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PREFACE.

The present treatise is the outcome of lectures delivered

in McGill University during the last ten or twelve years, and

although intended primarily for the use and convenience of the

rstudent of hydraulics, it is hoped that it may also prove

acceptable to the engineer in general practice.

In order to render the treatment of the subject more com-
plete, free reference has been made to standard authors on the

subject. The examples introduced to illustrate the text have

also been selected in part from the works of such well-known

writers as Weisbach, Osborne Reynolds, and Cotterill, but

the greater number are such as have occurred in the course of

the author's own experience. The tables of coefficients of

discharge have been prepared from the results of experiments

carried out in the Hydraulic Laboratory of the University.

These experiments are still being continued and may probably

form the subject of a special paper.

The author desires to acknowledge many suggestions

offered by Mr. Bamford, and to express his deep obligation

to Professor Chandler for much labor and time given to the

revision of proof sheets.

Henry T. Bovey.
MoNTREAi,, November, 1895.
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PREFACE TO SECOND EDITION.

The present edition of the work on '

' Hydraulics
'

' has

been practically rewritten, the various chapters having been

rearranged and in some cases completely altered in order ta

allow of necessary corrections and of the introduction of much

new matter.

In Chapter I, articles on the whirling and rotation of fluids,

have been inserted, the article on " Weirs and Notches " has

been completely rewritten, and there has been added a resume

of Bazin's experimental work on weirs, a complete account of

which appears in the Annales dcs Fonts ct Cliaussees.

In Chapter II will be found a large amount of new material,

including the results of experiments collaborated and tabulated

by Mr. C. W. Tutton of Buffalo, to whom I also owe many

thanks for various useful suggestions and for the graphical

representation of the results of the pipe-flow experiments.

Chapter III has been considerably changed and lengthened.

The results of the experiments by Bazin, Ganguillet and

Kutter, and others are given in detail and tables giving the

values of the constants in the several standard formulae, both

in English and metrical units, are added at the end of the

chapter.

Chapter IV contains new articles on "accumulators,

presses, and water-engines.

Chapter V has been completely rewritten and now includes



VI PREFACE TO SECOND EDITION.

a discussion of the analysis of the impact, Borda, centrifugal,

and other turbines.

Chapters VI, VII, and VIII in the new volume replace

Chapter' VII of the old volume. Chapter VI deals exclusively

with water-wheels; Chapter VII contains new matter and

treats <)f the various classes of turbines which have not been

dealt with in Chapter V. Chapter VIII is entirely new and

deals with centrifugal pumps. Much of the information incor-

porated in this chapter has been obtained through the kindness

of Mr. A. F. Hall of Boston, who has given valuable hints and

suggestions and who has also furnished important practical

examples.

It is hoped that the large amount of new material and the

various tables which have been added to this volume will

indicate the progress which is being made in reducing the

subject of Hydraulics to an exact science and that these addi-

tions, more especially the tables, will add considerably to the

usefulness of the book for the purposes of the practical engineer.

I have now only to express my gratitude to my colleague,

Dr. Coker, for suggestions made from time to time and for his

great kindness in revising the proof sheets.

Henry T. Bovey.
October, igoi.
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HYDROSTATIC PRINCIPLES.

Fundamental Principles of Hydrostatics.—/^/7<zi/^ may be

divided into two classes :

Liquids, which are incompressible, or nearly so. showing no sensible

change of volume under changes of pressure, and

Gases, which are compressible, changing in volume with changes of

pressure.

^ The pressure of a perfect fluid on any surface with which it is in con-

tact is perpendicular to the surface.

The pressure of a fluid at any point of a surface is the pressure per

unit of area.

The pressure at any point of a fluid is the same in every direction.

Any pressure applied to the surface of a fluid is transmitted equally

to M parts of the fluid.

The density of any uniform substance is the mass of a unit of volume

of the substance.

The intrinsic weight of a substance is the weight of a unit of volume

of the substance, expressed in terms of some standard unit of weight..

Tlie difference in the unit due to change of locality is very slight, the

ratio of polar to equatorial gravity being 32.2527 : 32.088.

The specific gravity of a substance is the ratio of the weight of any

volume of the substance to the weight of an equal volume of a standard

substance.

If Huidvolumes V, V, V"—of densities p, p', p"—are mixed together,

tlie density of the mixture = 2(p V) -^ 2{ V).

If fluid volumes V, I", V"—oi specific gravities j, /, j"—are mixed

together, the specific gravity of the mixture = ^(sV) -s- 'S(V).

The pressure in a homogeneous fluid at rest under gravity increases

unifiormly with the depth, or. in other words, the difference of the pres-

sures at any two points varies as the vertical distances between the

points.
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Analytically, the difiference of pressure = wz, w being the intrinsic

weight of the fluid and z the difference of level.

The free surface of a liquid at rest under gravity is a horizontal plane.

The common surface of two liquids of different densities, which do

not mix. is a horizontal plane, when at rest under gravity. If a number

of liquids of different densities, e.g., mercury, water,and oil, are poured

into a vessel, they will come to rest with their common surfaces horizon-

tal planes, the densities of the liquid increasing downwards.

The surfaces of equal pressure are horizontal planes.

The pressure of a liquid on any horizontal area, A, is equal to the

weight of a column of the liquid of which the area is the base and of

which the height, ^, is equal to the depth of the area below the surface,

i.e., IVAz (disregarding the pressure on the free surface).

The whole pressure of a fluid on a submerged surface is the sum of

all the normal pressures exerted by the fluid on every portion of the sur-

face and (disregarding the pressure on the free surface) is equal to the

weight of a column of liquid of which the base is equal to the area of

the surface, and the height is equal to the depth of the centroid of the

surface below the surface of the liquid. Thus

:

{a) The total normal pressure on a wall of width b, sloping at 9 to

the vertical and retaining water which rises over a length >. of the wall

, z wbz'^ cos= wbz — cos 8 =
2 2

{b) The total pressure on a circular valve of diameter d, with its cen-

TtlP
troid z below the surface = w — z.

4

{c) The total normal pressure on a lock-gate of width b and on which
z I

the water rises to a height z = wbz- — —wbz^.

The pressure between a pair of lock-gates = pressure on the hinge

post = \iubz'' sec a, ia being the angle between tlie gates.

The centre of pressure of a plane area is the point of action of the

resultant fluid-pressure, {R), upon the plane area.

If y, J are the horizontal and vertical distances of the C. of P. from

the vertical and horizontal axes through the C. of G. of the area,

^ ~ R ~ wAh ~ Ah '
^" ^ ^ R " ooAh ~ h

'

D being the product of inertia about the axes
; /the moment of inertia

of the area about the axis oi y ; h the depth below the surface of the

centroid, and k the radius of gyration.
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Ex. I. Depth of C. of P. of a parallelogram with one edge in surface

= t of depth of opposite edge.

Ex. 2. Depth of C. of P. of a triangular area, the middle points of the

sides being at depths d^, di, da below the surface, = — ^-——^ .

«i + <J2 + as

and (a) if vertex is in surface and base horizontal, depth = f of depth of

base

;

{b) if base is in surface, depth = ^ of depth of vertex
;

(c) if vertex is in surface andj and ^are depths of ends of base, the

depth = 2y.—^=-

The resultant pressure on the surface of a solid, wholly or partially

immersed in a fluid, is equal to the weight of the displaced liquid and

acts vertically upwards in a line passing through the centroid of the dis-

placed liquid. In other words, a solid immersed in a liquid appears to

lose as much of its weight as is equal to the weight of the fluid it displaces.

If a homogeneous body float in a liquid, its volume will bear to the

volume immersed the inverse ratio of the specific gravities of the solid

and liquid.

A body of weight W, carrying a load P, floats in a liquid, G and h
being the centres of gravity of the body and of the displaced water, so

that GH is vertical. If the load P is shifted, the body will heel through

an angle 6 and the point //, also called the centre of buoyancy, will

move on a curve or surface of buoyancy to a new position H', the line

G'H connecting //' with the new position of the C. of G. of the body

being vertical. If S is small, the ultimate position of M, the intersec-

tion of //G and H' G' , is called the metacentrt, and M is therefore the

centre of curvature of the surface of buoyancy at H. For stability of

equilibrium M must be above G. Theoretically,

^„, wl wAk" AB

A being the water-line area and V the volume of liquid displaced by

body.

Capillary Phenomena.— If a glass tube of fine bore is placed verti-

cally in a liquid like water, which wets the glass, the water-surface on

tlie outside next the glass is eievated and slightly concave, while on the

inside the water-surface is concave and there is a marked elevation above

the outside surface.

With a liquid which does not wet the glass, like mercury, an opposite

effect is observed. There is a depression on the outside and the surface
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is slightly convex, while on the inside the surface is convex and there is

a marked depression below the outside surface.

Surface Tension.—At the bounding surface separating air from

any liquid, or between two liquids, there is a surface-tension which is

the same at every point and in every direction.

At the line of junction of the bounding surface of a gas and a liquid

with a solid body, or of the bounding surface of two liquids with a solid

body, the surface is inclined to the surface of the solid body at a definite

angle, depending upon the nature of the solid and the liquids.

The surface-tension is independent of the curvature of the surface

but, if the temperature be increased, it diminishes.



USEFUL CONSTANTS.

The following abbreviations are u

cubic ttielre = m.'; centimetre = cm
metre = cm.'; kilometre kilo.;

gramrtie — k.; kilogramme metre = kr

sed: Metre = m.; sq. metre = m.';

. ; sq. centimetre = cm.'; cubic centi-

grain = gr.
; gramme = gm.; kilo

I in.

I cm.

I ft.

I m.

I mile

I kilo.

I knot

I sq. in.

I cm.'

I sq. ft.

I m.'

1 sq. yd.

I acre

1 hectare

1 sq. mile

I sq. kilo.

lib.

I k.

— 2.54 cm.

= .3937011 in.

= 30.4709 cm.

= 3.280843 ft.

= 1.6093 kilo.

= .62137 mile.

= I naut. mile per hr.

= 6080 ft. (av.) per hr.

= 6.4516 cm.'

= .155 sq. in.

= 929.03 cm.'

= 10.7639 sq. ft.

= .836126 m.'

= 43,560 sq. ft.

= .40468 hectare.

= 10,000 m.'

= too ares.

= 2 4711 acres.

= 640 acres.

= 2.59 sq. kilo.

= 259 hectares.

= too.obo m.'

= 24.711 acres.

= 16 oz. = 7000 gr.

= 4535924 k-

= 453-5924 gm.
= 445,000 dynes.

= 2 204622 lbs.

= 981,000 dynes.

I British ton = 2240 lbs.

= 1016 k.

I U. S. ton

I Fr. tonne

= 2000 lbs.

= 907-143 k.

= 1000 k.

= .9842 British ton.

= 2204.622 lbs.

I cu. in. of water at 4° C. = 252.89 gr.

I cm.

3

" " = I gtn.

I cu. ft. " " = 62.43 lbs.

I litre " " = I k.

T imp. gal. at 62° F. = ro lbs.

icu. ft. of water at 62° F. = 62.3 lbs.

I cu. ft. of air at 0° C. )

. . f = .0807 lb.
and I atm. S

I cu. ft. of hydrogen at

0° C. and I atm.

I litre of air at 0° C.

and I atm.

1^ =i.2932gm.

I

=. 005571b.

Water compresses j^^th of its

bulk under a change of pressure of

I atm., or about -^th of its vol. un-

der a pressure of 2 tons (of 2240 lbs.)

per sq. in.

I lb. per sq. in. = .0703 k. per cm.'

I k. per cm.'' = .-ajoslb.persq.in.

I lb. per sq. ft. = 4.8826 k. per m.'

= 479dynespercm.*
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No. of lbs. per

sq. in.
( =14.223 k. per cm.

No. of k per m.« = i
4-8826 lbs. per

( sq. ft.

of mer- )

ry at 0° C. ) =-°34534 k- per cm.'

.4907 ins. of

mercury.

( ins. of mercury
- 2.0378.

I in. of mer
cu

I mm. mercury 1 . ,

„
' =.0013596 per cm.-"

at o C.
S

I cu. in.

I cm.'

I cu. ft.

I m'.

I litre

I imp. gal.

1 U. S. gal.

g at Greenwich

g at London

g at Manchester

g at the equator

g at Baltimore

^at Montreal

The inertia or

mass of a body 1

=

16.387 cm.'

.061 cu. in.

.028317 m.'

: 28.317 litres.

35.3148 cu. ft.

: 1000 cm.'

1.7598 pints.

.22 imp. gal.

.1605 cu. ft.

277.27 cu. ins.

4-545963 litres.

231 cu. ins.

83254 imp. gal.

g8i cm. per

sec. per sec.

32.2 ft. per

sec. per sec.

32.19078 ft.

981.17 cm.

32.182 ft.

980 9 cm.

32.196 ft.

981.34 cm.

32.088 ft.

^978. 04 cni.

32.152 ft.

: 980 cm.

: 32.1765 ft.

980.73 cm.

f its wt. in lbs.

{ at London

[ -^ 32- 2-

29.95 ins.

mercury,

t standard atm.
]

of 14-7 lbs. per }•=
-j

sq. in. J
= 760 mm.

T metric atm. ofl „q t •

, ( 28.96 ins
14.223 lbs. per ) = \^ "^ "^ 1 ) mercur

of

of

sq. in.

I erg

I gm.-cm.

I ft. -lb.

J

y-

I km.

No. of ft.-Ib.

I B. T. U.

I calorie

'{

= I dyne X i cm.
= 981 ergs.

= .13825 km.

= i.3S62Xio7ergs.

= 7.233 ft. -lbs.

= 9.81 X lo'ergs.

= 7.2178 km.
= 777 3. T. U.

1399 lbs. de-

gree C.

1058 joules.

= 1058 X 10' ergs.

I k. degree C. = 4200 joules.

= 4200 X 10' ergs.

= I k. raised l° C.

= 426.9 km.

= 3080.9 ft. -lbs.

= I joule per sec.

f work done by
a current of

I amp. at I

[ volt.

I horse-power = 550 lbs. per sec.

_ ( 746 X 10' ergs

I
per sec.

= 746 watts.

I.oi forces-de-

cheval.

I force-de-cheval = ( "^^^S horse-

j power.

= 736 watts.

_ ( 545 ft. -lbs. per

/ sec.

= 75 km. per sec.

1 radian - —57.296 degrees.
To convert common into hyper-

bolic and hyperbolic into common
logarithms, multiply the former by
2.3025 and the latter by .43429.

-\
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HYDRAULICS.

CHAPTER I.

GENERAL PRINCIPLES. FLOW THROUGH ORIFICES, OVERf.
WEIRS, ETC.

I. Fluid Motion.—The term " hydraulics, " as its deriva-

tion {i'jd&jp, water; avAos, a tube or pipe) indicates, was
primarily applied to the conveyance of water in a tube or pipe,

but its meaning now embraces the experimental theory of the.

motion of fluids.

The motion of a fluid is said to be steady or permanent

when the molecules successively arriving at any given point

are animated with the same velocity, are subjected to the same

pressure, and are the same in density. As soon as the motion

of a stream becomes steady a permanent regime is said to be

established, and hydraulic investigations are usually made on

the hypothesis of a permanent regime. With such an hypothe-

sis, any portion of the fluid mass, which leaves a given region,

is replaced by a like portion under conditions which are identi-

cally the same.

The terms "steady motion" and "permanent regime"

are often considered to be synonymous.
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The general problem of flow is the determination of the

relation which exists at any point between the density, pres-

sure, and velocity of the molecules which successively pass that

point.

The actual motion of a fluid is exceedingly complex, and,

in order to simplify the investigations, various assumptions are

made as to the nature of the flow.

2. {a) Stream-line Motion.—The molecules may be re-

garded as flowing along definite paths, and a succession of

such molecules as forming a continuous fluid rope, which is

termed an elementary stream or a fluid filament ; or, if the

motion is steady, and the paths therefore fixed in space, is

termed a stream-line.

Experiment shows that the velocity of flow in any cross-

section varies from point to point, and it is often assumed that

the section is made up of an infinite number of indefinitely

small areas, each area being the section of a fluid filament.

(If) Motion in Plane Layers.—In this motion it is assumed

that "the molecules, which at any given moment are found in a

plane layer, will remain in a plane layer after they have moved
into any new position.

{c) Laminar Motion.—On this hypothesis the stream "is

supposed to consist of an infinite number of indefinitely thin

layers. The variation in velocity from point to point of a

cross-section may then be allowed for, by giving the several

layers different velocities based upon the law of fluid resistance

between consecutive layers.

3. Density ; Compressibility ; Head ; Continuity.

The freezing-point of pure water is 32° F. or 0° C.

" boiling- " " " " " 212° F or 100° C.

" max. density " " " " 39^.1 F. or 4° C.

standard mean temperature " 62° F. or 16°. 66 C.

The comparative densities and also the comparative vol-

umes are the same at 32° Y . and 46° F »
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The bulk of fresh snow is 12 times the bulk of the equiva-

lent water.

I cu. ft. of fresh snow weighs 5.2 lbs. and its s. g. is .0833.

I cu. ft. of ice at 32° F. weighs 57|- lbs. and its s. g. is

,922.

I cu. ft. of average sea-water at 62° ]'". weighs 64 lbs. and

its average s. g. is 1.028.

I cu. ft. of pure water at 32" F weighs 62.418 lbs.

" " 39°. I F. " 62.425 "

" " " 52°. 3 F " 62.400 "

" 62" F. " 62.355 "

" 212" F. " 59.640 "

( 6.2355 gallons or
" contains i ^ _ . .

, ,,
/ 6.2328 imperial gallons.

I cu. yd. " " " 168.36 gallons.

I cu. metre " " " 220.09 "

( ( a

The vol. of I ton

The vol. of I lb. of pure water at 32° F. is .016021 cu. ft.

" " " " " 39°. I F. " .016019

" " " " " 52°. 3 F. " .616

" " 62" F. " .016037

" " 212" F. " .0167*7

52" 3 F. " 3,5.9

" " " sea-water at 62° F. " 35
'' " I tonne of pure water at 39°. I F. "35.3156
" ^' I kilog. " " " " .0353

I gallon of pure water at 62° F. weighs 10 lbs. and its vol.

^ 277.123 cu. ins. = .16037 cu. ft.

I imperial gallon of pure water at 62° F weighs 10.00545

lbs. and its vol. = 277.274 cu. ins.
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FLUID COMPRESSIBILITY. S

The temperatures in this table may be taken as abscissae, and

the corresponding values in the three remaining columns as

ordinates. Curves of comparative density, weight per cubic

foot, and weight per gallon are thus obtained, and the values

corresponding to any specified temperature can be easily and

very accurately determined from these curves by direct meas-

urement.

The weights per cubic foot in the table have been calcu-

lated by means of Rankine's approximate formula,

w I ooo T
62.425

"~ r^ -(- 250,000
'

•w being the weight per cubic foot corresponding to the

absolute temperature T, i.e., 461° -|- ordinary temperature.

The specific weights obtained by this rule for the lower

temperatures are very exact, but for the higher temperatures

they become too large. Thus the rule gives 59.76 lbs. as the

weight of a cubic foot of pure water at 212° F., while actual

measurement makes the weight 59.64 lbs.

The comparative densities between 0° C. and 40° C. are

the values obtained by Chappuis.

Compressibility.—Fluids are sensibly compressible under

heavy pressures, and the c6mpression is proportional to the

pressure up to about lOOO lbs. (68 atmospheres) per sq. inch.

Grassi's experiments indicate that the compressibility of water

diminishes as the temperature increases. Water compresses

about 47i- millionths (i.e., = , nearly) of its^'

^

\ 20,000 20,000 ^1

bulk for each atmosphere. This is equivalent, approxi-

mately, to a reduction of -^-^ in the bulk under a pressure of

2 tons per sq. inch.

If a volume F of a fluid is compressed by an amount z/ V
under an increase ^p of the pressure, then the amouut of com-

pression per unit of vol. is

AV
-rr^ and is called the cubical compression. The ratio of the
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Table of Elasticity of Volume of Liquids.

(Reduced from Grassi's results.)

Liquid.
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Head.—A head of water is a source of energy. A volume

of water descending from an upper to a lower level may be

employed to drive a machine, which receives energy from the

water and again utilizes it in overcoming the resistances oi'

other machines doing useful work.

Let Q cu. ft. of water per second fall through a vertical

distance of h ft. Then the total power of the fall = wQk

ft. -lbs., = h.p. , lu being the weight of the water in pounds

per cubic foot.

Let K be the proportion of the total power which is

absorbed in overcoming frictional and other resistances. Then
the effective power of the fall = wQh(\ — K), and the effi-

ciency is I — K.

Contimdty.—Imagine abounding surface enclosing a space

of invariable volume in the midst of a moving mass of fluid.

The principle of continuity affirms that, in any interval of time,

the flow into the space must be equal to the outflow during the

same interval. Giving the inflow a positive and the outflow a

negative sign, the principle may be expressed symbolically by

:^Q = o.

The continuity of a mass of water will be preserved so long

as the pressure exceeds the tension of the air held in solution.

It is on account of the pressure of this air that pumps cannot

draw water to the full height of the water-barometer, or about

34 ft-

Generally speaking, the pressure at every point of a con-

tinuous fluid must be positive. A negative pressure is equiva-

lent to a tension which will tend to break up the continuity

presupposed by the formula;. Should negative pressures result

from the calculations, the inference would be that the latter

are based upon insufficient hypotheses.

The pressure in water flowing through the air cannot at any

point fall below the atmospheric pressure. There are cases,
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however, as when water flows through a closed pipe (Art. 6,

Chap. II), in which the pressure may fall below this limit and

become almost nil. In this case there is a danger of the air

held in solution being set free, thus tending to interrupt the

continuity of the flow, which may even be wholly stopped if

the air is present in sufficient volume.

Consider a length of a canal or stream bounded by two

normal sections of areas A,, A.,, and let z\, v.^ be the mean

normal velocities of flow across these sections. Then, by the

principle of continuity,

A,v,^Q=A,y.„

and the velocities are inversely as the sectional areas.

Again, assume that a moving mass of fluid consists of an

infinite number of stream-lines, and consider a portion of the

mass bounded by stream-lines and by two planes of areas A^,

A, at right angles to the direction of flow. If r, ,
r-^ are the

mean velocities of flow across the planes,

v^A^ = Q= v^A. if the fluid is incompressible.

Assuming that the fluid is compressible, and that the mean

specific weights at the two planes are w, and w^, , then the

weight of fluid flowing across A
^
is equal to the zveiglit which

flows across A., , since the weight of fluid between the two planes

remains constant. Hence

u.\A(i\ = iv.^A.cc\,.

4. Bernouilli's Theorem.—This theorem is based on the

following assumptions

:

(i) That the fluid mass under consideration is a steadily

moving stream made up of an infinite number of stream-lines

whose paths in space are necessarily fixed.

(2) That the velocities of consecutive stream-lines are not

widely different, so that viscosity, or the frictional resistance

between the stream-lines, is sufficiently small to be disregarded.
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(3) That the fluid is incompressible, so that there can be
no internal work due to a change of volume.

In any given stream-line let a portion AB, Fig. i, of the

fluid move into the position A'B in t seconds.

Fig. I

Let a^, py, %\ , z^ be the normal sectional area, the intensity

of the pressure, the velocity of flow, and the elevation above

a datum plane ss of the fluid at A. Let a^, p^, v^, z^ denote

similar quantities at B.

Since the internal work is nil, the work done by external

forces must be equivalent to the change of kinetic energy.

the work done by gravity
Now the external work =-,.., , , ,+ the work done by pressure.

But when the fluid AB passes into the position A'B\ the

work done by gravity is equivalent to the work done in the

transference of the portion BB' , and therefore, t being the

time,

the work done by gravity = wa^ . A A'. «, — wa^ . BB'. z^

= zva^ . t\t . z^ — wa^ . v^t . z^

= wQt(z, - z^),

since AA' = i\t, BB' = v^t, and a^t\ — Q = a^v^.

Again, the work done by the pressures on the ends A and B

The work done by the pressure on the surface of the
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stream-line between A and B is nil, since the pressure is at

every point normal to the direction of motion.

The change of kinetic energy

= kinetic energy oi A'B' — kinetic energy o{ A£
= kinetic energy of ££' — kinetic energy of A A',

since the motion is steady, and there is therefore no change in

the kinetic energy of the intermediate portion A'B. Thus

7i_f 1)
^ 'W IJ

the change of kinetic energy — - a^BB'-^ —a^AA'^

= —a„vj a,v,t
^ - ' 2 g ^ ^ -2.

g -^
\ 2 2

Hence, equating the external work and the change of

kinetic energy,

^QA^. -^.) + QKP. -A) = jQ-i (v - ^)'
which may be written in the form

or

,^ + A !:,!^ A !i^
('^

' W ' 2g ^
^ W ' 2g ^ ^

But A and B are arbitrarily chosen points, and therefore,

at any point of a stream-line, the motion being steady and the

viscosity nil, the gradual interchange of the energies, due ta

head, pressure, and velocity, is expressed by the equation

wz + p -| = wH, a constant ; . . . (3)
o

or

^ + w ^' ^ = H' * constant
; ... (4)

Z being the elevation of the point above the datum plane, p the

pressure at the point, w the specific weight, and v the velocity

of flow. This is Bernouilli's theorem.
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Thus the total constant energy of wH ft. -lbs. per cubic foot

of fluid, or H ft. -lbs. per pound of fluid, is distributed uniformly-

along a stream-line, wH being made up of wz ft. -lbs. due to
iWV"

head, p ft. -lbs. due to pressure, ft. -lbs. due to velocity,

and H being made up of z ft. -lbs. due to head, — ft. -lbs. dueW

to pressure, and — ft. -lbs. due to velocity.

Hence the total energy is made up. of three elements, and

each element may be utilized by a specially designed motor.

The now almost obsolete overshot-wheel is driven by the

'weight of the water filling the buckets on one side and descend-

ing from a higher to a lower level. In the breast-wheel and

certain turbines, the energies, due both to the weight (wz) and

(wv\
to the velocity I 1, are transformed into useful work. The

/ wv'^ \
rotation of impulse-wheels is due to the kinetic energy I

J:

of a jet of water issuing from a nozzle and impinging upon

curved buckets. Finally, the piston of the hydraulic engine is.

actuated by water admitted into the cylinder from a closed

pipe in which the water under pressure moves with a low-

velocity.

Assuming that

{a) the motion is steady,

{p) the frictional resistance may be disregarded,

(c) the fluid is incompressible,

Bernouilli's theorem may be applied to currents of finite size

at any normal section, if the stream-lines across that section

are sensibly rectilinear and parallel. There is then no interior

work due to a change of volume, and the distribution of the

pressure in the section under consideration will be the same as

if the fluid were at rest, that is, in accordance with the hydro-

static law. This is also true whether the flow takes place
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under atmospheric pressure only, or whether the fluid is wholly

or partially confined by solid boundaries, as in pipes and

canals, or whether the flow is through another medium already

occupied by a volume of the fluid at rest or moving steadily in

a parallel direction. In the last case there must necessarily

be a lateral connection between the two fluids, but the pressure

over the section must follow the hydrostatic law throughout the

separate fluids, and there can be no sudden change of pressure

at the surface of separation, as this would lead to an interrup-

tion of the continuity.

The hypotheses, however, upon which these results are

based, are never exactly realized in actual experience, and the

results can only be regarded as tentative. Further, they can

only apply to an indefinitely short length of the current, as the

viscosity, which is proportional to the surface of contact, would

otherwise become too great to be disregarded-.

5. Applications of Bernouilli's Theorem.— If a glass tube,

open at both ends, and called a piezometer {nieZeiv, to press;

fAerpov, a measure) is inserted

vertically in the current. Fig. 2,

at a point N, s ft. above the point

in the datum line, the water

will rise in the tube to a height

MN dependent upon the pressure

at N. The effect of the eddy

motion, produced at TV^by obstruct-

ing the stream-lines, may be dimin-

ished by making this end of the

tube parallel to the direction of

flow. Disregarding the effect of

the eddies and taking / and />^ to

be the intensities of the pressure at N and of the atmospheric

pressure, respectively, then,

- = MN-i-^,
IV ' TV

M

Fig.
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and therefore

^ + - = 5+ MIV-{-p

13

w

= ON+MN-\- ^

0M+
TV

' (5>

The locus of all such points as Mis often designated "the

line of hydraulic gradient," or the "virtual slope," terms also

used when friction is taken into account.

Let the two piezometers A£, CD, Fig. 3, be inserted in

the current at any two points B and D, z^ ft. and s.^ ft.

respectively above the points E and F in the datum line.

Fig. 3.

Let /, be the intensity of the pressure at B in pounds per

square foot, /., that at D, and let the water rise in these tubes

to the heights BA, DC. Then,

•p. + AE = „", + A
7V '

' ' 'W
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and therefore

the Hne AG being parallel to the datum line.

Thus, U + -') — (•^2 + ~j 's equal to the fall of the free

surface level between the points B and D.

Let t\ , v^ be the velocities of flow at B and D. Then, by

Bernouilli's theorem,

^ + ^ + — = - + — + ^-
(7)

and therefore the fall of free surface level between B and D

Equation (7) may also be written in the form

+('.+5)-('=+a=s+^^. TO

so that the velocity at Z> is equal to that acquired by a body
with an initial velocity -t\ falling freely through the vertical

distance CG.

Froude illustrated Bernouilli's theorem experimentally by
means of a tube of varying section. Fig. 4, conveying a current

between two cisterns. The pressure at different points along
the tube is measured by piezometers, and it is found that the

water stands higher and the pressure is therefore greater,

where the cross-section is larger and the velocity consequently
less. Reynolds illustrates the principle, that the pressure in a

frictionless pipe of varying section increases and diminishes
with the section, by forcing water at a high velocity throug-h a
|-in. pipe drawn down in the middle to a bore of .05 inch. At



APPLICATIONS OF BERNOUILLI'S THEOREM. 15

this point the pressure is so much diminished, that the water

hisses and boils. To the same cause is due the hissing sound

heard in water-injectors and in partially opened valves. If the

section of the throat at A is such, that the velocity is that

acquired by a body falling freely through the vertical distance

r\
i

m

Fig. 4.

Ji between A and the surface level of the water in the cistern,

and if / be the pressure at A , and .r the elevation of A above

datum, then, neglecting friction,

" + / /,,

' 2g W

But v^ = 2gh, and therefore /> = /^, so that the pressure

at A is that due to atmospheric pressure only. Thus, a

portion of the pipe in the neighborhood of ^ maybe removed,

as in the throat of the injector.

Again, let the cross-section in the throat at B be less than

that at A. The pressure at B will be less than the atmos-

pheric pressure, and a column of water will be lifted up in the

V urved piezometer to a height k'

.

Let «j , /Ti , />! , i\ be the sectional area, elevation above

datum, pressure, and velocity at B.

Let a.^, s.^, p.^, '-c'i
be similar symbols at E.
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Then

Put //. = ^ + - the height above datum to which the

water is observed to rise in the piezometer inserted at E, and

also let H , = s, +-^ - h' . Then

H.-H, = -(..,' - r-/)
\'

2

since a.,v., = a^7\ , a., being the sectional area at £. Therefore

^^^"^^-.(/^.-^.)>

an equation giving the tJicorctical velocity of flow at the

throat B. Hence the tlicoi-ctical quantity of flow across the

section at B is

\' a.?' — a.
l/2-(//, - //J. . . (lO),

This is the principle of the aspirator and also of the Venturt

water-meter, which, as now used, is said to be correct to

within \ per cent.

The actual quantity of flow is found by multiplying equa-

tion (lo) by a coefficient C, whose value is to be determined

by experiment and may be taken to be approximately unity.

If the pressure at E is positive, then H^ is merely the

height to which the water is observed to rise in an ordinary

piezometer inserted at E.

Again, Froude also points out that when any number of

combinations of enlargements and contractions occur in a pipe,

the pressures on the converging and diverging portions of the
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pipe will balance each other if the sectional areas and direc-

tions of the ends are the same.

Ex. I. One cubic foot of water per second flows steadily through a
irictionless pipe. At a point A, 100 ft. above datum, the sectional area
of the pipe is .125 sq. ft., and the pressure is 2500 lbs. per sq. ft. Find
xhe total energy at A per cubic foot of water. At a point B in the datum
3ine, the pressure is 1250 lbs. per sq. ft. and the sectional area .0625
:sq. ft. Find the loss of energy per cubic foot of water between A and B.

The velocity of flow aX A = = 8 ft. per sec.
.125

The total energy at A per cubic foot of water

2500 8' , „^

The velocity of flow at ^ = —y— = 16 ft. per sec.

The total energy at B per cubic foot of water

1250 16'
, ,,= o + -^ + -, = 24 ft.-lbs.

62^ 64

Hence, the loss of energy between A and B per cubic foot of water

= 141 — 24 = 1 17 ft.-lbs.

Ex. 2, A horizontal frictionless pipe, in which the pressure is 100 lbs.

per square inch, gradually contracts to a throat of one tenth of the

-diameter and then again gradually enlarges to a pipe of uniform diame-

ter. What will be the maximum velocity of flow at the throat .'

The velocity at the throat will be greatest when the pressure there

If

is nil. Hence, if v is the throat velocity and therefore — the pipe
100

velocity,

100 X 144 I ^ ^ V_ ^^

62i + eii^Too/ ~ ° "^ 64'

and V = 121.437 ft. per sec.

6. Rotation of a Fluid.—In any stream-line moving freely

in space, let ABCD be an element of mass in and normal

thickness a^«(= BC). It is acted upon by the pressures on

AD and BC, a pressure of intensity/ on the area AB{= a),

a pressure of intensity p -\- dp on the area CD, its weight mg^
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inclined at an angle a to the normal, and the centrifugal force

m~, r being the radius of curvature.

o..

Fig. 5.

Resolving along the normal,

a . dp — 1)1 mg cos a = o,

or

or

,^<. wa . dn iv^
a.dp= m[^— + g cos «j = "y [^ +£ cos ")•

dp w/v- \

If the stream-line is in a horizontal plane, a = 90°, and
then,

dp _ w v^

dn ~ g" T"

But by equation (4), Art. 4, since s is now constant,

dH^^ dp V dv _ v/v dv\ _ 2V ifv dv\

dn ~ w dn ' g dn ~ g T
"""

dn' ~ g " 2 t ' dn'

'



IVHIRLING FLUIDS. 19

The expression
2 Vr ^ dn/

is designated the average

angular velocity, or i/ie rotation of the fluid.

Again, if the stream-line is horizontal and is also circular,.

dn = dr, and

dp wv'
dr ~ g r

'

a differential equation connecting the pressure and the velocfty-..

If V is a known function of r, the pressure can be at once-

determined.

7. Whirling Fluids.—Let a fluid mass whirl like a rigid

body about a vertical ajiis FF, with an angular velocity oo-

Consider the relative equilibrium of an element of mass m

at P distant x horizontally from the axis and ^.vertically from-

the origin O in YY.

Take PA horizontally to represent the centrifugal force

moa^x, and PB vertically to represent the weight nig. The

remaining forces must be equal and opposite to the resultant of

these two forces, viz., the diagonal PC of the parallelogram

AB. The magnitude of this resultant is

PC = ^(mgf + (;«ctf2.r)' = ingy I
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Its slope, a, is given by

dy

Integrating,

^ _ mg _ g— = tan a -
^^^^,^

- ^,^.

7 = ^2 log. ^ + ^.

c being a constant of integration.

Thus an infinite number of logarithmic curves can be drawn

such that the tangent at any point in any one of the curves is

in the direction of the resultant force at that point. These

curves are called Imes of force, and the surfaces cutting these

lines of force orthogonally are designated level or equipotential

surfaces.

If /J is the slope of a level surface, then

mg
Integrating,

y = V <^>

^g 7
<c being a constant of integration.

Thus the level surfaces are paraboloids of revolution.

For the free surface this result is obtained more simply as

follows : The fluid element of mass in in the free surface at P

dy
+ £=:tan/J: cot 01 = = oa^x

S

is kept in relative equilibrium by (a) the centrifugal force moo^x,

(J>)
its weight mg, and (c) the fluid pressures, which must neces-
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sarily have a resultant normal to the free surface at P Draw-

ing the horizontal PN and the normal PG to meet the axis of

rotation in N and G, PNG is evidently a triangle of forces^

NG mg NG ,^„ g
and therefore -^-^ = ?- = . and NG = —„, a constant.

Thus, the sub-normal is constant, and the free surface must be

a paraboloid with its vertex at the point O where the free

surface cuts the axis of rotation.

Ex. I. Deduce the law of pressure variation {a) for water in'a vessel

moving slowly towards a hole in the centre, the stream-lines being ap-
proximately horizontal circles and the velocity of any fluid particle

inversely as its distance from the axis {b) for water rotating as a rigid

body about an axis (as in a full centrifugal pump before delivery com-
mences), the velocity of any fluid particle being directly proportional to

its distance from the axis.

(a) Take v
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The linear speed of the rim at /" = ^(» = 8|/io,

60 X S^f/io „ ,
and the number of revols. per min. = —^ = 4o2-9"'

I

PNP

.9
I

Fig. 8. Fig. 9.

(i) The free surface is now the paraboloid OP, with its vertex at 0,

Fig. 9.

£_ _ }_
PJV' _ J[

00'' ~ 2 ON ~ 20

'

Then

and a> = 1/640 = 8^10.

Thus the number of revols. per min. = 60 X 84/10 = 241.48.

8. Orifice in a Thin Plate.—If an opening is made in the

wall or bottom of a tank containing water, the fluid particles

immediately move towards the opening, and arrive there with

a velocity depending upon its depth below the free surface.

The opening is termed an '

' orifice in a thin plate,
'

' when the

water springs clear from the inner edge, and escapes without

again touching the sides of the orifice. This occurs when the

bounding surface is changed to a sharp edge, as in Fig. 10,

and also when the ratio of the thickness of the bounding sur-

face to the least transverse dimension of the orifice, does not
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exceed a certain amount which is usually fixed at unity, as in

Figs. 1 1 and 12.

Owing to the inertia acquired by the fluid filaments, there

will be no sudden change in their direction at the edge of the

orifice, and they will continue to converge to a point a little

in fi-ont of the orifice, where the jet is observed to contract to

the smallest section. This portion of the jet is called the vena

Fig. 10. Fig. II. Fig. 12.

icontracta, or contracted vein, and the fluid filamentsflow across

the minimum section in sensibly parallel lines, so that here, if

the motion is steady, Bernouilli's theorem is applicable.

The dimensions of the contracted section and its distance

from the orifice depend upon the form and dimensions of the

orifice and upon the head of water over the orifice.

Let Fig. 1 3 represent the portion of the jet between a cir-

cular orifice of diameter AB and the contracted

section of diameter CD, EF being the distance

between AB and CD. Then, taking the average

results of a number of observations, it is found that

AB, CD and EF are in the ratios of 100 to 80 to

SO.

Fig. 13. Thus the areas of the contracted section and of

the orifice are in the ratio of 16 to 25, and, generally speaking,

this is assumed to be the ratio whatever may be the form of

the orifice.
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9. Torricelli's Theorem.—Let Fig. 14 represent a jet

issuing from a thin-plate orifice in the side of a vessel contain-

ing water kept at a constant level AB
LetXJSTbe the datum line, MN the contracted section, and

consider any stream-line vin, in being in a region where the

B II Af

Fig. 14.

velocity is sensibly zero, and n in the contracted section^

Then, by Bernouilli's theorem, the motion being steady,

•^1 + — + — = -^ + - H .' W 2g W 2g
(I>

/, /j being the pressures at « and wz, and ^, z. their elevations

above datum. Hence

v"
^ + A -/

{^\
2g "^ ' W

If the flow is into the atmosphere,

/ = the atmospheric pressure = p^ , and

/j = w . Om -\- p^

,

O being the point in which the vertical through m intersects^

the free surface. Thus

2g
= Zj — z -f Om = h, (3>

h being the depth of n below the free surface.
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'J'he result given by equation (3) was first deduced by
Torricelli.

The depth below the free surface is very nearly the same
for all points of the contracted vein, and the value of v as

given by (3) is taken to be the theoretical mean velocity of

flow across the contracted section.

Equation (3) is equivalent to the statement that when the

orifice is opened, the hydrostatic energy of the water, viz.,

h ft. -lbs. per pound, is converted into the kinetic energy of

2g
ft. -lbs. per pound. Thus, if the jet is directed vertically

upwards, it will very nearly rise to the level of the free surface,

and would reach that level were it not for air resistance, or for

viscosity, or for friction against the sides of the orifice, or for a

combination of these retarding causes.

If the jet issues in any other direction, it describes a para-

bolic arc of which the directrix lies in the free surface.

Let OTV, Fig. 15, be such a jet, its direction at the orifice

at O making an angle a with the vertical. With a properly

Fig. 15.

formed orifice a greater or less length of the jet will have the

appearance of a glass rod, and if this portion were suddenly

solidified and supported at the ends, it would stand as an arch

without any shearing stress in normal sections
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Again, the horizontal component of the velocity of flow at

any point of the jet is constant {= v sin a), so that, for the

unbroken portion of the jet, equidistant vertical planes will

intercept equal amounts of water, and the height of the C. G.

of the jet above the horizontal line V, will be two thirds of

the height of the jet.

10. Efflux through an Orifice in the Bottom or in the

Side of a Vessel in Motion.—If a vessel containing water s ft.

deep ascend or descend vertically with an acceleration f, the

pressure / at the bottom is given by the equation

/>„ being the atmospheric pressure. Therefore

O" "D »^.fi±^)

51i^^a^

Fig. i6.

Before an orifice is opened, if

the heavier vessel is reduced to rest

• by applying an upward acceleration

/, the pressure at the depth - is

changed from luc to wzli + — ),

while in the other vessel it would be

changed from ws to zvs(i — -).

If now an orifice is opened at the bottom, the velocity of
efflux V is still taken as being due to the head of the pressure

/, and therefore by Torricelli's Theorem

v^ I i\— = Z I ± - ).

Let W^ be the weight of the vessel and water, and let the
vessel be connected with a counterpoise of weight W by
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means of a rope passing over a pulley. Then by Newton's
second law of motion, and neglecting pulley friction,

W.^ T T
IV,

7"being the tension ofthe rope. Therefore, also, T^ ^ '

Next let a cylindrical vessel,

Fig. 17, of radius r and containing

water, rotate with an angular ve-

locity &J about its axis. Art. 7. The

surface of the water assumes the

form of a parabcjloid with its vertex

at O and its latus rectum equal

w^ + w;

to
oo"'

If an orifice is made at Q

Fig. 17.in the side of the vessel, at a verti-

cal distance j: from O, the water will flow out with a velocity

V due to the head of pressure at the orifice. This head is PQ,
and

2g
PQ^ON±

the sign being pbis or im7nis, according as the orifice is below

or above O. Hence, by Torricelli's theorem,

or

2g ~ 2g

v^ = 0L,2r- ± 2gz.

II. Application to the Flow through a Frictionless Pipe

of Gradually Changing Section (Fig. 18).—Let the pipe be

supplied from a mass of water of which the free surface isH ft.

above datum.
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Let a^, p^, t'j be the sectional area, pressure, and velocit}^

of flow at any point A , ,"| ft. above datum

and /ij ft. below the free surface.

Let «2 , /j , v^ be similar symbols for a second point B,

z^ ft. above datum and /^^ ft. below the

free surface.

Fig. 1 8.

Then by the condition of continuity,

and

fhpr
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SO that Bernouilli's theorem, viz.,

+ &. +2i^
= H A = a constant,

' w

holds true for the assumed conditions.

12. Hydraulic Coefficients These are coefficients intro-

duced to correct the discrepancies between the results deduced

by theoretical considerations and the actual results of practice.

Numerous experimeiiLs have been made to .determine the values of

these coefficients, and with the same object in view, special apparatus

has been designed and installed in the hydraulic laboratory of McGill

University. A main feature of this apparatus is a cast-iron tank, square

in section, 28 ft. in lieight, and having a sectional area of 25 sq. ft.

Care has been taken to make the inside surfaces of the tank perfectly

flush, and to this end the flanges, by which the several sections are

bolted together, are placed on the outside.

The valve. Fig. 19, in the side of the tank is a gun-metal disc J in. in

thickness and 24 ins. in diameter, fitted into a recess of the same di-

CAP FOB

CHANGIMG ORirJCCS

BACK OR INSIDE VIEW

Fig. 19.

mensions in a cast-iron cover-plate, with gun-metal bearing faces, form-

ing a water-tiglit joint for the face of the disc. This cover-plate is

bolted to an opening in the front of the tank, and the inner faces of

the cover-plate and disc are flush with the inner surface of the tank.
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In the disc, and on opposite sides of the centre, there are two screwed

openings, the one 3 ins. and the other 7 ins. in diameter. By rotating

the disc each opening can be made concentric with a screwed 7^-\n,

opening in the body of the valve. The disc is rotated by means of a

spindle through its centre, passing through a gland in the front of the

valve body, and operated by a lever on the outside. Gun-metal bushes,,

with the required orifices, are screwed into the disc openings, and when

screwed home have their inner surfaces flush with the valve surface, and

therefore with the inside surface of tlie tank. By means of a simple

device, these bushes can be readily removed and replaced by others

without the loss of more tlian a pint of water. A cap with a central

gland is screwed into the 7i-in. opening of the valve body and forms a

practically water-tight cover. The valve is rotated so as to bring the

bush opposite the opening, and it is then unscrewed by means of a

special key projecting through the cap-gland. The valve is now turned

back until the opening is closed, when the cap is unscrewed, the bush

taken out, and another put in its place. The cap is agam screwed inta

position, the valve rotated until the openings in the disc and tank-side

are concentric, when the bush is screwed home by the key.

A gun-metal bush screwed into each of the two openings in the

main disc, carries a series of orifice plates. The larger bush takes.'

plates with openings up to 4 ins. in diameter, and the smaller bush takes

plates with openings up to if ins. in diameter. The plates are provided

with a shouldered edge, which fits against the corresponding rim of the

bush, and are screwed with the orifice in any required position by means
of an annular screwed ring fitting the interior surface of the bushing.

The orifice plates are gun-metal discs, 4I ins. in diameter by J in. thick

for the large bush, and '' ins. in diameter by J in. thick for the small

bush.

The utmost care has been taken to form the orifices with the greatest

possible accuracy. The orifices are worked in the discs approximately

to the sizes required, and are then stamped out with hardened-steeJ

punches, the sizes of which have been determined with great exactness

by means of Brown- & Sharpe micrometers. The diameters of the ori-

fices are also checked by a Rogers' comparator and a standard scale.

In some cases a discrepancy has been found between the sizes of the

die and its orifice, but the size obtained for the orifice is the. one which
has been invariably used in the calculations.

{a) Coefficients of Velocity.—The actual velocity v at the

vena contracta is a little less than Vigli, the theoretical

velocity (Art. 9), and the ratio of v to \'2,gli is called the

coefificient of velocity. Denoting this coefficient by r„, then,

v"" = c^ . 2gh,
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and the equations for the velocities of discharge in the case of

moving vessels (Art. lo) become

and

1'' =: c/.2(^ ±f)h

7^ — c^\z(fr^ ± 2gs).

A mean value of c^ for-well formed simple orifices is .974.

Assuming that the face of the orifice is vertical and that the

jet issues horizontally with a velocity of v ft. per second, under

a head of h ft. of water, and assuming also that in t sees. , a

Fig. 20.

fluid particle reaches a point y ft. measured vertically and x ft.

measured horizontally from the point of discharge, then, dis-

regarding the effect of air resistance and other disturbing

causes,

X = vt,

y = \gfi,

and therefore

2ir

y g g" ^ Ac^h,

or

X^

\hy
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If A\
, y^ are the coordinates of the fluid particle in any other

position, theri, also,

4/ty

Hence

c,/ =
4h(yi - y)'

which is the formula used in the McGill laboratory in the

experimental determination of coefficients of velocity. The
position of the jet is defined by vertical measurements from a

straight-edge, supported horizontally above the jet, by a bracket

on the tank face at one end, and at the other on a bearing,

which- admits of a vertical adjustment. Fig. 2 1

.

Fir,. 21.

The straight-edge is of machinery-steel, is 5^ ft. in length,

2j ins. in depth, f in. in width, and is graduated so as to give

the horizontal distances from the inner face of the orifice plate.

The vertical ordinates are measured by a Vernier caliper

specially adapted for the purpose. The flat face of the movable
limb is made to rest upon the upper surface of the straight-

edge, and the caliper-arm hangs vertically. A bent piece of
wire, with a needle-point, is clamped to the other limb, and,
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(by means of the screw adjustment, can be readily moved until

it just touches the upper or lower surface of the jet.

By means of the above method, an extended series of

"experiments with J-in., -^-in., and i-in. sharp-edge orifices, and

lunder heads varying from 6 to 20 ft., gave .99 as the average

value of the coefficient of velocity (c„).

Let the direction of the jet, Fig. 22, at the point of dis-

charge make an angle a with the horizontal, and let ^r^
, j/,

,

Fig. 22.

jTj
, J2 ) be the coordinates defining the position of a fluid

particle after intervals of /, sees, and /, sees. Then

x\ — V cos a . t^ and y^ — v sin a .t^ — ^gt^,

x^ — V cos a . i and y^ = v sin a . t,^ — ^g^i-

These equations give

tan a =

and

X' sec" a 2V'= -— = ^h . c^
x^ tan (x- — }\ g x^ tan oc — y^

from which a and then c^ can be calculated.
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{b) Coefficient of Resistance.—Let h^ be the head required'

to produce the velocity v. Let Ii^ be the head required to

overcome the frictional resistance. Then

h, the total head, = h^ + K = K{^ + <^t)>

where /i^ = c^/i^.

c^ is termed the coefficient of resistance, and is approxi-

mately constant for varying heads with simple sharp-edged

orifices. Again,

Hence

and therefore

A = cjk{i + c^),

I

so that c^ can be found when c^ is known-, and ?'ice versa.

(r) Coefficient of Contraction.—The ratio of the area a of
the vena contracta to the area A of the orifice is called the

coefficient of contraction, and may be denoted by c^.

The value of c^ must be determined in each case, but in

sharp-edged orifices an average value of c, , as already pointed

i6
out, is — = .64. Cceteris paribus, c^ increases as the orifice

area and the head diminish.

The following are some of the conditions which tend to

modify the value o{ c^\

(i) The contraction is imperfect and will be suppressed

over the lower edge of a square orifice at the bottom of a

vessel, and over a side as well if the orifice is in a corner. In

fact, the contraction is more or less imperfect for any„orifice
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Fig. 23.

"within three diameters from the side or bottom of the vessel

Thus, the cross-section of the vena contracta is

increased, and experiment shows that the dis-

charge is also increased.

(2) c^ is increased or diminished according as

the surface surrounding the orifice is convex or

concave to the interior of the vessel.

(3) The contraction is imperfect and c^ is increased, if the

orifice is placed in a confined part of the vessel, or if the water

approaches the orifice through a channel, as in Fig. 23, the

velocity of the fluid filaments being thereby considerably

increased.

(4) If the inner edge of an orifice is rounded, as shown hy

Figs. 24 and 25, the contraction is more or less imperfect.

m

Fig. 24.

i

Fig. 25.

The value of c^ varies from .64 for a sharp-edged orifice to

very nearly tinity for a perfectly rounded orifice.

(5) The contraction is incomplete when a border or rim is

placed round a part of the edge of the orifice, projecting

inwards or outwards. According to Bidone,

c, = .62 I + ,152-) for rectangular orifices,
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and

= .62 1 1 -f 128—) for circular orifices,
pi

n being the length of the edge of the orifice over which the

border extends, and / the perimeter of the orifice.

(6) If the sides of the orifice are curved so as to form a

bell-mouth of the proportions shown by Fig. 26, and corre-

,.ifi-

—A
Fig. 26.

spending approximately to the shape of the vena contracta,

the whole of the contraction will take place within the bell-

mouth, and i\ is unity if the area of the orifice is taken to be

the area of the smaller end.

For such an orifice Weisbach gives the following table of

values of c„ :

Head over Orifice in Feet

.66.

Fig. 27.

959

1.64. 967

11-48 975

5 5-77 994

337-93 994

The dimensions of the jet at the con-

tracted section or at any other point, may
be directly measured by means of set-

screws of fine pitch, arranged as in Fig.

27. The screws are adjusted so as to

touch the surface of the jet, and the dis-

tance between the screw-points is then

measured.
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Measurements of very great accuracy can be made with tlie jet-

measurer, Fig. 28, designed and constructed in the McGill laboratories-

whicli may be described as follows—One end of a horizontal 2-in. bar

Fig. 28.

is attached to the front of the tank (Fig. 28) and the other is supported

on a frame bolted to the sides of the flume. A split sleeve slides along

this bar and may be clamped by a tightening screw in any desired posi-

tion. Upon the cross-head there is another split boss, or sleeve, througli

which a second bar passes at right angles to the first, and carries a sim-

ilar cross-head to that on the 2-in. bar, so that provision is made for a

rough adjustment in a vertical plane. Through the latter cross-head

passes a smaller bar. and along this bar slides a third adjustable cross-

head, or caliper-holder, by which the caliper can be swung round and

receive its final adjustment. For the measurements a 12-in. Brown ctt

Sharpe vernier caliper is used. A capstan head rod is clamped to each

leg and can be swivelled through any angle. Steel needle-pointers are

inserted in the heads, and are clamped in such position as may be re-

quired. In making a measurement the steel points are first made to-
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touch and the corresponding readings lal<en. The points are then sep-

arated by sHding the caliper-heads apart, and the whole apparatus is

moved into position. The points are finally adjusted so as to touch the

surfaces of the jet at opposite points, and readings are again taken.

From the two sets of readings the transverse dimension of the jet can be

at once determined, to the one-thousandth of an inch, and at any point

between 72 ins. and i in. from the inner surface of the orifice-plate.

Rigidity in the apparatus is, however, most essential.

(d) Coefficient of Discharge.—If Q is the discharge in

cubic feet per second across the contracted section, then

Q = av = c,Ac^V2gh = cA V2gh,

where c = c^c^, is the coefificient of discharge and is to be

determined by experiment.

Fig. 29.

In the experiments made in the McGill laboratory, the water, on leav-

ing the orifice, passes either to waste, or to the measuring tank through

a bifurcated galvanized-iron tubing, supported in a pivoted frame.

Fig. 29. The water is first run to waste through one of the branches

until a steady head has been obtained, and the frame is then rapidly

swung through a small angle by means of a lever, when the water passes,

through the other branch to the tank. As soon as the tank is suffi-^
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•ciently full, the frame is swung back and the water again runs to waste.
At first the water discharged from the tank was replaced by water ad-
mitted into the top of the tank through a hose terminating in arose
submerged just below the surface. Aitnougli the utmost care had been
taken in the design of this rose to reduce the eddy motion at efflux to a
mmimum, there was always an appreciable disturbance. The hose was
therefore extended until the rose lested on tne bottom of the tank, 8
feet below the orifice , with this arrangement a series of orifice-flow

-experiments were made, the time in eacti case being the mean of that
given by two stop-watches and the values of the coefficients of dis-

charge are given in Tables A and B.

Table A.
TRIANGULAR ORIFICE OF .05 SQ. IN. AREA AND REMAINING

ORIFICES OF .0625 SQ. IN. AREA.

Head
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Table B.

orifices of .197 sq. in. area.
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At least two sets of measurements were made for each

head, and the mean was adopted as correct, if the results did

not differ by more than 3 in 10,000.

Numerous experiments with a i-in. sharp-edged orifice

give .6 as an average value of the coefficient of discharge for

heads varying from i to 20 ft.

The jet springs clear from the orifice in all cases repre-

sented in the above tables, and the following inferences may
be drawn from an inspection of the same :

—

(i) The coefficient of discharge diminishes as the head

increases, but at a diminishing rate.

(2) The coefficients for the thick-plate orifices are in all

cases greater than the corresponding coefficients for sharp-

edged orifices, excepting in the case of the longest rectangular

orifice. Under a head of i ft. the coefficient of discharge for

this orifice still exceeds that of the same orifice with a sharp

edge, while for heads exceeding i ft. the coefficient seems to be

a little less, but is practically the same. It may be noted that

the thickness of the plate is 2. 56 times the width of the orifice,

and the contraction for the thick-plate orifice is consequently

increased.

(3) The coefficient for rectangular orifices seems to be

practically the same whether the longest side is vertical or

horizontal.

(4) The coefficient increases with the area of the orifice,

excepting when the head is very small. The coefficient for

orifices of small area then rapidly increases.

(5) With rectangular orifices, the coefficient increases as

the width of the orifice diminishes, i.e., as the orifice becomes

more elongated.

The two last results are in accordance with similar results

deduced by Weisbach, Buff, and others.

Note.—The manner in which the head of water in the tank is defined is

both simple and effective. A glass gauge, of i\ in. diar., is fixed to the

tank by iron bracl<ets and extends from the top to the bottom. On one



42 EXAMPLES.

side of the gauge there is a brass scale graduated from a zero point in the

same horizontal plane as the centre of the orifice of discharge. A car-

rier, with a horizontal wire passing in front of the gauge, slides up and

down, and any required head is obtained by bringing the necessary scale

graduation, the surface of the water in the gauge, the wire and its

reflection in a mirror at the back of the gauge, into the same hori-

-zontal plane. There is a second indicator on the opposite side of the

tank, consisting of afloat attached to an ordinary water-proof silk fishing-

cord passing over a large light frictionless pulley and then vertically

downwards in front of the tank. The cord is kept taut by a weight at

the bottom, and carries a friction-tight pointer which can be easily and
rapidly adjusted to indicate any required mark on a brass plate fixed in

a convenient position on the tank face, so that the operator working the

valves has it constantly under observation. As soon as the head of

water in the tank has been determined by means of the glass gauge, the

pointer is moved into position opposite the mark, and is kept there

throughout the experiment. This obviates the necessity of constantly

hatching the level of the water in the gauge, which, on account of the

height of the tank, is often very inconvenient and troublesome. Occa-
sionally, however, it is advisable to check the position of the pointer by
observing the water-level in the gauge, as the cord indicator is extremely
sensitive, and the cord itself necessarily varies slightly in length, so that

small errors might otherwise be introduced.

The head of water is brought to any required level by means of a
three-way valve through which the water can either be admitted or
allowed to escape. The valve is provided with a long vertical spin-

dle, upon which handles are arranged at different points in such man-
ner that one can be easily reached and operated from any position

in the height of the tank. Close to the cord indicator and within the
reach of the operator there is a small J-in. pipe with valve, which is useful

for a fine adjustment when the inflow is only slightly in excess of the

discharge.

Ex. 1. A vessel, 6 ft. in diar., is full of water and makes too revols.

per min. Find the velocity of efflux through an orifice 2 ft. below the

surface of the water at the centre, assuming the coefficient of velocity to

be unity.

The linear velocity of the vessel's periphery

ITt . too 220 ,= 3<B = 3 .
— = — ft. per sec.

oo 7

Hence the velocity of efflux

V(f)' -I- 2 . 32 . 2
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=/ 48,400 + 128 = 33.4 ft. per sec.

Ex. 2. The area of an orifice in a thin plate was 36.3 cm.', the dis-

charge under a head of 3.396 m. was found to be .01825 ™-' per sec, and
the velocity of flow at the contracted section, as determined by meas-
urements of the position of the axis of the jet, was 7.98 m. per second.
Find the coefficients of velocity, discharge, contraction, and resistance,

xaking_^ = 9.81 m.

Therefore, 7.98 = c„ 4/2 x 9.81 x 3.396,

and Cj, = .97729,

Q = cA V'2p.

36.3
Therefore .01825 = c x A^ \/2 x 9.81 x 3.396,

«nd c = .6159,

_ c _ .6159

Cv .97729

I

= .632,

' I \'

V97729/
~ ' = -"^

Ex. 3. The jet from an orifice of .008 sq. ft. area, under a head of 16

ft., issues horizontally and falls i ft. vertically in a horizontal range of

7.68 ft. Find the coefficient of velocity.

(7.68)'
Cv = T- = -9216,

4 X I X 16

and t, = .96.

Ex. 4. If .625 is the coefficient of discharge in the preceding exam-
ple, find the discharge in gallons per minute. The orifice is rectangular

and is .2 ft. wide by .04 feet deep. Find the discharge when the contrac-

tion is suppressed over the lower edge by means of a projecting rim.

Q, in cub. ft. per sec, = .625 x .008 4/2 . 32 . 16 = .16,

and therefore

the discharge in gallons per minute = 60 x .16 x 6J
= 60.

When the contraction is suppressed over the lower edge,

1.9778
the coeff. of contraction = .62f i + .152

^ ^

'

1 =
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Therefore

the coeff. of discharge = .96 x = .632896.

Hence the discharge in cubic feet per second

= .632896 X .008 X \^2 . 32 . 16 = .162

= 60,758 gallons per minute.

13. Miner's Inch. {Tr. Can. Soc C. E., 1900).—The

miner's inch of water is an arbitrary module adopted in minings

districts for selhng water. It is variously defined as being the:

amount of water discharged per minute by an orifice i in.

square, or an equivalent fraction of a larger orifice, with a

head of from 6 to 9 ins., the thickness of the orifice beings

usually 2 inches.

I

so 40 TO
^J U i

\ J Uj_l, LtiJ_Lu_LLLu4jJ

Fig. 30.

One great difficulty is that this is a variable quantity de-

pending upon the specified head, and therefore all such mod-

ules should also define the flow in cubic feet per minute.

There are many practical difficulties in the way of deliver-

ing absolutely exact quantities of water, but the definition of

the module or unit should be correct within a reasonable limit

of error. If it is a definition of a single miner's inch from an

orifice of I sq. in., it should go no further; but if the inch is

defined as being some fractional part of the discharge from a.
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larger orifice, it should be limited to the capacity of that orifice.

Further, as it is a term of local signification only, the dis-

charge should be given in cubic feet per minute, convenient

discharges being i^ and 2 cu. ft. The flow under low heads is

irregular. Heads of i ft. or more are not suitable, because

the water is delivered from ditches or flumes in which the

depth is never great.

The question thus resolves itself into a choice of a stand-

ard module or unit from a flow under one of two conditions,

viz. :

(i) With a low head of 6J ins. above the centre of the

orifice giving a discharge of ij cu. ft. per minute, with the

advantage that it is already practicall)- recognized as the

miner s inch, and with the disadvantage that the flow is irreg-

ular.

(2) With a head of 1 1
J^ ins. above the centre of the orifice,

and a discharge of 2 cu. ft. per minute, the flow being much

more regular, but the quantity discharged is not recognized in

practice.

The flow under the first condition is chosen as being the

one now in use in British Columbia, and the following specifica-

tion is given of the miner's inch, including discharges of from

I to 100 miner's inches of i^ cu. ft. per minute:

—

The water taken into a ditch or sluice shall be measured

at the ditch or sluice head. It shall be taken from the main

ditch, flume, or canal, through a box or reservoir arranged at

the side, and the water shall have no appreciable velocity of

approach. The orifice shall be fixed vertically at right angles

to the delivering waterway, and the edges and corners shall

be square and sharp, the top, bottom, and sides of the orifice

being at right angles to the pressure-board. The issuing vein

shall be fully contracted, and the discharge shall pass freely

into the air. The distance between the sides and bottom of the

orifice and the sides and bottom of the waterway shall be at

least three (3) times the least dimension of the orifice. The

miner's inch of water shall mean y'j^ of the quantity which shall
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be discharged through an orifice six (6) ins. wide and two (2)

ins. high, made of 2-in. planks, planed, made smooth and

painted. The water shall have a constant head of 6J ins.

above the centre of the orifice, and the amount discharged

shall be estimated at i^ cu. ft. per minute.

Discharges up to and including 101.55 miner's inches of

1 1 cu. ft. of water per minute shall be as in the following table

:

Dimensions of Orifice in Inches.
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The shape of the orifice has a very sensible effect upon the

discharge. Circular orifices give the least discharge, the

greatest discharges occur with rectangular orifices, while the

discharges with square orifices are intermediate. The coefficient

of discharge (C) diminishes as the size of the orifice increases,

the same form of orifice being maintained. For the same

orifice C diminishes as the head increases. In rectangular

orifices of constant depth the coefficient of discharge increases

with the width. If the width remains constant, the coefficient

increases as the depth diminishes.

These experiments illustrate a curious point, namely, that

various small orifices, 2 ins. thick (made in a 2-in. plank), run

full like a short tube, and these orifices therefore discharge

more water than they theoretically should if the vein were

contracted. The ^-in. X 2-in., i-in. X 2-in., and 2-in. X
2-in. orifices run full under these conditions, as also does the

i-in. X i-in- orifice.

The I-in. X 2-in. orifice, 2 ins. thick, is just on the margin

between flow with contraction and full-bore flow. If it is fixed

in the vertical position, with the longest diameter vertical, the

vein contracts. If it is fixed in the horizontal position, with

the longest diameter horizontal, it will also contract, but if it

is rubbed with the fingers on the edge, it will run full for a

time and then contract again. If kept running full in this way,

it will discharge about i cu. ft. of water per minute more than

when full contraction takes place.

The 2-in. X 2-in. orifice runs partly full, that is to say, the

lower half of the orifice, where the issuing vein curves down,

runs full, while the upper half contracts. This largely in-

creases both the discharge and the coefficient of discharge, but

the flow becomes irregular and it is therefore practically

impossible to measure a simple miner's inch. For this reason

.j-ij of the flow from the 6-in. X 2-in. orifice was chosen as

the standard for the unit miner's inch, and this miner's inch

actually discharges 1.4982 cu. ft. per minute.
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14. Inversion of the Jet.—The phenomenon of the inver-

sion of the jet was first noticed by Bidone, and has been

subsequently investigated by Poncelet, Lesbros, Magnus, Lord
Rayleigh, the author, and others.

Sectional Elevation.

Cross-sectioQ.

Fig. 31. Fig. 32.

When a jet issues from an orifice in a vertical surface, the

sections of the jet at points along its path assume singular

forms dependent upon the nature of the orifice.

With a square or rectangular orifice the section of the jet

is a star of four sheets at right

angles to the sides, Figs. 31, 32,

33-

With a triangular orifice the

section is a star of three sheets

at right angles to the sides,

Fig- 34-

In general, with a polygonal orifice of n sides, the section is

a star of « sheets at right angles to the sides.

Fig. 33. Fig. 34.
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These jets from non-circular orifices have central cores, and

the sheets at the edges are thickened out into beads, Figs. 3 j

and 34, which are approximately elliptical in section with

major diameters double the minor diameters. Many exact

measurements of these jets have been made and are partially

described in a paper by Farmer and Strickland in the Trans.

Can. Roy. Soc, vol. IV. sec. 3.

With a semicircular orifice the section has a more or less

semicircular boundary and a single sheet at right angles to the

diameter.

The common explanation of this phenomenon is that the

fluid particles issuing along different parabolic stream-lines

impinge upon each other, and by their mutual reactions cause

the jet to spread out and assume sectional forms depending

upon the shape of the orifice.

Thus the fluid particles issuing horizontally and freely at B,

with a velocity \^2gAB, describe

a parabola BD. The particle

issuing at C with a velocity

V2gAC describe a parabola CD
of less curvature than BD. The

particles cannot pass simultane-

ously through the point D and

must necessarily press upon each

other. They are therefore com-

pelled to move out of their natural

paths, and the jet spreads into

sheets.

A theory which seems more

fully to account for the whole of the facts is that the peculiar

changes in form are really due to surface tension and to the

differences between the atmospheric pressure and the internal

pressure of the jet.

In T:he case, for 'example, of a jet flowing through an

elliptical orifice with the major axis vertical, the stream-lines

Fig. 35.
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in the vein are convergent and mutually react upon each other,

causing the jet to contract vertically and elongate horizontally

at a rate gradually increasing to a maximum, when the section

is a circle in form.

At this stage the rates of elongation and contraction are

the same. The elongation and contraction still continue, but

at a diminishing rate, until the movement is stopped by the

effect of surface tension, when the section is again elliptical,

with the major axis horizontal and the minor axis vertical.

The new major and minor axes then again begin respectively

to contract and to elongate, the section of the jet passing

through the circular form to its initial elliptical form.

This process is repeated over the whole length of the

unbroken jet, and, in fact, in this portion of the jet the surface

tension produces an effect similar to that which would be pro-

duced if the jet were surrounded by an elastic envelope.

If the orifice is small and the head not large, the jet, on

leaving the contracted section at the orifice, spreads out into

sheets and then diminishes to a contracted section similar to

the first, after which it again spreads out into sheets, bisecting

the angles between the first set of sheets, and again diminishes

to a contracted section. This action is repeated. so long as

the jet remains unbroken. A comparatively few experiments

made in the laboratory indicate that if the head li is not large,

the zvavc-lengtli a. Vh oc v.

15. Emptying and Filling a Canal Lock.—When the

liead varies, as in filling or emptying a reservoir or a lock, in

filling a vessel by means of an orifice under water, or in

emptying water out of a vessel through- a spout, Torricelli's

theorem is still employed.

If the lock or vessel is to be filled, Fig. 36, let X sq. ft.

be the area of the water-surface when it is x ft. below the sur-

face of the outside water.
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If the lock or vessel is to be emptied, Fig. 37, then Xsq.
It. is the area of the water-surface when it is x ft. above the
•orifice.

In each case x ft. is the effective head over the orifice, and
is the head under which the flow takes place,

h^^M
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Also, if the water rises dx ft. in dt sees.,

Tty'dx — amount entering vessel in dt sees.

= quantity flowing through orifice under a head of

4 — jr ft. in di sees.

o 4 '44

J^(4-.)^/A

and therefore

y'' .dx = xdx = -^(4 — .v)*di,

or

5 (4 - x)^ 5 ( (4 - ^)* i

= i^|4(4--v)-*-(4-^)' 1^-.

Integrating between the limits j; = o and x = 4ft., the required

time in sees.

576 j t 2 3 I=
-J4.3.4*-y.4'[

= 1228.8.

Ex. 2. The horizontal section of a lock-chamber is approximately a.

•rectangle and its length is 360 feet. The side walls have a batter of 1 irv

12, and the width of the free surface when the lock is full of water is.

45 feet. How long will it take to empty the lock through two sluices in

the gates, each 8 ft. by 2 ft., the sluice horizontal centre-line being 13 ft.

below the free surface in the lock and 4 ft. below that of the canal on the

down-stream side .'

Let the level of the water in the lock fall x ft. in / seconds.

The area of the water-surface is then

360 45

If the level now sinks dx ft. in dt sees.,

360(45 — r]'^^ =- amount of water which has flowed out' through the:

= 2
. 1 . 2 . 8 . 4/2 . 32 . ;r

.

= i6ojr* . dt.
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Therefore

dt = ^ (45^" * — ^--»^* ]dx.

Integrating between the limits jr = o and x = 9 ft., the required time

in sees. = —[90.9* 9M

= 6oo|.

16. General Equations.— Bernouilli's theorem may be

easily deduced from the general equations of fluid motion, as

follows :

—

Let / be the pressure and p the density at any point whose

co-ordinates parallel to the axes are x, y, z.

Let u, V, w be the velocities of flow at the same point

parallel to the axes, and let X, V, Z be the accelerating

forces. Then three equations result from the principle of the

equality of pressure in all directions, viz.

:

I dp ditC) du du dii du

p dx
~

dt ~ dt dx dy dz' ^ '

I dp ^, d{v) ^^ dv dv dv dv

p dy dt dt dx dy dz ^ '

I dp diw) dw dw dw dw
- v"" = •^ ZTr — ^—zn — ^'3 ^3 ^ ~J~- (3)pdz dt dt dx dy dz ^

'

If the motion is steady, so that the velocity at any point is

du dv dw
"a function of the position only, then -~ = o =: -3- = — , and

u, V, w may be expressed as the differential coefficients of a

Junction F. Thus,

_ dF
_ _ ^. _ ^^.

~ dx' ~ dy' ~ dz'
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and therefore
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Hence, if gravity is the only force, and if J^ is the resultant

velocity at the point,

and the last equation becomes

- Jsd^^

V
-\- a constant

-j- a constant

;

and therefore

p V
z A 1 = a constant.

17. Loss of Energy in Shock.—An abrupt change of sec-

tion at any point in a length of piping destroys the parallelism

of the fluid filaments, breaks up the fluid, and energy is dissi-

pated in the production of eddy and other motions. The
energy thus wasted is termed '

' energy lost in shock.
'

'

Fig. 38.

In a short length of piping, Fig. 38, where the section

suddenly changes from A'B' to EF, consider the fluid mass

between the two transverse sections AB, where the motion of
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the fluid filaments has been undisturbed and is in parallel lines,

and CD, where the parallelism has been again re-established.

In an indefinitely short interval of time / let the mass move

forward into the position bounded by the plane sections A'B'

and CD'.

Let aj , z/j
, /j be the sectional area, velocity of flow, and

mean intensity of pressure at^'^'.

Let a^, 7'2, ^2 ^^ similar symbols for CD'.

Let z^, z.^ be the elevation above datum of the C. G.s of

the sectional areas at A'B' and CD'
Let ]i. be the vertical distance between the C. G.s of the

areas EF and A'B'.

Let P be the mean intensity of pressure over the annular

surface between EF and A'B'.

The resultant force acting in the direction of motion upon

the mass of fluid under consideration

= component of weight of mass in this direction

-f- pressure on A '

B'

-\- pressure on annular surface between EF and A'B'

— pressure on CD'

'

= zva.^ . EC -^~^^, V P^a^ + P{a., -a,)- p^a^

= ^'^'«2("l - ^2 - ^0 + «2'A -A)'

assuming that /* = /, , or that the mean intensity of pressure

is unchanged throughout the whole of the section EF.

The normal reaction of the pipe-surface between EF and

CD' has no component in the direction of motion, and fric-

tional resistances are disregarded.

Hence the impulse of the resultant force

= «'«2(^l - ^2 - /')^ + «2(/l - A)'
= change of momentum in the same direction of

the fluid masses CDD'C and ABB'A', since

the momentum of the mass between A'B'

and CD remains unchanged
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w w

W

since, by the condition of continuity,

Dividing throughout by the factor wa^t, the equation

becomes

' zv w g g

which may be written in the form

' w ' 2^ - ' ay ' 2^ ' 2g

Now the pipes are nearly always axial, and in such case

h r= O, so that the last equation becomes

"^ '^ w 2^ ^
^^

li'
^^ 2^ '^ 2^

If there had been no abrupt change of section, or if the

change between A'B' and CD had been gradual, then no

internal work would have been done in destroying the parallel-

ism of the fluid filaments, and no energy wasted. Therefore,

by Bernouilli's theorem, the relation

2

2g ' W 2g

would have then held good.

Thus ^^^ ^ - ft. -lbs. of energy per pound of fluid is the

Joss, in shock between A'B' and CD.

Experiment justifies the assumption P = /,.
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Ex. At a point A, 150 ft. above datum, a line of piping suddenly

doubles ill sectional area. If tlie velocity of flow in the larger pipe is

8 ft. per sec, and if the pressure at ^ is 125 lbs. per sq. in., find the pres-

sure per sq. in. at B, 8 ft. above datum, the motion being steady.

The velocity of flow in tlie smaller pipe is evidently 16 ft. per second.

Therefore the loss of head in shock at the sudden change of section

(6 - 8)'

2.32
= I ft.

Hence, if/ is the pressure per sq. in. at B,

/ X 144 8^

b2^ 164

125 X 144 16'

'5° + 621 + 6^-

and

, 144

p = i87j lbs. per sq. in.

18. Mouthpieces {a) Borda s Mouthpiece. — This is

merely a short pipe projecting inwards, as in Fig. 39, which

Fig. 39.

represents a jet flowing through a re-entrant mouthpiece of sec-

tional area A, fixed in the vertical side of a vessel of constant

horizontal section and containing water kept at a constant

level. The mouthpiece is sufficiently long to allow of the jet

springing clear from the end EF without adhering to the inside

surface.
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The velocity of the fluid molecules along AC and DK, is

sufficiently small to be disregarded, so that the pressure over

this portion of the vessel is distributed in accordance with the

hydrostatic law. The same may also be said of the pressure

on the remainder of the vessel's surface.

Again, the only unbalanced pressure is that on the surface

HG immediately opposite the mouthpiece, and the resultant

horizontal force in the direction of the axis of the mouthpiece

= (A + ^^i)A — pgA = w/zA
,

A being the depth of the axis below the water-surface and J>^

the intensity of the atmospheric pressure.

The jet converges to a minimum, or contracted section MN,
of area a.

In a unit of time let the fluid mass between AB and MM
take up the position bounded by A'B and M'N' . Then

whA =: irnp,ulse ,of force; in direction of motion

= change of momentum in same direction in a unit

of time

= difference between the momenta of MNN'M' and

ABB'A', since the momentum of the mass

between A'B' and J/jV remains unchanged

=: momentum of MNN'M' , since the momentum of

ABB'A' is vertical

w w
= —av . V = - av',

g S

V being the mean velocity of flow across the contracted section..

Hence

IV w
zvhA = —av^ — —a . 2gh,

g g
and therefore

-^ A = 2a,
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or

la „ .— = -r = coefficient of contraction.
2 A

This result has been very closely verified by experiment,

the coefficient having been found to be .5149 by Borda, -5547

by Bidone, and .5324 by Weisbach.

Borda's mouthpiece gives a smaller discharge than a sharp-

edged orifice, but a discharge which is much more uniform,

and hence it is generally used in vessels from which water is

to be distributed by measure.

Note.—Let Fig. 40 represent a jet flowing through a

re-entrant mouthpiece of sectional area A, fixed in the sloping

side of a reservoir containing water kept at a constant level,

and suppose that the reservoir is of such size that GHKL may
represent a cylindrical fluid mass, coaxial with ^he mouthpiece

and so large that the velocity at its surface is sensibly nil.

Let h' , h be the depths below the water-surface of the C. G.s

<of the areas GH and KL, respectively.

Fig. 40.

Then the resultant force along the axis of the mouthpiece
= pressure on GH — pressure on CK and on DL
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^- pressure on EF
-f- component of the weight of the fluid

mass GHKL

(A + ^-^0 area GH — (/„ + wh) (area CK-\- area DL)

— /o . area EF+ w . area GH. GK

.

, very nearly

Hence, in a unit of time,

wAA = impulse of this force

= change of momentum in direction of axis

w= — av . V =: 2^/t,

a being the area of the contracted section, while h is also very

approximately the depth of its C. G. below the water-surface.

Thus, as before,

the coefficient of contraction = -.-

A

(b) Ring-nozzle. The ring-nozzle (see Fig. 41) is often

used with a fire-engine jet, and
consists of a re-entrant pipe of

sectional area «, fixed in a pipe

of sectional area a^- The
length of the re-entrant portion

is such that the water springs

clear from the inner end and,

without again touching the

surface of the mouthpiece,
^'°" *' converges to a minimum or

contracted section of area a at MN.
Consider the fluid mass between MN and a transverse sec-

tion AB, and in a unit of time let it move into the position

bounded by the planes M'N' and A'B'.
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It is assumed that the motion is steady and that there is

no internal work due to the production of eddies or other

motions.

Let/g, V be the intensity of the atmospheric pressure and

the velocity at MN.
Let /j , 7', be the mean intensity of pressure and the velocity

at AB.

Let P be the mean intensity of the pressure over the

annular surface EF, GH.

Let j„ , z^ be the elevations above datum of the C. G.s of

the sections MN 2.\\A AB.

Then

walz^ — So) + />,a., — P(a^ - a^ - /„«,

= impulse in direction of motion

= change of momentum in same direction in a unit of time

^= difference of the momenta of the fluid masses MNN'M' -aAxA

ABB'A'

Assuming that P ^ p^, the last equation becomes

wa.lz, - s,) + rt//, - /„) = -^-(«7'2 - a.^v,^). . (i)

By Bernouilli's theorem,

and therefore

_i_ A -A ^'' - ^^' ,^s
Z, — Z^ -\ = . ... (2)

Now z^ — ^j is very small and may be disregarded without

sensible error, and then, by eqs. (i) and (2),

'7j2 -71 2 y. — Jj T /77f2 /7 ?/ 2
7 '1^ Px- Pfs I «^ — «2^1^

2^ «' <?•
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Hence

az/' — a.,v.

(a,^ - a^W
(aa^ — d^a.^v^ a= :r +

If the sectional area a.^ of the pipe is very large as com-

pared with a, so that — may be disregarded without sensible

2 I

error, then — = -, and therefore the coefficient of contraction
«, a

a I= — = — , as in Borda s mouthpiece.

(c) Cylindrical Mouthpiece.—When water issues from a

cylindrical mouthpiece (see Fig.

42) at least two to two and one-

half diameters in length, the jet

issues full bore, or without con-

traction at the point of discharge.

If A be the sectional area of

the mouthpiece, h the depth of

its axis below the water-surface,

and Q the amount of the dis-

charge, then experiment shows

that

Q = .2,2A \'2g/i. . (I)

Fig. 42.

The coefficient .82 is the

product of the coefficients of

velocity and contraction, but the

coefficient of contraction is unity, and therefore the coefficient

of velocity is .82. Now the mean coefficient of velocity in the

case of a simple sharp-edged orifice is .947, and the difference

between .947 and .82 cannot be wholly accounted for by fric-

tional resistances, but is in part due to a loss of head. In fact,

the water, as it clears the inner edge of the mouthpiece, con-
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verges to a minimum section MN, of area a, and then swells

out until at M'N' it again fills the mouthpiece.

Energy is wasted in eddy motions betweenMN and M'N'

y

where the action is similar to that which occurs at an abrupt

change of section.

Let p, V be the intensity of the pressure and the mean,

velocity of flow at the point of discharge.

Let p^ , v^ be similar symbols for the contracted section MN^
Let /q be the intensity of the atmospheric pressure.

Remembering that -^^ is the loss of head '
' due to

shock " between J/7Vand J/W, then, by Bernouilli's theorem,

^ +A ^ A ^ i^ ^ A, + Ji + K - -)\
. (3^

' W W ' 2g W 2g ' 2g ^ '

Hence

ij-^' (3)

and

W 2g ( ' \v2g

c

a V

=^(-+It--)1.

where c = coefficient of contraction — —r- = -^- ThereforeA V,

y =
(4)

an equation giving the velocity of flow at the point of discharge.
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If the discharge is into the atmosphere, Pg = p and equa-

tion (4) becomes

V^ =
^f^ ri = c„^ . 2gh, ... (5)

where

i-^+(l-^f ^^)

If C^ = .62, then C„ = .85, while experiment gives .82 as

the value of Cj,. The small difference between .85 and .82 is

probably due to frictional resistance. The value .82 for C„

makes C.. approximately .617.

Again, the discharge from a simple sharp-edged orifice of

same sectional area as the mouthpiece is .62A \/2gk, or more

than 24 per cent less than the discharge from the cylindrical

mouthpiece.

The loss of head between MN and M'N'

('-'1 - ^) _ ,
J

V' 1 1

" 2P-U2g 2g'

= hcAjj - 1)
(by eqs. (s) and (6)

= h{i - f„2) = h X .3276 ^ .487 X --

= — , approximately.

Thus the effective head is only |^, instead of >^.

By eq. (3), the difference between the pressure-heads at MN
and at the point of discharge

A-
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Now if one end of a tube is inserted in the mouthpiece at

the contracted section (Fig. 42) and the other end immersed

in a vessel of water, the water

will at once rise to a height k^

in the tube, showing that the ^MO^IIFfI^^^

pressure at the contracted sec-

tion is less than that due to the

atmosphere. By careful meas-

urement it is found that k^ is

very nearly equal to |/z, which

verifies the theory.

((/) Divergent Mouthpiece.

—Suppose that for the cylin- FiG. -13-

drical mouthpiece in (c) there is substituted a divergent mouth-

piece of the exact form of the issuing jet, Fig. 43. Then

(i) The mouthpiece will run full bore.

(2) There will be no loss of head between the minimum

section MN and the plane of discharge AB, as there is now

no abrupt change of section.

Hence by Bernouilli's theorem, and retaining the same

symbols as in (c),

w -lV

-° + /'-5^+ ''

2g W 2g' (0

If the discharge is into the atmosphere, p ^ p^, and therefore

v^ = igh; (2)

or, introducing a coefficient <:„ (= .98, nearly, for a smooth

well-formed mouthpiece),

v^ = cj2gh, (3)

and the discharge is

Q = c,A V2gh.
• . (4)
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From the last equation it would appear as if the discharge

would increase indefinitely with A , but this is manifestly im-

possible.

In fact, by eq. (i), the flow being into the air, and taking

W W 2g ^ 7r I

=^^ -"("-) (^)

since «z/j =: Av. But/^ cannot be negative, and therefore

so that

w ~- ^ a

a Y wh + I (7)

gives a maximum limit for the ratio of A to a.

Now — =34 ft. very nearly, and the last equation may be

written

rV^^+^ (8)

By eqs. (4) and (7),

Q=C.a^2g(h+ ^), ... (9)

which is also the expression for the discharge through the

minimum section a into a vacuum.

If, however, the sectional areas of the mouthpiece at the

point of discharge and at the throat are in the ratio of A to a,

as given by eq. (7), it is found that the full-bore flow will

be interrupted either by the disengagement of air, or by any

slight disturbance, as, for example, a slight blow on the
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mouthpiece, and hence, in practice, it is usual to make the

ratio oi A to a sensibly less than that given by eq. (7).

{e) Convergent Mouthpiece.—With a convergent mouthpiece

(Fig. 44) two points are to be noted:

(i) There is a contraction within the mouthpiece, followed

by a swelling out of the jet until it again fills the mouthpiece.

• Fig. 44-

Thus, as in the case of cylindrical mouthpieces, there is a

"loss of head " between the contracted section and the point

of discharge, and also a consequent diminution in the velocity

of discharge.

{2) There is a second contraction outside the mouthpiece

due to the convergence of the fluid filaments. The mean
velocity of flow (v'^ across the section is

v' = c^ V2^,

c^ being the coefficient of velocity and h the effective head

above the centre of the section.

Also, the area of this section

= c/ X area of mouthpiece at point of discharge

cI .A,

c/ being the coefficient of contraction. Hence the discharge

Q is given by

Q = cJcJA Vip = c'A 4/2P,

t'(= cjcj) being the coefficient of discharge.
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The coefficients cj and c depend upon the angle of con-

vergence, and Castel found that a convergence of 13° 24' gave

a maximum discharge through a mouthpiece 2-6 diameters in

length, the smallest diameter being .05085 foot.

TABLE GIVING CASTEL'S RESULTS.

Angles of
Convergence.
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ing c^, the thrust is double the hydrostatic pressure due to the

head k.

iP) Jet from a Cylindrical Mouthpiece.

The energy of the jet =: wAv— ft. -lbs. per second

wAifi

= c^wA Vi

pAvc^
"

550

ft. lbs. per second

' ft. -lbs. per second

h. p.,

the average value of c^ being .82.

w 1?
The momentum of the jet = —Av . v = wA— — 2wAhcJ}.

g g

Ex. 1. Water flows through a Borda mouthpiece of A sq. ft. sec-

tional area under a head of h feet. If the jet springs clear from the inner

edge, the discharge is 29.2^ less and the jet's energy 41.4 % greater than

when the mouthpiece runs full.

Let V be the mean velocity of flow across the contracted section MN;
u be the mean velocity of flow at the mouth CD when the mouth-

piece runs full. Then v = iu.

Let Q\, E\ be the discharge and energy of the jet when it springs

clear;

Qi, E'i be the discharge and energy of the jet when the mouth-
piece runs full. Then

and £>
ivA w'

When the mouthpiece runs full, the loss of

head between MJV a.nA CD

2^"
Fig. 45,

Hence h -y — = + 1 H ,w w If; ig
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V
or ri' =gh

2

Therefore Qj = Au = —v,

4/2

J ^ ^2> '*' wA v'
and E, = —=— = .

g ^ ^44/2-

Hence -^ = = .707 and „ = 292.
<^!i 2 (^X

Also, -?r = = 1.414 and —p^ = .414.
-tia 4 El

Ex. 2. Determine the discharges and energies of a jet under ahead of

100 ft., issuing from a 6-in. mouthpiece which is (a) cylindrical, {b) di-

vergent (bell-mouth), (c^ convergent, the angle of convergence being

29-58'.

{a) z/ = .82 y'64 .100 = 65.6 ft. per sec,

22 I / 6
2

7 4\^I2
X 65.6 = 1 2fJ cu. ft. per sec. = 8oJf gals,, per sec.

624 X I2|i (d^AY
Energy =

^^
"^ ^\^ = 54.I52A ft.-lbs. = g^h H. P.

(i5) V = .98 1/64. 100 = 78.4 ft. per sec.

22 \ I 6 y
Q = 1—

J

X 78.4 = 15.4 cu. ft. per sec. = 96Jgals. per sec.

Energy = ^'^
^'^

'^^ ^^ = 92,438^ ft.-lbs. = .68^ H. P.

(c) V = .896 4/64. 100 = 71.68 ft. per sec. (See Castel's Table.)

22 I / 6\^
Q = 1 X 71.68 = 14.08 cu. ft. per sec. = 88 gals, per sec.

7 4\i2/

62* X 14A (71.68)"
Energy = -^ ^^- = 70647.807 ft.-lbs. = 128.45 H. P.

32 2

Ex. 3. There is a 36-ft. head of water over the 2-in. throat of a bell-

mouth. Find the greatest diameter of the mouth when open to the

atmosphere and running full, the height of the water-barometer being

34 feet.

Let p, V be the pres. and vel. at the throat

;

!/„ be the vel. at the mouth.

Then — + -- = 34 + — = 36.W 2g 2g

V ' —
Therefore ^7 =2, or z/„ = 8 |/2 ft. per sec.
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The velocity in the throat is greatest when the pressure, pi, is least,

i.e., when pi = o, and then

OH =36, or V = 48 (t. per sec.

If Z> ins. is the diameter of the mouth, the discharge

-8 4/2 = —- .
~- . 36

144 4 ' 144 4

'I=— cu. ft. per sec,
H

and V = 12.726,

or /? = 3.56 ins.

20. Radiating Current.—As an application of Bernouilli's

theorem, consider the steady plane motion of a body of water

flowing radially between two horizontal planes a ft. apart, and

symmetrical with respect to a central axis (Fig. 46).

Let V ft. per second be the velocity at the surface of a

cylinder of radius r ft. described about the same axis. Then
the volume Q crossing the surface per second is

(2 = 2nr . av,

and therefore

rv = = a constant,
27ia

since Q is constant.

Thus V increases as r diminishes, and becomes infinitely

great at the axis ; but it is evident that the current must take

a new course at some finite distance from the axis.

If / is the pressure at any pomt of the cylindrical surface

^ ft. above datum, then, by Bernouilli's theorem,

£: -\ 4- — = a constant = A =.- y -I .

' w ' 2^ -^ ~ 2£-'
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denoting the dynamic head ^ + — by y Hence

h — — — — ^ _ ^ constant

and therefore

73

^

r^(h — y) = a constant,

Fig. 46.

Fig. 47.

is an equation giving the free surfaces of the pressure columns

(Fig. 47). These surfaces are thus generated by the revolu-

tion of what is called Barlow's curve.
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The surfaces of equal pressure are also given by an equation

of the same form.

21. Vortex Motion.—A vortex is a mass of rotating fluid,

and the vortex is termed free when the motion is produced

naturally and under the action of the forces of weight and

pressure only.

In the radiating current already discussed, assume that the

direction of motion at each point is turned through a right

angle so that the mass of water will now revolve in circular

layers about the central axis. Also, if there is a slow radial

movement, so that fluid particles travel from one circular

stream-line to another, it is assumed that these particles freely

take the velocities proper to the stream-lines which they join.

Such a motion is termed a free circular vortex.

The motion being steady and horizontal, the equation

s A -I
= a constant = // . . . fi)

holds good at every point of a circular stream of radius r.

Again,

w . diz -\ j = increment of dynamic pressure between two
w,

consecutive elementary stream-lines

== deviating force

= centrifugal force of an element between the

two stream-lines

But, by eq. (i).

Hence

w



FREE SPIRAL I^ORTEX. 75

and therefore

dv dr = o,
V ^ r

so that vr = a constant, and v varies inversely as r, as in the

case of the radiating current. Therefore the curves of equal

pressure will also be the same as in a radiating current.

Free Spiral Vortex.—Suppose that the motion of a mass

of water with respect to an axis is of such a character that

at any point M, the components of the velocity in the direction

of OM, and perpendicular to OM, are each inversely propor-

tional to the distance OM from O. The motion is thus equiva-

lent to the superposition of the motions in a radiating current

and in a free circular vortex ; and if B is the angle between

OM and the direction of the stream-line at J/, v cos 6 and

V sin 6 are each inversely proportional to OM, and therefore 6^

must be constant. Hence the stream-lines must be equi-

angular spirals, and the motion is termed a free spiral vortex.

This result is of value in the discussion of certain turbines

and centrifugal pumps. A steady free surface in the case of a

free spiral vortex is impossible, as the stream-lines cross the

surfaces of equal presure, which are the same as before.

Also, if /o ' %• ^'o
^^^ ^^ pressure, radius, and velocity at

any other point at the same elevation ^- above datum, then

' w ' Zg IV Zg

and the increase of pressure-head

W 2g 2gVg~ ZP"

Forced Vortex.—A forced vortex is one in which the law

of motion is different from that in a free vortex. The simplest

and most useful case is that in which all the particles have an

equal angular velocity, so that the water will revolve bodily.
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the velocity at any point being directly proportional to the

distance from the axis.

As before,

\ wj g r

But
V cc r ^ oor,

00 being the constant angular velocity of the rotating mass.

Therefore

d\z + -) = —r . dr.
\ ' w' g

Integrating,

-\- a constant.z -\ = + a constant =
' w 2g ' 2g

Hence, if /^ , r^, v„ are the pressure, radius, and velocity

above datum, thenfor any second point at the same elevation

P-Po '^\.. .2
w 2g^

ro=) = ^(v^ - v„^).

If the second point is on the axis of revolution, then

r^ = o, and the last equation becomes

P - Pp ^ ^j.2
2gW

Thus the free surface of the pressure columns is evidently a

paraboloid of revolution with its vertex

at O, as in Fig. 48.

A compound vortex is produced by

the combination of a central forced vortex

with a free circular vortex, the free sur-

face being formed by the revolution of a

Barlow curve and a parabola.

For example, the fan of a centrifugal

pump draws the water into a forced Fig. 48.

vortex and delivers it as a free spiral vortex into a whirlpool-

chamber (Chap. VIII).



EXAMPLE. 77

In this chamber there is thus a gain of pressure-head, and

the water is therefore enabled to rise to a corresponding addi-

tional height. James Thomson adopted the theory of the

compound vortex as the principle of the action of his voitex

turbine.

