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1. Summary

Thrust generation by flapping is accompanied by alternating
pitching moment. On the down-stroke, it pitches the bird down
when the wings are above its centre of gravity and up when they
are below; on the up-stroke, the directions reverse. Because the
thrust depends not only on the flapping characteristics but also
on the angle of attack of the bird’s body, interaction between
the flapping and body motions may incite a resonance that is
similar to the one that causes the swinging of a swing. In fact,
it is shown that the equation governing the motion of the bird’s
body in flapping flight resembles the equation governing the
motion of a pendulum with periodically changing length. Large
flapping amplitude, low flapping frequency, and excessive tilt of
the flapping plane may incite the resonance; coordinated fore—
aft motion, that uses the lift to cancel out the moment generated
by the thrust, suppresses it. It is probably incited by the tumbler
pigeon in its remarkable display of aerobatics. The fore—aft motion
that cancels the pitching moment makes the wing tip draw a figure
of eight relative to the bird’s body when the wings are un-swept,
and a ring when the wings are swept back and fold during the
upstroke.

2. Introduction

At a first glance, the dynamic stability in flapping flight should
not be any different from the dynamic stability in non-flapping
flight. After all, the periodic lift, thrust and pitching moment
generated by the wings can be viewed as periodic perturbations
to the nominal (non-flapping) state. If the latter is stable, the
bird is stable, flapping or not. Of course, there can be an
interaction between flapping and rigid-body natural modes, but
if the flapping frequency is large as compared with the rigid-body
natural frequencies, the bird should hardly be affected by flapping
at all. Essentially, this was the conclusion of Taylor & Thomas [1].
At a second glance, however, things are much more
complicated. Thrust generation by flapping is indeed accompanied
by periodic pitching moment: on the down-stroke, it pitches the
bird down when the wings are above its centre of gravity, and
up, when they are below; on the up-stroke, drag replaces thrust,
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and hence these directions reverse. The problem is that both the thrust and the drag depend on the
angle of attack, and hence an interaction between the motion of the bird’s body and flapping may
incite a (parametric) resonance, similar to the one reported by Taylor & Zbikowski [2] for desert locust
(Schistocerca gregaria). Analysis of this resonance is the first objective of this study.

If flapping can incite a resonance, the bird needs an active control that operates on the time scale of
the flapping period. In principle, active control can be furnished by moving the tail up and down, or
by twisting, cambering and sweeping the wings. In forward flight, the tail is closed, and hence cannot
be used for control. Periodic wing twist, proportional to the flapping rate, was shown in Part 1 [3] to
be the key element in the effective production of thrust. It is therefore unlikely that the periodic twist is
also used to control the pitch. We did not find any account on appreciable variations of camber on birds’
wings during the flapping cycle—bats are not addressed in this study. It leaves the fore-aft sweeping
motion of the wing to fill the function of the primary active control.

Sweeping motion is manifested in the intricate trajectories drawn by a wing tip during the flapping
cycle [4]. These trajectories change among species and change with flight conditions. In some cases,
they look like an oblique figure of eight; in other cases, they look like a deformed ring, with up-stroke
trajectory passing aft of the down-stroke one. A posteriori, our obtaining similar trajectories by simply
enslaving the sweeping motion to keep the pitch attitude or the angle of attack makes the conclusion
that the sweeping motion is used as the primary control in flight plausible. Trim analysis in the flapping
flight is the second objective of this study.

Generic equations of motion can be found in any textbook on flight mechanics [5]. In order to
formulate them in explicit form, one needs a model relating the aerodynamic forces generated by the
wings with parameters characterizing the flapping and body motions. For this study, we have used
the model developed in Part 1 [3]. It has the advantage of furnishing the aerodynamic forces in closed
analytical form, and it was shown in Part 1 to be sufficiently accurate to capture the correct behaviour
of these forces during the flapping cycle. Since this model is central for this study, we implicitly adopt
all the notations and the assumptions of Part 1. For completeness of this presentation, they are briefly
recapitulated in the next section.

The rest of the manuscript is organized as follows: equations of motion are derived in §4; the
aerodynamic derivatives underlying them are explicated in appendix A. The problem of the short-term
dynamic stability is addressed in §5; mathematical details underlying the analysis are found in appendix
B. Sweeping motion of the wings is studied in §§6-8. Section 9 concludes the paper. Data of all numerical
examples shown in this study are concentrated in appendix C. Morphological data of birds that were
used to estimate the range of coefficients in the equations of motion is concentrated in appendix D.

3. Preliminaries

As already mentioned, we adopt the notation, the assumptions and the aerodynamic model of Part 1 [3]
practically ‘as is”. A bird to be considered here has a pair of identical wings; the length of a single wing
(semi-span) is s; its area is S; the aspect ratio (of the two wings together) is A =2s2/S. The average flight
velocity is v; the density of the air in which the bird flies is p; the acceleration of gravity is g.s, v, s/v, v/s,
pSs, pSs3, psv?, pSv? and pSv?s will serve as convenient units of length, velocity, time, frequency, mass,
moment of inertia, force per unit span, force and moment, respectively. Note that although S is half the
quantity commonly used as the wing area, the unit of force is standard. Use of dimensionless quantities
will be implicitly understood hereafter. Should a dimensional quantity be required (other than p, v, g, s
and S), it will be marked by an asterisk. A list of nomenclature can be found in table 1.

The reduced mass of the bird is m (this is the single significant deviation from the notation of Part 1,
where m was dimensional, rather than reduced, mass). For the sake of simplicity, the mass of the wings
is neglected. The centre of gravity is located at the distance xg aft of the quarter-chord at the root, and at
the same height. The reduced moment of inertia about the centre of gravity is

Iy=mry, (3.1)

where 1y, is the respective (reduced) radius of gyration.

