
Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2010-12

An analysis of cryptographically significant

Boolean functions with high correlation

immunity by reconfigurable computer

Etherington, Carole J.

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/5003

Downloaded from NPS Archive: Calhoun

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

AN ANALYSIS OF CRYPTOGRAPHICALLY SIGNIFICANT
BOOLEAN FUNCTIONS WITH HIGH CORRELATION

IMMUNITY BY RECONFIGURABLE COMPUTER

by

Carole J. Etherington

December 2010

 Thesis Co-Advisors: Jon T. Butler
 Pantelimon Stanica

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
December 2010

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE
An Analysis of Cryptographically Significant Boolean Functions With High
Correlation Immunity by Reconfigurable Computer
6. AUTHOR(S) Carole J Etherington

5. FUNDING NUMBERS
N/A

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government. IRB Protocol number: N/A.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
Boolean functions with high correlation immunity can be used in cryptosystems to defend against correlation attacks.
These functions are rare and difficult to find. As the variables increase, this task becomes exponentially more
complex and time consuming. Three different ways to execute a program to find the correlation immunity of a
function are compared in this thesis. First, a program was written in C and executed on a conventional CPU. The
same program was then executed on an FPGA on the SRC-6 reconfigurable computer. A similar program was written
in Verilog and executed on the FPGA. By taking advantage of the parallel processing ability of the SRC-6, a well-
programmed Verilog macro can find functions with high correlation immunity at a much faster rate.
 The SRC-6 reconfigurable computer is used in this thesis to find the correlation immunity of millions of
functions up to six variables. Rotation symmetric and balanced functions were examined to find subsets that contain a
high percentage of functions with good correlation immunity. The nonlinearity and correlation immunity of functions
of four and five variables were compared to find functions with the best balance to fend off both correlation and linear
attacks on a cryptosystem.

15. NUMBER OF
PAGES

130

14. SUBJECT TERMS
Correlation Immunity, Cryptology, Field Programmable Gate Array (FPGA), Reconfigurable
Computer, Rotation Symmetric Functions, Bent Functions, Balanced Functions

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

AN ANALYSIS OF CRYPTOGRAPHICALLY SIGNIFICANT BOOLEAN
FUNCTIONS WITH HIGH CORRELATION IMMUNITY BY

RECONFIGURABLE COMPUTER

Carole J. Etherington
Lieutenant, United States Navy

B.S., University of Kentucky, 2004

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
December 2010

Author: Carole J. Etherington

Approved by: Jon T. Butler
Thesis Co-Advisor

Pantelimon Stanica
Thesis Co-Advisor

Clark Robertson
Chairman, Department of Electrical Engineering and Computer
Engineering

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Boolean functions with high correlation immunity can be used in cryptosystems to defend

against correlation attacks. These functions are rare and difficult to find. As the number

of variables increases, this task becomes exponentially more complex and time

consuming. Three different ways to execute a program to find the correlation immunity

of a function are compared in this thesis. First, a program was written in C and executed

on a conventional CPU. The same program was then executed on an FPGA on the SRC-6

reconfigurable computer. A similar program was written in Verilog and executed on the

FPGA. By taking advantage of the parallel processing ability of the SRC-6, a well-

programmed Verilog macro can find functions with high correlation immunity at a much

faster rate.

 The SRC-6 reconfigurable computer is used in this thesis to find the correlation

immunity of millions of functions of up to six variables. Rotation symmetric and

balanced functions were examined to find subsets that contain a high percentage of

functions with good correlation immunity. The nonlinearity and correlation immunity of

functions of four and five variables were compared to find functions with the best balance

to fend off both correlation and linear attacks on a cryptosystem.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. PROBLEM DEFINITION ..1
B. BACKGROUND ..1
C. METHOD ...3
D. THESIS OUTLINE..4

II. CRYPTOGRAPHICALLY SIGNIFICANT FUNCTIONS5
A. BACKGROUND ..5

1. Definitions...5
a. Boolean Functions..5
b. Correlation Immunity ...5
c. Linear Functions...6
d. Affine Functions ...7
e. Hamming Distance ...7
f. Nonlinearity...7
g. Bent Functions..7
h. Rotation Symmetric...7
i. Balanced Functions ..8
j. Resiliency...8

2. Lemmas...9
B. CRYPTOGRAPHICALLY SIGNIFICANT SUBSETS9

1. Rotation Symmetric Functions ...9
2. Balanced Functions..10
3. Nonlinearity ..10

C. TESTING FOR CORRELATION IMMUNITY ..10
D. SUMMARY ..14

III. IMPLEMENTATION ...15
A. SRC-6 CIRCUIT..15
B. CIRCUIT COMPONENTS...15

1. Test for K Blocks..16
a. Combination Counter ...16
b. Index to Constant Weight Convertor18
c. Variable Distributor ..19
d. Multiplexor ..19
e. Adder..20

2. Priority Encoder...20
C. PC CIRCUIT..20
D. SUMMARY ..21

IV. RESULTS AND ANALYSIS ..23
A. SRC-6 ..23

1. Background ..23

 viii

2. Speed Up ...24
3. Limitations..25

B. ANALYSIS ...27
1. Balanced Functions..27

a. Correlation Immunity for Balanced Functions for n=427
b. Correlation Immunity for Balanced Functions for n=528

2. Rotation Symmetric Functions ...29
a. Correlation Immunity for Rotation Symmetric Functions

for n=4 ...29
b. Correlation Immunity for Rotation Symmetric Functions

for n=5 ...30
3. Nonlinearity ..30

a. Correlation Immunity and Nonlinearity for All Boolean
Functions for n=4 ...31

b. Correlation Immunity and Nonlinearity for All Boolean
Functions for n=5 ...31

4. Correlation Immunity for Functions of Six Variables32

V. CONCLUSION AND RECOMMENDATIONS...35
A. CONCLUSIONS ..35
B. RECOMMENDATIONS...35

1. Circular Pipeline ..35
2. Other Cryptographic Properties ..36
3. Finding Smaller Test Sets..37
4. Additional FPGAs..37

APPENDIX A. SRC-6 CODE..39
A. CORRELATION IMMUNITY FOR N=4...39

1. main.c ..39
2. subr.mc..40
3. makefile...41
4. blk.v ...43
5. info...43
6. corr_imm.v ...44

B. CORRELATION IMMUNITY FOR N=5...49
1. main.c ..49
2. subr.mc..50
3. blk.v ...51
4. info...51
5. corr_imm.v ...52

C. CORRELATION IMMUNITY FOR N=6...57
1. main.c ..57
2. subr.mc..58
3. blk.v ...59
4. info...59
5. corr_imm.v ...60

D. CORRELATION IMMUNITY FOR BALANCED FUNCTIONS, N=5..65

 ix

1. main.c ..65
2. subr.mc..67

E. CORRELATION IMMUNITY FOR ROTATION SYMMETRIC
FUNCTIONS, N=4...69
1. main.c ..69
2. subr.mc..72

F. CORRELATION IMMUNITY FOR ROTATION SYMMETRIC
FUNCTIONS, N=5...73
1. main.c ..73
2. subr.mc..75

G. CORRELATION IMMUNITY AND NONLINEARITY FOR
FUNCTIONS OF N=4 ...76
1. main.c ..76
2. subr.mc..78
3. blk.v ...79
4. info...79
5. corr_imm.v ...80

H. CORRELATION IMMUNITY AND NONLINEARITY FOR
FUNCTIONS OF N=5 ...88
1. main.c ..88
2. subr.mc..89
3. blk.v ...90
4. info...91
5. corr_imm.v ...91

APPENDIX B. PC CODE..101
A. CORRELATION IMMUNITY FOR N=4...101

1. Main.c..101

LIST OF REFERENCES..105

INITIAL DISTRIBUTION LIST ...107

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF FIGURES

Figure 1. Keystream generator from [6]..2
Figure 2. Distribution of correlation immunity for all functions, n=4.12
Figure 3. A close up section of the graph of correlation immunity of all functions,

n=4. ..13
Figure 4. Circuit for computing the correlation immunity of a function.15
Figure 5. Block diagram of the components used to test a function of n variables for

correlation immunity k. ..16
Figure 6. Example of a constant weight codeword generator circuit from [10].18
Figure 7. Process for computing the correlation immunity of a function using the

PC...21
Figure 8. Process for computing the correlation immunity of a function using the

PC, from [3]. ..24
Figure 9. Number of test passed for all functions of four variables for correlation

immunity 1. ..36

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF TABLES

Table 1. The results of one test for a correlation immunity of two [11].6
Table 2. Rotation symmetric truth table...8
Table 3. Distribution of correlation immunity for n=3,4 and 5.11
Table 4. The C(6,3) combinatorial number system for 0<N<19 from [10].17
Table 5. Comparison of computation time for all Boolean functions of four

variables. ..25
Table 6. Time to calculate the correlation immunity of all Boolean functions.26
Table 7. Distribution of correlation immunity for all balanced functions compared

to that of all Boolean functions of four variables. ...27
Table 8. Distribution of correlation immunity for all balanced functions compared

to that of all Boolean functions of five variables...28
Table 9. Distribution of correlation immunity for all rotation symmetric functions

compared to that of all Boolean functions of four variables............................29
Table 10. Distribution of correlation immunity for all rotation symmetric functions

compared to that of all Boolean functions of four variables............................30
Table 11. Distribution of all Boolean functions of four variables by correlation

immunity and nonlinearity...31
Table 12. Distribution of Boolean functions of five variables by correlation

immunity and nonlinearity...32
Table 13. Distribution of a random subset of Boolean functions of six variables by

correlation immunity..33

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

EXECUTIVE SUMMARY

Cryptographically significant functions with a concentration on functions with high

correlation immunity are examined in this thesis. For the first time, the SRC-6

reconfigurable computer was used to find the correlation immunity of millions of

Boolean functions up to six variables. Smaller subsets of Boolean functions thought to

contain a higher percentage of functions with good correlation immunity were examined.

These subsets included the set of rotation symmetric functions and the set of balanced

functions. The results and analysis from these tests are discussed in this thesis. The SRC-

6 was used to compute the correlation immunity and nonlinearity of Boolean functions up

to five variables in order to find functions with the highest degree of both these

properties. A comparison between the computation times of a Verilog program executed

on an FPGA associated with the SRC-6 reconfigurable computer and a C program

executed on the PC showed that the SCR-6 was able to generate and test functions at a

much faster rate than the PC. An additional comparison showed the speed up achieved on

the SRC-6 by using a well-programmed Verilog macro over a program written in C.

 Boolean functions are of great importance when designing running key

generators for stream ciphers in cryptosystems. These stream ciphers are responsible for

encrypting binary digits of plaintext one digit at a time into ciphertext. The ability to

defend a system against cryptanalysis depends on the Boolean function used for the

combiner function. This function must meet certain criteria to yield a cryptographically

secure scheme that can resist known attacks such as linear and correlation attacks. The

ideal function would be bent, have high correlation immunity, and be balanced.

Unfortunately, functions with all these qualities do not exist; therefore, a balance between

these qualities must be found. This thesis is primarily focused on finding functions with

high correlation immunity, but a comparison between the correlation immunity, linearity

and balancedness is also examined and discussed.

 The Boolean function chosen for the running key generator must have a high

degree of correlation immunity to successfully defend a cryptosystem against a

correlation attack. Correlation immunity was defined by T. Siegenthaler in 1983 in

 xvi

response to correlation attacks. These attacks exploit a statistical weakness found in

functions with low correlation immunity. Functions with high correlation immunity are

uncommon and difficult to find. No practical method is known to create functions with

high correlation immunity, so exhaustive searches are required. By using the SRC-6

reconfigurable computer, the time required to find these functions was greatly reduced.

 In order to find the most effective way to generate and test functions for

correlation immunity, three similar programs were written and the computation time was

compared. The first program was written in the C programming language and executed

on an Intel Xeon processor running at 2.8 GHz, which is one of the two microprocessors

associated with the SRC-6. The C code was also modified to run on the SRC-6

reconfigurable computer, which operates at a clock speed of 100 MHz. A Verilog macro

was written to find the correlation immunity of a function generated in C code. This

macro was designed to take advantage of the parallel processing ability of the field

programmable gate arrays (FPGA) and the capability of the system to pipeline a program.

With these advantages, the SRC-6 was able to output the correlation immunity of a set of

functions at a rate of one result per clock cycle. Using the Verilog macro for four

variables on the SRC-6, we obtained a speed-up of close to 400 times the PC code and

1800 times over the C code run on SRC-6.

 With the ability to test one function every clock cycle, 100,000,000 functions can

be tested every second. This value is only limited by the clock speed of the SRC-6. Even

at this rate, all functions with six variables cannot be exhaustively tested in a feasible

amount of time. By finding smaller test sets and relationships between functions with

other cryptographically significant properties, functions of larger number of variables

with higher correlation immunity may be found.

 xvii

LIST OF ACRONYMS AND ABBREVIATIONS

FPGA Field Programmable Gate Array

FUT Function Under Test

LFSR Linear Feedback Shift Register

LUT Lookup Table

MAP Multi-Adaptive Processing

MUX Multiplexor

TT Truth Table

 xviii

THIS PAGE INTENTIONALLY LEFT BLANK

 xix

ACKNOWLEDGMENTS

I would like to express my appreciation to Dr. Jon Butler for his endless time and

support.

 xx

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. PROBLEM DEFINITION

Functions with high correlation immunity are vital in defending cryptosystems

against correlation attacks. These functions are rare, and the only known practical way to

find these functions is through an exhaustive search. In order to test for the correlation

immunity of a Boolean function, a program written in the C programming language was

executed on both the SRC-6 reconfigurable computer with a 100 MHz clock and on the

Intel Xeon processor that operates at 2.8 GHz. A similar program, written as a Verilog

macro for computation and C code for enumeration, was compiled and run on the SRC-6.

The execution times were compared to find the most effective way to generate and test

the correlation immunity of millions of functions. The time required to evaluate all

functions with more than five variables makes an exhaustive search of all functions

infeasible. Examining the properties of functions with high correlation immunity helps in

discovering subsets of Boolean functions rich in functions with high correlation

immunity. This allows functions with high correlation immunity of more variables to be

found faster with less testing. The correlation immunity of all rotation symmetric

functions and balanced functions was examined in the search for smaller test sets. In

addition, functions that possess other cryptographically significant properties, such as

high nonlinearity, are extremely important to find. This way the function can defend

against other known attacks. The relationship between nonlinearity and correlation

immunity of all functions up to five variables was examined. The results were examined

to find functions that had high degrees of multiple cryptographic properties.

B. BACKGROUND

The correlation immunity of a Boolean function was defined by T. Siegenthaler in

1983 in response to correlation attacks [8]. Correlation immunity is a measure of the

degree the outputs of a Boolean function are uncorrelated with different subsets of the

function’s inputs. Boolean functions with low order correlation immunity are more

 2

susceptible to correlation attacks than functions with higher order correlation immunity.

Discovering effective techniques to find functions with high correlation immunity are of

great value in the field of cryptology.

Cryptology is a widely used tool in communications, computer networks, and

computer security. Some of its applications include ATM cards, computer passwords,

remote computer login and commerce. Since World War II and the development of

digital computers, the methods used for encrypting data have become increasingly more

complex and the application of encryption more widespread. These advances have also

led to more advanced cryptanalysis, the study of methods for decrypting information

without the key, which has created the need for more complex ciphers. A cipher is a pair

of algorithms that are used to encrypt and decrypt data. The stream cipher used in running

key generators is made up of multiple linear feedback shift registers (LSFR) that are

combined by a Boolean function to form the keystream. The keystream is then bitwise

Exclusive-OR’d with the plaintext to create the ciphertext. A typical keystream generator

for a cryptosystem is illustrated in Figure 1. The symbols S1,S2,…,Sn represent the LSFRs,

f represents the combiner function, a Boolean function of n variables, and k is the

keystream.

Figure 1. Keystream generator from [6].

Most of the reliability and security of the cryptosystems lies in the Boolean

function used for the combiner function. Correlation attacks are possible when there is a

 3

significant correlation between the output state of an individual LSFR in the keystream

generator and the output of the combiner function. When this occurs, the attacker is able

to recover the different initializations of the LSFRs separately to reduce the cost of an

exhaustive search. This greatly reduces the complexity of the attack.

The complexity of a brute force attack on the system is ()1
2 1i

n L
i=

−∏ where Li is

the length of the i-th LSFR. If the combining function is chosen to create a relationship

between the keystream and the output of the i-th LSFR, then it is possible to only try all

2 1iL − possible initiations of the i-th LSFR; it is highly probable that the correct initiation

will be detected. This reduces the complexity of a brute force attack

to ()1,
2 1 2 1j i

n L L
j j i= ≠

− + −∏ [5]. If the combining function has correlation immunity k,

then the correlation attack must consider at least (1)k + different registers simultaneously.

While high correlation immunity is necessary when choosing the Boolean

function for the keystream generator, it is not sufficient to make the cryptosystem secure.

Most combiner functions combine criteria such as balancedness, nonlinearity, high

correlation immunity and high algebraic immunity to ensure resistance to known attacks.

Since functions that have the best of all these properties do not exist, necessary trade-offs

must be considered when choosing the combiner function in a keystream generator. We

first look at finding functions with high correlation immunity and then evaluate these

functions for other desirable cryptographic features.

C. METHOD

The only known primary methods for constructing resilient functions are for small

numbers of variables and do not allow for designing functions with a high degree or high

nonlinearity [7]. Secondary constructions use previously defined functions to create new

ones. These techniques use recursive algorithms that are not adequate in realistic

applications. Since there is no known practical way to generate a function with high

correlation immunity, an exhaustive search of all functions must be performed. To test a

function of n variables for correlation immunity k, a function is broken into 2k subsets

C(n,k) times. Each time the number of ones in each subset is calculated and compared to

 4

the number of ones in all other subsets. As n increases, so does the number of tests for

each correlation immunity value and, therefore, the time required to fully test each

function.

When using a conventional CPU, each function is tested for every value of

correlation immunity before the next function is processed. This is very inefficient. The

SRC-6 allows the use of a type of parallel programming called pipelining. This ability is

extremely valuable when a program has a long delay and can be split into multiple steps

to reach the final result. When finding the correlation immunity of a function, the

incoming function under test (FUT) does not depend on the results of the previous FUT

and, thus, allows pipelining. Here, the incoming function can start the first step as soon as

the previous function moves to the next step in the testing. By breaking the program into

efficient steps, once the first function completes the final phase an output will result

every clock cycle. The total run time then depends on the clock speed. The SRC-6

reconfigurable computer used for this thesis had a clock speed of 100 MHz, which

allowed 100,000,000 functions to be tested every second.

D. THESIS OUTLINE

The introduction, including the objective and background information, is

contained in Chapter I. Definitions and lemmas used in this thesis and a discussion on

finding functions with high correlation immunity are discussed in Chapter II. The circuit

used in this thesis is discussed and examined in Chapter III. The analysis of the results is

contained in Chapter IV. The conclusion and recommendations for further work are

contained in Chapter V. The code for the SRC-6 is contained in Appendix A. The code

for the PC is contained in Appendix B.

 5

II. CRYPTOGRAPHICALLY SIGNIFICANT FUNCTIONS

A. BACKGROUND

1. Definitions

a. Boolean Functions

A Boolean function f on n variables is a map from the n-dimensional

vector space Vn to F2, the two-element field. For a function f , let 0f = f (0,0,...,0), 1f =

f (0,0,...,1), ..., and
2 1nf
− = f (1,1,...,1). The sequence of bits, TT= (0f 1f ...

2 1nf
−

) is the

truth table representation of f [2].

b. Correlation Immunity

An n-variable function f has correlation immunity of order k if and only if,

for every fixed set of S of k variables,1 k n≤ ≤ , and for every assignment of values to the

variables in S, the weights of all subfunctions are the same [1].