Ex. A centrifugal pump of 2 ft. interior and 4 ft. exterior diar.,

makes 336 revels, per minute. The water gradually fills up and flows

very slowly through the wheel into a chamber of comparatively much
larger diar., from which it passes away into the discharge-pipe. The
pressure at the inlet may be taken to be one atmosphere, or 21 16 lbs.

per sq. foot.

Basing the flow through the wheel upon the hypothesis that the

velocity v of any fluid particle is directly proportional to its distance r

8435

Fig. 4q.

from the axis of rotation, the law connecting the pressure,^ and the

velocity v may be expressed in the form (Ex. i, p. 21)

— = f + —

.

w ig

At the inlet^ = 21 16, and let v = Wi. Then

2116 _ , vi'

W ~ 2g'

so that

But

p = 2II6 +— — - I
.

wv^ 125/336 22 \^ , v^ r'=—-A^ 2 = I2IO, and —5 = — :

2f 128\ to y ^i' i'
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Tlierefore

/ = 2116 + 1210 (r'— i) = 906 + I2Ior^

Giving r, successively,

the values i, 1.2, 1.4, 1.6, 1.8, 2 ft.,

the corresponding values

of/ are 2116, 2648.4, 3277.6, 4003.6,4826.4, 5746163.

Thus the curve ^5, obtained by plotting these values, shows the

variation of the pressure inside the wheel.

The hypothesis of the flow in tlie surrounding chamber is that the

velocity of any fluid particle is inversely proportional to its distance from

the axis of rotation ; and in this case the pressure and velocity are con-

nected by tiie relation (Ex. i, p. 21)

p_ _ _T^
W 2g'

At the wheel outlet, i.e., where ?• = 2 ft.,/ = 5746 lbs. per sq. ft., and
let V = vi.

Then 5746 ^ . _Yl_.
W 2g

'

therefore p — 5746 H i — —

;

ig \ Vi

But

therefore

125/336 22 \=_ „

il8 i^ 74j - 4840,
wvi. 125/336 22 \- „ J f 2.0.- ^^j _ _ _
2g ir6\bo T j vi r

19360
P = 5746 + 4840(1 — ij = 10586

Giving r, successively, the values 2, 2.2, 2.4, 2.6, 2.8, and 3ft.,

the corresponding values

of /are 5746, 6586, 7225, 7723, 8117, and 8435 lbs.

Thus the curve BC, obtained by plotting these values, shows the va-

riation of the pressure in the chamber surrounding the wheel.

22. Large Orifices in Vertical Plane Surfaces.^—The
issuing jet is approximately of the same sectional form as the

orifice, and the fluid filaments converge to a minimum section

as in the case of simple sharp-edged orifices.

{a) Rectangular Orifice (Fig. 50).—Let E, F be the upper

and lower edges of a large rectangular orifice of breadth
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B, and let H^ , H^ be the depths of E and F, respectively,

below the free surface at ^ If m be the velocity with which

the water reaches the orifice, then H -.

2^
, is the fall of free

surface which must have been expended in producing the

velocity u.

Hence H ^ -(- H and H^ -)- H are the true depths of the

edges E and F below the surface of still water.

Let MN be the minimum or contracted section, and

assume that it it is a rectangle of breadth b.

Let Aj , h.^ be the depths of M and N, respectively, below

the free surface at A.

Then h^ -f- H, h^ -\- H are the true depths of M and N
below the surface of still water.

First. Let the flow be into the air, the orifice being clear

above the tail-water level. Fig. 50.

Consider a lamina of the fluid at the section MN, of the

I

I

k

I ! I

M--;--;

A.

Fig. 50.

width of the section, and between the depths x and x -\- dx

below the surface of still water.

The elementary discharge dq, in this lamina, is

dq = bdx V2gx,
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and therefore the total discharge Q across the section MN is

dq — j b . dx s/zgx

J hi -If H

= -I, V2, H)^ ~{h^+Hf\.

Put c-

Then

Q^''-^cBV2g{{H,+ Hf^{H, + H)^. (I)

The coefficient c is by no means constant, but is found to

vary both with the head of water and also with the dimensions

of the orifice, and can only be determined by experiment.

Second. Let the orifice be partially (Fig. 51) submerged,

and let H^ be the depth between the

surface of the tail-race water and the ^^^g
free surface at A. t^====

By what precedes, the discharge

Q^ through EG, the portion of the

orifice clear above the tail-race, is

-{H, + Hf]. (2)

Every fluid filament flows through

the portion GF of the orifice under

an effective head H^
-J- H, and there-

fore with a velocity equal to Fig. 51.

V2g{H,+ H).

Hence the discharge Q^ through GF is

Q, = c^B(H^ H^^2g{H^^H),
and the total discharge Q is equal to Q^ -\- Q^.

(3)



LARGE RECTANGUL/IR ORIFICES. 8

1

The coefficients c^ , c^ are to be determined by experiment,

and if fj = f^ = c,

Q = Q,-^Q^ = cB V2g y- {{H, -\-H)i - {H, + H)i\

+ {H,-H,)VH,^H (4)

Third. Let the orifice be wholly submerged (Fig. 52).

Then the total discharge Q is evidently

E

T
I

I

Q^cB^2g {H, - H,) VH, + H, (5

)

c being a coefficient to be determined

by experiment.

If the velocity of approach, u, is

^A sufficiently small to be disregarded

without sensible error, then H = o,

and equations (i), (4), and (5), respec-

tively, become

Fig. 52.

Q = --cB V2g{H,

Q = cBV2g\H^HH,-
H,

Q = cB V2g{H,

3 f-.'

/ - H,-)- (6)

• • (7)

. . (8)

{J>)
Circular Orifices.— Let Fig. 53 represent the minimum

section of the circular jet issuing from a circular orifice.

Let 2^ be the angle subtended at the centre by the fluid

lamina between the depths x and x.-\- dx below the surface of

still water.

Let r be the radius of the section so that 2r ^^ h^ — /^j , h^

and /«2 being, as in («), the depths of the highest and lowest

points of the orifice below the free surface at A.
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H, as before, is the head corresponding to the velocity of

approach.

[

Fig. 53.

Then the area of the lamina under consideration

= 2r sin d . dx,

and the elementary discharge, dq, in this lamina, is

dq ^^ 2r sin 6 . dx V2gx.

But X = -J—! —^-! rcos 0= -i-!

—

^— r cos 0,

and therefore

dx = r sin d . dO.

Hence

dq = 2r^ sin'' ^ \f^g I

~

and the total discharge Q is

Q = 2^'^2g f'sin' e[^

+ k, + 2l/
• — r cos )dd,

^ '^ r cos ^ ^61. (9)

Ex. The free surface on the up-stream side is 5 ft. and on the down-
stream side I ft. above the sill of a rectangular sluice 12 ft. wide. How
much must the sluice be raised to give 105,000 gals, per minute .'

105,000
105,000 gals. per. mm. = ^ ^

= 280 cu. ft. per sec.
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Let X ft. be the opening above the sill. For a depth of i ft. above
the sill the discharge is under a constant head of 5 — i = 4 ft. For the

remainder of the opening the discharge takes place freely through a
rectangular orifice, with its upper and lower boundaries respectively

<5 — x) ft. and 4 ft. below the up-stream surface. Then

280 = 4.12.1. 4/6^.4* +4-1 • 12- V64{-(5 - J^)' + 4^}
o 3 o

= 440 — 40(5 — ^)'-

Therefore (5 — x)* = 4, and x = 2.48 ft.

23. Notches and Weirs.—When an orifice extends up to

the free-surface level it becomes what is called a notch.

STILL WATER LEVEL

FlG. 54- ^l<=- 55-

A weir is a structure over which the water flows, the dis-

charge being in the same conditions as for a notch, and is very

useful for gauging the flow of small streams, the amount of

water supplied to hydraulic motors, etc.

Rectangular Notch or Weir.—The discharge may be found

by putting H
.^
— o.

Thus equation (i) becomes

Q = -^cB V2g{{H, + Hy - H^ (10)

If the velocity of approach be disregarded, then H = o,

and the last equation becomes

Q^^cBVTgH^^ (II)
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and H^ is the depth to the bottom of the notch or to the crest

of the weir.

Great care should be taken in obtaining the accurate value

oiH^. A hook or a stiff vertical rod, with a sharp point, may-

be fixed, at a suitable distance (s to 8 ft.) from the back of

the weir, with the point on a level with the crest of the weir.

The flume is then filled with water rising slightly above the

crest and producing a capillary elevation of the surface at the

point. The water is now allowed to subside until the eleva-

tion is barely perceptible, when a hook-gauge (Chap. Ill) is

adjusted and a reading taken. A second reading is taken for

any required discharge over the weir, and the difference

between the two readings is the depth, H^, of the water on

the crest.

It has been found that the discharge (0 is appreciably

affected by vibration, and it is therefore of importance that the

weir should be made as rigid as possible. The up-stream face

of the weir is nearly always vertical and at right angles to the

direction of flow.

To diminish the effect of the velocity of approach, the

water-section in the flume should be

large as compared with the section

of the waterway on the crest, and

the depth of the weir should therefore

be at least twice the depth H ^ of the

water on the crest.

The crest should be horizontal

and, generally speaking, it consists

of a plate with a bevelled edge. Fig.

54, on the up-stream side, or of a, ^i°- 56.

thin plate, Fig. 55, so that the water springs clear from the

inner edge.

A rotinded edge, Fig. 56, diminishes the discharge and

should be avoided, as its effect is uncertain.
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The length B of the crest should be at least three times the

depth H^.

The efifective sectional area of the water flowing through a

rectangular notch, or over a weir, is less than BH^, because

of (a) crest contraction, {b) end contraction, {c) the fall of the

free surface towards the point of discharge.

It is reasonable to assume that the diminution of the actual

sectional area, BH^, due to crest contraction and to the fall

of the free-surface level is proportional to the width B of the

opening.

Suppressed Weir, or Weir without End Contractions.—If

a weir occupies the whole width of the stream, or flume, Figs.

57 and 59, the contraction at each end is wholly suppressed,

Fig. 57- Fig. 58. Fig. 59.

and crest contraction only takes place, i.e., the falling sheet

of water is reduced in thickness near the crest. Air must be

freely admitted below the falling sheet, as otherwise a partial

or complete vacuum will be produced and the sheet will be

depressed or will adhere to the face of the weir, while the dis-

charge Q will be very sensibly modified. Francis effected the

free admission of air and also prevented the lateral spreading

of the sheet, after leaving the crest, by prolonging the upper

portions of the flume sides a short distance beyond the weir,

Fig. 58. The discharge was thereby diminished by about

.4. per cent.
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Weir with End Contractions.—These contractions occur

when the sides of the weir, or notch, Figs. 60 and 61, are at

a distance from the sides of the channel, and they have the
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becomes

Q = j'\^-ro'^^2+^)\^^{^2+^y'-^^\- (12)

According to Francis the average value of c in this equa-

tion is .622.

Then ft V^^ = 3-33! very nearly, and therefore

.<2=3.33|^-^(/^. + ^)}|(^, + //)*-i^/[. . (13)

In experiments carried out by Fteley and Stearns with

suppressed weirs, as described above, the total variation in the

value of the coefficient was found to be about 2-J per cent.

The depths If^ were measured 6 ft. from the weir, and for values

of /^2 exceeding .07 ft. they deduced the formula

Q = B{3.3iII,^+.oo7),

in which the velocity of approach is disregarded.

Allowance may be made for the velocity of approach by

substituting for II^ the expression I/^ + i i-^ according to

Fteley and Stearns, but //^ + liH according to Hamilton

Smith, Jr., who bases his conclusions upon a comparison of

the experiments of Fteley and Stearns with those of Francis

and others.

If the weir has n end contractions, B — n—^—-— must be

substituted for B, and allowance is made for the velocity of

approach by substituting for JI^ the expression H^-\-2.0^H,

according to Fteley and Stearns, or H^ + 1.4-^, according to

Hamilton Smith, Jr.

Hunking and Hart give the formula

e-3-33A'(^-«§)M
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I jH \2

in which /< is very nearly = i -\ (

-^^J
, where

sectional area of waterway
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being //^ + //, and that between d and c the flow is equiva-

lent to that through a submerged orifice under a constant head

^2 + //. Hence, if ^' is the depth of the top of the dam
below the surface of the tailwater, and if c is the coefficient of

discharge both for the flow between a and d and also that

between i and c,

Q^^c VJ^B\{H,-\-Hf -H^+c V^B{H,- H'){H,+ H)K

The following table gives approximate values of c corre-

J-f

'

spending to different values of the ratio
, as

-^2 + ^+ ^'

deduced from experiments carried out by Francis, the head

over the crest varying from i to 2.32 ft., and by Fteley and

Stearns, the head varying from .325 to .815 ft.

:

Values of
//"' CorrespoDding Values of c as deduced from the experiments of

IT I jy _j_ jy
/* Francis. Fteley and Stearns.

.05 62310.632 ....

.10 620 " .630 .625 to .635

.20 610 ".625 .618 " .62S

.30 598 " .615 .600 " .610

.40 5S6 " .610 .590 " .600

•50 585 ".607 .585 ".595
.60 585 ".607 .583 ".593

.70 585 " -607 .580 " .590

.80 585 ".607 .581 ".591

.90 .590 " .600

.95 .610 " .615

{Trautwine.)

Inclined Weirs.— If the up-stream face of a weir, instead of

being vertical, is inclined up-stream. Fig. 63, the discharge is

diminished, the depression of the upper surface of the falling

sheet of water commences near the crest, while the lower sur-

face rises higher, above the crest, and moves backwards.

If the face is inclined down-stream. Fig. 64, the discharge

13 increased, the depression of the upper surface commences at

a point farther from the crest than when the face is vertical,
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while the lower surface becomes more flattened and moves
away from the weir.

Values of the coefficient of discharge for inclined weirs have

been deduced by Bazin and are given in a subsequent article.

Fig. 63. Fig. 64.

The discharge is increased by rounding the up-stream edge

of the weir.

Circular Notch.—In equation (9), Art. 22, put h^ = and

k^ = 2r. Then

Q = 2r^ Vzg I sin^ e(H-\^ 2r sin^ -)' de.

and if the velocity of approach be disregarded, so that H ^o,

<2 = 2r* V^g
I

sin2 e . sin -dd

Vr-g / "
[2 sin sin — + sin ^dd

15 ^

Ex. I. A dam with a rectangular notch 6 ft. wide is formed across a

channel; and the depth of the water over the sill is 12 ins. Find the

quantity of flow when the notch has (a) no side contraction
; (b) one

side contraction ; {c) two side contractions.
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Disregarding the velocity of approach, and assuming the coefficient

of discharge to be the same in each case, viz., f,

2 5/—
(a) g, = — . — • 4/64 . i! . 6 = 20 cu. ft. per sec.

{b) g, = j.|--f'64- i5(6 -^5) = i9f cu. ft. persec.

W fi- = Y • I 4/64 . 15(6 - A) = I9¥ cu. ft. per sec.

Ex. 2. 400 cu. ft. of water per second are conveyed by a channel of

rectangular section 25 ft. wide, when the water runs 4 ft. deep. Find
the height of a dam built across the channel which wijl increase the

depth 50 per cent, taking into apcount the velocity of approach.

V400. 8
The velocity of approach = ^ = - ft. per sec.

(f)' ' ,The corrresponding head = -r— = - ft.

Let X ft. be the height of the dam.

First. Assume that the dam is not drowned, i.e., that its crest rises

above the water-surface on the down-stream side. Then

400 = |. |. 25 . V6a{(6-x + >)3 - (J)«),

or {6 — X + i)3 = 4.837037 = (6.1 1 1 - x)%,

and X = 3.25 ft., which is less than 4 ft., and therefore the assumption

that the dam is not drowned is incorrect.

Second. Assuming that the dam is drowned, the discharge now takes-

place under a constant head of (2 + J) ft. for a depth of (4 — x) ft., and

as over a weir for a depth of 2 ft. Then

400 = I . 25(4 - x) V64i2 + i)*+ ^ "I
• 25 V64.{(2 + i)' - (1)5}.

or 1.1798 = (4 — •*)(2J)*'

jj,(j j^ — 3.188 ft., which is less than 4 ft., and therefore the assumption

of a drowned dam is correct.

Ex. 3. If X is the depth of water over the crest of a rectangular

notch, then, disregarding the velocity of approach,

Q = -cB ^2^3^.
3
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Let dQ be the change in the discharge corresponding to a change
jix in the depth on the sill. Then

dQ = ^cB V2g . ^x"" . dx.

Hence f = -^ ^.
Q 2 X

Thus a change of 6 per cent in the discharge corresponds to a chan^t-

of 4 per cent in the sill depth, and a change of lo per cent in this depth

corresponds to a change of 15 per cent in the discharge.

24. Triangular Notch.—Disregard the velocity of approach

and let B be the width of the free surface.

As before, consider a lamina of

fluid between the depths x and

The area of the lamina Xrz:^r_-.

= jr{^2 — ^)^^>
'

Fig. 65

and the discharge in this lamina is

dq = Cjri^i ~ x)dx V2gx.

Hence the total discharge Q is

\Br"-, B ,

Q = c \ ~rr{H^-x)dxV2gx

= ^ cB ^'2gH} cu. ft. per sec. . (14)

<: is a coefficient introduced to allow for contraction, etc.,

and Professor James Thomson gives .617 as its mean value for

a sharp-edged triangular notch.
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Now the ratio -^7- is constant in a triangular notch and

varies in a rectangular notch. Hence Thomson inferred and

showed by experiment that the value of c is more uniform for

triangular than for rectangular notches, and therefore also the

former must give more accurate results.

If the flow is through a 90° notch, B = 2H^, and

Q

g = — c VzgH^' = 2.64/// cu. ft. per sec, approximately,

or

= 158.385/72^ cu. ft. per min.,

c being .617 and g = 2,2. 176.

Ex. I. A reservoir discharges through a sharp-edge triangular notch,

and in/ sees, the depth of the water in the notch falls from H ft. to x ft.

Let S be the sectional area of the reservoir corresponding to the x
ft. depth ; let tnx be the width of the free surface on the notch corre-

sponding to the X ft. depth, m being a numerical coefficient depending

upon the notch angle.

Then, since the water sinks dx ft. in dt sees.,

— S . dx = discharge from reservoir in di sees.

= amount flowing through notch in di sees.

= — i/2''C . mx^ . di,

15

155
or di = j=—X . dx.

4 y2^cm

= + ii f Sx \dx.

Hence the time tn.secs. in which the depth falls from H ft. to x ft.

4 ^2gcnnj

If the horizontal sectional area 5 is constant,

55/1 I \
the time in sees. = -=— r — rra )•

2i\/2gcm\^'' -"*/

For a 90° notch m = 2, and taking^ = 32 and <r = |

5/1 I \
the time tn sees. = —\—p Jjiy
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The time becomes infinite when j: = o, which indicates that the flow

diminishes indefinitely with the depth in the notch.

Ex. 2. Find the discharge in gallons per minute through a go* sharp-

edge notch when the water runs 4 ft. deep. If the reservoir supplying

the water has a constant horizontal sectional area of 80,000 sq. ft., in

what time will the level sink 3 ft. ?

Q =z — 4/64 . -5- . 2 .4' =85! cu. ft. per sec. = 85i x 6i x 60 gals, per min.
15 8

the time -

80000 /

= 32,000 gals, per rain.

17,500 sees. = 4Tff hours.

25. Broad-crested Weir.—Let Fig. 66 represent a stream

flowing over a broad-crested v^eir. On the up-stream side the

Fig. 66.

free surface falls from A to B. For a distance BD on the crest

the fluid filaments are sensibly rectilinear and parallel ; the

inner edge of the crest is rounded so as to prevent crest con-

traction.

Consider a filament ab, the point a being taken in a part

of the stream w^here the velocity of flow is so small that it may
be disregarded without sensible error.

Let A be the thickness MN of the stream at b.

Let the horizontal plane through N be the datum plane.

Let z^, :: be the depths below the free surface of a and b.

Let ^j be the elevation of a above datum.
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LetA ' /i • / be the atmospheric pressure and the pressures

at a and b.

Let V be the velocity of flow at b.

Then, by BernouiUi's theorem,

' W W ^ 2g

But

therefore

and hence

— = a', -4- — and — = j 4- —w '
' If w ' w

1 I 1 T^ ^ I
' W ^^

2^

— = /%, + ^^ - ;i = //^ - A.,

//"j being the depth of the crest of the weir below the surface of

still water.

Thus, if B be the width of the weir, the discharge Q is

Q = B\V2g{H,-\) (i6)

From this equation it appears that Q is nil both when

A = o and when A, = H^. Hence there must be some value

of A between o and H^ for which (2 is a maximum. This value

may be found by putting

dQ^o^B V2g[VH, - A - ^-__=j^A,

and therefore
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and the expression for the discharge becomes

Q = -^BH, 1/^^ = .3855 ViZ^^', . (17)
3 ^3

which is the maxmum discharge for the given conditions.

Experiment shows that the more correct value for the dis-

charge is

Q=.ZiBV^,H,i (18)

If the water approaches the weir with an appreciable velocity

u, corresponding to the head H, so that — = H, then

— = H, \- H — A.,

and

This formula agrees with the ordinary expression for the

discharge over a weir as given by equation (11), iff= .525.

It might be inferred that for broad-crested weirs and large

masonry sluice-openings the discharge should be determined

by means of equation (18) rather than by the ordinary weir

formula, viz., equation (11).

It must be remembered, however, that in deducing equa-

tion (17), frictional resistances have been disregarded and the

gratuitous assumption has been made that the stream adjusts

itself to a thickness t which will give a maximum discharge.

The theory is therefore incomplete.

The discharge over a sharp-crested weir is sensibly the

same as that over a weir with an apron, as in Fig. 66, so long

as the depth of the water on the crest is not less than about

15 ins., but below this limit, the discharge over the apron
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rapidly diminishes with the depth. For example, the dis-

charge over a sharp-crested weir is approximately double that

over a weir with an apron when the depth is about i in. , is

20 per cent greater when the depth is 6 ins., and 10 per cent

greater when the depth is 12 ins.

26. Reservoir Sluices.—The water flows into the receiving

channel either freely, as in Fig. 6y, or under water, as in

Fig. 68.

Fig. 67.

In the first case, the stream-lines converge to a contracted
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2g \ v^l 2g\ n^ r

c, being the coefficient of contraction.

Thus the swell will be found to be further from or nearer

the sluice, according as the difference between the depths of

the stream and the sluice is > or < BC.

\{f^ is the coefficient of hydraulic resistance, then

andy^2 iTiay be . i or even greater; but if the sluice edges are

smoothed and rounded so that/^ can be disregarded, then

7/2 2, 2

"^^ ABr^BC^^,
2g ^ 2g

and therefore AB - BC = AC = ^.

It is assumed that the water in the reservoir retains the

same level, but where the flow commences there is a depres-

sion in the surface due to the velocity of flow, and the amount

of this depression should be deducted from the total head.

When the backwater rises above the sluice, as in Fig. 68,

AC = head required to produce v^ -\- head " lost in shock "

2.^ 2g- 2g i ^\c, j ) '

and AC increases with n, i.e., as A^ diminishes as compared

•with A,.
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27. Bazin's Flow Over Weirs.—This article is the resume of Bazin's val-

uable papers oti this subject published in the Annales des Fonts et

Ckaussdes. The symbols are changed to correspond with the preceding

articles of the present chapter.

Let Cs, Bs , //j be the coefficient, length of crest, and head over crest

for a standard weir.

Let c, B, Hi be the corresponding symbols for an experimental weir.

Then, disregarding the velocity of approach,

cBM'^ V^ =Q = cBH.? |/^,

and

BJHXI
= '^-b\hI)-

Experiments with the standard weir give the value of c, , the ratio

B H—? is usually unity, and the ratio ~ is found by observation. Hence
B Hi
the value of c can be at once calculated.

In practice if seems impossible, with the data at present available, to

make a rational selection of the proper value of c, which varies between

wide limits and is affected not only by the form of the weir but by

other conditions, amongst which may be enumerated the following :

—

(a) The vetocity 0/ a/iproac/i, vihich cannot be disregarded when the

weir is of small beiglit.

(i) The height of the weir.

(e) The crest contraction, which depends both upon the height of the

weir and the form of the crest.

{d) The end contractions, which have a considerable influence when
the weirs are of comparatively small width, but are not of

so much importance when the weirs are long.

{e) Iheform of the nappe, which may vary considerably, and which

in every case should be the subject of a careful investigation.

Sharp-crested Weir (Figs. 54, 55).—The simplest and best defined

case, and one which admits of an exact determination of the coefficient

of discharge c, is that of a free nappe (or sheet), the sheet of water flow-

ing over the weir without end contraction, and with its lower as well

as upper surface fully exposed to atmospheric pressure. Allowance

may be made for tlie influence upon the discharge of the velocity of

approach, u, by substituting for the head, Hi , over the crest in the

discharge formula, the expression Hi -\- « — « being a coefficient which.
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has not been accurately determined. Thus

ti being the modified value of c.

But —7 is very small, rarely exceeding a few centimeters, and there-

fore, approximately,

Let X be the height of the weir. Then

uB{m + x)= (2 = cB \'2gH},

and therefore

//2

2gH-, \Hi + jr,

Hence, putting A'=^aI^^

\H.+x] f

so that

Bazin has deduced the values of a. A', and ix by comparative experi-

ments on five weirs of different heights.

a. and K are not constant, but their mean values are f and .55
•respectively. The coefficient fi slowly diminishes as the head h in-

creases.

Thus
for heads = oi^.os o^.io o'".20 o'".3o o"'.40 o'".5o

the correspondingvalues of /< = .448 .432 .421 .417 .414 .412

For values of Hi > o^.io, it is sufficiently accurate to take

.003
H = .405 + -^,
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and therefore

SO that

c = 1.405 + Sl]-"(^.)'}-

Generally, for values of Hi between o"'.io and o"".3o, m may be made
equal to .425, and, taking K = .5,

a suitable form for practical use when errors of 2 to 3 per cent are not
too large to be of importance.

The absolute values of c having been found for a sharp-crested weir
with a free nappe and a vertical face on the up-stream side, it does not
follow that the same method sliould be adopted to determine the cor-

responding coefficients for other forms of weir. In fact, if c' is the coef-

ficient for aTiy other given weir, when the head over the crest is the
same, the influence of the velocity of approach may be largely eliminated

by finding the ratio —
. The ratio corresponding to two different in-

clinations is sensibly constant for all heads, and the following table

gives the values of - for varying face-slopes:—

For an up-stream face-slope of i hor. to i vert — = .93

2 " 3 " " = .94
I " 3 " " = .96

" • vertical face •• = i.cxj

For a dqwn-stream face-slope of i hor. to 3 vert •' =1.04
2 " 3 "...." = 1.07

1 "
I

" .. _
] ,0

2 ..
I

" .. _
, ,2

4 " I "....'' = 1.09

It may be noted that the coefficient (or ratio) gradually increases

from .93, corresponding to a slope of 45° on the up-stream side, to 1.12.

corresponding to a slope of about 30° on the down-stream side.
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When the air cannot pass uuderneath the sheet of water flowing over

the crest, the nappe either encloses a volume of air at less than the

atmospheric pressure and is depressed. Fig. 69, or the air is entirely ex-

^flx;;/..

Fig. 69.—Depressed Nappe. Fig. 70.—Drowned Nappe.

eluded and the nappe is wetted ttnderneaih or droiu7ud. Fig. 70. The
latter condition, when the nappe encloses an eddying mass of fluid, gives

a more uniform motion, as the pressure of an enclosed volume of air

may vary from tlie accidental admission of new air. The discharge is

slightly greater than with the free nappe, and may be increased almost

10 per cent when the nappe is on the point of being drowned. So long

as the head exceeds a certain limit, the nappe will not be in contact with

tlie weir face. The drowned nappe may be either independent of or

influenced by the down-stream level according as the rise produced
beyond the nappe is at a distance from the foot of the nappe or partially

encloses the foot.

Rise at a Distancefrom the Foot of the Nappe.— In this case

- = .878 + .128-^.

but the max. value of —r cannot exceed 25, as the </row«^(/ condition no
//a

2 c'

longer holds when H-, < -x. The value of -. corresponding to this maxi-

mum, is 1.2, and if //j = jr, the coefficients c' and <rare sensibly the same.

Applying this formula to weirs of different heights, it is found that the

absolute values of the coefBcients of discharge are sensibly given by

the formula

c' = .47 + .0075 -j^,.

Rise Enclosing the Foot of the Nappe.—if D is the difference of level

between the weir-crest and the down-stream surface,

.06 -H '(?—) X
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for which it is usually sufficiently accurate to substitute the simpler

«xpression
<:' D
- = 1.05+.. 5^^.

These formulae are only true for values of D between certain limits.

If Hi + D IS greater than about %x, the rise is moved beyond the foot of

the nappe, and the formulae in the preceding case become applicable.

Again, if the head H'x is not sufficient to enable the nappe to push back

the rise, the down-stream surface level must be sufficiently high to pre-

vent the admission of air below the nappe.

The drowned nappe preserves its characteristic profile even when the

down-stream surface is on a level with the weir crest. Fig. 71, but if

the difference of level between the up- and down-stream surfaces sti'i

continues to diminish, a point is reached at which the nappe suddenly

and with an undulating movement again forms part of the surface. This

change, which is very apparent, does not seem to have much mfiuence

on the coefficient of discharge.

Fig. 71,—Drowned Nappe. Fig. 72.—Adhering Nappe {ffi

not very small).

Fig. 74.—Adhering Nappe (Ht

small).

Fig. 73.—Adhering Nappe, spring-

ing clear above crest.

On certain rare occasions, and under conditions governed by the

thicicness of the weir and by the construction of the upper portion carry-

ing the crest, the nappe becomes adherent. Figs. 72 to 76, the sheet of

"water remaining in contact with the weir face. The coefficient c" is then
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increased and may become as large as 1.3;:, corresponding to an absolute-

value of .55 or .56.

From what has been said it may be at once inferred that the dis-

charge over a weir is largely influenced by the form of the nappe^
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(f H
The ratio - is unity for all values of— above 2, and if the nappe

springs clear from the up-stream edge, for all values of —!' between 14
e

and 2.

With sills of considerable width, e.g., i or 2 m., the above formula

Still gives results which are appro.ximately correct. The ratio —? may
e

diminish to a few tenths or even less than .35. With a 2-m. flat-crested

weir experiment gave for a head of .45 m., — = .755, the corresponding

if
absolute value of c' being .337. The formula gives— = .742, the corre-

c

sponding value of c' being .331.

The rounding of the up-stream edge of the sill has a very sensible

influence upon the flow, and the effect of a radius of only i or 2 cm., aa
usually results from ordinary wear, must by no means be disregarded
in gauging the discharge. Fteley and Stearns observed that the effect

of a small radius R, not exceeding \ in., or 0.012 m., was to increase

the head by .7/1', and therefore the coefficient d in the ratio of33 K
//a' to {Hi + -TRY , or approximately i to i + 7^ • This approxima-

tion is not sufficiently accurately for sensibly greater radii. With two
weirs, the one .8 m. and the other 2 m. wide, the up-stream edges being

rounded to a radius of .10 m., the discharge was increased 14 per cent in

the first and 12 per cent in the second case. Witli the 2-m. weir the

coefficient c' for the greatest head used in the experiments was found to

be .373, which is very nearly the same as the value theoretically deduced
on the assumption that the flow over the weir is in fluid filaments par-

allel to the sill. This condition is only imperfectly realized in practice

as the surface of the nappe invariably has an undulatory movement.
Depressed and Drowned Nappes.—With a sharp-crested weir the co-

efficient for a depressed nappe is always greater tlian that for a free

nappe. With a beam weir, such as that now under consideration, the

coefficients differ only slightly, that for the depressed weir being at first

a little less, then about the same, and finally a little greater than the

coefficient for the free nappe. When the nappe is drowned, the influence

of contact with the sill is complicated by the fact that it is impossible to

define exactly the point at which the nappe is freed from the sill, and

this separation no longer corresponds to a certain constant value of —*.

e

It may again occur either before or after the establishment of the drowned

condition. Two cases may be distinguished. If x (the height of weir)

> 5<r, the separation takes place in advance of the drowned state, and in

this intermediate condition the nappe does not differ from that which
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flows over a sharp-crested weir, li x < c,e, the nappe is not freed from
the sill before it assumes the drowned form, and at the moment of the

change is very unstable.

So long as the contact with the sill continues, its influence predomi-

nates, and the formula

c' =c\ .7 + .185 —
is fairly applicable to the drowned nappe.

But when the nappe has left the sill, the phenomenon becomes more
and more nearly the same as for a sharp-crested weir, and the formula

now applicable is

X

These two formulae give the same value for t' for a certain limiting

value of //j, given by

a- - /?)e 2

'

The first formula holds wlien the heads are less than T/a', but the co-

'cfficieiits are a little too small although the errors are never more than

3 or 4 per cent. If the heads are greater than Hi', the second formula

is to be used, but the results are again too small and the error in this

case may be as much as 8 per cent at the moment when the nappe is

separated from the sill. The error then rapidly diminishes as the head
increases.

l]'ii/e-crested Weirs with Sloping Faces.—In these the coefficient d

,

depending upon tlie head {H^, tlie width {e) of crest, and the degree of

face-slope, is now extremely variable and each case must be sub-

jected to a special investigation. The face-slope on the up-stream side

has the effect of diminishing the contraction and therefore increasing

the discharge. The down-stream face-slope, on the other hand, pro-

duces an effect similar to the widening of the crest and diminishes the

discharge. The rounding of the up-stream edge of the crest consider-

ably diminishes the contraction and may increase d hy 10 or 15 per cent.

Finally, c' is very largely increased for weirs with completely curved pro-

files.

Bazin has prepared Tables comprising a sufficient number of partic-

ular cases which may serve as a guide in practice. It is impracticable

to establish a general formula which will take into account all the vari-

able elements referred to.

Drowned Weirs with Sharp Crests.—When the water on the down-
stream side does not stand much above the crest of the weir, Bazin gives

tiie somewhat complicated formula

d ^ ^D \ „ I i? I IDV \ X
- = 1.06-1- J .008 -I- -— 4- - - \-j:
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In the majority of c.ises, liovvever, the following simpler formula is

applicahle

:

^-'=(..08 4-..?^^ ''^^^^
c \ ^ l\ n^

These two formulae, established so as to represent as accurately as

possible the particular experiments by which they have been deduced,

may be replaced by

c' I H,'\ 3 //, - D= 1.05 + .21

which will give results differing from those obtained with the other for-

niute by not more than about i or 2 per cent, unless — and are

very small, when the difference may be as much as 4 or 5 per cent, but

in the latter case the determination of c' is always somewhat uncertain.

Tlie effect of drowning is not the same for wide-crested weirs. The
flow on the up-stream side is not affected by the depth of the water on

llie down-stream side until the down-stream surface rises considerably

^bove the weir crest, and the effect diminishes as the width of the crest

increases. In the case of a sharp-crested weir the influence upon the

up-stream flow is felt before the down-stream surface has reached the

level of the crest. As the width of a wide-crested weir increases it loses

its weir cliaracteristics and approximates more and more closely to an

open channel with horizontal bed.

Thickness of Nappe on Weir Crest.—Let t = thickness of nappe.

For a sharp-crested vi&xr and free nappe -^ varies from .85 to .86.

For a sharp-crested weir and drowned nappe 77 increases with -.

being 8 when - = .4, .855 when - = i, and .87 when — > i. As the
° X X X

down-stream level rises , increases, exceeding .9 for the undulating

condition, and necessarily tends to unity as the difference of level

between the crest and the down-stream surface is greatly diminished.

In beam weirs with free nappes 7 > -9 for small values of -, and de-

cioases as the head increases until the ratio becomes .855, when the

nappe is on the point of separating from the sill.

In beam weirs with drowned nappes the variation of -—
- is somewhat

Hi
complicated. The ratio diminishes until a minimum is reached, and
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then increases and approximates to values which are the same as in the-

case of sharp-crested weirs.

In wide-crested ^w% with sloping faces —j- is very variable. Gener-

ally it increases as the down-stream slope diminishes, and diminishes

with the up-stream slope. In weirs in which the crest is connected with

the ujj-stream face by a curved surface -jy may be less than .8, but the

determination of the nappe thickness is ia

such case much less accurate.

28. Bernouilli's Theorem.—A simple proof

of this theorem is as follows:

Consider an indefinitely small element of

a stream-line, of length ds and sectional

area a.

Let p, p + dp be the intensities of pressure-

at the ends.

" w be the specific weight of the fluid.

" a " " angle between the direction

of motion of the element and the

vertical.

" dz be the vertical projection of ds^

so that ds = ds . cos a.

Resolving in the direction of motion,

fs cos a = accelerating force

= mass X acceleration

iv

ica-ds

pa — (/ X dp^a — wa

= —a . ds .

it

w , dv
—a . V . dt .

—
£ ^it

w
—av . dv.

a . dp — wa , dz ^ av . dv^
g

dfi V . dv
dz -\ 1 = o.W £

Integrating, z + I ~ + = a const., is true for any fluid. If

the fluid is water, w is constant, and then z + — -{ = a const.w 2g
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EXAMPLES.

(N. B. In the following examples^ = 32 unless otherwise specified.)

1. T'tons of water fall H feet per minute and are employed to turn

Tturbines which transform into useful work one half of the total energy

of the water. What is the H.P. of the turbines .' 77/
A)ts. — .

33
2. A turbine transforms into 9.72 H.P. of useful work the energy

of the water falling 2\ feet from a Thomson V-notch in which the water

stands at a constant level 2j ft. above the bottom of the notch. If the

coefficient of discharge is .6, what is the efficiency of the turbine.'

Ans. .8.

3. A fall of 10 ft. supplies to a turbine 12 cu. ft. of water per sec.

The turbine uses only 8 ft. of the fall, and the water leaves the turbine

with a velocity of 8 ft. per sec. If 500 Ibs.-ft. are lost in frictional re-

sistance, etc., find the efficiency of tlie turbine. Atis. .634.

4. 10,000 50-volt incandescent and 250 450-watt arc lamps are to be

supplied with power from a waterfall having an eflfective head of 40 ft.,

20 miles distant. Losses between lamps and converting apparatus at

receiving end of transmission, 5^; efficiency of converting apparatus,

92^; line losses, 10^; losses in generators and transformers between

line and turbine shaft, lo^; efficiency of turbine, 85^. Required, neces-

sary flow of water per hour. Ans. 1,080,630 cu. ft. per hour.

- 5. A frictionless pipe gradually contracts from a 6-in. diameter at A
to a 3-in. diameter at B, the rise from A to B being 2 ft. If the delivery

is I cu. ft. per second, find the difference of pressure between the two
points A and B. Ans. 504.6 lbs. per sq. ft.

6. In a frictionless horizontal pipe discharging 10 cu. ft. of water per

second, the diameter gradually changes from 4 in. at a point A to 6 in.

at a point B. The pressure at tiie point B is 100 lbs. per square inch
;

find the pressure at the point A. Ans. 41 18 lbs. per sq. ft.

7. A ^-in. horizontal pipe is gradually reduced in diameter to i in.

and then gradually expanded agam to its mouth, where it is open to

the atmosphere. Determine the maximum quantity of water which

can be forced through the pipe {a) when the diameter of the mouth
is ^ in., (b) when the diameter is f in. Also determinethe corresponding

velocities at the throat and the total heads (neglect friction, which,

however, is very considerable).

Ans. (a) .24 cu. ft. per min.
; 46.7 ft. per. sec.

(i) .239 cu. ft. per min.
; 46.66 ft. per sec.
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8. A short horizontal pipe ^reconnecting two reservoirs gradually

contracts in diameter frorn i in. at v4 to ^ in. at i?and then enlarges to

I in. again at C. If the height of the water in the reservoir over C be

12 ins., determine the maximum flow through the pipe and sketch the

curve of pressures. Also obtain an equation for this curve, assuming

the rates of contraction and expansion of the pipe to be equal and
uniform. Ans. \ cu. ft. per min.

9. In a diverging mouthpiece the diameter of the throat is .6 in.,

and the head of water over the axis is 30 ft. What is the discharge in

gallons per minute when the vacuum at the throat is 18.3 ins. of mer-

cury .' Ans. 42.

10. In a stream with still water 240 ft. above datum and flowing

without friction, the velocity at a point 15 ft. above datum is 24 ft. per

second. What is the pressure at this point.?

Ans. 108.75 lbs. per sq. in.

11. A funnel-shaped mouthpiece leads from a reservoir into a 6-in,

friciionless pipe, so that there is iio contraction. The water flows with

a velocity of 24 ft. per second. Find the pressure at a point in the

pipe 10 ft. below the surface of the water in the reservoir.

Ans. 15.43 lbs. persq. in.

12. A 3-in. pipe gradually expands to a bell-mouth ; if the total head,.

H, be 40 ft., find the greatest diameter of the mouth at which it will

run full when open to the atmosphere. Compare the discharge from
this pipe with the discharge when the pipe is not expanded at the mouth.

Ans. 4.8 in.
; discharge is 149.076 cu. ft. per minute with bell-

mouth and 47.345 cu. ft. per minute without bell-mouth.

13. The pressure in a 12-in. pipe at A is 50 lbs. per. sq. in. ; the pipe-

then enlarges to a 15-in. pipe at B, the rise from A to B being 3 ft. ;

the discharge is 1100 cu. ft. per minute. Find the pressure at .ff ; also
find the pressure at a point C, the rise from B to C being 6 ft.

Ans. 7142J lbs. per sq. ft.; 6767^ lbs. per sq. ft.

14. One cubic foot of water per second flows steadily through a
frictionless pipe. At a point A, 100 ft. above datum, the sectional area
of the pipe is .125 sq. ft., and the pressure is 2500 lbs. per sq. ft. Find
the total energy. At a point j5 in the datum-line the pressure is 1250
lbs. per sq. ft. and the sectional area is .0625 sq. ft. Find the loss of
energy between A and B. Find the " loss in shock," if the sectional
area at B abruptly changes (a) from .125 to .0625 sq. ft.

; (^) from .0625
to .125 sq. ft.

Ans. 141 ft.-lbs.
; 117 ft.-lbs.

; 79 ft.-lbs. per cu. ft. ; 62^ ft.-lbs.

per cu. ft.

15. In a frictionless pipe the diameter gradually changes from 6 in.

at a point A 20 ft. above datum to 3 in. at .5 15 ft. above datum. The
pressure at A is 20 lbs. per sq. in. ; find the pressure at B, the delivery
of the pipe being 2J cu. ft. per sec. Ans. 2.23 lbs. per sq. in.
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i6. A horizontal frictionless pipe gradually contracts to a throat

of -th of the area and then gradually enlarges again to a pipe of the

same size. If V is the velocity of flow in the pipe, find the reduction of

pressure at the throat. IVV
' Ans. («' - I).

17. The pressure in a 3j-in. horizontal frictionless pipe is 62^ lbs. per

sq. in. above that of the atmosphere. The pipe is gradually reduced to

a throat of one fifth of the area and discharges into the atmosphere^
Find the velocity of eiBux and the amount of the discharge in gallons

per minute. Ans. 97.98 ft. per sec.
; 491.177 gals.

18. A frictionless play-pipe gradually expands from a diam. of i in. at

the base to a diam. of 3 in. at the mouth. There is a discharge of 33 cu..

ft. per min. imder a head of 183 feet. Find the coefficient of discharge^,

the force required to hold the nozzle, and the total H.P. developed.

Ans. .9265; 108. II lbs.; 11.56 H.P.

19. Find the discharge in cubic feet per minute under a head of 2 it^

through a horizontal frictionless pipe which gradually diminishes from

a diam. of f in. to a throat of \ in. diam., at which the pr. head = 6 ins.,

and then gradually enlarges to a pipe of same diameter as before.

Ans. .2017.

20. Find the head required to give i cu. ft. of water per second

through an orifice of 2 square inches area, the coefficient of discharge

being .625. (^=32.) Ans. 207.35 ft.

21. The area of an orifice in a thin plate was 36.3 square centimetres,

the discharge under a head of 3.396 metres was found to be .01825 cubic

metre per second, and the velocity of flow at the contracted section, as

determined by measurements of the axis of the jet, was 7.98 metres per

second. Find the coefficients of velocity, conlractien, discharge, and

resistance. (4'= 9.81.) Ans. .yrj; .632; .616; .046.

22. The piston of a 12-in. cylinder containing salt-water is pressed

down under a force of 3000 lbs. Find the velocity of efflux and the

volume of discharge at the end of the cylinder through a well-rounded

i-in. orifice. Also find the power exerted, <r„ being .977 and c = .5343.

Ans. 60.373 ft. per sec. ; .176 cu. ft. per sec. ; 1.166 HP.
23. In the condenser of a marine engine there is a back pressure of

26J in. of mercury; the injection orifices are 6 ft. below the sea-level.

With what velocity will the injection-water enter the condenser ? (Neg-

lect resistance and take^— 32.2.) Ans. 25.3 ft. per sec.

24. Water in the feed-pipe of a steam-engine stands 12 ft. above the

surface of the water in the boiler ; the pressure per sq. in. of tlie steam is

20 lbs., of the atmosphere 15 lbs. Find the velocity with which the

water enters the boiler, c^ being .97. Ans. 5.376 ft. per sec.

25. The injection orifice of a jet condenser is 5 ft. below sea-level
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and vacuum = 27 in. of mercury. Find velocity of water entering con-

denser, supposing three fourths of the liead lost by frictional resistance.

Ans. 23.86 ft. per sec.

26. The jet from an orifice of .008 sq. ft. area in the side of a tank

and under a head of 16 ft. issues horizontally and fidls I ft. vertically in

a horizontal range of 7.68 feet. The delivery is 60 gallons per minute.

Find the coefficients of velocity, discharge, contraction, and resistance.

Ans. .96 ; .625 ; .65 ; .085.

27. The jet from a circular sharp-edge orifice | in. in diani. under a

head of 18 ft., strikes a point at a distance from the orifice of 5 ft.

measured horizontally and 4.665 ft. measured vertically. The dis-

charge is 98.987 gallons in 569.218 seconds. Find the coefficients of

discharge, velocity, contraction, and resistance.

Ans. .6009; .945; .635; .1196.

28. A sluice 3 ft. square and with a head of 12 ft. over the centre has,

from the thickness of the frame, the contraction suppressed on all sides

when fully open ; when partially open, the contraction exists on the

upper edge, i.e., against the bottom of tlie gate, which is formed of a

thin sheet of metal. Find the discharge in cubic feet when opened i ft.,

2 ft., and also when fully open. Ans. 57.22; 113.38; 173.51.

29. A vessel containing water is placed on scales and weighed. How
will the weight be aflfected by opening a small orifice in the bottom of

the vessel ?

30. Water is supplied by a scoop to a locomotive tender at 7 feet

above trough. Find lowest speed of train at which the operation is

possible. Alls. 14.44 miles per hour.

Also find the velocity of delivery when train travels at 40 miles per

hour, assuming half the head lost by frictional resistance. (<:„ = i.)

Ans. 35.68 ft. per second.

31. The head in a prismatic vessel at the instant of opening an orifice

was 6 ft. and at closing it had decreased to 5 ft. Determine the mean
constant head h at which, in the same time, the orifice would discharge

the same volume of water. Ans. 5.488 ft.

32. A cylindrical vessel 5.747 in. in diameter has an orifice of .2 in.

diam. at the bottom ; the surface sinks from 16 in. to 12 in. in 53 seconds.

Find the coefficient of discharge. Ans. .6.

33. A prismatic basin with a horizontal sectional area of 9 sq. ft. has
an orifice of .9 sq. in. at the bottom ; it is filled to a depth of 6 ft. above
the centre of the orifice. Find the time required for the surface to sink

2 ft., 3^ ft., 5 ft. Ans. 258.9 sec. ; 500.16 sec. ; 834.8 sec.

34. The water in a cylindrical cistern of 144 sq. in. sectional area is

16 ft. deep. Upon opening an orifice of i sq. in. in the bottom the
water fell 7 ft. in i minute. Find the coefficient of discharge. The co-

efficient of contraction being .625, find the coefficients of velocity and
resistance. Ans. .6; .96; 0.85.
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35. How long will it take to fill a paraboloidal vessel up to the level

of the outside surface through a hole in the bottom 2 feet under water?
^ = 32 and c = .625.)

,764/3 ^
Ans.

, B being the parameter of the parabola and A the

sectional area of the orifice.

36. How long will it take to fill a spherical vessel of radius r up to the
level of the outside surface througli a hole of area A at the lowest point
-and 2 ft. under water, c being .625

">

^'"- 3^^- (7-54'- -6.53)-

37. A :oo-gallon tank is 100 feet above ground and is filled by a \\-

incli pipe connected with an accumulator having ,1 3-ft. cylr. piston

loaded with 50 tons. If the mean lift of the piston is 10 ft. and if -^^ of

the head is lost in frictional resistance, how long will it t^.ke to fill the
tank? Ans. 14.49 sees.

38. A bucket of water in a balance discharges 4 lbs., of water per
minute through an orifice in its base at 45° to the vertical, and is kept
constantly full by a vertical stream which issues from an orifice 8 ft.

above the surface with a velocity of 30 ft. per sec. Show that the
bucket must be counterpoised by about .066 lb. more than its weight.

39. The water in a vessel 9 ft. in height and 2 ft. in diameter is 8 ft.

deep. In what time would one half of the water flow away through an
orifice in the bottom i inch in diameter? If the orifice is closed and
the vessel is made to rotate about its axis at the rate of 76/^ revolutions

per minute, to what height wili the water rise on the vessel's surface?

If the orifice is opened, find velocity of efflux when the surface at the

axis is 3 ft. above the orifice. Also find the difference of pressure^head

in a horizontal plane 6 inches from the axis.

Ans. 190.77 sees.; to the top ; 16 ft. per. sec; 3 ins.

40. A cylindrical vessel, 10 ft. higli and i ft. in diameter, is half full

of water. Find the number of revolutions per minute which the vessel

must make so that the water may just reach the top, the axis of revolu-

tion being (1) coincident with the axis of the vessel, (2) a generating

line of the vessel. Ans. (i) 483; (2) 241^.

41. A vessel full of water weighs 350 lbs. and is raised vertically by

means of a weight of 450 lbs. Find the velocity of efflux through an

orifice in the bottom, the head being 4 ft. and^ = 32.2.

Ans. 17.02 ft. per sec.

42. A vessel full of water makes 100 revols. per min. Find the

"velocity of efflux through an orifice 2 ft. below the surface of the water

at the centre, the diam. of the vessel being 3 ft. and c^, = i.

Ans. 33.4 ft. per sec.

What will be the velocity if the vessel is at rest?

Ans. 1 1.3 ft. per sec.
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43. Show that when the water flowing over has a

depth greater than .3874 ft. it is carried completely over

the longitudinal opening, .83 ft. in width. At what

depth does all the water flow in ? Ans. .221 ft.

Fig. 77. 44. A square box 2 ft. in length and 2 ft. across a

diagonal is placed with a diagonal vertical and filled with water. How
long will it take for the whole of the water to flow out through a hole

at the bottom of .02 sq. ft. area } (c = .625.) Aits. 97.52 sees.

45. A pyramid 2 ft. high, on a square base, is inverted and filled

with water. Find the time in which the water will all run out through

a hole of .02 sq. ft. at the apex. A side of the base is i ft. in length,

(f = .625.) Ans. 5.656 sec

46. Find the discharge under a head of 25 ft. through a thin-lipped

square orifice of i sq. in. sectional area, {a) when it has a border on one

side, {b) when it has a border on two sides.

Ans. {a) .3576 cu. ft. per sec; (<5) .3706 cu. ft. per sec.

47. A vessel in the form of a paraboloid of revolution has a depth of

16 in. and a diam. of 12 in. at the top. At the bottom is an orifice of

I sq. in. sectional area. If water flows into the vessel at the rate of 2j'»

cubic feet per minute, to what level will the water ultimately rise? How
long will it take to rise (a) 11 in., {b) 11.9 in., (c) 11.99 '"• C'^) '- '"• above

the orifice? If the supply is now stopped, how long (e) will it take to

empty the vessel ?

Ans. 12 inches; (a) 49.17 sec; (b) 124.2 sec- {c) 202 sec. ; (a)

an infinite length of time
;

{e) 1 1.3 sec.

48. If the vessel in Example 47 is a sphere I ft. in diameter, to what

height will the water rise ? How long will it take for the waier 10 rise (a)

II in., {b) 12 in. above the orifice.'- Howlong (c) will it take to empty the

vessel? yj«i. 12 inches
;
(a) 67. 16 sec; (1^) 81.46 sec; (c)24.r3sec.

49. In a vortical motion two circular filaments of radii ri , r^, of ve-

locities vi , V.1 , and of equal weight W are made to change place. Show

that a stable vortex is produced if — = const.; and if ri> ri , show that
r

the surfaces of equal pressure are cones.
/;, /,,

50. Sometimes the crest of a dam is raised by -j.-.v^t - t;_;_-^ ^;_4 ..j.

floating a stick L into the position Li , where it is ^^i^^lr^^R
supported against the verticals. The stick then .=.V:i-->?:;?»rffJ;

falls of itself into position Li and rests on the

crest. Explain the reason of this.

51. A 6-in. pipe discharges 8000 gals, per hour

into a 9-in. pipe. Find the loss of head at the junc- Fig. 78.

tion. Atis. 1.58 ft.

52. Prove that for a Borda's mouthpiece running full the coefficient

of discharge is --;:r.

.V2
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53. Find the discharge in pounds per minute through a Borda's.

mouthpiece i in. in diameter, the lip being 12 in. below the water-

surface, (a) when the jet springs clear from the edge, (b) when tlie mouth-
piece runs full. Ans. {a) 81.845 ;

(b) 115.74.

54. The surface of the water in a tank is kept at the same level ;;

obtain the discharge at 60 in. below the surface (a) through a circular

orifice i sq. in. in area, {b) through a cylindrical ajutage of the same
sectional area fitted to the outside, (c) through the same ajutage fitted

to the inside, and determine the mechanical effect of the efHux in each

case.

Ans. (a) 4.85 lbs. per sec; 20.536 ft.-lbs. per sec.

(b) 6.366 " " " ; 21.404 " " "

(c) 5.49 " " " ; 13.725 " " " if running full.

3.69 " " " ; 16.638 " " " if jet springs clear.

55. Water is discharged under a head of 64 feet through a short cylin-

drical mouthpiece 12 in. in diameter. Find (a) the loss of head due-

to shock, (b) the volume of discharge in cubic feet per second, {c) the-

energy of the issuing jet. (f = 32.)

A/ts. (a) 20.736 ft.; {b) 41.23 cub. ft.
;

(c) 201.64 H.P.

56. If a bell-mouth is substituted for the mouthpiece in the preced-

ing question, find the discharge and the mechanical effect of the jet.

Ans. 49.28 cub. ft. per sec; 344.2 H.P.

57. Compare the energies of a jet issuing under an effective head of

100 ft. through (i) a 12-in. cylindrical ajutage, (2) a 12-in. divergent aju-

tage, (3) a 12-in. convergent ajutage, the angle of convergence being 2i°_

Draw the plane of charge in each case.

Ans. (I) 393-3 H.P. ; (2) 672 28 H.P.; (3) 552.58 H.P.

58. Find the discharge through a rectangular opening 36 in. wide-

and 10 in. deep in the vertical face of a dam, the upper edge of the-

opening being 10 ft. below the water-surface.

Ans. 40.2 cub. ft. per sec.

59. A centrifugal pump has a wheel of 2 ft. outside and i ft. inside-

diam., and also a large whirlpool chamber. Draw to scale a curve show-

ing the pressure at different points in the wheel and whirlpool chamber

when the water fills the pump but flows very slowly towards the point of

discharge. Take i atm. as the pr. at the inlet surface.

60. A submerged sluice in the vertical face of a reservoir is 30 ft.

wide. The effective head over the sluice is 18 inches. How high must

the sluice be raised to give a delivery of 45,000 gal. per minute ? {c = .6.)

Atis. 8.164 '"s.

61. The sill of a sluice in the vertical face of a reservoir is clear above

the tail-race ; the head of water above the sill is 5 feet. If the sluice is

24 ft. wide, what must be the opening to give 93,75° g^ls. per min.?

{c — .6.) Ans. 12.3 ins.

62. A sluice in the vertical side of a reservoir is partially submerged^
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the surface of the tail-race water being 6 ins. above the sill. The surface

on the upstream side is 2| ft. above the sill. If the sluice is i8 ft. wide,

what must be the total opening of the sluice to give 15,637! tons (of

2000 lbs.) per hour ? Ans. 1.203 ft., c being .5.

63. Find the discharge in cub. ft. per sec. through a sharp-edge

•orifice, 6 ins. square, in a vertical plate, the centre of the orifice being 15

ins. below the water-surface, (a) if the velocity of approach is i ft. per

second', (b) if the channel of approach is 3 ft. wide by 2 ft. deep.

Ans. (a) I. 347s
;

{b) 1.34.

64. A reservoir half an acre in area with sides nearly vertical, so that

it may be considered prismatic, receives a stream yielding 9 cub. ft. per

second, and discharges through a sluice 4 ft. wide, which is raised 2 ft.

Calculate the time required to lower the surface 5 ft., the head over

the centre of the sluice when opened being 10 ft. Ans. 1079 sees.

65. Show that the energy of a jet issuing through a large rectangular
n 5

orifice of breadth 3 is i2^B{//i' — //i"), JIi , //s being the depths below

the water-surface of the upper and lower edges of the orifice, and the

coefficient of discharge being .625.

66. A reservoir at full water has a depth of 40 ft. over the centre of

the discharging-sluice, which is rectangular and 24 in. wide by i8 in.

"deep. Find the discharge in cubic feet per second at that depth, and
also when the water has fallen to 30, 20, and 10 ft., respectively ; find

the mechanical effect of the efHux in each case, c being .625.

Ans. 94.8 cu. ft. ; 82.1 cu. ft. ; 67 cu. ft.
; 47.4 cu. ft.; 431.2

H.P. ; 280 H.P. ; 152.5 H.P.
; 53.95 H.P.

67. Require the head necessary to give 7.8 cu. ft. per second through
an orifice 36 sq. in. in sectional area, c being .625. Ans. 38.9 ft.

68. The upper and lower edges of a vertical rectangular orifice are

f> and 10 ft. below the surface of the water in a cistern, respectively;

the width of the orifice is i ft. Find the discharge through it.

Ans. 56.42 cu. ft. per sec.

69. The two sluices each 4 ft. wide by 2 ft. deep in a lock-gate are

-submerged one half their depth. The constant head of water above the

axis of the sluice is I2 ft. Find the discharge through the sluice, the
velocity of approach being 4 ft. per second, c being .625.

Ans. 16,626.2 cu. ft. per min.

70. Find the flow through a square opening, one diagonal being ver-

tical and 12 in. in length, the upper extremity of the diagonal being in

the surface of the water, and c being .625. Ans. 1.724 cu. ft. per sec.

71. To find the quantity of water conveyed away by a canal 3 ft.

wide, a board with an orifice 2 ft. wide and i ft. deep is placed across

the canal and dams it back until it attains a height of 2j ft. above the

bottom and i| ft. above the lower edge of the orifice. Find the dis-

charge in cubic feet per second, c being .625.

Ans. 17.59, or 20.21 if orifice is drowned.
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72. Six thousand gallons of water per minute are forced through a
line of piping ABC and are discharged into the atmosphere at C, which
is 6 ft. vertically above A. The pipe AB is 6 in. in diameter and 12 ft.

in length ; tlie pipe BC'is 12 in. in diameter and 12 ft. in length. Dis-

regarding friction, find the "loss in shock" and draw the plane of

charge. Ans. Loss of head in shock = 58.3 ft.

73. What quantity of water flows through the vertical aperture of a
dam, its width being 36 in. and its depth 10 in. ; the upper edge of tlie

aperture is i5 ft. below the surface. Ans. 50.65. cu. ft. per. sec.

74. 264 cu. ft. of water are discharged through an orifice of 5 sq.

ins. in 3 min. 10 sec. Find the mean velocity of efflux.

Ans. 64 ft. per. sec.

75. One of the locks on the Lachine Canal has a superficial area of

about 12,150 sq. ft., and the difference of level between the surfaces of

the water in the lock and in the upper reach is 9 ft. Each leaf of the
gates is supplied with one sluice, and the water is levelled up in 2 min.

48 sees. Determine the proper area of the sluice-opening. (Centre of

sluice 20 ft. below surface of upper reach and c = .62;.)

Ans. Area of one sluice = 43.39 sq. ft.

76. The horizontal section of a lock-chamber may be assumed a
rectangle, the length being 360 ft. When the chamber is full, the sur-

face width between the side walls, which have each a batter of i in 12,

is 45 ft. How long will it take to empty the lock through two sluices in

the gates, each 8 ft. by 2 ft., the height of the water above the centre of

the sluices being 13 ft. in the lock and 4 ft. in the canal on the down-
stream side. Ans. 600.75 sec, c being .625.

77. Water appioaches a rectangular opening 2 ft. wide with a velocity

of 4 ft. per second. At the opening the head of water over the lower

edge = 13 ft., and over the surface of the tail-race = 12 ft. ; the discharge

through the opening is, 70 cu. ft. per second. Find the height of the

opening, c being .625, Ans. 1.022 ft.

78. The water in a regulating-chamber is 8 ft. below the level of the

water in the canal and 8 ft. above the centre of the discharging-sluice.

Determine the rise in the canal which will increase the discharge by 10

per cent. Ans. 1.68 ft.

The horizontal sectional area of the chamber is constant and equal tO'

400 sq. ft. ; in what time will the water in the chamber rise to the level

of that in the canal, if the discharging-sluice is closed ; the sluice be-

tween the canal and chamber being 3 sq. ft. in area.? Ans. 150.83 sec.

79. A lock on the Lachine Canal is 270 ft. long by 45 ft. wide and has:

a lift of 8f ft. ; there are two sluices in each leaf, each 8J ft. wide by

2j ft. deep; the head over the horizontal centre line of the sluices is

19 ft. Find the time required to fill the lock. Ans. 163.5 sec.

80. The locks on the Montgomeryshire Canal are 81 ft long and 7J-

ft. wide ; at one of the locks the lift is 7 ft. ; a 24-in. pipe leads the water
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from the upper level and discharges below the surface of the lower level

into the lock-chamber ; the mouth of the pipe is square, 2 ft. in the side,

and gradually changes into a circular pipe 2 ft. in diameter. Find time

of filling the lock, {c = i.) Ans. 132. 11 sec.

81. A canal lock is 11 5.1 ft. long and 30.44 ft. wide; the vertical

depth from centre of sluice to lower reach is 1.0763 ft., the charge being

-6.3945 ft.; the area of the two sluices is 2 x 6.766 sq. ft. Find the time

of filling up to centre of sluices, (c = .625 for the sluice, but is reduced

to .548 when both are opened.) Also, find time of filling up to level of

upper reach from centre of sluice-doors. Ans. 25 sec. ; 298 sec.

82. How many gallons of water will flow through a 90° notch in 24

fiours if the depth of the water is 27 ins. for the first 8 hours, 12 ins. for

the second 8 hours, and 3 ins. for the tliird 8 hours, c being .6 ?

Ans. 3,974,400.

S3. Show that in a channel of V section an increment of 10 per cent

in the depth will produce a corresponding increment of 5 percent in the

velocity of flow and of 25 per cent in the discharge.

84. The angle of a triangular notch is 90°. How high must the

water rise in the notch so that the discharge may be 1000 gallons per

minute? A>is. 12 ins. very nearly.

85. A reservoir, rectangular in plan and 10,000 sq. ft. in area, has in

one side a 90° triangular notch 2 ft. deep. If the reservoir is full, in

what time will the level sink 6 ins. ? Ans. 496.87 sees.

86. How long will it take to lower by 3 ft. the surface of a reservoir

of 640,000 sq. ft. area through a go° V notch 4 ft. deep ?

Ans. 40.50 hrs., c being .6.

87. Find the discharge in cubic feet per second through a 90° notch
when the depth of water in the notch is 4 ft., c being .617.

Ans. 84.24.

88. A pond whose area is 12,000 sq. ft. has an overfall outlet 36 in.

'wide, which at the commencement of the discharge has a head of 2.8 ft.

Find the time required to lower the surface 12 in. Ans. 354.58 sec.

89. How much water will flow through a rectangular notch 24 in.

Avide, the surface of still water being 8 in. above the crest of the notch ?

(Take into account side contraction.) Ans. 3.383 cu. ft. per sec.

90. A weir passes 6 cubic feet per second, and the head over the crest

is 8 inches. Find the length of the weir, c being .625.

Ans. 3.3068 ft.

91. A weir 400 ft. long, with a 9-in. depth of water on it, discharges
through a lower weir 500 ft. long. Find the depth of water on the latter.

Ans. .6457 ft.

92. A weir is 545 ft. long ; how high will the water rise over it when
it rises .68 ft. upon an upper weir 750 ft. long .' Ans. .8413 ft.

93. What should be the height of a drowned weir 400 ft. long, to

deepen the water on the up-stream side by 50 per cent, the section of
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the stream being 400 ft. x 8 ft., and the velocity of approacii 3 ft. per

second ? Ans. 7.084 ft.

94. Tfie depth of water on the crest of a rectangular notch 5 ft. long

is 2 feet. Find the discharge when the notch has {a) two end contrac-

tions, (^) one end contraction, (c)no end contraction, c in each case being f.

Ans. (a) 43.369 cu. ft. per sec; (b) 45.254 cu. ft. per sec;

(c) 47.14 cu. ft. per sec.

95. Show that upon a weir 10 ft. long with 12 ins. depth of water flowing

over, an error of y^o^ of a foot in tneasuring the head will cause an error

of 3 cu. ft. per minute in the discharge, and an error of ^J-j of a foot in

measuring the length of the weir will cause an error of 2 cu. ft. in the

discharge.

96. In the weir at Killaloe the total length is 1 100 ft., of which 779 ft.

from the east abutment is level, while the remainder slopes i in 214,

giving a total rise at the west abutment of 1.5 ft. Calculate the total

discharge over the weir when the depth of water on the level part is

1.8 ft., which gives .3 ft. on liighest part of weir. (Divide slope into

8 lengths of 40 ft. each, and assume them severally level, with a head

equal to the arithmetic mean of the liead at the beginning and end of

each length.) ^ins. 7496 cu. ft. per sec

97. A watercourse is to be aufjmented by the streams and springs

above its level. The latter aie severally dammed up at suitable places

and a narrow board is provided in whicli an opening 12 in. long by 6 in.

deep is cut for an overfall ; it was surmised that this would be sufficient

for the largest streams ; another piece attached to the former would

reduce the length to 6 in. for smaller streams. Calculate the delivery by

the following streams :

In No. I stream with the 12-in. notch, depth over crest = .37 ft.

• No. 2 " " " 6-in. " " " " = .41 ft.

" No. 3 " " " 12-in. " " " " = .29 ft.

" No. 4 " " " 6-in. " =.19 ft.

<Take into account the side contractions.)

Ans, No. I, .696 cu. ft. ; No. 2, .3658 cu. ft.; No. 3, .4904 cu. ft.;

No. 4, .1275 cu. ft.

98. A rectangular notch has two complete end contractions and the

length of the crest is thrci: times the depth of the water on the crest.

What must be the length of the crest to give a minimum discharge of

18,750 gals, per minute, c being f ? Atis. 5.87 ft.

99. A stream 30 ft. wide, 3 ft. deep, discharges 310 cu. ft. per

second ; a weir 2 ft. deep is built across the stream. Find increased

depth of latter^ {a) neglecting velocity of approach, (b) talcing velocity of

approach into account. Ans. {a) 1.26 ft. to 1.265 ft.; (l>) 1.19 ft.

100. In a stream 50 ft. wide and 4 ft. deep water flows at the rate of

ijooft. per minute ; find the height of a weir which will increase the depth
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to 6 ft., (i) neglecting velocity of approach, (2) taking velocity of approaclt

into account. Ans. (i) 4.4126 ft.; (2) 4.4305 ft.

loi. A stream 50 ft. wide and 4 ft. deep has a velocity of 3 ft. per

second ; find the height of the weir which will double the depth, (i\

neglecting velocity of approach, (2) taking velocity of approach into ac-

count. Atis. (i) 5.651 ft.; (2) 5.6862 ft.

102. A stream 80 ft. wide by 4 ft. deep discharges across a vertical

section at the rate of 640 cu. ft. per second ; a weir is built in the stream,

increasing its depth to 6 ft. Find the height of the weir.

Ans. 4.233 ft.

103. Salmon-gaps are constructed in a weir; they are each 10 ft. wide

and their crests are 18 in. below the weir crest. Calculate the discharge

down three of these gaps, the water on the level part of the weir being

8 in. deep. Ans. 238.15 cu. ft. per sec.

104. A channel of rectangular section and 20 ft. wide conveys

3,600,000 gallons per hour, the depth of the stream being 8 ft. A dain

2 ft. high is built across the channel. Find the " height of swell " {a) dis-

regarding the velocity of approach, (b) taking the velocity of approach

into account. Ans. (a) .07 ft.; (b) .0545 ft.

105. The water in a flume 8 ft. wide is 3 ft. deep and is supplied from

a sluice 6 ft. wide at the rate of 27,000 gals, per minute. If the coeffi-

cient of contraction is unity and if 10 per cent is allowed for fractional

loss, find the difference of level between the water-surfaces above the

sluice and in the flume when the sluice opening is {a) 1 ft., (b) 2 ft.

Ans. (a) 2.32 ft.; {b) .31 ft.

106. A stream of rectangular section 24 ft. wide delivers 145 cu. ft.

per second. The edge of a drowned weir is 15 ins. below the surface of

the water on the down-stream side. Determine the difference of level

between the surfaces of the water on the up- and down-stream sides, the
velocity of approach being 2 ft. per second.

Ans. 7.9 ins.



CHAPTER II.

FLUID FRICTION AND PIPE FLOW.

I. Fluid Friction.—The term fluid friction i.s applied to

the resistance to motion which is developed when a fluid flows

over a solid surface, and is due to the viscosity of the fluid.

This resistance is necessarily accompanied by a loss of energy

caused by the production of eddies along the surface, and

similar to the loss which occurs at an abrupt change of section,

or at an angle in a pipe or channel.

Froude's experiments on the resistance to the edgewise

motion of planks in a fluid mass, the planks being ^V in. thick,

19 in. deep, and i to 50 ft. long, each plank having a fine

cutwater and run, are summarized in the following table:

Nature of Surface
Covering. ,

Varnish
ParafBne
Tinfoil

Calico
Fine sand
Medium sand.

.

Coarse sand . .

.

Length of Surface in Feet.

8 Feet.

2.16

1. 93
2.00
2.00
2. CO I

.390 1. 85

.370 1.94

.295 1.99

.725 1.92

. 690 2 . GO

.730 2.00

.S80 2. CO

B

.325

,314

,278

52f)

583
625
714

) Feet. 50 Feet.

26411.85

260J1 .93
263'!. go
504; I. 89
4502. CO
4SS:2.oCi

B

.278

.2

.262

•531

.480

534
520 2.C0I.5SS

240 1.83

,237

244 I. S3

.447 t.&7

3S4|2.of)

46;;2.oo

490'

250 .226.

.246 .232

.47.1!. 42.3
40= .3." 7

.48b .45fj-

Columns A give the power of the speed (v) to which the

resistance is approximately proportional.

Columns B give the mean resistance, in pounds per square

121
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foot, of the whole surface of a board of the lengths stated in

the table.

Columns C give the resistance, in pounds, of a square foot

of surface at the distance sternward from the cutwater stated

in the heading, each plank having a standard speed of lo ft.

per second. The resistance at other speeds can be easily cal-

culated.

An examination of the table shows that the mean resistance

per square foot diminishes as the length of the plank increases.

This may be explained by the supposition that the friction in

the forward portion of the plank develops a force which drags

the water along with the surface, so that the relative velocity

of flow over the rear portion is diminished. Again, the

decrease of the mean resistance per square foot is . 1 32 lb. when
the length of a varnished plank is increased from 2 to 20 ft.,

while it is onh' .028 lb. when the length increases from 20 to

50 ft. Hence for greater lengths than 50 ft. the decrease of

resistance may be disregarded without much, if any, practical

effect.

Thus, generally speaking, these experiments indicate that

the mean resistance is proportional to the «th power of the

relative velocity, ;/ varying from 1. 83 to 2. 16, and its average

value being very nearly 2.

Colonel Beaufoy, as a result of experiments at Deptford,

also assumed the mean resistance to be proportional to the

fith power of the relative velocity, the value of n in three series

of observations being 1.66, 1.71, and 1.9.

The frictional resistance is evidently proportional to some

function of the velocity, J^{v), which should vanish when 7' is

nil, as when the surface is level, and should increase with v.

Coulomb assumed the function F(7') to be of the form

av -\- hi''\ a and b being coefficients to be determined by ex-

periment. Experiment shows that when b does not exceed

5 ft. per minute the resistance is directly proportional to the

velocity, but that it is more nearh' proportional to the square
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of the velocity when the velocity exceeds 30 ft. per minute

;

or,

F(v) = av when t' , 5 ft. per minute,

and

F(ti) = bv'' when 7'
~ 30 ft. per minute.

Again, observations on the flow of water in town mains

indicate that no difference of resistance is developed under

widely varying pressures,, and this independence "f pressure is

also verified by Coulomb's e.xperiment showing that, if a disc

is oscillated in water, there is no apparent change in the rate

of decrease of the oscillations, whether the water is under

atmospheric pressure or not.

From the preceding and other similar experiments the fol-

lowing general laws of fluid friction have been formulated:

(i) The frictional resistance is independent of the pressure

between the fluid and the surface over which it flows.

(2) The frictional resistance is proportional to the area of

the surface.

(3) The frictional resistance is proportional to some func-

tion, usually the square, of the velocity.

To these three laws may be added a fourth, viz. :

(4) The frictional resistance is proportional to the density

and viscosity of the fluid.

A fifth law, viz., that "the frictional resistance is inde-

pendent of the nature of the surface against A\'hich the fluid

flows," has been sometimes enunciated, and at very low

velocities the law is approximately true. At high velocities,

however, such as are common in engineering practice, the

resistance has been shown by experiment, and especially by

the experiments carried out by Darcy, to be very largely

influenced by the nature of the surface.
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Let / be the frictional resistance in pounds per square foot

of surface at a velocity of i ft. per second.

Let A be the area of the surface in square feet.

Let V be the relative velocity of the surface and the water

in which it is immersed.

Let R be the total frictional resistance.

Then from the laws of fluid friction

R = p . Av\

Take f = /, iv being the specific weight of the fluids

Then
7'2

R =.fzvA—

.

2^

The coefficient / is approximately constant for any given

surface, and is termed the coefficient of fluid friction. The
power absorbed by the frictional resistance

J''= pAv^ X f = pAv^ = fwA .

2^

TABLE GIVING THE AVERAGE VALUES OF/ IN THE CASE OF
LARGE SURFACES MOVING IN AN INDEFINITELY LARGE
MASS OF WATER.

Surface. CoefBcient of Friction (/),

New well-painted iron plate.. .. , .00489

Painted and planed plank.. .

,

.

.

-0035

Surface of iron ships 00362

Varnished surface 00258

Fine sand surface 00418

Coarse sand surface..

.

.. .. .00503

Ex. The wetted surface of a vessel moving at 8 knots per hour is.

7500 sq. ft., and the resistance is .4 lbs. per sq. ft. at a speed of 10 ft. per
second. Find the surface-resistance and the horse-power required ta
propel the vessel.

.4 4The resistance in lbs. per sq. ft. at i ft. per. sec. = —
-„ = .

'
lo'' 1000
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Therefore the total skin-resistance

4

lOOO

/S /. 6o86\' . ,^

~, , ^ o 8 X 6o86 I

The horse-bower = 5487. •; / ^ y = I34.9'?.

2. Surface Friction of Pipes.—Assuming that the laws of

fluid friction already enunciated hold good when water flows

through a pipe, it has been shown by numerous experiments

that the coefficient of friction /" lies between the limits .005 and

.01, its average value under ordinary conditions being about

.0075. ^^ single value of /"is applicable to very different

cases. Indeed, /depends not only upon the condition of the

surface, but also upon the diameter of the pipe and the velocity

of the water. Some authorities have expressed its value by a

relation of the form

f
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for some time the velocity usually exceeds 4 ins. per second^

and the term — may then be disregarded, so that
7'

/

Darcy's and other more recent experiments show that a

and d are "not constant, but are more correctly expressed as

functions of the diameter. In Darcys experiments the pipes

were laid very nearly horizontal and the head could be varied

at will by the opening or closing of valves.

x:^-
"isT/

Fig. 79.

Piezometers were inserted at intervals of 164 ft. (50 m.),

commencing at 15.4 ft. (4.7 m.) from the inlet, i.e., at -a

point where the pipe was running full and the flow was steady.

The upper ends of the piezometers terminated on a vertical

plank so placed as to allow the water-levels in them to be

observed and compared. In any two consecutive piezometers

the difference of level, which is of course constant, represents

the frictional loss of head in a 164-ft. length of pipe. From

the results of these experiments Darcy made the following

deductions

:

(a) T/ie f7'ictional resistance depends upon the ^naterial and

condition of the pipe.

For example, the resistance to flow is much less in a glass

than in an iron pipe, and is approximately twice as great in
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pipes which have become incrusted with use as in new clean

pipes. It must be remembered, however, that although numer-

ous experiments have been made with new pipes, there ha\e been

comparatively few experiments with old pipes. Thus, in pipes

in which the velocity of flow exceeds 4 ins. per second, Darcy

f\
gl

considered it more correct to express a ( = — ) in the form

g ^ d'

d being the diameter of the pipe, and a and /5 coefficients to be

determined by experiment. The following values for a and yS

are given by Darcy

:

a a

For drawn wrought-iron or smooth

cast-iron pipes 0001545 .000012975,

For pipes with surface covered by

light incrustations 00O3093 .00002598

Without sensibly altering the values of these coefficients

they can be put into the following simple form

:

f /^^
,

I= a (+
g g\ i2d

«

d being the diameter in feet, and yu being .005 or .01 according^

as the pipes are clean or have become slightly incrusted.

[b) The coefficient b is not constant, but laries slightly both

with the diameter and the velocity, its value diminishing as d
or V increases.

In practice it is assumed that b is constant and the error

involved has the advantage of giving to the pipe a larger sec-

tional area than is actually required for a given discharge.

Thus allowance is partially made for the incrustations with

which the surface gradually becomes covered.
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Darcy proposed to include all cases in the more general

form

/ ft ( ft'V- = «+-.+ «' + --.

in which, for new and smooth iron pipes,

a = .00001350

a' — .000031635

/i = .000012402

/?' = .00000016186

This value for — is rarely if ever used.
<r

TABLE GIVING DARCY'S VALUES OF / FOR VELOCITIES
EXCEEDING 4 IN. PER SECOND.
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increases as the temperature falls, and the surface friction is

•diminished by about i per cent for every rise of 5° F. in the

temperature. The resistance to the motion of a body in water,

•or to the flow of water along a surface, is evidently of two

Icinds, the one due to surface contact, the other to the forma-

tion of eddies. Hele Shaw's experiments clearly show the

effect of surface contact upon stream-line motion and the

manner in which the motion is modified by the presence of

obstacles (Trans. Naval Architects, 1897-98), while the two

kinds of resistance are plainly demonstrated by the interesting^

experiments of Osborne Reynolds. The water flows through

Fig. 80.

a glass pipe AB having a trumpet-shaped mouth A. A glass

tube CD with a funnel E terminates in a pipette F, the axis

of the pipette being in line with the axis of the pipe. The tube

is filled with an aniline dye which is allowed to escape through

the pipette in a thin thread-like stream, the discharge being

governed by a small cock. So long as the velocity of flow in

the pipe does not exceed a certain value, which Reynolds calls

the critical ye\oz\ty , the aniline thread is unbroken, so that the

motion of the water is undisturbed and must be in parallel

lines. As soon as the critical velocity is exceeded the colored

thread is broken up, becoming sinuous in character, and the

parallel stream-line motion is completely destroyed within a

very short distance from the mouth of the pipe.

According to Reynolds the critical velocity (v^), in metres

per sec, is given by the formula
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p. being '

(?) for capillary tubes and —^ for ordinary pipes,

while

-p = I -)- .0336/ -j- .000221/2,

t being the temperature in degrees centigrade.

It has been shown by H. T. Barnes, D.Sc, in his experi-

ments on the specific heat of water, that, if water be heated

while flowing through a tube at velocities less than the critical

velocit)', the temperature distribution in the column is not

uniform. If the heat be applied electrically, by means of a

wire threaded through the flow-tube, the hot water flows along

the wire, leaving the ^\alls of the tube almost 'entirely unheated.

If the heat be applied to the walls of the tube, the colder

water passes through the centre of the tube unheated, leavings

a cloak of hot water along the sides. In neither case is there

any tendency to mix as long as stream-line flow is maintained.

A new method for determining the critical velocity of a

fluid, based on the above experiments, has been recentl\-

worked out by Drs. Barnes and Coker in the McGill hydraulic

laboratory. In this method, a sensitive mercury thermometer

is placed exacth' in the centre of a column of water as it

emerges from the tube under examination, with the bulb just

beyond the end. The walls of the tube are maintained at a

constant temperature, slightly above that of the water flowing^

through, but for stream-line flow the temperature indicated by

the thermometer will Ije that of the water in the head supplying

the constant flow. The arrival of the critical velocity, at which

stream-line flow becomes eddying and sinuous, is at once shown

by a sudden small increase in the reading of the thermometer,

and is due to the mixture of the water-film ne.xt the surface

with the colder water flowing through the body of the pipe.

The point is very sharply defined, and the method is in man>^

cases far more applicable and convenient than the usual color-

band test.
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The experiments now in progress in the hydraulic labora-

tory by Barnes and Coker are being made, both by the

thermal and color-band methods, under the most favorable

conditions for securing the perfectly steady conditions neces-

sary for maintaining stream-line flow. The results so far

obtained show that the effect of temperature is very marked in

altering the point of instability of flow, and that this variation

accords at least approximately with the formula quoted by

Osborne Reynolds and taken from Poiseuille's experiments.

The effect of pressure has been studied over a limited range,'

and it has been shown that water flowing under a high head

has greater stability, which means that there is a definite

increase in the velocity at which stream-line motion breaks

down. Indeed, under the present arrangements, it has been

possible to maintain stream-line motion to very much higher

velocities than is possible in experiments carried out with the

apparatus used by Reynolds.

3. Resistance of Ships.—The motion of a ship through

water causes the production of waves and eddies, and the total

resistance to the movement of a ship is made up of a frictional

resistance, a wave-making resistance, and an eddy-making

resistance. Although there is no theory by which the resist-

ance at a given speed of a ship of definite design can be

absolutely determined, PVoude's experiments render it possible

to make certain inferences and furnish some useful data.

According to Froude, the frictional resistance is sensibly

the same as that of a rectangular surface moving with the same

speed, of the same length as the ship in the direction of motion,

and of an area equal to the immersed surface of the ship.

Experiments seem to indicate that as the speed increases, the

frictional resistance of well-designed ships with clean bottoms

is from 90 to 60 per cent of the total resistance, and that the

percentage is greater when the bottoms become foul.

The wave-making resistance is especially affected by the

form and proportions of the ship, depending, for a given
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length, upon the proportions of the entrance, middle body, and

run. For every ship there is a Hmit of speed below which the

resistance is approximately proportional to the square of the

speed, being chiefly due to friction, and beyond which it

increases more rapidly than as the square.

The eddy-resistance in the case of well-formed ships should

not exceed about 10 per cent of the total resistance, and is often

much less.

Froude's law of resistance may be enunciated as follows:

Let /j , /j be the lengths of a ship and its model.

Let J^ , A., be the displacements of a ship and its model.

Let R^ , R^ be the resistances of a ship and its model at the

speeds v^ and v.,.

Then, if

the resistances are in the ratio of

R. - a: - 1.?
- v.

Hence, too, the H.P., and therefore also the coal consumption

per hour, is proportional to Rv, that is, to

^5 or li or 7'",

and the coal consumption per mile is proportional to

A or P or v7,6

Again, R is proportional to Z'*;

that is, to /X P;

that is, to v'^ X ^t;

and it is sometimes convenient to express the resistance in

pounds in the form

R = k. 7/M*,
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V being the speed in knots, ^ the displacement in tons, and /i-

a coefficient depending upon the type of ship and varying from

-55 to .85 when the bottom is clean.

Ex. If the New York, with a displacement of 10,000 tons and requir-
in<,' 20,000 H. P. for a speed of 20 knots, is taken as the model for a new
steamer which is to have a speed of 21 knots, tlien

new steamer's displacement = io,ooo( —J = 13,400, approximately.

H. P. of new steamer = 2o,ooof —J = 28,000, appro.ximately.

4. Pipe-flow Assumptions.—In the ordinary theory of the

flow of water in a pipe it is assumed that the water consists of

thin plane layers perpendicular to the a.xis of the pipe, that

each layer is driven through the pipe by the action of gravity

and by the difference of pressure on its plane faces, and that

the liquid molecules in any layer at any given moment will also

be found in a plane layer after any interval of time. In such

motion the internal work done in deforming a layer may be

generally disregarded.

It is further assumed that there is no variation of velocity

over the surface of a layer, and this is equivalent to saying that

each liquid molecule in a cross-section has the same mean

velocity.

The disagreement of these assumptions with the results of

recent experimental researches will be referred to in a subse-

quent article.

5. Steady Motion in a Pipe of Uniform Section.—Since

the motion is to be steady, the same volume Q cu. ft. of water

will always arrive at any given cross-section of A sq. ft. with

the same mean velocity f ft. per second. Then

Q=Av.

But since the pipe is of constant diameter, A is constant, and

hence also t is constant, so that the mean velocity is the same

throughout the whole length of the pipe.
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Fig. 8 1.

Consider an elementary mass of the fluid AABB, bounded

by the pipe and by the two cross-sections^^, £B. Let di

be the length AB of the ele-

ment, the length / ft. of the

pipe being measured along the

axis from any origin O.

Let ^, z -\- ds be the eleva-

tions in feet above a datum line

of the centres of pressure in the

cross-sections AA, BB, respec-

tively.

Let/, / -j- ^ be the intensi-

ties of the pressures on these

cross-sections in pounds per square foot.

Let P be the perimeter of the pipe.

Let w be the specific weight of the water in pounds per

cubic foot.

Work Done by Gravity.-— In one second wQ lbs. of water

are transferred from AA to BB, falling through a vertical dis-

tance of i/j ft. Thus the work done by gravity per second

= - zi'Q . dz,

a positive quantity if ds is negative, and vice versa.

Work Done by Pressure.—The total pressure on AA paral-

lel to the axis = pA ; the total pressure on BB parallel to the

axis = {p ~\-dp)A.

Therefore the total resultant pressure parallel to the axis

in the direction of motion z= — A . dp, and the work'done per

second on the volume Q by this pressure = — Q . dp.

Note.—The work done by the pressure at the pipe surface is nil, as

its direction is at right angles to the line of motion.

Work Absorbed by Frictional Resistance.—From the laws

of fluid friction this work per secojid is evidently

- P .dl . F{v) X ^' = ^Q- F{^') dl.
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the sign being negative as the work is done against a resist-

ance.

Since the motion is steady, the work done by the external

forces must be equivalent to the work absorbed by the frictional

«sistance, and hence

P-wQ.dz — Q.dp-^Q. F{v) .dl=o,

or
dp P Fiv)

,

d.Z -V- ^ -^ ~r .
—^ .dl = 0.w A w

Integrating,

/ P F{v)
^ J \--r . . / = a constant = H,

so that //ft. -lbs. per pound of fluid is the uniformly distributed

total constant energy.

~p is called the hydraulic mean radius of a pipe and will be

denoted by m.

Take
F{v) v^

w ~ 2g'

the value adopted in ordinary practice, f being the coefficient

of friction. Then

' w m2g

Let^'j, Aj^, pi be the elevation above datum, the area of

the cross-section, and the intensity of the

pressure at any point X on the axis of

the pipe distant /^ from the origin (Fig.

82).

Let ^j, A..,, p^ be the elevation above datum, the area of

the cross-section, and the intensity of the

pressure at any other point Y on the axis

distant /„ from the origin (Fig. 82).
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Then, from the equation just deduced,

/. , A ^'

Hence

f V' fL v^

tn 2g^ ^ ''^ m 2g

L being the leng'th 4 — l^ of the pipe between the two points

^and Y.

Fig. 82.

Let vertical tubes (pressure-columns) be inserted in the

pipe at A^ and at Y. The water will rise in these tubes to the

levels C and Z>, and evidently

/i
= -w . CX -\- p^,

p^=zu.DY+f^,

p^ being the intensity of the atmospheric pressure.
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Hence, if CJC and DY are produced to meet the datum
lihe in E and F,

^, + ^' = ^1 + <^^+ - = CE +^»

and

Therefore

^2 + - = ^2 + ^^+ — = i?^+ ^.

^ w I ^ ' ^ w 1 m 2g

G being the point in which the horizontal through C meets FD
produced.

DG is called the "virtual fall " of the pipe, being the fall

of level in the pressure-columns ; and since there would be no

fall of level if the .friction were nil, DG is said to be the head

lost in friction in the distance XY.

Denote this head by h ; then

m 2g\

and therefore

h f v^

L m zg'

h
This ratio y is designated the virtual slope of the pipe,

and is the head lost in friction per unit of length. It will be

denoted by /, so that

^_- _ i_z!
L ^ ~ m 2g'

If the section of the pipe is a circle of diameter d, or a

square with a side of length d, then

A d
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xii virtual slope, there is a danger of air accumulating in the

pipe and impeding, or perhaps wholly stopping, the flow.

No vertical bends should be introduced, as the air is easily set

free and would collect in the upper parts of the bends, with

the effect of impeding the flow and of acting detrimentally

upon the water itself, which the liberation of the air renders

less wholesome. If the line of pipe coincides with C'D\ then

the fluid pressure is nil.

F'inally, if the pipe at any point rises above CD' , the

pressure becomes negative, which is impossible. In fact, the

continuity of flow is destroyed, and the pipe will no longer

run full bore. Air will be disengaged and will rise and collect

at the point in question, so that in order to prevent the flow

being wholly impeded, it will be necessary to introduce an air-

chamber at this point from which the air can be removed when

required.

Note.—In the preceding it has been assumed tliat the pipe is

straight. If the pipe is curved, so also is the line of virtual slope. In

ordinary practice, however, the vertical changes of level in a pipe at

different points are small as compared with the length of the pipe, and

distances measured along the pipe are sensibly proportional to distances

measured along the horizontal projection of the pipe. Hence the line

of virtual slope may be assumed to be a straight line without error

of practical importance.

7. Formulae of Darcy, Hagen, Thrupp, Reynolds, etc.—

Darcy arranged the results of his experiments in a table drawn

up as follows

:

Diameter.
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The first column gives the several diameters.

The second column gives the corresponding sectional areas»

The remaining columns give the several velocities of flow

from 4 ins. (.i m.) up to lo ft. (3 m.) per second, and each

velocity column is subdivided into two columns, the one giving

the loss of head (y j
per unit of length, and the other giving

the discharge (0.
An examination of the table of Darcy's results shows that

approximately the loss li is directly proportional to the length.

L of pipe under consideration and to the square of the velocity^

V, and is inversely proportional to the diameter d.

Therefore

127.)
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but these values must necessarily vary with every different

class of pipe.

Various modifications of Hagen's formula have been pro-

posed, and perhaps one of the best is that contained in a paper

by Thrupp, read before the Society of Engineers (London) in

1887. It may be written

I ^ , ,
Z /w^V'— = cosec. of slope angle = 7- = I

— I
,

X -\-y\l being substituted for ;r when in is small. The

values of n, c, x, y, and z, for a pipe or channel, are given

by the following table:

Surface. « c jc y z

Wrougfht-iron pipes 1.80 0.004787 0.65 0.018 0.07

Riveted sheet-iron pipes 1.S25 0.005674 0.677

V .
. .

J
1-85 0.005347 0.67

New cast-iron pipes A ,_ ,
•^ "^

( 2.00 0.006752 0.63

Lead pipes 1.75 0.005224 0.62

u ... I 1.74 0.004000 0.67Pure cement rendering .... .(

I 1-95 0.006429 0.61

Brickwork (smooth) 2.00 0.007746 0.61
" (rourh) 2.00 0.008845 0.625 0.01224 0-50

Unplaned plank 2.00 0008451 0.615 0-03349 0.50

Small gravel in cement.

—

2.00 0.01181 0.66 0.03938 0.60

Large ' .... 2.00 0.01415 0.705 0.07590 i.oo

Hammer-dressed masonry. 2.00 0.01117 0.66 0.07825 i.oo

Earth (no vegetation) 2.00 0.01536 0.72

Rough stony earth 2.00 0.02144 0.78

Osborne Reynolds has propounded a simiple law of resist-

ance embracing the results of Poiseuille and Darcy, and taking

into account the effects of viscosity, temperature, etc. This

law may be expressed in the form (the units being a foot and

a second)

i = the slope
h

L
V"
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in which

A = 1.917 X 10, B = 36.8, and - = i + .0336/4- .000221/^

i being the temperature in degrees centigrade. Approxi-

mately, the index ii is i if the critical velocity is not ex~

ceeded, and 1.7 to 2 for values of v greater than the critical

velocity. According to Unwin the index of d is not exactly

3 — n and should be determined independently. For a rough

surface w = 2, for a smooth cast-iron pipe « ;= 1.9, and for a

lead pipe // = 1.723—a limitation which is analogous to that

found by Froude in his experiments upon surface friction.

It may be noted that the sum of the exponents of v and d
is constant and equal to 3.

In a paper read before the Royal Society of New South

Wales, 1897, Knibbs investigates the effects of temperature

and records the results of a number of experiments, but the

formula he deduces is too complicated to be of much practical

value and requires further verification.

Fournie has also studied temperature effect and has sug-

gested a formula, but his results are not complete (Annaks des

Pouts ft Chaussees, 1898).

Again, a simple empirical law connecting v, m, and t

may be expressed in the form

in which c is a coefficient whose value is to be determined by

g 32.16 .513
experiment. Takmg c = —^= -^ >= —-^r-, then, if^ ^ wf 62.42 X/ /
3;/ ^ f, this formula may be written

7,' = in't '.
11

For values of n from .008 to .018 the results are practically

the same as those obtained by substituting the same values for it

in Kutter's more complicated formula (Chap. Ill); but while the
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two formulae closely agree in ordinary cases, they both fail in

extreme cases.