The bird’s body is allowed to pitch and heave; relative to the body, the wings are allowed to flap,
sweep fore and aft, and twist. It is assumed that the wing twists in such a way that its sections do not
deform and remain parallel to each other; moreover, the twist axis crosses all sections at their respective
quarter-chord points and remains straight at all times. The sweep angle of the twist axis is A (positive aft),
flapping angle is ¢ (positive down); the twist angle is g (positive for leading edge up); pitch angle is
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Table 1. Nomenclature. n
fundamental quantities

g acceleration of gravity

0 air density

fundamental units
s length
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S moment

non-dimensional quantities

A aspect ratio

(Continued.)



Table 1. (Continued.)

s natural frequency of the short-period mode; it is defined in (4.17)

special symbols

non-fundamental dimensional quantity

partial derivative with respect to parameters following the comma (Kronecker’s delta)
is an exception)

(positive for nose up); vertical translation of the bird’s body (and hence of the twist axis) is . Following
equations (3.1) and (5.10) of Part 1, it is assumed that the twist varies linearly along the span; moreover,
it follows the flapping rate ¢ with

Ug =0Ug0) — (158 |y| ’ (3.2)

where the over-dot marks a derivative with respect to time, y € (—1,1) is the span-wise coordinate,
£€(0,1) is a certain proportionality coefficient, and agq is the wing twist at the shoulder that remains
constant throughout the flapping cycle. The flapping-rate-proportional twist, embodied in the second
term on the right, was shown in Part 1 to play a central role in making the flapping propulsion
aerodynamically efficient.

In order to comply with the restrictions of the aerodynamic theory developed in Part 1, it is assumed
that the wing has an elliptical plan-form, with the chord length prescribed by

c= % 1-y2 (3.3)

It is also assumed that A~1, g0, T, I, &, ¢, » and A are small when compared with unity. It was shown in
Part 1 that under this assumption, ago and 7 are equivalent. Accordingly, without a loss of generality, it
can be agreed that when not flapping, the bird is trimmed with t =0, and the necessary angle of attack
is furnished by ay.
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4. Equations of motion

Intuitively, the longitudinal dynamics of a bird in flapping flight should be characterized by three
distinctive time scales, representing the short-period mode, the phugoid mode, and the flapping itself.
Short-period mode is manifested in pitch and heave oscillations with practically no changes in airspeed;
phugoid mode is manifested in pitch, heave and airspeed oscillations together ([1] and [5, pp. 167-169]).
The longest of the three is the time scale of the phugoid mode, a few seconds (if this mode is stable, its
period is estimated as 7v/2v/ ). The shortest of the three is probably the flapping period, a few tenths of a
second (appendix D). With an order of magnitude separating the shortest and the longest time scales, one
may expect that the interaction between the two is small, and hence the flight velocity can be practically
assumed constant over the flapping period [1].
With constant flight velocity and nominally horizontal flight, the longitudinal dynamics is governed
by the pair of equations
I,i=M (4.1)
and
mh=L—1L, (4.2)

where M is the pitching moment about the centre of gravity, L is the lift and the over-bar denotes the
respective quantity in the adjoint non-flapping flight (§5.1 in Part 1). In the context of this paper, it is
formally defined as the flight at the same velocity and with the same agp, but with

t=¢p=¢=h=0. (4.3)
This definition is consistent with the definition (5.5) of Part 1 as long as the flapping amplitude is
sufficiently small. It is implicitly assumed that in the adjoint flight, L exactly offsets weight:

msg

L=—2, 4.4
2 (4.4)

and that the bird trims out with sweep angle e
M=0 ati=Ax. (4.5)

Based on the aerodynamic model of Part 1, it is shown in appendix A that L and M can be written in the
following symbolic forms:

L=L+La(r —)+L,é, (4.6)
M= <M,xa(ago YTl + M,wq's) (= %+ 1) + M yoo(t — ) atgo + 7 — i)
+ Ma(t =)+ Mzt +MpyD¥ ¢+ M ¢+ M 50 (g0 + T — )pd + M 452697, (4.7)

where L, L’q;, M o, M,Miﬁ' M o2, M’aw, M,Mz, M pg, ]\_/I,a, M ; and M,d) are the respective partial
derivatives (with respect to the variable(s) following the comma), and DY is the drag of the wing in the
adjoint flight; the derivatives that depend on % have been marked by the over-bars. Explicit expressions
for these derivatives, which are based on the model of Part 1, can be found in appendix A. In principle,
however, most (if not all) of these derivative could have been extracted from experimental measurements,
as in Taylor & Zbikowski [2] or from numerical simulations, as in Wu & Sun [6].

Substituting (4.7) in (4.1) and (4.6) in (4.2) yields the equations of motion in explicit form:

I# — Mg — (M,a + Mo (h = &+ 1) + M g2 Qargy + T — ) + M/awd;q’}) (x — )
= (M a0 + M, j$)(h — & + 1) + MpyDVp + My + M 5006 + M 52067, (4.8)
mh=L(t —h)+ L. (4.9)

In this particular form, they will be used in §8; two additional forms will be needed for §§5-7. To derive
the first, we will need the reduced heave velocity,
mit
= 4.1
= (4.10)
to derive the second, we will need the angle of attack of the bird’s body,

. L
a=t—h=1- 12, 4.11)
m
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The first form comprises the variant
L b
r=it - 2 (412)
m
of (4.9), and its combination with (4.8),

Lo Mg
Iyn+1y(n'j I”) (M,a+
Y

. L
= (Maaorgo + M =

(= 7)o+ Mgt + M 00 ) i

.)¢

G m, '¢’ MppD™ + M6 + M’ M’

[0 =M 726+ MpgD™ g+ My + M,y jtgodd + M) 06
(4.13)

. L
n-— (M,¢a2 7+ M nj

= (M,Aaago + M// ¢) (}L )L) + Iy

the derivatives M/ ! o M :p oy , M . and M” ¢ are found in (A 27)~(A 30). Given A — X and ¢ as functions

of time, equation (4 13) can be solved for n; in turn, once 7, is known, t follows by (4.12). Equation (4.13)
is the basis for the next two sections.
The second form of the equations includes the combination

mh=Laa+L ;¢ (4.14)

of (4.11) with (4.9), and the combination of its corollary,
.. L L.
t=d+h=d+ La+ 24 (4.15)
m m
(which follows by (4.11)) with (4.8),

. Ly Mi\. [+ L, - .
Lyé + I, < n;’ IyT ) @— (M,a +M,; W“ + Mo (h — L+ he) + M 44220500 + M,anb(p) o — Mg pa?

