | 79·44                                              | 79·18                                              | 78.91                                              | 78·65                                              | 87                               |
| 88                         | 81.72                                              | 81·44                                              | 81·17                                     | 80.90                                              | 80:63                                     | 80·36                                              | 80·09                                              | 79.82                                              | 79·55                                              | 88                               |
| 89                         | 82.65                                              | 82·37                                              | 82·09                                     | 81.82                                              | 81:55                                     | 81·27                                              | 81·00                                              | 80.72                                              | 80·46                                              | 89                               |
| 90                         | 83.57                                              | 83·30                                              | 83·02                                     | 82.74                                              | 82:46                                     | 82·18                                              | 81·91                                              | 81.63                                              | 81·36                                              | 90                               |
| 91                         | 84·50                                              | 84·22                                              | 83:94                                     | 83.66                                              | 83:38                                     | 83:09                                              | 82·82                                              | 82:54                                              | 82:26                                              | 91                               |
| 92                         | 85·43                                              | 85·15                                              | 84:86                                     | 84.58                                              | 84:29                                     | 84:01                                              | 83·73                                              | 83:44                                              | 83:17                                              | 92                               |
| 93                         | 86·36                                              | 86·08                                              | 85:79                                     | 85.50                                              | 85:21                                     | 84:92                                              | 84·64                                              | 84:35                                              | 84:07                                              | 93                               |
| 94                         | 87·28                                              | 87·00                                              | 86:71                                     | 86.42                                              | 86:13                                     | 85:83                                              | 85·55                                              | 85:26                                              | 84:98                                              | 94                               |
| 95                         | 88·21                                              | 87·93                                              | 87:63                                     | 87.34                                              | 87:04                                     | 86:75                                              | 86·46                                              | 86:17                                              | 85:88                                              | 95                               |
| 96                         | 89·14                                              | 88·85                                              | 88·55                                     | 88·26                                              | 87.96                                     | 87.66                                              | 87·37                                              | 87.07                                              | 86·78                                              | 96                               |
| 97                         | 90·07                                              | 89·78                                              | 89·48                                     | 89·18                                              | 88.87                                     | 88.57                                              | 88·28                                              | 87.98                                              | 87·69                                              | 97                               |
| 98                         | 91·00                                              | 90·70                                              | 90·40                                     | 90·09                                              | 89.79                                     | 89.48                                              | 89·19                                              | 88.89                                              | 88·59                                              | 98                               |
| 99                         | 91·93                                              | 91·63                                              | 91·32                                     | 91·01                                              | 90.71                                     | 90.40                                              | 90·10                                              | 89.79                                              | 89·50                                              | 99                               |
| 100                        | 92·86                                              | 92·55                                              | 92·24                                     | 91·93                                              | 91.62                                     | 91.31                                              | 91·01                                              | 90.70                                              | 90·40                                              | 100                              |

### TABLE 21.—REDUCTION OF VOLUMES OF

Deduct from the pressure read off at the barometer 1 mm. for temperatures

| 760             | 710            | 712            | 714            | 716            | 718            | 720            | 722            | 724            | 726            | 728            | 760      |
|-----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------|
| 1               | 0.934          | 0.937          | 0.940          |                | 0.945          | 0.947          | 0.950          |                |                | 0.958          | 1        |
| $\frac{2}{3}$   | 1.868<br>2.803 | 1.874<br>2.810 |                | 1.884<br>2.826 | 1.890<br>2.834 | 1.895<br>2.842 | 1.900<br>2.850 | 1.905<br>2.858 | 1.911<br>2.866 | 1.916<br>2.874 | 3        |
| 4               | 3.738          | 3.747          | 3.758          |                | 3.779          | 3.789          | 3.800          | 3.810          | 3.821          | 3.832          | 4        |
| 5               | 4.672          | 4.685          | 4.697          | 4.711          | 4.724          | 4.736          | 4.750          |                | 4.777          | 4.790          | 5        |
| 6               | 5.607          | 5.621          | 5.637          | 5.653          | 5.669          | 5.684          | 5.700          | 5.716          | 5.732          | 5.747          | 6        |
| 7               | 6.240          | 6.558          |                | 6.292          | 6.614          | 6.631          | 6.650          | 6.668          |                | 6.705          | 7        |
| 8               | 7.474          | 7.494          |                | 7.537          | 7.558          | 7.578          | 7.600          | 7.621          | 7.642          | 7.663          | 8        |
| 9               | 8.409          | 8.431          | 8.456          | 8.479          | 8.203          | 8.226          | 8.550          | 8.573          | 8.598          | 8.621          | 9        |
| 10              | 9.34           | 9.37           | 9.40           | 9.42           | 9.45           | 9.47           | 9.50           | 9.53           | 9.55           | 9.58           | 10       |
| - 11            | 10.28          | 10.31          | 10.34          | 10.36          | 10.39          | 10.42          | 10.45          | 10.48          | 10.21          | 10.54          | 11       |
| 12              | 11.21          | 11.24          | 11.27          | 11.30          | 11.34          | 11.37          | 11.40          | 11.43          | 11.46          | 11.50          | 12       |
| 13              | 12.14          | 12.18          | 12.21          | 12.24          | 12·28<br>13·23 | 12·31<br>13·26 | 12·35<br>13·30 | 12·38<br>13·34 | 12.41          | 12·45<br>13·41 | 13       |
| $\frac{14}{15}$ | 13.08<br>14.02 | 13·12<br>14·06 | 13·16<br>14·10 | 13·19<br>14·13 | 14.17          | 14.21          | 14.25          | 14.29          | 13·37<br>14·33 | 14.37          | 14<br>15 |
|                 |                |                |                |                | -              |                |                |                |                | 15.33          | ŀ        |
| 16<br>17        | 14.95<br>15.88 | 14·99<br>15·93 | 15.03<br>15.98 | 15.07<br>16.02 | 15·11<br>16·06 | 15·15<br>16·10 | 15·20<br>16·15 | 15·24<br>16·19 | 15.28<br>16.23 | 16.28          | 16<br>17 |
| 18              | 16.82          | 16.87          | 16.92          | 16.96          | 17.01          | 17.05          | 17.10          | 17.15          | 17.19          | 17.24          | 18       |
| 19              | 17.76          | 17.81          | 17.86          | 17.90          | 17.95          | 18.00          | 18.05          | 18.10          | 18.15          | 18.21          | 19       |
| 20              | 18.68          | 18.74          | 18.79          | 18.84          | 18.90          | 18.95          | 19.00          | 19.05          | 19.11          | 19.16          | 20       |
| 21              | 19.62          | 19.68          | 19.73          | 19.78          | 19.84          | 19.90          | 19.95          | 20.00          | 20.06          | 20.12          | 21       |
| 22              | 20.55          | 20.61          | 20.67          | 20.72          | 20.78          | 20.84          | 20.90          | 20.96          | 21.01          | 21.07          | 22       |
| 23              | 21.49          | 21.55          | 21.61          | 21.66          | 21.73          | 21.79          | 21.85          | 21.91          | 21.97          | 22.03          | 23       |
| 24              | 22.43          | 22.49          | 22.55          | 22.61          | 22.68          | 22.74          | 22.80          | 22.86          | 22.92          | 22.99          | 24       |
| 25              | 23.35          | 23.42          | 23.49          | 23.55          | 23.62          | 23.69          | 23.75          | 23.81          | 23.88          | 23.95          | 25       |
| 26              | 24.29          | 24.36          | 24.43          | 24.50          | 24.57          | 24.64          | 24.70          | 24.77          | 24.83          | 24.90          | 26       |
| 27<br>28        | 25·23<br>26·16 | 25·30<br>26·23 | 25·37<br>26·30 | 25·44<br>26·37 | 25.51<br>26.45 | 25·58<br>26·53 | 25.65<br>26.60 | 25·72<br>26·67 | 25·79<br>26·74 | 25.86<br>26.82 | 27<br>28 |
| 29              | 27.10          | 27.17          | 27.24          | 27.31          | 27.40          | 27.48          | 27.55          | 27.62          | 27.70          | 27.78          | 29       |
| 30              | 28.03          | 28.10          | 28.18          | 28.26          | 28.34          | 28.42          | 28.50          | 28.28          | 28.66          | 28.74          | 30       |
| 31              | 28.97          | 29.04          | 29.12          | 29.20          | 29.29          | 29.37          | 29.45          | 29.53          | 29.62          | 29.70          | 31       |
| 32              | 29.90          | 29.98          | 30.06          | 30.14          | 30.23          | 30.32          | 30.40          | 30.48          | 30.57          | 30.66          | 32       |
| 33              | 30.83          | 30.91          | 31.00          | 31.08          | 31.17          | 31.26          | 31.35          | 31.43          | 31.52          | 31.61          | 33       |
| 34              | 31.77          | 31.85          | 31.94          | 32.03          | 32.12          | 32.21          | 32.30          | 32.39          | 32.48          | 32.57          | 34       |
| 35              | 32.71          | 32.79          | 32.88          | 32.97          | 33.07          | 33.16          | 33.25          | 33.34          | 33.44          | 33.23          | 35       |
| 36              | 33.64          | 33.73          | 33.82          | 33.91          | 34.01          | 34.10          | 34.20          | 34.29          | 34.39          | 34.49          | 36       |
| 37              | 34.57          | 34:66          | 34.76          | 34.86          | 34.96          | 35.05          | 35.15          | 35.25          | 35.35          | 35.45          | 37       |
| 38<br>39        | 35·50<br>36·44 | 35.60<br>36.54 | 35·70<br>36·64 | 35·80<br>36·74 | 35.90<br>36.85 | 36·95          | 36·10<br>37·05 | 36·20<br>37·15 | 36·30<br>37·26 | 36·40<br>37·37 | 38       |
| 40              | 37.38          | 37.48          | 37.58          | 37.68          | 37.79          | 37.89          | 38.00          | 38.10          | 38.21          | 38.32          | 40       |
| 41              | 38.31          | 38.41          | 38.52          | 38.62          | 38.74          | 38.84          | 38.95          | 39.05          | 39.17          | 39.28          | 41       |
| 42              | 39.23          | 39.35          | 39.46          | 39.57          | 39.69          | 39.79          | 39.90          | 40.01          | 40.12          | 40.53          | 42       |
| 43              | 40.18          | 40.29          | 40.40          | 40.51          | 40.62          | 40.73          | 40.85          | 40.96          | 41.03          | 41.19          | 43       |
| 44              | 41.11          | 41.22          | 41.34          | 41.44          | 41.56          | 41.68          | 41.80          | 41.91          | 42.03          | 42.16          | 44       |
| 45              | 42.05          | 42.16          | 42.28          | 42.39          | 42.2           | 42.63          | 42.75          | 42.87          | 42 99          | 43.11          | 45       |
| 46              | 42.98          | 43.10          | 43.22          | 43.34          | 43.46          | 43.58          | 43.70          | 43.83          | 43.94          | 44.06          | 46       |
| 47              | 43.91          | 44.03          | 44:15          | 44.27          | 44.40          | 44.52          | 44.65          | 44.77          | 44.90          | 45.03          | 47       |
| 48              | 44.84          | 44:96          | 45:09          | 45.22          | 45.35          | 45.47          | 45.60          | 45.72          | 45.85          | 45.98<br>46.94 | 48       |
| 49<br>50        | 45.78 46.72    | 45.91   46.85  | 46:97          | 47.11          | 47:21          | 47.36          | 47.50          | 47.63          | 47.77          | 46.94          | 49<br>50 |
| 90              | 20/4           | 40.00          | 40.01          | £1 TT          | 11:41          | 7/ 00          | ±1 00          | ±1 00          | ±1 11          | T/ 50          | 30       |

### GASES TO A PRESSURE OF 760 MM.

bet. 0° and 12° C., and 2 mm. bet. 13° and 19° C., 3 mm. bet. 20° and 25° C.

| 760      | 1                       |                         |                |                |                |                |                |                |                |                |                 |
|----------|-------------------------|-------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|-----------------|
|          | 710                     | 712                     | 714            | 716            | 718            | 720            | 722            | 724            | 726            | 728            | 760             |
| 51       | 47.65                   | 47.79                   | 47.92          | 48.05          | 48.18          | 48.31          | 48.45          | 48.59          | 48.73          | 48.86          | 51              |
| 52       | 48.58                   | 48.72                   | 48.85          | 48.99          | 49.13          | 49.26          | 49.40          | 49.54          | 49.68          | 49.82          | 52              |
| 53       | 49.52                   | 49.66                   | 49.79          | 49.93          | 50.07          | 50.21          | 50.35          | 50.48          | 50.64          | 50.78          | 53              |
| 54       | 50.45                   | 50.59                   | 50.73          | 50.87          | 51.01          | 51.15          | 51.30          | 51.44          | 51.59          | 51.73          | 54              |
| 55       | 51.38                   | 51.53                   | 51.67          | 51.82          | 51.96          | 52.10          | 52.25          | 52.39          | 52.54          | 52.69          | 55              |
| 56       | 52.32                   | 52.47                   | 52.61          | 52.76          | 52.91          | 53.05          | 53.20          | 53.35          | 53.20          | 53.65          | 56              |
| 57       | 53·25<br>54·19          | 53.41                   | 53.55          | 53.70          | 53.85          | 54.00          | 54.15          | 54.30          | 54.45          | 54.60          | 57              |
| 58<br>59 | 55.13                   | 54·34<br>55·28          | 54·49<br>55·43 | 54.64          | 54·79<br>55·74 | 54.94 55.89    | 55·10<br>56·05 | 55·25<br>56·21 | 55.41 56.37    | 55·56<br>56·52 | 58<br>59        |
| 60       | 56.07                   | 56.22                   | 56.37          | 56.23          | 56.69          | 56.84          | 57.00          | 57.16          | 57.32          | 57.47          | 60              |
| 61       | 57.00                   | 57.15                   | 57.31          | 57.47          | 57.63          | 57.79          | 57.95          | 58.11          | 58.27          | 58.43          | 61              |
| 62       | 57.93                   | 58.09                   | 58.25          | 58.41          | 58.58          | 58.74          | 58.90          | 59.06          | 59.23          | 59.39          | 62              |
| 63       | 58.87                   | 59.03                   | 59.19          | 59.35          | 59.52          | 59.68          | 59.85          | 60.01          | 60.18          | 60.35          | 63              |
| 61       | 59.80                   | 59.96                   | 60.13          | 60.30          | 60.47          | 60.63          | 60.80          | 60.97          | 61.14          | 61.30          | 64              |
| 65       | 60.74                   | 60.90                   | 61.07          | 61.24          | 61.41          | 61.58          | 61.75          | 61.92          | 62.09          | 62.26          | 65              |
| 66       | 61.67                   | 61.84                   | 62.01          | 62.18          | 62.35          | 62.52          | 62.70          | 62.87          | 63.05          | 63.22          | 66              |
| 67       | 62.60                   | 62.77                   | 62.95          | 63.12          | 63.30          | 63.47          | 63.65          | 63.82          | 64.00          | 64.18          | 67              |
| 68       | 63.54                   | 63.71                   | 63.89          | 64.06          | 64.24          | 64.42          | 64.60          | 64.78          | 64.96          | 65.13          | 68              |
| 69       | 64.47                   | 64.65                   | 64.83          | 65.01          | 65.19          | 65.37          | 65.55          | 65.73          | 65.91          | 66.09          | 69              |
| 70       | 65.40                   | 65.28                   | 65.77          | 65.95          | 66.14          | 66.32          | 66.20          | 66.68          | 66.87          | 67.05          | 70              |
| 71       | 66.34                   | 66.2                    | 66.71          | 66.89          | 67.08          | 67.26          | 67.45          | 67.63          | 67.82          | 68.01          | 71              |
| 72<br>73 | 68.20                   | 67.46                   | 67:65          | 67.83          | 68.02          | 68.21          | 68.40          | 68.59          | 68.78          | 68.97          | 72              |
| 74       | 69.14                   | 69.33                   | 68.58          | 68·77<br>69·72 | 68·97<br>69·92 | 70.11          | 69·35<br>70·30 | 69·54<br>70·49 | 69·73<br>70·69 | 69·92<br>70·88 | 73              |
| 75       | 70.07                   | 70.27                   | 70.47          | 70.66          | 70.86          | 71.05          | 71.25          | 71.44          | 71.64          | 71.84          | 74<br>75        |
| 76       | 71.01                   | 71.21                   | 71.41          | 71.60          | 71.80          | 72.00          | 72.20          | 72.40          | 72.60          | 72.80          | 76              |
| 77       | 71.94                   | 72.14                   | 72.34          | 72.54          | 72.75          | 72.95          | 73.15          | 73.35          | 73.55          | 73.75          |                 |
| 77<br>78 | 72.87                   | 73.07                   | 73.28          | 73.48          | 73.69          | 73.89          | 74.10          | 74.30          | 74.21          | 74.71          | 77<br>78        |
| 79       | 73.80                   | 74.01                   | 74.22          | 74.42          | 74.63          | 74.84          | 75.05          | 75.25          | 75.46          | 75.67          | 79              |
| 80       | 74.74                   | 74.94                   | 75.16          | 75.37          | 75.58          | 75.78          | 76.00          | 76.21          | 76.42          | 76.63          | 80              |
| 81       | 75.67                   | 75.88                   | 76.10          | 76.31          | 76.53          | 76.74          | 76.95          | 77.16          | 77:37          | 77.58          | 81              |
| 82       | 76.60                   | 76.82                   | 77.04          | 77.25          | 77.47          | 77.68          | 77.90          | 78.11          | 78.33          | 78.54          | 82              |
| 83       | 77.54                   | 77.76                   | 77.98          | 78.19          | 78.41          | 78.63          | 78.85          | 79.07          | 79.28          | 79.50          | 83              |
| 84       | 78.47                   | 78.69                   | 78.91          | 79.13          | 79.35          | 79.57          | 79.80          | 80.02          | 80.24          | 80.46          | 81              |
| 85       | 79.41                   | 79.63                   | 79.86          | 80.08          | 80.31          | 80.53          | 80.75          | 80.97          | 81.19          | 81.41          | 85              |
| 86       | 80.34                   | 80.57                   | 80.80          | 81.02          | 81·25<br>82·19 | 81.47          | 81·70<br>82·65 | 81.92          | 82.15          | 82.37          | 86              |
| 87<br>88 | 82.21                   | 81.50                   | 81.74          | 81·96<br>82 90 | 83.13          | 82·42<br>83·36 | 83.60          | 82·87<br>83·83 | 83·10<br>84·06 | 83·33<br>84·29 | 87              |
| 89       | 83.12                   | 83.38                   | 83.62          | 83.85          | 84.08          | 84.31          | 84.55          | 84.78          | 85.02          | 85.25          | 89              |
| 90       | 84.09                   | 84.31                   | 84.56          | 84.79          | 85.03          | 85.26          | 85.20          | 85.73          | 85.38          | 86.21          | 90              |
| 91       | 85.02                   | 85.25                   | 85.20          | 85.73          | 85.98          | 86.21          | 86.45          | 86.69          | 86.93          | 87.17          | 91              |
| 92       | 85.95                   | 86.19                   | 86.44          | 86.68          | 86.92          | 87.16          | 87.40          | 87.64          | 87.89          | 88.13          | 92              |
| 93       | 86.89                   | 87.12                   | 87.38          | 87.62          | 87.87          | 88.11          | 88.35          | 88.59          | 88 84          | 89.08          | 93              |
| 94       | 87.82                   | 88.06                   | 88.32          | 88.26          | 88.81          | 89.05          | 89.30          | 89.54          | 89.80          | 90.04          | 94              |
| 95       | 88.76                   | 89.01                   | 89.26          | 89.20          | 89.75          | 90.00          | 90.25          | 90.50          | 90.75          | 91.00          | 95              |
| 96       | 89.69                   | 89.94                   | 90.50          | 90.45          | 90.70          | 90.95          | 91.20          | 91.45          | 91.70          | 91.95          | 96              |
|          | 90.62                   | 90.87                   | 91.13          | 91.38          | 91.64          | 91.89          | 92.15          | 92·40<br>93·35 | 92.66          | 92.91          | 97              |
| 97       | 07 40                   |                         |                |                |                |                |                |                |                |                |                 |
| 98       | 91.56                   | 91.82                   | 92.07          | 92.33          | 92.59          | 92.84          | 93.10          |                | 93.62          | 93.87          | 98              |
|          | 91·56<br>92·49<br>93·42 | 91·82<br>92·75<br>93·68 | 93·07<br>93·95 | 93·26<br>94·21 | 93·53<br>94·47 | 93·79<br>94·74 | 94·05<br>95·00 | 94·31<br>95·26 | 94·57<br>95·53 | 94.83          | 98<br>99<br>100 |

42

### REDUCTION OF VOLUMES OF GASES

Deduct from the pressure read off at the barometer 1 mm. for temperatures

| Tol.                                                                                                                                                                                                                                                                                                                                                                                                           |     |       |           |       |       |       |       |       |       |       |       |     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------|-----------|-------|-------|-------|-------|-------|-------|-------|-------|-----|
| $\begin{array}{c} 2 \\ 3 \\ 2 \\ 3 \\ 3 \\ 3 \\ 4 \\ 3 \\ 842 \\ 3 \\ 852 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 2 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 898 \\ 8$ | 760 | 730   | 732       | 734   | 736   | 738   | 740   | 742   | 744   | 746   | 748   | 760 |
| 2   1-921   1-926   1-932   1-937   1-942   1-947   1-953   1-958   1-968   2   3-953   3-947   3-944   3-942   3-852   3-864   3-874   3-884   3-895   3-905   3-916   3-920   3-937   4   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803   4-803                                                                                                                                                                                                                                                                                                                                                                                                           | 1   | 0.961 | 0.963     | 0.966 | 0.968 | 0.971 | 0.974 | 0.976 | 0.979 | 0.982 | 0.984 | 1   |
| 3         2*882         2*889         2*985         2*985         2*985         2*985         2*985         2*985         2*985         2*986         3*986         3*986         3*986         3*986         3*986         3*986         3*986         3*986         3*986         3*986         3*986         3*986         3*986         3*986         3*986         3*986         3*986         3*986         3*986         3*986         3*986         3*986         3*986         3*986         5*886         5*882         5*882         5*883         5*889         5*898         5*988         5*898         5*884         6*833         6*837         6*889         7*84         8*861         8*861         8*861         8*861         8*861         8*861         8*739         8*768         8*811         8*881         8*858         9*91         9*74         9*76         9*79         9*92         9*84         10         11         10*57         10*59         10*62         10*65         10*68         10*71         10*74         10*77         10*80         10*82         11         11         10*57         10*59         11*62         11*65         11*65         11*65         11*65         11*67         11*71         11*75 <td< td=""><td></td><td>1.921</td><td>1.926</td><td>1.932</td><td></td><td>1.942</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     | 1.921 | 1.926     | 1.932 |       | 1.942 |       |       |       |       |       |     |
| 4 3842 3852 3864 3874 3884 3895 3905 3916 3926 3937 5 5 4808 4816 4830 4842 4855 4868 4882 4895 4908 4921 5 6 5763 5779 5796 5810 5826 5812 5858 5874 5890 5905 6 7 6724 6742 6762 6779 6797 6816 6834 6853 6871 6893 8 7684 7705 7728 7747 7708 780 7802 7832 7833 7834 8 9 8645 8668 8693 8716 8739 8763 8787 8811 8834 8858 9 10 961 963 966 968 971 974 976 979 982 984 10 11 10*57 10*59 10*62 10*65 10*68 10*71 10*74 10*77 10*80 10*82 11 12 11*53 11*56 11*59 11*62 11*65 11*68 11*71 11*75 11*78 11*81 12 13 12*49 12*52 12*55 12*59 12*02 12*66 12*69 12*73 12*76 12*79 13*14 13*45 13*48 13*52 13*56 13*59 13*63 13*66 13*70 13*74 13*78 14*15 14*41 14*44 14*48 14*52 14*56 14*60 14*64 14*69 14*73 14*77 15*16 15*75 16*75 15*75 16*75 15*75 16*75 15*75 16*75 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15*75 18*71 15                                                                                                                                                                                                                                                                                                                                                                                                      |     |       |           |       | 2.905 | 2.913 | 2.921 | 2.929 | 2.937 | 2.945 | 2.953 | 3   |
| 6 5763 5779 5796 5810 5826 5812 5858 5874 5890 5905 6 7 6724 67742 6762 6779 6816 6834 6853 6871 6889 8 7634 7705 7728 7747 7768 7790 7810 7832 7832 7833 7847 8 9 8 645 8 668 8 693 8716 8739 8763 8787 8811 8834 8858 9 10 961 963 966 968 971 974 976 979 982 984 10 11 10 57 10 59 10 62 10 65 10 68 10 71 10 74 10 77 10 80 10 82 11 12 11 53 11 56 11 59 11 62 11 65 11 68 11 71 11 75 11 78 11 81 12 13 12 49 12 52 12 55 12 59 12 62 12 66 12 69 12 73 12 76 12 79 13 14 13 45 13 48 13 52 13 56 13 59 13 63 13 66 13 70 13 74 13 78 14 15 14 41 14 44 14 14 8 14 52 14 56 14 60 14 64 14 69 14 73 14 77 15 16 15 37 15 41 15 45 15 49 15 33 15 58 15 62 15 67 15 71 15 75 16 17 16 33 16 37 16 41 16 46 16 50 16 55 16 56 16 60 16 65 16 99 16 73 17 18 17 29 17 33 17 38 17 43 17 47 17 52 17 57 17 62 17 67 71 77 2 18 19 18 25 18 29 18 35 18 40 18 45 18 50 18 55 18 60 18 65 18 70 19 20 19 21 19 26 19 32 19 37 19 42 19 47 19 53 19 58 19 63 19 68 20 21 22 21 13 21 19 21 25 22 12 27 22 33 22 39 22 45 22 51 22 57 22 64 23 22 20 9 22 15 22 21 22 27 22 33 22 39 22 45 22 51 22 57 22 64 23 22 20 9 22 15 22 21 22 27 22 33 22 39 22 44 24 24 24 24 24 24 24 25 25 25 25 25 29 28 20 82 80 34 20 39 20 44 20 50 20 56 20 61 20 66 21 22 21 13 21 19 21 25 21 31 21 36 21 42 21 48 24 54 24 24 61 25 24 25 65 20 62 20 62 20 62 26 26 27 22 27 22 33 22 39 22 45 22 51 22 57 22 64 23 22 30 22 30 22 30 22 30 22 30 22 30 22 36 23 36 23 34 32 35 0 23 36 23 36 34 34 32 35 0 33 34 33 34 31 35 0 33 30 33 30 37 43 30 57 31 38 90 33 89 33 98 34 07 34 17 34 27 34 36 34 45 35 36 23 37 1 38 90 33 89 33 98 34 07 34 17 34 27 34 36 34 45 35 34 36 30 37 47 37 78 38 8 38 39 38 34 07 34 17 34 27 34 36 34 45 34 34 34 40 44 44 44 40 56 40 84 40 78 40 78 40 89 41 40 44 40 44 40 56 40 84 40 78 40 89 41 40 41 44 41 41 31 41 41 41 41 41 41 41 41 41 41 41 41 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |       |           |       |       |       | 3.895 | 3.905 |       | 3.926 |       | 4   |
| 7         6·724         6·724         6·725         6·770         6·707         6·816         6·831         6·833         6·871         6·880         7           8         7·684         7·705         7·728         7·747         7·708         7·790         7·810         7·832         7·833         7·874         8           9         8·645         8·688         8·603         8·716         8·739         8·763         8·787         8·811         8·833         8·585         9           10         9·61         9·63         9·66         9·68         9·71         9·74         9·76         9·79         9·82         9·84         10           11         10·57         10·59         10·62         10·65         10·68         10·71         10·74         10·77         10·80         10·82         11           13         11·53         11·55         11·62         11·65         11·63         11·61         10·74         10·77         10·80         10·82         12·13           14         13·43         13·53         15·59         13·63         13·63         13·63         13·73         11·74         11·75         11·75         11·77         15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     | 4.803 | 4.816     | 4.830 | 4.842 | 4.855 | 4.868 | 4.882 | 4.895 | 4.908 | 4.921 | 5   |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |       | 5.779     | 5.796 |       |       | 5.842 | 5.858 |       | 5.890 | 5.905 | 6   |
| 9 8 645 8 668 8 6903 8716 8 730 8 763 8 763 8 7678 8811 8 834 8 838 9 10 961 963 966 968 971 974 976 979 982 984 10 11 10 57 10 50 10 62 10 65 10 68 10 71 10 74 10 77 10 80 10 82 11 12 11 53 11 56 11 59 11 62 11 65 11 68 11 71 11 77 10 8 11 81 12 13 12 49 12 52 12 55 12 59 12 62 12 66 12 69 12 73 12 76 12 79 13 14 13 45 13 48 13 52 13 56 13 50 13 69 13 60 13 70 13 74 13 78 14 15 14 41 14 44 14 48 14 52 14 56 14 60 14 64 14 69 14 73 14 77 15 16 15 37 15 41 15 45 15 49 15 33 15 16 60 16 65 16 69 16 75 16 17 16 33 16 37 16 41 16 46 16 50 16 55 16 50 16 55 16 60 16 55 16 50 16 73 17 18 17 29 17 33 17 38 17 43 17 47 17 52 17 57 17 62 17 67 17 72 18 19 18 25 18 29 18 35 18 40 18 45 18 50 18 55 18 60 18 65 18 70 19 19 20 19 21 19 26 19 32 19 37 19 42 19 47 19 53 19 58 19 63 19 68 20 12 20 12 19 20 12 12 20 12 20 21 22 27 22 33 22 39 20 44 20 50 20 56 20 61 20 66 21 22 21 13 21 19 21 22 21 12 22 7 22 33 22 39 22 45 22 57 22 57 22 64 23 24 23 30 23 62 23 12 22 11 23 18 23 24 23 30 23 36 23 43 23 50 23 45 25 12 25 7 25 64 26 12 25 27 25 93 26 00 26 07 26 14 26 21 26 28 23 32 26 99 26 26 27 04 27 12 27 13 27 27 28 26 29 27 85 27 92 28 00 28 08 28 15 28 23 23 29 32 47 42 27 48 24 41 24 48 24 54 24 61 25 26 22 27 28 30 28 30 28 36 28 24 28 50 28 77 29 06 29 02 13 30 90 30 09 31 07 31 15 31 24 31 33 31 41 31 50 32 34 32 35 0 23 36 20 36 26 06 27 04 27 12 27 18 27 28 28 28 28 28 28 28 28 28 28 28 28 30 28 30 30 30 30 30 30 30 30 30 30 30 30 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7   |       |           |       |       |       | 6.816 |       |       | 6.871 |       | 7   |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8   | 7.684 |           |       |       | 7.768 |       |       |       | 7.853 |       |     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |       |           |       |       |       |       |       |       |       |       |     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | 1     |           | 1     |       |       |       |       |       |       |       |     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |       |           |       |       |       |       |       |       |       |       |     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |       |           |       |       |       |       |       |       | 11.78 |       |     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 13  |       |           | 12.50 |       |       |       |       |       |       | 12.79 |     |
| 16         15·37         15·41         15·45         15·49         15·53         15·58         15·62         15·67         15·71         15·75         16           17         16·33         16·37         16·41         16·46         16·50         16·55         16·60         16·65         16·69         16·73         17           18         17·29         17·33         17·43         17·47         17·57         17·62         17·67         17·72         18           19         18·25         18·29         18·35         18·40         18·45         18·50         18·55         18·65         18·70         19           20         19·21         19·26         19·32         19·37         19·42         19·47         19·53         19·63         19·68         20           21         20·17         20·22         20·28         20·34         20·39         20·44         20·50         20·56         20·61         20·66         21           22         21·13         21·25         21·31         21·36         21·42         21·43         21·54         21·59         21·65         22         21·31         21·36         21·42         21·43         21·54         22·57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |       |           |       |       |       |       |       |       |       | 13.78 |     |
| 17         16:33         16:37         16:41         16:46         16:50         16:55         16:60         16:65         16:69         16:73         17           18         17:29         17:33         17:38         17:47         17:52         17:57         17:62         17:67         17:72         18           18:25         18:29         18:35         18:40         18:45         18:50         18:55         18:65         18:70         19           20         19:21         19:26         19:32         19:37         19:42         19:47         19:53         19:58         19:63         19:68         20           21         20:17         20:22         20:28         20:34         20:39         20:44         20:50         20:56         20:61         20:66         21           22         21:31         21:36         21:31         21:36         21:48         21:54         21:59         21:65         22:27         22:33         22:49         22:45         22:57         20:64         23         24         23:30         23:36         23:43         23:50         23:56         23:63         24         25:71         25:04         25:11         25:18         25:31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |       |           |       |       |       |       |       |       |       |       |     |
| 18       17·29       17·33       17·38       17·44       17·52       17·57       17·62       17·67       17·72       18         19       18·25       18·29       18·35       18·40       18·45       18·55       18·60       18·65       18·65       18·60       18·65       18·60       18·65       18·65       18·60       18·65       18·68       20         20       19·21       19·26       19·32       19·87       19·42       19·47       19·53       19·63       19·68       20         21       20·17       20·22       20·28       20·34       20·39       20·44       20·50       20·56       20·61       20·66       21         22       21·13       21·19       21·25       21·31       21·36       21·42       21·48       21·54       21·59       21·65       22         23       22·09       22·15       22·21       22·27       22·33       22·33       22·43       22·54       22·51       22·57       26·63       24         24       23·05       23·11       23·18       23·24       23·30       23·36       23·36       23·45       23·55       25·63       24·61       25·24       25·38       26·63 <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |       |           |       |       |       |       |       |       |       |       |     |
| 19       18·25       18·29       18·35       18·40       18·45       18·50       18·55       18·60       18·65       18·70       19         20       19·21       19·26       19·32       19·37       19·42       19·47       19·53       19·68       19·68       20         21       20·17       20·22       20·28       20·34       20·39       20·44       20·50       20·56       20·61       20·65       21         22       21·13       21·19       21·25       21·31       21·36       21·42       21·38       21·59       21·65       22         23       22·09       22·15       22·21       22·27       22·33       22·39       22·45       22·51       22·57       22·64       23         24·20       23·11       23·18       23·21       23·30       23·36       23·43       23·50       23·50       23·63       24·61       25·21       24·27       24·34       24·41       24·41       24·21       24·27       24·34       24·41       24·41       24·41       25·21       25·31       25·32       25·59       26       27·25·93       26·00       26·07       26·14       26·21       26·28       26·36       26·43       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18  |       |           |       |       |       | 17:50 |       |       |       | 10.73 |     |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |       |           |       |       |       |       |       |       |       |       |     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |       |           |       |       |       |       |       |       |       |       |     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |       |           |       |       | 1     |       |       |       | - 1   | - 1   |     |
| 23       22·09       22·15       22·21       22·37       22·33       22·39       22·45       22·51       22·57       22·64       23         24       23·05       23·11       23·18       23·24       23·30       23·36       23·43       23·50       23·50       23·63       24         25       24·07       24·14       24·21       24·27       24·34       24·41       24·42       24·41       24·41       24·41       24·41       24·41       24·41       24·41       24·41       24·41       24·41       24·41       24·41       24·41       24·41       24·41       25·31       25·38       25·45       25·52       25·59       26         27       25·93       26·96       26·74       27·12       27·18       27·26       28       26·36       26·43       26·50       26·58       27         29       27·85       27·92       28·90       28·97       29·05       29·13       29·21       29·29       29·37       29·45       29·53       30         31       29·78       29·86       29·94       30·99       30·10       30·18       30·26       30·35       30·43       30·51       31         33       31·70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 22  |       |           |       |       |       |       |       |       |       |       |     |
| 24         23·05         23·11         23·18         23·24         23·30         23·36         23·43         23·50         23·56         23·63         24           25         24·01         24·07         24·14         24·27         24·34         24·41         24·48         24·61         25           26         24·97         25·04         25·11         25·18         25·24         25·31         25·38         25·45         25·52         25·58         27           25·93         26·00         26·07         26·14         26·21         26·28         26·36         26·43         25·50         26·58         27           28         26·89         26·96         27·04         27·12         27·18         27·26         27·33         27·41         27·48         27·56         28           29         27·85         29·90         28·80         28·15         28·23         28·31         28·39         28·47         29·55         29           30         28·82         28·86         29·94         30·02         30·10         30·18         30·26         30·35         30·43         30·51         31           32         30·74         30·82         30·91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 23  |       |           |       |       |       |       |       | 22:51 | 22:57 | 22.64 |     |
| 26         24·97         25·04         25·11         25·18         25·24         25·31         25·38         25·45         25·52         25·59         26           27         25·93         26·00         26·07         26·14         26·21         26·28         26·36         26·43         26·50         26·58         27           28         26·89         26·90         27·04         27·12         27·18         27·26         27·33         27·41         27·48         28·50         28           29         27·85         27·92         28·90         28·93         28·15         28·23         28·31         28·32         28·31         28·32         28·31         28·32         28·31         28·32         28·31         28·32         28·31         28·32         28·31         28·32         28·31         28·32         28·31         28·32         28·31         28·32         28·31         28·32         28·31         28·32         28·31         28·32         28·31         28·32         28·31         28·32         28·31         28·32         28·31         28·33         28·31         28·33         38·33         38·33         38·33         38·33         38·33         38·33         38·33         38·33 <td>24</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24  |       |           |       |       |       |       |       |       |       |       |     |
| 27         25-93         26-00         26-07         26-14         26-21         26-28         26-36         26-43         26-50         27-56         28           29         27-85         27-92         28-00         27-04         27-12         27-18         27-26         28           29         27-85         27-92         28-00         28-03         28-15         28-23         28-31         28-32         28-31         28-32         28-37         29-45         29-55         29           30         28-82         28-89         28-97         29-05         29-13         29-21         29-29         29-37         29-45         29-53         30           31         29-78         29-86         29-94         30-02         30-10         30-18         30-26         30-35         30-43         30-51         31           32         30-74         30-83         31-97         31-78         31-83         31-41         31-33         31-41         31-50         32-43         23-13         32-21         32-39         32-43         33-33         31-33         31-43         33-46         34-43         33-39         34-07         34-17         34-86         33-93         34-07<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25  | 24.01 | 24.07     | 24.14 | 24.21 | 24.27 | 24.34 | 24.41 | 24.48 | 24.54 | 24.61 | 25  |
| 28         26·89         26·89         26·96         27·04         27·12         27·18         27·26         27·33         27·41         27·48         27·56         28           29         27·85         27·92         28·90         28·90         28·913         28·23         28·31         28·39         28·47         28·55         29           30         28·82         28·89         28·97         29·05         29·13         29·21         29·29         29·37         29·45         29·53         30           31         29·78         29·86         29·94         30·02         30·10         30·18         30·26         30·35         30·43         30·51         31           32         30·74         30·82         30·91         30·99         31·07         31·15         31·24         31·33         31·41         31·50         32·34         33·34         32·66         32·75         32·84         33·93         31·07         33·10         33·29         33·37         33·40         33·40         33·40         33·47         33·54         35·63         35·73         35·83         35·93         35·05         35·15         35·25         35·34         36·43         35         33·36 <t< td=""><td>26</td><td>24.97</td><td>25.04</td><td>25.11</td><td>25.18</td><td>25.24</td><td>25.31</td><td>25.38</td><td>25.45</td><td>25.52</td><td>25.59</td><td>26</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 26  | 24.97 | 25.04     | 25.11 | 25.18 | 25.24 | 25.31 | 25.38 | 25.45 | 25.52 | 25.59 | 26  |
| 29         27·85         27·92         28·00         28·08         28·15         28·23         28·31         28·39         28·47         28·55         29           30         28·82         28·89         28·97         29·05         29·13         29·21         29·29         29·37         29·45         29·53         30           31         29·74         30·82         30·91         30·02         30·10         30·18         30·26         30·35         30·43         30·51         31           32         30·74         30·82         30·91         31·07         31·15         31·24         31·33         31·41         31·50         32           33         31·70         31·78         31·87         31·96         32·04         32·13         32·21         32·30         32·39         32·48         33           34         32·66         32·75         32·84         33·89         33·01         33·10         33·19         33·28         33·37         33·80         33·89         34·07         34·17         34·27         34·34         35           36         34·58         34·67         34·78         35·83         35·92         36·02         36·12         36·32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 27  |       |           |       | 26.14 |       |       | 26.36 |       |       |       | 27  |
| 30   28·82   28·89   28·97   29·05   29·13   29·21   29·29   29·37   29·45   29·53   30<br>31   29·78   29·86   29·94   30·02   30·10   30·18   30·26   30·35   30·43   30·51   31<br>32   30·74   30·82   30·91   30·99   31·07   31·15   31·24   31·33   31·41   31·50   32<br>33   31·70   31·78   31·87   31·96   32·04   32·13   32·21   32·30   32·39   32·48   33<br>34   32·66   32·75   32·84   32·93   33·01   33·10   33·19   33·28   33·37   33·46   34<br>35   33·62   33·71   33·80   33·89   33·98   34·07   34·17   34·27   34·36   34·45   35<br>36   34·58   34·67   34·77   34·86   34·95   35·05   35·15   35·25   35·34   35·43   36<br>37   35·54   35·63   35·73   35·83   35·92   36·02   36·12   36·22   36·22   36·32   36·42   37<br>38   36·50   36·60   36·70   36·80   36·90   37·00   37·10   37·20   37·30   37·40   38<br>39   37·47   37·57   37·67   37·77   37·87   37·97   38·07   38·18   38·28   38·39   39<br>40   38·42   38·52   38·64   38·74   38·84   38·95   39·05   39·16   39·20   39·37   40<br>41   39·38   39·48   39·60   39·71   39·81   39·92   40·02   40·14   40·24   40·36   41<br>42   40·34   40·44   40·56   40·68   40·78   40·89   41·00   41·12   41·22   41·34   42<br>43   41·30   41·41   41·53   41·64   41·75   41·86   41·97   42·10   42·20   42·32   43<br>44   42·27   42·38   42·50   42·62   42·73   42·84   42·95   43·07   43·18   43·30   44<br>44   43·22   43·34   43·46   43·58   43·69   43·81   43·93   44·06   44·17   44·29   45<br>46   44·18   44·30   44·42   44·54   44·66   44·78   44·90   45·03   45·15   45·27   46<br>47   45·15   45·26   45·39   45·52   45·64   45·76   45·88   46·01   46·13   46·26   47<br>48   46·10   46·23   46·36   46·49   46·61   46·73   46·88   46·99   47·12   47·24   48<br>49   47·06   47·19   47·32   47·44   47·57   47·70   47·83   47·97   47·10   48·20   49·20   49·20   49·20   49·20   47·20   47·20   47·20   48·20   49·40   48·20   49·40   48·20   49·40   48·20   49·40   48·20   49·40   48·20   49·40   48·20   49·40   48·20   49·40   48·20   49·40   48·20   49·40   49·40   48·20   49·40   48·20   49·40   48·20                                                                                                                                                                                                                                                                                                                                                                 | 28  |       |           |       |       |       |       |       |       |       |       |     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |       |           |       |       |       |       |       |       |       |       |     |
| 32         30·74         30·82         30·91         30·90         31·07         31·15         31·24         31·33         31·41         31·50         32           33         31·70         31·87         31·96         32·04         32·13         32·21         32·30         32·30         32·32         32·48         33           34         32·66         32·75         32·84         33·93         31·10         33·10         33·29         33·37         33·46         34           35         33·62         33·71         33·80         33·89         34·95         35·05         35·15         35·25         33·34         83·45         35           36         34·58         35·63         35·73         35·83         35·92         36·02         36·12         36·22         36·32         36·42         37           38         36·50         36·60         36·70         37·77         37·87         37·87         37·40         37         38·18         38·28         38·39         39·07         38·18         38·28         38·39         39·47         37·57         37·67         37·77         37·87         37·97         38·07         38·18         38·28         38·39         39·37 <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |       |           |       |       |       |       |       |       |       |       |     |
| 33         31·70         31·78         31·87         31·96         32·04         32·13         32·21         32·30         32·39         32·48         33           34         32·66         32·75         32·84         32·93         33·01         33·10         33·10         33·10         33·10         33·10         33·10         33·10         33·10         33·10         33·10         34·17         34·27         34·36         34         35         35·34         35·43         35         35·34         35·43         35·43         35·43         35·43         36·30         36·30         36·90         36·02         36·12         36·22         36·32         36·42         37           39         37·47         37·57         37·67         37·77         37·87         37·90         37·10         37·20         37·30         37·40         38           39         37·47         37·57         37·67         37·77         37·87         37·97         38·07         38·18         38·28         38·39         39·94         38·34         39·30         39·71         39·81         39·92         40·02         40·14         40·24         40·36         41         42·40·34         40·44         40·56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |       |           |       |       |       |       |       |       |       |       |     |
| 34         32·66         32·75         32·84         32·93         33·01         33·10         33·19         33·28         33·37         33·46         34           35         33·62         33·71         33·80         33·98         34·07         34·17         34·27         34·36         34·45         35           36         34·58         34·73         35·63         35·73         35·63         35·73         35·63         35·73         35·63         35·73         35·63         35·73         35·63         35·73         35·63         35·73         35·63         35·73         35·63         35·73         35·63         35·73         35·63         35·73         35·63         35·73         35·63         35·73         35·63         35·73         35·63         35·73         35·63         35·73         35·73         35·73         35·73         35·73         35·73         37·77         37·87         37·90         37·10         37·20         37·30         37·40         38         39·37         35·74         38·39         39·37         38·07         38·18         38·28         38·39         39·37         40         44         40·34         40·44         40·56         40·68         40·78         40·89 <td>32</td> <td>30.74</td> <td>30.82</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>32</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 32  | 30.74 | 30.82     |       |       |       |       |       |       |       |       | 32  |
| 35         33·62         33·71         33·80         33·89         33·98         34·07         34·17         34·27         34·36         34·45         35           36         34·58         34·67         34·77         34·86         34·95         35·05         35·15         35·25         33·34         35·43         36           37         35·54         35·63         35·73         35·83         35·92         36·02         36·12         36·22         36·32         36·42         37           38         36·50         36·60         36·70         37·70         37·10         37·20         37·30         37·30         37·40         38           39         37·47         37·57         37·67         37·77         37·87         38·97         38·18         38·28         38·39         39·34         39·52         38·64         38·74         38·84         38·95         39·05         39·16         39·20         39·37         40           41         39·38         39·48         39·60         39·71         39·81         39·92         40·02         40·14         40·24         40·36         41·44         41·53         41·64         41·75         41·86         41·97         42·10<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |       |           |       |       |       |       |       |       |       |       |     |
| 36         34·58         34·67         34·77         34·86         34·95         35·05         35·15         35·25         35·34         35·43         36           37         35·54         35·63         35·73         35·83         35·92         36·02         36·12         36·22         36·32         36·42         37           38         36·50         36·60         37·00         37·00         37·00         37·20         37·30         37·40         38           39         37·47         37·57         37·67         37·77         37·87         37·97         38·18         38·28         38·39         39           40         38·42         38·52         38·64         38·74         38·84         38·95         39·05         39·16         39·20         39·37         40           41         39·38         39·48         39·60         39·71         39·81         39·92         40·02         40·14         40·24         40·36         41           42         40·34         40·44         40·56         40·68         40·78         40·89         41·00         41·12         41·34         42·34           43         41·31         41·64         41·75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |       |           |       |       |       |       |       |       |       |       |     |
| 37         35·54         35·63         35·73         35·83         35·92         36·02         36·12         36·22         36·32         36·42         37           38         36·50         36·60         37·00         37·00         37·20         37·30         37·40         38           39         37·47         37·57         37·77         37·87         37·97         38·18         38·28         38·39         39·39           40         38·42         38·52         38·64         38·74         38·84         38·95         39·05         39·16         39·20         39·37         40           41         39·38         39·48         39·60         39·71         39·81         39·92         40·02         40·14         40·24         40·36         41           42         40·34         40·44         40·56         40·68         40·78         40·99         41·00         41·12         41·34         42·34         44·227         42·38         42·50         42·62         42·73         42·84         42·95         43·07         43·18         43·30         44           45         43·22         43·34         43·46         43·58         43·69         43·81         43·93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |       |           |       |       |       | 1     |       |       |       |       |     |
| 39         37·47         37·57         37·67         37·77         37·87         38·97         38·97         38·18         38·28         38·39         39         40           40         38·42         38·52         38·64         38·74         38·84         38·95         39·05         39·16         39·26         39·37         40           41         39·38         39·48         39·60         39·71         39·81         39·92         40·02         40·14         40·24         40·36         41           42         40·34         40·44         40·56         40·68         40·78         40·89         41·00         41·12         41·34         42           43         41·30         41·41         41·53         41·64         41·75         41·86         41·97         42·10         42·20         42·32         43           45         43·22         43·34         43·46         43·58         43·69         43·81         43·93         44·04         44·17         44·29         45·53         45·52         45·64         43·63         44·49         45·03         45·15         45·27         46·49         45·64         43·64         43·64         43·64         43·64         43·64 <td>37</td> <td></td> <td></td> <td>35.79</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 37  |       |           | 35.79 |       |       |       |       |       |       |       |     |
| 39         37·47         37·57         37·67         37·77         37·87         38·97         38·97         38·18         38·28         38·39         39         40           40         38·42         38·52         38·64         38·74         38·84         38·95         39·05         39·16         39·26         39·37         40           41         39·38         39·48         39·60         39·71         39·81         39·92         40·02         40·14         40·24         40·36         41           42         40·34         40·44         40·56         40·68         40·78         40·89         41·00         41·12         41·34         42           43         41·30         41·41         41·53         41·64         41·75         41·86         41·97         42·10         42·20         42·32         43           45         43·22         43·34         43·46         43·58         43·69         43·81         43·93         44·04         44·17         44·29         42·53         42·54         42·62         42·73         42·84         42·95         43·07         43·18         43·30         44·42         44·54         44·66         44·78         44·90         45·03 <td>39</td> <td>36.20</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>37:10</td> <td></td> <td></td> <td></td> <td>38</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 39  | 36.20 |           |       |       |       |       | 37:10 |       |       |       | 38  |
| 40     38·42     38·52     38·64     38·74     38·84     38·95     39·05     39·16     39·20     39·37     40       41     39·38     39·48     39·60     39·71     39·81     39·92     40·02     40·14     40·24     40·36     41       42     40·34     40·44     40·56     40·68     40·78     40·89     41·00     41·12     41·22     41·34     42·44       43     41·30     41·41     41·53     41·64     41·75     41·86     41·97     42·10     42·20     42·32     43       44     42·27     42·38     42·50     42·62     42·73     42·84     42·95     43·07     43·18     43·30     44       45     43·22     43·34     43·46     43·58     43·69     43·81     43·93     44·06     44·17     44·29     45       46     44·18     44·30     44·42     44·54     44·66     44·78     44·90     45·03     45·15     45·27     46       47     45·15     45·26     45·39     45·52     45·64     45·76     45·88     46·01     46·13     46·13     46·24     46·61     46·73     46·85     46·91     47·24     48       49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |       |           |       | 37.77 |       |       |       |       |       |       |     |
| 41     39·38     39·48     39·60     39·71     39·81     39·92     40·02     40·14     40·24     40·36     41       42     40·34     40·44     40·56     40·68     40·78     40·89     41·00     41·12     41·22     41·34     42       43     41·30     41·41     41·53     41·61     41·75     41·86     41·97     42·10     42·20     42·32     43·34       44     42·27     42·38     42·50     42·62     42·73     42·84     42·95     43·07     43·18     43·30     44       45     43·22     43·34     43·46     43·58     43·69     43·81     43·93     44·06     44·17     44·29     45       46     44·18     44·30     44·42     44·54     44·66     44·78     44·90     45·03     45·15     45·27     46       47     45·15     45·26     45·39     45·52     45·64     45·76     45·88     46·01     46·13     46·24     48       49     46·10     46·23     46·39     46·49     46·61     46·73     46·83     46·99     47·12     47·24     48       49     46·10     46·79     47·83     47·97     47·83     47·97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |       |           |       | 38.74 |       |       |       |       |       |       |     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 41  | 39:38 |           | 39:60 |       |       |       | 40.02 | 40.14 | 40.24 | 40:36 | 41  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 42  |       |           |       |       |       |       |       |       | 41.22 | 41.34 | 42  |
| 45   43·22   43·34   43·46   43·58   43·69   43·81   43·93   44·06   44·17   44·29   45·46   44·18   44·30   44·42   44·54   44·66   44·78   44·90   45·03   45·15   45·27   46·47   45·15   45·26   45·39   45·52   45·64   45·76   45·83   46·01   46·13   46·23   46·36   46·10   46·23   46·36   46·49   46·10   46·73   46·85   46·99   47·12   47·24   48·49   47·06   47·19   47·32   47·44   47·57   47·70   47·83   47·97   48·10   48·23   49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |       |           | 41.53 | 41.64 | 41.75 | 41.86 |       |       |       |       |     |
| 46 44·18 44·30 44·42 44·54 44·66 44·78 44·90 45·03 45·15 45·27 46<br>47 45·15 45·26 45·39 45·52 45·61 45·76 45·88 46·01 46·13 46·26 47<br>48 46·10 46·23 46·36 46·49 46·61 46·73 46·85 46·99 47·12 47·24 48<br>49 47·06 47·19 47·32 47·44 47·57 47·70 47·83 47·97 48·10 48·23 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |       |           |       |       |       |       |       |       |       |       |     |
| 47       45:15       45:26       45:39       45:52       45:64       45:76       45:88       46:01       46:13       46:26       47         48       46:10       46:23       46:36       46:49       46:61       46:73       46:85       46:99       47:12       47:24       48         49       47:06       47:19       47:32       47:44       47:57       47:70       47:83       47:97       48:10       48:23       49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |       | - 45 - 17 |       |       |       |       |       |       |       |       |     |
| 48   46·10   46·23   46·36   46·49   46·61   46·73   46·85   46·99   47·12   47·24   48<br>49   47·06   47·19   47·32   47·44   47·57   47·70   47·83   47·97   48·10   48·23   49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 46  |       |           |       |       |       |       |       |       |       |       |     |
| 49 47.06 47.19 47.32 47.44 47.57 47.70 47.83 47.97 48.10 48.23 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 47  |       |           |       |       |       |       |       |       |       |       | 47  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |       |           |       |       |       |       |       |       |       |       |     |
| 30   40 00   40 10   40 30   40 42   40 30   40 00   40 02   40 30   40 00   49 21   30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |       |           |       |       |       |       |       |       |       |       |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 90  | 40 03 | 40.10     | 40 00 | 40 42 | 40 99 | 40 00 | 40 04 | 40 99 | 40 00 | 40 21 | 00  |

TO A PRESSURE OF 760 MM .- Continued.

between 0° and 12° C., 2 mm. between 13° and 19° C., 3 mm. between 20° and 25° C.

| 760             | 730            | 732            | 734            | 736            | 738            | 740            | 742            | 744            | 746            | 748            | 760       |
|-----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|-----------|
| 51<br>52        | 48·99<br>49·96 | 49·12<br>50·08 | 49·26<br>50·22 | 49.39          | 49·52<br>50·49 | 49.65<br>50.63 | 49·79<br>50·77 | 49·93<br>50·91 | 50.06<br>51.04 | 50·19<br>51·18 | 51<br>52  |
| 53              | 50.91          | 51.05          | 51.19          | 51.33          | 51.46          | 51.60          | 51.75          | 51.89          | 52.02          | 52.16          | 53        |
| 54<br>55        | 51.87<br>52.83 | 52·01<br>52·98 | 52·16<br>53·13 | 52·30<br>53·27 | 52·44<br>53·41 | 52·58<br>53·55 | 52·72<br>53·70 | 52·87<br>53·85 | 53·01<br>53·99 | 53·15<br>54·14 | 54<br>55  |
| 56              | 53.79          | 53.94          | 54.09          | 54.23          | 54.37          | 54.52          | 54.68          | 54.83          | 54.97          | 55.11          | 56        |
| 57              | 54.75          | 54.90          | 55.05          | 55.20          | 55.35          | 55.20          | 55.65          | 55.80          | 55.95          | 56.10          | 57        |
| 58<br>59        | 55.71          | 55.86<br>56.83 | 56.02          | 56·17<br>57·14 | 56·32<br>57·29 | 56·47<br>57·44 | 56·63<br>57·60 | 56·78<br>57·76 | 56.93<br>57.92 | 57·08<br>58·07 | 58<br>59  |
| 60              | 57.63          | 57.79          | 57.95          | 58.10          | 58.26          | 58.42          | 58.58          | 58.74          | 58.90          | 59.05          | 60        |
| 61<br>62        | 58·59<br>59·55 | 58·75<br>59·72 | 58·91<br>59·88 | 59.07<br>60.04 | 59·23<br>60·20 | 59·39<br>60·36 | 59·56<br>60·53 | 59·72<br>60·70 | 59.88          | 60.04          | 61<br>62  |
| 63              | 60.21          | 60.68          | 60.85          | 61.01          | 61.17          | 61.34          | 61.21          | 61.68          | 61.84          | 62.00          | 63        |
| 64<br>65        | 61.47          | 61.64          | 61·81<br>62·77 | 61.98          | 62·15<br>63·11 | 62·32<br>63·28 | 62.49          | 62·66<br>63·64 | 62.82          | 62.99          | 64 65     |
| 66              | 63.39          | 63.57          | 63.74          | 63.91          | 64.08          | 64.26          | 64.44          | 64.62          | 64.79          | 64.96          | 66        |
| 67<br>68        | 64·35<br>65·31 | 64·53<br>65·50 | 64·71<br>65·68 | 64·88<br>65·85 | 65.05<br>66.02 | 65·23<br>66·20 | 65·41<br>66·38 | 65.59          | 65.77<br>66.74 | 65·94<br>66·92 | 67<br>68  |
| 69              | 66.27          | 66.45          | 66.64          | 66.82          | 67.00          | 67.18          | 67.37          | 67.55          | 67.73          | 67.91          | 69        |
| 70              | 67.24          | 67.42          | 67.61          | 67.79          | 67.97          | 68.16          | 68.34          | 68.23          | 68.71          | 68.89          | 70        |
| $\frac{71}{72}$ | 68.20          | 68·39<br>69·35 | 68.58          | 68·76<br>69·73 | 68·94<br>69·92 | 69·13<br>70·11 | 69·32<br>70·30 | 69·51<br>70·49 | 69·69<br>70·68 | 69.88          | 71<br>72  |
| 73              | 70.12          | 70.31          | 70.51          | 70.69          | 70.88          | 71.08          | 71.27          | 71.47          | 71.66          | 71.85          | 73        |
| 74<br>75        | 71.08          | 71.28          | 71.48          | 71.66          | 71.85          | 72·05<br>73·02 | 72.25          | 72·45<br>73·42 | 72.64<br>73.62 | 72·83<br>73·82 | 74<br>75  |
| 76              | 73.00          | 73.20          | 73.40          | 73.60          | 73.80          | 74.00          | 74.20          | 74.40          | 74.60          | 74.80          | 76        |
| 77<br>78        | 73.96          | 74·17<br>75·12 | 74·37<br>75·33 | 74·57<br>75·53 | 74·77<br>75·74 | 74·97<br>75·95 | 75·18<br>76·16 | 75·39<br>76·37 | 75·59<br>76·57 | 75.79          | 77<br>78  |
| 79              | 75.88          | 76.09          | 76.30          | 76.50          | 76.71          | 76.92          | 77.13          | 77.34          | 77.55          | 77.75          | 79        |
| 80<br>81        | 76.84          | 77.05          | 77·27<br>78·23 | 77.47          | 77.68<br>78.65 | 77·90<br>78·87 | 78·10<br>79·08 | 78·32<br>79·30 | 78·53<br>79·51 | 78.74          | 80        |
| 82              | 78.76          | 78.98          | 79.20          | 79.41          | 79.62          | 79.81          | 80.06          | 80.28          | 80.50          | 80.71          | 82        |
| 83<br>84        | 79.72          | 79.94          | 80.16          | 80·33<br>81·34 | 80.60          | 80·82<br>81·79 | 81·04<br>82·01 | 81·26<br>82·24 | 81.48          | 81.69<br>82.68 | 83        |
| 85              | 81.64          | 81.87          | 82.10          | 82.31          | 82.53          | 82.76          | 82 99          | 83.55          | 83.44          | 83.66          | 85        |
| 86              | 82.60          | 82.83          | 83.06          | 83.28          | 83.20          | 83.73          | 83 97          | 84.20          | 84.42          | 84.64          | 86        |
| 87<br>88        | 83.56          | 83·79<br>84·76 | 84.02          | 84.25          | 84.48          | 84.71          | 84.94          | 85·17<br>86·15 | 85·40<br>86·38 | 85.62          | 87        |
| 89              | 85.48          | 85.72          | 85.98          | 86.19          | 86.42          | 86.66          | 86.89          | 87.13          | 87.36          | 87.59          | 89<br>90  |
| 90 91           | 86.45          | 86.68          | 86 93<br>87·89 | 87.16          | 87.39          | 87.63          | 87.87          | 89.09          | 88.34          | 88.58          | 91        |
| 92              | 88.37          | 88.61          | 88.86          | 89.09          | 89.33          | 89.58          | 89.82          | 90.07          | 90.31          | 90.55          | 92        |
| 93<br>94        | 89.33          | 89.57          | 89.82          | 90.06          | 90.30          | 90.55          | 90.80          | 91.05          | 91.29          | 91.53          | 93<br>94  |
| 95              | 91.25          | 91.50          | 91.75          | 92.00          | 92.25          | 92.50          | 92.75          | 93.00          | 93.25          | 93.50          | 95        |
| 96              | 92·21<br>93·17 | 92.46          | 92.72          | 92.97          | 93.22          | 93.47          | 93.73          | 93.93          | 94·23<br>95·22 | 94·48<br>95·47 | 96        |
| 97<br>98        | 94.13          | 93.43          | 93.68          | 93.93          | 94.19 95.16    | 94.45          | 94.71          | 94·96<br>95·94 | 96.20          | 96.45          | 97<br>98  |
| 99              | 95.09          | 95·35<br>96·32 | 95·61<br>96·58 | 95·87<br>96·84 | 96·13<br>97·11 | 96.39          | 96.66<br>97.63 | 96·92<br>97·89 | 97·18<br>98·16 | 97·43<br>98·42 | 99<br>100 |
| 100             | 30 03          | 30 32          | 30 33          | 20 04          | 3/ 11          | 97:37          | 37 03          | 31 03          | 30 10          | 30 42          | 100       |

44

### REDUCTION OF VOLUMES OF GASES

Deduct from the pressure read off at the barometer 1 mm. for temperatures

| 760      | 750   | 752   | 754   | 756   | 758   | 762   | 764   | 766   | 768   | 770            | 760 |
|----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|----------------|-----|
| 1        | 0.987 | 0.989 | 0.992 | 0.995 | 0.997 | 1.003 | 1.005 | 1.008 | 1.011 | 1.013          | 1   |
| 2        | 1.974 | 1.979 | 1.984 | 1.989 |       | 2.005 | 2.011 | 2.016 | 2.021 | 2.026          |     |
| 3        | 2.960 | 2.968 | 2.976 |       |       | 3.007 | 3.016 | 3.024 | 3.032 | 3.039          | 3   |
| 4        | 3.947 | 3.958 | 3.968 | 3.979 | 3.990 |       | 4.021 | 4.032 | 4.042 | 4.052          | 4   |
| 5        | 4.934 | 4.947 | 4.960 | 4.974 | 4.987 | 5.013 | 5.026 | 5.040 | 5.053 | 5.066          | 5   |
| 6        | 5.921 | 5.937 | 5.952 | 5.968 | 5.984 | 6.016 | 6.032 | 6:047 | 6.063 | 6.079          | 6   |
| 7        | 6.908 |       |       |       |       |       | 7.037 | 7.055 | 7.074 | 7.092          | 7   |
| 8        | 7.894 | 7.916 |       |       | 7.979 | 8.021 | 8.042 | 8.063 | 8.084 | 8.106          | 8   |
| 9        | 8.881 |       |       |       | 8.977 | 9.023 |       | 9.071 | 9.095 | 9.119          | 9   |
| 10       | 9.87  | 9.89  | 9.92  | 9.95  | 9.97  | 10.03 | 10.05 | 10.08 | 10.11 | 10.13          | 10  |
| 11       | 10.85 | 10.88 | 10.91 | 10.94 | 10.97 | 11.03 | 11.06 | 11.09 | 11.12 | 11.14          | 11  |
| 12       | 11.84 | 11.87 | 11:90 | 11.94 | 11.97 | 12.04 | 12.07 | 12.10 | 12.13 | 12.16          | 12  |
| 13       | 12.83 | 12.86 | 12.89 | 12.93 | 12.96 | 13.04 | 13.07 | 13.10 | 13.14 | 12·16<br>13·17 | 13  |
| 14       | 13.82 | 13.85 | 13.88 | 13.92 | 13.96 | 14.04 | 14.07 | 14:11 | 14.15 | 14.17          | 14  |
| 15       | 14.81 | 14.84 | 14.87 | 14.92 | 14.96 | 15.04 | 15.08 | 15.13 | 15.16 | 15.19          | 15  |
| 16       | 15.79 | 15.83 | 15.87 | 15.91 | 15.95 | 16.05 | 16.09 | 16.13 | 16.17 | 16.21          | 16  |
| 17       | 16.78 | 16.82 | 16.86 | 16.91 | 16.95 | 17.05 | 17.09 | 17.14 | 17.18 | 17.22          | 17  |
| 18       | 17.77 | 17.81 | 17.85 | 17.90 | 17.95 | 18.05 | 18.10 | 18.15 | 18.19 | 18.23          | 18  |
| 19       | 18.75 | 18.80 | 18.85 | 18.90 | 18.95 | 19.05 | 19.10 | 19.15 | 19.20 | 19.25          | 19  |
| 20       | 19.74 | 19.79 | 19.84 | 19.89 | 19.95 | 20.05 | 20.11 | 20.16 | 20.21 | 20.26          | 20  |
| 21       | 20.72 | 20.77 | 20.83 | 20.89 | 20.94 | 21.05 | 21.11 | 21.17 | 21.22 | 21.27          | 21  |
| 22       | 21.71 | 21.76 | 21.82 | 21.88 | 21.94 | 22.06 | 22.12 | 22.18 | 22.23 | 22.28          | 22  |
| 23       | 22.70 | 22.75 | 22.81 | 22.88 | 22.94 | 23.06 | 23.12 | 23.18 | 23.24 | 23.30          | 23  |
| 24       | 23.69 | 23.74 | 23.80 | 23.87 | 23.93 | 24.06 | 24.13 | 24.19 | 24.25 | 24.31          | 24  |
| 25       | 24.67 | 24.73 | 24.80 | 24.87 | 24.93 | 25.06 | 25.13 | 25.20 | 25.26 | 25.32          | 25  |
| 26       | 25.66 | 25.72 | 25.79 | 25.86 | 25.93 | 26.06 | 26.14 | 26.21 | 26.27 | 26.34          | 26  |
| 27       | 26.65 | 26.71 | 26.78 | 26.86 | 26.93 | 27.07 | 27.15 | 27.22 | 27.28 | 27.35          | 27  |
| 27<br>28 | 27.63 | 27.70 | 27.77 | 27.85 | 27.92 | 28.07 | 28.15 | 28.23 | 28.29 | 28.36          | 28  |
| 29       | 28.62 | 28.69 | 28.76 | 27.84 | 28.92 | 29.07 | 29.16 | 29.24 | 29.30 | 29.37          | 29  |
| 30       | 29.60 | 29.68 | 29.76 | 29.84 | 29.92 | 30.07 | 30.16 | 30.24 | 30.32 | 30.39          | 30  |
| 31       | 30.59 | 30.67 | 30.75 | 30.84 | 30.92 | 31.08 | 31.17 | 31.25 | 31.33 | 31.41          | 31  |
| 32       | 31.58 | 31.66 | 31.74 | 31.83 | 31.92 | 32.08 | 32.17 | 32.26 | 32.34 | 32.42          | 32  |
| 33       | 32.56 | 32.65 | 32.73 | 32.82 | 32.91 | 33.08 | 33.18 | 33.27 | 33.35 | 33.43          | 33  |
| 34       | 33.55 | 33.64 | 33.73 | 33.82 | 33.91 | 34.09 | 34.18 | 34.28 | 34.36 | 34.45          | 34  |
| 35       | 34.24 | 34.63 | 34.72 | 34.82 | 34.91 | 35.09 | 35.19 | 35.28 | 35.37 | 35.46          | 35  |
| 36       | 35.52 | 35.62 | 35.71 | 35.81 | 35.91 | 36.09 | 36.19 | 36.29 | 36.38 | 36:47          | 36  |
| 37<br>38 | 36.51 | 36.61 | 36.71 | 36.81 | 36.90 | 37.09 | 37.20 | 37:30 | 37.39 | 37.49          | 37  |
|          | 37.50 | 37.60 | 37.70 | 37.80 | 37.90 | 38.10 | 38.20 | 38.30 | 38.40 | 38.50          | 38  |
| 39       | 38.49 | 38.59 | 38.69 | 38.80 | 38.90 | 39.10 | 39.21 | 39.31 | 39.41 | 39.51          | 39  |
| 40       | 39.47 | 39.58 | 39.68 | 39.79 | 39.90 | 40.10 | 40.21 | 40.32 | 40.42 | 40 52          | 40  |
| 41       | 40.46 | 40.56 | 40.67 | 40.79 | 40.89 | 41.11 | 41.22 | 41.33 | 41.43 | 41.54          | 41  |
| 42       | 41.44 | 41.55 | 41.66 | 41.78 | 41.89 | 42.11 | 42.22 | 42.34 | 42.44 | 42.55          | 42  |
| 43       | 42.43 | 42.54 | 42.66 | 42.78 | 42.89 | 43.11 | 43.23 | 43.35 | 43.45 | 43.56          | 43  |
| 44       | 43.42 | 43.53 | 43.65 | 43.77 | 43.89 | 44.12 | 44.23 | 44.35 | 44.46 | 44.58          | 44  |
| 45       | 44.40 | 44.25 | 44.64 | 44.76 | 44.88 | 45.12 | 45.24 | 45.36 | 45.47 | 45.29          | 45  |
| 46       | 45.39 | 45.21 | 45.63 | 45.76 | 45.88 | 46.12 | 46.24 | 46.36 | 46.48 | 46.60          | 46  |
| 47       | 46.38 | 46.20 | 46.63 | 46.76 | 46.88 | 47.12 | 47.25 | 47.38 | 47.49 | 47.61          | 47  |
| 48       | 47.36 | 47.49 | 47.62 | 47.75 | 47.87 | 48.13 | 48.25 | 48.39 | 48.51 | 48.63          | 48  |
| 49       | 48.35 | 48.48 | 48.61 | 48.74 | 48.87 | 49.13 | 49.26 | 49.40 | 49.52 | 49.64          | 49  |
| 50       | 49.34 | 49.47 | 49.60 | 49.74 | 49.87 | 50.13 | 50.26 | 50.40 | 50.23 | 50.66          | 50  |
|          |       |       |       |       |       |       |       |       |       |                |     |

TO A PRESSURE OF 760 MM.—Continued.

between 0° and 12° C., 2 mm. between 13° and 19° C., 3 mm. between 20° and 25° C.

| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                   | 760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                    | 68 52<br>70 53<br>72 54<br>73 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 55   54.28   54.42   54.56   54.71   54.86   55.15   55.29   55.44   55.58   55                                                                                                                                                                                                                                         | 73 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                   | 74   56<br>76   57<br>77   58<br>78   59<br>79   60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                    | 81 6<br>82 6<br>84 6<br>85 6<br>86 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                    | 88 66<br>89 66<br>90 66<br>91 66<br>92 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                   | 94 7<br>95 7<br>97 7<br>98 7<br>99 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                   | 01 70<br>02 77<br>03 73<br>04 75<br>06 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 82     80 92     81 14     81 35     81 56     81 78     82 21     82 43     82 65     82 87     83       83     81 91     82 13     82 34     82 56     82 78     83 22     83 44     83 66     83 88     84       84     82 90     83 12     83 34     83 56     83 78     84 22     84 44     84 66     84 89     85 | 07 8<br>09 8<br>10 8<br>11 8<br>13 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 87     85·85     86·08     86·31     86·54     86·77     87·23     87·56     87·68     87·92     88       88     86·84     87·07     87·30     87·54     87·77     88·23     88·47     88·69     88·93     88       89     87·82     88·06     88·29     88·53     88·77     89·23     89·47     89·70     89·94     90 | 14 8<br>15 8<br>17 8<br>18 8<br>19 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                    | 21 9<br>22 9<br>23 9<br>24 9<br>26 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                   | 27 9<br>29 9<br>30 9<br>31 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                         | 32 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

# TABLE 218.—FACTORS FOR REDUCING A GIVEN VOLUME OF GAS TO NORMAL TEMPERATURE AND PRESSURE.

 $0^{\circ}$  Centigrade, and 760 millimetres, or 32° Fahrenheit, and 29·92 inches barometric pressure.

| Cen          | tigrade. | 0.0    | 1.1    | 2.2    | 3.3    | 4.4    | 5.6    | 6.7    | 7.8    | 8.9    |
|--------------|----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Fah          | renheit. | 32°    | 34°    | 36°    | 38°    | 40°    | 42°    | 41°    | 46°    | 48°    |
|              | Milli-   |        |        |        |        |        |        |        |        |        |
| In.          | metre.   |        |        |        |        |        |        |        |        |        |
| 27.5         | 698.2    | .9191  | .9154  | .9116  | .9079  | .9043  | .9007  | .8972  | .8936  | *8899  |
| 27.6         | 701.0    | .9224  | .9188  | •9149  | .9115  | .9076  | .9039  | .9002  | .8969  | *8932  |
| 27.7         | 703.6    | 9258   | .9221  | .9183  | 9145   | .9109  | 9072   | 9037   | .9001  | *8964  |
| 27.8<br>27.9 | 706.1    | '9291  | 9254   | 9215   | 9179   | 9142   | 9105   | 9070   | 9034   | .8996  |
| 21 9         | 708.6    | •9325  | •9288  | .9249  | •9212  | .9174  | .9138  | .9102  | .9067  | .9029  |
| 28.0         | 711.2    | .9358  | .9321  | .9282  | .9244  | .9208  | .9170  | .9135  | .9099  | .9061  |
| 28.1         | 713.7    | .9391  | .9354  | .9315  | .9278  | .9241  | .9203  | '9167  | .9131  | .9093  |
| 28.2         | 716.3    | '9425  | .9387  | .9348  | .9310  | .9273  | 9236   | .9200  | 9164   | *9125  |
| 28.3         | 718.8    | •9458  | .9421  | .9382  | .9344  | •9306  | .9269  | .9233  | 9197   | .9158  |
| 28.4         | 721.3    | •9491  | .9454  | .9415  | .9377  | •9339  | .9301  | 9265   | .9229  | .9190  |
| 28.5         | 723.9    | .9525  | .9487  | .9448  | .9410  | .9372  | .9334  | .9298  | .9262  | .9223  |
| 28.6         | 726.4    | 9558   | 9520   | 9481   | 9443   | 9405   | .9367  | .9331  | 9294   | 9255   |
| 28.7         | 728.9    | 9592   | .9554  | .9514  | .9476  | .9438  | •9400  | .9364  | .9327  | .9287  |
| 28.8         | 731.5    | .9625  | .9587  | .9547  | .9509  | .9471  | .9432  | .9396  | 9359   | .9320  |
| 28.9         | 734.0    | .9659  | .9620  | .9580  | .9542  | .9504  | .9465  | .9429  | .9392  | .9352  |
| 29.0         | 736.6    | .9692  | .9654  | .9613  | .9575  | •9536  | .9498  | .9462  | .9424  | .9385  |
| 29.1         | 739.1    | 9725   | .9687  | 9647   | .9608  | .9569  | 9531   | .9494  | 9457   | .9417  |
| 29.2         | 741.6    | .9759  | .9720  | .9680  | .9610  | .9602  | .9563  | .9527  | .9489  | .9419  |
| 29.3         | 744.2    | .9792  | .9753  | .9713  | .9674  | .9635  | .9596  | .9559  | .9522  | .9481  |
| 29.4         | 746.7    | 9826   | .9787  | .9746  | .9707  | .9668  | .9629  | .9592  | .9554  | .9514  |
| 29.5         | 749.3    | .9859  | .9820  | .9779  | .9740  | .9701  | .9662  | .9624  | 9587   | .9546  |
| 29.6         | 751.8    | .9893  | .9853  | 9812   | .9773  | 9733   | 9694   | 9657   | .9619  | .9578  |
| 29.7         | 754.3    | .9926  | .9887  | .9845  | .9806  | .9766  | .9727  | .9690  | .9652  | .9611  |
| 29.8         | 756.9    | •9959  | .9920  | .9879  | .9839  | .9800  | .9760  | .9722  | .9684  | .9643  |
| 29 9         | 759.4    | .9993  | .9954  | .9912  | .9872  | .9832  | .9793  | .9755  | '9717  | .9676  |
| 30.0         | 762.0    | 1.0026 | -9987  | .9945  | .9905  | .9865  | .9826  | -9788  | .9749  | .9708  |
| 30.1         | 764.5    | 1.0060 | 1.0020 | 9978   | .9938  | 9898   | .9858  | .9820  | 9782   | .9740  |
| 30.3         | 767.0    | 1.0093 | 1.0053 | 1.0011 | 9971   | .9931  | .9891  | .9853  | .9814  | .9773  |
| 30.3         | 769.6    | 1.0126 | 1.0086 | 1.0044 | 1.0004 | 9964   | .9924  | .9885  | .9846  | .9805  |
| 30.4         | 772.1    | 1.0160 | 1.0120 | 1.0078 | 1.0037 | .9997  | .9957  | .9918  | 9879   | .9837  |
| 30.5         | 774.7    | 1.0194 | 1.0153 | 1.0111 | 1.0070 | 1.0030 | -9989  | .9950  | .9911  | .9870  |
| 30.6         | 777.2    | 1.0227 | 1.0186 | 1.0144 | 1.0103 | 1.0063 | 1.0022 | .9983  | .9944  | 9902   |
| 30.7         | 779.7    | 1.0260 | 1.0220 | 1.0177 | 1.0136 | 1.0096 | 1.0055 | 1.0016 | 9976   | •9935  |
| 30.8         | 782.3    | 1.0294 | 1.0253 | 1.0210 | 1.0169 | 1.0128 | 1.0087 | 1.0048 | 1.0009 | .9967  |
| 30.3         | 784.8    | 1.0327 | 1.0286 | 1.0243 | 1.0202 | 1.0164 | 1.0120 | 1.0081 | 1.0041 | 1.0000 |
| 31.0         | 787.4    | 1.0360 | 1.0319 | 1.0276 | 1.0235 | 1.0194 | 1.0123 | 1.0114 | 1.0074 | 1.0032 |
|              |          |        |        |        |        |        |        |        |        |        |