The formula is also equally applicable to open channels

(Chap. Ill), m being the mean hydraulic depth ; but Tutton

has found that when 1/1 is small, and especially in the case of

open channels, it is preferable to use the modified expression

.54 2\ i.i
I? - -

n ml
7/1 t

Lampe's well-known formula for iron pipes is

V = 203.3;«^'!z'*,

while Foss gives for the same case

8 G

In 1867, M. Levy in his Theoric d'uJt Courant Liquide^

the units being a metre and second, gave

:

for 7iezv cast-iron pipes v = 36.4jr?(i -\-Vr)}^;

" cast-iron pipes in service ^' = 20. 5|«'(i +3 Vr))^.

To these Vallot added in 1888:

for cleaned cast-iron pipes v= 32.5{r?(l -\-Vr)\^.

The corresponding formulas, with z. foot and second ^s, units,

are:

V — g^.24\mi{l + .7809 V';«)|^;

V — 52.si|wz'(i + 2.3427 V';«)}*;

i> — 8s.24\mi{i + .7809 Vm)}i.

Vallot also modified the expression for pipes in service, and

deduced

V = 64.788?«^ i^ in metric units,

or

V = g6.2'jm^i^, a foot and second being the units.
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Manning, in 1890, gave the formula

1.486 2 ,

n being the same as in Kutter's formula, Chap. III.

Flamant, in 1892, deduced the expression

and gave the following values for c:

For tin pipe <r = 284.

5

" lead "... c = 272.7
'

' glass "
. . c = 262.

1

" wrought-iron and asphalted pipe. . ^ = 257.3
" new cast-iron and tarred pipe. .. . f = 232.5
" lightly incrusted iron pipes in service., c = 205.4

8. Graphical Representation of the formula v = cmn->'

The preceding formula; are special applications of the general

expression

V = cin'i''

,

in which the coefficients c, x and y for any series of experi-

ments can be graphically determined in the following manner:

,
Taking logarithms,

log II = log c -\- X log m -|- y log i;

and if z\ is a particular value of i corresponding to a value 7'^

of V,

log 7'j = log c -{- X log m -\- y log !^.

Then

log V — log v^=y (log / — log ?,),

and is the equation to a .straight line, the rectangular coordi-

nates being the logarithms of v and of i. Selecting any set

of cjtperiments and plotting the corresponding values of log v
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and log z, a series of parallel straight lines, inclined at a con-

stant angle tan-'^, is obtained. For all the velocities corre-

sponding to log t = o or i— I, i.e., at the intersections of

these lines with the axis of '

' log i-,
'

' the general expression

becomes

V — cm''.

Taking logarithms again,

log V = log c -\- X log m,

and if t', is the value of v corresponding to a particular value

log v^ = log c -{- X log W/j.

j;/, of in

Therefore

log 7' — log 7^j = x(log m — log m^),

and is the equation to a straight line, the rectangular coordinates

being the logarithms of v and >)f ;«.

Plotting the different values of log ;« corresponding to the

particular values of log 7' in question, a series of parallel

straight lines, inclined at a constant angle tan~'x, is obtained.

When log ;« = o, or m = i, i.e., at the intersections of these

lines with the axis of '

' log 7',
'

' the general expression

becomes

Therefore

log 7' = log c,

and the coefficient r can be at once obtained from the diagram,

as it is the value of log v corresponding to ;;/ = i and i = i.

In 1896, Turton completed an admirable collaboration of

the most important sets of experiments on pipe-flow, more than

1000 in number, and varying widely in diameter and kind of

pipe.
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9. Diagrams Showing Results of Experiments. — By
means of the method just described, Tutton has plotted

(Figs. 83-89), representing graphically a very large number

of experiments on pipe-flow as follows.
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y. jp. .4 ^ .6 .8 8. ^ J .6 .8 2. .2 .4 .6 .8 X. J5 w* ^ ^

Fig. 85.—Flow through New Wrought-iron and Asphalt-coated Pipes.

Series i. .

.

6.. .

9-

10.

li.

II.

12.

IS-

14.

J5.

3--

Darcy.
Smith.
Smith.
Darcy.
Smith.
Darcy
Smith.
Smith.

j Ehmann,
( Hahnwald
Darcy. Series

J
Croret,

( Blue Ridge sipho
Couplet
Iben, Deseiiiss St.

Darcy. Series 8..

Iben, Schoen St.. .

Iben. Series 5a ..

Ehmann, Stuttgar
Darcy. Series 9..

, . VIZ

. . VIZ

.01

.01307

.021325
:.02182
.0219

3 i

hon
y

02198
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4. .8 .4 .6 .8 3. .2 .4 .6 .8 2. A A .6 .8 1. .2 .4 .6 .8 i

Fig. 86.—Flow through Tuberculated or Rusted Pipe of Iron or Ligbt

Mud Deposits.

9-

10.

II.

12.

12.

12.

13-

14-

14-

'5-

Iben, Koppel St., 19 years old >« = .08375

Iben, Schulweg, 19 years old ;« = .1247

Couplet nt = .0888

Darcy. Series 12 m = .02945

Iben, Schulweg, 13 years old m = .1247

Fanning, rusted pipe ?« = .020835

Darcy. Series 14 w/ = .0652

Iben. " 15a, 22 years m = .2502 +
Iben, Strohhaus, 22 years ?« = .2502

Iben, Carolinen, 15 years jn = .2502

Darcy. Series 19 , ;« = .1995

Couplet m = .266

Iben, Rotherbaum ?« = .25

Ehmann m = .2075 +
Iben, Heidenkampsweg, 25 years m= .4167

Iben, Hamm St m = .25

Iben, Glacis Chaussee m= .250
Duncan m — .25 +
Biiiley m = .4167
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i6. Leslie in = .3125

17. Simpson. Series 3 wz = .25

18. Leslie in = .3333

19. Couplet m — .4

20. Simpson »; = .3957

21. Greene « = .75

22. McElroy, Brooklyn main m = .75

23. Sherrerd, Pequannock main w = .75

23. Sherrerd, " " m = \.o

30 series, 132 experiments.

Formulce : For light tuberculations r/ = 87 to 132 in-^z-'>^.

Forheavy tuberculationsz' = 31 to 80 m-^i-i^.
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-4. .2 A .6 .6 S. .3 .4 .6 .8 2. .2 .4 .6 .8 1. .2 .4 .6 .8

Fig. 88.—Flow through New Cast-iron and Cement-lined Pipes.

1. Ehmann, Neckar St m= .0S27 +
2. Darcy. Series 16 "' = .067175

3. Iben, Wenden St m = .0835

4. Iben, Haller St m= .1245

5. Parcy. Series 17 m— .11237

6. Darcy. " 18 »t = .1542

Ehmann, Stuttgart tn = .20725 +
Russell, St. Louis m= .25

Darcy. Series 22 '« = •4ioi

Fanning, cement-lined '« = 4'67 +
Friend, Seville m = .4375

Woods, Newton (doubtful) »i = .5

Stearns, Rosemary pipe *n = i.o

13 series, 79 experiments.

Formula . w = 126 to 158 m-^i-i^.

6.

7-

8.

8.

9-

10.

II.
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/5t .6 .8 8. .2 A .6 , .8 ?. .3 A .« .8 1. .2 .4 .6 .8

Fig. 89.—Flow through Old, New, and Cleaned Cast-iron Pipes.

1. Darcy. Series 13 m — .02985

2. MeuTiier, Torcy, 2S-30 yeiirsi old ?« = .1107

3. Darcy. Series 15 ?/i = .0657

4. Meunier, Nogent sur Seine, new wz = .1035

5. Coffin, Taunton miiin, 2^ years old .., . 711 = .625

6. Meunier, Chareiiton, 2 years old m = .1640

7. Darcy. Series 20 ?« = .2007

8. Darcy. " 21 m = .2436

9. Forbes, Brookline main, 8 years old m= .3333

10. Humblot, I series, 10 years old >n = .4921

11. Meunier, Bercy m = .4921

12. Humblot, 3 series, 6, 7, and 12 years old ... m = .6562

13. Meunier, Canal de I'Oise, I year old m = .7382

14. Bruce, Blane Valley, new m = 1.0

16 series, 80 experiments.

Formula: z/ = 96 to 148 m-'^t-^^.
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16. Values of c, x, and y in the Formula v = cvai'iy.—
Tutton found (see Reynolds' formula) that, in the general

formula v = cm'^i",

4r -|- _y = a constant = 1 . 1 7

,

and therefore

The values of c and y he has tabulated as follows

:

<: y
For tin pipe 189 .58

For lead pipe 168 .58 Older experiments give c =
189.

For brass, zinc, and glass pipe 165 .56 In one set of glass experi-
ments c = 141.

For wrought-iron pipe 160 .55 c varies from 127 to 165, ap-

proximating to the higher

number.

For wood-stave pipe 125 .51

For new cast-iron or tarred

pipe 130 .51 In tarred pipes c varies from

115 to 152, the values be

ing about the same as in

cast-iron pipes of same
size. Benzinger gives for

a 60-in. cast-iron pipe c

= 129.

For pipe in service 104 .51 Generally c is about 105. In

the Rosemary pipe c =
117.

For tuberculated pipe 30 to 80 . 5

1

For lap-riveted pipe 115 .51 f varies from 12510 135 for

new to no to 114 for pipe

in service.

For rubber and leather hose. . 160 .51

For wrought-iron pipe asphalt-

coated 170 .55 In some cases c = 140, and in

the 48-in. pipe c = 199.

For large brick conduits 129 .52 Unobstructed by shafts.

For large brick conduits 91 .52 Fullerton Avenue conduit of

Chicago water-supply.

For large brick conduits no .52 Chicago land tunnel.
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The values of c in this table are mean values and neces-

sarily vary with age and roughness.

Throughout the analysis of these experirnents the total

head was diminished by the loss of head at entrance, and in

the cases in which this loss had not been found by means of

I v^
piezometers it has been calculated from — — , c^ being the

coefficient of contraction.

Assuming for j/ the approximate value .5, Tutton's formula

tecomes

i> ^ cm '?'' =: cmH^.

Ex. I. The head over the sharp-edge entrance into a pipe, 1000 ft.

long and passing i cu. ft. of water per sec, is 9 ft. Find the diameter,

taking/ = .0055.

v' (

I

4 X .0055 X iooo\ 49 / 22 \

For 3. first approximation, disregarding the first term on the right-

hand side, which is small as compared with the second term,

49 22 49 I

^ 16. 121 rf" 88 d'''

and d = .57319 ft.

For a j^iTowrt? approximation

49 / 22 \

9- ]6.i2irf'i'-5+ .57319/'

or d'= '^ X 39.8817,
9. 16. 121 ''^

'

and d = .5787 ft.

Ex. 2. The effective heiglit of the grade line above the entrance into

a clean iron 3-in. branch, 1000 ft. long, is 20 ft. 5 ins. How many peo-
ple will the branch supply with 20 gallons of water per head per day of

24 hours }

f = .005(1 + —L—-
)
= J-,

\ 12 X \j 150

, _ 4 X T^g X 'OOP w" 5 ,

,

•^^-
i 64=

r-
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and z/ = 3; ft per sec.

The delivery in cu. ft. per sec.

22 1

7 aV) 3* - 64

The delivery in gallons per day

= 7- X 6i X 60 X 60 X 24 = 92,812^,

and the number of people served per day = — ~ = 4640I,

or 4640.

Ex. 3. Find the proper diameter of a rough pipe to give 60,000,000 of

gallons every 24 hours, the slope of the pipe being i in 800.

22 d'' 60.000,000
-V =

74 6J . 60 . 60 .
24'

,. 14000
•or d'v = —I

.

99

Usmsr Hagen s formula, viz., — = —-— = -—

,

''

,

L d^ 800

and taking a = .0007, n = 2, and x = 1

I _ .0007 2 .0007/ 14000 y
too ~ d'-'

^ "*"
d'-' \ ggd' I

'

I \ 4000 \

^

rf5-i = 800 X .0007 —I .

\ 99 /

or

Therefore d = 6.22 ft.

Ex. 4. What should be the slope of a 24-in wooden-stave pipe to

give 5,940,000 gallons per day }

22 (2)^ 5,940,000— —'— .v= ., .—7- = II,
7 4 6i . 24 . 60 . 60

and w = 3^ ft. per sec.

Take the formula v = cm^-^T->iy.

By the Table, <r = 125 and _>' = .51.

/2\-« SI

Therefore 3^ = '^sl-J i ,

and i = .002212, or about 22 in 10,000



1S6 TRANSMISSION OF ENERGY.

II. Transmission of Energy by Hydraulic Pressure.

—

Let Q cu. ft. of water per second be driven through a pipe of

diameter d ft. and length L ft. under a total head of H ft.

Also let n per cent of the total head be absorbed in overcoming

the frictional resistance in the pipe. Then

the head expended in useful work = // — h
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p (= wH) being the pressure corresponding to the head H.
The efficiency diminishes as v increases and therefore, so far

as efficiency is concerned, it is advantageous to transmit energy

at a low speed. Again, the efficiency is constant if—> is con-
pa

stant.

Assuming this to be the case, take v^ = c^ . pd. Then the

nd'^
total energy transmitted = wQH — w vH

4

nc , s= —p^d"^.
4

If it be also assumed that the thickness t of the pipe-metal

is so small that the formula

pd — 2/7

holds true, f being the circumferential stress induced in the

metal, then

the energy transmitted = —p^d'^
4

ncf'td ,—
^ Vpd
2

cf'V
V^pd,

V being the volume of the pipe per unit of length.

Hence, for a given volume V of metal and a constant

efficiency, the energy transmitted is a maximum when pd is a

maximum.

If / is increased beyond a certain limit, the ratio -j is no

longer small and the thickness / will have a greater value than

that given by the equation pd — zf't. Then the cost of the

pipe will also increase. On the other hand, if ^is increased.
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the ratio -3, and therefore also the pressure /, will remain
a

small, and thus the cost of the pipe will not increase. Hence

it is more economical to employ large pipes and low pressures

than small pipes and high pressures.

The demand for hydraulic power in large cities has led to

the laying down of networks of mains through which water is

conveyed under pressure and is distributed to the consumer

for various industrial purposes. Since the loss of head due

to frictional resistance is approximately proportional to the

square of the velocity, and since also the momentum of the

moving fluid must not be so great as to make excessive shocks

possible, high velocities cannot be allowed in the mains or in

the machines operated by the pressure-water except for very

short distances. Thus, the velocity of flow in the mains is

limited to 6 ft. per second, and rarely exceeds 8 ft. per

second in the machines. In London the average rate is 4 ft.

per second. Again, the quantity of power conveyed by a

single main cannot be great. Hence the hydraulic distribu-

tion of power, in which the pressure of water is directly utilized,

is especially adapted for machines with slow-moving rams,

which are intermittent in action and which work only for short

intervals of time, as, for exmple, in lifting and pressing opera-

tions and when a great effort is to be exerted through a

short distance. In London the pressure in the mains is 750

lbs. per sq. in., but in the more recent distributions in Man-

chester and Glasgow the pressure is 11 00 lbs. per sq. in. The
working stress in the cast-iron mains, the largest in use being

'j\ ins. in diameter, is 2800 lbs. per sq. in., and they are

generally tested to 2500 lbs. per sq. in. before laying and to

about 1000 lbs. per sq. in. after laying. The thickness t in

inches of cast-iron main of d ins. diameter under a water-

pressure of / lbs. per sq. in. may be determined by the

formula

t = .oooydipd -|- .25 in.
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Another formula gives / = .oo24pd -\- .75 in., / being the

pressure in atmospheres.

With suitable joints, and drawn tubes of steel with a tenacity

of 15,000 lbs. per sq. in., the hydraulic system of distribution

could be greatly extended.

Again, for an hydraulic pipe or press

r^ — rj' ~ r^ r^ — r,

where /j , p^ are the intensities of pressure at the outer and

inner surfaces;

f is the intensity of stress at the radius r
;

r^ , r, are the radii of the outer and inner surfaces.

(See Appendix, Bovey's "Theory of Structures.")

Ex. I. An accumulator supplies a pressure of 700 lbs. per sq. in.

What length of 8-in. pipe will deliver 200 H.P. of useful energy with

a loss of 20 per cent ?

250 H.P. enter the pipe. Therefore, if Q is the delivery in cu. ft. of

water per sec,

144 . 700 „
250 = ^^

Q.
550

27s 22 l/2\"

252 ^ 7 4\3/

25
and V = -5- ft. per sec.

o

Take / = .005 ^i + j^-^) =7^ .
for a clean iron pipe.

Then

27S 4 X tAit X ^ (-'

100
X 250 = loss = 62J .

^^i
.
^ ^-^ ^ .

—
-,^ 252 I 64 550

2. being the length of the pipe.

Therefore Z = 78,293.7 ft. = 14.8 miles.

Ex. 2. The efficiency of an engine is .6; it burns 2 lbs. of coal per

hour per H.P and works 16 hours a day for 300 days in the year. The
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cost of the engine is $12 per H.P,, and the cost of the coal $3 per ton.

An amount of 4500 gallons of water per minute is to be raised a vertical,

height of 200 ft. What must be the minimum diam., Z>, of the pipe,

assuming that the cost of the piping is $Z) per lineal foot, and that

/= .0064 ?

Let ^ feet be the frictional loss of head.

Then, since
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f lbs. per sq. in. Water being slightly compressible—losing

1^-^ of its bulk under a pressure of 2 tons (of 2240 lbs.) per

square inch—a compression-wave starts from the valve and

moves backwards throughout the whole length L ft. of the

moving column of water. The water still enters the pipe for

the period of t seconds, during which the compression con-

tinues.

Let a ft. be the sectional area of the water-column

;

" X it. be the diminution in the length L of the water

column

;

" Khe the modulus of cubic elasticity of water = 300,000

lbs. per sq. in.

Then

L~ K
X = vt,

w
and I44« ft. = momentum of the fluid mass = — aLv.

Hence

\ w L \ w L 1 w L^ f
^ ~ 144J T' ~ 144^ J^ ~ 144 ^ ? K'

and \'*'

— = velocity of the wave-propagation =J\/—

.

t \ w

Substituting the values of ^, K, and w, the velocity of wave-

propagation is found to be about 4720 ft. per second, which is

also the velocity of sound in water.

Ex. A volume of water 50 ft. in length, flowing through a pipe with

a velocity of 24 ft. per sec., is quickly and uniformly stopped in one tenth

of a second by closing a stop-valve. Find the increase of pressure per

sq. in. in the pipe near the valve.

„ '

. 624 I 50. 24 , - ,,

The pres. per sq. in. = —^ . . = 162.76 lbs.f f ^ 32 144 .1
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13. Flow in a Pipe of Uniform Section and of Length Z,

connecting two Reservoirs at Different Levels.—Let z ft. be

the difference of level between the water-surface in the two

reservoirs.

Fig. 90.

The work done per second is evidently equal to the work

done by the fall of w^ lbs. of water through the vertical dis-

tance s, and is expended—
(i) In producing the velocity of flow v ft. per second, which

requires a head of z^ ft. and an expenditure of zvQz^

ft. -lbs. of work per second;

(2) In overcoming the resistance at the entrance from the

upper reservoir into the pipe, which requires a head

of .^2 ft. and an expenditure of wQz^ ft. -lbs. of work

per second;

(3) In overcoming the frictional resistance, which requires

a head of z^ ft. and an expenditure of wQs^ ft. -lbs.

of work per second. Thus

wQz = wQz^ + wQz^ + 7vQz^

,

or

— ^1 ~r '^2
I ^s-

V
Now

^'i
= — ft., and the corresponding energy ifQz.^ is

ultimately wasted in producing eddy motions, etc., in the lower

reservoir.

z^ may be expressed in the form ?i— ft. , n being a coeffi-
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cient whose value varies with the nature of the construction of

the entrance into the pipe. If the pipe-entrance is bell-mouth

in form, «.= .01 or .02, but if it is cylindrical, n = .49.

Finally,

^ tn w d 2g

F{v\ z'^

taking —^ = f— , as is usual in practice. Hence
^ w ^ 2g ^

•since Q =: v, and g is assumed to be 32.
4

For given values of Q and z a first approximate value of d
may be obtained from the last equation by neglecting the term

'".
,. (i -4- fi). Call this value d., and substitute it for the d

AfL
in the term —j— within the brackets. A second approximation

may now be made by deducing d from the formula

and the operation may be again repeated if desired.

Generally speaking, i -|- ;? is usually very small as com-

4/Z
pared with ~j , and may be disregarded without error of prac-

tical importance.

The formula then becomes

_ 4fL v^
^" d 2g'

which is known as Chezy's formula for long pipes.
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The term i -\- n need only be taken into account in the

case of short pipes and high velocities.

Ex. The difference of level between the water-surfaces of two reser-

voirs, connected by a 24-in. pipe 6J miles in length, is 172^ ft. The
pipe, having been in use for some time, has its inside surface coated

with a deposit, and no special provision is made to diminish the resist-

ance at the upper end. Determine the discharge into the lower reser-

voir in gallons per hour.

Take

Then I72i

V 12 X 2/ 96

4 X ^V X 6J X 5280'
-t- I -I- : ^- X 689,

and w = 4 ft. per sec.

Therefore the discharge in cu. ft. per hour

22 2"

~7 4

and the discharge in gallons per hour

= 45,257^- X 6i = 282,857^.

.4 .60.60 = 45,2571,

14. Losses of Head due to Abrupt Changes of Section,

Elbows, Valves, etc.—When the velocity, or the direction of

motion of a mass of water flowing through a pipe, is abruptly

changed, the water is broken up into eddies or irregular

motions which are soon destroyed by viscosity, the correspond-

ing energy being wasted.

Case I. Loss due to a sudden contraction. (Art. 17,

Chap. I.)

Fig. 91. Fig. q2.

{a) Let water flow from a pipe (Fig. 91), or from a reser-

voir (Fig. 92) into a pipe of sectional area A

.
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Let Cc be the coefficient of contraction.

Then the area of the contracted section — c^ , and

I (v V
the loss of head = — I v]

2g\c, I

= ^(1-1?
2g\ I

V= m—

,

where m L--')'

The value of m has not been determined with any great

degree of accuracy; but if c^ = .64, then m = .316. The
value of c is sometimes obtained from the formula

h'-'s/'c. -\l
2.618- i.6iC^,

When the water enters a cylindrical (not bell-mouthed)

pipe from a large reservoir, the value of

m is about .505.

{b) Let the water flow across the

abrupt change of section through a central

Fig. 93. orifice in a diaphragm placed as in Fig. 93.

Let a be the area of the orifice.

Then c^ is the area of the contracted section, and

2 j;2 ^2— = m—
2^ 2^'

the loss of head = I
-—

•
— \\ — =^ m

where ;« = ( i

)



i66 LOSSES DUE TO SUDDEN CONTRACTION, ETC,

According to Weisbach,

^'3 =
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Case II. Loss due to a Sudden Enlargement (Fig. 95.)

Let v4j = external area of small pipe.

" A^= " " " large "

/vA, ^^ z^ IA,

z/2

loss of head = — {—r — ^'1 = — \-r — i

)

2g\A^ j 2^Ui I

m—

,

2^

where nt = (^--)"

Note.—The losses of head in Case I (a) and in Case II may be
avoided by substituting a gradual and regular change of section for the

abrupt changes.

Case III. Loss ofHead due to Elbows. (Fig. 96.)—The
loss of head due to the disturbance caused by an elbow is ex-

pressed by Weisbach in the form

m—

,

2^

where m= .9457 sin' --+ 2.047 sin* -,

4> being the elbow angle.

Weisbach deduced this formula from the results of experi-

ments with pipes 1.2 in. in diameter.

The velocity z\ with which the water flows along the length

AB may be resolved into a component z> with which the water

flows along BC and a component u at right angles to the

direction of v. The component u and therefore the corre-

n^
sponding head, viz., — , is wasted. The component u evi-

dently diminishes with the angle cp and becomes nil when a
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gradually and continuously curved bend is substituted for the

elbow.

Fig. 96.

Case IV. Weisbach gives the following empirical formula

for the loss of head at a bend in a pipe, being the angle of

curvature

:

„ ( d\l
where ^«^ = .1 31 + 1.847^^—

j

for a circular pipe of diameter d, p being the

radius of curvature of the bend, and Fig. 97.

.124 + 3.104I
\2p'

for a pipe of rectangular section, s being the length of a side

of the section parallel to the radius of curvature (p) of the bend.

According to Navier,

h/, = (.0128 + .01867?)^
2^

R being the radius and L the length of the bend measured

along the axis.

As a result of recent experiments by Gardner S. Williams

and others (Proc. Am. Soc. C. E., May, 1901) it is claimed

that, down to a limit of 2^ diameters, curves of short radius

offer less resistance to flow than do curves of longer radius,

which is contrary to the ordinary hypothesis.
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Case V. Valves, Cocks, Sluices, etc.—The loss of head in

each of the cases represented by the several figures may be

traced to a contraction of the stream similar to the contraction

which occurs in the case of an abrupt change of section. The

v^
loss may be expressed in the form m— ; and the following

tables give the results obtained by Weisbach:

(a) Sluice in Pipe of Rectangular Section. (Fig. 98.)

Area of pipe = a; area of sluice = s.

.9 .8 .7 .6 .5 •3 ..2 . I

m = .00 .09 .39 .95 2.08 4.02 8. 12 17.8 44.5 193

Fig. 98.

(If) Sluice in Cylindrical Pipe. (Fig. 99.)

s = ratio of height of opening to diameter of pipe.

s= I .875 -75 .625 .5 -375 .25 .125

m = .00 .07 .26 .81 2.06 5.52 17.00 97.8

{c) Cock in Cylindrical Pipe {^\g. 100).

.J = ratio of cross-sections;

B = angle through which cock is turned.

Fig. 99.
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(d) Throttle-valve in Cylindrical Pipe (Fig. loi).

B = angle through which valve is turned.

If (9= 5" 10° 15° 20° 25" 30° 35° 40°

;«=.24 .52 .90 1.54 2.51 3.91 6.22 10.8

\{e= 45" 50° 55" 60° 65° 70° 90°

;«=i8.7 32.6 58.8 118 256 751 00

Case VI. The fall of free surface-level, or loss of head, due

to sudden changes of section, frictional resistance, etc., may-

be graphically represented as in Fig. 102.

Fig. 102.

Let a length of piping AE connect two reservoirs, and let

h be the difference of surface-level of the water in the reser-

voirs.

Let Zj , r^ be length and radius of portion AB of pipe.

" Zj, r^ " " BC
" L^, r^ " " " " " " CD
" L,, r." " " " " " DE
" u^y u^y u^, u^hQ the velocities of flow in ABy BC, CD^

DEy respectively.

n a

a I (

a it
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The reservoir opens abruptly into the pipe at A.

There is an abrupt change at B from a pipe of radius r, to

one of radius r^.

There is an abrupt change at C from a pipe of radius ; ,,
to

one of radius r^

At D the water flows through an orifice of area A in a

diaphragm. At E the velocity of the water as it enters the

lower reservoir is immediately dissipated in eddies or vortices.

Draw the horizontal plane amnop at a distance from the

water-surface in the upper reservoir equal to the head due to

atmospheric pressure.

Draw vertical lines 2X A, B, C, D, E. Take

ab =loss of. head at the entrance A = .49^- ;

2^

2fu '

qc = " " " due to friction from A to B =— -^Z,

;

r, 2^

re— " " " due to friction from .g to C =%^L-,
r'2g

u'
ef= " " " due to change of section at C=.^i6—

;

" " " due to friction from C to Z> =-^ . ^L,;

gA— " " " due to change of section at /?= I—^""J-^t

tk= " " " due to friction from Z> to .£ =^^Z.;
r. 2g

u '

kl=^ " " " corresponding to u =—

.

2^
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Through / draw a horizontal plane Ix. This plane must

evidently be at a distance from the water-surface in the lower

reservoir equal to the pressure-head due to the atmosphere.

Then the toial loss of head = l/>

= al>-\- cd-\- ef^gh -\- kl-\-qc -\- re \- sg-\- tk,

^ r, 2g '^ r, 2g '^ r,2g '^ r,2g

^ g ' \ r;^ r^r:^ r^r:^ r,r:\

- 2n'g \ r: + W.' ^)r:^ r^ ^\cA I r: ^ r/ \

^'g\ ^i r^^ r,~ r,]

The broken line abcdefghkl is the hydraulic gradient.

Ex. A clean 6-in. pipe, 400 ft. long, containing a 60° bend with a

i2-in. radius, a 90° bend with a 72-in. radius, and a 120° bend with a

4S-in. radius, discharges i cu. ft. of water per sec. into a clean 12-in. pipe,

200 ft. long, which again discharges into a clean 4-in. pipe, 500 ft long,

containing four sharp knees, viz., one of 60°, one of 90°, one of 120°, and

one of 150°. Find the total head wasted at the pipe entrance, at the

.bends, knees, sudden changes of section, and in the straight lengths.

Let z'l, z/j, Vi be the velocities of flow in the first, second, and third

lengths, respectively. Then

22 I /i \' 22 I
, ,,

22 I /i "

7 4 \2 y 1 ^^ 7 4 \3
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and

^' = 77 ^^- P^"" ^^*^-- ^'» = ~ ft. per sec, v-, =— ft. per sec.11 II II
"^

Head wasted at pipe entrance = -
(— ) — = .20332 ft.

The head wasted at a bend = 7«j-^ —
1 80° 2g

'

where w« = .131 + i.SAvf— p.

„ ^ 6 I

i"or — = —;=—, ?«4 = .14544 ;

2/J 26 4 ^'^^

'

„ (/ 6 I— = '= —

,

mi, = .i'?io2727:
2/-J 144 24 " •

J / / .

„ i^ 6 I

i7=^=6' «'4 = .i3iM3.

Hence

head wasted at 60° bend = .14544 x ^Vb x ^V x (ff)" = .019632 ft.,

90° ' =.130273 x,:^^ X ^T X (ff)^ = .0265303 ft.,

120° " = .131113 X ifj X ^ X {\\f = .035396 ft.,

and the head wasted in bends = .081558 ft.

The head wasted at a knee = triu—

,

where ' mu = .9457 sin" 1- 2.047 sin* —

.

2 2
For a 60° l<nee (p = 120°, mu = 1.8607

9°° " </> = 90°, mk = .9846

' 20° " <;& = 60°, nij, = .36436

'5°° " 0= 30°, mk = .07254

Then

head wasted at 60° I<nee = 1.8607 x TrC'rV)" = 3-81463 ft.,

90° " = .9846 X si^CJiV)' = 2.01853 "

120° " = .36436 X ^V(-'i¥)'= 74697 "

150° " = .07254 X ,V(JrVO» = .14871 "

and the head wasted in knees = 6.72884 ft.

Head wasted at junction

between 6-in. and 12-in. pipes = nV (ff — if)" = .22778 ft.,

J • .3i6/i26\' , „ .
i2-in. and 4-in. pipes = -~-\ ^1 = .64783 ft.,

and the head wasted at sudden changes of section = .87561 ft.
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For straight lengths

take/ = .005(1 + j-j^j = "^ for 6-in. pipe,

„ ^ / I \ -065 ," /=.oo5i-| =

—

- " 12-in. "
\ 12 X 1/ 12

Then head wasted

°35
4 x^-400

in ist length =
-^ 6^1^) "" ^'"^^ '

.06;
4 X i-200

, .J
J ..

^12 I /l4\'' ,
2d " = -^\^\ = 7-OI929 ft.,

I 64\iiy

.025
4 X =^500

3d
4 -^ I / 1 26—

j
=76.8788 ft..

i 64\

and the frictional loss of head = 91.14329 ft.

Hence the total head wasted

= .081558 + 6.72884 + .87561 + 91.45729 = 99.1433 ft.

16. Nozzles.—Let a pipe AB, of length / and diameter d,

lead from a reservoir h ft. above the end B, Fig. 103.

First. Let the pipe be open to the atmosphere at B.

Then

h = head to overcome resistance to entrance zX A = w—

]

('iP' \= m— 1

+ head to overcome frictional resistance 1= '^ —

|
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+ head corresponding to the velocity i> in the pipe and

at the outlet ( = —

]

:= — \n -\- m-\-

Fig. 103.

Hence the height to which the water is capable of rising

at B

•or, again, is

2?

- r
I + « + ni + 4/^

Second. Let a nozzle be fitted on the pipe at B.

Let V be the velocity with which the water leaves the

nozzle.

Let D be the diameter of the nozzle-outlet.

This diameter is very small as compared with the diameter

d of the pipe. But

and therefore

4 "^4^'

Z>2
'

so that V is very large as compared with



176 NOZZLES

Also,

h = head to overcome the resistance to entrance at A
-\- head to overcome the resistance due to bends, etc.

-|- head to overcome the frictional resistance in pipe

-f- head to overcome the frictional resistance in nozzle

,
v\

in —
-f- head corresponding to the velocity V with which the

(=-1water leaves the nozzle .

2g>

= — V

and the height to which the water is now capable of rising at

i?is

— = /z « + 7« H 1
— m —

2g 2g\ ' d j 2g
h

I> I Afl\'
l+,^' + _(, + ,, + 4^j

Let — . = ^„ , be the pressure-head at the entrance to the

lozzle. Then the effective head at the same point

=^ k„-\ = (i 4- ,«')—.
"

^ 2g "- ^ >2g

Hence

2g
,

D"

It will be observed that the delivery from the nozzle is less

than that from the pipe before the nozzle was attached, but
that the velocity-head at the nozzle-outlet is enormously
increased. The actual height to which the water rises on
leaving a nozzle is less than the calculated height, owing to
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air-resistance and to the impact of particles of water as they

fall back.

The force required to hold the nozzle is evidently

-r <§• 4

If the water flowing through a pipe, or hose, of length / ft.,

with a velocity of v ft. per second, is quickly and uniformly

shut off by a stop-valve in t sec, the pressure in the pipe near

the valve is mcreased by an amount —- lbs. per square foot.

Of two forms of nozzle in general use, the one (Fig. 105)

is a surface of revolution with a section which gradually

diminishes to the outlet, while the other (Fig. 104) is a frustum

Fig. 105.Fig. 104.

of a cone, having a diaphragm with a small circular orifice at

the outlet. Denoting the former by A and the latter by B,

the following table gives the results of Ellis's experiments:
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Freeman proposed the i^-in. nozzle shown by Fig. io6

Fig. io6.

as a standard with a coefficient of discharge = -977- The

coefficient of discharge for a square ring nozzle is about .74.

FREEMAN'S TABLE SHOWING COMPARATIVE FRICTIONAL
LOSS IN VARIOUS KINDS OF HOSE.

The comparison is made on the basis of a flow of 240 gals, per min.,

which is about the quantity discharged by a i^-in. nozzle under a pressure

of 40 lbs. per square inch at base of play-pipe.

Character of Hose.

2i" solid rubber hose, extra heavy, smooth
and- free from ridpes

9.\" solid rubber hose lighter than preceding
and not so carefuV.y made

a\" woven cotton hose, rubber-lined, regular
heavy fire-department hose

si" woven cotton hose, rubber-lined, lighter
than preceding, but of about the same
smoothness of interior ,.

.

ai"knitcotton hose, rubber-lined. A medium-
weight hose

aV knit cotton hose, rubber-lined. Interior
medium smooth

sj" knit cotton hose, rubber-lined, A regular
fire-department hose. .

24" knit cotton hose, rubber-lined. Inside
rather rough

>z\" knit cotton hose, rubber-lined. About
same as preceding, but a little heavier ....

ai" leather hose ,

ai" woven cotton, rubber-lmed, mill hose.
Medium thin rubber lining. . . . . . :

ei" unlined linen hose
a" woven cotton, rubber-lined hose
ai" linen hose with 2" couplings
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Third. If an engine, working against a pressure of p^ lbs.

per square foot, pumps Q cu. ft. of water per second through

a nozzle at the end of a hose / ft. in length, then

QPc
the pumping H.P. of the engine = .

The total head at the engine end of the hose = the head

corresponding to the pressure/ in the hose -j- the head required

to produce the velocity of flow v

and this head is expended in overcoming the frictional resist-

ance of the hose (all other resistances are disregarded) and in

producing the velocity of flow V at the outlet. Hence

W W 2g d 2g Zg'

and therefore

W~ d 2g'^ 2g 2g'

_ 8g / I I 4//\
~

^7r2 \D' d*'^ d^ j'

nd'^ 71D^ ^^
since Q — z' = y.

4 4

The pumping H.P.

_ 8wQ' /_i_ 4/A
- e,^og7zAn*'^ d^r

17. Motor Driven by Water from a Pipe.—Let the nozzle

in the preceding article be replaced by a cylinder having its

piston driven by the water from the pipe.

Let u = the velocity of the piston per second.
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Let/^ = unit pressure at the end of the pipe, i.e., in the

cylinder.

Let d„ ^= diameter of cylinder.

Then

velocity of flow in pipe = (-^

2

u.

Hence

\d) 2g'^ d'\d] 2g^ w'

other losses of head being disregarded.

Ex. A Sis-in. clean pipe, 525 ft. long, leads from a reservoir with a
water surface 300 ft. above datum to a point A, 187^ ft. above datum.

Find (a) the height to which the water is capable of rising at A (i) if

the pipe is open to the atmosphere
; (2) if it terminates in a i-in. nozzle.

What
(J>)

force is required to hold the nozzle ? If the pipe is used to

supply pressure to a water-engine with a 28-in. cylinder, determine (c)

the maximum power which can be developed and the corresponding

velocity of flow in the pipe. In the latter case, what (d) is the total

pressure on the piston ? Tatce into account the resistance at the pipe

entrance and assume/ = .005.

Let V and V be velocities of flow in pipe and from nozzle, respect-

ively.

(a) I. 300 — i87j = 112^ = total effective head

V / 4 X .005 X 525\

and -— = 3 ft. = height to which water can rise.

37i.

2.. = ^; and

Zl . Kl(l_\/ + 4 X .005 X 525\ ^ V^ 2985_

2,f 2g-V3s/ ( 3i \ 2f 2401"

Therefore

^'
, 2401 , ^ . , , . ^— = 112A X —^ = 90.49 ft. = height to which water can rise.

2g 2985
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{6) Force = momentum

^62^ 22 l(±Yy^^ 111 ^l J_ g. HS
32 7 4V'2y 64 "14 144 *• 2

2401

2985"
61.8 lbs.

(c) Let ^ be the pressure in pounds per sq. ft. at A. Then

. 62i 37i/

Hence

the H.P. =^ :

550 550 *(-l)f-HS)""

3072 V'' 64^

3t/
which is a max. when 3 — ^ = o,

^ 64

Aj

(c

8 ft. per sec, and the

max. H.P. = 4\«l = 4.557.

Also /> = 62J . 75 = 4687J lbs. per sq. ft., and total pres. on piston

^o , 22 I /28\^ I . ,= 46874 X — .— . — = lOrfj tons.
7 4 \i2/ 2000

18. Siphons.—A siphon is a bent tube, ABCD, Fig. 107,

and is often employed to

convey water from one reser-

voir to another at a lower

level.

Let h^, k^, respectively,

be the differences of level

between the top of the siphon

and the entrance A and outlet

D to the siphon. Then, so

long as the height k^ does not

exceed the head of water

(= 32.8 ft.) which measures ^'°- '°7.

the atmospheric pressure, the water will flow along the tube in

the direction of the arrow, with a velocity v given by the

equation
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I being the length of the tube ABCD, and all resistances,

except that due to frictional resistance, being disregarded.

If ^j > 32.8 ft., each of the branches AB and DC becomes

a water-barometer, and the siphon will no longer work.

Even when the siphon does work, an arrangement must be

made for withdrawing the air which will always collect at the

upper part of the siphon.

19. Inverted Siphons.—The existence of a cutting or a

valley sometimes renders it necessary to convey the water from

a course AB to a. course DE by means of an inverted siphon

BCD of length /.

Let u be the velocity of flow in AB, and h^ the height of B
above a datum line.

Let V be the velocity of flow in the siphon, and h^ the

height ofD above datum.

Fig. 108.

Then

h^— h^^ loss of head at B
4" frictional loss of head in siphon

+ loss of head at D
tfi A.fl 7? v^— — I Z£ _|_

2^ d 2g ^ 2g

Afl v"= —J , approximately,

assuming the entrance and outlet to the siphon formed in such

a manner as to considerably reduce the losses — and — , and
2g 7.g



/IIR IN A PIPE. 183

to allow of these losses being disregarded without practical

error. Find, by chaining along the ground, the length of the

siphon from ^ up to a point F not far from D. Call this

length /j , and let h^ be the height above datum of F, obtained

with a level. Generally speaking, DF is nearly always of

uniform slope. Call the slope a. Then,

DF = {h^ — h^ cosec a.

But

d 2g'
4/ v^

h — h, — DF . sin a.

an equation from which DF can be found, as k^ — h^ can be

determined by means of a level.

20. Air in a Pipe.—The effect of an air-bubble in a pipe

ABCD may be discussed as follows:

Let the air occupy the portion BC of a pipe.

Let the surface of the water in the reservoir supplying the

pipe be h^ ft. vertically above E, and h^ ft. above D.

Fig. 109.

Also, let ^3 be the difference of level between C and D, h^

the difference of level between B and C, and / the thickness of

the water-layer EF.

Let .^designate the head equivalent to the elastic resistance

of the air in BC. Then, approximately,

i>. 4/A "v^
^Jt _ u — f — 3£_i—

d ig1 ' not
t =w



184 FLOfV IN PIPE OF yARYING DIAMETER.

and

^ w a 2g

/, being the length of the portion of pipe from A to E, and

l^ the length from E to D.

Adding the two equations,

K + K All 2J d 2gd 2^^

I being total length of pipe.

But k^ — t -\- h^^ h^— k^, very nearly.

d 2g'

Hence

K =

an equation showing the variation of v with a variation in the

height h^ of the space occupied by the air.

Note.—//of course varies with the temperature.

21. Flow of Water in a Pipe of Varying Diameter.—The
variation in the diameter is supposed to be so gradual that the

fluid filaments may still be assumed

to flow in sensible parallel lines.

Consider a thin slice of the

moving fluid, bounded by the trans-

verse sections AB, CD, distant s

and s -\- ds, respectively, from an

origin on the axis of the pipe.

Let / be the mean intensity of

pressure, A the water area, P the

wetted perimeter for the section AB.
Let these symbols become / + ^. A -(- dA, P -\- dP,

respectively, for the section CD.

Let js be the height of the C. of G. of the section AB above

datum.

Let c -{- dz he the height of the C. of G. of the section CD
above datum.

Fig. 1 10.
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Let u, u -\- du be the velocities of flow across the sections

AB, CD, respectively.

Then

The rate of increase of

momentum of the slice

ABCD in the direction

of the axis

momentum generated by

the effective forces acting

upon the slice in the same

direction.

™, ..... w du w
Ihe acceleration m time a^ = —Au . dt^- = —Au du.

g dt g
The total pressure on AB =z p . A, and acts along the axis.

The total pressure on CD ^ {p -\- df){A -\- dA), and acts

along the axis.

The total normal pressure on the surface ACBD of the pipe

= 2 7[(r -\ ]\P~\ ]AC ^2nrp . AC, very nearly.

The component of this pressure along the axis

= 2 nrpA C . sin B

= 2 Tipr . dr, nearly,

6 being the angle between A C and the axis.

Thus the total resultant pressure along the axis

= pA — (/ + dp){A 4- dA) + 27tpr . dr

= — p .dA — A .dp ^2 TTpr . dr

= — A .dp,

since A = nr^, and therefore dA = 2;rr . dr.

The component of the weight t7/"the slice along the axis

/ dA\ , . .= M -|-— \ds . w sin « =
dA\

A -\ \w .dz^— wA . dz.

The frictional resistance = P . AC . F{u) ^-P . ds . F(u),

very nearly. Hence

wAu . du . ,^ A J r, J r-/ \
:= — A .dp — wA .dz — P .ds . F{u),



1 86 EQUIVALENT UNIFORM M/IIN.

and therefore

dp u .du P F{u)

w ' g Aw
Integrating,

z A v- I -. ds = a constant.w 2g ^ J A w

Take®=/f = /#,.

Then

2g "^7 g '^'j^'
z+— + ^+ /^ :;^ds = a constant.

The integration can be effected as soon as the relatioa

between r and s is fixed.

Example.—Take r ^^ a \- bs, and assume f and Q to be

constant. Then

and therefore

p ,
t^

,
i/Q" fdr—\--—H r —^ / ~r = a constant,w 2g ^ g7i J r" '

z -\- — 7—2 -I = a constant.
7e/ 2^ 4i9 gn'' r*

22. Equivalent Uniform Main.—A water-main usually

consists of a series of lengths of different diameters.

As a first approximation the smaller losses of head due to

changes of section, etc., may be disregarded, and the calcula-

tions may be further simplified by substituting for the several

lengths a single pipe of uniform diameter giving the same fric-

tional loss of head. Such a pipe is called an equivalent main.-



EQUiy^ALENT UNIFORM M/IIN. 187

Let /j , /j , /j be the successive lengths of the main.

Fig. III.

Let d^, d^, d^ be the diameters of these lengths.

Let i/j, Z'j, v^ be the velocities of flow in these lengths.

Let h^, h^, h^ be the frictional losses of head in these

lengths.

Let Z, d, V, h be the corresponding quantities for the

equivalent uniform main.

Then

>% = /^j + /., + 7^3 + . . . ,

and therefore

d 2g ^, 2^ » ^ d^ zg -"^ d^2g^

Hence

where it is assumed that /is the same for the several lengths

of the main and also for the equivalent pipe.

But

nd"^ ^ Tid^ nd^
V —Q — ^—v, = —-V. = etc.

4 4 ' 4 '

Hence

:^ = Aj- A+ A + etc,
d^ d,'^ dy d,^^

an equation giving the diameter d of an equivalent pipe having

the same total frictional loss of head.
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Ex. What must be the diameter of a uniform pipe which may be

substituted for a line of piping consisting of an 8oo-ft. length of 12-in.

pipe and a 200-ft. length of 6-in. pipe ?

800 + 200 800 200

or d'' = 4.
36

and therefore d = .6738 ft., or about 8 ins.

23. Branch Main of Uniform Diameter In a branch

main AB of length L and diameter d, receiving its supply

at A,—
Let Q^ be the way-service, i.e., the amount of water given

up to the service-pipes on each side.

Let (2, be the end-service, i.e., the amount of water dis-

charged at the end B.

Then it may be assumed, and it is approximately true, that

the way-service per lineal foot, viz. , ^^ , is constant.

Thus the amount of water consumed in way-service in a

length AC of the main, where BC = s, is

%(^ - s),

while the total amount of water flowing across the section of

the pipe at C

^ 4

V being the velocity of flow at C.

Now d/t, the frictional loss of head at C for an elementary

length ds of the pipe, is given by the equation

dk^^^-'^.ds
d 2g

iig= 32.
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Integrating, the total loss of head is

^=^,(e/+ae. + f).

SPECIAL CASES.

Case I. Let QJ be the total discharge for the same fric-

tional loss of head, h, when the whole of the way-service is

stopped. Then

and therefore

Q ^

Q/' = 0/ + QeQ^ + 3

Hence

Qe" > [q. + y)' and < (q, + |-)',

and QJ lies between Q, -j- -^ and (2, + ,- . its mean value
2 V3

being S. + -SS!?^-

Case II. If there is no end-service, all the water having

been absorbed in way-service, Q^ — o, and therefore QJ — —

^

and

_ i /LQJ
~

3 n^d'
'

Case III. If Q, = o,

/Q '

d/i = ..
,y',«s'^ds = elementary frictional loss of head.
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Integrating between O and s,

, _ I fQJs'
~

3 n^d^L''

and the vertical slope, or line of free pressure, becomes a

•cubical parabola.

Case IV. Let the main receive its supply at A from a

reservoir X in which the surface of the water is k^ above

datum, and let it discharge at the end B into a reservoir Y with

its surface h.^ above datum, Fig. 114.

Since {Q/f = Q,' + Q,Q^ + ^, therefore

a- -^ + ^J{Q'ey-^

If Q^= '^^3(2/- a=o; and if Q^> V^QJ, then the

reservoir Y will furnish a portion of the way-service.

Suppose that X gives the supply for the distance AO {^= /J
and that Y supplies BO (= l^.

Let s be the height above datum of the surface in a pressure

column inserted at 0.

Then, neglecting the loss of head at entrance,

' wi \ w,

I fO ^l^= loss of head between A and = - ,, \ ,

3 n^d^I}

and

A\ /„ , A
W/ \ ' 7v

= loss of head between ^ and C = - -^r^lV
3 n^d^D

Also, /; H- 4 = Z.
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24. Three Reservoirs at Different Levels connected by a

B):anched Pipe Let a pipe DO of length l^ ft. and radius

r^ ft. , leading from a reservoir ^4 in which the water stands

h^ ft. above datum, divide at into two branches, the one,

OE, of length /^ ft. and radius r.^ ft. , leading to a reservoir B
in which the water stands h^ ft. above datum, the other, OF,

of length /j ft. and radius r.^ ft. , leading to a reservoir C in

which the water stands h.^ ft. above datum.

Fig. 112.

Let v^, v^, v^ be the velocities of flow in DO, OE, OF,

respectively.

Let 2j , 02 , Ga be the quantities of flow in DO, OE, OF,

respectively.

Let z be the height above datum to which the water will

rise in a tube inserted at the junction.

Two problems will be considered, and all losses of head

excepting those due to frictional resistance will be disregarded.

Problem L Given h^, h^, h^; r^, r^, r^; to find Q^, Q^,

Q^; v^, v^, v^, and z. Taking - = a,
o

ft ^^ 5* 1)

For the pipe DO, -^—= a— . . (i) and Q^ =nr^v^. . . (2)
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For the pipe OE,^^=c^-^ . . (3) " <2. = t^>.- • • (4>

.. .. .' OF, i=^'=A\.(s) " 03=7rr>3. . . (6)

Also, (2, = ± G2 + Gs (7)

From these seven equations the seven required quantities

can be found.

In equations (3) and (7) the upper or lower signs are to

be taken according as the flow is from towards E or from E
towards 0.

This may be easily determined as follows

:

Assume r = h^, and then find v^ and v^ by means of equa-

tions (i) and (5), and hence Q^ and Q^ by means of equations

(2) and (6). If it is found that Q^> 63, then the flow is from

O to E, and equations (3) and (7) become

'^=a''l and Q, = Qi^Q,;

while if
(2i

< 03 > the flow is from E to O, and the equations

are

^'-^^yjl and e,+ e, = 03-
^2 ^^2

A^(?/f.—It is assumed that «(= —j is the same for each pipe.
o

Special Case. (Fig. 113.)—Suppose the pipe OE closed

at E.

Also, let ^j = ^2 ^ Tj = ;', and let V be the velocity of flow

from A to C.

The '
' plane of charge

'

' for the reservoir ^ is a horizontal

/
plane MQ distant — from the water-surface, /„ being the

atmospheric pressure.
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The "plane of charge " for the reservoir C is a horizontal

plane TS distant — from. the water- surface.w
}''

In the vertical line VTQ, take TiV= —'- and join MN.
2g

Then, neglecting the loss of head at entrance, MN is the

"line of charge," or hydraulic gradient, for the pipe DF, and
is approximately a straight line.

Let the '

' plane of charge
'

' KK for the reservoir B, distant

— from the water-surface, meet MN xn G.
ft'

If the junction is vertically below G, there is no head

M L r L Q

Fig. 113.

available for producing flow either from E towards or from

O towards E, and hydrostatic equilibrium is established.

If the junction O is on the left of G, and a vertical line

OKHL is drawn intersecting KK, MN, and MQ in the points

K, H, and Z, there is the head HK available for producing

flow from O towards E.
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If the junction is on the right of G, and the vertical line

OHKL is drawn, the head HK is now available for producing;

flow from E towards O.

Let the vertical through G meet MQ in P, and take

PG = Y. Then, approximately,

_^ Af^_ PG__ y

and therefore

If HL < Y, the flow is from O towards £.

\{ HL > Y, " ' E " 0.

Again,

and therefore, approximately,

K - K = «^(A + 4) (i>

Next assume the junction O to be on the left of G, and

open the valve at E. Then

h — " v^' 1 ~ ' 1— z^z a—~ '

h., v.?

(2>

2 _ ^12 .

4 ="t= (3>

-r ="f; (4)
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and Q,= Q,+ Q„
or v^ = v^ + 7/3.

Thus

and therefore

^3'(A + 4) + 2/,^',j3 ^- />v - (A + 4) ^^ = o.

Hence, assuming v^ to be very small as compared with V,

V = V- ^'''-,

or

-Q- '^
where Q = ;rr''f^

Thus it appears that if a quantity Q^ of water is drawn off

by means of a branch from a main capable of giving a total

end-service Q, this end-service will be diminished by ^Q.^, iQ.^

,

iQ.^, etc., according as the junction O divides the pipe DF into

two portions in the ratio of i to i, i to 2, i to 3, etc.

Note.—The more correct value of f'j is

and the maximum value of -j-.—l-^.-^does not exceed -.

(A + A) 4

Orifice Fed by Two Reservoirs.—Neglect all losses of head

except the losses dueto frictional resistance.

When the valve at O is closed the flow is wholly from A
to C, and the delivery is

!2=a/—nh'^ h^ — h.^

« A + 4
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The line of charge (hydraulic gradient) is MN, where

MR=^ ^ NV.w

Fig. 114.

Open the valve a little: a volume Q., will now flow through

0, and a volume Q.^ into C , where

a Q-
A + K

The " line of charge " becomes the broken line M\X.
As the opening of the valve continues, the pressure-head

p
at O diminishes, and when it is equal to li.^ -\ — the line of

charge is M2N, 2iV being horizontal. Hydrostatic equilibrium

is now established between O and C , and the whole of the

water from A passes through 0, the delivery being given by

Opening O still further, both reservoirs will serve the

orifice, and the line of charge will continue to fall.
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When the valve is full open the '

' line of charge
'

' is M^N,

where 3(? = ", and the discharge is

v/vICt^^I-
The supply from A is equal to that from C when ~ = j.

The above investigation shows the advantage of a second

reservoir in emergent cases when an excessive supply is

suddenly demanded, as, e.g., on the occasion of a fire.

Ex. A 24-in. pipe AB, 6000 ft. long, connects two reservoirs, the dif-

ference of level between the water-surfaces being 250 ft. From a junc-

tion O between ..4 and B& 12-in pipe, C, 3000 ft. long, connects with

an intermediate reservoir having its water-surface 150 ft. above that of

the lowest reservoir. Discuss the distribution {a) when AO = 2000 ft.;

(^) when AO = 4000 ft.; and find (c) the position of so that there ma-
be no flow in OC,

Fig. 115. Fig- "S-

Take the lowest water-surface as the datum plane. Also assume that

a = — = .0002.
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If a piezometer is inserted at O, the water will rise in it to a height

z above datum. Then
{a) Fig. 115:

Between A and O

250 — ^

2000
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(i) Fig. ii6:

Between A and O

250

40CX)

Between (9 and B
± 1 50 T -

3000

Between O and C

(II)

If 2 = 150, Tj = o, oTT'i' = :^g, and ai/j' = ^. Thus z*! > 71, and there-

fore G> > 01 so that more water flows to the lowest reservoir than is

supplied by the highest reservoir. Hence the balance must come from

xhe intermediate reservoir and s < 150' ft.

Also, e, + 0, = Q„

f, +

Therefore

' 4000a 4 ' f)nrtn ' n

or V''S°° ~ ^^ + 7 3°° — ^- = t 6r.

By trial this gives r = 96, very nearly, and then, substituting in

eqs. (II),

7't' = 192.5, or V, = 13.874 ft. per sec.,

Vi' = 45, or 7/2 = 6.709 " "

vi' = 240, or I's = 15.492
"

Hence, also.

43.604 cu. ft. per. sec.^^^ X 13.874
7 4

— .'
. i' X 6.709: 5.271

= Qt + Q' very nearly.Q, = ".1.2' X 15.492 =48-689
7 4

(r) Let AO = ^- Then, since v, = 0, - = 150 ft., and therefore

250-150 , ,_ 150
a7/, =^ avt =

6000 — ^'

Hence
6ooo-^r^i5o^3

^^^ ^ = 2400 ft.

.r 100 2
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Problem II. Given h^, h^, h^\ Q^, Q^, and therefore

Oi {= ± Q2+ Qi); to find rj, r^, r^, 7\, v^, v^, s.

As before, let z be the pressure-head at 0. Then

' = a-— . . . (i) and Q^^ nr^v^; . . (2)
A

~ r.

±^TK ,2

a-

- h. 1

(3) " Q^=^r^v,, . . (4)

2

K
= «^ . . . (5) " Q^^ nr^v,. . . (6)

These six equations contain the seven, required quantities,

viz., rj, ^2, r^, v^, v^, v^, and z. Thus a seventh equation

must be obtained before their values can be found. This

equation is given by the condition " that the cost of the piping

laid in place should be a minimum," it being assumed that the

cost of a pipe laid in place is proportional to its diameter.

Hence

k^x + k^2 + 4^3 = a minimum (7)

h — s aQ^
From equations (i) and (2), —-.— = -j—5!

" (3) •(4).±^' = ^:
'2 '2

2

(5) " (6), —j—^^;^^.

Differentiating these three equations,

dz S«Q,'

/.
~ nh-

dr^\

dz _ ^aQ,
= T S^ dr.

k~ ^'r^'

dz 5 aQ-

l,--.n^ri
•'^-
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But, by equation (7),

Hence

eT'^^i +i ^^^

which is the seventh equation required.

This last equation may be written in the forms

and

_L — -I—?_ 4 3_

25. Mains with any Required Number of Branches.

Let there be n junctions and m pipes.

Let h^, h^, . . . h„ be the m pressure-heads at the end of

each successive length of pipe.

Let s^, z^, . . . s„ be the n pressure-heads at the ist, 2d,

3d, . . . «th junctions.

Let /j , /j ,.../„ be the lengths of the nt pipes.

Problem I. Given h^, h^, . . . h,„, r^, r^, . . . r„; to

find v^, v^, : . . v„,, z^, z^, . . . z„.

± h ^ 2 v^
There are -m equations of the type -. = a—.

Also, the quantity flowing through the first portion of the

main is equal to the sum of the quantities flowing through all

the branches at the first junction, and an analogous equation

will hold for each of the remaining h — i junctions. Thus n

additional equations are obtained.

From these m -|- « equations 7', :'., , . . . z'„, z^, z^,

. . . z„ may be found analytically or by the method of

repeated approximation.
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Problem II. Given k^, h^, . . . h„^, Q^, Q^, . . Q^; to

find r^, r^, . . . r„, z^, s^, . . . s„.

There are now only ;« equations of the type

1

involving m -\- n unknown quantities, and the problem admits

of an infinite number of solutions.

It is therefore assumed that the cost of the piping laid in

place is to be a minimum. Thus n new equations are obtained,

and the m -j- n equations may be solved analytically or by

repeated trial.

Note.—The maximum velocity of flow in town mains is

from 2 to 7 ft. per second.

26. Variation of Velocity in a Transverse Section

Assumption.—That the water in any portion of a pipe is made
up of an infinite number of hollow concentric

cylinders of fluid, each moving parallel to

the axis with a certain definite velocity.

Let u be the velocity of one of these

cylinders of radius x and thickness dx.

Then the flow across a transverse section

Fig. 117.
*'

is given by the equation

dq = 2TIX dx . u.

and the total flow

Q =z 271 1 ux dx (i)

r being the radius of the pipe.

If v„ be the mean velocity for the whole transverse section

of the pipe,

Q ^
2jlu^dx

(^)
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Again, assuming with Navier that the surface resistance

between two concentric cylinders is of the nature of a viscous

, , , ,
,du

resistance and may be represented by k— per unit of area at

the radius x, k being a coefficient called the coefficient of

viscosity, then the total resistance at the radius x for a length

ds of the cylinder

= — 271X . ds k-j- = — 2nk . ds . x—r.dx dx

The total resistance at the radius x -\- dx

, r du d I du\ ,
"1

= +2nk.ds\x-+^^xj-yx\^.

Hence the total resultant resistance for the length ds of the

•cylinder under consideration

2 nkds
-J- \^-f\

dx.

The component of the weight of the slice of _the cylinder

in the direction of the axis

= w . 2 nx . dx . ds . sin 6,

ft being the inclination of the axis to the horizon.

Let — dz be the fall of level in the distance ds. Then

— dz = ds . sin 6.

Therefore component of weight in direction of axis

= — w . 2nx dx . dz.
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The resultant pressure on the slice in the direction of

motion

=^\P ~ (/" + dp)]2nx . dx ^ — 2nx . dx . dp.

Then, since the motion is uniform,

d I du\w . 2nk . ds . —{x—\dx — w . 2nx . dx. dz—2nx .dx.dp=^Oy

and therefore

k . ds d I du\ dp
\x — dz = o.

x dx\ dxi w

Integrating only for the cylinder under consideration,

ks d I du\ I p\
^^^r^:rj-l^ + ^J

= ^^°"^tant.

But z -\- — is evidently independent of x and is a linear

function of i- (Art. 5, Chap. II). Hence

I dl du\
- ~r\^~7~] = a constant =: A, suppose.

Therefore*

(^S=^" (3)dx^^

Integrating,

du x"^
x-j-= A— + B.
dx 2 '

Assuming that the central fluid filament is the filament of

ClZl

maximum velocity, then when j: = o, -^ is also nil. Therefore
dx

„ , dti Ax^^ = O, and x^- = ,

dx 2
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•and therefore

^^=^2 ^^)

Integrating, Eq. 4,

x^
u — A 1- C,

4

C being a constant of integration.

Since dp is the difference of intensity of pressure on the

/ends of the cylindrical slice,

— znx . ds . k-r = tn? . dp = nx^w . dh.
dx

Therefore

du wx dh wxi

dx ~~ 2k ds ~ 2k'

and, by equation (4),

wi

Let «„a;,. be the velocity of the central filament, i.e., the

value of u when jr = o. Then

and

«max. - « = - 4-*' = ^-^ (5)

A
where Z> = — —

4

Again, by equation (i),

/>'- / Dr\
Q = 27tJ (u^^^, - Dx^)x . dx = nr^\u^^^, —^ ]
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and by equation (2),

V„ = "max. ^ (6)

If u^ = velocity at pipe wall, then, by equation (5),

'*s = Wmax. - -Dr"^ (7)

Hence, by equations (6) and (7),

Ms + Wmax. = 2V„, ('8)

If u = o when x = r, then C = — A— , and
4

Therefore

A 7tr^ winr^

U '

Note.—In a paper by Gardner S. Williams and others, in the Pro-
ceedings of the Am. Soc. of C. E. for May, 1901, giving the results of

experiments on the flow of water In pipes, the inferences are made ;

that at ordmary velocities of flow, and under normal conditions, the

ratio of the mean .velocity to the maximum is .84; that in a straight

pipe there will be, under some conditions, a difference of pressure at

different points in the circumference of the same cross-section ; that

the normal curve of velocities is an ellipse ; that the effect of a flow

disturbance is felt many diameters beyond the point at which it occurs

;

that for a maximum flow careful alignment is as necessary as a
smooth interior.
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27. Gauging of Pipe-flow A variety of meters have

been designed to register the quantity of water delivered by a

pipe. The principal requisites of such a meter are:

1. That it should register with accuracy the quantity of

water delivered under different pressures.

2. That it should not appreciably diminish the effective

pressure of the water.

3. That it should be compact and adaptable to every

situation.

4. That it should be simple and durable.

The Veniurt Meier (Fig. 118) is so called from Venturi,

who first pointed out the relation between the pressures and

velocities of flow in converging and diverging tubes.

Fig. 118.

As shown by the longitudinal section, Fig. 119, this meter

consists of two truncated cones joined at the smallest sections

by a short throat-piece. At A and B there are air-chambers

with holes for the insertion of piezometers, by which the fluid

pressure may be measured. By Art. 5, Chap. I, the theoretical

quantity Q of flow through the throat at A is

Q
Va^~ — a{

V2g{H, - H,),



2o8 li/ATER-METERS.

n^, «2 being the sectional areas at A and B, respectively, and

H^ — H^ the difference of head in the piezometers, or the

" head on Venturi," as it is called.

Fit;, iig.

Introducing a coefficient of discharge 6", the actual delivery

through yj is

Q= C
\'a}

V2g{H, - //,).

An elaborate series of experiments by Herschel gave C
\alues varying between .94 and 1.04, but the great majority of

the values lay between .96 and .99.

Fig. 120.- -Schonheyder's Positive

Meter.

Fig. 121.- -The Universal

Meter.

The piezometers may be connected with a recorder, and

thus a continuous register of the quantity of water passing

through the meter may be obtained at any convenient position

within a radius of 1000 ft. This distance may be extended to

several miles by means of an electric device.



IVATER-METERS. 2og

Other meters may be generally classified as Piston or

Reciprocating Meters and Inferential or Rotary Meters. They
are all provided with recorders which register the delivery with

a greater or less degree of accuracy.

The piston meter (Fig. I20) is the most accurate and gives

a positive measurement of the actual delivery of water as

recorded by the strokes of the piston in a cylinder which is

filled from each end alternately. Thus an additional advantage

Fig. 122.—The Buffalo Meter. Fig. 123.—The Union Rotary

Piston Meter.

possessed by a water-engine is that the working cylinder will

also serve as a meter.

In inferential meters a drum or turbine is actuated by the

force of the current passing through the pipe, but it often

happens that when the flow is small the force is insufficient to

cause the turbine to revolve, and there is consequently no

register of the corresponding quantity of water passing through

the meter.
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EXAMPLES.

(N.B. Take^ = 32 and ti gallons = I cu. ft. unless otherwise specified.)

1. A water-main is to be laid with a virtual slope of i in 850, and is

to give a maximum discharge of 55 cubic feet per second. Determine

the requisite diameterof pipe and the maximum velocity, taking/=.oo64.

Ans. 3.679 ft.; 3.2888 ft. per sec.

2. Find the loss of head due to friction in a pipe; diameter of pipe

= 12 in., length of pipe = 5280 ft., velocity of flow = 3 ft. per second
;

f = .0064. Also find the discharge.

Ans. 19.008 ft.; 2.3562 cu. ft. per sec.

3. A pipe has a fall of 10 ft. per mile ; it is 10 miles long and 4 ft. in

diameter. Find the discharge, assuming/ = .0064.

Ans. 54.7 cu. ft. per sec.

4. A pipe discharges 250 gallons per minute, and the head lost in

friction is 3 ft. Find approximately the head lost when the discharge

is 300 gallons per minute ; also find the work consumed by friction in

both cases. Ans. 4.32 ft.; 7500 ft.-lbs.; 12,960 ft.-lbs.

5. What is the mean hydraulic depth in a circular pipe when the

, . , diameter ^ , ,
water rises to the height =— above the centre t

2^2 ^10 _,.Ans. — X diameter.
33

6. A 12-inch pipe has a slope of 12 feet per mile; find the discharge.

(/= .005.) Ans. 2.1 18 cu. ft. per. sec.

7. The mean velocity of flow in a 24-in. pipe is 5 ft. per second ;"find

its virtual slope,/ being .0064. Ans. l in 200.

8. Calculate the discharge per minute from a 24-in. pipe of 4000 ft.

length under a head of 80 ft., using a coefficient suitable for a clean iron

pipe. Ans. 34.909 cu. ft. per sec.

9. How long does it take to empty a dock whose depth is 31 ft. 6

ins. and which has a horizontal sectional area of 550,000 sq. ft., through

iwo 7-ft. circular pipes 50 ft. long, taking into account resistance at en-

trance ? Ans. 214 min. 6 sec.

10. The virtual slope of a pipe is i in 700 ; the delivery is 180 cubic

feet per minute. Find the diameter and velocity of flow.

Ans. 1.26 ft.; 2.401 ft. per sec.

11. Determine the diameter of a clean iron pipe, 100 feet in length,

which is to deliver .5 cu. ft. of water per second under a head of 5 feet.

Assume/= .006. Ans. .^zS it.

12. A reservoir of 10,000 sq. ft. area and 100 ft. deep discharges



EXAMPLES. 211

through a pipe 24 ins. in diam. and 2000 ft. in length. Find the velocity

of flow. What should the diam. be in order that the reservoir may be
emptied in two hours.' (/=.oo64.) Ans. 15.37 ft. per sec; 4.0923 ft.

13. The pressure from an accumulator at the entrance of a (/-in. pipe

Z ft. long is 1000 lbs. per sq. in. If JV is the total H.P. available at the

/ JV yL
inlet, show that the H.P. absorbed in frictional resistance isl —^l-r;

\576o;^='

., . 2
/being — =.0081.

^245
14. The delivery at the end of a 3-inch pipe is 11.06 H.P. The total

effective head at the entrance to pipe is 896 feet. The loss in frictional

resistance is 21 per cent. Find the distance to which the energy is

transmitted. Ans. 15,000 ft.,y being .0064.

15. A reservoir has a superficial area of 12,000 ft. and a depth of 60

ft.; it is emptied in 60 minutes through /uz/r horizontal circular pipes,

equal in diameter and 50 ft. long. Find the diameter. {/ = .0064.)

Ans. 1.786 ft.

Explain how the ioia^ head is made up, and draw the plane of charge.

16. A 3-inch pipe is very gradually reduced to I inch. If the pres-

sure-head in the pipe is 40 ft., find the greatest velocity with which the

water can flow through. Ans. 1.4 ft. per sec.

17. Water flows through a 24-inch pipe 5000 yards in length. At 1000

yards it yields up 300 cubic feet per minute to a branch. At 2800 yards

it yields up 400 cubic feet per minute to a second branch. At 4000

yards it yields up 600 cubic feet per minute to a third branch. The de-

livery at the end is 500 cubic feet per minute. Find the head absorbed

by friction. {/ = .007^.) Ans. 177. &01 h.

18. Find the H.P. required to raise 550 gallons per minute to a height

of 60 feet, through a pipe 100 feet in length and 6 in. in diameter, the

coefficient of friction being .0064. Ans. 10.74.

19. What head of water is required for a 5-in. pipe, 150 ft. in length,

to carry off 25 cu. ft. of water per minute } Ans. 1.56223 ft.

What head will be required if the pipe contains two rectangular

knees.? Ans. 1.84918 ft.

20. Determine the delivery of a 2-in. pipe, 48 ft. long, under a 5-ft.

head,/ being .005. Ans, .1449 cu. ft. per sec.

What will be the delivery if the pipe has 5 small curves of 90° cur-

vature, the ratio of the radius of the pipe to that of the curves being

1:2.'' Ans. .1381 cu. ft. per sec.

21. The curved buckets of a turbine form channels 12 in. long, 2 in.

wide, and 2 in. deep ; the mean radius of curvature of the axis is 8 in.;

the water flows along the channel with a velocity of 50 ft. per minute.

What is the head lost through curvature? Ans. .00138 ft.

22. Find the power transmitted by water flowing at 80 ft. per sec. in

a 36-inch pipe, the metal being ij inches thick and the allowable stress
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2800 lbs. per square inch. If the pipe is ij miles in length, find the loss

of power. Ans. 576 H.P.; 720.2 ft.-lbs.

23. Find the diameter of a pipe ^ mile long to deliver 1500 gallons of

water per minute with a loss of 20 feet of head. {/ = .005.)

Ans. 1.0135 ft.

24. Water is to be raised 20 ft. through a 30-ft. pipe of 6 in. diameter.

Find the velocity of flow, assuming that 10 per cent of additional power
is required to overcome friction, and thaty = .0075.

Ans. 8.44 ft. per sec.

25. In a pipe 3280 ft. in length and delivering 6750 gallons per min.,

the loss of head in friction is 83 ft. Taking/ = .0064, find the diameter.

Ans. 1.527 ft.

26. Calculate, by Thrupp's formula, the flow through a 4-in. rough

wrought-iron pipe having a fall of 33 feet per mile.

Ans. .1426 cu. ft. per sec.

27. A clean 6-in. pipe has a virtutil slope of i per 400. Taking

f = .005, find the velocity of steady flow, the discharge, and the energy

absorbed in frictional resistance in 1000 feet.

Ans. 2 ft. per sec; U cu. ft. per sec; 6it\^ ft.-lbs.

28. A 6-in. pipe, 500 ft. long, discharges into a 3-in. pipe, also 500 ft.

long. Tlie effective head between the inlet and outlet is 10 feet. Find

the discharge, taking /"= .0064, and making allowance for the resistance

at the inlet. Ans. .1703 cu ft. per sec.

29. How far can 100 H.P. be transmitted by a 35-in. pipe with a loss

of head not exceeding 25 per cent under an effective head of 750 lbs. per

square inch .'' Ans. 5426.3 ft.

30. A pipe 2000 ft. long and 2 ft. in diameter discharges at the rate

of 16 ft. per second. Find the increase in the discharge if for the last

1000 ft. a second pipe of same size be laid by the side of the first and
connected with it so that the water may flow equally well along either

pipe. Ans. 7.24 cu. ft per sec.

31. A pipe of length /and radius r gives a discharge Q. How will

the discharge be affected (i) by doubling the radius for the whole
length ; (2) by doubling the radius for half the length

; (3) by dividing it

into three sections of equal length, of which the radii are r, — , and

respectively? {_f= coefficient of friction.)

Ans. I. New discharge = 4Q(^

—

+ V \ .

4

<2l

3r + 2///

r + 64«U_

\66r + 33///

3 " " = n( 9r + 12// y
^V524-7i2>- + 4228///

32. A 24-in. pipe 2000 ft. long gives a discharge of Q cubic feet of

water per minute. Determine the change in Q by the substitution for

the foregoing of either of the following systems : (i) two lengths, each
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of 1000 ft., whose diameters are 24 ins. and 48 ins. respectively ; (2) four

lengths, each of 500 ft., whose diameters are 24 ins., 18 ins., 16 ins., and

24 ins. ,

Draw the " plane of charge " in each case.

Ans. (i) Discharge is increased 33.2 per cent talcing loss at

change of section into account

;

Discharge is increased 35.7 per cent disregarding loss

at change of section.

(2) Discharge is diminished 45 per cent disregarding

losses at change of section.

33. Q is the discharge from a pipe of length / and radius r : examine
the effect upon Q of increasing r to nr for a length ml oi the pipe.

{ 1.?^ ^*

I 2 r
Ans. New discharge = Q -,

3 2fl m\ (n' — I)'

[
2 r \ n"! «'

34. A 5-in. pipe, 300 ft. long, discharges into a 3-in. pipe, 200 ft.

long, the total fall being 5 feet. Find the quantity of flow in gallons

per hour. Ans. 4080.

35. A main, 1000 ft. long and with a fall of 5 ft., discharges into two
branches, the one 750 ft. long with a fall of 3 ft., the other 250 ft long

with a fall of i ft. The longer branch passes twice as much water as

the other and the total delivery is 47} cu. ft per minute. The velocity

of flow in the main is 2^ ft. per second Find the diameters of the mam
and branches. (/= .0064.) Afis. 63245 ft.. 51 ft. : .36 ft.

36. The wtiter in a 12-in. main. 800 ft. long, flows at the rate of i ft.

per second and one third of the water 's discharged into a branch 200 ft.

long with a fall of I in 40, while the remainder passes into a 6oo-ft.

branch with a fall of i in 60. The effective head between the inlet and
outlet of the main is 2\ ft. Find the total discharge and the diameters

of the branches. taking/= .0064, and mak'ng allowance for loss at inlet

but disregarding losses at the iunction.

Ans. 94I cu. ft. per sec. , .27 ft. ; .39 ft.

37. If a pipe whose diameter is 8 ins. suddenly enlarges to one whose
diameter is 12 ins., find the power required to force 1000 gallons per

minute through the enlargement, and draw to scale the plane of charge.

Ans. Energy expended = .1377 H.P.

38. 1000 gallons per minute are forced through a system of pipes

AB, BC, CD, of which the lengths are 100 ft., 50 ft., and 120 ft., and the

radii 6 ins., 3 ins., and 4 ins., respectively. Draw to scale the plane of

charge.

Ans. Loss in friction from A to B = 14.744 ft.; loss ai B = 14.56 ft.

"
i? to C= 235.9 ": " " C= 8.819"

" C to Z?= 134.36 "
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39. A pipe 4 ins. in diameter suddenly contracts to one 3 ins. in

diameter; find the power necessary to force 250 gallons per minute

through the sudden contraction. Ans. 1.23997 H.P.

40. Water flows from a 3-in. pipe through a i^-in. orifice in a dia-

phragm into a 2-in. pipe. What head is required if the delivery is to be

8 cu. ft. of water per minute.' Ans. 2.826 ft.

41. 500 gallons of water per minute are forced through a continuous

line of pipes AB, BC, CD, of which the radii are 3 ins., 4 ins., 2 ins., and
the lengths 100 ft., 150 ft., and 80 ft., respectively. Find the /o/a/ loss

of head {a) due to the sudden changes of form at B and C, {b) due to

friction. Find (c) the diameter of an equivalent uniform pipe of the

same total length.

Ans. {a) .137S ft.; 1.152 ft.

(b) 3.688 ft. in ^^; 1.313 ft. in BC; 22.393 ft- '" C^-
{c) .4212 ft.

42. AB, BC, CD is a system of three pipes of which the lengths are

1000 ft., 50 ft., and 800 ft., and the diameters 24 ins., 12 ins., and 24 ins.,

respectively; the' water flows from CD through a i-in. orifice in a thin

diaphragm, and the velocity of flow in AB is 2 ft. per second. Draw
the plane of charge and find the mechanical effect of the efflux,

/ being .0064.

Ans. Loss at C =
-f-^

ft. ; at B = ^V? ft- 1 i" friction from A to

B = .8 ft. ; from B 10 C = 1.28 ft. ; from C to D = .64 ft. ; energy

of jet = 14,81 If H.P.

43. 1000 gallons per minute flows through a sudden contraction from

12 ins. to 8 ins. at A, then through a sudden enlargement from 8 ins. to

12 ins. at B, the intermediate pipe AB being 100 ft. long. Draw the

plane of charge,y being .0064.

Ans. Loss aX A = .288 ft. ; at B = .281 ft. ; in friction from A
to B= 3.499 ft.

44. Water flows from one tube into another of twice the diameter
;

the velocity in the latter is 10 ft. Find the head corresponding to the

resistance. Ans. 14.0625 ft.

45. A 2-in. pipe A suddenly enlarges to a 3-in. pipe B, the quantity

of water flowing through being 100 gallons per minute. Find the loss

of head and the diflference of pressure in the pipes (i) when the flow is

from A to />'
; (2) when the flow is from B to A, G being .66.

Ans. (i) Loss of head = 8.639 '"•

Gain of pressure-head = 13.83

(2) Loss of head = 7.428

Diminution of pressure-head = 29.88

46. A 3-in. horizontal pipe rapidly contracts to a i-in. mouthpiece,

whence the water emerges into the air, tlie discharge being 660 lbs. per

minute. Find the pressure in the 3-in. main.
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If the 3-in. pipe is 200 ft. in length and receives water from an open
tank, find the height of the tank,y being .005.

Ans. 1003.5 lbs. per sq. ft. ; 19.92 ft.

47. A horizontal pipe 4 ins. in diameter suddenly enlarges to a
diameter of 6 ins. ; find the force required to cause a flow of 300 gallons

of water per minute through the sudden enlargement.

Ans. .06 H.P.

48. 1000 gallons per minute is to be forced through a system of

pipes AB, BC, CD, of which the lengths are 100 ft., 50 ft., 120 ft., and
tlie radii 4 ins., 6 ins., and 3 ins., respectively. What must be diameter

of equivalent uniform pipe 1 Draw the plane of charge,/ being .0064.

Ans. Diameter = 3.4 ins.;

loss in friction from A to B = 11 1.96 ft.; loss at B = 4.499 ft.;

" " " " B to C = 7.372 C= 14.56 "

" Cto£>= 566.17 "

49. Find the H.P. required to pump 1,000,000 gallons of water per

day of 24 hours to a height of 300 ft. through a line of straight piping

3000 ft. long, the diameter of the pipe being 8 ins. for the first 1000 ft.,

6 ins. for the second, and 4 ins. for t,he third, allowance being made for

the loss at inlet and the losses at abrupt changes of section ; also 4 is to

be taken as the coefficient of resistance for pump-valves. (At changes
of section Cc = .64.) What is the diameter of an equivalent unirorni

pipe.? (/= .0064.) Ans. 196; diam. = .403 ft., or say 5 ins.

50. In a given length /of a circular pipe whose inner radius is r and
thickness e, a column of water flowing with a velocity v is suddenly
checked by the shutting off of cocks, etc. Show that

.-^ = -r]'+27('+^J+74'
in which /i = head due to the velocity v, E = coefficient of elasticity,

E\ — coefficient of compressibility of water, X — extension of pipe cir-

cumference due to E.

51. The water surface in one reservoir is 500 ft. above datum, and is

100 ft. above the surface of the water in a second reservoir 20,000 ft.

away, and connected with the first by an i8-in. main. Find the delivery

per second, taking into account the loss of head at the entrance.

Ans. 7.64 cu. ft. per sec. ,y" being .0064.

52. Determine the discharge from a pipe of 12 in. radius and 3280 ft.

in length which connects two reservoirs having a difference of level of

128 ft. Take into account resistance at entrance. Draw the plane of

charge. (/ = .005.) Ans. 48.571 cu. ft. per sec.

53. Determine the diameter of a clean iron pipe 5000 ft. in length

which connects two reservoirs having a total head of 40 ft. and dis-

charges into the lower at the rate of 20 cu. ft. per second. Draw to

scale tlie line < f charge. (/= .005.) Ans. 1.9219 ft.
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54. The difference of level between the two reservoirs is lob ft., and

they are connected by a pipe 10,000 ft. long. Find the diameter of the

pipe so as togive a discharge of 2000 cubic feet per minute {a) by Darcy's

formula, {b) assuming/ = .0064. (Allow for loss Of head at entrance.)

Atts. (a) 2.256 ft. il a= .0001622 ; (i) 2.360 ft.

55. Two reservoirs are connected by a 12-inch pipe ij miles long.

For the first 500 yards it has a slope of i in 30, for the next half mile a

slope of I in 100, and for the remainder of its length it is level. The
liead of water over the inlet is 55 ft. and that over the outlet is 15 ft.

Determine the discharge in gallons per minute. (Take/ = .0064.)

Ans. 1950.66.

56. Two reservoirs are connected by a 6-in. pipe in three sections,

each section being three quarters of a mile in length. The head over

the inlet is 20 ft., that over the outlet 9 ft. The virtual slope of the first

section is i in 50, of the second I in 100, and the third section is level.

Find the velocity of flow, and the delivery,/ being .005.

A/is. 4.5 ft. per sec; 332 gallons per minute.

57. A pipe 5 miles long, of uniform diameter equal to 12 in., conveys

water from a reservoir in which the water stands at a height of 300 It.

above Trinity high-water mark, to a reservoir in which the water stands

at a height of 150 ft. above the same datum. To what height will water

rise in a supply-pipe taken one mile from the lower end ? For what
pressure would you design the main at this point, if it lies 20 ft. above

the level of the lower reservoir? (/ = .0064.)

Am. 179.755 ft.; 19.13 lbs. per sq. in.

58. A clean 6-in. pipe, 1000 ft. long, has four sharp knees, viz., one
of 60°, two of 90°, and one of 120°. Find the head wasted at the knees

and in the straight pipe, the flow being at the rate of 150 gallons per

minute. Ans. .2734 ft.; 3.0237 ft.

59. A 6-in. pipe, 4000 feet in length, leads from a reservoir A to a

point O, at which it divides into two 6-inch branches, each 4000 feet in

length, the one leading to a reservoir B, the other to a reservoir C.

The surface of the water in A is 100 feet above that in i? and 200 feet

above that in C. Find the velocities of flow in the three branches,

/ being .0064. A/IS. Vx = 7.89 ft. per second = Va; Wj = o.

60. A pipe 24 in. in diameter and 2000 ft. long leads from a reservoir

in which the level of the water is 400 ft. above datum to a point B, at

which it divides into two branches, viz., a 12-in. pipe BC, 1000 ft. long,

leading to a reservoir in which the surface of the water is 250 feet above

datum, and a branch BD, 1500 ft. long, leading to a reservoir in which
the surface of the water is 50 ft. above datum. Determine the diameter

of BD when the free surface-level at B is (a) 300 ft.; (l>) 250 ft., and (c)

200 above datum. Ans. {a) 1.454 ft.; {l>) 1.783 ft.; (c) 2.096 ft.

61. Two reservoirs A and B are connected by a line of piping MON,
2000 ft. in length. From the middle point O of this pipe a branch OP,
1000 ft. in length, leads to a reservoir C. The reservoirs A and B are
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200 feet and 100 feet, respectively, above the level of C. The deliveries

in MO, OP, ON, in cubic feet per second, are ^^t,^«, and tc respectively.

Find (a) the velocities of flow in MO, OP, ON; (i) the radii of these

lengths; (c) the height of the free surface-level at O above C,/ being

.0064. Ans. (a) II. 121 ft. per sec. in MO; 10.158 ft. per sec. in OP;
14.145 ft. per sec. in ON.

(6) .5 ft.; .41831 ft.; .26588 ft. (c) 150.5 ft., very nearly.

62. Find the amount of water in gallons per day wliich will be de-

livered by a 24-inch cast-iron pipe, 15,000 ft. in total length, when the

water surface at the outlet is 87^ ft. below the water surface at the inlet,

takingy = .001 and allowing for resistance at inlet.

If the water, instead of flowing into a reservoir, is made to drive a

reaction turbine, what must be the velocity of flow in the pipe to give a

max. speed? What will be the H.P. of the turbine if its efficiency is .84?

A third reservoir is connected with the system by means of a 24-in.

cast-iron pipe, 7500 ft. long, joined to the main at the middle point.

The water surface of this intermediate reservoir is 50 ft. above that of

the lowest reservoir. Discuss the distribution.

Ans. 22,628,571^; 7.7 ft. per sec; 12.63 H.P. ; z = 73.68 or

51.32 ft.; Vi = 7.76 or 12.42 ft. per sec; v, = 10.05 or 2.373 ft. per

sec; va = 17.73 or 14.8 ft. per sec.

63. The water-levels in two reservoirs A and B are, respectively, 300

ft. and 200 ft. above that in C. The reservoir A supplies 3 cu. ft. of

water, of which 2 cu. ft. go to B and i cu. ft. goes to C. A pipe 2500 ft.

long leads from A to & junction at O, from which two branches, each 2500

ft. in length, lead, the one to B and the otlier to C. Assuming that the

cost of laying a pipe in place is proportional to the diam. and that this

cost is to be a minimum, find the pressure head at O and the diams. of

the pipes.

Am. 164 ft.; diam. of AO = .66 ft., of OB = 63 ft., of OC = .4 ft.

64. An engine pumps a volume of Q cubic feet of water per second

through a hose i ft. in length, and d feet in diameter, having at the

end a nozzle £> feet in diameter. Find tlie pumping H.P. and apply

your result to the determination of the H.P. of an engine which is to

pump 30 cu. ft. of water per minute through a i-in. nozzle at the end of

a 3-in. hose 400 ft. in length (/= .00625). Also find the force required

to hold the nozzle. Ans. 1 1^^ H.P. ; 89II lbs.

65. A fire-engine pumps water through a 400-ft. length of 2^-in. bore

at the rate of 12 ft. per second, and discharges through a i-in. nozzle.

Find the pressure in the hose, and the pumping H.P. Also find the

force required to hold the nozzle. (/= .00125.)

Ans. .6702 lbs. per ft.; 5.0916; 59.95 lbs.

66. The conduit-pipe for a fountain is 250 ft. long and 2 in. in diam-

eter ; the coefficient of resistance for the mouthpiece is .32 ; the entrance

orifice is sufficiently rounded, and the bends have sufficiently long radii
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of curvature to allow of the corresponding coefficient of resistance being"

disregarded. How high will a ^-in. jet rise under a head of 30 ft. .''

Ans. 20.4 ft.

67. Water surface of a reservoir is 300 ft. above datum, and a 4-in.

pipe 600 ft. long leads from reservoir to a point 200 ft. above datum.

Find tlie height to which the water would rise {a) if end of pipe is open

to atmosphere, (b) if it terminates in a i-in. nozzle. In latter case find

longitudinal force on nozzle. Ans. (a) 2f ft.
;

(i) 87.52 ft.; 59.693 lbs.

68. The surface of the water in a tank is 388 ft. above datum and is

connected by a 4-in. pipe 200 ft. long with a turbine 146 ft. above

datum. Determine the velocity of the water in the pipe at which the

power obtained from the turbine will be a maximum. Assuming the

efficiency of the turbine to be 85 per cent, determine the power, /
being .005. Ans. 19.928 ft. per sec. : 27.11075 H.P.

69. A pipe 12 ins. in diameter and 900 ft. long is used as an inverted

siphon to cross a valley. Water is lead to it and away from it by an

aqueduct of rectangular section 3 ft. broad and running full to a depth

of 2 ft. with an inclination of i in 1000. What should be the difference

of level between the end of one aqueduct and the beginning of the

other.y being .0064 for the pipe, and .008 for the aqueduct ?

Ans. 14.39.

70. Water flows through a pipe 20 ft. long with a velocity of 10 ft.

per second. If the fiow is stopped in y'j second and if retardation during

the stoppage is uniform, find the increase in the pressure produced.

(£ = 32 and the density of the water = 62.5 lbs. per cu. ft.)

Ans. 62^ cu. ft. of water.

71. An hydraulic motor is driven by means of an accumulator giving-

750 lbs. per square inch. The supply-pipe is 900 ft. long and 4 ins. in

diameter. Find the maximum power attainable, and velocity in pipe.

(/ = .0075.) Ans. 242.4 H.P. ; 21.203 f'- per sec.

72. A 2-in. hose conveys 2 gallons of water per second. Find the

longitudinal tension in the hose. Ans. 9.18 lbs.

73. Find the pumping H.P. to deliver i cu. ft. of water per second

through ii i-in. nozzle at end of a 3-in. hose 200 ft. long, _/" being .016.

Ans. 97.335 H.P.

74. The surface of the water in a tank is 286 ft. above datum. The
tank is connected by a 4-in. pipe 500 ft. long with a 36-in. cylinder

170 ft. above datum. Find (a) the velocity of flow in the pipe for which
the available power will be a maximum

;
(i) tlie power. If the piston

moves at the rate of I ft. per minute, find (c) the pressure on the piston.

Also find the height to which the water would rise it (d) the cylinder

end of the pipe were open to the atmosphere and if (e) the pipe termi-

nated in a nozzle i in. in diameter, neglecting the factional resistance

of the nozzle. Finally, find (/) the power required to hold tlie nozzle.

(Coeff. of friction = .005.) Ans. (a) 8.93 ft. per sec; (i) 6.85 H.P. ;

(c) 22.8 tons per sq. ft.
;
(d) 3.74 ft. ;

(e) 103.8 ft.
; (/) 70.8 lbs.
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75. A 3-in. hose, 400 ft. in length, terminates in a |-in. nozzle;

Water enters the hose under a head of 297^ ft. Find the velocity of

efflux, the height to which the issuing jet will rise, the pressure-head at

the nozzle inlet, and the force required to hold the hose, / being

.00625. -^"^^ '28 ft. per sec. ; 256 ft. ; 18,437^ lbs. per sq. ft.
; 98I lbs.

76. A reducer, 10 ft. long, conveys 400 gallons of water per min-

ute, and its diameter diminishes from 12 ins. to 6 ins.; find the total

loss of head due to friction. Ans. .05529.

77. A reservoir is to be supplied with water at the rale of 11,000

gallons per minute, through a vertical pipe 30 ft. high; find the mini-

mum diameter of pipe consistent with economy. Cost of pipe per foot

= %ii, d being the diameter ; cost of pumping = i cent per H.P. per

hour; original cost of engine per H.P. = $100.00; add 10 percent for

depreciation. Engine works 12 hours per day for 300 days in the year,

/ being .0064. Ans. 4.375 ft.

78. A city is supplied with water by means of an aqueduct of rect-

angular section, 24 ft. wide, running 4 ft. deep, and sloping i in 2400.

One-fourth of the supply is pumped into a reservoir through a pipe 3000

ft. long, rising 25 ft. in the first 1500 ft., and 75 ft. in the second 1500 ft.

The pumping is effected by an engine burning 2| lbs. of coal per H.P.

per hour, and working constantly through the year. A percentage is

to be allowed for repairs and maintenance; the cost of the coal per ton

of 2000 lbs. is $4; the prime cost of the engine is $100 per H.P.; the

efficiency of the engine is | ; the coefficient of pipe friction is .0064, the

cost of tlie piping is $30 per ton. Determine the most economical

diameter of pipe, and the H.P. of the engine, /being .0064 for the pipe

and .08 for the channel. Ans. 4.84 ft.; 456.455 H.P.

79. A vessel with 500 sq. ft. of surface experiences a resistance of 150

lbs. per sq. ft. when steaming at 5 knots. How much H.P. will be

absorbed in frictional resistance by a vessel with 10,000 sq. ft. of surface

steaming at 18 knots? Ans. 2140^.

80. The performances of two similarly designed ships are to be com-

pared. The one, with a length of 300 ft. and a displacement of 8000

tons, is to steam at 20 knots. What should be the length and displace-

ment of the other, which is to steam at 21 knots? Compare also the

l.H.P.s. Ans. 33of ft.; 10,720 tons; 1.34.

81. From a central junction four mains, each 10,000 ft. long, lead to

four reservoirs. A, B, C, D, the water-levels in A, B, C being 600, 400,

and 200 ft., respectively, above that in D. If the diameter of each main

is 12 ins., find (a) the effective head at the junction and the velocities of

flow. If the velocity in each main is 5 ft. per sec, find {b) the effective

head at the junction and the diameters of the mains.

Ans. [a) 300 ft.; 8.66 Vs in highest and lowest mains; 5 Vs '"

intermediate mains.

{b) 300 ft.; 4 ins. for highest and lowest mains ; 12 ins.

for intermediate mains.



CHAPTER III.

FLOW OF WATER IN OPEN CHANNELS.

I. Channel-flow Assumptions.—A transverse section of

the water flowing in an open channel may be supposed to

consist of an infinite number of elementary areas representing

the sectional areas of fluid filaments or stream-lines. The
velocities of these stream-lines are very different at different

points of the same transverse section, and the distribution of

the pressure is also of a complicated character. Generally

speaking, the side and bed of a channel exert the greatest

retarding influence on the flow, and therefore along these sur-

faces are to be found the stream-lines of minimum velocity.