Example: The following truth table shows the output for the

function 1 2 3 4 1 2 3 4(, , ,)f x x x x x x x x= ⊕ ⊕ ⊕ . To test this function for correlation immunity

of 2, all possible combinations of two variables must be considered. There are six ways

to choose two out of the four variables. For this example, 1x and 2x are the two selected

variables. These two variables can be assigned four different values, 00, 01, 10 and 11.

In order to pass this test for correlation immunity, the number of ones in the function

value for each subset of these two variables must be the same. For this function to have

correlation immunity of 2, all combinations of two variables must pass this same test. The

number of ones for each possible value of 1x and 2x is shown in Table 1. In this case, the

number of ones are the same so the test is passed.

 6

Table 1. The results of one test for a correlation immunity of two [11].

1 2 3 4x x x x f 00 01 10 11

0000 0 0

0001 1 1

0010 1 1

0011 0 0

0100 1 1

0101 0 0

0110 0 0

0111 1 1

1000 1 1

1001 0 0

1010 0 0

1011 1 1

1100 0 0

1101 1 1

1110 1 1

1111 0 0

of ones 8 2 2 2 2

c. Linear Functions

A linear function is the Exclusive-OR of one or more variables or the

constant zero function [2].

Example: 1 2 3 1 2(, ,)f x x x x x= ⊕

 7

d. Affine Functions

An affine function is a linear function or the complement of a linear

function [2].

Example: 1 2 3 1 2(, ,) 1f x x x x x= ⊕ ⊕

e. Hamming Distance

The Hamming distance between two functions is the number of places

where their truth table representations disagree [2].

f. Nonlinearity

The nonlinearity of a function f is the minimum Hamming distance

between f and all affine functions [2].

g. Bent Functions

A bent function has the largest nonlinearity of all Boolean functions [2].

h. Rotation Symmetric

A function is rotation symmetric if it is invariant under all cyclic rotations

of the inputs. Rotationly symmetric functions can be divided into orbits so that each orbit

consists of all cyclic shifts of one input [9].

Example: The truth table for the function 1 2 3 4f x x x x= ⊕ ⊕ ⊕ is

illustrated in Table 2. This function is a rotation symmetric function of four variables.

One cycle is shown for each of the six orbits in the top row of the table. Since the value

remains unchanged for all cyclic rotations of that orbit, the function is rotation

symmetric.

 8

Table 2. Rotation symmetric truth table.

x1x2x3x4 f 0000 0001 0011 0101 0111 1111
0000 0 0
0001 1 1
0010 1 1
0011 0 0
0100 1 1
0101 0 0
0110 0 0
0111 1 1
1000 1 1
1001 0 0
1010 0 0
1011 1 1
1100 0 0
1101 1 1
1110 1 1
1111 0 0

f value 0 1 0 0 1 0

i. Balanced Functions

A balanced function has the same number of 1s and 0s in its truth table

form.

j. Resiliency

A balanced function with correlation immunity k is said to be k-resilient

[5].

 9

2. Lemmas

Lemma 2.1. If a function f has correlation immunity of order k, then f is also

correlation immune of k−1 and may or may not have correlation immunity of

order k+1. [6]

Lemma 2.2. The complement of a function has the same correlation immunity as

that of the original function.

Proof: By the definition of correlation immunity, an n-variable function f has

correlation immunity of order k if and only if, for every fixed set of S of k

variables,1 k n≤ ≤ , and for every assignment of values to the variables in S, the

weights of all subfunctions are the same. The weight is calculated by the number

of 1s in each subfunction. If the size of each of the subfunctions is the same, then

the number of 0s in each subfunction must be the same. This implies that the

weight of every subfunction of f’’s complement is the same. Therefore, the

complement of a function has the same correlation immunity of the original

function. Q.E.D.

Lemma 2.3. The only functions with correlation immunity n are the zero

functions and the function whose TT value consists of all ones.

Proof: For a function to have correlation immunity of order n, all 2n subsets must

have an equal number of 1s. Since the truth table for a function of n variables only

has 2n values, then they must all be the same for all TT entries. The only way to

have all values the same is either all ones or all zeros. Therefore, the only

functions with correlation immunity n are the constant zero and one. Q.E.D

B. CRYPTOGRAPHICALLY SIGNIFICANT SUBSETS

1. Rotation Symmetric Functions

Rotation Symmetric functions are functions whose value remains unchanged

when the variables in the function are rotated circularly to each of the possible positions.

The total space of these functions is much smaller (2 /2
n n≈) than the space of all Boolean

 10

functions (22
n

). It has been experimentally shown that this set contains functions with

very desirable cryptographically properties, such as good algebraic immunity (resistance

to algebraic attack), balancedness, high correlation immunity and algebraic degree [9].

2. Balanced Functions

A balanced function has an equal number of 1s and 0s in its truth table values.

Balancedness is an important cryptographic criteria for designing the combiner function

in order to prevent the system from leaking statistical information on the plaintext when

given the ciphertext. The number of balanced functions is ()12 , 2n nC − . Although this

space is quite large, other properties of functions with high correlation immunity can be

used to decrease the size. If the correlation immunity of a function is k, these balanced

functions are k-resilient.

3. Nonlinearity

In order to break the linear property of the LSFRs, increase the period complexity

of the output sequence and avoid linear attack, the combining function must be highly

nonlinear. The nonlinearity of a function is the minimum Hamming distance between f

and all affine functions. Functions with the highest nonlinearity are called bent functions.

Bent functions are not balanced and therefore will have a correlation immunity of at most

n−2. It has been shown that the nonlinearity of any k-resilient function is smaller than or

equal to 1 12 2n k− +− if / 2 1 1n k− < + , to 1 /2 1 12 2 2n n k− − +− − if n is even and

/ 2 1 1n k− ≥ + and to
1 1 /2 22 2 [2]n k n k− + − −− if n is odd and / 2 1 1n k− ≥ + [7].

C. TESTING FOR CORRELATION IMMUNITY

For functions of five variables or less, all functions can be exhaustively tested in a

reasonable amount of time. These functions were all tested on the SRC-6 reconfigurable

computer. The code is included in Appendix A. The correlation immunity distribution for

all functions of n=3, 4 and 5 variables is shown in Table 3.

 11

Table 3. Distribution of correlation immunity for n=3,4 and 5.

n / Correlation
Immunity 0 1 2 3 4 5

3 236 16 2 2 0 0

4 64,888 636 8 2 2 0

5 4,291,827,234 3,139,004 1044 10 2 2

The rare nature of functions with high correlation immunity is shown in Table 3.

The number of functions with a given correlation immunity is known mathematically for

functions of any number of variables, but how to construct those functions is not [14].

The functions with correlation immunity n are the zero function and the function whose

TT values are all 1 which are not of interest for cryptology. As the number of variables

increases, the percentage of functions with correlation immunity greater than 0 decreases

exponentially. This makes finding these functions increasingly harder as the variable size

increases.

A common size of a function used for cryptosystems is 1024 bits, which is a

function of ten variables. Since most computers have a maximum register size of 64 bits,

finding the correlation immunity of a function greater than five variables becomes much

more complicated. The SRC-6 allows registers of any size to be created. The limitation

for finding the correlation immunity of a function depends on the total number of

functions and the clock speed of the FPGA. The clock speed is directly related to the

number of functions that can be tested. Since the number of functions increases

exponentially, the clock speed needs to be thousands of times faster just to feasibly test

for a function of six variables. Increasing the clock speed is not alone sufficient to

effectively test for the correlation immunity of functions of high variables. Therefore, the

size of the test set needs to be reduced.

A program was written in MATLAB to find and graph the correlation immunity

for all functions of four variables. The results are shown in Figure 2.

 12

0 1 2 3 4 5 6
x 104

0

0.5

1

1.5

2

2.5

3

3.5

4

Function

C
or

re
la

tio
n

Im
m

un
ity

Correlation Immunity of all Functions of 4 Variables

Figure 2. Distribution of correlation immunity for all functions, n=4.

The results for 65,536 different functions of four variables are shown in Figure 2.

The program tested the binary representation for the values of 0 (0000 0000 0000 0000 in

binary) through 65,535 (1111 1111 1111 1111 in binary). The zero function and the

function whose truth table values are all 1 have correlation immunity of 4 but are not of

interest for cryptographic purposes. Most of the functions have correlation immunity of 0,

so the graph in Figure 2 emphasizes the functions with correlation immunity greater than

0. This is a very small percentage of all Boolean functions. The results are symmetric

around the center of the test group. This supports Lemma 2.2 that states the correlation

immunity of a function’s complement is the same as the function’s. By only testing the

first half of all Boolean functions of a given variable, the number of functions needing to

be tested can be cut in half.

 13

Figure 4 is a close up of Figure 3. It can be seen that all funtions of value 255

(0000 0000 1111 1111) and less have correlation immunity 0 with the exception of the

zero function.

0 100 200 300 400 500 600 700 800 900 1000
0

0.01

0.02

0.03

0.04

0.05

0.06

Function

C
or

re
la

tio
n

Im
m

un
ity

Correlation Immunity of all Functions of 4 Variables

Figure 3. A close up section of the graph of correlation immunity of all functions,
n=4.

This is due to the fact that a function that has a correlation immunity of 1 for a

function of four variables requires that the function’s TT values have an equal number of

1s for each subset of eight bits for the four required tests. One such test divides the

function into a set of the first eight bits and a set of the second eight bits. Any function

whose decimal value is less than or equal to 255 will not have a 1 in the first eight bits.

Therefore, that function will fail at least one test for a correlation immunity of 1 which

results in a correlation immunity of 0, with the exception of the zero function. The test

size can be reduced by 2 /22
n

. In fact, in the case of functions of four variables, the first

function with correlation immunity of 1 does not occur until close to the functions whose

decimal value is 400. By finding more trends, the test size can be further reduced.

 14

D. SUMMARY

Definitions for terms used throughout this thesis which included descriptions of

important characteristics for combiner functions used in cryptosystems were provided in

this thesis. Testing for the correlation immunity was discussed. The implementation of

the circuit used to find the correlation immunity of a function is covered in the next

chapter.

 15

III. IMPLEMENTATION

A. SRC-6 CIRCUIT

A circuit was created to compute the correlation immunity of a function of n

variables. The block form is shown in Figure 4.

Figure 4. Circuit for computing the correlation immunity of a function.

This circuit was built using the Verilog programming language and executed on

the SRC-6 reconfigurable computer. The SRC-6 uses the Xilinx Vertex2 Pro FPGA. The

circuit takes a function of size 2n and tests that function for correlation immunity 1

through n simultaneously. The priority encoder receives a one-bit signal from each test

block and outputs the correlation immunity of the function. A more thorough look at the

test blocks is included in the following section.

B. CIRCUIT COMPONENTS

The circuit shown below is used to test whether a function passes a test for

correlation immunity k.

 16

Figure 5. Block diagram of the components used to test a function of n variables for
correlation immunity k.

1. Test for K Blocks

a. Combination Counter

The combination counter enumerates all values for C(n,k) combinations.

This block supplies an index to the constant weight convertor. The range of the

combination counter is based on the combinatorial number system. In a C(n,k)

combinatorial number system, integer N<C(n,k) is represented as N=ckck-1…c1, where

1 1(,) (, 1) ... (,1)k kN C c k C c k C c−= + − + + ,such that ck>ck-1>…≥0 [10].

Example: The representation of numbers in the C(6,3) combinatorial

number system where 0≤N≤19 is shown in Table 4. Each value for N can be transformed

into a binary constant weight codeword with k 1s using the definition above. The twenty

different values of N correspond to every possible way to distribute k ones over n

different positions.

 17

Table 4. The C(6,3) combinatorial number system for 0<N<19 from [10].

N c1,c2,c3 for k=3 Constant Weight

Codeword

19 543 111000

18 542 110100

17 541 110010

16 540 110001

15 532 101100

14 531 101010

13 530 101001

12 521 100110

11 520 100101

10 510 100011

9 432 011100

8 431 011010

7 430 011001

6 421 010110

5 420 010101

4 410 010011

3 321 001110

2 320 001101

1 310 001011

0 210 000111

 18

b. Index to Constant Weight Convertor

 For each value from the combination counter, the constant weight

convertor produces a binary output of size n with k ones and (n-k) zeros. The circuit for

an index to constant weight converter for n=6 and k=3 is shown in Figure 6.

Figure 6. Example of a constant weight codeword generator circuit from [10].

This circuit is made up of a cascade of k lookup tables (LUTs). At the first

stage, the index value is compared to n−k+1 values to determine the position of the first 1

in the constant weight codeword. This 1 could be placed in the first through the fourth

position in the example shown. In order for a 1 to be placed in the first position, the index

must be greater than or equal to C(n−1,k). If the index is not greater than or equal to C(n-

1,k), it must be greater than or equal to C(n−2,k) to be placed in the second position. This

process continues n-k+1 times. The final comparison will be between the index and the

value of C(k−1,k), which is zero. A 1 will be placed in the constant weight codeword at

the highest possible position based on the comparisons. The highest value of the

comparisons passed will be subtracted from the index value and that value will be used in

 19

the next LUT to determine the placement of the next 1 in the constant weight codeword.

At the end of the k LUTs, the index value will be 0 and a constant weight codeword with

k 1s will be output.

The 1s in the output represent the selected variables for the test for correlation

immunity k. In order for a function to have correlation immunity k, the function must

have the same number of 1s in each subset for all combinations of k variables. Each index

provides a different way to select k variables. Then all possible values of the chosen

variables are enumerated in the variable distributor.

c. Variable Distributor

The variable distributor assigns a binary value of n bits that represent an

entry in the function’s TT. A variable distributor is needed for each value of the two

counters. Counter 1 counts from zero to 2k−1. This enumerates all possible binary

combinations of the k 1s in the constant codeword. For example, for n=6 and k=3, the

counter ranges from 000 to 111. These values are placed in order from most significant

to least significant bit in the position corresponding to a 1 in the constant weight

codeword. This divides the 2n TT entries into k subsets. Counter 2 counts from zero to

(2n-k−1). For each subset created by counter 1, counter 2 enumerates all possible

combinations for the other n−k positions. These positions are represented by 0 in the

constant weight codeword. For each value of counter 1, counter 2 will cycle through

completely. Each time this occurs, one of the 2k subsets is created. The values of each

combination from the counter are sent to the multiplexor (MUX).

d. Multiplexor

For each multiplexor (MUX) value, the variable distributor outputs an n

bit value that is then applied to an n × 2n MUX that selects the corresponding TT table

value of the function under test (FUT).

 20

e. Adder

 Once counter 2 enumerates all values, the weight of the subset is

calculated and then compared to the number of 1s for subset created by each enumeration

of counter 1. If the number of 1s is the same for all subsets, the test is passed for that

combination counter value and the combination counter is then incremented and the

process is continued. If all tests are passed for that value of k, a 1 is set to the priority

encoder.

2. Priority Encoder

The priority encoder examines the elements of a vector of length (n+1) which

contains a 1 in the position corresponding to the value of k that the function passed all the

tests for correlation immunity k. The priority encoder selects the position of the highest 1

in the vector and returns the position value as the correlation immunity of the function.

C. PC CIRCUIT

The circuit shown in Figure 7 was implemented in C. It was run on an Intel Xeon

processor using a conventional compiler. This C code was also run on the SRC-6’s Xilinx

Virtex2 Pro FPGA. The SRC-6’s compiler can convert C code to Verilog, which creates a

circuit on the FPGA. Normally, the C code run on the FPGA is simple code used to

support the computation intensive Verilog code that runs on the FPGA. This experiment

served to improve understanding of whether computation intensive C code could be

effectively compiled into Verilog code.

 21

Figure 7. Process for computing the correlation immunity of a function using the
PC.

This circuit is similar to the circuit discussed in Chapter III.A except once a

function fails a test for correlation immunity it is removed. The tests for k blocks are

implemented in the same manner and will not be discussed further. This circuit takes

advantage of the fact that most Boolean functions have a correlation immunity of 0. With

this technique, no unnecessary tests are performed. The disadvantage is the tests are not

performed in parallel, which causes a larger delay for functions that pass more tests. Both

the SRC-6 and the Intel Xeon processor were less efficient at executing this code than the

circuit shown in Figure 1. These results are shown in Chapter IV.B.2 of this thesis. The

code is included in Appendix B.

D. SUMMARY

The circuit block diagrams for the circuit used to test a function for correlation

immunity written in both Verilog and C programming language were provided. The

blocks were discussed in detail to explain the method used to find the correlation

immunity.

 22

THIS PAGE INTENTIONALLY LEFT BLANK

 23

IV. RESULTS AND ANALYSIS

A. SRC-6

1. Background

The SRC-6 reconfigurable computer was used for the data collection in this

thesis. The SRC-6 allows the user more flexibility to achieve high performance. A

microprocessor requires the user to adapt the program to its architecture while the

reconfigurable computer allows the user to adapt the computer to their program. By

choosing an efficient logic design, the user can achieve optimum performance.

The SRC-6 is composed of two PCs, each with Pentium IV processor and five

Multi-Adaptive Processing (MAP) boards. Each MAP contains three high density Xilinx

Vertex-2 FPGAs, two of which can programmed and one for control. The SRC-6 has

four banks of common memory, 8 GB each.

Multiple files are required to run a program on the SRC-6. Code can be executed

to run on one of the two Intel microprocessors associated with SRC-6 or on the MAP.

The file structure of a typical project using a user-defined macro is shown in Figure 8.

The file main.c is written in C code and is run on the Intel processor. The file main.c calls

a subroutine, which is run on the map. The subroutine, subr.mc, is run on the MAP and is

also written in C. The subr.mc file may make a function call to a Verilog macro, either

built-in or created by the user. A makefile is used to control computation and is run on

the PC. The makefile will indicate whether a user-defined macro was used in the project.

If a user defined macro is included, then three additional files are needed. A black box

file, blk.v, lists the inputs and outputs to the macro. An information file, info, contains the

type of macro, length of latency and additional code for debugging purposes. Lastly, the

macro file itself is the code used to configure the FPGAs. All three of these files are

written in Verilog.

 24

Figure 8. Process for computing the correlation immunity of a function using the
PC, from [3].

2. Speed Up

The FPGAs on the SRC-6 have a clock speed of 100 MHz, which is much slower

than the 1000-3000 MHz operating speed of a PC. Through sophisticated use of

parallelism, even with the much slower clock speed, the SRC-6 is capable of processing

information at a much higher speed than the PC.

In order to find the most efficient way to test for the correlation immunity of

millions of functions, three different programs were written. One program was written in

C code and executed on the Intel Xeon processor at 2.8 GHz. The same program was

placed in the subr.mc file and run on the MAP. Finally, a macro was written to find the

correlation immunity of a given function and run on the MAP. The comparison of

computation time for all functions of four variables can be seen in Table 5.

 25

Table 5. Comparison of computation time for all Boolean functions of four variables.

FPGA Compute Time
Verilog Macro
(@ 100 MHz)

FPGA Compute Time
C code

(@ 100 MHz)

PC compute Time
C code

(@ 2.8 GHz)

655.36µsec 1.2387sec 190msec

The SRC-6 program written with a user defined functional macro provided a

speed up of almost 300 times that of the PC. This increase is due mostly to the parallel

processing ability of the SRC-6, allowing it to test a function for all possible values of

correlation immunity in parallel. Pipelining allows the next function to start the testing

process as soon as the previous function completes the first testing stage. Once the first

function completes the pipeline, results will be output every clock cycle. The PC is not

able to achieve this and each function is processed completely before the next function

begins. The number of tests for a function of n variables is 2n−1, so when n increases by

one, the number of test doubles. This means as the number of variables increase, the

speed up will at least double. The Verilog program performed close to 1900 times faster

than the C code executed on the MAP. In this case the compiler translated the C code into

Verilog and the FPGAs were configured based on this code. The results shown in Table 5

prove that using a Verilog macro can be much more effective than letting the compiler

translate the code itself.