# FACTORS FOR REDUCING A GIVEN VOLUME OF GAS TO NORMAL TEMPERATURE AND PRESSURE.—Continued.

0° Centigrade, and 760 millimetres, or 32° Fahrenheit, and 29°92 inches barometric pressure.

| Cen                                         | tigrade.       | 10.0           | 11.1           | 12.2           | 13.3           | 14'4           | 15.6           | 16.7           | 17.8           |
|---------------------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| Fah                                         | renheit.       | 50°            | 52°            | 54°            | 56°            | 58°            | 60°            | 62°            | 61°            |
| -                                           | Milli-         |                |                |                | 7              |                |                |                | 1              |
| In.                                         | metre.         |                | 0000           | .0404          | 0200           | 0400           | .000           |                | .0000          |
| $\begin{array}{c} 27.5 \\ 27.6 \end{array}$ | 698.5          | *8867<br>*8900 | ·8832<br>·8864 | ·8797<br>·8829 | ·8763<br>·8795 | ·8728<br>·8760 | ·8695<br>·8726 | '8661<br>'8693 | *8628<br>*8660 |
| 27.7                                        | 703.6          | 8932           | *8897          | *8861          | 8827           | 8792           | *8758          | 8724           | 8691           |
| 27.8                                        | 706.1          | 8964           | 8928           | *8893          | .8859          | 8823           | *8790          | 8756           | 8722           |
| 27.9                                        | 708.6          | *8996          | .8960          | *8925          | .8890          | *8855          | *8821          | .8787          | .8754          |
| 28.0                                        | 711.2          | .9029          | .8992          | .8957          | .8922          | .8887          | .8853          | .8819          | .8785          |
| 28.1                                        | 713.7          | .9060          | 9025           | *8989          | *8954          | 8919           | *8884          | *8850          | *8816          |
| 28·2<br>28·3                                | 716·3<br>718·8 | ·9093<br>·9125 | 9057           | ·9021<br>·9053 | ·8986<br>·9018 | ·8951<br>·8983 | ·8916<br>·8948 | ·8882<br>·8913 | ·8848<br>·8879 |
| 28.4                                        | 721.3          | 9157           | 9121           | .9085          | 9050           | 9014           | .8979          | .8945          | 8911           |
| 28.5                                        | 723.9          | -9189          | .9153          | .9117          | .9082          | .9046          | .9011          | .8976          | -8942          |
| 28.6                                        | 726.4          | .9222          | .9185          | .9149          | 9114           | .9077          | .9043          | .9008          | .8973          |
| 28.7                                        | 728.9          | 9254           | .9218          | .9181          | .9145          | 9109           | 9074           | .9039          | .9002          |
| 28.8                                        | 731·5<br>734·0 | ·9286<br>·9318 | 9250           | ·9213<br>·9245 | 9177           | 9141           | 9196           | 9071           | 9036           |
| 28.9                                        | 7340           |                | .9282          |                | •9209          | 9173           | .9138          | .9102          | 9067           |
| 29.0                                        | 736.6          | 9351           | .9314          | .9277          | 9241           | .9205          | .9169          | .9134          | .9099          |
| 29.1                                        | 739.1          | .9383          | 9346           | .9309          | 9273           | 9236           | *9201          | 9165           | 9130           |
| 29.2                                        | 741.6<br>744.2 | ·9415<br>·9448 | 9378           | ·9341<br>·9373 | ·9305<br>·9336 | ·9268<br>·9300 | ·9233<br>·9264 | 9197           | ·9162<br>·9193 |
| 29.4                                        | 746.7          | .9480          | 9443           | 9405           | 9368           | .9332          | 9296           | 9260           | 9224           |
| 29.5                                        | 749.3          | .9512          | .9475          | .9437          | .9400          | .9363          | .9328          | 9291           | .9256          |
| 29.6                                        | 751.8          | 9544           | 9506           | 9469           | 9432           | .9395          | .9359          | 9323           | 9287           |
| 29.7                                        | 754.3          | '9577          | .9539          | .9501          | 9464           | .9427          | .9390          | 9354           | .9318          |
| 29.8                                        | 756.9          | .9609          | 9571           | .9533          | 9496           | •9459          | 9422           | 9386           | .9350          |
| 29.9                                        | 759.4          | .9641          | .9603          | .9565          | .9528          | '9490          | .9454          | .9417          | .9381          |
| 30.0                                        | 762.0          | 9673           | .9635          | .9597          | .9560          | .9522          | .9486          | .9449          | 9413           |
| 30.1                                        | 764.5          | .9706          | 9667           | 9629           | .9591          | .9554          | 9517           | .9480          | .9114          |
| 30.2                                        | 767.0          | 9738           | .9700          | '9661          | 9623           | 9586           | .9549          | 9512           | 9475           |
| 30·3<br>30·4                                | 769·6<br>772·1 | 9770           | ·9731<br>·9764 | ·9693<br>·9725 | ·9655<br>·9687 | 9617           | ·9580<br>·9612 | 9543           | 9507           |
| 11                                          | 10/3           |                |                | of the last    |                |                | 3 2 3          |                |                |
| 30.5                                        | 774.7          | .9835          | .9796          | .9757          | •9719          | .9681          | .9643          | .9606          | .9569          |
| 30·6<br>30·7                                | 777.2          | 9867           | ·9828<br>·9860 | ·9789<br>·9821 | ·9751<br>·9782 | 9712           | ·9675<br>·9707 | ·9638<br>·9669 | ·9601<br>·9632 |
| 30.8                                        | 782.3          | 9899           | 9860           | 9821           | 9/82           | 9744           | 9707           | 9009           | 9652           |
| 30.9                                        | 784.8          | 9963           | 9924           | 9885           | 9846           | 9807           | .9770          | 9732           | 9695           |
| 31.0                                        | 787.4          | .9996          | 9956           | 9917           | 9878           | 9840           | 9801           | 9764           | 9726           |
|                                             |                |                |                |                |                |                |                |                |                |

# FACTORS FOR REDUCING A GIVEN VOLUME OF GAS TO NORMAL TEMPERATURE AND PRESSURE,—Continued.

0° Centigrade, and 760° millimetres, or 32° Fahrenheit, and 29.92 inches barometric pressure.

| -                                           |                                                               |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |
|---------------------------------------------|---------------------------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|
| Cent                                        | igrade.                                                       | 18.9                                      | 20                                        | 21.1                                      | 22.2                                      | 23.3                                      | 24.4                                      | 25.6                                      | 26.7                                      |
| Fahr                                        | renheit.                                                      | 66°                                       | -68°                                      | 70°                                       | 72°                                       | 74°                                       | 76°                                       | 78°                                       | 80°                                       |
| In.<br>27·5<br>27·6<br>27·7<br>27·8<br>27·9 | Milli-<br>metre.<br>698.5<br>701.0<br>703.6<br>706.1<br>708.6 | ·8595<br>·8626<br>·8658<br>·8689<br>·8720 | ·8568<br>·8594<br>·8625<br>·8656<br>·8687 | *8530<br>*8561<br>*8592<br>*8623<br>*8654 | *8498<br>*8529<br>*8560<br>*8591<br>*8622 | ·8466<br>·8497<br>·8528<br>·8559<br>·8589 | *8435<br>*8465<br>*8496<br>*8527<br>*8557 | *8403<br>*8434<br>*8464<br>*8495<br>*8525 | ·8372<br>·8403<br>·8433<br>·8463<br>·8494 |
| 28·0                                        | 711·2                                                         | ·8751                                     | *8718                                     | *8685                                     | ·8653                                     | ·8620                                     | ·8588                                     | *8556                                     | ·8524                                     |
| 28·1                                        | 713·7                                                         | ·8783                                     | *8750                                     | *8716                                     | ·8684                                     | ·8651                                     | ·8619                                     | *8587                                     | ·8555                                     |
| 28·2                                        | 716·3                                                         | ·8814                                     | *8781                                     | *8747                                     | ·8714                                     | ·8682                                     | ·8649                                     | *8617                                     | ·8585                                     |
| 28·3                                        | 718·8                                                         | ·8845                                     | *8812                                     | *8778                                     | ·8745                                     | ·8713                                     | ·8680                                     | *8648                                     | ·8616                                     |
| 28·4                                        | 721·3                                                         | ·8876                                     | *8843                                     | *8809                                     | ·8776                                     | ·8743                                     | ·8711                                     | *8678                                     | ·8646                                     |
| 28.5                                        | 723·9                                                         | ·8908                                     | ·8874                                     | *8840                                     | ·8807                                     | ·8774                                     | ·8741                                     | ·8709                                     | *8677                                     |
| 28.6                                        | 726·4                                                         | ·8939                                     | ·8905                                     | *8872                                     | ·8838                                     | ·8805                                     | ·8772                                     | ·8739                                     | *8707                                     |
| 28.7                                        | 728·9                                                         | ·8970                                     | ·8936                                     | *8903                                     | ·8869                                     | ·8836                                     | ·8803                                     | ·8770                                     | *8738                                     |
| 28.8                                        | 731·5                                                         | ·9002                                     | ·8968                                     | *8934                                     | ·8900                                     | ·8866                                     | ·8833                                     | ·8800                                     | *8768                                     |
| 28.9                                        | 734·0                                                         | ·9033                                     | ·8999                                     | *8965                                     | ·8931                                     | ·8897                                     | ·8864                                     | ·8831                                     | *8798                                     |
| 29·0                                        | 736·6                                                         | 9064                                      | .9030                                     | ·8996                                     | *8962                                     | *8928                                     | ·8895                                     | ·8862                                     | *8829                                     |
| 29·1                                        | 739·1                                                         | 9095                                      | .9061                                     | ·9027                                     | *8993                                     | *8959                                     | ·8925                                     | ·8892                                     | *8859                                     |
| 29·2                                        | 741·6                                                         | 9127                                      | .9092                                     | ·9050                                     | *9023                                     | *8920                                     | ·8956                                     | ·8923                                     | *8890                                     |
| 29·3                                        | 744·2                                                         | 9158                                      | .9123                                     | ·9089                                     | *9054                                     | *9020                                     | ·8987                                     | ·8953                                     | *8920                                     |
| 29·4                                        | 746·7                                                         | 9189                                      | .9154                                     | ·9120                                     | *9085                                     | *9051                                     | ·9017                                     | ·8984                                     | *8951                                     |
| 29·5                                        | 749·3                                                         | 9220                                      | .9186                                     | .9151                                     | '9116                                     | .9082                                     | '9048                                     | 9014                                      | ·8981                                     |
| 29·6                                        | 751·8                                                         | 9252                                      | .9217                                     | .9182                                     | '9147                                     | .9113                                     | '9079                                     | 9045                                      | ·9012                                     |
| 29·7                                        | 754·3                                                         | 9283                                      | .9248                                     | .9213                                     | '9178                                     | .9144                                     | '9109                                     | 9076                                      | ·9042                                     |
| 29·8                                        | 756·9                                                         | 9314                                      | .9279                                     | .9244                                     | '9209                                     | .9174                                     | '9140                                     | 9106                                      | ·9072                                     |
| 29·9                                        | 759·4                                                         | 9345                                      | .9310                                     | .9275                                     | '9240                                     | .9205                                     | '9171                                     | 9137                                      | ·9103                                     |
| 30·0                                        | 762·0                                                         | ·9377                                     | .9341                                     | ·9306                                     | 9271                                      | ·9236                                     | ·9201                                     | 9167                                      | *9133                                     |
| 30·1                                        | 764·5                                                         | ·9408                                     | .9372                                     | ·9337                                     | 9302                                      | ·9267                                     | ·9232                                     | 9198                                      | *9164                                     |
| 30·2                                        | 767·0                                                         | ·9439                                     | .9403                                     | ·9368                                     | 9333                                      | ·9297                                     | ·9263                                     | 9228                                      | *9194                                     |
| 30·3                                        | 769·6                                                         | ·9470                                     | .9435                                     | ·9329                                     | 9363                                      | ·9328                                     | ·9293                                     | 9259                                      | *9225                                     |
| 30·4                                        | 772·1                                                         | ·9502                                     | .9466                                     | ·9430                                     | 9394                                      | ·9359                                     | ·9324                                     | 9289                                      | *9255                                     |
| 30·5                                        | 774·7                                                         | 9533                                      | .9497                                     | *9461                                     | .9425                                     | .9390                                     | ·9355                                     | ·9320                                     | ·9286                                     |
| 30·6                                        | 777·2                                                         | 9564                                      | .9528                                     | *9492                                     | .9456                                     | .9421                                     | ·9385                                     | ·9351                                     | ·9316                                     |
| 30·7                                        | 779·7                                                         | 9595                                      | .9559                                     | *9523                                     | .9487                                     | .9451                                     | ·9416                                     | ·9381                                     | ·9346                                     |
| 30·8                                        | 782·3                                                         | 9627                                      | .9590                                     | *9554                                     | .9518                                     | .9482                                     | ·9447                                     | ·9412                                     | ·9377                                     |
| 30·9                                        | 784·8                                                         | 9658                                      | .9621                                     | *9585                                     | .9549                                     | .9513                                     | ·9477                                     | ·9442                                     | ·9407                                     |
| 31·0                                        | 787·4                                                         | 9689                                      | .9653                                     | *9616                                     | .9580                                     | .9544                                     | ·9508                                     | ·9473                                     | ·9438                                     |

### TABLE 22.-VOLUMES OF WATER

At different Temperatures (Kopp).

| Temp.<br>Cels. |          | Temp.<br>Cels. | to exima | Temp.<br>Cels. |          |
|----------------|----------|----------------|----------|----------------|----------|
| 0              | 1        | 14             | 1.000556 | 40             | 1.007531 |
| 1              | 0.999947 | 15             | 1.000695 | 45             | 1.009541 |
| 2              | 0.999908 | 16             | 1.000846 | 50             | 1.011766 |
| 2 3            | 0.999885 | 17             | 1.001010 | 55             | 1.014100 |
| 4              | 0.999877 | 18             | 1.001184 | 60             | 1.016590 |
| 4<br>5         | 0.999883 | 19             | 1.001370 | 65             | 1.019302 |
| 6              | 0.999903 | 20             | 1.001567 | 70             | 1.022246 |
| 7              | 0.999938 | 21             | 1.001776 | 75             | 1.025440 |
| 8              | 0.999986 | 22             | 1.001995 | 80             | 1.028581 |
| 8 9            | 1.000048 | 23             | 1.002225 | 85             | 1.031894 |
| 10             | 1.000124 | 24             | 1.002465 | 90             | 1.035397 |
| 11             | 1.000213 | 25             | 1.002715 | 95             | 1.039094 |
| 12             | 1.000314 | 30             | 1.004064 | 100            | 1.042986 |
| 13             | 1.000429 | 35             | 1.005697 |                | 4        |

### TABLE 22B.—REDUCTION OF WATER PRESSURE

To Mercurial Pressure.

|          | 20 december 2 control |          |              |          |              |          |              |      |       |
|----------|-----------------------|----------|--------------|----------|--------------|----------|--------------|------|-------|
| aq       | Hg                    | aq       | Hg           | aq       | Hg           | aq       | Hg           | aq   | Hg    |
| 1        | 0·07                  | 23       | 1.70         | 45       | 3·32         | 67       | 4·94         | 89   | 6·57  |
| 2        | 0·15                  | 24       | 1.77         | 46       | 3·39         | 68       | 5·02         | 90   | 6·64  |
| 3        | 0·22                  | 25       | 1.84         | 47       | 3·47         | 69       | 5·09         | 91   | 6·72  |
| 4        | 0·30                  | 26       | 1.92         | 48       | 3·54         | 70       | 5·17         | 92   | 6·79  |
| 5        | 0·37                  | 27       | 1.98         | 49       | 3·62         | 71       | 5·24         | 93   | 6·86  |
| 6        | 0·44                  | 28       | 2·07         | 50       | 3·69         | 72       | 5·31         | 94   | 6·94  |
| 7        | 0·52                  | 29       | 2·14         | 51       | 3·76         | 78       | 5·39         | 95   | 7·01  |
| 8        | 0·59                  | 30       | 2·21         | 52       | 3·84         | 74       | 5·46         | 96   | 7·08  |
| 9        | 0·66                  | 31       | 2·29         | 53       | 3·91         | 75       | 5·54         | 97   | 7·16  |
| 10       | 0·74                  | 32       | 2·36         | 54       | 3·99         | 76       | 5·61         | 98   | 7·23  |
| 11       | 0.81                  | 33       | 2·44         | 55       | 4·06         | 77       | 5.68         | 99   | 7·31  |
| 12       | 0.89                  | 34       | 2·51         | 56       | 4·13         | 78       | 5.76         | 100  | 7·38  |
| 13       | 0.96                  | 35       | 2·58         | 57       | 4·21         | 79       | 5.83         | 200  | 14·76 |
| 14       | 1.03                  | 36       | 2·66         | 58       | 4·28         | 80       | 5.90         | 300  | 22·14 |
| 15       | 1.12                  | 37       | 2·73         | 59       | 4·35         | 81       | 5.98         | 400  | 29·52 |
| 16       | 1·18                  | 38       | 2·80         | 60       | 4·43         | 82       | 6·05         | 500  | 36·90 |
| 17       | 1·26                  | 39       | 2·88         | 61       | 4·50         | 83       | 6·13         | 600  | 44·28 |
| 18       | 1·33                  | 40       | 2·95         | 62       | 4·58         | 84       | 6·20         | 700  | 51·66 |
| 19       | 1·40                  | 41       | 3·03         | 63       | 4·65         | 85       | 6·27         | 800  | 59·04 |
| 20       | 1·38                  | 42       | 3·10         | 64       | 4·72         | 86       | 6·35         | 900  | 66·42 |
| 21<br>22 | 1.55<br>1.62          | 43<br>44 | 3·17<br>3·25 | 65<br>66 | 4·80<br>4·87 | 87<br>88 | 6·42<br>6·49 | 1000 | 78•80 |

TABLE 23.—TENSIONS OF AQUEOUS VAPOUR

between -20 and  $+118^{\circ}$  C. in millimetres mercury (Magnus).

| mm                                        | Т                                                                                                                                                                                                                                                                                                                | mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0·916<br>0·999<br>1·089<br>1·186<br>1·290 | +15° 16 17 18 19                                                                                                                                                                                                                                                                                                 | 12·677<br>13·519<br>14·409<br>15·351<br>16·345                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | +50° 51 52 53 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 92·0<br>96·6<br>101·5<br>106·6<br>111·9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1·403                                     | 20                                                                                                                                                                                                                                                                                                               | 17·396                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 117·4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1·525                                     | 21                                                                                                                                                                                                                                                                                                               | 18·505                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 123·1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1·655                                     | 22                                                                                                                                                                                                                                                                                                               | 19·675                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 129·1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1·796                                     | 23                                                                                                                                                                                                                                                                                                               | 20·909                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 135·3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1·947                                     | 24                                                                                                                                                                                                                                                                                                               | 22·211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 141·8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2·109                                     | 25                                                                                                                                                                                                                                                                                                               | 28·582                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 148·6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2·284                                     | 26                                                                                                                                                                                                                                                                                                               | 25·026                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 155·6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2·471                                     | 27                                                                                                                                                                                                                                                                                                               | 26·547                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 162·9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2·671                                     | 28                                                                                                                                                                                                                                                                                                               | 28·148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 170·5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2·886                                     | 29                                                                                                                                                                                                                                                                                                               | 29·832                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 178·4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3·110                                     | 30                                                                                                                                                                                                                                                                                                               | 81·602                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 186·6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3·361                                     | 31                                                                                                                                                                                                                                                                                                               | 83·5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 195·1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3·624                                     | 32                                                                                                                                                                                                                                                                                                               | 85·4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 204·0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3·900                                     | 33                                                                                                                                                                                                                                                                                                               | 87·5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 213·2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 4·205                                     | 34                                                                                                                                                                                                                                                                                                               | 89·6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 222·7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 4·525                                     | 35                                                                                                                                                                                                                                                                                                               | 41·9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 232·6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 4·867                                     | 36                                                                                                                                                                                                                                                                                                               | 44·3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 242·9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 5·281                                     | 37                                                                                                                                                                                                                                                                                                               | 46·8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 258·5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 5·619                                     | 38                                                                                                                                                                                                                                                                                                               | 49·4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 264·6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 6·082                                     | 39                                                                                                                                                                                                                                                                                                               | 52·1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 276·0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 6·471                                     | 40                                                                                                                                                                                                                                                                                                               | 55·0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 287·9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 6·939                                     | 41                                                                                                                                                                                                                                                                                                               | 58·0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 300·2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 7·436                                     | 42                                                                                                                                                                                                                                                                                                               | 61·1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 312·9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 7·964                                     | 43                                                                                                                                                                                                                                                                                                               | 64·4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 326·1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 8·525                                     | 44                                                                                                                                                                                                                                                                                                               | 67·8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 339·8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 9·126                                     | 45                                                                                                                                                                                                                                                                                                               | 71·4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 353·9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 9·756                                     | 46                                                                                                                                                                                                                                                                                                               | 75·2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 368·6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 10·421                                    | 47                                                                                                                                                                                                                                                                                                               | 79·1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 383·7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 11·130                                    | 48                                                                                                                                                                                                                                                                                                               | 83·2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 399·4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 11·882                                    | 49                                                                                                                                                                                                                                                                                                               | 87·5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 415·6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                           | 0.916<br>0.999<br>1.089<br>1.186<br>1.290<br>1.408<br>1.525<br>1.655<br>1.796<br>1.947<br>2.109<br>2.284<br>2.471<br>2.671<br>2.886<br>3.110<br>3.361<br>3.624<br>3.900<br>4.205<br>4.525<br>4.867<br>5.281<br>5.619<br>6.032<br>6.471<br>6.939<br>7.436<br>7.964<br>8.525<br>9.126<br>9.756<br>10.421<br>11.180 | 0.916         +15°           0.999         16           1.089         17           1.186         18           1.290         19           1.408         20           1.525         21           1.655         22           1.796         23           1.947         24           2.109         25           2.284         26           2.471         27           2.671         28           2.886         29           3.110         30           3.361         31           3.624         32           3.900         33           4.205         34           4.525         35           4.867         36           5.231         37           5.619         38           6.032         39           6.471         40           6.939         41           7.436         42           7.964         43           8.525         44           9.126         45           9.756         46           10.421         47     < | 0.916         +15°         12·677           0.999         16         13·519           1.089         17         14·409           1.186         18         15·351           1.290         19         16·345           1.403         20         17·396           1.525         21         18·505           1.655         22         19·675           1.796         23         20·909           1.947         24         22·211           2:109         25         23·582           2:284         26         25·026           2:471         27         26·547           2:671         28         28·148           2:886         29         29·832           3·110         30         31·602           3·361         31         33·5           3·624         32         35·4           3·900         33         37·5           4·205         34         39·6           4·525         35         41·9           4·867         36         44·3           5·231         37         46·8           5·619         38         49·4 | 0.916         +15°         12.677         +50°           0.999         16         13.519         51           1.089         17         14.409         52           1.186         18         15.351         53           1.290         19         16.345         54           1.408         20         17.396         55           1.525         21         18.505         56           1.655         22         19.675         57           1.796         23         20.909         58           1.947         24         22.211         59           2.109         25         23.582         60           2.284         26         25.026         61           2.471         27         26.547         62           2.284         26         25.026         61           2.471         27         26.547         62           2.671         28         28.148         63           2.886         29         29.832         64           3.110         30         31.602         65           3.361         31         33.5         66           3.900 </td |

51

### TENSION OF AQUEOUS VAPOUR-Continued.

| т                                      | mm                                                          | т                                             | mm                                                           | T                               | mm                                             |
|----------------------------------------|-------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------|---------------------------------|------------------------------------------------|
| +85° 86 87 88 89                       | 482·3<br>449·6<br>467·5<br>486·0<br>505·0                   | +97° 98 99 100 101                            | 681·7<br>707·0<br>733·1<br>760·0<br>787·7                    | +109° 110 111 112 113           | 1041·3<br>1077·3<br>1114·3<br>1152·3<br>1191·4 |
| 90<br>91<br>92<br>93<br>94<br>95<br>96 | 524·8<br>545·1<br>566·1<br>587·8<br>610·2<br>633·3<br>657·1 | 102<br>103<br>104<br>105<br>106<br>107<br>108 | 816·3<br>845·7<br>876·0<br>907·1<br>939·2<br>972·3<br>1006·3 | 114<br>115<br>116<br>117<br>118 | 1281·7<br>1273·0<br>1315·5<br>1359·1<br>1403·9 |

# TABLE 23B.—TENSION OF AQUEOUS VAPOUR FOR TEMPERATURES FROM 40° C.

| Temperature. | Tension in mm. | In atmospheres. | Pressure per square centm. in kilos. |
|--------------|----------------|-----------------|--------------------------------------|
| + 40°        | 54.906         | 0.072           | 0.07465                              |
| 45           | 71.391         | 0.094           | 0.09706                              |
| 50           | 91.982         | 0.121           | 0.12505                              |
| 55           | 117.478        | 0.154           | 0.15972                              |
| 60           | 148.791        | 0.196           | 0.20323                              |
| 65           | 186.945        | 0.246           | 0.25417                              |
| 70           | 233.093        | 0.306           | 0.31692                              |
| 75           | 288-517        | 0.380           | 0.39227                              |
| - 80         | 354.643        | 0.466           | 0.48217                              |
| 85           | 433.041        | 0.570           | 0.58877                              |
| 90           | 525.450        | 0.691           | 0.71440                              |
| 95           | 633.778        | 0.834           | 0.86168                              |
| 100          | 760.00         | 1.000           | 1.03330                              |
| 105          | 906.41         | 1.193           | 1.23236                              |
| 110          | 1075.87        | 1.415           | 1.46210                              |
| 115          | 1269-41        | 1.673           | 1.72592                              |
| 120          | 1491.28        | 1.962           | 2.02755                              |
| 125          | 1743.88        | 2.294           | 2.37098                              |
| 130          | 2030.28        | 2.671           | 2.76037                              |
| 135          | 2353.73        | 3.097           | 3.20013                              |
| 100          | 200010         | 2001            | 20020                                |

TENSION OF AQUEOUS VAPOUR FOR TEMPERATURES FROM  $40^{\circ}$  C.—Continued.

| Temperature. | Tension in mm. | In atmospheres. | Pressure per square centm. in kilos. |
|--------------|----------------|-----------------|--------------------------------------|
| +140         | 2717:63        | 3:575           | 3.69490                              |
| 145          | 3125.55        | 4.112           | 4.24950                              |
| 150          | 3581.23        | 4.712           | 4.86904                              |
| 155          | 4088.56        | 5.380           | 5.55881                              |
| 160          | 4651.62        | 6.120           | 6.32434                              |
| 165          | 5274.54        | 6.940           | 7.17127                              |
| 170          | 5961.66        | 7.844           | 8.10547                              |
| 175          | 6717.43        | 8.838           | 9.13302                              |
| 180          | 7546.39        | 9.929           | 10.2601                              |
| 185          | 8453.23        | 11.122          | 11.4930                              |
| 190          | 9442.70        | 12:424          | 12.8383                              |
| 195          | 10519.73       | 13.841          | 14.3025                              |
| 200          | 11688-96       | 15.380          | 15.8923                              |
| 205          | 12955.66       | 17.047          | 17.6145                              |
| 210          | 14324.80       | 18.848          | 19.4760                              |
| 215          | 15801.33       | 20.791          | 21.4835                              |
| 220          | 17390.00       | 22.881          | 23.6439                              |
| 225          | 19097.04       | 25.127          | 25.9643                              |
| 230          | 20926.40       | 27.534          | 28.4515                              |

TABLE 24.—TENSION OF AQUEOUS VAPOUR IN INCHES OF MERCURY FROM 1° TO 100° FAH.

| Temperature<br>Fahrenheit. | Inches of<br>Mercury. | Temperature<br>Fahrenheit. | Inches of<br>Mercury. |
|----------------------------|-----------------------|----------------------------|-----------------------|
| 1                          | •046                  | 11                         | •071                  |
| $\bar{2}$                  | .048                  | 12                         | .074                  |
| 3                          | 050                   | 13                         | .078                  |
| 4                          | .052                  | 14                         | .082                  |
| 5                          | •054                  | 15                         | .086                  |
| 6                          | .057                  | 16                         | •090                  |
| 7                          | •060                  | 17                         | .094                  |
| 8                          | .062                  | 18                         | .098                  |
| 9                          | .065                  | 19                         | •103                  |
| 10                         | •068                  | 20                         | •108                  |

TENSION OF AQUEOUS VAPOUR IN INCHES OF MERCURY FROM 1° TO 100° FAH.—Continued.

| Temperature<br>Fahrenheit. | Inches of<br>Mercury. | Temperature<br>Fahrenheit. | Inches of Mercury. |
|----------------------------|-----------------------|----------------------------|--------------------|
| 21                         | •113                  | 61                         | •537               |
| 22                         | •118                  | 62                         | •556               |
| 23                         | •123                  | 63                         | •576               |
| 24                         | •129                  | 64                         | •596               |
| 25                         | •135                  | 65                         | ·617               |
| 26                         | •141                  | 66                         | •639               |
| 27                         | •147                  | 67                         | •661               |
| 28                         | •153                  | 68                         | •685               |
| 29                         | •160                  | 69                         | •708               |
| 30                         | •167                  | 70                         | •733               |
| 31                         | •174                  | 71                         | •759               |
| 32                         | •181                  | 72                         | •785               |
| 33                         | ·188                  | 73                         | ·812               |
| 34<br>35                   | •196<br>•204          | 74<br>75                   | ·840<br>·868       |
|                            | _                     |                            | 1910               |
| 36                         | •212                  | 76                         | ·897               |
| 37                         | •220                  | 77                         | •927               |
| 38                         | •229                  | 78                         | •958               |
| 39                         | •238                  | 79                         | •990               |
| 40                         | •247                  | 80                         | 1.023              |
| 41                         | •257                  | 81                         | 1.057              |
| 42                         | •267                  | 82                         | 1.092              |
| 43                         | •277                  | 83                         | 1.128              |
| 44                         | •288                  | 84                         | 1.165              |
| 45                         | •299                  | 85                         | 1.203              |
| 46                         | •311                  | 86                         | 1.242              |
| 47                         | *323                  | 87                         | 1.282              |
| 48                         | •335                  | 88<br>89                   | 1·323<br>1·366     |
| 49<br>50                   | ·348<br>·361          | 90                         | 1.401              |
|                            |                       |                            |                    |
| 51                         | •374                  | 91                         | 1.455              |
| 52                         | •388                  | 92                         | 1.501              |
| 53                         | •403                  | 93                         | 1.548              |
| 54                         | •418                  | 94                         | 1.596              |
| 55                         | •433                  | 95                         | 1.646              |
| 56                         | •449                  | 96                         | 1.697              |
| 57                         | •465                  | 97                         | 1.751              |
| 58                         | •482                  | 98                         | 1.806              |
| 59                         | •500                  | 99                         | 1.862              |
| 60                         | •518                  | 100                        | 1.918              |

TABLE 24B.—TENSION OF AQUEOUS VAPOUR.

| Inches of Mercury. | Atmospheres.                                                                                                                                                                                                  | Lbs. per square inch. |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| 1·918              | ·064                                                                                                                                                                                                          | ·941                  |
| 2·577              | ·086                                                                                                                                                                                                          | 1·267                 |
| 3·427              | ·114                                                                                                                                                                                                          | 1·676                 |
| 4·502              | ·150                                                                                                                                                                                                          | 2·205                 |
| 5·858              | ·196                                                                                                                                                                                                          | 2·883                 |
| 7.546              | ·252                                                                                                                                                                                                          | 3·705                 |
| 9.628              | ·322                                                                                                                                                                                                          | 4·734                 |
| 12.18              | ·407                                                                                                                                                                                                          | 5·984                 |
| 15.27              | ·510                                                                                                                                                                                                          | 7·498                 |
| 19.01              | ·635                                                                                                                                                                                                          | 9·336                 |
| 23·46              | ·784                                                                                                                                                                                                          | 11·53                 |
| 29·92              | 1·000                                                                                                                                                                                                         | 14·706                |
| 35·01              | 1·170                                                                                                                                                                                                         | 17·19                 |
| 42·34              | 1·415                                                                                                                                                                                                         | 20·80                 |
| 50·89              | 1·701                                                                                                                                                                                                         | 25·01                 |
| 60·81              | 2·032                                                                                                                                                                                                         | 29·87                 |
| 72·27              | 2·415                                                                                                                                                                                                         | 85·50                 |
| 85·41              | 2·855                                                                                                                                                                                                         | 41·97                 |
| 100·4              | 3·356                                                                                                                                                                                                         | 49·34                 |
| 117·5              | 3·927                                                                                                                                                                                                         | 57·73                 |
| 136·8              | 4·572                                                                                                                                                                                                         | 67·22                 |
| 158·6              | 5·801                                                                                                                                                                                                         | 77·94                 |
| 183·1              | 6·120                                                                                                                                                                                                         | 89·98                 |
| 210·5              | 7·085                                                                                                                                                                                                         | 103·4                 |
| 241·1              | 8·058                                                                                                                                                                                                         | 118·5                 |
| 275·0              | 9·198                                                                                                                                                                                                         | 135·2                 |
| 312·6              | 10·45                                                                                                                                                                                                         | 153·6                 |
| 354·0              | 11·83                                                                                                                                                                                                         | 173·9                 |
| 399·6              | 13·85                                                                                                                                                                                                         | 196·3                 |
| 449·6              | 15·02                                                                                                                                                                                                         | 220·8                 |
| 504·4              | 16·86                                                                                                                                                                                                         | 247·9                 |
| 563·9              | 18·84                                                                                                                                                                                                         | 277·0                 |
| 628·8              | 21·01                                                                                                                                                                                                         | 309·9                 |
| 699·2              | 28·37                                                                                                                                                                                                         | 343·6                 |
| 775·3              | 25·91                                                                                                                                                                                                         | 380·9                 |
|                    | 1.918 2.5777 3.4227 4.502 5.858 7.546 9.628 12.18 15.27 19.01 23.46 29.92 35.01 42.84 50.89 60.81 72.27 85.41 100.4 117.5 186.8 158.6 188.1 210.5 241.1 275.0 312.6 354.0 399.6 449.6 504.4 563.9 628.8 699.2 | 1.918                 |

TABLE 25.-VARIATION OF BOILING POINT OF WATER

with different barometric pressures.

| Boilin       | ng Point.               | Barometric     | Pressure. |
|--------------|-------------------------|----------------|-----------|
| Centigrade.  | Centigrade. Fahrenheit. |                | Inches.   |
| 98.5         | 209:30                  | 720.15         | 28.352    |
| 98.6         | 209.48                  | 722.75         | 28.455    |
| 98.7         | 209.66                  | 725.35         | 28.557    |
| 98.8         | 209.84                  | 727.96         | 28.660    |
| 98.9         | 210.02                  | 730.58         | 28.763    |
|              |                         |                |           |
| 99.0         | 210.20                  | 733-21         | 28.866    |
| 99.1         | 210.38                  | 735.85         | 28.970    |
| 99.2         | 210.56                  | 738.50         | 29.075    |
| 993          | 210.74                  | 741.16         | 29.179    |
| 99.4         | 210.92                  | 743.83         | 29.285    |
| refresh been |                         |                |           |
| 99.5         | 211.10                  | 746.50         | 29.390    |
| 99.6         | 211.28                  | 749.18         | 29.495    |
| 99.7         | 211.46                  | 751.87         | 29.601    |
| 99.8         | 211.64                  | 754.57         | 29.707    |
| 99.9         | 211.82                  | 757.28         | 29.814    |
| 100.0        | 040.00                  | <b>7</b> 00.00 | 20.004    |
| 100.0        | 212.00                  | 760.00         | 29.921    |
| 100.1        | 212.18                  | 762.73         | 30.029    |
| 100.2        | 212:36                  | 765.46         | 30.137    |
| 100.3        | 212.54                  | 768-20         | 30.244    |
| 100.4        | 212.72                  | 771.95         | 30.392    |

## TABLE 26.-SPECIFIC HEATS.

(Regnault.)

## a.—SOLIDS AND LIQUIDS.

Water = 1.0000.

| Antimony Bismuth Brass. Bricks Carbon Copper Glass. Gold Iron (Cast) Iron (Wrought) Lead | ·0308<br>·0939<br>·189—·241<br>·2411<br>·0951<br>·1937<br>—·0324<br>·1298 | Platinum Phosphorus Sulphur Silver Steel (Hard) Steel (Soft) Tin Zinc Alcohol Mercury Sulphuric Acid | ·2026<br>·0570<br>·1175<br>·1165<br>·0562<br>·0956<br>·7000 |
|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|

## b.-GASES AND VAPOURS.

|                                                                                             | Air=1.000                                                 | Water=1 0000.                                                                |                                                                              |  |
|---------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|--|
|                                                                                             | Constant<br>Pressure.                                     | Constant Const. Volume. Pressu                                               |                                                                              |  |
| Atmospheric Air. Alcohol Vapour Carbonic Acid Carbonic Oxide Ether Vapour Hydrogen Nitrogen | 1·8986<br>0·9104<br>1·0798<br>2·0235<br>14·3231<br>1·0265 | 0·1687<br>0·3200<br>0·1535<br>0·1758<br>0·3411<br>2·4146<br>0·1730<br>0·1548 | 0·2377<br>0·4513<br>0·2164<br>0·2479<br>0·4810<br>3·4046<br>0·2440<br>0·2182 |  |
| Oxygen                                                                                      | 1.9794                                                    | 0.3337                                                                       | 0.4750                                                                       |  |

TABLE 27.-MATHEMATICAL TABLES.

Circumference and area of circles, squares, cubes, square and cube roots.

|     | reumrerence | and area of c   | erreies, squar | es, cubes, squ | are and cub | o Tools.      |
|-----|-------------|-----------------|----------------|----------------|-------------|---------------|
| n   | πn          | $\frac{n^2}{4}$ | n <sup>3</sup> | n³             | $\sqrt{n}$  | $\sqrt[3]{n}$ |
| 1·0 | 3·142       | 0·7854          | 1.000          | 1·000          | 1·0000      | 1.0000        |
| 1·1 | 3·456       | 0·9503          | 1.210          | 1·331          | 1·0488      | 1.0323        |
| 1·2 | 3·770       | 1·1310          | 1.440          | 1·728          | 1·0955      | 1.0627        |
| 1·3 | 4·084       | 1·3273          | 1.690          | 2·197          | 1·1402      | 1.0914        |
| 1·4 | 4·398       | 1·5394          | 1.960          | 2·744          | 1·1832      | 1.1187        |
| 1.5 | 4·712       | 1·7672          | 2·250          | 3·375          | 1·2247      | 1·1447        |
| 1.6 | 5·027       | 2·0106          | 2·560          | 4·096          | 1·2649      | 1·1696        |
| 1.7 | 5·341       | 2·2698          | 2·890          | 4·913          | 1·3038      | 1·1935        |
| 1.8 | 5·655       | 2·5417          | 3·240          | 5·832          | 1·3416      | 1·2164        |
| 1.9 | 5·969       | 2·8353          | 3·610          | 6·859          | 1·3784      | 1·2386        |
| 2·0 | 6·283       | 3·1416          | 4·000          | 8·000          | 1·4142      | 1·2599        |
| 2·1 | 6·597       | 3·4636          | 4·410          | 9·261          | 1·4491      | 1·2806        |
| 2·2 | 6·912       | 3·8013          | 4·840          | 10·648         | 1·4832      | 1·3006        |
| 2·3 | 7·226       | 4·1548          | 5·290          | 12·167         | 1·5166      | 1·3200        |
| 2·4 | 7·540       | 4·5239          | 5·760          | 13·824         | 1·5492      | 1·3389        |
| 2·5 | 7:854       | 4·9087          | 6·250          | 15·625         | 1·5811      | 1·3572        |
| 2·6 | 8:163       | 5·3093          | 6·760          | 17·576         | 1·6125      | 1·3751        |
| 2·7 | 8:482       | 5·7256          | 7·290          | 19·683         | 1·6432      | 1·3925        |
| 2·8 | 8:797       | 6·1575          | 7·840          | 21·952         | 1·6733      | 1·4095        |
| 2·9 | 9:111       | 6·6052          | 8·410          | 24·389         | 1·7029      | 1·4260        |
| 3·0 | 9·425       | 7:0686          | 9·00           | 27·000         | 1·7821      | 1·4422        |
| 3·1 | 9·739       | 7:5477          | 9·61           | 29·791         | 1·7607      | 1·4581        |
| 3·2 | 10·053      | 8:0425          | 10·24          | 32·768         | 1·7889      | 1·4736        |
| 3·3 | 10·367      | 8:5530          | 10·89          | 35·937         | 1·8166      | 1·4888        |
| 3·4 | 10·681      | 9:0792          | 11·56          | 39·304         | 1·8439      | 1·5037        |
| 3·5 | 10·996      | 9·6211          | 12·25          | 42·875         | 1·8708      | 1·5183        |
| 3·6 | 11·310      | 10·179          | 12·96          | 46·656         | 1·8974      | 1·5326        |
| 3·7 | 11·624      | 10·752          | 13·69          | 50·653         | 1·9235      | 1·5467        |
| 3·8 | 11·938      | 11·341          | 14·44          | 54·872         | 1·9494      | 1·5605        |
| 3·9 | 12·252      | 11·946          | 15·21          | 59·319         | 1·9748      | 1·5741        |
| 4·0 | 12·566      | 12·566          | 16·00          | 64·000         | 2·0000      | 1.5874        |
| 4·1 | 12·881      | 13·203          | 16·81          | 68·921         | 2·0249      | 1.6005        |
| 4·2 | 13·195      | 13·854          | 17·64          | 74·088         | 2·0494      | 1.6134        |
| 4·3 | 13·509      | 14·522          | 18·49          | 79·507         | 2·0736      | 1.6261        |
| 4·4 | 13·823      | 15·205          | 19·36          | 85·184         | 2·0976      | 1.6386        |
| 4·5 | 14·137      | 15·904          | 20·25          | 91·125         | 2·1213      | 1.6510        |
| 4·6 | 14·451      | 16·619          | 21·16          | 97·336         | 2·1448      | 1.6631        |
| 4·7 | 14·765      | 17·349          | 22·09          | 103·823        | 2·1680      | 1.6751        |

TABLE 27.—MATHEMATICAL TABLES.—Continued. Circumference and area of circles, squares, cubes, square and cube roots.

|                             | $\pi n$          | $\frac{n^2}{\pi}$ |                |                    |                  | 0                |
|-----------------------------|------------------|-------------------|----------------|--------------------|------------------|------------------|
| n                           | 0                | 4                 | n²             | $n^3$              | $\sqrt{n}$       | $\sqrt[3]{n}$    |
| 4.8                         | 15.080           | 18.096            | 23:04          | 110.592            | 2.1009           | 1.6869           |
| 4.9                         | 15.394           | 18.857            | 24.01          | 117.649            | 2.2136           | 1.6985           |
| 5.0                         | 15.708           | 19.635            | 25.00          | 125.000            | 2.2361           | 1.7100           |
| 5·1<br>5·2                  | 16.022           | 20.428            | 26.01          | 132.651            | 2.2583           | 1.7213           |
| 5.3                         | 16.336<br>16.650 | 21·237<br>22·062  | 27·04<br>28·09 | 140.608<br>148.877 | 2·2804<br>2·3022 | 1·7325<br>1·7435 |
| 5.4                         | 16.965           | 22.902            | 29.16          | 157.464            | 2.3238           | 1.7544           |
| 5.5                         | 17.279           | 23.758            | 30.25          | 166.375            | 2.3452           | 1.7652           |
| 5.6                         | 17.593           | 24.630            | 31.36          | 175.616            | 2.3664           | 1.7758           |
| 5.7                         | 17.907           | 25.518            | 32.49          | 185.193            | 2.3875           | 1.7863           |
| 5·8<br>5·9                  | 18·221<br>18·535 | 26·421<br>27·340  | 33.64          | 195.112            | 2.4083           | 1.7967           |
|                             | 18,999           | 27.340            | 34.81          | 205.379            | 2.4290           | 1.8070           |
| 6.0                         | 18.850           | 28.274            | 36.00          | 216.000            | 2.4495           | 1.8171           |
| 6.1                         | 19.164           | 29.225            | 37.21          | 226.981            | 2.4698           | 1.8272           |
| $6.2 \\ 6.3$                | 19.478           | 30.191            | 38.44          | 238.328            | 2.4900           | 1.8371           |
| 6.4                         | 19·792<br>20·106 | 31·173<br>32·170  | 39·69<br>40·96 | 250·047<br>262·144 | 2·5100<br>2·5298 | 1.8469<br>1.8566 |
| 0 1                         | 20100            | 52 110            | 40.90          | 202 144            | 2.0290           | 1.0000           |
| 6.5                         | 20.420           | 33.183            | 42.25          | 274.625            | 2.5495           | 1.8663           |
| 6.6                         | 20.735           | 34.212            | 43.56          | 287.496            | 2.5691           | 1.8758           |
| 6.7                         | 21.049           | 35.257            | 44.89          | 300.763            | 2.5884           | 1.8852           |
| 6·8<br>6·9                  | 21·363<br>21·677 | 36·317<br>37·393  | 46·24<br>47·61 | 314·432<br>328·509 | 2·6077<br>2·6268 | 1.8945           |
| 0.9                         | 21.011           | 57.999            | 47.01          | 528.509            | 2.0208           | 1.9038           |
| 7.0                         | 21.991           | 38.485            | 49.00          | 343.000            | 2.6458           | 1.9129           |
| 7.1                         | 22.305           | 39.592            | 50.41          | 357.911            | 2.6646           | 1.9220           |
| $\frac{7\cdot 2}{7\cdot 3}$ | 22.619           | 40.715            | 51.84          | 373.248            | 2.6833           | 1.9310           |
| 7.4                         | 22·934<br>23·248 | 41.854<br>43.008  | 53·29<br>54·76 | 389·017<br>405·224 | 2·7019<br>2·7203 | 1.9399<br>1.9487 |
| 1 3                         | 20 240           | 40 000            | 04.10          | 400 224            | 2 1200           | 1.9401           |
| 7.5                         | 23.562           | 44.179            | 56.25          | 421.875            | 2.7386           | 1.9574           |
| 7.6                         | 23.876           | 45.365            | 57.76          | 438.976            | 2.7568           | 1.9661           |
| 7·7<br>7·8                  | 24·190<br>24·504 | 46 566<br>47·784  | 59.29          | 456.533            | 2.7749           | 1.9747           |
| 7.9                         | 24.819           | 49.017            | 60·84<br>62·41 | 474·552<br>493·039 | 2·7929<br>2·8107 | 1.9832<br>1.9916 |
|                             |                  |                   |                |                    | 20101            | 1 0010           |
| 8.0                         | 25.133           | 50.266            | 64.00          | 512.000            | 2.8284           | 2.0000           |
| 8.1                         | 25.447           | 51.530            | 65.61          | 531.441            | 2.8461           | 2.0083           |
| 8·2<br>8·3                  | 25·761<br>26·075 | 52·810<br>54·106  | 67·24<br>68·89 | 551·368<br>571·787 | 2·8636<br>2·8810 | 2·0165<br>2·0247 |
| 8.4                         | 26.389           | 55.418            | 70.56          | 592.704            | 2.8983           | 2.0328           |
| 0.1                         | 20 000           | 00 110            | .000           | 002101             | 2000             | 2 0020           |

TABLE 27.—MATHEMATICAL TABLES.—Continued. Circumference and area of circles, squares, cubes, square and cube roots.

| n    | πn      | $\frac{n^2}{4}$ | n²      | n³       | $\sqrt{n}$ | $\sqrt[3]{n}$ |
|------|---------|-----------------|---------|----------|------------|---------------|
| 8·5  | 26·704  | 56·745          | 72·25   | 614·125  | 2·9155     | 2·0408        |
| 8·6  | 27·018  | 58·088          | 73·96   | 636·056  | 2·9326     | 2·0488        |
| 8·7  | 27·332  | 59·447          | 75·69   | 658·508  | 2·9496     | 2·0567        |
| 8·8  | 27·646  | 60·821          | 77·44   | 681·472  | 2·9665     | 2·0646        |
| 8·9  | 27·960  | 62·211          | 79·21   | 704·969  | 2·9833     | 2·0724        |
| 9·0  | 28·274  | 63·617          | 81·00   | 729·000  | 3·0000     | 2·0801        |
| 9·1  | 28·588  | 65·039          | 82·81   | 753·571  | 3·0166     | 2·0878        |
| 9·2  | 28·903  | 66·476          | 84·64   | 778·688  | 3·0332     | 2·0954        |
| 9·3  | 29·217  | 67·929          | 86·49   | 804·357  | 3·0496     | 2·1029        |
| 9·4  | 29·531  | 69·398          | 88·36   | 830·584  | 3·0659     | 2·1105        |
| 9·5  | 29·845  | 70·882          | 90·25   | 857·375  | 3·0822     | 2·1179        |
| 9·6  | 30·159  | 72·382          | 92·16   | 884·736  | 3·0984     | 2·1253        |
| 9·7  | 30·473  | 73·898          | 94·09   | 912·673  | 3·1145     | 2·1327        |
| 9·8  | 30·788  | 75·430          | 96·04   | 941·192  | 3·1305     | 2·1400        |
| 9·9  | 31·102  | 76·977          | 98·01   | 970·299  | 3·1464     | 2·1472        |
| 10·0 | 31·416  | 78·540          | 100·00  | 1000·000 | 3·1623     | 2·1514        |
| 10·1 | 31·730  | 80·119          | 102·01  | 1030·301 | 3·1780     | 2·1616        |
| 10·2 | 32·044  | 81·713          | 104·04  | 1061·208 | 3·1937     | 2·1687        |
| 10·3 | 32·358  | 83·323          | 106·09  | 1092·727 | 3·2094     | 2·1757        |
| 10·4 | 32·673  | 84·949          | 108·16  | 1124·863 | 3·2249     | 2·1828        |
| 10·5 | \$2.987 | 86·590          | 110·25  | 1157·625 | 3·2404     | 2·1897        |
| 10·6 | \$3.301 | 88·247          | 112·36  | 1191·016 | 3·2558     | 2·1967        |
| 10·7 | \$3.615 | 89·920          | 114·49  | 1225·043 | 3·2711     | 2·2036        |
| 10·8 | \$3.929 | 91·609          | 116·64  | 1259·712 | 3·2863     | 2·2104        |
| 10·9 | \$4.243 | 93·313          | 118·81  | 1295·029 | 3·3015     | 2·2172        |
| 11·0 | 34·558  | 95·033          | 121·00  | 1331·000 | 3·3166     | 2·2239        |
| 11·1 | 34·872  | 96·769          | 123·21  | 1367·631 | 3·3317     | 2·2307        |
| 11·2 | 35·186  | 98·520          | 125·44· | 1404·928 | 3·3466     | 2·2374        |
| 11·3 | 35·500  | 100·29          | 127·69  | 1442·897 | 3·3615     | 2·2441        |
| 11·4 | 35·814  | 102·07          | 129·96  | 1481·544 | 3·3754     | 2·2506        |
| 11.5 | 36·128  | 103·87          | 132·25  | 1520·875 | 3·3912     | 2·2572        |
| 11.6 | 36·442  | 105·68          | 134·56  | 1560·896 | 3·4059     | 2·2637        |
| 11.7 | 36·757  | 107·51          | 136·89  | 1601·613 | 3·4205     | 2·2702        |
| 11.8 | 37·071  | 109·36          | 139·24  | 1643·032 | 3·4351     | 2·2766        |
| 11.9 | 37·385  | 111·22          | 141·61  | 1685·159 | 3·4496     | 2·2831        |
| 12·0 | 37·699  | 113·10          | 144·00  | 1728·000 | 3·4641     | 2·2894        |
| 12·1 | 38·013  | 114·99          | 146·41  | 1771·561 | 3·4785     | 2·2957        |
| 12·2 | 38·327  | 116·90          | 148·84  | 1815·848 | 3·4928     | 2·3021        |

TABLE 27.—MATHEMATICAL TABLES.—Continued.
Circumference and area of circles, squares, cubes, square and cube roots.

| 21   | πn     | $\frac{n^2}{4}$ | n²     | n³       | $\sqrt{n}$ | <sup>3</sup> √n |
|------|--------|-----------------|--------|----------|------------|-----------------|
| 12·3 | 38·642 | 118·82          | 151·29 | 1860·867 | 3·5071     | 2·3084          |
| 12·4 | 38·956 | 120·76          | 153·76 | 1906·624 | 3·5214     | 2·3146          |
| 12·5 | 39·270 | 122·72          | 156·25 | 1953·125 | 3·5355     | 2·3208          |
| 12·6 | 39·584 | 124·69          | 158·76 | 2000·376 | 3·5496     | 2·3270          |
| 12·7 | 39·898 | 126·68          | 161·29 | 2048·383 | 3·5637     | 2·3334          |
| 12·8 | 40·212 | 128·68          | 163·84 | 2097·152 | 3·5777     | 2·3392          |
| 12·9 | 40·527 | 130·70          | 166·41 | 2146·689 | 3·5917     | 2·3453          |
| 13·0 | 40·841 | 132·73          | 169·00 | 2197·000 | 3.6056     | 2·3513          |
| 13·1 | 41·155 | 134·78          | 171·61 | 2248·091 | 3.6194     | 2·3573          |
| 13·2 | 41·469 | 136·85          | 174·24 | 2299·968 | 3.6332     | 2·3633          |
| 13·3 | 41·783 | 138·93          | 176·89 | 2352·637 | 3.6469     | 2·3693          |
| 13·4 | 42·097 | 141·03          | 179·56 | 2406·104 | 3.6606     | 2·3752          |
| 13·5 | 42:412 | 148·14          | 182·25 | 2460·375 | 3·6742     | 2:3811          |
| 13·6 | 42:726 | 145·27          | 184·96 | 2515·436 | 3·6878     | 2:3870          |
| 13·7 | 43:040 | 147·41          | 187·69 | 2571·353 | 3·7013     | 2:3928          |
| 13·8 | 43:354 | 149·57          | 190·44 | 2628·072 | 3·7148     | 2:3986          |
| 13·9 | 43:668 | 151·75          | 193·21 | 2685·619 | 3·7283     | 2:4044          |
| 14·0 | 43·892 | 153·94          | 196·00 | 2744·000 | 3·7417     | 2·4101          |
| 14·1 | 44·296 | 156·15          | 198·81 | 2803·221 | 3·7550     | 2·4159          |
| 14·2 | 44·611 | 158·37          | 201·64 | 2863·288 | 3·7683     | 2·4216          |
| 14·3 | 44·925 | 160·61          | 204·49 | 2924·207 | 3·7815     | 2·4272          |
| 14·4 | 45·239 | 162·86          | 207·36 | 2985·984 | 3·7947     | 2·4329          |
| 14·5 | 45·553 | 165·13          | 210·25 | 3048·625 | 3·8079     | 2·4385          |
| 14·6 | 45·867 | 167·42          | 213·16 | 3112·136 | 3·8210     | 2·4441          |
| 14·7 | 46·181 | 169·72          | 216·09 | 3176·523 | 3·8341     | 2·4497          |
| 14·8 | 46·496 | 172·03          | 219·04 | 3241·792 | 3·8471     | 2·4552          |
| 14·9 | 46·810 | 174·37          | 222·01 | 3307·949 | 3·8600     | 2·4607          |
| 15·0 | 47·124 | 176·72          | 225·00 | 8375·000 | 3·8730     | 2·4662          |
| 15·1 | 47·438 | 179·08          | 228·09 | 8442·951 | 3·8859     | 2·4717          |
| 15·2 | 47·752 | 181·46          | 231·04 | 8511·808 | 3·8987     | 2·4772          |
| 15·3 | 48·066 | 183·85          | 234·09 | 8581·577 | 3·9115     | 2·4825          |
| 15·4 | 48·381 | 186·27          | 237·16 | 8652·264 | 3·9243     | 2·4879          |
| 15·5 | 48·695 | 188·69          | 240·25 | 3723·875 | 8·9370     | 2·4933          |
| 15·6 | 49·009 | 191·13          | 243·36 | 3796·416 | 3·9497     | 2·4986          |
| 15·7 | 49·323 | 193·59          | 246·49 | 3869·893 | 3·9623     | 2·5039          |
| 15·8 | 49·637 | 196·07          | 249·64 | 3944·312 | 3·9749     | 2·5092          |
| 15·9 | 49·951 | 198·56          | 252·81 | 4019·679 | 3·9875     | 2·5146          |

TABLE 27.—MATHEMATICAL TABLES.—Continued.
Circumference and area of circles, squares, cubes, square and cube roots.

|      |        |                |        | co, cases, squa |            |               |
|------|--------|----------------|--------|-----------------|------------|---------------|
|      | πη     | n <sup>2</sup> |        |                 |            |               |
| n    |        | 4              | 212    | n <sup>3</sup>  | $\sqrt{n}$ | $\sqrt[3]{n}$ |
|      | 0      | ó              | Q. I   |                 |            |               |
| 16.0 | 50.265 | 201.06         | 256.00 | 4096.000        | 4.0000     | 2.5198        |
| 16.1 | 50.580 | 203.58         | 259.21 | 4173.281        | 4.0125     | 2.5251        |
| 16.2 | 50.894 | 206.13         | 262.44 | 4251.528        | 4.0249     | 2.5303        |
| 16.3 | 51.208 | 208.67         | 265.69 | 4330.747        | 4.0373     | 2.5355        |
| 16.4 | 51.522 | 211.24         | 268.56 | 4410.944        | 4.0497     | 2.5406        |
| 16.5 | 51.836 | 213.83         | 272.25 | 4492·125        | 4.0620     | 2.5458        |
| 16.6 | 52.150 | 216.42         | 275.56 | 4574.296        | 4.0743     | 2.5509        |
| 16.7 | 52.465 | 219.04         | 278.89 | 4657.463        | 4.0866     | 2.5561        |
| 16.8 | 52.779 | 221.67         | 282.24 | 4741.632        | 4.0988     | 2.5612        |
| 16.9 | 53.093 | 224.32         | 285.61 | 4826.809        | 4.1110     | 2.5663        |
| 17.0 | 53.407 | 226.98         | 299.00 | 4913.000        | 4.1231     | 2.5713        |
| 17.1 | 53.721 | 229.66         | 292.41 | 5000.211        | 4.1352     | 2.5763        |
| 17.2 | 54.035 | 232-35         | 295.84 | 5988.448        | 4.1473     | 2.5813        |
| 17.3 | 54.350 | 235.06         | 299-29 | 5177.717        | 4.1593     | 2.5863        |
| 17.4 | 54.664 | 237.79         | 302.76 | 5268.024        | 4.1713     | 2.5913        |
| 17.5 | 54.978 | 240.53         | 306.25 | 5359.375        | 4.1833     | 2.5963        |
| 17.6 | 55.292 | 243.29         | 309.76 | 5451.776        | 4.1952     | 2.6012        |
| 17.7 | 55.606 | 246.06         | 313-29 | 5545.233        | 4.2071     | 2.6061        |
| 17.8 | 55.920 | 248.85         | 316.84 | 5639.752        | 4.2190     | 2.6109        |
| 17.9 | 56.235 | 251.65         | 320.41 | 5735-339        | 4.2308     | 2.6158        |
| 18.0 | 56.549 | 254.47         | 324.00 | 5832.000        | 4.2426     | 2.6207        |
| 18.1 | 56.863 | 257.30         | 327.61 | 5929.711        | 4.2544     | 2.6256        |
| 18.2 | 57.177 | 260.16         | 331.24 | 6028.568        | 4.2661     | 2.6304        |
| 18.3 | 57.491 | 263.02         | 334.89 | 6128.487        | 4.2778     | 2.6352        |
| 18.4 | 57.805 | 265.90         | 338.56 | 6229.504        | 4.2895     | 2.6404        |
| 18.5 | 58.119 | 268.80         | 342.25 | 6331.625        | 4.3012     | 2.6448        |
| 18.6 | 58.434 | 271.72         | 345.96 | 6434.856        | 4.3128     | 2.6495        |
| 18.7 | 58.748 | 274.65         | 349.69 | 6539.203        | 4.3243     | 2.6543        |
| 18.8 | 59.062 | 277.59         | 353.44 | 6644.672        | 4.3459     | 2.6590        |
| 18.9 | 59.376 | 280.55         | 357.21 | 6751.269        | 4.3474     | 2.6637        |
| 19.0 | 59-690 | 283.53         | 361.00 | 6859.000        | 4.3589     | 2.6684        |
| 19.1 | 60.004 | 286.52         | 364.81 | 6967.871        | 4.3703     | 2.6731        |
| 19.2 | 60.319 | 289.53         | 368.64 | 7077.888        | 4.3818     | 2.6777        |
| 19.3 | 60.633 | 292.55         | 372.49 | 7189.057        | 4.3942     | 2.6824        |
| 19.4 | 60.947 | 295.59         | 376.36 | 7301.384        | 4.4045     | 2.6869        |
| 19.5 | 61.261 | 298:65         | 380.25 | 7414.875        | 4.4159     | 2.6916        |
| 19.6 | 61.575 | 301.72         | 384.16 | 7529.566        | 4.4272     | 2.6962        |
| 19.7 | 61.889 | 304.81         | 388.09 | 7645.373        | 4.4385     | 2.7008        |
|      | -      |                |        | 1               | -          |               |

TABLE 27.—MATHEMATICAL TABLES.—Continued. Circumference and area of circles, squares, cubes, square and cube roots.

| n    | πn<br>O | π <sup>3</sup> 4 | n <sup>2</sup> | 223       | $\sqrt{n}$ | $\sqrt[3]{n}$ |
|------|---------|------------------|----------------|-----------|------------|---------------|
| 19·8 | 62·204  | 307·91           | 392·04         | 7762·392  | 4·4497     | 2·7053        |
| 19·9 | 62·518  | 311·03           | 396·01         | 7880·599  | 4·4609     | 2·7098        |
| 20·0 | 62:832  | 314·16           | 400·00         | 8000·000  | 4·4721     | 2·7144        |
| 20·1 | 63:146  | 317·31           | 404·01         | 8120·601  | 4·4833     | 2·7189        |
| 20·2 | 63:460  | 320·47           | 408·04         | 8242·408  | 4·4944     | 2·7234        |
| 20·3 | 63:774  | 323·66           | 412·09         | 8365·427  | 4·5055     | 2·7279        |
| 20·4 | 64:088  | 326·85           | 416·16         | 8489·664  | 4·5166     | 2·7324        |
| 20.5 | 64·403  | 330·06           | 420·25         | 8615·125  | 4·5277     | 2·7368        |
| 20.6 | 64·717  | 333·29           | 424·36         | 8741·816  | 4·5387     | 2·7413        |
| 20.7 | 65·031  | 336·54           | 428·49         | 8869·743  | 4·5497     | 2·7457        |
| 20.8 | 65·345  | 339·80           | 432·64         | 8998·912  | 4·5607     | 2·7502        |
| 20.9 | 65·659  | 343·07           | 436·81         | 9129·329  | 4·5716     | 2·7545        |
| 21·0 | 65·973  | 346·36           | 441·00         | 9261·000  | 4·5826     | 2:7589        |
| 21·1 | 66·288  | 349·67           | 445·21         | 9393·931  | 4·5935     | 2:7633        |
| 21·2 | 66·602  | 352·99           | 449·44         | 9528·128  | 4·6043     | 2:7676        |
| 21·3 | 66·916  | 356·33           | 453·69         | 9663·597  | 4·6152     | 2:7720        |
| 21·4 | 67·230  | 359·68           | 457·96         | 9800·344  | 4·6260     | 2:7763        |
| 21.5 | 67:544  | 363·05           | 462·25         | 9938-375  | 4·6368     | 2·7806        |
| 21.6 | 67:858  | 366·44           | 466·56         | 10077-696 | 4·6476     | 2·7849        |
| 21.7 | 68:173  | 369·84           | 470·89         | 10218-313 | 4·6583     | 2·7893        |
| 21.8 | 68:487  | 373·25           | 475·24         | 10360-232 | 4·6690     | 2·7935        |
| 21.9 | 68:801  | 376·69           | 479·41         | 10503-459 | 4·6797     | 2·7978        |
| 22·0 | 69·115  | 380·13           | 484·00         | 10648-000 | 4·6904     | 2·8021        |
| 22·1 | 69·429  | 383·60           | 488·41         | 10793-861 | 4·7011     | 2·8063        |
| 22·2 | 69·743  | 387·08           | 462·84         | 10941-048 | 4·7117     | 2·8105        |
| 22·3 | 70·058  | 390·57           | 497·29         | 11089-567 | 4·7223     | 2·8147        |
| 22·4 | 70·372  | 394·08           | 501·76         | 11239-424 | 4·7329     | 2·8189        |
| 22·5 | 70.686  | 397·61           | 506·25         | 11390·625 | 4·7434     | 2·8231        |
| 22·6 | 71.000  | 401·15           | 510·76         | 11543·176 | 4·7539     | 2·8273        |
| 22·7 | 71.314  | 404·71           | 515·29         | 14697·083 | 4·7644     | 2·8314        |
| 22·8 | 71.628  | 408·28           | 519·84         | 11852·352 | 4·7749     | 2·8356        |
| 22·9 | 71.942  | 411·87           | 524·41         | 12008·989 | 4·7854     | 2·8397        |
| 23·0 | 72·257  | 415·48           | 529·00         | 12167·000 | 4·7958     | 2·8438        |
| 23·1 | 72·571  | 419·10           | 533·61         | 12326·891 | 4·8062     | 2·8479        |
| 23·2 | 72·885  | 422·73           | 538·24         | 12487·168 | 4·8166     | 2·8521        |
| 23·3 | 73·199  | 426·39           | 542·89         | 12649·837 | 4·8270     | 2·8562        |
| 23·4 | 73·513  | 430·05           | 547·56         | 12812·904 | 4·8373     | 2·8603        |

TABLE 27.—MATHEMATICAL TABLES.—Continued.

Circumference and area of circles, squares, cubes, square and cube roots.

 $n^2$  $\pi n$ n2  $n^3$  $\sqrt{n}$ 3/n n4 0 . 552.25 23.5 73.827 433.74 12977.875 4.84772.8643 23.6 74.142 437.44 556.96 13144.256 4.8580 2.8684 23.7 74.456 441.15 561.69 13312.053 4.86832.8724 23.8 74.770 444.88 566.44 13481.272 4.8785 2.8765 23.9 75.084 448.63 471.21 13651.919 4.8888 2.8805576.00 13824.000 24.075.398 452.394.89902.8845 24.1 75.712 456.17 580.81 13997.521 4.90922.8885 459.96 585.64 14172.488 4.919224.2 76.0272.8925 463.77 590.49 14348.907 4.9295 2.8965 24.3 76.341 467.60 595.36 14526.784 4.9396 24.4 76.655 2.9004 471.44 14706-125 4.9497 2.9044 24.5 76.969 600.25 24.6 77.283 475.29 605.16 14886.936 4.9598 2.9083 77.597 479.16 610.09 15669-223 4.9699 24.7 2.9123 77.911 615.04 483.05 15252.992 4.9799 24.8 2.9162 486.96 24.9 78.226 620.01 15438-249 4.9899 2.9201 25.0 78:540 490.87 625.00 15625.000 5.0000 2.9241 25.1 78.854 494.81 630.01 15813.251 5.0099 2.9279 25.2 79.168 498.76 635.04 16003.008 5.0199 2.9318 502.73 640.09 25.3 79.482 16194.277 5.02992.9356 25.4 79.796 506.71 645.16 16387.064 5.0398 2.9395 25.5 650.25 16581.375 2.9434 80.111 510.71 5.049725.6 80.425 514.72 655.36 16777-216 5.0596 2.9472 25.7 80.739 518.75 660.49 16974.593 5.0695 2.9510 522.79 25.8 81.053 665.64 17173-512 5.0793 2.9549 81.367 25.9 526.85 670.81 17373.979 5.0892 2.9586 26.0 81.681 530.93 676.00 17576.000 5.0990 2.9624 26.1 81.996 535.02 681.21 17779.581 5.1088 2.9662 26.2 82.310 539.13 686.44 17984.728 5.1185 2.9701 26.3 82.624 543.25 691.69 18191.447 5.1283 2.9738 26.4 82.938 547.39 696.96 18399.744 5.1380 2.9776 26.5 83.252 551.55 702.25 18609.625 5.1478 2.9814 26.6 83:566 555.72 707.56 18821.096 5.1575 2.9851 26.7 83.881 559.90 712.89 19034-163 5.16722.9888 26.8 84.195 561.10 718.24 19248.832 5.1768 2.9926 26.9 84.509 568.32 723.61 19465.109 5.1865 2.9963 27.0 84.823 572.56 729.00 19683.000 5.1962 3.0000 85.137 576.80 19902.511 5.2057 27.1 734.41 3.0037 581.07 739.84 20123-648 5.2153 3.0074 27.2 85.451

TABLE 27.—MATHEMATICAL TABLES.—Continued. Circumference and area of circles, squares, cubes, square and cube roots.

| n    | πn<br>O | n² 4 ◆ | . n2   | พร        | $\sqrt{n}$ | $\sqrt[3]{n}$ |
|------|---------|--------|--------|-----------|------------|---------------|
| 27·3 | 85·765  | 585·35 | 745·29 | 20346·417 | 5·2249     | 3·0111        |
| 27·4 | 86·080  | 589·65 | 750·76 | 20570·824 | 5·2345     | 3·0147        |
| 27·5 | 86·394  | 593·96 | 756·25 | 20796·875 | 5·2440     | 3·0184        |
| 27·6 | 86·708  | 598·29 | 761·76 | 21024·576 | 5·2535     | 3·0221        |
| 27·7 | 87·022  | 602·63 | 767·29 | 21253·983 | 5·2630     | 3·0257        |
| 27·8 | 87·336  | 606·99 | 772·84 | 21484·952 | 5·2725     | 3·0293        |
| 27·9 | 87·650  | 611·36 | 778·41 | 21717·639 | 5·2820     | 3·0330        |
| 28·0 | 87·965  | 615·75 | 784·00 | 21952·000 | 5·2915     | 3·0366        |
| 28·1 | 88·279  | 620·16 | 789·61 | 22188·041 | 5·3009     | 3·0402        |
| 28·2 | 88·593  | 624·58 | 795·24 | 22425·768 | 5·3103     | 3·0438        |
| 28·3 | 88·907  | 629·02 | 800·89 | 22665·187 | 5·3197     | 3·0474        |
| 28·4 | 89·221  | 633·47 | 806·56 | 22906·804 | 5·3291     | 3·0510        |
| 28·5 | 89·535  | 637·94 | 812·25 | 28149·125 | 5·3385     | 3·0546        |
| 28·6 | 89·850  | 642·42 | 817·96 | 28393·656 | 5·3478     | 3·0581        |
| 28·7 | 90·164  | 646·93 | 823·69 | 28639·908 | 5·3572     | 3·0617        |
| 28·8 | 90·478  | 651·44 | 829·44 | 2887·872  | 5·3665     | 3·0652        |
| 28·9 | 90·792  | 655·97 | 835·21 | 24137·569 | 5·3758     | 3·0688        |
| 29·0 | 91·106  | 660·52 | 841·00 | 24389·000 | 5·3852     | 3·0723        |
| 29·1 | 91·420  | 665·08 | 846·81 | 24642·171 | 5·3944     | 3·0758        |
| 29·2 | 91·735  | 669·66 | 852·64 | 24897·088 | 5·4037     | 3·0794        |
| 29·3 | 92·049  | 674·26 | 858·49 | 25153·757 | 5·4129     | 3·0829        |
| 29·4 | 92·363  | 678·87 | 864·36 | 25412·184 | 5·4221     | 3·0864        |
| 29·5 | 92.677  | 683·49 | 870·25 | 25672·375 | 5·4313     | 3·0899        |
| 29·6 | 92.991  | 688·13 | 876·16 | 25934·336 | 5·4405     | 3·0934        |
| 29·7 | 93.305  | 692·79 | 882·09 | 26198·073 | 5·4497     | 3·0968        |
| 29·8 | 93.619  | 697·47 | 888·04 | 26463·592 | 5·4589     | 3·1003        |
| 29·9 | 93.934  | 702·15 | 894·01 | 26730·899 | 5·4680     | 3·1038        |
| 30·0 | 94·248  | 706·86 | 900·00 | 27000·000 | 5·4772     | 3·1072        |
| 30·1 | 94·562  | 711·58 | 906·01 | 27270·901 | 5·4863     | 3·1107        |
| 30·2 | 94·876  | 716·32 | 912·04 | 27543·608 | 5·4954     | 3·1141        |
| 30·3 | 95·190  | 721·07 | 918·09 | 27818·127 | 5·5045     | 3·1176        |
| 30·4 | 95·504  | 725·83 | 924·16 | 28094·464 | 5·5136     | 3·1210        |
| 30·5 | 95·819  | 730·62 | 930·25 | 28372·625 | 5·5226     | 3·1244        |
| 30·6 | 96·133  | 735·42 | 936·36 | 28652·616 | 5·5317     | 3·1278        |
| 30·7 | -96·447 | 740·23 | 942·49 | 28934·443 | 5·5407     | 3·1312        |
| 30·8 | 96·761  | 745·06 | 948·64 | 29218·112 | 5·5497     | 3·1346        |
| 30·9 | 97·075  | 749·91 | 954·81 | 29503·629 | 5·5587     | 3·1380        |

TABLE 27.—MATHEMATICAL TABLES.—Continued.
Circumference and area of circles, squares, cubes, square and cube roots.

| n    | πn     | π <sup>2</sup> 4 | n <sup>3</sup> | n <sup>3</sup> | $\sqrt{n}$ | 3√n    |
|------|--------|------------------|----------------|----------------|------------|--------|
| 31·0 | 97·389 | 754·77           | 961·00         | 29791·000      | 5·5678     | 3·1414 |
| 31·1 | 97·704 | 759·65           | 967·21         | 30080·231      | 5·5767     | 3·1448 |
| 31·2 | 98·018 | 764·54           | 673·44         | 30371·328      | 5·5857     | 3·1481 |
| 31·3 | 98·332 | 769·45           | 979·69         | 30664·297      | 5·5946     | 3·1515 |
| 31·4 | 98·646 | 774·37           | 985·96         | 30959·144      | 5·6035     | 3·1549 |
| 31.5 | 98·960 | 779·81           | 992·25         | 31255·875      | 5·6124     | 3·1582 |
| 31.6 | 99·274 | 784·27           | 998·56         | 31554·496      | 5·6213     | 3·1615 |
| 31.7 | 99·588 | 789·24           | 1004·89        | 31855·013      | 5·6302     | 3·1648 |
| 31.8 | 99·903 | 794·28           | 1011·24        | 32157·432      | 5·6391     | 3·1681 |
| 31.9 | 100·22 | 799·23           | 1017·61        | 32461·759      | 5·6480     | 3·1715 |
| 32·0 | 100·53 | 804·25           | 1024·00        | 32768·000      | 5·6569     | 3·1748 |
| 32·1 | 100·85 | 809·28           | 1030·41        | 33076·161      | 5·6656     | 3·1781 |
| 32·2 | 101·16 | 814·33           | 1036·84        | 33386·248      | 5·6745     | 3·1814 |
| 32·3 | 101·47 | 819·40           | 1043·29        | 33698·267      | 5·6833     | 3·1847 |
| 32·4 | 101·79 | 824·49           | 1049·76        | 34012·224      | 5·6921     | 3·1880 |
| 32·5 | 102·10 | 829·58           | 1056·25        | 34328·125      | 5·7008     | 3·1913 |
| 32·6 | 102·42 | 834·69           | 1062·76        | 34645·976      | 5·7056     | 3·1945 |
| 32·7 | 102·73 | 839·82           | 1069·29        | 34965·783      | 5·7183     | 3·1978 |
| 32·8 | 103·04 | 844·96           | 1075·84        | 35287·552      | 5·7271     | 3·2010 |
| 32·9 | 103·36 | 850·12           | 1082·41        | 35611·289      | 5·7358     | 3·2043 |
| 33·0 | 103·67 | 855·30           | 1089·00        | 35937·000      | 5·7447     | 3·2075 |
| 33·1 | 103·99 | 860·49           | 1095·61        | 36264·691      | 5·7532     | 3·2108 |
| 33·2 | 104·30 | 865·70           | 1102·24        | 36594·368      | 5·7619     | 3·2140 |
| 33·3 | 104·62 | 870·92           | 1108·89        | 36925·037      | 5·7706     | 3·2172 |
| 33·4 | 164·93 | 876·19           | 1115·56        | 37259·704      | 5·7792     | 3·2204 |
| 33·5 | 105·24 | 881·41           | 1122·25        | 37595·375      | 5·7879     | 3·2237 |
| 33·6 | 105·56 | 886·68           | 1128·96        | 37933·056      | 5·7965     | 3·2269 |
| 33·7 | 105·87 | 891·97           | 1135·69        | 38272·753      | 5·8051     | 3·2301 |
| 33·8 | 106·19 | 897·27           | 1142·44        | 38614·472      | 5·8137     | 3·2332 |
| 33·9 | 106·50 | 902·59           | 1149·21        | 38958·219      | 5·8223     | 3·2364 |
| 34·0 | 106·81 | 907·92           | 1156·00        | 39304·000      | 5·8310     | 3·2396 |
| 34·1 | 107·13 | 913·27           | 1162·81        | 39651·821      | 5·8395     | 3·2424 |
| 34·2 | 107·44 | 918·63           | 1160·64        | 40001·688      | 5·8480     | 3·2460 |
| 34·3 | 107·76 | 924·01           | 1176·49        | 40353·607      | 5·8566     | 3·2491 |
| 34·4 | 108·07 | 929·41           | 1183·36        | 40707·584      | 5·8751     | 3·2522 |
| 34·5 | 108·38 | 934·82           | 1190·25        | 41063·525      | 5·8736     | 3·2554 |
| 34·6 | 108·70 | 940·25           | 1197·16        | 41421·736      | 5·8821     | 3·2586 |
| 34·7 | 109·01 | 945·69           | 1204·09        | 41781·923      | 5·8906     | 3·2617 |

TABLE 27.—MATHEMATICAL TABLES.—Continued. Circumference and area of circles, squares, cubes, square and cube roots.

| n    | πn     | $\frac{n^2}{4}$ | n²      | n <sup>3</sup> | $\sqrt{n}$ | 3/n      |
|------|--------|-----------------|---------|----------------|------------|----------|
| 34.8 | 109.33 | 951.15          | 1211.04 | 42144-192      | 5.8991     | 3.2648   |
| 34.9 | 109.64 | 956.62          | 1218.01 | 42508.549      | 5.9076     | 3.2679   |
| 35.0 | 109.96 | 962.11          | 1225.00 | 42875.000      | 5.9161     | 3.2710   |
| 35.1 | 110.27 | 967.62          | 1232.01 | 43243.551      | 5.9245     | 3.2742   |
| 35.2 | 110.58 | 973.14          | 1239.04 | 43614.208      | 5.9326     | 3.2773   |
| 35.3 | 110.90 | 978.68          | 1246.09 | 43986.977      | 5.9413     | 3.2804   |
| 35.4 | 111.21 | 984.23          | 1253.16 | 44361.864      | 5.9497     | 3.2835   |
| 35.5 | 111.53 | 989-80          | 1260.25 | 44738-875      | 5.9581     | 3.2866   |
| 35.6 | 111.84 | 995.38          | 1267:36 | 45118.016      | 5.9665     | 3.2897   |
| 35.7 | 112.15 | 1000.98         | 1274.49 | 45499-293      | 5.9749     | 3.2927   |
| 35.8 | 112.47 | 1006.60         | 1281.64 | 45882.712      | 5.9833     | 3.2958   |
| 35.9 | 112.78 | 1012-23         | 1288.81 | 46268-279      | 5.9916     | 3.2989   |
| 36.0 | 113.10 | 1017.88         | 1296.00 | 46656.000      | 6.0000     | 3.3019   |
| 36.1 | 113.41 | 1023.54         | 1303.21 | 47045.881      | 6.0083     | 3.3050   |
| 36.2 | 113.73 | 1029.22         | 1310.44 | 47437.928      | 6.0166     | 3.3080   |
| 36.3 | 114.04 | 1034.91         | 1317.69 | 47832.147      | 6.0249     | 3.3111   |
| 36.4 | 114.35 | 1040.62         | 1324.96 | 48228.544      | 6.0332     | 3.3141   |
| 36.5 | 114.67 | 1046.35         | 1332.25 | 48627.125      | 6.0415     | 3.3171   |
| 36.6 | 114.98 | 1052.09         | 1339.56 | 49017.896      | 6.0497     | 3.3202   |
| 36.7 | 115.30 | 1057.84         | 1346.89 | 49430.863      | 6.0580     | 3.3232   |
| 36.8 | 115.61 | 1063.62         | 1354.24 | 49836.032      | 6.0663     | 3.3262   |
| 36.9 | 115.92 | 1069.41         | 1361.61 | 50243.409      | 6.0745     | 3.3292   |
| 37.0 | 116.24 | 1075-21         | 1369.00 | 50653.000      | 6.0827     | 3.3322   |
| 37.1 | 116.55 | 1081.03         | 1376.41 | 51064.811      | 6.0909     | 3.3352   |
| 37.2 | 116.87 | 1086.87         | 1383.84 | 51478.848      | 6.0991     | 3.3382   |
| 37.3 | 117.18 | 1092.72         | 1391.29 | 51895.117      | 6.1073     | 3.3412   |
| 37.4 | 117.50 | 1098.58         | 1398.76 | 52313.624      | 6.1155     | 3.3442   |
| 37.5 | 117.81 | 1104.47         | 1406.25 | 52734.375      | 6.1237     | 3.3472   |
| 37.6 | 118.12 | 1110.36         | 1413.76 | 53157.376      | 6.1318     | 3.3501   |
| 37.7 | 118.44 | 1116.28         | 1421.29 | 53582.633      | 6.1400     | 3.3531   |
| 37.8 | 118.75 | 1122.21         | 1428.84 | 54010.152      | 6.1481     | 3.3561   |
| 37.9 | 119.07 | 1128.15         | 1436.41 | 54439.939      | 6.1563     | 3.3590   |
| 38.0 | 119.38 | 1134.11         | 1444.00 | 54872.000      | 6.1644     | 3.3620   |
| 38.1 | 119.69 | 1140.09         | 1451.61 | 55306.341      | 6.1725     | 3.3649   |
| 38.2 | 120.01 | 1146.08         | 1459.24 | 55742.968      | 6.1806     | 3.3679   |
| 38.3 | 120.32 | 1152.09         | 1466.89 | 56181.887      | 6.1887     | . 3.3708 |
| 38.4 | 120.64 | 1158.12         | 1474.56 | 96623.104      | 6.1967     | 3.3737   |

TABLE 27.—MATHEMATICAL TABLES.—Continued.
Circumference and area of circles, squares, cubes, square and cube roots.

| n            | πn<br>()        | $\frac{n^2}{4}$    | n2                 | n³                     | $\sqrt{n}$       | $\sqrt[3]{n}$    |
|--------------|-----------------|--------------------|--------------------|------------------------|------------------|------------------|
| 33.5         | 120.95          | 1164·16            | 1482.25            | 57066.625              | 6.2048           | 3.3767           |
| 38.6         | 121.27          | 1170.21            | 1489.96            | 57512.456              | 6.2129           | 3.3797           |
| 38.7         | 121.58          | 1176.28            | 1497.69            | 57960.603              | 6.2209           | 3.3825           |
| 38.8         | 121.80          | 1182.37            | 1505.44            | 58411.072              | 6.2289           | 3.3854           |
| 38.9         | 122.21          | 1188.47            | 1513-21            | 58863.869              | 6.2370           | 3.3883           |
| 39.0         | 122.52          | 1194.59            | 1521.00            | 59319.000              | 6.2450           | 3.3912           |
| 39.1         | 122.84          | 1200.72            | 1528.81            | 59776.471              | 6.2530           | 3.3941           |
| 39.2         | 123.15          | 1206.87            | 1536.64            | 60236.288              | 6.2610           | 3.3970           |
| 39.3         | 123.46          | 1213.04            | 1544.49            | 60698.457              | 6.2689           | 3.3999           |
| 39.4         | 123.78          | 1219.22            | 1552.36            | 61162.984              | 6.2769           | 3.4028           |
| 39.5         | 124.09          | 1225.42            | 1560-25            | 61629-875              | 6.2849           | 3.4056           |
| 39.6         | 124.41          | 1231.63            | 1568-16            | 62099-136              | 6·2928<br>6·3008 | 3.4114           |
| 39.7         | 124.72 $125.04$ | 1237·86<br>1244·10 | 1576·09<br>1584·04 | 62570·773<br>63044·792 | 6.3087           | 3.4142           |
| 39·8<br>39·9 | 125:35          | 1250.36            | 1592.01            | 63521.199              | 6.3166           | 3.4171           |
| 99.9         | 120.00          | 1250 50            | 1552-01            | 05521 155              | 0 5100           | 0 1111           |
| 40.0         | 125.66          | 1264.64            | 1600.00            | 64000.000              | 6.3245           | 3.4200           |
| 40.1         | 125.98          | 1293.93            | 1608.01            | 64481.201              | 6.3325           | 3.4228           |
| 40.2         | 126.29          | 1223.23            | 1616.04            | 64964.808              | 6.3404           | 3.4256           |
| 40.3         | 126.61          | 1256.56            | 1624.09            | 65450.827              | 6.3482           | 3.4285           |
| 40.4         | 126.92          | 1297.90            | 1632-16            | 65939.264              | 6.3561           | 3.4313           |
| 40.5         | 127.23          | 1288.25            | 1640.25            | 66430.126              | 6.3639           | 3.4341           |
| 40.6         | 127.55          | 1294.62            | 1648.36            | 66923.416              | 6.3718           | 3.4370           |
| 40.7         | 127.86          | 1301.00            | 1656.49            | 67419.143              | 6.3796           | 3.4398           |
| 40.8         | 128.18          | 1307.41            | 1664.64            | 67911.312              | 6.3875           | 3.4426           |
| 40.9         | 128.49          | 1313.82            | 1672.81            | 68417.929              | 6.3953           | 3.4454           |
| 41.0         | 128.81          | 1320-25            | 1681.00            | 68921.000              | 6.4031           | 3.4482           |
| 41.1         | 129.12          | 1326.70            | 1689.21            | 69426.531              | 6.4109           | 3.4510           |
| 41.2         | 129.43          | 1333.17            | 1697.44            | 69934.528              | 6.4187           | 3.4538           |
| 41.3         | 129.75          | 1339.65            | 1705.69            | 70444.997              | 6·4265<br>6·4343 | 3·4566<br>3·4594 |
| 41.4         | 130.06          | 1346.14            | 1713.96            | 70957.944              | 6'4545           | 5.4594           |
| 41.5         | 130.38          | 1352.65            | 1722-25            | 71473.375              | 6.4421           | 3.4622           |
| 41.6         | 130.69          | 1359.18            | 1730.56            | 71991-296              | 6.4498           | 3.4650           |
| 41.7         | 131.00          | 1365.72            | 1738-89            | 72511.719              | 6.4575           | 3.4677           |
| 41.8         | 131.32          | 1372.28            | 1747.24            | 73034.632              | 6.4653           | 3.4705           |
| 41.9         | 131.63          | 1378.85            | 1755-61            | 73560.059              | 6.4730           | 3.4733           |
| 42.0         | 131.95          | 1385.44            | 1764.00            | 74088.000              | 6.4807           | 3.4760           |
| 42.1         | 132.26          | 1392.05            | 1772-41            | 74618-461              | 6.4884           | 3.4788           |
| 42.2         | 132.58          | 1398.67            | 1780.84            | 75151.448              | 6.4961           | 3.4815           |

TABLE 27.—MATHEMATICAL TABLES.—Continued.