The stream-lines of maximum velocity are those farthest

removed from retarding influences. If the stream-line veloci-

ties for any given section are plotted, a series of equal velocity-

curves may be obtained. In a channel of symmetrical section

Fig. 124.

the depth of the stream-line of maximum velocity below the

water-surface is less than one fourth of the depth of the water,

while the mean velocity-curve cuts the central vertical line at
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a point below the surface about three fourths of the depth of

the water.

In the ordinary theory of flow in open channels the varia-

tion of velocity from point to point in a transverse section is

disregarded, and it is assumed that all the stream-lines are

sensibly parallel and move normally to the section with a

common velocity equal to the mean velocity of the stream.

With this assumption, it also necessarily follows that the dis-

tribution of pressure over the section is in accordance with the

hydrostatic law.

Again, it is assumed that the laws of fluid friction already

enunciated are applicable to the flow of water in open channels.

Thus the resistance to flow is proportional to some function

of the velocity {F(t>)), to the area {$) of the wetted surface, is

independent of the pressure, and may be expressed by the term

5 . F(i'). An obvious error in this assumption is that i' is the

viean velocity of the stream and not the velocity of the stream-

lines along the bed and sides of the channel. In practice,

however, the errors in the formulae based upon these imperfect

hypotheses are largely neutralized by giving suitable values to

the coefficient of friction (/").

When a constant volume {Q) of water feeds a channel of

given form, the water assumes a definite depth, a permanent

regime is said to be established and the flow is steady. If the

transverse sectional area (^A) is also constant, then, since

Q = z>A, the velocity v is constant from section to section and

the flow is said to be uniform. Usually the sectional area .1

is variable and therefore the velocity v also varies, so that the

motion is steady with a varying velocity. Any convenient

short stretch of a channel, free from obstructions, may be

selected and treated, without error of practical importance, as

being of a uniform sectional area equal to that of the mean

section for the whole length under consideration.

2. Steady Flow in Channels of Constant Section (A).—
The flow is evidently uniform; and since ^ is constant, the
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depth of the water is also constant, so that the water-surface

^-^a . is parallel to the, channel-bed.

Consider a portion of the

_,^_^ stream, of length /, between

. ;3 the two transverse sections

^'*'^^~~~~^i??^g5{;5~? Let 2 be the inclination

^6°^*^ of the bed (or water-surface)
^'°- "5-

to the horizon.

Let P be the length of the wetted perimeter of a cross-

section.

Then, since the motion is uniform, the external forces act-

ing upon the mass between aa and i/? in the direction of

motion must be in equilibrium.

These forces are:

(i) The component of the weight of the mass, viz.,

, /?

T.:'^-i/sin I = ii<Ah = ivAl— = wAh,

h being the fall of level in the length /.

Note.—When i is small, as is usually the case in streams,

h ....'.,— = tan t = sin / = /, approximately.

(2) The pressures upon the areas aa and hb, which evidently

neutralize each other.

(3) The frictional resistance developed by the sides and

bed, viz.,

P J.Fizi).

Hence

wAh - PlFiv) — o,

or

F{v') Ah
-^ = 7Y = '^^'

m being the hydraulic mean depth.
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It now remains to determine the form of the function F(y).

In ordinary English practice it is usual to take

F{v) _ z/2

za 2g'

y being the coefficient of friction. Then

/— ^ -mi,
2g

or

2g _

~Y Vmi = c i^mi,

C being a coefficient whose value depends upon the roughness

of the channel surface and upon the form of its transverse

section.

The total head // in a stream is made up of two parts, the

one being utilized in producing the velocity of flow and the

other being absorbed in frictional resistance. Thus

2g ' m w

In long channels and in rivers in which the slope of the bed
--(2

does not exceed 3 ft. per mile the term — is very small as

I F(v)
compared with ^^— and may be disregarded without sensi-

>^ m w
ble error. In this case

m w

Ex. I. A channel of regular trapezoidal section, with banks sloping

at 30° to the vertical, ha.s a bottom width of 8 ft., and a width of 16 ft. at

the free surface. It conveys 288 cu. ft. of water per sec, and the fall is

I in 2CXX3. Find the mean depth, the mean velocity of flow, and the

coefficients / and c.
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Depth of waterway = 4 tan 60° = 4 Vi ft.

^ = ^(8 + 16)44/3'= 48^3" sq. ft.

y°=8 + 2X4i/3 sec 50° = 24 ft.

^
Therefore the mean depth = — = 24/3 = 3.464 ft.

288 _
The mean velocity of flow = —-= _. 34/3 = 3.464 ft. per sec.

Hence

24/3 = y^ ^ \ 2V\ X -^ = ^ V 24/3 X ^-.
^ ' / » -^ J 2000 r ^y i 2000

Therefore

/ = .009237 and c = 82.63.

Ex. 2. How much water is conveyed away by a horizontal trench

10 ft. wide, the depth of the water at entrance being 5 ft., and the sur-

face falling 1 ft. in 2400 feet.? (Take/ = .008.)

Area at upper end = 50 sq. ft. ; at lower end = 40 sq. ft.;

the mean area = —(40 + 50) = 45 sq. ft.

Therefore, if Q cii. ft. are conveyed,

— = velocity at upper end ;
— = that at lower end ;

50
^ ^^

40
and

, Qmean velocity = —

.

45

The wetted perimeter = 20 ft. at upper end ; = 18 ft. at lower end;
and

mean wetted perimeter = - (20 + 18) = 19 ft.

Thus the hydraulic mean depth 711 = —.

Hence
2400 /Q Y I

I

and

my
j_ _ mv j_ .008 x

Q = 389 cu. ft. per sec.

3. Retarding Effect of Air, etc.—The retarding efTect of

the air upon the free surface of a river or of the water in a

canal or in any channel has not yet been accurately determined.

It may be assumed that the resistance per unit of free surface
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due to the air is about one tenth of the resistance due to similar

units at the bottom and sides of smooth channels. Thus if

-X is the width of the free surface in a smooth channel, the

wetted perimeter becomes P -\ .

' 10

In general, the wetted perimeter may be expressed in the

form F -\- --, P being 10 for smooth channels and greater than

10 for rough channels. The value of/? is evidently diminished

by opposing winds and increased by following winds.

Again, in the formula

mt = - — ,w

3)1 f= -7^1 and / (;= -yj are similarly related in the deter-

mination of 7', the mean velocity of flow. If .' is constant, the

product Dii must also be constant, so that if m increases i must

diminish, and vice versa. Thus in a ver}- flat country the

flow may be maintained by making ;« sufficiently large, while,

again, if the channel-bed is steep ni is small.

The erosion caused by a watercourse increases with the

i-apidity of flow. At the same time the sectional area {A) of

the waterway also increases, so that the velocity of flow v

diminishes. Thus there is a tendency to approximate to a
*

' permanent regime
'

' when the resistance to erosion balances

the tendency to scour.

Hence, throughout any long stretch of a river passing

through a specific soil, the mean velocity of flow will be very

nearly constant if the amount of flow (0 does not vary.

Generally speaking, the volume conveyed by a river increases

from source to mouth on account of the additions received from

tributaries, etc. Since Q increases, A must also increase; and

if mi or v is to remain constant, i must diminish. It is to be

observed that the surface slopes of large rivers diminish

gradually from source to mouth.
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For a given discharge (0 the mean depth {m) diminishes-

as i increases, and, as the cost of constructing a canal is

approximately proportional to the mean depth, it is advisable

to give the bed as large a slope as possible. But the velocity

of flow (y) also increases with i, and the slope must therefore

not exceed that for which v would be so great as to cause the

erosion of the banks. On the other hand, v must not be so

small as to allow of the growth of aquatic plants or of the

deposition of sand, gravel, and other detritus, which would

soon obstruct the waterway and add a considerable item to the

cost of maintenance. Between these extreme limits the slope

may be varied in any required manner, the controlling influ-

ences being the configuration of the ground and the nature of.

the soil through Avhich the canal passes. In every case a

careful determination should be made of the best combination

of the three elements v, i, and A which would give a specified

discharge. In France the canal beds have slopes varying

from i^ to 20 in 10,000, and the magnitudes of both v and i

may be considerable when the canal passes through rock or

through a well-compacted material capable of resisting erosion.

According to Belgrand the value of v for water carrying fine

particles of loam should exceed I ft. (.25 m.) per second, and

should not be less than 2 ft. (.5 m.) per second if the waters,

are laden with coarse particles of loam or sand. In clear

water, the growth of weeds, etc., which would seriously inter-

fere with the flow, is prevented if the velocity of flow is from

2 to 3 ft. (.5 m. to .8 m.) per second.

The slope of an aqtccdiict, in which no trouble is to be

anticipated from plant-growth, maybe as small as 3 in 10,000,

and may even fall to I in 10,000 when the waters are e.xcep-

tionally clear, as in the case of the aqueducts on the Dhuis and

Vanne. On the other hand, the slope should rarely, if ever,

exceed 12 in 10,000, and as a general rule the slope should be

less than 10 in 10,000. The ordinary channel formula, viz.^

V =^ c Vmi, is applicable to the flow in a conduit, so long as the
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conduit does not run full, and since v is proportional to Viii it

is a maximum for some definite depth of water. When the

water fills the conduit, the formula for channel-flow ought to

change suddenly so as to agree with that for pipe-flow, and in

this respect the theory is therefore imperfect. The mean
velocity of flow in a conduit should not be less than about

2 ft. (0.5 m.) per second, and may be as great as 5f ft..

(1.5 m.) per second. High velocities enable the waters tO'

carry off floating debris and sand particles. There should be

no sudden changes of slope or of section, as they favor the

formation of eddies and the deposition of detritus.

The following table of slopes and mean velocities is taken

from the article by Daries in the Encycl. Sc. des Aide-

Memoire:
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4. On the Form of the Section of a Channel.—The funda-

mental formula; governing the form of the transverse section

of a channel are

Q = Av
and

Therefore, also,

For channels of the same slope

1'' (X in.

Take i^ = am, a being some constant.

Then, \{ dv is a small change in the velocity corresponding

to a small change dm in the hydraulic mean depth,

2v . dv ^^ a . dtn,

and therefore

dv dfn

V 2m

Thus the hydraulic mean depth must be changed 20 per

cent to produce a change of 10 per cent in the velocity.

Again,

Q oc Pv\

But P increases with Q, and therefore Q increases more
rapidly than z'^ For example, an increase in the velocity of

less than 3^^ per cent will cause an increase of 10 per cent in

the discharge.

For channels giving the same discharge

Pv^ oc i.

pQr a given volume of water there must be a sensible

change in the slope to produce an appreciable change in the
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velocity of flow, although, generally speaking, the wetted pe-

rimeter (/") diminishes or increases as i increases or dimin-

ishes, and thus i> and therefore -7^, increases or diminishes
yi

more rapidly than i. An increase of 10 per cent in the ve-

locity causes a diminution of about 4 per cent in the sectional

area of the waterway.

For channels of the same slope and giving the same dis-

charge Pv^ and also -jj are constant. A further condition is

required before the sectional area can be determined.

Problem I. A canal of rectangular section and of width

X is to convey water of depth y
with the condition that either the

sectional area {A) of the waterway

is to be a constant quantity or the

wetted perimeter (/") is to be a

minimum. It is proposed to find

the relation between x and y so

that {a) the velocity of flow may be a maximum,
{Jj)

the

quantity of flow may be a maximum.

Fig. 126.

V'l.

'\l P"

and

Q=A

If z^ is a maximum.

jA\ P .dA- A .dP
d^p] = o =

p,
.

If (2 is a maximum.

iA\ 3^2 . pdji -AKdP
d['p) = o = ^,

..
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In each case, \.{ dA = o, i.e., if the area is constant, then

dP= o;

and if dP = o, i.e., if the wetted perimeter is a minimum, then

dA — o.

Thus the
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Problem II. The section is usually in the form of a

quadrilateral, the non-parallel sides sloping at an angle, i).

depending upon the nature of the soil through which the

channel passes.

For example, in a canal

with retaining walls B = 63° 36',

with stiff earthen sides, faced, = 45°,

with stiff earthen sides, unfaced, — 33° 41',

with sides in light or sandy soUs — 26° 34'.

In such a channel let x be the bottom width and j/ the

depth of the water. Then, the remaining conditions being

the same as those in Problem I, it again follows that

dA = o and dP = o.

But

A — y{x -\-y cot 6) and P = x -\- 2y cosec B.

First. If 6 is given,

dA = O = y . dx -\- {x -\- 2y cot 6)dy,

and

dP = o = dx -\- 2 cosec . dy.

Therefore

2y cosec =: x -\- 2y cot 9,
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or

or
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jr sin ^ = 27(1 — cos b'),

tan - = —X

The section may be easily sketched, as in Figs. 128 and

129.

Fig. 128.

From the middle point C of AB, the bottom width, draw

Cf at right angles to AB and equp-l in length to the depth of

the water. Then

AB e
y=rp; = 2 tan -

,CF 2

6 being the given slope of the sides.

With F as centre and FC as radius describe a circle.

From the points A and B draw tangents to touch this circle at

D and E. FA evidently bisects the angle CAD. Therefore

CAD , ^.r, CF CF
cot-

Hence 71 — CAD = 6, and AD, BE have the slope

required.

Again,

y\2y-
I — cos 6

-r

sin d

2 — cos 6

sin Q

+y cot e)
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y

and

/ AsmO
V 2 — cos 6

I — cos d

= 2y

Therefore

and

sin
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tion and maintenance, often render it necessary to insure that

the depth of the water shall not exceed a certain limit, say 8

to 12 ft. (2 m. to 3 m.). In France the depth of irrigation-

canals is between 4 and 6^ ft. (1.2 m. and 2m.).

Second. If the bottom width x is fixed, then

dA ^= O = {x -\- 2y cot O'^dy — y cosec^ 6* . d&

and

dP =0=2 cosec 6 . dy — 2y . ^ n dB.

Hence

x -\- 2y cot 6 y
2 cosec 2 cos #'

or

X sin B cos G = — j/(2 cos^ — i),

or

and therefore

sin 2O ^X r= — y COS 2f7,

tan in —20)= — tan 2O = -^.
^ ' X

It may be observed that as the width {x) of the bottom

increases, 6 also increases.

If the width is nil, then tan 2O ^ <x> and ^ = 45°, so that

the triangular section of minimum perimeter is a semi-square.

Third. If the depthy is fixed, ^^.w.

dA = o = ydx — jj/' cosec' . dd

and

cos 6
dP= o = dx — 2y -T^-/. . do.

sm-" o

Therefore

-^ ~ 2 cos 6*
'

or

cos ^ = i and 6 =. 60°.
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Problem III. To find the proper sectional form of a

channel of bottom width 2a so that the mean velocity of flow

may be constant for all depths of water.

Let X, y, Fig. 1 30, be the co-ordinates of any point P in

the profile referred to the middle point O of AB, the bottom

width, as origin, and let s be the length of AP.

Fig. 130.

Since v is to be constant, in must also be constant, and

therefore

A Jy-^""= a const. = ni.
P s-Y a

which may be written

Iy .dx = m{s -\- a).

Differentiating,

y . dx = m . ds = }n(dx^ -\- d)^)i,

and therefore

dx dy

»' ~ (/ — nFf

Integrating,

ni
= log, {y 4- |/y - »?2) + <:,

€ being a constant of integration.

But^ = a when x = o, and . o — logX« + Vd'—m^)-\-c.

X j^Vy-m'
, y + Vf-m"

Hence — := log.
,

, „ „ = log. 1
»' a-\- vet — nr "

where b — a -\- »Ja^ — >«^.

X

Therefore J + ^T — i*^ — be".
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Hence, too,

y — |/y2 — ni' =1 ~-j-e *"
.

Adding together the last two equations,

2^ = oe"' -I- -j-e '",

y 2b
b^e" + ;«V"'« )

'

which is the equation to the required profile, and is a curve

which belongs to the class of catenaries and which evidently

flattens out very rapidly.

If the bottom width is such that

a ^ ni ^ b,

the equation becomes

y= - L'" ~\-e A

and the profile is a true catenary of parameter m, with its axis

coincident with the bottom and its directrix coincident with

the vertical at the middle of the section.

A
_ c

Problem IV. A channel of given slope has a given sur-

face width AC, vertical sides AB {= j\) and CD [= y^ of

given depths, and a curved bed BD (= L) of given length.
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The amount and velocity of flow in the channel will be a

maximum when the form of the bed BD is a circular arc.

This can be easily proved as follows

:

Since the slope is constant, v ex Vm <x */ —
.

But P (= L -\- j^ -\- J2) is a constant quantity, and there-

fore V and also Q will be a maximum when A is a. maximum.

Hence, too, the area between the chord BD and the curve

must be a maximum, and therefore the curve must be a circular

arc. The proof of this by the Calculus of Variations is as

follows

:

Take O in CA produced as the origin, OC as the axis of

X, and the vertical through O as the axis ofj. Then

A ^ I
^ydx is to be a maximum.

dy
is a given quantity, OA being = x^ , OC = x.^ , and ^- — p.

Let V =^
J'

-{- a Vi -\- f^, a being some constant.

Then

and therefore

that is.

and thus

V . dx is to be a maximum,

dV
^'=^^ + ^-

' + «^i+^= vT+7'^^'

-^ + vrf7 = ^>-



238 ON THE FORM OF THE SECTION OF /I CHANNEL.

Therefore

dx I y
dy P Vd' - (c^ - yf

Integrating,

x-^c,= Vd'-{c^-yf,

the equation to a circle of radius a.

Hence the profile BD is a circular arc.

The maximum depth of the channel is c^ — a.

The constants c^
, ''j • ^ '-^^ ^^ found from the three condi-

tions that the arc is of given length and has to pass through

the two fixed points B and D.

Problem V. The Sciuicircidar Channel.—Theoretically,

the best form of channel for a given

waterway is one in which the bed is

a circular arc (Prob. IV), as the

wetted perimeter is then a minimum
and the mean depth (or radius) a

maximum.Fig. 132.

In the semicircular channel, Fig. 132, let the free surface

subtend an angle d at the centre.

Then

r^

.

0\

^ = i(*-'"»)=?(--T)

and

rd.

r being the radius.

Therefore

A ri

P 2\

sin 6
')
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Hence, since mi = bv^ ^= b-..^.
A''

..^(,_«J^^)V^8^e^.

If the channel runs full, 6* = tt, and then

As a first approximation it may be assumed that

for small channel sections with cement faces... b = .00022

" channels of mean dimensions with smooth faces b = .00017

" channels of large dimensions... ^= .00011

In metric measure these coefficients become .0004, .0003^

and .0002, respectively.

Miscellaneous Problems. — The bed of the aqueduct at

Naples is semi-elliptic, but beds in the form of a semi-ellipse,

a cycloid, a parabola, or an hyperbola, would only be adopted

under very exceptional conditions, as when a curved profile is

required with a limited depth. The waterway and the wetted

perimeter can, of course, be approximately calculated from the

known properties of these curves.

For the semi-elliptic section, \i a and b are the semi-major

and minor axes,

abA^n-,

and

P = '^-,{a + b)v,

fwhere v = t. 1.0035, '-o*, 1.0226, 1.0404, 1.0635, 1.0922, 1.1267. ^•'^^7. ^.2155.^

I
when '^—p-. = o, .i, .2, .3, .4, .5, .6, .7. .8, .9.

{
a + 6 J

For the cycloidal section, if r is the radius of the generating

circle,

A = 'inr^ and F = 8/-.
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Therefore

in = ^Tir,

and the flow equation becomes

If the water-line is at AA, defined by the angle 6 which

the radius OA of the generating circle makes with the vertical,

then

= T,nr^
sin 2d\/ „ ^ ,
sin 2f/\

-r^(3^-4sm^ + -^-j

— 2;-2(i - cos 6){7t - 6" + sin 9)

I „ „ /I ,
sin 2 6\— rin — 0+ 2 5me-\-2n cos 6^ — 2 ^^ cos (9 -| —

j

and

e
P — 8rcos -.

2

5. Aqueducts. — The aqueduct of the ancients was of

rectangular section and was sometimes of very large dimen-

sions as compared with the volume of water to be conveyed.

Although in modern times there are examples of rectangular

sections, it is now more usual to make them circular, egg-

shaped, square with a diagonal vertical, or trapezoidal.

Aqueducts are also constructed of forms which are combina-

tions of the circle and egg-shaped, or ofthe trapezoid and circle.

When a mean volume of water is to be conveyed and when

provision has to be made for a definite height, as, for example,

for a man standing upright, preference is given to the egg-

shaped aqueduct.

In the sections shown by Figs. 133 to 137 it will be

observed that a rise of the water-line near the top causes an
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appreciable increase in the wetted perimeter, while there is no
proportional increase in the waterway. Thus the mean depth

{in) and therefore also the mean velocity {v) of flow continually

diminish. The a priori conclusion may be drawn that the

discharge {Q) is not a maximum when the pipe runs full, but

when the water-line is some distance below the top. The

/////////,.
^

Fig. 133. Fig. 134. Fig. 135. Fig. 136. Fig. 137.

differential equation defining this position may be easily found

as follows (Prob. i, p. 229):

b^^ — bv^ = mi— -pi.

Therefore

A^ i

^ P b-

Since Q is to be a maximum.

Therefore

IA\ iPA^ .dA - AKdP€)=°
or

iP.dA — A .dP — o

is the equation required.
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If the velocity of flow is to be a maximum,

dv = o,

and therefore

JA\ P .dA - A.dP
dm pi >

or

P . dA - A .dP=o.

Ex. I. Circular Section.—Let the wetted perimeter sub-

tend an angle d at the centre. Then

y4=-((^-sin6') and dA =——(i— cosi?);

P = re and dP = r . dd.

Hence for a maxifmtin discharge

— .dO. 0(i-cosd)--{f)-sin&).dd=O,

or

20 — 36' cos 6* + sin 6* = o.

(i = 308° is the value of satisfying this equation.

For a maximum velocity

-dO . 0{i — cos d) {0 — sin 0) = o,

= tan 6,

and 6 =257" 27' is the value of d which satisfies this equation.

In circular aqueducts the angle 6 is usually about 240°,

which insures a certain clear space above the water-line.

Then, also,

P = 4..i8gr; A = 2.$28r'; m = .6r.
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Example 2. A Square Section with Vertical Diagonal.

—Let a side of the square = a,

and let x be the length of the

portion of the side which is not

wetted. Then

and

A = a^
2

dA = — X . dx\

P = 4a — 2X

and

dP = - 2 .dx.

Hence for a maximuvi discharge

Fig. 139,

/ x'\— 3(4« — '2x')x . dx -\- 2\oP' — — \dx = O,

Therefore

5;ir^ — \2ax + 2a^ = O.

x= -{6 - V26) = .18a,

and the depth below the apex of the water-line

V2
= .1274a.

For a maximum velocity offlow

— x{4a — 2x)dx -\-2\a'^ — ~jdx = o,

x^ — 4ax -\- 2c^ = O,
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and therefore

X = a{2 — V2) = .5858a:,

and the depth of the water-line below the apex

V2
= .4142a.

Example 3. Egg-shaped Section.—This form of aqueduct

consists essentially of three parts, a lower portion bounded by

a semicircle of radius r^ , an upper portion bounded by a cir-

FiG. 140.

cular arc of lesser radius r^ , and an intermediate portion

bounded by circular arcs of radius r^ , which meet the lower

and upper arcs tangentially.

The depth of the intermediate portion is defined by the

angle a which the radius 0^0^ makes with the horizontal, and

the position of the water-line AA is defined by the angle ff

which 0„A makes with 0„0^ produced. Then
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If the water-line is above BB,

A = -^ +r^^a- (/-3 - r,)(r3 - r,) sin a

and

P= nr^-\- 2r^a + 2r^d.

If the water-Hne coincides with BB, = o, and then

A = -^+r^a- (^3 - r,)(^3- r^) sin a + -^ sin 2a

and

Z' = nr^ -\- 2r^a.

If z is the vertical distance between (9, and the highest

point,
•

z = r^-\- (r, — rj) sin or.

Also,

^3 - r, = (^3 - r^) cos o'.

If the water-line CC is below BB, let be the angle sub-

tended at 6*3 by the arc BC, and let O^C — x. Then, since

B^OC is now 6,

X sin (Q — 0) = (^3 — r^) sin

and

J? cos {jd — a) = ^3 cos {a — (p) — (^3 — rj,

two equations giving x and in terms of ^ and the radii.

The area of the waterway is now the area up to BB
diminished by the area of the sUce between BB and CC, and

this area

= — sin 2a + fi4> — ^sC^'s
— ''2) sin ^ sin 2(6'— a).
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Hence

TtV V^A=—^ + I'ia — (^3 — r^{r^ - r^ sin * + -|- sin 2

a

— sin 2a -\- r^cp — ^3(^3 — r^ sin -|- — sin 2 ((9

2

-*)[

= -^- + '?(« - 0) - (''3 - ^-2)
1 ('-J

- ''1) sin « - ;-3 sin 0)

— — sin 2(0 — ri).

and

P=nr^^ 2rloc - 0).

The larger diameter is usually at the bottom for aqueducts,

but almost invariably at the top for sewers.

The discharge for sewers may be calculated by Bazin's

formula, but an allowance of 20 per cent should be made in

order to make provision for deposits and, where they occur,

for water-pipes, electric conduits, etc. Care should also be

taken that the section is sufficient to carry away the water from

the heaviest rains and fro"m the branch drains in such manner

that the water in the sewer does not rise above a certain level.

Assuming that the time of flow in the sewer is three times

that of the rainfall and that the maximum downfall is 27.5.

gallons (= 125 litres) per second, Belgrand has proposed for

the discharge of the Paris sewers the formula

S X .188 = .-4 \fmi,

S being the drainage area in acres.

In metric measure, 5 being the drainage area in hectares,

5 X .0239 = ^ y';/«'.

In branch drains and in smaller systems the influx of water

is much more rapid and the time of flow should not be estimated

at more than twice the duration of the rainfall.
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Note.—In designing sections for open channels or aque-

ducts, complicated preliminary calculations may be generally

avoided by employing a graphical method. Selecting a pro-

visional section, the water areas and wetted perimeters may be

obtained for different depths of water and the corresponding

mean depths plotted to any convenient scale. Repeating

these operations for different sections, the mean-depth curves

will quickly indicate the best section to be adopted.

6. Formulae of Prony, Eytelwein, Beardmore and Tadini,

—A careful study of Chezy's experiment on the Courpalet

cut (Orleans canal) and of twenty-three experiments made by

Dubuat on wooden channels of small section, led Prony, in

1804, to adopt the equation

^ av -\- bv^ = mi,w

in which — = 22472.5 and -r- = 10607.02.
a o

About the year 181 5, Eytelwein, taking into account sixty

additional experiments on the Rhine and Weser by Woltmann,

Funk and Brunings, proposed slightly different values for a

and b, viz.

,

- = 41211.11 and 7-= 8975.43.
a o

The expression mi has the same value with Prony's as with

Eytelwein 's coefficients when the velocity is about 72 ft. per

minute, and for a small change in this velocity the variation in

the value of mi is also small and of little practical importance.

For other velocities the value of nii with Prony's coefficients

will be greater or less than the value with Eytelwein 's coeffi-

cients according as the velocity of flow is greater or less than

72 ft. per minute.

The formula with Eytelwein 's coefficients was for a long
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time used by engineers, and was . preferred as giving the most

reliable results.

For values of v exceeding 20 ft. per minute the term av

is small as compared with bv^, and may be disregarded without

much error. This formula then becomes

bv^ = mi,

and therefore, according to Prony,

V = —= Vmi = 103 Vmt,
Vb

and according to Eytelwein,

Vb
^^

Intermediate between these is Beardmore's formula, viz.,

f := 100 V >»l.

Barre de St. Venant has suggested the relation

mi = .cooi36z'Tr

(or im = .0004?/"^ if a metre is the unit).

The above formulse, now obsolete, involve a grave error,

as it is assumed that the resistance due to the roughness of the

wetted surface is a constant quantity. Bazin's experiments

have clearly shown that the resistance may vary between very

wide limits depending upon the nature of the materials and soil

which form the bed and sides of the channel. For a deep and

wide channel, in which the slope of the bed is small, approxi-

mately accurate results are given by Tadini's formula,

w ^ 9 1 V >/ii

(or f = 50 </;;«', if a metre is the unit).
'

':
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7. Bazin's Formulae.—Between 1855 and 1859, Darcy

and Bazin carried out a number of experiments in a cut

leading from the Bourgogne canal. The channel sections were

of different forms and dimensions, the sides were faced with

wood, cement, hewn ashlar, bricks, rubble masonry, and

earth, and the slope of the beds varied from .001 to .10.

The results, for the rectangular and trapezoidal sections,

sensibly agreed with the calculations obtained from the formula

laut with circular and egg-shaped sections the calculated are

about 10 per cent less than the actual results.

In practice it is most convenient to take

.v= ^4/mi mi.

where b = — = a -I .

C'' ' m
a and /? are not constant, but have values depending upon

the character of the channel faces and bed. Bazin gives the

following table:

Character of tlie Wetted Surface.

Smooth cement, planed wood, etc

Cut masonry, bricks, planks
Rubble masonry
Earth
Boulders ( Kutter)

Value of a, the Unit being

A Foot. A Metre.

.000046

.000058

.000073

.000085

.00012

.00015

.00019

.00024

.00028

.00040

Value of /3.

.0000045

.0000133

.00006

.00035

.0007

Tables at the end of the chapter give the values of the

coefficients i> and c, a metre being the unit.

Reviewing the results of more than 700 experiments carried

out in France, Europe, the United States, and British India,
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etc., upon canals and rectangular, trapezoidal, semicircular,

and circular aqueducts, of different dimensions, Bazin, in 1897,

(^Ann. des Fonts et Chausse'es,) deduced the formula

V — 157-6

y

vm

Vvai

(or V = 87

\ m

''mi, if a metre is the unit).

This equation, again, may be most conveniently written in

the form

V = c Vrm.,

and Tables at the end of the chapter give the values of c for the

six different classes into which Bazin has divided all channels,

the corresponding values of the coefficient y being given by

the following table

:

Class.

I.

II.

III.

IV.

V.
VI.

Character of the Wetted Surface.

Smooth cement, planed wood
Planks, bricks, cut masonry, etc

Rubble masonry
Earth, dry nibble, etc

Earthen channels in ordinary condition
Earthen channels or rivers, presenting exceptional

resistance ; the beds covered with boulders and
the sides with grass, etc

V, the Unit being

A Foot. A Metre.

.109

.290

•833

1.540

2.355

3.170

.06

.16

.46

.85

1.30

i.7i

8. Ganguillet and Kutter's Formula.—Bazin's is the only

formula used in France, but in England, Germany, and the

United States engineers prefer the formula of Ganguillet and

Kutter, viz.,

V = c Vmi,

the value of C being given in a Table at the end of the chapter.
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Also the coefficient

251

c =

a, 1, and p being certain constants and n a coefficient depend-

ing only on the roughness of the channel sides and bed.

If the unit is zfoot, a=:4i.6; 1= 1.8112; p= .00281.

If the unit is a metre, a=23; 1^ i; p= .00155.

The unit being a foot, n varies from .008 to .05 and the

following table gives the values of n which will be found of

most use in practice:

Character of Sides.

Planed timber
Smooth cement
A mixture of 2 of cement to i of sand
Rough planlcs

Ashlar or brickwork
Canvas on frames
Rubble masonry
Rivers and channels in very firm gravel

" " " " perfect order, free from de
tritus (stones, weeds, etc.)

" " " " moderately good order, not
quite free from detritus or
weeds

" " " " bad order, with weeds and
detritus

Torrential streams encumbered with detritus

Canals in earth above the average order
" " " in fair order
" " " below the average order
" " " in rather bad order, overgrown with

weeds and covered with detritus.

.009

.01

.011

.012

.013

.015

.017

.02

.025

•03

.035

.05

.0225

.025

.0275

.03

Authority.

Ganguillet
and Kutter

>- Jackson

The difficulty of properly selecting the value of n is due to

the fact that there is no absolute measure of the roughness of

channel beds.

In obtaining the above results Ganguillet and Kutter made

a careful study of:
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(a) The Experiments of Darcy and Bazin.'-—These show

that c depends both upon the roughness and the sectional

dimensions. The values of a. and /? in Bazin's formula vary

with the character of the channel sides and bed ; but while in

small channels the influence upon the flow of differences of

roughness must be very great, it is certain that this influence

diminishes as the sectional area increases, and that it will be

nil when the area is infinitely great.

{J})
The Measurements of Humphreys and Abbot on the

Mississippi, a stream of very large sectional area with a bed of

very small slope.

(c) Their own Gaugings in the regulated channels of

certain Swiss torrents with exceptionally steep slopes and

running through extremely rough channels.

[d^ The Effect of the Slope.—The coefficient c diminishes

as the slope, /, increases. The value of <; does not vary much

with the slope of the bed in small rivers, but in large rivers

Avith small slopes the variation is considerable.

9. Formulae of Manning, Tutton, Humphreys and Abbot,

and Gauckler.—In 1890, Manning proposed the formula

1.486
V = c.m^t^ = m ^2^, if the unit is a foot,

2 .t I 2.1.., . .

V = c.m^i^ = —m^t^, if the unit is a metre.
' n

In this formula, which gives good results, the coefficient n

has the same value as the n in Kutter's formula.

Bazin's and Manning's formulae are identical if

c Vmi = ^-T- Vmi = c^mu ^,

i.e., if

^-71 = '^"^-
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By an independent method, Tutton, in 1893, deduced the

corresponding formula,

n

n being again the same as in Kutters formula.

As a result of observations on the Mississippi in 1865,

Humphreys and Abbot deduced the rather complicated

formula

^ ={3-873 (^'«'*)* — .0388}-, the unit being a foot,

or

V = \{6gvi'i^)^ — .0214!^, the unit being a metre.

In this expression, which is of especial value for large

watercourses, m' is. the ratio of the sectional area to the total

perimeter.

Gauckler's formulae for canals,

V z=. ctn'i, if the slope is < 7 per loooo,

and

7' = c'ln^i^,
" " > 7 per loooo,

and Hagen's formula,

V = 2.43^^7",

the unit in each case being a metre, have not been used in

practice.

Ex. I. A channel with a fall of i in 10,000 has brickwork faces, is of

rectangular section, 20 ft. wide, and is to convey 200 cu. ft. of water per

second. What must be the depth of the water ?

Let X be the required depth. Then

A = 20X\ P = 20 + 2X,

\ox
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Also,

200 _ 10 _ _ / 10^ I _ c ,/ Jox

2oi ~ X ~ ~ 'lo + jr' loooo ^ 100 ' 10 + jr'
,

This equation can be best solved by trial.

Let jr = 5 ft. Then

?«=—• = 3-33 <t.,

and the Tables give 127.2, as the corresponding value of c.

Therefore

J 27 '*

V = -^ V3-333 = 2-3223 ft. per sec,

and Q = iocrn = 232.23 cu. ft. per sec,

which is too great.

Let JT = 4 ft. Then

„:=li = 2.85,

and the Tables give 126.4 as the corresponding value of c.

Therefore

126.4./40
7' = -i/ — = 2.1365 ft. per

100 ' 1414

and Q = Sov = 170.92 cu. ft. per sec,

which is too small.

Thus -I' must lie between 4 and 5 ft. Try .r = 4.5 ft. Then

« =^ = 3.i.
14.5

and the corresponding value of r is 126.8.

Therefore

126.8^/90

and Q = gov = 201.042 cu. ft..

126.8 . /90
y — = 2.2338 ft. per sec,

100 ' 2Q

which is very nearly correct. By further trials the depth can be ob-

tained within a fraction of an men.
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Ex. 2. A canal in earth with sides sloping at 40° is to convey 100

cii. ft. of water per sec, at a velocity of i ft. per second. What is the

fall of the canal, and what are its most suitable dimensions ?

A = 100. Then (see Table, p. 233),

bottom width = .525 4/100 = 5.25 ft.,

depth of water = .722 4/100 = 7.22 ft.,

mean depth, m = .361 4/100 = 3.61 ft.

By the Tables the corresponding value of ' is 93.3. Therefore

I = 93-3 i'3-'" X '.

and I = .

31424

Ex. 3. A length of the La Roche cut is in compact rock. Its bottom
width is 0.70 m., the depth of the water is 0.50 m., one bank is vertical

and the other slopes at 26° 34' to the vertical. If the fall is i in 500,

find the mean velocity and quantity of flow.

The width of section at the surface = .70 + .50 tan 26° 34' = o'".95.

I

A = —(.95 + .70). 50 = 0.4125 sq. m.

^ = .50 + .70 + .50 sec. 26° 34' = 1.759 ni-

Therefore

.4125m = = .2345,
1.759

and the corresponding value of i in the Tables is .0423. Hence

.0423 X V = Y -2345 X— = .02165,

and z/ = .512 m. per sec.

Therefore, also,

2 = .512 X .4125 = .2112 cm. per sec

Again, using Bazin's formula for the filament of max. vel.,

^max. = V + 14 i/mi = .512 + 14 X .02165 = o".8i5 per sec,

3
and Vi = bottom velocity = -(Z'mai.) = o".489 per sec.
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Ex. 4, In another length of La Roche cut, in earth, the banks slope

at 45°, the bottom width is 0.3 m., and the depth of the water is 0.5 m.
Find the coefficients iJand c, the discharge being. 21 12 cu. ft. per second,

and the fall i in 500.

r

A = 7('-3 + 5)-5 = 0-4 sq. m.

/" = .3 + 2 vTs = I'". 714.

Therefore
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10. Variation of Velocity in the Transverse Section of a

Watercourse.—The discharge (0 across any transverse sec-

tion of a watercourse is the product of the area (A) of the

section and the mean velocity {v) of flow. Thus

Q^Av.

The value of v for channels of small section can easily be

found by discharging into a suitable reservoir for a definite

interval of time, when Q can be estimated; and since ^ is

known, v can be at once calculated. This method is imprac-

ticable with watercourses of large dimensions. The profile of

the section must then be carefully plotted, when its area can

be obtained with a planimeter or by the method of mean

heights. The velocity of flow varies from point to point

throughout the section in a most irregular manner, and its value

has not been fixed by any single law. By using a meter or

gauge the velocity may be measured at a large number

of points, and in this manner the mean velocity (ji) and

the maximum velocity (z'^ax.) can be very approximately

determined. The velocity, however, varies so much and

depends so largely upon the conditions under which the flow

takes place, that it seems hopeless to expect that the compli-

cated law of velocity distribution can be expressed in a general

formula. The numerous experiments of Bazin on the Bour-

gogne canal and on the Seine and Saone, of Cunningham on

the Ganges canal, and of Humphreys and Abbot on the

Mississippi, all go to prove this and at the same time throw

much light upon the whole subject. It has been shown that the

ratio -^^^' diminishes as the resistance of the sides and bed,
V

mi
which is measured by the expression ~^, mcreases. 1 he ratio,

for example, is about .85 in a channel with a very smooth

surface and falls to about . 50 when the channel is cut through
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mi
earth. As the surface resistance diminishes the value of —5

tends to become very small and ultimately zero, while the

V
ratio -^^ tends to become unity. Bazin therefore expressed

the relation between v^^^ and v in the form

,
^nni\

= ^+n^) ••
• (0

imi\ . im
in which the function Fi-^X vanishes with —j.

A special case is Bazin 's empirical formula,

""- i+A'/fJ (2)
V V r'2

= 1+/^^^ (3)

K
= i + -T. (4)

c

the values of b and c being given by the Tables, and K being

a coefficient depending upon the form of the section and the

conditions of flow. For example, if z^'max. is the maximum

surface velocity for a given section.

max

V

for a watercourse of great width as compared with the depth

and

"'' max. . 1 „ - , Imi

~=^'+'^V^' • • :

^'^

for a channel of restricted dimensions, as in ordinary practice.

Again, if t'max 's the maximum velocity for the whole sec-

tion of such a channel, and if ?',„ is the mean velocity along
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the vertical in which the maximum velocity lies, then,

approximately,

'v^^„. = v„.-\rio.g^hi (7)

in which h is the depth of the water on the vertical in ques-

tion. (If a metre is the unit, the values of Kin the three last

formulae are 20, 14, and 6, respectively.)

For channels of mean dimensions Prony has suggested the

formula

V „ 7.78 + ^''a.ax. ,g.

^'max. 10.34 + Z/'o.a^;

(If the unit is a metre, substitute 2.37 for 7.78, and 3.15 for

I0.34-)

In the same case Dubuat gives

^ =
2

' (9)

in which Vi, is the velocity at the bottom of the channel.

For values of v'^^^^ up to about 11 or 12 ft. (3.5 m.) per

second the calculated values of the ratio — vary but little from

the average value .8, a result which has been verified in certain

special experiments. It is therefore considered sufficient to

take

(10)

and then, by eq. (9),

= .6 (II)

Z'

When the water is of great depth the ratio -, falls to
^ max.

.75, and to .60 if the bottom is covered with reeds.
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Sonnet has theoretically deduced for watercourses of great

width the relation

,.:="^'— +^ (I2>

SO that li v = \v'r^^^,, then V/, = ^v'^^^.

For a long time it was supposed that the maximum velocity

(''max.) w^s in the free surface, and its value was determined by-

observing the time in which floats passed between two trans-

verse sections at a specified distance apart. Experiments have

now demonstrated that this maximum velocity is at some point

below, although in general near the free surface, and the floats

will not give the proper value of the maximum velocity unless

they are suitably submerged. It has also been found that the

depth of this point of maximum velocity increases as the ratio

of the width to the depth of the waterway diminishes, and may
be as great as one tliird of the depth of the water. ^yf-

-

On any horizontal line at right angles to the axis, of the

channel the velocity diminishes with the depth of the water,

is greatest towards the centre, and diminishes at an increasing

rate on approaching the sides. .^^.'^^^

The experiments of Darcy and Bazin have shown that the

air-resistance is not the most important factor in causing the

variation in the velocity throughout the section. With a

gauge they determined the velocities at a number of points in

the cross-section, and plotted the corresponding equal-velocity

curves

:

{a) For a closed wooden pipe, of rectangular section,

running full (Fig. 141);

(<5) For an open wooden channel running half full and
formed by removing the upper side of the pipe in {a) (Fig.

142).

The curves for the pipe are approximately rectangular and
parallel to the sides of the pipe. The discharge in the open
channel is slightly greater than one half of the pipe's discharge.
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but there is no similarity between the equal-velocity curves in

the two cases. In the open channel they become more

elliptical, tend to close at the centre, and cut the free surface

obliquely, the angle of incidence becoming more and more

acute towards the centre. The curves are also at a greater

distance from the centre than the corresponding curves in the

pipe. This very marked modification in the form of the

Fig. 141. Fig. 142.

velocity curves is due especially, in Bazin's opinion, to the

absence of the upper boundary and to the consequent practical

impossibility of an absolutely constant cross-section. Eddies

and other irregular movements are produced in the surface and

give rise to corresponding losses of energy and velocity.

Actual experiment, too, has shown that, even with a strong

wind blowing down-stream, tending, as might be supposed, to

cause an excessive surface velocity, the maximum velocity is

still at some point delow the free surface.

For any given vertical in the section it appears to be

approximately true that the velocity at about three fifths of the

total depth is sensibly the mean velocity for the whole depth,

and that the difference between the maximum and bottom

velocities, viz., t^^^x. — ^-s- increases with the roughness and lies

between \v^^j,_ and \v^^_.

In a semicircular channel of radius r the equal-velocity

curves are circular. Fig. 143, and concentric with the bed, the
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velocity v at the distance y from the centre being given by

V — V,—

Vc being the velocity at the centre.

Fig. 143.

Generally speaking, the equal-velocity curves are approxi-

mately of the same form as the profile of the section (Figs.

143 to 146), and this is especially the case near the sides and

Fig. 144. Fig. 145. Fig. 146.

bed. The curves at the bottom do not always reach the sur-

face, but sometimes cut the sides.

Again, experiments indicate that the law of velocity dis-

tribution along any vertical in the section may be represented

by a parabola of the 2d degree, with its axis horizontal and at

the same depth as the point of maximum velocity. Defontaine

in an experiment on an arm of the Rhine deduced for the

vertical at the centre of the current the analogous law

u = 4.8222 — .o66y\

u being the velocity at the depth y.

(If the unit is a metre, u = 1.266 — .252/^.)

(13)
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The following theoretical investigation of the velocity curve

is based on the assumptions that

:

{a) The watercourse is of very great width as compared

with the depth

;

(b) The watercourse is of sensibly uniform depth

;

(c) The fluid particles flow across a transverse section in

sensibly parallel lines

;

(d) A permanent regime has been established so that the

pressure is distributed over the section in sensibly parallel lines

;

{e) The resistance to the relative flow of consecutive fluid

filaments is of the nature of a viscous resistance.

Let Fig. 147 represent a portion of a vertical longitudinal

«i £7 \d

Fig. 147.

section of the stream intersected by two transverse sections

AB, CD, I being the distance between them.

Consider a thin layer abed of thickness dy and width b,

bounded by the sections AB, CD, and by the planes ad, be,

at depths y and y -\- dy, respectively, below the free surface.

The forces acting upon the layer in the direction of motion

are:

(i) The pressures on the ends ab, cd, which evidently

neutralize each other.

(2) The component of the weight = w^/ . ^ . sin i =
wbli . dy; i being the slope of the bed.

(3) The viscous resistances on the lateral faces of the layer

under consideration. These are nil, since in a stream of

indefinite width there will be no relative sliding between abed

and the vertical faces on each side.
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(4) The viscous resistances along the planes ad and be.

The frictional resistance to distortion, i.e., to shearing,

along such planes, is found to be proportional to the shear per

unit of time, and is measured by the shear per unit of area at

the actual rate of shearing. The coefficient of viscosity, or,,..., . shear per unit of area
simply the viscosity, is the quotient -. . —;—

,

shear per unit of time

and defines that quality of the fluid in virtue of which it resists

a change of shape.

Adopting Navier's hypothesis,

the viscous resistance along ad ^= — kbl—^,
dy

k being the coefficient of viscosity, and u the velocity at the

depth y. The sign is negative as, since u increases with y,

du . . . , , . ,

-J-
is positive, and, at the same time, the action of the layers

above ad is of the character of a retardation.

The viscous resistance along be = kbl-r- + kbl d\ — \

dy \dyl

Then, as the motion is uniform,

,,. , , ,
,du

, , ,
,du

, , , ,d^u
wbli . dy — kbl— + kbl— + kbl^r-^,dy = O.

dy dy ' dy^ '

Hence

Integrating twice,

dhi wi

Wl

YP'^
+ ay+ v, (14)

a and v, being constants of integration.



VELOCITY y^RMTlON IN TRAHSl^ERSE SECTION. 265

It is evident that v, is the surface velocity, i.e., the value of

« when y =1 o.

The equation may be written in the form

kd'' wii ka\^

' 2tVl 2kV Wl) ^ '•'

Thus the velocity curve is a parabola

ka
having a horizontal axis at a depth F = —

.

wt

below the free surface. This is also th?

depth of the filament of maximum velocity

kdy = °) and

ka" wt

.

Hence, by equations (14) and (16),

Fig. 148.

(17)

Let v„, be the "mean " velocity for the whole depth //.

Let V, be the mid-depth velocity. Then

I
-.«. - -p - V)"

I
^J'

v^ =

and

= v^-^{h'^-?,hY+iY% . . . (18)

lih

^i - ^n>a«- 2k \2
-y)'

• . . . (19)
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Hence

'"\-''- = ^k^ (^°>

a result upon which Humphreys and Abbot have based a

rapid method of gauging rivers.

Let Vf, be the bottom velocity, i.e., the value of v when

y =^ h. Then, by equation (17),

wi

and therefore,

wi
^m.^x.

— 'Vt = Y/f.^i—Yf—N, suppose. . . (21)

According to Bazin, v^^^^ — v^ is sensibly constant and is

approximately equal to 36. 3 V/ti (= 20 Vki if a metre is the

unit). Thus the general equation (15) of the velocity curve

becomes

« = ^m«.-36.3^^(|^r3>j • . • • (22)

This, known as Bazin's formula,, agrees well with the

experiments on artificial channels and on the Saone, Seine,

Garonne, and Rhine. It was found, in general,

v
that

°"'^' = 1. 17 in the Rhine at Basle and ranged from l.i

to 1. 13 in the other channels;

36. 3/2^ Vhi
, ^

,j _ y.i ranged from 13 to 20;
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Y I

T- = - in some artificial channels and in others ranged

from o to .2.

These last results are not in accord with the Mississippi

measurements..

In the case of a rectangular channel of such width that the

influence of the sides on the flow may be disregarded, the

mean radius, m, may be substituted for k and the mean

velocity, v„, , is sensibly the same as the mean velocity, v, for

the whole section. Hence equation (22) may be written

or

| = ^-36.3V*(--^^y, . . , (.3)

the value of d being given by the Tables.

Filament of Maxunum Velocity in the Surface.—In this

case F= o, and equation (21) becomes

wi , ,

^''n,ax. -Vi= -^t\ ..... (24)

v'^^^ being the value of v^^^^ when the maximum velocity is

in the surface.

Equation (22) also becomes

« = Z''max.-36.3^^-f^- • . • (25)

Again, by equations (18) and (24),

wi ,

Z^'max. - '^* = ^-^^' = 3(Z' max. " ^^h
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or

(26)

a result already referred to.

Boileau's Formula.—Boileau assumes that the velocity

Q - _ "• _ M:''J'. curve is given by the equation

^ 1/ -u^A-Bf^Cy . . (27)

/ above the point of maximum velocity, and

y below this point by the equation

yf u^ D- Bf (28)

Fig. 149. When J = o, u — v,^ A.

When J/
= F,

D-BY-' = v^^^_^A - BY'^ CY=v,- BY' ^ CY.

Therefore

C - j^ .

Boileau's experiments led him to infer that the difference

D — v^.^, (= BY^) is sensibly constant. Designating this

difference by d, so that D = t'maji. + ^ and ^ = yr^, Boileau's

equations become

« = z;, -
^^—

J

_
. . . (29)

representing the curve MM^ , and

« = ^max. + ^ — ^(yj (30)

representing the curve MM^.
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II. Tables of Erosion and Viscosity.

TABLE INDICATING THE VELOCITIES ABOVE WHICH
EROSION COMMENCES.

V,
Nature of the Cbaonel Bed,
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<;urvature of the windings which already exist tends to increase

owing to the scouring away of material from the outer bank

and to the deposition of detritus along the inner bank. The

sinuosities often increase until a loop is formed, with only a

narrow isthmus of land between two encroaching banks of a

river. Finally a cut-off occurs, a short passage for the water

is opened through the isthmus, and the loop is separated from

the river-course, taking the form of a horseshoe shaped lagoon

or swamp. The ordinary supposition, that the water always

tends to move forward in a straight line, rushing against the

outer bank and wearing it away, and at the same time causing

deposits at the inner bank, is correct, but it is very far from

being a complete explanation of what takes place.

When water flows round a circular curve under the action

of gravity only, it takes a motion like that in a free voftex.

Its velocity parallel to the axis of the stream is greater at the

inner than at the outer side of the curve.

Thus, too, the water in a river-bank flows more quickly

along courses adjacent to the inner bank of the bend than

Fig. 150.

along courses adjacent to the outer. The water, in virtue of

centrifugal force, presses outwards so that the water-surface of

a transverse section (Fig. 150) has a slope rising upwards from

the inner to the outer bank. Hence the free level, for any

particle of the water near the outer bank, is higher than the

free level for any particle in the same transverse section near

the inner bank, but the tendency to flow from the higher to

the lower level is counteracted by centrifugal action. Now
the water immediately in contact with the bottom and sides of

the course is retarded, and its centrifugal force is not sufficient
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to balance the pressure due to the greater depth at the outside

of the bend. This water therefore tends to flow from the outer

bank towards the inner (^Fig. 151), carrying with it detritus

Fig. 151.

which is deposited at the inner bank. Simultaneously with

the flow of water inwards, the mass of the water must neces-

sarily flow outwards to take its place.

13. Flow of Water in Open Channels of Varying Cross-

section and Slope.

Assumptions.—{a) That the motion is steady.

Thus the mean velocity is constant for any given cross-

section, but varies gradually from section to section.

ij)) That the change of cross-section is also gradual.

(c) That, as in cases o{ uniform motion, the work absorbed

by the frictional resistance of the channel bed and sides is the

only internal work which need be taken into consideration.

IvCt Fig. 152 represent a longitudinal section of the stream.

The fluid molecules which are found in any plane section ab

at the commencement of an interval will be found in a curved

surface dc at the end of the interval, on account of the different

velocities of the fluid filaments.
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Suppose that the mass of water bounded by the two trans-

verse sections «^, ef comes into the position cd/t£- in a unit of

time. Then the change of kinetic energy in this mass is equal

to the algebraic sum of the work done by gravity, of the work

done by pressure, and of the work done against the frictional

resistance.

Cliangc of Kinetic Energy.—This is evidently the difference

between the kinetic energies of the masses efgh and abed,

since, as the motion is steady, the kinetic energy of the mass

between f^ and ^remains constant.

Let A^ be the area of the cross-section ab.

"
?^i

" " mean velocity across this section.

" V " " velocity at this section of any given fluid

filament of sectional area a.

Let V = u^ ± V.

Then

A^u^^ 2{av) and 2[aV)=:-o.

The kinetic energy of the mass abed

= -2{«« ± 3Vi^+ 3«.^' ± n\

smce 2{aV) = o and 3?/j ± V= 2u^*-\-v.
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Now 2u^ -\- V \s evidently positive. Hence the kinetic

energy of the mass abed

w w= —2av^ > — 2au,^
2g 2g '

IV

W

•ec being a coefficient of correction whose value depends upon

the law of the distribution of the velocity throughout the

section ad. It is positive and greater than unity. Assume
that a has the same value for the sections ab and ef. Then if

A.^, 11.^ are the area and mean velocity at the transverse section'

.ef, the kinetic energy of the mass cfgh

= a - A ji.';'

-.%

Hence the change of kinetic energy in the mass under

consideration

=
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Work done by Pressttre.

The pressure per unit of area at in = wy^ -\- p^ ;

" " " " " '2 = «y2 + A;
ff, being the atmospheric pressure.

Hence the work due to these pressures per unit of time

= dQ(wy^ +/„) - dQ{wy.^ +/„)
= It' dQ{y^ —y.^).

Thus the iota/ work done by gravity and by pressure

= 2lu, dQi.c+y^-j^) + w dQ{y,-y,)\

= 2(zv dQ . z) = wQz

for the mass under consideration.

Work absorbed by Friction.—Consider a thin lamina of

water of thickness ds, bounded by the transverse planes xx^

jr, the distance of xx from ab being s.

Since the cliange of velocity is gradual, the mean velocity

from XX to yy may be assumed to be constant.

Let ;/ be this mean velocity.

" P he the wetted perimeter at the section xx.

" ^ be the area of the waterway at the section xx.

Then the work absorbed by friction per second from xx ta

yy

= P . ds u . F{u),

and the total work absorbed between ab and ef

rp
^Qj _^F{u)ds,

I being the distance between ab and ef. Hence

oi—=^ -^ = wQz — Q ~fF{u)ds,
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and therefore s = a^^ ~ "''
4- I - ?^ds

2^ ^ J. A w

F{u) u' A
1 ake = /— and f. = m. ThenW ' 2g P

2g J. m2g (0

If the two planes ab and cf are indefinitely near one another

(Fig. 153), the last equation evidently gives

a f i^
dz = —u . du A —ds (2)

g w 2^ ' ^ '

which is the fundamental differential equation of steady varied

motion, dz being the fall of surface level in ^.« g'-

the distance 12^.?. Z^*'*'^

In the figure aa' is drawn parallel to the f-^ j

bed and aa" is horizontal. The distance **v»

a'e may, without sensible error, be assumed /
equal to dz. Fig. 153.

Also, a" a' = i . aa' ^ i . ds, very nearly.

Hence

ids := a'a" = a'e -\- a"e ^= dh -\- ds. . . . (3)

Substituting the value of dz from this equation in equa-

tion (2),

a f u^
i . ds — dh = —u . du A . ds. . . . (4')

g m 2g ^ '

Also, since Ati = Q, a. constant,

A du -\- n . dA = o,

and dA = x . dh. very nearly, if x is the width of the stream.
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Therefore

Adu -|- u^^ . dh = o,

and hence, by equation (4),

V?' X f u^
i . ds — dh = — a . dh A ds.

g A in 2g

Therefore

Ll^ / u^

dh m 2g __ . in 2gi

ds
~

u^ X
"

u^x ' •
• •

OJ
I — (x~— I — a—

5

g ^ gA

Let the position of any point a in the surface be defined by

its- perpendicular distance h from the bed and by the distance

s of the transverse section at a from an origin in the bed.

dh
Then -j is the tangent of the angle which the tangent to the

surface at a makes with the bed. It is positive or negative

according as the depth increases or diminishes in the direction

of flow, thus defining two states of steady varied motion.

Between these there is an intermediate state defined by

dh _ _ f u^

ds in 2g'

/ "
and z= is the equation for steady flow with uniformm 2g
motion.

Let U, M. H be the corresponding values of u, in, h in the

case of uniform motion. Then

/ U- U^

'^m^^^'m ^^)

and eq. (5) becomes

M u^ . ,ir

dh in U' .
m

, ^
-,- = t 2— = T— (7)ds u' X u- X ^'

'

I _ Q. _ t — a- -TgA g A
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If the section of the channel is a rectangle,

A = xh, xhu = xHU, m — —j r, and M=
X + 2/1' ^ + 2/r

Substituting these values in eq. (7),

X+ 2/1 (Hy
dh . x-\-2H\h. .-,

^ = ^ If— ^^>

I — a—fgh

Three cases will be considered and, in each case, a line

PQ, drawn parallel to the bed, represents the surfi^ce of

uniform motion, H being the distance between PQ and the bed.

Case 1. aifi < gh and // < li. Fig. 154.

dh
-J-

is positive, and therefore h increases in the direction of

flow. Thus the actual surface MN of the stream is wholly

above the line PQ.

Fig. 154.

Proceeding up-stream, h becomes more and more nearly

equal to H, so that the numerator of eq. (8), and therefore also

-J , approximates more and more closely to zero.

Again, proceeding down-stream, // increases and u

diminishes, so that both the numerator and denominator in

«q. (8) approximate more and more closely to the value unity.

dh
, , .

and therefore ~- becomes more and more nearly equal to t,
as

the slope corresponding to uniform motion.
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Hence up-stream MN is asymptotic to PQ, and down-

stream MN is asymptotic to a horizontal line. This form of

surface is produced when a weir is built across a channel in

which the water had previously flowed with a uniform motion.

Case II. aifl <gh and //>/;, Fig. 155.

— is now negative, and the depth diminishes in the direc-

tion of flow.

Up-stream h increases and approaches // in value, so that

MN' is asymptotic to PQ.

Down-stream h diminishes, « increases, and therefore the

value of ~. IS more and more nearly equal to unity.

Thus, in the limit, the denominator in eq. (8) becomes

dh
zero, and therefore =; 00 Hence theory indicates that at

a certain point down-stream the surface line ^T/TV takes a direc-

tion which is at right angles to the general direction of flow.

This is contrary to the fundamental hypothesis that the fluid

filaments flow in sensibly parallel lines. In fact, before the

Fig. 155-

limit could be reached this hypothesis would cease to be even

approximately true, and the general equation would cease to

be applicable. This form of water-surface is produced when
there is an abrupt depression in the bed of the stream.

Fig. I 56 shows one of the abrupt falls in the Ganges canal

as at first constructed. The surface of the water flowing freely

over the crest of the fall took a form similar to il/A'" below the

line PQ of uniform motion. The diminution of depth in the
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approach to the fall caused an increase in the velocity of flow,

with the result that for several miles above the fall a serious

erosion of the bed and sides took place. In order to remedy

this, temporary weirs were constructed so as to raise the level

Fig. 156.

of the water until the surface line assumed a form MN' corre-

sponding approximately to PQ. In some cases the water was

raised above its normal height and a backwater produced.

Case III. au^ > gh and H < k. Fig. 157.

— is negative and the surface line of the stream is wholly

above PQ.

Fig. 157.

dh
If k gradually increases, 11 diminishes and -y approximates

to — i in value.

If h gradually diminishes, it approximates to H in value,

dh
and in the limit ->- = O.

ds
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Between these two extremes there is a value o\ k for which

the denominator of eq. (8) becomes nil, viz.,

h = a—,
£
dh

and the corresponding value of -r- is infinity.

Thus one part of the surface line is asymptotic to PQ, the

line of uniform motion, another part is asymptotic to a hori-

zontal line, while at a certain point at which the depth is

uh = a—,
g

the surface of the stream is normal to the bed.

This is contrary to the fundamental hypothesis that the

fluid filaments flow in sensibly parallel lines, and the general

equation no longer represents the true condition of flow.

In cases such as this there has been an abrupt rise of the

surface of the stream, and what is called a " standing wave "

has been produced.

In a stream of depth H flowing with a uniform velocity U^

which is >
v/^

construct a weir so as to increase the deptlv

to h,, which is >

Fig. 158.

Then in one portion of the stream near the weir the depth

is > , while further up the stream the depth is < .
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Thus at some intermediate point the depth = a— , the corre-

spondmg value of -^ bemg 00 , and at this point a standing-

•wave is produced.

Now

flP
2g

= Mi = Hi,

and since H < a
U''

and therefore

—— < «

—

t,

2g £

t > /
2a'

which condition must be fulfilled for a standing wave.

Bazin gives the following table of values of/:

Nature of Bed.

Very smooth ce^nented surface

Ashlar or brickwork

Rubble masonry

Earth

(4-)Slope

below which stand-
inf; w^ve is im-
possible. In

Metres per Metre.

.00147

.00186

.00235

00275

Standing Wave Produced.

Slope in Metres
per Metre (or
Feet per Koot).

.002

.003

.004

.003

.004

.006

.004

.006

.010

.006

.010

.015

Least Depth,
in Metres.

.08

.03

.02

.12

.06

.03

•36
.16

.08

1.06

.47

.28

A standing wave rarely occurs in channels with earthen

beds, as their slope is almost always less than the limit, .00275.
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The formation of a standing wave was first observed by
Bidone in a small masonry canal of rectangular section.

The width of the canal = o"°. 325 = x;

I h\
slope 1= -tJ of the canal = .023;

" uniform velocity of flow = i'".69 ^ U;
" depth corresponding to U ^ o'°.o64 = H.

A weir built across the canal increased the depth of the

water near the weir to 0'°.287 = h^

It was found that the '

' uniform regime
'

' was maintained

up to a point within 4™. 5 of the weir. At this point the depth

suddenly increased from o'".o64 to about o". 170, and between

the point and the weir the surface of the stream was slightly

convex in form (Fig. 158).

With the preceding data and taking ar = i . i , —yy = 5

and is therefore > i at a section ab, Fig. i 59.

At the section cd,

ff rr -064
"=X^==:^X'-^9-o">.377,

and —-r- = .oc,K and is therefore < i.

Thus the expression i j- is negative for a section a^

and positive for a section cd, so

that t must change sign between

d/i
these sections, and -3- will then

ds

become infinite.

Consider a portion of a stream

bounded by two transverse sections, ad, cd, in which a stand-

ing wave occurs, Fig. 159.

Assume that the fluid filaments flow across the sections in

sensibly parallel lines.

Fig. 159.
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Let the velocities and area at section ab be distinguished

by the suffix i , and those at cd by the suffix 2 . Then

Change of momentum in di-

rection of flow

Hence

\ = impulse in same direction.

w

and therefore

-{2av^-:Eavl) = A^y^-A^^, ... (9)

y , y being the depths below_the surface of the centres of

gravity of the sections ai>, cd, respectively.

Now, z/j = «<, + V,. Therefore

Also, as already shown,

a^A^n,^ = 2av^' = A,u,^ + 2a V^\3u^ + V^,

B:nd, neglecting V^ as compared with 3«j

,

aA,u^' = A,M,' + 3u,2aV,\

Thus

and hence

A 11
2

2av^ = u,^A, + —7-^ (a - I)

= '^{a+2)^a'A,u,\

where «' = T >
and is 1.033 if a= i.i.

3
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Similarly it may bp shown that

Thus equation (9) becomes

^{A^u^ - A,u^^) =A^y^- A^^. . . , (10)

Let the section of the canal be a rectangle of depth H^ at

I/, H„

ab and H^ at cd. Then

«i^i = «2^2; -^ = -^1 ; ~^ = yi

Therefore, by equation (10),

«

^ :"l\//^ J- i\2 2/f,

which reduces to

/fj = //, satisfies the equation and corresponds to a condition

of uniform motion.

Also,

-Y-t^~ ^">

In Bidone's canal, ti^ = \'^.6g, H^ = o™.o64. Substituting-

these values in equation (11), the value of H^ is found to be
0°°. 16, which agrees somewhat closely with the actual rneas-

urements.

N.B.—The coefficients a and a' have not been very

accurately determined, but their exact values are not of great

importance. They are often taken equal to tinity.
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14. Longitudinal Profile and Ruhlmann's Law.—In the

preceding article, put F\i — b—\ = i — a— t in eq. (7), then

ds = F dh.

If the transverse profile has been determined, the value o{

F

corresponding to the depth h at any point O can be at once

found and, by means of the last equation, the surface profile

between the depths h and H can be easily plotted.

Let F^ , F.^, / 3 , . . . be the values of /'" at a series of

points at which the depths, differing successively by a small

quantity dk, are /i, , k.^, h.^, . . . respectively. Then

ds^ = /", . d/i; ds.^ = F.^ . dlt\ ds.^ = F., dk; .

;

and the corresponding distances s^, s.^, s^, . . . oi these points

from O are

ds,-\-ds., ds.,-\-ds. ds.,-\-ds.
J, =——— -; i-., = ^, + - - - ; -f, = -fo-^

~—
-; .

EXAMi'Li;. A cut of rectangular section, with a fall of

I in 10,000, is 10 ft. wide and delivers 40 cu. ft. of water per

second. At a certain point the depth is increased to 4 ft. by a

dam. Assuming that the faces of the cut are not very smooth

and that, consequently, .0001 maybe taken as an approximate

value of b, ;then the depth, H, for uniform motion is given by

\io///

/ 10//

d 10 + 2//

or

80+ i6H= 5//-',

and an approximate solution of this equation is // = 2.9 ft.

The following Table can now be easily prepared for a series

of depths, commencing at the dam a;nd diminishing successively

by 3 ins., a being unity:
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and, by interpolation,

/(P = 1.4769.

At the 3-ft. depth

^ = 2^ = •°3448,

and

Hence

.f =-^^(1-4769 - -4323)= 30.293 feet.

15. Channel of Rectangular Section with a nearly Hori-

zontal Bed.—In this case t is very small and may be disre-

garded in eq. (4), Art. 13, which may therefore be written in

the form

,
2^ m 2gvidu

as = -p- —Mil — a—J. .

f u^ f g u

But xhu = ^ = a constant, and therefore h . du -(- u . dh = o.

Also,

xh

X -\- 2/1

Hence
x^ h^ . dh ax dh

J =

bQ\x + 2h) ^ bgx + 2h'

Integrating,

"^^

j ^h^ - xB -f x'h - '- log, ix + 2h) \

%hQ
2ax+ -^ log, (X -f 2h) -t- C,

c being a constant of integration.
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Hence the distance j, — s.^ between two points at which

the depths are k^ and k^ (< h^ is given by

jtrS f"- h^dh ax /"" dh
+

^G^J, ^ + 2/^ ^ bgj^ X + 2/.
/j,

I <* ty /z,

T" dh

I , X -\- 2

The last term is usually very small and may be disregarded

without appreciable error, and therefore

Q' =
"'" h^dh

^(•^i-W/,, x^2h'

a formula by means of which the discharge may be found.

i6. Channel of Great Width as compared with the

Depth,—In this case

A = xli and P = x, approximately.

Therefore

;« = // and M= H.

Also,

u - ^V^ - ^^i
" h^^ ~ h^ f

Hence, eq. (7), Art. 13, may be written in the form

I h \^ ai at
-

I —
ds \H j gb gb

= 1 +Uh I hy I fiY

\-h)
-'

\-h)
-'

H-X-y h
Take z = —^— = ^j:, 1/ being the rise or fall above or

below the surface of uniform motion. Then dh =^ H , dz, and

at

i ds bg

H dz ' 5', — I
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Integrating,

c being a constant of integration.

This equation may be written

y y'
and between any two points j^ and -^

i
, ,

ott\
^{s-s) = :^-z' -[l- j^)\<P{z) - 0(^')!, • (3)

y change in depth
the argument being -=-, = ——.— -.—, r— .

.
•

*^ ^ H origmal depth

In the case of a dam built across a channel in which the

water had previously flowed with a uniform motion, Case I,

Art. 13, in the limit,

si = k =^ zH = 00
,

and therefore, by eqs. i and 2,

0(^.) + f = o = g log, I + -;=.- tan-' 00 + c ^y^ T + '^'

and

c — — .9069.

The following Table, calculated by Tutton, gives the value

of the backwater function, (p{s), in the case of a dam :
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Dupuit neglects the term and includes in his back-

water function, which may be designated f{z), the term

I y — y'\
z — ^ 1= —

Jf~]
i'^ equation (3), so that his formula becomes

^ = /(^)-/(o-oi)

.01, accurate measurement is
y

considering that when ^j. = ,

no longer possible. Riihlmann gives the same rule.

17. Change of Section.—Case I., Fig. 160. A channel of

slope i, and in which the flow is steady, gradually contracts

from a width AA = B^ to a width CC = B^, the surface of

Fig. 160.

steady motion being PQ above A A, and RS below CC. On
approaching AA the surface gradually rises and reaches its

greatest height QT r= z above PQ at AA. This is followed

by a gradual fall to the surface of steady motion RS at CC.

Let h^
I -^2 (> ^^1) ^^ *^^ depths corresponding to steady

motion above AA and below BB,

respectively.

" tn^, m^ be the mean hydraulic depths above AA and

below BB, respectively.

" «j, «2 be the mean velocities of flow above AA and

below BB, respectively.
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Then, disregarding the effect of surface resistance between

AA and CC,

-r 1 I 2^ 2 I

2_^'

or

uj' — u,^

= h, - K +

If the section is a rectangle,
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Case II. A channel of slope i, in which the flow is steady,

PQRS being the surface of steady motion, gradually contracts

from a width AA = B. to a narrower width at CC. The

Fig. 161.

channel remains narrow for a limited distance CD and then

gradually enlarges to its original size at E. On approaching

AA the surface rises, attains its greatest height QT above PQ
at A, falls to V at C, then to a' point H^ below PQRS at D,

and finally suddenly rises from W to the surface of steady

motion at R.

Let z be the depression of IV below PS.

" B, B^ be the widths at I> and E.

'

' n, u^ be the mean velocities at D and E.

Then

2<f '

where a may be taken = i.i.

If the section is a rectangle,

B{li.^ — z)u = B^u^k^.

Therefore,

a cubic equation giving z.
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The surface DE may now be plotted, and QT may be

found as in Case I.

These expressions also give, approximately, the depression

below the surface PQRS of steady motion when the channel

has its section suddenly changed by such obstructions as

bridge-piers.
,

_ -j^

Fig. 162.

On approaching the pier ends the water-surface gradually

rises to the maximum height T above PS, then falls to XY
below PS between the piers, and finally rises again to the sur-

face of steady motion on passing into the open channel.

Let By, B be the distances between the axes and the

inner faces of the piers.

Let iYbe the depth below XY.
Let z be the fall from T to X.

Then, according to Bresse, the value of z is given by the

empirical formula

2g \ c,mm^ B^(H + zf

c^ being a coefficient of contraction and having an average

value of about .8. Also, Q is the discharge for the width B^

of the channel.

* This formula, although generally adopted, is open to question. Bresse
considers that an equally correct approximation is obtained at a distance

of 20(j9i — E) from the contraction by taking — 'iaiB I
—^ — i
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18. Gauging of Streams and Watercourses.—The amount

of flow Q in cubic feet per second across a transverse section

of ^ sq. ft. in area is given by the expression

Q = Au,

u being the mean velocity of flow in the section in feet per

second.

If the longitudinal profile and several transverse sections of

a channel can be plotted, the volume of flow may be calculated

by means of eq. (i), p. 275.

Let«,, u^, . . . «„ be the mean velocities, A^, A^, . • • A„
the areas, and P^, P^, . . . P„ the wetted perimeters of n sec-

tions of the channel at the specified distances 1^,1^,... /„_,

apart. Then z, the fall in the free-surface level, which may
be found from the longitudinal profile, is given by the equation

u 2 V-+ / 'h:.-:rJ'^z ^ a

in which

and a may be taken =1.1.

But A,u^ = Au = Q~ .- u -. . . . = A„u„, and m —p.

Therefore

_ «GYj^ L\ .m f p
2g\A} A^)^ 2gJ^ A'"^''

and Q can be calculated as soon as the integration has been

effected, which may be possible if P and A are known functions

of s. An approximate value of the integral may be found

graphically as follows:

P
Plot, as ordinates, the values of ^-3 at the n sections, and

join the upper ends of those ordinates. The area between the
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extreme ordinates, the axis, and the line thus determined is

the value required.

1

Fig. 163.

Generally speaking, however, the above method of gauging-

the flow of a stream is not very accurate, on account of the

errors in the values of P, A, and the integral. More correct

results are obtained by determining the mean velocity.

19. Determination of the Mean Velocity u. Method I.

The most convenient method for gauging small

streams, canals, etc., is by means of a temporarily

constructed weir, which usually takes the form of a

rectangular notch. The greatest care should be

exercised to insure that the crest of the weir is truly

level and properly formed, and that the sides are

truly vertical. The difference of level between the

crest of the weir and the surface of the water at a

point where it has not begun to slope down towards

the weir is best estimated by means of Boyden's

hook-gauge, Fig. 164.

This gauge consists of a carefully graduated

rod, or of a rod with a scale attached, having at the

lower end a hook with a thin flat body and a fine

point. The rod slides in vertical supports,

and a slow vertical movement is given by

means of a screw of fine pitch. A stiff

vertical rod, with a sharp point, having

been placed at 5 to 8 ft. from the back of

the weir, with the point on a level with the

weir crest, water is run into the flume until

it rises slightly above the crest, producing

a capillary elevation at the point. The Fig. 164.

water is then allowed to subside until this elevation is barely
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perceptible, when the rod may be removed. A hook-gauge is

next placed in the same position, and the hook is slowly raised

until a capillary elevation is produced over its point. The
hook is then slowly lowered until the elevation becomes almost

imperceptible, when a reading is taken corresponding to the

level of the crest of the weir. More water now flows into the

flume and over the weir. As soon as the motion has become

steady, the hook is raised and the point adjusted at the surface

in the manner just described. A second reading is taken and

the difference between the two readings is the head of water

over the crest.

In ordinary light, differences of level as small as the one-

thousandth of a foot can be easily detected by the hook-

gauge, while with a favorable light it is said that an experi-

enced observer can detect a difference of two ten-thousandths

of a foot. Such differences, however, cannot be measured

under the ordinary conditions of practical work.

Method II. A portion of the stream which is tolerably

straight and of approximately uniform section is defined by

two transverse lines O^AB, O^CD at any distance 5 ft. apart.

Fig. 165.

The base-line Ofi^ is parallel to the thread EF of the

stream, and observers with chronometers and theodolites (or
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sextants) are stationed at 0^ , 0^. The time T and path EF
taken by a iloat between AB and CD can now be determined.

At the moment the float leaves AB the observer at O^ signals

the observer at 0^ , who measures the angle Ofiji, and each

marks the time. On reaching CD the observer at 0.^ signals

the observer at O^ , who measures the angle Ofi^F, and each

again marks the time.

Experience alone can guide the observer in fixing the dis-

tance 5 between the points of observation. It should be

remembered that although the errors of time observations are

diminished by increasing S, the errors due to -a deviation from

lines parallel to the thread of the stream are increased.

A number of floats may be sent along the same- path, and

their velocities (^1 are often found to vary as much as 20 per

cent and even more.

Having thus found the velocities along any required number

of paths in the width of the stream, the mean velocity for the

whole width can be at once determined.

Surface-floats are small pieces of wood, cork, or balls of

wax, hollow metal and wood, colored so as to be clearly seen,

and ballasted so as to float nearly flush with the water-surface

and to be little affected by the wind.

Subsurface-floats

.

—A subsurface float consists of a heavy

float with a comparatively large intercepting area, maintained

SE===-3ii=SSS

pn

Fig. i66 Fig. 167.

at any required depth by means of a very fine and nearly
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vertical cord attached to a suitable surface-float of minimum
immersion and resistance. Fig. 166 shows such a combina-

tion, the lower float consisting of two pieces of galvanized iron

soldered together at right angles, the upper float being merely

a wooden ball.

Another combination of a hollow metal ball with a piece

of cork is shown by Fig. 167.

The motion of the combination is sensibly the same as that

of the submerged float, and gives the velocity at the depth to

which the heavy float is submerged.

Twin-floats.—Two equal and similar floats (Fig. 168), one

denser and the other less dense than water, are

connected by a fine cord. The velocity (r',) of -^S.

the combination is approximately the mean of

the surface velocity (7'^) and of the velocity {v^)

at the depth to which the heavier float is sub-

merged. Thus

V, + Vj

and therefore
p^^ ^gg_

so that v,{ can be determined as soon as the value of v, has

been observed and the value of 7>^ found by surface-floats.

Velocity-rod.—This is a hollow cylindrical rod of adjustable

length and ballasted so as to float nearly

vertical. It sinks almost to the bed of

the stream, and its velocity (t',„) is ap-

proximately the mean velocity for the

whole depth.

Francis gives the following empirical

formula connecting the mean velocity (7'„,)

with the observed velocity (y^ of the rod

:

Fig. 169.
= 7v(^i.oi2-.u6^^^)
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d being depth of stream, and d' the depth of water below

bottom of rod ; but d' should not exceed about one fourth of d.

Method III. Pitot Tube and Darcy Gauge.—A Pitot tube

(Figs. 170 to 172) in its simplest form is a glass tube with a

right-angled bend. When the tube is plunged vertically into the

stream to any required depth s below the free surface, with its

mouth pointing up-stream and normal to the direction of flow,

Fig. 170. Fig. 171. Fig. 172

the water rises in the tube to a height h above the outside surface,

and the weight of the column of water, ^ -\- h high, is balanced

by the impact of the stream on the mouth. Hence (Chap. V)

and therefore

zvAls + /o = zi'Ac + kwA—

,

^
' ' 2g

h = k-

A being the sectional area of the tube, u the velocity of flow

at the given depth, and k a coefficient to be determined by

experiment.

A mean value of / is 1.19. With a funnel-mouth or a

bell-mouth Pitot found k to be 1.5. This form of mouth,

however, interferes with the stream-lines, and the velocity in

front of the mouth is probably a little different from that in the

unobstructed stream.

The advantages of tubes of small section are that the dis-

turbance of the stream-lines is diminished and the oscillations
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of the column of water are

checked. Darcy found by

careful measurement that

the difference of level be-

tween the surfaces of the

water-column in a tube of

small section placed as in

Fig. 170, and of the water-

column placed as in Fig.

1 7 1 with its mouth parallel

to the direction of flow, is

almost exactly equal to

When the tube is

placed as in Fig. 172 with

its mouth pointing down-

stream and normal to the

direction of flow, the level

of the surface of the water

in the tube is at a depth

h' below the outside sur-

face, and

where k' is a coefficient

to be determined by ex-

periment and a little less

than unity.

In this case the tube

again obstructs the stream-

lines. Pitot's tube does

not give measurable indi-

cations of very low veloci-

ties. A serious objection

X
303

n
ffl

Bff

m

F^^^

Fig. 173.
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to the simple Pitot tube is the difficulty of obtaining accurate-

readings near the surface of the stream. This objection is

removed in the case of Darcy's gauge, shown in the accom-

panying sketch, Fig. 173.

A and B are the water-inlets ; C and D are two double

tubes; £ is a brass tube containing two glass pipes which

communicate at the bottom with the water-inlets and at the

top with each other, and with a pump F by which the air can

be drawn out of the glass pipes, thus allowing the water to rise

in them to any convenient height.

Thus Darcy's gauge really consists of two Pitot tubes' con-

nected by a bent tube at the top and having their mouths at

right angles or pointing in opposite directions. If h is the

difference of level between the water-surfaces in the tubes

when the mouths are at right angles, then

-<^

and Darcy's experiments indicate that k does not sensibly

differ from unity.

When the mouths point in opposite directions, let /z, , /z,

be the differences of level between the stream-surface and the

surfaces of the water in the tube pointing up-stream and the

tube pointing down-stream, respectively. Then

h = k.—

,

h, — k„—

,

and therefore

where k ^^ k^-\- k^.
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k having been determined experimentally once for all, the

difference of level {— Il^-\- h^) between the columns for any

given case can be measured on the gauge and the value of u

can then be found.

A cock may be inserted in the bend connecting the two

tubes, and through this cock air may be exhausted and a par-

tial vacuum created in the upper portion of the gauge. The
water-columns will thus rise to higher levels, but the difference

between them will remain constant. Thus the surface of the

column in the down-stream tube may be brought above the

level of the outside surface, and the reading is then easily

made.

Sometimes the gauge is furnished with cocks at the lower

parts of the tubes, and if these cocks are closed when the

measurement is to be made, the gauge may be removed from

the stream for the readings to be taken.

Method IV. Cjo-mit-mcters.—The velocity of flow in

large streams and rivers is most conveniently and most

accurate!)' ascertained by means of the current-meter. The

earliest form of meter, the Woltmann mill, is merely a water-

mill with flat vanes, similar in theory and action to the wind-

mill. When the Woltmann is plunged into a current, a

counter registers the number of revolutions made in a given

interval of time, and the corresponding velocity can then be

determined. This form of meter has gone out of use and has

been replaced by a variety of meters of greater accuracy, of

finer construction, and much better suited to the work In its

simplest form the present meter consists of a screw-propeller

wheel (Fig. 174), or a wheel with three or more vanes mounted

on a spindle and connected by a screw-gearing with a counter

which registers the number of revolutions. The meter is put

in or out of gear by means of a string or wire When a cur-

rent velocity at any given point is to be found, the reading of

the counter is noted, the meter is sunk to the required position,

and is then set and kept in gear for any specified interval of
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time . At the end of the interval the meter is put out of gear

and is raised to the surface, when the reading of the counter is

again noted. The difference between the readings gives the

number of revolutions made during the interval, and the

velocity is given by an empirical formula connecting the

velocity and the number of revolutions in a unit of time.

The vane [' is introduced to compel the meter to take a

direction perpendicular to that of the stream-lines, but this

may not necessarily be perpendicular to the axis of the stream.

The slight error due to this discrepancy is usually disregarded

in practice.

In order to prevent the mechanism of the meter from being

Fig. 174.

Fig. 175-

injuriously affected by floating particles of detritus, Revy
enclosed the counter in a brass box, Fig. 175, with a glass

face, and filled the box with pure water so as to insure a con-

stant coefficient of friction for the parts which rub against each

other. In the best meters, however, the record of the number
of revolutions is kept by means of an electric circuit, Fig. 176,
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which is made and broken once, or more frequently, eacli

revolution, and which actuates the recording apparatus. The
time at which an experiment begins and ends is noted, and the

revolutions made in the interval are read on the counter, which

may be kept in a boat or on the shore, as the circumstances-

of the case may require. The meter is usually attached to a.

Fig. 176.

Fig. 177.

suitably graduated pole, so that the depth of the meter below

the water-surface can be directly read. In deep and rapid

water the meter must be held by a wire cord which will

usually require to be guyed to a forward line. The mean

velocity for the whole depth at an}- point of a stream may be

found by moving the meter vertically down and then up, at a

uniform rate. The mean of the readings at the two surface

positions and at the bottom position will be the number of

revolutions corresponding to the mean velocity required. The

mean velocity for the whole cross-section may also be deter-

mined by moving the meter uniformly over all parts of the

section.

The meter should be rated both before and after it is used.

This is done by driving the meter at different uniform speeds.;
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through still water. Experiment shows that the velocity t)

and the number of revolutions n are approximately connected

by the formula

V ^ a7t-\- b,

where a and b are coefficients to be determined by the method

of least squares or otherwise.

Exner gives the formula

v" — c-n^ + Vg^,

Vg being the velocity at which the meter just ceases to revolve.

Other Methods.—Many other pieces of apparatus for

the measurement of current velocities have been designed.

Perrodil's hydrodynamometer, for example, gives the

velocity directly in terms of the angle through which a vertical

torsion-rod is twisted, and in this respect is superior to the

current-meter.

The tachometer or hydrometric pendulum (Fig. 178),

again, connects the velocity with

the angular deviation from the

vertical of a heavy ball suspended

by a string in the current.

1^ J -^-ji^ ^"-S^-^^ Hydrometric and torsion

gg =L--^g5-i^=^-j-^=i-'^?r-^ balances have also been devised,
"=^-^-^^^ — " ^^— -^^^—̂ but they must be regarded rather

Fig. 178. ... ,
^

as curiosities than as being of

any real practical use.

Having found the maximum surface velocity, t'^. , at any

point in a watercourse, by one of the above methods, then

(Art. 10, p. 259) the mean velocity of the whole section is

given by the empirical relation

If the transverse section of the waterway, at the point in ques-
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tion, is plotted and its area, A, measured, the discharge, Q,

may be at once calculated by means of the formula

Again, selecting an approximately straight length of channel,

let X be the distance from the origin of a particle in the surface

filament of maximum velocity. Then the velocity of this

. , . dx
particle is -j-, and therefore

dt'

^ dt

Hence

e/ = l / Adx,

t being the time in which the float passes over the distance s.

If this distance is now divided into n equal divisions, and if

A^, A^, A.^, A^, . . A„ are the areas of the waterway at the

commencement, at the (« — i ) intermediate division points and

at the end of the length s, then, by Simpson's rule.

/ Adx = ^)^A,-^A„ + 2{A, + A„+ . . .+^_)

+ 4{A,-\-A,+ . . . + A «-.)|.

The integration may also be at once effected if A is given as a

function of x.

Again, if H is the depth of steady motion,

mi _ .^ _ &_

and if the width B of the channel is large as compared with

H, m = H, approximately, and A = BH.
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Therefore

Q -V; HK

At any given point in the stream B may be considered con-

stant, i is also constant, and a coefficient in may be substituted

Vifor B^l — . The actual depth h, which may be read on a fixed

vertical scale at the point in question, differs from 77 by a

certain quantity u. Thus the last equation may be written in

the form

Q — ,n{h + nf-.

a convenient expression which is sometimes used to determine

tlie \olume of flow in wide rivers. The coefficients in and n

arc constant at the same point for all depths, but vary from

point to point.

TABLE GIVING THE VALUES OF m AND ;/, THE UNIT BEING
A METRE OR A FOOT.
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VALUES OF i AND c FOR THE SIX CLASSES I TO VI, P. 250,

IN BAZIN'S NEW FORMULA, fe« = mi, OR v = c\fmi, WHERE

<r( 1 + -7=) = 87 |/w/, OR = 157.6 4/^^;/. ACCORDING AS THE
\ y ml
UNIT IS A METRE OR A FOOT.

Value
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VALUES OF b AND c, FOR THE SIX CLASSES I TO VI, P. 250,

IN BAZIN'S NEW FORMULA, fe' = mi, OR » = cV^, WHERE
^^ - 87 Vmi, OR = 157.6 Vmi, ACCORDING AS THE<1 +
V.ml

UNIT IS A METRE OR A FOOT.

Value
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VALUES OF 6 AND c, FOR THE SIX CLASSES I TO VI, P. 250,

IN BAZIN'S NEW FORMULA, iv'' = mi, OR w = ci^mi, WHERE
/, r
^e +-;;;.)

87Vmi, OR = loI.eVmi, ACCORDING AS THE

UNIT IS A METRE OR A FOOT.

Vulue
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VALUES OF b AND c, FOR THE SIX CLASSES I TO VI, P. 250,

IN BAZIN'S NEW FORMULA, bv'' = mi, OR v = cVj?ti, WHERE

i:{i + -^J\ =%! Vmi, OR = 157.6 Vrni, ACCORDING AS THE
V Vml
UNIT IS A METRE OR A FOOT.

Value
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MANNING'S VALUES OF < IN THE FORMULA V = cVmi. THE
UNIT BEING A METRE OR A FOOT.

Value
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EXAMPLES.

1. What fall must be given to a canal 2600 ft. fong, 7 ft. wide at the

top, 3 ft. wide at the bottom, i^ ft. deep, and conveying 40 cu. ft. of

water per second? (/ = ^V-) ^"^- ' '" '35-

2. Determine the fall of a canal 1500 ft. long, of 2 ft. lower, 8 ft.

upper breadth, and 4 ft. deep, which is to convey 70 cu. ft. of water per

second? (/= .008.) Aus. i in T088.4.

3. For a distance of 300 ft. a brook with a mean water perimeter of

40 ft. has a fall of 9.6 ins. ; the area of the upper transverse profile is

7o-sq. ft., that of the lower 60 sq. ft. Find the discharge. (/= .008.)

Ans. 352.12 cu. ft. per sec.

4. In a horizontal trench 5 ft. broad and 800 ft. long it is desired to

carry off 20 cu. ft. discharge and to let it flow in at a depth of 2 ft.
;

what must be the depth at the end of the canal ? (/ = .008.)

Ans. 1.36 ft.

5. Water flows along an open channel 12 ft. wide and 4 ft. deep, at

the rate of 2 ft. per second. What is the fall? A dam 12 ft. by 3 ft.

high is formed across the channel ; how high will the water rise over the

crest of the dam ? Ans. i in 480, / being .08 ; 1.899 f'-

6. A stream is rectangular in section, 12 ft. wide, 4 ft. deep, and falls

I in 100. Determine the discharge (l) with an air-perimeter; (2) without

air-perimeter. (/ = .008.) Ans. (i) 646 cu. ft. per sec.

(2) 665.088 cu. ft. per sec.

7. A canal 20 ft. wide at the bottom and having side slopes of i| to

I has 8 ft. of water in it ; find the hydraulic mean depth.

Ans. 5.163 ft.

8. The water in a semicircular cliannel of 10 ft. radius when full

flows with a velocity of 2 ft. per second; the fall is i in 400. Find the

coefficient of friction. Ans. .2.

9. Calculate the flow per minute across a given section of a rectan-

gular canal 20 ft. deep, 45 ft. wide, the slope of the bed being 22 ins. per

mile and the coefficient of friction per square foot = .008.

Ans. 292.856 cu. ft.

10 Why does the water of a river rise on the formation of the ice ?

11. Find the depth and width of a rectangular stream of goo sq. ft.

sectional area, so that the flow might be a maximum ; also find the flow,

y being .008 and the slope ^2 ins. per mile.

Ans. 2 1.21 ft.
; 42.42 ft. ; 4885 cu. ft. per sec.

12. The section of an aqueduct is a trapezium with a bottom width

of 6.56 ft., a top width of 7.546 ft., and a depth of 7.874 ft., the slope is

6 per 1000, and the faces of the aqueduct are of brickwork. Determine
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the discharge in' cubic feet per second when the depth of the water Is

4.92 ft., using the coefficient given by {a) Bazin
; ib) Kutter; {c) Man-

ning. Ans.(a) i^7i.2y6; (d) 494.5484; (c) 487.6973.

13. An aqueduct of rectangular section is to convey 9504 (Imp.) gal-

lons of water per hour at the maximum velocity of flow. Assuming as

a first approximation that b = .0001 14, and that the slope is .33 per 1000,

lind the proper width and slope. Also find the corresponding velocity

of flow. Ans. i.oi ft. and 3 in 10,000; .828 ft. per sec.

14. What head is required to give a velocity 4 ft. per second in a
semicircular channel of 3 ft. diameter and 5000 ft. long,/being .0064?

Ans. io{^ ft.

1 5. The section of a length of La Roche Canal in rock has a bottom
width of .7 m., one vertical face and the other face inclined to the hori-

zen at an angle tan ~ ' 2. The mean velocity of flow, when the water
runs .5 m. deep, is .514 m. per second. Find the slope, a suitable value

for the coefficient b or c being selected from the Tables. Ans. .002.

16. A section of the La Koche Canal in earthwork has its sides

sloped at 45° and has a bottom width of .3 m. When the depth of the

water is 0.5 m. the discharge is at the rate of 205 litres per second.

Determine the slope, a suitable value for the coefficient (5. being selected

from the Tables. Also show that, according to Bazin's formula, the

maximum surface and the bottom filament velocities are .816 m. and

.49 m., respectively. Ans. Slope = .002.

17. Water flows along a symmetrical channel, 20 ft. wide at top and
8 ft. wide at bottom ; the friction at the sides varies as the square of the

velocity, and is i lb. per square foot for a velocity of 16 ft. per second.

Find the proper slope so that the water may flow at the rate of 2 ft. per

second when its depth is 6 ft. Ans. i in 3445.

18. Calculate the flow across the vertical section of a stream 4 ft.

deep, 18 ft. wide at top, 6 ft. wide at bottom, the slope of the surface

being 18 in. per mile. {/ = .008.) Ans. 110.9376 cu. ft. per sec.

19. The waterway in a channel of a regular trapezoidal section, has a

sectional area of 100 sq.ft. If the banks slope at 40° to the horizontal,

what will be the best dimensions for the section }

Ans. Bottom width = 5.25 ft. ; depth of water = 7.22 ft.

20. The sides of an open channel of given inclination slope at 45°

and the bottom width is 20 ft. Find the depth of water which will

make the velocity of flow across a vertical section a nfaximum.

Ans. 6.73 ft.

21. The banks of a channel slope at 45°; the flow across a transverse

section is to be at the rate of 100 cubic feet at a maximum velocity of 5

ft. per second. Determine the dimensions of the transverse profile.

Ans. 11.05 ft- wide at bottom ; 2.28 ft. deep.

22. What dimensions must be given to the transverse profile of a
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canal whose banks slope at 40°, and which has to conduct away 75 cubic

feet with a mean velocity of 3 ft. per second?
Ans. Depth = 3.6 ft.; width at bottom = 2.62 ft.

23. The section of a canal is a regular trapezoid ; its slope is I in

500; its width at the bottom is 8 ft.; the sides are inclined at 30° to the

vertical. On one occasion when the water was 4 ft. deep a wind was
blowing up the canal, causing an air-resistance for each unit of free sur-

face equal to one fifth of that for like units at the bottom and sides,

wliere the coefficient of friction may be taken to be .08. Determine the

discharge. Ans. 75.34 cu. ft. per sec.

24. A canal is 20 ft. wide at the bottom, its side slopes are i\ to i, its

longitudinal slope is i in 360; calculate H.M.D.and the flow per minute

across any given vertical section when there is a depth of 8 ft. of water

in the canal. (Coeff. of friction = .008.)