= —%Lﬂ@ + (Matgo + M, 4$)0. — & +119) + MpsDV + M + M 505009 + M 5207 (4.16)

the derivative M’ b is found in (A 31). This form will be used in §7.
The combinations

Mg M:\L
-2 ¥ ,T 0
=— 4.17
Wy ( L,a + m ) Iy ( )
and

Ly M;

2gs=— — (4.18)
m Iy

of partial derivatives appearing in the second and the third terms on the left-hand sides of (4.13) and
(4.16) (they appear multiplied by I,) will be identified with the natural frequency and the damping
of the short-period mode [5, p. 175] in the adjoint non-flapping flight. We assume that both @? and
gs are real and positive—if they were not, the short-period mode would have been unstable, and
hence incompatible with the assumptions underlying this short-term stability analysis. There are many
arguments that can be brought in support of this statement. Suffice it to say that obtaining an unstable
short-period mode contradicts the initial assumption made on its characteristic time scale, and variations
in airspeed can no longer be ignored.

5. Flapping resonance

We would like to demonstrate that without a coordinated fore-aft sweeping motion of the wings,
flapping flight could be dynamically unstable. To this end, we set

A=A (5.1)
throughout the flapping cycle and assume that the response in heave is sufficiently small to justify
the neglect of the two nonlinear terms on the left-hand side of (4.13). The solution of this linearized
version of (4.13) is a combination of homogeneous and particular solutions. Since the right-hand side of
this equation does not vanish at all times during the flapping period, if we could demonstrate that its
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homogeneous part admits a diverging solution, the initial proposition would have been established. The
details follow.

For the sake of simplicity, we assume that the flapping is harmonic with amplitude ¢¢ and (reduced)
angular frequency w:

¢ = ¢psinwt. 5.2)

Introducing f=wt, ys= s/, ks = s/,

1" 2
vl= Moo (5.3)
27 4o '
M 29000
yi=—— (5.4)
ya)
" 2
522 Lo Mig% (5.5)
2 me 4o '
Lo M
and 5% — _JM, (5.6)
mw ZIywz

together with (4.17), (4.18), (5.1)—(5.6) in the homogeneous part of (4.13), allows bringing it into the form:

d3y d?Zy
ds dr

- -d - -
+ (k2 + 2y 2 sinf — 292 sin 21&)d—;7 + (282 sin f 4 28 sin 2f)y =0; (5.7)

the nonlinear terms that have been neglected in due course are wlz(a) etgn)(dn/ df)?sinf and
82(w/org0)(dn?/db) sin £.

Equation (5.7) resembles Hill’s equation [7, p. 405], whereupon we guess its solution in the same form
as Floquet’s solution of the latter [7, pp. 412-417]:

o bn e1(14 Hys+n)t

n=—i »_

n=—0o0

, 5.8

where b’s depend on the initial conditions and u is Floquet’s exponent. b’s satisfy the recurrence relation

82 52
2 2 2 1 2 2 2
< V2 ll+1)/s+”+2) 2 (l//1 M+1}/s+1’1+1) il ( (n ) (i VS)) "

(5.9)

82 82
+-ivi - ——L—— )by + (¥ - ——2—— | b2 =0;
mtiys+n—1 utiys+n—2

1 makes the determinant of the infinite, 5-diagonal matrix, formed on the coefficients of b’s in (5.9),
vanish:

H(p, /&2 = v&, v, Y2, Y1, 82, 81) =0. (5.10)

Equation (5.9) is obtained by substituting (5.8) in (5.7); without (5.10), the relations in (5.9) would have
admitted only a trivial solution.

By mapping the solutions of (5.10) over possible combinations of ys, «s, ¥1, ¥2, 81 and 8, one can
identify those combinations for which Im p > —ys; that is, one can identify the conditions for which the
solutions of (5.7) are bounded. Details can be found in appendix B; the outcome is shown in figure 1.
Judging by this figure, a rational description of those conditions is hardly possible. Nonetheless, a few

~
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0.01, 0.0,

(b) 0.01,0.5, 0.1

0.01, 1.0,

0.1

(d) 0.01,1.0, 0.2

(@) s

0.0

(&) 0.20, 1.0,

0.1

(M 0.20, 1.0, 0.2

(k) 0.40, 1.0,

0.1

(1) 040,1.0, 0.2

1.00, 0.0,

(o) 1.00, 1.0,

el

0.1

.o

(p) 1.00,1.0, 0.2

0.0

1.60, 0.0,

(r) 1.60,0.5, 0.1

(s) 1.60, 1.0,

0.1

(1 1.60,1.0, 0.2

1.0
L4

0.5 1.5 0

—~—

0.5
L1

1.0

0.5
¥

1.5 0

1.0

1.5

05 1.0
L4

0

1.5

Figure 1. Shaded areas mark combinations of v, and v, where solutions of (5.7) are bounded with different values of y, «, §; and
8. The numbers in the title of each sub-figure are the values of «, 81 /v, and 8,/ vr,, respectively; four values of 1, 0.05, 0.1, 0.15 and
0.3, are colour-coded, between dark and light shades of grey. For example, with y; = 0.3, the stable region in figure 1m is roughly the
rectangle (0,1) x (0, 0.8); with y; = 0.05, it shrinks to (0, 0.6) x (0, 0.3).

conclusions can be made based on explicit form of the parameters in (5.7):

Lo M ;
2= 2 -
mw mwry
L, # 128
2 o 0
=2 0 (11 —e) kg — ==
l//2 Mo 161’; ( ( 8)( 4 9].[2

2 La ) g 644

mw 1615 wpy 31

1
2
5
V3

52
and 1

— L’a

(64/972) (k1 — 1) (1 — &)

)Al),

T mw1—(1—e) (ks — (128/972)) Ay

Le 1

1p12 _mw2A1'

(5.11)

(.12)

(5.13)

(5.14)

(5.15)
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and physical data found in appendix D. Equation (5.11) follows (4.18) by (3.1) (note the definition of ys in
the line preceding (5.3)); (5.12) follows (5.3) by (A 27) , (3.1), (A 9), (A 11) and (A 3); (5.13) follows (5.4) by
(3.1) and (A 11); (5.14) follows (5.3) and (5.5) by (A 27), (A 29), (A 8), (A 9), (A 11) and (A 3); (5.15) follows
(5.6) and (5.4) by (A 11) and (A 7). A; is given by (A 4); k1 ~1.29 and k4 ~ 2.29 from (A 12).