. Circumference and area of circles, squares, cubes, square and cube roots.

|                | πη               | $\frac{n^2}{\pi}$  |                    |           | ,-               | 9                |
|----------------|------------------|--------------------|--------------------|-----------|------------------|------------------|
| 21             | 0                | 4                  | $n^2$              | $n^3$     | $\sqrt{n}$       | $\sqrt[3]{n}$    |
|                |                  | •                  |                    |           |                  |                  |
| 42.3           | 132.89           | 1405.31            | 1789-29            | 75686-967 | 6.5038           | 3.4843           |
| 42.4           | 133.20           | 1411.96            | 1797.76            | 76225.024 | 6.5115           | 3.4870           |
| 10 1           | 100 20           | 1411 50            | 110110             | 10225 024 | 0 0110           | 0 1010           |
| 42.5           | 133.52           | 1418.63            | 1806.25            | 76765.625 | 6.5192           | 3.4898           |
| 42.6           | 133.83           | 1425.31            | 1814.76            | 77308.776 | 6.5268           | 3.4925           |
| 42.7           | 134.15           | 1432.01            | 1823-29            | 77854.483 | 6.5345           | 3.4952           |
| 42.8           | 134.46           | 1438.72            | 1831.84            | 78402.752 | 6.5422           | 3.4980           |
| 42.9           | 134.77           | 1445.45            | 1840-41            | 78953.589 | 6.5498           | 3.5007           |
| 43.0           | 135.09           | 1452-20            | 1849.00            | 79507.000 | 6.5574           | 3.5034           |
| 43.1           | 135.40           | 1458.96            | 1857.61            | 80062-991 | 6.5651           | 3.5061           |
| 43.2           | 135.72           | 1465.74            | 1866-24            | 80621.568 | 6.5727           | 3.5088           |
| 43.3           | 136.03           | 1472.54            | 1874.89            | 81182.737 | 6.5803           | 3.5115           |
| 43.4           | 136.35           | 1479.31            | 1883.56            | 81746.504 | 6.5879           | 3.5142           |
| 43.5           | 136.66           | 1486-17            | 1892-25            | 82312-875 | 6.5954           | 3.5169           |
| 43.6           | 136.97           | 1493.01            | 1900.96            | 82881.856 | 6.6030           | 3.5196           |
| 43.7           | 137.29           | 1499.87            | 1909.69            | 83453.453 | 6.6106           | 3.5223           |
| 43.8           | 137.60           | 1506.74            | 1918.44            | 84027.672 | 6.6182           | 3.5250           |
| 43.9           | 137.92           | 1513.63            | 1927.21            | 84604.519 | 6.6257           | 3.5277           |
| 440            | 100.00           | 1500 50            | 1000.00            | 07104 000 | 0.0000           | 0.5000           |
| $44.0 \\ 44.1$ | 138.23           | 1520.53            | 1936.00            | 85184.000 | 6·6333<br>6·6408 | 3.5303           |
| 44.2           | 138.54           | 1527.45            | 1944.81            | 85766-121 | 6.6483           | 3.5330           |
| 44.3           | 138·86<br>139·17 | 1534·39<br>1541·34 | 1953·64<br>1962·49 | 86938·307 | 6.6558           | 3·5357<br>3·5384 |
| 44.4           | 139.49           | 1541.30            | 1962.49            | 87528.384 | 6.6633           | 3.5410           |
| 44.4           | 155.45           | 1941.90            | 1971.90            | 81928 904 | 0.0099           | 2.9410           |
| 44.5           | 139.80           | 1555.28            | 1980.25            | 88121-125 | 6.6708           | 3.5437           |
| 44.6           | 140.12           | 1562.28            | 1989-16            | 88716.536 | 6.6783           | 3.5463           |
| 44.7           | 140.43           | 1569.30            | 1998.09            | 89314.623 | 6.6858           | 3.5490           |
| 44.8           | 140:74           | 1576.33            | 2007.04            | 89915.392 | 6.6933           | 3.5516           |
| 44.9           | 141.06           | 1583.37            | 2016.01            | 90518.849 | 6.7007           | 3.5543           |
| 45.0           | 141.37           | 1590.43            | 2025:00            | 91125:000 | 6.7082           | 3.5569           |
| 45.1           | 141.69           | 1597.51            | 2034.01            | 91733:851 | 6.7156           | 3.5595           |
| 45.2           | 142.00           | 1604.60            | 2043.04            | 92345.408 | 6.7231           | 3.5621           |
| 45.3           | 142.31           | 1611.71            | 2052.09            | 92959-677 | 6.7305           | 3.5648           |
| 45.4           | 142.63           | 1618.83            | 2061.16            | 93576.664 | 6.7379           | 3.5674           |
| 45.5           | 142.94           | 1625:97            | 2070.25            | 94196-375 | 6.7454           | 3.5700           |
| 45.6           | 143.26           | 1633.13            | 2079:36            | 94818.816 | 6.7528           | 3.5726           |
| 45.7           | 143.57           | 1640.30            | 2088-49            | 95443.993 | 6.7602           | 3.5752           |
| 45.8           | 143.88           | 1647.48            | 2097.64            | 96071.912 | 6.7676           | 3.5778           |
| 45.9           | 144.20           | 1654.63            | 2106.81            | 96702.579 | 6.7749           | 3.5805           |
| 100            | 111 20           | 100103             | 2100 01            | 00102010  | 01140            | 0 0000           |
|                | 1                |                    | -                  |           | 1                | 1                |

TABLE 27.—MATHEMATICAL TABLES.—Continued.

Circumference and area of circles, squares, cubes, square and cube roots.

|              |        |                | , 1            |                |                  |                  |
|--------------|--------|----------------|----------------|----------------|------------------|------------------|
|              | πη     | n <sup>2</sup> |                |                |                  |                  |
| n            |        | 4              | n <sup>2</sup> | n <sup>3</sup> | $\sqrt{n}$       | $\sqrt[3]{n}$    |
|              | 0      | •              |                |                |                  |                  |
| 46.0         | 144.51 | 1661.90        | 2116.00        | 97336-000      | 6.7823           | 3.5830           |
| 46.1         | 144.83 | 1669.14        | 2125.21        | 97972-181      | 6.7897           | 3.5856           |
| 46.2         | 145.14 | 1676.39        | 2134.44        | 98611.128      | 6.7971           | 3.5882           |
| 46.3         | 145.46 | 1683.05        | 2143.69        | 99252.847      | 6.8044           | 3.5908           |
| 46.4         | 145.77 | 1690.93        | 2152.96        | 99897.344      | 6.8117           | 3.5934           |
| 46.5         | 146.08 | 1698-23        | 2162-25        | 100544.625     | 6.8191           | 3.5960           |
| 46.6         | 146.40 | 1705.54        | 2171.56        | 101194.696     | 6.8264           | 3.5986           |
| 46.7         | 146.71 | 1712.87        | 2180.89        | 101847.563     | 6.8337           | 3.6011           |
| 46.8         | 147.03 | 1720.21        | 2190.24        | 102503.232     | 6.8410           | 3.6037           |
| 46.9         | 147.34 | 1727.57        | 2199-61        | 103161.709     | 6.8484           | 3.6063           |
| 47.0         | 147.65 | 1734.94        | 2209.00        | 103823.000     | 6.8556           | 3.6088           |
| 47.1         | 147.97 | 1742.34        | 2218.41        | 104487-111     | 6.8629           | 3.6114           |
| 47.2         | 148.28 | 1749.74        | 2227.84        | 105154.048     | 6.8702           | 3.6139           |
| 47·3<br>47·4 | 148.60 | 1757.16        | 2237.29        | 105823.817     | 6·8775<br>6·8847 | 3·6165<br>3·6190 |
| 474          | 148.91 | 1764.60        | 2246.76        | 106496.424     | 0.9941           | 9.0190           |
| 47.5         | 149.23 | 1772.05        | 2256.25        | 107171.875     | 6.8920           | 3.6216           |
| 47.6         | 149.54 | 1779.52        | 2265.76        | 107850.176     | 6.8993           | 3.6241           |
| 47.7         | 149.85 | 1787.01        | 2275.29        | 108531.333     | 6.9065           | 3.6267           |
| 47.8         | 150.17 | 1794.51        | 2284.84        | 109215-352     | 6.9137           | 3.6292           |
| 47.9         | 150.48 | 1802.03        | 2294.41        | 109902.239     | 6.9209           | 3.6317           |
| 48.0         | 150.80 | 1809.56        | 2304.00        | 110592.000     | 6.9282           | 3.6342           |
| 48.1         | 151.11 | 1817-11        | 2313.61        | 111284-641     | 6.9354           | 3.6368           |
| 48.2         | 151.42 | 1824.67        | 2323.24        | 111980-168     | 6.9426           | 3.6393           |
| 48.3         | 151.74 | 1832.25        | 2332.89        | 112678-587     | 6.9498           | 3.6418           |
| 48.4         | 152.05 | 1839.84        | 2342.56        | 113379.904     | 6.9570           | 3.6443           |
| 48.5         | 152.37 | 1847-45        | 2352-25        | 114084.125     | 6.9642           | 3.6468           |
| 48.6         | 152.68 | 1855.08        | 2361.96        | 114791.256     | 6.9714           | 3.6493           |
| 48.7         | 153.00 | 1862.72        | 2371.69        | 115501.303     | 6.9785           | 3.6518           |
| 48.8         | 153.31 | 1870.38        | 2381.44        | 116214.272     | 6.9857           | 3.6543           |
| 48.9         | 153.62 | 1878.05        | 2391.21        | 116930·169     | 6.9928           | 3.6568           |
| 49.0         | 153.94 | 1885.74        | 2401.00        | 117649.000     | 7.0000           | 3.6593           |
| 49.1         | 154.25 | 1893.45        | 2410.81        | 118370.771     | 7.0071           | 3.6618           |
| 49.2         | 154.57 | 1901.17        | 2420.64        | 119095.488     | 7.0143           | 3.6643           |
| 49.3         | 154.88 | 1908.90        | 2430.49        | 119823-157     | 7.0214           | 3.6668           |
| 49.4         | 155.19 | 1916.65        | 2440.36        | 120553.784     | 7.0285           | 3.6692           |
| 49.5         | 155.51 | 1924.42        | 2450.25        | 121287-375     | 7.0356           | 3.6717           |
| 49.6         | 155.82 | 1932-21        | 2460.16        | 122023.936     | 7.0427           | 3.6742           |
| 49.7         | 156.14 | 1940.00        | 2470.09        | 122763-473     | 7.0498           | 3.6767           |
| 1 2 1 B      |        |                |                |                | E VIII CEE       |                  |

TABLE 27.—MATHEMATICAL TABLES.—Continued. Circumference and area of circles, squares, cubes, square and cube roots.

| n            | πn               | $\frac{n^2}{4}$    | n²                 | n <sup>3</sup>           | $\sqrt{n}$       | 3√n              |
|--------------|------------------|--------------------|--------------------|--------------------------|------------------|------------------|
| 49.8         | 156.45           | 1947.82            | 2480.04            | 123505.992               | 7.0569           | 3.6791           |
| 49.9         | 156.77           | 1955.65            | 2490.01            | 124251.499               | 7.0640           | 3.6816           |
| 50.0         | 157.08           | 1963.50            | 2500.00            | 125000.000               | 7.0711           | 3.6340           |
| 51.0         | 160.22           | 2042.82            | 2601.00            | 132651.000               | 7.1414           | 3.7084           |
| 52.0         | 163.36           | 2123.72            | 2704.00            | 140608.000               | 7.2111           | 3.7325           |
| 53.0         | 166.50           | 2206.19            | 2809.00            | 148877.000               | 7.2801           | 3.7563           |
| 54.0         | 169.64           | 2290.22            | 2916.00            | 157464.000               | 7.3485           | 3.7798           |
| 55.0         | 172.78           | 2375.83            | 3025.00            | 166375.000               | 7.4162           | 3.8030           |
| 56.0         | 175.93           | 2463.01            | 3136.00            | 175616.000               | 7.4833           | 3.8259           |
| 57.0         | 179.07           | 2551.76            | 3249.00            | 185193.000               | 7.5498           | 3.8485           |
| 58·0<br>59·0 | 182·21<br>185·35 | 2642·08<br>2733·97 | 3364·00<br>3481·00 | 195112·000<br>205379·000 | 7.6158<br>7.6811 | 3·8709<br>3·8930 |
| 99.0         | 189,99           | 2155.91            | 3481.00            | 205579.000               | 1.0011           | 9.0990           |
| 60.0         | 188.49           | 2827.44            | 3600.00            | 210000.000               | 7.7460           | 3.9149           |
| 61.0         | 191.63           | 2922.47            | 3721.00            | 226981.000               | 7.8102           | 3.9365           |
| 62.0         | 194.77           | 3019.07            | 3844.00            | 238328.000               | 7.8740           | 3.9579           |
| 63.0         | 197.92           | 3117.25            | 3969.00            | 250047.000               | 7.9373           | 3.9791           |
| 64.0         | 201.06           | 3216.99            | 4096.00            | 262144.000               | 8.0000           | 4.0000           |
| 65.0         | 204.20           | 3318-31            | 4225.00            | 274625.000               | 8.0623           | 4.0207           |
| 66.0         | 207:34           | 3421.20            | 4356.09            | 287496.000               | 8.1240           | 4.0412           |
| 67.0         | 210.48           | 3525.66            | 4489.00            | 300763.000               | 8.1854           | 4.0615           |
| 68.0         | 213.63           | 3631.69            | 4624.00            | 314432.000               | 8.2462           | 4.0817           |
| 69.0         | 216.77           | 3739-29            | 4761.00            | 328509.000               | 8.3066           | 4.1016           |
| 70.0         | 219.91           | 3848.46            | 4900.00            | 343000.000               | 8.3666           | 4.1213           |
| 71.0         | 223.05           | 3959.20            | 5041.00            | 357911.000               | 8.4261           | 4.1408           |
| 72.0         | 226.19           | 4071.51            | 5184.00            | 373248.000               | 8.4853           | 4.1602           |
| 73.0         | 229.33           | 4185.39            | 5329.00            | 389017.000               | 8.5440           | 4.1793           |
| 74 0         | 232.47           | 4300.85            | 5476.00            | 405224.000               | 8.6023           | 4.1983           |
| 75.0         | 235.62           | 4417.87            | 5625.00            | 421875.000               | 8.6603           | 4.2172           |
| 76.0         | 238.76           | 4536.47            | 5776.00            | 438976.000               | 8.7178           | 4.2358           |
| 77.0         | 241.90           | 4656.63            | 5929.00            | 456533.000               | 8.7750           | 4.2543           |
| 78.0         | 245.04           | 4778.37            | 6084.00            | 474552.000               | 8.8318           | 4.2727           |
| 79.0         | 248.18           | 4901.68            | 6241.00            | 493039.000               | 8.8882           | 4.2908           |
| 80.0         | 251.32           | 5026.56            | 6400.00            | 512000-000               | 8.9443           | 4.3089           |
| 81.0         | 254.47           | 5153.01            | 6561.00            | 531441.000               | 9.0000           | 4.3267           |
| 82.0         | 257.61           | 5281.03            | 6724.00            | 551368.000               | 9.0554           | 4.3445           |
| 83.0         | 260.75           | 5410.62            | 6889.00            | 571787.000               | 9.1104           | 4.3621           |
| 84.0         | 263.89           | 5541.78            | 7056.00            | 592704.000               | 9.1652           | 4.3795           |
|              |                  |                    |                    |                          |                  |                  |

TABLE 27.—MATHEMATICAL TABLES.—Continued. Circumference and area of circles, squares, cubes, square and cube roots.

| n     | πn     | $\frac{n^2}{4}$ | n <sup>2</sup> | n³          | $\sqrt{n}$ | 3/ <u>-</u> |
|-------|--------|-----------------|----------------|-------------|------------|-------------|
| 85·0  | 267·03 | 5674·50         | 7225·00        | 614125·000  | 9·2195     | 4·3968      |
| 86·0  | 270·17 | 5808·81         | 7396·00        | 636056·000  | 9·2736     | 4·4140      |
| 87·0  | 273·32 | 5944·69         | 7569·00        | 658503·000  | 9·3274     | 4·4310      |
| 88·0  | 276·46 | 6082·13         | 7744·00        | 681472·000  | 9·3808     | 4·4480      |
| 89·0  | 279·60 | 6221·13         | 7921·00        | 704969·000  | 9·4330     | 4·4647      |
| 90·0  | 282·74 | 6361·74         | 8100·00        | 729000·000  | 9·4868     | 4·4814      |
| 91·0  | 285·88 | 6503·89         | 8281·00        | 753571·000  | 9·5394     | 4·4979      |
| 92·0  | 289·02 | 6647·62         | 8464·00        | 778688·000  | 9·5917     | 4·5144      |
| 93·0  | 292·17 | 6792·92         | 8649·00        | 804357·000  | 9·6437     | 4·5307      |
| 94·0  | 295·31 | 6939·78         | 8836·00        | 830584·000  | 9·6954     | 4·5468      |
| 95·0  | 298·45 | 7088·23         | 9025·00        | 857375·000  | 9·7468     | 4·5629      |
| 96·0  | 301·59 | 7238·24         | 9216·00        | 884736·000  | 9·7980     | 4·5789      |
| 97·0  | 304·73 | 7389·83         | 9409·00        | 912673·000  | 9·8489     | 4·5947      |
| 98·0  | 307·87 | 7542·98         | 9604·00        | 941192·000  | 9·8995     | 4·6104      |
| 99·0  | 311·02 | 7697·68         | 9801·00        | 970299·000  | 9·9499     | 4·6261      |
| 100-0 | 314·16 | 7854.00         | 100000-00      | 1000000.000 | 10-0000    | 4.6416      |

Approximately  $\sqrt{a^2 \pm b} = a \pm \frac{b}{2a}$  and  $\sqrt[3]{a^3 \pm b} = a \pm \frac{b}{3a^2}$ 

#### TABLE 28.—FORMULÆ FOR MENSURATION OF AREAS AND SOLID CONTENTS.

1.—TRIANGLE.

Area  $= \frac{1}{2} \times \text{base} \times \text{height.}$ 

If all the sides, a, b, c are known and half their sum is represented by s, so that  $s = \frac{a+b+c}{2}$  then

A=
$$\sqrt{s(s-a)(s-b)(s-c)}$$
2.—Circle.

Area of circle, if  $d=$  diameter  $r=$  radius and  $\pi=3.14159$ 

$$A = \frac{\pi}{4}d^2 = r^2 \pi ... \left(\frac{\pi}{4} = 0.7854\right)$$

 $d = 1.12838 \sqrt{A}$ 

Area of segment of circle of an arc of  $a^0$ 

$$\mathbf{A} = \left(\frac{a}{180}\pi - \sin a\right) \frac{r^2}{2}$$

Or if d is the diameter and h the height of segment, calculate  $\frac{h}{d}$  and find the value x in the following table corresponding to  $\frac{h}{d}$ ; multiply the square of the diameter by x, the result is the area of the segment.

Area of segment= $xd^2$ .

| ~                                                                  |                                                                                                  |                                                                    |                                                                                                  |                                                                    |                                                                                                  |                                                                    |                                                                                                  |                                                                    |                                                                                                  |
|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| $\frac{h}{d}$                                                      | æ                                                                                                | h<br>d                                                             | 28                                                                                               | $\frac{h}{d}$                                                      | œ                                                                                                | h<br>d                                                             | æ                                                                                                | $\frac{h}{\overline{d}}$                                           | æ                                                                                                |
| ·01<br>·02<br>·03<br>·04<br>·05<br>·06<br>·07<br>·08<br>·09<br>·10 | ·00133<br>·00375<br>·00687<br>·01054<br>·01468<br>·01924<br>·02417<br>·02944<br>·03501<br>·04087 | ·11<br>·12<br>·13<br>·14<br>·15<br>·16<br>·17<br>·18<br>·19<br>·20 | •04701<br>•05538<br>•06000<br>•06683<br>•07387<br>•08111<br>•08854<br>•09613<br>•10390<br>•11182 | ·21<br>·22<br>·23<br>·24<br>·25<br>·26<br>·27<br>·28<br>·29<br>·30 | ·11990<br>·12811<br>·13646<br>·14495<br>·15355<br>·16226<br>·17109<br>·18002<br>·18905<br>·19817 | ·31<br>·32<br>·33<br>·34<br>·35<br>·36<br>·37<br>·38<br>·39<br>·40 | ·20737<br>·21667<br>·22603<br>·23547<br>·24498<br>·25455<br>·26418<br>·27386<br>·28359<br>·29337 | ·41<br>·42<br>·43<br>·44<br>·45<br>·46<br>·47<br>·48<br>·49<br>·50 | ·30319<br>·31304<br>·32293<br>·33284<br>·34278<br>·35274<br>·36272<br>·37270<br>·38270<br>·39270 |

#### 3.-Cone and Pyramid.

Solid content:  $S = \frac{1}{3}$  base  $\times$  height.

Area of convex surface of right cone: When s=side of cone= $\sqrt{r^2 \times h^2}$ , where r=radius of base and h=height of cone, the area of convex surface will be

$$A = \pi r s$$
.

4.—CYLINDER.

Area of convex surface  $A = 2\pi r h$ . Content of cylinder  $S = base \times height$ .

5.—Sphere.

Convex surface  $A = 4 \pi r^2$ 

Surface of segment  $A = 2 \pi rh$ , h = height of segment

Solid content of sphere  $S = \frac{4}{3}r^3\pi = 4.1888r^3$ 

Solid content of sphere  $S = \frac{1}{6} \pi d^3 = 0.5236 d^3$ 

Radius  $r = 0.62035 \sqrt[3]{\text{content}}$ 

Content of segment of sphere: If a is the radius of the sectional area, h the height of the segment, and r the radius of the sphere,

$$S = \frac{1}{6} \pi h (3a^{2} + h^{2})$$
$$= \frac{1}{9} \pi h^{2} (3r - h)$$

Solid content of spherical zone: If  $\alpha$  and b are the respective radii of the two terminal surfaces, and h the height,

$$S = \frac{1}{6} \pi h (3a^2 + 3b^2 + h^2)$$

## TABLE 29.—WEIGHTS AND MEASURES OF DIFFERENT COUNTRIES.

1. Metric System (compulsory in France, Germany, Austria, the Netherlands, Belgium, Luxembourg, Switzerland, Italy, Greece, Turkey, Roumania, Spain, Portugal, and most of the South American Republics; optional in Great Britain and the United States.

1 metre (m.)=443·296 Paris lignes = 3·280899 English feet=3·18620 Prus-

sian feet=1.00000301 metre des archives.

1 kilometre (km.)=10 hectometre (hm.)=0.6214 English mile=0.1328 Prussian mile=0.9375 Russian verst=0.5390 nautical mile=0.1347 geographical mile (15 to 1 degree of longitude).

1 lieue (France)=1 myriametre=10 km.

1 German meile=7½ km.=0.996 Prussian mile=4.66 English miles.

1 hectare (ha.)=100 ares (a.)=10,000 qm.=001 qkm.=2.471 English acres. 1 litre (l.)=0.001 cbm.=1,000 ccm.=0.2201 gallons.

1 hectolitre (hl.)=0.1 cbm.=100 l.=22.01 gallons.

1 kilogramme (kg.)=1,000 g.=weight of 1 litre of water at +4° C.=2 German and Swiss pounds (zollpfund)=0.999999842 kilogramme prototype=2.2046 pound avoirdupois=1.7857 Austrian pound=2.3511 Swedish pounds=2.4419 Russian pounds.

1 gramme (g.)=15.432 grains (English).

1 quintal=100 kg.=196.84lb. avoirdupois=1cwt. 3qr. 0.84lb.

- 1 metrical ton=1,000 kg.=0.9842 English ton=1.1023 American short ton (at 2,000lb).
- 2. GREAT BRITAIN AND IRELAND.

1 foot=0.3047943 m.

1 inch=25.3995 mm.

1 yard=0.9143835 m.

1 fathom=2 yards.

1 rod (pole, perch)=51 yards=5.029109 m.

1 statute mile=8 furlongs=320 poles=1,760 yards=5,280 feet=1.6093 kilometre (km.).

1 nautical mile=10th degree (at the equator).

6,082.66 feet=1854.96 m.

1 acre=4 roods=160 poles=0.40467 ha.

1 square mile=640 acres.

1 gallon=4 quarts=8 pints=277·274 cubic inches=4·536 litres.

1 cubic foot=28.3153 l.

1 cubic inch=16.3862 ccm.

1 quarter=8 bushels=32 pecks=64 gallons=2.903 hl.

1 bushel=8 gallons=0.3628 hl.

1 fluid ounce=10th pint=28.35 ccm.

1 pound avoirdupois (lb.)=16 ounces (oz.)=7,000 grains=0.4535926 kg.

1 ounce avoirdupois=437½ grains=28:35 g. 1 gallon=10 lb. water=70,000 grains.

1 hundredweight (cwt.)=4 quarters (qr.)=8 stones=112 lb.=50·8024 kg.

1 ton=20 cwt.=2,240 lb.=1016.648 kg.

Apothecaries' Weight.

1 pound troy=12 ounces troy=96 drams=288 scruples=5,760 grains=373·24195 g.

1 ounce troy=8 drams=24 scruples=480 grains=31·1035 g.

- 1 ounce troy (for gold and precious stones)=20 pennyweight (dwt.)=480 grains.
- 1 grain (common to avoirdupois and troy weight) = 0.06479895 g.
- 3. Austria (old measures and weights now abolished for the metric system). 1 foot=0.316102 m., at 12 inches of 12 lines each.

3 ruthen=5 klafter=30 feet=360 zoll.

1 meile=4,000 klafter=7586.455 m.

1 mass = 1.415 l.

1 eimer=40 maass=160 seidel.

1 metze = 61.4995 l.

1 Wiener pfund=560.012 g.

1 centner=5 stein=100 pfund=3200 loth.

- 4. Denmark and Norway employ as unit of measure the Prussian foot, as unit of weight the units of the metrical system, viz., kilos, etc.
- 5. PRUSSIA (old system, now abolished for the metric system).

1 foot (Rhenish foot)=12 zoll (inches)=144 linien=0.313853 m.

1 ruthe=12 fuss=3.76624 m.

1 lachter (fathom)=80 zoll=2.09326 m.

1 meile=24,000 fuss=7,532·5 m.

1 morgen=180 square ruthen=0.2553 ha.

1 quart=64 cubic inches=217 cubic foot=1.14503 l.

1 scheffel=16 Metzen=48 quarts=0.54961 hl.

1 tonne=4 scheffel=2·19846 hl.

1 klafter=108 cubic fuss=3.3389 cbm.

1 schachtruthe=144 cubic fuss=4.4519 cbm.

1 pfund=30 loth=300 quentchen=500 g.

1 centner=100 pfund=50 kg. (Formerly 1 pfund=32 loth=467.711 g; 1 centner=110 pfund.)

#### 6. Russia.

1 foot=1 English foot.

1 sashehn=7 feet=3 arshin=12 tchetvert=48 vershok=2·13357 m.

1 verst=500 sashehn=1066.78 m.

1 dessatine=2400 square sashehns=10925 m.

1 vedro=10 krushky (stoof)=12·299 l.

1 tchetvert=1 osmini=4 payok=8 tchetverik=2099 l.

1 pound=32 loth=96 solotnik=9216 doli=0 9028 Eng. lb.=409 531 g.

1 berkovets=10 pud=400 pounds=163.81 kg.

1 pud=40 pounds=36·112 Eng. lbs.=16·3805 kg.

#### 7. Sweden.

1 foot=10 zoll (inches)=100 lines=0.97408 Eng. foot=0.296901 m.

1 famn (fathom)=3 alnar (ells)=6 feet=5.58445 Eng. feet=1.7814 m.

1 mile=6000 fathoms=6.6417 Eng. statute miles=10.6884 km.

1 kanne=100 cubic inches=0.57694 Eng. gallon=2.617 l.

1 skalpund=100 korn (at 100 art)=0.9378 Eng. lb.=425.3395 g.

1 centner=100 skalpund.

1 skipspund=20 liespund=400 skalpund.

8. Switzerland. Metrical measure and weight. Sometimes there is still employed:

1 fuss=0.3000 m.=0.9843 Eng. ft.

1 juchart=36 are=0.88956 Eng. acre.

1 maass=1.51 l.

1 saum=100 maass=151 l.

9. United States. Weights and measures as in Great Britain, but alongside the "long ton" (gross ton) of 2,240 lbs. more frequently the "short ton" (net ton) of 2,000 lbs.=907·1852 kg.=0·89285 long ton is employed.

Square Feet, Square Metre.

1 square metre (qm.)=10·764 square feet (English and Russian)=10·008 square feet (Austrian)=10·152 square feet (Prussian and Danish)= 11·344 square feet (Swedish).

1 square foot (English and Russian)=0.09290 square metre.

CUBIC FEET, CUBIC METRE.

1 cubic metre (cbm.)=35.316 cubic feet (English and Russian).

1 ,, =31.66 ,, (Austrian).

1 , =32.346 , (Prussian and Danish).

1 ,, =38.209 ,, (Swedish).

1 cubic foot (English and Russian)=0.028315 cubic metre.

- 1 KILOGRAMME PER RUNNING METRE
  - =0.6719 English pound per running foot. =0.6277 zollpfund per Prussian foot.
- 1 KILOGRAMME PER SQUARE CENTIMETRE. (for steam pressure)
  - =14.233 English pounds per square inch.
  - =13.681 zollpfund per Prussian square inch.
  - =13.878 zollpfund per Austrian square inch.

Horse Powers (per second).

| kg-m.  | Austria.     | Prussia.     | England.     | Sweden.      | Russia.      |  |
|--------|--------------|--------------|--------------|--------------|--------------|--|
|        | foot-pounds. | foot-pounds. | foot-pounds. | foot-pounds. | foot-pounds. |  |
| 75     | 474·53       | 477·93       | 542·47       | 593·90       | 600·85       |  |
| 76·041 | 481·11       | 481·56       | 550          | 602·14       | 609·19       |  |

75 kilogram-metres taken as unit.

550 English foot-pounds taken as unit.

=1 Admiralty horse power per second;

or, 33,000 foot-pounds per minute.

# TABLE 30.—TABLES FOR REDUCING ENGLISH TO METRICAL WEIGHTS AND MEASURES, AND VICE VERSA.

## REDUCTION OF METRICAL MEASURE TO ENGLISH MEASURE.

| Meter.<br>SqrM.<br>CubM. | Feet.   | Inches.  | Inches. Square Feet. |          | Cubic<br>Feet. | Cubic Inches. |  |
|--------------------------|---------|----------|----------------------|----------|----------------|---------------|--|
| 1                        | 3.2809  | 39.3706  | 10.7642              | 1550.05  | 35.3161        | 61026-2       |  |
| 2                        | 6.5618  | 78.7412  | 21.5284              | 3100.09  | 70.6322        | 122052.4      |  |
| 2 3                      | 9.8427  | 118.1118 | 32.2926              | 4650.13  | 105.9483       | 183078.6      |  |
| 4<br>5                   | 13.1235 | 157.4824 | 43.0568              | 6200.18  | 141.2644       | 244104.9      |  |
| 5                        | 16.4044 | 196.8530 | 53.8210              | 7750-23  | 176.5805       | 305131.1      |  |
| 6                        | 19.6853 | 236-2237 | 64.5852              | 9300.27  | 211.8966       | 366157.3      |  |
| 7                        | 22.9662 | 275.5943 | 75.3494              | 10850.31 | 247.2126       | 427183.5      |  |
| 8                        | 26.2471 | 314.9649 | 86.1136              | 12400.36 | 282.5287       | 488209.7      |  |
| 9                        | 29.5280 | 354.3355 | 96.8778              | 13950.40 | 317.8448       | 549235.9      |  |
|                          |         | 1        |                      |          |                |               |  |

#### ENGLISH FEET=METRES.

| Ft.               | 0                          | 1                          | 2                          | 3                | 4                          | 5             | 6                | 7                | ಕ                          | 9                          |
|-------------------|----------------------------|----------------------------|----------------------------|------------------|----------------------------|---------------|------------------|------------------|----------------------------|----------------------------|
| _0                | 0·0000                     | 0·3048                     | 0.6096                     | 0·9144           | 1·2192                     | 1·5240        | 1·8288           | 2 1336           | 2·4384                     | 2·7432                     |
| 10                | 3·0479                     | 3·3527                     | 3.6575                     | 3·9623           | 4·2671                     | 4·5719        | 4·8767           | 5 1815           | 5·4863                     | 5·7911                     |
| 20                | 6·0959                     | 6·4007                     | 6·7055                     | 7·0103           | 7.3151                     | 7·6199        | 7·9247           | 8·2295           | 8·5342                     | 8·8390                     |
| 30                | 9·1438                     | 9·4486                     | 9·7534                     | 10·058           |                            | 10·668        | 10·973           | 11·277           | 11·582                     | 11·887                     |
| 40                | 12.192                     | 12.497                     | 12.801                     | 13.106           | 13.411                     | 13.716        | 14 021           | 14.325           | 14.630                     | 14.935                     |
| 50                | 15·240                     | 15.545                     | 15.849                     | 16·154           | 16·459                     | 16.764        | 17·068           | 17·373           | 17.678                     | 17.983                     |
| 60                | 18·288                     | 18.592                     | 18.897                     | 19·202           | 19·507                     | 19.812        | 20·116           | 20·421           | 20.726                     | 21.031                     |
| 70                | 21·336                     | 21.640                     | 21·945                     | 22·250           | 22·555                     | 22·860        | 23·164           | 23·469           | 23.774                     | 24·079                     |
| 80                | 24·384                     | 24.688                     | 24 993                     | 25·298           | 25·603                     | 25·908        | 26·211           | 26·517           | 26.882                     | 27·127                     |
| 90                | 27.432                     | 27.736                     | 28.041                     | 28.346           | 28.651                     | 28.955        | 29.260           | 29.565           | 29.870                     | 30.175                     |
| $\frac{100}{110}$ | 30·479                     | 30·784                     | 31·089                     | 31·394           | 31·699                     | 32·003        | 32·308           | 32.613           | 32·918                     | 33·223                     |
|                   | 33·527                     | 33·832                     | 34·137                     | 34·442           | 34·747                     | 35·051        | 35·356           | 35.661           | 35·966                     | 36·271                     |
| 120               | 36·575                     | 36·880                     | 37·185                     | 37·490           | 37·795                     | 38·099        | 38·404           | 38·709           | 39·014                     | 39·318                     |
| 130               | 39·623                     | 39·928                     | 40·233                     | 40·538           | 40·842                     | 41·147        | 41·452           | 41·757           | 42·062                     | 42·366                     |
| 140               | 42.671                     | 42.976                     | 43.281                     | 43.586           | 43.890                     | 44.195        | 44.500           | 44.805           | 45.110                     | 45.414                     |
| 150<br>169<br>170 | 45.719<br>48.767<br>51.815 | 46·024<br>49·072<br>52·120 | 46·329<br>49·377<br>52·425 | 49.642<br>52.729 | 40°938<br>49°986<br>53°034 | 50.291 53.339 | 50·596<br>53·664 | 50.901<br>53.943 | 48·158<br>51·205<br>54·253 | 48.462<br>51.510<br>54.558 |
| 180               | 54·863                     | 55·168                     | 55·473                     | 55·777           | 56.082                     | 56·387        | 56.692           | 56·997           | 57·301                     | 57.606                     |
| 190               | 57·911                     | 58·216                     | 58·521                     | 58·825           | 59.130                     | 59·435        | 59.740           | 60·045           | 60·349                     | 60.654                     |
|                   | 1                          |                            |                            |                  |                            |               |                  |                  |                            | 1                          |

### ENGLISH INCHES=MILLIMETERS.

| Inches. | Millimeters. | Inches. | Millimeters. | Inches. | Millimeters. |
|---------|--------------|---------|--------------|---------|--------------|
| 1/64    | 0·39         | 1       | 25·4         | 7       | 177.8        |
| 1/32    | 0·79         | 2       | 50 8         | 8       | 203.2        |
| 1/16    | 1·59         | 3       | 76·2         | 9       | 228.6        |
| 1/8     | 3·17         | 4       | 101·6        | 10      | 254.0        |
| 1/4     | 6·35         | 5       | 127·0        | 11      | 279.4        |
| 1/2     | 12·70        | 6       | 152·4        | 12      | 301.8        |

## ENGLISH SQUARE FEET=SQUARE METRES.

| S <sub>1</sub> .<br>Feet. | 0                          | 1                          | 2                          | 3                          | 4                          | 5                          | 6                          | 7                          | 8                          | 9                          |
|---------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|
| 0                         | 0.0000                     | 0.0929                     | 0·1858<br>1·1148           | 0.2787                     | 0.3716                     | 0·4645<br>1·3935           | 0·5574<br>1·4864           | 0.6503<br>1.5793           | 0.7432<br>1.6722           | 0.8361                     |
| 10<br>20<br>30            | 0 9290<br>1.8580<br>2.7870 | 1.0219<br>1.9509<br>2.8799 | 2·0438<br>2·9728           | 1.2077<br>2.1367<br>3.0657 | 2·2296<br>3·1586           | 2·3225<br>3·2515           | 2·4154<br>3·3444           | 2·5083<br>3·4373           | 2·6012<br>3·5302           | 1.7651<br>2.6941<br>3.6231 |
| 40                        | 3.7160                     | 3.8089                     | 3.9018                     | 3.9947                     | 4.0876                     | 4.1805                     | 4.2734                     | 4.3663                     | 4.4592                     | 4.5521                     |
| 50<br>60                  | 4·6450<br>5·5740           | 4·7379<br>5·6669           | 4·8308<br>5·7598           | 4·9237<br>5·8527           | 5·0166<br>5·9456           | 5·1095<br>6·0385           | 5·2024<br>6·1314           | 5·2953<br>6·2243           | 5·3882<br>6·3172           | 5·4811<br>6·4101           |
| 70<br>80<br>90            | 6.5030<br>7.4320<br>8.3610 | 6·5959<br>7·5249<br>8·4539 | 6.6888<br>7.6178<br>8.5468 | 6.7817<br>7.7107<br>8.6397 | 6.8746<br>7.8036<br>8.7326 | 6.9675<br>7.8965<br>8.8255 | 7.0604<br>7.9894<br>8.9184 | 7·1533<br>8·0823<br>9·0113 | 7·2462<br>8·1752<br>9·1042 | 7·3391<br>8·2681<br>9·1971 |
| 90                        | 0 2010                     | 0 4000                     | 0 9400                     | 0 0997                     | 0 7020                     | 0 0200                     | 0 910#                     | 9 0113                     | 9 10+2                     | 9 19/1                     |

## ENGLISH SQUARE INCHES=SQUARE CENTIMETRES.

| Sq.<br>Ins. | 0                | 1      | 2      | 3                | 4      | 5      | 6      | . 7              | 8                | 9                |
|-------------|------------------|--------|--------|------------------|--------|--------|--------|------------------|------------------|------------------|
| 0           | 0.0000           | 6.4514 | 12.903 | 19.354           | 25.805 | 32.257 | 38.708 | 45.160           | 51.611           | 58.062           |
| 10          | 64.514           | 70.965 | 77.416 | 83·868<br>148·38 | 90.319 | 96.771 | 103.22 | 109·67<br>174·19 | 116·12<br>180·64 | 122·58<br>187·09 |
| 20<br>30    | 129·03<br>193·54 | 199.99 | 206.44 | 212.90           | 219.35 | 225.80 | 232.25 | 238.70           | 245.15           | 251.60           |
| 40          | 258.05           | 264.51 | 270.96 | 277.41           | 283.86 | 290.31 | 296.76 | 303.21           | 309.67           | 316.12           |
| 50          | 322.57           | 329.02 | 335.47 | 341.92           | 348.37 | 354.83 | 361.28 | 367.73           | 374.18           | 380.63           |
| 60          | 387.08           | 393.53 | 399.98 | 406.44           | 412.80 | 419.34 | 425.79 | 432.24           | 438.69           | 445.14           |
| 70          | 451.60           | 458.05 | 464.20 | 470.95           | 477.40 | 483.85 | 490.30 | 496.76           | 503.21           | 509.69           |
| 80          | 516.11           | 522.56 | 525.01 | 535.46           | 541.91 | 548.37 | 554.82 | 561.27           | 567.72           | 574.17           |
| 90          | 580.62           | 587.07 | 593.53 | 599.98           | 606.43 | 612.88 | 619.33 | 625.78           | 632.23           | 638.66           |

#### ENGLISH CUBIC FEET = CUBIC METRES.

| Cub. | 0      | 1      | 2      | 3      | 4      | 5      | 6      | 7      | 8      | 9      |
|------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 0    | 0.0000 | 0.0283 | 0.0566 | 0.0849 | 0·1133 | 0·1416 | 0·1699 | 0·1982 | 0·2265 |        |
| 10   | 0.2832 | 0.3115 | 0.3398 | 0.3681 | 0·3964 | 0·4247 | 0·4530 | 0·4814 | 0·5097 |        |
| 20   | 0.5663 | 0.5946 | 0.6229 | 0.6513 | 0·6796 | 0·7079 | 0·7362 | 0·7645 | 0·7928 |        |
| 30   | 0.8494 | 0.8778 | 0.9061 | 0.9344 | 0·9627 | 0·9910 | 1·0194 | 1·0477 | 1·0760 |        |
| 40   | 1.1326 | 1.1609 | 1.1892 | 1.2176 | 1·2459 | 1·2742 | 1·3025 | 1·3308 | 1·3591 |        |
| 50   | 1·4158 | 1·4441 | 1·4724 | 1.5007 | 1·5290 | 1.5573 | 1·5857 | 1.6140 | 1.6423 | 1.6706 |
| 60   | 1·6989 | 1·7272 | 1·7555 | 1.7839 | 1·8122 | 1.8405 | 1·8688 | 1.8971 | 1.9254 | 1.9538 |
| 70   | 1·9821 | 2·0104 | 2·0387 | 2.0670 | 2·0953 | 2.1236 | 2·1520 | 2.1803 | 2.2086 | 2.2369 |
| 80   | 2·2652 | 2·2935 | 2·3219 | 2.3502 | 2·3785 | 2.4068 | 2·4351 | 2.4634 | 2.4917 | 2.5201 |
| 90   | 2·5484 | 2·5767 | 2·6050 | 2.6333 | 2·6616 | 2.6900 | 2·7183 | 2.7466 | 2.7749 | 2.8032 |

### ENGLISH CUBIC INCHES = CUBIC CENTIMETRES.

| Cub.<br>Inch |        | 1      | 2      | 3      | 4      | 5      | 6      | 7      | 8      | 9      |
|--------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
|              |        |        |        |        |        |        |        |        |        |        |
| 0            | 0.0000 | 16.386 | 32.772 | 49.159 | 65.545 | 81.931 | 98:317 | 114.70 | 131.09 | 147.48 |
| 10           | 163.86 | 180.25 | 196.63 | 213.02 | 229.41 | 245.79 | 262.18 | 278.56 | 294.95 | 311.34 |
| 20           | 327.72 | 344.11 | 360.50 | 376.88 | 393.27 | 409.65 | 426.04 | 442.43 | 458.81 | 475.20 |
| 30           | 491.59 | 507.97 | 524.36 | 540.74 | 557.13 | 573.52 | 589.90 | 606.29 | 622.67 | 639.06 |
| 40           | 655.45 | 671.83 | 688.22 | 704.61 | 720.99 | 737:38 | 753.76 | 770.15 | 786.54 | 802.92 |
|              | 010.01 | 004.00 | 050.00 | 000.47 | 004.0  | 001.04 | 077.00 | 004.07 | 050.40 | 000 =0 |
| 50           | 819.31 | 835.69 | 852.08 | 868.47 | 884.85 | 901.24 | 917:63 | 934.01 | 950.40 | 966.78 |
| 60           | 983.17 | 999.56 | 1015.9 | 1032.3 | 1048.7 | 1065.1 | 1081.5 | 1097.9 |        | 1130.6 |
| 70           | 1147.0 | 1163.4 | 1179.8 | 1196.2 | 1212.6 | 1229.0 | 1245.3 | 1261.7 | 1278.1 | 1294.5 |
| 80           | 1310.9 | 1327.3 | 1343.7 | 1360.1 | 1376.4 | 1392.8 | 1409.2 | 1425.6 | 1440.9 | 1458.4 |
| 90           | 1474.8 | 1491.1 | 1507.5 | 1523.9 | 1540.3 | 1556.7 | 1573.1 | 1589 5 | 1605.8 | 1622.2 |
|              |        |        |        |        |        |        |        |        |        |        |

### ENGLISH POUNDS = KILOGRAMMES.

| Lbs. | 0      | 1      | 2      | 3      | 4      | 5      | 6      | 7      | 8      | 9      |
|------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 0    | 0.0000 | 0.4536 | 0.9072 | 1.3608 | 1.8144 | 2.2680 | 2.7216 | 3.1751 | 3.6287 | 4.0823 |
| 10   | 4.5359 | 4.9895 | 5.4431 | 5.8967 | 6.3203 | 6.8039 | 7.2575 | 7.7111 | 8.1647 | 8.6183 |
| 20   | 9.0719 | 9.5254 | 9.9790 | 10.433 | 10.886 | 11.340 | 11.793 | 12.247 | 12.701 | 13.154 |
| 30   | 13.608 | 14.061 | 14.515 | 14.969 | 15.422 | 15.876 | 16.329 | 16.783 | 17.237 | 17.690 |
| 40   | 18.144 | 18.597 | 19.051 | 19.504 | 19.958 | 20.412 | 20.865 | 21.319 | 21.772 | 22.226 |
| 50   | 22.680 | 23.133 | 23.587 | 24.040 | 24.494 | 24.948 | 25.401 | 25.855 | 26.308 | 26.762 |
| 60   | 27.216 | 27.669 | 28.123 | 28.576 | 29.030 | 29.484 | 29.937 | 30.391 | 30.844 | 31.296 |
| 70   | 31.751 | 32.205 | 32.659 | 33.115 | 33.566 | 34.019 | 34.473 | 34.927 | 35.380 | 35.834 |
| 80   | 36.287 | 36.741 | 37.195 | 37.648 | 38.102 | 38.555 | 39.009 | 39.463 | 39.916 | 40.370 |
| 90   | 40.823 | 41.277 | 41.731 | 42.184 | 42.638 | 43.091 | 43.545 | 43.998 | 44.452 | 44.906 |

### ENGLISH TONS = KILOGRAMMES.

| Tons.                                                    | 0      | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9      |
|----------------------------------------------------------|--------|-------|-------|-------|-------|-------|-------|-------|-------|--------|
| $\begin{array}{c} 0 \\ 10 \\ 20 \\ 30 \\ 40 \end{array}$ | 0·0000 | 1016  | 2032  | 3048  | 4064  | 5080  | 6096  | 7112  | 8129  | 9145   |
|                                                          | 10161  | 11177 | 12193 | 13209 | 14225 | 15241 | 16257 | 17273 | 18289 | 19305  |
|                                                          | 20321  | 21337 | 22353 | 23369 | 24386 | 25402 | 26418 | 27434 | 28450 | 29466  |
|                                                          | 30482  | 31498 | 32514 | 33530 | 34546 | 35562 | 36578 | 37594 | 38610 | 39627  |
|                                                          | 40643  | 41659 | 42675 | 43691 | 44707 | 45723 | 46739 | 47755 | 48771 | 49787  |
| 50                                                       | 50803  | 51819 | 52835 | 53851 | 54868 | 55884 | 56900 | 57916 | 58932 | 59948  |
| 60                                                       | 60964  | 61980 | 62996 | 64012 | 65028 | 66044 | 67060 | 68076 | 69092 | 70108  |
| 70                                                       | 71125  | 72141 | 73157 | 74173 | 75189 | 76205 | 77221 | 78237 | 79253 | 80269  |
| 80                                                       | 81285  | 82302 | 83317 | 84333 | 85346 | 86366 | 87382 | 88398 | 89414 | 90430  |
| 90                                                       | 91446  | 92246 | 93478 | 94494 | 95510 | 96526 | 97542 | 98558 | 99574 | 100590 |

### ENGLISH GRAINS = GRAMMES.

| Grain*. | 0     | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     |
|---------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 2       | 0     | .065  | •1296 | .194  | .259  | •324  | .389  | .454  | .518  | .583  |
| 10      | .648  | .713  | .778  | .842  | .907  | .972  | 1.037 | 1.102 | 1.166 | 1.531 |
| 20      | 1.296 | 1.361 | 1.426 | 1.490 | 1.555 | 1.620 | 1.685 | 1.749 | 1.814 | 1.879 |
| 30      | 1.944 | 2.009 | 2.074 | 2.138 | 2.203 | 2.268 | 2.333 | 2.397 | 2.462 | 2.527 |
| 40      | 2.592 | 2.657 | 2.721 | 2.786 | 2.851 | 2.916 | 2.981 | 3.045 | 3.110 | 3.17  |
| 50      | 3.240 | 3.302 | 3.369 | 3.434 | 3.499 | 3.564 | 3.629 | 3.693 | 3.758 | 3.828 |
| 60      | 3.888 | 3.953 | 4.018 | 4.082 | 4.147 | 4.212 | 4.277 | 4.341 | 4.406 | 4.471 |
| 70      | 4.536 | 4.601 | 4.666 | 4.730 | 4.795 | 4.860 | 4.925 | 4.989 | 5.054 | 5.118 |
| 80      | 5.184 | 5.249 | 5.314 | 5.378 | 5.443 | 5.208 | 5.573 | 5 637 | 5.702 | 5.767 |
| 90      | 5.832 | 5.897 | 5.962 | 6.026 | 6.091 | 6.156 | 6.221 | 6.286 | 6.350 | 6.41  |

#### GRAMMES = ENGLISH GRAINS.

| Grammes. | 0      | •1     | •2     | •3     | •4     | *5     | •6     | •7     | *8     | -9     |
|----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 2 3 4    | 0      | 1.543  | 3·096  | 4·629  | 6·172  | 7.716  | 9·259  | 10·802 | 12·345 | 13.808 |
|          | 15:432 | 16.975 | 18·518 | 20·061 | 21·604 | 23.148 | 24·691 | 26·234 | 27·777 | 29.3.0 |
|          | 30:864 | 32.407 | 33·950 | 35·493 | 37·036 | 38.580 | 40·123 | 41·666 | 43·209 | 44.752 |
|          | 46:296 | 47.839 | 49·382 | 50·925 | 52·468 | 54.012 | 55·555 | 57·098 | 58·641 | 60.184 |
|          | 61:728 | 63.271 | 64·814 | 66·375 | 67·900 | 69.444 | 70·987 | 72·530 | 74·073 | 75.616 |
|          | 77:160 | 78.703 | 80·243 | 81·789 | 83·332 | 84.876 | 86·419 | 87·962 | 89·505 | 91.048 |

## TABLE 31.—WEIGHT OF SHEET METALS.

### WEIGHT OF A SUPERFICIAL FOOT.

| Thickiness.                                                  | Wrought<br>Iron.                                                                           | Cast<br>Iron.                                                                             | Steel.                                                                                     | Copper.                                                                                    | Brass.                                                                                     | Lead.                                                                                        | Zinc.                                                                                      |
|--------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| Inches.  1 6 1 6 5 7 6 7 7 6 7 7 7 6 7 7 7 6 7 7 7 6 7 7 7 7 | Lb.<br>2-53<br>5-05<br>7-58<br>10-10<br>12-63<br>15-16<br>17-68<br>20-21<br>22-73<br>25-27 | Lb.<br>2·34<br>4·69<br>7·03<br>9·38<br>11·72<br>14·06<br>16·41<br>18·75<br>21·09<br>23·44 | Lb.<br>2-55<br>5-10<br>7-66<br>10-21<br>12-76<br>15-31<br>17-87<br>20-42<br>22-97<br>25-52 | 1b.<br>2·89<br>5·78<br>8·67<br>11·76<br>14·45<br>17·34<br>20·23<br>23·13<br>26·02<br>28·91 | 1b.<br>2·73<br>5·47<br>8·20<br>10·94<br>13·67<br>16·41<br>19·14<br>21·88<br>24·61<br>27·34 | 7.h.<br>3·71<br>7·42<br>11·13<br>14·83<br>18·54<br>22·25<br>25·96<br>29·67<br>33·38<br>37·08 | 1.b.<br>2:31<br>4:69<br>7:03<br>9:38<br>11:72<br>14:06<br>16:41<br>18:75<br>21:09<br>23:44 |
| 116<br>34<br>13<br>16<br>7<br>8<br>155<br>16                 | 27·79<br>30·31<br>32·84<br>35·87<br>37·90<br>40·42                                         | 25·78<br>28·13<br>30·47<br>32·81<br>35·16<br>37·30                                        | 28·07<br>30·63<br>33·18<br>35·73<br>38·28<br>40·83                                         | 31·80<br>34·69<br>37·58<br>40·47<br>43·36<br>46·25                                         | 30·08<br>32·81<br>35·55<br>38·28<br>41·02<br>43·75                                         | 40·79<br>44·50<br>48·21<br>51·92<br>55·63<br>59·33                                           | 25·78<br>28·13<br>30·47<br>32·81<br>35·16<br>37·50                                         |

### TABLE 32.-COINAGE OF DIFFERENT COUNTRIES.

|                                                          | Exa | ct Val | ue in |
|----------------------------------------------------------|-----|--------|-------|
| Austria—                                                 | £   | s.     | d.    |
| 1 Vereins Thaler (=1 former Prussian Thaler)             | 0   |        | 11.24 |
| 1 Gulden=100 Neukreuzer                                  | 0   | 1      | 11.49 |
| 1 Maria Theresia Thaler                                  | 0   | 4      | 1.46  |
| 1 Dukaten                                                | 0   | 9      | 4.78  |
| 4 Gulden Gold=10 Francs; 8 Gulden Gold=20 Francs         |     |        |       |
| Belgium=France.                                          |     |        |       |
| Brazil—                                                  |     |        | 0.10  |
| 1 Milreis=1,000 Reales                                   | 0   | 2      | 3.48  |
| Chili—                                                   | 0   |        | 44.80 |
| 1 Peso=100 Centavos                                      | 0   | 3      | 11.58 |
| Denmark—                                                 |     |        | 2.07  |
| 1 Rigsbankdaler=6 Marks=90 Skillings<br>1 Krone=100 Oere | 0   | 2      | 2.67  |
|                                                          | 0   | 1      | 0.83  |
| East India-                                              | 0   |        | 0     |
| 1 Rupee=16 Annas                                         | 0   | 2      | 0     |
| Egypt—                                                   | 050 |        | 40    |
| 1 Bag of Gold=30,000 Piastres                            | 273 | 2      | 10    |
| 1 Piastre=40 Para                                        | 0   | 0      | 2.5   |

### TABLE 32.—COINAGE OF DIFFERENT COUNTRIES.—Continued.

|                                                              | Exa | ct Val | ne in  |
|--------------------------------------------------------------|-----|--------|--------|
| France—                                                      | £   | s.     | d.     |
| 1 Franc=100 Centimes                                         | 0   | 0      | 9.516  |
| The 20-Franc piece contains 5.8065 g. fine gold              | 0   | 15     | 10.31  |
| The 5-Franc piece contains 22.5 g. fine silver               | 0   | 3      | 11.58  |
| GERMAN EMPIRE—                                               |     |        | 44.740 |
| 1 Mark=100 Pfennig                                           | 0   | 0      | 11 748 |
| The 20-Mark piece contains 7.1685 g. fine gold               | 0   | 19     | 6.96   |
| The 5-Mark piece contains 25 g. fine silver                  |     |        |        |
| GREAT BRITAIN— 1 Pound Sterling contains 7:3224 g. fine gold | 1   | 0      | 0 .    |
| 1 Shilling contains 5.231 grms. fine silver                  | 0   | 1      | 0 .    |
| Greece—                                                      | 0   |        | U      |
| 1 Drachma=100 Lepta=1 Franc (=France)                        | 0   | 0      | 9.516  |
| ITALY—                                                       |     | _      | 0 020  |
| 1 Lira=1 Franc (=France)                                     | 0   | 0      | 9.516  |
| Japan-                                                       |     |        |        |
| 1 Silver Itzebue=100 Cents                                   | 0   | 1      | 7      |
| 1 Gold Yen                                                   | 0   | 4      | 1      |
| 1 Silver Yen=100 Sen                                         | 0   | 4      | 3.3    |
| Mexico—                                                      |     |        |        |
| 1 Piastre (Peso. Mexican Dollar)=8 Reales=100 Cents          | 0   | 4      | 3.5    |
| 1 Doblon=16 Piastres                                         | 3   | 8      | 8      |
| NETHERLANDS—                                                 |     |        | _      |
| 1 Guilder=100 Cents                                          | 0   | 1      | 8      |
| 1 Willems d'Or                                               | 0   | 16     | 6.4    |
| 1 Ducat                                                      | 0   | 9      | 4.9    |
| Norway—<br>1 Krone=100 Oere                                  | 0   | 4      | 0.83   |
| 1 Species Daler=120 Skillings                                | 0   | 1 4    | 5.43   |
| Persia—                                                      | U   | 4      | 0.40   |
| 1 Toman=10 Keran                                             | 0   | 9      | 0.31   |
| 1 Rupee Silver                                               | ŏ   | 1      | 6.2    |
| Peru—                                                        |     | -      |        |
| 1 Sol (Peso)=10 Dineros=100 Centavos                         | 0   | 3      | 11.58  |
| Portugal-                                                    |     |        |        |
| 1 Milreis (in accounts)                                      | 0   | 4      | 6.75   |
| 1 Milreis (silver)                                           | 0   | 4      | 0.46   |
| 1 Tostao=100 Reis                                            | 0   | 0      | 4.8    |
| Roumania—                                                    |     |        | 0 440  |
| 1 Piastre=1 Franc (France)                                   | 0   | 0      | 9.516  |
| Russia—                                                      | 0   | 0      | 0.00   |
| 1 Silver Rouble=100 Kopeks                                   | 0   | 3      | 2.06   |
| 1 Half-Imperial=5 Rouble Gold=5.9987 g. fine gold            | 0   | 16     | 4.61   |
| 1 Paper Rouble                                               | U   | 2      | 1.1    |
| 1 Dinar=1 Franc (=France)                                    | 0   | 0      | 9.516  |
| Spain—                                                       | U   | U      | 0.010  |
| 1 Peseta=1 Franc (=France)                                   | 0   | 0      | 9.516  |
| 1 Duro (Spanish Dollar)=2 Escudos=5 Pesetas=20               |     |        | 0.020  |
| Reales                                                       | 0   | 3      | 11.58  |
| Sweden-                                                      |     |        |        |
| 1 Kronor=100 Oere                                            | 0   | 1      | 0.85   |
|                                                              |     |        | +      |

#### TABLE 32.—COINAGE OF DIFFERENT COUNTRIES.—Continued.

|                                         | Exa | ct Val | ue in |
|-----------------------------------------|-----|--------|-------|
| Switzerland=France.                     | £   | s.     | d.    |
| Turkey—                                 |     |        |       |
| 1 Piastre=40 Para=120 Asper             | 0   | 0      | 2.1   |
| 1 Turkish Pound (Yuslik)                | 0   | 18     | 1     |
| United States—                          |     |        |       |
| 1 Dollar=10 Dimes=100 Cents             | 0   | 4      | 1.15  |
| 1 Eagle=10 Dollars=15.0463 g. fine gold | 2   | 1      | 1.16  |

#### TABLE 33.-AIR-COMPRESSION.

The following table is compiled with a view to facilitate calculations of problems connected with the application of compressed gases. The table is strictly correct for air only, but is applicable also to other gases, such as lime-kiln gases. The table relates to 1 cub. foot of atmospheric air measured at 60° F. and 29·92 inches barometric pressure, and shows the volume, temperature and pressure after adiabatic compression; also the height of a column of water which the compressed gas will just balance, and the power required to compress the air in foot-pounds (33,000 ft.-lbs. per minute =1 indicated horse power), and the mean pressure on the air piston.

| Final Pressure<br>lbs. persq.in.<br>above<br>Atmosphere.<br>lbs. | Column of<br>Water<br>the gas will<br>balance.<br>feet. | Volume of compressed Air. cub. feet. | Temperature after compression. | Mean<br>pressure on<br>piston.<br>lbs. per sq. in. | Foot-pounds<br>of<br>work per<br>cub. foot<br>atmosph. air. |  |
|------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------|--------------------------------|----------------------------------------------------|-------------------------------------------------------------|--|
| 10                                                               | 23.12                                                   | 0.692                                | 144.5                          | 8.23                                               | 1186.3                                                      |  |
| 12                                                               | 27.75                                                   | •655                                 | 158.1                          | 9.58                                               | 1387                                                        |  |
| 14                                                               | 32.37                                                   | •622                                 | 171.0                          | 10.86                                              | 1564                                                        |  |
| 16                                                               | 37.00                                                   | • 593                                | 184.0                          | 12.08                                              | 1739                                                        |  |
| 18                                                               | 41.62                                                   | •567                                 | 196.0                          | 13.23                                              | 1907                                                        |  |
| 20                                                               | 46.25                                                   | •544                                 | 207.3                          | 14.35                                              | 2066                                                        |  |
| 22                                                               | 50.87                                                   | •523                                 | 218.3                          | 15.42                                              | 2220                                                        |  |
| 24                                                               | 55.50                                                   | •504                                 | 228.6                          | 16.45                                              | 2368                                                        |  |
| 26                                                               | 60.12                                                   | · <b>4</b> 86                        | 239.0                          | 17.43                                              | 2510                                                        |  |
| 28                                                               | 64.75                                                   | •469                                 | 249.0                          | 18.39                                              | 2647                                                        |  |
| 30                                                               | 69:37                                                   | •454                                 | 258.2                          | 19.32                                              | 2782                                                        |  |
| 32                                                               | 74.00                                                   | •440                                 | 267.5                          | 20.21                                              | 2910                                                        |  |
| 34                                                               | 78.62                                                   | •428                                 | 276.4                          | 21.07                                              | 3034                                                        |  |
| 36                                                               | 83.25                                                   | •416                                 | 285.3                          | 21.92                                              | 3156                                                        |  |
| 38                                                               | 87.87                                                   | •404                                 | 293.5                          | 22.74                                              | 3275                                                        |  |
| 40                                                               | 92.50                                                   | •394                                 | 301.8                          | 23.53                                              | 3389                                                        |  |

SPECIAL PART.



#### 1. - FUEL AND FURNACES.

#### A.-FUEL.

Should be tested in the case of lignite, peat, coal, coke. Refer to the

Appendix as to sampling.

1. Moisture.—Heat 100 to 200 grms. of coal to 105° C. (not above), for two hours, preventing access of air as much as possible. At a higher temperature the result might be too high, owing to escape of volatile matters, or too low, owing to a partial oxidation. The moisture sample should be broken up quickly into pieces not smaller than a bean, otherwise too much water would evaporate during the process. Lignite and peat are heated to 100°C. for five or six hours, and repeatedly weighed, till no further diminution of

weight takes place. Coke is heated to 110° C. for two hours.

2. Residual Coke (Fixed Carbon).—One grm. of finely-powdered coal is placed in a platinum crucible at least 1½ in. deep, provided with a tightly fitting cover. The crucible should then be heated by means of an ordinary Bunsen burner, the flame of which should not be less than 7 in. high. The crucible should be supported on a triangle of thin wire, and it should be so placed that the space between the bottom and the top of the burner is not more than 1½ in. The heating ought not to last longer than a few minutes, but must be continued as long as any appreciable quantity of inflammable matter escapes. If the flame be smaller, or the crucible be supported by a



Fig. 1.

stout wire triangle, the yield of coke will be too high. The results should always be calculated upon coal or coke free from ash, in order to render them comparative. Good coal for reverberatory furnaces should yield from 60 to

70 per cent. of coke.

3. Ash.—This estimation is very simple for lignite or peat; coke requires a very high temperature; coal which cakes presents most difficulties. The latter must be powdered very finely, and heated up gradually, so that the volatile matters may escape before the powder can form a cake. If an analysis is only occasionally required, 1 to 3 grms. of finely-ground coal is heated in a platinum crucible, which is fitted in a hole into a stoneware slab, or better, in asbestos board. (Fig. 1.) This is placed in a slanting position on a tripod stand. The slab serves to separate the air required for oxidation from the gases of the burner, and greatly hastens the combustion, which is thus completed in two hours, whereas without the slab it frequently remains incomplete even after 8 or 10 hours' heating. It is not advisable to use a blow-pipe, because the chance of mechanical loss is thereby greatly in-

creased. If determinations have to be made frequently, it is preferable to effect the combustion in a muffle furnace, or still more quickly in a platmum boat placed in a heated porcelain tube, through which a current of oxygen is passed. When using the latter, the coal or coke should be broken in small pieces, and not ground fine, or else the oxygen does not come sufficiently into contact with the lower strata.

#### B.—FURNACES.

1. Chimney Gases.—In these, CO<sub>2</sub>, O, CO, and N (the latter by difference) are most conveniently estimated by means of Orsat's apparatus, consisting of a gas burette divided into 100 cub. centim., from which the gas can be forced by raising a water bottle connected by an indiarubber tube with the lower end of the burettes into three separate U-tubes, closed by glass taps at one end and open to the atmosphere, or preferably closed by a thin indiacubber ball at the other end. These U-tubes are filled with different absorbing reagents; for CO2 with solution of caustic potash, of spec. grav. 1.20-1.28; for O with very thin sticks of phosphorus, obtained by sucking phosphorus, melted under water, into a glass tube din. wide, or with very small and irregular pieces of phosphorus obtained by shaking up melted phosphorus under water—the whole to be always kept under water, protected from light, from any tarry matters, etc., and never to be employed below a temperature of 18°C. (if the temperature of the working room is below this, the absorption is too slow, but can be started at once by cautiously warming the tube with a spirit flame). For CO serves a mixture of 10 grms. cupric chloride, 90 cub. cent. concentrated hydrochloric acid, 20 cub. cent. of water, and sheet copper sufficient to reduce it, the whole brought together at least 24 hours before using it. This reagent also absorbs any ethylene present, which would thus be estimated as CO; but this is quite immaterial in chimney gases, in which it is usually quite sufficient to estimate only the CO2. It should be frequently renewed.\*

2. Gas from Producers (Generators).—As a rule only CO2 and CO are estimated by means of Orsat's apparatus (see preceding paragraph). Any C<sub>2</sub>H<sub>4</sub> present would be absorbed and estimated together with the CO. H can be estimated in the residue by mixing it with a measured volume of air, and passing the mixture over gently-heated platinum or palladium asbestos,† most conveniently in Lunge's modification of Orsat's apparatus, fitted with a capillary tube for receiving the asbestos, a small spirit lamp turning on a pivot, and an extra U-tube filled with water, into which the gas is forced through the capillary tube containing the asbestos, and from which it is drawn back again into the gas burette. The gas freed from CO<sub>2</sub>, CO, C<sub>2</sub>H<sub>4</sub>, and from O, if present, is mixed with as much air as the gas burette will admit of. This will suffice for a quantity of hydrogen corresponding to  $\frac{1}{10}$  of the employed volume of air (i.e., twice the volume of oxygen contained in that air). If more H be present, which will only occur with "water gas," either less than 100 ccm. of gas must be employed at the

\* A formula for calculating the efficiency of fire-places from estimations of the percentage

of  $CO_3$  in the chimney-gases is given on p. 181. † This can be obtained ready made from Mawson & Swan, at Newcastle-on-Tyne, or is prepared by soaking a few threads of long soft asbestos in a strong solution of platinum or palladium chloride, mixed with a saturated solution of sodium formiate and enough sodium carbonate to produce alkaline reaction. After one hour's soaking the asbestos is dried completely in a water bath, whereby the metal is precipitated in an extremely minute state of division. The soluble salts are then washed out by hot water and the asbestos dried again.

commencement for the analyses, or the residual gas is mixed with oxygen instead of with air. The capillary tube is heated very gently and the gaseous mixture is quickly passed once through it and back again, when one end of the platinum asbestos should become red hot. The residual gas is measured once more, and  $\frac{2}{3}$  of the diminution in volume calculated as hydrogen. If methane (marsh gas, CH<sub>4</sub>) is to be estimated, the residue from the last operation is mixed with more air and burnt by means of an electrically-glowing palladium or platinum wire, enclosed in a capillary tube. If a capillary platinum tube is employed, filled with a few platinum wires, so as to leave a very small space for the gases to pass through, the electric heating may be replaced by a broad gas flame, producing a strong red heat.