If a weir 2 ft. high were built across the canal, what would be tlie

increase in the depth of the water }

Ans. 5.24 ft.; 27637776 cu. ft. per sec; 2.79 ft.

25. In the Ourcq canal the earthen banks slope at cot"' i^, and the

bottom width is 3.5. Find the depth of the water when the discliarge is

3000 litres per second, the slope of the canal being .1236 per 1000. Also
find the mean velocity. A/is. 1.5 m. to 1.4 m.; .4 m. per sec.

26. The banks of a canal slope at 45°, the section being a trapezium.

The discharge is to be 1200 litres per second at the rate of .5 m. per

second. Find the best bottom width and depth and also the slope.

Aus. .94 ni.; 1. 14 m.; .0004 according to Bazin and .0003 accord-

ing to Manning, the mean being .00035.

27. In the transverse section ABCD of an open channel with a ver-

tical slope of I in 300, the bottom width is 20 ft., the angle ABC = 90°

and the angle BCD = 45°. Find the height to which the water will

rise so that the velocity of flow may be a maximum ; also find the dis-

charge across the section, y being .008.

Ans. II. 715 ft.; 1584 cu. ft. per second.

28. The sewers in Vancouver are square in section and are laid with
one diagonal vertical. To what height should the water rise so that (a)

the velocity of flow may be a maximum; (b) the discharge may be a

maximum? (.\ side of the square = 12 in.)

Ans. (a) .292 ft. above horizontal diameter.

W. 5797 ft. '

29. The section of a channel is a rhombus with a diagonal vertical-

How high must the water rise in the channel (a) to give a maximum of

flow, and (1^) to give a maximum discharge?

Ans. If D is the length of the horizontal diameter, and if 6 is

the inclination of a side to the vertical, the water must rise above
the horizontal diameter to the height I) cot 9 x .207 in (a) and
to the height D cot S x .4099 in {S).

30. An aqueduct has a given slope anri a square section with a diag-
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onal vertical. Show that the discharge at maximum velocity, the dis-

charge when running full and the maximum discharge are in the ratios

of I to 1.11510 1. 140, and that the corresponding mean depths are

.293a, .25a, and .27a, a being a side of the square.

31. An aqueduct, with a section, in the form of an isosceles right-

angled triangle of height h, is laid with its base horizontal. Compare
the quantities of water conveyed {a) when running full

; {d) when the

velocity is a maximum; {c) when the quantity conveyed is a maximum,
and find the corresponding mean depths.

. ^ ,; , ^ cVl^ ,,-, c\/l^i
, , c i^Wi

Ans. Quantities, (a) ; {b) ; (c) ———

.

2.1973 2.0906 2.0484

Mean depths, {a) .207/1; (b) .2288//
;

{c) .218/;.

32. A length of a circular aqueduct of waterway A and mean deptli

m has to be replaced by a length of an equivalent rectangular aqueduct.

If the depth of the water is/ and the width of the rectangular section x,

show that

l/xY = l>A'}n{x + 2y),

m z
'

the value of -5- being b' for the pipe and^ for the rectangular aqueduct.

Note.— In first approximations take b = U.

33. Taking the coefficient b for a given open channel to be

.00010058 and the corresponding coefgcient ( = —
J

for pipe-flow to be

.00012485, show that, approximately, if the volume of flow under the same

head is the same both for the channel and the pipe,

dT = ZA\

A being the sectional area of the waterway in the channel, P the wetted

perimeter and a? the diameter of the pipe.

34. Using the same coefficients as in the preceding example, show

that the loss of head per unit of length in a pipe is nearly 88 per cent

greater than the loss in an open semicircular channel of an equal water-

way and giving the same discharge.

Q^olG.— Since the whole of a pipe-surface develops resistance toflow, it

is evident a priori that the loss of head per unit of length must be much

greater than in the case of the open channel.)

35. The Dhuis aqueduct, which supplies Pau with water, has a slope

of I ill 10,000. Its section is egg-shaped, the lowest portion being a semi-

circle of .7 m. radius. The aqueduct conveys, normally, 200 litres per

second. Find the angle subtended at the centre of the semicircle by the

water-line, and hence find the sectional area of the waterway, its depth

and the velocity of flow. Ans. 154°; .55 sq. m.; .54 m.; 36 m. per sec.
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36. Deduce the flow formula for a circular aqueduct of radius r,

when the wetted perimeter subtends an angle of 240° at the centre.

Ans. r^i = .26ibQ'.

37. A circular aqueduct of 6.56 ft. diam. conveys 49.44 cu. ft. of

water per sec. The slope is i in 10,000. Find {a) the angle subtended

at the centre by the water-line
; {b) the clear head above the water sur-

face
;
{c) the velocity of flow.

Ans. {a) 240° 30'
;
{b) 1.63 ft.; {c) 1.815 ft. per sec.

38. The Avre circular aqueduct conveys 2.05 cm. per second, and in

one length the slope is 4 in 10,000. Its water-line subtends 120° at the

centre. Find the radius, taking b = .0002 as a first approximation.

Tlie surface has a very smooth coat of cement .02 in. thick; de-

termine the actual waterway, the wetted perimeter, the mean depth,

the velocity of flow, and the clear height above the water-line.

Ans. Radius = .88 m. ; 1813 sq. m.
; 3.549 m. , .51 m. ; 1.13 ra.

per sec. ; .445 m.

39. The Potomac aqueduct, which is faced with brick, has a diameter

of 9.0225 ft. and a slope of .143 in io,ooo. The water-line subtends an
angle of 240° at the centre. Taking b = .0000609, determine quantity of

water conveyed in gallons per day. Ans. 69,997,071 Imp. gallons.

84.019,066 U. S. gallons.

40. Taking (5 = .0000609, fi"'^ ^^^ angle subtended at the centre by
the water-line and also find the free height above the water-surface in

the Vanne aqueduct when conveying 49.442 cu. ft. per second, the

diameter of the aqueduct being 6.562 ft., and the slope i in 10,000.

Ans. 240° 30'.

41. Show that the quantities of water conveyed by a circular aque-

duct of radius r, when the water-line subtends an angle of 240° at the

centre, when the velocity of flow is greatest, when running full, and
when the quantity conveyed is a maximum, are in the ratios of i to 1.086

to 1. 131 to i.i88, and find the angles subtended at the centre by the

water-lines in the three last cases. Also determine the mean hydraulic

depths. Ans. Angles, 257° 27'
;
360°

;
308°.

Aleati depths, .boy \ .6o8r ; .y, .573^.

42. For a 'small tachometer the velocities are .163, .205, .298, .366,

.61 metre ; the number of revolutions per second are .6, .835, 1.467,

1.805, 3.142. Find the constants corresponding to the wheel.

Ans. .169; .061.

43. Assuming (i) that a river flows over a bed of uniform resistance

to source; (2) that to maintain stability the velocity is constant from
source to mouth; (3) that the river sections at all points are similar

;

(4) that the discharge increases uniformly in consequence of the supply

from affluents—determine the longitudinal section of such a river.

Ans. A parabola.
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44. In an aqueduct with a slope of i in 10,000, the depth of water
corresponding to a condition of uniform steady motion is 1.77 ft. At
a certain point the depth is increased to 4.43 ft. by a weir 3.77 ft. in

height. Find the distance to which the "rise" extends along the

aqueduct. Ans. 50,038 ft.

45. The channel of a river 328 ft. wide is narrowed by the abutments
of a bridge to a width of 42.65 ft. The depth of the water under the

bridge is 12.63 f^., and the quantity of flow per hour is 2,406.250 gallons.

Find the height of swell. Ans. .104 ft.

46. In a broad channel of approximately rectangular section there is

a small change of n% in the depth. Show that the corresponding

changes in the velocity of flow and in the discharge are in% and i\n%

respectively. Also, if the banks slope at an angle 6, show that the

nhvl b I \ , nhOl -xb i \
changes become "^ — tt > and —-\—i;~-rr--—s respec-° 100 \2^ Psmdj 100 \2^ i" sm 6/

^

tively, h, b,A, P,v, and Q bemg the initial depth, breadth, area of wafer-

way, wetted perimeter, velocity of flow, and discharge, respectively.



CHAPTER IV.

RAMS, PRESSES, ACCUMULATORS, WATER-PRESSURE
ENGINES.

I. Hydraulic Rams.—By means of the hydraulic ram a

•quantity of water falling through a vertical distance h^ is made

to force a smaller weight of water to a higher level.

The water is brought from a reservoir through a supply-

pipe 5. At the end of this pipe there is a valve opening into

an air-chamber C, which is connected with a discharge-pipe D.

At'E there is a weighted check- or clack-valve opening

inwards, and the length of its stem (or the stroke) is regulated

by means of a nut or cottar. When the waste-valve at E is

open the water begins to escape with a velocity due to the

head k^ and suddenly closes the valve. The momentum of

the water in the pipe opens

P the valve at B, and a por-

tion of the water is dis-

charged into the air-vessel.

From this vessel it passes

into the discharge-pipe in

consequence of the reac-

tion of the compressed air.

At the end of a very short

interval of time the mo-
mentiim of the water has

been destroyed, the valve

opening into the chamber C closes, the waste-valve again

opens, and the action commences as before. It is found that

334
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the efficiency of the ram is increased by introducing the small

air-vessel F. The wave-motion started up in the supply-pipe

by the opening and closing of the valve opening into the

chamber C, has been utilized in driving a piston so as to pump
up water from some independent source.

Let V be the velocity of flow in the supply-pipe at the

moment when the valve at E is closed.

Let W^ be the weight of the mass of water in motion.

W v"^
Then — ^

-^ is the energy of the mass, and this energy is

expended in opening the valve at B, forcing the water into the

air-chamber, compressing the air, and finally causing the

elevation of a weight IV.^ of the water through a vertical dis-

tance h'

Let /ly be the head consumed in frictional and other

hydraulic resistances.

Then

^V.^(/i' -|- k^ = the actual work done = —- —.

This equation shows that, however great h' may be, IV.^

has a definite and positive value, and therefore water may be

raised to any required height by the hydraulic ram.

WJi'
The efficiency of the machine = '

.

, and may be as much

as 66 per cent if the machine is well made. According to

d'Aubuisson,

IVJi'

^A
= 1.42 — .28

\/{-

2. Hydraulic Press.—The hydraulic press is a machine

by means of which great pressures can be exerted and heavy

weights lifted, the energy being transmitted through water.

It consists essentially of a strong cast-iron or cast-steel cham-

ber or cylinder containing a plunger or ram which is acted
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upon by water pumped through piping into the chamber by a

single-acting force-pump, which may be either worked by

hand or by power.

The action of the press

depends on the principle

that fluids press equally in

all directions and thus the

pressure per square inch

on the ram is equal to the

pressure per square inch on

the pump-plunger. Origi-

nally discovered by Pascal,

Fig- i8o.
(-j^e press was first made of

practical utility by Bramah, who made the moving parts water-

tight by the introduction of cup-leather packing.

The ram is packed with a leather collar of n form which

is fitted into a recess turned out in the neck of the cylinder and

is kept in place by the cylinder-cover gland.

According to experiments made by Hick,

the friction at the collar increases directly

with the diameter of the ram and with the Fig. i8i.

pressure, but is independent of the depth of the collar. Hick's

law of friction is expressed by the following formula:

the total frictional resistance = .oii^dp or .0471^,

according as the leather is in good condition and well lubri-

cated or is new and badly lubricated.

The friction is about I per cent of the pressure for a 4-in. ram.

At low pressures hemp packing is invariably used, and
sometimes also for pressures as great as 2000 lbs. per sq. in.,

but, generally speaking, it is rarely used for pressures exceed-

ing about 700 lbs. per sq. in. The ram is driven forwards by
the pressure of the water through the tight collar, and is capable

of lifting a weight or exerting a pressure which is limited in

(f^
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Tnagnitude only by the strength of the chamber and connec-

tions and by the capacity of the pump.

Let L be the stroke of the ram.

Let W be the weight on the ram, including the weight of

the ram.

n
Then the zvork done = WL = —d'^pL.

4

Let Q be the axial force on the plunger produced by a force

P on the pump-lever at a distance / from the fulcrum.

Let cj be the distance between the fulcrum and the axis bf

the plunger. Then, disregarding fluid friction, the friction at

the fulcrum, and the leather or " packing " friction,

Pf = Qg.

nl> W
4 ^ ~ ^~ TTd"'

^ d-i
But Q= p^ = w= "^^

p d-
or W=P^-y^.

q Lr

If !\ , fg are the internal and external radii of a press, and

if /j , /j , and / are the intensities of pressure at the internal

and external surfaces and the intensity of stress at the radius

r, then

.

_

Po'-o'-Pi'?
I

A-

A

^'o'^'i'

/ — ;- 3 _ ; a
^ T- 3 r ! _ ;-

!•

'U I 1

(See Appendix, " Th. of Structures," Bovey.)

Hydraulic presses of different designs, but which are all

more or less modifications of the Bramah, are employed for a

variety of pressing and lifting operations. For example, they

are used in making lead pipes, in expressing oil from seeds, in

baling cotton, in pressing yarn, in packing hay, etc., while

the modern systems of punching, riveting, stamping, forging.
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shearing, welding, and bending depend upon the peculiar

advantages of hydraulic power for such purposes.* Hydraulic

presses for forging have largely superseded the steam-hammer

>

d ri
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As the pump-plunger rises a partial vacuum is produced

in the pump-chamber, and the pressure in

the reservoir B overcomes the resistance of

the spring on the inlet-valve and opens a

passage for the water into the pump-cham-

ber. To lower the jack, a relief-valve is

unscrewed, and the water returns to the

reservoir B while the ram falls. The ram

Fig. 185. Fig. 186.

may be prevented from turning round by means of a steel set-

pin screwed on the side of the press and fitting a vertical slot

in the ram.

The construction and action of the punching-bear, Fig.

186, are essentially the same as in the hydraulic jack. By
actuating the lever L, the water passes into the hydraulic

cylinder C and by its action forces the punch P down. The
punch is raised by first opening a relief-valve and then lower-

ing the lever M, which causes the cam to raise the hydraulic

ram, and the water from the hydraulic cylinder flows back

into the reservoir. The relief-valve is now closed and the

punching operation may be again repeated

.

3. Accumulator.—Low pressures of 170 lbs. (= 392 ft.)

to 250 lbs. (= 576 ft.) per sq. in. can sometimes be obtained

from a natural supply or from a reservoir, but the higher
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pressures of 700 lbs. (= 1612 ft.) to looo lbs. (= 2304 ft.)

per sq. in. and upwards, which are almost exclusively adapted

to the working of intermittent machines, must be artificially

produced by means of pumping-engines. In a direct supply

the capacity of these engines must be sufficient to meet the

maximum demand at any moment, but the fluctuation in the

demand upon the mains for cranes, capstans, elevators, etc.,

was soon found to be so great as to render imperative some

method of storing energ}-. This has been effected by the

introduction of the accumulator, which, in its simplest form,

consists of an annular cylinder (Fig. 187) partially or wholly

filled with scrap, slag, or other heavy material, or of a series

of trays (Fig. 188) loaded with pig iron or lead, supported by

a cross-head on the top of a ram working in a cylinder with a

Fig. 18

stuffing-box and gland at the upper end. The pressure -water

is admitted by a branch pipe at the lipwer end and raises the

ram together with the weight it carries. Thus, if W^tons are

lifted through a vertical distance s and if the \\'ater -pressure on
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the ram of dm. diameter is p lbs. per sq. in., the total store

of energy in foot-pounds

= 2240 M<s- = sp.
4

When the accumulator has reached the highest point it

actuates a lever which shuts off the steam so that the engines

cease to work and the accumulator falls. When it has reached

the lowest point it again actuates a lever which opens a valve

and admits steam. The engines again commence to work and
the accumulator rises.'

In small plants the accumulator fully provides for the

storage of sufficient energy to meet the momentary fluctuations

of demand for the power necessary to work machines which
are intermittent in action, and without the accumulator pump-
ing-engines of greater capacity would be required. In large-

plants, as in the cities of London, Manchester, and Glasgow,

the total accumulator storage capacity is a very small fraction

of the total supply, and at the times when the demand is

heavy the accumulators are usually almost stationary. In such

cases they may be considered rather as regulators of pressure.

They are also of great importance in automatically facilitating

the control of the plant, and act as buffers in preventing break-

age and shocks. If lack of space prevents the use of an acci-

mulator of the type just described, an intcnsifier, Fig. 189,

may be employed. Water at a pressure of p lbs. per sq. in.

is admitted from the water-mains or from a tank at a suitable

elevation to the lower side of a piston of diameter D ins., work-

ing in an hydraulic cylinder. The piston-rod of diameter d
ins. forms the ram of the accumulator B, and works through a

water-tight neck. Thus the pressure in the accumulator in lbs.

per sq. in.

~ 'nd'' ~ d'-^'
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and this is also the intensity of the pressure in the hydraulic

mains C.

Tweddell's differential accumulator. Fig. 190, is also

designed for cases in which space is of importance. A heavy

cylinder A, with the usual glands and cup-leathers at the top

^^

55a

Fig. 189. Fig. iqo.

and bottom, is loaded with a number of lead or cast-iron

weights IV, fitted into each other, and slides upon a ram B,

fixed at the upper end by a bracket and at the lower by a step.

A brass liner is shrunk upon the lower portion ofthe ram * so

that its diameter is slightly greater than that of the upper

portion. A hollow passage C is drilled axially along the ram

and connects with a cross-passage just above the brass liner.

The water is pumped through the inlet-pipe /, fills these

passages and exerts an upward pressure over an effective area

equal to the difference between the areas of the lower and

upper portions of the ram. Thus very heavy pressures, up

to 2000 lbs. per sq. in., or more, can be readily obtained with

a comparatively small weight. But the volume of water is

*The ram, however, is usually solid steel.
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small, and any large demand for power will cause the loaded

cylinder to fall rapidly, so that when it is brought to rest a

considerable increase of pressure is developed which is of

advantage in punching, riveting, etc. The uppermost weight

is connected by means of a chain with a relief-valve which

enables the limiting positions of the cylinder to be automati-

cally regulated.

Let ^Fbe the total dsz-d weight lifted.

Let Fh^ the friction of each of the cup-leathers.

Let d^ , d.^ be the diameters of the lower and upper portions

•of the ram.

With the cylinder at the height x above its lowest position,

let /, be the intensity of pressure in the inlet-pipe f when the

•cylinder is rising, and p., the intensity when it is falling. Then

W+ 2F
Px = ^"-i' + :; .

W- 2F
A = ^«'-i' + -z

•

Hence an approximate measure of the variation of the

intensity of pressure is

i6F
P2 =

n{A^ - d/)'

and the value of this variation is ordinarily from about i per

cent of the pressure for a i6-in. ram to about 4 per cent for a

4-in. ram.

Experiment has shown the efficiency of an accumulator to

te as high as 98 per cent, i per cent being lost in charging

and I per cent in discharging. Its total store of energy is

comparatively small and it cannot maintain a supply for any

length of time, but it possesses the great advantage of being

able to use its energy at a high rate for a short period.
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Fig. 191 represents a convenient

' form of accumulator known as Brown's
.£RS

Steam Accumulator. A ram A^ works

in the hydraulic chamber //, into

which water is forced by a pair of

engines. A piston P is attached to

the upper end of the ram and works in

a cylinder supplied with steam direct

from the boilers. As soon as pressure-

water is supplied to h}'draulic ma-

chinery the ram and piston fall, opening

the steam-port, so that steam passes

into the engine-cylinders. The pumps

then commence to work and force in

Fig. 191. more water to replace that \\hich is

being drawn off. This accumulator is specially for use on ships.

4. Water-pressure Engines.— In these engines water

under pressure is admitted into

a strong chamber or cylinder,

and acts upon a piston or

plunger in precisely the same

manner as in the case of the

steam-engine. The cylinder is

made of gun -metal or of cast

iron, and its thickness t, which

is relatively large on account

of the wear, may be calculated

from the formula

Fig. 192.

;* ins. = .002a^p^d -{- 1.25 ins.,

f^ being the pressure in atmospheres, and (/ the diameter inr

inches.

The frictional resistances and the possibility of severe shocks.

are increased by rapid motion and reversals of motion. Hence

the velocity of flow in the supply-pipe should not exceed 10 ft^
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per second, and preferably should be limited to 6 ft. per

second (Art. 1 1, p. 156), while the plunger should have a long-

stroke. In practice the stroke is usually from 2^ to 6 times

Fig. 193.—Sectional Elevation. Fig. 194.— Cross-section.

Fig. 195—Freight-hoist. Fig. 196-—Balanced-ram Lift.

the diameter of the cylinder, and the mean velocity of the

plunger is about i ft. per second, rarely exceeding 80 ft. per

minute. As the water is practically incompressible, its free

and immediate passage should be insured by means of large
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and wide-open ports. An important advantage, connected

with this property of incompressibility is that the hydrauHc

resistances may be indefinitely increased by simply closing a

valve. Thus no brakes are required, but the water contains

within itself its own brake, and an absolute control is provided

which secures the highest degree of safety.

The water-pressure engine is necessarily a slow-moving

machine, and is both cumbrous and costly unless actuated by

pressures of great intensity. These engines are advantageously

employed in working cranes, hoists, elevators, capstans, dock-

gates, presses, and other machinery in which the action is of

an intermittent character.

The hydraulic-ram lift. Fig. 197, more completely utilizes

than any other the properties of

incompressibility and direct pres-

sure, and, owing to its greater

safety, its adoption is sometimes

recommended for elevators of con-

siderable height. Under a full

load its efficiency may be as great

as 95 per cent. The speed of a

suspended lift is rarely less than

100 ft. per minute and often ex-

ceeds 500 or 600 ft. per minute.

Between such limits a large varia-

tion in the efficiency might be

expected, and although the effi-

ciency under a full load, even

when the ram-stroke is multiplied

8 or 10 times, may be 75 or 80

per cent, it ma.y also fall below

40 per cent when the load is light.

The chief loss of efficiency is
Fig. 197. , 1 r , .

due to the fact that the same
quantity of pressure-water, and therefore of energy, is usqd
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whether the load is heavy or Hght. Various devices have been

adopted to remedy this evil: the length of stroke may be

automatically proportioned, as in the Hastie engine, to the

work to be done; the pressure-water may be admitted for a

part of the stroke only, the remainder being provided by the

discharge- water; cranes and elevators are often provided with

a large cylinder for heavy loads and a small cylinder for light

loads, and for the same purpose a single cylinder with a differ-

ential piston is sometimes used.

Other important losses of efficiency are due to (a) pipe

friction; (b) elbows, curves, etc., and abrupt changes of sec-

tion
;

(c) the friction of mechanism.

Let /„, be the mean intensity of the pressure in the

cylinder.

Let s be the stroke.

Let r',„ be the mean velocity of the plunger.

Then

, , , ,
nd^

the work done per stroke =—/,„.$;

4

the quantity of motive water used per stroke

nd'^ I Ttd^

4 ~ 4

according as the engine is of the double- or single-acting type.

Analysis.—In a direct-acting pressure-engine let A be the

sectional area of the working cylinder (Fig.

198).

Let a be the sectional area of the supply-

pipe.

Let A = na. ^'«- '98-

Let IF be the weight of the water, piston, and other recip-

rocating parts in the working cylinder.

Let / be the length of the supply-pipe.

Let / be the acceleration of the piston. Then n/ is the

acceleration of the water in the supply-pipe.



348 HYDRAULIC ENGINE.

The lorce required to accelerate the piston

W
= ,f-

'

and the corresponding pressure in feet of water

W f
tvA g

'

The force required to accelerate the water in the supply-

pipe

wal

and the corresponding pressure in feet of water

^ w/—

.

g

Similarly, if /' is the length of the discharge-pipe and —

,

its sectional area, the pressure-head due to the inertia of the

discharge-water

g
Hence the total pressure in feet of water required to over-

come inertia in the supply-pipe and cylinder

g\ivA I

W
The quantity j~. -|- >'l has been designated the length of

working cylinder equivalent to the inertia of the moving parts.

Let the engine drive a crank of radius r, and assume that the

velocity V of the crank-pin is approximately constant. Then
the acceleration of the plunger when it is at a distance x from

its central position

p.
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and the pressure due to inertia

WW

Let V be the velocity of the plunger in the working

cylinder.

Let u be the velocity of the water in the supply-pipe.

Let h be the vertical distance between the accumulator-ram

and the motor.

Let /g be the unit pressure at the accumulator-ram.

Let / be the unit pressure in the working cylinder.

Then

Po i_
^^

. , /
I

^'^
I

( losses due to friction, sudden

-w 2g~^ IV
"^ 2g ~^

\ changes of section, etc.

Thus

p.. — p 7'" — u'
^-^ = // + losses.W 2g

7/2 — ^
The term 1- losses may be approximately expressed

in the form K— , .^ being the coefficient of hydraulic resist-

ance. Hence

n- — n v^ KV«
w 2g igr

the term h being disregarded, as it is usually very small as

p
compared with —

.

Thus the total pressure-head in feet required to overcome

inertia and the hydraulic resistances

-PK^ + ^l-' +fe—')[ • •
('^
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and is represented by the ordinate between the parabola ced

and the line ab in Fig. 199, in which afgb is a rectangle, ab

representing the stroke 2r,

F7 w
ae ^ bd = — I

—- -\- nl
gr^wA

J

the pressure due to inertia at the end of the stroke, and

F2
K-
2g-

the pressure required to overcome the hydraulic resistances at

the centre of the stroke.

Fio. lyg.

The ordinate between the parabola fmg and the line fg
represents the back pressure, which is necessarily proportional

to the square of the piston-velocity, i.e., to ~~^{f^ — J^)>

Hence the effective pressure-head on the piston, transmitted

to the crank-pin, is represented by the ordinate between the

curvesfmg and ced. The diagram shows that the pressure at

the end of the stroke is very large and may become excessive.

It is therefore usual to introduce relief-valves or air-vessels to

prevent violent shocks. In certain cases, however, as, e.g.,

in a riveting-machine, a heavy pressure at the end of the
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Stroke, just where it is most needed to close the rivet, is of

great advantage, and therefore the inertia effect is increased

by the use of a supply-pipe of small diameter and an accumu-

lator with a small water section (^Fig. 197).

By equation (i),

'^^ = J|(^o-^) (3)

This speed z' can be regulated at will by the turning of a

cock, as in this manner the hydraulic resistances may be

indefinitely increased.

Let the engine be working steadily under a pressure P,

and let v^ be the speed of steady motion. Then

0^ = ^^Po - P)'

and

P =:

useful resistance overcome by the piston

-{- friction between piston and accumulator-cylinder.

If P is diminished, the speed Vq will be slightly increased.

but in no case can it exceed - ' "

V^
5. Losses of Energy.—The losses may be enumerated as

follows

:

{a) The Loss L^ due to Piston-friction.—It may be assumed

that piston-friction consumes from 10 to 20 per cent of the

total available work.

(b') The Loss L^ due to Pipe-friction.—The loss of head in

the supply-pipe of diameter </,

_ 4// {nvy

The loss of head in the discharge-pipe of diameter d^
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Hence the total loss of head in pipe-friction is

The loss in the relatively short working cylinder is very

small and may be disregarded.

(f) The Loss /,., due to Inertia.—The work expended in

moving the water in the supply-pipe

wA v'^

^ gn 2
'

and in moving the water in the discharge-pipe

_ wA z^

The total work thus expended

V/ ' n i2g

and it may be assumed that nearly the whole of this is wasted.

Hence the corresponding loss of head is

3 A2r^/i n'Izg 2r\n n'Izg 2g'

[d) The Loss L^ due to Curves and Elbows.—The losses

due to curves and elbows may be expressed in the form

^,=/,^(Chap. II, Art. 14).

{e) The Loss L^ due to Sudden Changes of Section.—The

loss of head in the passage of the water through the ports may
v^

be expressed in the form/"'—

.

The loss occasioned by valves may also be expressed by

/ — •

2g
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Thus the total loss is

The coefficient/" ' may be given any desired value between

o and CO by turning a valve, so that any excess of pressure

may be destroyed and the speed regulated at will.

(_/") The Loss L^ due to the Velocity with which the Watci'

leaves the Discharge-pipe.

[n'vfv' 7'^

6 - 2g ~ ^^2g'

Hence

the effective head /o -(z. + z, + Z3 + z, + i:, + z,),

and the efficiency = I - -(Z^ + Z^ + Z3 + Z, + Z, + Z^).

6. Brakes.—Hydraulic resistances absorb energy which is

proportional to the square of the speed. This property has

been taken advantage of in the design of hydraulic brakes for

arresting the motion of a rapidly moving mass, as a gun or a

train, of weight ff. In Fig. 200 the fluid is allowed to pass

m

Fig. 200.

from one side of the piston to the other through orifices in the

piston.

Let m be the ratio of the area of the piston to the effective

area of the orifices.

Let V be the velocity of the piston when moving under a

force P.

Let A be the sectional area of the cylinder.
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Then

the work done per second = Pv
= the kinetic energy produced

{m — I fv^

2<r

= wAv

and therefore

which is the force required to overcome the hydrauHc resistance

at the speed v.

Let V be the initial value of v, and P^ the maximum value

of P Then

Pj = zvAim — if-
\2_

2^"

Let F be the friction of the slide. Then

V-
P Jr- F= wAiin — ly \- F,

and P^ -\- F is the maximum retarding force. It would cer-

tainly be an advantay;e if the retarding force could be constant.

Li order that this might be the case (;« — l)v must be con-

stant, and therefore as i> diminishes m should increase and

consequently the orifice area diminish. Various devices have

been adopted to produce this result.

Assuming the retarding force to be constant, let x be the

piston's distance from the end of the stroke when its velocity

is V. Then

ivv^ „— = (P + F)x,

and therefore v^ is proportional to x.

But (;«— 1)7' is constant.

Therefore (/« — I ) is inversely proportional to Vx.
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EXAMPLES.

[. A 4-ton hydraulic jack with a 2-in. ram and a l-in. plunger is to

lift a weight of i ton, and is worked by a handle with a leverage of 12

to I. If the efficiency of the jack is 80 per cent, what force must be
applied to the handle ? Ans. t,2^-^ lbs.

2. The ram of an hydraulic press has a sectional area 50 times as

great as the pump-plunger. The mechanical advantage of the lever is

10 to I. If a force of 50 lbs. is exerted on the handle, find the pressure

on the ram. Ans: 25,000 lbs.

3. A force of P lbs. is required to punch a hole of (/ins. diameter.

Find the diameter of the ram, the available fluid pressuie being p lbs

per square inch. If this pressure is developed by a steam-intensifier

with a steam-piston area n times that of the intensifier's ram, find the

required steam-pressure. /YlP i>
Alls, i/ — — ;

i-.

'lip n

4. In a steel hydraulic press the fluid pressure is 6000 lbs. per square

inch, and the maximum allowable stress in the metal is 18,000 lbs. per

square inch. If the internal diameter of the press is 12 ins., what must

the thickness of the metal be.? If the thickness of the metal is 3 ins.,

what must the internal diameter be? Ans. 2.485 ins. ; 14.485 ins.

5. A straight-line law is found experimentally to connect the weight

f^to be lifted and the eflort Eon the handle. Find the law from the

following data: when rr=i6o5 lbs.,£'= 10 lbs., and when fr=:68o5

lbs., £=50 lbs. A pressure-gauge gives the fluid pressure as 1932 lbs.

per square inch, when H' = 7000 lbs.; find the frictional loss at the

leather, and if there is the same percentage of loss at the two leathers

find the law connecting E and the force P on the plunger. The experi-

ments were made on a jack with a 2j-in. ram, a, f-in. plunger, and a

lever with a velocity ratio of 30. (Perry.)

Ans. W = 305 + 130 E; 9.1 per cent ;
/" = 41 + 17.5 E.

(Perry's " Applied Mechanics.")

6. An accumulator-ram is 8.8 ins. in diameter and has a stroke of

21 ft. Find the store of energy in foot-pounds when the ram is at the

top of its stroke and is loaded till the pressure is 750 lbs. per square

inch. v4«.y. 958,320 ft.-lbs.

7. In a differential accumulator the diameters of the spindle are 7 ins.

and 5 ins ; the stroke is lo ft. Find the store of energy when full and

loaded to 2000 lbs. per square inch. Ans. 377,000 ft.-lbs.

8. The pressure on a 5-in. ram is to be 1000 lbs. per square inch, and
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the supply comes from a tank loo ft. liigh. Find the necessary diameter

of the piston in the intensifier. Ans. 24 ins.

9. In a differential press the diameters of the upper and lower portions

of the ram are 6 ins. and 8 ins. respectively. The pressure is 1000 lbs.

per square inch, and the stroke is 10 ft. Find the load on the accumu-
lator, the maximum store of energy, and the store of water.

Ans. 22,000 lbs. ; 220,000 ft. -lbs. ; i-jf cu. ft.

10. What load must be applied to a differential accumulator to give

a pressure of 1600 lbs. per square inch ? The upper and lower diame-

ters of the ram are 3 and 3f ins. respectively, and the friction of the cup-

leathers may be taken as 5 per cent of the gross load.

Ans. 6062 lbs. ; 6700 lbs.

11. Find the weight which will give an average fluid pressure of

750 lbs. per square inch in an accumulator with a 14-in. ram and a

stroke of 16 ft. How much energy can be stored up .' Find the friction

at each cup-leather, assuming that between slow rising and falling the

pressure fluctuates between 780 and 738 lbs. per square inch. If the

pressure is 750 lbs. per square inch at mid-lift, find the actual fluctua-

tion. ^«.r. 115,500 lbs. ; 1,848,000 ft.-lbs.
; 3234 lbs.

; 3769 lbs.

12. An accumulator, loaded to a pressure of 750 lbs. per square inch,

has a ram of 21 ins. diameter, with a stroke of 24 ft. How much H.P.

can be obtained for a period of 50 seconds } Ans. 226.8.

13. An accumulator under a load of 200,000 lbs. is to transmit 100

H.P. through a4-in. pipe i mile long with a loss of 10 per cent. What
should be the diameter of the ram, the coefficient of pipe friction being

.006 .' Ans. 17.33 '"s.

14. A steam-accumulator has to develop a total force of 66,000 lbs.

upon the ram of a punch. The piston area is 15 times that of the hy-

draulic-cylinder, which has a diameter of 10 inches. Find the intensities

of the steam and the water-pressure. Ans. 56 lbs. ; 840 lbs.

15. The piston and ram areas of a steam-accumulator are in the

ratio of 10 to i. Find their diameters so that a steam-pressure of 100

lbs. per sq. in. may develop a total load on the ram of 38,500 lbs.

Ans. 22.136 ins.; 7 ins.

16. A Brotherhood engine with a 4-in. cylinder and a 3-in. stroke

makes 50 revols. per minute. The average motive pressure is 700 lbs.

per sq. in., and the average back pressure, due to frictional resistances,

etc., is 210 lbs. per sq. inch. Find the H.P. developed, and also deter-

mine the diameter of the cylinder if only one half oi this power is to be
developed. Ans. 7 ; 2.83 ins.

17. A crane with an hydraulic efficiency of .9 and a mechanical
efficiency of .45 is worked by water at a pressure of 750 lbs. per sq.

inch. The piston has an effective area of 96 sq. ins. on one side, 48
sq. ins. on the other, and pushes a three-sheave pulley-block. Find the
maximum weight which can be lifted and the work done per -.'allon of
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•water, y?rj/ when the water presses on one side only, and second inhen it

presses on both sides. Also find the work done per gallon of water
when the full loads in the two kinds of working are being lifted.

Ans. 4860 lbs.; 6998.4 ft.-lbs. ; 2430 lbs.; 3499.2 ft.-lbs. ; 6998.4

ft.-lbs.

18. An hydraulic crane with a velocity ratio of 9 and a mechanical

efficiency of .75 has to lift a weight of 10,000 lbs. It is worked by water

at a pressure of 750 lbs. per sq. in., and the frictional loss of pressure is

91 lbs. per sq. inch. Find the diameter of the ram. Ans. 15.2 ins.

19. The two wire ropes from the cage of a ram-lift pass vertically

over a pulley to a counterweight, and the ram rises from 100 ft. below to

20 ft. above the level of the supply-pipe. Water-pressures of 500 lbs.

and 100 lbs. per sq. in. act upon a 3i-in. and a 7-in. ram, respectively.

Find the weight of the ropes per lineal foot and the lifting force at the

top and bottom of the stroke.

Atis. 4.2 lbs., 16.7 lbs.
; 5230 lbs., 4729 lbs.

; 5521 lbs., 3516 lbs.

20. Fmd the pressure due to inertia at the end of the out-stroke of a

rotary motor with a 4-in. piston and a 7-in. stroke, driven by water in a

4-in. supply-pipe 250 ft. long. The motor makes 125 revols. per minute,

and the length of the connecting-rod is 15 inches.

Ans. 20.7 lbs. ; 12.9 lbs.

21. A direct-acting lift has a ram 9 inches diameter, and works under

a constant head of 73 feet, of which 13 per cent is required by ram fric-

tion and friction of mechanism. The supply-pipe is 100 feet long and 4

Indies diameter. Find the speed of steady motion when raising a load

of 1350 lbs., and also the load it would raise at double that speed.

(/ = .00672.)

If a valve in the supply-pipe is partially closed so as to increase the

coefficient of resistance by 5A, what would the speed be.''

Ans. Speed = 2 ft. per second ; load = 150 lbs.

22. Eight cwt. of ore is to be raised from a mine at the rate of 900

feet per minute by a water-pressure engine, which has four single-acting

cylinders, 6 inches diameter, 18 inches stroke, making 60 revolutions

per minute. Find the diameter of a supply-pipe 230 feet long for a head

of 230 feet, disregarding resistances and taking/ = .006.

Ans. Diameter = 4 inches.

23. If \ be the length equivalent to the inertia of a water-pressure

engine, F the coefficient of hydraulic resistance, both reduced to the

ram, Va the speed of steady motion, find the velocity of ram after moving

from rest through d space x against a constant useful resistance. Also

find the time occupied.

F
Ans. v-^ = v^i - ^ ^ ; ; ^ = ^ log. ^;^.

24. An hydraulic motor is driven from an accumulator, the pressure
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in which is 750 lbs. per square inch, by means of a supply-pipe 900 feet

long, 4 inches diameter ; what would be the maximum power theoreti-

cally attainable, and what would be the velocity in the pipe correspond-

ing to that power ? Find approximately the efficiency of transmission

at half power,y = .007.

Ans. H.P. = 250; 2/ = 22 ft.; efficiency = .66 nearly.

25. A gun recoils with a maximum velocity of 10 feet per second.

The area of the orifices in the compressor, after allowing for contraction,

may be taken as one twentieth the area of the piston. Find the initial

pressure in the compressor in feel of liquid.

Assuming the weight of the gun to be 12 tons, friction of slide 3
tons, diameter of compressor 6 inches, fluid in compressor water, find

the recoil.

Find the mean resistance to recoil. Compare the maximum and
mean resistances, each exclusive of friction of slide.

Ahs. 621 i 4 ft. 2i in. ; total mean resistance = 4.4 tons; ratio = 2.5.



CHAPTER V.

IMPACT, REACTION, IMPACT AND TANGENTIAL
TURBINES.

Note.—The following symbols are used:

z/j = the velocity of the jet before impact

;

" " " " after leaving the vane;
" " " vane;

^'2 =
u =
V— *' " " " water relatively to the vane

;

A = sectional area of the impinging jet

;

m = mass of the water reaching the vane per second.

I. Impact of a Jet upon a Flat Vane Oblique to the

Direction of the Jet.—Let d be the angle between the normal

to the vane and the direction of the impinging jet, the angle

between the normal to

the vane and the direc-

tion of the vane's mo-

tion, and a the angle

between the vane and

the vertical.

The jet, moving

with its stream-lines

parallel, swells out

near the vane, over

which it spreads and

with which it travels

along in the direction

of the vane's motion, and finally again flows along with its

stream-lines sensibly parallel to the vane.

359
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The problem is still further complicated by the production

of eddies and vortices for which allowance can only be made

in a purely empirical manner.

Let N be the normal pressure on the vane due to the

impact.-

Let N' be the total normal pressure on the vane.

Let Wht the weight of water on the vane.

Then

N = N' — ^ sin a = change of momentum in direction of

the normal

= jm\ cos b — nm cos cp,

or

N ^ !!i{v^ cos 6 — ?/ cos 0), . . . (l)

(N.B. The sign in front of u cos
<f>

will be plus if the jet

and vane move in opposite directions.)

The term ff'sin a may be designated the static pressure,

and the term m{i\ cos — u cos <p) the dynamic pressure,

which causes the deviation of the stream-lines.

Note.—The pressure when a ]eX. first strikes the plane is

greater than when the flow has become steady, or a permanent

regime is established.

This is made evident by the following consideration:

At any mome,nt let MN, PQ, RS be the bounding planes

across which the water is flowing with its stream-lines sensibly

parallel.

In a unit of time let the bounding planes of the mass be

M'N', P'Q', R'S'.

Then, initially, the reaction of the plane must destroy the

motion of the mass of the fluid bounded by M'N' , P'Q' , and

R'S'.

Take OC to represent v^ in direction and magnitude.

" OE " " u "

In one second the vane AB moves parallel to itself into the

position A'B'. Let A'B' intersect OC in D.
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Then

w wm= -A .DC= -A{v^ — OD)

w J COS (b\= -A\v^ — u ^ (2)g \ ^ cos 6/ ^ '

Thus equation (i) becomes

w AN := -Jv, COS 6 — U COS chY. . . . ('K)

g COS 6^ ^ ^ ' ^^'

Let P be the pressure in the direction of the vane's motion.

Then

w cos 0,P = N COS (h = —A -iv, cos 6 — u cos <py, . (4)^ cos 6^ ^ / ' \Ty

and the useful work done on the vane per second

iv cos= A/ = —y4 iMv. cos 6* — ?/ cos dif. . . {<\
g cos ^

^ ' ^ '

The total available work ^= —yJ— (6)

w cos—yj 7,«(^', cos 6 — 21 cos dy?
TT ^1. ^ ^e" cos 6 ^ ^

. 'Hence the efficiency = °
,

g 2

COS (h ti= 2 - [y^ cos e — u cos cj>f. (7)cos P 7'j*^ ^
^ \' /

This is a maximum when

7'j cos (9=3?^ cos 0, (8)

and therefore

Q

the maximum efficiency = — cos^ B. . . (9)

If the vane is of small sectional area, a portion of the water

will escape over the boundary and the pressure must necessarily

be less than that given by equation (3).
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Series of Vanes.—Instead of one vane moving before the

jet, let a series of vanes be introduced at short intervals at the

same point in the path of the jet.

The quantity of water now reaching the vane per second

is evidently

w
m^jAv^, (10)

and, by equation (i), the normal pressure

w
iV= —Avjv^ cos — u cos <p). . . . (11)

o

Also, the pressure in the direction of the motion of the vane

w= P = jVcos ip ——Av^(v^ cos — u cos <p) cos <p. (12)-
o

The useful work done per second

w= Pu = —Av^u{v^ cos — u cos 0) cos (p, . (13)

and the efficiency

w—Av.^u{y.^ cos 6 — u cos 0) cos

W V,^
—A~^
S 2

2u{y^ cos B — u cos 0) cos
—J — .

(14).

This is a maximum when z^^ cos (9 = 2« cos 0, . . (15).

and therefore

.u n=
COSS (9

the maximum efficiency = . . . . (16),
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Ex. I. Let a single vane be at right angles to, and move in the

line of, the jet's motion, Fig. 202.

Then 6 = o = <&. Hence

Fig. 202.

the pressure =/" = A' = — Aivi — u)';

w
the useful work = Pti = —Auivi — uY;

g

the efficiency = 2

—

^(vi — uY;

(17)

(18)

('9)

the maximum efficiency= — (20)
27

Again, if « = o, i.e., if the vane be fixed, and if H be the head corre-

sponding to the velocity vi, then, by equation (17),

TV
P = - Av,' = 2wAH

= twice the weight of a column of water

of height H anA sectional area A.

Ex. 2. Let each of a series of vanes be at right angles to, and move
in the line of, the jet's motion at the instant of impact.

Then 6 = o = 0. Hence

the pressure = N

the useful work =

the efficiency

P71

g
Avi{vi — u);

= —Aviu{vi — «);

_ 2u(v,—u)

the maximum efficiency = —

.

(21)

(22)

(23)

(24)

Ex. 3. A stream of .125 sq. ft. sectional area delivers locu. ft. of water

per second and impinges normally agamst a fiat vane. It is required to

find (a) the pressure on the vane if fixed ;
(i) the pressure and the useful

effect if the vane moves in the direction of the jet's motion with a

velocity of 40 ft. per second ; (c) the pressure and useful effect when the

single vane in (i) is replaced by a series of vanes which follow each

other at intervals of a second.

The velocity of the jet before impact = 80 ft. per. sec.

6-,i

(a) The pressure on vane = momentum of jet = -^ x lox 80= 1562^ lbs.
32

(d) The quantity of water reaching the vane per sec.

= -^(80 - 40) = 5 cu. ft.
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The pressure on the vane = momentum of jet

= -^^5(80— 40) = 39of lbs.

The useful effect = 390! x 40 = 15,625 ft.-lbs.

The total available work = —^lo . — = 62,500 ft.-lbs.
32 2

Therefore the efficiency = -^—? = -.

62500 4

(c) The quantity of water now reaching the vane per second

= - X 80= 10 cu. ft.
o

The pressure on the vane = momentum of jet

= -?^io(8o — 40) = 78iJ- lbs.

The useful effect = 78i|- x 40 = 31,250 ft.-lbs.

Ti «; • 31250 I

Ihe efficiency = 7 = —

.

' 62500 2

Ex. 4. The jet i[i the preceding example impinges upon a vane with

its normal inclined at 60° to the jet's direction, and is driven with a

velocity of 20 ft. per second in a direction making an angle of 30° with

the vane's normal. Find {a) the pressure on the vane
;

{b) the useful

effect.

(a) The quantity of water reaching the jet per second

= l(«°--c-^:)=i(^-^3) = 5.67cu.ft.

The relative velocity in the direction of the normal

= 80 cos 60° — 20 cos 30° = 10(4 — 4/~3) = 22.68 ft. per sec.

The normal pressure upon the vane = momentum in direction of

normal
= 5.67 X 22.68 = 128.6 lbs.

The pressure in direction of vane's motion = 128.6 cos 30°

= III. 35 lbs.

{b) The. useful effect = 1 11.35 x 20 = 2227 ft.-lbs.

2227
The efficiency = 7^ = .0356.

^ 625000

5. Jet of Water Impinging upon a Surface of Revolution

Moving in the Direction of its Axis and also in the Line of

the Jet's Motion.—The relative velocity of the jet is v^ — u

if the jet and surface move in the same direction, Figs. 203

and 204, and v^-\- u if they move in opposite directions, Figs.
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205 and 506. This relative velocity, if friction is disregarded,

remains unchanged in magnitude as the water flows over the

surface, but the stream-line direction is deviated through an

angle /3.

c~\m F

Fig. 203. Fig. 204.
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From Figs. 205 and 206,

v,^ = M^ _|_ ^^,^ _|_ j^y _ 2u(z)^ -\- u) cos /S,

and the work done by the surface on the water

v,^

2

= mu(7\ -\- u)(i — cos ;8)

= 2—u(v, + u)-' sm^ - (3)

Let P be the pressure on the surface in the direction of its

motion. Then

wA ^
Pu = work done = 2 u(v, T u)^ Sin^ —,

g V 1 2

and therefore

P=2^(vq=u)^sin^^ (4)

The efficiency for the case of Figs. 203 and 204

2 — n{v, — iif sm"'- 4zn?', — u) sm''-
o- '

^
2 ^ ' 2

IL'yi 7'j3
(5)

g 2

16 . ,/? ,

which is a maximum and = — sm^ — when v, = 3«.
27 2 1 -J

Series of Surfaces.— If a number of surfaces are successively

introduced at short intervals at the same point in the path of

the jet, the quantity of water reaching each surface per second

becomes

wA
m = v..
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In this case

ii. , J wA . ,
/J

the work done = 2— ViU(Vj q: u) sin^- , . . (6)

wA , _ _ , . „ /?

yand the pressure = 2-^ Vi(Vi q: u) sin^ - . . . (7)

Also, the efficiency, when the water drives the surface,
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effect when the cone is driven in the direction of its axis with a velocity

of 32 ft. per second.
12

The velocity of the jet before impact = —- = 96 ft. per sec.
.125

62i . . . 60° ,,

{a) Pressure on convex surface = 2 ^ . 12.96 sin-"— = 1125 lbs.

, 624 ^ . , 120°
,,

Pressure on concave surface = 2—^12.96 sm-' = 3375 lbs.
3- 2

{b) When the water impinges on the convex surface

62^ I 60'

the work done = 2—^-^32(96 — 32)" sin" —
32 o 2

16000
the pressure = —;;-;;— = 500 lbs.

^""^ -532(96 — 32)" sin" '^^ = 16,000 ft.-lbs.,

32

When the water impinges on the concave surface

, J S^i I ^^ • J
'20°

the work done = 2 7,-32(9° ~ S^) sin =
32 2

48000
the pressure = = 1500 lbs.

: 48,000 ft.-lbs..

6. Impact of a Jet of Water upon a Vane with Borders.

—Let the vane in Art. i be provided with borders, Figs. 207

and 208, so as to produce a further deviation of the stream-

h"nes, and let the water finally flow off with a velocity v^ in a

direction making an angle d' with the normal to the vane.

Fig. 207. Fig. 208.

Then

the normal pressure =: N
= vn\ cos 6 T inv^ cos 0' q: mu cos (t>

= miv^ cos =F v^ cos d' ^^ u cos 4>),

the sign of the second term being plus or minus according to

the direction in which the stream-lines are finally deviated.
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The effect of the borders is therefore to increase or diminish

the normal pressure, and hence also the useful work and the

efficiency.

Special Case.— Let the vane be at rest, i.e., let « = o,

and let the final and initial directions of the jet be parallel.

Also, let z'j = v^. Then

iV= m{t\ cos 6 -\- v^ cos 0)

w= 2—Av, cos
£ '

= 4wAH cos 6.

Hence, if ^ = o, the normal pressure iV~ 4wAH = four

times the weight of a column of water of height H and sec-

tional area A.

7. Impact Apparatus in Hydraulic Laboratory, McGill

University.—This apparatus was constructed for the purpose

of determining the force with which jets from orifices, nozzles,

etc., impinge upon vanes of different forms and sizes.

A massive cast-iron bracket. Fig. 209, has one end securely

bolted to the front of the tank, and the other supported by a

vertical tie-rod from one of the oak beams in the ceiling. The

upper surface is provided with accurately planed slides, which

are set level about 5 ft. above the orifice axis. If, from any

cause, the end of the bracket farthest from the tank is found to

be too high or too low, the error can be corrected by loosen-

ing or tightening the nut on the tie-rod.

The balance proper is carried by a sliding frame which can

be moved horizontally into any position along the bracket by

means of a rack and pinion actuated by a sprocket-wheel with

chain. At one end the frame has two equal arms with a

common horizontal axis parallel to the bracket, and each arm

has a stop on its lower surface which serves to limit the oscil-

lation of the balance.



37° IMPACT APPARATUS.

The balance, in its mean position, consists of a main trunk

with horizontal axis rigidly connected with a vertical slotted

arm and with two equal horizontal arms at one end. The

common axis of the latter is horizontal and perpendicular to

the axis of the main trunk. The hardened-steel knife-edges

of the balance are 4 ft. centre to centre and rest in hardened-

steel vees inserted in the ends of the sliding frame on each

side of the bracket. The bottom of each vee is in the same

Fig. 2ug.

horizontal line (called the axis of the vees) at right angles to

the bracket.

A bar with the upper portion graduated in inches and

tenths has a slot in the lower portion, which is bent into a

circular segment of 9^ ins. radius. The bar slides along the

slot in the vertical arm of the balance. A radial block, with

the holder into which the several vanes are screwed, moves

along the slot in the circular segment, and riiay be clamped in

any required position, the angular deviations from the vertical
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being shown by graduations on the segment. The centre of

this segment in every case coincides with the central point of

impact on a vane, is in the vertical axis of the balance-arm,

and is also vertically below the axis of the vees. Thus the

jet can always be made to strike the vane both centrally and

normally.

The scale-pan hangs from a knife-edge at one end of the

horizontal arms of the balance, while to the other end is

attached a fine pointer, which indicates the angular movement

of the balance on a graduated arc fixed to the sliding frame.

The balance is in its mid-position when the pointer is opposite

the zero mark.

When a vane has been secured in any given position, the

preliminary adjustment of the balance is effected by moving a

heavy cast-iron disc along a horizontal screw fixed into the

main trunk. The sensitiveness of the balance is also increased

or diminished by raising or lowering heavy weights on two

vertical screws in the top of the trunk.

Assume that the adjustments have all been made and that

the jet. Fig. 210, now impinges

normally upon a vane.

Let ff be the weight required in

the scale-pan to bring the balance

back into its mid-position.

Let F^ be the actual force of im-

pact determined by the balance.

Let Fi be the theoretical force of

impact deduced by the ordinary

formulae. Fig. 210.

F„
Then the ratio ^ = Cf may be called the coefficient of

impact.

Let J' be the vertical distance of the central point of impact

below the horizontal axis of the orifice, which is 36 ins. below
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the axis of the vees. The distance between this axis and the

point of suspension of the scale-pan is 24 ins.

Let V be the velocity with which the water issues from the

orifice.

Let v' be the velocity of the jet at the point of impact.

Then

w 6
Ft= 2-Qv' sin^-,

g 2

Q being the delivery per second and ^ the angle through

which the water is turned on the vane.

If the axis of the jet at the point of impact makes an angle

6 with the horizontal, then

v' cos 6 ^ V ^ c„ V2gh.

Therefore

Ft cos (9 = 2 —Qv sin^—

.

g 2

Again, taking moments about D,

Fa cos (9(36+ J') = W. 24.

Hence

F„ i2in

Ft A
ivQv sin' — (36 +j/)

2

6W

wCrfC,2Ah(36 + y) sin'-

A being the sectional area of the orifice.

A large number of experiments have been made for the

purpose of determining the value of c^ and are described in the

Trans, of the Royal Soc. of Can., Vol. H, 1896, and of the

Can. Soc. of Civil Engineers, Vol. XIL No definite law of
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variation has yet been found, but the following general results

have been obtained:

The actual force of impact is always much less than that

indicated by theory. Even under the most favorable condi-

tions, with a very large coefficient of velocity, the theoretical

force of impact was found to exceed the actual by 3 or 4 per

cent.

The coefficient of impact, c,- , increases with the velocity of

the jet.

The coefficient rapidly diminishes with the angle through

which the stream is deflected. It is also of interest to note

that, with small angles of deflection, c,- was greatest with a

concave parabolic vane, less with an elliptic, and least with a

circular, but that this order was reversed when the deflections

were larger.

8. Reaction—Jet Propeller.—The term reaction is em-

ployed to denote the pressure upon a surface due to the direc-

tion and velocity with which the water leaves the surface.

Water, for example, issues under the

head k and with the velocity v^ (at con- ^^^^^^^^
tracted section) from an orifice of sectional ^^^^^^^^^^^
area A in the vertical side of a vessel, ( \ r \

'

Fig. 211.
Let R be the reaction on the opposite

vertical side of the vessel, and let Q be the quantity of water

which flows through the orifice per second. Then

R = horizontal change of momentum

= 1\ = ~c,Av^ = 2wcj:^Ah = 2wA/i, . . (i)

disregarding the contraction and putting c^= \.

Thus the reaction is double the corresponding pressure

when the orifice is closed (Ex. i, p. 363).

Again, let the vessel be propelled in the opposite direction

with a velocity u relatively to the earth.
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Then v^ — u is the velocity of the jet at the contracted

section relatively to the earth and

R = horizontal change of momentum
w

= -G^'x-«) (2)
O

The useful work done by the jet

w= Ru=-Qu{v^- u) (3)

The energy carried away by the issuing water

^"^/^^ (4)

Hence

W W (v — uf
the total energy = ~Qu{v^ — «) H Q^^^

'W V^ — M^

= ^e-^' (5)

and

w
—Quiv^ — u)

the efificiency =; °- — ^^
/g\

W
Z'l''

— u'^ v^-{- u ' ' ' ^ '

J 2

Thus the more nearly v^ is equal to u, and therefore the

larger the area A
,
of the orifice, the greater is the efficiency.

If the vessel is driven in the same direction as the jet, then

v^ -\- u is the relative velocity of the jet with respect to the

earth, and the reaction is

R = horizontal change of momentum

w w
= jQ^'^'i + ") = ^^/.'^^'i(^'i + «)

= ~Av,{v, + u), (;)

disregarding the contraction and putting ^j, = i.
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9. The Jet Reaction Wheel (Scotch Turbine).— In this

form of motor the water enters the centre of the wheel,

spreads out radially in tubular passages, and issues from

openings at the ends tangentially to the direction of rotation.

Fig. 212.

~-ty

Fig. 213. Fig. 215.

Fig. 2 1 2 represents the simplest wheel of this class. In

England it is known as Barker's Mill, and in Germany as

Segner's Water-wheel.

A reaction wheel may have several tubular passages as in

Fig. 214, while the vertical chamber XY may be cylindrical,

prismatic, or conical.

The Scotch or Whitelaw's turbine, Fig. 215, does not

differ essentially, excepting in the curved arms, from the

simple reaction wheel.

Let r be the horizontal distance between axis of orifice and

axis of rotation.

" ^ " " head of water over the orifices when closed.
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Let V be the velocity of efflux relatively to the tube when
the orifices are open.

" « " " corresponding linear velocity of rotation at

the centre of an orifice.

" 7'2 " " absolute velocity of efflux = V — u.

" Q " " discharge.

" R " " reaction.

Then

V^ = c^\u' + 2gh), ..... (I)

c^ being the coefficient of discharge.

Also,

— {V — ?/) = horizontal linear change of momentum
o

= reaction producing rotation

^ R
(2)

The useful work

wQRu=—{V-u)u.
(3)

The efficiency

_ Ru _{V-u)u 2{V^u)],
wQh gh V"^ (4)

1

Again, the efficiency

(F- u)u _ u> (V \

gh gh\u

u^ ( / 2gky
j

^/W
H^ ( / ^/i— -jj c,A 1+ —^ — terms containing higher powers of-

Thus the efficiency must theoretically increase with u, but

the value of ?i is limited by the practical consideration that,

even at moderately high speeds, so much of the head is



SCOTCH TURBINE. 377

absorbed by frictional resistance as to sensibly diminish the

efficiency.

The serious defects of the reaction wheel are that its speed

is most unstable and that it admits of no efficient system of

regulation for a varying supply of water.

By equation (4), the efficiency is a maximum, for a given

value of u, when
1'2 _ 2VtC-\- C^U^ = o,

or

V=u{i + Vi-cJ) (5)

Experiment also indicates that the best effect is produced

when the linear speed of rotation (u) is that due to the total

head (A), so that

t/'^ = 7,gh,

and therefore

Substituting these values in equation (5), it is found that

2 4^2

and hence, by equation (4), the maximum efficiency = f.

h
Thus, one third of the head, i.e., — , is lost, and of this

3

^,2 !y_jAi h
amount the portion — — = -, is carried away by the

effluent water in its energy of motion. The remainder, viz.,

= —Ji is lost in frictional resistance, etc.

3 9 9

Ex. A reaction wheel with six tubular passages, each of 4 sq. ins.

sectional area, passes 112,500 gallons of water per hour and makes 105

revolutions per minute. The distance between the axis of revolution

and the axis of an orifice is 2 feet. (Take c» = i.)

,, 4 I 1 12500 5 ,^ .r-

V-^ = --—,' ^ = 4 cu. ft. per sec. per orifice.

144 6 6i.6o.6o 5
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Therefore

Again,

K = 30 ft. per sec.

2 .It . 2.105
2i = 7 =

60
ft. per sec.

Hence, if h is the head over the orifices,

30^ = 22^ + 2.32 . h,

and h ^6\ ft.

62^ q

The reaction on each tube = —- . 2-(3o — 22) = 13^^ lbs.

The useful worlc = 6 x 13^5 x 22 = I7i8f ft.-lbs.

= 34 H.P.
1718! _ II

62^ . 5 . 6J
~ 73'

The efficiency =

10. Impact Wheel. Borda Turbine.—A jet moving in

the direction OC (Fig. 216), with a velocity v^ {— OC) im-

pinges upon a flat vane, driving it in the direction OE with a

velocity u (= OE). Join CE.
9
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Draw AA' and BB' parallel and equal to OE = u.

Complete the parallelograms A'g and B'g'. Then

Ah, — v^ , represents in direction and magnitude the absolute

velocity with which the water leaves the vane at

A, and

Bh', = v^' , represents in direction and magnitude the absolute

velocity with which the water leaves the vane

2XB.

From the triangle OCE,

V^ =1 v^ -\- 1^ — 2v^u cos y.

From the triangle AA'h,

v^ 2 _ pj + ?<2 _ 2 F« sin 0.

From the triangle BB'h',

y^'i. — V^-{- u^ + 2Vu sin 0.

Hence

v^ — v'^— ^— = u{vj cos y — u -\- V sin <p)

and

2

Also,

and

^ — = u(7\ cos y — u — F sin <p).

w Q.( cos 0\
;
= 1^1 — u a]^ z'j \

' cos 1

w QJ cos </>\

= - —Vi — «
a)-£ v„^ ^ cos ]g

Therefore the useful work

--{v,- «^){G(^i cos y-u) + {Q,- Q,)Vsm <p],

o 1
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where

<2 = 01 + Qr

If the directions of motion of the vane and of the impinging

jet coincide,

y = d -\- (p ^ o and V^ v^ — u,

and therefore the useful energy imparted to the vane

w u

For a maximum effect i\ = 3«.

Series of Vanes.—If a number of vanes are successively

introduced at the same point in the path of the jet, then

w w
;«,= -(2i and m^ = -_Q^.

o

Thus the useful energy becomes

w
~u\ Q{z\ cos Y — u)-\- (gi — G2) V sin (p\ ;

o

and if the directions of motion of the vane and the impinging

jet coincide,

;r=^+0=o, V ^ v^ — u,

and the useful energy

w
= —^(^1 — ")(G + <2, - <22 sin 4>).

For a maximum effect v^ = 2u.

Flow in One Direction.—If the whole of the water flows

away in the direction OA so that g^ = ° ^"d Gi = S. the

useful energy for a single vane

WQ U I cos 0\ ^ 1 Tr - N= k', — 7^ 7, (?', cos V — « + K sm 0)g v^\^ cos w^ ' ' -'
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and the useful energy for a series of vanes

wQ= — u{v^ cos y — u -\- F sin (p).

For a given value of cp this last is greatest when y {= 6 -\- (fi)

= O, and therefore V =^ z\ — u. Then

wQ
maximum useful energy = 2/(?'j — u){\ -\- sin 0),

which increases with or as the angle of exit OAA'
(= 90° — (p) diminishes, indicating that it is advantageous to

curve the outlet lip of the vane.

Denote the exit angle by e, Fig. 217. Then

y^ = u^ -j- v^' — 2u%\ cos y
and

v^ =z u^ -\- V^ — 2uV cos e.

Thus the useful energy imparted

to the vane

wQ v^' — v^

= ?/(7/j cos y — u -\- I cos e).

If e is so small that cos ^ = i, ap-

proximately, then the useful energy

= u[v^ cos y — 71 -\- V)
o

— — u(i', cos y — u

-{- Vu' -\- v^ — 2uz\ cos y).

This is greatest and = when u = iv^ sec y, which
o

is the best speed of the wheel. In such case the whole of the

jet's energy is transformed into useful work.
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In the simplest kind of impact wheel the jet strikes the

vane more or less perpendicularly and spreads over the surface

in all directions. Wheels of 5 ft. diameter are used

for falls of from 10 to 20 ft. The vanes are i 5 ins.

X 8 ins. to 10 ins. measured radially, and are

inclined at from 50° to 70° to the horizon. The

water strikes the vane in a direction making an

angle of from 10° to 20° with the horizon, i.e.,

nearly at right angles.

In a Borda turbine (Fig. 219) revolving about a vertical

axis 00, the vanes are curved and the water, as it flows over

them, acts principally by pressure. The vanes are set between

two concentric drums which should be of considerable depth

Fig. 218.

;>a_
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upon the vane through a \ertical distance Ii., , and is discharged

atyin the direction /Z; with a velocity 7'.,.

Let r^ , f', be the relative velocities ad at a and 7^ at /,

respectively. Then

If, again, the angle of exit i' at /is so small that cos e = I,

approximately,

1'., = f'2 — w.

Suppose that the water leaves the turbine without energy,

i.e., so that 7'^ = o = F^ ~ '' then

= z;~ -|- v^ — 2in\ cos ;' -\- igk.
2

.and

2«7'j COS Y = ''1^ + '^S^l'-i

UVj COS ;/ = gHj

,

an equation giving the best speed of the turbine.

H is the head required to give the velocity v^ at entrance.

//j is the total head under which the turbine works.

There should be no loss in shock at entrance, and to insure

this ad (= F|), the relative velocity, must be tangential to the

lip at a.

The lip angle a is then given by

u sin (a -{- y)~ = : = cos y -+- cot a sm y,
v^ sm a ' '
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or

u
cot a = — cosec v — cot y.

Since k = Fj, the triangle 7^;^ is isosceles, and

e
c'2 = 2«2 sin -.

The useful work =: — n\\ ^
),g \ 2gl'

7] being the efficiency.

Let R be the mean radius.

" / " " water thickness, measured radially.

Then,

2nRtV, sin e = Q.

Allowance may be made for the principal hydraulic resist-

ances (friction, etc.) by taking

/ ii to represent the loss of head up to the inlet, and

f^ —?- " " " 'I'll' in the wheel-passages.. ^?

.
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vanes, i.e., > -^^ X the normal thickness of the stream before

impact.

Fig. 221. Fig. 222.

Burdin's (Fig. 222) is among the best of impact wheels,

differing only from the simple Rorda in receiving the water at

several points simultaneously and in distributing the outlet

openings in three concentric circles.

Ex. A 5-H.P. Borda turbine, of 4 ft. mean diameter and 4 ft. depth,

works under a total head of 20 ft. The direction of the jet before impact

is inclined at 33° 33' (y) to the horizon, and the angle of exit (if) is 19° 8'.

The jet delivers 3 cu. ft. of water per second. Find (a) the best speed

of the turbine; {b) the lip angle a; {c) the velocity, Vi , of the water as it

leaves the turbine; {d) the hydraulic efficiency; {e) the practical effi-

ciency.

(a) 20 — 4 = 16 = head required to produce z/, = '

64-

Therefore Vi = 32 ft. per second.

The best speed is then given by

uvi cos y =gHi,
or z^ . 32 . cos 33° 33' = 32.20,

« . 32 32.20 .- and « = 24 ft. per second.

, . 60 X 24
The number of revolutions per minute = ,^ = ii4t:t-

¥• X 4

(i)
sin(a + y) _ "

sin a Vi

24

32
= — = —_= — = cos y 4- cot a sin y.

cot (180° — a)

and

cot 33° 33' — — cosec 33° 33' = .1509,
4

cc = gS" 35'.
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(c) Assuming Vt = u, then

e I

7/j = 2K sin — = 48 sin 9° 34' = 48 x ^ = 8 ft. per second.

{d) The hydraulic efficiency = i -

(<?) If 7 is the practical efficiency,

8' 19= — = .9?.
64.20 20

7/. 621.3(20-7-^2) = 5.550

and 7 = .772.

Danaides.—These are wheels capable of revolving about a

vertical axis and consist of two casings which are more or

less in the form of inverted truncated cones (Fig. 223) and

which enclose a space divided into a number of water-passages

by vanes which may be flat, spiral, or screw-shaped. In the

wheels described by Belidor the inner casing with the vanes

Fig. 223. Fig. 224.

attached is made to closely fit the outer conical casing, which

is fixed. In another form of Danaide the vessel is divided

into two equal parts by a vertical partition. Thus in wheels

of this type the water approaches the axis in its descent,

developing a centrifugal force which must be taken into

account.

Consider the case of a Danaide with double conical casing

and flat vertical vanes. Fig. 224.
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The relative velocities V^ , V^ are evidently at right angles

to the corresponding peripheral velocities at inlet and exit.

Therefore

7^,2 = yi
_|_ u^ and v^^ = F/ + «/.

Also, if Aj is the depth of the wheel,

-^ = -^ + /^., - ^
2g 2g ' - 2g

U,^ — «/

U' — 11

the term —^

Hence

- being due to the effect of centrifugal force.

2^

and the mechanical effect

- K

2,?- 2g f)-

Tub-wheel.—This form of impact wheel, Fig. 225, consists

of a number of floats fixed to a vertical shaft. The wheel is

either fitted into a well, a small clearance

being allowed, or it is given a larger

diameter and is placed just belov.^ the

well. The water is brought along a

properly designed race, enters the well

tangentially with considerable velocity

and acquires a rotary motion. Thus it

acts upon the floats both by impact and

by pressure. The efficiency of the wheel

is small, as a large portion of the water Fig. 225.

escapes without producing its full effect. Practical experience

indicates that the best speed of the middle of the floats is about

one third of the velocity of the current, and that the efficiency

varies from 15 to 40 per cent, but rarely exceeds 30 per cent.
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II. Jet impinging upon a Curved Vane and deviated

wholly in' one Direction—Best Form of Vane.—Let the jet,

of sectional area A, moving in the

direction AB with a velocity v^

,

drive the vane AD in the direction

AC with a velocity u, Fig. 226.

Take AB to represent z'^ in direc-

tion and magnitude.

Take AC to represent u in direc-

tion and magnitude.

Join CB.

Then CB evidently represents

V, the velocity ofthe water relatively

to the vane, in direction and magni-

tude. If CB is parallel to the tan-

gent to the vane at A, there will be no sudden change in the

direction of the water as it strikes the vane, and, disregarding

friction, the water will flow along the vane from A to D with-

out any change in the magnitude of the relative velocity

V(= CB). The vane is then said to " receive the water with-

out shock.

"

Again, from the triangle ABC, denoting the angles BAC,
ABC, ACB, hy A, B, C, respectively.

',«>-

Fig. 226.

sin B_ AC _ sin B _~ AB " sin C ~ sin {A -\- B)'

and therefore

• (i>

cot 5 _i cosec A-— cot A, (2)

a formula giving the angle, between the lip and the direction

of the impinging jet, which will insure the water being received

" without shock."

In the direction of the tangent to the vane at D, take

DE = CB (= V).
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Draw DF parallel and equal to AC {^= u).

Complete the parallelogram EF.

Then the diagonal DG evidently represents in direction

and magnitude the absolute velocity v^ with which the water

leaves the vane.

Draw AK equal and parallel to DG (= v^.

Join BK. Then BK represents the total change of velocity

between A and D in direction and magnitude.

Thus if R is the resultant pressure on the vane, then

R =m. BK.
Let ML be the projection of .5A' upon AC.
Then ML represents the total change of velocity in the

direction of the vane's motion.

Let P be the pressure upon the vane in this direction.

Then

P -m . LM. (3)

V ^ — V ^

The tiseful work = Pu = inu . LM — m— -. . (4)

W .7','

The total woailable work = —A— (c\

mu . LM v^ — v^
T\.^ efficiency ~^^^^^^2mg^^^^j^ (6)

—A— '

g 2

Again, join CK.

Then, since AC is equal and parallel to DF, and AK to

DG, the line CK is equal and parallel to DF, and is therefore

equal to CB.

Thus in the isosceles triangle CBK, CB is equal and

parallel to the relative velocity V aX A, CK is equal and

parallel to the relative velocity Fat D, and the base Misrepre-

sents the total change of motion.
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Let d be the angle through which the direction of the water

is deviated, i.e., the angle between AB and AK. Then

V'= CK^ = AK' + AC - 2AK . AC cos {A -{- 6)

= v^^ + u^ - 27:,!i CO, {A + 6) (7)

and also

V'^ CK''= CB' = AB'--\-AC^-2AB. AC cos A
= 7\^ -\- tt' — 2-c'^u cos A (8)

Hence

-— uW^cosA ~v,co^(A -\-d)\. . . (g\

li BH is drawn parallel to the tangent at D, .5^ evidentl>

bisects the angle between BC and BH, and this angle is equal

to the angle between the tangents to the vane at A and D.

Let a be the angle between the normals at A and D.

Then the angle KCB — a, and

the angle CBK= -(180'' - a) = 90° - -.

Therefore

BK = 2CB\cos 90° — ") = 2 f^ sin -.

Hence

R = in . BK— 2mV sin — . . . , (10)

Let X, Y be the components of R in the direction of the

normal at A and at right angles to this direction. Then

aX ^ R cos - z= inV sin a . . (11)

(X aF= 7? sin — = 2wFsin^- = 7«F'(i — cos a). . (12)
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The efficiency is a maximum when

d{Pu) _ _ dP
du du

391

(13)

The efficiency is nil when

Pu = O, i.e., when « = o or P (14)

In the latter case, since P — m . LM, the projection LM
must be nil, and therefore

Pj^, 227

BK must be at right K

angles to AC, as in Fig. \^5>

227.

The angle A CB is now
IX= 1 80° . Therefore
2

u sin ABC
V,
~ sin ACS

\^^^.

sm (?--)
OL

sm —
2

If BK is parallel to

AC, Fig. 228, then the

angle

^C^=-(i8o°-«) + a

-90° + -,

and therefore

u sin ^5C
sin A CB

cos\-^A)

cos a
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Let the direction of the impinging jet be tangential to the

vane at A, Fig. 226, and let the jet and vane move in the same

direction. Then

wV= v^ — u, m = — A{v^ — u)
;

«5

P= V =: —A(v, — uY(i — COS a) = 2— A(v, — uYsin^-:^vi j\ ^ ^ ' ' 2'

W . 01

useful work = Pu = 2

—

Auiv, — ?<V sin'-;
g ^

^ 2

efficiency = 4 3 sm'' -.

16 . a
This is a maximum and equal to — sin' — when v^ = 3«.

These results are identical with those for a concave cup

when a — 180°.

Instead of one vane let a series of vanes be successively

introduced at short intervals at the same point in the path oi

the jet. Then

w ,m = — Av.

,

g
and hence the pressure P, useful work, and efficiency respec-

tively become

~Av, . LM\ —Av.-^ ^; -^—^.
N.B. Frictional resistance may be taken into account by

assuming that it absorbs a fractional portion of the head corre-

sponding to the velocity of the jet relatively to the surface over

F'
which it spreads. Thus the loss of head = _/— , and the

corresponding loss of energy = wQf—

.

2g
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Ex. A curved vane in the form of the quadrant of a circle

without shock, at an edge, a stream of water flowing at the rate

per second, which drives the vane with

a velocity of 4 ft. per second in a direc-

tion malting an angle of 60° with the re-

ceiving edge.

At the receiving edge the triangle abc is

a triangle of velocities in which the angle

abc = 120°, «f= 12 k.,a6 = 4 ft., and dc = V,

the relative velocity at a which must be

parallel to the tangent at a, as there is to

be no loss in shock. Then

12' = 4' -H V - 2.4 K cos 120°,

receives

of 12 ft.

V +av
and

K= 9.4891 ft. per second.

Also, if X is the angle between ac and
the receiving edge, then the angle cab = 60° — y, and

9.4891 _ be

4 ab

sin (60° — y)
sm y

= sin 60° cot y — cos 60°,

or cot y = 3.3166 and y = 16° 47'.

At the discharging edge^^^ is the parallelogram of velocities in

which /^, parallel to ab, = 4 ft., /A, tangental at /, = 9.4891 ft., the

relative velocity, und/h is the absolute velocity in direction and magni-

tude with which the water leaves the vane. Let the angle h/i = S.

Then

•^/J^= 4^^ + (9.4891)' — 2 X 4 X 9.4891 cos 30° = 40.2993,

and v, = 6.3481 ft. per sec.

9.4891 _fk_ sin {S + 30°) _
Again,

and

hk sin 5

cot 5 = 3.0126, or 5=1

= cos 30° + sin 30° cot

12. Tangential or Centrifugal Turbines.—Suppose that

the vane AD is constrained to revolve about a vertical axis O

with a constant angular velocity oa. If OP, OQ are consecu-

tive radii and ifPN is drawn at right angles to OQ, then the
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work of the centrifugal force as a mass m of fluid moves from

P to the consecutive position Q

= mccr'r . QN
= ina?r . dr,

where OP = r.

O-^r---

—

^ n

The total work in the movement from ^ to 2?

may'r dr

ma?

= ^(U/ - U,==),

U. , Uj being the linear velocities at A and D respectively.

u 2

If the flow is from A to D, ^ is evidently a gain of

head, while it is a loss of head if the flow is from i? to ^.

In tangential or centrifugal flow turbines a number of vanes

are encased and have concentric inlet and outlet surfaces.

The flow, which is more or less radial, is towards the axis in

the inward-flow zsvAfroni the axis in the outward-flow turbine.

Since the axis of rotation is vertical, the effect of gravity may
be disregarded.
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If v/, rv" are the radial components of v^ and t'^ respec-
tively,

v/ = v^ sin y and z'/' = V^ sin /3.

k

Fig. 231. Fig. 232.

Then, by the condition of continuity of flow, and dis-

regarding the thickness of the vanes,

2nr^d^J = ".Tir^d^v^ sin y = Q = 2nr^d^vJ' = 2nr^^V^ sin fi,

and

rA^'x ^'" ^ = ^ = ''2'^2^2 sin /J,
. .

d^ and d^ being the inlet and outlet depths of the wheel.

First. Disregard hydraulic resistances. Then

v^ = v;' + ?</ - «^2

= u^ -\- v^ — 2u^v^ cos y -\- u^ — u^

— <i)2 _ 2u{u^ cos y -(- u^,

V^ = V^ — H^ -f- 2?^jt'j COS ;/

(0

(2)

or

(3)
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Also, from the tna.ng\e fkh,

t./= F/ + «/-2F,«,cos/3 (4)

Hence

, , , wQv^— v^
the useful work =

g 2

wQ=— («f^i cos ;/ + «j F, cos ^ - «/) . (5

)

o

The energy carried away by the water on leaving the tur-

bine should, of course, be as small as possible. Two assump-

tions are usually made in practice, viz.

,

either u^= V^,

and then also, by eq. (2), u^= V^, so that the triangles fkk

and acd are isosceles

;

• orS=go°,'

so that the flow at outlet is radial, or v^ = vj' , and therefore

the tangential component of v^ , or, as it is called, the outlet

velocity of whirl, is nil.

Adopting the assumption u^= V^, in which case the tri-

angles /i^^ and acd a.re isosceles, then

«i = f"i = ~- sec r = "fu, =^V,. . . (6)

Hence eq. (i) becomes

J • Q J /, ''2S ^1 sin /?

1'' ' 2n i i i r-
r^ 2 2 cos y

or r^^d^ s'm 2y = r^d^ sin /?, .... (7)

and, by eqs. (5) and (6),

wQlv ^
\

the useful work = 1— -j- u} cos /3 — uA

(c jt-)2 — \

_ ^ 2
j (8)
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The corresponding efficiency

• ^^

= i-^—^ (9)r^ cos' y ^^'

Adopting the assumption S = 90°, then

vj cot /? = z/j cot y3 = «2 = ^2 ^°^ A • (10)

Eq. (i) now becomes

Q ^^
r^d^i\ sin ;/ = — = r^d^ii^ tan ^ = yd^u^ tan /J, (11)

and, by eqs. (i), (5), and (10),

wQ wQv^rM sin 2>^
M^ useful work = m.t' cos v = r-5— —. . (12)

The corresponding efficiency

r^d^ sin 2y
^ Vfd^tanJ ^'^-^

Second. The principal hydraulic resistances may be taken

into account by taking the loss of head up to inlet ^=f ~

,

2g

and the loss of head in the wheel-passages = /,—^, so that the
*2g

total loss due to the resistances in question

=A^+A-^ (14)

Eq. (2) now becomes

(1+/,)^'= V,^ + ui-u,'; . . . (15)

and ifH is the head over the inlet,

ii+/f£ = ^- ....... (16)
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Ex. I. A centrifugal inward-flow turbine, with equal inlet and outlet

depths and working under the head of 200 ft., passes i cu. ft. of water

per second. The angle y is 15°; 4ri = 5^2 ; and it is assumed that

U, = V,. Find (a) the peripheral speed; (b) the lip angle at outlet; (c)

the energy carried away by the water; {d) the energy lost in hydraulic

resistance
;
{e) the useful work

; (/) the efficiency. (Disregard the thick-

ness of the vanes.)

sin 15° = .259, cos 15° = .966, and let fi = ft = .125.

{a) ( • + oIf^ = 200. Therefore Wi = io6f ft. per sec.

By eq. (14), V^" + iH' - u,'' = | V,' =|«^'.

or V,'' — 2v,ih cos 15° = -^Ui' = -j-l—
j ui' = .oSki',

or vi = 1.972a, = io6|,

so that u, = 54.09 ft. per. sec.

I u, sill (a + 15°)
Also, = — =

:
= cos 15 + cot a sin i ?°.

1.972 V, sin a ^ '

cosec I c
Therefore cot (i8o° — a) = cot 11;° ? = 1.77277.-

1.972 " "'

and a= 145° 40"

(i) By eq. (i), riVi sin y = r^ii^ sin /3 = — sin /S,

or sin (i = ( — J x 1.972 x .259 = .79804,

and li = 52° 56'.

(c) The energy carried away by the water

. , V'i' 125 , . ,/? 25 „,= 62i. I .— = —i4«=' sin= '-^ = -'a,^(i _ cos /J)
64 128 24

= -^(54-09)' X -397 = 1451-8 ft.-lbs.

4

= 2.64 H.P.

(</) By eq. (14), the loss in hydraulic resistance

= i
^
6r'('°^"^ ^ ^54.09)^) = .617.5 ft.-lbs.

= 2.94 H.P.
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{e) The total possible work = 625 . i . 200 = 12,500 ft, -lbs.

The useful work — 12500 — 1451.8 — 1617.5 = 9430-7 ft.-lbs.

= 17.146 H. P.

(/) The efficiency = ^Mg = .754.

Ex. 2. A centrifugal outward-flow turbine with an efficiency of 80

per cent and working under the head of 200 ft. over the inlet passes

I cu. ft. of water per second. The angle ^'=15°; iri=i^i\ and the

velocity at outlet is radial, i.e., 5 = 90°. Find (a) the peripheral speed ;

(b) the lip angle at inlet ; (c) the ratio of the inlet to the outlet depth
;

{(i) the lip angle at outlet
;
{e) the energy carried away by the water ;

(/) the useful work. (Disregard the blade thickness and the hydraulic

resistance.)

(a) -T- = 200, and therefore z/i = 804/2 = 113. 17 ft. per sec.

„ „ , ^ .
itiVt cos 15° «i cos 15°

But .8 = the efficiency = = ~~,
' 32 X 200 404/^

or «i = 324^2 sec 15° = 46.851 ft. per sec.

32 4/2"seci5° 2 „ Ui sin (a + 15°)
(B\ ^—^ =-^- = -sec 15 = _ = —^ =^
^'

804/2 5 v, sin CL

= cos 15° + cot a sin 15°,

2
and cot (180° — a) = cot 15° — — sec 15 cosec 15°

= 3.7320508 — 1.6 = 2.1320508,

and «= 154° 52'.

(<:) By eqs. (10) and (12),

«,'(! + tan' fi) = V-i' ~ Vi" + 71:,'' — wi' = «»' + vi' — 2«iz/i cos y,

or «," tan" /S = {~\ i£\ »= sin' 15° = z^i' - 2u,v, cos 15,

or «,'tan'/S = 8192 sin« 15° \-~\ = 804/2(804/2"— 644/2) = 2560,

which gives 1^1 = 4-^65,

and therefore -j- = 2.1b.

(d) By {c).

tan' ^=^J^=-I^= '-^ = t cos' ^s' = .7464.
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Therefore tan fi = .864,

and ;3 = 40° 50'.

(e) The energy carried away by the water

Vi' I2S 125= 62i . I . -^ = —§-«i' tan" /« = —g X 2500'
64 128 128

= 2500 ft.-lbs.

= 4AH.P.

(/) The total possible work

= 1.62^. 200

= 1 2,500 ft.-lbs.

Hence the useful work

= total possible work — 2500

= 12500 — 2500 = 10,000 ft.-lbs.

= 18AH.P.

13. Jet Turbine.—In the jet turbine the water passes along

the axis and is distributed radially in all directions so that the

angle y = 90°. It is no longer possible to have «j = Fj , and

it cannot therefore be assumed that te^ = V^. A fair efficiency

may, however, be secured by making u^ = Vy

1 ^ ~ ^ t-

/
' I -*

Fig. 233.

First, disregard hydraulic resistances. Then, from the

triangle adc,

V + v^ = V,' = F/ - «/ + u,'

= F-/ - v,^ + u,\
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14. Resistance to the Motion of Solids in a Fluid Mass.

—The preceding results indicate that the pressure due to the

impact of a jet upon a surface may be ex )ressed in the form

P= KiuA—,

A being the sectional area of the jet, V the velocity of the jet

relatively to the surface, and K a coefficient depending on the

position and form of the surface.

Again, the normal pressure {N) on each side of a thin

plate, completely submerged in an indefinitely large mass of

still water, is the same. If the plate is made to move hori-

zontally with a velocity P, a forward momentum is developed

in the water immediately in front of the plate, wliile the plate

tends to leave behind the water at the back. A portion of the

water carried on by the plate escapes laterally at the edges

and is absorbed in the neighboring mass, while the region it

originally occupied is filled up with other particles of water.

Thus the normal pressure N, in front of the plate, is increased

by an amount 11, while at the back eddies and vortices are

produced, and the normal pressure N at the back is diminished

by an amount «'. The total resultant normal pressure, or the

normal resistance to motion, is n -\- n' , and this increases with

the speed. In fact, as the speed increases, /.'' approximates

more and more closely to A^, and in the limit the pressure at

the back would be nil, so that a vacuum might be maintained.

Confining the attention to a plate moving in a direction

normal to its surface, the resistance is of the same character

as if the plate is imagined to be at rest and the fluid moving
in the opposite direction with a velocity V So, if both the

water and the plate are in motion, imagine that a velocity

equal and opposite to that of the water is impressed upon every

particle of the plate and of the water. The resistance is then

of the same character as that of a plate moving in still water,

the velocity of the plate being the velocity relatively to the
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water. Thus, in general, the resistance to the motion of such
a plane moving in the direction of the normal to its surface,

with a velocity V relatively to the water, may be expressed in

the form

H = K2vA—

,

A being the area of the plate, and K a coefficient depen(;iing:

upon the form of the plate and also upon the relative sectionaL

areas of the plate and of the water in which it is submerged.

According to the experiments of Dubuat, Morin, Piobert,

Didion, Mariotte, and Thlbault, the value of K may be taken

at 1.3 for a plate moving in still water, and at 1.8 for a current

moving on a fixed plate. Unwin points out the unlikelihood'

of such a difference between the two values, and suggests that

it might possibly be due to errors of measurement.

Again, reasoning from analogy, the resistance to the

motion of a solid body in a mass of water, whether the body
is wholly or onlj' partially immersed, has been expressed by
the formula

R = KwA— ,

V being the relative velocity of the body and water, A the

greatest sectional area of the immersed portion of the body at

right angles to the direction of motion, and K a coefficient

depending upon the form of the body, its position, the relative

sectional areas of the body and of the mass of water in which

it is immersed, and also upon the surface wave-motion.

The following values have been given for K:

K ^^ I.I for a prism with plane ends and a length from three

to six times the least transverse dimension

;

/r= I.o for a prism, plane in front, but tapering towards the

stern, the curvature of the surface changing graduall}-



404 PRESSURE ON PLATE IN PIPE.

SO that the sCream-Unes can flow past without any pro-

duction of eddy motion, etc.
;

K =^ .5 for a prism with tapering stern and a cut-water or

semicircular prow;

/if = .33 for a prism with a tapering stern and a prow with a

plane front inclined at 30° to the horizon

;

K^ .16 for a well-formed ship.

Froude's experiments, however, show that the resistance

to the motion of a ship, or of a body tapering in front and in

the rear, so that there is no abrupt change of curvature leading

to the production of an eddy motion, is almost entirely due to

skin-friction (see Art. i, Chap. II).

15. Pressure of a Steady Stream in a Uniform Pipe

against a Thin Plate AB Normal to the Direction of Motion.

—The stream-lines in front of the plate are deviated and a^

contraction is formed at C.,C.y They then converge, leaving

a mass of eddies behind the plate.

Consider the mass bounded by the transverse planes C^C^,

CJO^ , where the stream-lines are again parallel.

At C^C^ let /^, A^, 7'j, s^ be the mean intensity of the

pressure, the sectional area of the

waterway, the velocity of flow, and

the elevation of the C. of G. of the

section above datum.

Let J>.,, A.,, 7',,, z^ be corre-

FiG. 234. spending s}'mbols at C^C^.

Let/3, A^, 7'j, £-3 be corresponding symbols at C3C3.

Let a be the area of the plate.

Let c^ be the coefficient of contraction.

Neglect the skin and fluid friction between CjCj and C^C,.

Then, by Bernouilli's theorem,
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(v. — V f
the term —^-

—

- representing the loss of head due to the

bending of the stream-Hnes between C^C^ and C^C .

Hence

A - A _ (^'2 - ^\y . .

,

^1-^3+^ W 2""

,
Again, let R be the total pressure on the plane. Then

fluid pressure in the direction
A^i - A^i = (A - A)^i - , r ,, .

01 the axis,

wA^C.C,^^^^' = wA,{s^ ~ ^3)'I'-'i'-'s c r

Thus

=_ component of the weight in the direction

of the axis.

(/i ~ AMi + "'^iC^i — z^ — R = change of motion in direc-

tion of axis

= o. ^ ^j

since the motion is steady.

Hence

But A{D^ = A^)^ = c^{A^ — a)v^. Therefore

R = wA^''^\-r-fi^ .- li

2g [c^m — I)
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where m = —', or
a
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Hence

' * W 2^ 2^ "

But A^v^ = A^v^ = A^v^ , c^A^ -a)=^A^,

and A^ = A^ — a.

Therefore

~2^i_V«— I J
~^ \cXm—i)~ nT^i) J

where w = —^'.

a

Also, as in the preceding article,

(/, - A)^-^! + «'"-',(-". - -,) - ^ = o.

Hence

K = wa— A«^ --\- ^1 I

= Kwa-- ,

where m — —-, and
a

I wz^ /r V)

This value of K is always less than the value ofK for the

plate in the preceding article for the same values of m, a,

and c^.

Hence the pressure on the cylinder is also less than the

corresponding pressure on the plate.

In every case K should be determined by experiment.
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EXAMPLES.

1. A stream with a transverse section of 24 sq. ins. delivers 10 cu>

ft. of water per second against a flat vane in a normal direction. Finct

the pressure on the vane. Ans. 1171I lbs.

2. If the vane in example i moves in the same direction as the im~
pinging jet with a velocity of 24 ft. per second, find {a) the pressure on
the vane ; [b) the useful work done

;
(c) the efficiency.

Ans. (a) 42i| lbs.; (i) 10.125 ft. -lbs.; (c) .28S.

3. What must be the speed of the vane in example 2, so that the

efficiency of the arrangement may be a maximum ? Find the maximum
efficiency. A/is. 20 ft. per sec; /y.

4. Find (a) the pressure, (6) the useful work done, (it) the efficiency,

when, instead of the single vane in example 2, a series of vanes are-

introduced at the same point in the path of the jet at short intervals.

Ans. (a) 703J lbs.; {i) i'6,875 ft.-lbs.
;

(c) .48.

What must be the speed of the vane to give a maximum efficiency .>

What will be the maximum efficiency.' Ans. 30 ft. per sec; .5.

5. A stream of water delivers 7500 gallons per minute at a- velocity of
15 ft. per second and strikes an indefinite plane. Find the normal pres-

sure on the vane when the stream strikes the vane (a) normally; (i) at.

an angle of 60° to the normal. Ans. {a) 585.9 lbs.; 292.9 lbs.

6. A railway truck, full of water, moving at tlie rate of 10 miles an
hour, is retarded by a jet flowing freely from an orifice 2 ins. square in

the front, 2 ft. below the surface. Find the retarding force.

Ans. y.gy lbs.

7. A jet of water of 48 sq. ins. sectional area delivers- ioo gallons per

second against an indefinite plane inclined at 30° to the direction of the

jet ; find the total pressure on the plane, neglecting friction. How will

the result be afTected by friction ? Ans. 750 lbs.

8. If the plane in example 7 move at the rate of 24 ft. per second in

a direction inclined at 60° to the normal to the plane, find the useful

work done and the efficiency. Ans: 22$oh.']bs.; ^^.

At what angle should the jet strike the plane so that the efficiency

might be a maximum ? Find the maximum efficiency.

Ans. sin"i f ; J.

9. A stream of 32 sq. ins. sectional area delivers 7J cu. ft. of water

per second. At short intervals a series of flat vanes are introduced at,

the same point in the path of the stream. At the instant of impact the

direction of the jet is at right angles to the vane, and the vane itself

moves in a direction inclined at 45° to the normal to the vane. Find



EXAMPLES. 409

the speed of, the vane which will malie the efficiency a maximum. Also
find the maximum efficiency and the useful work done.

,; ,,
,

Alls. 15.08 ft. per. sec; ^7.; 2io6fJf ft.-lbs.

10. A stream of water of ^ sq. ft. sectional area delivers 16 cu. ft. pen
second normally against a fiat vane. Find the pressure on the vane.

If the vane moves in the same direction as the impinging jet, with a
velocity of 32 ft. per second, find (a) the pressure on the vane

;
{b) the

useful work done
; (c) the efficiency.

How would the results be affected if the vane were inclined at 45° to
the jet, and moved in the direction of its normal with a velocity of

24 ft, per second }

Ans. 4000 lbs.; 2250 lbs., 72,000 ft.-lbs., /j; 1802.8 lbs., 43,268
ft.-lbs., .169.

1 1. Two cubic feet of water are discharged per second under a pres-

sure of lOQ lbs. per sq. in. through a thin-lipped orifice in the vertical

side of a vessel, and strike against a vertical plate. Find the pressure
on the plate and the reaction on the vessel. Ans. 475.82 lbs.

,12. A stream moving with a velocity of 16 ft. per second in the di-

rection ABC strikes obliquely against a flat vane and drives it with a
velocity of 8 ft. per second in the direction BD, the angle CBD being
30°, Find (3) the angle between ABC anA the normal to the plane for

which the efficiency is a maximum
;

(b) the maximum efficiency
;

(c) the

velocity, with which the water leaves the vane; {d) the useful work per

cubic, foot of water.