3. Limitations

The main limitation for the SRC-6 is the speed of the FPGA. At 100 MHz, a

maximum of 100,000,000 functions can be tested per second. The time it would take to

find the correlation immunity of all functions at a rate of one result per clock period is

shown in Table 6.

 26

Table 6. Time to calculate the correlation immunity of all Boolean functions.

n # of Functions Computation Time for All
Boolean Functions @100
MHz

2 16 0.16 μ sec
3 256 2.56 μ sec
4 65536 655.4 μ sec
5

42950 109

42.9 sec

6

1.8447 1019

5,849 yrs

7

3.4028 1038 1.1 1023 yrs

8

1.1579 1077 3.7 1061 yrs

9

1.3408 10154 4.3 10138 yrs

It can be seen in Table 6 that at this clock speed the largest exhaustive search that

can be performed is for functions of five variables. Based on this, finding smaller subsets

that are rich in functions with high correlation immunity is extremely important. A

Virtex-5 FPGA runs at 550 MHz which would speed-up the computation time by 5.5.

However, even at this speed, an exhaustive search for all functions of six variables is not

feasible.

 27

Another limitation is the hardware space on the FPGA. The circuit grows larger as

n increases and will at some point no longer fit on the FPGA. At this point, the circuit

could use an additional FPGA. For this thesis work, only one FPGA was needed.

B. ANALYSIS

1. Balanced Functions

A C code program was written in the main.c file to create the set of balanced

functions. This program used an index to constant weight convertor to distribute the 2n/2

1s in all possible variations of positions over the n variables. The set of balanced

functions were then sent in a function call to the subr.mc file to find the correlation

immunity of each function. The code is included in Appendix A.

a. Correlation Immunity for Balanced Functions for n=4

There are C(16,8) balanced functions for n=4, which is a much smaller

space than all Boolean functions for n=4. In order for a function to have a correlation

immunity of (n−1), the function must be balanced. The distribution of correlation

immunity of balanced functions compared to the distribution of correlation immunity for

all functions of four variables is shown in Table 7. The two functions of four variables

with correlation immunity 3 are included in this set. The subset also contains all of the

functions of four variables with correlation immunity 2. The testing resulted in finding

two 3-resilient functions, eight 2-resilient functions, and 212 1-resilient functions.

Table 7. Distribution of correlation immunity for all balanced functions compared to that
of all Boolean functions of four variables.

Correlation Immunity 0 1 2 3 4

All Boolean Functions 64,888 636 8 2 2

 All Balanced Functions 12,648 212 8 2 0

 28

b. Correlation Immunity for Balanced Functions for n=5

There C(32,16) balanced functions for n=5, which is slightly over

600,000,000 functions. While the SRC-6 can compute a set of this size in six seconds, the

code to create balanced functions is more complicated for five variables. By reducing the

size of the subset, to include only functions that are balanced over the first sixteen bits

and the last sixteen bits, the code was significantly less complex. This reduction did not

eliminate any functions with correlation immunity greater than 0. According to the

definition of the test for k=1, this smaller subset contains all of the functions with

correlation immunity 1 or greater. Therefore, all balanced functions with correlation

immunity greater than or equal to 1 can be found by testing this smaller subset. The

distribution of correlation immunity for balanced functions compared to the distribution

of correlation immunity for all functions of five variables is shown in Table 8. Like the

results for 4n = , the two functions with correlation immunity n−1 are in the set of

balanced functions. Also, the ten functions with correlation immunity n−2 are in the

subset of balanced functions. This set also contains a much higher percentage of

functions with correlation immunity 1 and 2 than the set of all Boolean functions. The

testing resulted in finding two 4-resilient functions, ten 3-resilient functions, 540 2-

resilient functions and 807,428 1-resilient functions.

Table 8. Distribution of correlation immunity for all balanced functions compared to that
of all Boolean functions of five variables.

Correlation Immunity 0 1 2 3 4 5

All Boolean Functions 4,291,827,234 3,139,004 1044 10 2 2

Balanced Functions
subset 164,828,920 807,428 540 10 2 0

 29

2. Rotation Symmetric Functions

Rotation symmetric functions are a very small subset of all functions that has

been shown to contain functions that are rich in good cryptographic properties [9]. C

code was written in the main.c file to create the set of rotation symmetric functions. This

was accomplished by creating different sets called orbits, each made up of one cyclic

rotation of n bits. The value of all TT entries for each orbit may either be set to 1 or 0.

The set of rotation symmetric functions is made up of all possible combinations of these

orbits being set to 1 or 0. An index to constant weight convertor was used to set the

different values of each orbit to 1 or 0 for all possible combinations of the sets. The

program first selected zero orbits to create the zero function, then selected all possible

ways to choose one orbit to create n more functions, then all possible ways to choose two

orbits to create C(n,2) more functions, and continued until all orbits were set to 1. The

set of rotation symmetric functions were then sent in a function call to the subr.mc file to

find the correlation immunity of each function. The code is included in Appendix A.

a. Correlation Immunity for Rotation Symmetric Functions for n=4

For n=4, there are 26 rotation symmetric functions [13]. This set contains

both of functions with correlation immunity n−1, but none of the functions for n−2. The

set does contain a higher percentage of functions with correlation immunity 1 compared

to the sample size than the set of all functions. The distribution of correlation immunity

of all Boolean functions compared to the distribution of correlation immunity of rotation

symmetric functions is shown in Table 9.

Table 9. Distribution of correlation immunity for all rotation symmetric functions
compared to that of all Boolean functions of four variables.

Correlation Immunity 0 1 2 3 4

All Boolean Functions 64,888 636 8 2 2

 All Rotation Symmetric
Functions 48 12 0 2 2

 30

b. Correlation Immunity for Rotation Symmetric Functions for n=5

For n=5, there are 28 rotation symmetric functions which account for
85.9 10−× % of all Boolean functions of five variables. As in the results for n=4, this set

contains both of the functions for correlation immunity n−1, but none of the functions for

n−2. This set contains a much high percentage of functions for correlation immunity 1

and 2 than the set of all Boolean functions.

Table 10. Distribution of correlation immunity for all rotation symmetric functions
compared to that of all Boolean functions of four variables.

Correlation
Immunity 0 1 2 3 4 5

All Boolean
Functions 4,291,827,234 3,139,004 1044 10 2 2

All Rotation
Symmetric
Functions

214 34 4 0 2 2

3. Nonlinearity

A macro to find the nonlinearity from [3] was combined with the macro to find

the correlation immunity to find both properties of each function. This code is included in

Appendix A. Since the pipeline was longer for the nonlinearity circuit than the correlation

immunity circuit, a delay module was added to the correlation immunity circuitry.

ModelSim™ was used to determine the number of times the delay module would need to

be called to have equal pipelines for each circuit. The resulting program output the

correlation immunity and nonlinearity of a Boolean function every clock cycle. To verify

the results, the C program written to find the correlation immunity was executed with the

Verilog macro for nonlinearity. The circuitry was then used to test for the nonlinearity of

all functions of a given correlation immunity. This circuit produced the same results.

 31

a. Correlation Immunity and Nonlinearity for All Boolean
Functions for n=4

 The Distribution of all Boolean functions of four variables by correlation

immunity and nonlinearity is shown in Table 11. It can be seen that the highest

combination of correlation immunity and nonlinearity is a correlation immunity 1 and

nonlinearity of 4. All of the bent functions have correlation immunity 0.

Table 11. Distribution of all Boolean functions of four variables by correlation immunity
and nonlinearity.

Nonlinearity/Correlation
Immunity

0 1 2 3 4 5

0 8 12 8 2 2 32
1 512 0 0 0 0 512
2 3712 128 0 0 0 3840
3 17920 0 0 0 0 17,920
4 27504 496 0 0 0 28,000
5 14336 0 0 0 0 14,336
6 896 0 0 0 0 896

Total 64,888 636 8 2 2 65,536

b. Correlation Immunity and Nonlinearity for All Boolean
Functions for n=5

 The distribution of Boolean functions of five variables by correlation

immunity is shown in Table 12. For functions with five variables the highest nonlinearity

is 12. Based on the results, the highest combination of correlation immunity and

nonlinearity that can be achieved for a function of five variables is a nonlinearity of 12

and a correlation immunity of 2. There are 384 functions that meet these criteria.

 32

Table 12. Distribution of Boolean functions of five variables by correlation immunity and
nonlinearity.

Nonlinearity/correlation
Immunity

0 1 2 3 4 5 6

0 10 20 20 10 2 2 64
1 2,048 0 0 0 0 0 2,048
2 31,232 512 0 0 0 0 31,744
3 317,440 0 0 0 0 0 317,440
4 2,278,400 23,040 0 0 0 0 2,301,440
5 12,888,064 0 0 0 0 0 12,888,064
6 57,873,920 122,368 0 0 0 0 57,996,288
7 215,414,784 0 0 0 0 0 215,414,784
8 645,867,160 1,799,080 640 0 0 0 647,666,880
9 1,362,452,480 0 0 0 0 0 1,362,452,480
10 1,411,209,216 890,880 0 0 0 0 1,412,100,096
11 556,408,832 0 0 0 0 0 556,408,832
12 27,083,648 303,104 384 0 0 0 27,387,136

Total 4,291,827,234 3,139,004 1044 10 2 2 4,294,967,296

4. Correlation Immunity for Functions of Six Variables

The correlation immunity of a random sampling of 216 functions of six variables

was found. The SRC-6 has a built in macro that provides a random number generator.

This random number generator was used to create two 32 bit numbers that were

combined to create the TT value of a function of six variables. The distribution of the

correlation immunity for the random sampling of functions of six variables is shown in

Table 13. Even with the large sample size, no functions of correlation immunity greater

than one were found.

 33

Table 13. Distribution of a random subset of Boolean functions of six variables by
correlation immunity.

Correlation
Immunity 0 1 2 3 4 5 6

216 Boolean
Functions of Six

Variables
4,294,850,145 117,151 0 0 0 0 0

 34

THIS PAGE INTENTIONALLY LEFT BLANK

 35

V. CONCLUSION AND RECOMMENDATIONS

A. CONCLUSIONS

 In this thesis, it was shown that there is a significant benefit to using the SRC-6

reconfigurable computer to test high numbers of Boolean functions for correlation

immunity. It was shown that a well-written Verilog macro can be more effective than

allowing the compiler to translate C code into Verilog on the SRC-6. Even with the

speed-up achieved by using the SRC-6, functions of more than five variables cannot be

exhaustively tested using current technology.

 To reduce the number of functions that need to be tested to find functions with

good correlation immunity, the subsets of balanced functions and rotation symmetric

functions were examined and smaller sample sets with functions of high correlation

immunity were discovered. The characteristics of functions with higher correlation

immunity were examined to find properties to reduce the function space to be tested. The

nonlinearity and correlation immunity of all functions of four and five variables were

examined to find functions with the highest possible degree of both properties.

B. RECOMMENDATIONS

1. Circular Pipeline

A circular pipeline was developed in another thesis [12] at the Naval Postgraduate

School for finding functions with the highest nonlinearity, i.e., bent functions. In order to

find a bent function, prior to the creation of the circular pipeline, each function was tested

against all affine functions in parallel. The Hamming weight was then calculated for each

test, and the minimum was determined. This value is the function’s nonlinearity. The

functions with the highest weights are called bent functions. Most functions do not have a

single bent weight and only need to be tested against one affine function. A speed up of

55 was achieved by using a circular pipeline that removed a function once a test did not

result in a bent weight. This work could be expanded on to create a circular pipeline for

 36

correlation immunity. The number of tests passed by all functions for correlation

immunity of 1 for n=4 is shown in Figure 9. Most functions do not even pass the first

test. A circular pipeline would allow the function to be removed from the pipeline once it

fails one test.

Figure 9. Number of test passed for all functions of four variables for correlation
immunity 1.

2. Other Cryptographic Properties

This is the second time the SRC-6 at the Naval Postgraduate School was able to

achieve a significant speed-up testing functions for cryptographic properties. A speed-up

of 60,000 times was realized using the SRC-6 to test for the nonlinearity of Boolean

functions [2]. By combining the code written to find the nonlinearity and the correlation

immunity, functions were able to be evaluated for both properties. If more work could be

done for other properties, such as algebraic immunity, Boolean functions could be

evaluated for all properties in parallel. This could result in finding functions that

contained the highest degree of desired characteristics and help to find the best trade-off.

 37

3. Finding Smaller Test Sets

In order to feasibly test all functions for n=6 in a reasonable time period, the

clock speed would have to be several thousand times faster. Since that may never be

technically possible, another solution must to be found. By only looking at balanced

functions or rotation symmetric functions, a high percentage of functions with high

correlation immunity can be found. By examining the properties of functions with high

correlation immunity, we can discover additional subsets that contain high numbers of

functions with high correlation immunity.

4. Additional FPGAs

For this thesis, only one FPGA was used. Each MAP in the SRC-6 has three

FPGAs, two of which are available for programming. The only obstacle when using two

FPGAs is that the bus between the two only allows one 64-bit value to be passed at one

time. One way to avoid the problem is to not require communication between the two

FPGAs and have both FPGAs implemented to find the correlation immunity of a

function. This way, two functions could be tested per clock rather than one.

 38

THIS PAGE INTENTIONALLY LEFT BLANK

 39

APPENDIX A. SRC-6 CODE

The following code was used to calculate the correlation immunity for the set of

all Boolean functions, rotation symmetric functions and balanced functions as well as

determining the nonlinearity and correlation immunity of all Boolean functions. Only one

makefile is included in the Appendix because it is the same for every program. The

main.c and subr.mc are the only files listed for the rotation symmetric and balanced

programs. These programs used the blk.v, info and corr_imm.v files for four and five

variables listed in Section A and Section B.

A. CORRELATION IMMUNITY FOR N=4

1. main.c

/**/
/* main.c -a c program designed to run a SRC6 implentaion of */
/* corr_imm.v */
/* */
/* Authur: Carole Etherington */
/* Last Modified: 04Nov2010 */
/* */
/* Description: This file creates every possible 16 bit */
/* binary number then calls a subroutine that returns */
/* the corrleation */
/* immunity of that function. */
/**/
#include <map.h>
#include <stdlib.h>

void subr (int64_t*, int64_t*, int64_t*, int);

int main()
{ FILE *res_map,*res_cpu;
 int mapnum=0;
 int n=4;
 int64_t i;
 int64_t time_clk;
 int64_t *x, *ci;
 int count[5];

 x = (int64_t *) malloc (65536* sizeof(int64_t));
 ci = (int64_t *) malloc (65536* sizeof(int64_t));

 for(i=0;i<size;i++)
 {x[i]=i;

 40

 ci[i]=0;}

 map_allocate(1);
 subr(x,ci,&time_clk,mapnum);
 printf("%lld clocks\n",time_clk);
 for(i=0;i<=n;i++)
 {count[i]=0;}
 for(i=0;i<size;i++)
 {switch(ci[i])
 {case 0: count[0]=count[0]+1;
 break;
 case 1: count[1]=count[1]+1;
 break;
 case 2: count[2]=count[2]+1;
 break;
 case 3: count[3]=count[3]+1;
 break;
 case 4: count[4]=count[4]+1;
 break;
 default:
 break;
 }}

 printf("the number of functions with correlation
immunity zero is %lld\n",count[0]);
 printf("the number of functions with correlation
immunity one is %lld\n",count[1]);
 printf("the number of functions with correlation
immunity two is %lld\n",count[2]);
 printf("the number of functions with correlation
immunity three is %lld\n",count[3]);
 printf("the number of functions with correlation
immunity four is %lld\n",count[4]);

 map_free(1);
 exit(0);

 }

2. subr.mc

/***/
/* subr.mc -MAP subroutine to find the correlation immunity of */
/* all four variable functions. */
/* */
/* Author: Carole Etherington */
/* Last modified: November 4, 2010 */
/* */
/* Description: This program calls the macro my_operator */
/* that finds the correlation immunity of a given function*/
/* and returns the correlation immunity of the function */
/* to the program main.c. */
/* */
/***/

 41

#include <libmap.h>

void subr (int64_t x[], int64_t ci[], int64_t *time, int mapnum)
{
 OBM_BANK_A(X, int64_t, 65536)
 OBM_BANK_B(CI, int64_t,65536)
 int64_t t0,t1;
 int i;
 int64_t myin;
 int8_t myout;

 DMA_CPU(CM2OBM, X,
 MAP_OBM_stripe(1,"A"),x,1,65536*sizeof(int64_t),0);
 wait_DMA(0);

 read_timer(&t0);

 for(i=0;i<65536;i++)
 {myin=X[i];
 my_operator(myin, &myout);
 CI[i]=myout;
 }

 read_timer(&t1);
 *time=(t1-t0);

DMA_CPU(OBM2CM,CI,MAP_OBM_stripe(1,"B"),ci,1,65536*sizeof(int64_t),0);
 wait_DMA(0);

 }

3. makefile

$Id: Makefile.template,v 1.13 2005/04/12 19:18:30 jls Exp $

Copyright 2003 SRC Computers, Inc. All Rights Reserved.

Manufactured in the United States of America.

SRC Computers, Inc.
4240 N Nevada Avenue
Colorado Springs, CO 80907
(v) (719) 262-0213
(f) (719) 262-0223

No permission has been granted to distribute this software
without the express permission of SRC Computers, Inc.

This program is distributed WITHOUT ANY WARRANTY OF ANY KIND.