3. Speed of Draught.—A convenient apparatus for measuring this in chemical works, where any fine mechanism would soon be ruined, is Fletcher's anemometer, based upon the movement of a column of ether in a U-tube (described in "Lunge's Sulphuric Acid and Alkali," I. 330; III, 361). Fig. 2 shows this in the simpler form, leaving out the microscopes, which



FIG. 2.

FIG. 3.

are quite unnecessary for reading the divisions of the scale or the vernier. The ends of the glass tubes  $a\,b$  should be placed rather less than one-sixth of the diameter of the flue from its inner wall. The straight end of a ought to be as exactly parallel as possible to the direction of the draughts; the end of b ought to be exactly at a right angle to this, and so that the current would blow into it. Without this precaution a mistake is made, which is avoided by the arrangement shown in Fig. 3, and proposed by Hurter, viz., employing tubes with ends bent in opposite directions. The tubes  $a\,b$  communicate with the ether tube  $c\,d$ ; the draught causes the ether to rise in  $a\,b$ y aspiration, to fall in  $b\,b$ y the pressure of the air blowing into the tube. The difference of level between  $c\,a$  and  $d\,$  is read off by means of the scale and vernier. Now the sliding disc  $e\,$  is turned 180°, whereby the currents are reversed. There will now be a difference of levels in the opposite direction, but equal in amount to the first, if the observation is correct. The sum of these two differences is meant by the "anemometer readings" in the tables.

The following tables show the application of the readings of the Anemometer for calculating the speed of draughts, both for instruments graduated on the inch scale and for those on the metrical scale.

#### a.-TABLE TO SHOW THE SPEED OF CURRENTS OF AIR,

At a temperature of 15° C.=60° F.; Barometer, 760mm.=29.92 inches.

#### A.—READINGS IN INCHES.

| Anemo-<br>meter<br>Reading<br>Inches. | Speed<br>Feet<br>per<br>Second. | Anemo-<br>meter<br>Reading<br>Inches. | Speed<br>Feet<br>per<br>Second. | Anemo-<br>meter<br>Reading<br>Inches. | Speed<br>Feet<br>per<br>Second. | Anemo-<br>meter<br>Reading<br>Inches. | Speed<br>Feet<br>per<br>Second. |
|---------------------------------------|---------------------------------|---------------------------------------|---------------------------------|---------------------------------------|---------------------------------|---------------------------------------|---------------------------------|
| .01                                   | 2.855                           | 16                                    | 11.42                           | .32                                   | 16.15                           | •95                                   | 27.83                           |
| .02                                   | 4.038                           | •17                                   | 11.77                           | .34                                   | 16.65                           | 1.00                                  | 28.55                           |
| .03                                   | 4 945                           | 18                                    | 12.11                           | .36                                   | 17.13                           | 1.25                                  | $31 \ 93$                       |
| .04                                   | 5.710                           | 19                                    | $12^{\cdot}45$                  | .38                                   | 17.60                           | 1.20                                  | 34.97                           |
| .02                                   | 6.384                           | 20                                    | 12.77                           | •40                                   | 18.06                           | 1.75                                  | 37.77                           |
| .06                                   | 6.993                           | •21                                   | 13.08                           | •45                                   | 19.15                           | 2.00                                  | 40.37                           |
| .07                                   | 7.554                           | .22                                   | 13:39                           | .50                                   | 20.18                           |                                       |                                 |
| .08                                   | 8.075                           | •23                                   | 13 70                           | '55                                   | 21.17                           | l                                     |                                 |
| .09                                   | 8.565                           | •24                                   | 13.99                           | •60                                   | 22.12                           |                                       |                                 |
| .10                                   | 9.028                           | .25                                   | 14.28                           | .65                                   | 23.02                           |                                       | •••                             |
| .11                                   | 9.469                           | •26                                   | 14.56                           | 70                                    | 23.89                           |                                       |                                 |
| .12                                   | 9.891                           | .27                                   | 14.84                           | .75                                   | 24.73                           |                                       | •••                             |
| .13                                   | 10.29                           | 28                                    | 15.11                           | .80                                   | 25.54                           |                                       |                                 |
| •14                                   | 10.68                           | •29                                   | 15.38                           | 85                                    | 26.32                           | 1                                     | •••                             |
| 15                                    | 11.06                           | .30                                   | 15.64                           | .90                                   | 27:08                           |                                       | •••                             |
| 10                                    | 11 00                           | 30                                    | 10 04                           | 30                                    | 21 00                           | ***                                   |                                 |

#### B.—READINGS IN MILLIMETERS.

| Read-<br>ing.<br>mm. | Speed. | Read ing. | Speed.         | Read-<br>ing.<br>mm. | Speed.         | Read-<br>ing.<br>mm. | Speed.         | Read-<br>ing.<br>mm. | Speed.<br>m.   | Read-<br>ing.<br>mm. | Speed. |
|----------------------|--------|-----------|----------------|----------------------|----------------|----------------------|----------------|----------------------|----------------|----------------------|--------|
|                      |        |           |                |                      |                |                      |                |                      |                |                      |        |
| 0.1                  | 0.575  | 1.4       | 2.040          | 2.7                  | 2.833          | 5.0                  | 3.855          | 10.0                 | 5.452          | 19.0                 | 7:515  |
| 0.2                  | 0.771  | 1.5       | 2.111          | 2.8                  | 2.885          | 5.4                  | 3.931          | 10.5                 | 5.586          | 20.0                 | 7.710  |
| 0.3                  | 0.944  | 1.7       | 2·181<br>2·248 | 3.0                  | 2·935<br>2·986 | 5.6                  | 4·006<br>4·080 | 11·0<br>11·5         | 5.718<br>5.846 | 21 22                | 7.900  |
| 0.2                  | 1.205  | 1.8       | 2.313          | 3.2                  | 3.077          | 5.8                  | 4.152          | 12.0                 | 5.972          | 23                   | 8.268  |
|                      |        |           | _ 0_0          | -                    |                | 1                    |                |                      |                |                      | 0 200  |
| 0.6                  | 1.341  | 1.9       | 2.376          | 3.4                  | 3 179          | 6.0                  | 4.223          | 12.5                 | 6.095          | 24                   | 8.446  |
| 0.7                  | 1.442  | 2.0       | 2.438          | 3.6                  | 3.271          | 6.5                  | 4.395          | 13 0                 | 6.216          | 25                   | 8.620  |
| 0.8                  | 1.220  | 2.1       | 2.498          | 3.8                  | 3.361          | 7.0                  | 4.261          | 13.5                 | 6.334          | 30                   | 9.443  |
| 0.9                  | 1.636  | 2.2       | 2.557          | 4.0                  | 3.448          | 7.5                  | 4.721          | 14.0                 | 6.450          | 35                   | 10.199 |
| 1.0                  | 1.724  | 2.3       | 2.615          | 4.2                  | 3.469          | 8.0                  | 4.876          | 15.0                 | 6.667          | 40                   | 10.903 |
| 1.1                  | 1.808  | 2.4       | 2.671          | 4.4                  | 3.616          | 8.2                  | 5.026          | 16.0                 | 6.896          | 45                   | 11.565 |
| 1.2                  | 1.889  | 2.5       | 2 726          | 4.6                  | 3.698          | 9.0                  | 5.175          | 17.0                 | 7.108          | 50                   | 12.190 |
| 1.3                  | 1.966  | 2.6       | 2.779          | 4.8                  | 3.777          | 9.5                  | 5.314          | 18.0                 | 7.314          | 301                  | 2      |
|                      |        |           |                |                      |                |                      |                | 0.0                  |                |                      |        |

## β.—CORRECTIONS FOR TEMPERATURE.

Column  $\alpha$  shows the temperature of the chimney or flue, column b the factor for multiplying the figure found in Table  $\alpha$  in order to arrive at the real speed of the current of gas.

## A.—READINGS IN DEGREES FAHRENHEIT.

| Faur. | ь      | a   | ь      | a   | ь      | а    | ь      |
|-------|--------|-----|--------|-----|--------|------|--------|
| 0     | 1.0634 | 90  | 0.9723 | 180 | 0.9012 | 380  | 0.7865 |
| 5     | 1.0577 | 95  | 0.9079 | 185 | 0.8977 | 400  | 0.7763 |
| 10    | 1.0520 | 100 | 0.9636 | 190 | 0.8943 | 425  | 0 7663 |
| 15    | 1.0464 | 105 | 0.9593 | 195 | 0.8909 | 450  | 0.7556 |
| 20    | 1.0409 | 110 | 0.9551 | 200 | 0.8875 | 475  | 0.7454 |
| - 25  | 1.0355 | 115 | 0.9509 | 210 | 0.8808 | 500  | 0.7356 |
| 30    | 1.0302 | 120 | 0.9468 | 220 | 0.8743 | 525  | 0.7261 |
| 35    | 1.0250 | 125 | 0.9428 | 230 | 0.8680 | 550  | 0.7171 |
| 40    | 1.0198 | 130 | 0.9388 | 240 | 0.8614 | 575  | 0.7085 |
| 45    | 1.0148 | 135 | 0.9848 | 250 | 0.8557 | 600  | 0.7000 |
| 50    | 1.0098 | 140 | 0.9309 | 260 | 0.8497 | 650  | 0.6841 |
| 55    | 1.0019 | 145 | 0.9270 | 270 | 0.8438 | 700  | 0.6691 |
| 60    | 1.0000 | 150 | 0.9232 | 280 | 0.8380 | 750  | 0.6552 |
| 65    | 0.9952 | 155 | 0.9194 | 290 | 0.8324 | 800  | 0.6420 |
| 70    | 0.9905 | 160 | 0.9156 | 300 | 0.8269 | 850  | 0.6297 |
| 75    | 0.9858 | 165 | 0.9119 | 320 | 0.8163 | 900  | 0.6181 |
| 80    | 0.9812 | 170 | 0.9083 | 340 | 0.8060 | 950  | 0.6070 |
| 85    | 0.9767 | 175 | 0.9047 | 360 | 0.7960 | 1000 | 0.5964 |
| 1 3 3 |        |     |        |     |        | 1    |        |

## B.—READINGS IN DEGREES CONTIGRADE.

| t°C                                                              | b                                                                                                        | α<br>ι°C                                                             | ь                                                                                                        | t°C                                                                  | ь                                                                                                        | t°C                                                                       | ь                                                                                                        | t°C                                                                              | ъ                                                                                                        | t°U                                                                       | b                                                                                               |
|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| -10<br>-5<br>0<br>2<br>4<br>6<br>8<br>10<br>12<br>14<br>15<br>16 | 1.046<br>1.036<br>1.027<br>1.023<br>1.020<br>1.016<br>1.012<br>1.009<br>1.005<br>1.003<br>1.000<br>0.998 | 18<br>20<br>22<br>24<br>26<br>28<br>30<br>32<br>34<br>36<br>38<br>40 | 0.995<br>0.991<br>0.938<br>0.935<br>0.981<br>0.978<br>0.975<br>0.972<br>0.963<br>0.963<br>0.962<br>0.959 | 42<br>44<br>46<br>48<br>50<br>52<br>54<br>56<br>58<br>60<br>62<br>64 | 0:956<br>0:953<br>0:950<br>0:947<br>0:944<br>0:941<br>0:938<br>0:935<br>0:933<br>0:930<br>0:927<br>0:924 | 66<br>68<br>70<br>75<br>80<br>85<br>90<br>95<br>100<br>110<br>120.<br>130 | 0.922<br>0.919<br>0.916<br>0.909<br>0.903<br>0.897<br>0.897<br>0.884<br>0.878<br>0.867<br>0.856<br>0.845 | 140<br>150<br>160<br>170<br>180<br>190<br>200<br>210<br>220<br>230<br>240<br>250 | 0·835<br>0·825<br>0·815<br>0·806<br>0·797<br>0·788<br>0·780<br>0·772<br>0·764<br>0·756<br>0·749<br>0·742 | 260<br>270<br>280<br>290<br>300<br>320<br>340<br>360<br>400<br>450<br>500 | 0.735<br>0.728<br>0.721<br>0.715<br>0.709<br>0.697<br>0.685<br>0.676<br>0.654<br>0.631<br>0.603 |



Fig. 4.

A very simple and cheaper instrument is also Seger's Differential Anemometer, Fig. 4. The U tube A is surmounted by two enlargements, B and C. D is a sliding scale, adjustable by slits aa and screw-pins bb. The tube is filled with two not mixable liquids; for instance paraffin oil and dilute spirits of wine (coloured), of nearly equal specific gravity. The line of contact, at X, is marked by the zero point of the scale D. If an aspirating force is acting on the surface of the liquid in C, the level of the liquid will be raised in C, and the point X will be lowered at a multiplied ratio, corresponding to the difference in the sectional area of the narrow part of A and the enlargements in C, say 1:20.

#### C.—TEMPERATURE.

None of the ordinary pyrometers are reliable for any length of time, not even that of Siemens, whose high price and inconvenient shape prevent its general use. We mention, of more recent pyrometers—

1. Gauntlett's metal pyrometer, manufactured by Schäffer and Budenberg (Magdeburg and Manchester). This can be used up to 900° C., or 1,600° F., but the metallic parts must be well protected.

2. Steinle and Hartung's (of Quedlinburg, Germany) graphite pyrometer, graduated up to 1,200° C. (say 2,000° F.) This, as well as Gauntlett's or other pyrometers, must be controlled from time to time, preferably by a calorimeter.

3. Fischer's Calorimetric Pyrometer consists (1) of a wrought-iron box fitted with a lid, and welded to the end of a long rod, by means of which it can be placed in the space whose temperature has to be taken; (2) of a small cylinder of wrought iron, copper,\* or platinum, say 2c. long by 1c. diameter, which is accurately weighed and exposed to the heat of the furnace, etc., within the above iron box; (3) of the calorimeter itself, viz., a vessel made of thin sheet copper, about 6c. wide by 15c. deep. surrounded by a thick wooden jacket (preferably having a space in between which can be filled up with loose wool, fur, and the like), and can be mani-The vessel pulated by a wooden handle without grasping the jacket itself. is fitted with a brass cover provided with two holes, one allowing a fine thermometer (graduated in tenths of degrees) to pass through, the other, 2c. wide, for dropping in the hot metal cylinder. Through this hole also passes the wire handle of a copper disc, a little less in diameter than that of the calorimeter, which serves as a stirrer. This vessel is filled two-thirds with an accurately weighed or measured quantity of water. The operation is performed by exposing the metal cylinder No. 2, enclosed within the box No. 1, long enough to assume the temperature of the furnace at least for 20 minutes; then quickly take out the box, remove the lid by a forceps, and

<sup>\*</sup> Copper does not, however, last well, scales of CuO forming the first time it is used, while iron can be used daily for three months without great error.

drop the hot cylinder into the calorimeter No. 3, whose temperature= $t^0$  has been ascertained just before. The cylinder falls upon the disc of the stirrer, which is rapidly moved up and down, constantly observing the thermometer. When this is at its maximum, it is read off. This temperature we will call  $t^1$ . We must further know the weight of the metal cylinder=p; its specific heat=c (this is 0.094 for copper, 0.114 for wrought iron, 0.032 for platinum, but increases with the temperature, so that there is here a source of inaccuracy); the weight of the water within the calorimeter, added to the water-weight of the copper vessel and stirrer itself= $p^1$  (water-weight means the actual weight multiplied by the specific heat. i.e., 0.094 for copper; the thermometer, if very slender, may be left out of the calculation). The temperature of the hot cylinder T is found by the formula—

$$T = t^1 + \underbrace{p^1 (t^1 - t^0)}_{pc}$$

If  $p^1$  and p are constant, the magnitude

 $\frac{p^1}{pc}$ 

can be converted into a factor, by which the difference of thermometer readings is multiplied, thus at once yielding the temperature sought, after the first temperature  $t^1$  has been added to the product. For practical purposes it is convenient to choose the quantities so that this factor becomes a simple number. For very high temperatures the value

 $\frac{p^1}{pc}$ 

should not be less that 50. For lower ones it will be sufficient if it is 25, but it should not be chosen less than 25. The same factor will, with the same apparatus, yield Fahrenheit degrees if a Fahrenheit thermometer is used instead of a Centigrade one. The mean specific heat of iron between 0° C. and  $t^{\circ}$  C. is G=0.1053+0.000071  $t^{\circ}$  (Bède). By means of this value for the mean specific heat of iron, the temperature can be calculated according to the following formula:—

$$\mathbf{T} = \sqrt{\left(\frac{p^{1}(t^{1} - t^{0}) + pt^{1}\left(0.1053 + 0.000071\ t^{1}\right)}{0.000071\ p} + 549822}\right) - 741.47}$$

Siemens' copper pyrometer, which is on the same principle, gives the degrees corresponding to the readings of the thermometer without any calculations by means of a special scale; but the indications of this instrument are very rough.

## 2.-SULPHURIC ACID MANUFACTURE.

#### A.—BRIMSTONE.

1. Moisture.—In order to prevent the evaporation of moisture during grinding, an average sample of the unground or only roughly-crushed materials weighing 100grms. is dried at 100° C. for some hours in an oven or water-bath.

2. Ashes.—10grms. are burnt in a tared porcelain dish, and the residue weighed.

3. Direct Estimation of Sulphur.—(Macagno, Chem. News, v. 43, p. 192). 50grms. of the finely-ground brimstone are dissolved in 200c.c. carbon

bisulphide by digesting in a stoppered bottle at the ordinary temperature, and the specific gravity of the liquid=s is estimated. This must be reduced to the specific gravity at 15° C.=S by means of the formula (valid up to 25° C.) S=s+0 0014 (t-15°). The following table gives for each value of S the percentage in this solution, which number must be multiplied by 4 to indicate the percentage of sulphur in the sample of brimstone:—

# SPECIFIC GRAVITIES OF SOLUTIONS OF SULPHUR IN CARBON BISULPHIDE.

| Spec.<br>Grav.                                     | %<br>s                                 | Spec.<br>Grav.                                     | %                                      | Spec.<br>Grav.                                     | %<br>8                                       | Spec.<br>Grav.                                     | %<br>\$                                      | Spec.<br>Grav.                                     | %                                            | Spec.<br>Grav.  | %<br>S        |
|----------------------------------------------------|----------------------------------------|----------------------------------------------------|----------------------------------------|----------------------------------------------------|----------------------------------------------|----------------------------------------------------|----------------------------------------------|----------------------------------------------------|----------------------------------------------|-----------------|---------------|
| 1·271                                              | 0                                      | 1·292                                              | 5·0                                    | 1:313                                              | 10·2                                         | 1·334                                              | 15:2                                         | 1·355                                              | 20:4                                         | 1·376           | 28·1          |
| 1·272                                              | 0·2                                    | 1·293                                              | 5·3                                    | 1:314                                              | 10·4                                         | 1·335                                              | 15:4                                         | 1·356                                              | 20:6                                         | 1·377           | 28·5          |
| 1·273                                              | 0·4                                    | 1·294                                              | 5·6                                    | 1:315                                              | 10·6                                         | 1·336                                              | 15:6                                         | 1·357                                              | 21:0                                         | 1·378           | 29·0          |
| 1·274                                              | 0·6                                    | 1·295                                              | 5·8                                    | 1:316                                              | 10·9                                         | 1·337                                              | 15:9                                         | 1·358                                              | 21:2                                         | 1·379           | 29·7          |
| 1·275                                              | 0·9                                    | 1·295                                              | 6·0                                    | 1:317                                              | 11·1                                         | 1·338                                              | 16:1                                         | 1·359                                              | 21:5                                         | 1·380           | 30·2          |
| 1·276                                              | 1·2                                    | 1·297                                              | 6·3                                    | 1·318                                              | 11.3                                         | 1·339                                              | 16:4                                         | 1:360                                              | 21.8                                         | 1:381           | 30·8          |
| 1·277                                              | 1·4                                    | 1·298                                              | 6·5                                    | 1·319                                              | 11.6                                         | 1·340                                              | 16:6                                         | 1:361                                              | 22.1                                         | 1:382           | 31·4          |
| 1·278                                              | 1·6                                    | 1·299                                              | 6·7                                    | 1·320                                              | 11.8                                         | 1·341                                              | 16:9                                         | 1:362                                              | 22.3                                         | 1:383           | 31·9          |
| 1·279                                              | 1·9                                    | 1·300                                              | 7·0                                    | 1·321                                              | 12.1                                         | 1·342                                              | 17:1                                         | 1:363                                              | 22.7                                         | 1:384           | 32·6          |
| 1·280                                              | 2·1                                    | 1·301                                              | 7·2                                    | 1·322                                              | 12.3                                         | 1·343                                              | 17:4                                         | 1:364                                              | 23.0                                         | 1:385           | 33·2          |
| 1·281                                              | 2·4                                    | 1:302                                              | 7·5                                    | 1·323                                              | 12.6                                         | 1·344                                              | 17.6                                         | 1.365                                              | 23·2                                         | 1·386           | 33·8          |
| 1·282                                              | 2·6                                    | 1:303                                              | 7·8                                    | 1·324                                              | 12.8                                         | 1·345                                              | 17.9                                         | 1.366                                              | 23·6                                         | 1·387           | 34·5          |
| 1·283                                              | 2·9                                    | 1:304                                              | 8·0                                    | 1·325                                              | 13.1                                         | 1·346                                              | 18.1                                         | 1.367                                              | 24·0                                         | 1·388           | 35·2          |
| 1·284                                              | 3·1                                    | 1:305                                              | 8·2                                    | 1·326                                              | 13.3                                         | 1·347                                              | 18.4                                         | 1.368                                              | 24·3                                         | 1·389           | 36·1          |
| 1·285                                              | 3·4                                    | 1:306                                              | 8·5                                    | 1·327                                              | 13.5                                         | 1·348                                              | 18.6                                         | 1.369                                              | 24·8                                         | 1·390           | 36·7          |
| 1·286<br>1·287<br>1·288<br>1·289<br>1·290<br>1·291 | 3.6<br>3.9<br>4.1<br>4.4<br>4.6<br>4.8 | 1:307<br>1:308<br>1:309<br>1:310<br>1:311<br>1:312 | 8·7<br>8·9<br>9·2<br>9·4<br>9·7<br>9·9 | 1·328<br>1·329<br>1·330<br>1·331<br>1·332<br>1·333 | 13·8<br>14·0<br>14·2<br>14·5<br>14·7<br>15·0 | 1:349<br>1:350<br>1:351<br>1:352<br>1:353<br>1:354 | 18:9<br>19:0<br>19:3<br>19:6<br>19:9<br>20:1 | 1:370<br>1:371<br>1:372<br>1:373<br>1:374<br>1:375 | 25·1<br>25·6<br>26·0<br>26·5<br>26·9<br>27·4 | 1:391<br>(satur | 37·2<br>ated) |

### B.—SPENT OXIDE OF GASWORKS.

This is contaminated with saw-dust, tarry matters, and variable quantities of lime, etc., which latter retain part of the sulphur in burning, hence a method is employed which estimates only the recoverable portion of the sulphur (Zulkowsky, Dingler's Journal, v. 241, p. 52). The sulphur of the spent oxide is burnt with the aid of platinized asbestos (comp. p. 86), the gases are passed into a solution of caustic potash and potassium hypobromite, and the sulphuric acid there condensed or formed is estimated by precipitation with BaCl<sub>2</sub>. The combustion takes place in a combustion tube (Fig. 5) 2ft. long, narrowed at a, and drawn out at the end into a long tube, not too thin, and bent downwards. Between a and b there is a layer of asbestos Sin. to 10in. long, and at a distance of Sin. or 4in. from this a porcelain boat with about 0.4grm, spent oxide. The end of the tube at k is connected with an oxygen gasholder. The absorption takes place in the two 3-bulb tubes c and d (5½in. high) and the tube e, filled with glass-wool. The absorbing liquid is made by dissolving 180grms, caustic potash (purified with alcohol from sulphate) in water, adding 100grms, bromine, taking care

to keep the mixture cool, and diluting to 1,000c.c. 30c.c. of this suffice for estimating 0.5grm. sulphur. The tube e ought also to be moistened with it. First heat the portion of the tube between a and b, passing moist oxygen through it at the same time; then heat the boat from the right to the left, lastly the tube, up to the place f. The current of gas must be much stronger than for an organic analysis, lest any sulphur should escape unburnt, but not so strong as to draw off any  $SO_3$  unabsorbed. So long as



Fig. 5.

any dew appears at h it must be driven into the receiver with a Bunsen burner. When this ceases (usually in about an hour) the experiment is finished. The receivers are then taken off, washed out, and the acid remaining in h is recovered by aspirating several times water through it. All the liquids are united, supersaturated with HCl in order to decompose the potassium hydrate and hypobromite, heated, concentrated if necessary, and the sulphuric acid is precipitated with BaCl<sub>2</sub>, as directed in the following paragraph (C 2).

In lieu of the bromine solution proposed by Zulkowsky, hydrogen peroxide can be used; but it must be free from sulphuric acid, or else the sulphuric acid contained in it must be allowed for. In this case the analysis may be performed volumetrically by means of caustic soda solution.

#### C.—PYRITES.

1. Moisture.—The ground pyrites is dried at 105° C. till the weight remains constant. For the following tests the pyrites is not employed in the dried state, but the finely-ground average sample, as it is kept in a well-sealed bottle. Compare the Appendix as to drawing and reducing an

average sample.

2. Sulphur.—About 0-5grm. of pyrites is treated with about 10c.c. of a mixture of 3 vols. nitric acid (specific gravity 1-4) and 1 vol. strong hydrochloric acid, both ascertained to be absolutely free from sulphuric acid. Avoid all spurting. Heat up the mixture now and then, evaporate to dryness in a water-bath, add 5c.c. hydrochloric acid, evaporate once more (no nitrous fumes ought to escape now), add 1c.c. concentrated hydrochloric acid and 100c.c. hot water, filter through a small filter, and wash with hot water. The insoluble residue may be dried, ignited, and weighed. It may contain, besides silicic acid and silicates, the sulphates of barium, lead, and

even calcium, whose sulphur, as being useless, is purposely neglected. The filtrate and washings are saturated with ammonia, avoiding much excess of it and keeping the hot liquid about 10 or 15 minutes before filtration, but net boiling till all the ammonia is expelled (in which case the preci-

pitate contains some basic sulphate). The precipitated ferric hydrate is filtered and washed. This can be done in from half to one hour, by employing the following precautions: (1) Filter hot, and wash on the filter with hot water, avoiding channels in the mass, but so that the whole precipitate is thoroughly churned up with the water each time (washing by decantation would produce too great a bulk of liquid); (2) employ sufficiently dense but rapidly-filtering paper; (3) use funnels, made at an angle of exactly 60°, whose tube is not too wide, and is completely filled by the liquid running through. A filter pump may also be employed with the usual precautions. Wash till about 1c.c. of the washings on adding BaCl<sub>2</sub> shows no opalescence even after a few minutes. The filtrate and washings should not exceed 200c.c., or else should be concentrated by evaporation. Acidulate with pure HCl in very slight excess, heat to boiling, remove the burner, and add a solution of BaCl2 previously heated to boiling. (A large excess of BaCl<sub>2</sub> must be decidedly avoided.) For 0.5grm. pyrites, 20c.c. of a 10 per cent. solution of BaCl<sub>2</sub> is always more than sufficient. This is roughly measured off in a test-tube provided with a mark, and heated in the same tube. After precipitation the liquid is left to stand for half an hour, when the precipitate should be completely settled. Decant the clear portion as well as possible through a filter, pour 100c.c. boiling water on the precipitate, and stir up. Wait two or three minutes, when the liquid ought to have settled completely, and decant again. Repeat the treatment with boiling water, and the decantation three or four times, till the liquid has lost its acid reaction. Wash the precipitate on to the filter, dry, and ignite. It should be a perfectly white and loose powder. One part of it is equal to 0.13734 sulphur (factors on pp. 14, 15).

3. Copper (Process employed at the Duisburg Copper Extraction Works).—1grm. of pyrites, finely powdered and dried at 100° C., is treated with concentrated nitric acid, and then evaporated to dryness. Pour concentrated sulphuric acid over the residue, and heat on a sand-bath till the free acid is driven off. Let it cool down, boil up the mass with water, allow it to cool, add quarter of the bulk of spirit of wine, let stand for 12 hours, and The residue on the filter is washed with a mixture of 1 part alcohol and 2 parts water till no more copper can be found. The dilute filtrate is saturated with HoS and allowed to stand for some hours. The precipitate (containing the sulphides of copper, arsenic, antimony, and bismuth) is washed with a solution of H<sub>2</sub>S containing a little sulphuric acid, dried, mixed with the ashes of the filter and with pure sulphur (recrystallized from CS2), ignited in a Rose's crucible in a current of hydrogen or coal gas, and weighed. In this operation arsenic is completely volatilised; antimony and bismuth remain along with the copper. Spanish pyrites contains an almost constant quantity of 0.05 per cent. Sb and Bi, of which 0.0005grm., together with the weight of the filter ashes, is deducted from the Cu,S (1

part Cu<sub>2</sub>O=0.79874 Cu).\*

4. Zinc is sometimes estimated in pyrites, because the sulphur combined with it is hardly recoverable for acid making. The following method (Schaffner's modified) is employed at the Vieille Montagne and the Rhenish

<sup>\*</sup> The electrolytical method has not been adopted at Duisburg, because copper precipitated the first time is not pure, and two precipitations cause more trouble than the abovedescribed method. But at the copper works the purity of the Cu<sub>2</sub>S is checked by the electrolytical method. The Duisburg method, as given in text, is open to the objection of being rather lengthy, and of deducting a constant quantity of Sb and Bi, which cannot be quite correct in all cases; but as it is accepted as binding upon buyers and sellers in Germany, we have given it as it stands.

Zincworks: 0.5grm, of the ore is dissolved as described on p. 94. All nitric acid is destroyed in the same way. Any metals precipitable by H<sub>2</sub>S from an acid solution are removed by this reagent. The filtrate is freed from H<sub>2</sub>S by boiling, and oxidized by a little aqua regia. The ferric oxide is precipitated with 30c.c. of liquor ammoniæ (if Mn is present, the liquor is allowed to stand for six hours, when the Mn will be precipitated as well), filtered, dissolved on the filter (as it always contains zinc) in a little HCl, without previous washing, precipitated once more with NH2, and filtered again. Both filtrates are united, diluted to half a litre, and titrated in a tall beaker by a solution of pure crystallized sodium sulphide, of which 1c.c. ought to be as nearly as possible=0.01 Zn. With more dilute liquors the results are not so good. Add the liquid, constantly stirring, till a paper soaked with a basic solution of ferric chloride, half dipping into the liquid, is blackened. The paper is either attached to the side of the beaker or suspended from platinum wire. The Na<sub>2</sub>S solution is standardized exactly in the same way by weighing off pure zinc, dissolving, and supersaturating with NH<sub>3</sub>. But exactly the same dilution and excess of ammonia must be used as in the former operation, in order to employ the same excess of Na<sub>2</sub>S for blackening the iron paper in both cases, and the degree of blackening should also be the same. The solution of sodium sulphide should not be more than a fortnight old.



Fig. 6.

5. Carbonic Acid (calcium carbonate, etc.) is sometimes estimated, because the bases combined with it make a corresponding quantity of sulphur useless in the form of sulphates. As the quantity is always small, the CO₂ is estimated gravimetrically by expelling it by strong acids and absorbing it in soda lime in the apparatus, Fig. 6. The flask α, holding 200c.c., is closed with an indiarubber cork. Through this passes the swan-neck O tube b, reaching down to the bottom of α and connected outside by means of a pinch-cock joint, either with a small funnel or (at the end of the operation) with a U tube filled with soda lime. In a second perforation of the cork is fixed the delivery tube c, cut obliquely at the lower end, and enlarged above the cork into a bulb. The latter is connected with a series of U tubes, which are once for all put together and hung with wire loops from a carrying rod fixed in a stand, so that the whole is ready for use at any time. The tube No. 1 (7in. long, §in. wide inside) contains only a little calcium chloride (absolutely free from alkaline reaction) in its bend. No. 2 (same size) is filled with calcium chloride. No. 3 (same size) with pumice, boiled with a concentrated solution of copper sulphate, dried, and heated to the point

where all water is driven off for the absorption of H<sub>2</sub>S and HCl.\* The tubes Nos. 4 to 7 are 4½ in. long and ½ in. wide. No. 4 contains calcium chloride; Nos. 5 and 6 about 20grms, granular soda lime, except the upper third of the second limb, which is filled with granular calcium chloride; No. 7, in the first limb calcium chloride, and in the second soda lime. Nos. 1 to 4 serve for removing from the gas its moisture and HCl; Nos. 5 and 6 for absorbing the  $CO_2$ , the  $CaCl_2$  preventing any escape of moisture from the soda lime. No. 7 is a guard-tube against  $CO_2$  and  $H_2O$  entering from without. Only Nos. 5 and 6 are weighed (both together) before and after the experiment. The contents of No. 1 must generally be renewed after each experiment; those of No. 5 pretty frequently, according to the CO<sub>2</sub> present; those of No. 6 very rarely. The apparatus is tested in the usual way for its gas-tightness, and serves for all estimations of CO2 by weight. For making a test, put the weighed substance into the flask a, along with 50c.c. of water; gradually run in through b a sufficient quantity of dilute HCl or SO<sub>4</sub>H<sub>2</sub> (compare footnote), take away the funnel, connect b with the soda-lime guard-tube, and aspirate from the other end, at the  $\bigcup$  tube No. 7, a steady current of air, free from  $CO_2$ , through a, whose contents are at the same time heated, but not to the boiling point. The process of absorption can be followed by the progressive rise of temperature in the soda-lime tube No. 5. When this has become quite cold, the current of air is passed through another 20 minutes, after which the experiment is finished. The contents of a ought never to be heated strongly enough to make the calcium chloride in No. 1 deliquesce. (This estimation requires a great deal of practice and care to avoid errors. An easier, quicker, and more reliable method of estimating CO<sub>2</sub> by the volume of the gas has been worked out by Lunge and Marchlewski, Zeitsch. f. angew. Chem., April, 1891, p. 229).

## D.—BURNT PYRITES (CINDERS).

1. Sulphur is estimated by John Watson's method (S.C.I., 1888, pp. 305.730). Place exactly 2 grams bicarbonate of soda of known alkalinity in a nickel or platinum crucible; add 3·200 grams of the powdered sample of burnt ore; mix intimately with a flattened glass rod; heat gently over a low Bunsen flame for five or ten minutes; stir up the mixture again; continue the heating over a stronger flame for ten or fifteen minutes longer; wash the contents of the crucible into a beaker; boil for ten minutes; filter and wash the insoluble portion, till all alkaline reaction has ceased; allow the washings to cool; add methyl-orange and titrate with normal hydrochloric acid; each c.c. of which saturates 0·053 Na<sub>2</sub> CO<sub>3</sub>, and indicates 0·016 S. If we call the number of c.c. of that acid, consumed by 2 grams of the bicarbonate employed, a, and the number of c.c., consumed on retitrating after the test, b, the number 2(a-b) expresses the percentage of sulphur in the burnt ore.

2. Copper is estimated as on page 94, but the solution of the sample (1 grm.) is made by means of hydrochloric acid, with a few drops of nitric acid. A deduction of 0.07 per cent. for Bi and Sb is made from the percentage of Cu

found.

<sup>\*</sup> If the carbonates can be decomposed by dilute sulphuric acid, and if at the same time no sensible quantity of  $H_2S$  can escape (e.g., in estimating  $CO_2$  in canstic soda), it is preferable to employ dilute sulphuric acid for driving off the  $CO_2$  in the flask  $a_1$  and to leave out the tube No. 3, which omission will lessen the chance of error caused by any trace of water left in the copper sulphate.

## E.-GASES.

1. Burner Gases.—SO<sub>2</sub> is estimated by Reich's method (Lunge's Sulphuric Acid and Alkali, vol. i., p. 251; vol. iii., p. 352). The gas is aspirated through a solution of iodine, contained in a wide-necked 200c.c. bottle, and coloured blue by starch solution, till the colour has been just discharged. This bottle is connected with a larger bottle, converted into an aspirator by a tap near its bottom, or by a siphon fitted with a pinch-cock. Water is run from this into a graduated 250c.c. jar. All this time the iodine bottle is shaken up, and at the moment when the colour is discharged the tap of the aspirator is closed, and the volume of water in the jar is read oft. It is equal to that of the gas aspirated through when increased by that of the SO<sub>2</sub> absorbed. The absorbing bottle is charged with 10c.c. of a decinormal solution of iodine (127 grms. iodine per litre, preparation and examination in the Appendix), along with about 50c.c. of water, a little starch solution, and a little sodium bicarbonate. The above quantity of iodine is=0.032grm. SO<sub>2</sub>=11.14c.c. at 0° C. and a pressure of 760mm. The latter figure, multiplied by 100 and divided by 11c.c.+the volume of the water run out, yields the percentage of SO<sub>2</sub> in the gas by volume.

This calculation is saved by the following table, in which the 11c.c. are

already taken into account.

| c.c. Water in<br>Measuring Ja | Per cent. SO,<br>by Volume. |      |     | c.c. Water in<br>Measuring |     | er cent. SO, by Volume. |
|-------------------------------|-----------------------------|------|-----|----------------------------|-----|-------------------------|
| 82                            | <br>                        | 12.0 |     | 128                        |     | <br>8.0                 |
| 86                            | <br>                        | 11.5 |     | 138                        | ••• | <br>7.5                 |
| 90                            | <br>                        | 11.0 |     | 148                        |     | <br>7.0                 |
| 95                            | <br>                        | 10.5 |     | 160                        |     | <br>6.5                 |
| 100                           | <br>                        | 10.0 |     | 175                        |     | <br>6.0                 |
| 106                           | <br>                        | 9.5  | 100 | 192                        |     | <br>5.5                 |
| 113                           | <br>                        | 9.0  |     | 212                        |     | <br>5.0                 |
| 120                           | <br>                        | 8.5  |     | -                          |     | <br>_                   |

In this no notice is taken of temperature and barometer. If these are to be observed, the volume read off is reduced to 0° and 760mm, by the tables 20

and 21 or 21B, and then looked up in the above table.

Total Acids (SO<sub>2</sub>+SO<sub>3</sub>) are estimated in exactly the same way, and calculated as SO<sub>2</sub>, by employing, in lieu of iodine and starch, a decinormal caustic soda solution, coloured by phenolphthalein, and passing gas through it with constant agitation, until the liquid is just decolorized. A very suitable form of apparatus is that in which the inlet gas-tube is closed at the lower end, and is provided, below the level of the liquid, with many pinhole openings, which break up the current of gas into as many fine streams,

2. Chamber Gases.—These are analysed like No. 3.

8. Chamber Exit Gases as Oxygen.—Before estimating this the acids are removed from the gas by washing with a solution of potash or soda. Single samples can be taken at odd times during the day, but it is recommended to take an average sample for the whole day, by aspirating at least 10 or 20 litres of gas, and analysing a portion of this. The estimation of oxygen is best made by moist phosphorus in an Orsat apparatus (page 86) with two absorbing tubes, one of which is filled with potash solution for removing the acids, the other with small pieces of phosphorus. The manipulation is exactly as in testing fire gases, but it should be observed that the temperature must be at least 16°, better 18° C., otherwise the tube must be warmed a little.

4. Sulphur and Nitrogen Acids.—The different acid compounds of sulphur

are estimated together, as well as those of nitrogen, whatever degree of oxidation they may possess. The following prescriptions agree in the main with those published by the British Alkali Makers' Association in 1878. A continuous test over 24 hours is taken of the gases escaping from the exit pipes of the Gay-Lussac towers, aspirating at least one cubic foot per hour by means of any aspirator acting at a constant rate and recording the volume of gas=V by means of gauging the aspirator or by a gas meter. The volume V is reduced to 0° C. and 760mm pressure (=32° F. and 29.92 inches\*) by the tables 20 and 21 or 21s, and is now called V1. In order to allow comparisons, the number of cubic feet of chamber space per pound of sulphur burnt and passing into the chambers is recorded, excluding towers, but including tunnels, the amount of sulphur being taken by the weekly average, each firm to state the distance of the testing hole from the point at which the gases leave the Gay-Lussac towers. The absorption apparatus consists of four bottles or tubes, containing not less than 100c.c. of absorbing liquid, with a depth of at least 3in. in each bottle, the aperture of inlet tubes not to exceed 10 in. in diameter, and to be measured by a standard wire. The first three bottles contain each 100c c. of normal caustic soda solution (31 grms, per litre), the fourth 100c.c. distilled water. The caustic soda used must be free from nitrogen acids. The gases are tested (1) for total acidity, stated in grains of SO<sub>3</sub> per cubic foot of gas, elsewhere in grammes per cubic metre. (2) Sulphur acids. (3) Nitrogen acids, both stated in grains of S and N per cubic foot (or grammes per cubic metre). The analysis is carried out as follows: The contents of the four bottles are united, taking care not to unnecessarily augment the bulk of the liquids, and are divided into three equal parts, one of which is reserved for accidents, etc. The first part is titrated with normal sulphuric acid (49 grms. SO<sub>4</sub>H<sub>2</sub> per litre), to ascertain total acidity. The number of cubic centimetres of acid necessary for neutralization is called x. The second part of the liquid is gradually poured into a warm solution of potassium permanganate, strongly acidified with pure sulphuric acid. A small excess of permanganate must be present, and must be afterwards reduced by the addition of a few drops of sulphurous acid solution, until only a faint red tint is visible. Now all Nitrogen acids are present as HNO3, but no excess of SO2. The HNO3 is estimated by its action on F. SO4. 25c c. of a solution, containing per litre 100 grms. crystallized ferrous sulphate and 100 grms. pure sulphuric acid (the same solution which is used for estimating MnO<sub>2</sub>) are put into a flask, 20c.c. to 25c.c. pure concentrated sulphuric acid is added, the mixture is allowed to cool, and the other mixture, treated with permanganate, etc., is added. The flask is closed by a cork with glass tubes. A current of CO2 passes through and issues beneath the surface of some water, to prevent entrance of air. First, all the air is expelled in this way by means of an apparatus evolving CO2 with constant action; then the solutions are introduced, and the contents of the flask are heated to boiling, till the dark colour produced by the formation of NO has changed to a clear light yellow. This lasts a quarter of an hour to one hour, according to the quantity of NO3H present and that of the sulphuric acid added. The unoxidized ferrous sulphate is titrated by a seminormal permanganate solution (yielding 0 004 grm. oxygen per cubic centimetre—compare Appendix). The cubic centimetres used=y. Since the titre of the iron solution changes pretty quickly, it should be tested

<sup>\*</sup> The law prescribes the cubic feet to be measured at 60° F. and 30 inches, which necessitates the use of other tables or factors than those mentioned in the text, but the difference should be hardly perceptible, and certainly within the limits of experimental error.

daily by taking out 25c.c. with the same pipette as serves for the above-described operation, and ascertaining the amount of permanganate required for oxidizing it=z c.c. The magnitudes sought are found by the following equations:—

1. Total Acidity in grammes per cubic

$$SO_3 = \frac{0.120(100-x)}{V^1}$$

2. Sulphur in grammes per cubic metre=

$$S = \frac{0.008(600 - 6x - z + y)}{V^{1}}$$

3. Nitrogen in grammes per cubic metre =

$$N = \frac{0.007(z-y)}{V^{1}}$$

1. Total Acidity in grains per cubic

$$so_3 = \frac{1.852(100-x)}{V^1}$$

2. Sulphur in grains per cubic foot=

$$S = {0.12346 \cdot (600 - 6x - z + y) \atop V^{1}}$$

3. Nitrogen in grains per cubio foot =

$$N = \frac{0.10803(z-y)}{V^{1}}$$

The legal limit for total acidity is 4 grains of SO3 per cubic foot.\*

For the purposes of the Alkali Act, it is sufficient, in lieu of the just-described separate process, to estimate total acidity only by the test described on p. 97, employing decinormal soda solution and phenolphthalein.

5. Nitric Oxide (NO) can be present in the exit gases after passing through the absorbing bottles. If it is to be estimated, an absorption tube (Fig. 7); is interposed between the tubes of the last-described apparatus and the



FIG. 7.

aspirator. This tube contains 30c.c. of semi-normal permanganate and 1c.c. of sulphuric acid, specific gravity 1·25. The gas is passed through for 24 hours, and the tube emptied and washed out. Now add 50c.c ferrous sulphate solution, corresponding to 2z permanganate (compare last paragraph), and retitrate the decolorized liquid with permanganate. The quantity of the latter now used is called u. The NO has consumed (30+u-2z)c.c. permanganate, which is equal—

In grammes of nitrogen per cubic metre of the volume V1.

$$N = \frac{0.007(30 + u - 2z)}{3V^{1}}.$$

In grains of nitrogen per cubic foot.

$$N = \frac{0.10803(30 + u - 2z)}{3V^{1}}$$

\* Alkali Act, 1881, Sec. 8.

<sup>†</sup> This shape of bulb-tubes has been found to be far superior to any other form of absorption-tubes tried.

## F .- SULPHURIC ACID.

# 1. SPECIFIC GRAVITY OF SULPHURIC ACID AT 60° F. (Lunge & Isler.)

| Twaddell. | 100 parts      | by weight                      | Kilo per litre |                | ic Foot of Ac                              |                                             |
|-----------|----------------|--------------------------------|----------------|----------------|--------------------------------------------|---------------------------------------------|
| pg        | con            | tain                           | ILIIO per mire | Weigns         | contains                                   | yields                                      |
| 3≜        | so,            | H <sub>2</sub> SO <sub>4</sub> | H2SO4          | lb. avd.       | lb. avd.<br>H <sub>2</sub> SO <sub>4</sub> | lb. avd.<br>Na <sub>2</sub> SO <sub>4</sub> |
| H         |                | 112004                         |                |                | 112504                                     | 1402504                                     |
| 40        | 22.30          | 27.32                          | 0.328          | 74.82          | 20.44                                      | 29.62                                       |
| 41        | 22.82          | 27.95                          | 0.337          | 75.14          | 21.00                                      | 33.43                                       |
| 42        | 23.33          | 28.58                          | 0.346          | 75.45          | 21.57                                      | 31.25                                       |
| 43        | 23.84          | 29.21                          | 0.355          | 75.76          | 22.14                                      | 32.08                                       |
| 44        | 24.36          | 29.84                          | 0.364          | 76.07          | 22.71                                      | 32.90                                       |
| 45        | 24.88          | 30.48                          | 0.373          | 76.38          | 23.28                                      | 33.73                                       |
| 46        | 25.39          | 31.11                          | 0.382          | 76.69          | 23.85                                      | 34.55                                       |
| 47        | 25.88          | 31.70                          | 0.391          | 77.00          | 24.41                                      | 35.37                                       |
| 48        | 26.35          | 32.28                          | 0.400          | 77.32          | 24.97                                      | 36.18                                       |
| 49        | 26.83          | 32.86                          | 0.409          | 77.63          | 25.54                                      | 37.01                                       |
| 50        | 27.29          | 33.43                          | 0.418          | 77.94          | 26.10                                      | 37.82                                       |
| 51        | 27.76          | 34.00                          | 0.426          | 78.25          | 26.66                                      | 38.63                                       |
| 52        | 28.22          | 34.57                          | 0.435          | 78.56          | 27.23                                      | 39.45                                       |
| 53        | 28.69          | 35.14                          | 0.444          | 78.87          | 27.79                                      | 40.27                                       |
| 54        | 29.15          | 35.71                          | 0.454          | 79.19          | 28.35                                      | 41.08                                       |
| 55<br>56  | 29.62          | 36.29                          | 0.462          | 79.50          | 28.92                                      | 41.90                                       |
| 56<br>57  | 30.10          | 36.87                          | 0.472          | 79.81          | 29.48                                      | 42.72                                       |
| 58        | 30·57<br>31·04 | 37.45                          | 0.481          | 80.12          | 30.04                                      | 43.53                                       |
| 59        | 31.52          | 38·03<br>38·61                 | 0·490<br>0·500 | 80·43<br>80·74 | 30.60                                      | 44.34                                       |
| 60        | 31.99          | 39.19                          | 0.500          | 81.06          | 31·17 -<br>31·74                           | 45·16<br>45·99                              |
| 61        | 32.46          | 39.77                          | 0.510          | 81.37          | 32.32                                      | 46.83                                       |
| 62        | 32.94          | 40.35                          | 0.529          | 81.68          | 32.89                                      | 47.65                                       |
| 63        | 33.41          | 40.93                          | 0.538          | 81.99          | 33.46                                      | 48.48                                       |
| 64        | 33.88          | 41.50                          | 0.548          | 82.30          | 34.03                                      | 49.31                                       |
| 65        | 34.35          | 42.08                          | 0.557          | 82.62          | 34.60                                      | 50.13                                       |
| 66        | 34.80          | 42.66                          | 0.567          | 82.93          | 35.18                                      | 50.98                                       |
| 67        | 35.27          | 43.20                          | 0.577          | 83.24          | 35.79                                      | 51.86                                       |
| 68        | 35.71          | 43.74                          | 0.586          | 83.55          | 36.40                                      | 52.74                                       |
| 69        | 36.14          | 44.28                          | 0.596          | 83.86          | 37.01                                      | 53.63                                       |
| 70        | 36.58          | 44.82                          | 0.605          | 84.17          | 37.63                                      | 54.52                                       |
| 71        | 37.02          | 45.35                          | 0.614          | 84.49          | 38.24                                      | 55.41                                       |
| 72        | 37.45          | 45.88                          | 0.624          | 84.80          | 38.85                                      | 56.29                                       |
| 73<br>74  | 37.89          | 46.41                          | 0.633          | 85.11          | 39.46                                      | 57.18                                       |
| 75        | 38·32<br>38·75 | 46·94<br>47·47                 | 0.643          | 85.42          | 40.07                                      | 58.05                                       |
| 76        | 39.18          | 48.00                          | 0.653<br>0.662 | 85.73          | 40.68                                      | 58.94                                       |
| 77        | 39.62          | 48.00                          | 0.662          | 86·04<br>86·36 | 41·29<br>41·91                             | 59·83<br>60·72                              |
| 78        | 40.05          | 49.06                          | 0.682          | 86.67          | 42.52                                      | 61.61                                       |
| 79        | 40.48          | 49.59                          | 0.692          | 86.98          | 43.13                                      | 62.50                                       |
| 80        | 40.91          | 50.11                          | 0.702          | 87.29          | 43.74                                      | 63.38                                       |
| 00        | 1001           | 30 11                          | 0.02           | 01 20          | TO 1 T                                     | 00 00                                       |
|           |                |                                |                |                |                                            |                                             |

101

## 1. SPECIFIC GRAVITY OF SULPHURIC ACID AT 60° F .- Continued.

| lell.     |                 | by weight                      | Kilo per litre                 |                 |                                | Foot of Acid 60° F.  contains   yields   lb. avd.   lb. avd. |  |  |  |
|-----------|-----------------|--------------------------------|--------------------------------|-----------------|--------------------------------|--------------------------------------------------------------|--|--|--|
| Twaddell, |                 | tain                           | H <sub>2</sub> SO <sub>4</sub> | weighs lb. avd. | lb. avd.                       | lb. avd:                                                     |  |  |  |
| H         | SO <sub>3</sub> | H <sub>2</sub> SO <sub>4</sub> |                                |                 | H <sub>2</sub> SO <sub>4</sub> | Na <sub>2</sub> SO <sub>4</sub>                              |  |  |  |
| 81        | 41.33           | 50.63                          | 0.711                          | 87.60           | 44.36                          | 64.27                                                        |  |  |  |
| 82        | 41.76           | 51.15                          | 0.721                          | 87.52           | 44.97                          | 65.13                                                        |  |  |  |
| 83        | 42.17           | 51.66                          | 0.730                          | 88.23           | 45.58                          | 66.02                                                        |  |  |  |
| 84        | 42.57           | 52.15                          | 0.740                          | 88.54           | 46.18                          | 66.90                                                        |  |  |  |
| 85        | 42.96           | 52.63                          | 0.750                          | 88.85           | 46.78                          | 67.78                                                        |  |  |  |
| 86        | 43.36           | 53.11                          | 0.759                          | 89.16           | 47.38                          | 68.65                                                        |  |  |  |
| 87        | 43.75           | 53.59                          | 0.769                          | 89.47           | 47.99                          | 69.53                                                        |  |  |  |
| 88        | 44.14           | 54.07                          | 0.779                          | 89.79           | 48.59                          | 70.41                                                        |  |  |  |
| 89        | 44.53           | 54.55                          | 0.789                          | 90.10           | 49.19                          | 71.28                                                        |  |  |  |
| 90        | 44.92           | 55.03                          | 0.798                          | 90.41           | 4979                           | 72.15                                                        |  |  |  |
| 91        | 45.31           | 55.50                          | 0.808                          | 90.72           | 50.39                          | 73.01                                                        |  |  |  |
| 92        | 45.69           | 55.97                          | 0.817                          | 91.03           | 50.99                          | 73.88                                                        |  |  |  |
| 93        | 46.07           | 56.43                          | 0.827                          | 91.35           | 51.59                          | 74.76                                                        |  |  |  |
| 94        | 46.45           | 56.90                          | 0.837                          | 91.66           | 52.19                          | 75.62                                                        |  |  |  |
| 95        | 46.83           | 57.37                          | 0.846                          | 91.97           | 52.79                          | 76.49                                                        |  |  |  |
| 96        | 47.21           | 57.83                          | 0.856                          | 92.28           | 53.39                          | 77.36                                                        |  |  |  |
| 97        | 47.57           | 58.28                          | 0.866                          | 92.59           | 54.00                          | 78.25                                                        |  |  |  |
| 98        | 47.95           | 58.74                          | 0.876                          | 92.90           | 54.60                          | 79.12                                                        |  |  |  |
| 99        | 48:34           | 59.22                          | 0.886                          | 93.22           | 55.20                          | 79.98                                                        |  |  |  |
| 100       | 48.73           | 59.70                          | 0.896                          | 93.53           | 55.84                          | 80.92                                                        |  |  |  |
| 101       | 49.12           | 60-18                          | 0.906                          | 93.84           | 56.47                          | 81.82                                                        |  |  |  |
| 102       | 49.51           | 60.65                          | 0.916                          | 94.15           | 57.10                          | 82.74                                                        |  |  |  |
| 103       | 49.89           | 61.12                          | 0.926                          | 94.46           | 57.73                          | 83.65                                                        |  |  |  |
| 104       | 50.28           | 61.59                          | 0.936                          | 94.77           | 58.36                          | 84.56                                                        |  |  |  |
| 105       | 50.66           | 62.06                          | 0.946                          | 95.09           | 59.00                          | 85.50                                                        |  |  |  |
| 106       | 51.04           | 62.53                          | 0.957                          | 95.40           | 59.62                          | 86.39                                                        |  |  |  |
| 107       | 51.43           | 63.00                          | 0.967                          | 95.71           | 60.26                          | 87.32                                                        |  |  |  |
| 108       | 51.78           | 63.43                          | 0.977                          | 96.02           | 60.89                          | 88.23                                                        |  |  |  |
| 109       | 52.12           | 63.85                          | 0.987                          | 96.33           | 61.52                          | 89.15                                                        |  |  |  |
| 110       | 52.46           | 64.26                          | 0.996                          | 96.65           | 62.15                          | 90.06                                                        |  |  |  |
| 111       | 52.79           | 64.67                          | 1.006                          | 96.96           | 62.78                          | 90.97                                                        |  |  |  |
| 112       | 53.12           | 65.08                          | 1.015                          | 97.27           | 63.42                          | 91.90                                                        |  |  |  |
| 113       | 53.46           | 65.49                          | 1.025                          | 97.58           | 64.05                          | 92.81                                                        |  |  |  |
| 114       | 53.80           | 65.90                          | 1.035                          | 97.89           | 64.68                          | 93.72                                                        |  |  |  |
| 115       | 54.13           | 66.30                          | 1.044                          | 98.20           | 65.31                          | 94.64                                                        |  |  |  |
| 116       | 54.46           | 66.71                          | 1.054                          | 98.52           | 65.94                          | 95.54                                                        |  |  |  |
| 117       | 54.80           | 67.13                          | 1.064                          | 98.83           | 66.58                          | 96.48                                                        |  |  |  |
| 118       | 55.18           | 67.59                          | 1.075                          | 99.14           | 67.21                          | 97.40                                                        |  |  |  |
| 119       | 55.55           | 68.05                          | 1.085                          | 99.45           | 67.84                          | 98.30                                                        |  |  |  |
| 120       | 55.93           | 68.51                          | 1.096                          | 99.76           | 68.47                          | 99.22                                                        |  |  |  |
| 121       | 56.30 68.97     |                                | 1.107                          | 100.07          | 69.10                          | 100.15                                                       |  |  |  |
| 122       | 56.68 69.43     |                                | 1.118                          | 100.39          | 69.74                          | 101.05                                                       |  |  |  |
| 123       |                 |                                | 1.128                          | 100.70          | 70.37                          | 101.95                                                       |  |  |  |
| 124       | 57.40           | 70.32                          | 1.139                          | 101.01          | 71.07                          | 102.96                                                       |  |  |  |
| 125       | 57.75           | 70.74                          | 1.150                          | 101.32          | 71.77                          | 104.00                                                       |  |  |  |

102

## 1. SPECIFIC GRAVITY OF SULPHURIC ACID AT 60° F.—Continued.

| alı.        | 100 parts | by weight                      |                                | 1 Cubi         | c Foot of Aci                              | d 60° F.                                    |
|-------------|-----------|--------------------------------|--------------------------------|----------------|--------------------------------------------|---------------------------------------------|
| dde         | con       | itain                          | Kilo per litre                 | weighs         | contains                                   | yields                                      |
| Twaddell.   | 80,       | H <sub>2</sub> SO <sub>4</sub> | H <sub>2</sub> SO <sub>4</sub> | lb. avd.       | lb. avd.<br>H <sub>2</sub> SO <sub>4</sub> | lb. avd.<br>Na <sub>2</sub> SO <sub>4</sub> |
|             |           |                                | 1.100                          | 101.01         |                                            |                                             |
| 126         | 58.09     | 71.16                          | 1.160                          | 101.64         | 72.46                                      | 105.00                                      |
| 127         | 58.43     | 71.57                          | 1.170                          | 101.95         | 73.16                                      | 106.00                                      |
| 128         | 58.77     | 71.99                          | 1.181                          | 102.26         | 73.85                                      | 107.00                                      |
| 129         | 59.10     | 72.40                          | 1.192                          | 102.57         | 74.55                                      | 108.00                                      |
| 130         | 59.45     | 72.87                          | 1.202                          | 102.88         | 75.25                                      | 109.05                                      |
| 131         | 59.78     | 73.23                          | 1.212                          | 103.19         | 75.94                                      | 110.04                                      |
| 132         | 60.11     | 73.64                          | 1.222                          | 103.50         | 76.64                                      | 111.05                                      |
| 133         | 60.46     | 74.07                          | 1.233                          | 103.82         | 77.33                                      | 112.05                                      |
| 134         | 60.82     | 74.51                          | 1.244                          | 104.13         | 78.03                                      | 113.05                                      |
| 135         | 61.20     | 74.97                          | 1.256                          | 104.44         | 78.73                                      | 114.10                                      |
| 136         | 61.57     | 75.42                          | 1.267                          | 104.75         | 79.42                                      | 115.10                                      |
| 137         | 61.93     | 75.86                          | 1.278                          | 105.07         | 80.12                                      | 116.10                                      |
| 138         | 62.29     | 76.30                          | 1.289                          | 105.38         | 80.81                                      | 117.10                                      |
| 139         | 62.64     | 76.73                          | 1.301                          | 105.69         | 81.51                                      | 118.10                                      |
| 140         | 63.00     | 77.17                          | 1.312                          | 106.00         | 82.21                                      | 119.15                                      |
| 141         | 63.35     | 77.60                          | 1.323                          | 106.31         | 82.90                                      | 120.15                                      |
| 142         | 63.70     | 78.04                          | 1.334                          | 106.62         | 83.60                                      | 121.15                                      |
| 143         | 64.07     | 78.48                          | 1.346                          | 106.94         | 84.29                                      | 122.15                                      |
| 144         | 64.43     | 78.92                          | 1.357                          | 107.25         | 84.99                                      | 123.15                                      |
| 145         | 64.78     | 79.36                          | 1.369                          | 107.56         | 85.69                                      | 124.20                                      |
| 146         | 65.14     | 79.80                          | 1.381                          | 107.87         | 86.38                                      | 125.20                                      |
| 147         | 65.50     | 80.24                          | 1.392                          | 108.18         | 87.08                                      | 126.20                                      |
| 148         | 65.86     | 80.68                          | 1.404                          | 108.49         | 87.77                                      | 127.20                                      |
| 149         | 66.22     | 81.12                          | 1.416                          | 108.80         | 88.47                                      | 128.20                                      |
| <b>1</b> 50 | 66.58     | 81.56                          | 1.427                          | 109.12         | 89.17                                      | 129.20                                      |
| <b>1</b> 51 | 66.94     | 82.00                          | 1.439                          | 109.43         | 89.86                                      | 130.20                                      |
| 152         | 67:30     | 82.44                          | 1.451                          | 109.74         | 90.56                                      | 131.20                                      |
| 153         | 67.65     | 82.88                          | 1.463                          | 110.05         | 91.25                                      | 132.25                                      |
| 154         | 68.02     | 83.32                          | 1.475                          | 110.36         | 91.95                                      | 133.25                                      |
| 155         | 68.49     | 83.90                          | 1.489                          | <b>1</b> 10.68 | 92.88                                      | 134.60                                      |
| 156         | 68.98     | 84.50                          | 1.504                          | 110.99         | 93.81                                      | 135.90                                      |
| 157         | 69.47     | 85.10                          | 1.519                          | 111.30         | 94.74                                      | 137.30                                      |
| 158         | 69.96     | 85.70                          | 1.534                          | 111.61         | 95.67                                      | 138.50                                      |
| <b>1</b> 59 | 70.45     | 86.30                          | 1.549                          | <b>111</b> ·92 | 96.60                                      | 140.00                                      |
| 160         | 70.94     | 86.90                          | 1.564                          | 112.23         | 97.52                                      | 141.30                                      |
|             |           |                                |                                |                |                                            |                                             |

# 2. SPECIFIC GRAVITY OF HIGHLY CONCENTRATED SULPHURIC ACID AT 60° F. (Lunge & Isler.)

| 2                            | Specific | 100 Parts by V | Veight con ain                   | Kilo per litre                   |
|------------------------------|----------|----------------|----------------------------------|----------------------------------|
| Twaddell.                    | Gravity. | 803            | H <sub>2</sub> SO <sub>4</sub> . | H <sub>2</sub> SO <sub>4</sub> . |
| 160                          | 1.800    | 70.94          | 86.90                            | 1.564                            |
| 161                          | 1.805    | 71.50          | 87.60                            | 1.581                            |
| 162                          | 1.810    | 72.08          | 88:30                            | 1.598                            |
| 163                          | 1.815    | 72.69          | 89.05                            | 1.621                            |
| 164                          | 1.820    | 73.51          | 90.05                            | 1.639                            |
|                              | 1.821    | 73.63          | 90.20                            | 1.643                            |
|                              | 1.822    | 73.80          | 90.40                            | 1.647                            |
|                              | 1.823    | 73.96          | 90.60                            | 1.651                            |
|                              | 1.824    | 74.12          | 90.80                            | 1.656                            |
| 165                          | 1.825    | 74.29          | 91.00                            | 1.661                            |
| 100                          | 1.826    | 74.49          | 91.25                            | 1.666                            |
|                              | 1.827    | 74.69          | 91.50                            | 1.671                            |
|                              | 1.828    | 74.86          | 91.70                            | 1.676                            |
|                              | 1.829    | 75.03          | 91.90                            | 1.681                            |
| 166                          | 1.830    | 75.19          | 92.10                            | 1.685                            |
| •••                          | 1.831    | 75.35          | 92:30                            | 1.690                            |
|                              | 1.832    | 75.53          | 92.52                            | 1.695                            |
|                              | 1.833    | 75.72          | 92.75                            | 1.700                            |
|                              | 1.834    | 75.96          | 93.05                            | 1.706                            |
| 167                          | 1.835    | 76.27          | 93.43                            | 1.713                            |
|                              | 1.836    | 76.57          | 93.80                            | 1.722                            |
|                              | 1.837    | 76.90          | 94.20                            | 1.730                            |
|                              | 1.838    | 77.23          | 94.60                            | 1.739                            |
|                              | 1.839    | 77:55          | 95.00                            | 1.748                            |
| 168                          | 1.840    | 78.04          | 95.60                            | 1.759                            |
| •••                          | 1.8405   | 78:33          | 95.95                            | 1.765                            |
|                              | 1.8410   | 79.19          | 97.00                            | 1.786                            |
|                              | 1.8415   | 79.76          | 97.70                            | 1.799                            |
| A POST OF THE REAL PROPERTY. | 1.8410   | 80.16          | 98.20                            | 1.808                            |
|                              | 1.8405   | 80.57          | 98.70                            | 1.816                            |
|                              | 1.8400   | 80.98          | 99.20                            | 1.825                            |
|                              | 1.8395   | 81.18          | 99.45                            | 1.830                            |
| •••                          | 1.8390   | 81.39          | 99.70                            | 1.834                            |
|                              | 1.8385   | 81.59          | 99.95                            | 1.838                            |

3.—SPECIFIC GRAVITIES AND PERCENTAGE OF FUMING (NORDHAUSEN) OIL OF VITRIOL AT DIFFERENT TEM-PERATURES.

|                |        | Density at |          |                | SO <sub>3</sub> |
|----------------|--------|------------|----------|----------------|-----------------|
| 15°            | 20°    | 25°        | 30°      | 35°C.          | Per Cent        |
| 1.8417         | 1.8371 | 1.8323     | 1.8287   | 1.8240         | 76:67           |
| 1.8427         | 1.8378 | 1.8333     | 1.8295   | 1.8249         | 77.49           |
| 1.8428         | 1.8388 | 1.8351     | - 1.8302 | 1.8255         | 78.3            |
| 1.8437         | 1.8390 | 1.8346     | 1.8300   | 1.8257         | 79.04           |
| 1.8427         | 1.8386 | 1.8351     | 1.8297   | 1.8250         | 79.99           |
| 1.8420         | 1.8372 | 1.8326     | 1.8281   | 1.8234         | 80.46           |
| 1.8398         | 1.8350 | 1.8305     | 1.8263   | 1.8218         | 80.94           |
| 1.8446         | 1.8400 | 1.8353     | 1.8307   | 1.8262         | 81.37           |
| 1.8509         | 1.8466 | 1.8418     | 1.8371   | 1.8324         | 81.91           |
| 1.8571         | 1.8522 | 1.8476     | 1.8432   | 1.8385         | 82.17           |
| 1.8697         | 1.8617 | 1.8595     | 1.8545   | 1.8498         | 82.94           |
| 1.8790         | 1.8742 | 1.8687     | 1.8640   | 1.8592         | 83.23           |
| 1.8875         | 1.8823 | 1.8767     | 1.8713   | <b>1</b> .8661 | 83.84           |
| 1.8942         | 1.8888 | 1.8833     | 1.8775   | 1.8722         | 84.12           |
| 1.8990         | 1.8940 | 1.8890     | 1.8830   | 1.8772         | 84.33           |
| 1.9034         | 1.8984 | 1.8930     | 1.8874   | 1.8820         | 84.67           |
| 1.9072         | 1.9021 | 1.8950     | 1.8900   | 1.8845         | 84.82           |
| 1.9095         | 1.9042 | 1.8986     | 1.8932   | 1.8866         | 84.99           |
| 1.9121         | 1.9053 | 1.8993     | 1.8948   | 1.8892         | 85.14           |
| 1.9250         | 1.9193 | 1.9135     | 1.9082   | 1.9023         | 85.54           |
| 1.9290         | 1.9236 | 1.9183     | 1.9129   | 1.9073         | 85.68           |
| <b>1</b> ·9368 | 1.9310 | 1.9250     | 1.9187   | 1.9122         | 85.88           |
| 1.9447         | 1.9392 | 1.9334     | 1.9279   | 1.9222         | 86.51           |
| 1.9520         | 1.9465 | 1.9402     | 1.9338   | 1.9278         | 86.72           |
| 1.9584         | 1.9528 | 1.9466     | 1.9406   | 1.9340         | 87.08           |
| 1.9632         | 1.9573 | 1.9518     | 1.9457   | 1.9398         | 87.4            |
| cryst.         | cryst. | 1.9740     | 1.9666   | 1.9740         | 88.0            |

The above table is only intended for controlling the works, but not for commercial purposes, because the specific gravity is anything but a certain guide for the percentage of Nordhausen acid, and altogether fails as such for the strengths just below the monohydrate. The table was not made for chemically pure acids, but for commercial acid.