Ans. (a) 21" 44'; {b) .25664 ; (<:) 12.6 ft. per sec; (d) 256.64 ft.-lbs.

13. At 8 knots an hour the resistance of the Water-witch was 5500
lbs.; the two orifices of her jet propeller were each 18 ins. by 24 ins.

Find (a) the velocity of effiux
;

(b) the delivery of the centrifugal pump;
(f) the useful work done; (d) the efficiency; (e) the propelling H.P.,

assuming the efficiency of the pump and engine to be .4.

, Ans._{a) 2g.4. ft. per sec; (b) 1 104.6 gallons per sec; (c) 74,393
ft.-lbs.; (d) .63; W 536.7.

14. If feathering-paddles are substituted for the jet propeller in

question 15, what would be the area of stream driven back for a slip of

25^.' Find the efficiency and the water acted on in gallons per minute.

Ans. 34.63 sq. ft.; .75,; 234.206.

15. A jet issues horizontally, under a head of 20 ft., from a ^-in. ori-

fice in the vertical face of a tank and strikes normally the centre of. a

vane at a distance of 48 ins., measured horizontally, from the tank's face.

ByrneS-Surement the vertical distance of the point of impact, below the

axis o{ the orifice, was found to be 2.582 inches. Find the coefficient of

velocity (<:»), the inclination of the vane's axis to the horizontal, and the

coefficient of impact (t,) in the following cases :

{a) A flat I2rin, circular vane, the balancing weight {IV) being

3.011.5 lbs.
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(i) A hemispherical vane of 12 ins. diameter, IV being 3.556 lbs.

(c) A hemispherical vane of 3 ins. diameter, IV being 5.776 lbs.

(if) A parabolic vane with a base of 12 ins. in diameter and 6 ins. in

height, f-K being 3.535 lbs.

(e) An elliptic vane, 6 ins. in height and having a base of 12 ins.

diameter, IV being 3.56 lbs. The vane edge is inclined at 20° to the

axis.

Ahs. .96411; 6° 8'; (a) .9834; {6} .5799; (f) -9419; i'f) .6086;

(e) .5986.

16. Find the angle of blade at entrance, the useful effect, and the

efficiency of a Borda turbine from the following data; the jet at entrance

makes an angle of 60° with the horizontal ; the depth of the turbine is

3 ft.; the total fall to the point of discharge is 19 ft.; the mean diameter

of the turbine is 4 ft.; the quantity of water passing through the tur-

bine is 4 cu. ft. per second ; the angle of blade at exit is 30°. (Disregard

hydraulic resistance.) Ans. 51° 33'; 7.256 H.P.; .84.

17. What advantages are gained by increasing the depth and diam-

eter of a Borda turbine and by curving the outlet lips of the buckets .'

18. A Borda turbine of 3.5 ft. mean diameter has a head of 12.96 ft.

over the inlet, a practical efficiency of .75, a theoretic efficiency (i.e., dis-

regarding hydraulic resistances) of .9265 and delivers 3 horse-power. The
radial width of the water-passages is 3 ins., and the depth of the turbine

is 2.04 ft. If there is to be no shock at entrance, find (a) the inlet and
outlet lip angles

;
(i) the velocity {v^i) of discharge

; (c) the quantity of

water used by the turbine.

Afts. (a) 111° 25', 25° 12'
;
(i) 8.4 ft. per sec; (c) 2.532 cu. ft.

per fee.

19. In a railway truck, full of water, an opening 2 ins. in diameter is

made in one of the ends of the truck, 9 ft. below the surface of the

water. Find the reaction (a) when the truck is standing; (^) when the

truck is moving at the rate of 10 ft. per second in the same directioti as

the jet
;

(c) when the truck is moving at the rate of 10 ft. per second in

a direction opposite to that of the jet. If this movement of the truck

is produced by the reaction of the jet, find the efficiency.

Ans. (a) 24.55 Itis. per sq. in.; (i) 34.78 lbs. per sq. in.;

(;-) 14.3 lbs. per sq. in.; .588.

20. From a ship moving forward at 6 miles an hour a jet of water is

sent astern with a velocity relative to the ship of 30 ft. per second from
a nozzle having an area of 16 sq. ins.; find the propelling force and the

efficiency of the jet as a propeller without reference to the manner in

which the supply of water may be obtained. Atis. I38j'j- lbs.; .4535.

21. A reaction wheel is inverted and worked as a pump. Find the
speed of maximum efficiency and the maximum efficiency, tlie coeffi-

cient of hydraulic resistance referred to the orifices being. 125.

Ans. Speed = twice that due to lift; .758.
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22. A reaction wheel with orifices 2 ins. in diameter makes 80 revolu-

tions per minute under a head of 5 ft. The distance between the centre

of an orifice and the axis of rotation is 12 inches. Find the H.P. and
the efficiency. Ans. .i/\.6; .596.

23. In a reaction wheel the speed of maximum efficiency is that due
to the head. In what ratio must the resistance be diminished to work
at J this speed, and what will then be the efficiency 1 Obtain similar

results when the speed is diminished to three fourths of its original

amount. Ans. .g^; .8896; 1.067; .75

24. In a reaction wheel, determine the per cent of available effect lost

(I) if V = 2gH; (2) if V^ = 4f//; (3) if V = ZgH.

Wliat conclusion may be drawn from the results?

Efficiencies are respectively .828, .9, .945.

25. A stream of 64 sq. ins. section strikes witli a 40-ft. velocity against

a fixed cone having an angle of convergence = 100°; find the hydraulic

pressure. Ajix. 492.1 lbs.

26. A jet of 9 sq. ins. sectional area, moving at tlie rate of 48 (t. per

second, impinges upon the convex surface of a paraboloid in the direc-

tion of tlie axis and drives it in the same direction at the rate of 16 ft.

per second. Find the force in the direction of motion, the useful work

done, and the efficiency. The base of the paraboloid is 2 ft. in diameter

a.nd its length is 8 ins. Ans. 25 lbs.; 400 ft.-Ibs.
; ^fj.

27. A stream of water of 16 sq. ins. sectional area delivers 12 cu. ft. of

water per second against a vane in the form of a surface of revolution,

and drives in tlie same direction, which is that of the axis of the vane.

The water is turned through an angle of 60° from its original direction

before it leaves the vane. Neglecting friction, find the speed of vane

which will give a maximum effect. Also find impulse on vane, the

work on vane, and the velocity with which the water leaves the vane.

A'ts. 36 ft. per sec. ; 562J lbs. ; 20,250 ft.-lbs.
; 95.24 ft. per. sec.

28. A surface of revolution is driven in the direction of its axis with

,1 velocity of 16 ft. per second by means of a jet of water of 18 sq. ins.

sectional area, which moves in tlie direction of tlie axis with a velocity

of 80 ft. per second, and impinges upon the convex side of the surface.

The tangent at the edge of tlie surface makes an angle of 30° with tlie

vertical. Find the pressure on the surface and the efficiency.

Ans. 500 lbs. ; .128.

29. A jet of water under a liead of 20 ft., issuing from a vertical

tliin-lipped orifice i in. in diameter, impinges upon the centre of a vane

^ ft. from the orifice. Determine the position of the vane and the force

ot the impact (a) when the vane is a plane surface ; (b) when the vane is

6 ins. in diameter and in the form of a portion of a sphere of 6 ins.

radius.

Ans. (a) 13,679 lbs. ;
(b) 20,518 lbs. or 6.839 'bs. according as

vane is concave or convex.
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30. A stream of water i in. thick and 8 ins. wide, moving with a
velocity of 18 ft. per second, strikes without shock a circular vane, of a

length subtending an angle of go° at the centre. The vane is driven ia

the direction of the stream with a velocity of 6 ft. per second. Find

the pressure on the vane, the work done, and the efficiency.

Ans. 22-^-^ lbs.
; 93! ft.-lbs.

; ^j.

31. A Pelton wheel of 2 ft. diameter makes 822 revolutions per min-

ute under a pressure-head of 200 lbs. per square inch, the delivery of

water being 100 cu. ft. per minute. Find the total H.P., assuming that

the buckets are so formed that the water is returned parallel to its origi-

nal direction, and leaves without energy.

If the actual H.P. is 70.3, what is the efficiency.?

Ans. 87.22 ; .805.

32. A vane moves in the direction ^^C witli a velocity of 10 ft. per

second, and a jet of water impinges upon it at B m the direction B£>
with a velocity of 20 ft. per second ; the angle between BC and BD is

30°. Determine the direction of the receiving-lip of the vane, so that

there may be no shock.

Ans. The angle between lip and BC =^ 23° 47'.

33. A jet moves in a direction ABCviAh a velocity v and impinges

upon a vane which it drives in the direction BD with a velocity iv.

The angle ABD is 165°. Determine the direction of the lip of the van&

at B, so that there may be no shock at entrance.

Ans. The angle between lip and direction of stream = 14° 3'.

34. The lip angle of a given bucket is 30°, the relative velocity ( V) is

one half the velocity (^'l) with which the water readies the lip. If there

is to be no " loss in shock," find the speed (k) of the bucket, the direc-

tion (y) of the entering water, and show that if the speed is to be increased'

10 per cent, the lip angle must also be increased by 55.6 per cent.

Ans. ;k = 15° 31'.

35. A stream moving with a velocity v impinges without shock

upon a curved vane and drives it in a direction inclined at an angle to

the direction of the stream. The angle between the lip of the vane and
the direction of the stream is x, and F is the relative velocity of the

water with respect to the vane. If the speed of the vane is changed by

a small amount, say n per cent, show that the corresponding change m
the direction of the lip, in order that the water might still strike the

vane witliout shock, is rrsm x.
100 V

36. A jet issues through a thin-lipped orifice i sq. in. in sectional

area in the vertical side of a vessel under a pressure equivalent to a

head of 900 ft. and impinges on a curved vane, driving it in the direc-

tion of the axis of the jet. The water enters without shock and turns

through an angle of 60° before it leaves the vane. Find (a) the speed

of the vane which will give a maximum efi'ect; (1^) the pressure on the
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vane
;

(c) the work done ; {d) the absolute velocity with which the water

leaves the vane; (<?) the reaction on the vessel, disregarding contraction.

Ans. (a) So ft. per sec. ; (6) 320.9 lbs. ; (c) 46.68 H.P.
;
{d) 184 ft.

per sec.
;

(e) 781.25 lbs.

37. A stream of thickness i and moving with the velocity v im-

pinges without shock upon the concave surface of a cylindrical vane of

a length subtending an angle 2a at the centre. Determine the total

pressure upon the vane (a) if it is fixed
;

(i) if it is moving in the same

direction as the stream with the velocity «. In case (6) also find (c) the

work done on the vane.

71/ TV IV
Ans. ((() i—btv' sin a; {b) 2—it{v — it)- sin a

;
(f) i--blu(v — tif sin' or.

g S g
38. A stream of water, 2 sq. ins. in sectional area, delivers I cu. ft.

per second against the concave side of a hemispherical cup, which
moves with a velocity of 20 ft. per second in the direction of the jet.

Find the impulse, the work done, and the efficiency.

39. A curved vane subtends an angle of go° at the point of intersec-

tion of the normals at the two edges, and receives without shock .1

stream of water 2 ft. wide and ^ in. thick, moving with a velocity of

20 ft. per second and driving the vane in the same direction. The
actual direction of the water is turned through an angle of 45°. Find

\a) the speed of the vane
;
(b) the velocity with which the water leaves

tlie vane
;

(c) the total pressure on the vane; {d) the efficiency.

A71S. {a) 10 ft. per sec. ; {b) 14.14 ft. per sec. ; {c) 23,017 lbs. ; (d) .25.

40. A vane is in the form of the segment AB of a circle subtending

an angle of 120° at the centre O. A stream of water, moving with a

velocity •z/i , strikes the vane tangentially at A and drives it in the same
direction with a velocity u. Find the velocity (w,) with which the water

leaves the vane, and show that it leaves in the direction OB if Vi = i\u,

and that the direction has turned through 90° if Vi = 3«. Find the

efficiency in the two cases, and show that v, = pt corresponds to maxi-

mum efficiency.

Ans. v.^ = Vi^ — 37'i// + ?r; 3 ; \. If vi = 2k, vi = ti, the direc-

tion turns through 60° and v = |.

41. A stream of water of 36 sq. ins. section moves in a direction ABC
and delivers 4 cu. ft. of water per second upon a vane moving in .1

direction BD with a velocity of 8 ft. per second, the angle between BC
and BD being 30°. Find {a) the best form to give to thfe vane

; (b) the

velocity of the water as it leaves the vane; {c) the mechanical effect of

the impinging jet; and (d) the efficiency, the angle turned through by

the jet being 90°.

Ans. (a) The angle between lip and BC = 23° 48'
;

(b) 3.088 ft.

per second ;
{c) 962.8 ft. per second

;
(d) .963.

42. In an I. F. tangential turbine find (a) the loss due to hydrauiic

resistances, {b) the useful effect, {c) the efficiency, {d) the lip angles from
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the following data : 2 = i cu. ft. per second ; k = loo ft.; ft =/) = j ^

7^ = 1
5°

; 5^1 = 6rj ; rfi = cA ; and Zia = V\.

Ans. (a) 736.72 ft.-lbs.; (/5) 4866.9 ft. -lbs.; (<r) .7787 ;
iiir = 150° 33'.

^ = 47° 16'.

43. In an O. F. turbine of the tangential type find the lip angles, the

losses of head due to the velocity (v,) of the effluent water, and to hy-

draulic resistances, and also find the efficiency from the following data

;

y = 30°; 2ri = rj ; // = 30 ft. ; i/i = rfj ; ?/» = Ka ; /j = 2/"4 = . 1 25.

y4«j. a = 123° 27'
;
/?=i3°3o'; 1.688 ft.; 5.243 ft.; .769.

44. An I. F. tangential turbine, with parallel faces (di = <•/,) and an

inlet surface of 6 ft. diameter, delivers 10.76 H.P. under a head of i 50 ft.

The direction of the inflowing stream, which is 5 ins. wide, makes an

angle {y) of 10° with the turbine's periphery, and the diameters of the

inlet and outlet surfaces are in the ratio of 4 to 3. If f,. =/, = .1, and
if also It is assumed that 2^2 = V\ , find (ci) the inlet and outlet lip angles;

(l>) the loss of H.P. due to hydraulic resistances; {/:) the loss of H.P.
corresponding to the velocity with which the water leaves the turbine ;

{d) the efficiency ; {e) the quantity of water passing through the turbine
;

(/) the thickness of the inflowing stream
; {g) the speed in revolutions

per minute.

Ans. {a) 161" 13', 40° 36'
;

{b) 1.309 ; {c) .70S
;

(il) .842 ; (e) J cu.

ft. per second ; (/) .231 in.
; {g) 141.

45. In the preceding example if, instead of making tit = Fa , it is

iifsumed that the flow at outlet is radial, find the inlet and outlet lip

angles so that the efficiency may remain the same. Also find the losses

in H.P. due to hydraulic resistance and to the energy carried away by

the effluent water, and determine the speed in revolutions per minute,

(Cj,^ = iJ.) Ans. 161° 21', 33° 17'; 1.369; .623; 139.8.

46. A stream 4 ins. wide and supplying J cu. ft. of water per second

drives an O. F. turbine of the tangential type, in which the diameters

of the inlet and outlet surfaces are in the ratio of 3 to 4. The turbme

faces are parallel, and the inflowing stream makes an angle of 20° with

the periphery. The head is 100 ft. First assuming that aj = Fa, and
second that the outlet flow is radial, the efficiency being the same, de-

termine (a) the inlet and outlet Up angles; {b) the useful work; (c) the

efficiency
;
{d) the thickness by the stream ; (e) the speed in rexohi-

tions per minute, the outer diameter being 5 ft. (Disregard hydraul c

resistances.)

Aus. First, (a) 140°, 21°. 12'; {b) 4368.16 ft.-lbs.: {c) .932;

W -3375 i"-; W 216.7. Second, [a) 142° 19', 21° 10'; (b) 4394.7
ft.-lbs.; {c) .937; (d) .2,37111; W 202.45.

47. Solve the preceding. example when hydraulic resistances are taken

into account, assumingys =y< = .1 and c-,j' = .g,

Ans. First, (a) 140°, 21° 12'; {b), 3766 ft.-lbs.; (c) .8034;
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{d) .356 in.; {e) 154.2. Second, (a) 141" 29', 20° 40'; {b) 37C6

ft.-lbs.; (c) .8034; (rf) .356 in.; {e) 147.79.

48. A jet turbine, of 5^^ ft. exterior diameter and with equal inlet and
outlet depths, passes 1890 cu. ft. of waier per hour under a head of

100 ft.; the diameter of the outlet surface is twice that of the inlet,

and the velocity of the outlet periphery (u-^) is equal to that of the

inflowing stream (z/i), which is radial in direction. Find {a) the useful

effect in horse-power; {b) the efficiency; (c) the speed in revolutions per

minute, _/?rj/ disregarding hydraulic resistances and second taking these

resistances into account, {fi = 2/3 = .2 and c-^'' = \\)
Ans. First, (a) 3.85 H.P.; (i5) .645 ;

(f) 300. Second, (a) 2.063

U.V.;{b) .3458; (c) 286.04.

49. In the preceding example how much water must the turbine pass,

when hydraulic resistances are taken into accojnt, to give the delivery

of 4H.P.? Ans. 1. 017 cu. ft. per second.

50. A centrifugal outward-flow turbine with equal inlet and outlet

depths and working under the head of 200 ft. over the inlet passes i cu.

ft. of water per second. The angle ;k = 1
5"; 5''i = A^i ; and the velocity at

outlet is radial, i.e., S = 90°. Find (a) the peripheral speed ; (b) the lip angle

at inlet; {c) the lip angle at outlet; (d) the areas at inlet and outlet;

(e) the efficiency, takingys =/< = .125.

Ans. (ii) 55.215 ft. per second; (i) 157° 18'; (c) 18° 40'; {li) .3623

sq. ft., .0428 sq. ft.; (e) .yyS.

51. A centrifugal inward-flow turbine with an efficiency of 80 per

cent and working under the head of 200 ft. passes i cu. ft. of water per

second. The angle y = 1^°
;

4.r, = Cir,; and u, = Ks. Find (a) the

peripheral speed
;

(i) tlie lip angles at inlet and outlet ;
(c) the inlet and

outlet areas
;

(d) the useful work, taking /, =/« = .125.

Ans. (a) 55.215 ft. per second; {b) 157° 18', 32° 28'; (<r) .03623

sq. ft., .0369 sq. ft.; (d) 8888f ft.-lbs.



CHAPTER VI.

VERTICAL WATER-WHEELS.

1. Classification of Water-wheels.—Water-wheels are

large vertical wheels which are made to turn on a horizontal

axis by water falling from a higher to a lower level. These

wheels may be divided into three classes

:

(a) Undershot Wheels, in which the water is received near

the bottom and acts by impulse.

(h) Breast Wheels, in which the water is received a little

below the axis of rotation and acts partly by iniptdse and partly

by its iveiffht.

(c) Overshot Wheels, in which the water is delivered nearly

at the top and acts chiefly by its iveight.

2. Undershot Wheels.—Wheels of this class, with plane

floats or buckets, are simple in construction, are easily kept in

repair, and were in much greater use formerly than they are

now. They are still found in remote districts where there is

an abundance of water-power, and are also employed to work

floating mills, for which purpose they are suspended in an open

current by means of piles or suitably moored barges. They

are made from lo to 25 ft. in diameter, and the floats, which

are from 24 to 28 ins. deep, are fixed either normally to the

periphery of the wheel, or with a slight slope towards the

supply-sluice, the angle between the float and radius being

from 15° to 30°. The depth of a float is from one fourth to

one fifth of the radius and should not be less than from 12 to

14 ins. They are from 14 to 16 ins. apart, and generally from

416
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one half to one third of the total depth of float is acted upon

by the water.

Let Fig. 236 represent a wheel with plane floats working

in an open current.

^^^^^
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UNDERSHOT IVHEELS IN A STRAIGHT RACE.

Theoretically, therefore, the wheel works to the best:

advantage when the velocity of its periphery is one half of the

current velocity. Even then its maximum theoretic effect is

only 50 per cent, and in practice this is greatly reduced by

frictional and other losses, so that the useful effect rarely^

exceeds 30 per cent. Undershot wheels with plane floats are

cumbrous, have little efficiency, and should not be used for

falls of more than 5 ft.

Again, let A be the water-area of a float, and w be the

specific weight of the water.

wQ is somewhat less than wAv^ , as there will be an escape

of water on both sides of the float.

Let wQ = kwA%i^, k being some coefficient (< i) to be
determined by experiment. Then

the useful work per second = kAw-^ (r'^ — 11),

and its maximum value = —v.^'w.

Ag '

According to Bossut's and Poncelet's experiments a mean

4 2
value of k is -, and the best effect is obtained when ?( = -v, »

5 5
'

2 4 ^ciA^i 3

the corresponding useful work being —- and the effi-

48
ciency .

^ 125

3. Wheels in Straight Race.—Generally the water is let

on to the wheel through a channel made for the purpose, and

closely fitting the M'heel, so as to prevent the water escaping-

without doing work. For this reason, also, the space betweea

the ends of the floats in their lowest positions and the channel

is made as small as is practicable and should not exceed 2 ins^

Hence k, and therefore also the efficiency, will be increased.
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Assume the channel to be of a uniform rectangular section and

to have a bed of so slight a slope that it may be regarded as

horizontal without sensible error.

The wheel is usually from 24 to 48 ft. in diameter, with 24

to 48 floats, either radial or inclined. The floats are 12 to

20 ins. deep, or about 2| to 3 times the depth of the approach-

ing stream. The fall should not exceed 4 ft. Let the floats

be radial, Fig. 237.

Fig. 237.

Let h. be the depth of the water on the up-stream side of

the wheel.

Let h^ be the depth of the water on the dinvii-stream side

of the wheel.

Let b be the width of the race. Then

bh{i\ — Q= bh^u.

The impulse ^ impulse due to change of velocity

-|- impulse due to change of pressure

wO wb

O

^ ^ 1 ' ^ 2 Vj ul'
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and the useful work per second

wQ
, ,

wQ{Ii. ItA

= impulse X « =
'Y^^^^'

- «) + ^-V^ ~ur
uuO v

The total available work = -.

g 2

2u

.

, .
guth^ h.

Hence the efficiency = —Jv. — «) + —\ -^

The second term is negative, since /i.^ > /i^ , and the maxi-

mum theoretic efficiency may be easily shown to be < .5.

Ex. An undershot wheel with straight floats and weighing 15,000

lbs. works in a rectangular channel with horizontal bed and of the same
width as the wheel, viz., 4 ft.; the stream delivers 28 cu. ft. of water per

second, and the efficiency of the wheel is J. Find the relation between

the up-stream (v,) and down-stream («) velocities.

If the up-stream velocity is 20 ft. per second, find the down-stream

velocity. If the diameters of the wheel and bearings are 20 ft. and 4

ins., respectively, and if the coefficient of friction is .008, determine the

mechanical effect.

28 = 4^it/i = 4A,u,

7 7
or 7h = — and /i, = -.

V, u

Iti 'K'^Zlf'J 7\ I

Therefore the efficiency = —„(z/, — u) + ^[-^„ — -'^\ = -,

u , J Vt + u\ I

-=(z/, — u)\ I — 112 5-^ = -.

3

If I', = 20 ft. per second, then

u I 7 20 -I- (A I—(20 - u)[ I - ~ ^- = -.
200 \ 25 «" / 3

It is found by trial that u lies between 5.9 and 6 and is very approxi-

mately 5.97 ft. per second.

62A 20'
The total available power = - . 28 . — = 10937.5 ft.-lbs. per. sec.

Therefore the actual mechanical effect =-(10937.5)
3

= 3645.83 ft.-lbs. per sec.

The work absorbed by bearing friction = .008 x 15000 x 5.97 x ~
\o

= 11.94 ft.-lbs. per sec.

The net delivery in ft.-lbs. = 3645.83 — 11.94 = 3633.89.
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Losses.—Four principal losses may be considered, viz. :

(i) The loss of Q^ cubic feet of the deeper fluid elements

which do not impinge upon some of the foremost floats.

According to Gerstner,

«j being the number of the floats immersed, and c being f or

f according as the bottom of the race is straight or falls

abruptly at the lowest point of the wheel.

(2) The loss of Q^ cubic feet of water which escapes between

the wheel and the race-bottom.

Approximately, the play at the bottom may be said to vary

from a minimum, .f, = BC, when a float AB is in its lowest

position, Fig. 238, to a maximum, B^C^ — CD = B^C^, when

C, C Oj'

Fig. 238.

two floats A^B^ , A^B^ are equidistant from the lowest position,

Fig. 238. Thus the mean clearance

= \{BC^B,C^ = \{s,^CD)

= -{2s, + BD) = s, + 4^-7^. nearly,

^j being the wheel's radius.
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'2,'jty

But -' = distance between two consecutive floats
n

= 2 . B^D, very nearly,

n being the total number of floats. Hence

' n

I TT^V
a:nd therefore the mean clearance = 5-, + 5I.

' 4 ;r

Again, the difference of head on the up-stream and down-

stream sides

= K - K = ':{^-l

and the velocity of discharge, Vj, through the clearance is

given by the equation

V/ ^ V^^ - 2g{h^ - h^ = V^ - 2gh\^ _ I ).

Hence

Introducing .7 as a coefficient of hydraulic resistance.

If the depth of the stream is the same on both sides of the

wheel, i.e., if /^^ = h^, then

Vd — z\.

(3) The loss of Q^ cubic feet of water which escapes between

the wheel and the race-sides.

Let s.^ be the clearance on each side. Then

6, = .7 X 2h^s.fd = i.^h^s^vj,

.7 being a coefficient of hydraulic resistance.
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(4) Finally, if W lbs. is the weight on the wheel-journals,

the loss due to journal friction

= uW~u,

ix being the journal coefficient of friction, and p the journal

radius.

Actual Delivery.—Thus the actual delivery of the wheel in

foot-pounds

( uiv. — u) ulh, /^,\ ) ( ^ „ ] p
-u.

Remarks.—-These wheels are most defective in principle,

as they utilize only about one third of the total available

energy. They may be made to work to somewhat better

advantage by introducing the following modifications

:

{a) The supply may be so regulated by means of a sluice-

board that the mean thickness of the impinging stream is

about 6 or 8 ins. If the thickness is too small, the relative

loss of water along the channel will be very great. If the

thickness is too great, the floats, as they emerge, will have to

raise a heavy weight of water. The sluice-board is inclined

at an angle of 30° to 40° to the vertical, so that the sluice-

opening may be as near the wheel as possible, thus diminishing

the loss of head due to channel friction, and is rounded at the

bottom to prevent a contraction of the issuing fluid. Neglect-

ing frictional losses, etc.,

the useful effect = «-<2(/^+^'-^)_
I i°^^

of energy
\ 2g 2gj [ due to shock

-^V 2Z 2W g 22gl

i U )= wQ|H-j--(v, -u^;-,

E being the difference of level between the point at which the

water enters the wheel and the surface of the water in the tail-
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race, i.e., the fall. H is usually very small and may be nega-

tive.

If the vanes are inclined, the resistance to emergence is

not so great, and the frictional bed resistance between the

sluice and float is practically reduced to nil. With a straight

bed and small slope (i in lo) the minimum convenient diameter

of wheel is about 14 ft.

{b) The bed of the channel for a distance at least equal to

the interval between two consecutive vanes may be curved to

the form of a circular arc concentric with the wheel, with the

view of preventing the escape of the water until it has exerted

its full effect upon the wheel. When the bed is curved, the

minimum convenient diameter of wheel is about 10 ft.

An undershot wheel with a curb is in reality a low breast

wheel, and its theory is the same.

(f) The down-stream channel may be deepened so that the

velocity of the water as it flows away becomes > v^ The

impulse due to pressure is then positive, which increases the

useful work and therefore also the efficiency.

(if) The down-stream channel may be widened and a sHght

counter-inclination given to the bed. What is known as a

standing-wave is then produced, in virtue of which there is a

sudden rise of surface-level on the down-stream side above

that on the up-stream side. This allows of the wheel being

lowered by an amount equal to the difference of level between

the surfaces of the standing-wave and of the water-layer as it

leaves the wheel, thus giving a corresponding gain of head.

(e) The introduction of a sudden fall has been advocated

in order to free the wheel from back-water, but it must be

borne in mind that all such falls diminish the available head.

4. Poncelet Wheel (Figs. 239, 240).— Thus undershot

wheels with flat buckets have a small efficiency because of

the loss of energy in shock at entrance and because of the

loss of energy carried away by the water on leaving the

wheel. These losses have been considerably modified \xv
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Poneelet's wheel, which is often the best motor to adopt whea
the fall does not exceed 6^ ft., and which, in its design, is^

Fig. 23g.

Fig. 240.

governed by two principles that should govern every perfect

water-motor, viz. :

(i) Tkat the loss of energy in shock at entrance should be

a minimum.
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(2) Tkat the velocity of the water as it leaves the wheel

should be a inininium.

The vanes are curved and are comprised between two

crowns, at a slightly greater distance apart than the vane-

width ; the inner ends of the vanes are radial, and the water

acts in nearly the same manner as in an impulse turbine.

A Poncelet wheel of from 10 to 13 ft. in diameter has 36

floats, while for wheels of from 20 to 23 ft. in diameter the

number of floats is about 48. The wheels are usually from 10

to 20 ft. in diameter and have from 32 to 48 floats which may
be of plate-iron or wood.

First. Assume that the outer end of a vane is tangential

to the wheel's periphery, that the impinging layer is infinitely

thin, and that it strikes a float tangentially.

Let «/(Fig. 241) be a float, and aq the tangent at a.

The velocity of the water relatively

/ to the float = v. — u.

The water, in virtue of this velocity,

ascends on the bucket to a height

(v — uf
Fig. 241. pq — \-i L then falls back and leaves

the float with the relative velocity v^ — u and with an absolute

velocity v^ — 2ii. This absolute velocity is nil when the speed

of the wheel is such that ti = \v^ , and the theoretical height

I J'

2

of a float is pa z= . The total available head is thus
42^

changed into useful work, and the efficiency is unity, or perfect.

Taking R as the mean radius of the crown and a,„ as the

corresponding linear velocity, the mean centrifugal force on

each unit of fluid mass is —^ and acts very nearly in the direc-

tion of gravity, so that the height pq of a float may be approxi-

mately expressed in the form
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V being the velocity with which the water commences to rise

on the float.

Practically, however, the float is not tangential to the

periphery at a, as the water could not then enter the wheel.

Also, the impinging water is of sensible thickness, strikes the

periphery at some appreciable angle, and in rising and falling

on the floats loses energy in shocks, eddies, etc.

Let the water impinge in

the direction ac, Fig. 242,

and take ac ^ Vy

Take ad in the direction

of and equal to u, the

velocity of the wheel's pe-

riphery.

Complete the parallelo-

gram bd.

Then cd ^ ab = Fis the

velocity of the water rela-

;=^.c tively to the float.

_G

Fig. 242. Fig. 243.

That there may be no shock at entrance, ab must be a

tangent to the vane at a.

Again, the water leaves the vane in the direction of ba

produced, and with a relative velocity ae = ab — V.

Complete the parallelogram de. Then «^ (= v^ is the

absolute velocity of the water leaving the wheel.

Evidently cdg is a straight line.

Let the angle cad = y, and the angle bad — n — a.

From the triangle adc,

V^=^ 7'^-\-u^—27\u cos y; (0
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v^ ^ V"^ -\- u^ — 2Vu COS a; ... V (2);

^ =^ (3)
v-^ sin a

From the triangle adg,

v^ = V^ -{- ti^ -\- 2 Vu cos a (4)

By equations (i), (2), and (4),

J ^- = — 2Vn cos a.= 7>^ — V^ — u^ = 2u(v^ cos y — u}^
V

Therefore the useful work per second

7VQ= — 2z/(7'j COS y - u) (s)

TV,- J 1 ^
wQv^"^ cos2 y

Ihis IS a maximum and equal to when
<r 2

and the maximum efficiency is cos^ y. Hence,
2

too, the angle add = 90", and, by Fig. 243,

dd '2pd
tan (;r - «-) = ^ = -^ == 2 tan K. • • (6)

Also,

V ab
, ^

The efficiency is perfect if y is nil, and therefore a = 180°.

Practically this is an impossible value, but the preceding cal-

culations indicate that y should not be too large (usually

< 30°), and that the speed of the wheel should be a little less

than one half of the velocity of the inflowing stream.

Take y = 15° as a mean value. Then

?' = J'l X .484, and the efficiency = .993.
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The best practice indicates the relation iiv^ = 20u. It

must be borne in mind that the theory appUes to one elemen-

tary layer only, say the mean layer, and that all the other

layers enter the wheel at angles differing from 15", thus giving

rise to " losses of energy in shock." The losses of energy in

frictional resistance, eddy motion, etc., in the vane-passages

have also been disregarded. Tangential entrance is not possi-

ble in practice and the efficiency does not exceed .65 for falls

up to 4 ft., is .60 for falls of from 4 to 5.5 ft., and is from .55

to .50 for falls of from 5.5 to 6.5 ft. The greater efficiency of

the Poncelet wheel, as compared with wheels having flat

buckets, very clearly shows the importance of bringing the

"water on to the wheel in such a manner as to avoid loss of

€nergy in shock and in the production of eddies. The layers

of water, flowing to the wheel under an adjustable sluice and

with a velocity very nearly equal to that due to the total head,

may be all made to enter at angles approximately equal to

15°, and the corresponding losses in shock reduced to a mini-

mum by forming the course as follows:

The first part of the course FG, Fig. 244, is curved in such

a manner that the normal pqr at any point / makes an angle

of I 5° with the radius oq. The water moves sensibly parallel

to the bottom FG, and therefore in a direction at right angles
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to pr. Hence at q the direction of motion makes an angle of

15° with the tangent to the wheel's periphery. \i or is drawn

perpendicular to fr, then or = oq sm 15° = a constant.

Thus the normal pqr touches at r a circle concentric with

the wheel and of a certain constant diameter.

The initial point F of the profile FG is the point in which

the tangent to this circle, passing through the upper edge of

the sluice-opening, cuts the bed of the supply-channel.

Let d be the depth of the crown or shrouding, i.e., the

normal distance' between the outer and inner

peripheries of the wheel.

Let b be the width and ^ the thickness of the sheet of

water entering the wheel.

Then, disregarding the thickness of the floats, the capacity

of the portion of the wheel passing in front of the entering

stream per second is approximately bdu„,. Practically, the

whole of this space cannot be occupied by the water and

inbdu„ = Q == btv^
,

tti being a coefficient varying from i to f.

Thus /, the thickness of the stream, = md-

,R u
^i

= md-
r^ T/j

If the efficiency is a maximum, z\ cos y = 2u, and then

m R
t = —d— cos V.

2
/-J

'

The head over the mean water layer at the point o{

entrance

/T being the available fall. Hence
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an average value of c^ being .9, and if, as according ta

Grashof, H= i6i,

'\ = ^.y 2gH .

32'

Morin makes the radius (;'j) of the wheel from two to three

times the depth {d) of the crown, and Poncelet considers that

this depth should be 'about — and not less than — . In order,
3 • 4

indeed, to prevent the water from rising over the top of the

H 2
floats, d should be from — to -H, and therefore r, from Hto23 '

2H, the latter being often adopted in practice.

The area of the sluice-opening usually varies from 1.2'^bt

to i.2,dt.

The inside width of the wheel is about {b -\- ^) ft.

If A is the angle subtended at the centre O of the wheel

by the water-arc between the

point of entrance a and the

lowest point C, Fig. 245, of the

wheel, and if aq' is drawn hori-

zontally, then Aq' is approxi-

mately the height of the float,

and the theoretic depth d of the

crown is given by

d = AC --= Aq' + Cq'

= Aq' -\-0C - Oq'

2(.?- +
-f- rj(i — cos A).

R

In practice it is usual to increase this depth by t, the thick-

ness of the impinging water-layer, and therefore
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3

V^
-2 + ''1(1 - «^os A) -\- t.

^ + R

The buckets are usually placed about i ft. apart, measured

along the circumference, but the number of the buckets is not

a matter of great importance. There are generally 36 buckets

in wheels of 10 to 14 ft. diameter, and 48 buckets in wheels

of 20 to 23 ft. diameter.

It may be assumed that the water-arc is equally divided by

the lowest point C of the wheel, so that

the length of the water-arc = 2\r^ = 2nT,

T being the time of the ascent or descent of the water in the

bucket.

In the middle position, the upper end of the bucket should

be vertical, and if the float is in

the form of a circular arc, its radius

r' ^ d sec {n — a), a being the

angle between the bucket's lip and

the wheel's periphery.

The time of ascent or descent is

also given by

90 -|- sin ^1

^
.

^1

'/-

Avhere sin — ^ Vcos in — a).
2 ^ '

5. Efficiency corresponding to a Minimum Velocity of

Discharge {v^).—From Fig. 242,

sin r ._^o{= \ag) _ ^{v^

sin aod ad

Hence for any given values of u and y, z/^is a minimum
when sin aod is greatest, that is, when aod^^ 90", or ag is at
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Tight angles to de. Then also ad — ae = ab, or « = V, and
^c bisects the angle bad. Thus

i\ = 2u COS y and t/^ = 2« sin ;/.

The useful work

W 7/2 — 7',^ PF I^ 7/2 cos 2y=
.
^ — 2«2 cos 21/ = i 5-^.^2 ^ ' ^ 2 COS^ Y

The total available work

_ W v^

Therefore the efficiency, v, = 5—^,
cos^ Y

and the H.P. of the wheel ^ ^^ig/f

550

Experience indicates that the most favorable value for u
lies between .57-^ and .6i\, and that the average value of the

efficiency is about 60 per cent.

Although, under normal conditions of working, the effi-

ciency of a Poncelet wheel is a little less than that of the best

turbines, the advantage is with the former when working with

a reduced supply.

Ex. To, design a Poncelet wheel for a fall of \\ ft. and a water-supply

of 24 cu. ft. per second, taking, as a first approximation, y" = X° ^ 20°.

Mean velocity {v\) at point of admission

:

V, = .gy 2^ . 4i . ^ = 15.0329 ft. per sec.
32

jBest speed of periphery :

It ~ -Vi cos 20° = 7.06318 ft. per sec.

Lip ang-le a :

tan {7t — a) = 2 tan 20° = .728,

and jt — a = 26° 3', or a= 143° 57'.

Value of t :

w,

sin - = V'cos 36° 3' = .89917,

and f = i28°.6' = I28°.i.
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Relative velocity {V) at admission

:

V =u sec 36° 3' = 8.7361 ft. per sec.

Value of r\. Taking, as a first approximation,

R ^ n = 3^, Hi = u, and A° = 20°, then
»-' = cl sec 36° 3' = rj X .4123, and

28.1
an 1- sin 128 5

20 / 180

'^Tto'"'
= 7.063.8 ^

V T,2 + —
r,

which gives ri = 7.445 ft., or, say, 7^ ft.

Depth (d) of crown. Tailing, as an approximation, ui=u and /?=ri»

2 (8.7361)"
^ = —i J „ . + 7i(i -cos 20°) + /

3„ ,

(7.06318 )-

,2 + —^-^

= '-7755 + / = 1.8 ft., suppose.

More correct radius offloat

:

»• = 1.8 sec 36° 3' = 2.226 ft.

Values of R and U\ : ,

/e = 7.5 --(1.8) = 6.6 ft.

u, = —u = -^7.06318 = 6.2156 ft. per sec.
r, 7.5' -^

:> f

More correct value of \ :

128.

1

. „„ ,
g-t—;:— + sm 128 6'

1 , ^ o 180
A . 7i = 7.06318

16

/ 2.226

V „
I

(6.2.56)
-'

^ "^ 6.6

or A = .298479,

and A° = i7°.i.

Thickness (t) of stream :

^ I 1.8 6.6
t = cos 20° .

— = .372 ft.
2 2 7.5

Width {b) of wheel:

24
b = == 4.29 ft.

.372 X 15.0329 ^ ^

Time
(
T) of ascent or descent of water 071 float

:

T = A— = .298479

—

^—- = .317 sees.
« ^ ^7.06318 - '

Number offloats {N). If spaced i ft. apart,

N = :LTt . j\ = 471, or, say, 48.
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Theoretical maximum power of wheel

= -—24(7.06318)= = 4679.6 ft.-lbs. per sec.
32

Total available pov/er

= 62i . 24 . 4i

4679.6

6750 ft.-lbs. per sec.

Efficiency
6750

= •693-

6. Form of Bucket.—The form of the bucket is arbitrary,,

and may be assumed to be a circular arc. In practice there

are various piethods of tracing its form.

Method I (Fig. 247). The tangent am to the bucket at

a makes a given angle a with the tangent

at a to the wheel's outer periphery. The
radius of is also a tangent to the bucket

at/". If the angle aof\s known, the posi-

tion of/" on the inner periphery is at once

fixed, and the form of the bucket can be

easily traced.

Let the angle aof = x. Join af and

let the tangents to the bucket at a and

/"meet in m. Then

the angle oaut = a — 90°,

" " oma = I 80° — oam — aofn = 2 70° — a — x,

" " mfa = the angle j/ta/= ^(180" —fma)

Fig. 247.

Let r^ , r^ be the radii of the outer and inner peripheries of

the wheel. Then

. /a 4- X X

. ^ . ^ sm —^— — 45°}
r^ oa sm ofa sm mfa _ \ 2

}

r^ of sin oaf sin oaf
sm

la — X \

sij;\ce the angle oaf ^^ oam — maf^ 45°.
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Hence

sill -
\2

^l + '-2

45" +
3)

3-45"-^)

.
/a X'

s.n(--45°+-

X
tan —

2

+ sing. 45'
)

tan (l-f
an equation giving x.

The point <?' in which the perpendicular ^yto ^/ meets the

perpendicular o'a to am is the centre of the circular arc required,

and o'f (= o'a) is the radius.

IMethod II (Fig. 248). Take mad = 150°, and in ma
produced take ak = of. With k as centre and a radius equal

to ao describe the arc of a circle intersecting the inner periphery

in the point /. Join kf, of, and af. The two triangles aof

and akf are evidently equal in every respect, and therefore the

Fig. 248. Fig. 249.

angle kaf is equal to the angle ofa. Drawing ao' at right

angles to ak and/i?' tangential to the periphery at/, the angle

o'af (^= kaf-— 90°) is equal to the angle ofa (= ofa — 90°),

and therefore o'a = o'f. Thus 0' is the centre of the circular

arc required, and o'a (= o'f) is the radius.
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Method III (Fig. 249). Let the bed with a slope of, say,

I in 10 extend to the point c, and then be made concentric

with the wheel for a distance cc subtending an angle of 30°

at the centre of the wheel. Let the mean layer, half way
between the sloping bed and the surface of the advancing

water, strike the outer periphery at the point f. Draw //'

making an angle of 23° with of, and take//!- equal to one half

or seven tenths of the available fall, k is the centre of the

circular arc required, and kf\s its radius.

7. Sluices.—The water is rarely admitted to the wheel

without some sluice arrangement, which may take the form of

an overfall sluice (Fig. 250),

an underflow sluice (Fig. 251),

or a bucket or pipe sluice

(Fig. 252).

The pipe sluice is especially

adapted for a varying supply,

being provided, for a certain

vertical distance, with a series

of short tubes, so inclined as

to insure that the water enters

the wheel in the right direc-

tion. Taking .85 as the mean

coefificient of hydraulic resist-

ance for these tubes, the head

^j required to produce the

velocity of entrance v^ is

85) 2g'

and ifH is the total available

fall,

I

K

h,=H
-, 2
' 1

.

(.85/2^

= remainder of fall available for pressure-work.
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The profile AB in an overfall and an underflow sluice

should coincide with the parabolic path of the lowest stream-

lines of the jet. The crest of the overfall should be properly-

curved, and the inner edges of the underflow opening should

be carefully rounded so as to eliminate losses due to contrac-

tion.

The underflow sluice-opening should also be normal to the

axis of the jet.

Let /«„ be the head above the crest of an overfall sluice.

Then

Q = -<^b, ^2gk^^,

^, being the width of the crest, and c the coefficient of dis-

charge. The width b^ is usually 3 or 4 ins. less than the width

d of the wheel.

From this equation

/i.=
2cb^ \'2g'

and the depth of water over the cre.st or lip is usually about

9 ins.

Again, the head h^ (= CD) required to produce the velocity

f
J
at the point of entrance B is

,
' 102^'

lb per cent being allowed for loss due to friction.

Thus the height of the crest A above B, the point of

entrance,

:= AD =z CD - CA =^ h^- h^

102^ \2cb^^2g'-
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But BA is a parabola with its vertex at A, and therefore,

if 6 is the angle between the horizontal BD and the tangent

jBTto the parabola at-^,

-J =r ylZ? = — -'- - ^ ,/— j.
2^ lO 2^ ^2r(5j '•'2^'

Also,

BD ^ 'y^^"^.

The head available for pressure-work

= DE ^ FG = H - //,.

Let a be the angle between BT and the tangent to the

wheel's periphery at B. Then

a-\- 6 = the angle BOF,

BO being the i-adius to the centre of the wheel and OFG'
vertical.

If the lowest point G' of the wheel just clears the tail-race,

the head available for pressure-work

=: H- h^^ FG' = OG' - OF

„^„. . , BOF= ;-,(! — cos BOF) = 2r^ s\rr ,

r^ being the radius to the outer periphery of the wheel.

If, again, the water enters the wheel tangentially,

« = O, and the angle BOF = 0,

so that

eH — h, = 2r, sin^—

.

1 1 2

If the sluice-opening is not at the vertex of the parabola,

the axis of the opening should be tangential to the parabola.
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8. Breast Wheels.—These wheels are usually adopted for

falls of from 5 to 15 ft., and for a delivery of from 5 to 80 cu.

ft. per second.

The diameter should be at least 1 1 ft. 6 ins., and rarely

exceeds 24 ft. The velocity {u) of the wheel's periphery is

generally from 3^^ ft. to 5 ft. per second, the most useful

average velocity being about 4^ ft. per second.

The width of the wheel should not exceed from 8 to 10 ft.

It is of great importance to retain the water in the wheel as-

long as possible, and this is effected either by introducing the

water at the inner periphery. Fig. 253, or by surrounding the

Fig. 253.

water-arc with an apron, or a curb, or a breast, Fig. 254^

which may be constructed of timber, iron, or stone. In this

case the buckets may be plane floats, as the curb retains the

water, but they should be set at an angle to the periphery of

the wheel, so as to rise out of the water with the least resist-

ance.

Wheels with curbs are designated as high breast, breast,

or low breast according as the water reaches the wheel near

the summit, middle, or bottom, while if there is no curb they

qre termed overshot, middle-shot, and undershot,' respectively.

The depth of a float should not be less than 2.3 ft., and
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1

thespace between two consiecutive floats should be filled to at

least one half, and even to two thirds, of its capacity. The
head (measured from still water) over the sill or lip should be

about 9 ins.

The play between the outer edge of the floats and the curb

varies from J in. , in the best constructed wheels, to 2 ins.

The distances between the floats is from i^ to if times the

head over the sill for slow wheels, and a little more for quick

wheels.

Breast wheels are among the best of hydraulic motors,

having an efficiency which may be as great as 8o per cent.

The efficiency is usually about 70 per cent for a fall of a;bout

8 ft., and 50 per cent for a fall of 4 it.

9. Speed of Wheel.—The water leaves the buckets and

flows away in the race with a velocity not sensibly different

Fig. 255.

from the velocity 11 of the wheel, which, in practice, is usually

about one half oi the velocity [—j with which the v/ater enters

the wheel.

Let b be the width of the wheel.

Let X be depth of the water in the lowest bucket.
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Allowing for the thickness of the buckets, the play betvveen

the wheel and curb, etc.,

Q = cbxu,

c being an empirical coefficient whose avei-age value is

about .9. Hence

u = -^
9 bx'

Q Q
In practice b is often taken to be — to — . It is important

that b should be as small as possible and hence x should be

as large as possible, its value being usually i^ ft. to 2 ft.

It must be borne in mind, however, that any increase in

the value of x will cause an increase in the weight of water

lifted by the buckets as they emerge from the race, and will

therefore tend to diminish the efficiency.

10. Mechanical Effect.—Theoretically, the total mechanical

effect

H being the fall from the surface of still water in the supply-

channel to the surface of the water in the tail-race.

This, however, is reduced by the following losses:

[a] Owing to frictional resistance, etc., there is a loss of

head in the supply-channel M'hich may be measured by y—^,

V being approximately 4^^ to -;'„.

The head required to produce the velocity 7\ at entrance

= (I -f r) '
.
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{b) Let af. Fig. 256, represent in direction and magnitude

7\ the velocity of the water

entering the bucket.

Let ad, in the direction

of the tangent to the

wheel's periphery, repre-

sent the velocity n of the

periphery in direction and

magnitude.

Complete the parallelo- F'g- 256-

gram bd. Then ab evidently represents the velocity V of the

water relatively to the wheel. This velocity V is rapidly

destroyed, the corresponding loss of head being

W^^^^m^^^

V'~ 11^ -j- T',^ — 211V ^ cos y
2jr~ 2F (0

y being the angle daf.

Assuming that the water enters the race with a velocity

equal to u, the speed of the wheel, the theoretical useful work

per pound of water per second due to impact

v,^ I

2g 2g

71- n

which is a maximum and
7\^ cos^ y

'\ cos y = 211.when

In practice y is usually about 30°, and

the maximum useful work =
8 2f^'

corresponding to the relation 4?/ = ^y^'i . or 11 — .433Z'j.

To diminish as much as possible the loss in shock at

entrance due to the dissipation of the energy — in eddy motion,

the direction ab of the relative velocity f should be parallel to
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the arm or tangential to the lip of the bucket and should there-

fare be approximately at right angles to the wheel's periphery.

If, at the point of entrance, the inlet lip is the lowest point

of the bucket, the water flows upwards, and the relative velocity

V, instead of being wholly destroyed in eddy motion, is par-

tially destroyed by gravity. This latter is again restored to

the water on its return, and increases the wheel's efficiency.

For a given speed (ji) of the wheel, the velocity (v^ with

which the water should reach the wheel in order to make the

loss of — a minimum is found by making dV = o in eq. (i),

and then

d7\ — It cos y . dv

21 COS y.

This is an impossible relation, as it makes v^ < n and the

useful work negative. In fact the angle afd (= baf) in such

case would be 90°, and the direction af oi v^ would be prac-

tically tangential, so that no water would enter the wheel.

Again, for a given velocity i'^ of the water as it reaches the

wheel, the speed of wheel which would make the loss of —
a minimum is given by

O ^ 71 d?i — v^ cos y . du,

or 7i = v^ cos y.

This is also an impossible relation, as it makes the useful

work 7til.

\
;

It will be found advantageous to

\L_^ use curved or polygonal buckets and

.

I
not plane floats. A bucket, for ex-

\ Jc
\ I ample, may consist of three straight

X^^^^"" ^/portions, ab, be, cd, Fig. 257. Of
»~ these the inner portion, cd, should be
^^' ^^''

radial ; the outer portion, ab, is nearly

normal to the peripher)'^ of the wheel, and the central portion,

be, may make angles of about 135" with ab and ed.
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Disregarding all other losses, the theoretical delivery of

the wheel in foot-pounds

where h^ = total fall — fall (hj) required to produce the

velocity v,.

If f] be the efficiency, then, according to the results of

Morin's experiments,

7/ = .40 to .45 if k^ = -H;
4

2
7/ = .42 to .49 if /^j — ~H;

V = .47 if h, = ^-7^;

V=-55 if/., =
J//.4

(c) There is a loss of head due to frictional resistance along

the channel in which the wheel works.

Let / = length of the channel (or curb).

Let / = thickness of water-layer leaving the wheel.

Let l> = breadth of wheel.

The mean velocity of flow in this curb channel is approx-

imately \(, and Ihc loss of head due to channelfriction
3

' bt 2ff 3 Ot 2g

where/= coefficiency of friction, l> + 2t = wetted perimeter,

dt — water area, and y being 30°.

(d) There is a loss of head due to the escape of water over

the ends and sides of the buckets.

Let s^ be the play between the ends of the buckets and the

channel.
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Let s.^ be the play at the sides, (s^ = s.^ , approximately.)

Let £-j , ^., , . . . ,3-„ be the depths of water in a bucket

corresponding to 7i successive positions in its

descent from the receiving to the lowest point.

Let /j, /, , . . /„ be the corresponding water-arcs meas-

ured along the wheel's periphery.

The orifice of discharge at end of a bucket = ds^

The mean amount of water escaping from a bucket over its

end

= (^^^i y^g— .

(" being the coefficient of discharge.

The water escapes at the sides as over a series of weirs,

and the mean amount of water escaping from a bucket over the

sides

Hence the total loss of effect from escape of water

per sec, k being the vertical distance between the point of

entrance and the surface of the water in the tail-race

{e) There is a loss of head due to journal friction.

Let W= weight of wheel.

Let w^ := weight of water on the wheel.

L^t r, = radius of wheel's outer periphery. ,

Let r' := radius of axle.
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Loss per second of mechanical effect due to journal friction

'i

r being the coefficient of journal friction.

There is a loss of mechanial effect due to the resistance of

the air to the motion of the floats (buckets), but this is prac-

tically very small, and may be disregarded without sensible

error A deepening of the tail-race produces a further loss of

effect, and should only be adopted when back-water is feared.

Hence the total actual mechanical effect, putting

Z=bs,{ 1/^, + ^,+ . . . V^„)+\-4l^ Vl^+i^ Vc.^+ . +/„ v7,).

= ^a{^-A-^a{4+-^ iin' cos y\

i> -\- 2t Av,^
,
—wh r'

' bt K2SC * n ^ "r,•Jo 1

= wQ\ //- (l + ") 2^
J
+ --«(^^ COS y - ic)

^ bt T) Zg ^ n ^ "Vj

^{wQ - c V^g'^)[H- I + yjj+ ^K^'i COS y-u)

b -\- 2t Av? r'

bt 32^ ^ 'Vj

Hence for a given value of i\ the mechanical effect

(omitting the last term) is a maximum when

V cos y -r o^
u = - '

2 (= .433 X ?'. ,
if K = 30 ).

In practice the speed of the wheel is made about one half

of the velocity with which the water enters the wheel.

For a given speed of wheel, and disregarding the loss of
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effect due to curb friction, which is always small, the mechan-

ical effect is a maximum for a value of v^ given by

jQ — c V2£-
7VZ\I

7'

,§"
1 +

zvQ

g
u cos y ^ O,

u cos y

(1 + r)[l

The loss by escape of water, viz., c V2g—, varies, on an

average, from lo to 15 per cent of the whole supply, so that

c y 2P:— varies from — to
n 10 20

Ex. The buckets of a low breast wheel, of 24 ft. diameter, are half

filled with water which flows from a flume through a vertical rectangular

sluice-opening at the rate of 15 cu. ft. per second. The linear speed of

the wheel's periphery is 5 ft. per second. At the point of admission

the inflowing jet has a velocity of 10 ft. per second and makes an angle of

Fig. 258.

30° with the rim. The total available fall is 8^ ft. Find (a) the position
of the point of admission; {b) the work done by impact and weight;,
ic) the position and dimensions of the sluice-opening, the depth of the
shrouding being 12 ins.
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{a) Let OB be the radius to the point of admission B, and let be

its inclination to the vertical.

Draw the vertical OG and the horizontal BF.
Theoretically, hi , the head required to develop a velocity of lo ft. per

second,

lo'

Then 8^ — ijV = (>\l ft. = head available for work by weight
= the vertical fall on the wheel
= FG.

Therefore cos 4> = -^ = jy^^ = .42187S.

and <p = 65° 3', defining the position of B.

(l>) The useful theoretical work done by impact

= -^15.5(10 cos 30° - 5)= 536. 133 ft.-lbs.

The useful theoretical work done by weight

= 62^ . 15 , 6}g = 6503.906 ft.-lbs.,

and the combined useful work = 7040.039 ft.-lbs.

(c) Let AD, BD be the vertical and horizontal distances of the lift

A from B.

The angle between the direction of v\ at B and the horizontal

= — 30° = 35° 3'

10'
Therefore AD = j— sin' 35° 3' = .51533 ft.

04
10"

and BD = t— sin 70° 6' = 1.4692 ft.

Again, the width of the wheel = ; = 6 ft.,

^.1.5
and the width of the sluice may be taken to be about 3 ins. less

than this, or 5J ft. The head over the lip = iy\ —.51533 = 1.0472;

the average velocity of flow through the sluice = . 9 4/64 x 1.0472 =

7.3656 ft. per second, and the depth of the sluice-opening = ~ p

= .354 ft.

II. Sagebien Wheels, Fig. 259, have plane floats inclined

to the radius at from 40° to 45° in the direction of the wheel's

rotation. The floats are near together and sink slowly into

the fluid mass. The level of the water in the float-passages

gradually varies, and the volume discharged in a given time

may be very greatly changed. The efficiency of these wheels
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is over 80 per cent, and has reached even 90 per cent. The

action is almost the same as if the water were transferred from

Fig. 259.

the upper to the lower race, without agitation, frictional resis-

tance, etc., flowing away without obstruction into the tail-race.

12. Overshot Wheels.—Since the introduction and develop-

ment of the turbine these wheels have become almost obsolete.

They have been considered among the best of hydraulic motors

for falls of 8 to 70 ft. and for a delivery of 3 to 25 cu. ft. per

second, and have proved especially useful for falls of 12 to

20 ft. The efficiency of overshot wheels of the best construc-

tion is from .70 to .85.

The thickness of. the sheet of water passing through the

sluice on to the wheel rarely exceeds 4 or 5 ins., and is often

less than 2 ins.

If the level of the head-water is liable to a greater variation

than 2 ft. , it is most advantageous to employ a pitch-back or

high breast wheel, which receives the water on the same side

as the channel of approach.

13. Wheel Velocity.—This evidently depends upon the

work to be done, and upon the velocity with which the water

arrives on the wheel. Overshot wheels should have a low cir-
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cumferential speed, varying from lo ft. per second for large

wheels to 3 ft. per second for small wheels, and should not be

less than 2^ ft. per second. At a higher speed than 6 ft. per

second, if the buckets are more than two thirds full, the

efficiency does not exceed 60 per cent.

In order that the water may enter the buckets easily, its

velocity should be greater than the peripheral velocity of the

wheel.

14. Effect of Centrifugal Force.—Consider a molecule of

weight w in the '

' unknown '

' surface of the water in a bucket

(Fig. 260). At each moment there

is a dynamical equilibrium between g
the " forces " acting on in. viz. : (i) i\

its weight w; (2) the centrifugal

force —c^r; (3) the resultant T of

the neighboring reactions.

Take MF = w,
wMG = cyV,

and complete the parallelogram FG. 'a

Then MH = T. The direction of
'

T is, of course, normal to the surface

of the water in the bucket.

Let //J/ produced meet the ver-

tical through the axis of the wheel ?

in E. Then

w ,

MG g'-^
MF w
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Thus the position of £ is independent of r and of the posi-

tion of the bucket, so that all the normals to the water-surface

in a bucket meet in £, and the surface is the arc of a circle

having its centre at £, or, rather, a cylindrical surface with

axis through £ parallel to the axis of rotation.

15. Weight of Water on Wheel and Arc of Discharge.

—

Let Q = volume supplied per sec, and iV= number of buckets.

T,, JVoo
Then = number of buckets fed per second,

and -jr^ = volume of water received by each bucket per sec.

Hence the area occupied by the water until spilling com-

27lQ
mences ^ , „ , d being the bucket's width (= width of wheel

between the shroudings).

The water flows on to the wheel through a channel (Fig.

261), usually of the same width l> as the wheel, and the supply

is regulated by means of an adjustable sluice, which may be

either vertical, inclined, or horizontal.

When the water springs clear from the sluice, as in Fig.

261, the axis of the sluice should be tangential to the axis of

the jet, and the inner edges of the sluice-opening should be

rounded so as to eliminate contraction.

Let jj/, z be the horizontal and vertical distances between

the sluice and the point of entrance.

Let T be the time of flow between the sluice and entrance.

Let Vf^, I'j be the velocities of flow on leaving the sluice

and on entering the bucket.

Then

^1 cos (y-{-d)T = y,

^1 sin (r-\-S)T— \gT^ = z,

and

V^ = V^ -\- 2gZ,

8 being the angular deviation of the point of entrance from the
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summit, and y the angle between the direction of motion of

the water and the wheel at the point of entrance.

If the bed of the channel is horizontal, and if also the sluice

is vertical, opening upwards from the bed, and is of the same

width b as the wheel, then

Q^bt V2gk^
,

Fig. 261.

i being the depth of sluice-opening and h^ the effective head

over the sluice. This effective head is about ^-^ of the

actual head.

Thus, taking _^ = 32, j = Mi^\ gives the delivery per foot

width of wheel.

Taking .6 ft. and 3.6 ft. as the extreme limits between

which k^ should lie, and .2 ft. and .33 ft. as the extreme limits
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between which i should He, then -r must lie between the limits
o

1.24 and 5, and an average value of -,- is 3. Thus the width.

of the wheel should be on the average _ -.

Again, disregarding the thickness of the buckets, the

capacity of the portion of the wheel passing in front of the

water-supply per second

= OOOi [• ^ bdoo\r^ 1 = bdr^Qo, approximately,

^ bdu = bd—^,

r^ being the radius and u the velocity of the outer circumference

of the wheel, d the depth of the shrouding, or crown, and n

the number of revolutions per minute.

Only a portion, however, of the space can be occupied by

the water, so that the capacity of a bucket is mubd, m being

a fraction less than unity and usually ^ or \. For very high

wheels in may be \. Hence

inbdu = Q.

Therefore mdu = —r.
o

The delivery (y 1 per foot of width must not exceed a

certain limit, otherwise either d or u will be too great. In the

former case the water would acquire too great a velocity on

entering the buckets, which would lead to an excessive loss

in eddy motion and a corresponding loss of efficiency; while

if the speed u of the wheel is too great, the efficiency is again

diminished and might fall even below 40 per cent.

The depth of a bucket or of the shrouding varies from 10

to 16 ins., being usually from 10 to 12 ins., and the buckets
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are spread along the outer circumference at intervals of 12 to

14 ins. The number of the buckets is approximately 5r, or

6r^ , r^ being in feet.

The efficiency of the wheel necessarily increases with the

number of the buckets, but the number is limited by certain

considerations, viz. : {a) the bucket thickness must not take

up too much of ' the wheel's periphery; {b) the number of the

Fig. 262.

buckets must not be so great as to obstruct the free entrance

of the water
;

{c) the form of the bucket essentially afifects the

number.

Let the bucket, Fig. 262, consist of two portions, an inner
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portion be, which is radial, and an outer portion, cd; c being a

point on what is called the division circle. The length be is

usually one half or two thirds of the depth d of the shrouding.

Take be = \d.

It may also be assumed without much error that the water-

surface ad is approximately perpendicular to the line ed, so

that the angle eda is approximately a right angle.

The spilling evidently commences when the cylindrical

surface, having its axis at e and cutting off from the bucket a

water-area equal to
,
passes through the outer edge d of

the bucket.

Let fi be the bucket angle eOd.

Let d be the inclination of Od to the horizon.

Let (f> be the inclination of ad to the horizon.

Let r^ be the radius of the outer periphery.

Let R be the radius of the division circle.

Let r^ be the radius of the inner periphery.

Then

g Oe COS {6 ± 0)
(0rjoy Od sin ' '

the sign being plus or minus according as the bucket is below

or above the horizontal, and in the latter case, if ^ = 0, then

r^a? ^ g sin 0.

Again,

af ^^fd tan {9 -\- 0), approximately.

Therefore

fd"^ d^
the axea. dfa = tan (^ -|- 0) = - tan {0 -j- 0),

where d ^= r^ — r,. Hence

the area abed = area cod — area bof— area dfa

= ^sin/J-^y3- -tan(^+0) = ^-. . (2)
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Equations (i) and (2) give 6 and 0, and therefore the posi-

tion of the bucket when spilling commences.

The bucket will be completely emptied when it has reached

a position in which cd is perpendicular to a line from e to

middle point of cd, or, approximately, when edc is a right

angle.

Let 6^ , 0j be the corresponding values of 6 and 0, and let

y^ be the angle between cd and the tangent at d to the wheel's

periphery. Then

y, = 90° - {8, + cl,,),

and

sin X i ^ g
sin 4>^ T^a^'

two equations giving 0^ and ^j.

Also, if ck is drawn perpendicular to od,

.u J, dk r. — R cos /? r.

tan V, = cot cdk — ^r- = .
—-— = =^ cosec /? — cot /3.^

'

ok R sm y3 R '^ '^

The vertical distance between the points where spilling

begins and ends, viz., ;-,(sin 6^ — sin 6) can now be deter-

mined.

The pitch-angle (^= ip) is the angle between two consecu-

360°
tive buckets so that ip =^ "aT- I^ order to obtain a small

angle (^ y,) between the lip of the bucket and the wheel's

periphery, it is usual to make the bucket angle yS greater

than tp.

For example,

^=5^=5 36o°_45o"
4^ ~ 4 N ~ N •

The interval between the buckets should be at least suffi-

cient to prevent any bucket dipping into the one below at the

moment the latter begins to spill.
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Let coc', Fig. 263, be the division angle, and i the thick-

ness of the bucket.

Then

Fig. 263.

fa d d
ff = y = 2 tan(^+ 0) = - tan 0,

approximately, and therefore

Nir,/? + t-^tan^) 27rr, (3)

Also, by equation (2),

r,R^- sin yS — ^z? = - tan ^

.

2 '^ 2'^ 2

2;rQ

bN(»" (4)

These last two equations give N and 0.

The number of buckets may also be approximately found

from the formula

15. Form and Capacity of Bucket.— In practice the

bucket may be delineated as follows:

In Fig. 263 let dd' = distance between two buckets.
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Take dd' —dd' to—dd'; also take be = — , and join dc.
4 5 2

"

This gives the form of a suitable wooden bucket.

If the bucket is of iron, circular arc is substituted for the

portions be, cd.

Again, let pm. Fig. 264, be the thickness of the stream

just before entering the bucket.

Fig. 264.

Let dn be the thickness of the stream just after entering

the bucket.

Let y^ be the angle between the bucket's lip and the wheel's

periphery.

Then

mbdu^ = capacity of bucket = bv^ . pm z= bV . dn

= bv^dp sin y = bV. dp . sin y^,

and therefore

dp
mdu. mdu.

V sin" Yi

Now overshot wheels cannot be ventilated, and it is con-

sequently necessary to leave ample space above the entering
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stream for the free exit of air. Thus, neglecting float thick-

ness,

—r^ = the distance between consecutive floatsN
fyidti

dd' (Fig. 263) > dp> -y n̂
and N, the number of buckets.

<
mdu.

For efficient action the number of the buckets is much less

than the limit given by this .relation, often not exceeding one

half of such limit.

If y^ is very small, V = v^ — u^, approximately, and there-

fore

md \u^ I

The capacity of a bucket depends upon its form ; and the

bucket must be so designed that the water can enter freely and

without shock, is retained to the lowest possible point, and is

finally discharged without let or hindrance. Hence flat

buckets, Fig. 265, are not so efficient as the curved iron

bucket in Fig. 268 and as the compound bucket made of three

or two pieces in Figs. 266, 267, and 269. The resistance to

entrance is least in the curved bucket, as there are no abrupt

changes of direction due to angles. The capacity of a com-

pound bucket may be increased, without diminishing the ease

of entrance, by making the inner portion strike the inner

periphery at an acute angle, Fig. 269. The objection to this

construction, especially if the relative velocity V is large, is

that the water tends to return in the opposite direction and

escape from the bucket.



Fig. 265.

CAPACITY OF BUCKET.

Fig. 266. Fig. 267.

Fig. 268. Fig. 269.

Fig. 270.
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Let dcd, efg. Fig. 270, represent two consecutive buckets

of an overshot wheel turning in the direction shown by the

arrow.

Water will cease to enter the bucket-space between bed

and efg, and impact will therefore cease, when the upper

parabolic boundary of the supply-stream intersects the edge d.

The last fluid elements will then strike the water already in

the bucket at a point M, whose vertical distance below d may
be designated by z. The velocity v^ with which the entering

particles reach M is given by the equation

v; = i^v^i Ar 2gs (I)

Again, while the fluid particles move from d to Mlet the

buckets move into the positions d'c'b' , e'f'g'.

Let arc dd' ^ 5^ = ee'

.

Let arc dM = s^.

Let T be the time of movement from d to d' (or d to M).
Then

s^^ uT
and

assuming that the mean velocity from d to M h an arithmetic

mean between the initial and final velocity of entrance. Thus

^;n^" «
^^)

Also, since the angle between aWand the wheel's periphery

is small, it may be assumed that

the arc dM = de -\- ef -{- ee' , approximately,

_ 2iTr^ 2nr^ 2\ — u

/vT J-
y^

,^1 ~ « 2nr, v,— u \mOTE..—ef= ed—=ed^ = -^ .
-i

, nearly.]
V u u N u ^

]
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Thus

2 Ttr^ Vj

and by equations (2) and (3),

Wj + ^'i'
— 2u

N ^ + '' (3)

4 2U I N
an equation giving approximately the distance s^ passed

through by a float during impact. The buckets can now be

plotted in the positions they occupy at the end of the impact.

The amount of water in each bucket being also known, the

water-surface can be delineated, and hence the vertical distance

z can be at once found.

Ex. I. Find the angular depression of tlie water-surface below the

horizontal (a) when the bucket lip is 37° 14' above the centre, and (S)

when the bucket lip is on a level with the centre; also find (f) the

position of the bucket below the centre when a horizontal through the

lip bisects the angle between the water-surface and the radius to the lip.

The wheel has a diameter of 32 ft. and makes 10^ revolutions per minute.

The angular velocity 00 = -- -^ = — . Then* ^
7 60 10

(«)
i6/r iN'' sin <p 121

32\io/ cos (37° 14' — 0) 2oo'

_, , 200 cos (37° 14'— 0)
Therefore = =^-^

—

-r = cos 37 14' cot + sin 37° 14',
121 Sm J/ 1- -r

• J/ t

.

or cot = 1. 316 and = 37° 14'.

,r. 121 sin
, ^ ,

{b) = ,„ , ^, = tan = .605,
^ ' 200 cos {6 + 0)

^

and = 31° 10'.

121 sin sill sin
if)

200 cos (9 + 0j cos 20 I — 2 sin' 0'

. „ 100 . I

or sin-' -) sin = -,
121 2

and sin = .4058,

or = 23° 56' = 6.
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lU

Ex. 2. An overshot wheel has a diameter of 32 ft., a 12-in. crown,

and its peripheral speed is 4 ft. per second. The lip of the bucket is i^

ins. thick. Water enters the

f wheel in a direction inclined at

60' to the vertical at a point 12°

30' from the summit and with a

velocity of 16 ft. per second.

Spilling commences at 120° from
the summit. Find (a) the relative

velocity ( V) at admission
;

{i) the

angle between the horizontal and
the water-surface at 1° 47' 33''

above and at 30° below the cen-

tre; (c) the angle (y;) between the

bucket lip and the nm : (d) the

point where the bucket is emp-
tied ; (e) the bucket angle; (/) the

elbow angle
; (^) the number of

buckets
; (h) the bucket water

area.

At the point of admission d
let dg-h be the triangle of veloci-

ties so that dg = \6 ft., dh^ ^ ft.,

and the angle gdh = 30° — 12° 30'

= 17° 30'.

Assuming also that the water

enters without shock, the relative

velocity V = {dg) is parallel to

the bucket arm cd, and the angle.

cdk^ y, = a.n^e.ghk.

Then

(a) V = hg' = ^" + dh'' - 2 .gd .dh cos 17° 30'

= 16'
-I- 4" — 2 . 16 . 4 cos 17° 30'

= 149.9242,

and K= 12.2443 ft. per sec.

(i) When 6 = 1° 47' 33",

or

and

16(A)' sin <p

cot (p= 32 sec 1° 47' 33" - tan 1° 47' 33",

<P = I" 47' 33"-

„r, „ „ cos (30° + (P)
When 6 = 30°, ^

—

:r — 32,-" sin 1^
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or cot = 32 sec 30° + tan 30' = 37.5277.

and tp = 1° 31' 24".

W sin 17° 30' _ 12.2443

sin ;ri

12.2443
or cosec Xi = -p^ cosec 17° 30' = 2.545,

and yi = 23° 8'.

(rf) At the point ds, where the spilling is completed, Odsk, is a right
angle and the angle Odse = angle c^dsk, = Xi Then

n 1 _ £^ _ ^1 _ 16 / 4 y_ I

n ;»'i
~

(7^
"'

jc' ~ 32 \i6/ ~ 32'

sin 01 eds

si

.sin 23° S'
or sin 4>i = " = .0122772,

32

and
</)i = 0° 42'.

Therefore 81 = 90° — (y\ + 0i) = 66° 10',

and the bucket is emptied at 90° + 66° 10' = 156° 10' from the summit.
(e) n = 16'; R = 15I'. Therefore

00/ 16 — I5i ens p
tan 23 8 = tan y. = —^^^--^ = .4,73.

This last equation is easily reduced to the form

cos^ fi — 1.7458 cos fi = — .74674,

and cos /J = .9962,

or P = S°
8',

121 . .= in circular measure.
1350

(/) The elbow angle Ocd = 180° — /5 — Ode = 18° - /S — (90° — y,)
= 90° - 5° 8' + 23° 8'

= 108°.

(^)
nr/ '21 ' ' „\ 44jV 15 X + ^ tan 30° =— . 1 5,

\ J350 82 7

or A^ = 79.8, say 80.

An empirical approximate rule makes

2*ri 44 16

d ~ 7 ' I

.A^ = -^ = — . — = loof
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(k) -^ sin s= 8' — — X —^^ = - tan -;o + water area of bucket,^2 2 1350 2
-^

Therefore

the water area = 11.09475 — 10.08333 — .28867

= .72275 sq. ft.

= 104 sq. ins.

Ex. 3. An overshot water-wheel, of 40 ft. diameter, is 12 in. wide and

has a 9.6-in. shrouding. The pitch-angle is 4° and the tliickness of the

bucket lip is i in. At the point where spilling commences the bucket

water area is 24I sq. ins. Find the number of buckets, the point where
spilling commences, and the angle between the rim and the bucket lip.

r, = 20 ft.; ./? = 20 — = IQ.6 ft.; r, — 20 — ,Z = IQ.2 ft.
2 12

' '

Take /?, the bucket-angle, = " 4° = 5°.

4

5 I .8 „ 1Q.2
Then lo . 2 x Tt~~ + - — — tan = 27C^~—,

180 12 2 A^

20 X 19.6 . . (T9.2)' 5 (.8)' „
, 24iand ^— sin 5 »-§- = tan 8 H -.

2 -^2 180 2 144

Hence TV = 164.5,

and tan 8 = 2.56, or = 68° 40'.

The empirical formula gives

27r;-, 44 20

20
Again, tail ri = —;; cosec 5° — cot 5° = .27782,

and Xi = 15° 32'.

Ex. 4. Onefourth of the theoretic capacity of a bucket is filled with

water. The angle between the bucket lip and the wheel's periphery is

2o°^the radius to the outer periphery is 18 ft. and the depth of the crown
is 12 ins. If the velocity of the water at entrance is twice that of the

wheel's periphery, find the greatest number of buckets theoretically

possible.

The number < ^ i

ma \;<i /

2-V-ic
< -)

i. I

< 103.2.

The actual number may be about two thirds of this, or 69.
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16. Useful Effect.—(a) Efea of Weight.—IV^ wheel
should hang freely, or just clear the tail-water surface, and the

total fall is measured from the surface of the water in the tail-

race to the water-surface just in front of the sluices through

which the water is brought on to the wheel.

Let h^. Fig. 272, be the vertical distance bet\Teen the

Fig. 272.

centres of gravity of the water-areas of the first and last buckets

before spilling commences. Then

hj = R COS <y + r, sin 6, very nearly.

Let h^ be the vertical distance between the centres of

gravity of the water-area of the bucket which first begins to

spill and the point at which the spilling is completed. Then

\ — rj(sin B^ — sin B), ^&cy nearly.

The useful work per sec. = wQ(li, -f- khj), k being a frac-

tion < I and approximately = .5.

Let Af^\ie. the water-area in the bucket which first begins

to spill.
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Between this bucket and the one which is first emptied,

i.e., in the vertical distance h^, insert i- buckets, at equal dis-

tances apart, and let their water-areas A^ , A^, A^, . . . ^^ be

carefully calculated.

Let Q,„ be the mean amount of water per bucket in the

discharging arc.

Let A ,„ be the mean water-area per bucket in the discharg-

ing arc.

Then

A^+A^ + A.^+ . . .+A,_, + A,

S-j-2

The value of /' can now be easily found, since

A
= Q - -a;-

Let q be the varying amount of water in a bucket from

which spilling is taking place, and at any moment let y be

the vertical distance between the outer edge of the bucket and

the surface of the water in the tail-race.

(/ is a function of j/ and depends upon the contour of the

water in the bucket.

Let Y be the inca7i value of y between the points where

spilling begins and ends, i.e., for values j', and i'., ofj. Then

J'l

dq = yq --

I
q . dy.

Again, the elementary quantity of water, dq, having an
initial velocity equal to that of the wheel, viz., u, falls a dis-

tance j^ and acquires a velocity = \' ir -\- 2gy.
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Thus it flows away in the tail-race, causing a loss of

IV . dq
^ , ,

I u'
energy = ——-(«= + 2gy) = 7v .dq\-—-\-y

Hence the total loss of energy between the points where

spilling begins and ends

Overshot and pitch-back wheels do not work well in back-

"water, as they lift a greater or less weight of water in rising

above the surface.

If the water-level in the race is liable to variation it is

better to diminish the diameter of the wheel and design it so

that it may never be immersed to a greater depth than 1 2 ins.

{b) Effect of hnpact.—The head li' required to produce the

-velocity v^ with which the water reaches the wheel is theoreti-

cally '
; but as there is a loss of at least c per cent in the

y 2g'

most perfect delivery, it is usual to take h' = v-^, an average

^alue of V being I . I

.

Let the water enter the bucket in the direction ac, Fig.

273. Take ac = i'^. The water now moves round with a

-velocity ti (assumed the same as that of the division circle),

and leaves the wheel with the same velocity. Take ai in the

direction of the tangent to the division circle at the point of

•entrance = u. The component dc represents the relative

velocity f of the water with respect to the bucket, and this

velocity is wholly destroyed, ad must necessarily be parallel

to the outer arm of the bucket, so that there may be no loss

of shock at entrance. Then the impulsive effect

~
P- \ 2 2 2/"
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But

V^ ^^ v^ -{- It' — 2v^u cos y,

y being the angle through which the water is deviated from

its original direction at the point of entrance.

Fig. 273.

Hence the impulsive effect

wQ= -|-U(V, cos y - U),

and the TOTAL USEFUL EFFECT

wQ
=wQ(h,+kh2)H—z^u(ViC0S7/—u)— loss due to journal friction.

Designating the first two terms of this expression by P,

the loss due to journal friction

p being the radius of the axle, and ^Fthe weight of the wheeL
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Ex. An overshot wheel weighing 20,000 lbs., with a 12-in. crown and

of 40 ft. diameter, receives 400 cu. ft. of water per minute and revolves

in 6-in. be^inngs. The water enters the buckets at 12° from the wheel's-

summit, with a velocit)' of 16 ft. per second and at an angle of 10° with

the wheel's periphery, which moves wiih a linear velocity of 9 ft. per

second. Spilling commences and is completed at points which are

respectively 140° and 160° from the wheel's snmmit. Determine the

power of the wheel and its efficiency, taking k = .^ and /u =.04.

Take A' = radius of division circle = 19^ ft. Then

hi = 19J cos 12° + 20 cos 40° = 34.3947662 ft.,

and ^2 = 20 cos 20° — 20 cos 40° = 3.472964 ft.

Therefore the H.P. tiue to weight

62^ . 400/ ,^ I , \=
33000 ^^34-

3947662 + - X
3-472964J

= 27.37215,

and the H.P. due to impact

62^ 400

32 33000

= 1.43968.

9(16 cos 10° — 9)

Again, the weight of the water on the wheel

400 . 62A / 128 I 20 \= ^—, 207r —- + 20?r . - .
-_

60.9 \ 180 2 180/

= 2231.04 lbs., approx.,

and the total weight on the axle = 22231.04 lbs.

Thus the energy absorbed by frictional resistance in H.P.

22231.04 i „ -= ^

—

~ X .04 X 9— =^18189,
550 ^ ^40

and hence

the net useful work in H.P. = 27.37215 + 1.43968 — .18189

= 28.62994.

The total available H.P.

62^ . 400 /i6°

33000 \ 64
•f 20 cos 12° + 20ij = 33.0022,

^ . 28.62994 -,
and therefore the efficiency = ^^^ = -Ko/S-



47^ PITCH-B/tCK IVHEEL.

17. A pitch-back or high breast wheel is to be preferred

to an overshot wheel when the surface-levels of the head- and

tail-water are liable to very considerable variation.

In the pitch-back wheel the water is admitted by an

adjustable sluice into the buckets on the same side as the

supply-channel, Figs. 274 and 275. Thus the wheel revolves

Fig. 275.

in the direction in which the water leaves, and the drowning

of the wheel is prevented. Further, the buckets may be now
ventilated, Fig. 277, and may therefore be placed closer

together than in the unventilated overshot wheel.

The efficiency of the pitch-back is at least equal to that of

the overshot.
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EXAMPLES.
1. An undershot wheel works in a rectangular channel 4 ft. wide, in

which the water on the up-stream side is 2 ft. deep and flows witli a
velocity of 12 ft. per second ; the water on the down-stream side is 3 ft.

deep. Find the useful work done and the efficiency.

Ans. 1000 ft.-lbs.; Z^-
2. Determine the maximum mechanical effect of an undershot wheel

of 12 ft. diameter making lo revolutions per minute, the fall being 3 ft.

and the quantity of water passed per second 15 cu. ft.

Ans. 1423 ft.-lbs.

3. Ascertain the general proportions of a Poncelet wheel, being
given : lieight of fall = 4^ ft.; delivery of water = 40 cu. ft. per second

;

radius of exterior circumference ^ 9 ft
; x = 20°.

Ans. a = 143° 57'; ^=128°. I ; il = ^ ft.; ?• = 2.47 ft.;

^ = i5°.2 ; / = 5 ins.; TV = 57 ; tj = .69.

4. Design a Poncelet wheel for a fall of 4.5 ft. and 24 cu. ft. of water

per second, using the formulae on pages 42S-432, taking y = 20°, and
also A. = 20° as a first approximation.

Ans. a = 143° 57'; depth of crown = 1.8 ft.; depth of stream
= .372 ft ; (5 = 4.14 ft.; radius of bucket = 2.26 ft.; J* = 128° 6';

A = 17° i'; number of buckets = 48 ; mechanical effect = 8.5 H.P.;

efficiency = .69.

5. An undershot water-wheel with straight floats weighing 1 5,000 lbs.

works in a straiglit rectangular channel of the same width as the wheel,

viz., 4 ft.; tlie stream delivers 28 cu. ft. of water per second, and the

efficiency is \. Find the relation between the up-stream and down-
stream velocities. If the velocity of the inflowing water is 20 ft. per

second, find the velocity on the down-stream side and determine the

mechanical effect of the wheel, its diameter bemg 20 ft., the diameter of

the gudgeons being 4 ins., and the coefficient of friction .008.

Ans. 3634.06 ft.-lbs.

6. Determine the effect of a low breast or undersliot wheel 15 ft. in

diameter and making 8 revolutions per minute, the fall is 4 ft. and tlie

delivery 20 cu. ft. per second ; the velocity of the stream before coming

on the wheel is double that of the wheel. Ans. 3148 ft.-lbs.

7. 20 cu. ft. of water per second enter an undershot wheel of 30 ft.

diameter, making 8 revolutions per minute, through an underflow

sluice. The velocity of the entering water is twice that of the wheel's

periphery. Find (a) the head of water behind the sluice; (b) the fall; {c)

the theoretical mechanical effect
;
[d) the actual mechanical effect, disre-

garding axle-friction.
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Ans. (a) 2.716 ft.; (*) 1.283 ft.; (r) 5.72 H.P.; (d) 2.69 H.P.

8. 20 cu. ft. of water per second enter an undershot wheel of 20 ft.

diiimeter in a straight race, the fall being 3 ft. The depth of the enter-

ing stream is \ ft. The width of the wheel is 4J ft., and the clearance is.

f inch. The number of tlie floats, of which four are immersed, is 48,

and e;ich is I ft. long. The weight of the wheel is 7200 lbs., the radius

of the axle is if ins., and the coefficient of friction is .1. Find (a) the

best speed for the wheel
;
(b) the corresponding mechanical effect ; (<r) the

efficiency.

Ans. {a) 6 ft. per second ; {b) 2.32 H.P., assuming the speed of

wheel reduced to 5.74 ft. per second by axle-friction ; {c) .34.

9. 72 cu. ft. of water are delivered to an undershot wheel with straight

floats, through a channel of rectangular section and 5 ft. wide. The
velocity (Vi) of the inflowmg water is 24 feet per second. If the efficiency

of the wheel is .25, show that the peripheral speed (u) of the wheel must
be 5 ft. per second. Also determine the mechanical effect of the wheeL

Ans. 10.125 ft.-lbs. per second.

10. The water in a rectangular channel, of constant width, is li ft.

deep, and impinges upon the flat buckets of an undershot wheel with a

velocity of 12 ft. per sec. Show that the efficiency is greatest and equal

to .iSi for a peripheral speed of 8.842 ft. per sec.

1 1. Water enters the buckets of a low breast-wheel with a velocity of

10 ft. per sec. and in a direction making an angle of 27° 44' with the tan-

gent at the point of entrance, which is 4 ft. measured horizontally and
2 ft. measured vertically from the sluice where the stream-lines are hori-

zontal. Each cubic foot of water does 563J ft.-lbs. of useful work per

sec. when the wheel makes 4f revols. per min. Find the fall on the

wheel, the total available fall, and the diam. of the wheel.

Ans. 8.437 ft.; 10 ft.; 24 ft.

12. A race is straight and close-fitting so that the loss of effect due
to escape of water may be disregarded. A single undershot wheel with

plane floats is replaced by four similar tandem wheels. If the delivery

of each of the four wheels is the same, and if it is assumed iliat the

water reaches each wheel with the same velocity with which it leaves the

preceding wheel, find the total maximum delivery due to impact.

Ans. i^ times the delivery of the single wheel.

13. Discuss the preceding example, assuming that the delivery of

each wheel is not the same, but that the total delivery is a maximum.
Ans. 1.6 times the delivery of the single wheel.

14. If 71 wheels of the same type are substituted for the single wheel

in example 12, and if the assumptions are the same as those in example

13, show that the total delivery of the n wheels is to the delivery of the

single wheel in the ratio of 2« to 2« -|- i, and that, theoretically, :f the

number is made very large, they will approximately give the entire worK
of the fall.
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15. In 3 low breast-wheel of 20 ft. diameter, the water enters the

bucket with a velocity of 16 ft. per second in a direction making angles

of 45° with the horizontal and 15° with the wheel's periphery. The
wheel makes 7 revolutions per minute and receives 5 cu. ft. per second

of water. Find the mechanical effect of the wheel and tlie position of

the sluice, which is placed where the stream-lines are horizontal.

Ans. 2075 ft.-lbs.; AD = 2 ft., BD — .25 ft.

16. The water in a head-race stands 4.66 ft. above the sole and leaves

the race under a gate which is raised 6 ins. above the sole, the coefficient

of velocity (t/i) being .95. Tlie water enters a breast-wheel in a direction

making an angle of 30° with the tangent to the wheel's periphery at the

point of entrance. The speed (u) of the periphery is 10 ft. per second,

the breadth of the wheel is 5 ft., the depth of the water in the flume is

8 ins., and the length of the flume is 8.2 ft. Find the loss of head (a) due
to the destruction of the relative velocity ( V) at entrance ; (i) due to the

velocity of flow in the tail-race
;

{c) in the circular flume. (/ = .018.)

Ans. {a) I.I I ft.; (i) 1.57 ft.; (<r) .44 ft.

17. In the preceding example, find how the losses of head would be

modified if the flume were lowered 1.03 ft., and if the point of entrance

were raised so as to make u = Vi cos 30°.

Ans. (n) .939 ft.; (i) 2.816 ft.; (c) 146 ft.

18. 20 cu. ft. of water per second enter a breast-wheel of 32 ft. diam-

eter and having a peripheral velocity of 8 ft. per second, at an angle of

25^° with the circumference. The depth of the crown is i J ft.; the buck-

ets are half-filled, and the fall is 9 ft. The velocity of the entering

water is 12 ft. per second. The centre of the sluice-opening is .54 ft.

above the point of entrance, and the width of the sluice is 3} ft. The
wheel has 48 buckets. The distance between the wheel and breast is J

inch. The bucket passes through .9 ft. while receiving water, and the

depth of the water-surface in the bucket below the point of entrance is

1.25 ft. Find (a) the angular distance of the point of entrance from tlie

horizontal
;
{i) the fall in the breast

;
(c) the head of water over the sluice;

(rf)the velocity of the water in the bucket the moment entrance ceases;

(e) the total mechanical effect, disregarding axle-friction.

yf«i. (a)53"'53';(^)6.525ft.;(.-)i.935ft.;(rf)i4.9ft.;(^;i5.59H.P.

19. In the preceding question, if the energy absorbed by axle-friction,

etc., is 743 ft.-lbs., find the efficiency of the whpel. Ans. f.

20. 15 cu. ft. of water per second with a fall of 8^ ft. are brought on

a breast-wheel revolving with a linear velocity of 5 ft.; deptli of shroud-

ing = 12 in.; the buckets are half-filled, and v, = 2u; also r^ = 12 ft.

Find the theoretical mechanical effect, y being 30°. Ans. 7040 ft.-lbs.

21. A wheel is to be constructed for a 30-ft. fall having an 8-ft. veloc-

ity at circumference and taking on the water at 12° from the summit

with a velocity of 16 ft. Determine the radius of the wheel and the

number of revolutions, 7^1 being 2?t.- Ans. 12.9 ft.; 5.9.
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22. If for the wheel in example 21 the number of revolutions is 5,

and Vi = 2«, the water being again taken on at 12°, find the radius and u.

Arts. 13.56 ft.; 7.1 ft. per second.

23. A breast-wheel passes 12 cu. ft. of water per second, and for the

speed u = ^v, = 4 ft. per second, the loss of mechanical effect, due to the

relative velocity V being destroyed, is a minimum. Find this effect,

y being 30°. Ans. 73.2 ft.-Ibs.

24. In a breast-wheel Q= 10 cu. ft. per second; H = lo ft.; t'l =
^u ; u = 4I ft. per second

; y = 30° ; diameter of gudgeon = 6 ins.; diam-

eter of wheel = 30 ft.; /< = .08 ; weight of wheel and water = 20,000

lbs. Find the mechanical effect of the wheel. (Neglect loss of effect

due to escape of water from buckets and to frictional resistance along

the curb.) Ans. 5776 ft.-lbs.

25. The quantity of water laid on a breast-wheel by an overfall sluice

= 6 cu. ft. per second, the total fall being 8 ft., and the velocity of the

periphery 5 ft. per second ; also Ji'i = 8;^, and if d be the depth of the

shrouding ibdte =^ 5<2(inthe present case d^ 12 ins.). Find the effective

fall, the height of the lip of the guide, the angle of inclination at the end

of the guide-curve, the breadth of tlie lip of the giiide-curve, and the

radius of the wheel tliat the water may enter tangentially. If the radius

is limited to 12 ft. 6 ins., find the deviation of the direction of motion of

the water from that of the wlieel at the point of entrance, c being .6.

Ans. 6.9 ft.; .325 ft.; 34° 46'; i\ ft.; 38.6 ft.; 28° 36'.

26. 10 cu. ft. of water per second are delivered to a breast-wheel.

The total fall is 10 ft. The peripheral velocity of the wheel is 6 ft. per

second. If vi = iu and y = 30°, find the theoretical useful effect and
the theoretical efficiency.

Ans. 5358.4375 ft.-lbs.; .85735.

27. 24 cu. ft. of watef enter the buckets of a 36-ft. breast-wheel, the

total fall being iij- ft. At the point of entrance the direction of the

water makes an angle of 30° with the periphery and also zvi = t^u. Find

the mechanical effect of the wheel and the position of the lip of the

sluice through which the water passes to the wheel.

Also, if the depth of the shrouding is i ft. and the buckets are only

half-filled, find the width of the wheel.

Tlie axle-bearings are 6 ins. in diameter. Taking the coefficient of

friction to be .008, how much power is absorbed by frictional resistance,

assuming the weight of the wheel and contents to be 30,000 lbs..''

Ans. 26.833 H.P.; x — .1624 ft.; j/ = .5625 ft.; 10 ft.; 4.19 H.P.
28. In an overshot wheel ri = 15 ft., </ = 10 in., /S = |0. If the

division circle is at one lialf of the depth of the crown, find the angle

(yi) between the bucket-lip and the wheel's periphery. (Take 7V= 5^,.)

Ans. yx= 18° 2'.

29. An overshot wheel, in which r, = 18 ft., makes 4 revolutions per
minute, and the velocity of the water on entermg the buckets is twice
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that of the wheel's periphery. If Xi = 20°, find y, and also find the rela-

tive velocity ( V) of the entering water.

Ans. X = 10° 9'
; V = 7.78 ft. per second.

30. If one fourth of the theoretic capacity, of a bucket is filled by the

water, find the greatest number of buckets theoretically possible, the

depth of the crown being I ft., the radius (ri) to the outer periphery 12

ft., the angle yt 20°, and the velocity of the entering water twice that of

the wheel's periphery.

Ans. 103.1. Making allowance for exit of air, the number of

buckets might be about two thirds of this amount, or, say, 69.

31. A wheel of 30 ft. diameter with 72 buckets makes 7 revolutions,

per minute, Q being 5 cu. ft. per second. The division circle is half way
between the outer and inner peripheries. \i d = i ft. and vi = 211, find

the effect due to impact. Ans. 514 ft.-lbs.