Here 8/y» and 81/y are only weakly dependent on flight conditions (through the square root of
the flapping frequency). For most species of the birds compiled in appendix D, 81/ € (0.5, 1) at cruise;
moreover, assuming ¢ = 0.5, 8 /vy € (0.1,0.2). Three combinations of 81 /1 and 8,/ from these ranges
are shown in the right three columns of figure 1.

M ; is contributed mainly by the tail. Since the tail is closed at cruise, one may expect this derivative
to be small. Consequently, the value of ys is determined largely by L, /2mw. For most of the species of
birds compiled in appendix D, L /2mw € (0.05,0.3). Shaded areas in figure 1 reflect values of ys in this
range.

The value of s depends on the stability margin and the flapping frequency. The stability margin of
a bird is probably small—otherwise large pitching up moment would have been required to trim the
bird in the adjoint flight [8]. Small stability margin implies small ws, and hence one may expect that the
flapping frequency will be higher than the frequency of the short-period mode in the adjoint flight. Three
cases with ks < 1 are shown in the first three rows in figure 1.

Based on the first three rows in the right three columns of figure 1, one can state that with the exception
of a few singular cases, a bird is unstable if

Yo>W or yY1>Y, (5.16)

where ¥ and ¥, are, in general, intricate functions of «s, ys, 81/%1 and /. Towards the following
discussion, they will be replaced by their representative values over these nine figures, say, ¥1 =1 and
¥, = +/0.1. Using (5.12), the first criterion in (5.16) translates into

Ly #2 128 )
——1-01- ks —— |A ws; 5.17
ma)16r§( ( 8)(4 97_[2) 1)> 2 ( )
using (5.13), (A 17), (A 2) and (4.4), the second one translates into

@ 8 ﬂ > @2
2 f2s3q3 " Tl

(5.18)

where f* = wv/27xs is the dimensional flapping frequency. Whichever criterion applies, a combination of
small radius of gyration, slow flapping and large flapping amplitude may lead to resonance.

The data on the radius of gyration among birds is scarce. Exploiting the interpretation of the radius of
gyration as half the length of a dumbbell having the same mass and inertia as the body represented by
it, we estimate the radius of gyration of a bird to be comparable with half the chord at the wing’s root,
cp = 8/mA—see (3.3). In other words, when writing

4
TA’
Ry will be a parameter of the order of unity. In fact, based on the data of Hedrick & Biewener [9], R, = 0.56

for a cockatoo (Eolophus roseicapillus).
Substituting (5.19) in (5.17) and (5.18), the instability criteria (5.16) can be re-formulated as

f=R 2 =R, (5.19)

R Rle/Z
. Y2 ¥l
>min | ——, —— ], 5.20
$o (q)z o2 ) (5.20)
where
A [Lgy 128

Prp=— [—(1—-(1—- ks ——— ) A 21

2= 3¢ mw( ( 8)(4 9712) 1) (5.21)
and

A g A1
D1 = — —. 22
177 \ %25 31 (5:22)

With ¥ =1, ¥; =+/0.1 and Ry =1, it renders 15 out of 46 species of birds compiled in appendix D
unstable when the flapping amplitude exceeds 45°; with R, = 0.5, the number rises to 43 (figure 2). Being
based on quite a few assumptions, this conclusion should be treated with due caution. Still, it implies
that the resonance is within reach and, regardless of the intrinsic stability of a bird in non-flapping flight,
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Figure 2. Number of species, from the 46 species that have been compiled in appendix D, that are unstable by criterion (5.20) if the
flapping amplitude is ¢by. The two lines represent different radii of gyration, r, = 4R, /7 A.

some sort of stabilization during flapping flight is a necessity. For the reasons already mentioned in the
Introduction, this stabilization is likely to be furnished by the sweeping motion of the wing.

6. Inciting the resonance

We release now the assumption (5.1) that inhibited the wing sweep, and temporarily assume that the
sweeping motion is prescribed by

"
_ M M,
Py k,,,2¢¢MLj’¢ + 2ky, agop A/f(ia )
A o

”

6.1)

where ky, and ky,, are certain parameters. This assumption will be released in the next section. Combined
with flapping, the fore—aft motion prescribed by (6.1) makes the wing tip draw an oblique figure of eight
(the first term makes it a figure of eight; the second term tilts the flapping plane forwards). Replacing
(5.1) with (6.1), and repeating the steps leading from (4.13) to (5.7), yields a similar equation, only in
which

1/ 2

D
2_ ¢d 0
vy =(1+ sz)TIyw (6.2)
and
M 40200000
Ui =~ tky, )~ (6.3)
y(,()

Although it is plausible that some combination of ky, and ky, will make the bird stable, it is certain
that sufficiently large ky, or ky, will make it unstable. This conjecture follows by observing the stability
regions in the left column of figure 1 (as ky, and ky, increase, 81 /1 and 8, /1 tend to zero). It is plausible
that the sweeping-motion-incited resonance is exploited by the tumbler pigeon (Columba livia) in its
repetitive somersaulting.

Returning to (5.7) one may note that substitution f = # 4 7 changes sign with the terms involving
and §;. Consequently, the stability analysis of the preceding section applies for positive and negative
values of 1//12 alike (only its absolute value counts), and hence the resonance can be incited with large
negative values of ky, as well as with large positive values. In other words, it can be incited by tilting the
flapping plane forwards and backwards alike.