4.—TABLE FOR REDUCING THE SPECIFIC GRAVITIES OF SULPHURIC ACID OF VARIOUS STRENGTHS TO ANY OTHER TEMPERATURE (DEGREES C.).

| 0°    | 5°    | 10°   | 15°   | 20°   | 25°   | 30°   | 35°   | 40°   | 45°   | 50°   |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 1.857 | 1·852 | 1.846 | 1.840 | 1.835 | 1.830 | 1.825 | 1:821 | 1:816 | 1.811 | 1.806 |
| 1.847 | 1·841 | 1.836 | 1.830 | 1.825 | 1.820 | 1.815 | 1:810 | 1:805 | 1.800 | 1.795 |
| 1.837 | 1·831 | 1.825 | 1.820 | 1.815 | 1.809 | 1.804 | 1:799 | 1:794 | 1.789 | 1.784 |
| 1.827 | 1·821 | 1.815 | 1.810 | 1.805 | 1.799 | 1.793 | 1:788 | 1:783 | 1.778 | 1.773 |
| 1.817 | 1·811 | 1.805 | 1.800 | 1.794 | 1.788 | 1.783 | 1:777 | 1:772 | 1.766 | 1.761 |
| 1.807 | 1:801 | 1.796 | 1.790 | 1.784 | 1.778 | 1.773 | 1.767 | 1.762 | 1:756 | 1.751 |
| 1.797 | 1:791 | 1.786 | 1.780 | 1.774 | 1.768 | 1.763 | 1.757 | 1.752 | 1:746 | 1.741 |
| 1.786 | 1:781 | 1.776 | 1.770 | 1.765 | 1.759 | 1.754 | 1.748 | 1.743 | 1:737 | 1.732 |
| 1.776 | 1:770 | 1.765 | 1.760 | 1.755 | 1.749 | 1.744 | 1.738 | 1.733 | 1:728 | 1.723 |
| 1.765 | 1:760 | 1.755 | 1.750 | 1.745 | 1.740 | 1.735 | 1.730 | 1.725 | 1:720 | 1.715 |
| 1:754 | 1:750 | 1.745 | 1:740 | 1.735 | 1:730 | 1:726 | 1·721 | 1.716 | 1.711 | 1.706 |
| 1:744 | 1:740 | 1.785 | 1:730 | 1.725 | 1:720 | 1:716 | 1·711 | 1.706 | 1.701 | 1.696 |
| 1:734 | 1:730 | 1.725 | 1:720 | 1.715 | 1:710 | 1:706 | 1·701 | 1.696 | 1.691 | 1.686 |
| 1:724 | 1:720 | 1.715 | 1:710 | 1.705 | 1:700 | 1:696 | 1·691 | 1.686 | 1.681 | 1.676 |
| 1:714 | 1:710 | 1.705 | 1:700 | 1.695 | 1:690 | 1:686 | 1·681 | 1.676 | 1.671 | 1.667 |
| 1.704 | 1.700 | 1.695 | 1.690 | 1.685 | 1.680 | 1.676 | 1.671 | 1.666 | 1.661 | 1.656 |
| 1.694 | 1.690 | 1.685 | 1.680 | 1.675 | 1.670 | 1.666 | 1.661 | 1.656 | 1.651 | 1.646 |
| 1.684 | 1.680 | 1.675 | 1.670 | 1.665 | 1.660 | 1.656 | 1.651 | 1.646 | 1.641 | 1.637 |
| 1.674 | 1.670 | 1.665 | 1.660 | 1.655 | 1.650 | 1.646 | 1.641 | 1.636 | 1.632 | 1.628 |
| 1.664 | 1.660 | 1.655 | 1.650 | 1.645 | 1.640 | 1.636 | 1.632 | 1.627 | 1.622 | 1.618 |
| 1.654 | 1.650 | 1.645 | 1.640 | 1.635 | 1.631 | 1.626 | 1.622 | 1.617 | 1.612 | 1.608 |
| 1.644 | 1.640 | 1.635 | 1.630 | 1.625 | 1.621 | 1.616 | 1.612 | 1.607 | 1.602 | 1.598 |
| 1.634 | 1.630 | 1.625 | 1.620 | 1.615 | 1.611 | 1.606 | 1.602 | 1.597 | 1.592 | 1.588 |
| 1.624 | 1.620 | 1.615 | 1.610 | 1.605 | 1.601 | 1.596 | 1.592 | 1.587 | 1.582 | 1.578 |
| 1.614 | 1.610 | 1.605 | 1.600 | 1.595 | 1.591 | 1.586 | 1.582 | 1.577 | 1.572 | 1.568 |
| 1.604 | 1.600 | 1.595 | 1.590 | 1.585 | 1.581 | 1.576 | 1·572 | 1.567 | 1.562 | 1:558 |
| 1.594 | 1.589 | 1.584 | 1.580 | 1.575 | 1.570 | 1.566 | 1·562 | 1.558 | 1.553 | 1:548 |
| 1.584 | 1.579 | 1.574 | 1.570 | 1.566 | 1.561 | 1.556 | 1·552 | 1.548 | 1.543 | 1:539 |
| 1.574 | 1.569 | 1.564 | 1.560 | 1.556 | 1.552 | 1.547 | 1·543 | 1.539 | 1.534 | 1:530 |
| 1.563 | 1.558 | 1.554 | 1.550 | 1.546 | 1.542 | 1.538 | 1·534 | 1.530 | 1.525 | 1:521 |
| 1.552 | 1.548 | 1:544 | 1.540 | 1:536 | 1.532 | 1·528 | 1.524 | 1.520 | 1:516 | 1.512 |
| 1.542 | 1.538 | 1:534 | 1.530 | 1:526 | 1.522 | 1·518 | 1.514 | 1.510 | 1:506 | 1.502 |
| 1.532 | 1.528 | 1:524 | 1.520 | 1:516 | 1.512 | 1·508 | 1.504 | 1.500 | 1:497 | 1.492 |
| 1.522 | 1.518 | 1:514 | 1.510 | 1:506 | 1.502 | 1·498 | 1.494 | 1.490 | 1:486 | 1.482 |
| 1.512 | 1.508 | 1:504 | 1.500 | 1:496 | 1.492 | 1·488 | 1.484 | 1.480 | 1:476 | 1.472 |
| 1:502 | 1:498 | 1:494 | 1:490 | 1:486 | 1·482 | 1·478 | 1·474 | 1:470 | 1·466 | 1.462 |
| 1:492 | 1:488 | 1:484 | 1:480 | 1:476 | 1·472 | 1·468 | 1·465 | 1:461 | 1·457 | 1.453 |
| 1:482 | 1:478 | 1:474 | 1:470 | 1:466 | 1·462 | 1·458 | 1·455 | 1:451 | 1·447 | 1.443 |
| 1:472 | 1:468 | 1:464 | 1:460 | 1:456 | 1·452 | 1·448 | 1·445 | 1:442 | 1·438 | 1.434 |
| 1:462 | 1:458 | 1:454 | 1:450 | 1:446 | 1·442 | 1·438 | 1·435 | 1:432 | 1·429 | 1.425 |
| 1:452 | 1:448 | 1:444 | 1:440 | 1·436 | 1·432 | 1·429 | 1·426 | 1·423 | 1:420 | 1.416 |
| 1:442 | 1:438 | 1:434 | 1:430 | 1·426 | 1·422 | 1·419 | 1·416 | 1·413 | 1:409 | 1.405 |
| 1:432 | 1:428 | 1:424 | 1:420 | 1·416 | 1·413 | 1·410 | 1·406 | 1·402 | 1:398 | 1.394 |
| 1:422 | 1:418 | 1:414 | 1:410 | 1·406 | 1·403 | 1·399 | 1·396 | 1·392 | 1:388 | 1.384 |
| 1:412 | 1:408 | 1:404 | 1:400 | 1·396 | 1·393 | 1·389 | 1·386 | 1·382 | 1:378 | 1.374 |
| 1:402 | 1:398 | 1:394 | 1·390 | 1:386 | 1·383 | 1·379 | 1·372 | 1·372 | 1:368 | 1:364 |
| 1:392 | 1:388 | 1:384 | 1·380 | 1:376 | 1·373 | 1·370 | 1·362 | 1·362 | 1:359 | 1:355 |
| 1:382 | 1:378 | 1:374 | 1·370 | 1:366 | 1·363 | 1·360 | 1·352 | 1·352 | 1:349 | 1:346 |
| 1:372 | 1:368 | 1:364 | 1·360 | 1:356 | 1·353 | 1·350 | 1·344 | 1·344 | 1:340 | 1:336 |
| 1:362 | 1:358 | 1:354 | 1·350 | 1:346 | 1·343 | 1·340 | 1·334 | 1·334 | 1:330 | 1:326 |

4.—TABLE FOR REDUCING THE SPECIFIC GRAVITIES OF SUL-PHURIC ACID OF VARIOUS STRENGTHS TO ANY OTHER TEMPERATURE (DEGREES C.).—Continued.

|                | EMI EI         | ATURE          | (DEGI          | LIES C. | Conti | inuea. |       |       |       |
|----------------|----------------|----------------|----------------|---------|-------|--------|-------|-------|-------|
| 55°            | 60°            | 65°            | 70°            | 75°     | 80°   | 85°    | 90°   | 95°   | 100°  |
| 1.801          | 1.796          | 1·792          | 1.787          | 1.782   | 1.778 | 1:774  | 1:770 | 1.766 | 1:762 |
| 1.790          | 1.787          | 1·781          | 1.776          | 1.770   | 1.766 | 1:762  | 1:757 | 1.752 | 1:748 |
| 1.779          | 1.774          | 1·769          | 1.764          | 1.759   | 1.754 | 1:749  | 1:744 | 1.739 | 1:734 |
| 1.767          | 1.762          | 1·757          | 1.752          | 1.747   | 1.741 | 1:736  | 1:731 | 1.726 | 1:721 |
| 1.755          | 1.750          | 1·744          | 1.739          | 1.734   | 1.729 | 1:724  | 1:719 | 1.714 | 1:708 |
| 1.746          | 1·741          | 1.735          | 1.730          | 1.725   | 1.720 | 1.715  | 1.710 | 1.705 | 1.700 |
| 1.736          | 1·731          | 1.726          | 1.721          | 1.716   | 1.712 | 1.707  | 1.702 | 1.697 | 1.692 |
| 1.727          | 1·722          | 1.717          | 1.712          | 1.707   | 1.702 | 1.697  | 1.693 | 1.688 | 1.683 |
| 1.718          | 1·713          | 1.708          | 1.703          | 1.698   | 1.693 | 1.688  | 1.684 | 1.679 | 1.674 |
| 1.710          | 1·705          | 1.700          | 1.695          | 1.699   | 1.685 | 1.681  | 1.676 | 1.671 | 1.667 |
| 1.702          | 1.697          | 1.692          | 1.688          | 1.683   | 1.678 | 1.674  | 1.669 | 1.664 | 1.660 |
| 1.692          | 1.687          | 1.683          | 1.678          | 1.673   | 1.668 | 1.664  | 1.659 | 1.654 | 1.650 |
| 1.682          | 1.677          | 1.673          | 1.668          | 1.663   | 1.659 | 1.654  | 1.639 | 1.644 | 1.640 |
| 1.672          | 1.667          | 1.663          | 1.658          | 1.653   | 1.649 | 1.644  | 1.639 | 1.635 | 1.630 |
| 1.662          | 1.657          | 1.653          | 1.648          | 1.644   | 1.639 | 1.634  | 1.630 | 1.625 | 1.620 |
| 1.652          | 1.647          | 1.642          | 1.638          | 1.634   | 1.630 | 1.625  | 1.620 | 1.615 | 1.610 |
| 1.642          | 1.637          | 1.632          | 1.628          | 1.624   | 1.620 | 1.615  | 1.611 | 1.606 | 1.602 |
| 1.633          | 1.628          | 1.623          | 1.619          | 1.615   | 1.611 | 1.606  | 1.602 | 1.597 | 1.593 |
| 1.623          | 1.619          | 1.614          | 1.610          | 1.606   | 1.602 | 1.597  | 1.593 | 1.588 | 1.584 |
| 1.614          | 1.610          | 1.605          | 1.600          | 1.596   | 1.592 | 1.588  | 1.583 | 1.579 | 1.575 |
| 1.604          | 1.600          | 1.595          | 1·591          | 1.586   | 1.582 | 1.578  | 1.574 | 1.570 | 1.565 |
| 1.594          | 1.590          | 1.585          | 1·581          | 1.577   | 1.573 | 1.569  | 1.565 | 1.561 | 1.556 |
| 1.584          | 1.580          | 1.576          | 1·572          | 1.568   | 1.564 | 1.560  | 1.556 | 1.552 | 1.547 |
| 1.574          | 1.570          | 1.566          | 1·562          | 1.558   | 1.554 | 1.550  | 1.546 | 1.542 | 1.537 |
| 1.564          | 1.560          | 1.556          | 1·552          | 1.548   | 1.544 | 1.540  | 1.536 | 1.531 | 1.527 |
| 1:554          | 1.550          | 1.545          | 1.541          | 1.537   | 1·533 | 1·529  | 1·525 | 1.521 | 1·516 |
| 1:544          | 1.539          | 1.535          | 1.531          | 1.527   | 1·523 | 1·519  | 1·515 | 1.510 | 1·503 |
| 1:535          | 1.531          | 1.526          | 1.522          | 1.518   | 1·513 | 1·509  | 1·505 | 1.501 | 1·496 |
| 1:526          | 1.522          | 1.517          | 1.513          | 1.509   | 1·504 | 1·500  | 1·496 | 1.492 | 1·487 |
| 1:517          | 1.513          | 1.509          | 1.504          | 1.500   | 1·495 | 1·491  | 1·487 | 1.483 | 1·478 |
| 1.508          | 1.504          | 1.500          | 1·495          | 1·491   | 1·486 | 1·482  | 1·478 | 1·473 | 1·469 |
| 1.498          | 1.494          | 1.490          | 1·485          | 1·481   | 1·476 | 1·472  | 1·468 | 1·463 | 1·459 |
| 1.488          | 1.484          | 1.480          | 1·476          | 1·472   | 1·467 | 1·462  | 1·458 | 1·453 | 1·449 |
| 1.478          | 1.474          | 1.470          | 1·466          | 1·462   | 1·457 | 1·452  | 1·448 | 1·443 | 1·438 |
| 1.468          | 1.464          | 1.460          | 1·455          | 1·451   | 1·446 | 1·442  | 1·438 | 1·433 | 1·428 |
| 1·458          | 1 454          | 1:450          | 1·442          | 1·441   | 1:437 | 1:433  | 1·429 | 1:424 | 1:419 |
| 1·449          | 1 445          | 1:441          | 1·436          | 1·432   | 1:428 | 1:424  | 1·419 | 1:414 | 1:410 |
| 1·439          | 1 435          | 1:431          | 1·427          | 1·423   | 1:418 | 1:414  | 1·409 | 1:405 | 1:401 |
| 1·430          | 1 426          | 1:422          | 1·418          | 1·413   | 1:409 | 1:405  | 1·400 | 1:396 | 1:392 |
| 1·421          | 1 417          | 1:413          | 1·409          | 1·404   | 1:400 | 1:396  | 1·391 | 1:387 | 1:383 |
| 1·412          | 1·407          | 1·403          | 1·399          | 1·395   | 1:391 | 1·386  | 1·382 | 1·378 | 1·374 |
| 1·401          | 1·397          | 1·393          | 1·389          | 1·385   | 1:380 | 1·376  | 1·372 | 1·368 | 1·364 |
| 1·390          | 1·386          | 1·382          | 1·378          | 1·374   | 1:370 | 1·366  | 1·362 | 1·358 | 1·353 |
| 1·380          | 1·376          | 1·372          | 1·368          | 1·364   | 1:360 | 1·356  | 1·352 | 1·348 | 1·343 |
| 1·370          | 1·366          | 1·362          | 1·358          | 1·354   | 1:350 | 1·346  | 1·342 | 1·338 | 1·333 |
| 1·360<br>1·351 | 1·356<br>1·346 | 1·352<br>1·342 | 1·348<br>1·338 | =       | _     | =      | =     | =     | =     |
| 1·342<br>1·332 | 1·337<br>1·327 | 1·334<br>1·323 | 1·329<br>1·319 |         |       |        | _     | _     | _     |
| 1.322          | 1.317          | 1.314          | 1.310          | _       | _     | -      | _     | -     | -     |

4.—TABLE FOR REDUCING THE SPECIFIC GRAVITIES OF SULPHURIC ACID OF VARIOUS STRENGTHS TO ANY OTHER TEMPERATURE (DEGREES C.).—Continued.

| I LAMI | LEIVA | TUTUE | (DEG) | LEE LO | 0     | one enue | u.    |       |       |       |
|--------|-------|-------|-------|--------|-------|----------|-------|-------|-------|-------|
| 0°     | 5°    | 10°   | 15°   | 20°    | 25°   | 30°      | 35°   | 40°   | 45°   | 50°   |
| 1:352  | 1.848 | 1:344 | 1:340 | 1·336  | 1:333 | 1·330    | 1:327 | 1·324 | 1·320 | 1·316 |
| 1:341  | 1.337 | 1:333 | 1:330 | 1·327  | 1:324 | 1·321    | 1:318 | 1·314 | 1·310 | 1·306 |
| 1:330  | 1.326 | 1:323 | 1:320 | 1·317  | 1:314 | 1·311    | 1:308 | 1·304 | 1·301 | 1·297 |
| 1:320  | 1.316 | 1:313 | 1:310 | 1·307  | 1:304 | 1·301    | 1:298 | 1·294 | 1·291 | 1·287 |
| 1:310  | 1.306 | 1:303 | 1:300 | 1·297  | 1:294 | 1·291    | 1:288 | 1·284 | 1·281 | 1·277 |
| 1·300  | 1·296 | 1·293 | 1·290 | 1·237  | 1·284 | 1·280    | 1·277 | 1·274 | 1·270 | 1·267 |
| 1·290  | 1·286 | 1·283 | 1·280 | 1·277  | 1·274 | 1·270    | 1·267 | 1·264 | 1·260 | 1·256 |
| 1·280  | 1·276 | 1·273 | 1·270 | 1·267  | 1·264 | 1·260    | 1·257 | 1·254 | 1·250 | 1·246 |
| 1·270  | 1·266 | 1·263 | 1·260 | 1·257  | 1·254 | 1·251    | 1·248 | 1·245 | 1·241 | 1·237 |
| 1·260  | 1·256 | 1·253 | 1·250 | 1·247  | 1·244 | 1·241    | 1·238 | 1·235 | 1·231 | 1·227 |
| 1·250  | 1·246 | 1·243 | 1:240 | 1·237  | 1·234 | 1·230    | 1·227 | 1·224 | 1·220 | 1·217 |
| 1·240  | 1·236 | 1·233 | 1:230 | 1·227  | 1·224 | 1·220    | 1·217 | 1·214 | 1·210 | 1·207 |
| 1·230  | 1·226 | 1·223 | 1:220 | 1·217  | 1·214 | 1·210    | 1·207 | 1·204 | 1·200 | 1·197 |
| 1·220  | 1·216 | 1·213 | 1:210 | 1·206  | 1·204 | 1·200    | 1·197 | 1·194 | 1·190 | 1·187 |
| 1·210  | 1·206 | 1·203 | 1:200 | 1·196  | 1·193 | 1·190    | 1·186 | 1·183 | 1·180 | 1·176 |
| 1·200  | 1·196 | 1·193 | 1·190 | 1·186  | 1·183 | 1·180    | 1.176 | 1·173 | 1.169 | 1·165 |
| 1·190  | 1·186 | 1·183 | 1·180 | 1·176  | 1·173 | 1·170    | 1.166 | 1·163 | 1.159 | 1·155 |
| 1·180  | 1·176 | 1·173 | 1·170 | 1·166  | 1·163 | 1·160    | 1.156 | 1·153 | 1.149 | 1·146 |
| 1·169  | 1·166 | 1·163 | 1·160 | 1·157  | 1·153 | 1·150    | 1.147 | 1·144 | 1.141 | 1·138 |
| 1·159  | 1·156 | 1·153 | 1·150 | 1·147  | 1·143 | 1·140    | 1.137 | 1·134 | 1.131 | 1·128 |
| 1·149  | 1·146 | 1:143 | 1:140 | 1·137  | 1·134 | 1:131    | 1·128 | 1·125 | 1·122 | 1·119 |
| 1·133  | 1·135 | 1:133 | 1:130 | 1·127  | 1·125 | 1:122    | 1·119 | 1·116 | 1·113 | 1·110 |
| 1·128  | 1·125 | 1:123 | 1:120 | 1·118  | 1·115 | 1:112    | 1·110 | 1·107 | 1·104 | 1·102 |
| 1·118  | 1·115 | 1:113 | 1:110 | 1·108  | 1·105 | 1:102    | 1·100 | 1·097 | 1·094 | 1·092 |
| 1·108  | 1·105 | 1:103 | 1:100 | 1·097  | 1·094 | 1:092    | 1·090 | 1·087 | 1·084 | 1·082 |
| 1.098  | 1.095 | 1.093 | 1.090 | 1.087  | 1.084 | 1.082    | 1.080 | 1.077 | 1.074 | 1.072 |
| 1.088  | 1.085 | 1.083 | 1.080 | 1.077  | 1.074 | 1.072    | 1.070 | 1.067 | 1.064 | 1.062 |
| 1.078  | 1.075 | 1.063 | 1.070 | 1.067  | 1.064 | 1.062    | 2.060 | 1.057 | 1.054 | 1.052 |
| 1.068  | 1.065 | 1.063 | 1.060 | 1.057  | 1.054 | 1.052    | 1.050 | 1.048 | 1.044 | 1.042 |
| 1.058  | 1.055 | 1.053 | 1.050 | 1.047  | 1.044 | 1.042    | 1.040 | 1.038 | 1.034 | 1.032 |
| 1:048  | 1.045 | 1:043 | 1.040 | 1.037  | 1:034 | 1.032    | 1.030 | 1.028 | 1.024 | 1.022 |
| 1:038  | 1.035 | 1:033 | 1.030 | 1.027  | 1:024 | 1.022    | 1.020 | 1.018 | 1.014 | 1.012 |
| 1:028  | 1.025 | 1:023 | 1.020 | 1.017  | 1:014 | 1.012    | 1.010 | 1.008 | 1.004 | 1.002 |
| 1:018  | 1.015 | 1:013 | 1.010 | 1.007  | 1:004 | 1.002    | 1.000 | 0.998 | 0.994 | 0.992 |

## 5.-FREEZING AND MELTING POINTS OF SULPHURIC ACID.\*

| Spec. Grav. at 15°. | Freezing point. | Melting point. |  |  |
|---------------------|-----------------|----------------|--|--|
| 1.671               | Liquid at - 20° |                |  |  |
| 1.691               | Liquid at -20°  |                |  |  |
| 1.712               | Liquid at -20°  |                |  |  |
| 1.727               | -7·5°           | -7·5°          |  |  |
| 1.732               | -8.5            | -8.5           |  |  |
| 1.749               | -0.5            | +4.5           |  |  |
| 1.767               | +1.6            | +6.2           |  |  |
| 1.778               | +8.5            | +8.5           |  |  |
| 1.790               | +4.5            | +8.0           |  |  |
| 1.807               | -9.0            | -6.0           |  |  |
| 1.822               | Liquid at - 20° |                |  |  |
| 1.840               | Liquid at -20°  |                |  |  |

<sup>\*</sup> Lunge, Berichte d. deutsch. chem. Ges. 1831 S.

4.—TABLE FOR REDUCING THE SPECIFIC GRAVITIES OF SULPHURIC ACID OF VARIOUS STRENGTHS TO ANY OTHER TEMPERATURE (DEGREES C.).—Continued.

|       |       |       |       | 102 | 0.2023 | 0.,. | 010001110000 |     |       |
|-------|-------|-------|-------|-----|--------|------|--------------|-----|-------|
| 55°   | 60°   | 65°   | 70°   | 75° | 80°    | 85°  | 90°          | 95° | 100°  |
| 1.312 | 1:308 | 1.304 | 1.300 | _   | _      | _    |              | _   | _     |
| 1.302 | 1.298 | 1.294 | 1.290 | _   | _      | -    |              | -   | ***** |
| 1.293 | 1.289 | 1.284 | 1.280 |     | -      | _    | _            | _   |       |
| 1.283 | 1.279 | 1.274 | 1.270 | _   |        | _    | _            | -   |       |
| 1.273 | 1.269 | 1.265 | 1.260 | —   | _      | _    |              | -   | _     |
| 1.263 | 1.259 | 1.255 | 1.250 | _   | _      | _    | -            | _   | _     |
| 1.252 | 1.248 | 1.244 | 1.240 |     | _      | _    | _            |     | —     |
| 1.242 | 1.238 | 1.234 | 1.230 | _   |        | _    |              |     | _     |
| 1.533 | 1.224 | 1.224 | 1.220 | _   | -      | _    |              | _   | -     |
| 1.223 | 1.214 | 1.214 | 1.210 |     | _      | -    | -            |     | -     |
| 1.210 | 1.209 | 1.204 | 1.200 | _   | _      | _    | _            |     |       |
| 1.204 | 1.200 | 1.192 | 1.190 | _   | _      |      | _            | _   |       |
| 1.194 | 1.190 | 1.182 | 1.180 | -   | _      | _    |              |     |       |
| 1.183 | 1.179 | 1.175 | 1.170 | _   | _      | _    |              | -   |       |
| 1.172 | 1.168 | 1.164 | 1.160 | _   | -      | . —  |              |     | _     |
| 1.162 | 1.158 | 1.154 | 1.150 | _   |        | _    | _            |     | _     |
| 1.152 | 1.148 | 1.144 | 1.140 |     |        |      |              |     |       |
| 1.143 | 1.139 | 1.135 | 1.131 | _   |        | _    |              | _   |       |
| 1.135 | 1.131 | 1.127 | 1.123 |     |        |      | _            |     |       |
| 1.122 | 1.122 | 1.118 | 1.114 | _   | _      | _    | -            | -   |       |
| 1.116 | 1.113 | 1.109 | 1.106 |     | -      | _    |              |     | _     |
| 1.107 | 1.104 | 1.100 | 1.097 |     | _      |      |              |     | _     |
| 1.099 | 1.096 | 1.092 | 1.088 | _   |        | _    | _            | _   |       |
| 1.089 | 1.086 | 1.082 | 1.078 | _   |        |      | _            | _   |       |
| 1.079 | 1.075 | 1.072 | 1.068 |     |        | _    | _            | _   |       |
| 1.069 | 1.065 | 1.062 | 1.058 | _   |        | 3    |              | _   |       |
| 1.059 | 1.055 | 1.052 | 1.048 | _   |        | _    | _            | _   |       |
| 1.049 | 1.045 | 1.012 | 1.038 | _   | _      | _    | _            |     | _     |
| 1.036 | 1.035 | 1.032 | 1.028 |     | -      | _    |              | _   | _     |
| 1.039 | 1.025 | 1.022 | 1.018 | _   | -      | -    | -            |     | _     |
| 1.019 | 0.012 | 1.012 | 1 008 | _   | _      | _    | _            | -   | _     |
| 1.009 | 1.002 | 1.002 | 0.998 | -   | _      | -    | _            | _   | _     |
| 0.999 | 1.995 | 0.992 | 0.988 | _   | _      | -    |              | _   |       |
| 0.989 | 0.985 | 0.982 | 0.978 | _   | _      | _    |              | -   | -     |
|       |       | 4     | 1     |     | 1      | 1    | 1            |     |       |

## 6.—BOILING POINTS OF SULPHURIC ACID. (Lunge, Ber. d. d. chem. Ges. 11, 370.)

|                                |                                  | (Liang                       | c, 2001. W                     | · w. onen.                       | 000. 11,                   | 01 0.)                         |                         |                       |
|--------------------------------|----------------------------------|------------------------------|--------------------------------|----------------------------------|----------------------------|--------------------------------|-------------------------|-----------------------|
| Proc.                          | Spec.                            | Boil.                        | Proc.                          | Spec.                            | Boil.                      | Proc.                          | Spec.                   | Boil.                 |
| SO <sub>4</sub> H <sub>2</sub> | Gr.                              | Point.                       | SO <sub>4</sub> H <sub>2</sub> | Gr.                              | Point.                     | SO <sub>4</sub> H <sub>2</sub> | Gr.                     | Point.                |
| 5                              | 1:031                            | 101°                         | 56                             | 1:459                            | 133°                       | 82                             | 1.758                   | 218·5°                |
| 10                             | 1:069                            | 102                          | 60                             | 1:503                            | 141·5                      | 84                             | 1.773                   | 227                   |
| 15                             | 1:107                            | 103·5                        | 62·5                           | 1:530                            | 147                        | 86                             | 1.791                   | 238·5                 |
| 20                             | 1·147                            | 105                          | 65                             | 1.557                            | 153·5                      | 88                             | 1.807                   | 251·5                 |
| 25                             | 1·184                            | 106·5                        | 67·5                           | 1.585                            | 161                        | 90                             | 1.818                   | 262·5                 |
| 30                             | 1·224                            | 108                          | 70                             | 1.615                            | 170                        | 91                             | 1.824                   | 268                   |
| 35                             | 1·265                            | 100                          | 72                             | 1.639                            | 174·5                      | 92                             | 1.830                   | 274·5                 |
| 40<br>45<br>50<br>53           | 1·307<br>1·352<br>1·399<br>1·428 | 114<br>118·5<br>124<br>128·5 | 74<br>76<br>78<br>80           | 1.661<br>1.688<br>1.710<br>1.733 | 180·5<br>189<br>199<br>207 | 93<br>91<br>95                 | 1:834<br>1:837<br>1:840 | 281·5<br>288·5<br>295 |

## 7.-PERCENTAGE OF SO3 IN NORDHAUSEN OIL OF VITRIOL.

| Found by<br>Titrating | Contai                         |                 | Found by<br>Titrating | Contai                         |                 | Found by<br>Titrating | Contai |                 |
|-----------------------|--------------------------------|-----------------|-----------------------|--------------------------------|-----------------|-----------------------|--------|-----------------|
| SO <sub>3</sub>       | SO <sub>4</sub> H <sub>2</sub> | SO <sub>3</sub> | SO <sub>3</sub>       | SO <sub>4</sub> H <sub>2</sub> | SO <sub>s</sub> | SO <sub>3</sub>       | SO,H,  | 80 <sub>s</sub> |
| 81.6326               | 100                            | 0               | 87.8775               | 66                             | 34              | 93.9387               | 33     | 67              |
| 81.8163               | 99                             | 1               | 88.0612               | 65                             | 35              | 94.1224               | 32     | 68              |
| 82.0000               | 98                             | 2               | 88.2448               | 64                             | 36              | 94.3061               | 31     | 69              |
| 82.1836               | 97                             | 3               | 88.4285               | 63                             | 37              | 94.4897               | 30     | 70              |
| 82.3674               | 96                             | 4               | 88-6122               | 62                             | 38              | 94.6734               | 29     | 71              |
| 82.5510               | 95                             | 5               | 88.7959               | 61                             | 39              | 94.8571               | 28     | 72              |
| 82.7346               | 94                             | 6               | 88.9795               | 60                             | 40              | 95.0408               | 27     | 73              |
| 82.9183               | 93                             | 7               | 89.1632               | 59                             | 41              | 95.2244               | 26     | 74              |
| 83.1020               | 92                             | 8               | 89.3469               | 58                             | 42              | 95.4081               | 25     | -               |
| 83.2857               | 91                             | 9               | 89.5306               | 57                             | 43              | 95.5918               | 24     | -               |
| 83.4693               | 90                             | 10              | 89.7142               | 56                             | 44              | 95.7755               | 23     | _               |
| 83.6530               | 89                             | 11              | 89.8979               | 55                             | 45              | 95.9591               | 22     | _               |
| 83.8367               | 88                             | 12              | 90.0816               | 54                             | 46              | 96.1428               | 21     | -               |
| 84.0204               | 87                             | 13              | 90.2653               | 53                             | 47              | 96.3265               | 20     | -               |
| 84.2040               | 86                             | 14              | 90.4489               | 52                             | 48              | 96.5102               | 19     | -               |
| 84.3877               | 85                             | 15              | 90.6326               | 51                             | 49              | 96.6938               | 18     | _               |
| 84.5714               | 84                             | 16              | 90.8163               | 50                             | 50              | 96.8775               | 17     | _               |
| 84.7551               | 83                             | 17              | 91.0000               | 49                             | 51              | 97.0612               | 16     | -               |
| 84.9387               | 82                             | 18              | 91.1836               | 48                             | 52              | 97.2448               | 15     | -               |
| 85.1224               | 81                             | 19              | 91.3673               | 47                             | 58              | 97.4285               | 14     | -               |
| 85.3061               | 80                             | 20              | 91.5510               | 46                             | 54              | 97.6122               | 13     | _               |
| 85.4897               | 79                             | 21              | 91.7346               | 45                             | 55              | 97.7959               | 12     | _               |
| 85.6734               | 78                             | 22              | 91.9183               | 44                             | 56              | 97.9795               | 11     | -               |
| 85.8571               | 77                             | 23              | 92.1020               | 43                             | 57              | 98.1632               | 10     |                 |
| 86.0408               | 76                             | 24              | 92.2857               | 42                             | 58              | 98.3469               | 9      | -               |
| 86.2244               | 75                             | 25              | 92.4093               | 41                             | 59              | 98.5306               | 8      |                 |
| 86.4081               | 74                             | 26              | 92.6530               | 40                             | 60              | 98.7142               | . 7    | -               |
| 86.5918               | 73                             | 27              | 92.8367               | 39                             | 61              | 98.8979               | 6      | -               |
| 86.7755               | 72                             | 28              | 93.0204               | 38                             | 62              | 99.0816               | 5      | -               |
| 86.9591               | 71                             | 29              | 93.2040               | 37                             | 63              | 99.2653               | 4      | -               |
| 87.1428               | 70                             | 30              | 93.3877               | 36                             | 64              | 99.4489               | 3      | -               |
| 87.3265               | 69                             | 31              | 93.5714               | 35                             | 65              | 99.6326               | 2      | -               |
| 87.5102               | 68                             | 32              | 93.7551               | 34                             | 66              | 99.8163               | 1      | -               |
| 87.6938               | 67                             | 33              |                       | 200                            | 16              |                       |        |                 |

## $7\alpha$ .—THE QUANTITATIVE ESTIMATION OF FREE SULPHURIC ACID

is made by titrating a measured volume by standard soda solution. The results are always expressed in per cent. of monohydrated sulphuric acid (hydrogen sulphate,  $\mathrm{H_2SO_4}$ ) by weight. The specific gravity of the acid is taken with a hydrometer. This is called x. Take 10c.c. of the acid with an accurate pipette, dilute to 100c.c., and take again 10c.c. of this for titration. For very accurate results it is preferable to weigh the quantity of acid to be tested in a glass-cock tube, fig. 8 (comp. infra, No. 9), and employ the whole quantity weighed for titration. If the number of cubic centimetres of normal soda solution (=0.031gr. Na<sub>2</sub>O per cubic centimetre consumed) is called y, the percentage of the acid is

 $\frac{4.9y}{x}$ 

The normal soda solution is standardized with normal hydrochloric acid (0·0365gr. of HCl per cubic centimetre), and the latter with pure sodium carbonate, which thus forms the foundation of alkalimetry and acidimetry. (Compare the Appendix.) If the sulphuric acid to be tested contains an appreciable quantity of nitrous acid, methyl-orange cannot be employed as indicator, unless the nitrous acid is previously oxidized by potassium permanganate.

# 8.—EXAMINATION OF SULPHURIC ACID FOR OTHER SUBSTANCES.

(a) Nitrous Acid is titrated with semi-normal permanganate. (Preparation in the Appendix.) This can be done without loss of NO when manipulating, as follows (Lunge, Berliner Berichte x. 1075): Put the nitrous vitriol into a burette fitted with a glass tap, and run it slowly into a measured quantity of permanganate, diluted with 5 times its volume of tepid water (30° C. to 40° C.), and constantly agitate, till the colour just vanishes. Each cubic centimetre of the permanganate indicates 0.0095grm. N<sub>2</sub>O<sub>3</sub>, hence more or less of it is employed, according to whether an acid containing more or less N<sub>2</sub>O<sub>3</sub> is titrated. For chamber acid employ at most 5c.c.; for good Gay-Lussac acid up to 50c.c. of permanganate. If the quantity of permanganate is called x, and that of the vitriol consumed for decolorizing it y, the quantity of N<sub>2</sub>O<sub>3</sub> present in grammes per litre of acid is

Calculated as  $NO_3H = \frac{9 \cdot 5x}{y}$ as  $NaNO_3 = \frac{21 \cdot 25x}{y}$ 

The following table saves the calculation for all cases in which x=50. The column y gives the number of cubic centimetres of nitrous vitriol used, a the percentage in grammes per litre, and b the percentage by weight for acid of 140° Tw. (For other strengths the percentage by weight is calculated by dividing the figures of column a by 10×specific gravity.)

#### TABLE FOR ESTIMATING NITROUS VITRIOL.

Employ 50c.c. of semi-normal permanganate. The results are expressed as NO<sub>3</sub>H and NO<sub>3</sub>Na. The column y refers to acid of 140° Tw. as unit:—

| Acid - | NO               | 3H        | NO <sub>3</sub>  | NO <sub>3</sub> Na |        | NO               | aH.       | NO               | Na        |
|--------|------------------|-----------|------------------|--------------------|--------|------------------|-----------|------------------|-----------|
| cons   | g. per<br>Litre. | Per cent. | g. per<br>Litre. | Per cent.          | o Acid | g. per<br>Litre. | Per cent. | g. per<br>Litre. | Per cent. |
| 10     | 78.8             | 4.62      | 106.2            | 6.22               | 36     | 21.9             | 1.28      | 29.5             | 1.73      |
| 11     | 71.6             | 4.20      | 96.5             | 5.65               | 87     | 21.3             | 1.25      | 28.7             | 1.68      |
| 12     | 65.7             | 3.85      | 88.5             | 5.18               | 38     | 20.7             | 1.21      | 28.0             | 1.64      |
| 13     | 60.6             | 3.55      | 81.7             | 4.78               | 39     | 20.2             | 1.18      | 27.3             | 1.60      |
| 14     | 56.2             | 3.28      | 75.9             | 4.44               | 40     | 19.7             | 1.15      | 26.6             | 1.56      |
| 15     | 52.5             | 3:07      | 70.8             | 4.14               | 41     | 19.2             | 1.12      | 25.9             | 1.52      |
| 16     | 49.3             | 2.89      | 66.4             | 3.91               | 42     | 18.8             | 1.10      | 25.3             | 1.48      |
| 17     | 46.3             | 2.71      | 62.5             | 3.65               | 43     | 18.3             | 1.07      | 24.7             | 1.45      |
| 18 .   | 43.7             | 2.56      | 59.0             | 3.45               | 44     | 17.9             | 1.05      | 24.2             | 1.42      |
| 19     | 41.5             | 2.43      | 55.9             | 3.27               | 45     | 17.5             | 1.02      | 23.6             | 1.38      |
| 20     | 39.3             | 2.30      | 53.1             | 3.11               | 46     | 17.1             | 1.00      | 23.1             | 1.35      |
| 21     | 37.5             | 2.19      | 50.6             | 2.96               | 47     | 16.8             | 0.98      | 22.6             | 1.32      |
| 22     | 35.7             | 2.09      | 48.3             | 2.82               | 48     | 16.4             | 0.96      | 22.2             | 1.30      |
| 23     | 34.2             | 2.00      | 46.3             | 2.71               | 49     | 16.1             | 0.94      | 21.7             | 1.27      |
| 24     | 32.8             | 1.92      | 44.4             | 2.60               | 50     | 15.8             | 0.925     | 21.3             | 1.25      |
| 25     | 31.5             | 1.84      | 42.5             | 2.49               | 55     | 14.4             | 0.835     | 19.3             | 1.13      |
| 26     | 30.3             | 1.77      | 40.8             | 2.39               | 60     | 13.1             | 0.765     | 17.7             | 1.04      |
| 27     | 29.1             | 1.71      | 39.4             | 2.30               | 65     | 12.1             | 0.705     | 16.4             | 0.96      |
| 28     | 28.1             | 1.64      | 38.0             | 2.22               | 70     | 11.2             | 0.655     | 15.2             | 0.89      |
| 29     | 27.1             | 1.58      | 36.7             | 2.15               | 75     | 10.5             | 0.615     | 14.15            | 0.827     |
| 30     | 26.3             | 1.54      | 35.5             | 2.08               | 80     | 9.85             | 0.575     | 13.3             | 0.778     |
| 31     | 25.5             | 1.49      | 34.3             | 2.01               | 85     | 9.2              | 0.538     | 12.5             | 0.730     |
| 32     | 24.6             | 1.44      | 33.3             | 1.95               | 90     | 8.7              | 0.510     | 11.8             | 0.692     |
| 33     | 23.9             | 1.40      | 32.3             | 1.89               | 95     | 8.3              | 0.485     | 11.2             | 0.655     |
| 34     | 23.2             | 1.36      | 31.3             | 1.84               | 100    | 7.9              | 0.462     | 10.6             | 0.620     |
| 35     | 22.5             | 1.32      | 30.4             | 1.78               | 1      | VAC TO SE        | N I S     |                  |           |
|        |                  | 4         | ,                | 1                  |        |                  |           |                  |           |

N.B.—The figures in column  $\alpha$  also indicate 0.011b. avoirdupois per gallon, or nearly ounces per cubic foot.

<sup>(</sup>b) Total Nitrogen Acids.—These are contained in sulphuric acid as N  $_2$  O  $_3$  or more properly as nitroso-sulphuric acid, SO $_2$ (OH)(ONO), and NO $_3$ H. NO can be present only in minute quantity, and not at all when NO $_3$ H is present. N $_2$ O $_4$  is decomposed by sulphuric acid into nitrosulphuric and nitric acid. The estimation made according to a only indicates N $_2$ O $_3$ . The total of the nitrogen acids is converted into NO by shaking up the nitrous vitriol with mercury; the quantity of NO formed is estimated by volume (Crum's reaction). This is done by Lunge's nitrometer (compare Lunge's "Sulphuric Acid and Alkali," 2nd ed. i., 181). Fill the graduated limb a with mercury by raising the level tube b; put the three-way cock in the position of communicating with none of the openings; run the nitrous acid

into the top cups of  $\alpha$  from a 1c.c. pipette graduated in  $\frac{1}{100}$ c.c., employing only 0.5c.c. of very strong, but up to 5c.c. of very weak nitrous vitriol; lower the level tube, open the cock carefully so that the vitriol runs down without any air entering; pour 2 or 3c.c. of pure strong sulphuric acid, entirely free from nitrogen compounds, into the cup; let this acid enter the nitrometer, and repeat the washing of the cup with 1 or 2c.c. of pure acid. Start the evolution of gas by taking the tube a out of the clamp, inclining it several times almost to the horizontal line, and suddenly righting it again, so that mercury and acid are well mixed; shake one or two minutes till no more gas is evolved. Place the tubes so that the mercury in b is as much higher than that in a as is required for balancing the acid in a; this will take 1mm. of Hg for 61mm. of acid. An exact test can only be produced when the gas has taken the temperature of the room and all froth has subsided. Read off the volume of the gas, also a thermometer hung up close by, and a barometer. In order to check the levelling, open the cock, when the level of a should not change. If it rises, too much pressure has been given, and the reading must be increased a little, say 0.1c.c. If it sinks, the opposite must take place, i.e., always in the opposite sense to the change of level. Another plan is, putting a little acid into the cup before opening the cock. This would be sucked in if the pressure were too low, or raised if too high. With adroit manipulation the experiment can then soon be corrected. After finishing it, lower the graduated tube  $\alpha$ , lest on opening the tap any air should enter; open the tap, raise the tube b, force thus the gas and all acid into the cup, and put the tap so that the acid flows through its key into a vessel held below; the last of it is drawn out by blotting paper. The nitrometer is then ready for the next experiment. A test must always be made to see whether the glass tap is gas-tight. It will hardly remain so without greasing it occasionally with vaseline; but this ought to be done very slightly, so as to avoid any grease getting into the bore; for if the grease comes in contact with acid, troublesome froth is formed. This process is interfered with by the presence of sulphurous acid, the best test for which is the smell. To remove it, the acid is stirred up with a very slight quantity of powdered potassium permanganate. Any great excess of this makes the process very troublesome and inaccurate. The volume of NO read off is reduced to 0° C. and 760mm. (32° F. and .29.92in.) by means of the tables, pages 20 and 21 or 21s and calculated for the nitrogen compounds present by the following table, in which column a means milligrammes, b per cent. by weight when employing 1c.c. acid of 140° Tw.

| cem. | io N NO        |        | 0              | N,               | O <sub>3</sub> | NO               | ) <sub>3</sub> H | NaNO <sub>3</sub> |                  |        |
|------|----------------|--------|----------------|------------------|----------------|------------------|------------------|-------------------|------------------|--------|
| 2    | a              | b      | a              | b                | a              | ь                | a                | b                 | a                | В.     |
| 1    | 0.627          | 0.0366 | 1:343          | 0.0785           | 1.701          | 0.0995           | 2.820            | 0.1648            | 3.805            | 0.2225 |
| 2    | 1.254          | 0.0732 | 2.686          | 0.1570           | 3.402          | 0.1990           | 5.640            | 0.3296            | 7.610            | 0.4450 |
| 3 4  | 1.881<br>2.508 | 0.1098 | 4·029<br>5·372 | 0.2355           | 5·103<br>6·804 | 0·2985<br>0·3980 | 8.460            | 0.4944            | 11·415<br>15·220 | 0.6675 |
| 5    | 3.135          | 0.1830 | 6·715<br>8·058 | 0.3925           | 8.506          | 0.4975           | 14.100           | 0.8240            | 19.025           | 1.1125 |
| 7 8  | 4·389<br>5·016 | 0.2562 | 9.401          | 0.5495<br>0.6280 | 11.907         | 0.6965           | 19·740<br>22:560 | 1.1536            | 26.635<br>30.440 | 1.5575 |
| 9    | 5.643          | 0.3294 | 12.087         | 0.7065           | 15.309         | 0.8955           | 25.380           | 1.4832            | 34.245           | 2.0025 |
|      |                |        |                | 170 180 180      | -1-1           |                  |                  |                   |                  | 1      |

The reduction to 0° and 760 mm. can be effected without thermometer and barometer, and without the use of any tables, by means of Lunge's Gasvolumeter, Fig. 8. It consists of the gas-measuring tube, A, the reduction-



Fig. 8.

tube, B, and the level-tube, C, all connected by very thick elastic tubing, with the three-way tube, a. B and C are held in two arms of the same clamp, so as to be each individually movable in its own arm, or both together by means of the common clamp. Tube B is graduated from 100 to 130 c.c., and contains a volume of air equal to that which 100 c.e. of dry air occupy at 0° and 760 mm. This is obtained by taking, once for all, a reading of the thermometer and the barometer, calculating what would be the volume of 100 c.c. of dry air of 0° and 760 mm. under the atmospheric conditions just observed, pouring mercury into C, till it stands in tube B at the volume just calculated (after introducing one or two drops of strong sulphuric acid into tube B), and sealing the capillary end b, taking care lest the air in B should get heated and expand during this operation. After thus enclosing the before-mentioned exact volume of air in tube B, the instrument is ready for use for an indefinite time. Tube A might be an ordinary nitrometer with three-way tap and funnels; it is, however, best employed merely as a gas-measuring tube, whilst a special reaction vessel, D, with its own level tube, E, serves for treating the nitrous vitriol (or

nitrate of soda, etc., as the case may be). D is a vessel, holding about 150 c.c., provided with the three-way tap, funnel, and outlet-tube of the old Lunge's nitrometer. By raising E, the vessel D is completely filled with mercury, till this begins to run out at c. The tap f is shut, the end of c is closed by a glass or indiarubber cap, funnel d is charged with nitrous vitriol; this is sucked into D, and the decomposition is brought about in the usual manner by shaking the vitriol with the mercury, to evolve all the nitrogen acids in the shape of NO. Now the tubes D and A are brought opposite to each other (A having been previously filled, by raising C, with mercury till it flows out at e); c and e are joined by a short bit of indiarubber tubing, till they touch, so that no air remains in the space between; C is lowered; E is raised, and by cautiously opening tap f, the NO contained in D is transferred into A. As soon as all the gas is within A, and the acid following it has filled the narrow tube e, tap g is shut. Now tube C is raised till the mercury in B has risen to the mark 100, and B and C are simultaneously moved up or down, as the case may require it, till the mercurial levels in A and B coincide, that in B being still at 100 c.c. Since the air in B is now compressed to the point which it would occupy in the dry state at 0° and 760 mm., and the gas in A is placed under exactly the same pressure (the temperature of these two parallel tubes being presumably alike), the reading in A shows the NO at once reduced to the same conditions of 0° and 760 mm.

Qualitative Test for Traces of Nitrogen Acid.—This is best done by means of diphenylamine. Dissolve a few grammes of diphenylamine in 100 parts of pure sulphuric acid. This should be completely free from N compounds, and can be obtained, if not at hand, by boiling with a trace of ammonium sulphate. Dilute the acid with 10th volume of water before dissolving the diphenylamine. Pour about 2 c.c. of the vitriol to be tested into a test tube, and run about 1 c.c. of the diphenylamine solution upon it, so that the layers mix only gradually. In the case of dilute acids, or other lighter liquids, proceed in the opposite manner. The slightest traces of nitrogen acids are proved by the appearance of a brilliant blue colour in the area of contact of both liquids.

This test, however, fails in the presence of selenium (which can be recognised by adding to the acid a strong solution of ferrous sulphate, when a brownish-red precipitate and make its appearance, which cannot be confounded with the colour produced by NO). In this case the nitrogen acids must be sought for by adding a solution of brucine sulphate, which in their presence produces a red colour.

(c) Examination for Lead .- Dilute the acid, if concentrated, with the same volume of water and twice its volume of alcohol. Allow the mixture to stand for some time, filter any precipitate of PbSO<sub>4</sub>, wash it with dilute alcohol, and dry and ignite in a porcelain crucible, burning the filter separately. 1gr. PbSO<sub>4</sub>=0.68317gr. Pb.

(d) Examination for Iron.—Boil the acid, if free from nitrogen, with a drop of nitric acid to peroxidize the iron. Dilute a little, allow to cool, and add solution of potassium sulphocyanide. A red colour proves the presence of iron. If there is not too little of it, it can be quantitatively estimated in another sample by heating with pure zinc (free from iron), pouring off the zinc, washing the latter, allowing to cool, and titrating with permanganate. This is best employed as 10th normal, indicating 0.0028 gr. Fe per cubic centimetre. Not less than 50 c.c. of acid should be taken for this test, as the acid generally contains very little iron.

# 9.—ANALYSIS OF FUMING SULPHURIC ACID (NORDHAUSEN ACID, ANHYDRIDE).

This is either weighed in glass bulbs or in a glass-tap tube. The former are very thin bulbs of about 2 cm. diameter, ending each way in a capillary tube. Melt the acid, if solid, till it is just completely homogeneous, and suck 3 grms. to 5 grms. of it into the bulb, which ought to be half filled with it. The sucking is best done by means of a bottle closed with an indiarubber cork, through which passes a tightly-fitting glass tap, connected at its free end with an elastic tube. Suction is applied to the latter, the tap is closed, the elastic tube is drawn over one of the capillary ends of the weighing bulb, and by opening the tap a sufficient quantity of acid is admitted into the bulb. The tube is cleaned, and one of the capillary ends is sealed at the lamp. The other end can be left open without fear of any loss of SO<sub>3</sub> or attraction of moisture during weighing. The weighing is best done on a small platinum crucible with two nicks, on which the ends of the bulb can rest. If the latter should be accidentally broken, the acid runs into the crucible, not on the balance. Put the bulb, after weighing, open end downwards into a small Erlenmeyer flask, into the neck of which it ought to fit exactly (Fig. 9), and which contains so much water that the capillary tube





dips pretty far into it, to prevent any loss of SO3 on mixing the acid with water. Break off the other point, allow the acid to run out, squirt a few drops of water into the upper capillary, and ultimately rinse the whole bulb tube by repeated aspiration of water. Dilute the liquid to 500 c.c. and take 50 c.c. for each test. This is done with 1 normal soda solution (lc. c.= 0.008 grm. SO<sub>3</sub>), and litmus or methyl-orange as indicator. The acidity found is diminished by that proceeding from SO2, and found by titrating another sample with iodine. More convenient than the bulb tube is Lunge & Rey's glass-tap pipette, Fig. 10. Shut the lower tap c, open the upper tap  $\alpha$ , apply suction (with the mouth) at d, and shut  $\alpha$  whilst sucking. Immerse the point e in the acid to be tested, and open c; the partial vacuum in bulb b suffices for drawing up enough acid, which must not be allowed to reach the tap c. Shut c, clean the point e, put the pipette in the outer glass f, and weigh. Take the pipette out of f, place it point downwards in water, or, in the case of the strongest Nordhausen acids, in a layer of crystallized, coarsely powdered sodium sulphate, and slowly run out the contents. Then squirt some water from above into b, allow to stand for a moment, and rinse thoroughly with water. If only 0.5 grm. to 1 grm. o' acid has been weighed off, titrate directly. This process is more accurate than diluting and titrating only part of the liquid, but this cannot be



Fig. 10.

avoided when a larger quantity of acid has been weighed. Anhydride, etc., once melted for the purpose of filling the tube remains liquid long enough to complete the weighing and running out without requiring to be heated again. Solid anhydride is best dissolved in monohydrated acid on taking out the samples as will be described in the Appendix.

## 3.—SALTCAKE AND HYDROCHLORIC ACID. A.—SALT (COMMON SALT, ROCK-SALT).

1. Moisture.—Ignite 5 grms. of salt in a covered platinum crucible (to prevent projections); heat first quite gradually, then for some minutes up to a low red heat.

2. Insoluble.—Dissolve 5 grms., filter the insoluble matter, wash, dry, and

ignite the same.

3. Chlorine.—Weigh off 5.85 grms of the moist salt, dissolve it, and dilute up to 500 c.c.; take out 25 c.c. by means of a pipette; add so much of a solution of neutral potassium chromate that the liquid is distinctly yellow, and titrate with decinormal silver solution (refer to Appendix). Add the silver solution from a 50 c.c. burette, till the precipitate, even after a gitation, shows a distinct but faint pink colour. 0.2 c.c. is deducted from

the number of cubic centimetres of silver solution employed, as being required for producing the colour. The remainder, multiplied by 2,

indicates the percentage of NaCl in the salt.

4. Line.—Dissolve 5 grms. of the salt in water, in case of need with the aid of a little HCl. When analyzing impure rock-salt the treatment with dilute HCl must be continued for some time, in order to dissolve all CaSO<sub>4</sub>. It is also necessary to filter off any clay, etc., but non-argillaceous salt ought to be dissolved completely, excepting any grains of sand and the like. In the clear solution precipitate the lime with ammonia and ammonium oxalate, allow to stand for 12 hours, filter the precipitate through dense filter paper in a well-shaped funnel (compare p. 94), wash, dry, and ignite it in a platinum crucible till it is completely converted into CaO. This is done by first gently heating till the calcium oxalate is decomposed, and then igniting at nearly a white heat for 20 minutes, either over a gas blow-pipe or, more conveniently, in a Hempels gas-stove or over a Muencke patent burner.\* 1 part CaO is equal to 2 4286 CaSO<sub>4</sub>, and is calculated as such.

## B.—SALTCAKE.

(N.B.—Nos. 1 and 2 are sufficient for daily examinations of the produce of

works, the others are employed for saltcake bought and sold.)

1. Free Acid.—Dissolve 20 grms. salteake, dilute to 250 c.c., take out 50 c.c. with a pipette, add litmus or methyl-orange, and titrate with standard soda up to the point of neutralization. Each cubic centimetre of the standard alkali is equal to 1 per cent. SO<sub>3</sub>. The total acidity is calculated as SO<sub>3</sub>, including HCl, NaHSO<sub>4</sub>, and, in the case of litmus, the salts of iron and alumina which have an acid reaction to litmus. If the latter are present in appreciable quantities, and if it is desirable to exclude them from the result, employ methyl-orange as indicator, or else add the standard alkali without any indicator, till the first flakes of a permanent precipitate appear, which occurs when the free acid and that of the bisulphate is just saturated.

2. Sodium Chloride.—Take another 50 c.c. of the solution made for the test No. 1, add the same quantity of standard alkali as used for this test, so that the acid is exactly neutralized, then a little neutral potassium chromate, and titrate with decinormal silver solution, as in A, 3. Each cubic centimetre of silver solution (after deducting 0.2 from the whole) is equal to 0.146 per cent. NaCl. Or else employ a solution containing 2.906 grms. AgNO<sub>3</sub> per litre and indicating 0.001 grm. NaCl per cubic centimetre. This would in the present case indicate 0.025 per cent. NaCl per cubic

centimetre.

3. Iron.—Dissolve 10 grms. of sulphate in water, reduce the iron salts to protoxide by a little sulphuric acid, and zinc, and titrate with potassium permanganate. (Details page 114.)

4. Residue, insoluble in water, is estimated as usual if present.

5. Lime.—Dissolve 10 grms in water if necessary with a little HCl<sub>1</sub>; add NH<sub>4</sub>Cl and NH<sub>3</sub>, precipitate with ammonium oxalate. Ignite, and weigh as CaO. (Compare A, 4.) If any appreciable quantity of Fe<sub>2</sub>O<sub>3</sub> has been found, this must be deducted.

6. Magnesia is precipitated in the filtrate from No. 5 by ammonium phosphate; allow to stand for 24 hours; filter, wash with dilute ammonia, dry, ignite and weigh the magnesium pyrophosphate of which 1 part=

0.36036 MgO.

<sup>\*</sup> To be obtained from Dr. Muencke, Luisenstrasse 59, Berlin, or from the English dealers in chemical apparatus.

7. Alumina.—The solution of the saltcake is precipitated with ammonia (free from  $CO_2$ ). The precipitate is ignited and weighed. Deducting the weight of  $Fe_2O_3$  found in No. 3, the remainder= $Al_2O_3$ .

8. Sodium Sulphate (direct estimation).—Dissolve 1 grm. of the saltcake; precipitate any lime along with ferric oxide, etc., as in No. 5; filter; evaporate the filtrate to dryness after adding a few drops of pure sulphuric acid; ignite; repeat this after adding a small piece of ammonium carbonate, and weigh. Deduct from this weight (1) the NaCl found in test No. 2, calculated for Na<sub>2</sub>SO<sub>4</sub> (1·0000NaCl=1·2136Na<sub>2</sub>SO<sub>4</sub>, or each cubic centimetre of decinormal silver solution employed in test No.2=0·00177 grm. Na<sub>2</sub>SO<sub>4</sub>); (2) the MgO found in test No. 6, calculated as MgSO<sub>4</sub> (1.000 MgO= 3.000MgSO4) The remainder is equal to the sodium sulphate actually present in 1 grm. saltcake.

### C.—CHIMNEY-TESTING.

Act of Parliament.—By the Alkali Works Regulation Act of 1881 it is enacted that "Every alkali work shall be carried on in such a manner as to secure the condensation to the satisfaction of the chief inspector, derived from his own examination or from that of some other inspector. (a) Of the muriatic acid gas evolved in such works to the extent of 95 per centum, and to such an extent that in each cubic foot of air, smoke, or chimney gases escaping from the works into the atmosphere, there is not contained more than onefifth part of a grain of muriatic acid. (b) Of the acid gases of sulphur and nitrogen which are evolved in the process of manufacturing sulphuric acid or sulphates in the work to such an extent that the total acidity of such gases in each cubic foot of air, smoke, or gases escaping into the chimney or into the atmosphere does not exceed what is equivalent to four grains of sulphuric anhydride." Part I. (3). "Sulphurous acid arising from the combustion of coal is not included." Part III. (29). "In calculating the proportion of acid to a cubic foot of air, smoke, or gases, for the purposes of this Act, such air, smoke, or gases shall be calculated at the temperature of 60 degrees of Fahrenheit's thermometer, and at a barometic pressure of thirty inches." Part III. (21). Methods for ascertaining the total acidity of chamber exits will be found on pages 97 to 99.

Hydrochloric Acid in Chimney.—In order to ascertain the HCl in chimney gases, an aspirator is used known as Fletcher's flexible aspirator, or the bellows. This aspirator is supposed to draw at one aspiration one-tenth of a cubic foot. It is not safe to trust to this intended capacity, and moreover the capacity of a new aspirator varies for some time. To ascertain the real capacity, fill a very large beaker or other cylindrical vessel with water, and invert it under water. Completely fill the aspirator with air, and expel this air into the inverted beaker. Mark the point to which the beaker is filled when the water inside the beaker is level with that outside. Measure the capacity of the beaker to that mark, say it contains V cubic centimetres of water. Then the number of aspirations which must be made with this aspirator in order to draw one cubic foot of air is

or if the capacity of the beaker is measured in grains,

 $N = \frac{436485}{V}$ 

N will usually be a mixed number, but the nearest integral number is sub-

stituted, and it will be safest to substitute the next higher integral number. Thus, if N be found 9.3, it will be safest to consider 10 as the number of aspirations necessary to draw one cubic foot. The aspirator must be air-tight. The gas is withdrawn from the chimney through a glass tube, which should be sufficiently long to reach a considerable distance into the chimney, say 6ft. The glass tube should be of at least in. diameter, otherwise the aspiration is tedious. In flues where the temperature is too high for glass, a platinum tube must be employed. The bellows and tube are washed with distilled water until the washings give no reaction with silver nitrate. 100 or 200 cubic centimetres of distilled water free from chloride are then charged into the bellows, and after each aspiration the gas is well washed by shaking the contents of the aspirator violently. When the number N of aspirations has been made, some water is forced into the glass tube, and allowed to flow back into the bellows to wash out any acid which may have condensed in the tube. The liquid is then transferred into a porcelain dish (or into a beaker standing on a porcelain slab). If the liquid is so highly charged with soot that it would be impossible to recognise the change of colour, it must be filtered through a filter previously washed free from chlorides. The liquid is then oxidized with potassium permanganate, and any excess of this reagent removed with a trace of ferrous sulphate, neutralized with pure sodium carbonate, coloured with potassium chromate, and titrated with decinormal silver solution. (See p. 116, A, 3, and Appendix.) Some use a centinormal silver solution. Call the number of cubic centimetres consumed =x, then the hydrochloric acid, in grains per cubic foot of gas, will be

## G=0.05633.x grains.

In order to calculate the percentage escape, the velocity of the gas in the chimney must be ascertained and reduced to 60° F. No notice is usually taken of the barometric pressure, since the measurement by the bellows is otherwise inaccurate. In addition, the diameter of the chimney and the number of tons of salt decomposed per 24 hours in the furnaces connected with the chimney must be known.

If G=number of grains of HCl per cubit foot If V=velocity at 60° F. in feet per second

If D=diameter of chimney at testing hole in feet

If T=tons of salt decomposed per 24 hours assumed to contain 93 per cent. NaCl

the percentage escape will be

 $0.7458 \times \frac{\text{GVD}^2}{\text{T}}$ 

## HYDROCHLORIC ACID.

Specific Gravity of Hydrochloric Acid at  $15^{\circ}\mathrm{C}$  Compared with Water at  $4^{\circ}$  and Reduced to Vacuum.

(Lunge & Marchlewski.)

|                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                  | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                             |                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| De-<br>grees<br>Twad-<br>dell.                                                                                                                                                                                                                                                                | Specific Gravity at 15° 4° in vacuo.                                                                                                                                                                              | 100 parts by                                                                                                                                                                                                                                                                                                                    | weight corresponded weight of Acid of spec. grav. 1'1425 = 28° 5 Tw.                                                                                                                                                               | Acid of spec. grav. 1 152 = 30° Tw.                                                                                                                                                                                               | 1 litre<br>contains<br>grms.<br>HCl.                                                                                                                | 1 Cub. foot<br>contains<br>lbs. of HCl.                                                                                                                                                                                                                                                                                    |
| 0<br>1<br>2<br>3<br>4<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>33<br>33<br>34<br>34<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36 | 1.000 1.005 1.010 1.015 1.020 1.025 1.030 1.035 1.040 1.045 1.055 1.060 1.065 1.075 1.080 1.085 1.090 1.095 1.100 1.105 1.110 1.115 1.120 1.125 1.130 1.135 1.140 1.145 1.150 1.155 1.160 1.165 1.170 1.175 1.180 | 0·16<br>1·15<br>2·14<br>3·12<br>4·13<br>5·15<br>6·15<br>7·15<br>8·16<br>9·16<br>10·17<br>11·18<br>12·19<br>13·19<br>14·17<br>15·16<br>16·15<br>17·13<br>18·11<br>19·06<br>20·01<br>20·97<br>21·92<br>22·86<br>23·82<br>24·78<br>25·75<br>26·70<br>27·66<br>28·61<br>29·57<br>30·55<br>31·52<br>32·49<br>33·46<br>34·42<br>35·39 | 0·57 4·08 7·60 11·80 14·67 18·30 21·85 25·40 28·99 32·55 36·14 39·73 43·32 46·87 50·35 53·87 67·73 60·87 64·35 67·78 71·11 74·52 77·89 81·23 84·64 88·06 91·50 94·88 98·29 101·67 105·08 108·58 112·01 115·46 118·91 122·32 125·76 | 0·53 3·84 7·14 10·41 13·79 17·19 20·53 23·87 27·24 30·58 33·95 37·33 40·70 44·04 47·31 50·62 53·92 57·19 60·47 63·64 66·81 70·01 73·19 76·32 79·53 82·74 85·97 89·15 92·35 95·52 98·73 102·00 105·24 105·24 105·24 111·492 118·16 | 1·6 12· 22· 32· 42· 53· 64· 74· 85· 96· 107 118 129 141 152 163 174 186 197 209 220 232 243 255 267 278 291 303 315 328 340 353 366 379 392 404 418 | 0·10<br>0·75<br>1·37<br>1·99<br>2·62<br>3·30<br>3·99<br>4·61<br>5·30<br>5·98<br>6·67<br>7·35<br>8·04<br>8·79<br>9·48<br>10·16<br>10·85<br>11·59<br>12·28<br>13·03<br>13·71<br>14·46<br>15·15<br>15·90<br>16·65<br>17·33<br>18·14<br>18·89<br>19·64<br>20·45<br>21·20<br>22·01<br>22·82<br>23·63<br>24·44<br>25·19<br>26·06 |
| 37<br>39<br>39<br>40                                                                                                                                                                                                                                                                          | 1·185<br>1·190<br>1·195<br>1·200                                                                                                                                                                                  | 36·31<br>37·23<br>38·16<br>39·11                                                                                                                                                                                                                                                                                                | 129·03<br>132·30<br>135·61<br>138·98                                                                                                                                                                                               | 121·23<br>124·30<br>127·41<br>130·58                                                                                                                                                                                              | 430<br>443<br>456<br>469                                                                                                                            | 26·81<br>27·62<br>28·43<br>29·24                                                                                                                                                                                                                                                                                           |

2.—INFLUENCE OF TEMPERATURE ON THE SPECIFIC GRAVITY OF HYDROCHLORIC ACID.

| 0°                                        | 5°                                        | 10°                                       | 15°                                       | 20°                                       | 25°                                       | 30°                                       | 35°                                       | 40°                                       | 45°                                       | <b>5</b> 0°                               |
|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|
| 1·168<br>1·158<br>1·148                   | 1·165<br>1·155<br>1·145                   | 1·163<br>1·153<br>1·143                   | 1·160<br>1·150<br>1·140                   | 1·157<br>1·147<br>1·137                   | 1·154<br>1·145<br>1·134                   | 1·152<br>1·142<br>1·132                   | 1·149<br>1·139<br>1·129                   | 1·147<br>1·137<br>1·127                   | 1·144<br>1·134<br>1·125                   | 1·142<br>1·132<br>1·123                   |
| 1·138<br>1·128                            | 1·135<br>1·125                            | 1·133<br>1·123                            | 1·130<br>1·120                            | 1·127<br>1·117                            | 1.115                                     | 1·112<br>1·112                            | 1.110                                     | 1·117<br>1 108                            | 1.114                                     | 1.112                                     |
| 1·118<br>1·108<br>1·098<br>1·088<br>1·078 | 1·115<br>1·105<br>1·095<br>1·085<br>1·075 | 1·113<br>1·103<br>1·093<br>1·083<br>1·073 | 1·110<br>1·100<br>1·090<br>1·080<br>1·070 | 1·107<br>1·097<br>1·087<br>1·077<br>1·068 | 1·105<br>1·095<br>1·085<br>1·075<br>1·066 | 1·103<br>1·092<br>1·082<br>1·073<br>1·063 | 1·101<br>1·090<br>1·080<br>1·070<br>1·061 | 1.099<br>1.088<br>1.077<br>1.068<br>1.059 | 1.097<br>1.086<br>1.075<br>1.066<br>1.057 | 1.094<br>1.084<br>1.073<br>1.064<br>1.055 |
| 1.068<br>1.058<br>1.048<br>1.038<br>1.028 | 1.065<br>1.055<br>1.045<br>1.035<br>1.025 | 1.063<br>1.053<br>1.043<br>1.033<br>1.023 | 1:060<br>1:050<br>1:040<br>1:030<br>1:020 | 1:058<br>1:048<br>1:037<br>1:027<br>1:017 | 1:055<br>1:045<br>1:035<br>1:024<br>1:014 | 1:053<br>1:043<br>1:032<br>1:022<br>1:012 | 1:050<br>1:040<br>1:030<br>1:019<br>1:009 | 1.048<br>1.038<br>1.027<br>1.017<br>1.007 | 1:046<br>1:035<br>1:025<br>1:014<br>1:004 | 1:044<br>1:033<br>1:022<br>1:012<br>1:002 |
| 1.018                                     | 1.012                                     | 1.013                                     | 1.010                                     | 1.007                                     | 1.004                                     | 1.002                                     | 0.999                                     | 0.997                                     | 0.994                                     | 0.992                                     |

| 55°   | 60°   | 65°   | 70°   | 75°   | 80°   | 85°   | 90°   | 95°   | 100°  |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 1.140 | 1.138 | 1.136 | 1.133 | 1.131 | 1.129 | 1.127 | 1.125 | 1.123 | 1.121 |
| 1.130 | 1.128 | 1.126 | 1.123 | 1.121 | 1.119 | 1.116 | 1.114 | 1.112 | 1.110 |
| 1.120 | 1.118 | 1.116 | 1.113 | 1.111 | 1.108 | 1.106 | 1.104 | 1.102 | 1.099 |
| 1.109 | 1.107 | 1.104 | 1.102 | 1.100 | 1.097 | 1.095 | 1.093 | 1.090 | 1.088 |
| 1.101 | 1.099 | 1.096 | 1.094 | 1.091 | 1.089 | 1.086 | 1.084 | 1.081 | 1.079 |
| 1.093 | 1.090 | 1.088 | 1.085 | 1.083 | 1.080 | 1.078 | 1.075 | 1.073 | 1.070 |
| 1.082 | 1.080 | 1.078 | 1.076 | 1.073 | 1.071 | 1.069 | 1.066 | 1.064 | 1.061 |
| 1.071 | 1.069 | 1.067 | 1.065 | 1.063 | 1.061 | 1.059 | 1.057 | 1.055 | 1.053 |
| 1.062 | 1.060 | 1.058 | 1.056 | 1.054 | 1.053 | 1.051 | 1.049 | 1.047 | 1.045 |
| 1.053 | 1.051 | 1.049 | 1.048 | 1.046 | 1.044 | 1.043 | 1.041 | 1.039 | 1.037 |
| 1.042 | 1.040 | 1.038 | 1.036 | 1.034 | 1.033 | 1.031 | 1.029 | 1.027 | 1.025 |
| 1.031 | 1.029 | 1.027 | 1.025 | 1.023 | 1.021 | 1.019 | 1.017 | 1.112 | 1.018 |
| 1.020 | 1.018 | 1.016 | 1.014 | 1.011 | 1.009 | 1.007 | 1.005 | 1.003 | 1.001 |
| 1.010 | 1.008 | 1.005 | 1.003 | 1.001 | 0.999 | 0.997 | 0.995 | 0.993 | 0.991 |
| 1.000 | 0.998 | 0.995 | 0.993 | 0.991 | 0.989 | 0.987 | 0.985 | 0.383 | 0.98  |
| 0.990 | 0.988 | 0.985 | 0.983 | 0.981 | 0.979 | 0.977 | 0.975 | 0.973 | 0.97  |

#### 3.—ANALYSIS OF HYDROCHLORIC ACID.

1. Estimation of HCl.—Measure off, by means of an accurate pipette, 10 c.c. of the acid, whose specific gravity should be known, dilute to 200 c.c., take out 10 c.c. and add sodium carbonate, free from chloride, till the reaction is neutral or faintly alkaline. This point will be hit quickly, and without the loss of many drops for testing, if the percentage of the acid is ascertained from its specific gravity by the table (p. 120) and the corresponding quantity of sodium carbonate solution is run in from a burette. Now add a little neutral potassium chromate, and titrate with decinormal silver solution till a faint pink colour has been produced. (Compare p. 116.) Deduct 0.2 c.c. from the silver solution employed; the remainder, multiplied by 73 and divided by the specific gravity of the acid, indicates its percentage of HCl.\*

2. Estimation of Sulphuric Acid.—Neutralize the acid almost, but not quite, with sodium carbonate free from sulphate, and precipitate the sulphuric acid by barium chloride, as in p. 93. If the acid be partially saturated with NH<sub>3</sub>, or not saturated at all, the result is too low. Each part of BaSO<sub>4</sub>

is equal to 0.34335 SO<sub>3</sub>.

3. Estimation of Iron.—Reduce this to protoxide by digesting the acid for a short time with a rod of zinc free from iron, wash the rod, dilute the whole with water, add some manganous chloride or sulphate (in order to counteract the action of HCl on permanganate), and titrate with a twentieth normal solution of potassium permanganate, each cubic centimetre of which indicates 0.0028 grm. Fe.

# 4.—BLEACHING POWDER AND CHLORATE OF POTASH MANUFACTURE.

## A.—NATURAL MANGANESE ORE.

1. Manganese Dioxide.—Weigh 1.0875 grm.† of manganese ore, ground as fine as possible, and dried some time at 100° C.; put it into the flask (Fig. 10), closed by an indiarubber (Bunsen) valve; add 75 c.c. (in three pipettesful at 25 c.c. each) of a solution containing 100 grms. pure crystallized ferrous sulphate and 100 c.c. pure concentrated sulphuric acid, diluted to one litre, and standardized on the same day by means of the same 25 c.c. pipette, with decinormal potassium permanganate. Close the flask by its indiarubber cork and valve, and heat till the manganese is completely decomposed, leaving a light-coloured residue. On cooling, the valve must act properly, which will be seen by the collapsing of the indiarubber tube. After complete cooling add 200 c.c. of water, and titrate with potassium permanganate to a faint pink coloration. Deduct the quantity of permanganate now required from that corresponding to the 75 c.c. of iron solution; the remainder indicates for each cubic centimetre 0.02175 grm., equal to 2 per cent. MnO<sub>2</sub>.

As a check upon the above process, the analysis may be performed by means of hydrogen peroxide in an acid solution, measuring the oxygen evolved in a Nitrometer or in the Gasvolumeter (p. 113), as described by

Lunge in S.C.I., 1890, p. 24.

<sup>\*</sup> This test would fail in the presence of metallic chlorides, which are, however, hardly ever present in appreciable quantity in ordinary hydrochloric acid. The free HCl can also be ascertained by estimating the total acidity and deducting therefrom that due to sulphuric acid, making allowance for any sodium sulphate present.
† This corresponds to the real equivalent of MnO2 equal to 43.5 (molecular weight 87).

2. Carbon Dioxide is estimated gravimetrically by expelling it with dilute sulphuric or nitric acid and absorbing it in soda-lime, by means of the apparatus and process described (p. 95).



Fig. 11.

3. Estimation of the Hydrochloric Acid required for Decomposing the Ore.—Dissolve 1 grm. of manganese ore in a flask provided with a reflux cooler in 10 c.c. of ordinary strong hydrochloric acid whose titre is known, employing heat as far as necessary. Allow the solution to cool, add standard alkali till reddish-brown flakes of ferric hydroxide appear, which do not redissolve on agitation. Calculate the standard alkali for the strength of acid employed for dissolving the ore, and deduct the quantity thus found from the 10 c.c. first employed.

# B.—RECOVERED MANGANESE MUD AND WELDON LIQUORS.

1. MnO, in Weldon Mud.—Standardize an acid iron solution (100 grms. pure crystallized ferrous sulphate + 100 c.c. pure concentrated sulphuric acid in 1 litre) with seminormal potassium permanganate (refer to Appendix), by diluting 25 c.c. of the former with 100 c.c. or 200 c.c. of cold water, and adding the permanganate from a glass-cock burette, till, on agitating, the pink colour is not discharged immediately, but remains at least for half a minute. Subsequent bleaching is not taken into account. This test should be made once each day. Call the cubic centimetres of permanganate employed x. Now, put again 25 c.c. of the iron solution into a beaker. Take 10 c.c. of manganese mud out of the well-shaken bottle (mere stirring does not ensure a proper mixture) containing it; wash the pipette outside, run its contents into the beaker containing the iron solution, and wash the mud remaining inside into the same beaker. When all has dissolved, on agitating, add 100 c.c. of water, and titrate with potassium permanganate. The number of cubic centimetres now used equals v. The quantity of MnO<sub>2</sub> in grammes per litre of mud equals 2.175 (x-y).

2. Total Manganese of the Mud, Expressed in Grammes of Theoretically Possible MnO<sub>2</sub> per Litre.—Take 10 c.c. of the mud, with the same precautions as in test No. 1. Boil with strong hydrochloric acid till all chlorine is driven off; saturate the excess of acid by ground marble or precipitated calcium carbonate; add a concentrated filtered solution of bleaching powder; boil a few minutes till the colour turns a strong pink, and the excess of bleaching powder can be smelled, and again destroy the pink by adding alcohol drop

by drop. All manganese is now present as MnO<sub>2</sub>; filter and wash this. The filtrate should not produce any brown colour with a bleaching-powder solution, which would prove the presence of Mn in solution. Continue the washing till starch and KJ do not give any reaction. Throw the filter with the precipitate into 25 c.c. of the acid iron solution employed in test No 1. If all MnO<sub>2</sub> is not dissolved, add another 25 c.c. of iron solution; dilute with 100 c.c. of water, and titrate with permanganate. Calculation

as in No. 1. 3. Estimation of the Base, i.e., the Monoxides, etc., of the Mud which absorb HCl without yielding Free Chlorine.—Dilute 25 c.c., or with a very high base 50 c.c., of normal oxalic acid (63 grms. crystallized oxalic acid in 1 litre) to 100 c.c.; heat to 60-80° C., add 10 c.c. manganese mud by means of a pipette, with the precautions stated in No. 1, and agitate till the colour of the precipitate is no longer yellowish but pure white, which ought to take place very soon at the above-named temperature. Dilute to 202 c.c. (2 c.c. correspend to the bulk of the precipitate, and are marked on the neck of the 200 c.c. flask); pour through a dry filter, and titrate 100 c.c. of the filtrate with standard alkali, employing litmus or corallin as indicator. (Methylorange is not applicable for oxalic acid.) Call the number of cubic centimetres of standard alkali z. The oxalic acid serves (1) for reducing the MnO<sub>2</sub> with formation of MnO and CO<sub>2</sub>; (2) for saturating the MnO thus formed; (3) for saturating the monoxides originally present, i.e., the base. The oxalic acid not thus employed is equal to 2z. The acid used for reducing MnO<sub>2</sub> is equal to that used for neutralizing the MnO formed, and both amounts together are equal to the number x-y obtained by the MnO<sub>2</sub> test, since the oxalic acid is normal and the permanganate half normal. The amount of oxalic acid consumed by the bases of the mud is found by deducting from the total acid used that required for the  $MnO_2$  (x-y), and that which was not neutralized at all by the mud—2z, therefore in all x-y-2z. The "base" is equal to the ratio of this expression to the item 1, viz.—

It is therefore, if 25 c.c. of oxalic acid had been employed, equal to

$$\frac{50-2x-4z+2y}{x-y} = \left(\frac{50-4z}{x-y}\right) - 2$$

or, if 50 cc. had been employed, equal to

 $\frac{x-y}{2}$ 

$$\left(\frac{100-4z}{x-y}\right)-2$$

## C.—LIMESTONE.

1. Insoluble.—Dissolve 1 grm. hydrochloric acid, filter the residue, wash, dry, and ignite. In the presence of appreciable quantities of organic substance weigh the filter after drying at 100°, and ignite afterwards. The

difference is taken as organic matter.

2. Lime.—Dissolve 1 grm. in 25 c.c. normal hydrochloric acid and titrate with normal alkali. Deduct the latter from 25 and multiply the remainder with 28 to find the percentage of CaO, or with 5 to find that of CaCO<sub>3</sub>· (N.B.—Here MgO is calculated as CaO. This is admissible for most limestones employed in alkali and bleaching powder making, because they contain but little MgO; otherwise the MgO or MgCO<sub>3</sub> found as in No. 3 has to be deducted.)

3. Magnesia needs to be estimated only in limestone serving for manganese recovery. Dissolve 2 grms. of limestone in HCl, precipitate the CaO with NH<sub>3</sub> and ammonium oxalate, and precipitate the magnesia in the filtrate hyperstandary of the contract of t

trate by sodium phosphate. (Compare p. 118.)

4. Iron is usually estimated only in limestone serving for bleaching powder making. Dissolve 2 grms. HCl, reduce by zinc, dilute, add some manganese solution free from iron, and titrate with permanganate. (Compare p. 114.)

D.—QUICKLIME.

1. Free CaO.—Weigh 100 grms. of an average sample carefully taken, slake it completely, put the milk into a half-litre flask, fill up to the mark, shake well, take 100 c.c. out, run it into a half-litre flask, fill up, mix well, and employ 25 c.c. of the contents, equal to 1 grm. quicklime, for the test. Titrate with normal oxalic acid and phenotphthalein as an indicator. The colour is changed when all free lime has been saturated and before the  ${\rm CaCO_3}$  is attacked.

2. Carbon Dioxide.—Titrate CaO and CaCO<sub>3</sub> together by dissolving in an excess of standard hydrochloric acid and titrating back with standard alkali. By deducting the CaO estimated as in No. 1 the quantity of CaCO<sub>3</sub> is obtained. For very accurate estimations the CO<sub>2</sub> is expelled by HCl, absorbed in soda-lime and weighed as described; or it is estimated by volume

in Lunge and Marchlewski's apparatus (p. 95).

#### Da.—SLAKED LIME.

1. Water.—Weigh about 1 grm. in a stoppered glass tube, and heat it gradually in a platinum crucible, at last to a strong red heat (compare p. 117); allow to cool in the exsiccator and weigh back. The loss of weight is equal to  $\rm H_2O + \rm CO_2$ .

Carbon Dioxide is estimated as above.

TABLE SHOWING AMOUNT OF LIME IN MILK OF LIME. (Calculated from Blattner.)

| Dogrees<br>Twaddell. | Grms. CaO<br>per litre. | Lb. CaO per<br>cubic foot. | Degrees<br>Twaddell. | Grms. CaO<br>per litre. | Lb. CaO per<br>cubic foot. |
|----------------------|-------------------------|----------------------------|----------------------|-------------------------|----------------------------|
| 2                    | 11.7                    | 0.7                        | 28                   | 177                     | 11.1                       |
| 4                    | 24.4                    | 1.5                        | 30                   | 190                     | 11.9                       |
| 2<br>4<br>6          | 37.1                    | 2.3                        | 32                   | 203                     | 12.7                       |
| 8                    | 49.8                    | 3.1                        | 34                   | 216                     | 13.5                       |
| 10                   | 62.5                    | 3.9                        | 36                   | 229                     | 14.3                       |
| 12                   | 75.2                    | 4.7                        | 38                   | 242                     | 15.1                       |
| 14                   | 87.9                    | 5.5                        | 40                   | 255                     | 15.9                       |
| 16                   | 100                     | 6.3                        | 42                   | 268                     | 16.7                       |
| 18                   | 113                     | 7.1                        | 44                   | 281                     | 17.6                       |
| 20                   | 126                     | 7.9                        | 46                   | 294                     | 18.4                       |
| 22                   | 138                     | 8.7                        | 48                   | 307                     | 19.2                       |
| 24                   | 152                     | 9.5                        | 50                   | 321                     | 20.0                       |
| 26                   | 164                     | 10.3                       | Curls with           |                         | TO HE HER                  |

#### E.—BLEACHING POWDER.

1. Available Chlorine.—Weigh 7.100 grms. of the sample, previously wellmixed; grind it with a little water in a porcelain mortar (whose lip has been greased a little at the lower side) till a completely homogeneous thin paste has been obtained; dilute with more water, wash the whole into a litre flask, fill up to the mark, and take for each test 50 c.c.=0355 grm. bleaching powder, having shaken up the flask immediately before. Run into the above, with continuous agitation, an alkaline decinormal arsenite solution, containing 4.95 grms. As<sub>2</sub>O<sub>3</sub> per litre (refer to Appendix) till the expected point is not very far off. Then place a drop of the mixture on to a piece of filtering paper, moistened with a starch solution containing iodine. If there is very much chlorine left, a brown spot will be produced; if less chlorine, the spot will be blue. According to the depth of this colour more or less arsenite solution is run in, and the above test is repeated till the paper is coloured hardly perceptibly, or not at all. Each cubic centimetre of the arsenite solution indicates 1 per cent. available chlorine. (For sampling of bleach refer to Appendix.)

Another very accurate method, requiring no standard liquid, consists in decomposing the bleaching powder by hydrogen peroxide in a Nitrometer or Gasvolumeter (Lunge, S.C.I., 1890, 22).

2. Comparison of the Percentage of Bleaching Powder with the French (Gay-Lussac) Degrees.—The latter are understood to mean the number of litres of chlorine gas at 0° C. and 760 mm. pressure, which could be given off by 1 kilogramme of bleaching powder. The oxygen given off in the hydrogen peroxide method (compare last paragraph) shows this directly.

| *                  | ,                      |                    | . 0                    | · /                |                        |                    |                        |
|--------------------|------------------------|--------------------|------------------------|--------------------|------------------------|--------------------|------------------------|
| French<br>Degrees. | Per cent.<br>Chlorine. |
| -                  |                        |                    | 07.40                  |                    | 20.00                  | 110                | 05.04                  |
| 63                 | 20.02                  | 80                 | 25.42                  | 97                 | 30.82                  | 113                | 35.91                  |
| 64                 | 20.34                  | 81                 | 25.74                  | 98                 | 31.14                  | 114                | 36.22                  |
| 65                 | 20.65                  | 82                 | 26.06                  | 99                 | 31.46                  | 115                | 36.54                  |
| 66                 | 20.97                  | 83                 | 26.37                  | 100                | 31.78                  | 116                | 36.86                  |
| 67                 | 21.29                  | 84                 | 26.69                  | 101                | 32.09                  | 117                | 37.18                  |
| 68                 | 21.61                  | 85                 | 27.01                  | 102                | 32.41                  | 118                | 37.50                  |
| 69                 | 21.93                  | 86                 | 27.33                  | 103                | 32.73                  | 119                | 37.81                  |
| 70                 | 22.24                  | 87                 | 27.65                  | 104                | 33.05                  | 120                | 38.13                  |
| 71                 | 22.56                  | 88                 | 27.96                  | 105                | 33.36                  | 121                | 38.45                  |
| 72 .               | 22.88                  | 89                 | 28.28                  | 106                | 33.68                  | 122                | 38.77                  |
| 73                 | 23.20                  | 90                 | 28.60                  | 107                | 34.00                  | 123                | 39.08                  |
| 74                 | 23.51                  | 91                 | 28.92                  | 108                | 34.32                  | 124                | 39.40                  |
| 75                 | 23.83                  | 92                 | 29.23                  | 109                | 34.64                  | 125                | 39.72                  |
| 76                 | 24.15                  | 93                 | 29.55                  | 110                | 34.95                  | 126                | 40.04                  |
| 77                 | 24.47                  | 94                 | 29.87                  | 111                | 35.27                  | 127                | 40.36                  |
| 78                 | 24.79                  | 95                 | 30.19                  | 112                | 35.59                  | 128                | 40.67                  |
| 79                 | 25.10                  | 96                 | 30.51                  |                    | , 00 00                |                    |                        |
| 10                 | 2010                   | •,,0               | 00 01                  |                    |                        |                    | 1 1 1 1 1              |
|                    |                        |                    |                        |                    |                        |                    |                        |

### F.—DEACON PROCESS.

Aspirate 5 litres of gas, issuing from the decomposer, placing the apparatus as closely to the outlet of the decomposer as possible, and absorb the hydrochloric acid and chlorine in a solution of caustic soda of 15°Tw., of which about 250 c.c. are distributed into two or three absorbing bottles. The time of absorption ought to agree with the time occupied by the charge in the saltcake pan. Unite the contents of the several bottles and dilute to

500 c.c.