User defines FILES, MAPFILES, and BIN here

 42

FILES = main.c

MAPFILES = subr.mc

BIN = main

Multi chip info provided here
(Leave commented out if not used)

#PRIMARY = <primary file 1> <primary file 2>

#SECONDARY = <secondary file 1> <secondary file 2>

#CHIP2 = <file to compile to user chip 2>

#-----------------------------------
User defined directory of code routines
that are to be inlined
#------------------------------------
#INLINEDIR =

User defined macros info supplied here

(Leave commented out if not used)

MACROS = my_macro/corr_imm.v
MY_BLKBOX = my_macro/blk.v
MY_NGO_DIR = my_macro
MY_INFO = my_macro/info

Floating point macros selection

#FPMODE = SRC_IEEE_V1 # Default SRC version IEEE
#FPMODE = SRC_IEEE_V2 # Size reduced SRC IEEE with
special rounding mode

User supplied MCC and MFTN flags

MCCFLAGS = -v
MFTNFLAGS = -v

User supplied flags for C & Fortran compilers

CC = gcc # icc for Intel cc for Gnu
FC = ifort # ifort for Intel f77 for Gnu
#LD = ifort -nofor_main # for mixed C and Fortran, main in
C
#LD = ifort # for Fortran or C/Fortran mixed, main in
Fortran
LD = gcc # for C codes
MY_CFLAGS =
MY_FFLAGS =
MY_LDFLAGS = # Flags to include libs if needed

 43

VCS simulation settings
(Set as needed, otherwise just leave commented out)

#USEVCS = yes # YES or yes to use vcs instead of vcsi
#VCSDUMP = yes # YES or yes to generate vcd+ trace dump

MODELSIM simulation settings
(Set as needed, otherwise just leave commented out)

#USEMDL = yes # YES or yes to use modelsim instead of
vcs/vcsi
#USEMDLGUI = yes # YES or yes to use modelsim GUI interface
#MDLDUMP = yes # YES or yes to generate vcd trace dump

No modifications are required below

MAKIN ?= $(MC_ROOT)/opt/srcci/comp/lib/AppRules.make
include $(MAKIN)

4. blk.v

/**/
/* blk.v -a black-box file that specifies the input/output of */
/* corr_imm.v */
/* */
/* Authur: Carole Etherington */
/* Last Modified: 04Nov2010 */
/**/
module corr_imm(TT_ext,CI_ext,CLK);
input CLK;
input[63:0] TT_ext;
output[7:0] CI_ext;
endmodule

5. info

/**/
/* info - This file provides information on the latency, inputs,*/
/* outputs for the macro, type of macro and output for */
/* debugging purposes */
/* Authur: Carole Etherington */
/* Last Modified: 04Nov2010 */
/**/
BEGIN_DEF "my_operator"
MACRO= "corr_imm";
STATEFUL =NO;
EXTERNAL =NO;
PIPELINED =YES;
LATENCY =2;

INPUTS=1:
I0=INT 64 BITS (TT_ext[63:0])

 44

OUTPUTS=1:
O0=INT 8 BITS(CI_ext[7:0]);

IN_SIGNAL: 1 BITS "CLK"="CLOCK";

DEBUG_HEADER =#
 void my_operator__dbg(int64_t TT, int8_t *CI_Ptr);
#;

DEBUG_FUNC=#
 void my_operator__dbg (int64_t TT,int8_t *CI_Ptr)
 {*CI_Ptr=2;}
 #;

END_DEF

6. corr_imm.v

module corr_imm (CI_ext, TT_ext, CLK);
/***/
/* corr_imm -Verilog code that accepts the truth table, TT, of an */
/* n-variable function and produces the correlation */
/* immunity, C, of that function. */
/* Created: October 8, 2010 */
/* Last Modified: November 4, 2010 */
/* Author: C. Etherington and J. T. Butler */
/**/
parameter n = 4; // n = number of variables
localparam N = 2**n;
localparam m = clogb2(n); // m = number of bits to represent n.
wire [N-1:0] TT; // The truth table of the given function.
input [63:0] TT_ext;
input CLK;
wire [m-1:0] CI; // C can be as large as ceil(log_2(n)..
output [7:0] CI_ext;
wire [n:0] k; //k[i] = 1 iff function has cor. im. at
least i.
genvar i;

generate
 assign k[0]=1'b1; //function will always have at least correlation
immunity zero
 assign TT =TT_ext[N-1:0];

 for (i=1; i<=n; i = i+1)// Enumerate i the index of k to
 determine highest correlation.
 begin:mult_k
 cor_im_i #(.n(n),.i(i)) u1 (k[i], TT,CLK); //k[i]=1
 iff TT has cor. im. at least i.
 end
endgenerate

pri_enc u2 (CI, CLK, k);

assign CI_ext = { {(8-m){1'b0}}, CI };

 45

//Constant function to find the ceiling of log base two of d
function integer clogb2(input integer d);
 begin
 for(clogb2=0; d>0; clogb2 = clogb2 + 1)
 d = d >> 1;
 end
endfunction

endmodule

module cor_im_i (k_i, TT,CLK);
/**/
/* corr_imm_i Verilog code that accepts the truth table, TT, of */
/* an n-variable function and produces k_i=1 iff the */
/* function has cor. im. at least i, where i is a */
/* parameter. That is, corr_imm_i is a called from a */
/* generate for loop with index i. corr_imm_i then */
/* enumerates all combinations of i input variables */
/* and produces k_i=1 iff for all assignments of */
/* values to the i input variables the function has */
/* the same number of 1's (and holds for all */
/* combinations). This circuit consists of many */
/* adders, which add the number of 1's in portions */
/* of the truth table of the function. This circuit */
/* performs the following sequential code for some */
/* combination of i variables indexed by comb */
/* (0 <= comb < C(n,i)). */
/* Created: October 8, 2010 */
/* Last Modified: November 22 18, 2010 */
/* Author: C. Etherington and J. T. Butler */
/***/
parameter n = 4; // n = the number of variables
parameter i = 2;
localparam N = 2**n;
localparam size=comb_nk(n,i); //finds the number of possible
 //combinations for choosing
 //i variables from the number of
 //variables in the function
input [N-1:0] TT; // The truth table of the given function.
input CLK;
output k_i; // C can be as large as ceil(log_2(n)..
reg k_i;
reg [n-1:0] sum [64:0];
integer comb,u,v,cwc;

always @(posedge CLK)

begin
 k_i=1;
 for (comb=0; comb<size; comb=comb+1) //total number of ways to pick
 //i varaibles from n
 begin
 if(k_i==1)

 46

 begin
 cwc=int2cwc(n,i,comb);
 for (u=0; u<=(2**i-1); u=u+1) //ennumerates the number of
 //subfunctions of size i with
 //different values
 begin //Scan the 2**i subfunctions.
 sum[u] = 0; //stores number of ones initially set
 //to zero
 for(v=0; v<=2**(n-i)-1; v=v+1) //ennumerates the possible
 //values of n-i variables
 begin
 sum[u] = sum[u] + TT[index(n,i,cwc,u,v)];//totals the
 //number of ones for each value of u.
 //by finding the fuction value for a
 //set u and for each value of v.
 end
 end

 for (u=0; u<2**i-1; u=u+1)
 begin //Check that all subfunctions have the same
 if (sum[u] != sum[u+1])//number of 1s. If not, set k_i=0.
 k_i = 0
 end

 end
 end
 end
//Constant function
function integer index;//Index to TT.
input integer n; //Number of variables.
input integer i; //Prospective cor. im. (1 <= i <= n)
input integer cwc; //Index to i-combination. comb[0]=5 comb[1]=4

//comb[2]=3 => 111000
input integer u; //Index to subfunction - 0 <= u < 2^i.
input integer v; //Index to minterm of subfunction - 0 <= v <

//2^(n-i).
integer cwc_temp;
integer u_idx, v_idx, c_idx;
integer u_temp, v_temp;
integer temp;
begin
 u_idx=i-1;
 v_idx=n-i-1;
 index=0;
 u_temp=u;
 v_temp=v;
 cwc_temp=cwc;

 //the following loop finds the truth table index given a set u and v
 //the binary values of u will be place in the corresponding the
binary values of u will be place
 //in the corresponding binary one position of the CWC and the
binary values of v are placed in
 //the binary zero positions of the CWC
 for(c_idx=(n-1);c_idx>=0;c_idx=c_idx-1)

 47

 begin
 if((cwc_temp-2**c_idx)>=0) //does the cwc have a one in the

//c_idx position
 begin
 cwc_temp=cwc_temp-2**c_idx;
 if((u_temp-2**u_idx)>=0)//if the u binary value has a one in

//the u_idx position then
 begin //the index binary value will have a

//one in the cwc_idx position
 index=index+2**c_idx;
 u_temp=u_temp-2**u_idx;
 end
 u_idx=u_idx-1;//one less u binary value to place in index

//value
 end
 else //if the cwc has a zero in the c_idx position
 begin
 if((v_temp-2**v_idx)>=0)//if the binary v value has a one

//in the v_idx position
 begin //then the index value will have a

//one in the cwc_idx position
 index=index+2**c_idx;
 v_temp=v_temp-2**v_idx;
 end
 v_idx=v_idx-1; //one less binary v value to place
 end
 end
end
endfunction

function integer int2cwc(input integer n, input integer i, input
integer comb);
 //functions uses the index value to assign exactly i ones to a n bit
 //string
 integer N,k,comb_temp,temp;
 begin
 N=n-1;// number of positions to place a one from n-1 to zero
 k=i; //number of ones
 comb_temp=comb;
 int2cwc=0;
 while(k>=1//loop continues until all ones have been placed in the

//string
 begin
 temp=comb_nk(N,k);
 if(comb_temp-temp>=0) //if comb is greater than N choose k
 begin
 int2cwc=int2cwc+2**N;// then place a one in the N position
 comb_temp=comb_temp-temp;
 k=k-1;//decrease number of ones to place
 end
 N=N-1;//decrease the number of positions to place a one.
 end
end
endfunction

 48

function integer comb_nk(input integer n, input integer k);
integer k_h,k_l,i;
begin:f2
 if(n < k)
 comb_nk = 0;
 else
 begin
 k_h = k;
 k_l = n - k;
 if (k_l > k_h)
 begin
 k_h = n - k;
 k_l = k;
 end
 comb_nk = 1;
 for(i = n; i>k_h; i = i-1)
 comb_nk = comb_nk*i;
 for(i = 1; i<=k_l; i = i+1)
 comb_nk = comb_nk/i;
 end
end
endfunction
endmodule

module pri_enc (CI, CLK, k);
/***/
/* pri_enc-Verilog code for a priority encoder. It examines elements*/
/* of vector k[i], which will be 1 for 1 <= j and 0 for */
/* j+1 <= n, in which case the correlation immunity, CI is j*/
/* and produces the correlation immunity, C, of that */
/* function. */
/* Created: October 8, 2010 */
/* Last Modified: October 11, 2010 */
/* Author: C. Etherington and J. T. Butler */
/***/
parameter n = 4; // n = the number of variables
localparam m = clogb2(n);
input CLK;
input [n:0] k;// k[i]=1 means function has cor. im. at least i.
output [m-1:0] CI; // CI can be as large as ceil(log_2(n).
reg [m-1:0] CI;
integer i=1;

always @(posedge CLK)
 begin
 i = 0; //Set i = 0 and check, for each i from
 while ((i<=n) && (k[i] == 1'b1)) // 0 to n, if k[i]=1. When

 //k[i+1] = 0,
 begin:stage // set CI to i.
 i = i+1
 end
 CI = i-1;
 end

//Constant function

 49

function integer clogb2(input integer d);
 begin
 for(clogb2=0; d>0; clogb2 = clogb2 + 1)
 d = d >> 1;
 end
endfunction
endmodule

B. CORRELATION IMMUNITY FOR N=5

1. main.c

/**/
/* */
/* main.c -a c program designed to run a SRC6 implentaion of */
/* corr_imm.v */
/* */
/* Authur: Carole Etherington */
/* Last Modified: 15Nov2010 */
/* */
/* Description: This file calls a subroutine that returns */
/* the corrleation immunity of that function for n=5. */
/**/
#include <map.h>
#include <stdlib.h>

void subr (int64_t*, int64_t*, int);

int main()
{ FILE *res_map,*res_cpu;
 int mapnum=0;
 int n=5;
 int64_t i;
 int64_t time_clk;
 int64_t *ci;
 int count[n];

 ci = (int64_t *) malloc (6* sizeof(int64_t));

 for(i=0;i<6;i++)
 {
 ci[i]=0;}

 map_allocate(1);
 subr(ci,&time_clk,mapnum);

 printf("%lld clocks\n",time_clk);

 50

printf("the number of functions with correlation immunity zero is
%lld\n",ci[0]);
printf("the number of functions with correlation immunity one is
%lld\n",ci[1]);
printf("the number of functions with correlation immunity two is
%lld\n",ci[2]);
printf("the number of functions with correlation immunity three is
%lld\n",ci[3]);
printf("the number of functions with correlation immunity three is
%lld\n",ci[4]);
printf("the number of functions with correlation immunity four is
%lld\n",ci[5]);

 map_free(1);
 exit(0);
 }

2. subr.mc

/***/
/* */
/* subr.mc -MAP subroutine to find the correlation immunity of */
/* all five variable functions. */
/* */
/* Author: Carole Etherington */
/* */
/* Last modified: November 15, 2010 */
/* */
/* */
/* Description: This program calls the macro my_operator */
/* that finds the correlation immunity of a given function*/
/* and returns the correlation immunity of the function */
/* in a histogramto the program main.c. */
/* */
/***/
#include <libmap.h>

void subr (int64_t ci[], int64_t *time, int mapnum)
{
 OBM_BANK_B(CI, int64_t,6)
 int64_t t0,t1;
 int64_t i,j;
 int k,sel;
 int64_t i0,i1;
 int8_t myout;
 int64_t size;
 int64_t a,b;
 int n=5;
 int64_t H0[5], H1[5],H2[5],H3[5];
 read_timer(&t0);
 k=0;
 for(i=0;i<65536;i++)
 {
 for(j=0;j<65536;j++)
 { i0=i;

 51

 i1=j;
 my_operator(i0,i1,&myout);
 sel=k&3;
 if(sel==0)
 H0[myout]++;
 if(sel==1)
 H1[myout]++;
 if(sel==2)
 H2[myout]++;
 if(sel==3)
 H3[myout]++;
 k++;
 } }

 for(i=0;i<=n;i++)
 CI[i]=H0[i]+H1[i]+H2[i]+H3[i];

 read_timer(&t1);
 *time=(t1-t0);

 DMA_CPU(OBM2CM,CI,MAP_OBM_stripe(1,"B"),ci,1,6*sizeof(int64_t),0);
 wait_DMA(0);}

 3. blk.v

/**/
/* */
/* blk.v -a black-box file that specifies the input/output of */
/* corr_imm.v */
/* */
/* Authur: Carole Etherington */
/* Last Modified: 15Nov2010 */
/* */
/**/
module corr_imm(TT_ext,TT2_ext,CI_ext,CLK);
input CLK;
input[63:0] TT_ext;
input[63:0] TT2_ext;
output[7:0] CI_ext;

endmodule

 4. info

/**/
/* */
/* info - This file provides information on the latency, inputs,*/
/* outputs for the macro, type of macro and output for */
/* debugging purposes */
/* Authur: Carole Etherington */
/* Last Modified: 15Nov2010 */
/* */
/**/
BEGIN_DEF "my_operator"

 52

MACRO= "corr_imm";
STATEFUL =NO;
EXTERNAL =NO;
PIPELINED =YES;
LATENCY =4;

INPUTS=2:
I0=INT 64 BITS (TT_ext[63:0])
I1=INT 64 BITS (TT2_ext[63:0]);

OUTPUTS=1:
O0=INT 8 BITS(CI_ext[7:0]);

IN_SIGNAL: 1 BITS "CLK"="CLOCK";

DEBUG_HEADER =#
 void my_operator__dbg(int64_t TT,int64_t TT2, int8_t *CI_Ptr);
#;
DEBUG_FUNC=#
 void my_operator__dbg (int64_t TT, int64_t TT2,int8_t *CI_Ptr)
 {*CI_Ptr=2;}
 #;

END_DEF

 5. corr_imm.v

module corr_imm (CI_ext, TT_ext,TT2_ext, CLK);
/***/
/* corr_imm -Verilog code that accepts the truth table, TT, of an */
/* n-variable function and produces the correlation */
/* immunity, C, of that function. */
/* Created: October 8, 2010 */
/* Last Modified: November 15, 2010 */
/* Author: C. Etherington and J. T. Butler */
/***/
parameter n = 5; // n = number of variables
localparam N = 2**n;
localparam m = clogb2(n); // m = number of bits to represent n.

wire [N-1:0] TT; // The truth table of the given function.
input [63:0] TT_ext;
input [63:0] TT2_ext;

input CLK;
wire [m-1:0] CI; // C can be as large as ceil(log_2(n)..
output [7:0] CI_ext;

wire [n:0] k//k[i] = 1 iff function has cor. im. at least i.
genvar i;

generate
 assign k[0]=1'b1; //function will always have at least correlation

//immunity zero

 53

 assign TT[31:16] =TT_ext[15:0];
 assign TT[15:0]= TT2_ext[15:0];

 for (i=1; i<=n; i = i+1)// Enumerate i the index of k to

//determine highest correlation.
 begin:mult_k
 cor_im_i #(.n(n),.i(i)) u1 (k[i], TT,CLK); //k[i]=1

//iff TT has cor. im. at least i.
 end

endgenerate

pri_enc u2 (CI, CLK, k);

assign CI_ext = { {(8-m){1'b0}}, CI };

//Constant function to find the ceiling of log base two of d
function integer clogb2(input integer d);
 begin
 for(clogb2=0; d>0; clogb2 = clogb2 + 1)
 d = d >> 1;
 end
endfunction

endmodule

module cor_im_i (k_i, TT,CLK);
/**/
/* corr_imm_i Verilog code that accepts the truth table, TT, of */
/* an n-variable function and produces k_i=1 iff the */
/* function has cor. im. at least i, where i is a */
/* parameter. That is, corr_imm_i is a called from a */
/* generate for loop with index i. corr_imm_i then */
/* enumerates all combinations of i input variables */
/* and produces k_i=1 iff for all assignments of */
/* values to the i input variables the function has */
/* the same number of 1's (and holds for all */
/* combinations). This circuit consists of many */
/* adders, which add the number of 1's in portions */
/* of the truth table of the function. This circuit */
/* performs the following sequential code for some */
/* combination of i variables indexed by comb */
/* (0 <= comb < C(n,i)). */
/* Created: October 8, 2010 */
/* Last Modified: November 15, 2010 */
/* Author: C. Etherington and J. T. Butler */
/***/
parameter n = 5; // n = the number of variables
parameter i = 2;
localparam N = 2**n;
localparam size=comb_nk(n,i); //finds the number of possible

//combinations for choosing
 //i variables from the number of

//variables in the function
input [N-1:0] TT; // The truth table of the given function.

 54

input CLK;
output k_i; // C can be as large as ceil(log_2(n)..
reg k_i;
reg [n-1:0] sum [64:0];
integer comb,u,v,cwc;

always @(posedge CLK)
begin
 k_i=1;
 for (comb=0; comb<size; comb=comb+1) //total number of ways to pick
i varaibles from n
 begin
 // if(k_i==1)
 begin
 cwc=int2cwc(n,i,comb);
 for (u=0; u<=(2**i-1); u=u+1) //ennumerates the number of

//subfunctions of size i with different values
 begin //Scan the 2**i subfunctions.
 sum[u] = 0; //stores number of ones initially set to zero
 for(v=0; v<=2**(n-i)-1; v=v+1)//ennumerates the possible

//values of n-i variables
 begin
 sum[u] = sum[u] + TT[index(n,i,cwc,u,v)];//totals the

//number of ones for each value of u.
 //by finding the fuction value for a set u

//and for each value of v.
 end
 end

 for (u=0; u<2**i-1; u=u+1)
 begin //Check that all subfunctions have the same
 if (sum[u] != sum[u+1])// number of 1s. If not, set k_i=0.
 k_i = 0;

 end
 end
 end
 end
//Constant function
function integer index;//Index to TT.
input integer n; //Number of variables.
input integer i; //Prospective cor. im. (1 <= i <= n)
input integer cwc; //Index to i-combination. comb[0]=5 comb[1]=4

//comb[2]=3 => 111000
input integer u; //Index to subfunction 0 <= u < 2^i.
input integer v; //Index to minterm of subfunction - 0 <= v < 2^(n-i).

integer cwc_temp;
integer u_idx, v_idx, c_idx;
integer u_temp, v_temp;
integer temp;
begin

 u_idx=i-1;
 v_idx=n-i-1;

 55

 index=0;
 u_temp=u;
 v_temp=v;
 cwc_temp=cwc;

 //the following loop finds the truth table index given a set u and v
 //the binary values of u will be place in the corresponding the
binary values of u will be place
 //in the corresponding binary one position of the CWC and the
binary values of v are placed in
 //the binary zero positions of the CWC
 for(c_idx=(n-1);c_idx>=0;c_idx=c_idx-1)
 begin
 if((cwc_temp-2**c_idx)>=0)//does the cwc have a one in the c_idx
 begin
 cwc_temp=cwc_temp-2**c_idx;
 if((u_temp-2**u_idx)>=0)//if the u binary value has a one in

//the u_idx position then
 begin //the index binary value will have a

//one in the cwc_idx position
 index=index+2**c_idx;
 u_temp=u_temp-2**u_idx;
 end
 u_idx=u_idx-1;//one less u binary value to place in index

//value
 end
 else //if the cwc has a zero in the c_idx position
 begin
 if((v_temp-2**v_idx)>=0)//if the binary v value has a one

//in the v_idx position
 begin //then the index value will have a

//one in the cwc_idx position
 index=index+2**c_idx;
 v_temp=v_temp-2**v_idx;
 end
 v_idx=v_idx-1; //one less binary v value to place
 end
 end
end
endfunction

function integer int2cwc(input integer n, input integer i, input
integer comb);
//functions uses the index value to assign exactly i ones to a n bit
//string
 integer N,k,comb_temp,temp;
 begin
 N=n-1;// number of positions to place a one from n-1 to zero
 k=i; //number of ones
 comb_temp=comb;
 int2cwc=0;
 while(k>=1) //loop continues until all ones have been placed in the

 //string
 begin
 temp=comb_nk(N,k);

 56

 if(comb_temp-temp>=0) //if comb is greater than N choose k
 begin
 int2cwc=int2cwc+2**N;// then place a one in the N position
 comb_temp=comb_temp-temp;
 k=k-1;//decrease number of ones to place
 end
 N=N-1;//decrease the number of positions to place a one.
 end
end
endfunction

function integer comb_nk(input integer n, input integer k);
integer k_h,k_l,i;
begin:f2
 if(n < k)
 comb_nk = 0;
 else
 begin
 k_h = k;
 k_l = n - k;
 if (k_l > k_h)
 begin
 k_h = n - k;
 k_l = k;
 end

 comb_nk = 1;
 for(i = n; i>k_h; i = i-1)
 comb_nk = comb_nk*i;
 for(i = 1; i<=k_l; i = i+1)
 comb_nk = comb_nk/i;
 end
end
endfunction

endmodule

module pri_enc (CI, CLK, k);
/***/
/* pri_enc-Verilog code for a priority encoder. It examines elements*/
/* of vector k[i], which will be 1 for 1 <= j and 0 for */
/* j+1 <= n, in which case the correlation immunity, CI is j*/
/* and produces the correlation immunity, C, of that */
/* function. */
/* Created: October 8, 2010 */
/* Last Modified: November 15, 2010 */
/* Author: C. Etherington and J. T. Butler */
/***/
parameter n = 5; // n = the number of variables
localparam m = clogb2(n);
//
input CLK;
input [n:0] k; // k[i]=1 means function has
cor. im. at least i.