All birds tilt the flapping plane backwards during the transition from forward to hovering flights [4].
In view of the above, it can incite the resonance. Since the tilt of the flapping plane is dictated by the
performance requirements—the thrust is needed for lift—it is plausible that during these stages of flight
the tail replaces the wing as the primary active control. In fact, the tail has been observed to open up with
decreasing flight speed [4].
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7. Trim at zero angle of attack

In general, there is infinite number of flight strategies that can be realized using active control. Here,
we consider the most obvious two: keeping the angle of attack zero throughout the flapping cycle, and
keeping the pitch angle zero throughout the cycle. Starting with the first strategy, the sweeping motion
that makes

a=0 (7.1)
is the one that makes the right-hand side of (4.16) vanish:
~(Iy/m)L 3¢ + M’ d-)zi& +MppD™ o + (M 45050 + M 452 )6

A—i=—h .
¢ M,M',d) + M,)Laag,g

(7.2)

Here,
= L? 7.3)
m
by (4.14) and (7.1).

By interpretation, the numerator on the right-hand side of (7.2)—if written as a single fraction—is the
pitching moment at & =0 and A = &, unmitigated by the fore-aft motion of the wing. To within a sign,
the denominator in (7.2) is twice the flapping moment acting on the right wing at « =0, (My)y=0; this
conjecture follows from (A 7) and (A 8) of appendix A, and (4.26) of Part 1. In turn,

(Mx)a=0 = Yep (L)o=0 (7:4)
can be associated with the action of lift, (L),—o, at the centre of pressure of the right wing,

_(@) dapt@BkA-o¢
Yo = zx:O_37T Ofg0+(4/37t)(1—8)(i) '

T (7.5)
The expression on the left of (7.5) is just a definition of the centre of pressure (twice the moment generated
by a single wing over twice its lift); the expression on the right follows from (4.4), (4.5), (4.24), (4.26) and
(4.31) of Part 1. This interpretation of (7.2) elucidates the balancing action: the lift is moved fore-and-aft to
counteract the moment created by the thrust and by the drag. A few examples of the wing tip trajectories
can be found in figure 3. Individual contributions of the six terms on the right-hand side of (7.2) can be
found in figure 4.

The fundamental shape drawn by the wing tip is a deformed figure of eight. The three terms that
are responsible for this shape are the first and the last two terms on the right-hand side of (7.2), those
involving the combinations e, ¢ and ¢p@2. All three can be associated with the pitching moment created
by the thrust. Loosely speaking, thrust is generated by the rotation of the lift vector—it rotates forwards
when the wing moves down (either due to flapping or due to heave) and backwards when the wing
moves up. Since heave is in phase with the flapping angle (the bird moves up when the wings are
down—see (7.3)), the lift rotation due to heave pitches the bird down during the entire flapping cycle.
To counteract it, the wing tips draw a crescent shape, moving forward towards the ends of the up-
stroke and the down-stroke (figure 4a). At the same time, the lift rotation due to flapping creates an
alternating moment, pitching the bird down at the beginnings of the up-stroke and the down-stroke, and
pitching it up towards their respective ends. To counteract it, the wing tips draw a figure of eight, moving
backwards during both the up-stroke and the down-stroke (figure 4g).

Modifications to the basic figure of eight come from the remaining three terms. The first one involves
$. This term can be associated with the pitching moment needed to coordinate the pitch with heave in
keeping the angle of attack constant. To this end, the pitch angle should be proportional to the heave
velocity, and hence to the flapping angle. In turn, it requires the pitching moment to be proportional to the
pitch acceleration, and hence to the flapping angle acceleration. It brings the wings forwards (relative to
their nominal positions) at the beginning of the down-stroke, and backwards at its end; the down-stroke
and the up-stroke are different because the lift is different (figure 4b).

The next term involves ¢ and DY. It is associated with drag—it pitches the bird up when the wings
are up, and down when the wings are down. To counteract the action of this moment, the flapping plane
tilts backwards, with the wings backwards when up and forwards when down (figure 4d).

The last term involves ¢. It shapes the figure of eight by moving the down-stroke and the up-stroke
legs in the opposite directions (figure 4c). When the bird trims out in the adjoint flight with straight wings
(A =0) and aft centre of gravity (xcg > 0), the wings shift backwards on the way down and forwards on
the way up, effectively blowing up the lower part of the figure of eight and shrinking its upper part
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Figure 3. Trajectories of the left wing tip generated with (7.2); flight direction is to the left; the down-stroke starts at the upper left
corner and ends at the lower right—it is marked by a small dot. The solid line in all figures represents case 1 of appendix C. Dashed
lines show the effects of (a) increased inertia, (b) increased mass, (c) increased aspect ratio, (d) aft centre-of-gravity placement with
=0, (e) aft centre-of-gravity placement with A= Xeg37T /4, (f) aft centre of gravity and increased inertia combined, (g) increased
twist and (h) decreased frequency. These are cases 2-9 in appendix , respectively. Dotted lines in (g) and (h) mark a decreased twist and
anincreased frequency, respectively (cases 10 and 11).

(a) terms involving 4 (b) terms involving ¢ () terms involving ¢ (d) terms involving ¢
0.6
/
0.3 y
- 0
\
-0.3 N
-0.6

terms involving
terms involving ¢¢> (&) ¢¢ and ¢¢? (h) all

(e) terms involving ¢¢ (f

~

~0.1 0 0.1 0.1 0 0.1 0.1 0 0.1 0.1 0 0.1
A=A A=A A=A A-2

Figure 4. (a—h) Contributions of the separate terms in (7.2) for cases 5 (dashed line) and 6 (solid line), corresponding to figure 3d e.
Shown are the trajectories of the left wing tip; flight direction is to the left; down-stroke is marked by a dot.

(figures 3d or 4h). With & > 0 and the same centre-of-gravity position, it may be the other way around,
and the wings shift forwards on the way down and backwards on the way up (figures 3e or 4/).