1. Take 100 c.c. of this solution, and add it gradually to 25 c.c. of an iron solution (prepared and standardized as directed on page 122) in a flask represented by Fig. 11 (page 123), and heat to boiling. Allow to cool, dilute with 200 c.c. of water, and titrate with semi-normal permanganate solution. Say it required y c.c. Suppose that when standardizing the iron solution

25 c.c. of iron solution required x c.c.

2. Take 10 c.c. of the solution to be tested, add thereto some solution of sulphurous acid, acidify with dilute sulphuric acid. If it does not smell of sulphurous acid, add a little more. Heat to boiling. When cool, add, if necessary, a few drops of permanganate to oxidize any sulphurous acid in excess. Neutralize with pure carbonate of soda, dilute with water, and after adding a few drops potassium chromate, titrate with decinormal silver solution. Suppose it consumes z c.c. of silver solution. Then

$$\frac{50x-y}{z}$$

is the percentage of hydrochloric acid decomposed, and

$$\frac{42\cdot 5 + \frac{x-y}{8}}{2}$$

equals the amount of air present for every volume of hydrochloric acid. If any other volume l of gas instead of 5 litres be employed, the constant  $42^{\circ}5$  changes into

 $\frac{l \times 1.55}{50 \times 0.00365}$ 

assuming that the other directions are strictly followed, and that 1 litre of hydrochloric acid weighs 1.55 grm. at  $50^\circ$  C. and 760 mm. pressure.

### G.-CHLORATE OF POTASH.

1. Chlorate Liquors contain calcium chlorate and chloride, but these are

calculated as potassium salts for the sake of convenience.

(a) Chlorate is estimated both in order to check the work and to calculate the necessary addition of KCl. Measure 2 c.c of liquor in an exact pipette, run it into the flask (Fig. 11, p. 123), add a little hot water and one drop of alcohol, boil (without the valve) till all smell of chlorine and the pink colour have disappeared, allow to cool, add 25 c.c. of the strongly acid ferrous sulphate solution (mentioned p. 122, and requiring a c.c. of seminormal permanganate), close the flask with its valve, and boil for 10 minutes. After cooling, titrate with seminormal permanganate. The number of cubic centimetres required to produce a faint pink=b. The liquor then contains calcium chlorate equivalent to 5·105 (a-b) grms. KClO<sub>3</sub> per litre, and it will theoretically require an amount of 3·105 (a-b) grms. of pure KCl per litre. (b) Chloride is estimated in order to check the work, and therefore calcu-

(b) Chloride is estimated in order to check the work, and therefore calculated as KCl, although present as CaCl<sub>2</sub>. Treat 1 c.c. of liquor as above, to destroy the free chlorine and pink colour, allow to cool, add a little neutral potassium chromate, and titrate with decinormal silver nitrate (as described p. 116). Each cubic centimetre of the latter indicates chloride equivalent

to 7.45 grms. KCl per litre,

2. Commercial Chlorate of Potash is only tested for any chlorides calculated as KCl. As their quantity is very slight, it is advisable to dissolve 50 grms, of the salt in water absolutely free from chlorine, and to test with decinormal silver nitrate, as in the last number. Each cubic centimetre of this=0.00745 grm, KCl=0.015 per cent. KCl.

### 5.—SODA-ASH MANUFACTURE.

#### A.—RAW MATERIALS.

1. SALTCAKE.—(Refer to p. 117.)

2. LIMESTONE OF CHALK, for mixing.

(a) Insoluble.—(Refer to p. 124.)

(b) Lime (+MgO).—(p. 124.)

(c) Magnesia (only in limestones containing much of it).—(p. 125.)

3. Mixing Coal (slack).

(a) Moisture.—(p. 85.) (b) Fixed Carbon.—(p. 85.)

(c) Ashes (p. 85.)—In the case of unknown descriptions of coal it is not sufficient to estimate the total percentage of ashes, but the latter should be analyzed, and silica, alumina, and ferric oxide estimated according to the

rules of the analysis of silicates.

(d) Sulphur.—Mix 0.5 grm. to 1 grm. of finely-ground coal with 1½ times the weight of an intimate mixture of two parts well-calcined magnesia and 1 part anhydrous sodium carbonate. This is done by means of a glass rod in a platinum crucible, which is heated without cover, and in a slanting position, so that only its lower half attains red heat, preferably in the perforated asbestos slab (p. 85). The combustion should be assisted by frequent stirring with a platinum wire, and should last hardly longer than an hour, the grey colour of the mixture passing over into yellow, reddish, or brown. Pour hot water over the mass, add bromine-water till the liquid is faintly yellow; boil, decant through a filter, and wash with hot water. Acidulate the filtrate with HCl, boil till all bromine is removed and the liquor has been decolorized, and precipitate with barium chloride (as described p. 94). If the magnesia or sodium carbonate employed contains sulphates, these must be estimated and taken into account. If the gas for burning contains much sulphur, it is best to employ a spirit lamp; but the perforated asbestos slab, as recommended above, will nearly always suffice for keeping away the products of combustion of the gas from the contents of the crucible, and thus admit of employing ordinary illuminating gas and a Bunsen burner.

(e) Nitrogen is estimated by igniting with soda-lime and receiving the ammonia formed in standard sulphuric acid, according to the rules of or-

ganic elementary analysis.

### B.—BLACK-ASH.

Digest 50 grms. of the finely powdered average sample with 480 c.c. of water at 45° C., which had been previously freed from CO<sub>2</sub> and O by boiling and cooling down in a corked bottle. This will produce 500 c.c. of liquid. Shake at once and afterwards frequently, at least during two hours. The following tests are made partly with the muddy mixture, partly with the clear portion; but the former ones must be made to begin with.

I. Tests made with the Muddy Mixture.—Each time before taking out a sample, the flask is thoroughly shaken up, and, before the deposit settles

again, a sample is taken by means of a 5 c.c. pipette, with a short and somewhat wide outlet (to prevent obstruction by the mud). The mud outwardly adhering is washed off, the contents of the pipette are run out into a beaker, and the mud adhering to the inside of the pipette is washed into the same beaker.

1. Free Lime (or its equivalent of sodium hydrate) is found by adding to 5 c.c. of the mixture an excess of barium chloride solution, as well as a drop of phenolphthalein solution and titrating with 4-normal oxalic acid, till the red colour has just vanished. Each c.c. of the acid=0.0056 CaO.

2. Total Lime.—5 c.c. of the muddy mixture are put into a flask, a few c.c. of concentrated hydrochloric acid are added, and the whole is boiled till all the gases have been expelled. Cool down a little, add a drop of methylorange solution, and neutralize exactly with sodium carbonate, i.e., till the red colour has just gone. Now add 30 c.c. of 1-normal sodium carbonate solution, exactly measured, and heat to boiling, to precipitate all the lime as CaCO<sub>3</sub> (together with any ferric oxide, alumina and magnesia, whose quantity is too insignificant to be regarded for this test). Wash the whole into a 200 c.c. flask, fill up to the mark, take 100 c.c. of the clear liquid, and titrate back with 1-normal hydrochloric acid. Deduct the c.c. used ×2 from 30; the difference  $\times 0.0056 = \text{total lime}$ , or  $\times 0.0100 = \text{calcium carbonate}$ .

(N.B.—These tests cannot be expected to give any very accurate results, owing to the almost insurmountable difficulty of obtaining a real average sample of black-ash ball. This, however, applies to all tests made with black-ash.)

II. TESTS MADE WITH THE CLEAR PORTION.—After having made all the tests described sub I., allow the mixture to settle down in the well-corked flask, and take samples of the supernatant clear liquid for the following

1. 10 c.c. (=1 grm. black-ash) is titrated cold with hydrochloric acid and methyl-orange. This indicates the total available alkali, i.e., Na2CO3, NaOH, and Na<sub>2</sub>S. (The small quantity of alumina and silica present causes no appreciable error.) By deducting the quantities found in tests Nos. 2 and 3 the quantity of sodium carbonate is found, viz., 0.053 grm. for each cubic centimetre of normal HCl. It is, however, expressed, like all other sodium compounds, in terms of Na2O, by multiplying each cubic centimetre of normal acid by 0.031.

2. Caustic Soda is estimated by adding to 20 c.c. of liquor, contained in a 100 c.c. flask, an excess of barium chloride (10 c.c. of a 10 per cent. solution of BaCl<sub>2</sub>, 2H<sub>2</sub>O will always more than suffice for this), adding boiling water up to the mark, shaking up, and corking the flask. After a few minutes the precipitate is settled. Take out 50 c.c. of the clear portion, without filtering,\* and titrate with normal hydrochloric acid. When employing methyl-orange as indicator, the liquid must be cooled first. According to Cl. Winkler, the separation of the barium carbonate is unnecessary when oxalic acid is employed as the standard acid. In this case litmus or, better, phenol-phthalein must be employed as indicator. Each cubic centimetre of the standard acid indicates 0.040 grm. of NaOH in 1 grm. of black-ash= 0.031 Na<sub>2</sub>O, but sodium sulphide is here included as well.

3. Sodium Sulphide.—Dilute 10 c.c. of liquor to about 200 c.c., employing water freed from oxygen by boiling, acidulate with acetic acid, and titrate quickly with iodine solution, using starch as an indicator. When employing a decinormal iodine solution (12.7 grms. I per litre), each cubic centimetre indicates  $0.0039~\mathrm{Na_2S}~(=0.0031~\mathrm{Na_2O})$ . A solution containing  $3.2566~\mathrm{grms}$ . I per litre would indicate  $0.001~\mathrm{grm}$ . Na<sub>2</sub>S per cubic centimetre. In the former case the number of cubic centimetres of decinormal solution divided by 10 can be deducted at once from the acid employed in test No. 1, whereby the sulphide is eliminated from the alkali test. Other sulphur compounds (except sulphate) need not be taken account of in fresh black-ash.

- 4. Sodium Chloride.—Neutralize 10 c.c. of the liquor as accurately as possible with nitric acid, preferably by adding exactly as many cubic centimetres of standard nitric acid (63 grms,  $\rm NO_3$  H per litre) as had been employed in test No. 1. Boil till all  $\rm H_2S$  has been expelled, filter from any sulphur precipitated, add a little neutral potassium chromate, and titrate with silver solution (as described page 117). Each cubic centimetre of decinormal silver solution indicates 0.00585 grm, NaCl. A solution containing 2.906 grms, AgNO<sub>3</sub> per litre shows 0.001 grm, NaCl per cubic centimetre.
- 5. Sodium Sulphate.—Acidulate 10 c.c. with a very slight excess of HCl, boil, add barium chloride, filter, wash, and ignite the precipitated BaSO<sub>4</sub>. Since the quantity is very small, it can be washed with hot water on the filter itself, which is then placed in the moist state in a platinum crucible and ignited. Each part of BaSO<sub>4</sub>=0·6094 Na<sub>2</sub>SO<sub>4</sub>.

6. Prepare an average sample of all batches by pouring a certain quantity of the liquor belonging to each batch into a common vessel; carbonate this by passing CO<sub>2</sub> through its filter, evaporate the filtrate to dryness, and estimate in the residue Na<sub>2</sub>CO<sub>3</sub>, Na<sub>2</sub>SO<sub>4</sub>, and NaCl.

## C.—TANK WASTE (VAT WASTE).

Take a large, really representative average sample, which should be kept protected from air, and of which 50 grms. should be weighed out quickly and in the moist state. Drying in contact with air would considerably change its composition. Moist tank waste may be assumed, without any great error, to contain 40 per cent. of water. Digest the above 50 grms. waste with 490 c.c. water of 40° C., which will yield 500 c.c. of liquid.

- 1. Available Soda (Na<sub>2</sub>CO<sub>3</sub>, or Na<sub>2</sub>S).—Take 100 c.c. of the liquor, pass into it a current of well-washed carbon dioxide, heat the liquid to boiling, bring up the volume again to 100 c.c., pour through a dry filter, and titrate 50 c.c. of the clear portion with decinormal hydrochloric acid, of which each c.c. will indicate 0.0031 grm. Na<sub>2</sub>O, or, in this case, 0.062 per cent. Na<sub>2</sub>O of the moist waste.
- 2. Total Soda (inclusive of Insoluble Sodium Salts).—Heat 17.7 grms.\* tank waste in a porcelain or iron dish with sulphuric acid of specific gravity 1.5, till all has been decomposed and converted into a stiff paste, evaporate to dryness, heat till all free sulphuric acid has been driven off, add hot water, scrape out the mass, and put it into a 250 c.c. cylinder. Neutralize any free acid left, and precipitate any magnesia present by adding some pure milk

<sup>\*</sup> This amount is correct, not 18 6grms., as a calculation would seem to show, because an allowance must be made for the bulk of the insoluble residue in the measuring vessels.

of lime (obtained from ordinary slacked lime by pouring off the first water, which may contain some alkali), fill up to the mark, allow to settle, take out 50 c.c. of the clear liquor, add 10 c.c. of saturated baryta water, pour the mixture through a dry filter, take 50 c.c. of the filtrate, precipitate all baryta by passing through the liquid  $\rm CO_2$  and boiling, filter, and titrate the filtrate with decinormal hydrochloric acid. Each cubic centimetre of this will indicate 0.1 per cent. of  $\rm Na_2O$  in the waste, taking into account its bulk.

8. Total and Oxidizable Sulphur.—Boil 2 grms. of the waste with hydrochloric acid, filter, wash with dilute HCl, neutralize the filtrate almost completely by adding sodium carbonate, precipitate with barium chloride, filter, wash, and ignite the barium sulphate. From this is calculated the sulphur present as sulphate (a). Another sample of 2 grms, waste is oxidized by a strong bleaching powder solution and hydrochloric acid, or by a solution of bromine in strong hydrochloric acid. When a strong smell of chlorine is felt, all S is oxidized to sulphuric acid. Filter and estimate the  $SO_4H_2$  in the filtrate. This indicates the total sulphur (b). The difference b-a is the oxidizable sulphur, i.e., the theoretically recoverable maximum of sulphur in the waste.

### D.—TANK LIQUOR (VAT LIQUOR)

Is tested while hot, or else it is kept at about 40° C., to prevent crystallization. Take out only small samples (2 to 5 c.c.) with an accurate pipette. This greatly furthers the work.

- 1. Sodium Carbonate.—Titrate 2 c.c. with standard hydrochloric acid. When employing methyl-orange as indicator, first add some cold water. From the cubic centimetres found deduct those found in test No. 2 and one-tenth of that in test No. 3.
  - 2. Sodium Hydrate (estimated as on page 129).
- 3. Sodium Sulphide is estimated by decinormal iodine solution (as on page 129). The error caused by other sulphur compounds is hardly appreciable, and for practical purposes of no consequence. In any case this test must be made in order to rectify test No. 1.
  - 4. Sodium Sulphate (as on page 130).
- 5. Total Sulphur.—Oxidize the liquor with bleaching powder and hydrochloric acid (as described C3, page 131), and precipitate by barium chloride.
  - 6. Sodium Chloride (as page 130).
- 7. Sodium Ferrocyanide.—Acidulate 20 c.c. of liquor (or more) with HCl, and add strong bleaching-powder solution from a burette, constantly agitating. From time to time mix a drop of the mixture on a white slab with a drop of dilute ferric chloride solution, free from ferrous chloride. When no more Prussian blue is formed, but the mixture of both drops turns brown, all is oxidized, hence also all ferrocyanide is turned into ferricyanide. A drop of bleach solution in excess does no harm, but if too much excess has been used, or if too much liquor has been lost by taking out test drops, a fresh sample is taken out, which can this time be oxidized by running the requisite quantity of bleach liquor from the burette without losing much by making the drop-tests. This process gives quicker and more accurate results than adding an excess of bleach and driving out the chlorine by heating, in which case some ferricyanide may be decomposed. The oxidized liquor is

titrated with decinormal copper solution, containing 3:175 grms. Cu or 12:475 grms. crystallized cupric sulphate per litre, which precipitates yellow Cu<sub>3</sub>Fe<sub>3</sub>Cy<sub>12</sub>. From time to time test a drop of the liquid by bringing it together on a porcelain slab with a drop of a dilute ferrous sulphate solution. So long as a blue colour is produced by the action of FeSO<sub>4</sub> on Na<sub>6</sub>Fe<sub>2</sub>Cy<sub>12</sub> more copper solution is added, till the test on the slab turns no more blue or grey, but reddish. Now no more Na<sub>6</sub>Fe<sub>2</sub>Cy<sub>12</sub> is present, and the FeSO<sub>4</sub> on the slab now reduces the yellow copper ferricyanide to red ferrocyanide. The first sensible reddening must be taken as the final reaction, although it vanishes after a short time. According to theory each cubic centimetre of the copper solution ought to indicate 0.01013 grm. Na<sub>4</sub>FeCy<sub>6</sub>; but recent experiments (Chemische Industrie 1882, p. 79) have shown this not to be the case. Too little copper solution is employed, and each cubic centimetre of this must therefore be put equal to 0.0123 grm. Na<sub>4</sub>FeCy<sub>6</sub>, or, still better, the copper solution must be standardized by pure potassium ferrocyanide.

8. Silica, Alumina, and Ferric oxide (Parnell).—Supersaturate 100 c.c. of liquor with HCl, boil, add a large quantity of ammonium chloride and ammonia in excess, and boil till all smell of NH3 has ceased. The precipitate settles easily, and can be well washed. On washing with hot water it turns intensely blue (by the formation of prussian blue?); on igniting it leaves SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, and Fe<sub>2</sub>O<sub>3</sub>.

9. A large sample of the liquor is carbonated by passing CO<sub>2</sub> through it; it is then filtered, evaporated to dryness, and the residue tested for available alkali, Na<sub>2</sub>SO<sub>4</sub> and NaCl.

### E.—CARBONATED LIQUORS

Are tested in all respects like D. Bicarbonate is estimated by the following method, which is also applicable to testing the bicarbonate of commerce. Put 20 c.c. of liquor (or more if necessary) into a 100 c.c. flask, add 10 c.c. of seminormal ammonia (8.5 grms. NH3 per litre, absolutely free from CO2) and an excess of barium chloride; fill up to the mark with cold water, cork the flask well, allow to settle, take 50 c.c. of the clear liquid, and titrate with standard hydrochloric acid, of which x c.c. is used. The formula: 11 (10-x)then indicates the milligrammes of CO<sub>2</sub> present in the liquor as bicarbonate. If the ammonia is not exactly seminormal, the figure 11 must be replaced by another corresponding to the milligrammes of CO2 per cubic centimetre of the ammonia; and 10 must be replaced by the number of cubic centimetres of ammonia required for neutralizing 5 c.c. of normal HCl. In order to compare the CO<sub>2</sub> present as bicarbonate with the total CO<sub>2</sub>, a fresh sample of the liquor is titrated with normal hydrochloric acid and methyl-orange at the ordinary temperature. The number of cubic centimetres used, multiplied by 22, indicates the milligrammes of CO2 present as monocarbonate. The latter item added to the former yields the total CO<sub>2</sub>.

The following formula admits of calculating the proportion of Na<sub>2</sub>CO<sub>3</sub> and NaHCO<sub>3</sub> in a mixture containing both, if we know the amount of available Na<sub>2</sub>O=a, and the total CO<sub>2</sub>=b. There is present:

 $Na_2O$  in the state of  $Na_2CO_3=2a-1.409b$  $Na_2O$  in the state of  $NaHCO_3 = a$  less the above.

The total CO2 present may also be estimated by the method of Lunge & Marchlewski (Zeitsch. f. angew. Chem., 1891, p. 229).

F.—TABLES.

# 1.—SPECIFIC GRAVITIES OF SOLUTIONS OF SODIUM CARBONATE AT 60° F=15°C.\*

| Twaddell.        | Percentage                          | by weight. | 1 cubic f         | oot of solution c               | ontains   |
|------------------|-------------------------------------|------------|-------------------|---------------------------------|-----------|
| I waddell.       | Na <sub>2</sub> O Na <sub>2</sub> O |            | Na <sub>2</sub> O | Na <sub>2</sub> CO <sub>3</sub> | 48% ash.† |
| 1                | 0.28                                | 0.47       | 0.172             | 0.294                           | 0.358     |
| 2                | 0.56                                | 0.95       | 0.350             | 0.598                           | 0.728     |
| 2<br>3<br>4<br>5 | 0.84                                | 1.42       | 0.525             | 0.898                           | 1.094     |
| 4                | 1.11                                | 1.90       | 0.707             | 1.209                           | 1.473     |
| 5                | 1.39                                | 2.38       | 0.889             | 1.521                           | 1.853     |
| 6                | 1.67                                | 2.85       | 1.070             | 1.830                           | 2.230     |
| 7                | 1.95                                | 3.33       | 1.257             | 2.149                           | 2.618     |
| 6<br>7<br>8<br>9 | 2.22                                | 3.80       | 1.441             | 2.464                           | 3.002     |
|                  | 2.50                                | 4.28       | 1.631             | 2.788                           | 3.397     |
| 10               | 2.78                                | 4.76       | 1.852             | 3.116                           | 3.797     |
| 11               | 3.06                                | 5.23       | 2.012             | 3.440                           | 4.192     |
| 12               | 3.34                                | 5.71       | 2.206             | 3.772                           | 4.596     |
| 13               | 3.61                                | 6.17       | 2.396             | 4.097                           | 4.992     |
| 14               | 3.88                                | 6.64       | 2.591             | 4.430                           | 5.397     |
| 15               | 4.16                                | 7.10       | 2.783             | 4.759                           | 5.799     |
| 16               | 4.42                                | 7.57       | 2.981             | 5.098                           | 6.211     |
| 17               | 4.70                                | 8.04       | 3.181             | 5.439                           | 6.627     |
| 18               | 4.97                                | 8.51       | 3.382             | 5.783                           | 7.046     |
| 19               | 5.24                                | 8.97       | 3.582             | 6.125                           | 7.462     |
| 20               | 5.52                                | 9.43       | 3.783             | 6.468                           | 7.880     |
| 21               | 5.79                                | 9.90       | 3.989             | 6.821                           | 8.311     |
| 22               | 6.06                                | 10.37      | 4.197             | 7.177                           | 8.745     |
| 23               | 6.33                                | 10.83      | 4.403             | 7.529                           | 9.174     |
| 24               | 6.61                                | 11.30      | 4.615             | 7.891                           | 9.613     |
| 25               | 6.88                                | 11.76      | 4.825             | 8.249                           | 10.050    |
| 26               | 7.15                                | 12.23      | 5.040             | 8.617                           | 10.500    |
| 27               | 7.42                                | 12.70      | 5.256             | 8.988                           | 10.951    |
| 28               | 7.70                                | 13.16      | 5.465             | 9.354                           | 11.396    |
| 29               | 7.97                                | 13.63      | 5.691             | 9.731                           | 11.857    |
| 30               | 8.24                                | 14.09      | 5.908             | 10.103                          | 12.310    |

<sup>\*</sup> OBSERVATION.—Special experiments have shown that the tables 1 and 2 indicate with sufficient accuracy, not merely the percentage of solutions of pure sodium carbonate, but also that of the dry residue in ordinary tank liquors.
† Equivalent to 31.

### F.—TABLES.

# 2a.—SPECIFIC GRAVITIES OF CONCENTRATED SOLUTIONS OF SODIUM CARBONATE AT 86° F. (30° C.).

| Twaddell. | Percentage        | by weight.                      | L                 | b. per cubic foo                | t.        |
|-----------|-------------------|---------------------------------|-------------------|---------------------------------|-----------|
| I wadden. | Na <sub>2</sub> O | Na <sub>2</sub> CO <sub>3</sub> | Na <sub>2</sub> O | Na <sub>2</sub> CO <sub>3</sub> | 48°/, ash |
| 28        | 7.97              | 13.62                           | 5.662             | 9.681                           | 11.80     |
| 29        | 8.21              | 14.04                           | 5.86              | 10.02                           | 12.12     |
| 30        | 8.46              | 14.47                           | 6.06              | 10.37                           | 12.64     |
| 31 -      | 8.71              | 14.89                           | 6.27              | 10.72                           | 13.06     |
| 32        | 8.96              | 15.32                           | 6.48              | 11.08                           | 13.50     |
| 33        | 9.21              | 15.74                           | 6.69              | 11.43                           | 13.93     |
| 34        | 9.46              | 16.18                           | 6.91              | 11.81                           | 14.39     |
| 35        | 9.71              | 16.60                           | 7.11              | 12.16                           | 14.82     |
| 36        | 9.96              | 17.04                           | 7.33              | 12.53                           | 15.27     |
| 37        | 10.21             | 17.46                           | 7.54              | 12.90                           | 15.72     |
| 38        | 10.46             | 17:89                           | 7.76              | 13.27                           | 16.17     |
| 39        | 10.71             | 18.32                           | 7.98              | 13.65                           | 16.63     |
| 40        | 10.97             | 18.75                           | 8.21              | 14.03                           | 17.10     |
| 41        | 11.22             | 19.18                           | 8.42              | 14.40                           | 17.55     |
| 42        | 11.47             | 19.61                           | 8.65              | 14.79                           | 18.03     |
| 43        | 11.72             | 20.04                           | 8.88              | 15.18                           | 18.50     |
| 44        | 11.97             | 20.47                           | 9.11              | 15.57                           | 18.97     |
| 45        | 12.23             | 20.90                           | 9.34              | 15.96                           | 19.45     |
| 46        | 12.48             | 21.33                           | 9.56              | 16.35                           | 19.92     |
| 47        | 12.73             | 21.77                           | 9.80              | 16.76                           | 20.42     |
| 48        | 12.98             | 22.20                           | 10.03             | 17.16                           | 20.91     |
| 49        | 13.24             | 22.63                           | 10.27             | 17.57                           | 21.41     |
| 50        | 13.49             | 23.07                           | 10.52             | 17.98                           | 21.91     |
| 51        | 13.74             | 23.50                           | 10.76             | 18.39                           | 22.41     |
| 52        | 14.00             | 23.93                           | 11.00             | 18.80                           | 22.91     |
| 53        | 14.24             | 24.35                           | 11.25             | 19.20                           | 23.40     |
| 54        | 14.49             | 24.77                           | 11.47             | 19.61                           | 23.90     |
| 55        | 14.73             | 25.19                           | 11.72             | 20.03                           | 24.41     |
| 56        | 14.98             | 25.61                           | 11.95             | 20.44                           | 24.91     |
| 57        | 15.22             | 26.03                           | 12.20             | 20.86                           | 25.42     |
| 58        | 15.47             | 26.45                           | 12.45             | 21.28                           | 25.93     |
| 59        | 15.72             | 26.87                           | 12.69             | 21.69                           | 26.43     |
| 60        | 15.96             | 27.29                           | 12.94             | 22.12                           | 26.95     |
| 61        | 16.20             | 27.71                           | 13.18             | 22.54                           | 27-47     |
| 62        | 16.45             | 28.13                           | 13.44             | 22.97                           | 27.99     |

# 2B.—PERCENTAGE OF CONCENTRATED SOLUTIONS OF SODIUM CARBONATE, MEASURED AT 30° C.—86° F.\*

| Specific Degrees   |           | 100lb.                          | contain lb.                              | 1 litre cont                    | tains Grms.                                 |
|--------------------|-----------|---------------------------------|------------------------------------------|---------------------------------|---------------------------------------------|
| Gravity<br>at 30°. | Twaddell. | Na <sub>3</sub> CO <sub>3</sub> | Na <sub>2</sub> CO <sub>3</sub> , 10 aq. | Na <sub>2</sub> CO <sub>3</sub> | Na <sub>2</sub> CO <sub>3</sub> ,<br>10 aq. |
| 1.310              | 62        | 28.13                           | 75.91                                    | 368.5                           | 994.5                                       |
| 1.300              | 60        | 27:30                           | 73.67                                    | 354.9                           | 957.4                                       |
| 1.290              | 58        | 26.46                           | 71.40                                    | 341.3                           | 921.0                                       |
| 1.280              | 56        | 25.62                           | 69.11                                    | 327.9                           | 884.7                                       |
| 1.270              | 54        | 24.78                           | 66.86                                    | 314.7                           | 849.2                                       |
| 1.260              | 52        | 23.93                           | 64.59                                    | 301.5                           | 813.2                                       |
| 1.250              | 50        | 23.08                           | 62.15                                    | 288.5                           | 778.5                                       |
| 1.240              | 48        | 22.21                           | 59.94                                    | 275.4                           | 743.0                                       |
| 1.230              | 46        | 21.33                           | 57.55                                    | 262.3                           | 707.8                                       |
| 1.220              | 44        | 20.47                           | 55.29                                    | 249.7                           | 673.8                                       |
| 1.210              | 42        | 19.61                           | 52.91                                    | 237.3                           | 640.3                                       |
| 1.200              | 40        | 18.76                           | 50.62                                    | 225.1                           | 607.4                                       |
| 1.190              | 38        | 17.90                           | 48.31                                    | 214.0                           | 577.5                                       |
| 1.180              | 36        | 17.04                           | 45.97                                    | 201.1                           | 542.6                                       |
| 1.170              | 34        | 16.18                           | 43.38                                    | 189.3                           | 510.9                                       |
| 1.160              | 32        | 15.32                           | 41.34                                    | 177.7                           | 479.5                                       |
| 1.150              | 30        | 14.47                           | 39.04                                    | 164.4                           | 449.0                                       |
| 1.140              | 28        | 13.62                           | 36.75                                    | 155.3                           | 419.0                                       |

<sup>\*</sup> This temperature has been exceptionally selected for tables 2A and 2B, because the more concentrated liquors cannot exist as such at 15°C.

136

# S.—INFLUENCE OF TEMPERATURE ON THE SPECIFIC GRAVITIES OF SOLUTIONS OF SODIUM CARBONATE.

| 0° C. | 5°    | 10°   | 15°   | 20°   | 25°   | 30°   | 35°   | <b>4</b> 0° | 45°   | 50°   |
|-------|-------|-------|-------|-------|-------|-------|-------|-------------|-------|-------|
|       | _     | _     | _     | _     |       | 1.285 | 1.282 | 1.279       | 1.276 | 1.273 |
| -     | -     |       |       |       | _     | 1.274 | 1.271 | 1.267       | 1.265 | 1.262 |
|       | _     |       | -     |       | _     | 1.263 | 1.260 | 1.257       | 1.254 | 1.251 |
| -     |       | _     | _     | -     |       | 1.252 | 1.250 | 1.247       | 1.244 | 1.240 |
|       |       |       | -     | _     | -     | 1.241 | 1.239 | 1.236       | 1.233 | 1.230 |
| -     | _     |       | 1.240 | 1.238 | 1.236 | 1.234 | 1.232 | 1.230       | 1.227 | 1.224 |
| _     |       |       | 1.230 | 1.228 | 1.225 | 1.223 | 1.221 | 1.219       | 1.216 | 1.213 |
| _     |       |       | 1.220 | 1.218 | 1.215 | 1.213 | 1.210 | 1.208       | 1.205 | 1.201 |
| _     |       |       | 1.210 | 1.208 | 1.206 | 1.204 | 1.201 | 1.199       | 1.196 | 1.192 |
| _     | _     | _     | 1.200 | 1.198 | 1.196 | 1.194 | 1.192 | 1.189       | 1.186 | 1.183 |
| 1.198 | 1.195 | 1.193 | 1.190 | 1.188 | 1.186 | 1.184 | 1.182 | 1.179       | 1.176 | 1.173 |
| 1.188 | 1.185 | 1.183 | 1.180 | 1.178 | 1.176 | 1.174 | 1.172 | 1.169       | 1.166 | 1.163 |
| 1.177 | 1.174 | 1.172 | 1.170 | 1.168 | 1.166 | 1.164 | 1.162 | 1.160       | 1.157 | 1.154 |
| 1.166 | 1.164 | 1.162 | 1.160 | 1.158 | 1.156 | 1.154 | 1.152 | 1.150       | 1.148 | 1.145 |
| 1.156 | 1.154 | 1.152 | 1.150 | 1.148 | 1.146 | 1.144 | 1.142 | 1.139       | 1.136 | 1.134 |
| 1.146 | 1.144 | 1.142 | 1.140 | 1.138 | 1.136 | 1.134 | 1.132 | 1.129       | 1.126 | 1.123 |
| 1.136 | 1.134 | 1.132 | 1.130 | 1.128 | 1.126 | 1.124 | 1.122 | 1.120       | 1.117 | 1.114 |
| 1.126 | 1.124 | 1.122 | 1.120 | 1.118 | 1.116 | 1.114 | 1.112 | 1.110       | 1.107 | 1.104 |
| 1.116 | 1.114 | 1.112 | 1.110 | 1.108 | 1.106 | 1.104 | 1.102 | 1.100       | 1.098 | 1.095 |
| 1.106 | 1.104 | 1.102 | 1.100 | 1.098 | 1.096 | 1.094 | 1.092 | 1.090       | 1.088 | 1.085 |
| 1.096 | 1.094 | 1.092 | 1.090 | 1.088 | 1.086 | 1.084 | 1.082 | 1.080       | 1.078 | 1.075 |
| 1.086 | 1.084 | 1.082 | 1.080 | 1.078 | 1.076 | 1.074 | 1.072 | 1.070       | 1.068 | 1.065 |
| 1.075 | 1.073 | 1.071 | 1.070 | 1.069 | 1.067 | 1.065 | 1.063 | 1.061       | 1.059 | 1.056 |
| 1.064 | 1.063 | 1.061 | 1.060 | 1.059 | 1.057 | 1.056 | 1.054 | 1.052       | 1.050 | 1.047 |
| 1.053 | 1.052 | 1.051 | 1.050 | 1.049 | 1.048 | 1.046 | 1.044 | 1.042       | 1.040 | 1.037 |
| 1.043 | 1.042 | 1.041 | 1.040 | 1.039 | 1.038 | 1.036 | 1.034 | 1.032       | 1.030 | 1.027 |
| 1.033 | 1.032 | 1.031 | 1.030 | 1.029 | 1.028 | 1.026 | 1.024 | 1.022       | 1.020 | 1.017 |
| 1.023 | 1.022 | 1.021 | 1.020 | 1.019 | 1.018 | 1.016 | 1.014 | 1.012       | 1.010 | 1.007 |
| 1.013 | 1.012 | 1.011 | 1.010 | 1.009 | 1.008 | 1.006 | 1.004 | 1.002       | 1.000 | 0.997 |
| ,     |       |       |       |       |       |       |       |             |       |       |

3.—INFLUENCE OF TEMPERATURE ON THE SPECIFIC GRAVITIES OF SOLUTIONS OF SODIUM CARBONATE.—Continued.

| 55°            | 60°   | 65°   | 70°   | 75°   | 80°   | 85°   | 90°   | 95°   | 100°  |
|----------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 1.270          | 1.267 | 1.264 | 1.260 | 1.256 | 1.252 | 1.247 | 1.243 | 1.238 | 1.234 |
| 1.259          | 1.256 | 1.253 | 1.249 | 1.244 | 1.240 | 1.236 | 1.232 | 1.228 | 1.224 |
| 1.248          | 1.245 | 1.241 | 1.237 | 1.233 | 1.229 | 1.226 | 1.222 | 1.218 | 1.215 |
| 1.237          | 1.234 | 1.230 | 1.227 | 1.224 | 1.220 | 1.217 | 1.213 | 1.210 | 1.206 |
| 1.226          | 1.223 | 1.220 | 1.216 | 1.213 | 1.210 | 1.207 | 1.204 | 1.200 | 1.197 |
| 1.220          | 1.217 | 1.213 | 1.210 | 1.206 | 1.203 | 1.199 | 1.195 | 1.191 | 1.188 |
| 1.209          | 1.206 | 1.202 | 1.199 | 1.195 | 1.192 | 1.188 | 1.184 | 1.181 | 1.178 |
| 1.198          | 1.194 | 1.191 | 1.188 | 1.184 | 1.181 | 1.178 | 1.174 | 1.171 | 1.168 |
| 1.189          | 1.185 | 1.182 | 1.178 | 1.175 | 1.172 | 1.168 | 1.165 | 1.162 | 1.159 |
| <b>1</b> ·179  | 1.176 | 1.172 | 1.168 | 1.165 | 1.162 | 1.158 | 1.155 | 1.152 | 1.149 |
| 1.169          | 1.666 | 1.163 | 1.159 | 1.156 | 1.153 | 1.149 | 1.146 | 1.143 | 1.140 |
| 1.160          | 1.156 | 1.153 | 1.150 | 1.147 | 1.144 | 1.140 | 1.137 | 1.134 | 1.131 |
| 1.151          | 1.147 | 1.144 | 1.141 | 1.138 | 1.135 | 1.131 | 1.128 | 1.125 | 1.122 |
| 1.142          | 1.139 | 1.136 | 1.133 | 1.130 | 1.126 | 1.123 | 1.120 | 1.117 | 1.114 |
| 1.131          | 1.128 | 1.125 | 1.122 | 1.119 | 1.116 | 1.113 | 1.110 | 1.107 | 1.104 |
| 1.120          | 1.118 | 1.115 | 1.112 | 1.109 | 1.106 | 1.103 | 1.100 | 1.097 | 1.094 |
| 1.111          | 1.108 | 1.105 | 1.102 | 1.099 | 1.096 | 1.093 | 1.090 | 1.087 | 1.084 |
| 1.101          | 1.098 | 1.095 | 1.092 | 1.089 | 1.086 | 1.083 | 1.080 | 1.077 | 1.074 |
| 1.092          | 1.089 | 1.086 | 1.083 | 1.080 | 1.077 | 1.074 | 1.071 | 1.068 | 1.065 |
| 1.082          | 1.079 | 1.076 | 1.073 | 1.070 | 1.067 | 1.064 | 1.061 | 1.058 | 1.055 |
| 1.072          | 1.070 | 1.067 | 1.064 | 1.061 | 1.058 | 1.055 | 1.052 | 1.049 | 1.046 |
| 1.062          | 1.060 | 1.057 | 1.054 | 1.052 | 1.049 | 1.046 | 1.043 | 1.040 | 1.038 |
| 1.053          | 1.051 | 1.048 | 1.045 | 1.043 | 1.040 | 1.037 | 1.034 | 1.032 | 1.029 |
| 1.044          | 1.041 | 1.038 | 1.036 | 1.032 | 1.030 | 1.028 | 1.025 | 1.023 | 1.020 |
| 1.034          | 1.032 | 1.029 | 1.027 | 1.024 | 1.021 | 1.019 | 1.016 | 1.014 | 1.011 |
| 1.004          | 1.022 | 1.019 | 1.017 | 1.015 | 1.012 | 1.010 | 1.007 | 1.005 | 1.003 |
| 1·024<br>1·014 | 1.012 | 1.019 | 1.017 | 1.005 | 1.002 | 1.000 | 0.997 | 0.995 | 0.993 |
| 1.004          | 1.002 | 0.999 | 0.997 | 0.995 | 0.992 | 0.990 | 0.987 | 0.985 | 0.983 |
| 0.994          | 0.992 | 0.989 | 0.997 | 0.985 | 0.982 | 0.980 | 0.977 | 0.975 | 0.973 |
| 0.994          | 0.992 | 0.909 | 0.901 | 0 909 | 0 304 | 0 300 | 0311  | 0313  | 0010  |
|                | 1     | -     | 1     |       |       |       |       |       |       |

### G.-ANALYSIS OF COMMERCIAL SODA-ASH.

When merely the available alkali (alkalimetrical degree) has to be ascertained, it is convenient to weigh out 15.5 grms., to dissolve in a 500 c.c. flask, and to take for each test 50 c.c. (in Germany, without filtering; in England, sometimes with, sometimes without). In this case each cubic centimetre of standard acid indicates 0.031 grm. Na<sub>2</sub>O, or just 2 per cent. of available alkali (Na<sub>2</sub>O). The standard acid is normal hydrochloric acid, containing 36.5 grms. HCl per litre, and standardized both with pure sodium carbonate and with silver nitrate. (Refer to Appendix.) The indicator is either litmus (in which case the liquor has to be boiled for some time) or more conveniently methyl-orange (which is used with cold liquors).

For a complete analysis of commercial soda-ash 50 grms, are dissolved in

warm water.

1. The Insoluble Residue is filtered and washed, the filtrate and washings are diluted up to 1 litre, and the following tests are made with this liquor.

2. Sodium Carbonate is found by titrating 20 c.c. (equal to 1 grm. of soda-ash) with normal HCl, deducting the amount of No. 3. That of No. 4 is

always too small to take notice of in this case.

3. Sodium Hydrate is estimated by barium chloride, according to page 129.
4. Sodium Sulphide.—100 c.c. (equal to 5 grms. of ash) are titrated with ammoniacal silver nitrate (refer to Appendix), containing 13:345 grms. Ag per litre, and indicating 0:005 grm. Na<sub>2</sub>S per cubic centimetre. Heat the soda liquor to boiling, add ammonia, and run in the silver solution from a burette, divided in ½ c.c., till no further black precipitate of Ag<sub>2</sub>S is produced. In order to observe this more accurately the liquid is filtered towards the end of the operation, and the titration is continued if necessary. This filtration is several times repeated. Each cubic centimetre of silver solution indicates 0:1 per cent. of Na<sub>2</sub>S in the alkali.

5. Sodium Sulphite.—Acidulate 100 c.c (equal to 5 grms. soda-ash) with acetic acid, add starch solution, and titrate with iodine till a blue colour appears. A decinormal iodine solution shows 0.0063 grm. Na<sub>2</sub>SO<sub>3</sub> per cubic centimetre (in this case 0.126 per cent.). The solution mentioned on page 130 of 3.256 grms. iodine per litre shows 0.001615 grm. Na<sub>2</sub>SO<sub>3</sub> (in this case 0.0323 per cent.). From this should be deducted the amount corresponding to test No. 4; 1 c.c. of the silver solution can be put equal to 1.3 c.c. of the

decinormal or equal to 5.0 c.c of the weaker iodine solution.

6. Sodium Sulphate.—Acidulate 20 c.c. of the liquor (equal to 1 grm. soda-ash) with hydrochloric acid, precipitate with barium chloride, as on page 94, and weigh the BaSO<sub>4</sub>, of which 1.000 part is equal to 0.6094 part Na<sub>2</sub>SO<sub>4</sub>.

7. Sodium Chloride.—Neutralize 20 c.c. (equal to 1 grm. soda-ash) exactly with nitric acid, preferably by adding exactly as many cubic centimetres normal nitric acid from a burette as had been used in test No. 1; then add neutral potassium chromate, and titrate with decinormal silver nitrate as described on page 117. Each cubic centimetre of this shows 0 00585 grm. NaCl.

8. Iron.—Neutralize 100 c.c. (equal to 5 grms. soda-ash) with sulphuric acid free from iron, reduce by zinc free from iron (p. 114), and titrate with 1-20th normal potassium permanganate, of which each cubic centimetre

shows 0.0028 grm. Fe, or in this case 0.056 per cent. Fe.

9.—Table for Comparing French, German, and English Commercial Alkalimetrical Degrees.—The French or Descroizilles degrees mean the quantity of real sulphuric acid, SO<sub>4</sub>H<sub>2</sub>, neutralized by 100 parts of soda-ash. The German degrees express the available alkali in terms of sodium carbonate, Na<sub>2</sub>CO<sub>3</sub>. In England some works invoice in real per cent. of soda, Na<sub>2</sub>O, as

found in the first column of the following tables. The Newcastle test is based on the equivalent 32 for Na<sub>2</sub>O, or 59-25 degrees for pure Na<sub>2</sub>CO<sub>3</sub> and invoices fractions of degrees.

# FRENCH, GERMAN, AND ENGLISH COMMERCIAL ALKALIMETRICAL DEGREES.

|                                   |                                                      | MII                        | LIMICAL         | DEGTE                             | 2120.                                                | 11 12 3                    | Chy C              |
|-----------------------------------|------------------------------------------------------|----------------------------|-----------------|-----------------------------------|------------------------------------------------------|----------------------------|--------------------|
| Real<br>Soda<br>Na <sub>2</sub> O | German<br>degrees<br>Na <sub>2</sub> CO <sub>3</sub> | New-<br>castle<br>degrees. | French degrees. | Real<br>Soda<br>Na <sub>2</sub> O | German<br>degrees<br>Na <sub>2</sub> CO <sub>3</sub> | New-<br>castle<br>degrees. | French<br>degrees. |
| 0·5                               | 0·85                                                 | 0·51                       | 0·79            | 18                                | 30·78                                                | 18·23                      | 28·45              |
| 1                                 | 1·71                                                 | 1·01                       | 1·58            | 18·5                              | 31·63                                                | 18·74                      | 29·24              |
| 1·5                               | 2·56                                                 | 1·52                       | 2·37            | 19                                | 32·49                                                | 19·25                      | 30·03              |
| 2                                 | 3·42                                                 | 2·03                       | 3·16            | 19·5                              | 33·34                                                | 19·76                      | 30·82              |
| 2·5                               | 4·27                                                 | 2·54                       | 3·95            | 20                                | 34·20                                                | 20·26                      | 31·61              |
| 3                                 | 5·13                                                 | 3·04                       | 4·74            | 20·5                              | 35·05                                                | 20·77                      | 32·40              |
| 3·5                               | 5·98                                                 | 3·55                       | 5·53            | 21                                | 35·91                                                | 21·27                      | 33·19              |
| 4                                 | 6·84                                                 | 4·05                       | 6·32            | 21·5                              | 36·76                                                | 21·78                      | 33·98              |
| 4·5                               | 7·69                                                 | 4·56                       | 7·11            | 22                                | 37·62                                                | 22·29                      | 34·77              |
| 5                                 | 8·55                                                 | 5·06                       | 7·90            | 22·5                              | 38·47                                                | 22·80                      | 35·56              |
| 5·5                               | 9·40                                                 | 5·57                       | 8·69            | 23                                | 39·33                                                | 23·30                      | 36·35              |
| 6                                 | 10·26                                                | 6·08                       | 9·48            | 23·5                              | 40·18                                                | 23·81                      | 37·14              |
| 6·5                               | 11·11                                                | 6·59                       | 10·27           | 24                                | 41·04                                                | 24·31                      | 37·93              |
| 7                                 | 11·97                                                | 7·09                       | 11·06           | 24·5                              | 41·89                                                | 24·82                      | 38·72              |
| 7·5                               | 12·82                                                | 7·60                       | 11·85           | 25                                | 42·75                                                | 25·32                      | 39·51              |
| 8                                 | 13·68                                                | 8·10                       | 12·64           | 25·5                              | 43·60                                                | 25.83                      | 40·30              |
| 8·5                               | 14·53                                                | 8·61                       | 13·43           | 26                                | 44·46                                                | 26.34                      | 41·09              |
| 9                                 | 15·39                                                | 9·12                       | 14·22           | 26·5                              | 45·31                                                | 26.85                      | 41·88              |
| 9·5                               | 16·24                                                | 9·63                       | 15·01           | 27                                | 46·17                                                | 27.35                      | 42·67              |
| 10                                | 17·10                                                | 10·13                      | 15·81           | 27·5                              | 47·02                                                | 27.86                      | 43·46              |
| 10·5                              | 17.95                                                | 10·64                      | 16·60           | 28                                | 47.88                                                | 28·36                      | 44·25              |
| 11                                | 18.81                                                | 11·14                      | 17·39           | 28·5                              | 48.73                                                | 28·37                      | 45·04              |
| 11·5                              | 19.66                                                | 11·65                      | 18·18           | 29                                | 49.59                                                | 29·38                      | 45·83              |
| 12                                | 20.52                                                | 12·17                      | 18·97           | 29·5                              | 50.44                                                | 29·89                      | 46·62              |
| 12·5                              | 21.37                                                | 12·68                      | 19·76           | 30                                | 51.29                                                | 30·39                      | 47·42              |
| 13                                | 22·23                                                | 13·17                      | 20·55           | 30·5                              | 52·14                                                | 30·90                      | 48·21              |
| 13·5                              | 23·08                                                | 13·68                      | 21·34           | 31                                | 53·00                                                | 31·41                      | 49·00              |
| 14                                | 23·94                                                | 14·18                      | 22·13           | 31·5                              | 53·85                                                | 31·91                      | 49·79              |
| 14·5                              | 24·79                                                | 14·69                      | 22·92           | 32                                | 54·71                                                | 32·42                      | 50·88              |
| 15                                | 25·65                                                | 15·19                      | 23·71           | 32·5                              | 55·56                                                | 32·92                      | 51·37              |
| 15·5                              | 26·50                                                | 15·70                      | 24·50           | 33                                | 56·42                                                | 33·43                      | 52·16              |
| 16                                | 27·36                                                | 16·21                      | 25·29           | 33·5                              | 57·27                                                | 33·94                      | 52·95              |
| 16·5                              | 28·21                                                | 16·73                      | 26·08           | 34                                | 58·13                                                | 34·44                      | 53·74              |
| 17                                | 29·07                                                | 17·22                      | 26·87           | 34·5                              | 58·98                                                | 34·95                      | 54·53              |
| 17·5                              | 29·92                                                | 17·73                      | 27·66           | 35                                | 59·84                                                | 35·46                      | 55·32              |
|                                   |                                                      |                            |                 |                                   |                                                      |                            | -                  |

FRENCH, GERMAN, AND ENGLISH COMMERCIAL ALKALI-METRICAL DEGREES.—Continued.

| Real<br>Soda<br>Na <sub>2</sub> O | German<br>degrees<br>Na <sub>2</sub> CO <sub>3</sub> | New-<br>castle<br>degrees. | French degrees. | Real<br>Soda<br>Na <sub>2</sub> O | German<br>degrees<br>Na <sub>2</sub> CO <sub>3</sub> | New-<br>castle<br>degrees. | French degrees. |
|-----------------------------------|------------------------------------------------------|----------------------------|-----------------|-----------------------------------|------------------------------------------------------|----------------------------|-----------------|
| 35·5                              | 60·69                                                | 35·96                      | 56·11           | 53                                | 90·61                                                | 53·70                      | 83·77           |
| 36                                | 61·55                                                | 36·47                      | 56·90           | 53·5                              | 91·47                                                | 54·20                      | 84 56           |
| 36·5                              | 62·40                                                | 36·98                      | 57·69           | 54                                | 92·32                                                | 54·71                      | 85·35           |
| 37                                | 63·26                                                | 37·48                      | 58·48           | 54·5                              | 93·18                                                | 55·22                      | 86·14           |
| 37·5                              | 64·11                                                | 37·98                      | 59·27           | 55                                | 94·03                                                | 55·72                      | 86·93           |
| 38                                | 64·97                                                | 38·50                      | 60·06           | 55·5                              | 94·89                                                | 56·23                      | 87·72           |
| 38·5                              | 65·82                                                | 39·00                      | 60·85           | 56                                | 95·74                                                | 56·74                      | 88·52           |
| 39                                | 66·68                                                | 39·51                      | 61·64           | 56·5                              | 96·60                                                | 57·24                      | 89·31           |
| 39·5                              | 67·53                                                | 40·02                      | 62·43           | 57                                | 97·45                                                | 57·75                      | 90·10           |
| 40                                | 68·39                                                | 40·52                      | 63·22           | 57·5                              | 98·31                                                | 58·26                      | 90·89           |
| 40·5                              | 69·24                                                | 41·03                      | 64·01           | 58                                | 99·16                                                | 58·76                      | 91.68           |
| 41                                | 70·10                                                | 41·54                      | 64·81           | 58·5                              | 100·02                                               | 59·27                      | 92.47           |
| 41·5                              | 70·95                                                | 42·04                      | 65·60           | 59                                | 100·87                                               | 59·77                      | 93.26           |
| 42                                | 71·81                                                | 42·55                      | 66·39           | 59·5                              | 101·73                                               | 60·28                      | 94.05           |
| 42·5                              | 72·66                                                | 43·06                      | 67·18           | 60                                | 102·58                                               | 60·79                      | 94.84           |
| 43                                | 73·52                                                | 43·57                      | 67·97           | 60·5                              | 103·44                                               | 61·30                      | 95·63           |
| 43·5                              | 74·37                                                | 44·07                      | 68·76           | 61                                | 104·30                                               | 61·80                      | 96·42           |
| 44                                | 75·23                                                | 44·58                      | 69·55           | 61·5                              | 105·15                                               | 62·31                      | 97·21           |
| 44·5                              | 76·08                                                | 45·08                      | 70·34           | 62                                | 106·01                                               | 62·82                      | 98·00           |
| 45                                | 76·94                                                | 45·69                      | 71·13           | 62·5                              | 106·86                                               | 63·32                      | 98·79           |
| 45·5                              | 77:80                                                | 46·10                      | 71·92           | 63                                | 107·72                                               | 63·83                      | 99.58           |
| 46                                | 78:66                                                | 46·60                      | 72·71           | 63·5                              | 108·57                                               | 64·33                      | 100.37          |
| 46·5                              | 79:51                                                | 47·11                      | 73·50           | 64                                | 109·43                                               | 64·84                      | 101.16          |
| 47                                | 80:37                                                | 47·62                      | 74·29           | 64·5                              | 110·28                                               | 65·35                      | 101.95          |
| 47·5                              | 81:22                                                | 48·12                      | 75·08           | 65                                | 111·14                                               | 65·85                      | 102.74          |
| 48                                | 82·07                                                | 48·63                      | 75·87           | 65·5                              | 111·99                                               | 66·36                      | 103·53          |
| 48·5                              | 82·93                                                | 49·14                      | 76·66           | 66                                | 112·85                                               | 66·87                      | 104·32          |
| 49                                | 83·78                                                | 49·64                      | 77·45           | 66·5                              | 113·70                                               | 67·37                      | 105·11          |
| 49·5                              | 84·64                                                | 50·15                      | 78·24           | 67                                | 114·56                                               | 67·88                      | 105·90          |
| 50                                | 85·48                                                | 50·66                      | 79·03           | 67·5                              | 115·41                                               | 68·39                      | 106·69          |
| 50·5                              | 86·34                                                | 51·16                      | 79·82           | 68                                | 116·27                                               | 68·89                      | 107·48          |
| 51                                | 87·19                                                | 51·67                      | 80·61           | 68·5                              | 117·12                                               | 69·40                      | 108·27          |
| 51·5                              | 88·05                                                | 52·18                      | 81·40           | 69                                | 117·98                                               | 69·91                      | 109·06          |
| 52                                | 88·90                                                | 52·68                      | 82·19           | 69·5                              | 118·83                                               | 70·41                      | 109·85          |
| 52·5                              | 89·76                                                | 53·19                      | 82·98           | 70                                | 119·69                                               | 70·92                      | 110·64          |

### FRENCH, GERMAN, AND ENGLISH COMMERCIAL ALKALI-METRICAL DEGREES.—Continued.

| Real<br>Soda<br>Na <sub>2</sub> O | German<br>degrees<br>Na <sub>2</sub> CO <sub>3</sub> | New-<br>castle<br>degrees.                | French degrees.                                | Real<br>Soda<br>Na <sub>2</sub> O | German<br>degrees<br>Na <sub>2</sub> CO <sub>3</sub> | New-<br>castle<br>degrees.                | French degrees.                                |
|-----------------------------------|------------------------------------------------------|-------------------------------------------|------------------------------------------------|-----------------------------------|------------------------------------------------------|-------------------------------------------|------------------------------------------------|
| 70·5<br>71<br>71·5<br>72<br>72·5  | 120·53<br>121·39<br>122·24<br>123·10<br>123·95       | 71·43<br>71·93<br>72·44<br>72·95<br>73·45 | 111·43<br>112·23<br>113·02<br>113·81<br>114·60 | 75·5<br>76<br>76·5<br>77<br>77·5  | 129·08<br>129·94<br>130·79<br>131·65<br>132·50       | 76·49<br>77·00<br>77·51<br>78·01<br>78·52 | 119·34<br>120·13<br>120·92<br>121·71<br>122·50 |
| 73 .<br>73·5<br>74<br>74·5<br>75  | 124·81<br>125·66<br>126·52<br>127·37<br>128·23       | 73·96<br>74·47<br>74·97<br>75·48<br>75·99 | 115·39<br>116·18<br>116·97<br>117·76<br>118·55 |                                   |                                                      |                                           |                                                |

# H — CAUSTIC SODA.

### 1.—CAUSTIC LIQUOR.

(a) Test for available alkali and sodium carbonate (as described p. 138). An exact estimation of CO<sub>2</sub>, which is rarely necessary in this case, could be made by expelling it with dilute sulphuric acid, and absorbing it in soda lime (p. 95).

# (b) SPECIFIC GRAVITIES OF SOLUTIONS OF SODIUM HYDRATE (60° F.—15° C.).

| dell.     | Grms.                        | Lbs.               | per cubi    | e foot.      | Twaddell. | Grms.                               | Lbs.               | per cubi    | e foot.      |
|-----------|------------------------------|--------------------|-------------|--------------|-----------|-------------------------------------|--------------------|-------------|--------------|
| Twaddell, | litre.<br>Na <sub>2</sub> O. | Na <sub>2</sub> O. | 48%<br>ash. | 60% caustic. |           | per<br>litre.<br>Na <sub>2</sub> O. | Na <sub>2</sub> O. | 48%<br>ash. | 60% caustic. |
| 1         | 3·7                          | ·23                | ·49         | *39          | 11        | 41·6                                | 2·59               | 5·41        | 4·32         |
| 2         | 7·5                          | ·47                | ·98         | *78          | 12        | 45·5                                | 2·83               | 5·91        | 4·73         |
| 3         | 11·3                         | ·70                | 1·47        | 1·17         | 13        | 49·4                                | 3·08               | 6·41        | 5·13         |
| 4         | 15·1                         | ·94                | 1·96        | 1·56         | 14        | 58·2                                | 3·32               | 6·92        | 5·53         |
| 5         | 18·8                         | 1·17               | 2·45        | 1·96         | 15        | 57·1                                | 3·56               | 7·42        | 5·94         |
| 6         | 22·6                         | 1·41               | 2:94        | 2·35         | 16        | 61·0                                | 3·80               | 7.93        | 6·34         |
| 7         | 26·4                         | 1·64               | 3:43        | 2·74         | 17        | 64·9                                | 4·04               | 8.43        | 6·74         |
| 8         | 30·2                         | 1·88               | 3:92        | 3·13         | 18        | 68·8                                | 4·29               | 8.93        | 7·15         |
| 9         | 33 9                         | 2·11               | 4:41        | 3·53         | 19        | 72·7                                | 4·53               | 9.44        | 7·55         |
| 10        | 37·7                         | 2·35               | 4:90        | 3·92         | 20        | 76·5                                | 4·77               | 9.94        | 7·95         |

142

# (b) SPECIFIC GRAVITIES OF SOLUTIONS OF SODIUM HYDRATE (60° F.—15° C.).— Continued.

| dell.    | Grms.                               | Lbs.               | per cubi    | c foot.         | dell.    | Grms.                               | Lbs.               | per cubi    | c foot.         |
|----------|-------------------------------------|--------------------|-------------|-----------------|----------|-------------------------------------|--------------------|-------------|-----------------|
| Twaddell | per<br>litre.<br>Na <sub>2</sub> O. | Na <sub>2</sub> O. | 48%<br>ash. | 60%<br>caustic. | Twaddell | per<br>litre.<br>Na <sub>2</sub> O. | Na <sub>2</sub> O. | 48%<br>ash. | 60%<br>caustic. |
| 21       | 80·4                                | 5·01               | 10·45       | 8·36            | 61       | 279·3                               | 17·41              | 36·28       | 29·02           |
| 22       | 84·3                                | 5·25               | 10·95       | 8·76            | 62       | 285·4                               | 17·79              | 37·07       | 29·66           |
| 23       | 88·2                                | 5·50               | 11·46       | 9·16            | 63       | 291·5                               | 18·18              | 37·87       | 30·29           |
| 24       | 92·1                                | 5·74               | 11·96       | 9·57            | 64       | 297·7                               | 18·56              | 38·67       | 30·93           |
| 25       | 96·0                                | 5·98               | 12·46       | 9·97            | 65       | 303·8                               | 18·94              | 39·46       | 31·57           |
| 26       | 100·5                               | 6·26               | 13·05       | 10·44           | 66       | 309·9                               | 19·32              | 40·26       | 32·20           |
| 27       | 105·0                               | 6·55               | 13·64       | 10·91           | 67       | 316·0                               | 19·70              | 41·05       | 32·84           |
| 28       | 109·6                               | 6·83               | 14·23       | 11·38           | 68       | 322·2                               | 20·08              | 41·85       | 33·47           |
| 29       | 114·1                               | 7·11               | 14·82       | 11·86           | 69       | 328·3                               | 20·47              | 42·64       | 34·11           |
| 30       | 118·6                               | 7·39               | 15·41       | 12·33           | 70       | 334·4                               | 20·85              | 43·44       | 34·75           |
| 31       | 123·2                               | 7.68               | 16·00       | 12·80           | 71       | 340·8                               | 21·25              | 44·27       | 35·41           |
| 32       | 127·7                               | 7.96               | 16·59       | 13·27           | 72       | 347·2                               | 21·65              | 45·10       | 36·08           |
| 33       | 132·2                               | 8.24               | 17·18       | 13·74           | 78       | 353·6                               | 22·05              | 45·94       | 36·75           |
| 34       | 136·8                               | 8.53               | 17·77       | 14·21           | 74       | 360·1                               | 22·45              | 46·77       | 37·41           |
| 35       | 141·3                               | 8.81               | 18·36       | 14·68           | 75       | 366·5                               | 22·85              | 47·60       | 38·08           |
| 36       | 145·8                               | 9·09               | 18·94       | 15·15           | 76       | 372·9                               | 23·25              | 48·44       | 38·75           |
| 87       | 150·4                               | 9·37               | 19·53       | 15·63           | 77       | 379·8                               | 23·65              | 49·27       | 39·41           |
| 38       | 154·9                               | 9·66               | 20·12       | 16·10           | 78       | 385·7                               | 24·05              | 50·10       | 40·08           |
| 89       | 159·4                               | 9·94               | 20·71       | 16·57           | 79       | 392·1                               | 24·45              | 50·94       | 40·75           |
| 40       | 164·0                               | 10·22              | 21·30       | 17·04           | 80       | 398·5                               | 24·85              | 51·77       | 41·41           |
| 41       | 169·4                               | 10·56              | 22·00       | 17·60           | 81       | 405·2                               | 25·26              | 52·63       | 42·10           |
| 42       | 174·7                               | 10·89              | 22·70       | 18·16           | 82       | 411·8                               | 25·67              | 53·49       | 42·79           |
| 43       | 180·1                               | 11·23              | 23·40       | 18·72           | 83       | 418·4                               | 26·08              | 54·34       | 43·47           |
| 44       | 185·5                               | 11·56              | 24·10       | 19·28           | 84       | 425·0                               | 26·50              | 55·20       | 44·16           |
| 45       | 190·9                               | 11·90              | 24·80       | 19·84           | 85       | 431·6                               | 26·91              | 56·06       | 44·85           |
| 46       | 196·3                               | 12·24              | 25·50       | 20·40           | 86       | 438·2                               | 27·32              | 56·92       | 45·53           |
| 47       | 201·7                               | 12·57              | 26·20       | 20·96           | 87       | 444·8                               | 27·73              | 57·78       | 46·22           |
| 48       | 207·0                               | 12·91              | 26·89       | 21·51           | 88       | 451·4                               | 28·14              | 58·63       | 46·91           |
| 49       | 212·4                               | 13·24              | 27·59       | 22·07           | 89       | 458·0                               | 28·56              | 59·49       | 47·59           |
| 50       | 217·8                               | 13·58              | 28·29       | 22·63           | 90       | 464·6                               | 28·97              | 60·35       | 48·28           |
| 51       | 223·4                               | 13·92              | 29·01       | 23·21           | 91       | 472·3                               | 29·44              | 61·34       | 49·07           |
| 52       | 228·9                               | 14·27              | 29·73       | 23·78           | 92       | 479·9                               | 29·92              | 62·53       | 49·86           |
| 53       | 234·4                               | 14·61              | 30·45       | 24·36           | 93       | 487·6                               | 30·39              | 63·32       | 50·65           |
| 54       | 240·0                               | 14·96              | 31·17       | 24·93           | 94       | 495·3                               | 30·87              | 64·31       | 51·44           |
| 55       | 245·5                               | 15·31              | 31·89       | 25·51           | 95       | 502·9                               | 31·34              | 65·29       | 52·23           |
| 56       | 251·0                               | 15·65              | 32·61       | 26·08           | 96       | 510·6                               | 31·82              | 66·28       | 53·02           |
| 57       | 256·6                               | 16·00              | 33·33       | 26·66           | 97       | 518·2                               | 32·29              | 67·27       | 53·81           |
| 58       | 262·1                               | 16·34              | 34·05       | 27·24           | 98       | 525·9                               | 32·76              | 68·26       | 54·60           |
| 59       | 267·6                               | 16·69              | 34·77       | 27·81           | 99       | 533·6                               | 33·28              | 69·25       | 55·40           |
| 60       | 273·2                               | 17·03              | 35·48       | 28·39           | 100      | 541·2                               | 33·75              | 70·30       | 56·24           |

# (c) INFLUENCE OF TEMPERATURE ON THE SPECIFIC GRAVITIES OF SOLUTIONS OF CAUSTIC SODA.

| 0° C. | 5°    | 10°   | 15°   | 20°   | 25°   | 30°   | 35°   | 40°   | 45°   | 50°   |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 1·367 | 1·364 | 1·362 | 1·360 | 1·357 | 1·355 | 1·353 | 1·350 | 1·348 | 1·345 | 1:342 |
| 1·357 | 1·354 | 1·352 | 1·350 | 1·347 | 1·345 | 1·343 | 1·340 | 1·337 | 1·335 | 1:332 |
| 1·347 | 1·344 | 1·342 | 1·340 | 1·338 | 1·335 | 1·333 | 1·330 | 1·327 | 1·325 | 1:322 |
| 1·338 | 1·335 | 1·332 | 1·330 | 1·328 | 1·325 | 1·323 | 1·320 | 1·317 | 1·315 | 1:312 |
| 1·328 | 1·325 | 1·322 | 1·320 | 1·318 | 1·315 | 1·313 | 1·310 | 1·307 | 1·305 | 1:302 |
| 1·318 | 1·315 | 1·313 | 1·310 | 1·308 | 1·305 | 1·303 | 1·300 | 1·297 | 1·294 | 1·292 |
| 1·308 | 1·305 | 1·303 | 1·300 | 1·297 | 1·294 | 1·292 | 1·289 | 1·287 | 1·284 | 1·282 |
| 1·298 | 1·295 | 1·293 | 1·290 | 1·287 | 1·284 | 1·282 | 1·279 | 1·277 | 1·274 | 1·272 |
| 1·288 | 1·285 | 1·283 | 1·280 | 1·277 | 1·274 | 1·272 | 1·269 | 1·267 | 1·264 | 1·262 |
| 1·278 | 1·275 | 1·273 | 1·270 | 1·267 | 1·265 | 1·262 | 1·260 | 1·258 | 1·255 | 1·252 |
| 1·268 | 1·265 | 1·263 | 1·260 | 1·257 | 1·255 | 1·252 | 1·250 | 1·248 | 1·245 | 1·242 |
| 1·257 | 1·255 | 1·252 | 1·250 | 1·247 | 1·245 | 1·242 | 1·240 | 1·238 | 1·235 | 1·233 |
| 1·247 | 1·245 | 1·242 | 1·240 | 1·237 | 1·235 | 1·232 | 1·230 | 1·228 | 1·225 | 1·223 |
| 1·237 | 1·235 | 1·232 | 1·230 | 1·227 | 1·224 | 1·222 | 1·220 | 1·218 | 1·215 | 1·212 |
| 1·227 | 1·225 | 1·222 | 1·220 | 1·217 | 1·214 | 1·212 | 1·210 | 1·208 | 1·205 | 1·202 |
| 1·217 | 1·215 | 1·212 | 1·210 | 1·207 | 1·204 | 1·203 | 1·200 | 1·198 | 1·196 | 1·192 |
| 1·207 | 1·205 | 1·202 | 1·200 | 1·197 | 1·195 | 1·193 | 1·190 | 1·188 | 1·186 | 1·184 |
| 1·197 | 1·195 | 1·192 | 1·190 | 1·187 | 1·185 | 1·183 | 1·180 | 1·178 | 1·176 | 1·174 |
| 1·187 | 1·185 | 1·182 | 1·180 | 1·177 | 1·175 | 1·173 | 1·170 | 1·168 | 1·166 | 1·164 |
| 1·176 | 1·174 | 1·172 | 1·170 | 1·167 | 1·165 | 1·163 | 1·161 | 1·158 | 1·156 | 1·154 |
| 1·166 | 1·164 | 1.162 | 1:160 | 1·157 | 1·155 | 1·153 | 1·151 | 1·148 | 1·146 | 1·144 |
| 1·156 | 1·154 | 1.152 | 1:150 | 1·148 | 1·146 | 1·144 | 1·142 | 1·140 | 1·137 | 1·135 |
| 1·146 | 1·144 | 1.142 | 1:140 | 1·138 | 1·136 | 1·134 | 1·132 | 1·130 | 1·127 | 1·125 |
| 1·136 | 1·134 | 1.132 | 1:130 | 1·128 | 1·126 | 1·124 | 1·122 | 1·120 | 1·118 | 1·116 |
| 1·126 | 1·124 | 1.122 | 1:120 | 1·118 | 1·116 | 1·114 | 1·112 | 1·110 | 1·108 | 1·106 |
| 1·115 | 1·113 | 1·112 | 1:110 | 1·108 | 1·106 | 1·104 | 1·102 | 1.100 | 1.099 | 1.097 |
| 1·105 | 1·103 | 1·102 | 1:100 | 1·098 | 1·096 | 1·095 | 1·093 | 1.092 | 1.090 | 1.087 |
| 1·094 | 1·093 | 1·091 | 1:090 | 1·088 | 1·087 | 1·086 | 1·084 | 1.082 | 1.080 | 1.078 |
| 1·084 | 1·083 | 1·081 | 1:080 | 1·078 | 1·077 | 1·076 | 1·074 | 1.072 | 1.070 | 1.068 |
| 1·074 | 1·073 | 1·071 | 1:070 | 1·068 | 1·067 | 1·066 | 1·064 | 1.062 | 1.060 | 1.058 |
| 1.064 | 1:063 | 1.061 | 1.060 | 1.058 | 1.057 | 1.056 | 1.054 | 1:052 | 1.050 | 1.048 |
| 1.054 | 1:053 | 1.051 | 1.050 | 1.048 | 1.047 | 1.046 | 1.044 | 1:042 | 1.040 | 1.038 |
| 1.044 | 1:043 | 1.041 | 1.040 | 1.038 | 1.037 | 1.036 | 1.034 | 1:032 | 1.030 | 1.028 |
| 1.034 | 1:033 | 1.031 | 1.030 | 1.028 | 1.027 | 1.026 | 1.024 | 1:022 | 1.020 | 1.018 |
| 1.024 | 1:023 | 1.021 | 1.020 | 1.018 | 1.017 | 1.016 | 1.014 | 1:012 | 1.010 | 1.008 |
| 1.014 | 1.013 | 1.011 | 1.010 | 1.008 | 1.007 | 1.006 | 1.004 | 1.002 | 1.000 | 0.998 |

### 2.—LIME MUD.

<sup>(</sup>a) Sodium as Carbonate and Hydrate.—Evaporate to dryness with addition of ammonium carbonate (in order to decompose the insoluble sodium compounds), repeat this, digest with hot water, filter, wash, and test the filtrate for alkali. The soda may have been originally present as NaOH or as Na<sub>2</sub>CO<sub>3</sub>. It is expressed in terms of Na<sub>2</sub>O (0.031 grm. per cubic centimetre of normal acid).

(c) INFLUENCE OF TEMPERATURE ON THE SPECIFIC GRAVITIES OF SOLUTIONS OF CAUSTIC SODA.— Continued.

| 55°   | 60°   | 65°   | 70°   | 75°   | 80°   | 85°   | 90°   | 95°   | 100°  |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 1:339 | 1:336 | 1:333 | 1·331 | 1·328 | 1:326 | 1·323 | 1·321 | 1·318 | 1:316 |
| 1:330 | 1:327 | 1:324 | 1·322 | 1·319 | 1:316 | 1·314 | 1·311 | 1·308 | 1:306 |
| 1:320 | 1:317 | 1:314 | 1·312 | 1·309 | 1:306 | 1·304 | 1·301 | 1·298 | 1:296 |
| 1:310 | 1:307 | 1:304 | 1·302 | 1·299 | 1:296 | 1·294 | 1·291 | 1·288 | 1:286 |
| 1:300 | 1:297 | 1:294 | 1·292 | 1·289 | 1:286 | 1·283 | 1·280 | 1·277 | 1:274 |
| 1·289 | 1·286 | 1·284 | 1·281 | 1·278 | 1·275 | 1·272 | 1·269 | 1·266 | 1·263 |
| 1·279 | 1·276 | 1·274 | 1·271 | 1·268 | 1·265 | 1·262 | 1·259 | 1·256 | 1·253 |
| 1·269 | 1·266 | 1·264 | 1·261 | 1·258 | 1·255 | 1·252 | 1·249 | 1·245 | 1·242 |
| 1·259 | 1·256 | 1·254 | 1·251 | 1·248 | 1·245 | 1·242 | 1·239 | 1·235 | 1·232 |
| 1·250 | 1·247 | 1·245 | 1·242 | 1·239 | 1·236 | 1·233 | 1·231 | 1·228 | 1·225 |
| 1:240 | 1·237 | 1·235 | 1·232 | 1·229 | 1·226 | 1·223 | 1·221 | 1·218 | 1·215 |
| 1:231 | 1·228 | 1·226 | 1·223 | 1·220 | 1·218 | 1·215 | 1·213 | 1·209 | 1·207 |
| 1:231 | 1·218 | 1·216 | 1·213 | 1·210 | 1·208 | 1·205 | 1·203 | 1·200 | 1·197 |
| 1:210 | 1·208 | 1·205 | 1·202 | 1·200 | 1·198 | 1·195 | 1·192 | 1·190 | 1·187 |
| 1:200 | 1·198 | 1·195 | 1·192 | 1·190 | 1·188 | 1·185 | 1·182 | 1·180 | 1·177 |
| 1·191 | 1·189 | 1·186 | 1·184 | 1·181 | 1·179 | 1·176 | 1·173 | 1·171 | 1:168 |
| 1·182 | 1·180 | 1·177 | 1·175 | 1·172 | 1·169 | 1·166 | 1·163 | 1·161 | 1:158 |
| 1·172 | 1·169 | 1·166 | 1·164 | 1·161 | 1·158 | 1·155 | 1·153 | 1·150 | 1:147 |
| 1·162 | 1·159 | 1·156 | 1·153 | 1·151 | 1·148 | 1·145 | 1·143 | 1·140 | 1:137 |
| 1·152 | 1·149 | 1·146 | 1·143 | 1·140 | 1·138 | 1·135 | 1·132 | 1·130 | 1:127 |
| 1·142 | 1·139 | 1·136 | 1:133 | 1·130 | 1.128 | 1·125 | 1·122 | 1·120 | 1·117 |
| 1·132 | 1·130 | 1·127 | 1:124 | 1·121 | 1.118 | 1·116 | 1·113 | 1·110 | 1·107 |
| 1·122 | 1·120 | 1·117 | 1:114 | 1·111 | 1.108 | 1·106 | 1·103 | 1·100 | 1·097 |
| 1·113 | 1·110 | 1·107 | 1:104 | 1·101 | 1.099 | 1·096 | 1·093 | 1·090 | 1·087 |
| 1·103 | 1·100 | 1·097 | 1:094 | 1·092 | 1.089 | 1·086 | 1·083 | 1·080 | 1·077 |
| 1.094 | 1.091 | 1.089 | 1.086 | 1.083 | 1.080 | 1:077 | 1:074 | 1.071 | 1.068 |
| 1.084 | 1.082 | 1.079 | 1.076 | 1.073 | 1.070 | 1:067 | 1:064 | 1.061 | 1.058 |
| 1.075 | 1.073 | 1.070 | 1.067 | 1.064 | 1.061 | 1:058 | 1:056 | 1.052 | 1.048 |
| 1.066 | 1.063 | 1.060 | 1.057 | 1.054 | 1.051 | 1:048 | 1:046 | 1.043 | 1.040 |
| 1.056 | 1.053 | 1.050 | 1.047 | 1.044 | 1.042 | 1:039 | 1:036 | 1.033 | 1.030 |
| 1.046 | 1.043 | 1:040 | 1.037 | 1:034 | 1.032 | 1.029 | 1:026 | 1.023 | 1.020 |
| 1.036 | 1.033 | 1:030 | 1.027 | 1:024 | 1.021 | 1.019 | 1:016 | 1.013 | 1.010 |
| 1.026 | 1.023 | 1:020 | 1.017 | 1:014 | 1.011 | 1.009 | 1:006 | 1.003 | 1.000 |
| 1.016 | 1.013 | 1:010 | 1.007 | 1:004 | 1.001 | 0.999 | 0:996 | 0.993 | 0.990 |
| 1.006 | 1.003 | 1:000 | 0.997 | 0:994 | 0.991 | 0.989 | 0:986 | 0.983 | 0.980 |
| 0.996 | 0.993 | 0.990 | 0.987 | 0.984 | 0.981 | 0.979 | 0.976 | 0.973 | 0.970 |

<sup>(</sup>b) Caustic Lime.—Titrate as described (p. 125) with oxalic acid. This indicates NaOH as well, for which half of the amount found in test (a) may be assumed without any serious error.