 57

output [m-1:0] CI; // CI can be as large as
ceil(log_2(n).
reg [m-1:0] CI;
integer i=1;

always @(posedge CLK)
 begin
 i = 0; //Set i = 0 and check, for each i from

 while ((i<=n) && (k[i] == 1'b1)) // 0 to n, if k[i]=1. When
//k[i+1] = 0,

 begin:stage
 i = i+1;

end
 CI = i-1;
 end

C. CORRELATION IMMUNITY FOR N=6

1. main.c

/**/
/* */
/* main.c -a c program designed to run a SRC6 implentaion of */
/* corr_imm.v */
/* */
/* Authur: Carole Etherington */
/* Last Modified: 22Nov2010 */
/* */
/* Description: This file calls a subroutine that returns */
/* the corrleation immunity of that function for n=6. */
/**/
#include <map.h>
#include <stdlib.h>

void subr (int64_t*, int64_t*, int);

int main()
{ FILE *res_map,*res_cpu;
 int mapnum=0;
 int n=6;
 int64_t i;
 int64_t time_clk;
 int64_t *ci;
 int count[n];

 ci = (int64_t *) malloc (7* sizeof(int64_t));

 for(i=0;i<7;i++)
 {
 ci[i]=0;}

 58

 map_allocate(1);
 subr(ci,&time_clk,mapnum);

 printf("%lld clocks\n",time_clk);
printf("the number of functions with correlation immunity zero is
%lld\n",ci[0]);
printf("the number of functions with correlation immunity one is
%lld\n",ci[1]);
printf("the number of functions with correlation immunity two is
%lld\n",ci[2]);
printf("the number of functions with correlation immunity three is
%lld\n",ci[3]);
printf("the number of functions with correlation immunity three is
%lld\n",ci[4]);
printf("the number of functions with correlation immunity three is
%lld\n",ci[5]);
printf("the number of functions with correlation immunity four is
%lld\n",ci[6]);

 map_free(1);
 exit(0);

 }

2. subr.mc

/***/
/* */
/* subr.mc -MAP subroutine to find the correlation immunity of */
/* all five variable functions. */
/* */
/* Author: Carole Etherington */
/* */
/* Last modified: November 22, 2010 */
/* */
/* */
/* Description: This program calls the macro my_operator */
/* that finds the correlation immunity of a given function*/
/* and returns the correlation immunity of the function */
/* in a histogramto the program main.c. */
/* */
/***/
#include <libmap.h>
void src_random_32 (int enable, int seed, int reset, int* output);

void subr (int64_t ci[], int64_t *time, int mapnum)
{
 OBM_BANK_B(CI, int64_t,7)
 int64_t t0,t1;
 int64_t i,j;
 int k,sel;
 int64_t i0,i1;
 int8_t myout;
 int64_t size;
 int64_t a,b;

 59

 int n=5;
 int64_t H0[5], H1[5],H2[5],H3[5];
 read_timer(&t0);
 k=0;
 for(i=0;i<65536;i++)
 {
 for(j=0;j<65536;j++)
 {i0=src_random_32 (1, seed, i==0, &rndm);
 i1=src_random_32 (1, seed, j==0, &rndm);
 my_operator(i0,i1,&myout);

sel=k&3;
 if(sel==0)
 H0[myout]++;
 if(sel==1)
 H1[myout]++;
 if(sel==2)
 H2[myout]++;
 if(sel==3)
 H3[myout]++;
 k++;
 } }

 for(i=0;i<=n;i++)
 CI[i]=H0[i]+H1[i]+H2[i]+H3[i];

 read_timer(&t1);
 *time=(t1-t0);

 DMA_CPU(OBM2CM,CI,MAP_OBM_stripe(1,"B"),ci,1,7*sizeof(int64_t),0);
 wait_DMA(0);
 }

 3. blk.v

/**/
/* */
/* blk.v -a black-box file that specifies the input/output of */
/* corr_imm.v */
/* */
/* Authur: Carole Etherington */
/* Last Modified: 22Nov2010 */
/* */
/**/
module corr_imm(TT_ext,TT2_ext,CI_ext,CLK);
input CLK;
input[63:0] TT_ext;
input[63:0] TT2_ext;
output[7:0] CI_ext;
endmodule

4. info

/**/
/* */

 60

/* info - This file provides information on the latency, inputs,*/
/* outputs for the macro, type of macro and output for */
/* debugging purposes */
/* Authur: Carole Etherington */
/* Last Modified: 22Nov2010 */
/* */
/**/
BEGIN_DEF "my_operator"
MACRO= "corr_imm";
STATEFUL =NO;
EXTERNAL =NO;
PIPELINED =YES;
LATENCY =4;

INPUTS=2:
I0=INT 64 BITS (TT_ext[63:0])
I1=INT 64 BITS (TT2_ext[63:0]);

OUTPUTS=1:
O0=INT 8 BITS(CI_ext[7:0]);

IN_SIGNAL: 1 BITS "CLK"="CLOCK";

DEBUG_HEADER =#
 void my_operator__dbg(int64_t TT,int64_t TT2, int8_t *CI_Ptr);
#;

DEBUG_FUNC=#
 void my_operator__dbg (int64_t TT, int64_t TT2,int8_t *CI_Ptr)
 {*CI_Ptr=2;}
 #;
END_DEF

 5. corr_imm.v

module corr_imm (CI_ext, TT_ext,TT2_ext, CLK);
/**/
/* corr_imm_i Verilog code that accepts the truth table, TT, of */
/* an n-variable function and produces k_i=1 iff the */
/* function has cor. im. at least i, where i is a */
/* parameter. That is, corr_imm_i is a called from a */
/* generate for loop with index i. corr_imm_i then */
/* enumerates all combinations of i input variables */
/* and produces k_i=1 iff for all assignments of */
/* values to the i input variables the function has */
/* the same number of 1's (and holds for all */
/* combinations). This circuit consists of many */
/* adders, which add the number of 1's in portions */
/* of the truth table of the function. This circuit */
/* performs the following sequential code for some */
/* combination of i variables indexed by comb */
/* (0 <= comb < C(n,i)). */
/* Created: October 8, 2010 */
/* Last Modified: November 22, 2010 */
/* Author: C. Etherington and J. T. Butler */

 61

/***/
parameter n = 6; // n = number of variables
localparam N = 2**n;
localparam m = clogb2(n); // m = number of bits to represent
n.

wire [N-1:0] TT; // The truth table of the given function.
input [63:0] TT_ext;
input [63:0] TT2_ext;

input CLK;
wire [m-1:0] CI; // C can be as large as ceil(log_2(n)..
output [7:0] CI_ext;

wire [n:0] k;//k[i] = 1 iff function has cor. im. at least i.
genvar i;

generate
 assign k[0]=1'b1;
 assign TT[31:0] =TT_ext[31:0];
 assign TT[63:32]= TT2_ext[31:0];

 for (i=1; i<=n; i = i+1)// Enumerate i the index of k to determine

//highest correlation.
 begin:mult_k
 cor_im_i #(.n(n),.i(i)) u1 (k[i], TT,CLK); //k[i]=1

//iff TT has cor. im. at least i.
 end

endgenerate

pri_enc u2 (CI, CLK, k);

assign CI_ext = { {(8-m){1'b0}}, CI };

//Constant function to find the ceiling of log base two of d
function integer clogb2(input integer d);
 begin
 for(clogb2=0; d>0; clogb2 = clogb2 + 1)
 d = d >> 1;
 end
endfunction
endmodule

module cor_im_i (k_i, TT,CLK);
/**/
/* corr_imm_i Verilog code that accepts the truth table, TT, of */
/* an n-variable function and produces k_i=1 iff the */
/* function has cor. im. at least i, where i is a */
/* parameter. That is, corr_imm_i is a called from a */
/* generate for loop with index i. corr_imm_i then */
/* enumerates all combinations of i input variables */
/* and produces k_i=1 iff for all assignments of */
/* values to the i input variables the function has */

 62

/* the same number of 1's (and holds for all */
/* combinations). This circuit consists of many */
/* adders, which add the number of 1's in portions */
/* of the truth table of the function. This circuit */
/* performs the following sequential code for some */
/* combination of i variables indexed by comb */
/* (0 <= comb < C(n,i)). */
/* Created: October 8, 2010 */
/* Last Modified: November 22, 2010 */
/* Author: C. Etherington and J. T. Butler */
/***/
parameter n = 6; // n = the number of variables
parameter i = 2;
localparam N = 2**n;
localparam size=comb_nk(n,i); //finds the number of possible

//combinations for choosing
 //i variables from the number of variables in the function
input [N-1:0] TT; // The truth table of the given function.
input CLK;
output k_i; // C can be as large as ceil(log_2(n)..
reg k_i;
reg [n-1:0] sum [64:0];
integer comb,u,v,cwc;

always @(posedge CLK)

begin
 k_i=1;
 for (comb=0; comb<size; comb=comb+1) //total number of ways to pick

//i varaibles from n
 begin
 // if(k_i==1)
 begin
 cwc=int2cwc(n,i,comb);
 for (u=0; u<=(2**i-1); u=u+1) //ennumerates the number of

//subfunctions of size i with different values
 begin //Scan the 2**i subfunctions.
 sum[u] = 0; //stores number of ones initially set to zero
 for(v=0; v<=2**(n-i)-1; v=v+1)//ennumerates the possible

//values of n-i variables
 begin
 sum[u] = sum[u] + TT[index(n,i,cwc,u,v)];//totals the

//number of ones for each value of u by finding the
//fuction value for a set u and for each value of v.

end
 end

 for (u=0; u<2**i-1; u=u+1)
 begin //Check that all subfunctions have the same
 if (sum[u] != sum[u+1])// number of 1s. If not, set

//k_i=0.
 k_i = 0;
 end
 end
 end

 63

 end
//Constant function
function integer index;//Index to TT.
input integer n; //Number of variables.
input integer i; //Prospective cor. im. (1 <= i <= n)
input integer cwc; //Index to i-combination.
input integer u; //Index to subfunction - 0 <= u < 2^i.
input integer v; //Index to minterm of subfunction - 0 <= v < 2^(n-i).
integer cwc_temp;
integer u_idx, v_idx, c_idx;
integer u_temp, v_temp;
integer temp;
begin

 u_idx=i-1;
 v_idx=n-i-1;
 index=0;
 u_temp=u;
 v_temp=v;
 cwc_temp=cwc;

 //the following loop finds the truth table index given a set u and v
 //the binary values of u will be place in the corresponding the
 //binary values of u will be place in the corresponding binary one
 //position of the CWC and the binary values of v are placed in
 //the binary zero positions of the CWC
 for(c_idx=(n-1);c_idx>=0;c_idx=c_idx-1)
 begin
 if((cwc_temp-2**c_idx)>=0) //does the cwc have a one in the

//c_idx position
 begin
 cwc_temp=cwc_temp-2**c_idx;
 if((u_temp-2**u_idx)>=0)//if the u binary value has a one in

//the u_idx position then
 begin //the index binary value will have a

//one in the cwc_idx position
 index=index+2**c_idx;
 u_temp=u_temp-2**u_idx;
 end
 u_idx=u_idx-1;//one less u binary value to place in index
 end
 else //if the cwc has a zero in the c_idx position
 begin
 if((v_temp-2**v_idx)>=0)//if the binary v value has a one

//in the v_idx position
 begin //then the index value will have a one in

//the cwc_idx position
 index=index+2**c_idx;
 v_temp=v_temp-2**v_idx;
 end
 v_idx=v_idx-1; //one less binary v value to place
 end
 end
end
endfunction

 64

function integer int2cwc(input integer n, input integer i, input
integer comb);
 //functions uses the index value to assign exactly i ones to a n bit
string
 integer N,k,comb_temp,temp;
 begin
 N=n-1;// number of positions to place a one from n-1 to zero
 k=i; //number of ones
 comb_temp=comb;
 int2cwc=0;
 while(k>=1) //loop continues until all ones have been placed in

//the string
 begin
 temp=comb_nk(N,k);
 if(comb_temp-temp>=0) //if comb is greater than N choose k
 begin
 int2cwc=int2cwc+2**N;// then place a one in the N position
 comb_temp=comb_temp-temp;
 k=k-1;//decrease number of ones to place
 end
 N=N-1;//decrease the number of positions to place a one.
 end
end
endfunction

function integer comb_nk(input integer n, input integer k);
integer k_h,k_l,i;
begin:f2
 if(n < k)
 comb_nk = 0;
 else
 begin
 k_h = k;
 k_l = n - k;
 if (k_l > k_h)
 begin
 k_h = n - k;
 k_l = k;
 end

 comb_nk = 1;
 for(i = n; i>k_h; i = i-1)
 comb_nk = comb_nk*i;
 for(i = 1; i<=k_l; i = i+1)
 comb_nk = comb_nk/i;
 end
end
endfunction

endmodule

module pri_enc (CI, CLK, k);
/***/

 65

/* pri_enc-Verilog code for a priority encoder. It examines elements*/
/* of vector k[i], which will be 1 for 1 <= j and 0 for */
/* j+1 <= n, in which case the correlation immunity, CI is j*/
/* and produces the correlation immunity, C, of that */
/* function. */
/* Created: October 8, 2010 */
/* Last Modified: November 22, 2010 */
/* Author: C. Etherington and J. T. Butler */
/***/
parameter n = 6; // n = the number of variables
localparam m = clogb2(n);
input CLK;
input [n:0] k;// k[i]=1 means function has cor. im. at least i.
output [m-1:0] CI; // CI can be as large as ceil(log_2(n).
reg [m-1:0] CI;
integer i=1;

always @(posedge CLK)
 begin
 i = 0; //Set i = 0 and check, for each i from
 while ((i<=n) && (k[i] == 1'b1))
 begin:stage // set CI to i.
 i = i+1;
 end
 CI = i-1
 end

//Constant function
function integer clogb2(input integer d);
 begin
 for(clogb2=0; d>0; clogb2 = clogb2 + 1)
 d = d >> 1;
 end
endfunction
endmodule

D. CORRELATION IMMUNITY FOR BALANCED FUNCTIONS, N=5

1. main.c

/***/
/* */
/* main.c -a c program designed to run a SRC6 implentaion of */
/* corr_imm.v */
/* */
/* Authur: Carole Etherington */
/* Last Modified: 04Nov2010 */
/* */
/* Description: This file creates every possible 16 bit */
/* binary number with eight ones and eight zeros and */
/* then calls a subroutine that returns the corrleation*/
/* immunity of that function. */

 66

/**/
#include <map.h>
#include <stdlib.h>

void subr (int64_t*, int64_t*, int64_t*, int);

int main()
{ FILE *res_map,*res_cpu;
 int mapnum=0;
 int n=4;
 int k=8;
 int comb,numer,denom,temp,i,N,comb_temp,a;
 int64_t time_clk;
 int64_t *x, *ci;
 int pow2[16];
 pow2[0]=1;
 pow2[1]=2;
 pow2[2]=4;
 pow2[3]=8;
 pow2[4]=16;
 pow2[5]=32;
 pow2[6]=64;
 pow2[7]=128;
 pow2[8]=256;
 pow2[9]=512;
 pow2[10]=1024;
 pow2[11]=2048;
 pow2[12]=4096;
 pow2[13]=8192;
 pow2[14]=16384;
 pow2[15]=32768;

 x = (int64_t *) malloc (12870* sizeof(int64_t));
 ci = (int64_t *) malloc (6* sizeof(int64_t));

 for(i=0;i<6;i++)
 ci[i]=0;
 //Uses a index to constan weight convertor to place
 //eight ones in a sixteen bit number
 for(i=0;i<12870;i++)
 {
 comb_temp=i;
 N=16-1;//the total number of bits minus one. This number
 //is increment each time to place either a one or
 //zero in the 15th to 0 bit position
 x[i]=0;
 k=8;//number of ones the final number will have

 while((N>=0)&&(k>0)) //loop continues until all ones have
 been postioned
 {if(N<k)
 temp=0;
 else
 {numer=1;
 denom=1;

 67

 for(a=N;a>k;a--)
 numer=numer*a;
 for(a=(N-k);a>1;a--)
 denom=denom*a;
 temp=numer/denom;
 } //else
 if((comb_temp-temp)>=0)
 {x[i]=x[i]+pow2[N];
 comb_temp=comb_temp-temp;
 k=k-1;//put one in N bit position and decrease
 number of ones
 }//if
 N=N-1;//decrease bit position to be filled
 }//while
 }

 map_allocate(1);
 subr(x,ci,&time_clk,mapnum);

 printf("%lld clocks\n",time_clk);

 printf("the number of functions with correlation immunity zero is
%lld\n",ci[0]);
 printf("the number of functions with correlation immunity one is
%lld\n",ci[1]);
 printf("the number of functions with correlation immunity two is
%lld\n",ci[2]);
 printf("the number of functions with correlation immunity three is
%lld\n",ci[3]);
 printf("the number of functions with correlation immunity four is
%lld\n",ci[4]);
 printf("the number of functions with correlation immunity five is
%lld\n",ci[5]);

 map_free(1);
 exit(0);

 }

2. subr.mc

/***/
/* */
/* subr.mc -MAP subroutine to find the correlation immunity of */
/* all 32 bit balanced functions that have exactly eight*/
/* ones in the first 16 bits and exactly eight ones in */
/* the last sixteen bits. */
/* */
/* Author: Carole Etherington */
/* Last modified: November 4, 2010 */
/* Description: This program calls the macro my_operator */
/* that finds the correlation immunity of a given function*/
/* and returns a histogram of correlation immunity to the */
/* program main.c. */