This intricate behaviour is associated with the lift and centre-of-pressure fluctuations during flapping.
In the first case (A =0, xcg > 0), the wings’ centre of pressure is always forwards of the centre of gravity.
The lift increase on the down-stroke creates positive pitching moment about the centre of gravity, and
hence the wings should move backwards to compensate; the opposite happens on the upstroke. In the
second case, the wings’ centre of pressure is not necessarily forwards of the centre of gravity. For example,
A= Xcg3m /4 (which implies MBt =0by (A 20)) longitudinally aligns the wings’ centre of pressure with the
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Figure 5. The numerator (N, blue solid line) and the denominator (D, green dashed line) in (7.2); the flapping angle (¢, red dash—dot
line); and the sweep angle (A, black dash—dot line). Conditions are those of case 11in appendix C. During the upstroke (77 /2 < wt <
377 /2), the unmitigated pitching moment, represented by N, is small, but the lift generated by the wing is insufficient to balance it.

centre of gravity (assuming M%t small, it also makes the bird near neutrally stable—see (A 26)). When the
bird starts flapping, the wing’s centre of pressure moves outwards (and hence backwards) on the down-
stroke and inwards (and hence forwards) on the up-stroke—see (7.5). Consequently, the sweep has to
be smaller on the way down than on the way up. Moreover, if the wings fold on the way up, the centre
of pressure moves further inwards (and hence forwards), magnifying the effect. In fact, it can make the
wing tip draw a non-intersecting ring rather than a figure of eight [4].

When the angle of attack due to flapping is comparable with the average angle of attack, ago—either
because of high flapping rate or because of small twist or because of small «gp—the denominator in (7.2)
may vanish at certain times during the up-stroke (figures 3¢, and 5). During these events, it will be
impossible to balance the pitching moment with fore-aft adjustment of the wing. A bird has two options
here. One is to use the tail for control; in fact, the tail often opens up during vigorous flapping. The other
is to do nothing. Since in those cases where the denominator in (7.2) can vanish, the pitching moment
is small during the entire upstroke (note the range /2 < wt < 37/2 in figure 5), a momentary imbalance
should be of no consequence.

8. Trimming at zero pitch angle

Substituting
=0 (8.1)

in (4.8) yields the sweeping angle required to keep the pitch attitude during flight:
M,al;l — M,¢¢

A—Ai=—h¢+ . :
MA¢¢ + M g ((XgO —h)

~Mpg (DY + 7 AANago — )?) & — Mg p(g0 — Db — M 5266

T i i (8.2)
M, 40 + Mo (g0 — h)
To obtain (8.2) in this particular form, we have used the identity
M pgD™ — M goli(—h + 2ag0) = M p,y (ng +nAARQY) — w AN~ + zago))
=Mpg (ng + 7 AA (g — h)2) ) (8.3)
stemming from (A 14), (A 25), (A 11) and (A 2). In (8.2), I satisfies
mh+Loh=L ;¢ (8.4)

by (8.1) and (4.9); hence, if ¢ = Re(gpe'"),

imw+ Ly

. L. iwt
i=Re ("me). (8.5)
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Figure 6. Trajectories of the left wing tip that keep the pitch angle constant (dashed line) when compared with those that keep the angle
of attack constant (solid line). Flight direction is to the left; the down-stroke starts at the upper left corner and ends at the lower right—it
is marked by a small dot. Shown are (a) case 1, (b) increased inertia (case 2), (c) aft centre-of-gravity placement with A= Xeg37T /4 (case
6) and () decreased frequency (case 9).

A few examples of wing tip trajectories can be found in figure 6. They look similar to those shown
in figure 3, but since there is no need to adjust the pitch angle to heave, less fore—aft motion on the
down-stroke is required.

9. Concluding remarks

Without active control, an interaction between flapping, pitching and heave can cause a resonance that is
similar to the one that causes the swinging of a swing. It may affect all birds that have small inertia
in pitch when flapping slowly and with large amplitude, irrespective of their stability margin. This
resonance can be suppressed by active control—either with fore-aft sweeping motion of the wing or
with up-and-down deflection of the tail. It is most probably incited by a tumbler pigeon in its repetitive
somersaulting. It is possibly incited by all birds during the transition from forward to hovering flight,
and suppressed by the tail (in this flight regime most birds open their tails). It is suppressed in forward
flight (where the tail is closed) by the sweeping motion of the wing. Our obtaining wing tip trajectories,
that resemble those observed in birds, by simply enslaving the sweeping motion of the wing to keep
either the angle of attack or the pitch attitude supports this conjecture.

Three key elements made this analysis possible. One is the aerodynamic model that was developed
in Part 1. It allowed introduction of the aerodynamic derivatives (appendix A), which were instrumental
in keeping the length of the associated equations in check. The second element was the theory of the
third-order differential equation governing the short-term dynamics of the bird that was developed in
appendix B. It allowed obtaining the stability boundaries without running time-consuming numerical
solutions of this equation. The third element was in restricting the range of the six parameters of that
equation based on physical data (appendix D). It would have been practically impossible to draw any
definitive conclusions with six unrestricted parameters.

Appendix A. Lift and pitching moment

In this appendix, we derive explicit expressions for the lift and the pitching moment acting on a bird in
flapping flight. The main contributors to both parameters are the wing(s), the body and the tail.

The combined body and tail contribution to the lift is expected to be small. In fact, exploiting the
slender body theory, it should be proportional to the ratio of the tail span squared and the wing(s) area.
Neglecting this contribution a priori, L is furnished by the conjunction of (4.4), (4.24) and (5.11) of Part 1
(the last equation applies because of (3.2)). We write it here in the symbolic form:

L=La(ago+7—h)+ Lo, (A1)
where
Ly =mAA;, (A2)

4 4
L;=-AA1(1—-—¢)=—L,(1 - A
$=3 1( €) 37 o ( €), (A3)
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and in which, with any integer 1,

2

Ay = .
"TA+2n

(A4)

In (A 1), as well as in all subsequent occurrences, a comma in the subscript stands for a partial derivative
with respect to the variable(s) following it.
We divide the pitching moment about the centre of gravity, into four constituents:

M=M" + Lxcg + M + MPt, (A5)

The last one comes from the body and the tail; the first three come from the wing. Among these three,
MY is the pitching moment about the quarter-chord point of the wing’s root, contributed by the pressure
loads acting on the wing—it is furnished by (4.27) in Part 1 (in which it was denoted My); Lxg shifts this
moment to the centre of gravity; M is the pitching moment contributed by the parasite drag.