<sup>(</sup>c) Calcium Carbonate. — Titrate with normal hydrochloric acid and methyl-orange, deduct from the cubic centimetres required those required in tests (a) and (b).

#### 3.—FISHED SALTS.

Dissolve 50 grms. in 1 litre of water, and take 50 c.c. of liquor for each test.

(a) Available Alkali is tested for with normal hydrochloric acid.

(b) Sodium Chloride.—Neutralize with nitric acid, preferably running normal acid out of a burette, and proceed also in other respects as described (p. 117).

(c) Sodium Sulphate.—Add a slight excess of hydrochloric acid, precipitate

with barium chloride, and weigh the BaSO<sub>4</sub> (p. 94).

(d) Sodium Sulphite, Thiosulphate, etc.—Add an excess of bleaching-powder solution, then hydrochloric acid, till the reaction is acid, and a smell of chlorine is produced (p. 131); precipitate with BaCl2, weigh the BaSO4, and deduct the amount found in test (c). The remainder is calculated as "Na<sub>2</sub>SO<sub>4</sub> from oxidizable sulphur compounds."

#### 4.—CAUSTIC BOTTOMS.

Dissolve 10 grms. in water, and filter. The washed residue is dried and

ignited, and yields:-

(a) Insoluble Matters.—If necessary, the iron contained in these is estimated by dissolving in concentrated hydrochloric acid, reducing with zinc, adding manganous sulphate, and titrating with permanganate as on page 114. (b) Available Alkali is estimated in the aqueous solutions by normal

hydrochloric acid, using litmus or litmoid as indicator. (Methyl-orange is not available in this case, owing to the presence of alumina.)

(c) Sodium Carbonate is estimated as in commercial soda-ash (p. 138).

#### 5.—COMMERCIAL CAUSTIC SODA.

The sample must be very carefully taken. (Refer to Appendix.) The single pieces must be freed from the modified outward crust by scraping it off before weighing. Dissolve 50 grms. of pure substance in 1 litre of water, and take single tests with a pipette.

(a) Available Alkali is tested in at least 20 c.c. (equal to 1 grm.) with normal HCl. If the caustic soda contains more than traces of alumina, methyl-orange cannot be used as an indicator, but litmus or litmoid should

be employed. In the case of strong caustic this is unnecessary.

(b) Sodium Carbonate must be estimated by expelling the CO2 with dilute sulphuric acid, and absorbing it in soda lime, as described (p. 95). The pumice saturated with cupric sulphate is left out here. Or employ Lunge & Marchlewski's gasvolumetric method (p. 96). The quantity of CO2 being so small, any estimation by difference yields unsatisfactory results. Very approximate results can, however, be obtained by titrating first with phenolphthalein till the pink colour is discharged (when all Na2CO3 will have been changed into NaHCO3), noting the amount of standard acid used, adding methyl-orange and more standard acid till the pink colour appears. The acid used in the second test  $\times 2$  indicates Na<sub>2</sub>CO<sub>3</sub>.

(c) The Table for Comparing English, French, and German Degrees is given

on pages 139 to 141.

### 6.—SULPHUR RECOVERY (CHANCE PROCESS).\*

1. Estimation of Sulphur as Sulphides in Vat Waste.—The apparatus consists of a small flask fitted with a stop-cock funnel and outlet tube connected with two Mohr's potash-bulbs, the first one being empty, the second one containing a strong solution of caustic potash. (In lieu of Mohr's bulbs a

<sup>\*</sup> Partly from communications by Mr. H. W. Crowther, of Oldbury.

tube of the shape shown in fig. 6, p. 99, can be employed with great advantage.) It is preferable to connect the last potash bulb to an aspirator or Bunsen pump, to produce a slight vacuum. About 2 grms. of vat waste are put into the flask, and a sufficient quantity of water is added. Then hydrochloric acid, diluted with its volume of water, is run in from the funnel gradually. After the decomposition has ceased, the liquor is boiled, until the whole of the gases are displaced by steam, most of the steam condensing in the first empty potash bulbs. When enough steam has been produced to bring the first bulb of the second set, filled with potash solution, up to boiling heat, the tap of the funnel is opened, and the apparatus allowed to cool down. The potash solution is then transferred to a ½ or ½ litre flask, made up to the mark; an aliquot part is taken, diluted with a large quantity of previously boiled water (free from air), neutralized with acetic acid, and titrated with decinormal iodine, every c.c. of which indicates 0 0016 grms. S.

2. Sulphur as Sulphide in Carbonated Mud.—About 6 grms. are taken for analysis, and otherwise the test is conducted just like the preceding one.

3. Sulphide-sulphur+Carbonic Acid in Vat Waste.—This test (which is only exceptionally made) is carried out in a small flask, fitted with stopcock funnel, connected with a U-tube containing sodium sulphate to absorb any traces of HCl passing over, and a sufficient number of chloride-of-calcium tubes to thoroughly dry the gases. To the last of these are connected two weighed potash bulbs containing a strong solution of caustic potash, followed by weighed CaCl<sub>2</sub> tubes. The whole apparatus being connected, 2 grms. of vat waste are put into the flask, and some water is added. stream of nitrogen is then passed through the apparatus to displace the air. [The nitrogen for this purpose is conveniently made by passing limekiln gases through a solution of caustic soda, then through a red-hot tube containing bright copper clippings to absorb any oxygen, and finally through solutions of caustic potash and barium hydrate.] Now the vat waste is decomposed by hydrochloric acid, and the contents of the flask are boiled. Afterwards a stream of nitrogen is passed through the apparatus for a considerable time to displace the H<sub>2</sub>S and CO<sub>2</sub> in the flask and drying tubes. The potash bulbs and the last drying tubes are re-weighed, the increase showing the amount of H2S+CO2 in the vat waste employed. The potash solution is now transferred to a measuring flask, and the H<sub>2</sub>S is estimated exactly as described in 1. Deducting the amount from the increase of weight of the absorbing apparatus, we find the amount of CO2 present.

4. Sulphur as Sulphide in Solutions of Calcium or Sodium Sulphydrates and Sulphides.—10 cc. are diluted to 250, and of this liquid a convenient portion is taken out, strongly diluted with air-free water, acidulated with acetic acid and titrated with iodine, as in test 1. If thiosulphates are present, they are estimated as in 5, and deducted. If polysulphides are present, the sulphur which would be precipitated by an acid is not estimated by this method, but only that which would be liberated as H<sub>2</sub>S by an acid.

5. Soda, Lime, and Thiosulphate in Sulphur Liquors.—In one sample of the liquor, say 5 c.c., estimate the total alkalinity, i.e.  $Na_2O + CaO$ , by standard hydrochloric acid and methyl-orange. Take another sample, say 50 e.c., pass pure  $CO_2$  in till lead paper shows the absence of all sulphides, boil to decompose calcium bicarbonate, dilute with water to 500 c.c., allow the precipitate to settle, take 50 c.c. of the clear liquor and titrate again, the alkalinity this time being due to  $Na_2O$  only. CaO is found by the difference from the first titration.

Another sample of the carbonated liquor is titrated with decinormal iodine for thiosulphate. Each c.c. of iodine solution indicates 0 0064 S as thiosulphate.

6. Lime-kiln Gases.—CO<sub>2</sub> is estimated by an Orsat's apparatus, or a Honigmann's burette, or any other similar apparatus. When using an Orsat's apparatus, the test for oxygen can be made as on p. 86.

7. Gas from Gas-holder.

(a) Hydrogen Sulphide+Carbon Dioxide are estimated by an Orsat's

apparatus or a Honigmann's burette, etc.

(b) Hydrogen Sulphide Only.—A wide-mouthed bottle of known capacity, holding about 500 c.c., is fitted with an indiarubber cork and two tubes, one nearly reaching to the bottom, the other ending just below the cork, both of them with stopcocks outside. Gas is passed through for some time, till it has entirely displaced the air in the bottle. Then 20 or 25 c.c. of standard potash solution is run in from a pipette, through one of the stopcocks, the bottle is well shaken, until the whole of the H<sub>2</sub>S and CO<sub>2</sub> are absorbed, the contents of the bottle are poured into a measuring flask, the bottle is rinsed

out completely, and the total liquid made up to the mark.

An aliquot portion is taken out, strongly diluted with previously boiled water, acidified with acetic acid, and the H<sub>2</sub>S estimated by iodine. In this case a solution of iodine is employed containing 11·43 grms. I per litre, each c.c. of which indicates 1 c.c. of gaseous H<sub>2</sub>S at 0° C., and 760 mm. pressure. For somewhat exact estimations, the temperature, pressure and vapour tension have to be taken into account; but it is unnecessary to observe the thermometer and barometer, and to make any complicated calculations, if a Lunge's gas-volumeter be present (p. 113). In this case the level-tube, C, of that instrument is placed so that the mercury stands at the same height in C as in the reduction tube B; the height of mercury in the latter is read off, which gives the volume occupied by 100 c.c. of dry air of 0° and 760 mm. under the atmospheric conditions of the moment; by this figure the number of c.c. of iodine solution, multiplied by 100, is divided, and thus the correction of the normal volume is effected.

8. Exit Gases from the Claus Kilns.—These contain SO2 and H2S. Both these gases, on being passed through iodine solution, produce 2HI for each atom of S; but whilst H<sub>2</sub>S does not any further increase the acidity of the liquid, SO2 produces its equivalent of H2SO4. Hence SO2 and H2S are measured together by the amount of iodine converted into HI, and SO, by the acidity present after the HI has been saturated with caustic soda. Since the current of gases carries away some iodine from the decinormal solution, the gases must be passed through caustic soda, or, even better, through sodium thiosulphate, to intercept this iodine. The manipulation is hence as follows: Aspirate one or more litres of the gases through 50 c.c. of decinormal iodine solution, contained in a bulb apparatus (fig. 6, p. 99), or other efficient absorbing tubes, followed by another apparatus containing 50 c.c. of decinormal thiosulphate soda solution. Empty the contents of both apparatus into a beaker. Now titrate with decinormal iodine and starch solution, till a blue colour appears. The number of c.c. of iodine solution used, if multiplied by 00016 grms., indicates the total sulphur present as SO, and H<sub>2</sub>S. Now add a drop of thiosulphate to discharge the blue colour, then a drop of methyl-orange, and decinormal caustic soda from a burette, till the liquid has lost all pinkish shade. The number of c.c. of caustic soda used, less those of iodine used in the preceding test, multiplied by 0.0016, indicates the sulphur present as SO<sub>2</sub>.

#### 7.-NITRIC ACID MANUFACTURE.

#### A.—NITRATE OF SODA.

- 1. Moisture.—Heat 10 grms. cautiously to the fusing point, and allow to cool in a desiccator.
- 2. Insoluble.—Dissolve 10 grms. in water, filter, wash, and ignite. If there is a very appreciable quantity of organic substance present, first dry at 100° C. and weigh the filter with the precipitate before igniting it. The solution is used for the tests Nos. 4 to 6.
- 3. Sodium Nitrate.—From a very well mixed, finely-ground sample weigh in a narrow weighing tube about 0.35 grms. (which is facilitated by filling it to a mark\*), cork the tube, and weigh. Pour the contents into the "nitrometer for saltpetre" containing 140 c.c. (described in the Journal of the Society of Chemical Industry, 1882, p. 15), taking care that the substance gets as much as possible upon the bottom of the top cup. The three-way cock must have been made to communicate neither above, nor below, nor sideways. Run in about 0.5 c.c. water, wait a minute till the nitre is nearly or quite dissolved, aspirate the solution into the measuring tube by cautiously opening the tap, the level tube being lowered, wash the cup with at most 0.5 c.c. water, and run in 15 c.c. concentrated pure sulphuric acid. Start the reaction as with the ordinary nitrometer (p. 112), and finish it by vigorous shaking. The level tube should be roughly put into position, in order to avoid any strong differences of pressure, and consequently possible leaking of the tap, and wait at least half an hour for cooling. Now adjust the level definitively, by allowing one division of mercury in the level tube for each 61 divisions of acid in the measuring tube. Read off the volume of gas, but convince yourself whether it is actually under atmospheric pressure by pouring a little sulphuric acid into the cup and cautiously running it into the tube, as described on p. 112. Ascertain the temperature and the state of the barometer, and reduce the volume of gas by the tables 20 and 21 or 21s to 0° and 760 mm. pressure. Thus xc.c. NO are obtained. Each cubic centimetre of NO is equal to 0.003805 grms. NaNO3 (table, p. 112). total divided by the weight employed equal a, and multiplied by 100 indicates the percentage, which is hence equal to

# $\frac{0.3805x}{x}$

(N.B.—The nitrometer should be tested whether it really contains exactly 100 c.c. to the mark 100, by inverting it, filling in mercury to the mark 100, running it off, and weighing. It should weigh 1,360 grms. reduced to 0°, or 1,356 grms. at 15° C. If there is a difference, this must be allowed for in each reading.)

For the analysis of nitrate of soda, Lunge's gasvolumeter (described on p.113) is even more to be preferred to the old nitrometer than for the analysis of nitrous vitriol. The decomposition of the nitre and evolution of NO are carried out in the vessel D, and the gas is then transferred for measuring into the tube A. In this case the gas-measuring tube A should hold 130 or 140 c.c., or, if a 50 c.c. tube is employed, only 0·15 grm. of sodium nitrate is employed for each test.

<sup>\*</sup> The quantity of nitrate employed should be such that at the existing temperature and pressure the NO disengaged in the test is above 100 c.c., but not above 120 c.c.

- 4. Sodium Sulphate is estimated in the solution No. 2 by precipitation with BaCl<sub>2</sub> and weighing the BaSO<sub>4</sub>. (Refer to p. 94.)
  - 5. Sodium Chloride is titrated with silver nitrate. (Refer to p. 117.)
- 6. Iodine is proved by reducing the iodic acid with zinc, heating the solution with concentrated sulphuric acid, which liberates the iodine, diluting and agitating with carbon disulphide, which takes up the iodine, and is thereby coloured pink. The faintest traces of iodate are found by dissolving 5 grms. in 100 c.c. of boiled water, adding a little nitric acid, a few drops of a solution of potassium iodide in boiled water, and a drop of starch solution. In the presence of as little as 0.01 mgrm. I in 1 grm. of nitre, a blue colour will appear. A check test must, however, be made with the potassium iodide employed for this test, as this often contains some iodate.

### B.-NITRE-CAKE.

- 1. Free Acid is titrated with standard alkali (p. 117). When larger quantities of ferric oxide or alumina are present, no indicator is employed, but normal alkali is added till the first flakes of a precipitate indicate the end of the reaction.
- 2. Nitric Acid should be estimated in the gasvolumeter, or in the nitrometer for acids (p. 111), its quantity being too small for the other nitrometer (p. 148), but the method employed is exactly the same as described in the last-mentioned place, viz., dissolving in the top cup in very little water, and decomposing with a great excess of sulphuric acid.
  - 3. Ferric Oxide and Alumina (as pp. 117 and 118).

## C.—NITRIC ACID.

# SPECIFIC GRAVITY OF NITRIC ACID AT 15° C., COMPARED WITH WATER OF 4° C. (IN VACUO).

(Lunge & Rey.)

|       |                                             |                  | ,                             |                  |
|-------|---------------------------------------------|------------------|-------------------------------|------------------|
| Twad- | Percentage                                  | by weight.       | Grammes                       | per litre.       |
| dell. | N <sub>2</sub> O <sub>5</sub>               | HNO <sub>3</sub> | N <sub>2</sub> O <sub>5</sub> | HNO <sub>3</sub> |
| 0     | 0·08                                        | 0·10             | 1                             | 1                |
| 1     | 0·85                                        | 1·00             | 8                             | 10               |
| 2     | 1·62                                        | 1·90             | 16                            | 19               |
| 3     | 2·39                                        | 2·80             | 24                            | 28               |
| 4     | 3·17                                        | 3·70             | 83                            | 38               |
| 5     | 3·94                                        | 4·60             | 40                            | 47               |
| 6     | 4·71                                        | 5·50             | 49                            | 57               |
| 7     | 5·47                                        | 6·38             | 57                            | 66               |
| 8     | 6·22                                        | 7·26             | 64                            | 75               |
| 9     | 6·97                                        | 8·13             | 73                            | 85               |
| 10    | 7·71                                        | 8.99             | 81                            | 94               |
| 11    | 8·43                                        | 9.84             | 89                            | 104              |
| 12    | 9·15                                        | 10.68            | 97                            | 118              |
| 13    | 9·87                                        | 11.51            | 105                           | 123              |
| 14    | 10·57                                       | 12.33            | 113                           | 132              |
| 15    | 11·27                                       | 13·15            | 121                           | 141              |
| 16    | 11·96                                       | 13·95            | 129                           | 151              |
| 17    | 12·64                                       | 14·74            | 187                           | 160              |
| 18    | 13·31                                       | 15·33            | - 145                         | 169              |
| 19    | 13·99                                       | 16·32            | 153                           | 179              |
| 20    | $14.67 \\ 15.34 \\ 16.00 \\ 16.67 \\ 17.34$ | 17·11            | 161                           | 188              |
| 21    |                                             | 17·89            | 170                           | 198              |
| 22    |                                             | 18·67            | 177                           | 207              |
| 23    |                                             | 19·45            | 186                           | 217              |
| 24    |                                             | 20·23            | 195                           | 227              |
| 25    | 18·00                                       | 21·00            | 202                           | 236              |
| 26    | 18·66                                       | 21·77            | 211                           | 246              |
| 27    | 19·32                                       | 22·54            | 219                           | 256              |
| 28    | 19·98                                       | 23·31            | 228                           | 266              |
| 29    | 20·64                                       | 24·08            | 237                           | 276              |
| 30    | 21·29                                       | 24·84            | 245                           | 286              |
| 31    | 21·94                                       | 25·60            | 254                           | 296              |
| 32    | 22·60                                       | 26·36            | 262                           | 306              |
| 33    | 23·25                                       | 27·12            | 271                           | 316              |
| 34    | 23·90                                       | 27·88            | 279                           | 326              |
| -     |                                             |                  |                               |                  |

# SPECIFIC GRAVITY OF NITRIC ACID AT 15° C., COMPARED WITH WATER OF 4° C. (IN VACUO).—Continued.

(Lunge & Rey.)

| Fwad-    | Percentage by                 | weight.          | Grammes p                     | er litre.        |
|----------|-------------------------------|------------------|-------------------------------|------------------|
| dell.    | N <sub>2</sub> O <sub>5</sub> | HNO <sub>3</sub> | N <sub>2</sub> O <sub>5</sub> | HNO <sub>3</sub> |
| 35       | 24.54                         | 28.63            | 288                           | 336              |
| 36       | 25.18                         | 29.38            | 297                           | 347              |
| 37       | 25.83                         | 30.13            | 306                           | 357              |
| 38       | 26.47                         | 30.88            | 315                           | 367              |
| 39       | 27.10                         | 31.62            | 324                           | 378              |
| 40       | 27.74                         | 32.36            | 333                           | 388              |
| 41       | 28.36                         | 33.09            | 342                           | 399              |
| 42       | 28.99                         | 33.82            | 351                           | 409              |
| 43       | 29.61                         | 34.55            | 360                           | 420              |
| 44       | 30.24                         | 35.28            | 369                           | 430              |
| 45       | 30.88                         | 36.03            | 378                           | 441              |
| 46       | 31.53                         | 36.78            | 387                           | 452              |
| 47       | 32.17                         | 37.53            | 397                           | 463              |
| 48       | 32.82                         | 38.29            | 407                           | 475              |
| 49       | 33.47                         | 39.05            | 417                           | 486              |
| 50       | 34.13                         | 39.82            | 427                           | 498              |
| 51       | 34.78                         | 40.58            | 437                           | 509              |
| 52       | 35.44                         | 41.34            | 447                           | 521              |
| 53<br>54 | 36.09                         | 42.10            | 457                           | 533              |
| 04       | 36.75                         | 42.87            | 467                           | 544              |
| 55       | 37.41                         | 43.64            | 477                           | 556              |
| 56       | 38.07                         | 44.41            | 487                           | 568              |
| 57       | 38.73                         | 45.18            | 498                           | 581              |
| 58       | 39.39                         | 45.95            | 508                           | 593              |
| 59       | 40.05                         | 46.72            | 519                           | 605              |
| 60       | 40.71                         | 47.49            | 529                           | 617              |
| 61       | 41.37                         | 48.26            | 540                           | 630              |
| 62       | 42.06                         | 49.07            | 551                           | 643              |
| 63       | 42.76                         | 49.89            | 562                           | 656              |
| 64       | 43.47                         | 50.71            | 573                           | 669              |
| 65       | 44.17                         | 51.53            | 585                           | 683              |
| 66       | 44.89                         | 52.37            | 597                           | 697              |
| 67       | 45.62                         | 53.22            | 609                           | 710              |
| 68       | 46.35                         | 54.07            | 621                           | 725              |
| 69       | 47.08                         | 54.93            | 633                           | 739              |

# SPECIFIC GRAVITY OF NITRIC ACID AT 15° C., COMPARED WITH WATER OF 4° C. (IN VACUO).—Continued.

(Lunge & Rey.)

| Twad- | Percentage | by weight.       | Gramme                        | s per litre.     |
|-------|------------|------------------|-------------------------------|------------------|
| dell. | $N_2O_5$   | HNO <sub>3</sub> | N <sub>2</sub> O <sub>5</sub> | HNO <sub>3</sub> |
| 70    | 47·82      | 55·79            | 645                           | 753              |
| 71    | 48·57      | 56·66            | 658                           | 768              |
| 72    | 49·35      | 57·57            | 671                           | 783              |
| 73    | 50·13      | 58·48            | 684                           | 798              |
| 74    | 50·91      | 59·39            | 698                           | 814              |
| 75    | 51·69      | 60·30            | 711                           | 829              |
| 76    | 52·52      | 61·27            | 725                           | 846              |
| 77    | 53·35      | 62·24            | 739                           | 862              |
| 78    | 54·20      | 63·23            | 753                           | 879              |
| 79    | 55·07      | 64·25            | 768                           | 896              |
| 80    | 55·97      | 65·30            | 783                           | 914              |
| 81    | 56·92      | 66·40            | 800                           | 983              |
| 82    | 57·86      | 67·50            | 816                           | 952              |
| 83    | 58·83      | 68·63            | 832                           | 971              |
| 84    | 59·83      | 69·80            | 849                           | 991              |
| 85    | 60·84      | 70·98            | 867                           | 1011             |
| 86    | 61·86      | 72·17            | 885                           | 1032             |
| 87    | 62·91      | 73·39            | 903                           | 1053             |
| 88    | 64·01      | 74·68            | 921                           | 1075             |
| 89    | 65·13      | 75·98            | 941                           | 1098             |
| 90    | 66·24      | 77·28            | 961                           | 1121             |
| 91    | 67·38      | 78·60            | 981                           | 1144             |
| 92    | 68·56      | 79·98            | 1001                          | 1168             |
| 93    | 69·79      | 81·42            | 1023                          | 1193             |
| 94    | 71·06      | 82·90            | 1045                          | 1219             |
| 95    | 72·39      | 84·45            | 1068                          | 1246             |
| 96    | 73·76      | 86·05            | 1092                          | 1274             |
| 97    | 75·18      | 87·70            | 1116                          | 1302             |
| 98    | 76·80      | 89·60            | 1144                          | 1335             |
| 99    | 78·52      | 91·60            | 1174                          | 1369             |
| 100   | 80·65      | 94·09            | 1210                          | 1411             |
| 101   | 82·63      | 96·39            | 1244                          | 1451             |
| 102   | 84·09      | 98·10            | 1270                          | 1481             |
| 103   | 84·92      | 99·07            | 1287                          | 1501             |
| 104   | 85·44      | 99·67            | 1299                          | 1515             |

# 2.—INFLUENCE OF TEMPERATURE ON THE SPECIFIC GRAVITY OF NITRIC ACID.

|                                           |                                           |                                           |                                           | -                                         |                                           |                                  |                                           |                                           |                                           |                                           |
|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|----------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|
| 0° C.                                     | 5°                                        | 10°                                       | 15°                                       | <b>2</b> 0°                               | 25°                                       | <b>3</b> 0°                      | 35°                                       | 40°                                       | 45°                                       | 50°                                       |
| 1·424                                     | 1:414                                     | 1:407                                     | 1:400                                     | 1·392                                     | 1·385                                     | 1:378                            | 1:371                                     | 1·363                                     | 1:356                                     | 1:349                                     |
| 1·413                                     | 1:404                                     | 1:397                                     | 1:390                                     | 1·382                                     | 1·375                                     | 1:367                            | 1:361                                     | 1·354                                     | 1:347                                     | 1:340                                     |
| 1·402                                     | 1:394                                     | 1:387                                     | 1:380                                     | 1·372                                     | 1·365                                     | 1:357                            | 1:351                                     | 1·344                                     | 1:339                                     | 1:332                                     |
| 1·391                                     | 1:383                                     | 1:377                                     | 1:370                                     | 1·363                                     | 1·356                                     | 1:349                            | 1:342                                     | 1·335                                     | 1:330                                     | 1:323                                     |
| 1·380                                     | 1:373                                     | 1:367                                     | 1:360                                     | 1·353                                     | 1·346                                     | 1:340                            | 1:333                                     | 1·326                                     | 1:320                                     | 1:314                                     |
| 1·369                                     | 1·362                                     | 1·356                                     | 1:350                                     | 1:343                                     | 1·337                                     | 1·330                            | 1·323                                     | 1:317                                     | 1:312                                     | 1:305                                     |
| 1·359                                     | 1·352                                     | 1·346                                     | 1:340                                     | 1:333                                     | 1·327                                     | 1·320                            | 1·314                                     | 1:308                                     | 1:303                                     | 1:297                                     |
| 1·348                                     | 1·342                                     | 1·336                                     | 1:330                                     | 1:324                                     | 1·318                                     | 1·311                            | 1·305                                     | 1:299                                     | 1:294                                     | 1:288                                     |
| 1·338                                     | 1·332                                     | 1·326                                     | 1:320                                     | 1:314                                     | 1·308                                     | 1·302                            | 1·296                                     | 1:290                                     | 1:285                                     | 1:280                                     |
| 1·327                                     | 1·321                                     | 1·316                                     | 1:310                                     | 1:304                                     | 1·299                                     | 1·293                            | 1·287                                     | 1:281                                     | 1:276                                     | 1:271                                     |
| 1·317                                     | 1·311                                     | 1·306                                     | 1:300                                     | 1·294                                     | 1·289                                     | 1·283                            | 1·278                                     | 1·273                                     | 1·268                                     | 1·263                                     |
| 1·307                                     | 1·301                                     | 1·296                                     | 1:290                                     | 1·284                                     | 1·279                                     | 1·273                            | 1·268                                     | 1·263                                     | 1·258                                     | 1·253                                     |
| 1·297                                     | 1·291                                     | 1·286                                     | 1:280                                     | 1·274                                     | 1·269                                     | 1·263                            | 1·258                                     | 1·253                                     | 1·248                                     | 1·243                                     |
| 1·287                                     | 1·281                                     | 1·276                                     | 1:270                                     | 1·265                                     | 1·259                                     | 1·254                            | 1·248                                     | 1·243                                     | 1·238                                     | 1·234                                     |
| 1·277                                     | 1·271                                     | 1·266                                     | 1:260                                     | 1·255                                     | 1·249                                     | 1·244                            | 1·238                                     | 1·233                                     | 1·228                                     | 1·224                                     |
| 1·266                                     | 1·260                                     | 1·255                                     | 1·250                                     | 1·245                                     | 1·240                                     | 1·235                            | 1·229                                     | 1·224                                     | 1·219                                     | 1·215                                     |
| 1·256                                     | 1·250                                     | 1·245                                     | 1·240                                     | 1·235                                     | 1·230                                     | 1·225                            | 1·220                                     | 1·215                                     | 1·210                                     | 1·205                                     |
| 1·245                                     | 1·240                                     | 1·235                                     | 1·230                                     | 1·225                                     | 1·220                                     | 1·215                            | 1·210                                     | 1·206                                     | 1·201                                     | 1·196                                     |
| 1·235                                     | 1·230                                     | 1·225                                     | 1·220                                     | 1·215                                     | 1·210                                     | 1·205                            | 1·200                                     | 1·196                                     | 1·191                                     | 1·186                                     |
| 1·224                                     | 1·219                                     | 1·214                                     | 1·210                                     | 1·205                                     | 1·200                                     | 1·196                            | 1·191                                     | 1·187                                     | 1·182                                     | 1·177                                     |
| 1·213                                     | 1·208                                     | 1·204                                     | 1·200                                     | 1·195                                     | 1·190                                     | 1·186                            | 1·181                                     | 1·177                                     | 1·172                                     | 1·167                                     |
| 1·202                                     | 1·198                                     | 1·194                                     | 1·190                                     | 1·185                                     | 1·181                                     | 1·177                            | 1·172                                     | 1·168                                     | 1·163                                     | 1·158                                     |
| 1·192                                     | 1·188                                     | 1·184                                     | 1·180                                     | 1·177                                     | 1·171                                     | 1·167                            | 1·163                                     | 1·158                                     | 1·154                                     | 1·150                                     |
| 1·182                                     | 1·178                                     | 1·174                                     | 1·170                                     | 1·166                                     | 1·162                                     | 1·158                            | 1·154                                     | 1·149                                     | 1·145                                     | 1·141                                     |
| 1·172                                     | 1·168                                     | 1·164                                     | 1·160                                     | 1·156                                     | 1·152                                     | 1·148                            | 1·144                                     | 1·140                                     | 1·136                                     | 1·132                                     |
| 1·161<br>1·151<br>1·139<br>1·129<br>1·118 | 1·158<br>1·147<br>1·136<br>1·126<br>1·115 | 1·154<br>1·144<br>1·133<br>1·123<br>1·112 | 1·150<br>1·140<br>1·130<br>1·120<br>1·110 | 1·146<br>1·136<br>1·126<br>1·116<br>1·107 | 1·142<br>1·132<br>1·123<br>1·113<br>1·104 | 1·139<br>1·119<br>1·110<br>1·101 | 1·135<br>1·125<br>1·116<br>1·106<br>1·097 | 1·130<br>1·121<br>1·112<br>1·103<br>1·094 | 1·127<br>1·118<br>1·109<br>1·100<br>1·091 | 1·123<br>1·114<br>1·105<br>1·096<br>1·087 |
| 1·108                                     | 1·190                                     | 1·102                                     | 1·100                                     | 1.097                                     | 1:094                                     | 1.091                            | 1.088                                     | 1.085                                     | 1.082                                     | 1.079                                     |
| 1·098                                     | 1·095                                     | 1·092                                     | 1·090                                     | 1.087                                     | 1:084                                     | 1.081                            | 1.078                                     | 1.075                                     | 1.073                                     | 1.070                                     |
| 1·088                                     | 1·085                                     | 1·082                                     | 1·080                                     | 1.077                                     | 1:074                                     | 1.071                            | 1.068                                     | 1.065                                     | 1.063                                     | 1.060                                     |
| 1·077                                     | 1·075                                     | 1·072                                     | 1·070                                     | 1.067                                     | 1:064                                     | 1.061                            | 1.058                                     | 1.056                                     | 1.054                                     | 1.051                                     |
| 1·067                                     | 1·064                                     | 1·062                                     | 1·060                                     | 1.057                                     | 1:055                                     | 1.052                            | 1.050                                     | 1.048                                     | 1.045                                     | 1.043                                     |
| 1.057                                     | 1.054                                     | 1:052                                     | 1:050                                     | 1.047                                     | 1.045                                     | 1:043                            | 1:040                                     | 1:038                                     | 1.035                                     | 1.033                                     |
| 1.047                                     | 1.044                                     | 1:042                                     | 1:040                                     | 1.037                                     | 1.035                                     | 1:033                            | 1:030                                     | 1:028                                     | 1.025                                     | 1.023                                     |
| 1.037                                     | 1.034                                     | 1:032                                     | 1:030                                     | 1.027                                     | 1.025                                     | 1:023                            | 1:020                                     | 1:018                                     | 1.015                                     | 1.013                                     |
| 1.027                                     | 1.024                                     | 1:022                                     | 1:020                                     | 1.017                                     | 1.015                                     | 1:013                            | 1:010                                     | 1:008                                     | 1.005                                     | 1.003                                     |
| 1.017                                     | 1.014                                     | 1:012                                     | 1:010                                     | 1.007                                     | 1.005                                     | 1:003                            | 1:000                                     | 0:998                                     | 0.995                                     | 0.093                                     |
|                                           | ·                                         | -                                         |                                           |                                           |                                           |                                  | -                                         |                                           |                                           | -                                         |

2.—INFLUENCE OF TEMPERATURE ON THE SPECIFIC GRAVITY OF NITRIC ACID.—Continued.

| 55°            | 60°            | 65°            | 70°            | 75°            | 80°            | 85°            | 90°            | 95°            | 100°           |
|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| 1.342          | 1.335          | 1.329          | 1.323          | 1.316          | 1.310          | 1.303          | 1.296          | 1.290          | 1.283          |
| 1.333          | 1.327          | 1.320          | 1.314          | 1.308          | 1.302          | 1.294          | 1.288          | 1.282          | 1.276          |
| 1.325          | 1.319          | 1.312          | 1.305          | 1.300          | 1.293          | 1.286          | 1.280          | 1.274          | 1.267          |
| 1·316<br>1·308 | 1·310<br>1·302 | 1·304<br>1·296 | 1·298<br>1·290 | 1·292<br>1·284 | 1·286<br>1·278 | 1·279<br>1·272 | 1·274<br>1·266 | 1·267<br>1·260 | 1·260<br>1·254 |
| 1 308          | 1 302          | 1 290          | 1 290          | 1 209          | 1 2/0          | 1 2/2          | 1 200          | 1 200          | 1 254          |
| 1.300          | 1.294          | 1.288          | 1.282          | 1.276          | 1.270          | 1.265          | 1.259          | 1.253          | 1.247          |
| 1.291          | 1.286          | 1.280          | 1.274          | 1.268          | 1.263          | 1.257          | 1.252          | 1.246          | 1.240          |
| 1.282          | 1.278          | 1.272          | 1.266          | 1.261          | 1.255          | 1.250          | 1.245          | 1.240          | 1.234          |
| 1·274<br>1·266 | 1·269<br>1·261 | 1.264<br>1.256 | 1·258<br>1·251 | 1·253<br>1·246 | 1·248<br>1·240 | 1·243<br>1·235 | 1·238<br>1·230 | 1·233<br>1·225 | 1·228<br>1·220 |
| 1 200          | 1 201          | 1 250          | 1 251          | 1 240          | 1 240          | 1 200          | 1 200          | 1 223          | 1 220          |
| 1.258          | 1.253          | 1.248          | 1.243          | 1.238          | 1.232          | 1.227          | 1.222          | 1.217          | 1.212          |
| 1.248          | 1.544          | 1.239          | 1.234          | 1.229          | 1.223          | 1.218          | 1.213          | 1.208          | 1.203          |
| 1.238          | 1.234          | 1·229<br>1·220 | 1.224          | 1·219<br>1·210 | 1.214          | 1.209          | 1.204          | 1.199          | 1.194          |
| 1·229<br>1·219 | 1·225<br>1·215 | 1.570          | 1·215<br>1·205 | 1.500          | 1·205<br>1·195 | 1·199<br>1·190 | 1·195<br>1·185 | 1·190<br>1·180 | 1·185<br>1·175 |
| 1 213          | 1 210          | 1 210          | 1 200          | 1 200          | 1 100          | 1 130          | 1 105          | 1 100          | 1 1/0          |
| 1.210          | 1.206          | 1.201          | 1.196          | 1.191          | 1.186          | 1.181          | 1.176          | 1.171          | 1.167          |
| 1.200          | 1.196          | 1.191          | 1.186          | 1.181          | 1.177          | 1.172          | 1.167          | 1.162          | 1.128          |
| 1.191          | 1.187          | 1.182          | 1.177          | 1.172          | 1.168          | 1.163          | 1.158          | 1.153          | 1.149          |
| 1.182          | 1.177          | 1.172          | 1.167          | 1·163<br>1·154 | 1.158          | 1.123          | 1·148<br>1·140 | 1.144          | 1.139          |
| 1.173          | 1.168          | 1.163          | 1.160          | 1 194          | 1.149          | 1.144          | 1 140          | 1 100          | 1 100          |
| 1.163          | 1.158          | 1.154          | 1.150          | 1.145          | 1.140          | 1.136          | 1.131          | 1.126          | 1.122          |
| 1.154          | 1.150          | 1.146          | 1.141          | 1.136          | 1.132          | 1.128          | 1.123          | 1.119          | 1.112          |
| 1.145          | 1.141          | 1.137          | 1.133          | 1.128          | 1.124          | 1.120          | 1.116          | 1.112          | 1.107          |
| 1·137<br>1·128 | 1.132          | 1·128<br>1·120 | 1.124          | 1·120<br>1·112 | 1·116<br>1·108 | 1·113<br>1·105 | 1·108<br>1·101 | 1.105          | 1.100          |
| 1 120          | 1 124          | 1 120          | 1.116          | 1 112          | 1 100          | 1 109          | 1 101          | 1.097          | 1 099          |
| 1.119          | 1.115          | 1.112          | 1.108          | 1.104          | 1.100          | 1.097          | 1.095          | 1.090          | 1.086          |
| 1.110          | 1.107          | 1.103          | 1.100          | 1.096          | 1.093          | 1.090          | 1.086          | 1.082          | 1.079          |
| 1.102          | 1.099          | 1.094          | 1.091          | 1.088          | 1.084          | 1.081          | 1.078          | 1.075          | 1.071          |
| 1.093<br>1.084 | 1.081          | 1.086<br>1.078 | 1.083          | 1.080<br>1.072 | 1.076<br>1.068 | 1.073          | 1·070<br>1·063 | 1.067<br>1.060 | 1.064          |
| 1 004          | 1 001          | 1 0/0          | 1.075          | 10/2           | 1 000          | 1 005          | 1 009          | 1 000          | 1 000          |
| 1.076          | 1.073          | 1.070          | 1.067          | 1.064          | 1.061          | 1.058          | 1.055          | 1.052          | 1.049          |
| 1.067          | 1.064          | 1.061          | 1.058          | 1.055          | 1.052          | 1.050          | 1.048          | 1.045          | 1 042          |
| 1.058          | 1:055          | 1.052          | 1.050          | 1.047          | 1.044          | 1.042          | 1.040          | 1.038          | 1.036          |
| 1.049          | 1.046          | 1:044          | 1.042          | 1.039          | 1:037          | 1.034          | 1.031          | 1.029          | 1.027          |
| 1.040          | 1.038          | 1.036          | 1.034          | 1.031          | 1.029          | 1.026          | 1.023          | 1.021          | 1.018          |
| 1.030          | 1.028          | 1.026          | 1.024          | 1.021          | 1.019          | 1.012          | 1.014          | 1.012          | 1.009          |
| 1.020          | 1.018          | 1.016          | 1.014          | 1.011          | 1.009          | 1.007          | 1.004          | 1.002          | 1.000          |
| 1.010          | 1.008          | 1.006          | 1.004          | 1.001          | 0.999          | 0.997          | 0.994          | 0.993          | 0.990          |
| 1.001          | 0.999          | 0.997          | 0.995          | 0.992          | 0.990          | 0.988          | 0.985          | 0.983          | 0.981          |
| 0.991          | 0.989          | 0.987          | 0.985          | 0.982          | 0.980          | 0.978          | 0.975          | 0.973          | 0.971          |
| and a          |                |                | -              |                |                |                |                |                |                |

3. Chlorine.—Saturate with sodium carbonate, free from chloride, till the reaction is neutral or faintly alkaline, and titrate with silver nitrate (according to page 117).

4. Sulphuric Acid.—Saturate almost completely with sodium carbonate and precipitate with barium chloride (as on page 94). If the acid on evaporating leaves any appreciable fixed residue, this usually consists of sodium sulphate.

5. Nitrous Acid or Nitrogen Tetroxide are estimated by running the acid from a burette into a measured volume of warm dilute potassium permanganate (according to page 110). If any of these lower oxides of nitrogen are present, the alkalimetrical estimation of nitric acid cannot be performed with methyl-orange, but some other indicator must be used.

6. Fixed Residue, consisting chiefly of sodium sulphate, with a little ferric oxide, etc., is estimated by evaporating to dryness in a place protected from

dust, igniting and weighing.

7. Iron.—Precipitate with excess of ammonia, filter, weigh, and ignite the

Fe<sub>2</sub>O<sub>3</sub>.

8. Iodine is proved by a short digestion with pure zinc, which reduces iodic acid and generates some nitrous acid; the latter sets the iodine of the HJ free, and this can now be recognised by shaking up with carbon disulphide, which thereby assumes a pink colour.

N.B.—Tests Nos. 7 and 8 are only made with nitric acid sold as chemically

pure.

### D.-MIXTURES OF SULPHURIC AND NITRIC ACID.

Such mixtures are now sold for the manufacture of explosives, of colouring matters, etc. They are tested as follows :-

- 1. Sulphuric Acid.—Weigh off 2 or 3 grms. in a glass-cock pipette (fig. 9. p. 116). Run into a small porcelain dish, heat \( \frac{1}{2} \) or I hour on the water bath, adding at last a few drops of water (to destroy any nitrososulphuric acid), until no smell of nitric acid is perceptible even on agitation. The expulsion of nitric acid is promoted by now and then cautiously blowing upon the liquid and agitating the capsule. Wash its contents into a beaker, and titrate with normal or semi-normal caustic-soda and methyl-orange. The titre indicates nothing but sulphuric acid.
- 2. Nitric Acid.—Weigh 2 or 3 grms. as before, run cautiously into some water, and titrate with litmus. The result, less the sulphuric and nitrous acid, indicates NO3H.

3. Nitrous Acid is tested as on page 110.

4. As a check, nitric and nitrous acid are estimated together by the nitrometer.

## 8.—POTASH MANUFACTURE.

#### A.—POTASSIUM CHLORIDE.

- 1. Moisture. Heat 10 grms. for some time to 150° C, and allow to cool in a desiccator.
- 2. Potassium\* (a) In the absence of Potassium Sulphate dissolve 10 grms. of the well-mixed sample in a half-litre flask, fill up to the mark and filter.

<sup>\*</sup> Tests Nos. 2 and 3 are essentially as described by West and Zuckschwerdt, in Zeitschr. far Analyt. Chem., 1881, pages 185 and 357, and approved of by Professor Fresenius, and are recognised as binding for buyers and sellers at Stassfurt.

Put 20 c.c. of the filtrate (equal to 0.4 grms.) into a porcelain dish and add 7 c.c. of a platinum chloride solution, containing 10 grm. Pt. in 100 c.c. Evaporate on a water bath to a syrup, frequently agitating, so that most of the free HCl is driven off and the mass appears dry on cooling. When cool. pour 10 c.c. of 95 per cent. spirits of wine over it, triturate well and pour off the liquid through a filter, previously dried for an hour at 115°C. and weighed, pour on some more spirits of wine (rather less than before), triturate again, pour off the liquid and repeat this once more; now the alcohol should remain colourless and should not give any reaction for chlorine, otherwise the washing would have to be repeated. The double chloride of potassium and platinum, which is now pure, is washed on to the filter by means of a wash bottle containing alcohol. The filter is dried half an hour at 110–115° and weighed. The total quantity of alcohol employed should be about 50 c.c. Each part of K.PtCl. is equal to 0.30521 KCl.

should be about 50 c.c. Each part of K<sub>2</sub>PtCl<sub>6</sub> is equal to O·30521 KCl.

(b) In the presence of Potassium Sulphate.—Small quantities of this need not be noticed, but in mixtures containing much of this salt it must be converted into KCl by means of barium chloride. Dissolve 10 grms. in a half-litre flask in about 350 c.c. or 400 c.c. water and about 25 c.c. hydrochloric acid of 25° Twaddell, heat to boiling and add sufficient barium chlcride to precipitate all the sulphate. The BaCl<sub>2</sub> solution employed should be almost saturated, and a litre of it should contain 50 c.c. aqueous hydrochloric acid. With a little practice it is easy to fix the point when nearly all the potassium sulphate is decomposed; a very slight quantity remaining has no influence on the result, but any excess of BaCl2 would cause an error. If this way of proceeding should seem too uncertain, the sulphuric acid must be estimated in the usual way, and the calculated quantity of barium chloride added. Now fill the flask to the mark, shake up and allow to settle. An error is caused by the volume occupied by the barium sulphate, but the latter carries down a certain quantity of potassium chloride more than compensating that error, so that the result may be corrected accordingly (see below). The remainder of the analysis is carried out as in test No. 2a; special care must be taken to drive off all free HCl in evaporating, which is not quite easy when magnesia is present. The weight of K2PtCl6 found is corrected by calculating from the percentage of sulphate present, the c.c. of BaSO<sub>4</sub>, viz.: 1g.  $K_2SO_4=1.337g=0.3$  c.c. BaSO<sub>4</sub>; we call this quantity (a). In reality we have not had 500 ccm. of solution, but 500-a. But experience shows that a c.c. of BaSO<sub>4</sub> carry down as much KCl, as was contained in  $2\alpha$  c.c. solution; hence the result is too low, and must be multiplied by

 $\frac{500-a}{500-2a}$ 

in order to indicate the real percentage. For instance, if the salt contains 70 per cent.  $K_2SO_4$ ,  $10\,g$ . of it will furnish  $7\times0.3=2\cdot1$  c.c. BaSO<sub>4</sub>, hence  $a=2\cdot1$ ; consequently the weight of  $K_2PtCl_6$  found has to be multiplied with

 $\frac{500-2\cdot1}{500-4\cdot2}$ =1,0043.

If  $Na_2SO_4$  occurs in any salt, it is, of course, equally necessary to calculate the  $BaSO_4$  corresponding to it.

3. Sodium Chloride (of which sometimes a maximum percentage is stipulated) is estimated by a full analysis. Estimate KCl as above, then Ca (p. 117), Mg (p. 118), SO<sub>3</sub> (p. 94), insoluble matter and moisture. Calculate SO<sub>3</sub> as CaSO<sub>4</sub>, or, if there is not sufficient Ca present, partly as MgSO<sub>4</sub>

and  $K_2SO_4$ . If the  $SO_3$  does not suffice for saturating all the Mg, calculate the excess of Mg as MgCl<sub>2</sub>; the excess of Cl over that required to form KCl and MgCl<sub>2</sub> is calculated as NaCl.

4. Magnesium (as chloride or sulphate), if a guarantee has been given for a maximum not to be exceeded, is estimated as on p. 118, after precipitating, the lime. It is generally calculated as MgCl<sub>2</sub>.

#### B.—POTASSIUM SULPHATE.

#### Estimate:

1. KCl according to p. 117.

2. Free SO<sub>4</sub>H<sub>2</sub> according p. 117

3. Fe according to p. 114.

4. Insoluble, CaO, etc., just as in the case of sodium sulphate.

If a complete estimation of potassium is needed, employ the process described sub  $A\ (b)$ .

C.—LIMESTONE (Refer to p. 124).

D.-MIXING-COAL (Refer to p. 128).

E.—BLACK-ASH (Refer to p. 128).

F.-TANK-WASTE (Refer to p. 130).

G.-TANK-LIQUOR (Refer to p. 131).

H.—CARBONATED LIQUOR (Refer to p. 132).

I.—COMMERCIAL CARBONATE OF POTASH.

- 1. Available Alkali is titrated with normal hydrochloric acid, as on p. 138.
- 2. Total Potassium is estimated according to p. 156, A (b), so that all sulphate is converted into chloride. Of course, from the first more hydrochloric must be employed in order to decompose the carbonate.
  - 3. Chloride is estimated by silver solution, p. 117.
  - 4. Sulphate is estimated as BaSO<sub>4</sub>, p. 94.
  - 5. Insoluble, as on p. 138.
- 6. Silicate. Saturate the salt with hydrochloric acid, evaporate to dryness, moisten with HCl, evaporate again, dissolve in dilute HCl, filter, wash and strongly ignite the SiO<sub>2</sub>. This test is only exceptionally made, and the potassium silicate is calculated together with the carbonate.
- 7. Phosphate is estimated by the magnesia process, and is treated like the silicate.
  - 8. Calculation of the Analyses.—Calculate:
    - (a) K<sub>2</sub> CO<sub>3</sub> from the difference between the total potassium and that corresponding to the Cl and SO<sub>3</sub> found.
    - (b) Na<sub>2</sub>CO<sub>3</sub> from the difference between the total available alkali and the K<sub>2</sub>CO<sub>3</sub> just calculated.
    - (c) KCl and
    - (d) K<sub>2</sub>SO<sub>4</sub> as above.
    - (e) Water and
    - (f) Insoluble, if necessary also iron, by a special test.

158

# 9.—SPECIFIC GRAVITIES OF SOLUTIONS OF POTASSIUM CARBONATE AT 60° F. = 15° C. (Gerlach).

|           |                                                     |                                                                  |                                                           |           | ,                                                   |                                                         | •                                                         |
|-----------|-----------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------|-----------|-----------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------|
| Twaddell, | Per cent. by weight. K <sub>2</sub> CO <sub>3</sub> | Kilogr.<br>per cubic<br>metre.<br>K <sub>2</sub> CO <sub>3</sub> | lbs. per<br>cubic foot.<br>K <sub>2</sub> CO <sub>3</sub> | Twaddell. | Per cent. by weight. K <sub>2</sub> CO <sub>3</sub> | Kilogr. per cubic metre. K <sub>2</sub> CO <sub>3</sub> | lbs. per<br>cubic foot.<br>K <sub>2</sub> CO <sub>3</sub> |
| 1         | .54                                                 | 5·4                                                              | 0·34                                                      | 38        | 19·74                                               | 234·9                                                   | 14·65                                                     |
| 2         | 1.08                                                | 10·9                                                             | 0·68                                                      | 39        | 20·22                                               | 241·7                                                   | 15·07                                                     |
| 3         | 1.62                                                | 16·4                                                             | 1·02                                                      | 40        | 20·70                                               | 248·4                                                   | 15·49                                                     |
| 4         | 2.16                                                | 22·0                                                             | 1·37                                                      | 41        | 21·17                                               | 255·2                                                   | 15·91                                                     |
| 5         | 2.70                                                | 27·7                                                             | 1·73                                                      | 42        | 21·65                                               | 262·0                                                   | 16·33                                                     |
| 6         | 3·24                                                | 33·4                                                             | 2·08                                                      | 43        | 22·12                                               | 268·8                                                   | 16·76                                                     |
| 7         | 3·78                                                | 39·1                                                             | 2·43                                                      | 44        | 22·60                                               | 275·7                                                   | 17·19                                                     |
| 8         | 4·32                                                | 44·9                                                             | 2·80                                                      | 45        | 23·07                                               | 282·6                                                   | 17·62                                                     |
| 9         | 4·86                                                | 50·8                                                             | 3·17                                                      | 46        | 23·55                                               | 289·6                                                   | 18·05                                                     |
| 10        | 5·40                                                | 56·7                                                             | 3·53                                                      | 47        | 24·02                                               | 296·7                                                   | 18·50                                                     |
| 11        | 5.94                                                | 62·7                                                             | 3·90                                                      | 48        | 24·50                                               | 303·8                                                   | 18·94                                                     |
| 12        | 6.48                                                | 68·7                                                             | 4·28                                                      | 49        | 24·97                                               | 310·9                                                   | 19·38                                                     |
| 13        | 7.02                                                | 74·8                                                             | 4·66                                                      | 50        | 25·45                                               | 318·1                                                   | 19·83                                                     |
| 14        | 7.56                                                | 80·9                                                             | 5·04                                                      | 51        | 25·89                                               | 325·0                                                   | 20·26                                                     |
| 15        | 8.10                                                | 87·1                                                             | 5·43                                                      | 52        | 26·34                                               | 331·9                                                   | 20·70                                                     |
| 16        | 8·64                                                | 93·3                                                             | 5·82                                                      | 53        | 26·78                                               | 338·8                                                   | 21·12                                                     |
| 17        | 9·18                                                | 99·6                                                             | 6·21                                                      | 54        | 27·23                                               | 345·8                                                   | 21·56                                                     |
| 18        | 9·72                                                | 105·9                                                            | 6·60                                                      | 55        | 27·68                                               | 352·8                                                   | 22·00                                                     |
| 19        | 10·26                                               | 108·4                                                            | 6·51                                                      | 56        | 28·12                                               | 359·9                                                   | 22·44                                                     |
| 20        | 10·80                                               | 118·8                                                            | 7·41                                                      | 57        | 28·57                                               | 367·1                                                   | 22·89                                                     |
| 21        | 11:31                                               | 125·0                                                            | 7:79                                                      | 58        | 29·02                                               | 374·3                                                   | 23·34                                                     |
| 22        | 11:82                                               | 131·2                                                            | 8:18                                                      | 59        | 29·46                                               | 381·5                                                   | 23·79                                                     |
| 23        | 12:33                                               | 137·5                                                            | 8:57                                                      | 60        | 29·91                                               | 388·8                                                   | 24·24                                                     |
| 24        | 12:84                                               | 143·8                                                            | 8:97                                                      | 61        | 30·34                                               | 395·9                                                   | 24·68                                                     |
| 25        | 13:35                                               | 150·2                                                            | 9:37                                                      | 62        | 30·77                                               | 403·1                                                   | 25·13                                                     |
| 26        | 13:86                                               | 156·6                                                            | 9·76                                                      | 63        | 31·21                                               | 410·3                                                   | 25·58                                                     |
| 27        | 14:37                                               | 163·1                                                            | 10·17                                                     | 64        | 31·64                                               | 417·6                                                   | 26·04                                                     |
| 28        | 14:88                                               | 169·6                                                            | 10·57                                                     | 65        | 32·08                                               | 425·0                                                   | 26·50                                                     |
| 29        | 15:39                                               | 176·2                                                            | 10·99                                                     | 66        | 32·51                                               | 482·4                                                   | 26·96                                                     |
| 30        | 15:90                                               | 182·8                                                            | 11·40                                                     | 67        | 32·94                                               | 439·8                                                   | 27·42                                                     |
| 31        | 16·38                                               | 189·2                                                            | 11.80                                                     | 68        | 33·38                                               | 447·3                                                   | 27·89                                                     |
| 32        | 16·86                                               | 195·6                                                            | 12.20                                                     | 69        | 33·81                                               | 454·8                                                   | 28·36                                                     |
| 33        | 17·34                                               | 202·0                                                            | 12.59                                                     | 70        | 34·25                                               | 462·4                                                   | 28·83                                                     |
| 34        | 17·82                                               | 208·5                                                            | 13.00                                                     | 71        | 34·67                                               | 469·9                                                   | 29·30                                                     |
| 35        | 18·30                                               | 215·0                                                            | 13.40                                                     | 72        | 35·10                                               | 477·4                                                   | 29·77                                                     |
| 36        | 18·78                                               | 221·6                                                            | 13·82                                                     | 73        | 35·52                                               | 484·9                                                   | 30·23                                                     |
| 37        | 19·26                                               | 228·2                                                            | 14·23                                                     | 74        | 85·95                                               | 492·5                                                   | 30·71                                                     |

9.—SPECIFIC GRAVITIES OF SOLUTIONS OF POTASSIUM CARBONATE AT 60° F. = 15° C. (Gerlach).—Continued.

| Twaddell. | Per cent.<br>by<br>weight.<br>K <sub>2</sub> CO <sub>3</sub> | Kilogr.<br>per cubic<br>metre.<br>K <sub>2</sub> CO <sub>3</sub> | lbs. per<br>cubic foot.<br>K <sub>2</sub> CO <sub>3</sub> | Twaddell. | Per cent.<br>by<br>weight.<br>K <sub>2</sub> CO <sub>3</sub> | Kilogr. per cubic metre. K <sub>2</sub> CO <sub>3</sub> | lbs. per<br>cubic foot.<br>K <sub>2</sub> CO <sub>3</sub> |
|-----------|--------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------|-----------|--------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------|
| 75        | 36·37                                                        | 500·1                                                            | 31·18                                                     | 95        | 44·60                                                        | 657·8                                                   | 41·01                                                     |
| 76        | 36·80                                                        | 507·8                                                            | 31·66                                                     | 96        | 45·00                                                        | 666·0                                                   | 41·52                                                     |
| 77        | 37·22                                                        | 515·6                                                            | 32·15                                                     | 97        | 45·40                                                        | 674·2                                                   | 42·03                                                     |
| 78        | 37·65                                                        | 523·3                                                            | 32·63                                                     | 98        | 45·80                                                        | 682·4                                                   | 42·55                                                     |
| 79        | 38·07                                                        | 531·7                                                            | 33·11                                                     | 99        | 46·20                                                        | 690·7                                                   | 43·06                                                     |
| 80        | 38·50                                                        | 539·0                                                            | 33·60                                                     | 100       | 46·60                                                        | 699·0                                                   | 43·58                                                     |
| 81        | 38·91                                                        | 546·7                                                            | 34·09                                                     | 101       | 46·98                                                        | 707·1                                                   | 44·09                                                     |
| 82        | 39·32                                                        | 554·4                                                            | 34·57                                                     | 102       | 47·37                                                        | 715·3                                                   | 44·61                                                     |
| 83        | 39·73                                                        | 562·2                                                            | 35·05                                                     | 103       | 47·75                                                        | 723·5                                                   | 45·11                                                     |
| 84        | 40·14                                                        | 570·0                                                            | 85·54                                                     | 104       | 48·14                                                        | 731·7                                                   | 45·62                                                     |
| 85        | 40·55                                                        | 577.8                                                            | 36·02                                                     | 105       | 48·52                                                        | 740·0                                                   | 46·14                                                     |
| 86        | 40·96                                                        | 585.7                                                            | 36·51                                                     | 106       | 48·91                                                        | 748·3                                                   | 46·66                                                     |
| 87        | 41·37                                                        | 593.6                                                            | 37·01                                                     | 107       | 49·29                                                        | 756·7                                                   | 47·18                                                     |
| 88        | 41·78                                                        | 601.6                                                            | 37·51                                                     | 108       | 49·68                                                        | 765·1                                                   | 47·70                                                     |
| 89        | 42·19                                                        | 609.6                                                            | 38·01                                                     | 109       | 50·06                                                        | 773·5                                                   | 48·22                                                     |
| 90        | 42·60                                                        | 617·7                                                            | 38·51                                                     | 110       | 50·45                                                        | 782·0                                                   | 48·76                                                     |
| 91        | 43·00                                                        | 625·6                                                            | 39·01                                                     | 111       | 50·83                                                        | 790·5                                                   | 49·29                                                     |
| 92        | 43·40                                                        | 633·6                                                            | 39·51                                                     | 112       | 51·22                                                        | 799·0                                                   | 49·82                                                     |
| 93        | 43·80                                                        | 641·6                                                            | 40·01                                                     | 113       | 51·61                                                        | 807·7                                                   | 50·36                                                     |
| 94        | 44·20                                                        | 649·7                                                            | 40·51                                                     | 114       | 52·00                                                        | 816·4                                                   | 50·90                                                     |

160

# 10.—INFLUENCE OF TEMPERATURE ON THE SPECIFIC GRAVITIES OF SOLUTIONS OF POTASSIUM CARBONATE.

| 0° C.                   | 5°             | 10°            | 15°            | 20°            | 25°            | 30°            | 35°            | 40°            | 45°            | 50°            |
|-------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| 1.588<br>1.577<br>1.567 | 1.586<br>1.575 | 1.583<br>1.573 | 1·580<br>1·570 | 1.577<br>1.568 | 1.574<br>1.565 | 1·571<br>1·563 | 1.568<br>1.560 | 1.566<br>1.557 | 1·563<br>1·554 | 1.559<br>1.551 |
| 1.557                   | 1.565          | 1.563<br>1.552 | 1.560<br>1.550 | 1.558<br>1.548 | 1.555          | 1.553<br>1.544 | 1.550<br>1.541 | 1.548          | 1.545          | 1.543<br>1.533 |
| 1.547                   | 1.544          | 1.542          | 1 510          | 1.538          | 1.536          | 1.534          | 1.531          | 1.528          | 1.526          | 1.523          |
| 1.536                   | 1.534          | 1.532          | 1.530          | 1 528          | 1.526          | 1.524          | 1.521          | 1.518          | 1.515          | 1.512          |
| 1.226                   | 1.524          | 1.522          | 1.520          | 1 518          | 1.216          | 1.514          | 1.211          | 1.508          | 1.505          | 1.502          |
| 1.216<br>1.206          | 1 514<br>1 504 | 1·512<br>1·502 | 1.510          | 1.508<br>1.498 | 1.506<br>1.496 | 1.503<br>1.493 | 1.500<br>1.490 | 1.498          | 1.495<br>1.485 | 1.492          |
| 1.496                   | 1.494          | 1.492          | 1.490          | 1.488          | 1.486          | 1.484          | 1.481          | 1.488          | 1.475          | 1·482<br>1·472 |
| 1.486                   | 1.484          | 1.482          | 1.480          | 1.478          | 1:476          | 1.474          | 1.471          | 1:468          | 1.465          | 1.462          |
| 1.476                   | 1.474          | 1.472          | 1.470          | 1.468          | 1.466          | 1.464          | 1.461          | 1.458          | 1.455          | 1.452          |
| 1·466<br>1·456          | 1.464          | 1.462          | 1.460          | 1.458          | 1.456          | 1.454          | 1.451          | 1.448          | 1.445          | 1.442          |
| 1.446                   | 1.454          | 1.452<br>1.442 | 1.450<br>1.440 | 1·448<br>1·438 | 1·446<br>1·436 | 1.444          | 1·441<br>1·431 | 1.438<br>1.428 | 1.435<br>1.425 | 1·432<br>1·422 |
| 1.436                   | 1.434          | 1.432          | 1.430          | 1.428          | 1.426          | 1.423          | 1.420          | 1.418          | 1.414          | 1.411          |
| 1.426                   | 1 424          | 1.422          | 1.420          | 1.418          | 1.416          | 1.413          | 1.410          | 1.408          | 1.404          | 1.401          |
| 1·416<br>1·406          | 1.414          | 1.412          | 1.410          | 1.408          | 1.406          | 1.404          | 1.401          | 1.398          | 1.395          | 1.392          |
| 1.396                   | 1.404          | 1·402<br>1·392 | 1·400<br>1·390 | 1·398<br>1·388 | 1:396<br>1:386 | 1 394          | 1·391<br>1·381 | 1·388<br>1·378 | 1·385<br>1·376 | 1·382<br>1·373 |
| 1.386                   | 1.384          | 1.382          | 1.380          | 1.378          | 1.376          | 1.374          | 1.371          | 1.368          | 1.366          | 1.363          |
| 1.376                   | 1.374          | 1.372          | 1.370          | 1.368          | 1.366          | 1.361          | 1.361          | 1.358          | 1.356          | 1.353          |
| 1.366                   | 1.364          | 1.363          | 1.360          | 1.358          | 1.356          | 1.354          | 1.351          | 1.348          | 1.346          | 1.343          |
| 1·356<br>1·346          | 1.354          | 1·352<br>1·342 | 1.350          | 1·348<br>1·338 | 1.346          | 1.344          | 1·341<br>1·331 | 1·338<br>1·328 | 1·336<br>1·326 | 1.333          |
| 1.336                   | 1.334          | 1.332          | 1.330          | 1.328          | 1.326          | 1.324          | 1.321          | 1.318          | 1.316          | 1.313          |
| 1.326                   | 1.324          | 1.322          | 1.320          | 1.318          | 1.316          | 1.314          | 1.311          | 1.308          | 1.306          | 1.303          |
| 1.316                   | 1.314          | 1.312          | 1.310          | 1.308          | 1.306          | 1.303          | 1.300          | 1.298          | 1.295          | 1.292          |
| 1·306<br>1·296          | 1.304          | 1.302          | 1·300<br>1·290 | 1·298<br>1·288 | 1·296<br>1·286 | 1.293<br>1.283 | 1·290<br>1·280 | 1.288<br>1.278 | 1·285<br>1·275 | 1.282          |
| 1.286                   | 1.284          | 1.282          | 1.280          | 1.278          | 1.276          | 1.273          | 1.270          | 1.268          | 1.265          | 1.263          |
| 1.276                   | 1.274          | 1.272          | 1.270          | 1.268          | 1.265          | 1.263          | 1.260          | 1.257          | 1.255          | 1.253          |
| 1.266                   | 1.264          | 1 262          | 1.260          | 1.258          | 1.255          | 1.253          | 1.250          | 1 247          | 1.245          | 1.242          |
| 1.256<br>1.246          | 1·254<br>1·244 | 1·252<br>1·242 | 1·250<br>1·240 | 1·248<br>1·238 | 1.546<br>1.536 | 1·243<br>1·233 | 1·240<br>1·230 | 1·238<br>1·228 | 1·235<br>1·225 | 1.232          |
| 1.236                   | 1.234          | 1.232          | 1.230          | 1.228          | 1.226          | 1.224          | 1.222          | 1.219          | 1.217          | 1.214          |
| 1.226                   | 1.224          | 1.222          | 1.220          | 1.218          | 1.216          | 1.214          | 1.212          | 1.209          | 1.207          | 1.204          |
| 1·216<br>1·206          | 1.214<br>1.204 | 1·212<br>1·202 | 1.210          | 1·208<br>1·198 | 1.206          | 1.204          | 1·202<br>1·192 | 1.199          | 1.197          | 1.194          |
| 1.196                   | 1.194          | 1.192          | 1.190          | 1.188          | 1·196<br>1·186 | 1·194<br>1·184 | 1.192          | 1·189<br>1·179 | 1·187<br>1·177 | 1.184          |
| 1.186                   | 1.184          | 1.182          | 1.180          | 1.178          | 1.176          | 1.174          | 1.172          | 1.170          | 1.167          | 1.164          |
| 1.175                   | 1.173          | 1.171          | 1.170          | 1.168          | 1.166          | 1.164          | 1.162          | 1.160          | 1.157          | 1.155          |
| 1·165<br>1·155          | 1.163          | 1.161          | 1·160<br>1·150 | 1·158<br>1·148 | 1.156          | 1·154<br>1·144 | 1·152<br>1·142 | 1.150          | 1.147          | 1.145          |
| 1.144                   | 1·153<br>1·143 | 1·151<br>1·141 | 1.140          | 1.138          | 1·146<br>1·136 | 1.134          | 1.132          | 1·140<br>1·130 | 1.137          | 1.135          |
| 1.133                   | 1.132          | 1.131          | 1.130          | 1.128          | 1.126          | 1.124          | 1.122          | 1.120          | 1.117          | 1.114          |
| 1.123                   | 1.122          | 1 121          | 1.120          | 1.118          | 1.116          | 1.114          | 1.112          | 1.110          | 1.107          | 1.104          |
| 1.113                   | 1.112          | 1·111<br>1·101 | 1·110<br>1·100 | 1·108<br>1·098 | 1.108          | 1·104<br>1·094 | 1.102          | 1.100          | 1.097          | 1.094          |
| 1.093                   | 1.092          | 1.091          | 1.090          | 1.089          | 1.096          | 1.086          | 1.083          | 1:090<br>1:081 | 1.087<br>1.079 | 1.084          |
| 1.083                   | 1.082          | 1.081          | 1.080          | 1.079          | 1.077          | 1.076          | 1.073          | 1.071          | 1.069          | 1.067          |
| 1.073                   | 1.072          | 1.071          | 1.070          | 1.069          | 1.067          | 1.066          | 1.064          | 1.062          | 1.060          | 1.058          |
| 1.063<br>1.053          | 1.062          | 1:061          | 1.060          | 1.059          | 1.057<br>1.047 | 1.056<br>1.046 | 1.054<br>1.044 | 1.052          | 1.050<br>1.040 | 1.048          |
| 1.043                   | 1.042          | 1.051          | 1.040          | 1.049<br>1.039 | 1.037          | 1.036          | 1.034          | 1.042<br>1.032 | 1.030          | 1.038          |
| 1.033                   | 1.032          | 1.031          | 1.030          | 1.028          | 1.027          | 1.025          | 1.024          | 1.022          | 1.020          | 1.018          |
| 1.023                   | 1.022          | 1 021          | 1.020          | 1.018          | 1.017          | 1.012          | 1.014          | 1.012          | 1.010          | 1.003          |
| 1.013                   | 1.012          | 1.011          | 1.010          | 1 008          | 1.007          | 1.005          | 1.004          | 1.002          | 1.000          | 0.998          |
| -                       |                |                |                |                |                |                |                |                | -              |                |

10.—INFLUENCE OF TEMPERATURE ON THE SPECIFIC GRAVITIES OF SOLUTIONS OF POTASSIUM CARBONATE.—

Continued.

| 55°            | C0°            | 65°   | 70°            | 75°            | 80°            | 85°            | £0°                                     | 95°            | 100°           |
|----------------|----------------|-------|----------------|----------------|----------------|----------------|-----------------------------------------|----------------|----------------|
| 1.559          | 1.553          | 1.550 | 1.216          | 1.542          | 1.538          | 1.534          | 1.530                                   | 1.526          | 1.521          |
| 1.548          | 1.545          | 1.241 | 1.537          | 1.533          | 1.530          | 1.526          | 1.522                                   | 1.518          | 1.213          |
| 1.539          | 1.536          | 1.532 | 1.528          | 1.525          | 1.522          | 1.517          | 1.213                                   | 1.509          | 1.505          |
| 1.230          | 1.527          | 1.524 | 1.21           | 1.218          | 1.213          | 1 509          | 1.504                                   | 1.201          | 1.498          |
| 1.520          | 1.212          | 1.214 | 1.211          | 1.208          | 1.204          | 1.200          | 1.497                                   | 1.494          | 1.490          |
| 1.509          | 1.507          | 1.504 | 1.200          | 1.497          | 1.494          | 1.491          | 1.488                                   | 1.485          | 1.481          |
| 1.499          | 1.497          | 1.494 | 1.490          | 1.497          | 1.484          | 1.481          | 1.478                                   | 1.475          | 1.471          |
| 1.489          | 1.487          | 1.484 | 1.480          | 1.477          | 1.474          | 1.471          | 1.468                                   | 1.465          | 1.461          |
| 1.479<br>1.469 | 1·476<br>1·466 | 1.474 | 1·470<br>1·460 | 1·467<br>1·457 | 1.464          | 1.461<br>1.450 | 1:458<br>1:447                          | 1.455          | 1·451<br>1·441 |
|                |                |       |                |                |                |                |                                         |                |                |
| 1·459<br>1·449 | 1·456<br>1·446 | 1.454 | 1·450<br>1·440 | 1.417<br>1.437 | 1.444          | 1·440<br>1·431 | 1·437<br>1·428                          | 1.434<br>1.424 | 1·431<br>1·421 |
| 1.439          | 1.436          | 1.434 | 1.430          | 1.427          | 1.424          | 1.421          | 1.418                                   | 1.414          | 1.411          |
| 1.429          | 1.426          | 1.423 | 1.420          | 1.417          | 1.414          | 1.410          | 1.408                                   | 1.405          | 1.402          |
| 1.419          | 1.416          | 1.413 | 1.410          | 1.407          | 1.404          | 1.400          | 1.398                                   | 1.396          | 1.392          |
| 1.409          | 1.406          | 1.404 | 1.401          | 1.398          | 1.395          | 1.391          | 1:388                                   | 1.385          | 1:382          |
| 1.399          | 1.396          | 1.394 | 1.391          | 1.388          | 1.385          | 1.381          | 1:378                                   | 1.375          | 1.372          |
| 1.390          | 1.387          | 1.384 | 1.380          | 1.377          | 1.374          | 1.371          | 1.368                                   | 1.365          | 1.362          |
| 1.380          | 1.377          | 1.374 | 1.370          | 1.367          | 1.364          | 1.361          | 1.358                                   | 1.355          | 1.352          |
| 1.370          | 1.367          | 1.364 | 1.361          | 1.358          | 1.355          | 1.351          | 1.348                                   | 1.342          | 1.342          |
| 1.360          | 1.357          | 1.351 | 1.351          | 1.318          | 1.345          | 1.341          | 1.338                                   | 1.335          | 1.332          |
| 1.350          | 1.317          | 1.344 | 1.341          | 1.338          | 1.335          | 1.332          | 1.329                                   | 1.326          | 1.323          |
| 1.340          | 1.337          | 1.334 | 1·331<br>1·321 | 1·328<br>1·318 | 1.325          | 1.322          | 1.319                                   | 1.316          | 1.313          |
| 1·330<br>1·320 | 1.317          | 1.314 | 1.311          | 1.308          | 1.315          | 1·312<br>1·302 | 1·309<br>1·299                          | 1·306<br>1·296 | 1.303          |
|                |                |       |                |                |                | 1              | 100000000000000000000000000000000000000 |                | 1              |
| 1.300          | 1·307<br>1·297 | 1.304 | 1.301          | 1·298<br>1·288 | 1.295<br>1.285 | 1·292<br>1·282 | 1·289<br>1·279                          | 1·286<br>1·276 | 1.284          |
| 1.290          | 1.287          | 1.284 | 1.281          | 1.278          | 1.276          | 1.273          | 1.279                                   | 1.267          | 1.264          |
| 1.280          | 1.277          | 1.274 | 1.271          | 1.268          | 1.266          | 1.263          | 1.260                                   | 1.257          | 1.254          |
| 1.270          | 1.267          | 1.264 | 1.261          | 1.258          | 1.256          | 1.253          | 1.250                                   | 1.247          | 1.244          |
| 1.260          | 1.257          | 1.254 | 1.251          | 1.248          | 1.246          | 1.243          | 1.240                                   | 1.237          | 1.234          |
| 1.250          | 1.247          | 1.244 | 1.242          | 1.239          | 1.236          | 1.234          | 1.231                                   | 1.228          | 1.225          |
| 1.240          | 1.237          | 1.234 | 1.232          | 1.223          | 1.226          | 1.224          | 1.221                                   | 1.218          | 1.215          |
| 1.230          | 1.227          | 1.224 | 1.221          | 1.218          | 1.216          | 1.213          | 1.210                                   | 1.208          | 1.202          |
| 1.220          | 1.217          | 1.214 | 1.211          | 1.208          | 1.206          | 1.203          | 1.200                                   | 1.198          | 1.192          |
| 1.212          | 1.209          | 1.202 | 1.202          | 1.198          | 1.196          | 1.191          | 1.192                                   | 1.188          | 1.186          |
| 1·202<br>1·192 | 1.189          | 1.196 | 1.193          | 1·190<br>1·180 | 1·187<br>1·178 | 1·184<br>1·175 | 1·182<br>1·172                          | 1.178          | 1.176          |
| 1.182          | 1.179          | 1.176 | 1.173          | 1.171          | 1.108          | 1.165          | 1.162                                   | 1·169<br>1·159 | 1.157          |
| 1.172          | 1.169          | 1 166 | 1.164          | 1.161          | 1.159          | 1.155          | 1.152                                   | 1.149          | 1.146          |
| 1.162          | 1.159          | 1.156 | 1.154          | 1:151          | 1.148          | 1.145          | 1.142                                   | 1.139          | 1.136          |
| 1.152          | 1.150          | 1 117 | 1.144          | 1.141          | 1.138          | 1.135          | 1.132                                   | 1.129          | 1.126          |
| 1.142          | 1.110          | 1.137 | 1.131          | 1.131          | 1.123          | 1.125          | 1.122                                   | 1.119          | 1.116          |
| 1.132          | 1.130          | 1.128 | 1.125          | 1.122          | 1.118          | 1.112          | 1.112                                   | 1.109          | 1.100          |
| 1.122          | 1.120          | 1.118 | 1.112          | 1.113          | 1.108          | 1 105          | 1.103                                   | 1.099          | 1.006          |
| 1.112          | 1.110          | 1.108 | 1.102          | 1.102          | 1.098          | 1.092          | 1.092                                   | 1.089          | 1.086          |
| 1.102          | 1.100          | 1.098 | 1.095          | 1.092          | 1.088          | 1.085          | 1.083                                   | 1.078          | 1.076          |
| 1.092<br>1.082 | 1.090          | 1.087 | 1.081          | 1.082          | 1.079          | 1.075          | 1 072                                   | 1:069          | 1.067          |
| 1.074          | 1.071          | 1.068 | 1.065          | 1.063          | 1.060          | 1.065          | 1.054                                   | 1.059          | 1.057<br>1.048 |
| 1.066          | 1:062          | 1.059 | 1.056          | 1.054          | 1.051          | 1 048          | 1.045                                   | 1.041          | 1.038          |
| 1.056          | 1 053          | 1.059 | 1.047          | 1.012          | 1.042          | 1.039          | 1.036                                   | 1.032          | 1.038          |
| 1.016          | 1.014          | 1.041 | 1.038          | 1.036          | 1.033          | 1.030          | 1.026                                   | 1 023          | 1.020          |
| 1.036          | 1.033          | 1.031 | 1.028          | 1.025          | 1.022          | 1.019          | 1.016                                   | 1.013          | 1.010          |
| 1.026          | 1.023          | 1.021 | 1.018          | 1.015          | 1.012          | 1.009          | 1.006                                   | 1.003          | 1.000          |
| 1.016          | 1.014          | 1.012 | 1.009          | 1.006          | 1.002          | 0.993          | 0.996                                   | 0.993          | 0 990          |
| 1.007          | 1.004          | 1.002 | 0.999          | 0.996          | 0.993          | 0.990          | 0.987                                   | 0.984          | 0.981          |
| 0.996          | 0.994          | 0.992 | 0.989          | 0.986          | 0.083          | 0.080          | 0.977                                   | 0.974          | 0.971          |
|                |                |       |                |                | '              | ·              |                                         |                |                |

#### 9.-AMMONIA MANUFACTURE.

### A.—GAS LIQUOR.

This liquor generally contains the ammonia principally in the state of carbonate and sulphide, which can be driven off by mere boiling, without employing lime or alkali, and which are indicated by alkalimetrical testing (volatile ammonia). There is, however, always a certain quantity of ammonia present in the state of salts not sensibly volatilizing by mere boiling, and not indicated by simple testing with standard acid. These are the chloride, sulphocyanide, sulphite, thiosulphate, sulphate, ferrocyanide (fixed ammonia). No other salts need be mentioned here.