 68

/***/

#include <libmap.h>

void subr (int64_t x[], int64_t ci[], int64_t *time, int mapnum)
{
 OBM_BANK_A(X, int64_t, 12870)
 OBM_BANK_B(CI, int64_t,6)
 int64_t t0,t1;
 int i,j,sel;
 int64_t i0,i1;
 int8_t myout;
 int k=0;
 int64_t H0[6],H1[6],H2[6],H3[6];
 DMA_CPU(CM2OBM, X,
MAP_OBM_stripe(1,"A"),x,1,12870*sizeof(int64_t),0);
 wait_DMA(0);

 read_timer(&t0);
 for(i=0;i<6;i++)
 {H0[i]=0;
 H1[i]=0;
 H2[i]=0;
 H3[i]=0;
 }
 //the nested loop is sent to the macro to be combined to create
 //a 64 bit number. Each X is a 16 bit number that contains eight
ones.
 for(j=0;j<12870;j++)
 for(i=0;i<12870;i++)
 {i0=X[i];
 i1=X[j];
 my_operator(i0,i1, &myout);
 //The output alternates between four arrays to prevent slow down
due to
 //read and writes
 sel=k&3;
 if(sel==0)
 H0[myout]++;
 if(sel==1)
 H1[myout]++;
 if(sel==2)
 H2[myout]++;
 if(sel==3)
 H3[myout]++;
 k++;
 }
 //all four values are combined to form the final output
 for(i=0;i<6;i++)
 CI[i]=H0[i]+H1[i]+H2[i]+H3[i];

 read_timer(&t1);
 *time=(t1-t0);

 DMA_CPU(OBM2CM,CI,MAP_OBM_stripe(1,"B"),ci,1,6*sizeof(int64_t),0);

 69

 wait_DMA(0);

 }

E. CORRELATION IMMUNITY FOR ROTATION SYMMETRIC
FUNCTIONS, N=4

1. main.c

/***/
/* */
/* main.c -a c program designed to run a SRC6 implentaion of */
/* corr_imm.v */
/* */
/* Authur: Carole Etherington */
/* Last Modified: 04Nov2010 */
/* */
/* Description: This file creates every possible 16 bit */
/* rotaionally symmetric number and then calls a */
/* subroutine that returns the corrleation */
/* immunity of that function. */
/**/
#include <map.h>
#include <stdlib.h>

void subr (int64_t*, int64_t*, int64_t*, int);

int main()
{ FILE *res_map,*res_cpu;
 int mapnum=0;
 int n=6;
 int i,k,a,y;
 int numer, denom, j,size, comb, comb_temp,N,cwc,temp;
 int64_t time_clk;
 int64_t *x, *ci;
 int count[5];
 int pow2[16];
 int set[n];
 pow2[0]=1;
 pow2[1]=2;
 pow2[2]=4;
 pow2[3]=8;
 pow2[4]=16;
 pow2[5]=32;
 pow2[6]=64;
 pow2[7]=128;
 pow2[8]=256;
 pow2[9]=512;
 pow2[10]=1024;
 pow2[11]=2048;
 pow2[12]=4096;

 70

 pow2[13]=8192;
 pow2[14]=16384;
 pow2[15]=32768;

 j=0;
 //The sets of rotionally symmetric numbers
 //If one of the function values in one of the
 //sets is zero then all the values must be zero
 // and if one function value is a one then all
 // function values in the set must be one
 set[0]=pow2[0];
 set[1]=pow2[1]+pow2[8]+pow2[4]+pow2[2];
 set[2]=pow2[3]+pow2[9]+pow2[12]+pow2[6];
 set[3]=pow2[5]+pow2[10];
 set[4]=pow2[7]+pow2[11]+pow2[13]+pow2[14];
 set[5]=pow2[15];

 x = (int64_t *) malloc (64* sizeof(int64_t));
 ci = (int64_t *) malloc (64* sizeof(int64_t));

//This loop creates all the possible combinations of the sets
//given above. It starts with choosing zero sets and producing the
//zero function and then selects one set and then two sets and produces
//all possible combinations by using a index to constant weight
//convertor to place the chosen sets to place a bianry one value in the
//positions of the chosen sets. This continues until the final function
//choses all the sets to have a binary one value.
 for(i=0;i<=6;i++)
 {numer=1;
 denom=1;
 for(a=n;a>1;a--)
 numer=numer*a;
 for(a=(n-i);a>1;a--)
 denom=denom*a;
 size=numer/denom;
 for(comb=0;comb<size;comb++)
 {N=n-1;
 k=i;
 comb_temp=comb;
 cwc=0;
 while((N>=0)&&(k>0))
 {if(N<k)
 temp=0;
 else
 {numer=1;
 denom=1;
 for(a=N;a>k;a--)
 numer=numer*a;
 for(a=(N-k);a>1;a--)
 denom=denom*a;
 temp=numer/denom;
 }

 71

 if((comb_temp-temp)>=0)
 {cwc=cwc+pow2[N];
 comb_temp=comb_temp-temp;
 k=k-1;
 }
 N=N-1;
 }
 x[j]=0;
 for(y=(n-1);y>=0;y--)
 {if((cwc-pow2[y])>=0)
 {x[j]=x[j]+set[y];
 cwc=cwc-pow2[y];
 }}

 ci[j]=0;
 j=j+1;
 }}

 map_allocate(1);
 subr(x,ci,&time_clk,mapnum);

 printf("%lld clocks\n",time_clk);

 for(i=0;i<=4;i++)
 {count[i]=0;}

 for(i=0;i<64;i++)
 {switch(ci[i])
 {case 0: count[0]=count[0]+1;
 break;
 case 1: count[1]=count[1]+1;
 break;
 case 2: count[2]=count[2]+1;
 break;
 case 3: count[3]=count[3]+1;
 break;
 case 4: count[4]=count[4]+1;
 break;
 }}

 printf("the number of functions with correlation immunity
zero is %lld\n",count[i]);
 printf("the number of functions with correlation immunity
one is %lld\n",count[i]);
 printf("the number of functions with correlation immunity
two is %lld\n",count[i]);
 printf("the number of functions with correlation immunity
three is %lld\n",count[i]);
 printf("the number of functions with correlation immunity
four is %lld\n",count[i]);

 map_free(1);
 exit(0);

 72

 }

2. subr.mc

/***/
/* */
/* subr.mc -MAP subroutine to find the correlation immunity of */
/* all four variable functions. */
/* */
/* Author: Carole Etherington */
/* */
/* Last modified: November 4, 2010 */
/* */
/* */
/* Description: This program calls the macro my_operator */
/* that finds the correlation immunity of a given function*/
/* and returns the correlation immunity of the function */
/* to the program main.c. */
/* */
/***/

#include <libmap.h>

void subr (int64_t x[], int64_t ci[], int64_t *time, int mapnum)
{
 OBM_BANK_A(X, int64_t, 64)
 OBM_BANK_B(CI, int64_t,64)
 int64_t t0,t1;
 int i;
 int64_t myin;
 int8_t myout;

 DMA_CPU(CM2OBM, X,
MAP_OBM_stripe(1,"A"),x,1,64*sizeof(int64_t),0);
 wait_DMA(0);

 read_timer(&t0);

 for(i=0;i<64;i++)
 {myin=X[i];
 my_operator(myin, &myout);
 CI[i]=myout;
 }

 read_timer(&t1);
 *time=(t1-t0);

 DMA_CPU(OBM2CM,CI,MAP_OBM_stripe(1,"B"),ci,1,64*sizeof(int64_t),0);
 wait_DMA(0);
 }

 73

F. CORRELATION IMMUNITY FOR ROTATION SYMMETRIC
FUNCTIONS, N=5

1. main.c

/***/
/* */
/* main.c -a c program designed to run a SRC6 implentaion of */
/* corr_imm.v */
/* */
/* Authur: Carole Etherington */
/* Last Modified: 04Nov2010 */
/* */
/* Description: This file creates every possible 32 bit */
/* rotaionally symmetric number and then calls a */
/* subroutine that returns the corrleation */
/* immunity of that function. */
/**/
#include <map.h>
#include <stdlib.h>

void subr (int64_t*, int64_t*, int64_t*, int);

int main()
{ FILE *res_map,*res_cpu;
 int mapnum=0;
 int n=8;
 int i,k,a,y;
 int numer, denom, j,size, comb, comb_temp,N,cwc,temp;
 int64_t time_clk;
 int64_t *x, *ci;
 int count[6];
 int pow2[16];
 int set1[n];
 int set2[n];
 pow2[0]=1;
 pow2[1]=2;
 pow2[2]=4;
 pow2[3]=8;
 pow2[4]=16;
 pow2[5]=32;
 pow2[6]=64;
 pow2[7]=128;
 pow2[8]=256;
 pow2[9]=512;
 pow2[10]=1024;
 pow2[11]=2048;
 pow2[12]=4096;
 pow2[13]=8192;
 pow2[14]=16384;
 pow2[15]=32768;

 74

 j=0;

 set1[0]=pow2[0];
 set2[0]=0;
 set1[1]=pow2[1]+pow2[8]+pow2[4]+pow2[2];
 set2[1]=pow2[0];
 set1[2]=pow2[3]+pow2[12]+pow2[6];
 set2[2]=pow2[8]+pow2[1];
 set1[3]=pow2[5]+pow2[10]+pow2[9];
 set2[3]=pow2[4]+pow2[2];
 set1[4]=pow2[7]+pow2[14];
 set2[4]=pow2[12]+pow2[9]+pow2[3];
 set1[5]=pow2[11]+pow2[13];
 set2[5]=pow2[10]+pow2[5]+pow2[6];
 set1[6]=pow2[15];
 set2[6]=pow2[14]+pow2[13]+pow2[11]+pow2[7];
 set1[7]=0;
 set2[7]=pow2[15];
 x = (int64_t *) malloc (512* sizeof(int64_t));

 ci = (int64_t *) malloc (256* sizeof(int64_t));

 for(i=0;i<=8;i++)
 {numer=1;
 denom=1;
 for(a=n;a>i;a--)
 numer=numer*a;
 for(a=(n-i);a>1;a--)
 denom=denom*a;
 size=numer/denom;
 for(comb=0;comb<size;comb++)
 {N=n-1;
 k=i;
 comb_temp=comb;
 cwc=0;
 while((N>=0)&&(k>0))
 {if(N<k)
 temp=0;
 else
 {numer=1;
 denom=1;
 for(a=N;a>k;a--)
 numer=numer*a;
 for(a=(N-k);a>1;a--)
 denom=denom*a;
 temp=numer/denom;
 }
 if((comb_temp-temp)>=0)
 {cwc=cwc+pow2[N];
 comb_temp=comb_temp-temp;
 k=k-1;
 }
 N=N-1;
 }
 x[j]=0;

 75

 x[j+256]=0;
 for(y=(n-1);y>=0;y--)
 {if((cwc-pow2[y])>=0)
 {x[j]=x[j]+set1[y];
 x[j+256]=x[j+256]+set2[y];
 cwc=cwc-pow2[y];
 }}
 ci[j]=0;
 j=j+1;
 }}

 map_allocate(1);
 subr(x,ci,&time_clk,mapnum);

 printf("%lld clocks\n",time_clk);

 for(i=0;i<=5;i++)
 {count[i]=0;}
 for(i=0;i<256;i++)
 {switch(ci[i])
 {case 0: count[0]=count[0]+1;
 break;
 case 1: count[1]=count[1]+1;
 break;
 case 2: count[2]=count[2]+1;
 break;
 case 3: count[3]=count[3]+1;
 break;
 case 4: count[4]=count[4]+1;
 break;
 case 5: count[5]=count[5]+1;
 break;
 }}
 for(i=0;i<=5;i++)
 {printf("the number of functions with corrleation
immunity one is %lld\n",count[i]);}

 map_free(1);
 exit(0);

 }

2. subr.mc

/***/
/* */
/* subr.mc -MAP subroutine to find the correlation immunity of */
/* all four variable functions. */
/* */
/* Author: Carole Etherington */
/* */
/* Last modified: November 4, 2010 */
/* */
/* */
/* Description: This program calls the macro my_operator */

 76

/* that finds the correlation immunity of a given function*/
/* and returns the correlation immunity of the function */
/* to the program main.c. */
/* */
/***/
#include <libmap.h>

void subr (int64_t x[], int64_t ci[], int64_t *time, int mapnum)
{
 OBM_BANK_A(X, int64_t, 512)
 OBM_BANK_B(CI, int64_t,256)
 int64_t t0,t1;
 int i;
 int64_t i0,i1;
 int8_t myout;

 DMA_CPU(CM2OBM, X,
MAP_OBM_stripe(1,"A"),x,1,512*sizeof(int64_t),0);
 wait_DMA(0);

 read_timer(&t0);

 for(i=0;i<256;i++)
 {i0=X[i];
 i1=X[i+256];
 my_operator(i0,i1, &myout);
 CI[i]=myout;
 }

 read_timer(&t1);
 *time=(t1-t0);

 DMA_CPU(OBM2CM,CI,MAP_OBM_stripe(1,"B"),ci,1,256*sizeof(int64_t),0);
 wait_DMA(0);
 }

G. CORRELATION IMMUNITY AND NONLINEARITY FOR FUNCTIONS
OF N=4

1. main.c

/**/
/* */
/* main.c -a c program designed to run a SRC6 implentaion of */
/* corr_imm.v */
/* */
/* Authur: Carole Etherington */
/* Last Modified: 19Nov2010 */
/* */
/* Description: This file calls a subroutine that returns */
/* the corrleation immunity and the nonlinearity of */
/* of all functions for n=4. */
/**/
#include <map.h>

 77

#include <stdlib.h>

void subr (int64_t*,int64_t*, int64_t*, int64_t*, int);

int main()
{ FILE *res_map,*res_cpu;
 int mapnum=0;
 int n=4;
 int64_t i,j;
 int64_t time_clk;
 int64_t *x, *ci,*out;

 int nonlin[n+1][7];
 int64_t size=65536;
 x = (int64_t *) malloc (size* sizeof(int64_t));
 out =(int64_t *) malloc (size* sizeof(int64_t));
 ci = (int64_t *) malloc (size* sizeof(int64_t));

 for(i=0;i<size;i++)
 {x[i]=i;
 ci[i]=0;
 out[i]=0;}

 map_allocate(1);
 subr(x,ci,out,&time_clk,mapnum);

 printf("%lld clocks\n",time_clk);
 for(i=0;i<=n;i++)
 {for(j=0;j<=6;j++)
 nonlin[i][j]=0;}
 for(i=0;i<size;i++)
 {for(j=0;j<=n;j++)
 {if(ci[i]==j)
 {switch(out[i])
 {
 case 0: nonlin[j][0]=nonlin[j][0]+1;
 break;
 case 1: nonlin[j][1]=nonlin[j][1]+1;
 break;
 case 2: nonlin[j][2]=nonlin[j][2]+1;
 break;
 case 3: nonlin[j][3]=nonlin[j][3]+1;
 break;
 case 4: nonlin[j][4]=nonlin[j][4]+1;
 break;
 case 5: nonlin[j][5]=nonlin[j][5]+1;
 break;
 case 6: nonlin[j][6]=nonlin[j][6]+1;
 break;
 default:
 break;
 }

 }}}

 78

 for(j=0;j<=6;j++)
 {printf("the number of functions with corrleation
immunity zero is %lld\n",nonlin[0][j]);
 printf("the number of functions with corrleation
immunity one is %lld\n",nonlin[1][j]);
 printf("the number of functions with corrleation
immunity two is %lld\n",nonlin[2][j]);
 printf("the number of functions with corrleation
immunity three is %lld\n",nonlin[3][j]);
 printf("the number of functions with corrleation
immunity four is %lld\n",nonlin[4][j]);}

 map_free(1);
 exit(0);

 }

 2. subr.mc

/***/
/* */
/* subr.mc -MAP subroutine to find the correlation immunity of */
/* all five variable functions. */
/* */
/* Author: Carole Etherington */
/* */
/* Last modified: November 15, 2010 */
/* */
/* */
/* Description: This program calls the macro my_operator */
/* that finds the correlation immunity of a given function*/
/* and returns the correlation immunity of the function */
/* in a histogramto the program main.c. */
/* */
/***/
#include <libmap.h>

void subr (int64_t x[], int64_t ci[],int64_t out[], int64_t *time, int
mapnum)
{
 OBM_BANK_A(X, int64_t, 65536)
 OBM_BANK_B(CI, int64_t,65536)
 OBM_BANK_C(OUT,int64_t,65536)
 int64_t t0,t1;
 int i;
 int64_t myin;
 int8_t myout;
 int8_t myciout;

 DMA_CPU(CM2OBM, X,
MAP_OBM_stripe(1,"A"),x,1,65536*sizeof(int64_t),0);
 wait_DMA(0);

 read_timer(&t0);

 79

 for(i=0;i<65536;i++)
 {
 myin=X[i];
 my_operator(myin,&myciout, &myout);
 CI[i]=myciout;
 OUT[i]=myout;
 }

 read_timer(&t1);
 *time=(t1-t0);

DMA_CPU(OBM2CM,CI,MAP_OBM_stripe(1,"B"),ci,1,65536*sizeof(int64_t),0);
 wait_DMA(0);

DMA_CPU(OBM2CM,OUT,MAP_OBM_stripe(1,"C"),out,1,65536*sizeof(int64_t),0)
;
 wait_DMA(0);
}

 3. blk.v

/**/
/* */
/* blk.v -a black-box file that specifies the input/output of */
/* corr_imm.v */
/* */
/* Authur: Carole Etherington */
/* Last Modified: 19Nov2010 */
/* */
/**/
module corr_imm(TT_ext,CI_ext,OUT,CLK);
input CLK;
input[63:0] TT_ext;
output[7:0] CI_ext;
output[7:0] OUT;
endmodule

4. info

/**/
/* */
/* info - This file provides information on the latency, inputs,*/
/* outputs for the macro, type of macro and output for */
/* debugging purposes */
/* Authur: Carole Etherington */
/* Last Modified: 19Nov2010 */
/* */
/**/
BEGIN_DEF "my_operator"
MACRO= "corr_imm";
STATEFUL =NO;
EXTERNAL =NO;
PIPELINED =YES;
LATENCY =5;

 80

INPUTS=1:
I0=INT 64 BITS (TT_ext[63:0]);

OUTPUTS=2:
O0=INT 8 BITS(CI_ext[7:0])
O1=INT 8 BITS(OUT[7:0]);

IN_SIGNAL: 1 BITS "CLK"="CLOCK";

DEBUG_HEADER =#
 void my_operator__dbg(int64_t TT, int8_t *CI_Ptr, int8_t
*out_Ptr);
#;

DEBUG_FUNC=#
 void my_operator__dbg (int64_t TT, int8_t *CI_Ptr, int8_t
*out_Ptr)
 {*CI_Ptr=2;
 *out_Ptr=2;}
 #;
 END_DEF

 5. corr_imm.v

module corr_imm (CI_ext, OUT, TT_ext, CLK);
/**/
/* corr_imm_i Verilog code that accepts the truth table, TT, of */
/* an n-variable function and produces k_i=1 iff the */
/* function has cor. im. at least i, where i is a */
/* parameter. That is, corr_imm_i is a called from a */
/* generate for loop with index i. corr_imm_i then */
/* enumerates all combinations of i input variables */
/* and produces k_i=1 iff for all assignments of */
/* values to the i input variables the function has */
/* the same number of 1's (and holds for all */
/* combinations). This circuit consists of many */
/* adders, which add the number of 1's in portions */
/* of the truth table of the function. This circuit */
/* performs the following sequential code for some */
/* combination of i variables indexed by comb */
/* (0 <= comb < C(n,i)). This function also outputs */
/* the nonlinearity of a given function */
/* Created: October 8, 2010 */
/* Last Modified: November 22, 2010 */
/* Author: C. Etherington and J. T. Butler */
/***/
parameter n = 4; // n = number of variables
localparam N = 2**n;
localparam m = clogb2(n); // m = number of bits to represent n.

wire [N-1:0] TT; // The truth table of the given function.
input [63:0] TT_ext;
input CLK;
wire [m-1:0] CI; // C can be as large as ceil(log_2(n)..