Based on (4.27) of Part 1, and similar to (A 1), the expression for M" is recast as

MY = (Ma(ogo + 7 = 1)+ M, 3) (1 + ig)
+ M,aq',q}(ago +T - h)¢¢ + M,¢¢2¢’¢2 + M,¢a2¢(01g0 +T - h)zl (A6)

where the respective coefficients (partial derivatives),

4
M o =4AA I = —QL,OU (A7)
16 16
M,)Lq'b:_;AKl (1 —8):—9”7214,01](1 (1 _8)/ (A 8)
T 32 L

Azl 32 (1-¢)K
M/¢¢z=—(l—8)AA1111<1+ 313—7( 8) 5)

Al 72 Aln
CL,(—e) (1 345

ks
2B _1-pAa2 Al
37 toa, 179 13) (A10)

4
and M 4,2 =4AATI = — 37 LeAl, (A11)

are identified by matching between (A 6) and the original expression in Part 1. I;1 and I;3 are actually
standard integrals, the former equals —1/3 and the latter equals —1/5. K1, K4 and K are functions of the
aspect ratio found in (4.28) and (4.29) in Part 1. They are approximated with

2 2
T b g
Ky =kiAil3, Ki= §k4A1, Ks= —§k5A%I%1, (A12)

where k; ~1.29, ky ~2.29 and ks ~ 6.12—see (4.30) and (4.31) of Part 1. Substituting (A 4), one can verify
that L g, L’q;, M o, M’M;, M,a¢¢} and M,Mz are slow functions of the aspect ratio, whereas M 442 behaves
as A~L. For typical A =8 wing, all seven coefficients are of comparable magnitudes.

The aerodynamic model of Part 1 does not provide the contributions of the wing to the rate
derivatives, L ; and M ;. For high-aspect ratio (almost) un-swept wings, both contributions are invariably
small [5, p. 137]. In dynamic stability analysis, L is customarily neglected altogether. Towards the
analysis carried out in this paper, the missing contribution to M ;can be easily compensated for by
increasing respective contribution of the tail (see below)—it will not be needed, however.

Assuming that all wing sections have the same parasite drag coefficient, D), the wing’s drag
contribution to the pitching moment, M9, follows (3.3) by quadrature. For future use, it is put into the
form:

a__A [
M4 = _Z¢J : ly| DY dy = M, pg D' ¢ (A 13)

where

4
Mpy=—75—. (A 14)
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Taking the cue from fixed-wing airplanes [5], we postulate Mt in the form
MPt =M ;¢ + Mz — i) + M5t + M}j;qa, (A 15)

where M ; is the damping in pitch contributed mainly by the tail, Mg‘ is the stiffness in pitch contributed
by the tail and the body alike, Mgt is the static moment contributed mainly by the tail, and Mt:; reflects the
reaction of the tail to the periodic downwash of the wing. None of these contributions will be explicitly
required in the text; in fact, since the tail is normally closed in forward flight, one may expect MPt—and,
consequently, all its partial derivatives—to be small for all but long-and-wide-bodied birds.

Combining (A 1), (A 5), (A 6), (A 14) and (A 15) together, yields

M =M a(h+ he)(ogo + o) + M, j(A + 1) + M yo2¢(ctg0 + @) + LaXeglago + @) + M s 7

+ Mo+ M g5 (g0 +)pd + Mg +MpgDy'd + (M2} + L jxeg)d + M 47, (A16)

where, by interpretation, @ = t — /1 is the angle of attack of the bird’s body.
Substituting (4.3) in (A 1) and (A 16), one will find that in the adjoint non-flapping flight

L=Lgogo (A17)
and
M =M jqhotg) + LaXegago + M. (A 18)
Trim in this flight, namely,
M=0, (A 19)
is achieved with
- Ly ME 3x Mt
A= —Xeg—— — =— | Xee + — |; A 20
& M,Aa M,Aa ®e0 4 6 L ( )

the first part of (A 20) follows from (A 18) and (A 19); the last part follows from the first by (A 17) and
(A'7). With (A 17)-(A 19), equations (A 1) and (A 16) can be rearranged as

L=L+Lga+L;p (A 21)
and
M= (Maalago + @) + M, ;) (h — & + i) + M yo2 (2050 + )
+ Mg+ Mzt +MpgD¥¢ + M + M 500 + @)dd + M 40667, (A 22)
where
Mgy =M%+ Loxcg + Mgk =M% +Lg (xcg - 3%;), (A 23)
c bt T bt 4 =
Mg =M% +Ljxeg +Mgh=M%+L (xcg - ng) (A 24)
and DY =DY + AA//IIZ": o2y =Dy + %. (A 25)

In (A 23), the right-hand side follows by (A 7); in (A 24), the right-hand side follows by (A 8) and (A 3);
in (A 25), it follows by (A 14), (A 11), (A 17) and (A 2). By interpretation, M,a is the pitch stiffness in the
adjoint flight; consequently,

Mbt 4 _

Yn=——24—X A 26
Xn L,a +37‘[ ( )

is the respective neutral point (that is, the point where the pitch stiffness vanishes). DV is the drag of the
wing in the adjoint flight.
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The following four combinations of partial derivatives:

L.
VR ) P
M/a(b(b —M/a¢¢ - 2M,¢O(2 Z, (A 27)
Moo M Ly’ (A 28)
bd? 2 ey o pa? Lo/’
" Lg
M,Aq} =M,Aq5 —M/Aaa (A29)
_ _ _ L,¢‘,
and M“/q‘) =M,d3 — IQZ (A 30)

naturally arise when grouping similar terms in (4.13); in view of (A 21), they can be interpreted as partial
derivatives at constant L. Additional combination,

Vi \/ LMIS
M,(i) :M’¢ +M,‘L’ m

(A31)

arise when grouping ¢ terms in (4.16); in view of (4.15), it can be interpreted as the respective derivative
at constant «.