For technical purposes, it is sufficient to make the following tests:-

1. Volatile Ammonia.—Dilute 20 ccm. of gas-liquor with 100 c.c. water, add 30 ccm. of normal hydrochloric acid, and boil till all  $\rm CO_2$  and  $\rm H_2S$  is expelled. Retitrate with semi-normal alkali, employing the ordinary indicators. If the liquor is too much coloured to perceive the change of the indicator, dilute it with water or employ litmus paper. This process always admits of much greater accuracy than titrating the liquor directly with standard acid. Each c.c. of the latter corresponds to 0-017g. NH<sub>3</sub>, or to 0-085 parts NH<sub>3</sub> by weight in 100 vols. of gas liquor; or to 0-4216 ounces of rectified oil of vitriol (at 93 per cent.  $\rm SO_4H_2$ ) per gallon of gas-liquor.



FIG. 11.

2. Total Ammonia.—Put 20 ccm. of gas-liquor, with about as much water, into the flask A, fig. 11, and charge the receivers B and C with 30 c.c. of normal hydrochloric acid previously diluted to twice its volume. The greater portion of this mixture should be contained in the U-tube B. Make

the connection and run an excess of milk of lime into A through the pinch-cock funnel a. Apply heat and keep up a gentle distillation for one or two hours, when all NH $_3$  will be driven off and absorbed in B and C. Unite the contents of these vessels and retitrate with semi-normal caustic soda. If a

c.c. of this are used,  $30-\frac{a}{2}$  indicates the c.c. of test acid, corresponding to the total ammonia, and calculated as in test No. 1.

3. Total Sulphur.—Add bromine water to 100 c.c. of liquid till the colour and smell of bromine are distinctly perceived, acidulate with pure HCl, boil till all bromine has been expelled, filter if necessary, neutralize the solution almost but not quite with pure sodium carbonate, and precipitate the SO<sub>4</sub>H<sub>2</sub> formed with BaCl<sub>2</sub> proceeding as described p. 94.

Sometimes it may be desirable to deduct from the total sulphur that originally present in the gas-liquor as sulphate, which is estimated by boiling the unoxidized gas-liquor with HCl and proceeding as above.

4. Sulphocyanide.—Evaporate 50 ccm. of gas-liquor to dryness, heat the residue at 100° C. for 3 or 4 hours, digest it with strong alcohol, filter, wash on the filter with alcohol, evaporate all the alcoholic solutions to dryness, dissolve in water, filter from any residue, add a mixed solution of sulphurous acid and cupric sulphate and heat gently, when cuprous sulphocyanide will be precipitated. Wash the precipitate into a flask, dissolve it in nitric acid, boil for some time, and precipitate the Cu as CuO by NaOH. The weight of CuO×0.96=the equivalent amount of NH<sub>4</sub> CNS (Dyson, S.C.I., 1883, p. 231). Or else proceed by titration, employing a solution of 6.2375 grms. CuSO<sub>4</sub>, 5H<sub>2</sub>O per litre, 1 c.c. of which is equivalent to 0.00145 grm. SCN=0.00190 grm. (NH<sub>4</sub>) SCN, which is added to a boiling solution, to which some sodium bisulphite has been added, till a drop of the mixture, brought into contact with a drop of a solution of potassium ferrocyanide in 20 parts of water, produces immediately a brown coloration (Barnes & Liddell, S.C.I., 1883, p. 122).

#### B.—SULPHATE OF AMMONIA.

1. Estimation of Ammonia.—The average sample, carefully drawn, is well ground up, passed completely through a sieve with 10 holes to the running inch, and a smaller sample is taken out of this. Weigh 17 grms, of the latter sample in a stoppered tube, dissolve and dilute it to 500 c.c. and place 50 c.c. of the solution without filtration into the apparatus fig. 11 (p. 162). The test is carried out exactly as in A No. 2. Each c.c. of the quantity  $30\frac{a}{2}$ is=0017g, NH<sub>3</sub> or=10 per cent. The analysis of sulphate of

ammonia is, however, best performed by the bromine method, in which the NH<sub>3</sub> is converted into elementary nitrogen. This method can be carried out in the "Azotometer," or in Lunge's gasvolumeter (p. 113), if the latter is provided with a "decomposing flask." The necessary "brominated soda" is prepared by dissolving 100 grms. 70 per cent. caustic soda in 250 grms. water, and cautiously adding 25 grms. bromine. The reagent must be kept in a dark, cool place, but even then does not keep more than a few days. The ammonium salt, preferably dissolved in water, is introduced into the

outer space of the decomposing flask F, fig. 12; 25 or 30 c.c. brominated soda is poured into the inner tube a. The cork b, having been already attached to the volumeter-tube by means of a short elastic tube, is pressed tightly down into the flask F, taking hold of this only by the neck; the pressure



F16. 12.

thus produced is relieved by momentarily pulling out the plug of the volumeter-tap g, having previously placed tubes B and C (fig. 7, p. 113) so that the mercury is exactly on the same level in both tubes. The mercury in tube A should reach right up to tap g, or else to some other point read off and taken as zero for the subsequent measurement. Now the flask F is tilted so that the contents of a run into the outer space; the flask is then shaken till no more gas is evolved. The mercury levels in A and C are made exactly to coincide, after waiting a quarter, or better, half an hour, in order to cool down the flask. (This may be expedited by placing F, both before and after the operation, in a large vessel filled with water of the temperature of the room.) When the levels have been exactly adjusted, shut tap g, raise C, till the mercury in B stands at 100 c.c.; and now raise or lower C and B together, till the mercury level in A again exactly coincides with those in C and D. Now read off the number of c.c. of gas in A; each c.c.=0001285 grm. N=0001561 grm. NH<sub>3</sub> (this includes the necessary correction for absorption or incomplete evolution of N). In order to save all calculations, dissolve 1.561 grm. sulphate of ammonia in 100 c.c. of water, and employ 10 c.c.=0.1561 grm. for each test; in this case each c.c. of gas contained in A=1 per cent. NH<sub>3</sub>.

2. Sulphocyanide.-Refer to A No. 4.

C.—TABLES.

# 1.—SPECIFIC GRAVITIES OF LIQUOR AMMONIÆ, AT 15° C. (Lunge & Wiernik.)

| Specific<br>Gravity<br>at 15°. | Per cent. | l litre con-<br>tains<br>grms. NH <sub>3</sub> . | Correction of the Specific Gravity for ± 1° C. | Specific<br>Gravity<br>at 15°. | Per cent.<br>NH <sub>3</sub> . | 1 litre con-<br>tains<br>grms. NH <sub>3</sub> . | Correction of the Specific Gravity for ± 1° C. |
|--------------------------------|-----------|--------------------------------------------------|------------------------------------------------|--------------------------------|--------------------------------|--------------------------------------------------|------------------------------------------------|
|                                |           | - E0                                             | 101 11 01                                      |                                |                                | - 60                                             |                                                |
| 1.000                          | 0.00      | 0.0                                              | 0.00018                                        | 0.940                          | 15.63                          | 146.9                                            | 0.00039                                        |
| 0.998                          | 0.45      | 4.5                                              | 0.00018                                        | 0.938                          | 16.22                          | 152.1                                            | 0.00040                                        |
| 0.996                          | 0.91      | 9.1                                              | 0.00019                                        | 0.936                          | 16.82                          | 157.4                                            | 0.00041                                        |
| 0.994                          | 1.37      | 13.6                                             | 0.00019                                        | 0.934                          | 17.42                          | 162.7                                            | 0.00041                                        |
| 0.992                          | 1.84      | 18.2                                             | 0.00020                                        | 0.932                          | 18.03                          | 168.1                                            | 0.00042                                        |
| 0.990                          | 2.31      | 22.9                                             | 0.00020                                        | 0.930                          | 18.64                          | 173.4                                            | 0.00042                                        |
| 0.988                          | 2.80      | 27.7                                             | 0.00021                                        | 0.928                          | 19.25                          | 178.6                                            | 0.00043                                        |
| 0.986                          | 3.30      | 32.5                                             | 0.00021                                        | 0.926                          | 19.87                          | 184.2                                            | 0.00044                                        |
| 0.984                          | 3.80      | 37.4                                             | 0.00022                                        | 0.924                          | 20.49                          | 189.3                                            | 0.00045                                        |
| 0.982                          | 4.30      | 42.2                                             | 0.00022                                        | 0.922                          | 21.12                          | 194.7                                            | 0.00046                                        |
| 0.980                          | 4.80      | 47.0                                             | 0.00023                                        | 0.920                          | 21.75                          | 200.1                                            | 0.00047                                        |
| 0.978                          | 5.30      | 51.8                                             | 0.00023                                        | 0.918                          | 22.39                          | 205.6                                            | 0.00048                                        |
| 0.976                          | 5.80      | 56.6                                             | 0.00024                                        | 0.916                          | 23.03                          | 210.9                                            | 0.00049                                        |
| 0.974                          | 6.30      | 61.4                                             | 0.00024                                        | 0.914                          | 23.68                          | 216.3                                            | 0.00050                                        |
| 0.972                          | 6.80      | 66.1                                             | 0.00025                                        | 0.912                          | 24.33                          | 221.9                                            | 0.00051                                        |
| 0.970                          | 7.31      | 70.9                                             | 0.00025                                        | 0.910                          | 24.99                          | 227.4                                            | 0.00052                                        |
| 0.968                          | 7.82      | 75.7                                             | 0.00026                                        | 0.908                          | 25.65                          | 232.9                                            | 0.00058                                        |
| 0.966                          | 8.33      | 80.5                                             | 0.00026                                        | 0.906                          | 26.31                          | 238.3                                            | 0.00054                                        |
| 0.964                          | 8.84      | 85.2                                             | 0.00027                                        | 0.904                          | 26.98                          | 243.9                                            | 0.00055                                        |
| 0.962                          | 9.35      | 89.9                                             | 0.00028                                        | 0.902                          | 27.65                          | 249.4                                            | 0.00056                                        |
| 0.960                          | 9.91      | 95.1                                             | 0.00029                                        | 0.900                          | 28.33                          | 255.0                                            | 0.00057                                        |
| 0.958                          | 10.47     | 100.3                                            | 0.00030                                        | 0.898                          | 29.01                          | 260.5                                            | 0.00058                                        |
| 0.956                          | 11.03     | 105.4                                            | 0.00031                                        | 0.896                          | 29.69                          | 266.0                                            | 0.00059                                        |
| 0.954                          | 11.60     | 110.7                                            | 0.00032                                        | 0.894                          | 30.37                          | 271.5                                            | 0.00060                                        |
| 0.952                          | 12.17     | 115.9                                            | 0.00033                                        | 0.892                          | 31.05                          | 277.0                                            | 0.00060                                        |
| 0.950                          | 12.74     | 121.0                                            | 0.00034                                        | 0.890                          | 31.75                          | 282.6                                            | 0.00061                                        |
| 0.948                          | 13.31     | 126.2                                            | 0.00035                                        | 0.888                          | 32.50                          | 288.6                                            | 0.00062                                        |
| 0.946                          | 13.88     | 131.3                                            | 0.00036                                        | 0.886                          | 33.25                          | 294.6                                            | 0.00063                                        |
| 0.944                          | 14.46     | 136.5                                            | 0.00037                                        | 0.884                          | 34.10                          | 301.4                                            | 0.00064                                        |
| 0.942                          | 15.04     | 141.7                                            | 0.00038                                        | 0.882                          | 34.95                          | 308.3                                            | 0.00065                                        |
|                                |           |                                                  |                                                | 1                              | 1                              | 1                                                | 1                                              |

# 2.—SPECIFIC GRAVITIES OF SOLUTIONS OF COMMERCIAL AMMONIUM CARBONATE, AT 15° C.

(Lunge & Smith.)

| Deg. Twad-<br>dell. | Deg.<br>Baumé. | Spec. Grav'ty at 15°.  Per cent. Commercial Ammoni Carbonate. |       | m Change of Spec. Gravity for ± 1° C. |  |
|---------------------|----------------|---------------------------------------------------------------|-------|---------------------------------------|--|
| 1                   | 0.6            | 1.005                                                         | 1.66  | 0.0002                                |  |
| 2                   | 1.4            | 1.010                                                         | 3.18  | 0.0002                                |  |
| 3                   | 2.1            | 1.015                                                         | 4.60  | 0.0003                                |  |
| 4                   | 2.7            | 1.020                                                         | 6.04  | 0.0003                                |  |
| 5                   | 3.4            | 1.025                                                         | 7.49  | 0.0003                                |  |
| 6                   | 4.1            | 1.030                                                         | 8.93  | 0.0004                                |  |
| 6 7                 | 4.7            | 1.035                                                         | 10.35 | 0.0004                                |  |
| 8                   | 5.4            | 1.040                                                         | 11.86 | 0.0004                                |  |
| 9                   | 6.0            | 1.045                                                         | 13.36 | 0.0005                                |  |
| 10                  | 6.7            | 1.050                                                         | 14.83 | 0.0005                                |  |
| 11                  | 7.4            | 1.055                                                         | 16.16 | 0.0005                                |  |
| 12                  | 8.0            | 1.060                                                         | 17.70 | 0.0005                                |  |
| 13                  | 8.7            | 1.065                                                         | 19.18 | 0.0005                                |  |
| 14                  | 9.4            | 1.070                                                         | 20.70 | 0.0005                                |  |
| 15                  | 10.0           | 1.075                                                         | 22.25 | 0.0006                                |  |
| 16                  | 10.6           | 1.080                                                         | 23.78 | 0.0006                                |  |
| 17                  | 11.2           | 1.085                                                         | 25:31 | 0.0007                                |  |
| 18                  | 11.9           | 1.090                                                         | 26.82 | 0.0007                                |  |
| 19                  | 12.4           | 1.095                                                         | 28.33 | 0.0007                                |  |
| 20                  | 13.0           | 1.100                                                         | 29.93 | 0.0007                                |  |
| 21                  | 13.6           | 1.105                                                         | 31.77 | 0.0007                                |  |
| 22                  | 14.2           | 1.110                                                         | 33.45 | 0.0007                                |  |
| 23                  | 14.9           | 1.115                                                         | 35.08 | 0.0007                                |  |
| 24                  | 15.4           | 1.120                                                         | 36.88 | 0.0007                                |  |
| 25                  | 16.0           | 1.125                                                         | 38.71 | 0.0007                                |  |
| 26                  | 16.5           | 1.130                                                         | 40.34 | 0.0007                                |  |
| 27                  | 17.1           | 1.135                                                         | 42.20 | 0.0007                                |  |
| 28                  | 17.8           | 1.140                                                         | 44.29 | 0.0007                                |  |
| . 29                | 17.9           | 1.1414                                                        | 44.90 | 0.0007                                |  |

# APPENDIX.

#### A .- PREPARATION OF STANDARD SOLUTIONS.

#### INTRODUCTORY.

The analytical methods given in the foregoing pages are based upon the metric system of weights and measures. As there are still some laboratories using the English system, the following remarks, intended to facilitate the change of the prescriptions from the metric to the English system, may prove useful.

The unit of weight of the English system is the grain. All normal solutions are prepared so that 1000 grains by volume (100 decems) contain one equivalent of the reagent in grains, and consequently all normal solutions prepared on the English system are identical in concentration with those prepared on the metric system.

English burettes usually hold 1000 grains, and are divided into 100 parts of 10 grains each, called one decem. The decem corresponds to the cub. centimetre. As however this unit, the decem, is ten times the unit of weight, the following rules must be observed when any of the prescriptions are to be changed from the metric to the English system:—

Instead of Litre read 10,000 grains.

Cub. centimetre read decem or 10 times the number of grains.

" Grams read 10 times the number of grains.

If, for instance, we are told to prepare a standard solution of permanganate by dissolving 15·820 grams of potassium permanganate in one litre of water, and that one cub. centimetre of such a solution indicates 0·028 grams of iron, we shall obtain a solution of equal strength by dissolving 158·20 grains in 10,000 grains of water, and one decem of this solution will indicate 0·28 grains of metallic iron. No errors can possibly occur if the reader will always substitute ten times as many grains for any number of grams, ten times as many grains, or an equal number of decems for any number of cubic centimetres, and 10,000 grains for every litre. Where we are directed to measure out by means of a pipette 50 cc., we take 500 grains instead, etc., but when speaking of the number of cubic centimetres on the burette we substitute exactly the same number of decems.

It will also be useful to remember that

grams per litre = grains per 1000 grains.

" " = ounces per 1000 ounces.

" " = ounces per cub. foot (approximately).

grams per litre: 16 = lbs. per cub. foot.

grams per litre × 70 = grains per 70,000 grains.

" " grains per gallon.

04375 × grams per cub. metre = grains per cubic foot.

kilograms per cub. metre = lbs. per 1000 lbs. = lbs per 16 cub. feet. kilograms per cub. metre = lbs. per cub. foot.

 $16 \times \text{cub.}$  metres per kilogram. = cub. feet per lbs.

kilograms per square metre = 0.205 lb. per square foot.

kils. per square metre  $\times 4.89$  = lbs. per square foot.

#### 1.—NORMAL ACID AND ALKALI.

As foundation of Alkalimetry and Acidimetry we employ chemically pure sodium carbonate. This is tested for purity by dissolving 5 g. in water, which ought to yield a completely clear, colourless solution; if, after supersaturating this solution with nitric acid, no opalescence is caused by barium chloride, or silver nitrate, the salt may be taken as sufficiently pure. Before using it, the sodium carbonate must be ignited in a platinum crucible at least for twenty minutes, so far that the bottom of the crucible becomes red hot, but that no fritting takes place; the crucible is allowed to cool in the exsiccator, and out of it several portions of about 1 or 2 g. each are weighed directly one after another, to serve for standardizing the normal acid. The balance ought to turn at least with 0.5 milligram.

As normal acid, we prefer hydrochloric acid, which has the following advantages over sulphuric and oxalic acid, viz :- 1st, it is more generally applicable, e.g. also for alkaline earths; 2nd, its standard, first taken by pure sodium carbonate, can be most accurately checked by silver nitrate, far more accurately than that of sulphuric acid by barium chloride; 3rd, it does not change in course of time like oxalic acid.

Normal HCl is prepared as follows: Dilute pure hydrochloric acid to 1 020 spec. gravity (4° Tw.). Such an acid will be rather too strong. Fill a burette with this acid, and titrate with it one of the weighed samples of sodium carbonate spoken of above, the weight of which is w grams. Suppose that x ccm. of this acid had been consumed. As the acid is sure to

be too strong, x will always be smaller than  $\frac{w}{0.053}$ , and we shall have to add to every x cub. cent. of the acid  $\frac{w}{0.053}$ -x. cub. cent. of water, and if the total quantity of acid of spec. gravity, 1.020 measures V cub. cent., the amount of water to be added thereto to render it correct will be n cub. centimetres,

where n=V  $\left(\frac{w}{0.053x}-1.\right)$ 

If accurate normal alkali is at hand, it may be employed by a completely analogous process for examining the provisional acid, reducing it to the normal strength.

In any case the mixed normal acid must be checked by titrating new samples of sodium carbonate, when x ought to  $=\frac{w}{0.053}$ . A further check is afforded by estimating the chlorine gravimetrically by silver nitrate; 10 ccm. (=0.365 g HCl) ought to yield 1.435 g Ag Cl.

The ordinary indicator in alkalimetry and acidimetry used to be tincture of litmus, which must be kept in open vessels, to avoid its being spoiled. When employing litmus, the liquid to be tested must be kept boiling for some time, in order to expel all CO2; and normal acid must be added as

long as on further boiling the colour changes back from red to purple, or blue. This prolonged boiling causes some alkali to dissolve from most descriptions of glass, which makes the testings inaccurate. A test with litmus rarely lasts less than half an hour, usually more. On the other hand, a test is finished in a few minutes, if litmus is replaced by a very dilute solution of methyl-orange (sulphobenzene-azo-dimethylaniline); but in this case the liquids must never be hot, but of the ordinary temperature, and none but mineral acids, but no oxalic acid may be employed. The cold solution of sodium carbonate is coloured just perceptibly yellow by adding a drop or two of the solution of methyl-orange, preferably by means of a pipette; if the colour is too intense, it will cause the transition into red on neutralization to be less sharp. CO<sub>2</sub> does not in the least act upon methyl-orange; only when all Na<sub>2</sub> CO<sub>3</sub> has been decomposed, and a minimal excess of HCl is present, the yellow changes suddenly and sharply into pink. Hence the rule is to run in the normal acid quickly with constant agitation till the change of colour has taken place. The opposite change of colour from pink to faint yellow is just as sharp when titrating mineral acids with sodium hydrate or carbonate. The results are identical with those obtained by litmus, but they are obtained very much more quickly, and without heating the liquids. H2S affects methyl-orange as little as CO2, whence that indicator can be employed for directly titrating tank liquor and the like. In some cases methyl-orange fails to yield good yesults, from causes not yet ascertained, e.g. in chimney testing, but it can be employed in nearly all other cases. It is not applicable at all in the presence of nitrous acid.

Some laboratories prepare their standard acid twice as strong as the above, which naturally affects all the calculations given in this book. The object of this is to show the change of colour more clearly than with normal

acid, but this is hardly necessary for methyl-orange.

The normal alkali, when intended to be used with litmus, should be as free as possible from carbonate, and should be constantly protected against absorption of CO<sub>2</sub> from the air, because otherwise the change of colour does not take place sufficiently rapidly, and markedly in cold liquors. A solution of sodium hydrate entirely free from carbonate is difficult to prepare and to preserve when in constant use. When employing methyl-orange as an indicator, an ordinary caustic soda solution may be employed without any special precautions. The caustic soda employed should not contain more than a very slight proportion of alumina; ordinary strong caustic nearly always fulfils this condition, or it may even be replaced by a solution of 53 g. pure sodium carbonate in 1 lit. water, which is employed cold, and which yields as accurate results as NaOH, no notice being taken of the Co<sub>2</sub> escaping with effervescence. The general use of this liquid is, however, inconvenient on account of the efflorescences on the burettes, bottle necks, etc. Weaker (e.g. fifth-normal, or even semi-normal) solutions do not show this drawback.

All standard liquors ought to be prepared and employed as nearly as possible at the same temperature, e.g. 15°C. If a correction be necessary, the table of the volumes of water at different temperatures (No. 22, p: 49) is sufficiently accurate for all practical purposes, for these dilute liquids as well. When they have stood for some time in bottles, a little water is evaporated and recondensed in the upper part of the bottles; the proper mixture must then be re-established by shaking up the contents.

Semi-normal ammonia serves for estimating the CO2 of bicarbonates

(p. 132); but it can also be employed for general alkalimetrical purposes in lieu of sodium hydrate. Pure liquor ammoniæ of commerce, which does not produce any opalescence on adding barium chloride, is diluted to specific gravity 0.995; it is then tested with normal HCl, and diluted so far that it agrees with semi-normal acid, when it contains 8.500 g. NH<sub>3</sub> per litre. It keeps unchanged for some time in well-stoppered bottles, but must be frequently checked by titrating. Decinormal ammonia keeps almost constant in tightly stoppered bottles.

#### 2.—POTASSIUM PERMANGANATE.

The ordinary solution is semi-normal, i.e., it yields 0.004 g. oxygen per ccm. It serves, e.g., for estimating nitrous acid in vitriol, for testing the nitrogen acids in the chamber exits, for testing manganese ore, for testing Weldon mud, etc.

Since iron only occurs in very slight quantity in the products of alkali manufacture, it is best estimated by means of a tenth- or twentieth-normal solution made from the semi-normal solution by dilution, and indicating 0.0056, resp. 0.0028 g. Fe per c.c.

The solution is made by dissolving pure crystallized potassium permanganate, and is then completely stable, if protected from dust and direct sunlight. Still, its titre must be checked in any case; all the more, as the article sold as "chemically pure" is usually not free from foreign salts. Of absolutely pure permanganate a quantity of 15-820 g. per litre would be required for a semi-normal solution. This quantity is dissolved for the first time; the check-test to be described now shows how much more salt must be added to bring the solution up to the standard, and this indicates the proper quantity for future preparations of test liquor from the same stock of solid permanganate.

The standardizing is effected by means of the finest, softest iron wire, so-called "flower wire," \* which is preferable to oxalic acid, since the latter is not easily obtained with the theoretical percentage of water, whilst the uncertainty about the composition of the finest iron wire does not exceed 0.1 per cent. No sensible fault will be committed for all analytical purposes if the wire is assumed=99.7 per cent. Fe. Before weighing, it is passed through emery paper, to remove any traces of rust. Weigh out 0.5617 g. wire (=0.5600 g. Fe.; if the length is noticed, it is afterwards easy to hit the proper quantity almost at once); put it into a flask provided with an india-rubber valve (Fig. 10, p. 123), dissolve in dilute sulphuric acid by heating, allow to cool, and add permanganate solution from a burette till a faint but distinct pink colour has been produced, which lasts at least half a minute. The above quantity of iron ought to take exactly 20.00 c.c. permanganate. If this is not the case, a factor for correcting the difference is employed, or preferably the test liquor itself is corrected by adding the requisite quantity of solid permanganate. Suppose we have not used 20,

but x ccm. of liquor, then we must in future employ  $\frac{15.82x}{20}$  grams of solid permanganate per litre, in order to produce an exactly semi-normal solution. Of course its titre must be checked again.

An excellent check upon the iron standard is the standardizing of potassium permanganate by decomposing it with hydrogen peroxide, and

<sup>\*</sup> Not the steel pianoforte-wire, which contains more and irregular quantities of carbon-The objections made to its use by Blodgett Britton do not apply to flower-wire.

measuring the oxygen evolved in a gasvolumeter (pp. 113 and 164). Put 10 c.c. of the permanganate solution into the outer space of flask F (fig. 12); add 30 c.c. of dilute sulphuric acid (1:5 aq.); put 15 c.c. of hydrogen peroxide into the inner tube a; put the cork b in, relieve the pressure, and level the mercury as described p. 164. Then tilt F, shake a minute, allow 10 minutes to stand, shake up again, place tubes A and C so that the mercury is at the same level in both; shut tap g, raise C so that the mercury in B stands at 100; and, lastly, raise or lower B and C together, so that the mercury levels coincide with that in A. Each c.c. of gas found in A corresponds to 0 000715 grm. active oxygen in the permanganate employed, or 0 0000715 grm. O in each c.c. of the permanganate solution. The results agree very well with those of the iron test, and are more accurate than when standardizing with oxalic acid.

Permanganate is best employed in a burette with a lateral hollow glasstap. Any change in its titre (from dust, etc.) is perceptible by a deposition of  $MnO_2$  in the bottle. It is advisable to check the standard once every three months.

Permanganate can be used with perfect accuracy in the presence of free hydrochloric acid, if the liquids contain a considerable quantity of manganese salts; in other cases the same effect is produced by adding, say 1 grm. of manganese sulphate free from iron.

#### 3.—IODINE SOLUTION.

Weigh exactly 12.7 g. of pure re-sublimed iodine (either bought as such or prepared by grinding up common iodine with 10 per cent. of potassium iodide and re-subliming) on a balance turning at least with 5 mg.; put it into a litre-flask already containing a concentrated solution of 15 to 18 g. KI, close the flask, agitate till the iodine is completely dissolved, and fill up to the mark. This deci-normal solution is checked by the arsenite solution (No. 4). Both solutions ought to be precisely equivalent, c.c. per c.c.

For estimating very slight quantities of sodium sulphide sometimes a special iodine solution is made, by dissolving 8 256 g. of pure iodine with 5 g.

of potassium iodide in a litre, to indicate 0.001 g. Na<sub>2</sub>S per c.c.

Solutions of iodine, especially the more dilute ones, keep a long time in well-stoppered bottles in a cool place, but they ought to be checked once a

month by the arsenite solution.

Preparation of the Starch Solution.—Grind up 3 g. potato starch with a little water to a homogeneous paste; introduce this gradually into 300 g. of boiling water, contained in a porcelain dish, and continue the boiling till an almost clear liquid has been produced. Allow this to settle in a tall beaker, pour the clear portion through a filter, and saturate it with common salt. This solution, when kept in a cool place, is stable for some time; as soon as fungus vegetations are noticed in it, it is thrown away.

Very convenient is the soluble starch made by the process of Zulkowsky, by heating 100 parts of concentrated glycerine with 6 parts of starch to 190°C. for about an hour, pouring into water and precipitating the soluble starch with alcohol and filtering. This is kept in the state of a thick paste, not to be allowed to dry, and each time a small quantity is taken out by

means of a glass rod.

#### 4.—SODIUM ARSENITE SOLUTION.

This serves for standardizing the iodine solution, and as its volumetrical complement, especially in bleaching-powder testing. Employ commercial

pure powdered arsenious acid; test its purity by subliming a little from a small capsule into a watch-glass, when there ought not to appear at first a yellow sublimate of  $\mathrm{As_2S_3}$  (which volatilizes more easily than  $\mathrm{As_2O_3}$ ); on heating more strongly it should leave no residue. Before using it the powder of  $\mathrm{As_2O_3}$  is kept for some time over sulphuric acid in a desiccator, and can then be weighed out without any special precautions, since it is not hygroscopical. For preparing a deci-normal solution, weigh out exactly  $4\cdot950\,\mathrm{g}$ .  $\mathrm{As_2O_3}$ , boil it with 10 g. of pure sodium bicarbonate and 200 g. water till completely dissolved; add another 10 g. bicarbonate, and dilute on cooling to 1,000 c.c. This solution is altogether stable, and equivalent with 0.00355 g. Cl or 0.0127 g. I per c.c.

If really pure and dry arsenious acid has been employed, the above solution will be correct at once. But when preparing larger quantities of it, it ought to be checked by grinding up 0.5 g. iodine with 0.1 g. KI., heating this mixture in a small capsule on a sand-bath or upon asbestosboard till abundant vapours arise, covering with a dry watch-glass, allowing the major portion, but not the whole, of the iodine to sublime into the watch-glass, covering this with a second watch-glass which fits airtight upon the former, and has been tared with it, and weighing. Slip the watch-glasses into a solution of 1 g. of potassium iodide (free from iodate), in 10 g. water, wait a little till the iodine is dissolved, dilute with 100 c.c. water, and titrate with arsenite. When the colour is only a light yellow, add a little starch-solution, and titrate exactly till the blue colour has just vanished. The c.c. of arsenite consumed, multiplied by 0.0127, ought to be exactly the weight of iodine employed.

#### 5.—SILVER SOLUTION.

Weigh out exactly 17·00 g. of pure crystallized silver nitrate, preferably kept in a desiccator for a few hours, and dissolve in 1 litre. This yields a deci-normal solution, indicating per c.c. 0·00355 g. Cl., or 0·00365 g. HCl., or 0·00585 g. NaCl. By dissolving 2·906 g. AgNO<sub>3</sub> in 1 litre, a solution is obtained, indicating 0·001 g. NaCl. per c.c.

Ammoniacal silver solution, for Lestelle's estimation of alkaline sulphides, is obtained by dissolving 13:345 g. of pure silver in pure nitric acid, adding 250 c.c. liquor ammoniæ and diluting to 1 lit. Each c.c. of this indicates

0.005 g. Na.S.

#### 6.—COPPER SOLUTION,

for Hurter's ferrocyanide test, is obtained by dissolving 12:475 g. pure crystallized, not effloresced, cupric sulphate, in 1 lit. water. (Refer to p. 181.)

#### 7.—OXALIC ACID SOLUTION.

for testing the "base" of Weldon mud, and caustic soda or lime in the presence of carbonate (pp. 123 and 124). Dissolve 63·0 g. pure, not effloresced, crystallized oxalic acid in 1 lit. water, and check the standard with normal alkali. This solution is not quite stable, especially when exposed to daylight; nor can it be employed for alkalimetry, when using methyl-orange as an indicator.

#### B.-RULES FOR SAMPLING.

1. Ores and Minerals (pyrites, manganese, coals, salt). (a). Smalls, stack, salt or other substances not requiring to be crushed.—Take a sample of about 1 lb. of each weighing tub, cart, or the like, by means of a scoop, so as to

obtain about the same quantity each time. Of railway trucks, which are tipped directly into the warehouse, take three samples, one from the middle and one from each end.\* All these single samples are put in a cask and kept covered, to prevent the evaporation of moisture. When the large sample is taken, empty the contents of the cask on a level, clean, and hard place, spread it flat, heap it up in a cone at the centre by going regularly round with a spade; spread this heap again flat, and take a sample of about a quarter of the mass, by taking out with a spade two stripes crossing each other at right angles, and adding a little from the centre of each remaining quadrant. Treat this reduced sample exactly like the larger one, so that a third sample of about 5 lbs. is obtained. Mix this again thoroughly, and fill it into four (or more) wide-necked bottles of 4 ounces capacity, placed in a tight row on a sheet of paper, so that a portion of each handful gets into every one of the four bottles. When these are full, they are at once closed with tight-fitting corks; these are cut off straight above the bottlenecks and well covered with sealing wax, putting on the seals of both buyer and seller, or any other party concerned. The mixing and filling must be done as quickly as possible, in order to prevent the evaporation, or else the attraction of sensible quantities of moisture during the operation.

The above-mentioned sample bottles are handed over to the laboratory chemist, who has to pulverize their contents till they pass completely through a sieve with holes 1 mm. (=  $^{1}/_{25}$ in.) wide; nothing coarse must be left behind. From this, after thorough mixing, a smaller sample is taken and reduced to the degree of division necessary for analysis, by grinding in a steel or agate mortar, in the case of softer substances in a porcelain mortar. Manganese samples should not be treated in iron mortars. Moisture is estimated in an unground portion of the sample.

(b). Ores in pieces requiring to be crushed.—Large-sized samples must be taken if the lumps of the ore are very coarse. If the pieces are not above the size of an apple, and not too unequal, it is sufficient to take a sample from each tub, etc., as in (a), but with a shovel or scoop holding about 10 lbs. In the case of larger lumps, and of very unequal sizes, it is preferable to tip each tenth or twentieth tub or cart into a separate place, where the whole average sample is collected. At all events, the proportion between the large and small must be represented as accurately as possible in the average sample. This is now crushed down to the size of a walnut, either by hand or by machinery, leaving no larger lumps behind. The crushed material is thoroughly mixed by several times turning it over with a spade; it is then spread out in a flat heap and a smaller sample is taken, by lifting out two stripes crossing each other at right angles, adding something from the centre of each remaining quadrant. The reduced sample is crushed further, either in a large metal mortar, or preferably with a sledgehammer on a flanged cast-iron plate of about 3 ft. square, bedded on a solid foundation; the latter process is much more convenient and cleanly than grinding in a mortar. The coarse portions are sifted out by a riddle of \( \frac{1}{3} \) in. holes and crushed again, till all has passed through. The product is reduced as in (a), by mixing, etc., to a quantity of 2 or 4 lbs., from which the sample-bottles are filled as prescribed above.

<sup>\*</sup> At some factor is very unsatisfactory results have been obtained with this mode of sampling; they prefer that described later on (in b), of taking a certain number of entire tubs, barrows, or carts as sample.

#### 2. CHEMICALS.

Saltcake, soda ash, etc., if in bulk, are sampled as in No. 1 a. If packed in casks, each third, fifth, or tenth cask, according to the size of the parcel, is bored at one of its bottoms and sampled by means of an auger (fig. 13), which is inserted up to the centre of the cask, turning it round its axle all the while. The single cask samples are put into a large wide-mouthed bottle as drawn, till the sampling is over. Then empty the whole on to a large sheet of paper, mix thoroughly, crush any lumps with a spatula, and fill the 4-ounce bottles, previously prepared, exactly as described on No. 1 as for ores, observing the same rules for corking and

sealing.

Bleaching powder, polashes, and any other substances which are liable to be quickly spoilt in contact with the air by attracting moisture, or from other reasons, are treated like the foregoing substances, but operating with the greatest possible speed, and keeping the large bottle for collecting the cask-samples well closed. The sampling is still more safely performed by taking away the upper end of the cask, removing the top layer to a depth of about two inches, taking a handful of stuff from the interior as far as it is possible to reach in, which should be nearly at the centre of the cask, and throwing it into the large bottles. In this case there is the least contact with air. Or else a sample-auger is employed, which is closed at its upper half, and is only turned round when its point has arrived in the centre of the cask; in this case the top layer does not get into the auger. Samples of bleaching-powder ought to be kept in a dark and cold place, and ought to be tested without any great delay.

Fig. 13. Caustic Soda. Since the samples attract moisture and carbonic acid on their surface, even in well-closed bottles, the outer opaque crust must be removed by scraping before weighing out the tests (compare page 145). It should be borne in mind that the centre of the drum is of weaker strength than the remainder, because the foreign salts accumulate in the portion remaining liquid the longest. The average strength is best represented by the portions next to the bottom and sides of the drum, which solidify quickest.

Solid sulphuric anhydride cannot be sampled directly for analysis. An auger cannot be employed, as the mass is too firm and tough; melting the mass in the drums themselves is out of the question, on account of the clouds of fumes. The following process is, therefore, employed: A large sample of the solid anhydride is mixed with so much exactly analysed "monohydrated" sulphuric acid that an acid of about 70 per cent. is formed, which is liquid at ordinary temperatures. This mixture is made in a stoppered bottle, and is gently heated to 30° or 40° C., the stopper being loosely put in, till the solution is complete, whereupon a small sample is taken out by means of Lunge & Rey's glass-tap pipette (p. 116).

C.—COMPARISON OF THE HYDROMETER DEGREES ACCORDING TO BAUMÉ AND TWADDELL, WITH THE SPECIFIC GRAVITIES.

| В.   | T.   | Spec.<br>Gravity. | В.   | T.   | Spec.<br>Gravity. | В.   | T.   | Spec.<br>Gravity. |
|------|------|-------------------|------|------|-------------------|------|------|-------------------|
| 0    | 0    | 1·000             | 15·4 | 24   | 1·120             | 29·3 | 51   | 1·255             |
| 0·7  | 1    | 1·005             | 16·0 | 25   | 1·125             | 29·7 | 52   | 1 260             |
| 1·0  | 1·4  | 1·007             | 16·5 | 26   | 1·130             | 30·0 | 52·6 | 1·263             |
| 1·4  | 2    | 1·010             | 17·0 | 26.8 | 1·134             | 30·2 | 53   | 1·265             |
| 2·0  | 2·8  | 1·014             | 17·1 | 27   | 1·135             | 30·6 | 54   | 1·270             |
| 2·1  | 3    | 1·015             | 17·7 | 28   | 1·140             | 31·0 | 54·8 | 1·274             |
| 2·7  | 4    | 1·020             | 18·0 | 28·4 | 1·142             | 31·1 | 55   | 1·275             |
| 3·0  | 4·4  | 1·022             | 18·3 | 29   | 1·145             | 31·5 | 56   | 1·280             |
| 3·4  | 5    | 1·025             | 18·8 | 30   | 1·150             | 32·0 | 57   | 1·285             |
| 4·0  | 5·8  | 1·029             | 19·0 | 30·4 | 1·152             | 32·4 | 58   | 1·290             |
| 4·1  | 6    | 1.030             | 19·3 | 31   | 1·155             | 32·8 | 59   | 1·295             |
| 4·7  | 7    | 1.035             | 19·8 | 32   | 1·160             | 33·0 | 59·4 | 1·297             |
| 5·0  | 7·4  | 1.037             | 20·0 | 32·4 | 1·162             | 33·3 | 60   | 1·300             |
| 5·4  | 8    | 1.040             | 20·3 | 33   | 1·165             | 33·7 | 61   | 1·305             |
| 6·0  | 9    | 1.045             | 20·9 | 34   | 1·170             | 34·0 | 61·6 | 1·308             |
| 6·7  | 10   | 1.050             | 21·0 | 34·2 | 1·171             | 34·2 | 62   | 1·310             |
| 7·0  | 10·2 | 1.052             | 21·4 | 35   | 1·175             | 34·6 | 63   | 1·315             |
| 7·4  | 11   | 1.055             | 22·0 | 36   | 1·180             | 35·0 | 64   | 1·320             |
| 8·0  | 12   | 1.060             | 22·5 | 37   | 1·185             | 35·4 | 65   | 1·325             |
| 8·7  | 13   | 1.065             | 23·0 | 38   | 1·190             | 35·8 | 66   | 1·330             |
| 9·0  | 13·4 | 1.067             | 23·5 | 39   | 1·195             | 36·0 | 66·4 | 1·332             |
| 9·4  | 14   | 1.070             | 24·0 | 40   | 1·200             | 36·2 | 67   | 1·335             |
| 10.0 | 15   | 1.075             | 24·5 | 41   | 1·205             | 36·6 | 68   | 1·340             |
| 10·6 | 16   | 1.080             | 25·0 | 42   | 1·210             | 37·0 | 69   | 1·345             |
| 11·0 | 16·6 | 1.083             | 25·5 | 43   | 1·215             | 37·4 | 70   | 1·350             |
| 11·2 | 17   | 1.085             | 26·0 | 44   | 1·220             | 37·8 | 71   | 1·355             |
| 11·9 | 18   | 1.090             | 26·4 | 45   | 1·225             | 38·0 | 71·4 | 1·357             |
| 12·0 | 18·2 | 1.091             | 26·9 | 46   | 1·230             | 38·2 | 72   | 1·360             |
| 12·4 | 19   | 1.095             | 27·0 | 46·2 | 1·231             | 38·6 | 73   | 1·365             |
| 13·0 | 20   | 1.100             | 27·4 | 47   | 1·235             | 39 0 | 74   | 1·370             |
| 13·6 | 21   | 1·105             | 27·9 | 48   | 1·240             | 39·4 | 75   | 1·375             |
| 14·0 | 21·6 | 1·108             | 28·0 | 48·2 | 1·241             | 39·8 | 76   | 1·380             |
| 14·2 | 22   | 1·110             | 28·4 | 49   | 1·245             | 40·0 | 76·6 | 1·383             |
| 14·9 | 23   | 1·115             | 28·8 | 50   | 1·250             | 40·1 | 77   | 1·385             |
| 15·0 | 23·2 | 1·116             | 29·0 | 50·4 | 1·252             | 40·5 | 78   | 1·390             |

N.B.—The Baumé degrees are calculated by the formula  $d = \frac{144.3}{144.3 - n}$ , water of 15° C.

being put = 0° and sulphuric acid of 1.842 at 15° C. = 63°; compare Lunge's Sulphuric Acid and Alkali, vol. 1., p. 20. This is the Baumé's hydrometer, mostly used on the Continent of Europe; but other scales are in use there as well, and quite another scale for Baumé's hydrometer is used in America.

C.—COMPARISON OF THE HYDROMETER DEGREES ACCORDING TO BAUMÉ AND TWADDELL, WITH THE SPECIFIC GRAVITIES.—Continued.

| В.   | т.   | Spec.<br>Gravity. | В.   | T.    | Spec.<br>Gravity. | В.   | т.    | Spec.<br>Gravity. |
|------|------|-------------------|------|-------|-------------------|------|-------|-------------------|
| 40·8 | 79   | 1·395             | 50·9 | 109   | 1·545             | 59·5 | 140   | 1·700             |
| 41·0 | 79·4 | 1·397             | 51·0 | 109·2 | 1·546             | 59·7 | 141   | 1·705             |
| 41·2 | 80   | 1·400             | 51·2 | 110   | 1·550             | 60·0 | 142   | 1·710             |
| 41·6 | 81   | 1·405             | 51·5 | 111   | 1·555             | 60·2 | 143   | 1·715             |
| 42·0 | 82   | 1·410             | 51·8 | 112   | 1·560             | 60·4 | 144   | 1·720             |
| 42·3 | 83   | 1·415             | 52·0 | 112·6 | 1.563             | 60.6 | 145   | 1·725             |
| 42·7 | 84   | 1·420             | 52·1 | 113   | 1.565             | 60.9 | 146   | 1·730             |
| 43·0 | 84.8 | 1·424             | 52·4 | 114   | 1.570             | 61.0 | 146·4 | 1·732             |
| 43·1 | 85   | 1·425             | 52·7 | 115   | 1.575             | 61.1 | 147   | 1·735             |
| 43·4 | 86   | 1·430             | 53·0 | 116   | 1.580             | 61.4 | 148   | 1·740             |
| 43·8 | 87   | 1·435             | 53·3 | 117   | 1.585             | 61.6 | 149   | 1·745             |
| 44·0 | 87·6 | 1·438             | 53·6 | 118   | 1.590             | 61.8 | 150   | 1·750             |
| 44·1 | 88   | 1·440             | 53·9 | 119   | 1.595             | 62.0 | 150·6 | 1·758             |
| 44·4 | 89   | 1·445             | 54·0 | 119·4 | 1.597             | 62.1 | 151   | 1·755             |
| 41·8 | 90   | 1·450             | 54·1 | 120   | 1.600             | 62.3 | 152   | 1·760             |
| 45·0 | 90·6 | 1·453             | 54·4 | 121   | 1.605             | 62:5 | 153   | 1·765             |
| 45·1 | 91   | 1·455             | 54·7 | 122   | 1.610             | 62:8 | 154   | 1·770             |
| 45·4 | 92   | 1·460             | 55·0 | 123   | 1.615             | 63:0 | 155   | 1·775             |
| 45·8 | 93   | 1·465             | 55·2 | 124   | 1.620             | 63:2 | 156   | 1·780             |
| 46·0 | 93·6 | 1·468             | 55·5 | 125   | 1.625             | 63:5 | 157   | 1·785             |
| 46·1 | 94   | 1·470             | 55·8 | 126   | 1·630             | 63·7 | 158   | 1·790             |
| 46·4 | 95   | 1·475             | 56·0 | 127   | 1·635             | 61·0 | 159   | 1·795             |
| 46·8 | 96   | 1·480             | 56·3 | 128   | 1·640             | 61·2 | 160   | 1·800             |
| 47·0 | 96·6 | 1·483             | 56·6 | 129   | 1·645             | 64·4 | 161   | 1·805             |
| 47·1 | 97   | 1·485             | 56·9 | 130   | 1·650             | 64·6 | 162   | 1·810             |
| 47·4 | 98   | 1·490             | 57·0 | 130·4 | 1.652             | 64·8 | 163   | 1·815             |
| 47·8 | 99   | 1·495             | 57·1 | 131   | 1.655             | 65·0 | 164   | 1·820             |
| 48·0 | 99·6 | 1·498             | 57·4 | 132   | 1.660             | 65·2 | 165   | 1·825             |
| 48·1 | 100  | 1·500             | 57·7 | 133   | 1.665             | 65·5 | 166   | 1·830             |
| 48·4 | 101  | 1·505             | 57·9 | 134   | 1.670             | 65·7 | 167   | 1·835             |
| 48·7 | 102  | 1·510             | 58·0 | 134·2 | 1.671             | 65.9 | 168   | 1.840             |
| 49·0 | 103  | 1·515             | 58·2 | 135   | 1.675             | 66.0 | 168·4 | 1.842             |
| 49·4 | 104  | 1·520             | 58·4 | 136   | 1.680             | 66.1 | 169   | 1.845             |
| 49·7 | 105  | 1·525             | 58·7 | 137   | 1.685             | 66.3 | 170   | 1.850             |
| 50·0 | 106  | 1·530             | 58·9 | 138   | 1.690             | 66.5 | 171   | 1.855             |
| 50·3 | 107  | 1·535             | 59·0 | 138·2 | 1.691             | 66·7 | 172   | 1.860             |
| 50·6 | 108  | 1·540             | 59·2 | 139   | 1.695             | 67·0 | 173   | 1.865             |

D.-VALUE OF ALKALI PER TON.

| Price per<br>unit.                                                      | 1%.                                                                                                                 | 2%.                                                                                                                    | 3%.                                                                                                                   | 4%.                                                                                                   | 5%.                                                                                                                       |
|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Pence. 44 13 78 15 15                                                   | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                   | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                  | $\begin{array}{c} \pounds \ s. \ d. \\ 0 \ 5 \ 0 \\ 0 \ 5 \ 5 \\ 0 \ 5 \ 10 \\ 0 \ 6 \ 3 \end{array}$ | £ s. d.<br>0 6 3<br>0 6 9‡<br>0 7 8½<br>0 7 9¾                                                                            |
| $egin{array}{c} 1 \\ 1_{16}^{1} \\ 1_{8}^{1} \\ 1_{16}^{3} \end{array}$ | $\begin{array}{cccc} 0 & 1 & 8 \\ 0 & 1 & 91 \\ 0 & 1 & 101 \\ 0 & 1 & 113 \end{array}$                             | $\begin{array}{cccc} 0 & 3 & 4 \\ 0 & 3 & 6\frac{1}{2} \\ 0 & 3 & 9 \\ 0 & 3 & 11\frac{1}{2} \end{array}$              | $\begin{array}{cccc} 0 & 5 & 0 \\ 0 & 5 & 3\frac{3}{4} \\ 0 & 5 & 7\frac{1}{2} \\ 0 & 5 & 11\frac{1}{4} \end{array}$  | $\begin{array}{cccc} 0 & 6 & 8 \\ 0 & 7 & 1 \\ 0 & 7 & 6 \\ 0 & 7 & 11 \end{array}$                   | $\begin{array}{cccc} 0 & 8 & 4 \\ 0 & 8 & 10\frac{1}{4} \\ 0 & 9 & 4\frac{1}{3} \\ 0 & 9 & 10\frac{3}{4} \end{array}$     |
| $1\frac{1}{1}$ $1\frac{5}{16}$ $1\frac{3}{8}$ $1\frac{7}{16}$           | $\begin{array}{cccc} 0 & 2 & 1 \\ 0 & 2 & 2\frac{1}{4} \\ 0 & 2 & 3\frac{1}{2} \\ 0 & 2 & 4\frac{3}{4} \end{array}$ | $\begin{array}{cccc} 0 & 4 & 2 \\ 0 & 4 & 4\frac{1}{2} \\ 0 & 4 & 7 \\ 0 & 4 & 9\frac{1}{2} \end{array}$               | $\begin{array}{cccc} 0 & 6 & 3 \\ 0 & 6 & 6\frac{3}{4} \\ 0 & 6 & 10\frac{1}{2} \\ 0 & 7 & 2\frac{1}{4} \end{array}$  | 0 8 4<br>0 8 9<br>0 9 2<br>0 9 7                                                                      | $\begin{array}{cccc} 0 & 10 & 5 \\ 0 & 10 & 11\frac{1}{4} \\ 0 & 11 & 5\frac{1}{4} \\ 0 & 11 & 11\frac{3}{4} \end{array}$ |
| $1\frac{1}{2}$ $1\frac{1}{16}$ $1\frac{5}{8}$ $1\frac{1}{16}$           | $\begin{array}{cccc} 0 & 2 & 6 \\ 0 & 2 & 71 \\ 0 & 2 & 81 \\ 0 & 2 & 93 \\ \end{array}$                            | $\begin{array}{cccc} 0 & 5 & 0 \\ 0 & 5 & 2\frac{1}{2} \\ 0 & 5 & 5 \\ 0 & 5 & 7\frac{1}{2} \end{array}$               | $\begin{array}{cccc} 0 & 7 & 6 \\ 0 & 7 & 9\frac{3}{4} \\ 0 & 8 & 1\frac{1}{2} \\ 0 & 8 & 5\frac{1}{4} \end{array}$   | 0 10 0<br>0 10 5<br>0 10 10<br>0 11 3                                                                 | 0 12 6<br>0 13 01<br>0 13 61<br>0 14 03                                                                                   |
| 134<br>1438<br>178<br>178<br>145                                        | $\begin{array}{cccc} 0 & 2 & 11 \\ 0 & 3 & 01 \\ 0 & 3 & 1\frac{1}{2} \\ 0 & 3 & 2\frac{3}{4} \end{array}$          | $\begin{array}{cccc} 0 & 5 & 10 \\ 0 & 6 & 0_{2}^{1} \\ 0 & 6 & 3 \\ 0 & 6 & 5_{2}^{1} \end{array}$                    | $ \begin{array}{ccccc} 0 & 8 & 9 \\ 0 & 9 & 03 \\ 0 & 9 & 4\frac{1}{2} \\ 0 & 9 & 8\frac{1}{2} \end{array} $          | 0 11 8<br>0 12 1<br>0 12 6<br>0 12 11                                                                 | $\begin{array}{cccc} 0 & 14 & 7 \\ 0 & 15 & 1\frac{1}{4} \\ 0 & 15 & 7\frac{1}{2} \\ 0 & 16 & 1\frac{3}{4} \end{array}$   |
| $2 \\ 2_{16} \\ 2_{8} \\ 2_{16} $                                       | $\begin{array}{ccccc} 0 & 3 & 4 \\ 0 & 3 & 51 \\ 0 & 3 & 61 \\ 0 & 3 & 73 \end{array}$                              | $\begin{array}{cccc} 0 & 6 & 8 \\ 0 & 6 & 10\frac{1}{2} \\ 0 & 7 & 1 \\ 0 & 7 & 3\frac{1}{2} \end{array}$              | $\begin{array}{c} 0 \ 10 \ 0 \\ 0 \ 10 \ 3\frac{3}{4} \\ 0 \ 10 \ 7\frac{1}{2} \\ 0 \ 10 \ 11\frac{1}{4} \end{array}$ | 0 13 4<br>0 13 9<br>0 14 2<br>0 14 7                                                                  | $\begin{array}{cccc} 0 & 16 & 8 \\ 0 & 17 & 2\frac{1}{4} \\ 0 & 17 & 8\frac{1}{4} \\ 0 & 18 & 2\frac{3}{4} \end{array}$   |
| 2\\\\2\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                                  | $\begin{array}{cccc} 0 & 3 & 9 \\ 0 & 3 & 101 \\ 0 & 3 & 111 \\ 0 & 4 & 03 \\ 0 & 4 & 2 \end{array}$                | $\begin{array}{cccc} 0 & 7 & 6 \\ 0 & 7 & 8\frac{1}{2} \\ 0 & 7 & 11 \\ 0 & 8 & 1\frac{1}{2} \\ 0 & 8 & 4 \end{array}$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                | 0 15 0<br>0 15 5<br>0 15 10<br>0 16 3<br>0 16 8                                                       | 0 18 9<br>0 19 31<br>0 19 91<br>1 0 33<br>1 0 10                                                                          |

To find the value of intermediate strengths not given in the table, for instance—36% at  $1^5_{16}$  per unit, find for 30%......£3 5  $7^1_2$  then for 6%...... 0 13  $1^1_2$ 

The sum gives value per ton of 36%.....£3 18 9

D.-VALUE OF ALKALI PER TON.-Continued.

| Price per unit.                                                                     | 6%.                                                                                                                  | 7%.                                                                                                                         | 8%.                                                                                     | 9%.                                                                                                                    | 10%.                                                                                                         |
|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Pence.  34 136 78 156                                                               | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                        | £ s. d.<br>0 10 0<br>0 10 10<br>0 11 8<br>0 12 6                                        | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                   | £ s. d.<br>0 12 6<br>0 13 $6\frac{1}{2}$<br>0 14 7<br>0 15 $7\frac{1}{2}$                                    |
| 1<br>1,16<br>1,16<br>1,36                                                           | $\begin{array}{cccc} 0 & 10 & 0 \\ 0 & 10 & 7\frac{1}{2} \\ 0 & 11 & 3 \\ 0 & 11 & 10\frac{1}{2} \end{array}$        | $\begin{array}{c} 0 \ 11 \ 8 \\ 0 \ 12 \ 4\frac{3}{4} \\ 0 \ 13 \ 1\frac{1}{2} \\ 0 \ 13 \ 10\frac{1}{4} \end{array}$       | $\begin{array}{cccc} 0 & 13 & 4 \\ 0 & 14 & 2 \\ 0 & 15 & 0 \\ 0 & 15 & 10 \end{array}$ | $\begin{array}{c} 0 \ 15 \ 0 \\ 0 \ 15 \ 11\frac{1}{4} \\ 0 \ 16 \ 10\frac{1}{5} \\ 0 \ 17 \ 9\frac{3}{4} \end{array}$ | $\begin{array}{cccc} 0 & 16 & 8 \\ 0 & 17 & 8\frac{1}{2} \\ 0 & 18 & 9 \\ 0 & 19 & 9\frac{1}{2} \end{array}$ |
| $1\frac{1}{1}$ $1\frac{5}{16}$ $1\frac{3}{8}$ $1\frac{7}{16}$                       | $\begin{array}{c cccc} 0 & 12 & 6 \\ 0 & 13 & 1\frac{1}{2} \\ 0 & 13 & 9 \\ 0 & 14 & 4\frac{1}{2} \end{array}$       | $ \begin{array}{c cccc} 0 & 14 & 7 \\ 0 & 15 & 3\frac{3}{4} \\ 0 & 16 & 0\frac{1}{2} \\ 0 & 16 & 9\frac{1}{4} \end{array} $ | 0 16 8<br>0 17 6<br>0 18 4<br>0 19 2                                                    | $\begin{array}{cccc} 0 & 18 & 9 \\ 0 & 19 & 81 \\ 1 & 0 & 7\frac{1}{2} \\ 1 & 1 & 6\frac{3}{4} \end{array}$            | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                        |
| $egin{array}{c} 1_{rac{1}{2}^6} \ 1_{rac{1}{2}^6} \ 1_{rac{1}{1}^6} \end{array}$ | $\begin{array}{c cccc} 0 & 15 & 0 \\ 0 & 15 & 7\frac{1}{2} \\ 0 & 16 & 3 \\ 0 & 16 & 10\frac{1}{2} \end{array}$      | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                       | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                   | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                  | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                        |
| 13<br>113<br>17<br>17<br>115                                                        | $\begin{array}{c cccc} 0 & 17 & 6 \\ 0 & 18 & 1_{\frac{1}{2}} \\ 0 & 18 & 9 \\ 0 & 19 & 4_{\frac{1}{2}} \end{array}$ | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                       | 1 3 4<br>1 4 2<br>1 5 0<br>1 5 10                                                       | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                  | 1 9 2<br>1 10 2½<br>1 11 3<br>1 12 3½                                                                        |
| $2 \\ 2_{16}^{1} \\ 2_{8}^{1} \\ 2_{16}^{3}$                                        | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                 | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                       | 1 6 8<br>1 7 6<br>1 8 4<br>1 9 2                                                        | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                  | 1 13 4<br>1 14 4½<br>1 15 5<br>1 16 5½                                                                       |
| $2^{1}_{18}$ $2^{1}_{18}$ $2^{3}_{8}$ $2^{7}_{18}$ $2^{1}_{1}$                      | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                       | 1 10 0<br>1 10 10<br>1 11 8<br>1 12 6<br>1 13 4                                         | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                   | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                         |

To find the value of intermediate strengths not given in the table, for instance—36% at  $1^5_{16}$  per unit, find for 30%.....£3 5  $7^1_{\frac{1}{2}}$  then for 6%....... 0 13  $1^1_{\frac{1}{2}}$ 

The sum gives value per ton of 36%.....£3 18 9

D.-VALUE OF ALKALI PER TON .- Continued.

| 20%.                                                 | 30%.                                                                                                                                                              | 40%.                                                  | 48%.                                                  | £0%.                                                  |
|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | £ s. d.<br>1 17 6<br>2 0 $7\frac{1}{2}$<br>2 3 9<br>2 6 $10\frac{1}{2}$                                                                                           | £ s. d.<br>2 10 0<br>2 14 2<br>2 18 4<br>3 2 6        | £ s. d.<br>3 0 0<br>3 5 0<br>3 10 0<br>3 15 0         | £ s. d.<br>3 2 6<br>3 7 8½<br>3 12 11<br>3 18 1½      |
| 1 13 4<br>1 15 5<br>1 17 6<br>1 19 7                 | $\begin{array}{cccc} 2 & 10 & 0 \\ 2 & 13 & 1\frac{1}{2} \\ 2 & 16 & 3 \\ 2 & 19 & 4\frac{1}{2} \end{array}$                                                      | 3 6 8<br>3 10 10<br>3 15 0<br>3 19 2                  | 4 0 0<br>4 5 0<br>4 10 0<br>4 15 0                    | $\begin{array}{cccccccccccccccccccccccccccccccccccc$  |
| 2 1 8<br>2 3 9<br>2 5 10<br>2 7 11                   | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                              | 4 3 4<br>4 7 6<br>4 11 8<br>4 15 10                   | 5 0 0<br>5 5 0<br>5 10 0<br>5 15 0                    | $\begin{array}{cccccccccccccccccccccccccccccccccccc$  |
| 2 10 0<br>2 12 1<br>2 14 2<br>2 16 3                 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                              | 5 0 0<br>5 4 2<br>5 8 4<br>5 12 6                     | 6 0 0<br>6 5 0<br>6 10 0<br>6 15 0                    | $\begin{array}{cccccccccccccccccccccccccccccccccccc$  |
| 2 18 4<br>3 0 5<br>3 2 6<br>3 4 7                    | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                              | 5 16 8<br>6 0 10<br>6 5 0<br>6 9 2                    | 7 0 0<br>7 5 0<br>7 10 0<br>7 15 0                    | 7 5 10<br>7 11 01<br>7 16 3<br>8 1 5½                 |
| 3 6 8<br>3 8 9<br>3 10 10<br>3 12 11                 | $\begin{array}{cccc} 5 & 0 & 0 \\ 5 & 3 & 1\frac{1}{2} \\ 5 & 6 & 3 \\ 5 & 9 & 4\frac{1}{2} \end{array}$                                                          | 6 13 4<br>6 17 6<br>7 1 8<br>7 5 10                   | 8 0 0<br>8 5 0<br>8 10 0<br>8 15 0                    | 8 6 8<br>8 11 10½<br>8 17 1<br>9 2 3½                 |
| 3 15 0<br>3 17 1<br>3 19 2<br>4 1 3<br>4 3 4         | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                              | 7 10 0<br>7 14 2<br>7 18 4<br>8 2 6<br>8 6 8          | 9 0 0<br>9 5 0<br>9 10 0<br>9 15 0<br>10 0 0          | 9 7 6<br>9 12 8½<br>9 17 11<br>10 3 1½<br>10 8 4      |
|                                                      | £ s. d. 1 5 0 1 7 1 1 9 2 1 11 3 1 13 4 1 15 5 1 17 6 1 19 7 2 1 8 2 3 9 2 5 10 2 7 11 2 10 0 2 12 1 2 16 3 2 18 4 3 0 5 3 4 7 3 6 8 3 8 9 3 10 10 3 12 11 3 15 0 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

To find the value of intermediate strengths not given in the table, for instance—36% at  $1\frac{5}{16}$  per unit, find for 30%......£3 5  $7\frac{1}{2}$  then for 6%....... 0 13  $1\frac{1}{2}$ 

The sum gives value per ton of 36%......£3 18 9

D.-VALUE OF ALKALI PER TON.-Continued.

|                                                                                    | 1                                                     | 1                                                     | 1                                                  | 1                                                                                                                       |                                                                                                                |
|------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Price per<br>unit.                                                                 | 52%.                                                  | 54%.                                                  | £6%.                                               | 57%.                                                                                                                    | 58%.                                                                                                           |
| Pence.                                                                             | £ s. d.<br>3 5 0<br>3 10 5<br>3 15 10<br>4 1 3        | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | £ s. d.<br>3 10 0<br>3 15 10<br>4 1 8<br>4 7 6     | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                    | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                           |
| $egin{array}{c} 1 \\ 1_{16} \\ 1_{8} \\ 1_{16} \end{array}$                        | 4 6 8<br>4 12 1<br>4 17 6<br>5 2 11                   | $\begin{array}{cccccccccccccccccccccccccccccccccccc$  | 4 13 4<br>4 19 2<br>5 5 0<br>5 10 10               | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                    | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                           |
| $egin{array}{c} 1_{rac{1}{2}} \ 1_{rac{3}{2}} \ 1_{rac{7}{16}} \end{array}$     | 5 8 4<br>5 13 9<br>5 19 2<br>6 4 7                    | $\begin{array}{cccccccccccccccccccccccccccccccccccc$  | 5 16 8<br>6 2 6<br>6 8 4<br>6 14 2                 | $\begin{array}{ccccc} 5 & 18 & 9 \\ 6 & 4 & 8\frac{1}{4} \\ 6 & 10 & 7\frac{1}{2} \\ 6 & 16 & 6\frac{3}{4} \end{array}$ | $\begin{array}{cccc} 6 & 0 & 10 \\ 6 & 6 & 10\frac{1}{2} \\ 6 & 12 & 11 \\ 6 & 18 & 11\frac{1}{2} \end{array}$ |
| $egin{array}{c} 1_{rac{1}{2}6} \ 1_{rac{1}{6}6} \ 1_{rac{1}{6}6} \ \end{array}$ | 6 10 0<br>6 15 5<br>7 0 10<br>7 6 3                   | $\begin{array}{cccccccccccccccccccccccccccccccccccc$  | 7 0 0<br>7 5 10<br>7 11 8<br>7 17 6                | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                   | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                           |
| 13<br>113<br>17<br>18<br>115                                                       | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | 8 3 4<br>8 9 2<br>8 15 0<br>9 0 10                 | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                  | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                          |
| $2 \\ 2_{16}^{1} \\ 2_{16}^{1} \\ 2_{16}^{3}$                                      | 8 13 4<br>8 18 9<br>9 4 2<br>9 9 7                    | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | 9 6 8<br>9 12 6<br>9 18 4<br>10 4 2                | $\begin{array}{c} 9 & 10 & 0 \\ 9 & 15 & 11\frac{1}{4} \\ 10 & 1 & 10\frac{1}{3} \\ 10 & 7 & 9\frac{3}{4} \end{array}$  | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                           |
| $2\frac{1}{2\frac{5}{16}}$ $2\frac{3}{8}$ $2\frac{7}{16}$ $2\frac{3}{2}$           | 9 15 0<br>10 0 5<br>10 5 10<br>10 11 3<br>10 16 8     | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | 10 10 0<br>10 15 10<br>11 1 8<br>11 7 6<br>11 13 4 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                    | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                           |

To find the value of intermediate strengths not given in the table, for instance—36% at  $1_{16}^{5}$  per unit, find for 30%.....£3 5  $7_{\frac{1}{2}}$  then for 6%....... 0 13  $1_{\frac{1}{2}}$ 

The sum gives value per ton of 36%.....£3 18 9

#### ADDENDUM TO PAGE 86.

Checking the working of fireplaces and firemen.—The estimation of  $\mathrm{CO}_2$  in the chimney gases, as described page 86, if combined with an observation of temperature, admits of checking both the efficiency of a special fireplace and the daily work of the firemen, according to a formula developed by Lunge in Zsch. f. angew. Chem., 1889, p. 240. A consecutive number, say from 10 to 15 testings for  $\mathrm{CO}_2$  are made by an Orsat apparatus in the flue leading from the fireplace to the chimney, and the mean volume percentage of  $\mathrm{CO}_2$  found is called n. At the same time a thermometer with very long stem, tightly inserted in the testing hole in such manner that its bulb is well within the flue, but that the scale can be read off outside, is observed at frequent intervals, and the mean temperature of the gases is called t', that of the air outside t. c is the specific heat of a cubic metre of  $\mathrm{CO}_2$  expressed in gram-calories; c' that of N or O (see below). The total volume of exitgases, produced by the combustion of 1 kilog. of carbon burnt on the grate, is = 1.854  $\left(\frac{100-n}{n}\right)$  cubic metres, and the loss of heat in the exit-gases, expressed in gram-calories:

$$\mathbf{L} = 1.854 \; (t'-t) \; c + 1.854 \; (t'-t) \left(\frac{100-n}{n}\right) c';$$

the loss, expressed in per cent. of the heat theoretically given out by the carbon:

 $\frac{100 \text{ L}}{8080}$ .

The value of c' may be assumed for all temperatures = 0.31; that of c varies with the temperature, and must be taken as follows:

If t' is below 150° C., c = 0.41. "" " between 150–200° = 0.43. "" " 200–250° = 0.44. "" " 250–300° = 0.44. "" " 300–350° = 0.46.

#### ERRATUM.

Page 3. The atomic weight of Niobium is 94.2 (O=16) or 93.9 (H=1).

#### INDEX.

Acid, standard, 168. Acids in chimney gases, 97, 98, 118. Air compression, 82. Air, speed of currents, tables of, 88. Alkali, standard, 168. value per ton, 177. , Works Regulation Act, 118. Alkalimetrical degrees, table, 139. Alkalimetry, 168. Alumina, 118, 132. Ammonia, spec. gravitics, 165. ,, solubility, 21. ,, standard, 169. estimation of volatile, distillation ,, method, 162. estimation of, total, 162. ,, by the bromine method, 163 carbonate, spec. grav., 166. 99 sulphate, 163. ,, sulphocyanide, 163. Analysis, gravimetric factors, 12. Anemometer, 87, 90. Anhydride, sulphuric, 104, 109, 115. sampling, 174. Aqueous vapour tension, 50, 51, 52. Area of circles, etc., 57, 71. Arsenite of soda solution, standard, 171. Atomic weights in round numbers, 2. accurate, 3. Available alkali, 138, 145. Azotometer, 163.

Base in Weldon mud, 124.
Baumé's bydrometer, 175.
Bicarbonate, 132.
Black-ash, 128.
Bleaching-powder, 126.
Boiling points, various, 32.
,,, of sulphuric acid, 103.
Bottoms, canstic, 145.
Brimstone, 92.
Burner gases, 97.
Burnet pyrites, 96.
Carbonate of ammonia, spec. grav., 165.

,, ,, soda, 129, 138; spec. grav., 133.
Carbonated liquor, 130, 132.
Carbonic acid, 95, 123, 125, 132, 145, 146.
Caustic bottoms, 145.
,, liquor, 141.

Caustic soda in black-ash, 129; spec. grav., 141; commercial, 145. sampling, 174. Chamber exit gases, 97, 98. Chance process, 145. Chemicals, sampling, 174. Chimney gases, 83, 118. Chlorate of potash, 127. Chlorides in common salt, 116. " black-ash, 136. .. soda ash, 138. Chlorine, solubility, 21. in common salt, 116. ,, " bleaching powder, 126. 99 " Deacon process, 126. Chlorometrical degrees, table, 126. Cinders (pyrites), 96. Circles, area, etc., of, 57; mensuration, 71. Circumferences of circles, 57. Claus-kiln gases, 147. Coal, 85; sampling, 174. mixing, 128. sulphur in, 128. Coinage of different countries, 80. Compounds, symbols, etc., 4. Contents, mensuration, 71. Copper in pyrites, 94, 96. solution, standard, 172. Cube roots. 57. Cubes, 57. Currents of air, speed of, 89. Deacon process, 126. Draught, testing, 87. Elements, 2, 3. Equivalent weights, 4. Exit gases from chambers, 97, 98, condensers, 118. Expansion by heat, 22. of water, 49. ,,

Factors for gravimetric analysis, 12.

Ferric oxide, 132

Fished salts, 145. Fletcher's anemometer, 87. Formulæ, chemical, 4.

181.

Ferrocyanide, 131.

ditions, 46.

for mensuration, 71.

Fire-places, checking the working of, 86,

" reducing gases to normal con-

Fuel, 85. Fuming sulphuric acid, 101, 109, 115, 174. Furnace gases, 86, 181. Fusing points, 31.

of sulphuric acid, 107.

Gases, reduction of volumes to normal tem-

perature, 34. reduction of volumes to normal pressure, 40.

reduction of volumes both together by factors, 46.

reduction of volumes both together by the gas-volumeter, 113.

spec. gravities, 26. from burners, 97. ••

..

chamber exits, 97, 98, 99. chimneys and producers, 86.

condensers, 118. 11

speed of, 89. Gas-liquor, 162.

Gas-volumeter, 113, 122, 126, 164, 170. Glass-tap pipette, 115. Grains, conversions into grams, 79, 167.

Gravimetric analysis, factors for, 12. Heat developed by air-compression, 82. Heats, specific, 56.

Horse-powers, 75. Hydrochloric acid, spec. grav., 120.

analysis, 122. ,, 2.3 solubility, 21.

,, ,, in chimney gases, 118. ,, 11 for decomposing man-

ganese, 123. Hydrogen sulphide, 147.

Hydrometers, 175.

Indicators, 169. Iodine as impurity, 149, 155, ,, standard, 171.

Iron as impurity, 114, 117, 122, 125, 138, 145, 155.

solution, 122.

" wire for analysis, 170.

Lead in sulphuric acid, 114. Lime, 117, 125, 129, 144, 146. Lime-kiln gases, 147. Lime-mud, 143. Limestone, 124.

Magnesia, 117, 125, 157. Manganese, 122 123.

ore, 122; sampling, 172. recovered, 123.

Measures of different countries. 73. reduction of metric, 76.

Liquor ammoniæ, spec, grav., 165.

Melting points, 31. Mensuration of areas and contents, 71. Methyl-orange, 169.

Metric weights and measures, 73. " reduction to English, 76. Minerals, sampling, 172.

Mixing-coal, 128. Moisture, 85, 92, 93, 125, 148, 155. Molecular weights, 4.

Nitrate of soda, 148. Nitre-cake, 149.

Nitric acid, spec. grav., 150. impurities, 155.

mixtures with sulphuric acid,

Nitric oxide, 99.

Nitrogen in mixing coal, 128.

acids in chamber-exits, 98. in sulphuric acid, 111, 114.

Nitrometer, Ito. /// Nitrous acid, 110. Norhausen O.V., see Anhydride.

Ores, sampling, 172. Orsat's apparatus, 86, 97. Oxalic acid solution, 172. Oxide of gas-works, 92. Oxygen in chamber gases, 97.

Percentage composition of compounds, 4. Potash, 155; sampling, 174. P. tassium carbonate, commercial, 157.

spec. grav. of solutions, 158.

chlorate, 127. ,, chloride, 155. ,,

permangate, standard, 170. sulphate, 157. ,,

Pressure, reduction of gases to normal, 40, 46, 113. Producer gas, 86.

Pyrites, 93; sampling, 172. burnt, 96.

Pyrometers, 90.

Quicklime, 125.

Reduction of gases to normal state, 34, 40, 46, 113. Reich's test for burner gas, 97.

Salt, common, 116; sampling, 172. Saltcake, 117. Salts, fished, 145.

solubility of, 16, 17. saturated solutions, spec. grav., 25. Sampling, rules for, 172. Silica, 132.

Silver solution, standard, 172. Soda, available, 129, 130, 131, 146. Soda-ash, raw materials, 128.

commercial, 138; degrees, 139; prices per ton, 177.

Sodium arsenite, standard, 171.

bicarbonate, 132. carbonate, spec. gravities, 133, 134, ,,

carbonate, estimation, 129, 138, 143, ..

chloride, estimation, 116, 117, 130, 138, 145, 149, 156.

hydrate, spec. gravities, 141. estimation, 122, 113, 145.

Solubility of various salts, etc., 16, 17, 21, 22.

gases, 20. Specific gravities of gases and vapours, 23. " liquids, 25.

Specific gravities of saturated solutions, 25.

heats, 56. solids, 23. Speed of air (draught), 87. Spent oxide of gas-works, 92. Squares, square roots, 57. Standard solutions, 168. Sulphace of ammonia, 163.

", ", soda, 117, 130, 138.
", potash, 157.
Sulphides, 129, 131, 138, 145.
Sulphites, 138, 145.

Sulphocyanides, 163.

kulphur, 92; solubility, 92. estimation, 92, 94, 96, 128, 131, 145,

acids in chamber exits, 98.

,, dioxide, 97, 98, 147. ,,

recovery, 145. Sulphuretted hydrogen, 147.

Sulphuric acid, spec. grav., 100, 103, 104, 105.

107.

,, boiling points, 108. ,, percentage of SO<sub>3</sub> in Nord-,, hausen acid, 109.

estimation, 94, 110, 115, 122, 155.

" impurities, 110. Sulphurous acid, 97, 98, 147.

Symbols of compounds, 4.

Tank liquor, 131.
,, waste, 130, 145.
Temperature of furnace gases, 90. Temperatures of gases, reduction to 0°, 34,

Thermometer scales, 28, 29, 30. Thiosulphate, 145, 146. Twaddell's hydrometer, 175.

Valency of elements, 2. Vapour, aqueous tensions, 50, 51, 52. Vapours, spec. grav. of, 26. Vat liquor, 131.

waste, 130, 145.

Volumes, gases, correction of, 34, 40, 46, 113.

Water, boiling points. 55.

volumes at diff. temperatures, 49. pressure, reduction to mercurial, 49.

vapour tension, 50, 51, 52. estimation, see Moisture. 99 Weights of diff. countries, 73.

English and metrical, 76. ,, of substances as stored, 24.

,, sheet metals, 80. Weldon mud, 123.

Zinc, 95.

Telegrams— "DAGLISH," St. Helens.

Established 1798.

# DAGLISH MAKERS OF

CHEMICAL

COAP PLAN'I

(OF LATEST DESIGNS)

THON PANS AND

St. Helen's Engine & Boiler Works, LANCASHIRE.

## THE SPECIALISTS' SERIES (continued).

- COLOUR IN WOVEN DESIGN. By Professor ROBERTS BEAU-MONT, Director of the Textile Industries Department, The Yorkshire College. With thirty-two Coloured Plates and 203 Illustrations. 21s.
- BALLOONING. A Concise Sketch of its History and Principles. From the best sources, Continental and English. By Gustav Max. With Illustrations. 2s. 6d.
- A TREATISE ON MANURES; or, The Philosophy of Manuring. By A. B. Griffiths, Ph.D., F.R.S. (Edin.), F.C.S. With Illustrations and Index. A practical Handbook for the Agriculturist, Manufacturer, and Student. Crown 8vo. 7s. 6d.
- SEWAGE TREATMENT, PURIFICATION, AND UTILIZATION.

  A Practical Manual for the Use of Corporations, Local Boards, Medical Officers of Health, Inspectors of Nuisances, Chemists, Manufacturers, Riparian Owners, Engineers, and Ratepayers. By J. W. Slater, F.E.S., Editor of Journal of Science. With Illustrations. 68.

# TECHNOLOGICAL HANDBOOKS.

EDITED BY SIR H. TRUEMAN WOOD.

CHEMISTRY OF COAL-TAR COLOURS. By DRS. BENEDIKT and KNECKT. Second Edition. 5s.

DYEING AND TISSUE PRINTING. By W. CROOKES, F.R.S. 58.

COTTON SPINNING. By R. Marsden. Third Edition. 6s. 6d.

COTTON WEAVING. By the same Author. [In the press.]
WOOLLEN AND WORSTED CLOTH MANUFACTURE. By
Professor ROBERTS BEAUMONT. Second Edition. 7s. 6d.

PLUMBING. By S. S. HELLYER. [In the press.

GLASS MANUFACTURE. By POWELL, CHANCE, & HARRIS. 3s. 6d.

PRINTING. By C. T. JACOBI, of the Chiswick Press. 5s.

BOOKBINDING. By J. ZAEHNSDORF. Second Edition. 5s.

W