32. A 30-ft. wheel weighs 24,000 lbs. and makes 6 revolutions per

minute; its gudgeons are 6 ins. in diameter and the coefficient of friction

is .68. The water enters the wheel with a velocity of 15 ft. per second,

and in a direction making an angle of 10° with the direction of motion

of the wheel at the point of entrance. Tlie deviation from the summit

of the point of entrance is 12°, of the point where spilling begins is 150°.

of the point where all is spilt is 160°, and 5 cu. ft. of water enter the

wheel per second, of which the partially filled buckets contain one half.

Determine the total mechanical effect. Ans. 91 14 ft.-lbs.

33. The velocity of the outer periphery is 9f ft.; the angle between

the directions of motion of stream and wheel is 15°. Find the impulsive

effect of the water, Vi being 15 ft. per second.

Ans. 91 ft.-lbs. per cu. ft. of water.

34. An overshot wheel 40 ft. in diameter makes 4 revcjlutions per

minute and passes 300 cu. ft. of water per minute. If the gudgeons are

6 ins. in diameter and the wheel weighs 30,000 lbs., by how much will the

mechanical effect be diminished.? (/= .008.I

Atts. 25 ft.-ibs. per second.

35. The diameter of an overshot wheel = 30 ft.; z/i = 15 ft.; « = gi-

ft.; deviation of impinging water from direction of motion of wheel

(y) — 8^° ; deviation of point of entrance from summit = 12°
; deviation

of point where spilling begins from the centre = 58^°; deviation of point

where spilling ends = 7o|° ; 2=5 cu. ft. Find total effect of impact

and weight. -4?/j. 16.9 H. P.

36. An overshot wheel with a radius of 15 ft. and a 12-in. crown

takes 10 cu. ft. of water per second and makes 5 revolutions per minute.

If m = i, find the width of the wheel and the number of the buckets.

Ans. 5xT ft.; 75 or 90.

37. An overshot wheel of 32 ft. diameter makes 5 revolutions per

minute. Find the angle between the water-surface in a bucket and the

horizontal when the lip is 140° from the summit. Ans. 4° 33'.
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38. An overshot wheel of 10 ft. diameter makes 20 revolutions per

minute. Find the angle between the water-surface and the horizontal

when the Up is (i) 90° from the summit, (2) 45° 26' from the summit.

Ans. (i) 34° 27'; (2) 43" 18'.

39. The water enters an overshot wheel at 12° from the summit with

a velocity of 16 ft. per second and the linear velocity of the wheel's pe-

riphery is 8 ft. per second. The fall is 30 ft. Find the diameter of the

wheel and the number of revolutions per minute. Ans. 25.4 ft.; 5.95.

40. In a 32-ft. wheel with a 12-in. crown and a peripheral velocity of

8 ft. per second, the point where spilling commences is defined by

6 = 4). Find the arc over which spilling takes place, the angle between

the bucket-arm and the circumference being 30°. Also find the bucket-

ancrle. If 1 1 cu. ft. of water enter the wheel at 15° from the summit with

a velocity of 18 ft. per second, find the mechanical effect due to im-

pulse and to weight, k being i.

Ans. arc = 15.2 ft.; /J = 56° 35'; 2.87 H.P., 28 H.P.

41. An overshot wheel of 32 ft. diameter revolves with an angular

velocity 00; show that the angle between the horizontal and the water-

surface in a bucket at 00° from the summit is tan-' —

.

2

42. A water-wheel has an internal diameter of 4 ft. and an external

diameter of 8 ft.; tlie direction of the entering water makes an angle of

15° with the tangent to the circumference. Find the angle subtended

at the centre of the wheel by the bucket, which is in the form of a circu-

lar arc, and also find the radius of the bucket. Ans. 28° 54' ; r.2274 ft.

43. An overshot wheel 5 ft. wide, 30 ft. in diameter, having a 12-in.

crown and 72 buckets, receives 10 cu. ft. of water per second and makes

5 revolutions per minute. Determine the deviation from the horizontal

at which the water begins to spilt, and also the corresponding depres-

sion of the water-surface. Ans. 31° 41'
;

5° 51'.

a.4. An overshot wheel makes — revolutions per minute ; its mean^^ 2*

diameter is 32 ft.; the water enters the buckets with a velocity of 8 ft.

per second at a point 12° 30' from the summit of the wheel. At the

point of entrance the path of the inflowing water makes an angle of 30°

with the horizontal. Show that the path is horizontal vertically above

the centre. The sluice-board is placed at a point whose horizontal dis-

tance from the centre is one half that of the point of entrance. Find its

position relatively to the centre and its inclination to the horizon.

Also find V. Ans. i5° 6'
; 6.24 ft. per second.

45. The water enters the buckets of the wheel in the preceding

example without shock. Find the elbow-angle. Also, if the buckets

begin to spill at 150° from the summit, find where the bucket is empty
and the number of buckets. (Depth of crown = 12. ins.; thickness of

bucket = li ins.) Ans. 125° 30'; 156° 10'; 80.
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46. Given Wi = 15 ft. per second, and 5 = 2o\° Find the position

of the centre of the sluice, which is 4 ins. above the point of entrance.

Ans. .0877 ft. vertically below and 1.0143 ft. horizontally from

the summit. The axis of the sluice is inclined at 9° 33' to the

horizontal. (Assume ;' =0°.)

47. In an overshot water-wheel vi = 15 ft.; « = 10 ft.; elbow-angle

= 7oJ°; division-angle = 4^° ; deviation from summit of point of en-

trance = 12°. Find the deviation of the layer from that of the arm, so

that the water might enter unimpeded ; also find the inclination of the

layer to the horizon, and the value of V. If the centre of the sluice-

aperture is to be 4 ins. above point of entrance, find its vertical and
horizontal distance from the vertex of the stream's parabolic path which

is vertically above the centre of the wheel, and also find inclination of

sluice-board to horizon.

Ans. 54°; 2oi° ; 5.3 ft. per second ; .0878 ft.; 1.04 ft.; 9° 34'.

48. A wheel makes 20 revolutions per minute ; radius — 5 ft., angle

•of discharge = 0°. Find deviation of water-surface from horizon. Also

find deviation at 44' 35' above centre. Ans. 4° 27'
;
43° 16'.

49. In an overshot wheel g = 18 cu. ft. ; r, = 6 ft. ; a? = i ft.; i5 = 4 ft.;

jV= 24 ; « = 17. At the moment spilling commences the s.xcsLcbfd —
1.025 sq. ft.; between this point and the point where the spilling is com-

pleted three buckets are interposed, the sectional areas of the water

being .501, .409, and iig; sq. ft., respectively. Find (a) the sectional

area of bucket; (i5) the point wliere the spilling commences; (c) the point

where the spilling is completed
;
{d) the height of the arc of discharge

;

\e) the mechanical effect due to the fall of the water through the arc of

discharge, y being 10° 46'.

Ans. (3) .662 sq. ft. ; (/5) = 7° 13', <^ = 28° 46'
; W 6 = 73° 23',

d>= 5° 51'; {d) 4-49 ft-; W 4-93 H.P.

50. In the preceding example, if the water enters with a velocity of

20 ft. per second at 20' below the summit, and if the direction of tlie

inflowing stream makes an angle of 25° with the wheel's periphery at

the point of entrance, find the mechanical effect {a) due to impulse ;

{b) due to the fall to the point wliere spilling commences.

Ans. (a) 5.08 H.P. ; (,b) 12.114 H.P.

51. 300 cu. ft. of water per minute enter the buckets of a 40-ft. over-

shot wheel with a 12-in. crown and making four revolutions per minute.

The wheel has 136 buckets. At the moment when spilling commences

the area bed/ = 126.5 sq. in. The spilling is completed when the angle

between the horizontal and the radius to the lip of the bucket = 62° 30'.

Between these two positions three buckets are interposed, .the sectional

^reas of the water in the buckets being 24.5, 14.48, and 6.6 sq. ins., respec-

tively. The vertical distance between the water-surface in the first

bucket and the centre is 18 ft. Find (a) the width of the wheel
;

((J) the

cross-section of a bucket ;
(c) the angle between the horizontal and the
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radius to the lip of the bucket when spilling commences ;
(d) the height

of the discharging arc ;
(e) the mechanical effect due to weight.

Ans. (a) 2.4 ft. ; {b) 33.28 sq. ft. ; {c) 6 = 52° 19'
; (</) 1.9 ft. :

(e) 19.73 H.P.

52. As the bucket-arm cd moves downward from the horizontal

position, show that while the wheel moves through an angle 6 the last

particle of water at <r will move through a distance approximately equal

to
^'^^ " ' (6 — sin 8), r being the distance (assumed constant) of the

u"

particle of water from the axis, and u being the linear velocity of the

wheel at the radius.

53. If the last particle of water leaves the buckets just as the lip d
reaches the lowest point of the wheel, and if the arm is i ft. in length,,

find the angle between the lip and the wheel's periphery (i) for a wheel

of 20 ft. diameter, the peripheral velocity being 5 ft. per second
; (2) for

a wheel of 40 ft. diameter, the peripheral velocity being 10 ft. per second ;

(3) for a wheel of 10 ft. diameter, the peripheral velocity being 8 ft. per

second. ^"s. (0 20°
; (2) 19.5°; (3) 40°.

54. In an overshot wheel of 30 ft. diameter, 5 cu. ft. of water per

second enter the buckets with a velocity of 16 ft. per second and the

wheel's velocity at the division circle is 7 ft. per second. The point of

entrance is 18° from the summit, and tlie angle between the directions

of the inflowing water and the wheel's periphery at the point of entrance

is 12° The water begins to spill at 1485° from the summit and the

spilling is complete at i6oJ° from the summit. Find the total mechan-

ical effect due to impulse and weight. What is the tangential force at

the outer periphery.? Ans. 16.28 H. P.; 1 194 lbs.

55. In a 32-ft. wheel, with a i-ft. crown and a peripheral velocity of

8 ft. per second, the point where spilling commences is defined by the

relation 9 = 0. Find the arc over which spilling takes place, the angle

between the arm and circumference being 30°. Also find the " bucket
"

angle. If 11 cu. ft. of water enter the wheel at 15 ins. from the summit,,

and with a velocity of i8 ft, per second, show how to find the mechanical

effect due to impulse and that due to weight.

Ans. 53° 23'; 4°, i6i2|-| ft.-lbs. ; 14,406.56 ft.-Ibs per second.

56. An overshot wheel of 32 ft. diameter makes J^5- revolutions per

minute. Find the inclination to the horizontal of the water-surface in a
bucket at 90° from the summit. If the wheel has 90 buckets and the

arms make an angle of 22^° with the periphery, find the depth of the

crown. Afts. 7° &'; 11 ins.

57. An overshot wheel of 32 ft. diameter makes '^= revolutions per

minute. Find the inclination to the horizontal of the water-surface in a

bucket at 90° from the summit. If the wheel has 90 buckets and the arras

make an angle of 22|° with the periphery, find the depth of the crown.
Ans. 25.68 ft.

; 5.94.
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58. An overshot wheel of 36 ft. diameter and with 96 buclcets has a
peripheral velocity of 7i ft. per second. The water enters with a velocity

of 15 ft. per second and acquires in the wheel a velocity of 16.49 f'- per
second. Find the distance through which the float moves during
impact. Ans. 2.15 ft.

59. The sluice for a lo-ft. overshot wheel is vertically above the cen-

tre and inclined at 45° to the vertical. The water enters the buckets at

a point 2 ft. vertically below the sluice and 10° from the summit of the

wheel. Find the angle between the directions of motion of the entering

water and of the wheel's circumference. Also find the velocity of the

water as it enters the wheel. Ans. 5° 30'
; 9.68 ft. per second.

60. In an overshot wheel Wi = 17 ft.; u= 11 ft. per second ; elbow-
angle = 70° ; division-angle = 5°; water enters the first bucket at 12°

from summit of wheel. Find («) the relative velocity F so that water
may enter unimpeded ; {b) the direction of the entering water; (c) the

diameter of the wheel, which makes 5 revolutions per minute; {d) the

position and direction of the sluice, which is 2 ft. measured horizontally

from the point of entrance.

Ans. 6.24 ft. per second
; X = 7° 13'; 42 ft.; 45 ft.; 5° 43'.

61. In an overshot wheel the deviation of the impinging water from

the direction of motion of the. wheel is 16°
; the velocity (wi) of the im-

pinging stream = 15 ft. per second ; of the circumference of the wheel

(ti) = 15 cos 10°. What amount of the head is sacrificed .'

Ans. 1.06 ft.

62. A 30-ft. water-wheel with 72 buckets and a i2-in. shrouding

makes 5 revolutions and receives 240 cu. ft. of water per minute. Find

the width and sectional area of a bucket. The fall is 30 ft.; at what point

does the water enter the wheel, the inflowing velocity being i\ times

that of the wheel's periphery ? Also find the deviation of the water-

surface from the horizontal at the point at which discharging com-
mences, i.e., 140° from the summit.

Ans. 2.03' ; .327 sq. ft.; 32° 47' ;
4° 18'.

63. What number of buckets should be given to an overshot wheel of

40 ft. diameter and 12 ins. width in wheel, pitch-angle = 4°, thickness of

bucket-lip = i in. , water area = 24^ sq. ins.?

Ans. 167, depth of crown being 9 ins.



CHAPTER VII.

TURBINES.

I. Reaction and Impulse Turbines. —All turbines belong-

to one of two classes, viz.. Reaction Turbines and Impulse

Turbines, and are designed to utilize more or less of the avail-

able energy of a moving mass of water.

In a reaction turbine a portion of the available energy is

converted into kinetic energy at the inlet surface of the wheel.

The water enters the wheel passages formed by suitably curved

vanes, and acts upon these vanes by pressure, causing the

wheel to rotate. The proportions of the turbine are such that

there is a particular pressure (hence the term pressure-turbine)

at the inlet surface corresponding to the best normal condition

of working. Any variation from this pressure, caused, e.g.^

by the partial closure of the passages through which the water

passes to the wheel, changes the working conditions and

diminishes the efficiency. In order to avoid such a variation

of pressure, it is essential that there should be a continuity of

flow in every part of the turbine ; the wheel passages should be
kept completely filled with v.ater, and therefore must receive

the water simultaneoush-. Such turbines are said to have

complete admission. The admission is partial when the

water is received over a portion of the in'et surface only.

In an impulse (Girard) turbine. Figs. 277 and 278, the

energy of the water is wholly converted into kinetic energy at

the inlet surface. Thus the water enters the. wheel with a

velocity due to the total available head and therefore without

482
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pressure, is received upon the curved vanes, and imparts to the-

wheel the whole of its energy by means of the impulse due tov

the gradual change of momentum. Care must be taken to-

insure that the water may be freely' deviated on the curved

vanes, and hence such turbines are sometimes called turbines

with free deviation. For this reason the water-passages should

Fig. 277.

Girard Turbine for Low Falls.

Fig. 278.

Girard Turbine for High FalTr.

never be completely filled, and the water should flow througlV

under a pressure which remains constant. In order to insure

an unbroken flow through the wheel-passages and that no

eddies are formed at the backs of the vanes, \-entilating holes

are arranged in the wheel sides, Fig. 280. Figs. 279 and 280

also show the relative path AB and the absolute path CD
traversed by the water in an inward-flow and a downward-flow

turbine.

If there is a sufficient head, the wheel may be placed cleac'
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above the tail-water, when the stream will be at all times

under atmospheric pressure. With
low falls the wheel may be placed

in a casing supplied with air from

an air-pump by which the surface

of the water may be kept at an in-

variable level below the outlet

orifices, which is essential for per-

fectly free deviation. While the

wheel-passages of a reaction turbine

should be kept completely filled with water, no such restriction

is necessary with an impulse turbine. The supply may be

partially checked and the water may be received by one or

TAIL WATER

Fig. 280.

more vanes without affecting the efificiency. Thus the dimen-

sions of an impulse turbine may vary between very wide limits,

so that for high falls with a small supply a comparatively large

wheel with low speed may be employed. The speed of a

reaction turbine under similar conditions would be disadvan-

tageously great, and any considerable increase of the diameter

would largely increase the fluid friction and would also render

the proper proportioning of the vane-angles almost impracti-

cable. Impulse turbines may have complete or partial admis-

sion, while in reaction turbines the admission should be always
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complete, as in Fig. 281, which shows the relative path AB
and absolute path CD traversed by the water. When there is

an ample supply of water the reaction turbine is usually to be

preferred, but on very high falls its speed becomes incon-

FiG. 281.

veniently great and it is then better to adopt a turbine of the

impulse type. The diameter of the wheel can then be increased

and the speed proportionately diminished.

The Hurdy-gurdy is the name popularly given to an

impulse wheel which was introduced into the mining districts

of California about the year 1865. Around the periphery of

the wheel is arranged a series of flat iron buckets, about 4 to

6 ins. in width, which are struck normally by a jet of water

often not more than three eighths of an inch in diameter.

Theoretically the efficiency of such an arrangement cannot

exceed 50 per cent, while in practice it rarely reaches 40 per

cent. The best speed of the wheel, in accordance with both

theory and practice, is about one halfofthatof thejet. Although

the efficiency is so low, the wheel found great favor for many

reasons. Any required speed could be obtained by a suitable

choice of diameter ; the plane of the wheel could be placed in

any convenient position ; the wheel could be cheaply con-

structed and was largely free from liability to accident. Hence

it was of the utmost importance to increase, if possible, the

efficiency of a ^yheel possessing such advantages. Obviously-
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a first step was to substitute cups for the flat buckets, the

immediate result necessarily being a very large increase in the

•efficiency. This was increased still further by the adoption of

double buckets, Fig. 282, that is, curved buckets divided in

the middle so that the water is equally deflected on both sides.

Thus developed, the wheel is widely and most favorably

Icnown as the Pelton wheel. Fig. 282. Its efficiency is at least

^o per cent, and it is claimed that it often rises above 90 per

cent. The power of the wheel does not depend upon its

"diameter, but upon the available quantity and head of water.

The water passes to the wheel through one or more nozzles,

Fig. 282.

liaving tips bored to suit any required delivery. These tips

are screwed into the nozzles and can be easily and rapidly

Teplaced by others of larger or smaller size, so that the Pelton

is especially well adapted for a varying supply of water. It is

claimed that in this manner the power may be varied from a

-maximum down to 25 per cent of the same without appreciable

loss of efficiency.

2. Actual Path of a Fluid Particle in Passing through

a Turbine.—Under the combined effect of the inlet velocity

v^ and the rotation of the wheel, a fluid particle, entering at a.

Twill traverse an actual path «/" cutting the outlet surfaco at an
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angle equal to 6. This path may be approximately plotted

in the following manner:

Let af, a'f be two consecutive

blades.

Let q be the discharge per second

through the passage between these

blades.

Let xx' be a surface concentric

with aa' and of radius ;-.

Let / be the time in seconds in

which a fluid particle flows from aa' to

,xx'

Let A be the area axx'a'

.

Let d be the mean depth of this

area between the crowns.

Let 00 be the angular velocity of

the wheel.

Then Qt = volume of water between aa' and xx' = Ad.

But in the same time / the point x will have moved to s,

where

Fig. 283.

xz = rwt = rood-
,A

In this equation the values of 00 and q are known, so that

ty describing any required number of cylindrical surfaces and

introducing into the equation the corresponding values of r, d,

and A, a series of values will be obtained for xa defining the

points s^, 2.^, s.^ . on the actual path al of the fluid particles.

Zeuner gives a somewhat more general method as follows

:

Consider a fluid particle moving along the axis RM of the

passage between two consecutive vanes «/"and a'f.

If the wheel were at rest, the particle in t seconds would

reach a certain point M, but the rotation of the wheel carries

it to M', where MM' = root, r being the radius OM (= OM')
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and Gj^the constant angular velocity about the axis at 0~

Thus, after / seconds, M' is the true locus of the fluid jjarticle.

Let (/) and <p' be the angular deviations of OM and OAf
from OR.

Let u^ (= M'F) be the linear velocity of M'.

Let Vj, {— M'Q) be the relative velocity of the fluid particle

at M'.

Let 7'^ (= M'N) be the absolute velocity of the fluid particle

ktM'.
'

'
'

Let be the angle between 1^^ and the radius OM or OM'i
Let 6' be the angle between v^ and OM'

.

Then

7'_^ sinC = ?<_^ — V^ sin 6*

and

7'^iCOS, (9' = r'^ COS,#.
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Hence

J.
"

^ =.tan (9+ tan 6'.
V^ cos t)

'

But u^=: roo; tan 6 = r-j- ; tan B' = r—r , since M'N is

necessarily tangential to the actual path RM' at M' ; and
A^V^cos = Q, the volume of flow per second, A^ being the

sectional area of the passage at right angles to OM. Substi-

tuting these values in the last equation,

w d(p d<p'

and therefore

m:.^ / AJr = 0+0',

i\ being the internal radius of the wheel.

r

But the expression j Adr is the volume of the passage

between aa' and M and may be determined by actual measure-

ment.

Designating this volume by U^ , then,

03

^ ^7, == + 0',

an equation giving when 0' is known, or 0' when is known.

.Thus the actual position of the particle can be determined if.

its relative position is known, or its relative position can be

. found when its actual position is given.
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Take a number of equidistant points M^, M.^, M.^ . along

the axis of the passage, and let <t>^, <p^, ^^ . . .be the angular

deviations of OM^ , OM^ , OM^ . . from OR.

Also, let U^, U^, U.^ . .be the volumes of the passage

between aa' and M^ , aa' and J/^ , aa' and M.^ . . . Then the

angular deviations 0/, 0/, (Pi
of the radii to the corre-

sponding points Afj', if/, Afj' . . on the actual path, are

given by the equations

00

03

ca

and the actual path can be at once plotted.

The value of / A^dr can easily be found graphically.

Thus, plot the radii OR, OM^, OAL^ . OM 3iS abscissae, and

the corresponding sectional areas of the passage at R, M^

,

M^ . . . Al 3.S ordinates. Joining the upper ends of these

ordinates by a suitable curve, the area betv\'een this curve, the

extreme ordinates and the line of abscissae is evidently the

volume required. This area may be determined with a pla-

nimeter.

3. Classification of Turbines.—The character of the con-

struction of turbines has led to their being classified as

(i) Radial-flow turbines; (2) Axial-flow turbines; (3) Mixed-

flow turbines.

The water may act wholly by pressure or wholly by im-

pulse, or partly by pressure dnd partly by impulse, or by

reaction. In pressure wheels the water-passages are not com-
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pleteiy filled as in reaction wheels. In impulse wheels the

water spreads out in all directions, while in pressure and

reaction wheels the water flows off on one side only.

In Radial-flow turbines the water flows through the wheel

in a direction at right angles to the axis of rotation and

approximately radial. The two special types of this class are

the Oiitzvard-flmv turbine, invented by Fourneyron, and the

Iivward-flcnu or Vortex turbine, invented by James Thomson.

In the outward-flow turbine. Figs. 285 and 286, the water

enters a cylindrical chamber and is led by means of fixed

guide-blades outwards from the axis. It is distributed over

the inlet-surface, passes through the curved passages of an

annular wheel closely surrounding the chamber, and is finally

discharged at the outer surface. The wheel works best when

it is placed clear above the tail-wat.er. A serious practical

defect is the difficulty of constructing a suitable sluice for regu-

lating the supply over the inlet-surface. When the water is

insufficient to work the turbine at its full power, the exit

openings may be closed to any required extent by lowering

a cylindrical sluice.

A well-designed turbine of this type gives an efficiency of

70 per cent, and the maximum efficiency is about 80 per cent,

but the efficiency is considerably diminished by closing the

sluice. Fourneyron ^\as led to the design of this turbine by

observing the excessive loss of energy in the ordinary Scotch

'turbine, or reaction wheel, and introduced guide-blades in

order to give the water an initial forward velocity and thus

-cause a diminution of the velocity of the water leaving the

outlet-surface.

Boyden's turbine is a modification of the Fourneyron.

The water is conducted to the guide-blades, which are inclined

so as to receive the water tangentially, through a truncated

cone; and the water thus acquires a gradually increasing

velocity together with a spiral motion. The wheel, again, is

surrounded by a diffitsor which expands oytwardly and which
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should be completely submerged. The water then flows

tilrough the wheel with an increased velocity and passes away
Fig. 285.

Fig. 286.

through the diffusor with a velocity which gradually diminishes..

There is said to be a gain of 3 per cent effected by this arrangfe^
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«ient, while Boyden claimed for his 75-H.P. turbine an effi-

ciency of ?>?, per cent.

In the Inward-flow or Vortex turbine, Figs. 287, 288, and

289, the wheel is en-
FiG. 287.

J4I

^^^^^^^^mH"^^^^^^^^^^

ru

closed in an annular

space, into which tlic

water flows throuyii one

or more pipes, and is

usual i\- distributed o\-er

tlie inlet-surface of the

wheel by means of four

guitle-blades. The water

enters the wheel, flows

towards the space around

the axis, and is there

discharged. This tur-

bine possesses the great

advantage that there is

ample space outside the

Thomson's Vortex Turbine.

Fig. 288. Fig. 289.

wheel for a perfect system of regulating-sluices. This turbine

has attained an efficiency of Jj\ per cent.
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Axial-flow turbines, Fig. 290, are also known as Parallel-

and Downward-flow turbines and are sometimes called by the

names of the inventors, Jonval and Fontaine. In these the

water passes downward through an annular casing in a direc-

tion parallel to the axis of rotation, and is distributed by means,

of guide-blades over the inlet-surface of an adjacent wheel. It

enters the wheel-passages and is finally discharged vertically,,

or nearly so, at the outlet-surface. The sluice-regulations are

worse even than in the case of an outward-flow turbine, but

there is this advantage, that the turbine may be placed either

below the tail-water, or, if supplied with a suction-pipe, at an^r

point not exceeding 30 ft. above the tail-water.

Fig. 290.

If a turbine is designed so that the pressure at the clearance

between the casing and the wheel is nil, and with curved

passages in the form of a freely deviated stream, it become.s

what is called a Limit turbine. In its normal condition of

working it is an Impulse turbine, but when drowned it is a

Reaction turbine, with a small pressure at the clearance. For

moderate falls with a varying supply its average efficiency is

higher than that of a pressure turbine.

The Mixed- or Combined-flow (Schiele) turbine is a com-
bination of the radial and axial types. The water enters in a
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nearly radial direction and leaves in a direction approximately

parallel to the axis of rotation This type of turbine admits

of a good mode of regulation and is cheap to construct.

The Swain turbine is a combination of the inward- and

axial-flow types. The vane inlet-lips are vertical opposite the

guide-blades, and at the outlet the vanes are bent into a

quadrant of a circle. An efficiency of 88 per cent has been

claimed for this turbine under a full load.

Comparison of Outward-flow Turbines.—Fourneyron deals

with a varying supply of water by means of a circular sluice,

which can be made to clo5e off any required portion of

the wheel. A similar arrangement may be added to the

Cadiat turbine, which is of the outward-flow type and is fed

from above through a cylindrical reservoir, the upper and

lower edges of the reservoir being rounded to diminish the loss

due to contraction. The objection to sluices of this kind is

that the passages no longer run full when the inlet orifices are

partially closed and there is therefore a considerable diminution

of efficiency. In the Whitelaw turbine, p. 375, this difficulty

can be obviated by changing the outlet instead of the inlet area.

The absence of guides in the Cadiat and Whitelaw turbines

make their construction somewhat simpler, but their efficiency

is comparatively small, that of the Cadiat being about 65 per

cent, while the efficiency of the Whitelaw turbine varies from

50 to 60 per cent. On the other hand, the Fourneyron turbine

has an efficiency of more than 70 per cent and is mechanically

a much more perfect machine. The guides in the turbine

render it possible to utilize almost the whole of the energy of

the water either by equalizing the peripheral and relative

speeds at the outlet, or by making the absolute velocity at the

outlet radial. The Fourneyron and Cadiat turbines are

specially adapted for a large supply of water and a moderate

fall, say not exceeding about 30 ft., while the Whitelaw tur-

bines are found more useful for a small supply of water and a

high fall.
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,--

Fig. 291.—Enlarged Portion of Section through XY, Fig. 287.

SfV-,

V. \ ,1 /

h ------

Fig. 292.—Enlarged Portion of Section through XV, Fig. 285.

3— -"

g mT )'

Fig. 293.—Enlarged Portion of a Cylindrical Section XV, Fig. 290,

Developed in Plane of Paper.
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4. Theory of Turbines (Figs. 291, 292, and 293).—Denote

inward-flow, outward-flow, and axial-flow turbines by I. F.,

O. F., and A. F., respectively.

Let r^ , ;-2 be the radii of the wheel inlet- and outlet-surfaces

of an I. F. or O. F.

Let r, , r^ be the outer and inner radii of the wheel inlet-

surface of an A. F.

Let R be the mean radius (= ~ ^1 of an A. F.,

assumed constant throughout.

Let Ai, A^ be the areas of the wheel inlet- and outlet-

orifices.

Let (^/j , d^ be the depths of the same in an L F. or O. F.

Let d^ , d^ be the Widths of the same in an A. F.

Let /i be the depth of the wheel in an A. F.

Let T/j be the effective head over the inlet-surface of the

wheel. This is the total head over the inlet-

surface diminished by the head consumed in

frictional resistance in the supply-channel, and

by the head lost in bends, sudden changes of

section, etc.

Then //j -j- /i is the total head over the outlet of an A. F.

available for work.

Let H^ be the fall from the outlet-surface to the surface of

the water in the tail-race. If the turbine is

submerged, then //^ is negative.

Let 7\ , 7'2 be the absolute velocities of the water at the

inlet- and outlet-surfaces.

Let u^, K.^ be the absolute velocities of the inlet- and outlet-

surfaces. In an A. F turbine tt^ = Ji.^.

Let Vy , V„ be the velocities of the water relatively to the

wheel at the inlet- and outlet-surfaces.

u. u„
Let the angular velocity of the wheel = m = — = —

.

''1 ''2

Let V designate the hydraulic efficiency of the turbine.
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Let the water enter the wheel in the direction ac, making

an angle y with the tangent ad. Take ac to represent i\ , and

ad to represent u^ Complete the parallelogram bd. The

side ab represents V^ , and in order that there may be no shock

at entrance, ab mu§t be tangentialto the vane at a. Again,

at f draw fg, a tangent to the vane, andy/fe, a tangent to the

wheel's periphery.

Takey^ andy>fe to represent V^ and 71^ respectively. Com-

plete the parallelogram gk. The diagonal fh must represent

in direction and magnitude the absolute velocity v^ with which

the water leaves the wheel. Let the angle hfk = S.

Draw cvi perpendicular to ad, and hn perpendicular to gk.

The tange7itial component, viz., am or fn, of the velocity

of the water as it enters or leaves the wheel is termed velocity

of whirl (?',„).

The radial component, viz., cm or hti, of the velocity of

the water as it enters or leaves the wheel is termed velocity of

floiv [y,^.

Take vj = am, vj' ^ fn,

vj = cin, vJ' = hn.

Let the angle bad = 180° — a.

Let the angle gfk = 180° — /J.

Thus a and /? are the angles which the vane (or blade) tips

(or lips) make with the wheel's peripheries.

Then, at the inlet-surface,

v^' = 7'j cos y = ac cos y =; am ^ ad ± dm = «j— Fj cos a, (i)

7'/ = 7'j sin y = cm = V^ sin a; (2)

and at the outlet-surface,

vJ' = v^ cos d = fn = fk ± kn =z u^ — V^ cos fi, . (3)

v^" = 7^2 s'"^ 6 ^ hn ^^ V^ sin /? (4)
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Let Q be the quantity of water which passes per second

through the turbine. Then, disregarding the thickness of the

vanes, in an I. F. or 0. F. turbine

Vr'Aj = V,'. 27rr,dj = Q = v/'.2;rr,d, = v/'Aj, . (5)

.and therefore

"rr^d, =— = v^'r^d^.

Also, if d.y=^ d^ — d,

A = . 'V
27ld '• 2-

IV r^ =—
In an A. F. turbine

v,'A, = v/ . 2;rR . di = Q = Vr" 27rR . dj = Vr"A2, (6)

-and therefore

v'd. = jj = vj'd,.

If d^ = d^

Q
vj =

2nRd

Allowance may be made for vane thickness as follows:

Let d be the angle between the vane of thickness BC and

the wheel's periphery ^^. Then the space occu-

pied by the vane along the wheel's periphery is ^
AB= BC cosec 6.

Let n be the number of the guide-vanes, and /

their thickness. Fig. 294.

Let «j be the number of the wheel-vanes, and t^ , t^ their

thickness at the inlet- and outlet-surfaces respec-

tively.

Then, in a radial-flow turbine,

A^ = — d^{2nr^ — nt cosec y — n^t^ cdsec «) . (7)
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and

-^2= 7^^2S2;rr2 - V^cosec /S}, (8>

-^^ being a fraction depending on practical considerations.

In an axial-flow turbine R is to be substituted for r^ and r^

in the values of ^j and A^.

«j may be made equal to n-\- i or n -\- 2.

Work and Efficiency.—As the water flows through the

wheel, let v be the velocity of flow at any point N distant r

<L—

Fig. 295.

(= ON) from the axis 0, and let p be the length of the per-

pendicular from O upon the direction of v. Then

wQ ^ r •

V = momentum 01 movmg mass of water

= impulse on wheel

= F. suppose.

Therefore, also,

%tp — J^p = moment of couple producing rotation,

and the useful work of the couple per second

1= rpoo = vpoo.
g
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But if v.^ is the component of z/ at iV perpendicular to the
radial line ON,

vpv^= V cos 6 = -—,
r

and therefore the useful work of the couple per second

wQ
g

Thus in an I. F. or 0. F. turbine

isjCj isjCj
the useful effect at inlet = —^vjr^oo, = —=^vju^,

o o

the useful effect at outlet = '^vj'r^oa, =AvJ'u^,
<s s

and the USEFUL WORK per second done by the water on tht
wheel between inlet and outlet

= yCv^r, - v„'rJ(B, (9;

wO
=— (v,«,'u, - v„,'X) (10)

The EFFICIENCY is given by the relation

V X w'G^i = the useful work per sec.

wQ

or

VgHi = v,„'Ui - v^'X , (II)

which is the fundamental equation governing the design of

I. F. or O. F. turbines.

In an A. F. turbine

wQ wQ
the useful effect at inlet = vJRoa = —""Ju,

the useful effect at outlet == vJ^Rgd = '^Ju, ,
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and the USEFUL WORK per second done by the water on the

wheel between inlet and outlet

= ^(V- - V„,")Rc=' (I2>

= ^{yJ-Yj')u, (13)

The efficiency is given by the relation

rj X wQ{H^ -\- ti) = the useful work per sec.

wQ

or

,?g(H^ + h)-(vJ-v„"K. . . . . (14)

which is the fundamental equation governing the design of

A. F. turbines.

Again, disregarding hydraulic resistances, each pound of

%>''

water on leaving the turbine carries away — ft. -lbs. of energy.

Hence

the USEFUL WORK in an I. F. or O. F. turbine

the corresponding EFFICIENCY being i ^, . . (16)

and the USEFUL WORK in an A. F. turbine

= wQ(H, + h-g) (17)

the corresponding EFFICIENCY being i —

—

r=——^-r. frSl
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Assuming that the velocity of whirl at outlet, viz. , vj', is

nil and that H is the portion of H ^, or of H^ -\- h, which is

transformed into useful work, then

gH = u^vj = u^{u^ — vJ cot a),

which may be written in the form

f_A
S/gH ^ VgH VgH

cot a

a quadratic giving

vJ cot a // vJ N^cot^ a

VgH VgH 2

This result has been employed in preparing the following

11

Table of values of —-^— corresponding to different values of
VgH

—^=r and of a ;

VgH

V^'
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Allowance may be made for the principal hydraulic resist-

ances by taking

/" -
' as the loss of head before entering the wheel and

V}
f -^ as the loss of head before entering in the wheel-passages.

Then the total loss of head

=/4+/.^+3j (19)

The values of the empirical coefficients 7^2 and j^ may vary,

the former from .025 to .20, and the latter from .10 to .20.

Ex. I. Water enters an O. F. turbine of 3^ ft. exterior and if ft. in-

terior diameter with a whirling velocity of 20 ft. per second, and leaves

in the reverse direction with a whirling velocity of 10 ft. per second.

The wheel makes 240 revolutions per minute. Find the useful head.

« . ij. 240
Ki = = 22 ft. per sec,

60 ^

ui = 2K, = 44 ft. per sec.

Then, if // is the useful head,

wQH = work done in driving the wheel

= —=^(KiW„ — l/iV^ )

= -^^(22 X 20 — 44 X (— 10) ) = wQ . ,

and H = 27J ft.

Ex. 2. A turbine with a radial inlet-lip receives 10 cu. ft. of water
per second at a radius of 2 ft., and makes 105 revolutions per minute.

The water enters at 60° with the wheel's periphery, and leaves without
velocity of whirl. If the efficiency is .88, find the effective head and the

H.P. of the turbine.

Since a = 90°,

,
«. 4. 105 ,vj = ui = — 22 it. per sec,

60
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and

.88 = the efficiency = —=— = —y^ = 7, ,^ ^iV, 32/r, 32/f,

'

or Hi = 17.1S7S ft.

The H.P. = ^^h22 X .88A^, = 17.1875.
550

Ex. 3. The wheel of an A. F. turbine of 3 ft. interior diameter has a

•6-in. width of orifice opening and is i ft. deep. It passes 33 cu. ft. of

water per second under the head of 24 ft. over the inlet, and the water

leaves the wheel in a direction given by cosec S = 1.015. Determine the

efficiency.

By the condition of continuity,

y(4' - 3')W = 33 = SW.
A

or Vr' = 6 ft. per sec.

Therefore

V, = Vr" cosec 5 = 6 x 1.015 = 6.09 ft. per sec,

and

the efficiency = 1
— = i — " ^ = .9768.

2^(24 + I) 1600

The H.P. = ^il X 25 X .9768 = 2.929.
32 550

Ex. 4. Find the outlet lip-angle (/3) from the following data : radius

to inlet = izvice that to outlet surface; linear speed of inlet surface =
one-half tliat equivalent to the effective head; inlet velocity of flow =
one-eighth of that equivalent to the effective head ; sectional area of

waterway is constant from inlet to outlet ; the water leaves without ve-

locity of whirl.

Then u, = - V^M = 4 V^l = 2u,.
2

By condition of continuity.

and Vr =\'i/2gH, =V7/i.

u, 24///^.

Hence cot /J = — = —==- = 2.
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Ex. 5. The wheel of a turbine, passing 10 cu. ft. of water per second

under a head of 32 ft., is 6 ins. deep and its inlet-surface has a diameter

of 2 feet. The inlet-lip is radial and the efficiency may be assumed to

be unity. Find the guide-vane lip-angle and the power of the turbine.

I = the emciencv = =
.

' 32 X 32 1024

Therefore «i = 32 ft. per sec. = vj.

By condition of continuity,

Jf . 2 . 1 . ^'/ = 10,

or
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P P
Application of Torricelli' s Principle.—If — , — are theWW

pressure-heads at the inlet- and outlet-surfaces of a turbine

p — p,
wheel, the effective head over the inlet-orifices is H^ ''

Hence, disregarding hydraulic resistances.

IV

V ^
P — P

IN A REACTION TURBINE ~- = H, — -. (20)
2g 1 w ^ '

In turbines of the impulse type />, = p^^ a"d the water is

usually under atmospheric pressure only both at inlet and

outlet. Thus

V 3

IN AN IMPULSE TURBINE -^ = H, (2I>
2g 1 \ r

Allowance may be made for the loss of head at entrance

I V?' v.^
into the wheel by substituting —^ -^ for -- in these two equa-

tions, the average value of the empirical coefficient c^ being

about .949, or c^f = .9.

Application of BernouiW s Principle.

In A REACTION I. F. OR O. F. TURBINE

IV ~^ 2g W 2g 2g
'

the last term being the work per pound of water due to centrif-

ugal force. Therefore

. (22)

or

V,' - V,'
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which may also be written in the form

UjVi COS r ,
V/ - u/ _ H„ ... (24)

g
'

2g

since, from the triangle acd,

2«j7'j cos y ^ u^ -\- v^ — V^. . . . (25)

In an impulse I. F. or O. F. turbine

p,= p.,, and v^ = 2gH^.

Therefore eq. (23) becomes

773 _ yi

2g 2g
(26)

In an I. F. TURBINE u, > u, and the term — is

2g

negative. Hence eq. (23) shows that as the inlet velocity v^

increases or diminishes the speed of the turbine diminishes or

increases, and that therefore the centrifugal force tends to

maintain a steady motion. A diminution in v^ also necessarily

leads to a corresponding diminution in the loss of head due to

hydraulic resistances. For these reasons the centrifugal head

should be made as large as is practicable, and the ratio — = —

is usually made equal to 2.

In an O. F. TURBINE u^ < u^ and the term ^^ ~ ^^^
is

g
positive. Hence the speed of the turbine increases and
diminishes with t\

, and the centrifugal force is adverse to steady

motion, tending both to augment a variation from the normal
speed and to increase frictional losses of head. The centrif-

ugal head should therefore be made as small as is practicable,

and a common value of the ratio — =: — is —

.

^2 ^2 5

In a REACTION A. F. TURBINE each fluid particle in

passing from inlet to outlet remains at the same distance from
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the axis, and therefore no work is done by centrifugal force,

but an additional head, h, equal to the depth of the wheel, is

gained. Then

^ +^ = ^^ + -^- - h,

or

-^ ^ = ^-^ ^ +h=H -\- h -^. . (27)

Therefore

v2 V 2 _ V2

2l + ^2r"=^'+^'- •
•

(^«)

which may also be written in the form

U.V, COS y V„^ — U./ „

since u^ = zi^.

In an impulse A. F. turbine

Pi= p2' and w,2 = 2gH^.

Therefore eq. (28) becomes

V2 _ V2
-'- -^ = h (30)

2g ^•^ ^

In order to secure the advantages of centrifugal force,

Belanger proposed that the wheel -passages should be so formed

that the path of a fluid particle would gradually approach the

axis of rotation.

Lip {or Tip) Angles.—The angles a and /S which the

wheel-blade tips at inlet and outlet make with the wheel's

peripheries are generally obtained as follows

:

From the triangle acd,

sin (a A- y) u.
,^ —'- = — = cos y -\- cot a sm y,sm a z\

' '

and therefore

«,
cot (180° — a) = — cot a = cot y • cosec y. (31)
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From the triangle yM,

sin {ft 4- 6) ^ «2

sin p ~ 7-2

"OS S -{ cot /? sin S,

and therefore

cot (i8o° — /J) = — cot yS = cot (J — — cosec d. (32)
«„

Conditions Governing the Efficiency of Turbines. — The

whole of the water's energy should, if possible, be employed

in doing useful work on the wheel, and the water should there-

fore leave the wheel without velocity, or i\ should be nil.

This condition cannot of course be realized in practice, as no

water would then pass through the wheel and consequently

no work could be done. For purposes of efficiency it is usual

to make f, small by adopting one of the following hypotheses:

EITHER tJiat the velocity of whirl at outlet is nil,

OR that at the outlet the relative velocity of the water

and the peripheral linear velocity of the wheel are

eqtial.

First consider the hypothesis '
' that the velocity of whirl

at outlet is nil.
'

' Then

(33)

A.F.

Py 190° Xly'

^ >^
\

Fig. 296. Fig. 297.

Thus the direction of v^ is radial in an I. F. or O. F.

turbine, Figs. 296 and 297, and vertical in an A. F. turbine
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Fig. 298, and therefore the angle kfk (= S) in the outlet tri-

angle of velocities must be a right angle. Hence

and

v:^ = v^" = «2 tan /S = V.^ sin /?,

V^ — 11^ = v^ = ?<2^ tan2 /J.

Also, eq. (5) gives

t\ sin ;/yi, = z;^^^ = ?/^ tan fiA,^.

General Deductions

.

(34)

(35)

In an I. F. OR O. F. turbine

ri
~

ra
~

Also, disregarding blade thick-

Tiess,

A\ = 2itridi and ^a = inrid-i.

Relation between the lip-angles.

By eq. (36) and the triangle acd,

ri'di sin y «i _ sixi{a + y)

ri^di tan /S z'l
(37)

or

r^d..
cot

I
cot r + cot a. . (38)

In an a. F. turbine

«i = n-i = A'oli.

Also, disregarding blade thick-

ness,

Ai = iitRdx and ^2 = iitRdi.

Relation between the lip-angles.

By eq. (36) and the triangle acd,

di sin y _"i _ sin {a + ;')

(/i tan fi Vi sin a

or

d.

(37)

d;
cot /S = cot y + cot a. (38)

REACTION TURBINES.

In an I. F. OR O. F. turbine.

Speed of iurbitie.

By eqs. (24), (35), (37),

2g-//'i cot /3—
If

tan P + 2-^ cot X
a I

Velocity of efflux.

Vi" = ti'i' tan' /J

2fj^i tan /3

(39)

tan p + 2-j- cot ;'

(40)

In an a. F. turbine.

Speed of turbine.

By eqs. (28), (35), (37),

, 2^f/f, + h-) cot /?
2<2'= —

-J
.

o di
tan p + 2~T cot y

Velocity of efflux,

vt' = Ui^ tan' yS.

_ 2g(Hi + h') tan /J

tan p + 2— cot X
"1

(39)

(40J
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Amount Q of water passing through

the turbine per second, blade thick-

ness being disregarded.

Q= -nCr.idiVr' = ZTtr^diVi

= iTCnd;
igH^ tan PI
2^H^ tan

V tan /3 + 2^

-.(41)

cot y

The useful work {disregarding hy-

draulic resistances)

-i"-'^
1 (/i „

I H— — tan p tan y
2 di

The corresponding efficiency

I

1 dx „
I H J tan p tan y

2 rfn

(42)

(43)

It is sometimes assumed, but,

generally speaking, as a guide only,

that the inlet-lip is radial. Figs. 299,

300, so that

a = 90° and Ui = 7/„'.

Amount Q of water passing through

the turbine per second, blade thick-

ness being disregarded.

Q = 2JtRdiVr" = 2nKdiVi

= 27rAV, / 2g(//,+h) tan /3

d,
tan /? + 2-j- cot y

d.

(41)

The useful work (disregarding hy-

draulic resistances)

= <oQ[H, + h
vf\

2fj

^ coQ{H, + h)

I H r tan p tan y
2 (/a

The corresponding efficiency

I

1 d\
I H r tan fi tan >'

2 rfa

It is sometimes assumed, but, gen-

erally speaking, as a guide only, that

the inlet-lip is vertical, Fig. 301, so

that

a = go° and ai = VrJ

.

(42)

(43)

Then

the efficiency =^ =
J^"

^44^

' g{H, + >4)

"^(iy-i -V hy • (44):
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An approximate estimate of the

speed of the turbine may now be

obtained by making the efficiency

perfect, when

«,2 = ^Hu . . . (45)

£y eqs. (20), (37), (39), the difference

between the inlet and outlet pres-

sure-heads

p. Hx

=H,

I rid^ \

\rj[j
K46)

L

sillV(l+2-yCOtXCOt/3)
I

d\ I

If the turbine is above the surface

of the tail-water, there will be no in-

flow of air

if pi > pi, i.e., if

, "^ „ V / r^di \
'

sin2x(i-l-2-cot ;' cot fit > (-—r-j
dt

n

V,'

If the turbine is drowned with a

head h' of water over the outlet,

there will be no back-flow of water

if pi > pi + a>h', i.e., if

J/,-h'

(r^diV

[ndj

inVfi + 2-j- cot r cot fi

An approximate estimate of the
speed of the turbine may now be
obtained by making the efficiency

perfect, when

u,^=-g{H, + h). . (45)

By eqs. (20), (37), (39), the difference

between the inlet and outlet pres-

sure-heads

-Pi. :^ = //.-^

--\H,-

(gv^*)

sin'xl I + 2—cot;'cot/S
)\

H46)

If the turbine is above the surface

of the tail-water, there will be no in-

flow of air

if /i > /j, i.e., if

H,+h
xn'yi

di \
I + 2-j- cot r cot p 1

If the turbine is drowned with a
head h' of water over the outlet,

there will be no back-flow of water

if pi > pi + ooh', i.e., if

mHi-k
Hi^h . , / ,

di T-
sm^ ;rl i + 2— cot y cot/Jj

Speed of turbine.

By eqs. (21), (37),

rj ridi sin y ,^^-rj

Vj di tan fi

Velocity of efflux.

Vi=Uit.an /S= ~siny^2^//i. (48)
r^da

IMPULSE TURBINES.

Speed of turbine.

Byeqs. (21), (37),

"= = "'=StS^'''^^- ^47)

Velocity of efflux.

(47)

Vi = «!, tan /J = ;^ sin ;' ^igHi. (48)
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Quantity Q of water passing through
the turbine per second, blade thick-

ness being disregarded.

Q = 27iridiVr' = 2nrid,v, sin r

27rr,di sin y ^2g//i. (49)

The useful work (disregarding hy-

draulic resistances)

=»«(- -a
= ooQHAi - r,'d,'

^

r^ d'i

The correspo7iding efficiency

r^d,^

r^'d:
J sin' -y.

(50)

(50

Quantity Q of water passing through

the turbine per second, blade thick-

ness being disregarded.

Q = iTtRdiVr' = 2TtRdiV\ sin y

= 2TtRdi sin y ^/2gHx. . (49)

The useful work {disregarding hy-

draulic resistances')

mQ[H, + h-
2gi

-o.Q(H.+h)[.-JL^-^p.n^y\so,

The corresponding efficiency.

H, d,^

H, + h d^
sin'r. (i5>

An expression can also be easily obtained giving the effi-

ciency (eq. 51) of the A. F. turbine independent of the

head, H,. Thus, by eqs. (28), (35), and (47),

d^ sin 2y d'^ sin- y H^-\- h

d, tan ji ' ;// tan'^T''
^ ^^^'

It may be assumed, as a first approximation, that in im-

pulse turbines the whole of the water's energy at inlet is

transformed into useful work. Then

1
/,?] COS y

Therefore

7', = 2?^j COS ;/ 2 r, COS y-

Second. Consider the hypothesis " that at the outlet the
relative velocity of the water and the peripheral linear velocity"

of the wheel are equal."' Then

u.= V,
(52)
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The triangle of velocities, fkh, at outlet is now therefore

an isosceles triangle, in which //& = kh, and the angle hfk — S

= 90° Therefore

''2 — ^"2 sin — = 2 K2 sin —

.

(53)

Eq- (5). again, gives

A^v^ sin y — A^V.^ sin ft = A^u^ sin /?. (54)

J.i^,

Fig. 302.

O.i?".

A.F.

"Tfl"̂ "- —1.-0—^ f^' »

> t"!A( Fir
h

Fig. 303. Fig. 304.

General Deductions.

In an I. F. OR O. F. turbine

«i Ma

ri~ ri

Also, disregarding blade thickness,

^, = zTir^di ; Ai = 2icridi.

Relation between the lip angles.

By eq. (54) and the triangle acd.

Figs. 302, 303,

r,Vi sin Y _"t _ sin {a + y)
r^di sin jS

~ Vi~ sin a

or

r.V.

(55)

cosec fi = cot ;k + cot a. (56)

In an a. F. turbine

«, = «j = j?Oi).

Also, disregarding blade thickness,

Ai = 2itRdi ; .-/i = 2TiRd^.

Relation between the lip angles.

By eq. (54) and the triangle acd.

Fig- 304,

d\ sin y _ ^1 _ sin (a + ;')

rtrjsin^~z/i~ sin cc '
'55)

or

d,

Y cosec p = cot r + cot a. (56),
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REACTION TURBINES.

In an I. F. OR O. F. turbine.

Speed of turbine.

By eqs. (24), (52),

Kiw, cos y = gHy, . (57)

and hence, by eq. (55),

ri dt sin p

Velocity of efflux.

fj
2/*

Tj.^ = 42(h!' sin'—

(/. /3= igHi-T tan - tan r. . (59)
«3 2

Quantity Q of water passing through

the turbine per second, blade thick-

ness being disregarded.

Q = inrid.iVr'' = 2itr.^diV2 cos —

In an a. F. turbine.

Speed of turbine.

By eqs. (28), (52),

u,v, cos r = g(Hi + h), . (57)

and hence, by eq. (55),

di tan y , „,
.,= = ...=^(i/.+^,-_-^. (58)

Velocity of efflux.

Vi=\u^ sin' —

d, P= 2g(H, + h)— tan - tan y. (59)
^3 2

Quantity Q of water passing through

the turbine per second, blade thick-

ness being disregarded.

Q=Z'TCKdiVr'' = 27CRd..v-2 cos —

= iTtr-i^gH^didi sin /3 tan y. (60)

The useful -work (disregarding hy-

draulic resistances)

= ^QHA--

= u'QH,
(

I — V tail - tan y\. (61)

The corresponding efficiency

— \ — — tnn — tan y. . (62)
«a —

By eqs. (20), (57), (58), the difference

between the inlet and outlet pres-

sure-heads

= tuzJ2 = m-'^W 2,li

„ I r.,''d., sin d \

=2TtKVg(Hi-^ h)did.i%\-n fita^ny . (60)

The useful work {disregarding hy-

draulic resistances')

=wQ(H,-[-h-^]

=7i/g(//,+/^)(i—'y'tan-tan;'). (61)
\ ^' 2 2 /

7'he corresponding efficiency

d, /?= I — -^ tan — tan y. . (62)
(72 2

By eqs. (20), (57), (58), the difference

betw'^en the inlet and outlet pres-
sure-heads

_ P^ - P-' ^ ^ _'^_±_

W 2g

dx sin 2y ^ •"
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If the turbine is above the surface

of the tail-water, tliere will be no in-

flow of air

if pi > p^, i.e., if

>
raVj

sin /S Ti^di

If the turbine is drowned with a

head h' of water over the outlet,

there will be no back-flow of water

if pi > p^i + ooh', i.e., if

Hi — h' ri^di sin (i

H r-^di sin 2Y

If the turbine is above the surfnce

of the tail-water, there will be no in-

flow of air

if p\ > pi, i.e., if

sin 2y Hi + hda

sin fi Hi di

If the turbine is drowned with a
head // of water over the outlet^

there will be no back-flow of water

if pi > pi + onV, i.e., if

sin 2y Hi + h di

sin /S Hi — h' di

IMPULSE TURBINES.

In an I. F. OR O. F. turbine.

By eqs. (29), (52),

Ui= Vi. . . . (64)

In an a. F. turbine.

By eqs. (30), (52),

2^/1 = ui^ - Vi' = Ui' - Vi\ (64>

Fig. 305. Fig. 306.

Then the inlet triangle of veloc-

ities acd, as well as the outlet tri-

angle fkhi is also an isosceles tri-

angle. Figs. 305, 306, and

Ui =: da = de = Vi.

Therefore

a = i8p* — 2y. . (65)

Therefore

2^/; = Vi'

= Ui' + Vi' — 2UiVi COS y.

and

UiVi cosr.= — -Vgh=g{Hi -^K). (65)
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Relation between the lip angles.

By eq. (54) and the isosceles tri

angle acd,

ri''di sin y u, i

Va'di sin fi V, 2

THEORY OF TURBINES.

Relation between the lip angles.

By eqs. (54), (65),

di sin y Ui Hi -\- h sec ;'

ri'di _ sin /S

r-i^d-i
~ sin ly'

Speed of turbine.

ri ro T/,

«2 = - «i = —
.
— sec ^

ri ri 2

(66)

?^'j sec y V2gHu (67)

Velocity of efflujc.
*

§

7'a= 2«2siii - = \/2irHt. (68)
2 ?-, cotr

Quantity Q of water passing through

the turbine per second, blade thick-

ness being disregarded.

Q—2'tridiVr'^-'trtdyTt sin y

= 2Ttridis\nyV2gHi, (69)

The tiseftil work {disregarding hy-

draulic resistances)

di sin fi Vi H,

di H, _ sin /S

diHt + h~~ sin zy'

Speed of turbine.

Hi-\-h sec y
Ui = Ui = —— V,

Hi 2

_ H,-\-h sec y
^ H, 2~

Velocity of efflux.

(66)

V2gH,. (67)

v./

2g
= wq{hi -

( .BinA
= wQH\v -'A^; .

\ r,^ CDs'" yi

= wQH,
d,

^ ,
fS

J tan y tan —
«2 2

7"/^^ corresponding efficiency

r.,'

sin»^

= I - -r tan y tan —

.

rt'a 2

(70)

(71)

(72)

(73)

Vi = —~— si" %" sec y^2gHu (68)
2

'

Quantity Q of water passing through

the turbine per second, blade thick-

ness being disregarded.

Q=.2TfRdiVr'= 2TCRdiVi sin y

= 2TtRdi sin y ^2gHu (69)

The useftil work (disregarding hy-

draulic resistances)

--wQ{H,+h){i --^sin'Aec'iA7o)

'"3-= wQ(Ht-\- //)( I-—tanrtan-).(7i)

The corresponding efficiency

H + h . ^p ^= I jfT- s'"
2" ***^ '' (72)

d, fi= I - ^ tan r tan -. . . (73)
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5. Remarks on the Efficiency.—The expressions giving

the efficiency in the preceding deductions are all independent

of the head, and it follows that turbines work equally well

above and below water.

The efficiency, again, increases as the ratio -^ diminishes,

but it should be remembered that the value of d^ must not be

too small, as this might cause a contraction at entrance ajid a

corresponding loss of energy. The wheel-passages should

always run full bore, and therefore d., must not be too large.

Finally, the efficiency increases as the angles yS and y
"diminish.

6. Practical Values.—The following are the values which

experience indicates as giving good results in practice, but they

should be only regarded as guides

:

Let V be the theoretical velocity due to the head H^, so that

i-^ = igH^. Then

In an I. F. reaction turbine

r ^ r o

'

«i = 7«2 = •S6z',

2

J/ usually varies from 10° to 30°, an average value being

20°.

If «2 = K' P usually varies from 135" to 150", an average

value being 145°.

If vj' = O, /? usually varies from 30° to 45", an average

value being 35°.
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In an O. F. reaction turbine

V
"-' = ?
vj' — .21^^ to ,I^V,

T
1 = -\= -SSz^-

r.

u
' '2

Let n be the number of the guide-blades.

Let «, be the number of the wheel-blades.

Then

8r„
2

4 X shortest distance between wheel-blades,

2 r—' = shortest distance between guide-blades,

1 3
n = —n. to'-«,

.

2 ' 4 ^

The H. P. = .\7r^H^.

Y usually varies from 20° to 50°, an average value being"

25°.

/3 usually varies from 20° to 30°, an average value being-

25".

/;/ an A . F. reaction turbine

Vj = V^' = .152' to .27',

«1 = "2= -562'.

J/ usually varies from 15" to 50°, an average value being-

25".

^ usually varies from 12° to 30°, an average value being

25°.

For a delivery of 30 to 60 cu. ft. and a fall of 25 to 40 ft.

;/=i5°toi8° and /3 = 17," to 16°.

For a delivery of 40 to 200 cu. ft. and a fall of 5 to 30 ft.

y=: 18° to 24° and /J = 16° to 24°.
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For a delwery of more than 200 cu. ft. and for falls of less

than about 5 or 6 ft.

y = 24° to 30° and ft = 24° to 28°.

Denoting VA^ sin y hy A',

3
i? may vary from ~A' to 2A' if A' < 2 sq. ft.

" " " " -yi' to-yi if ^' > 2 sq. ft. and < 16 sq. ft.

4 2

" " " " A' to ^A' if A' > 200 sq. ft.

4

In A. F. impulse turbines R is often made to vary from

^^-A'- to 2A'.
4

In reaction and impulse turbines the blade thickness varies

from -J
to f in. if the blades are of wrought iron, and from \ to

^ in. if they are of cast iron. The tips of cast-iron blades are

usually tapered.

Ex. I. An axial-flow impulse turbine passes 170 cu. ft. of water per

second under the head of 8.6 ft. over the inlet, and it may be assumed
that the whole of this head is transformed into useful work. The depth

of the wheel is .9 ft., its mean diameter is 8.4 ft., and the outlet-lip makes
an angle of 72° with the vertical. The turbme has 62 guide- and 60 wheej-

vanes, all the vanes being \ in. thick. The outlet velocity of whirl is

nil. Find the direction of motion of the water at inlet, the slope of the

wheel vane at inlet, the H.P., tlie speed, and the inlet and outlet orifice

areas and widths.

First. Dferegard hydraulic resistances.

„, Vx^ WjT/V n^v. cos ;'

Then -.— = 8.0 = =
.

2g S g
and Vi = 27<i cos ^^ = 8 ^8.6

= 23.4606 ft. per sec.

Also, Vi^ = 7/1^ + "1' — zViUi cos y = 7/1' = U:^.

Therefore Ki = «i = ?<a, and the triangle acd\% isosceles, so that

« = 180° — 2y.

"''
. a: •

'^''' 8.6
Again, = the efficiency = i — — = = .005," ^ X 9-5 ^91

and vi = % i/.g = 7.58946 ft. per sec.
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Therefore Ki = u.^ = z/, cot i8° = 23.358 ft. per sec,

2«,
and sec y = — = i. 99125,

so that r = 59° 52',

and « = 180° - 2 r = 60° 16'.

62i X 170 X 9.5 rr r
The H.P. = —

i

-J—
^-^ X .905 = 166.136.

60 X 23.358 -

The speed in revolutions per min. = ^ ^ g
= 53-o°-

The inlet area = —r = = 8.38 sq. ft.

Vr V, Sin X
170 170 ,

The outlet area =— = —V = 22.4 sq. ft.

8.38 = d:\it X 8.4 — ^ cosec 59° 52' cosec 60° 16' V =r d-.y. 20.53396,

and d. = .40S ft.

22.4 = di\ -jr X 8.4 — - cosec 18" ( = </, X 18.3098-5,

(
24 j

- ^ ^

and di = 1.223 ft.

Second. Take the hydraulic resistances into consideration.

V:'' 8 „ ,, ii.Vii. u^Vs cosy— = -(8.6) - =
.

2ir 9 £- g
Therefore v = 2k, cos y = 22.1189 ''• per sec.

The triangle acd is therelore isosceles, and

V^ = ;/. = Jl'.,

so that « = 180' — 2 y.

Also,

— K," = —K,' sec' V = K," ->- 2P-4 = «,' + 57.6 = —«," sec' y.
10 10 ' * ^'

10

Therefore u '(1,1 sec' ;' - i; = 57.6,

and « = 16 325 ft. per sec. = ;<».

_, 7/ 22.1189
Then cos y =^ — = -^ = .677453,2« 32.65

"t3J.

and r = 47' 21'.

Hence, too. tf = 180° — 2 >< = 85' i8'.

The speed in revolutions per mm. = —— j-^— = 37.1.K X 8.4

S(8 6)
The efficiency = = .8046.
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The H.P. = ^-^lii-V?JL9:_5 ^ g g ^ ^ ^
550

, 170 i7ocosec 47° 21'
The inlet area = = — = 10.440 so. ft. .ih

z*! sin ;^ 22.1189

1 70 1 70
The outlet area = — = = = •?2.oi; sq. ft.

v^ ti-i tan 18 J J "1

9 J i ,,62 60 „ o „,

)

10.449 = ^"' 1 « X 8.4 cosec 47 21' cosec 85 18 \

— 18.3402 X d\
,

and d. = .57 ft.

9 J ( „ 60 „ )

32.05 = —a-i ixx 8.4 cosec 18° >

= d-2 X 14.85885,

and th = 2.157 ft.

Ex. 2. An A. F. reaction turbine of 7 ft. mean diameter passes 198

cu. ft. of water per second under a total head of 13.5 ft., the depth of the

wheel being i ft. At inlet the lip angle (a) is 90°, and at outlet the

peripheral and relative velocities are equal ( F2 = «2 = Wi). The width

of the wheel is i ft. at inlet and 1.25 ft. at outlet. Determine the di-

rection and magnitude of the velocity of the water at entrance, the up
angle at outlet, the speed in revolutions per minute, the efficiency and
the H P. Disregard hydraulic resistances.

By the condition of continuity,

T . 7 . I . z// = 198 = ?r . 7 . I Jz/r",

and therefore Vr = 9 ft. per sec, vr" = yl ft. per sec.

Again,

64 X 13.5 - Z'l' = 864 — v/' - U,' = F," — F,= = U,' - Vr' ',

or 2«,'' = 864, or It, r= 12 1/3 It. per sec. = uj,

;<i 12 4/5
, „ ,

cot y = —;
= = 2.309, and x = 23 25 ,

Vr 9

sin /J = ^f = ^ = -?--?= = -Vi = .3464, and fi = 20° 5'.

y^ «' 12^3 5

Therefore 5 = ^(180° - 20° 5') = 79° 77i'.

vi = 2u, Sin - = 24 43 X .1744 = 7.25 ft per sec.

The efficiency = i - j

—

— = 1 - 0608 = .9391.
•'

64 X 13.5

The H.P. = ^HiU^p^ X .9391 = 285.25.
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60 X 12 1/3
Revolutions per min. =— = 56.68.

Ex. 3. To construct an O. F. turbine from the following data ;

the fall (H\)= 5 ft.; the interior diameter (2?-,) = 1.8 ft.; the exterior

diameter (27-2) = 2.45 ft. ; g = 30 cu. ft. per second; y = yS" \ the effi-

ciency (77) = .9. Also, disregard hydraulic resistances.

First. Take v.J' = o. Then

V:^ u,Vi COS so*
•9=1- Z

^•
^ 64 X 5 32 X 5

Therefore 7/1 = 44/2 ft. per sec,

and UiVi = 96 1 3.

Again, by the condition of continuity (eq. 5),

?r X 1.80 X tiiVi sin 30'> = 30 = tt x 2.45 x (/jz/j.

Taking tf, = if^
,

.97/1 = 2.457/j = 9.8 4/2,

98 ,-
and 7'i = — r 2 ft. per sec.

9

Therefore „, ^ 9_|Vi ^ 2^ ^^-^^ p^^ ^^^ _

4/2
9« ,/7 49

and „„ = MS2^2 = —^«i = 6 -/e ft. per sec.
I . o

„ sin (a + 30) «] 972 1/3 -1/3 IHence -.
=*-!- = - = 2i

—

'-^ = l-i + - cot«.
sin a T/x 2401 2 2

or cot (180. - a) = 1/3 .
iiZ_ =.32066
2401 -"

^

^"^ <^° = 108° 15' = inlet-tip angle.

A

1

» /J ^'2 4 i'2Also, tan /3 = — r= 2_!-^ _ ^g.q
"^ 6 i/6

and ^ = 21° 3' = outlet-tip angle.

Disregarding the thickness of the vanes,

the inlet area = Ai = -, = ^ — ^ 4/2 = , 8q6i «n ft
J'/ V, sin 30° 49 ^ 3-<5yo3 sq. 11..

3-8963
and ^, =~~ =-. .6886 ft. = rf,;

the outlet area = A^ = — = _ = 5-303 sq. ft.
'Vi 4 4/2
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^, . r , • • 60 X 6 i/6The number'of revolutions per miti. = — = iii.c2.
7t X 2.45

fO'"

Second. Take Fa = «, = -—u""'- Then the triangle/*^ is isosceles.

Therefore 1/2 = 2aj sin - = vj cosec -.
2 2

and vi'' = zuivj,'.

Again, I - ^—- = .9 =
64 X 5 '^ 32 X 5

UtVi COS 30 — .

2

160

Therefore t^i = 4 |/2 ft. per sec,

J 320 ,/- 2.45
and' UiVi =— ^3 = z/,

—
- «,

2.45 V, /3 49 ,/- A

By the condition of continuity,

22 22 22 S
—diVt sin 30° X 1.8 = 30i= —divr" x 2.45 = —diVi cos - x 2.45

22 — ifl*= —di 9.8 V2 cos -.

Talcing </i ^ d%,

.(fVx = 9.8 V2 cos
2

Hence
^20 ^ - ^ g^g^^ ^ 49^^ ^^^^^

fi

3 .9 2 18 2

cot ^ = 4320 i^3 = 3.1 167,^ 2401

and /S = 35° 34' = outlet-tip angle.

Hence, also

Wi = 14.6634 ft. per sec, «2= 9.261 ft. per sec, and u, = 6.7963 ft. per sec.

sin (a + 30°) _ «i _ 1.8 Ui _ 1.8 7^2 .9

"H ^-'
2 sin — 9.8V2COS-

2 ^ 2

^2,4
or cos 30° + cot a sin xo' = ^-^ cosec fi = .46399,-" -^

2.45 X 49

or cot (180° — a) = .804,

«nd a — 128° 48' — inlet-tip angle.
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Disregarding the thickness of the vanes,

, , .3° 3° 54 (j
the inlet area = A, = —. = -. = ~z—j^ sec '- = 4.002 sq. tt.^

z// V, sin 30 9.8 y2 2
-r ^ T

4.092
and d, = ,^^^-^g = .7233 ft. = rf.

;

the outlet area = —^ = —^ x 1.05018 = 5.5694 sq. ft.

P 24/2
z/a cos - "^

60 X 6.796
The number of revolutions per min. = 5— = 72.

7t X I.o

Ex. 4. An I. F. reaction turbine of 24 ins. exterior and 12 ins. interior

diameter passes 400 gallons of water per second. The inlet and outlet

orifice areas are equal and the depth of the latter is 1.25 ft. The guide-

vane lip has a slope of i in 5 and the inlet-lip is radial. Disregarding

vane thickness and hydraulic resistances, find the total head over the

inlet and also the efficiency, the outlet velocity of whirl being nil.

By the condition of continuity,

A,Vr' = AiVr' = 400 -f- 6i = 64 = AiVr" = A'O'l.

Therefore

Vr' = Vr" = 2^2 = 64 -i- TT . I . Ij = 8/5 ft. per SBC,

and the head equivalent to v^ = — = ( — I = 1.036604 ft.

2^ V55/

Again,

u, = vr' cot y = 57// = 40/, ft. per sec. = 2«j,

and the tiseful head = =— = (40i\)= -^ 32 = 51 j|^ ft.

Hence

the totalhi&d = 1.036694 + 51.834710 = 52.871404 ft.,

and the efficiency = ' — = .08.
52.871404 ^

Also, the speed in revolutions per min.
_.^o_x_4o^r _ gg ,

TT X 2
J •/ •

Tt,o HP _ 62^ X 64 X 52.871404The H.P.
ggp

X .98 = 376.98.

'an /^ = - = Sf", -^
20j<r = .4, and /S 21° 48'.
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Ex. 5. In the preceding example show how the results will be mod-
ified if, instead of the outlet velocity of whirl being nil, the relative and
peripheral velocities at outlet are equal.

As 'txiore,

i't = Vr"= 8j'j ft. per sec,

«, = 40^*1 ft. per sec. = 2«j = 2 4/2.

The speed in revolutions per min. = ^^-U = -388 76* X 2 J •! •

Again, K" - VJ' = ,<,' _ „,» + 2gn, - v,\

or aj' — i/r" = »2' — Ki' + 2^//, — K,' — z/,-",

and H,, the /«>/a/ head, =— = 51^ ft.

Also,

s'" ^ = 7^ = '^^ = 85"! - 20/1 = .4, and /? = 230 35'.

, • ,/^

The efficiency = i - -—tt = 1 - — = i - —^
j-,

~

= , _ (20i^)' " 0835209 ^
32 X 51.834710

,, „ 62I X 64 y ; 1.8347

1

The H.P. = ' ^^^—^^ X .979 = 369.109.

Ex. 6. Avortex impulse turbine, without guide-vanesbut with 32 wheel-
vanes of J-in. thickness, has an exterior diameter of 2.625 ft-, an interior

diameter of 2.1 ft., and passes 30 cu. ft. of water per second under a head
of 560 ft. The water enters at an angle of 30° with the wheel's periph-

ery, and the relative and peripheral velocities at outlet are equal. The
wheel depth at outlet is 3 times the depth at inlet. Allowance is made
for hydraulic resistances by taking .94 as a coefficient of velocity at inlet,

and by adding 10 j>er cent to the head equivalent to the relative velocity

at outlet.

V, = .94 4/64.560 = J77.955 ft. per sec.

Also, «.' -«,' = — K,' - K." = — «./ - K,',
10 10

I . , I / 2.1 \' , 266
<;r F,' = »,' + -u-? = u,' + — —^— u,^ = u,'.

10 io\ 2.625 I 250

i/250 «. sin (a + 30)
Therefore y —t> = ,, = ,

' 266 / 1 sin 30°
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1 ' 266
sin ("^ + 30) = - f^ = 4847.'.

or a + 30» = 151°, and a = 121°.

sin (a + 30°) sin 29°
Again, «, = w. ^ = 177-955^ :^ ' sin a '^-^•'sin 59°

= 100.634 ft. per sec,

and «2 = 80.5072 ft. per sec.

60 X 100.634
The speed in revolutions per min. = ^ = 731.88.^ ^ n X 2.625

By the condition of continuity,

AiVr = AiVi sin x = 30 = AuV^" = A^V^ sin fi = A,u, sin /3.

Therefore

6o_

= -337941 sq. ft.,

and d, = .06 ft. = —

.

3

Also,

9 J ( ^ 3 ) 30 ^o— d,\nY. 2.625 - 32 X -^ ^ = ^, = .i cosec 30°=
10

(

-^ 48 ) v. ^ 177-9

x.i8K'rx2.i — 32x-^ cosec /?
J-
= ^4, = ^^ cosec /S

'° ( 48 i «j

A . .«), 3 A .^^30

30— „ cosec P,
80.5072

or 1.0692 = cosec /S C324 + .372637) = cosec (i x .696637,

and cosec /3 = 1.534, or yS = 40° 41'.

Therefore, also, 5 = 69° 39J'.

Again, z/„' = 177.955 cos 30° = 154.113 ft. per sec,

and

v-J' = a2(i - cos §) = 80.5072 X .241676 = 19.4723 ft. per sec.

Hence

the efficiency = '°°-634 x 1 54-I13 - 80.5072 x 19.4723

32 X 560

^i394i.33^
3

17920

Tu TJ n 62^ X 30 X 560The H.P. = -^ A_ 5_ X .78 = 1485.2.
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7, Theory of the Suction (or Draft) Tube.—Vortex and

axial-flow turbines sometimes have their outlet-orifices opening

into a suction (or draft) tube which extends downwards and

discharges below the surface of the tail-water. By such an

arrangement the turbine can be placed at any convenient height

•above the tail- water and thus becomes easily accessible, while

at the same time a shorter length of shafting will suffice. The
suction tube is usually cylindrical and of constant diameter, so

that there is an abrupt change of section at the outlet-surface

of the turbine, producing a corresponding loss of energy by

eddies, etc. This loss may be prevented by so forming the

tube at the upper end that there is no abrupt change of section,

and by gradually increasing the diameter downwards. The

cost of construction is greater, but the action of the tube is

much improved.

Let h' be the head above the inlet-orifices of the wheel.

Let h" be the head between the inlet-orifices and the sur-

face of the tail-water.

Let Zj be the loss of head up to the inlet-surface.

Let Z.^ be the loss of head between the wheel and the tube-

outlet.

Let v^ be the velocity of discharge from the outlet at bottom

of tube.

Let P be the atmospheric pressure.

Then, assuming that there is no sudden change of section

at the outlet-surface,

P t> 7'^

/^' + ^-^-' = ^- + A>

f, ,, 2 ,, 2 p
r+^+^==^^- + z, + ^-.

W 2g 2g ' W
and therefore

W 2g 12
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where H = h' -\- h" = total head above tail-water surface,

and v.^, vl, L^ , L^ are expressed in the forms

1^2^'h >"*^'.-. ^'52^' /'6^'

pL^, }x^, yUj
, /(g being empirical coefficients. .

Again, the effective head

and is entirely independent of the position of the turbine in the

tube.

Also, if .-J^ is the area of the outlet from the suction-tube,

-i{'\^ Q = ^i«'i sin y,

so that i\ can be expressed in terms of v^, and hence A -Aw
is also independent of the position of the turbine in the tube.

Suppose the velocity of flow to be so small that v^, v^, L„

may be each taken equal to nil. Then

w w
and since the minimum value of p^ is also nil, the maximum
theoretical height of the wheel above the tail-water surface is

equal to the head due to one atmosphere. Again,

= i\ cos yu^— u^[iL^ — ^'2 ^°s /3) -|

—

-.

But

A^v^ sin ;k = = ^2^2 sin S = A^V^ sin /? = A^v^\

and hence, taking

gH= v^{u^ cos y-\- i/^3 . u^ cos /?) — ?</ -^- -^,
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and therefore

gH+ ti/^ = v^ + 2V^

r

= '<J^ + 2t'i«2
r.

- cos ;/ -J- V~iJi^ . cos )3

/^4

where B = —f- cos y + -i/z/j cos /?^

.

Hence it follows that v^ increases with u^, i.e., with the

speed of the turbine, if

gH> 2+ B'm,

A suction-tube is not used with an outward-flow turbine,

but a similar result is obtained by adding a surrounding sta-

tionary casing with bell-mouth outlet. A similar diffusor

might be added with effect to a Jonval turbine working without

a suction-tube below the tail-water. The theory of the

diffusor is similar to that of the suction-tube.

8. Losses and Mechanical Effect.—The losses may be

enumerated as follows:

I. The loss (Zj) of head in the channel by which the water

is taken to the turbine.

/ -. 2

/"j being the coefficient of friction with an average value of

.0067, / the length of the channel of approach, m its mean

hydraulic depth, and 7'^, the mean velocity in the channel.

Zj is generally inappreciable in the case of turbines of the

inward- and axial-flow types, as they are usually supplied with

water from a large reservoir in which v^ is sensibly nil.

If Af^ is the sectional area of the supply-channel, then

^o^'o = <2 = ^,"^1 sin y.
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and

!j sin y\' v^

31. The loss (Z^) of head in the guide-passages.

This loss is made up of:

{a) The loss due to resistance at the entrance into the

passages

;

(b) The loss due to the friction between the fluid and the

fixed blades

;

(c) The loss due to the curvature of the blades

;

{d) The loss of head on leaving the guide-passages.

These four losses may be included in the expression

f^ being a coefficient which has been found to vary from .025

to .2 and upwards. An average value oif^ is .125, but this is

somewhat high for good turbines.

Note.—In impulse turbines /j has been found to vary from

.11 to .17.

III. The loss (Zj) due to shock at entrance into the wheel.

^, In order that there may be no shock
-''•''1 at entrance, the relative velocity (Fj)

must be tangential to the lip of the

vane. For any other velocity (v^ = ac')

-^ and direction {dac' = y') of the water

Fig. 307. at entrance, evidently

iceJ (c'of-i(cof
L, = the loss of head = ^—^ =. ^ ) -^ ^ )
'3

(v' sin y' — z'j sin yy (v' cos y' — z', cos yY
2g

"^
2g

(7/ sin y' — F, sin af (v' cos y' — v^ — V^ cos otf

2g
"•"

2g
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Generally co is small, and Zj is always nil when the turbine

is working at full pressure and at the normal speed.

This loss of head in shock caused by abrupt changes of

section, and also at an angle, may be avoided by causing the

section to vary gradually, and by substituting a continuous

curve for the angle.

IV. The loss (ZJ of head due to friction, etc., in passing

through the wheel-passages, including' the loss due to leakage

in the space between the guides and the inlet-surface. This

loss may be expressed in the form

^ ~-^* 2g ^^Aa^ sin /3/ 2g

where y^ varies from . lo to .30.

Note.—The loss of head due to skin-friction-often governs

the dimensions of a turbine, and renders it advisable, in the

case of high falls, to employ small high-speed turbines.

V. The loss of head (L^ due to the abrupt change of sec-

tion between the outlet-surface and the suction-tube.

As in III, t'2(=/>^) is suddenly changed into v^ {= fk'),

and the loss of head is

5- 2g ~ 2g ~ 2g'

since h'x is very small and may be disre- "'

garded. Thus '°' ^° '

^ _ (r,sin/?-0^
5 2g

V ' being the component of v^ {f^') in the direction of the axis

of the suction-tube.

If there is no abrupt change of section between the outlet-

surface and the tube, L^ is nil.

VI. The loss of head (Zg) due to friction in the suction-

tube. Assume that the velocity v^ of flow in the tube is equal
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to v^, the velocity with which the water leaves the turbine.

Also let A, be the sectional area of the tube. Then

f^(^=f^ being the coefficient of friction with an average value

of .0067, /' the length of the tube, and 7n' its mean hydraulic

depth.

VII. The loss (Zy) of head due to entrance to sluice at

base of tube. This loss may be expressed in the form

the average value of^ being about .03.

VIII. The loss (Zj) of head due to the energy carried away
by the water on leaving the suction-tube.

'~ 2r

and 7'^ usually varies from \ ^2gH to f i^2gH.

In good turbines the loss should not exceed 6 per cent.

It might be reduced to 3 per cent, or even to i per cent, but

this would largely increase the skin-friction.

IX. The loss of head (Zg) produced by the friction of the

bearings.

ju being the coefficient of journal friction, Wthe weight of the

turbine and of the water it contains, and p the radius of the

journal.

Hence the total loss of head

= Z, + Z, + Z3 + Z,+ Z,-fZ, + Z,4-Z3+ Z, = Z,

and the total mechanical effect

<^g-^\
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Note.—If there is no suction-tube, Z. = o = L, — L
o -6 7

= Zg, and the total loss becomes

v^
{
fall from outlet-surface to

A-fz,4-Z3-KZ,-fz,-f^^ +
{2g { tail-water surface.

Example.—A vortex turbine, with a draft-tube of the

same sectional area as that of the outlet-orifice openings, passes

lOO cu. ft. of water per second under the head of 9J ft. The
exterior and interior diameters are in the ratio of 5 to 4, and

the outlet- and inlet-areas are in the ratio of 9 to 10. The
direction of the water at the inlet and the outlet lip angle are

given by sin r = .25 = sin ft. The water leaves the tube

through a sluice having a sectional area 10 per cent greater

than that of the outlet-orifice area. The outlet velocity of whirl

is nil, i.e., d =90".

Disregard the losses Z, , Z3 , Z^ , Z^ , and Z^.

The loss of head to inlet =/-i.

pa
" ' in wheel-passages =y"^—?-.

o

7'
''

" " " " at sluice-entrance —/r.

" " " " carried away by water =

Hence the total loss of head

= fj4;y +/.+(. +/;)©'(

But, by the condition of continuity,

A^z-^ sin y= Q= A^V, sin /S = A^v,.

Therefore

V^-A.-siny--^' F,-^/'"^ I.I 4-4
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Hence the total loss of head

= aj,x.8,+...6 + i2||=Sx..6,

taking /2= . I, /^= .126, and /^ = .03.

Again, the ^^ useful'' head

i'^-^'J I 5= -i— = — .— . u, V. cos Y
32 32 4 2 ' -^

5 ^^ ^ y^„F, sin /8 cos V F/ 135= -i^KcOSyS . -^ "-r
^ = -^

. ^ =: 2.100375 ft.
128 2 ^ A sin ^ 2g 64

^•''-'

Therefore

9-5 = -^(.26 + 2.1094) = -1 X 2.3694,

or

—^ = 4 ft., approx., and V^ — i6 ft. per sec.

The useful work per lb. of water

= 4 X ^ = 8.437s ft.-lbs.

The work consumed in hydraulic resistances per lb.

= 4 X .26 = 1.04 ft.-lbs.

The total work per lb. of water ^ 9-4775.

The efficiency — = .89.^ ^ 9-4775 ^

62^ . 100 . oi
The H.P. = —^^ ^- X .89 = 96.1.

550 y y

100 ^ 400 ^ , ^ ^, •

^2=^ cosecp=--g- = 25 sq. ft. and yJ,= -^ = 27.78 sq. ft.

2 ' -^



EXAMPLE. 537

Again,

^1 = 9V^— 14-4 ft- per sec,

«2= F^cos fi.= i6y ^= 15.492 ft. per sec.

and

Also,

u^ = —«2 = 19-365 ft. per sec.

sin (a -\- y)
; = cos y -\- cot a sin v,

sin Of
'^

' ' '

u, 19-365
cot or = — cosec ^ — cot ;k

= X4— 3. 873= 1. 5061.

and «=33°35'-

If the diameter of the tube is equal to that of the outlet-

surface, viz., 4 ft., and if its lower edge is rounded so that

fj — O, then

energy per lb. of water carried away = —

^

The loss in shock in draft-tube

2^ 2^\ yij/ 2g 16 V 352/ 2^ ^ ^' ^

Thus the total loss now becomes

^(.o8i-f .126 -f .05448 -f-. 04705)= ^X -2695.

As before, the useful head = — ^- X 2. 1004.
2^

^^
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Therefore the total head = -^ X 2.3789,
2^

2.1094
and the efficiency =

g
— •ooo.

Also,

772 J72
9. 5 = -^- X 2. 3789, or -?-= 3.993 ft., and ^2=15. 987ft. per sec.

o o

If there is no draft-tube, — must be substituted for

Thus the' total loss of head is now

J/2 J72
-^(.081 + .126 + .0625) = -^ X .2695,
2g^ 2^

J72
which exceeds the loss of head with a draft-tube by — x .0095

= .038 ft., which is less than four hundredths of a foot and

is practically inappreciable.
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EXAMPLES.

1. A downward-flow turbine of 24 ins. internal diameter passes 10

cu. ft. of water per second under a head of 31 ft.; the depth of the wheel

is I ft. and its width 6 ins. Find the efficiency, assuming the whirling

velocity at outlet to be nil. Arts. .997.

2. A downward-flow turbine of 5 ft. external diameter passes 20 cu.

ft. of water per second under a head of 4 ft., the depth of the wheel

being i ft. The water enters the wheel at an angle at 60" with the ver-

tical, the receiving-lip of the wheel-vanes is vertical, and the velocity of

whirl at outlet is nil. Find the internal diameter and the speed in rev-

olutions per minute. Ans. 4.6 ft.; 46.53.

3. A downward-flow turbine has an internal diameter of 24 ins. ; the

breadth of the wheel is 6 ins. ; the turbine passes 33 cu. ft. per second

under an effective head of 16 ft.' Assuming the whirling velocity at out-

let to be nil, find the efficiency and power of the turbine. If the vane-

lip at inlet is vertical, find the direction of the vane at outlet, and the

sj>eed of the turbine in revolutions per minute.

Ans. .931 ; 55.865 H.P. ; /S = >- = 21° 2'
; 166.7.

4. Discuss the preceding example on the assumption that the pe-

ripheral speed at outlet («j) is equal to the speed of the water at that

point relatively to the wheel ( Vt).

Ans. .928 ; 55.715 H.P. : yS = 21° 47' and y = 20° 21'.

5. An axial-flow impulse turbine of 5 ft. mean diameter passes 170

cu. ft. of water per second under an effective head of 8.6 ft. ; the depth

of the wheel is .9 ft. At what angle should the water enter the wheel to

give an efficiency of 81 per cent, the width of the wheel being constant

and disregarding hydraulic resistances ? vj'^o. Ans. = 27° 16'.

-Also find {a) the velocity with which the water enters the wheel;

{/>) the speed of the turbine in revolutions per minute; (c) the directions

of the vane-edges at inlet and outlet
;
(d) the velocity of the water as it

leaves the wheel ; (e) the power of the turbine.

Ans. (a) 23.46 ft. per second ; (b) 45.08 ; {c) a - 130° 10';

/? = 42° 19' ; Id) 10.748 ft. per second ; (e) 148.65 H.P.

If, instead of assuming that the whirling velocity at exit is nil, it is

assumed that the peripheral speed («,) of the wheel at the mean radius

is equal to the relative velocity ( K,) of the water at exit, show how the

several results are affected.

Ans. r = 25° 8'
; {a) 23.46 ft. per second : (b) 54-638 ; (<r)

a = 124° 49', /5 = 44° 6'; (d) 10.748 ft. per second ; (e) 148.65 H.P.
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Also show how the results are affected when it is assumed that the

hydrauhc resistances necessitate an increase of 12^ per cent in the head
equivalent to the velocity with which the water enters the wheel, and an
increase of 10 per cent in the head equivalent to the relative velocity

( Vi) at outlet.

Ans. When vj' = o (a) 22.12 ft. per second; (S) 44.21; {c)

a = 147° 50', /? = 27° 44 ; (d) 10.748 ft. per second ; (e) 148.65 H.P.
When «i = Fa (a) 22.1 19 ft. per second

;
{b) 50.97; {c) a = 123° 19',

fi = 47° 28'
;

(ci) 10.748 ft. per second
;

(e) 148.65 H.P.

If the turbine has 65 guide-blades of .2-in. thickness and 63 wheel-

vanes of .4-in. thickness, find the widths of the inlet and outlet openings.

Ans. If v-w" =0, dt = 4.214 il.,-d^ = 2.83 ft.

If «i = Fj , di = 1.78 ft., d, = 1.48 ft.

6. The efficiency of an axial-flow turbine of 4 ft. mean diameter is

90 per cent, and it passes 12 cu. ft. per second under an effective head
of 40 ft. At the mean radius the water enters at an angle of 30° with
the wheel's face, and the whirling velocity at outlet is nil. Find (a) the
velocity with which the water enters and leaves the wheel

;
(if) the

directions of the vane at inlet and outlet
; (c) the sectional areas of the

inlet- and outlet-orifices ; (d) the speed of the wheel in revolutions per
minute; (e) the power of the turbine.

Ans. (a) 32 ft. per second, 16 ft. per second; (i) or = 49° 6',

/S= 21° 3'; (f) .75 sq. ft.; (d) 198.39; (e) 49A H.P.

7. An axial-flow turbine of 5 ft. mean radius passes 212 cu. ft. of

water per second under a total effective head of 12. i ft. At the mean
radius, the direction of the inflowing water makes an angle of 70° with
the vertical, and the vane-lip at the outlet makes an angle of 17°

with the wheel's periphery. If the whirling velocity at the outlet-sur-

face is nil, find (a) the velocity with which the water must enter the
wheel to give an efficiency of .953 per cent. Also find (i) the direction

of the vane-lip at outlet
;
{c) the speed of the wheel in revolutions per

minute; {d) the widths and areas of the inlet- and outlet-orifices; (e)

the power of the turbine.

Ans. (a) 19.9 ft. per second
; (6) a ^ 81° 25'; (<r) 37.67 ; {d) .991 ft.,

31.148 sq. ft., i.8t ft., 35.14 sq. ft.; (<?) 277.709.

If the turbine has 41 guide-blades and 40 wheel-vanes, all of .25 in.

thickness, find the widths of the inlet- and outlet-openings.

Ans. 1.23 ft.; 1.37 ft.

8. Write down the equations forjouval's modification of Euler'sturbine.

9. An axial-flow impulse turbine passes 170 cu. ft. of water per second
under an effective head of 9.5 ft., the depth of the wheel being .9 ft. and
its mean radius 4.2 ft. The vane-lip at the outlet makes an angle of 72°

with the vertical. Assuming that the whole of the effective head is

transformed into useful work, and that the whirling velocity at the outlet-
surface is nil, find {a) the inclination to the horizontal of the outlet-lip of
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the guide-vane ; (i) the direction of the inlet-lip of the wheel-vane
;
(c) the

efficiency ; ^rsi neglecting hydraulic resistances, and second talcing these
resistances into account.

Ans. First. (a) 59° 52'
;

{i) 60° 16'
; (c) .905.

Second, (a) 47° 21'
;

(d) 85° 18'; (c) .804.

10. In the preceding example find the inlet- and outlet-orifice areas
in the two cases.

Ans. First. 8.38 sq. ft. ; 22.4 sq. ft.

Second. 10.45 sq. ft.
; 32.08 sq. ft.

If there are 62 wheels and 66 guide-vanes, the thicltness of the latter

being .2 in. and of the former .4 in., find the width of the inlet-orifices.

Ans. First. .409 ft.; 1.26 ft. Second. .508 ft.; 1.81 ft.

11. An axial-flow turbine passes 200 cu. ft. of water per second under
a head of 14 ft., the depth of the wheel being i ft. The mean radius of

the wheel is 3 ft.; the areas of the inlet- and outlet-surfaces are in the
ratio of 7 to 8 ; the water enters the wheel at an angle of 21° to the
wheel face, and the outlet edge of tlie vane makes an angle of 16° with
the face. Find the speed, efficiency, and power of the turbine, and also

the direction of the inlet-lip of the vanes, v^" = o.

Ans. 73.69 revolutions per minute ; .954 ; 325,243 H.P.

;

a = 65° 57'.

12. A downward-flow turbine of 2^\ ft. mean diameter and of the
impulse type is supplied with 5i cu. ft. of water per second under a head
of 400 ft. and makes 500 revolutions per minute. The water enters the

wheel at an angle of sin-" .6 with the horizontal, and the depth of the
wheel is i ft. The water leaves the turbine with a velocity of 60 ft. per
second. Determine the whirling velocity at outlet, the direction in

which the water leaves the turbine, the efficiency, and the horse-power.

Ans. 17.725 Vs; 72° 49'; .86; 214.8.

13. In an A. F. impulse turbine of 4 ft. diameter, i ft. deep, and with

a 6-in. width of opening at inlet and outlet, the efficiency (;;) = .8 ;

/S — 30°
; y = 30' ; Ka = «a. Determine the inlet-lip angle (a), the effec-

tive fall, the delivery (Q) (disregarding thickness of vanes), the H.P. and
the number of revolutions per minute.

Ans. a = 7S°; 1.366 ft.; 29.39 cu. ft. per second; 6.322 H.P.

;

44-63.

14. An axial-flow reaction turbine of 7 ft. mean diameter passes 198

cu. ft. of water per second under a total head of 13.5 ft., the depth of the

wheel being i ft. At the inlet-surface the vane-lip is vertical and the

water leaves the wheel vertically. If the inlet width of the wheel is i ft.

and the outlet width ij ft., find the direction in which the water enters

the wheel, the direction of the Up at outlet, the inlet and outlet areas,

the H.P. of the turbine, and its efficiency.

Ans. 24° 4'
: 19" 40' ; 22 and 27* sq. ft.; 285.525 ; .94.

15. An axiai-flow turbine is to be used tor raising water. Explain
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how the vanes should be arranged, and show how to determine the

efficiency.

i6. In an A. F. impulse turbine, working under a head of loo ft., the

d.rection in which the water enters at the mean radius makes an angle

of 23° 16' with the vertical and leaves the wheel without velocity of

whirl. The depth of the wheel is i foot, and the inlet velocity (z/,) is

equal to the linear velocity {u^) of the wheel's surface at the mean
radius. The mean diameter of the wheel is 3^ ft., and its width is 6 ins.

Find the bUide angles at inlet and outlet, the efficiency, the speed in

revolutions per minute, the amount of water passing through the turbine

per second, and the H.P.

Ans. 56° 38'; 64° 52'; .782; 436j\, 404J cu. ft.; 3592f.