 81

output [7:0] CI_ext;
output [7:0] OUT;
wire [7:0] l;
wire [n:0] k//k[i] = 1 iff function has cor. im. at least i.
wire [n:0] temp;
wire [n:0] temp2;
wire [n:0] temp3;
wire [n:0] temp4;
genvar i;

nl_mapper u1(TT,OUT,CLK);

generate
 assign k[0]=1'b1; assign TT =TT_ext[N-1:0];

 for (i=1; i<=n; i = i+1)// Enumerate i the index of k to determine

//highest correlation.
 begin:mult_k
 cor_im_i #(.n(n),.i(i)) u1 (k[i], TT,CLK); //k[i]=1 iff TT has

//cor. im. at least i.
 end
endgenerate

delay u3 (k,temp,CLK);
delay u5 (temp,temp2,CLK);
delay u6 (temp2,temp3,CLK);
delay u7 (temp3,temp4,CLK);
pri_enc u2 (CI, CLK, temp4);

assign CI_ext = { {(8-3){1'b0}}, CI };
//Constant function to find the ceiling of log base two of d
function integer clogb2(input integer d);
 begin
 for(clogb2=0; d>0; clogb2 = clogb2 + 1)
 d = d >> 1;
 end
endfunction

endmodule

module delay(k,temp,CLK);
parameter n = 4;
input [n:0] k;
output temp;
reg [n:0] temp;
input CLK;
always @(posedge CLK)

begin
 temp=k;
 end

endmodule

module cor_im_i (k_i, TT,CLK);

 82

/**/
/* corr_imm_i Verilog code that accepts the truth table, TT, of */
/* an n-variable function and produces k_i=1 iff the */
/* function has cor. im. at least i, where i is a */
/* parameter. That is, corr_imm_i is a called from a */
/* generate for loop with index i. corr_imm_i then */
/* enumerates all combinations of i input variables */
/* and produces k_i=1 iff for all assignments of */
/* values to the i input variables the function has */
/* the same number of 1's (and holds for all */
/* combinations). This circuit consists of many */
/* adders, which add the number of 1's in portions */
/* of the truth table of the function. This circuit */
/* performs the following sequential code for some */
/* combination of i variables indexed by comb */
/* (0 <= comb < C(n,i)). */
/* Created: October 8, 2010 */
/* Last Modified: November 22, 2010 */
/* Author: C. Etherington and J. T. Butler */
/***/
parameter n = 4; // n = the number of variables
parameter i = 2;
localparam N = 2**n;
localparam size=comb_nk(n,i); //finds the number of possible
combinations for choosing
 //i variables from the number of
variables in the function
input [N-1:0] TT; // The truth table of the given function.
input CLK;
output k_i; // C can be as large as ceil(log_2(n)..
reg k_i;
reg [n-1:0] sum [64:0];
integer comb,u,v,cwc;

always @(posedge CLK)

begin
 k_i=1;
 for (comb=0; comb<size; comb=comb+1) //total number of ways to pick
i varaibles from n
 begin
 //if(k_i==1)
 begin
 cwc=int2cwc(n,i,comb);
 for (u=0; u<=(2**i-1); u=u+1) //ennumerates the number of

//subfunctions of size i with different values
 begin //Scan the 2**i subfunctions.
 sum[u] = 0; //stores number of ones initially set to zero
 for(v=0; v<=2**(n-i)-1; v=v+1)//ennumerates the possible

//values of n-i variables
 begin
 sum[u] = sum[u] + TT[index(n,i,cwc,u,v)];//totals the

//number of ones for each value of u by finding the
//fuction value for a set u and for each value of v.

 end

 83

 end

 for (u=0; u<2**i-1; u=u+1)
 begin //Check that all subfunctions have the same
 if (sum[u] != sum[u+1])// number of 1s. If not, set k_i=0.
 k_i = 0;

 end
 end
 end
 end
//Constant function
function integer index;//Index to TT.
input integer n; //Number of variables.
input integer i; //Prospective cor. im. (1 <= i <= n)
input integer cwc; //Index to i-combination. input integer u;
//Index to subfunction - 0 <= u < 2^i.
input integer v;//Index to minterm of subfunction - 0 <= v < 2^(n-i).
integer cwc_temp;
integer u_idx, v_idx, c_idx;
integer u_temp, v_temp;
integer temp;
begin
 u_idx=i-1;
 v_idx=n-i-1;
 index=0;
 u_temp=u;
 v_temp=v;

 cwc_temp=cwc;
 //the following loop finds the truth table index given a set u and v
 //the binary values of u will be place in the corresponding the
 //binary values of u will be place in the corresponding binary one
 //position of the CWC and the binary values of v are placed in
 //the binary zero positions of the CWC
 for(c_idx=(n-1);c_idx>=0;c_idx=c_idx-1)
 begin
 if((cwc_temp-2**c_idx)>=0) //does the cwc have a one in the

//c_idx position
 begin
 cwc_temp=cwc_temp-2**c_idx;
 if((u_temp-2**u_idx)>=0)//if the u binary value has a one in

//the u_idx position then
 begin //the index binary value will have a

//one in the cwc_idx position
 index=index+2**c_idx;
 u_temp=u_temp-2**u_idx;
 end
 u_idx=u_idx-1;//one less u binary value to place in index

//value
 end
 else //if the cwc has a zero in the c_idx position
 begin
 if((v_temp-2**v_idx)>=0)//if the binary v value has a one

//in the v_idx position

 84

 begin //then the index value will have a
//one in the cwc_idx position

 index=index+2**c_idx;
 v_temp=v_temp-2**v_idx;
 end
 v_idx=v_idx-1; //one less binary v value to place
 end
 end
end
endfunction

function integer int2cwc(input integer n, input integer i, input
integer comb);
 //functions uses the index value to assign exactly i ones to a n bit
string
 integer N,k,comb_temp,temp;
 begin
 N=n-1;// number of positions to place a one from n-1 to zero
 k=i; //number of ones
 comb_temp=comb;
 int2cwc=0;
 while(k>=1//loop continues until all ones have been placed
 begin
 temp=comb_nk(N,k);
 if(comb_temp-temp>=0) //if comb is greater than N choose k
 begin
 int2cwc=int2cwc+2**N;// then place a one in the N position
 comb_temp=comb_temp-temp;
 k=k-1;//decrease number of ones to place
 end
 N=N-1;//decrease the number of positions to place a one.
 end
end
endfunction
function integer comb_nk(input integer n, input integer k);
integer k_h,k_l,i;
begin:f2
 if(n < k)
 comb_nk = 0;
 else
 begin
 k_h = k;
 k_l = n - k;
 if (k_l > k_h)
 begin
 k_h = n - k;
 k_l = k;
 end

 comb_nk = 1;
 for(i = n; i>k_h; i = i-1)
 comb_nk = comb_nk*i;
 for(i = 1; i<=k_l; i = i+1)
 comb_nk = comb_nk/i;
 end

 85

end
endfunction

endmodule
module pri_enc (CI, CLK, k);
/***/
/* pri_enc-Verilog code for a priority encoder. It examines elements*/
/* of vector k[i], which will be 1 for 1 <= j and 0 for */
/* j+1 <= n, in which case the correlation immunity, CI is j*/
/* and produces the correlation immunity, C, of that */
/* function. */
/* Created: October 8, 2010 */
/* Last Modified: November 22, 2010 */
/* Author: C. Etherington and J. T. Butler */
/***/
 parameter n = 4; // n = the number of variables
localparam m = clogb2(n);
input CLK;
input [n:0] k; // k[i]=1 means function has
cor. im. at least i.
output [m-1:0] CI; // CI can be as large as
ceil(log_2(n).
reg [m-1:0] CI;
integer i=1;

always @(posedge CLK)
 begin
 i = 0; //Set i = 0 and check, for each i from
 while ((i<=n) && (k[i] == 1'b1)) // 0 to n, if k[i]=1.
When k[i+1] = 0,
 begin:stage // set CI to i.
 i = i+1;
 end
 CI = i-1;
 end

//Constant function
function integer clogb2(input integer d);
 begin
 for(clogb2=0; d>0; clogb2 = clogb2 + 1)
 d = d >> 1;
 end
endfunction

endmodule
module nl_mapper(TT,OUT,CLK);
/**/
/* nl_mapper - Verilog code to convert the truth table TT of a */
/* given function f into a vector, OUT of 2^(n+1) */
/* functions - each with 2^n bits that are the */
/* distance vectors between f and the 2^(n+1) affine */
/* functions. These are then applied to a ones_count */
/* circuit to count the number of 1's, which are */
/* compared to find the minimum distance from f */

 86

/* to an affine function. */
/* */
/* Created: November 27, 2008 */
/* Last Modified: November 22, 2010 */
/* Author: Jon T. Butler */
/* Inputs: TT //Truth table of given function, f. */
/* Outputs:OUT //Vector of 2^(n+1) distances between f and an afine*/
/* function. */
/**/
parameter n = 4; // n = number of variables.
localparam N = 2**n; // N = number of truth table entries.
localparam NN = 2**(n+1); // NN = number of affine functions.
input CLK;
wire CLK;
input [63 : 0] TT; // Truth table of function under test.
output [7: 0] OUT; // Note that TT is unused. Modify this
 integer i,j,k; // truth tables of all distance vectors.
reg [N-1:0] temp;
reg [N-1:0] affine;
reg [N-1:0] xored;
reg [NN*(n+1)-1:0] count;

always @(*) // truth tables of all affine functions.
 begin
 for (i =0; i<NN; i=i+1)
 begin
 for (j =0; j<N; j=j+1)
 begin
 affine[j]=^(i&((j<<1)+1));
 xored[j]=affine[j]^TT[j];
 end
 temp=Count4(xored);
 for(k=0;k<n+1;k=k+1)
 begin
 count[(n+1)*i+k]=temp[k];

 end
 end

end
min instance_2
(count,OUT,CLK);
function [7:0] Count2;
input [3:0] TT;
 begin: f2
 Count2[0]=TT[3]^TT[2]^TT[1]^TT[0];

Count2[1]=(TT[3]&TT[2]|TT[3]&TT[1]|TT[3]&TT[0]|TT[2]&TT[1]|TT[2]&TT[0]|
TT[1]&TT[0])&~(TT[3]&TT[2]&TT[1]&TT[0]);
 Count2[2]=TT[3]&TT[2]&TT[1]&TT[0];
 Count2[3]=1'b0;
 Count2[7:4]=4'b0000;

 end
endfunction

 87

function [7:0]Count3;
 input [7:0] TT;

 reg [7:0] a,b;
 begin: f3
 a=Count2(TT[3:0]);
 b=Count2(TT[7:4]);
 Count3=a+b;
 end
endfunction
function [7:0]Count4;
 input [15:0] TT;

 reg [7:0] c,d;
 begin: f4
 c=Count3(TT[7:0]);
 d=Count3(TT[15:8]);
 Count4=c+d;
 end
endfunction
function [7:0]Count5;
 input [31:0] TT;

 reg [7:0] e,f;
 begin: f5
 e=Count4(TT[15:0]);
 f=Count4(TT[31:16]);
 Count5=e+f;
 end
endfunction
function [7:0]Count6;
 input [63:0] TT;
 reg [7:0] g,h;
 begin: f6
 g=Count5(TT[31:0]);
 h=Count5(TT[63:32]);
 Count6=g+h;
 end
endfunction
endmodule

module min(IN, OUT, CLK);
/***/
/* min.v - A program to compare 2^(n+1) n+1-bit binary values and */
/* to deliver the smallest to the output. This can be */
/* configured by a Completely pipelined tree */
/* In the case of 1. this runs at 209.6 MHz. for all */
/* values of n. It was tried for n up to 8. At n=8, it */
/* takes more than two minutes to compile. */
/***/
parameter n = 4; // Number of variables.
localparam nn = n + 1; // Number of bits in the numbers to be

//compared.
localparam N = 2**nn; // Number of numbers to be compared. It is the
 // number of affine functions.

 88

output [7:0] OUT; // OUT is the smallest of the n+1-bit inputs
input [nn*N-1:0] IN; // IN is an array of 2^(n+1) (n+1)-bit numbers
 reg [nn*N-1:0] curr_IN [nn:0] ;
 input CLK;

integer i,j;

 always @(posedge CLK)
 begin
 curr_IN[0] <= IN;

 for(j=1; j<=nn; j=j+1) // Enumerate a level in the

//comparison tree.
 begin
 for(i=0; i<2**(n+1-j); i=i+1) //Enumerate a position in

//the current level.
 begin: increment
 curr_IN[0] <= IN;
 if(curr_IN[j-1][((2*i + 2)*nn-1)-:nn] < curr_IN[j-1][((2*i +
1)*nn-1)-:nn]) curr_IN[j][((i + 1)*nn-1)-:nn] <= curr_IN[j-1][((2*i +
2)*nn-1)-:nn];
 else curr_IN[j][((i + 1)*nn-1)-:nn] <= curr_IN[j-
1][((2*i + 1)*nn-1)-:nn];
 end

 end

 end
 assign OUT = curr_IN[nn][(nn-1)-:nn];// curr_IN[j][((i + 1)*nn-
1)-:nn] for j=nn and i=0.

endmodule

H. CORRELATION IMMUNITY AND NONLINEARITY FOR FUNCTIONS
OF N=5

1. main.c

/**/
/* */
/* main.c -a c program designed to run a SRC6 implentaion of */
/* corr_imm.v */
/* */
/* Authur: Carole Etherington */
/* Last Modified: 22Nov2010 */
/* */
/* Description: This file calls a subroutine that returns */
/* the corrleation immunity and the nonlinearity of */
/* of all functions for n=4. */
/**/
#include <map.h>
#include <stdlib.h>

 89

void subr (int64_t*, int64_t*, int);
int main()
{ FILE *res_map,*res_cpu;
 int mapnum=0;
 int n=5;
 int64_t i,j;
 int64_t time_clk;
 int64_t *ci;

 ci = (int64_t *) malloc (78* sizeof(int64_t));

 for(i=0;i<78;i++)
 {
 ci[i]=0;}

 map_allocate(1);
 subr(ci,&time_clk,mapnum);

 printf("%lld clocks\n",time_clk);

 for(i=0;i<78;i++)
 {printf("the number of functions with corrleation immunity one
is %lld\n",ci[i]);}

 map_free(1);
 exit(0);}

 2. subr.mc

/***/
/* */
/* subr.mc -MAP subroutine to find the correlation immunity of */
/* all five variable functions. */
/* */
/* Author: Carole Etherington */
/* */
/* Last modified: November 22, 2010 */
/* */
/* */
/* Description: This program calls the macro my_operator */
/* that finds the correlation immunity of a given function*/
/* and returns the correlation immunity of the function */
/* in a histogramto the program main.c. */
/* */
/***/
#include <libmap.h>

void subr (int64_t ci[], int64_t *time, int mapnum)
{
 OBM_BANK_B(CI, int64_t,78)
 int64_t t0,t1;
 int64_t i,j;

 90

 int k,sel;
 int64_t i0,i1;
 int8_t myout;
 int8_t linout;
 int64_t size;
 int64_t a,b;
 int n=5;
 int64_t H0[6][13], H1[6][13],H2[6][13],H3[6][13];
 read_timer(&t0);
 k=0;
 for(i=0;i<6;i++)
 for(j=0;j<13;j++)
 {H0[i][j]=0;
 H1[i][j]=0;
 H2[i][j]=0;
 H3[i][j]=0;}

 for(i=0;i<65536;i++)
 {for(j=0;j<65536;j++)
 { i0=i;
 i1=j;
 my_operator(i0,i1,&myout,&linout);

 sel=k&3;
 if(sel==0)
 H0[myout][linout]++;
 if(sel==1)
 H1[myout][linout]++;
 if(sel==2)
 H2[myout][linout]++;
 if(sel==3)
 H3[myout][linout]++;
 k++;
 } }
 k=0;
 for(i=0;i<=n;i++)
 for(j=0;j<=12;j++)
 {CI[k]=H0[i][j]+H1[i][j]+H2[i][j]+H3[i][j];
 k++;}
 read_timer(&t1);
 *time=(t1-t0);

 DMA_CPU(OBM2CM,CI,MAP_OBM_stripe(1,"B"),ci,1,78*sizeof(int64_t),0);
 wait_DMA(0);}

 3. blk.v

/**/
/* */
/* blk.v -a black-box file that specifies the input/output of */
/* corr_imm.v */
/* */
/* Authur: Carole Etherington */
/* Last Modified: 19Nov2010 */

 91

/* */
/**/
module corr_imm(TT_ext,TT2_ext,CI_ext,OUT,CLK);
input CLK;
input[63:0] TT_ext;
input[63:0] TT2_ext;
output[7:0] CI_ext;
output[7:0] OUT;
endmodule

4. info

/**/
/* */
/* info - This file provides information on the latency, inputs,*/
/* outputs for the macro, type of macro and output for */
/* debugging purposes */
/* Authur: Carole Etherington */
/* Last Modified: 19Nov2010 */
/* */
/**/
BEGIN_DEF "my_operator"
MACRO= "corr_imm";
STATEFUL =NO;
EXTERNAL =NO;
PIPELINED =YES;
LATENCY =7;

INPUTS=2:
I0=INT 64 BITS (TT_ext[63:0])
I1=INT 64 BITS (TT2_ext[63:0]);

OUTPUTS=2:
O0=INT 8 BITS(CI_ext[7:0])
O1=INT 8 BITS(OUT[7:0]);
IN_SIGNAL: 1 BITS "CLK"="CLOCK";

DEBUG_HEADER =#
 void my_operator__dbg(int64_t TT,int64_t TT2, int8_t *CI_Ptr,
int8_t *OUT_Ptr);
#;

DEBUG_FUNC=#
 void my_operator__dbg (int64_t TT, int64_t TT2,int8_t
*CI_Ptr,int8_t *OUT_Ptr)
 {*CI_Ptr=2;
 *OUT_Ptr=4;}
 #;
END_DEF

 5. corr_imm.v

module corr_imm (CI_ext, OUT, TT_ext, CLK);
/**/
/* corr_imm_i Verilog code that accepts the truth table, TT, of */

 92

/* an n-variable function and produces k_i=1 iff the */
/* function has cor. im. at least i, where i is a */
/* parameter. That is, corr_imm_i is a called from a */
/* generate for loop with index i. corr_imm_i then */
/* enumerates all combinations of i input variables */
/* and produces k_i=1 iff for all assignments of */
/* values to the i input variables the function has */
/* the same number of 1's (and holds for all */
/* combinations). This circuit consists of many */
/* adders, which add the number of 1's in portions */
/* of the truth table of the function. This circuit */
/* performs the following sequential code for some */
/* combination of i variables indexed by comb */
/* (0 <= comb < C(n,i)). This function also outputs */
/* the nonlinearity of a given function */
/* Created: October 8, 2010 */
/* Last Modified: November 22, 2010 */
/* Author: C. Etherington and J. T. Butler */
/***/
parameter n = 5; // n = number of variables
localparam N = 2**n;
localparam m = clogb2(n); // m = number of bits to represent
n.

wire [N-1:0] TT; // The truth table of the given function.
input [63:0] TT_ext;
input [63:0] TT2_ext;

input CLK;
wire [m-1:0] CI; // C can be as large as ceil(log_2(n)..
output [7:0] CI_ext;
output [7:0] OUT;
wire [n:0] k;//k[i] = 1 iff function has cor. im. at least i.
wire [n:0] temp;
wire [n:0] temp2;
wire [n:0] temp3;
wire [n:0] temp4;
wire [n:0] temp5;
wire [n:0] temp6;
genvar i;

nl_mapper u1(TT,OUT,CLK);

generate
 assign k[0]=1'b1
 assign TT[31:16] =TT_ext[15:0];
 assign TT[15:0]= TT2_ext[15:0];

 for (i=1; i<=n; i = i+1)// Enumerate i the index of k to

//determine highest correlation.
 begin:mult_k
 cor_im_i #(.n(n),.i(i)) u1 (k[i], TT,CLK); //k[i]=1

//iff TT has cor. im. at least i.