17. Water is delivered to an O. F. turbine at a radius of 24 in. with a

whirling velocity of 20 ft. per second, and leaves in a reverse direction at

a radius of 4 fc. with a whirling velocity of 10 ft. per second. If the linear

velocity of the inlet-surface is 20 ft. per second, find the head equivalent

to the work done in driving the wheel. Ans. 24.8 ft.

18. An outward-flow turbine of 9.5 in. internal diameter works under

an effective head of 270 ft. Find the speed in revolutions per minute,

assuming that the whirling velocity at the inlet-surface relatively to the

wheel is nil and that the efficiency is unity. Ans. 2242.

19. An outward-flow turbine, whose external and internal diameters

are 8 ft. and 54 ft. respectively, makes 26 revolutions per minute under
an effective head of 4 ft. Tlie water enters the wheel in a direction

making an angle of 30° (y) with the direction of motion at the pomt of

entrance. Determine the angles of the moving; vane at ingress and
egress, the efficiency being .85. Also find the energy per pound of

water carried away by the water as it leaves the turbine, v.J' = o.

Ans. a = 130° 2'
; /3 = 29° 38' ; .6 ft.-lbs.

20. A radial outward-flow turbine of the impulse type passes 8^ cu. ft.

of water per second under an effective head of 560 ft.; the width of the

wheel is 7^ in. ; the radius to the outlet-surface is 1.15 times the radius

to the inlet-surface ; the linear velocity of the inlet-surface is 87 ft. per

second ; the direction of the water at entrance makes an angle of ly'

with the wheel's periphery. Find {a) the efficiency
;

{S) the lip angles ;

{c) the areas of the inlet- and outlet-orifices, neglecting Jirst hydraulic

resistances, and second t3.]^\x\g these resistances into account {v„" = o).

Ans. First, {a) .879; (/>) a = 149° 31' and yS = 33° 21'; (c)

•'535 sq. ft. and .1291 sq.ft. Second, {a) .767; (i5) a = 153° 44'

and /J = 28°
5 5'

;
(c) . 1 76 sq. ft. and . 1 54 sq. ft.

21. Construct a Fourneyron turbine for a fall of 5 ft. with 30 cu. ft. of

water per second, a = 80°, y = 30", — = 1.35. Assume Kj = V^, and

neglect hydraulic resistances.

Ans. fi = 16° 42'
; A: = 4.29 sq. ft.: A^ = 5.8189 ft.; 7 = .915 ;

if r, = 1.8 ft., then d, = d, = .38 ft.
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22. In an impulse outward-flow turbine of lo B.H.P. .worlcing under
a head of 9 ft., y = 22^° ;

180° — a = 37^°
;
yS = 45°

; 9(^2 - r,) — ri

;

dx = .2^1. Tliere is a loss of 5 per cent due to friction in the velocity at

entrance. Find the efficiency (rf), the volume of water passed per

second, and the diameter of the turbine.

Ans. .705; 13.869 cu. ft. ; 2.2j\.g h.

23. A turbine delivers i cu. ft. of water per second. The water

leaves the outlet periphery radially (Vy," = o). The vane-lip at inlet is

radial (a = 90°). The direction of inflow makes an angle o'f 60° witli the

wheel's periphery. The radius of inlet-surface is 2 ft. The number of

revolutions per minute is 100. If the efficiency is 90 per cent, find the

head and the eflfective work done. Ans. 15.243 ft.; 1.5625 H.P.

24. One cubic foot of water per second enters a radial O.F. impulse

v/heel of 2 ft. external and i^ ft. internal diameter, at an angle of 60°

with the radius, and leaves without whirl. The effective head is 400 ft.

The peripheral speed at the outlet-surface is 20 1/3 ft. per second. De-
termine a,V2, the outlet and inlet areas and depths, the H.P. and
efficiency. Ans. 1.15 sq. ins., i.S sq. ins.; 183 ins., .39 ins.; 12.8; .28.

25. In a radial-flow reaction turbine with radial inlet-lips, if d^ = 2d,

and y = tan" ' 4, show that the reciprocal of tlie efficiency is 1 4- tan /3

if the whirling velocity at outlet is nil.

26. An O.F. impulse turbine of 3^ ft. exterior and 3 ft. interior diam-

eter passes 100 cu. ft. of water per second under a head of 625 ft. At
entrance the direction of the water makes an angle of 30° with the

periphery. If the relative and peripheral speeds at outlet are equal,

determine the direction and magnitude of the velocity of the water on

leaving the wheel, the efficiency, and the speed in revolutions per min-

ute. Disregard hydraulic resistances.

Ans. If <^i = afa , ^-2 = 91.065 ft. persec; 5 = 70° 14I'; ?; = .79; jV= 734.8.

If ^1 = .(42 , ^/j = 109.435 " " ;5 = 66° 02'; ?? = .7o;.jV=734.8.

27. A radial impulse turbine passes 8^ cu. ft. of water under an

effective head of 560 ft. The direction of the entering water is inclined

at 17° to the wheel's periphery. The linear speed of the inlet-surface is

87 ft. per second. Assuming that the velocity of whirl at the outlet is

nil, and disregarding hydraulic resistances, find (a) the efficiency; {£) the

velocity with which the water enters the wheel
;

(c) the velocity of

the water as it leaves the wheel
;
(d) the sectional areas of the inflow-

ing and outflowing stream; {e) the direction of the vane-lip at inlet;

(/) the power of the turbine.

The radii of the inlet- and outlet-surfaces are 4H ft. and 4^ ft. re-

spectively. Find (^) the direction of the vane edge at outlet.

Ans. (a) .879; {i) 189.31 ft. per sec. ; (c) 65.86 ft. per sec. ;

(^> -15356 sq. ft., .129 sq.ft.; (^) a = 149° 31';

(/) 47543 H-P.; Cf) /S = 41° S'-

28. In the preceding example show how the results are affected by
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taking .94 as the coefficient of velocity in calcui iting the velocity with

which the water enters the wheel, and assuming that — — is the
10 2^

frictional loss of head in the passages.

Atis. (a) .826; (3) 177.955 ft. per sec; (,c) 36.7348 ft. per sec;

(rf) .163 sq. ft.; .2314 sq. ft. ;
(e) a = 147° 57';

(/)446.9H.P.
; (^) /S = 25° 54'.

29. In an I.F. turbine the radius of the inlet-surface is twice that of

the outlet-surface ; the linear velocity of the inlet-surface is one half

that due to the head ; the water enters the wheel witli a velocity of flow

(Vr') equal to one eighth that due to the head, and the sectional area of

the water-way is constant from inlet to outlet. Find the angle between

the discharging lip of the vane and the wheel's periphery, the whirling

velocity at the outlet-surface being nil. Ans. Cot" ' 2.

30. In a vortex turbine the depth of the inlet-orifices is one eighth

of the diameter of the wheel ( = -^] and — of the depth of the outlet-
\ 8 / 32

orifices. The width of the wheel is one tenth of the diameter f = —
^J.

The inlet-lip of the vanes is radial, and the water enters at an angle of

30° with the inlet periphery. Find the size, speed, and efficiency of the

turbine in terms of the supply of water Q and the effective head If.

Also find the direction of the outlet edge of the vanes.
Qi

Ans. I. Assume vj' = o. Then ri = .458^;
H^

No. of revolutions per minute = 109.5— .'

V = .863; /3 = 35° 11'.

II. Assume Ui = Vi. Then ri = .44-=--

H
H

No. of revolutions per minute = 122.39—rl
2*

tj = .8146; yS = 44° 48'.

31. A vortex turbine, with awheel of 2 ft. diameter and 6 ins. breadth,

passes 10 cu. ft. of water per second under a head of 32 feet. Find the

inclination of the guides and the power of the turbine. Assume
Ui = Kj , a = 90°, and the efficiency = i. Ans. 5° 41'

; 36y\ H.P.

32. An inward-flow turbine has an internal radius of 12 ins. and an

external radius of 24 ins. ; the water enters at 15° with the tangent to

the circumference, and is discharged radially ; the velocity of radial flow

is 5 ft. at both circumferences; the velocity -of outer periphery of wheel

is 16 ft. per second. Find the angles of the vanes at the inner and
outer circumferences, and the useful work done per pound of fluid.

Ans. /3 = 32° ; ci= 118° i'
; 9.35 ft.-lbs.
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33. For a supply of 64 cu. ft. per second, under a head of 81 ft.,

determine the speed, size, H.P., and efficiency of a vortex turbine in

which til = ^1 = 3^a = 5 x width of wheel, assuming that there is no
velocity of whirl at outlet.

34. A radial I. F. reaction turbine, v/ith or without draft-pipe, passes

113 cu. ft. of water under an effective head of 13 ft. The radius of the

inlet-surface is 1.169 times the radius of the outlet-surface, and the ratio

of the outlet to the inlet area is .92. The vane-lip at outlet makes
an angle of 15° with the wheel's periphery, and the water enters at an

angle of 12° with the wheel's periphery. The sectional area of the

•draft-tube (if there is one) at the point of discharge is 1.035 times the sec-

tional area of the outlet-orifice. Show that the useful work per pound of

water is i i.i 17 ft.-lbs., and that the work consumed in hydraulic resistance

(Art. 8, page 531) is nearly 1.8S2 ft.-lbs.; also find Au A^, v^, unA Vn&

efficiency.

Ans. {a) 28.2975 sq. ft.; 26.03 sq. ft.; (b) 4.34 ft. per sec; .855.

35. In the preceding example, if the radius of the outlet-surface is 4
ft., find (a) the speed of' the wheel in revolutions per minute ; also find

(J>) the depth of the wheel at inlet and outlet, the guide-vanes being 40

and the wheel-vanes 41 in number, and the thickness of the former being

/j inch and of the latter i inch. Ans. (a) 38.656; (i) 1.23 ft., 1.35 ft.

36. In example 34 find the efficiency if the diameter of the draft-

tube is made the same as the diameter of the outlet-surface, the lower

-edge of the tube being rounded. What will be the " loss in shock " in

the tube per pound of water ? Ans. .864 ; .077 ft.-lbs.

37. An inward-flow turbine has an external diameter of 3 ft. and an

internal diameter of 2 ft. It passes 12 cu. ft. of water per second under

an effective head of 40 ft. The water enters the wheel at an angle of 30°

with the wheel's periphery, and the depth of the outlet-orifices is twice

the depth of the inlet-orifices. The efficiency of the turbine is .9. Dis-

regarding friction, find (a) the vane-angles at inlet and outlet
; ((5) the

velocity with which the water leaves the wheel
; (c) the speed of the tur-

bine in revolutions per minute ;
(li) the velocity with which the water

enters the wheel ; (f) the areas of the outlet- and inlet-orifices
; (/) the

power of the turbine (zj' = o).

Ans. (rt) a = 105° 09', /J = 35° 35' ; (6) 16 ft. per sec; (c) 198.39 ;

{d) 42I ft. per sec. ;
(e) .5625 sq. ft. ; .75 sq. ft.

; (/) 49tt H.P.

38. In an inward-flow reaction turbine of 6.27 H.P. the radial veloc-

ity of flow is constant from inlet to outlet and is 12 ft. per second. The

water, with a velocity of 60 ft. per second, enters at 11° 32' with the wheel's

periphery, which has a linear speed of 50 ft. per second. The diameters

of the outlet- and inlet-surfaces are i and 2 ft. respectively. Find the tip

angles, the head, the efficiency, and the quantity of water passing through

the turbine per second.

Ans. a = 126° 12'; /S = 151° 19'; 91.86 ft.; 60^; i cu. ft.
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39. An inward-flow radial impulse turbine of 4.5 ft. and 4 ft. external

and internal radii passes 8^ cu. ft. of water per second under an effective

head of 560 ft. The direction of the entering water is inclined at 17° to-

tlie wheel's periphery, and the wheel has the same depth at the inlet-

and outlet-surfaces. , If tlie peripheral speed at the outlet-surface (z^j)

is equal to the relative velocity of the water ( Fj) with respect to the

wlieel, find (a) the efficiency
;

(b) the speed of the turbine in revolutions-

per minute
; (c) the sectional areas of the stream at inlet and outlet r

(^ the direction of tlie vane-outlet edge; (<?) the velocity of the water

as it leaves the wheel
; (f) the power of the turbine.

Ajis. (a) .873; (b) 209.94; (c) .15357 sq. ft., .13651 sq. ft.;

(^/) /i = 45° 2'
;

(f) 67.39 ft. per second
; (/) 472.33 H. P.

40. In the preceding example examine how the results will be
affected when hydraulic resistances are taken into account, allowing .9+

as a coefficient of velocity for the water on entering the wheel, and as-

suming that the head equivalent to the relative velocity ( Kj) on leaving

the wheel is increased by 10 per cent.

Atis. (a) .865 ;
(d) 193. 185 revolutions per minute

; (c) .163 sq. ft.„

.145 sq. ft.; (li) /S = 46° 18'; (e) 63.653 ft. per second ;(/) 467. S3 H.f
41. An I. F. turbine of 4 ft. external diameter works under .m

effective head of 250 ft. Find the speed of the wheel in revolutions per

minute, vi„" being o, the efficiency unity, and cr = 90°. A71S. 427.

42. An I. F. turbine of 4 ft. external and 3 ft. internal diameter

makes 360 revolutions per minute. The sectional area of flow is 3 sq. ft.

and is the same in every part of the turbine. The direction of the in-

flowing water makes an angle of 30° with the wheel's periphery. Assum-
ing that the whirling velocity at the outlet-surface is nil, find (a) the
efficiency

;
{b) the H.P. ; and (c) the delivery in cubic feet per minute.

The total head is 200 ft. Ans. (a) .86 ; {b) 2476.8 ; {c) 7593.

43. An inward-flow turbine being required for an available head of

20 ft. and a discharge of 800 cu. ft. per minute, determine {a) the size

and {b) the speed of the wheel ; {c) the inclinations of the guide- and
wheel-vanes ; and (d) the efficiency of the turbine, assuming r^ = |r, =
depth of wheel ; ?'/ = «V2g^//; v.J' = 0,0: = 90°, and d-, = d^.

Ans. (a) ri = .487 ft., r. = .974 ft.; (b) 240 revolutions per min-
ute

;
{() y = 10° 21', /S = 36° 8'; {dj 93f per cent.

44. A vortex turbine passes Q cu. ft. of water per second under an

effective head of //ft. The inlet-lip of the vanes is radial, and the direc-

tion of the entering water makes an angle of 20° 17' with the wheel's

periphery. The areas of the inlet- and outlet-orifices are - „' and -
8

5

respectively, and the width of the wheel is — , D, beinar the diameter of

the inlet-surface. If the whirling velocity at the outlet-surface is nil,

find {a) the efficiency
;

(b) the direction of the outlet edge of the vane ;
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[c) the velocity witli which the water enters and leaves the wheel
;
{dy

the speed of the wheel in revolutions per minute
;

(e) the diameters of

the inlet- and outlet-surfaces.

Ans. (a) .863; (i) /j = 35° 10'; (c) 6.0677//*. 2.9627//*;

//* (9* (9*
(d) 109.52—j; (<") -9' 5^,. -/SS^j-

45. A vortex turbine passes 1 1 cu. ft. of water per second under a

head of 35 ft. ; the diameter of the outlet-surface is 2 ft. and its breadth

6 ins. Find the power of the turbine, disregarding friction and assuming

that the whirling velocity at the outlet-surface is nil.

A/is. 43.5 H.P.

46. Find the H.P. developed by an I. F. turbine, of 3 ft. external

and ij ft. internal diameter, passing 900 tons of water per hour. The
velocity of whirl at inlet {v,„') is equal to that of the periphery and is 45
ft. per second ; the outlet velocity of whirl is i6| ft. per second.

.Ins. 46I.

47. A turbine with radial vanes passes 3600 gallons per hour under

an effective head of 36 ft. Find the peripheral speed and the inlet area

so that the efficiency may be a maximum.



CHAPTER VIII.

CENTRIFUGAL PUMPS.

I. General Statement.—If an hydraulic motor is driven in

the reverse direction, and supplied with water at the point from

which the water originally proceeded, the motor becomes a

pump. All turbines are reversible, and may therefore be

converted into pumps, but no pump has yet been constructed

of an inward-flow type. The ordinary centrifugal pump is an

outward-flow machine.

Before the pump can be put into action it must be filled,

and this can be effected through an opening (closed by a plug)

in the casing when the pump is under water, or, if the pump
is above water, by creating a vacuum in the pump-case by

means of an air-pump or a steam-jet pump, when the water

must necessarily rise in the suction-tube.

At first the water rotates as a solid mass, and delivery

commences when the speed is such that the head due to cen-

/?/„" — 11 \
trifugal force (-" -1 exceeds the lift. This speed may be

afterwards reduced, providing a portion of the energy is utilized

at exit.

As soon as the pump, which is keyed on to a shaft driven

b}' a belt or other means, commences to work, the water rises

in the suction-tube and enters the eye of the pump-disc on one

side, or divides and enters on both sides.

As in turbines, the wheel-blade tips are so curved as to

receive, at a specified normal speed, the inflowing water with-

out shock. The water leaves the disc with a more or less

548
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considerable velocity, and impinges upon the fluid mass flowing^

around the volute, or spiral casing surrounding the disc, towards
the discharge-pipe. This volute should have a section

Fig. 311. Fig. 313.

gradually increasing to the point of discharge, in order that

the delivery across any transverse section of the volute maybe
uniform. This volute is also so designed as to compel rotation

in one direction only, with a velocity corresponding to the

velocity of whirl {vj') on leaving the fan. There are examples
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of pumps in which the delivery is effected in all directions, and

the water is guided to the outlet by a number of spiral blades.

A centrifugal pump is more economical and less costly

for short lifts than a reciprocating pump, and has been known

to give good and economic results for lifts as great as 40 ft.

With compound centrifugal pumps very much greater lifts

are economically possible.

There are three main differences between centrifugal pumps

and turbines

:

1st. The gross lift with a pump is greater, on account of

frictional resistances, than the fall in the case of a turbine.

2d. The water enters the pump-fan chamber ^\ithout any

velocity of whirl (?',„' = o), and leaves the fan with a velocity of

whirl (r',„") \\hich should be reduced to a minimum in the act of

lifting, but which is by no means small. In a turbine, on the

other hand, the water has a considerable velocity of whirl (vj)

at entrance, while at exit the velocity of whirl {vj') is reduced

to a minimum, and is generally nil.

3d. In a turbine the direction of the water as it flows into

the wheel is controlled by guide-blades ; whereas in the case

of a pump, the direction of the water, as it flows towards the

discharge-pipe, is controlled by a single guide-blade, which

forms the outer surface of the volute, or chamber, into which

the water flows on leaving the fan.

Fig. 314.—Experimental Centrifugal Pump in the Hydraulic Laboratory,

McGill University.

Experiment seems to indicate that the efficiency of a centrif-.

ugal pump increases as the inlet-tip angle diminishes, and that
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it is therefore advantageous to make this angle as small as is

practicable, but opinions on this point differ. The real influ-

ence of the tip angles on the efficiency is yet to be determined,

and it is doubtful whether the ordinary hypothesis of radial flow

[y = 90°) at inlet without shock is even approximately correct.

The inlet velocity and therefore also the pump's efficiency

may be increased by the use of a suction-tube with a gradually

•diminishing section, e.g., a tube in the form of the frustum of

a cone. A still greater advantage may be obtained by giving

the discharge-pipe a gradually increasing section. In this case

the velocity of discharge gradually diminishes and the pressure-

head is proportionately increased, so that there is a gain of

head available for increasing the pumping power. The

velocity in the discharge-pipe should not be too great, as it

may lead to a very sensible loss of energy. Generally speak-

ing, a velocity of 3 to 6 ft. per second has been found to give

the most favorable results.

It is claimed by some authorities that an advantage may
"be gained by the addition of a vortex or whirlpool chamber

surrounding the pump-disc. In support of this contention it is

urged that the water discharged from the disc continues to

rotate in this chamber, and that a portion of the kinetic energy

is thus converted into pressure energy, which would otherwise

be largely wasted in eddies in the volute or discharge-pipp

/see Art. 21, Chap. I). The water leaves the vortex-chamber

with a diminished whirling velocity which cannot be very

different in direction and magnitude from the velocity of the

mass of water in the volute. The vortex-chamber is sometimes

provided with guide-blades following the direction of free vortex

stream-lines (equiangular spirals) so as to prevent irregular

motion.

Centrifugal pumps work under different conditions fron(i

turbines, and hence there are corresponding differences neces-

sary in their design. They work best for the particular lift for

-which they are designed, and any variation from this lift causes

a rapid reduction in the efficiency.
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Fig. 315.

UPPER WATER LEVEL •

Fig. 316.
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2. Analysis of the Centrifugal Pump.—Designate the
velocities, angles, and pressure-heads at the inlet- and outlet-

surfaces of the wheel. Figs. 315 and 316, by the same symbols,
as in the case of the turbine, Art. 4.

Let Q be the delivery of the pump in cu. ft. per sec.

Let I/g. be the gross lift including the head equivalent to the
total hydraulic resistance {/t^), the actual lift (//„), and the

head equivalent to the velocity of delivery (vj), viz.,

Then

^^/

H^=h^-\-H^-^
2/

h^ includes the heads equivalent to the resistance in the

suction-pipe {h^, in the delivery-pipe {h^, and in the wheel-
passages [h^, so that

'^r = K + ^'2 -\- ''v

Fig. 317. Fig. 318.

Ha includes the height of suction {li^ and the height of delivery

{h^, so that
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The height of suction (/z^) is generally taken to be the

vertical distance between the lower water-level and the axis

of the pump, but this is incorrect and may lead to serious,

errors. The true height of suction, i.e., the height to which,

the water must be raised before the pump will commence to

do work, should be measured from the lower water-level to

the top of the impellor or to the top of the wheel according as,

the axis of the pump is horizontal or vertical.

The actual loss in hydraulic resistances between the suc-

tion-level and the eye of the pump may be determined by

the following method suggested by

Albert F. Hall. A long gauge-

glass AB, with a cast-iron cap CD,

is fitted into the top of the suction-

pipe. The water rises in the tube

to a certain level aa, and the pres-

sure in this tube can be directly

measured by means of the gauge G.

\iHjj is the barometric head and

7/j; the gauge-reading, in feet, then

Hg — Hq is the actual dynamic head

at aa. Hence if H' is the static

head, i.e., the vertical distance be-

tween the suction-level and aa,

{Hg — Hq) — H' is the loss due to

the several hydraulic resistances.

The air-chamber thus con-

structed seems to cause a steadier

flow of water, and experiment shows

that the variation of level at aa is

small and is only about J to ^ inch.

In pumps which are fed on both

sides, Fig. 313, the steadiness of the

level is increased by placing an air-chamber on each suction-

bend, connecting the two at the upper end by a horizontal

Fig. 319.
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pipe. A valve in the middle of the pipe may communicate

with a vacuum pump, and each chamber may also be controlled

by a separate valve.

The water apparently flows through the bend, past the

orifice, as over an elastic cushion.

The total zvork done on the pump per second

=
'^^(vj'u, - v„.X) = wQH„, . , . (I)

o

and therefore

v,„'X - v,rX = gH„ (2)

The efficiency rj = ^ = ^-jr^-^^^-r^^ (3)

and gH„ = rjiyj'u.^ — v„.'uj is the fundamental equation

governing the design of a centrifugal pump.

The water spreads out more or less radiall}- from the eye

of the pump and, for simplicity of calculation, it is often

assumed that / = 90°. Then

vj = o, rj = vj and

Again, eq. (2) becomes

T'J'n., = ^-//"^ = («2 - ^V" cot ^)u,_

,

which may be written in the form

% . cot /3= I

,

a quadratic giving

u. V." cot^^ //^r^Vcot^^^.
^^^

By means of this result the following Table has been pre-

pared and gives the values of '^ -
, corresponding to different

values of ^ and /?

:
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the hub. Brix, again, has deduced the following formula,

giving the angle between the blade and the direction of

rotation at any point distant r from the axis

:

27id(Jo\
^

gT r^vj
j j

nt cosec (pcot0= -—-}r'^°—^~ J-^
I _

"G" 00'^ a \
\ 2nr

where 2nrd^ — {2nr — nt)d; T = work of pump to radius r;

r, = radius to inner end of blade; v^ = radial velocity at inlet;

n = number of blades ; i = thickness of blade.

By plotting the values of corresponding to different values

of r the curve of the blade may be defined.

It is essential that there should be no dissipation of energy

in eddy motion at the inlet, and the direction of the relative

velocity, V^ , should therefore be tangential to the blade-tip

at a, Fig. 315. Then,

from the triangle arfif, Vy' = v^'' -\- u^' — 2v^u^cos y, (5)

" " " /M, J^/ = 7'/ + z^/ - 27'2?<2 cos <S, (6)

and therefore

VI - F;^ ?^/ -jtl ^vlj-vl ^ v.^u., cos d __ v^2i^ cos y
2g '2g ^g g g ' ^''

The water leaves the wheel with a velocity v^ , and carries

away, in its energy of motion, viz., -^ , an important portion

of the work done on the pump by the prime mover. If the

whole of this energy could be made available for increasing

the pumping power, then, by Bernouilli's theorem,

/,, + //,+ !:^+^i+!i'=_/^^ +^+^'. . (8)11
^ 2g ^ tV 2g ^ W ^ 2g ^ '

Also,

i> V^ u^ — u'^ i> V^

ZV 2g 2g ^ ' W 2g

If
2

2,1
^

the term --^ being the variation of pressure-head due to
2g ^
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centrifugal action between the vvheel inlet and outlet. Hence,

by eqs. (8) and (9),

2^

I'^Mj '-o^ '^ 'Vi '-°^ r
• (10)

where /i^ = h^ -j- h^ -j- //.^ = the head equivalent to the total

hydraulic resistances.

If the inlet flow is radial, i.e., if ;k = 90°, and if the

hydraulic resistances and the velocity of delivery can be

diminished to such an extent that h^ and — become sufficiently

small to be disregarded without much error, then eq. (10)

becomes

ty/, cos S vj'7(.,

"-^^ ~r~--^ ^"^

and the total available energy is transformed into useful work.

Volute.—The water issues from the outlet-surface into a

casing, or volute, which surrounds the wheel and which should

always be designed in such a manner that the disturbance \x\

the fluid mass might be as small as possible, since the least dis-

turbance in the stream-line motion causes a loss of energy in

shock. Thus its sectional area on any normal plane, through

the centre of the wheel, should be proportional to the quantitjr^

of water which flows across the section in the same given time,

and the corresponding mean velocity of flow, z'^,, in the volute

is necessarily constant. If the width of the volute is also con-

stant, its profile will evidently be an Archimedean spiral. By
making the gradually increasing sections sufficiently If rge the

velocity of flow, v^, may be made very small, and a bell-mouth

entrance into the discharge-pipe may become unnecessary.

Figs. 320 to 325 are of interest as showing the experimen-

tal stages through which Farcot's pump passed in the process

of its gradual development.
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The assumption that the total available energy may be

transformed into useful work is altogether inadmissible in

practice, as a large portion is consumed in overcoming frictional'

resistance and in the production of eddies.

Fig. 320.

Fig. 321.

*1
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of flow in the volute, and, if the change were gradual, there

would be a gain of head equal to — -, but, as the change

u " _ 2, ^2

is abrupt, there is a loss of head in shock equal to — '—.

Hence the net gain of head available for increasing the pump-

ing power

^ V-,.. _ v, _ {v^ — vj
~ Ig 2g 2g

_ Y.,(V.„" - V»)

g
~'

which is a maximum and

= = — when \w = 2V,.
2 2g g

The term
'"

should be substituted for —=- in eq.

(8), and then

Hence, by eqs. (7) and (13), the following equation is

obtained instead of eq. (10):

/ : '^d , rr V,{vJ' — 7',) V^U^ COS 6 7',?/, COS y V^

2^^ ' " g g g 2g

u^ — V^ v^u^ cos ;'

and therefore

_ "z" - ^i I

Y»(Y«'" - V,) V<j' V,U, COS7/

Maximum Efficiency.—If the terms h^, — , and •" "* -
2^ <r
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are sufficiently small, as compared with //"„ , to be disregarded

without much error, and if y = 90", then eq. (14) becomes

H„=-^~g-^- (15)

But

„ sin S
. /, J s'" ^ <^os d

^ 2 sm (/? + (J)
' ^ sm (yo -|- fi)

Therefore

_ J _ sin'tf )_ ^
sin /? sin (y3 -f ac?)

(16)

sin''(/3+(J)i ""2 sin2(/8+(y) '

or

«/ _ sin2(/?+ ^)

2^/4 sin p sin (yS+ 2 d)' "

, ,, ^ . ^/^ I sin C/3 + 2S)
and the emciency 77 =: —,-7— =

?/^"«, 2 cos ^ sin (/3 + Sy

or ,; = -ji + tan (ycot(/S + tf)}.

The efficiency increases as /8, the outlet-tip angle, dimin-

ishes, and would be unity, i.e., perfect, if /? could be O.

If the blade is radial at the outlet, i.e., if /? = 90°, then

the efficiency = -j i + tan (J cot (90° + <^)}

= i(,_tan2rf),

and could never exceed i.

For any given value of p the efficiency is a maximum when

/J+ 2(^ = 90°.
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This can be easily shown analytically, or geometrically as

follows

:

Upon any line AB as diameter describe a semicircle. Draw
a chord AC making the angle fi

with AB. Draw any chord AD
making an angle 6 with AC, and

join DB intersecting A C in 0.

The efficiency is greatest when
tan d cot (/? -(- 6) has its greatest

value.

" '^ But since the angle in a semi-

circle is a right angle,

, , ,
DO AD DO

tanrycot(/?+o)=-^-^^=^-,

DO
and the efficiency is therefore greatest when y^-^ is a maximum.

Now ,;r^ is nil both when D coincides with A and also withDB
C, and must consequently be a maximum, or stationary, at

some position of Z) between A and C. This position is at once

found from the condition that if D^ is a consecutive point and

if D^B is joined intersecting A C in 0^ , then

DO __ D,0^

DB ~
ITJ3'

so that DD^ must be parallel to CC^ or A C, and is therefore

a tangent to the semicircle at D, which is necessarily the middle

point of the arc AC. Hence, since the arc AD = the arc CD,

the angle ABD — the angle CAD = 6,

and therefore

90='-(/J + <y) = d,

or y8 + 2d=90°.
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Hence, too,

the max. efficiency = i -(- tan d cot (90" — 6)

1 „ I= - sec* 6 — - sec^ IaC
2 2 \ 2/-f)-

The outlet velocities corresponding to this maximum effi-

ciency are represented by this sides of the triangle fkh. Fig.

327. The two triangles fnh and fxh are equal in every respect.

Fig. 327.

Also, 2 sin^ 6 = I — cos 2d = i — sin yS

and 2 cos^ d = i -[- cos 28 = 1 -\- sin 0.

Hence

sinc^ __ . „ _ / I - sin /?\i

2 - "2 sin (90° + (J)
" ''^

'^
- ^2^1 + 3in ^,

F, = «, -7-

and

^^„ „ 2 sin /?

or

/i + sin /i
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sin 6 • sin /S ,-— ^
Also, ?' = U„ -. -, p-jrr = ti, ^ = Vsin /J . 2gH^ ,

^ ^sm(90+<^) ^ cos

vj' = z'2 COS cJ = «2 sin /3^^
sin/?(l+sin/?)

^^^^^

/sin /J f I — sin P)
and v/' = v^ sin (^ = A/ ^—^ —^gH^.

From these equations the following Table has been pre-

pared :



IVHIRLPOOL-CHyiMBER. 565

gH^ = .6u^vJ' ~ .6uJ^u^ — vj' cot 20°)

and u^= 1.32 4/2^//,.

Also,

V^ — vj' cosec 20° = - VJgH„ X 2.9238
4

= 4/2^/4 X .73095

•

Therefore

«2^— f^2^= 1.208 X 2^//'„.

Hence, if the inlet flow is radial, equation (14) gives

K+~, - ^ "^ ^ +^.= 2"^2 2

2^ .§
"

^ 2^
72
^ = I.208//-„,

_ ^./ - f^^

2^

and

K-^^ '^^^ '-^ = .208^,.
2^ g

Certain existing experimental results give .42/^^ as an

average value of y^,.; and taking .02,H^ as the average value of

— , then
2g

^^"'-
'

'^ = •42/^« + .03^„ - .208/4 = 242^„.
o

ine term must necessarily vary considerably
o

with the design of the pump.

3. Thomson's Vortex or Whirlpool-chamber (Figs. 328

and 329).—It has been suggested that the energy of motion

inherent in the water, as it leaves the wheel, may be more

completely utilized, and the pumping power therefore in-

creased, by the addition of an exterior chamber of radius r^,

in which the water, in \?irtue of its motion, is left free to
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revolve, and tends to assume the condition designated by

James Thomson as the vortex, or whirlpool, of free mobility.

The centrifugal action of this fluid mass develops an outward

force which is added to the outward force developed within the

wheel and materially increases the pumping power. The out-

ward force produced within the wheel is due to centrifugal

Fig. 32 Fig. 329.

action only, if the blades are radial ; but if, as is generally the

case, the blades are curved, it is partly due to the radial com-

ponent of the pressure between the blades and the water, and

this pressure may be very great if the pump is run at a high

speed.

The chief properties characterizing the fluid mass in the

whirlpool-chamber are the following

:

(i) Each fluid particle moves with a velocity {v) inversely

proportional to its distance (r) from the axis of rotation. Thus

z'j being the water's velocity at the outlet-surface of the whirl-

'pool-chamber.

(2) The angle {6) between the radial distance (r) to any

particle and its direction of motion is constant, and the stream-

lines are therefore equiangular spirals.

Thus if vj" and vj" are the radial and tangential com-
ponents of 7'j ,

V^ ^= 7'.^ COS S, T,."' := t'j cos S,

^J' = -^2 sin d, vj'^ = V sin 6,
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and therefore

V, _ v^ _ r^

v'" ~ V
"~

r

(3) Each particle is free to move to any position within the

whirlpool without interfering with the general motion of the

other particles, as, in moving towards or from the centre, it

assumes of itself, subject simply to the laws of motion under a

central force, the velocity due to its position in the whirlpool.

(4) For any equal particles, whatever positions they may
momentarily occupy in the whirlpool, the sum of the energies

corresponding to velocity,, to pressure, and to height is con-

stant.

Thus each particle gives up its velocity in accordance with

the law of motion just stated, and the head available for

increasing the pumping power

V (v
'

' — v\
Again, the term ^^^^^^ -, representing the gain of

head in passing from the whirlpool-chamber into the volute,

must be substituted for the term —— -. Thus
g

the efficiency =: -v/

,

in which H^ = u^J' = u^(u^ — V^ cos /J), and the actual lift

is

H„ = '2

2g ' 2g\ r^'J g 2g

Ex. Assume that the four last terms in the preceding equation are

sufficiently small to be disregarded. Then

the efficiency
iUi{ui — Vi cos

,



568 IVHIRLPOOL-CHMMBER.

First. Let /3 = 90°, i.e., let the blade outlet-lip be radial. Then

Therefore

the efficiency

" = «a and vr" = Vi.

Second. Let p = o, i.e., let the blade outlet-lip be tangential. Then

vj' = «2 — Vi and z'/' = o.

Therefore

the efficiency

«=' - K,« + (Kj - V,)'\i - ^j
2K3{«a — Ka)

1 ra^ I Ka r^'

2 r-? 2 «a ra'"

The difference between these two efficiencies is compara-

tively small and diminishes as the diameter of the whirlpool-

chamber increases. Hence their values are not largely influ-

enced by the angle yS.

The above hypothetical theory seems to indicate that a

Fig. 330.

whirlpool-chamber adds to the efficiency of a centrifugal pump.

Opinions, however, differ widely as to the real character of the
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flow of the water within the pump, and as to the loss of energy

in shock on entering the whirlpool-chamber or the volute.

Some eminent authorities advocate a gradually diminishing

section, Fig. 330, on the ground that it tends to produce a

steadier action, while other authorities, equally eminent, claim

that a flaring vortex tends to increase the efficiency, and it is

urged that by, widening the chamber from the depth at the

wheel-outlet to a much greater depth at its exterior surface,

the water will lose its energy of motion much more rapidly and

will leave the chamber with a velocity more nearly equal to

that in the discharge-pipe.

Experiments are urgently needed to throw light upon this

important subject.

4. Practical Values. —Let d^ , d^ be the depths of the inlet-

and outlet-surfaces.

Let /j , t^ be the blade thickness at inlet and outlet.

Let n be the number of blades.

Let the inlet area = sectional area of supply-pipe.

Then, if ;/ = 90°

(2nr^ — nt^ cosec a)d^fj = — Q = nr^vj

— {2nr^ — w/j cosec ft)d.,vj'

,

the coefficient — being an average value and depending upon

practical considerations.

The following values are sometimes adopted in practice

:

r^— 2;',;

;/ = 4 to 10;

t^ = t^= .2 in. to .625 in.

;

5^ = 6^^;

r^SfH,= .661 <2;

d^ = d^or = id^ , according as the pump-

faces are parallel or coned.
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Ex. The hypothetical advantage of a whirlpool-chamber may be
observed by a consideration of the comparative efficiencies of two
pumps, which are precisely similar in every respect excepting that one
has a wliirlpool-chamber of 62 ins. diameter. Each pump delivers 20

cu. ft. of water at a speed of 225 revolutions per minute. The diameters

of the suction- and discharge-pipes = 20 ins. ; the diameter of the

wheel = 36 ins. ; tlie depth of the whirlpool-chamber = the depth of the

wheel at outlet = 55 ins.
; y — go° ;

/S= 42° 20' 22".65; number of wheel-

blades = 6 ; thickness of blade = J in.

The actual lift is given by

ria = 1 i-,
-£- g 2^

or J-Ia = -{ 1 I — —s + — hr ,

2f 2^\ r^j g Ig

according as the pump has not or has a whirlpool-chamber.

225 X « X 3 ^ ,

«s, =
5q

= 3511 ft. per sec;

cosec /3 = 1.484;

144 X 20

.9|ffX36-6x|x 1.484
[
sk

Vi = Vr" cosec yS = 8.196 ft. per sec;

ui? -^'' ^ 591-473
.

'2r s '

cot P = 1.097;

vw" = Ma — v" cot yS = 29.298 ft. per sec;

20
Vi — v,= = 9/j ft. per sec;

= 5.523 ft. per sec;

•VsjvJ' — Vs) __ 184.508

I'd'_ 41.986

= gain of head in passing from wheel into volute;

2f g
z/,' = ^/'s + »„'" = 888.876;

-g'
_ r^\ 888.876 / _ i8^\ _ 294.596

r^'l 2g \ 3^J~"T~'
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1

8

t'to'" = — X 29.298 = 17.012 ft. per sec;

VsjV'^'" — Z's) _ 71-919.

g
~

g '

ti.jvj' = 1035.889.

Hence for the pump without a whirlpool-chamber

^ ^ 591-473 ^ 184-508 _ 41-986 _ ^
g g g

"

= ''^^•^^^ + hr = (22.81 - hr) ft.,

or gHa = 733-995 — .S"/''-.

and

the efficiency =^ = ^-^^^^^-^ = -708 - ^^^
z^tiZ/TO" 1035.889 1035.889

For the pump with a whirlpool-chamber

^«- _ 591-473 ,
294- 596

,
71919 41986 .

g g g g
= 9'6-°°^ _ ^^ = (28.46 - /.,) ft.,:

^'

or gHa — 916.002 — ghr,

J 1 ir 916.002 — ^/4,. „„ ghy
and the efficiency = ^Z" = .884 ^-53-,

-^ 1035.889 ^ 1035.889'

which is considerably greater than the first efficiency.
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EXAMPLES.

1. Find the H.P. required to drive a centrifugal pump of 14 ft.

diameter, and with radial vanes, malcing 60 revolutions per minute and
delivering 900,000 gallons of water per hour. If the lift is 30J ft. find

the efficiency. Assume that the water on entering has no velocity of

whirl. Ans. 27.5 ; .5.

2. The wheel of a centrifugal pump is .6 ft. in diameter ; tlie turning

moment on the spindle is 12 lbs. -ft. If 160 gallons of water are raised

per minute, find the mean velocity with which the water leaves the

wheel ; assuming that on entering it has no velocity of whirl.

Ans. 24.1 ft. per sec.

3. A centrifugal pump has a 36-iii. wheel of a uniform breadth of

5^ ins. The wheel makes 225 revolutions per minute and delivers 20 cu.

ft. of water per second into a discharge-pipe of 20 ins. diameter. The
angle (/3) of the blades at the outer periphery is 42° 20'. Assuming the

velocity of discharge to be the same as the mean velocity of flow in the

volute and disregarding vane-thickness, find {a) the peripheral speed
;

{S) the velocity of whirl and radial velocity of flow; {c) the gain of head
available for useful work on entering the volute, and {d) the efficiency.

There are six |^-in. blades. If a 62 in. whirlpool-chamber is added, find

the gain of head available for useful work, (^) due to chamber; (/) on enter-

ing volute.

Ans. ia\ 33.35 ft. per sec; {i) 29.425 and 5.4 ft. per sec; {c) 5.8

ft.; {d) .708; {e) 9.27 ft.; (/) 2.27 ft.

4. A centrifugal pump with a 12-in. fan delivers 1000 gallons per
minute, the actual lift being 20 ft. and X.he.gross lift (allowing for friction,

etc.) 30 ft. Find the revolutions of the pump per minute [vj' = — ).

Ans. 836.52.

5. In a centrifugal pump the external diameter of the fan is 2 ft., the
internal i ft., and the depth 6 in. Determine the speed and efficiency

of the pump when delivering 2000 cu. ft. per minute against a pressure
head of 64 ft., the inplination of the wheel-vanes at outlet-surface being
90°, and r being also 90°. Ans. 619.24 revols. per min. ; .4866.

6. A centrifugal pump delivers 1500 gallons per minute. Fan, 16 in.

diameter; lift, 25 ft.; inclination of vanes at outer periphery to the
tangent, 30°. Find the breadth at the outer periphery, and also
the revolutions per minute, assuming the ^/-ojj lift to be 1^ times the

actual lift, and that z,." = ^.
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Also find the proper sectional area of the chamber surrounding the

fan for the proposed delivery and lift. Examine the working of the

pump at a lift of 15 ft. (vj' = o).

Ans. Breadth, | in. ; revolutions, 700; 23.5 sq. ins.

7. For a given discharge (0 and head (H), and considering only the

losses of head due to flow and to the resistance in the wheel, show that

the maximum efficiency of a centrifugal pump of diameter D is

I -A
Q '

A being a constant depending on the size of the wheel.

8. A centrifugal pump with an efficiency of .75 and a radial flow at

inlet, lifts 35 cu. ft of water per second a height of 20 ft. At the outer

periphery the vane-angle (/J) is 15° and the radial velocity is 5 ft. per

second. If the wheel makes 140 revolutions per minute, find {a) its

diameter. If the diameter of the outer periphery of the wheel is three

times that of the inner periphery and if the radial velocity at the latter

is 8 ft. per second, find (b) the vane-angle at the inner periphery and (c)

the depths of the wheel at the inner and outer peripheries.

Ans. (a) 5.45s ft.
;

{d) 30° 58'
; (c) .765 ft. ; .41 ft.

9. The pump in the preceding example is supplied with a vortex-

chamber of 6| ft. diameter. Show that the "gain of head " is a maxi-

mum when the velocity of flow in the volute is 8.46 ft. per second. Also

show that the frictional loss of head is 4.18575 ft.

10. In a centrifugal pump the diameter of the fan = 12 ins., the

depth = 2 ins., the lift = 25 ft., and the delivery = 300 cu. ft. per minute.

Determine {a) the speed
;
(d) the efficiency ; and (c) the power expended

when the vane-angle (/S) at the outer periphery is (i) 90°
; (2) 45° ; and

(3) 30°
; r being 90°.

Ans. (i) (a) 785 revols. per min. ; (i) .47 ; (c) 30 H.P.

;

(2) (a) 805.8 " " " (,5) .58; (£•) 24.4 H.P.;

(3) (a) 846.1 " " " (^) .68
; W 22.9 H.P.

11. A centrifugal pump delivers 10,000 gallons per minute. The
actual lift is 50 ft. The radial velocity at the outlet-surface is one eighth

of that due to the actual lift and «3 = 2vJ' Find (a) the radius of the

wheel ;
(i) the vane-angles ;

(c) the speed of the wheel
; (</) the effi-

ciency, taking ^ = 90° ; and di = d^ = -r.

Ans. (a) 1.9 ft.; {b) 56° 16'; 23° 16'; (c) 331 revols per min.; {d) .74.

12. The internal and external diameters of the fan of a centrifugal

pump with radial flow at inlet are 9 ins. and 18 ins., respectively; the

depth is 6 ins., and it passes 400 cu. ft. per minute against a pressure

head of 16 ft. The inclination (/3) of the discharging-lips of the fan

being 30°, determine (a) the speed ; {b) the efficiency
;

(c) tlie power ex-
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pended ; and (d) the inclination of the receiving-lips of the fan. Find

{e) the efficiency when a whirlpool-chamber of 36 ins. diameter sur-

rounds the fan.

Ans. (a) 413.58 revols. per min.
; {6) .571 ;

(c) 21.23 H.P.
;
(d)

19° 12'
; {/) .581.

13. The lift of a centrifugal pump is 24! ft. The efficiency of the

pump is .75, and the radial velocity of flow at outlet-surface of fan is 5 ft.

per second. If cot ;^ = 4, find the peripheral speed of the fan.

Also find its diameter, if the fan makes 160 revolutions per minute

(t/J = o). Find the loss of head in hydraulic friction.

Ans. 44 ft. per sec. ; 5i ft.
; 3ff ft.

14. The reciprocal of the efficiency of a C. P, is 1.61, the peripheral

(Ka) and radial (z//') velocities at outlet are 35 and 9 ft. per second

respectively. Find the lift and the vane-angle (/J) at outlet.

Ans. I5f ft.; tan"' J.

15. A centrifugal pump with a gross lift of 17 ft. delivers 25 cu. ft. of

water per second. At the outer periphery the vane-angle is 80° and the

radial velocity is 5 ft. per second. The diameters of the outer and inner

peripheries of the disc are 54 ins. and 18 ins. respectively, and the hy-

draulic efficiency is .75. Find (a) the speed of the fan; (^) the vane-

angle at the inlet periphery
;

(c) the velocity of whirl at the outlet
;
(d)

the diameter of the volute
; («) the diameter of the suction-pipe.

If there are six 5-'"- vanes, find {/) the width of the disc at the outer

and inner peripheries.

Assuming the velocity of flow in the discharge-pipe to be 4 ft. per

second, show that there is a loss of 5.026 ft. of head due to hydraulic

friction.

Ans. (a) Ii5 revolutions per minute; (i) 41° 14'; (ir) 26.49ft. per

second
;
{d) 1.094 ft.; (e) 33.8 in.

; (/) 9.64 ins.
; 4.8 ins.

16. The vane of a centrifugal pum-p or turbine is the involute of a

circle concentric with the pump circumference. Show that Fi = Vu in

an I. F. or O. F., and -77' = — in an A. F.

17. If the lips of the pump-vanes are radial, show that the efficiency

cannot exceed .5, but that it might be increased to .875 by the addition

of a whirlpool-chamber.

18. A centrifugal pump with a 21-in. fan pumps no 4/3 cu. ft. per

second to a height of 31^- ft. The outlet-lip makes an angle of 60° with

the periphery. The depth of the fan is 6 ins. Find the peripheral speed,

the H.P. and the speed of the pump in revols. per minute.

Also find the loss of. head due to frictional resistance.

Ans. 60 ft. per second; 1623I H.P.; 654j'j ; 31^ ft.

19. A centrifugal pump, with six ^-in. blades, makes 140 revolutions

per minute and raises 5062} tons of water per hour to the height of 20

feet. The blade-angle and radial velocity of flow at outlet are cot-" 4 and
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S ft. per second, respectively, and the hydraulic efficiency of the pump
is a little more than 60 per cent (= ff). The wheel is surrounded by a

vortex-chamber having a diameter 20 per cent greater than that of the

wheel. Assuming that the inlet-flow is radial, and that 2% = vj", and
disregarding frictional resistances, determine the peripheral speed, diam-

eter and breadth of the wheel, and the gains of energy in ft. -lbs. in the

vortex-chamber and in the volute.

Ans. 44 ft. per sec; 6 ft.; 8.17 ins; 8070, 8789.

20. Compare the efficiencies of two centrifugal pumps, which are

precisely similar in every respect, excepting that one has a whirlpool

chamber of 48 ins. diameter. Each pump delivers 20 cu. ft. per second

at a speed of 225 revolutions per minute. The diameters of the dis-

charge- and suction-pipes = 20 ins. ; the diameter of the wheel = 36 ins.;

the depth of the wheel and the whirlpool-chamber at outlet = 3i ins.;

y = 90°
;

/? = 22° 38' ; the number of wheel-blades = 6 ; the blade-

thickness = ^ in. ; Ar = .^Ha.

Ans. .73 — A and .70 — A where A = ^—^,.

21. In a centrifugal pump the diameters of the suction- and dis-

charge-pipes = 48 ins.; the number of wheel-blades = 6; the blade

thickness = | in.; the radial velocity of flow at outlet = 2.877 ft. per

second; the velocity of flow in the volute and discharge-pipe = 5.817

ft. per second ; the peripheral speed of the wheel outlet-surface =
34.6276 ft. per second. Disregarding the frictional losses in the

suction- and discharge-pipes and in the wheel-passages, determine the

velocity of whirl at outlet, the blade-tip angles at outlet, the delivery

in cubic feet per second, the speed in revolutions per minute and the

actual lift, the efficiency being .759.

Ans. 23.695 ft. per second ; /S = 14° 44' ; 73.13 cu. ft. ; 80.13 ;

19.34 ft.

22. A centrifugal pump, with an actual lift of 10 ft., delivers 37.85 cu.

ft. of water per second at a speed of 68 revolutions per minute. The

number of blades = 6 ; the blade-thickness = | in.; the wheel-depth at

outlet = 9 ins. ; the diameters of the suction- and discharge-pipes = 36

ins.; the diameter of the wheel = 90 ins. ;
/S = 19° 7' 26.67"

; Y = 9°°-

Find the gain of head in passing from the wheel into the volute and the

frictional loss {/tr) in the discharge- and suction-pipes and in the wheel-

passages. Also find the efficiency.

Ans. 2.193 ft- ; 1.91 1 ft.; .65.

23. In the centrifugal pumps for two torpedo-boat destroyers the

diameter of eye = 7 ins. ; the diameter of wheel = 20 ins.
; the number

of blades = 6 ; the thickness of blades = x\ in.; the width of the wheel

at outlet = 1/5 ins.; the actual lift = 63I ins.; cot /J = 5.167. The

pumps are driven by a vertical non-condensing engine with a 4^-1"-

cvlinder, a 4-in. stroke, and a |-in. piston-rod. With a boiler-pressure
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of 220 lbs. per square inch above the atmosphere and a cut-off at f,

the delivery was found to be 11 13 gallons (U. S.) at 420 revolutions^

per minute. The frictional losses, due to one upper bend, two 7-iTi.

bends, one bad check-valve, one gate-valve, and about 8 ft. of 7-in.

pipe, were respectively estimated at .2,hd, .\hd, hd, .ihd, and .4185 ft.,

hd being the head corresponding to the velocity of discharge (= velocity

of flow in volute). Find (a) the mechanical efficiency ; and also find,

on the ordinary hypotheses and assuming y = 90°, (b) the radial velocity

of flow ; (c) the loss in shock on entering the volute; (d) the hydraulic

efficiency.

Ans. {a) 6.02 per cent
; {6) 4.014 ft. per sec. ; (c) 61.7 ft.-lbs.

;
{d) .434.

24. Show how the results in the preceding example will be affected

with a delivery of 2000 U, S. gallons at an assumed speed of 700 revo-

lutions per minute.

Ans. (a) 6.67 per cent
;

(ff) 7.214 ft. per sec. ;
(c) 120 ft.-lbs. ; (d) .409.

25. Determine the hypothetically best speeds in revolutions per

minute for the pumps in Examples 23 and 24, and calculate the corre-

sponding maximum hydraulic efficiencies.

Ans. In Ex. 23 best speed = 292.7 rev. per min.
" " 24 " " =526 " " "

26. A centrifugal pump delivers 20 cu. ft. of water per second at a

speed of 225 revolutions per minute ; the diameter of the discharge-pipe

is 20 ins., the diameter of the wheel is 36 ins.; the width of the wheel at

outlet is 5i ins.; the number of blades = 6; the blade thickness = f in.;

p' = 90°; cosec /? = 1.484. Find the hydraulic efficiency, and also find

the diameter of the whirlpool-chamber which will increase this efficiency

by .I2-J4. Ans. .708 —^ ; 48 ins.
1035.89

27. A centrifugal pump making 229^ revolutions .per minute delivers

23J cu. ft. of water per second. The diameter of the discharge-pipe =
18 ins., of the wheel = 42 ins., and of its whirlpool-chamber =48 ins.

The width of the wheel at outlet = 3.452 ins., and of the whirlpool-cham-
ber at its outer circumference = 2.5 ins. The tip angle p at outlet =
cot"' 3.6. Assuming the ordinary whirlpool theory and disregarding

hydraulic resistances, determine (a) the radial velocity of flow (vr")i

{b) the actual velocity, z/j, with which the water leaves the wheel; {c) the

loss in entering the whirlpool-chamber
; {d) the hydraulic efficiency.

There are six blades each | in. thick.

Ans. (a) 9.3569 ft. per sec; (b) 12.567 ft. per sec;

{c) 76.4142 ft.-lbs.; {d) .49.
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Abbot, 252, 253, 257
Abrupt changes of section, loss of

head due to, 164
Accumulators, 339
Accumulator, Brown's steam, 344

differential, 342
Air in a pipe, 183
Air, retarding effect of, 224
Applications of Bernouilli's Theo-

rem, 12

Aqueducts, circular, 242
egg-shaped, 244
flow-in, 240
square, 243

Arc of discharge in overshot wheel,
452

Aspirator, 16

Axial-flow turbine, 490

Balancing of hoists, 345
Barker's mill, 375
Barlow's curve, 73
Barnes, 130
Barometer, water, 7

Bazin, 230, 246, 248, 249, 250, 252,

257, 258, 260, 266

Bazin's velocity curve and formula,

265, 266
Bazin's weirs, 99
Rear, punching, 339
Beardmore, 247
Keaufoy, 122

Belgrand, 226
Belgrand's sewer formula, 246
Belidor, 386
Bellmouth, 36
Bends in pipe, 168

Bends, river, 269
Bernouilli's Theorem, 8

applications of, 12

Bidone, 60, 284

Binding-press, 338
Boileau, 268
Boileau's velocity curve and for-

mula, 268
Borda, 60
Borda's mouthpiece, 58
Borda's turbine, 382
Bordered vane, 368
Bossut, 418
Bourgogne canal, experiments on,

249, 257
Bovey's tables of coefficients of dis-

charge, 39, 40
Boyden's hook gauge, 298
Boyden'sdiffusor, 492
Brakes, hydraulih, 353
Bramah's press, 336
Branched pipe connecting three

reservoirs, 191
Branch main of uniform diameter,

188
Breadth of water-wheels, 438
Breast-wheels, 440
Breast-wheel, efficiency of, 441
losses of effect in, 442
mechanical effect of, 442
speed of, 441

Bresse, 2gi, 292, 296, 309
Broad-crested weir, 94
Brotherhood hydraulic engine, 345.
Brown's steam-accumulator, 344
Brumings, 247
Bucket, capacity of, 458
form of, 435, 458

Buckets, number of, 45S

Burdin's wheel, 385

Canal-lock, time of emptying and
filling a, 59

Capacity of water-wheel buckets,

458

577
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Capillary phenomenon, 130
Capillary tubes, flow in, 130
Castel's table of mouthpiece co-

efficients, 69
Centre of pressure, xiv
Centrifugal force, effect of, 451
Centrifugal pump, 76

analysis of, 553
efficiency of, 555
height of suction in, 554
losses due to hydraulic resistance

in. 554
values of a, fi, and y in, 556
vortex chamber in, 565
work of, 394, 555

Centrifugal turbine, 393
Chamber, whirlpool, 76, 565
Channel-flow assumptions, 220
Channel, bottom velocity of flow

in a, 266
flow between bridge piers in a, 296
flow in an open, 221

flow through contracted portion
of a, 293

form of, 228
maximum velocity of flow in **,

236, 258, 265
mean velocity of flow in a, 268
mid-depth velocity of flow in a, 265
of great width as compared with

the depth, 288 '

of rectangular section and small
slope, 287

steady flow in a, 221
surface velocity of flow in a, 265
value of aand /5 in a, 249; of y in

a, 250; of n in a, 251
variation of velocity in a section

of a, 257
Channels, cycloidal, 239

differential equation of flow in, 275
examples of, 228
longitudinal profile of, 285
of constant section, steady flow

in, 271
of varying section, flow in, 271
rectangular, 229
semi-circular, 238
semi-elliptic, 239
surface-slope in, 227
trapezoidal, 231
with change of section, 293
with constant mean velocity of

flow, 235
Chezy's formula, 163
Chezy's experiments on Courparlet

channel, 247

Circular orifices, 81

Cock in cylindrical pipe, 169
Cocks, loss of head due to, 169
Coefficients, hydraulic, 29
Coefficients for turbines, 519
Coefficient of contraction, 34

discharge, 38
friction, 124
resistance, 34
velocity, 30
viscosity, 269

Coker, 130
Combined-flow turbines, 495
Compressibility, 25
Constants, useful, xvii

Continuity, 27
Contraction, imperfect, 34
incomplete, 35
loss of head due to abrupt, 165

Coulomb, 122
Courparlet channel, experiments on,

247
Critical velocity, 129
Cunningham, 257
Current-meters, 306
Cylinders, thickness of, 337, 344
Cylindrical body in pipe, pressure

on, 406
Cylindrical mouthpiece, 63

Danaides, 386
Darcy, 126, 139, 249, 260. 303
Darcy gauge, 302
D'Aubuisson, 126
Defontaine's velocity-curve formula,

262
Density, 2

Diagrams of pipe-flow experiments,
146

Didion, 403
Differential accumulator, 342
equation of steady vaned motion,

275
Diffusor, Boyden's, 492
Divergent mouthpiece, 66
Downward-flow turbine, 490, 494
Draft-tube, theory of, 529
Drummond on Miner's Inch, 44
Dubiat, 247, 258, 403
Dupuit, 293

Efficiency of centrifugal pumps,
555

Efficiency of turbines, conditions
governing, 510

remarks on, 519
effect of centrifugal force on, 508
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Elasticity of volume, 6

Elbows, loss of head due to, 167
Ellis, 177
Energy, losses of energy in hy-

draulic machines, 351
lost in shock, 55
of jet of water, 69
of water-fall, 7
transmission of, 156
of fluid, kinetic, 11; pressure, 11;

weight, II

Engine, hydraulic, 347
speed of steady motion in, 351

Enlargement of section, loss of head
due to, 167

Equations, general, 53
Equipotential surface, 20
Equivalent uniform main, 186

Erosion caused by watercourses, 227

effect of, 226, 227
table of, 269

Examples, log, 210, 328,355,408,539,

572
Exner, 308
Expansion, cubical, 6

Experimental tank, 29
Eytelwein, 247, 248

Farmer, 49, 81

Flamant, 144
Float adjustment in experimental

tank, 41

Floats, sub-surface, 300
surface, 300
twin, 301

Flow from vessel in motion, 26

in a frictionless pipe, 27

in aqueducts, 240
influence of pipe's inclination and

position upon the, 138

in pipes, 133
in pipe of uniform section, 133

varying diameter, 184

Fluid, definition of, xiii

friction, 121

motion, i

pressure, xiii

rotation, 17

whirling of, 19

Foss, 143
Fourneyron's turbine, 491

Fournie, 142
Francis, 86, 89, 301

Freeman, 178

Free surface, 20

Friction, coefficient of. 124

in pipes, surface, 125

Friction, laws of fluid, 123
Frictionless pipe, flow in, 27
Froude, 131

Froude's table of frictional resist-

ances, 121

Fteley, 89
Funk, 247

Ganguillet & Kutter's formula, 250
Gas, definition of, xiii

Ganges, experiments on, 257, 278
Gauckler, 253
Garonne, experiments on, 266
Gauge, Darcy, 303
Hook, 298

Gauging, methods of, 297
of pipe-flow, 207

Gaugings on the Ganges, 278; Mis-
sissippi, 253

General equations, 53
Gerstner's formula, 421
Graphical representation of losses

of head, 170
Grashof, 431
Grassi, 6

Hagen, 139, 253
Head, 27
Hele Shaw, 129
Herschel, 208

Hoists, hydraulic freight, 345
Hook -gauge, Boyden's, 298
Humphreys, 252, 253, 257
Hurdy-gurdy, 485
Hydraulic coefficients, 29
engine, 344; analysis of, 347
gradient, 13
intensifier, 342
jack, 338
mean depth, 222

mean radius, 135
press, 335
ram, 334

Hydraulic transmission, 156

Hydraulics, definition of, i

Hydrodynamometer, Perrodil's, 308
Hydrometric pendulum, 308
Hydrostatics, fundamental prin-

ciples of, ::iv

Ice, weight of, 3

Impact, 359
apparatus, 369
coefficient of, 371
on a flat vane, 359
on a curved vane, 388

on a hemispherical vane, 367
on a surface of revolution, 364
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Impact on a vane with borders, 368
Impact on a wheel, 378
Imperfect contraction, 34
Inclination, influence of pipe's, 138
Injector, 15
Intensifier, 341
Inversion of the jet, 48
Inverted siphon, 182

Inward-flow turbine, 490, 493

Jack, hydraulic, 338
Jackson, 251

Jet, energy of, 6g
inversion of, 48
measurer, 37
momentum of, 6g
propeller, 373

Jet reaction wheel, 375; efficiency

of, 376; useful effect of, 376
Jet turbine, 400

Knibbs, 142
Kutter, 142, 230, 253

Laminar motion, 2

Lampe, 143
Lesbros, 48
Level surface, 20

Levy, 143
Lift, balanced ram, 345

hydraulic ram, 346
Limit turbine, 494
Lines of force, 20
Liquid, definition of, xiii

Lock, time of filling a, 50
Longitudinal profile of open chan-

nel, 285
Loss of energy in shock, 55
Loss of head due to abrupt change

of section, 164 ; bends. 168
;

cocks, 169 ; contraction of sec-

tion, 169 ; elbows, 167 ;
enlarge-

ment of section, 167 : orifice in

diaphragm, 166; sluices, 169;
valves, 169

' Losses of head, graphical repre-
sentation of, 170

Losses in centrifugal pumps, 559
in turbines, 531

Magnus, 48
Main, equivalent uniform, 186

of uniform diameter, branch, 188
with several branches, 201

Manning, 230, 252
Mariotte, 403,
Metacentre, xv

Meters, 207
inferential, 209
piston, Z09
rotary, 209
Schonheyder's, 208

Venturi, 207
Meyer, 269
Miner's Inch, 44
Mississippi, experiments on, 253,

267
Mixed-flow turbines, 495
Momentum of jet, 69
Morin, 403, 431
Motion, fluid, i

in plane layers, 2

in stream-lines, 2

laminar, 2

permanent, i

steady, i

Motor driven by water flowing along
a pipe, 179

Mouthpiece, Borda's, 58
convergent, 66
cylindrical, 63
divergent, 66
ring-nozzle, 61

Navier's hypothesis, 203, 264
Notch, 83

rectangular, 83
triangular, 92

Nozzles, 174
Ellis' experiments on, 177
Freeman's experiments on, 178

Open channels, 220
Orifice fed by two reservoirs, 195

flow through an, 23
in a diaphragm, loss of head due

to, 166
in a. thin plate, 22
in vertical plane surfaces, 78
in vessel in motion, 26
with a sharp edge, 22

Orifices, circular, 81

large, 78
rectangular, 78
semicircular, 49
triangular, 92

Orleans canal, experiments on, 247
Outward-flow turbine, 491
Overshot-wheel, 450

arc of discharge in, 452
bucket angle of, 456
division angle in, 456
effect of centrifugal forcft in, 451 ;

impact on, 469; weight on, 467



INDEX. 581

Overshot-wheel, 450
number of buckets in, 456, 458
pitch-angle in, 457
speed of, 450
useful effect of, 467
weight of water on, 452

Packing, cup-leather, 336
hemp, 336

Parabolic path of jet, 25
Paraboloidal surface, 20
Paris sewer formula, 246
Pastal's press, 336
Path of fluid particle in turbine, 486
Pelton wheel, 486
Pendulum, hydrometric, 308
Permanent rfegimef, i

Perrodil's hydrodynamometer, 308
Piezometer, 12
Piobert, 403
Pipe connecting three reservoirs,

branched, 191, 200 ; two reser-

voirs, 162

equivalent uniform, 186

flow assumptions, 133
flow diagrams, 144
flow in frictionless, 27
Williams' experiments on flow in,

206
of uniform section, flow in, 133
of varying section, 184
thickness of, 158, 159
variation of velocity in transverse

section of. 202

Pipe-flow, effect of inclination on,

138
Pitch-back wheel, 472
Pitot tube, 302
Plane layers, motion in, 2

Poiseuille, 128, 131

Poncelet, 48, 418
Poncelet wheel, 424; design of, 433
Position, influence of pipe's, 137
Practical coeSicients in centrifugal

pumps, 569; turbines, 519
Piess. Bramah's, 336

Baling, 337
hydraulic, 336

Pressure, centre of, xiv

due to shock, 160

Pressure-head, 11

on cylindrical body in pipe, 406
Pressure on thin plate in pipe, 404

of fluids, xiii

Prony, 246, 248. 259
Propeller, jet, 373

Pumps, centrifugal, 547; analysis
of. 553; vortex-chamber in, 565

Punching bear, 339

Radiating current, 72
Ram, hydraulic, 335
Rayleigh, Lord, 48
Reaction, 373
Reaction wheel, efficiency of, 376
Rectangular orifices, 78
Regime, permanent, i

Reservoir sluices, 97
Reservoirs, branched pipe connect-

ing three, 191, 200
orifice fed by two, 195
pipe connecting two, 162

Resistance of ships, 131
of motion of solids, 402

Retarding effect of air, etc., in chan-
nel flow, 224

Revy's meter, 306
Reynolds, 129, 130, 139, 141
Rhine, experiments on, 247, 262, 266
Ring-nozzle, 61

River-bends, 269
Riveter, portable, 338
Rotation of fluids, 17
Ruhlmann, 285, 286, 293

Sagebien wheels, 449
Saone, experiments on, 257
Schiele turbine, 208
Schonheyder's meter, 257, 266
Segner, 375
Seine, experiments on, 257, 266
Sharp-edge orifices, 22
Ships, resistance of, 131
Shock, energy due to, 55

loss of energy in, 55
pressure due to, 160

Simpson's rule, 309
Siphon, i8i

inverted, 182
Slotte, 269
Sluice in cylindrical pipe, i6g

in rectangular pipe, 169
16ss of head due to a, 169

Sluices, 437
reservoir, 97

Smith, Hamilton, Jun., 87

Snow, weight of, 3
Sonnet, 260
Specific gravity, xiii

Spiral flow of water, 75
Standing wave, 281

Steady flow in channels of constant
section, 22t
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Steady motion, i ; in pipe of uni-

form section, 133
Steady varied motion, differential

equation of, 202
Stearns, 89
Storage of energy, 340
Stream line, 2

Strickland, 49
St. Venant, 248
Suction-tube, theory of, 529
Surface-floats, 300
Surface-friction in pipes, 126

slope in channels, 226

tension, 49
velocity, 258-265

Tables of backwater function, 290,

291, 292
bottom velocities 269
Castel's results, 69
coefficients of discharge, 39, 40
coefficients of weir discharge by

Fteley & Stearns, 8g
density of water, 4
discharge through Miner's Inch,46
discharge through nozzles, 177,

178
elasticity of volume of water, 6

erosion and viscosity, 269
expansion of volume of water, 6

expansion of water, 4
frictional losses in hose, 178
maximum velocities, 269
c and y in V = cm'i', 153
showing best relative dimensions

for trapezoidal section, 233
slopes and mean velocities, 227
slopes of trapezoidal section, 231
values of c and b in Bazin's form-

ulae, 311 to 322

values of for centrifugal

pumps, 556
values of y in Bazin's formula, 250

v'r *
values of —^ for turbines, 503

values of ni and n in Q^ ni {^h-\- n),

316
values of » in Ganguillet & Kut-

ter's formula, 251
viscosity of water and mercury,

269
values of c and 6 in channel form-

ula;, Ganguillet & Kutter, 323-

326

Tables, values 6i c and b in Man-
ning's forniula, 327

Tachometer, 308
Tadini, 248
Tank, experimental, 29
Tension, surface, 49
Theory of suction or draft tube, 529

of turbines, 497
Thibault, 403
Thickness of hydraulic pipes and

cylinders, 337-344
Thomson, James, 77, 93, 269
Thomson's turbine, 565
Throttle-valve, loss of head due to,

169
Thrupp, 139
Time of emptying and filling a

canal-lock, 50
Torricelli's theorem, 24
Transmission of energy by hydrau-

lic pressure, 136
Trautwine, 89
Trie ngular notch, 92
Tub-wheel, 387
Turbine, axial-flow, 490, 494

Borda's, 382
Boyden's, 491
centrifugal, 393
combined, 495
efficiency of, 501, 510, 519
Fontaine's, 494
Fourneyron, 491
impulse or Girard, 482, 507, 513,

517
inward-flow, 491, 493
jet, 400
Jonval, 494
limit, 494
losses of effect in, 531
mixed-flow, 490, 495
outward-flow. 491
parallel-flow, 414
practical values of velocities in,

519
radial-flow, 490
reaction, 482, 516
Schiele, 495
Scotch, 375
Segner, 376
Swain's, 495
tangential, 393
theory of, 497
Thomson, 491, 493
useful work of, 501
ventilated 483
vortex, 49r, 493
Whitelaw, 375
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Tutton, 146, 253, 289, zgr, 292
Tweddell's differential accumulator,

342

Undershot-wheel, 416
Undershot wheel, actual delivery in

ft. -lbs. of, 423
depth of crown of, 431
efficiency of, 417,420; Poncelet,428
form of course of, 429
in a straight race, 418
losses of effect with, 421
modifications to increase efficiency

of, 423
number of buckets in, 419
Poncelet's, 424; efficiency of, 428
useful work of, 417, 420
with flat vanes, 417

Uniform main, equivalent, 186

Unwin, 403
Useful constants, xvii

Vallot, 143
Values of c, x, and ^ in z* = cm'^i'',

153
Valve, loss of head due to a, 169

Vane, best form of, 388
cup, 367

Velocity, bottom, 260, 266
critical, 129
curve in a channel, 257
formulas, Bazin's, 266

formulae, Boileau's, 268

maximum, 260, 267
mean, 258, 265
mid-depth, 265
of whirl, 498
rod, 301
surface, 258, 265
variation of, 257

Velocities in turbines, practical

values of, 519
Vena contracta, 23

Venant, St., 248
Ventilated buckets, 472
Venturi, water-meter, 16

Vessels in motion, orifice in, 26

Virtual fall, 13

slope, 13
Viscosities, table of, 269

Viscosity, 264
Meyer's formula for, 269
Slotte's formula for, 269

Volute of centrifugal pump, 558
Vortex, circular, 74
compound, 76
free, 74
free-spiral, 75
forced, 75
motion, 74

Water, pressure of, 6 )

weight of, 2

Water-barometer, 7
Water-meter, 207
Water-pressure engine, 347
Water-wheels, classification of ver-

tical, 416
Wave propagation, velocity of, 161

Weight of fresh water, 3
of ice, 3
of salt water, 3

Weir, 83
Bazin's flow-over, gg
Beam, 104, 107
broad-crested, 94, 106

drowned, 88, 106

inclined, 89
rectangular, with end contrac-

tions, 86 ;
without end contrac-

tions, 85
sharp-crested, gg, 107
submerged, 88

Weisbach, 36, 60, 166

Weser, experiments on, 247
Wheel, breast, 440
hurdy-gurdy, 485
in straight race, 418
jet reaction, 375
overshot, 450
Pelton, 486
pitch-back, 472
Poncelet, 424
Sagebien, 44g
undershot, 416

Whirling fluids, ig

Whirlpool-chamber, 76
Whirl, velocity of, 519
Whitelaw, 375
Williams, 206
Woltmann, 247
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Foster's Wooden Trestle Bridges 4to, 5 00

Greene's Arches in Wood, etc 8vo, 2 50

BridgeTrusses 8vo, 2 50

RoofTrusses 8vo, 125

Howe's Treatise on Arches 8to, 4 00

Johnson's 5Iodern Framed Structures Small 4to, 10 00

Merriman & Jacoby's Text-book of Roofs and Bridges.

Part I., Stresses 8vo, 2 50

Merriman & Jacoby's Text-book of Roofs and Bridges.

Part II., Graphic Statics 8vo, 2 50

Merriman & Jacoby's Text-book of Roofs and Bridges.

Part III., Bridge Design Svo, 2 50

Merriman & Jacoby's Text-book of Roofs and Bridges..

Part lY. , Continuous, Draw, Cantilever, Suspension, and

Arched Bridges 8vo, 2 50

•Morison's The >Itmphis Bridge Oblong 4to, 10 00

Waddell's De Pontibus (a Pocket-book for Bridge Engineers).

16mo, morocco, 3 00

" Specifications for Steel Bridges 12mo, 1 25

Wood's Construction of Bridges and Roofs Svo, 2 00

Wright's Designing of Draw Spans. Parts I. and II.. Svo, each 2 50

" " " " " Complete Svo, 3 50

CHEMISTRY—BIOLOQY—PHARMACY—SANITARY SCIENCE.

Adriauce's Laboratory Calculations 12mo, 1 25

Allen's Tables for Iron Analysis Svo, 3 00

Austen's Notes for Chemical Students 12mo, 1 50

Bolton's Student's Guide in Quantitative Analysis Svo, 1 50

Classen's Analysis by Electrolysis. (HerrickandBoltwood.).8vo, 3 00
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CoLu's Indicfttors and Test-papers ISmo
Crafts's Qualilative Analysis. (Scliaeflfer.) 12nio,

Davenport's Statistical Methods with Special Reference to Bio-

logical Variations 12nio, morocco,

Dreclisel's CUemical Reactions. (Meirill.) 12mo,
Erdmanu's Introduction to Cbemicul Preparations. (Dunlap.)

12mo,
Fresenius's Quantitative Clieiiiiciil Analysis. (Allen.) 8vo,

"
Qualitative " " (Johnson.) 8vo,

(Wells.) Trans.

16th German Edition 8vo,

Fuertes's Water and Public Health 12mo,
" Water Filtration Works 12mo,

Gill's Gas and Fuel Analysis 12mo,

Goodrich's Economic Disposal of Towns' Refuse Demy 8vo,

Hammarslen's Physiological Clicmistry. f JIaudel.) 8vo,

Helm's Prir)ciples of Mathematical Clic'mistry. (Morgan). 12mo,

Hopkius' Oil-Chemist's Pland-book 8vo,

Ladd's Quaiititiitive Chemical Analysis 12mo,

Landauer's Spectrum Analysis. (Tingle.) Svo,

LOli's Electrolysis and Electrosynthesis of Organic Compounds.
(Lorenz.) 12mo,

Mandel's Bio-chemical Laboratory 12mo,

Mason's Water-supply Svo,

" Examination of Water 12mo,

Meyer's Radicles in Carbon Compounds. (Tingle.) 12mo,

Mixtcr's Elemenlui-y Te.\t-book of Chemistry 12mo,

Morgan's The Theory of Solutions and its Results 12mo,
" Elements of Physifiul Chemistiy 12mo,

Nichols's Watf'i-^upply (Chemical and Sanitary) 8vo,

O'Brine's Laboratory Guide to Chemical Analysis Svo,

Pinner's Organic Chemistry. (Austen.) 12rao,

Poole'.s Caloritic Power of Fuels Svo,

Richards's Cost of Living as Modified by Sanitary Science.. 12mo.
" and Woodman's Air, Water, and Food Svo,

Ricketts and Ru.s3eirs Notes on Inorganic Chemistry (Non-

metallic) Oblong Svo, morocco,

Rideal's Sewage and the Bacterial Purification of Sewage.., Svo,

Ruddiman's Incompatibililies in Prescriptions Svo,

Schimpf's Volumetric Analysis 12mo,

Spencer's Sugar Manufacturer's Handbook 16mo, morocco,
" Handbook for Chemists of Beet Sugar Houses.

16mo, morocco,

Stockbridge's Rocks and Soils Svo,

•Tillman's Descriptive General Chemistry Svo,

5
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Vim Devenler's Pbysiciil Cheniistiy for Beginners. (Boltwood.)

12mo, $1 50
Wells's Inorganic Qualitative Analysis 12mo, 1 50

" Laboratory Guide in Qualilative Cbemical Analysis.

8vo, 1 50

Whipple's Microscopy of DrinUiug-water 8vo, 3 50

Wieclimann's Chemical Lecture JSTotes 12mo, 3 00
" Sugar Analysis Small 8vo, 2 50

Wulling's Inorganic Pbar. and Med. Chemistry. l£mo, 2 00

DRAWINQ.

* Bartlett's Mechanical Drawing 8vo,

Hill's Shades and Shadows and Perspective 8vo,

MacCord's Descriptive Geometry 8vo,
'

'

Kinematics 8vo,
" Mechanical Drawing 8vo,

Mahau's Industrial Drawing. (Thompson.) 2 vols., 8vo,

Keed's Topographical Drawing. (H. A.) 4to,

Raid's A Course in Mechanical Drawing . . .8vo.

" Mechanical Drawing and Elementary Machine Design.

8vo,

Smith's Topographical Drawing. (Macmillan.) 8vo,

Warren's Descriptive Geometry 2 vols., 8vo,
" Drafting Instruments 12mo,
'

' Free-hand Drawing 12mo,
'

' Linear Perspective 12mo,
" Machine Construction. 2 vols., 8vo,
" Plane Problems 12mo,
" Primary Geometry 12mo,
" Problems and Theorems 8vo,
" Projection Drawing 12mo,
" Shades and Shadows , 8vo,
" Stereotomy— Si one-cutting 8vo,

Whelpley's Letter Engraving 12mo,
Wilson's Free-hand Perspective 8vo,

ELECTRICITY, MAGNETISM, AND PHYSICS.

Anthony and Brackett's Text-book of Physico. (Magie.) Small

8vo, 3 00
Anthony's Theory of Electrical Measurements 12mo, 1 00
Barker's Deep-sea Soundings 8vo, 2 00
Benjamin's Voltaic Cell 8vo, 3 00

" History of Electricity '

8vq, 3 00
6
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Classen's Analysis by Electrolysis. (Henickand Bollwood,)8vo, $3 00

Ciehoi'e and Squier's Experiments with a New Polarizing Photo-

Chrouograpb 8vo, 3 00

Dawson's Electric Railways and Tramways. Small, 4lo, half

morocco, 12 50
* "Engineering" and Electric Traction Pocket-book. 16mo,

morocco, 5 00
* Dredge's Electric Illuminations. . . .2 vols. , 4to, half morocco, 25 00

Vol. II 4to, 7 50

Gilbert's De magnete. (Mottelay.) 8vo, 2 50

Holman's Precision of Measurements 8vo, 2 00
" Telescope-mirror-scale Method Large 8vo, 75

Le Chatelier's High Temperatures. (Burgess) 12mo, 3 00

L5b's Electrolysis and Electrosynthesis of Organic Compounds.

(Lorenz.) 12mo, 100
Lyous's Electromagnetic Phenomena and the Deviations of the

Compass 8vo,

*Michie's Wave Motion Relating to Sound and Light 8vo,

Morgan's The Theory of Solutions and its Results 12mo,

Niaudet's Electric Batteries (Fishback.) 12mo,

*Pursball & Hobart Eleclric Generators. Small 4to, half mor.,

Pratt and Alden's Street-railway Road-beds 8vo,

Reagan's Steam and Electric Locomotives 13mo,

Thurston's Stationary Steam Engines for Electric Lighting Pur-

poses 8vo,

*Tillman's Heat 8vo,

Tory & Pitcher's Laboratory Physics Small 8vo,

ENQINEERINQ.

Civil—Mechanical—Sanitary, Etc.

See also Bridges, p. 4 ; Htdraulios, p. 9 ; Materials op En-
gineering, p. 11 ; -Mechanics and Machinery, p. 12

;
Steam

Engines and Boilers, p. 14.)

Baker's Masonry Construction , .. . .8vo, 5 00

" Surveying Instruments 12mo, 3 00

Black's U S. Public Works Oblong 4to, 5 00

Brooks's Street-railway Location 16mo, morocco, 1 50

Butts's Civil Engineers' Field Book 16mo, morocco, 2 50

Byrne's Highway Construction 8vo, 5 00

" Inspection of Materials and Workmanship 16mo, 3 00

Carpenter's Experimental Engineering 8vo, 6 00

Church's Mechanics of Engineering—Solids and Fluids— 8vo, 6 00
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Church's Notes and Exiimples in Mechanics 8to,

Crandall's Eiii-thwork Tables 8vo,

The Transition Curve 16mo, morocco,

Davis's Elevation and Stadia Tables Small 8vo,

Dredge's Penu. Railroad Construction, etc. Large 4to,

half morocco, $10; paper,

* Drinker's Tunnelling 4to, half morocco,

Eissler's Explosives—Nitroglycerine and Dynamite. .-. Svo,

Frizell's Water Power Svo,

Folwell's Sewerage Svo,

" Water-supply Engineering Svo,

Fowler's Coffer-dam Process for Piers . . Svo.

Fuertes's Water Filtration Works 12mo,

Gerhard's Sanitary House Inspection. 12mo,

Godwin's Railroad Engineer's Field-book 16mo, morocco,

Goodrich's Economic Disposal of Towns' Refuse Demy Svo,

Gore's Elements of Geodesy Svo,

Hazlehurst's Towers and Tanks for Cities and Towns Svo,

Howard's Transition Curve Field-book 16mo, morocco,

Howe's Retaining Walls (New Edition.) 12mo,

Hudson's Excavation Tables. Vol. II Svo,

Button's ilechauical Engineering of Power Plants Svo,
'

' Heat and Heat Engines Svo,

Johnson's Materials of Construction Svo,

" Theory and Practice of Surveying Small Svo,

Kent's Mechanical Engineer's Pocket-book 16mo, morocco,

Kiersted's Sewage Disposal 12mo,

Mahan's Civil Engineering. (Wood.) Svo,

Merriman and Brook's Handbook for Surveyors. . . .16mo, mor.,

Merriman's Precise Surveying and Geodesy Svo,
" Sanitary Engineering Svo,

Nagle's Manual for Railroad Engineers 16mo, morocco,

Ogden's Sewer Design l"2mo.

Patten's Civil Engineering- Svo, half morocco,
" Foundations Svo,

Philbrick's Field Manual for Engineers 16mo, morocco,

Pratt and Alden's Street-railway Road-beds Svo,

Rockwell's Roads and Pavements in France 13mo,

Schuyler's Reservoirs for Irrigation Large Svo,

Searles's Field Engineering 16mo, morocco,
" Railroad Spiral 16mo, morocco.

Siebert and Biggin's Modern Stone Cutting and Masonry. . .Svo,

Smart's Engineering Laboratory Practice 12n]o,

Smith's Wire Manufacture and Uses Small 4to,

Spalding's Roads and Pavements 12mo,

S
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Kicliols's Water Supply (Chemical and Sanitary) 8vo, $3 50

Schuyler's Eeseivoirs for Irrigation Large 8vo, 5 00

Tuineauie and Rufsell's Public Water-supplies 8vo, 5 OO

Wegmaun's Water Supply of the City of New York 4to, 10 00-

Weishiich's Ilydruulics. (Du Bois.) 8vo, 5 00-

Whipple's Microscopy of Drinking Water 8vo, 3 50-

Wilson's Irrigation Engineering 8vo, 4 00

" Hydraulic and Placer Mining 12mo, 2 00'

Wolff's Windmill as a Prime Mover 8vo, 3 00

Wood's Theory of Turbines 8vo, 3 5»

LAW.

Davis's Elements of Law 8vo, 2 50

Treatise on Military Law 8vo, 7 00
Sheep, 7 50

Manual for Courts-martial 16mo, morocco, 1 50

Wait's Eiigineeriug and Architectural Jurisprudence 8vo, 6 00'

Sheep, 6 50
" Law of Contracts 8vo, 3 OO
" Law of Operations Preliminary to Construction in En-

gineering and Architecture 8vo, 5 00
Sheep, 5 50

Winthrop's Abridgment of Military Law 12mo, 3 50

MANUFACTURES.

Allen's Tables for Iron Analysis 8to,

Beaumont's Woollen and Worsted Manufacture 12mo,

BoUand's Encyclopaedia of Founding Terms 12mo,
" The Iron Founder 12mo,
" " " " Supplement 12mo,

Eissler's Explosives, Nitroglycerine and Dynamite 8vo,

Ford s Boiler Making for Boiler Makers 18mo,

Metcalfe's Cost of Manufactures 8vo,

3Ietcalf 's Steel—A Manual for Steel Users 12mo,
* Reisig's Guide to Piece Dyeing 8vo,

Spencer's Sugar Manufacturer's Handbook . . . .16mo, morocco.

Handbook for Chemists of Beet Sugar Houses.

16mo, morocco,

Thurston's Manual of Steam Boilers 8vo,

Waike's Lectures on Explosives 8vo,

W est's American Foundry Practice 12mo,

Moulders Textboolf 12mo.

Wiechraann's Sugar Analysis. . . Small 8vo,

Woodbury's Fire Protection of Mills 8vo, .3 50
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MATERIALS OF ENQINEERING.

(See also Enginbbsing, p. 7.)

Baker's Masonry Construction 8vo,

Bovey's Strength of Materials 8vo,

Burr's Elasticity and Resistance of Materials 8vo,

Byrne's Highway Construction 8vo,

Church's Mechanics of Engineering—Solids and Fluids 8vo,

Du Bois's Stresses in Framed Structures Small 4to;

Johnson's Materials of Construction 8vo,

Lanza's Applied Mechanics 8vo,

Martens's Testing Materials.. (Henning.) 3 vols., 8vo,

Merrill's Stones for Building and Decoration 8vo,

Merriman's Mechanics of Materials 8vo,
'

'

Strength of Materials 12mo,

Patten's Treatise on Foundations 8vo,

Rockwell's Roads and Pavements in France 13mo,

Spalding's Roads and Pavements 13mo,

Thurston's Materials of Construction, 8vo,

" Materials of Engineering 3 vols., 8vo,

Vol. I, Non-metallic 8vo,

Vol. II., Iron and Steel Svo,

Vol. III., Alloys, Brasses, and Bronzes Svo,

Wood's Resistance of Materials Svo,

MATHEMATICS.

Baker's Elliptic Functions Svo,

*Bass's Differential Calculus 13mo,

Briggs's Plane Analytical Geometry 13mo,

Chapman's Theory of Equations. 12mo,

Compton's Logarithmic Computations 12mo,

Davis's Introduction to the Logic of Algebra Svo,

Halsted's Elements of Geometry ...Svo,

Synthetic Geometry Svo,

Johnson's Curve Tracing 12mo,

" Differential Equations—Ordinary and Partial.

Small Svo,

" Integral Calculus 13mo,

' " " Unabridged. Small Svo. {In press.)

" Least Squares ISmo,

*Ludlow's Logarithmic and Other Tables. (Bass.) Svo,

* " Trigonometry -with Tables. (Bass.) Svo,

*Mahan's Descriptive Geometry (Stone Cutting) ,
Svo,

ilerriman and Woodward's Higher Mathematics Svo,

11
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Merriman's Method of Least Squares 8vo, $2 00

nice and Johnson's DifEerential and Integral Calculus,

3 vols, in 1, small 8vo, 2 50

" Differential Calculus Small 8vo, 3 00

" Abridgment of Differential Calculus.

Small 8vo, 1 50

Totten's Metrology 8vo, 2 50

"Warren's Descriptive Geometry 2 vols., 8vo, 3 50

" Drafting Instruments 12mo, 125
" Free-hand Drawing 12mo, 100
" Linear Perspective 12mo, 1 00

" Primary Geometry 12mo, 75

Plane Problems 12mo, 1 25

" Problems and Theorems 8vo, 2 50

" Projection Drawing 12mo, 150
"V7ood's Co-ordiuate Geometry 8vo, 2 00

" Trigonometry 12mo, 1 00

Woolf's Descriptive Geometry Large 8vo, 3 00

MECHANICS-MACHINERY.

(See also En-gineehing, p. 7.)

Baldwin's Steam Heating for Buildings 12mo, 3 50

Barr's Kinematics of Machinery 8vo, 2 50

Benjamin's AVriukles and Recipes 12mo, 2 00

Chordal's Letters to Mechanics 12mo, 2 00

Church's ^Mechanics of Engineering 8vo, 6 00
" Notes and Examples in Mechanics 8vo, 2 00

Crehore's Mechanics of the Girder 8vo, 5 00

Cromwell's Belts and Pulleys 12mo, 1 50

Toothed Gearing 12mo, 150
Compton's First Lessons in Metal Working 12mo, 1 50

Compton and De Groodt's Speed Lathe 12mo, 1 50

Dana's Elementary Mechanics 12mo, 1 50

Dingey's Machinery Pattern Making 12mo, 2 00
"* Dredge's Trans. Exhibits Building, World Exposition.

Large 4to, half morocco, 5 00

Du Bois's Mechanics. Vol. I., Kinematics 8vo, 3 50

Vol. IL, Statics 8vo, 4 00
" " Vol. m.. Kinetics 8vo, 3 50

Fitzgerald's Boston Machinist 18mo, 1 00

Flather's Dynamometers 13mo, 2 00
" Eope Driving 12mo, 2 00

Ball's Car Lubrication 12mo, 1 00

BoHy's Saw Filing 18mo, 75
12



* Johnsoil's Theoretical Mechauics. An Elementary Treatise.

12mo, $3 00
Jones's Machine Design. Part I., Kinematics 8vo, 1 50

" " " Part II., Strength and Proportion of

Machine Parts 8vo, 3 00
Lanza's Applied Mechanics 8vo, 7 50

MacCord's Kinematics 8vo, 5 00
Merriman's Mechanics of Materials 8vo, 4 00

Metcalfe's Cpst of Manufactures 8vo, 5 00

*Micliie's Amiljtical Mechanics 8vo, 4 00

Richards's Compressed Air 12mo, 1 50

Robinson's Principles of Mechanism 8vo, 3 00

Smith's Press-working of Metals 8vo, P. OO
Thurston's Friction and Lost Work 8vo, 3 00

" The Animal as a Machine 12mo, 100
Warren's Machine Construction 3 vols., 8vo, 7 50

Weisbach's Hydraulics and Hydraulic Motors. (Du Bois.)..8vo, 5 00
' Mechanics of Engineering. "Vol. III., Part I.,

Sec. I. (Klein.) Svo, 5 00

Weisbach's Mechanics of Engineering. Vol. III., Part I.,

Sec. IL (Klein.) 8vo,

Weisbach's Steam Engines. (Du Bois.) 8vo,

Wood's Analytical Mechanics Svo,

" Elementary Mechanics 12mo,
" " " Supplement and Key 13mo,

METALLURQY.

Allen's Tables for Iron Analysis Svo,

Egleston's Gold and Mercury Large Svo,

" Metallurgy of Silver Large Svo,

* Kerl's Metallurgy— Steel, Fuel, etc Svo,

Kunhardt's Ore Dressing in Europe Svo,

Jiletcalf's Steel—A Manual for Steel Users 12mo,

O'Driscoll's Treatment of Gold Ores Svo,

Thurston's Iron and Steel Svo,
" Alloys Svo,

Wilson's Cyanide Processes 12mo,

MINERALOQY AND MINING.

Barringer's Minerals of Commercial Value. . ..Oblong morocco,

Beard's Ventilation of Mines 12mo,

Boyd's Resources of South Western Virginia Svo,

" Map of South Western Virginia Pocket-book form.

Brush and Penfleld's Determinative Mineralogy. New Ed. Svo,

13
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iChester's Catalogue of Minerals 8vo,
" " " Paper,

" Dictionary of the Kames of Minerals 8vo,

Dana's American Localities of Minerals Large 8vo,.

" Descriptive Mineralogy. (E.S.) Large 8vo. half morocco,
" First Appendix to System of Mineralogy Large 8vo,

" Mineralogy and Petrography. (J. D.) 12mo,
" Minerals and How to Study Them. (E. S.) 12mo,
" Text-book, of Mineralogy. (E. S.).. .New Edition. 8vo,

* Drinker's Tunnelling, Explosives, Compounds, and Rock Drills.

4to, lialf morocco,

Egleston's Catalogue of Minerals and Synonyms 8vo,

Eissler's Explosives—Nitroglycerine and Dynamite 8vo,

Hussak's Rock-forming Minerals. (Smith.) Small 8vo,

Ihlseng's Manual of Mining 8vo,

Kunhardt's Ore Dressing in Europe 8vo,

O'Driscoll's Treatment of Gold Ores 8vo,

* Penfield's Record of Mineral Tests Paper, 8vo,

Bosenbusch's Microscopical Physiography of Minerals and
Rocks. (Iddiugs.) 8vo,

Sawyer's Accidents in Mines Large 8vo,

Stockbridge's Rocks and Soils 8vo,

*Tillman's Important Minerals and Rocks 8vo,

Walke's Lectures on Explosives • 8vo,

Williams's Lithology , 8vo,

Wilson's Mine Ventilation 12mo,
" Hydraulic and Placer Mining , 12mo,

STEAM AND ELECTRICAL ENGINES, BOILERS, Etc.

((Se« also Enginebbing, p. 7.)

Baldwin's Steam Heating for Buildings 12mof 2 50

Clerk's Gas Engine Small 8vo, 4 00

Ford's Boiler Making for Boiler Makers 18mo, 1 00

Hemenway's Indicator Practice ]2mo, 2 00

Kent's Steam-boiler Economy 8vo, 4 00

Kneasss Practice and Theory of the Injector 8vo, 1 50

MacCord's Slide Talve 8vo, 2 00

Meyer's Modern Locomotive Construction 4to, 10 00

Peabody and Miller's Steam-boilers 8vo, 4 00

Peabody's Tables of Saturated Steam 8vo, 1 00
" Thermodynamics of the Steam Engine 8vo, 5 00

Valve Gears for the Steam Engine 8vo, 2 50
" Manual of the Steam-engine Indicator 12mo, 1 50

Fray's Twenty Years with the Indicator Large 8vo, 3 50
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