 93

 end

endgenerate

delay u3 (k,temp,CLK);
delay u5 (temp,temp2,CLK);
delay u6 (temp2,temp3,CLK);
delay u7 (temp3,temp4,CLK);
delay u8 (temp4,temp5,CLK);

pri_enc u2 (CI, CLK, temp5);

assign CI_ext = { {(8-3){1'b0}}, CI };
//Constant function to find the ceiling of log base two of d
function integer clogb2(input integer d);
 begin
 for(clogb2=0; d>0; clogb2 = clogb2 + 1)
 d = d >> 1;
 end
endfunction

endmodule

module delay(k,temp,CLK);
parameter n = 5;
input [n:0] k;
output temp;
reg [n:0] temp;
input CLK;

always @(posedge CLK)
begin
 temp=k;
 end

endmodule

module cor_im_i (k_i, TT,CLK);
/**/
/* corr_imm_i Verilog code that accepts the truth table, TT, of */
/* an n-variable function and produces k_i=1 iff the */
/* function has cor. im. at least i, where i is a */
/* parameter. That is, corr_imm_i is a called from a */
/* generate for loop with index i. corr_imm_i then */
/* enumerates all combinations of i input variables */
/* and produces k_i=1 iff for all assignments of */
/* values to the i input variables the function has */
/* the same number of 1's (and holds for all */
/* combinations). This circuit consists of many */
/* adders, which add the number of 1's in portions */
/* of the truth table of the function. This circuit */
/* performs the following sequential code for some */
/* combination of i variables indexed by comb */
/* (0 <= comb < C(n,i)). */
/* Created: October 8, 2010 */

 94

/* Last Modified: November 22, 2010 */
/* Author: C. Etherington and J. T. Butler */
/***/
parameter n = 5; // n = the number of variables
parameter i = 2;
localparam N = 2**n;
localparam size=comb_nk(n,i); //finds the number of possible

//combinations for choosing i variables from the number of
//variables in the function

input [N-1:0] TT; // The truth table of the given function.
input CLK;
output k_i; // C can be as large as ceil(log_2(n)..
reg k_i;
reg [n-1:0] sum [64:0];
integer comb,u,v,cwc;

always @(posedge CLK)

begin
 k_i=1;
 for (comb=0; comb<size; comb=comb+1) //total number of ways to pick
i varaibles from n
 begin
 //if(k_i==1)
 begin
 cwc=int2cwc(n,i,comb);
 for (u=0; u<=(2**i-1); u=u+1) //ennumerates the number of

//subfunctions of size i with different values
 begin //Scan the 2**i subfunctions.
 sum[u] = 0; //stores number of ones initially set to zero
 for(v=0; v<=2**(n-i)-1; v=v+1)//ennumerates the possible

//values of n-i variables
 begin
 sum[u] = sum[u] + TT[index(n,i,cwc,u,v)];//totals the

//number of ones for each value of u.
 //by finding the fuction value for a set u and for
 //each value of v.
 end
 end

 for (u=0; u<2**i-1; u=u+1)
 begin //Check that all subfunctions have the same
 if (sum[u] != sum[u+1])// number of 1s. If not, set k_i=0.
 k_i = 0;

 end
 end
 end
 end

//Constant function
function integer index;//Index to TT.
input integer n; //Number of variables.
input integer i; //Prospective cor. im. (1 <= i <= n)
input integer cwc; //Index to i-combination.

 95

input integer u; //Index to subfunction - 0 <= u < 2^i.
input integer v; //Index to minterm of subfunction - 0 <= v < 2^(n-i).
integer cwc_temp;
integer u_idx, v_idx, c_idx;
integer u_temp, v_temp;
integer temp;
begin
 u_idx=i-1;
 v_idx=n-i-1;
 index=0;
 u_temp=u;
 v_temp=v;

 cwc_temp=cwc;

 //the following loop finds the truth table index given a set u and v
 //the binary values of u will be place in the corresponding the
 //binary values of u will be place in the corresponding binary one
 //position of the CWC and the binary values of v are placed in
 //the binary zero positions of the CWC
 for(c_idx=(n-1);c_idx>=0;c_idx=c_idx-1)
 begin
 if((cwc_temp-2**c_idx)>=0) //does the cwc have a one in the

//c_idx position
 begin
 cwc_temp=cwc_temp-2**c_idx;
 if((u_temp-2**u_idx)>=0)//if the u binary value has a one in

//the u_idx position then
 Begin //the index binary value will have a one in the

//cwc_idx position
 index=index+2**c_idx;
 u_temp=u_temp-2**u_idx;
 end
 u_idx=u_idx-1;//one less u binary value to place in index

//value
 end
 else //if the cwc has a zero in the c_idx position
 begin
 if((v_temp-2**v_idx)>=0)//if the binary v value has a one

//in the v_idx position
 begin //then the index value will have a

//one in the cwc_idx position
 index=index+2**c_idx;
 v_temp=v_temp-2**v_idx;
 end
 v_idx=v_idx-1; //one less binary v value to place
 end
 end
end
endfunction

function integer int2cwc(input integer n, input integer i, input
integer comb);
 //functions uses the index value to assign exactly i ones to a n bit
 //string

 96

 integer N,k,comb_temp,temp;
 begin
 N=n-1;// number of positions to place a one from n-1 to zero
 k=i; //number of ones
 comb_temp=comb;
 int2cwc=0;
 while(k>=1)//loop continues until all ones have been placed begin
 temp=comb_nk(N,k);
 if(comb_temp-temp>=0) //if comb is greater than N choose k
 begin
 int2cwc=int2cwc+2**N;// then place a one in the N position
 comb_temp=comb_temp-temp;
 k=k-1;//decrease number of ones to place
 end
 N=N-1;//decrease the number of positions to place a one.
 end
end
endfunction

function integer comb_nk(input integer n, input integer k);
integer k_h,k_l,i;
begin:f2
 if(n < k)
 comb_nk = 0;
 else
 begin
 k_h = k;
 k_l = n - k;
 if (k_l > k_h)
 begin
 k_h = n - k;
 k_l = k;
 end

 comb_nk = 1;
 for(i = n; i>k_h; i = i-1)
 comb_nk = comb_nk*i;
 for(i = 1; i<=k_l; i = i+1)
 comb_nk = comb_nk/i;
 end
end
endfunction

endmodule
module pri_enc (CI, CLK, k);
/***/
/* pri_enc-Verilog code for a priority encoder. It examines elements*/
/* of vector k[i], which will be 1 for 1 <= j and 0 for */
/* j+1 <= n, in which case the correlation immunity, CI is j*/
/* and produces the correlation immunity, C, of that */
/* function. */
/* Created: October 8, 2010 */
/* Last Modified: November 22, 2010 */
/* Author: C. Etherington and J. T. Butler */
/***/

 97

 parameter n = 5; // n = the number of variables
localparam m = clogb2(n);
input CLK;
input [n:0] k; // k[i]=1 means function has
cor. im. at least i.
output [m-1:0] CI; // CI can be as large as
ceil(log_2(n).
reg [m-1:0] CI;
integer i=1;
always @(posedge CLK)
 begin
 i = 0; //Set i = 0 and check, for each i from
 while ((i<=n) && (k[i] == 1'b1))
begin:stage // set CI to i.
 i = i+1;
 end
 CI = i-1;
 end

//Constant function
function integer clogb2(input integer d);
 begin
 for(clogb2=0; d>0; clogb2 = clogb2 + 1)
 d = d >> 1;
 end
endfunction

endmodule
module nl_mapper(TT,OUT,CLK);
/**/
/* nl_mapper - Verilog code to convert the truth table TT of a */
/* given function f into a vector, OUT of 2^(n+1) */
/* functions - each with 2^n bits that are the */
/* distance vectors between f and the 2^(n+1) affine */
/* functions. These are then applied to a ones_count */
/* circuit to count the number of 1's, which are */
/* compared to find the minimum distance from f */
/* to an affine function. */
/* */
/* Created: November 27, 2008 */
/* Last Modified: November 22, 2010 */
/* Author: Jon T. Butler */
/* Inputs: TT //Truth table of given function, f. */
/* Outputs:OUT //Vector of 2^(n+1) distances between f and an afine*/
/* function. */
/**/
parameter n = 5; // n = number of variables.
localparam N = 2**n; // N = number of truth table entries.
localparam NN = 2**(n+1); // NN = number of affine functions.
input CLK;
wire CLK;
input [63 : 0] TT; // Truth table of function under test.
output [7: 0] OUT; // Note that TT is unused. Modify this
 integer i,j,k; // truth tables of all distance vectors.
reg [N-1:0] temp;

 98

reg [N-1:0] affine;
reg [N-1:0] xored;
reg [NN*(n+1)-1:0] count;

always @(*) // truth tables of all affine functions.
 begin
 for (i =0; i<NN; i=i+1)
 begin
 for (j =0; j<N; j=j+1)
 begin
 affine[j]=^(i&((j<<1)+1));
 xored[j]=affine[j]^TT[j];
 end
 temp=Count4(xored);
 for(k=0;k<n+1;k=k+1)
 begin
 count[(n+1)*i+k]=temp[k];

 end
 end

end
min instance_2
(count,OUT,CLK);
function [7:0] Count2;
input [3:0] TT;
 begin: f2
 Count2[0]=TT[3]^TT[2]^TT[1]^TT[0];

Count2[1]=(TT[3]&TT[2]|TT[3]&TT[1]|TT[3]&TT[0]|TT[2]&TT[1]|TT[2]&TT[0]|
TT[1]&TT[0])&~(TT[3]&TT[2]&TT[1]&TT[0]);
 Count2[2]=TT[3]&TT[2]&TT[1]&TT[0];
 Count2[3]=1'b0;
 Count2[7:4]=4'b0000;

 end
endfunction
function [7:0]Count3;
 input [7:0] TT;

 reg [7:0] a,b;
 begin: f3
 a=Count2(TT[3:0]);
 b=Count2(TT[7:4]);
 Count3=a+b;
 end
endfunction
function [7:0]Count4;
 input [15:0] TT;

 reg [7:0] c,d;
 begin: f4
 c=Count3(TT[7:0]);
 d=Count3(TT[15:8]);
 Count4=c+d;

 99

 end
endfunction
function [7:0]Count5;
 input [31:0] TT;

 reg [7:0] e,f;
 begin: f5
 e=Count4(TT[15:0]);
 f=Count4(TT[31:16]);
 Count5=e+f;
 end
endfunction
function [7:0]Count6;
 input [63:0] TT;
 reg [7:0] g,h;
 begin: f6
 g=Count5(TT[31:0]);
 h=Count5(TT[63:32]);
 Count6=g+h;
 end
endfunction
endmodule

module min(IN, OUT, CLK);
/***/
/* min.v - A program to compare 2^(n+1) n+1-bit binary values and */
/* to deliver the smallest to the output. This can be */
/* configured by a Completely pipelined tree */
/* In the case of 1. this runs at 209.6 MHz. for all */
/* values of n. It was tried for n up to 8. At n=8, it */
/* takes more than two minutes to compile. */
/***/
parameter n = 5; // Number of variables.
localparam nn = n + 1; // Number of bits in the numbers to be

//compared.
localparam N = 2**nn; // Number of numbers to be compared. It is the
 // number of affine functions.
output [7:0] OUT; // OUT is the smallest of the n+1-bit inputs
input [nn*N-1:0] IN; // IN is an array of 2^(n+1) (n+1)-bit numbers
 reg [nn*N-1:0] curr_IN [nn:0] ;
 input CLK;

integer i,j;

 always @(posedge CLK)
 begin
 curr_IN[0] <= IN;

 for(j=1; j<=nn; j=j+1) // Enumerate a level in the

//comparison tree.
 begin
 for(i=0; i<2**(n+1-j); i=i+1) //Enumerate a position in

//the current level.
 begin: increment
 curr_IN[0] <= IN;

 100

 if(curr_IN[j-1][((2*i + 2)*nn-1)-:nn] < curr_IN[j-1][((2*i +
1)*nn-1)-:nn]) curr_IN[j][((i + 1)*nn-1)-:nn] <= curr_IN[j-1][((2*i +
2)*nn-1)-:nn];
 else curr_IN[j][((i + 1)*nn-1)-:nn] <= curr_IN[j-
1][((2*i + 1)*nn-1)-:nn];
 end

 end

 end
 assign OUT = curr_IN[nn][(nn-1)-:nn];// curr_IN[j][((i + 1)*nn-
1)-:nn] for j=nn and i=0.

endmodule

 101

APPENDIX B. PC CODE

 The following is the program used to find the correlation immunity on the PC.

A. CORRELATION IMMUNITY FOR N=4

1. Main.c

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

int main () {
 int pow2[16];
 int x;
 int
i,comb,u,v,a,u_temp,v_temp,v_idx,u_idx,N,k,cwc_temp;
 int comb_temp,cwc,numer,denom,temp,index,c_idx,size;
 clock_t start,stop;
 double duration;
 int sum[17];
 int ci;
 int k_i[5];
 int count[5];
 int n=4;
 pow2[0]=1;
 pow2[1]=2;
 pow2[2]=4;
 pow2[3]=8;
 pow2[4]=16;
 pow2[5]=32;
 pow2[6]=64;
 pow2[7]=128;
 pow2[8]=256;
 pow2[9]=512;
 pow2[10]=1024;
 pow2[11]=2048;
 pow2[12]=4096;
 pow2[13]=8192;
 pow2[14]=16384;
 pow2[15]=32768;

for(x=0;x<=65536;x++)
count[x]=0;

start=clock();
for(x=0;x<10;x++)
 {k_i[0]=1;
 for(i=1;i<=n;i++)

 102

 {if(k_i[i-1]==1)
 {numer=1;
 denom=1;
 for(a=n;a>i;a--)
 numer=a*numer;
 for(a=(n-i);a>1;a--)
 denom=denom*a;
 size=numer/denom;
 k_i[i]=1;
 for(comb=0;comb<size;comb++)
 {if(k_i[i]==1)
 {N=n-1;
 k=i;
 comb_temp=comb;
 cwc=0;
 while((N>=0) && (k>0))
 {if(N<k)
 temp=0;
 else
 {numer=1;
 denom=1;
 for(a=N;a>k;a--)
 numer=a*numer;
 for(a=(N-k);a>1;a--)
 denom=denom*a;
 temp=numer/denom;
 }//else
 if((comb_temp-temp)>=0)
 {cwc=cwc+pow2[N];
 comb_temp=comb_temp-temp;
 k=k-1;
 }//if statement
 N=N-1;}
 for(u=0;u<=(pow2[i]-1);u++)
 {sum[u]=0;
 for(v=0;v<=(pow2[n-i]-1);v++)
 {u_idx=i-1;
 v_idx=n-i-1;
 index=0;
 u_temp=u;
 v_temp=v;
 cwc_temp=cwc;

 for(c_idx=(n-1);c_idx>=0;c_idx-
-)
 {if((cwc_temp-pow2[c_idx])>=0)

 {cwc_temp=cwc_temp-
pow2[c_idx];
 if((u_temp-
pow2[u_idx])>=0)

{index=index+pow2[c_idx];

 103

 u_temp=u_temp-
pow2[u_idx];
 }//if statement
 u_idx=u_idx-1;
 }//if cwc statement
 else
 {if((v_temp-
pow2[v_idx])>=0)

{index=index+pow2[c_idx];
 v_temp=v_temp-
pow2[v_idx];
 }//if statement
 v_idx=v_idx-1;
 }//else statement
 }//for c_idx loop

if((x&pow2[index])==pow2[index])
 sum[u]=sum[u]+1;

 }//v loop
 }//uloop

 for(u=0;u<pow2[i]-1;u++)
 {if(sum[u]!= sum[u+1])
 {k_i[i]=0;
 break;
 }}
}}}}// if statement (k=1) and for comb and i loops
ci=0;
for(i=1;i<=n;i++)
 {if(k_i[i]==1)
 ci=ci+1;
 else
 break;
 }//for loop

 {switch(ci)
 {case 0: count[0]=count[0]+1;
 break;
 case 1: count[1]=count[1]+1;
 break;
 case 2: count[2]=count[2]+1;
 break;
 case 3: count[3]=count[3]+1;
 break;
 case 4: count[4]=count[4]+1;
 break;
 case 5: count[5]=count[5]+1;
 break;
 default:
 break;

 104

 }
 }
} //x loop
stop=clock();
duration =(double)(stop-start)/CLOCKS_PER_SEC;
printf("\nThe number of seconds was %.40f\n",duration);

 printf("Histogram of maximum k for which functions have
correlation immunity k \n");

 for(x=0;x<=n;x++)
 printf("\n n=%2d\n", count[x]);

 }//int main (int argc, char *argv[]) {

 105

LIST OF REFERENCES

[1] J. T. Butler and T. Sasao, “Logic functions for cryptography – A Tutorial,”
Proceedings of the Reed-Miller Workshop, May 23-24, Naha, Okinawa, Japan,
pp. 127–136, 2009.

[2] J. L. Shafer, S.W. Schneider, J.T. Butler, and P. Stanica, “Enumeration of bent
Boolean functions by reconfigurable computer,” in 18th IEEE Annual
International Symposium on Field-Programmable Custom Computing Machines,
pp. 265–272, 2010.

[3] “Introduction to EC3820 and its Laboratory,” class notes for EC3820, Department
of Electrical and Computer Engineering, Naval Postgraduate School, Fall 2010.

[4] SRC Computers, Inc., “SRC CarteTM C Programming Environment v3.2 Guide,”
SRC-007-20, Colorado Springs, Colorado, November 2009.

[5] E. Filiol and C. Fontaine, “Highly nonlinear balanced Boolean functions with a
good correlation-immunity,” Advances in Cryptology, vol. 1403, pp. 475–488,
1998.

[6] Y. Yang, “Correlation-immunity of Boolean functions,” Electronic Letters, vol.
23, pp. 1335–1336, 1987.

[7] C. Charlet, “On bent and highly nonlinear balanced/resilient functions and their
algebraic immunities,” Applied Algebra, Algebraic Algorithms and Their
Algebraic Immunities, vol. 3857, pp 1–28, 2006.

[8] T. Siegenthaler, “Correlation-immunity of nonlinear combining functions for
cryptographic applications,” IEEE Transactions on Information Theory, vol. IT-
30, pp 776–780, 1984.

[9] D. Dalai, S. Maitra, and S. Sarkar, “Results on rotation symmetric bent
functions,” Discrete Mathematics, vol. 309, pp 2398–2409, 2009.

[10] J. T. Butler and T. Sasao, “Index to constant weight code converter,” October
2010 Preprint.

[11] J. T. Butler, “Computing correlation immunity by reconfigurable computer,” June
2010 Preprint.

[12] C. Johnson, “The circular pipeline: Achieving higher throughput in the search for
bent functions,” M.S. thesis, Naval Postgraduate School, Monterey, CA, 2010.

[13] P. Stanica and S. Maitra, “Rotation symmetric functions-count and cryptographic
properties,” Discrete Applied Mathematics, 156.10, pp 1567–1580, 2008.

 106

THIS PAGE INTENTIONALLY LEFT BLANK

 107

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Dr. Clark Robertson
Naval Postgraduate School
Monterey, California

4. Dr. John G. Harkins
National Security Agency
Fort Meade, Maryland

5. Dr. David R. Podany
National Security Agency
Fort Meade, Maryland

6. Mr. David Caliga
SRC Computers
Colorado Springs, Colorado

7. Mr. Jon Huppenthal
SRC Computers
Colorado Springs, Colorado

8. Dr. Jeff Hammes
SRC Computers
Colorado Springs, Colorado

9. Dr. Jon T. Butler
Naval Postgraduate School
Monterey, California

10. Dr. Pantelimon Stanica

Naval Postgraduate School
Monterey, California

 108

11. Mr. Christopher Johnson
 Naval Postgraduate School
 Monterey, California

12. Dr. Robert L. Herklotz

Program Manager, Information Operations and Security
Air Force Office of Scientific Research (AFROSR/RSL)
Arlington, Virginia