Appendix B. Solutions of (5.7)

Consider the third-order differential equation with two time-dependent coefficients:

d3 d?
X, 4

B _d By By
PR (k2 +2y? sinf — 292 sin 2t)d—’; + (282 sinf + 262 sin 2f)x =0, (B1)

in which «s, ys, ¥1, ¥2, 81 and 8, are constants. By analogy with Hill’s equation [7, p. 405], we seek its
solution in the form

0 bnei(quistrn)E
2 i(n +iys +n)’

n=—00

x= (B2)

where b’s depend on the initial conditions and u is Floquet’s exponent [7, p. 414]. The factor
i(u +iys + n), introduced in (B 2), is not a necessity, but it does make the following equations somewhat
simpler.

b’s satisfy the recurrence relations

82 82 3
(—iw% + 2) buyz + (ivf% + 1) busa + (—(u+ )+ &2) by

nHiys+n+2 pwHiys+n+1
> 5 > 5

- —— )b+ [ - ——2—— | b2 =0, B3
101 Ltiystn—1 n—1 ‘/fz Ltips+n—2 n—2 (B3)

where 2 = k2 — y2; they follow by substitution of (B2) in (B1). These relations admit a non-trivial

solution only if the determinant H of the infinite 5-diagonal matrix,

_ 2
(Hy] = sgn(m — 1)8jm—n|,2 <—il/f22 N .62 )

2 —n? w+iys +m
sgn(m — mdjm—n1 (. > 5 k2 — (n+n)?
+ o I iy —— ) b, B4
&2 —n? Vi p+iys +m "R w2 (B4

formed on the coefficients of b’s in (5.9), vanishes. We will write this condition as

H(I"LI ES/ )/S/ ler 11’1/52/ 81) = 0 (B 5)

It determines p.
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We seek an analytical solution of (B5). To this end, we form an auxiliary matrix,

_ 52
[H,,] = sgn (m — 1) 8ju—n|,2 (_i%z n % )

©2— (u+n)? 1+ iys +m
sgn (m — 1) §jy,— . 82
+ g ,,g ) lm 2”"1 111”12_{— .1 +5mn/ (B6)
ks — (n+mn) WA-1ys +m

related to [Hy,,] by

&2 — (u+mn)?
[Hym] = s/?szfrﬂ [H;tm] : (B7)
Consequently,
n=0o0 ~2 2 . ~ . ~
ks —(U+n , SIN(7T (4 — TTKg) SIN(TT (L + TTK,
H o) =H ) [ S gy, IO Z TR TR g
He—eo K& — T sin“(mwks)

4

where H' is the determinant of [H),,] and the ellipses replace (Ks, ys, ¥2, ¥1, 82, 81). The infinite product
appearing in (B 8) can be found in Whitaker & Watson [7, p. 416].

H' is periodic with respect to u with period 1—it can be verified by substituting n=n"+ 1 and m =
m' +1in (B6). (/23 — ) Land (u +iys) ! appear in the expansion of H’ only in the combinations (/ZS2 -
w?)~Land (/ZS2 — w3 Yw + iys) " 1—it follows from (B 6) because each term in the expansion of H' contains
one element from each row and one element from each column [10]. H' tends to unity as u — +ico.
With §; = 8 =0 (and hence with no terms involving ys), H' turns into Hill’s determinant. Compiling this

information together, and taking the cue from the form of Hill’s determinant [7, p. 416], we suggest that
H'(i,...) =1+ Ci(cot(mp + mis) — cot(mp — 7ks))
+ Co(cot(mru + mis) — cot(m pu — mics)) cot(m pu + imys), (B9)

where C; and C; are a pair of constants. Because (B9) is periodic, if C; and C, can be adjusted to match
the singularities of H" at u = £&s and u = —iys, it will match all the singularities of H’, and, because (B 9)
also matches H' at infinity, it will match H” at any u by Liouville’s theorem [7, p. 105].

With (B9), equation (B 8) yields

)
H(g,..)= _M +1 + 2 cot(mis)Cy + 2 cot(is)Ca cot( i + imys), (B10)
sin“ (k)
or, what is equivalent,
.2 .

sin“(m cot(mp + 17
Hip,.. )=S0 | g, p,cotTn +iny) B11)

sin“(m«s) cot(im ys)

where By =1 + 2 cot(ks)C1 and By = 2 cot(wks) cot(im ys)Ca replace C; and Cp as the pair of independent
parameters.
In general, B; and B; can be established by fitting (B11) to H at two points, say, u =0 and u = uy:

H(,...)=B1 + B> (B12)

and
H(ui,..)= —?;22((7;’: :)) 4B +B —COt(;’t‘ (11:)/:’; %) (B13)

They yield
. s

Br= J:(:;(Z)Vs_) o (H(m, L )—H@O,..)+ m> (B14)

and
B; = H(,...) — By. (B15)

In practice, however, averaging B, over four different points, uniformly distributed around zero,
considerably reduces round-off errors; By still follows by (B15). The result is shown in figure 7. An
additional (indirect) indication that (B11) is adequate is furnished below by solving (B 1) numerically
and showing that its solution diverges where predicted by the present analysis and converges elsewhere.
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Figure7. (a—h) Maps of H(1¢, 0.387, 0.1, Yy, v, &, 8,), real part at the top row, imaginary part at the bottom, for four combinations of
parameters v, v, 81 and 8,. From left to right, the combinations are (0.2, 0.2, 0,0), (0.8,0.4,0,0), (0.2,0.2,1,0.1) and (0.8,0.4,1,0.1).
Contour levels are —4*, —43, —4, —4',0,4", 4, 4 and 4*, colour-coded between the darkest and the lightest shades of grey. Fquation
(B11), shown by dashed lines, is graphically indistinguishable. The determinant was computed on an 81 x 81 matrix (its convergence
was verified by halving and doubling the size of the matrix); the coefficients in (B 11) were computed based on five points: .« = 0 and
w = =£029 4 0.29i.

Introducing (B11) and
w=in —iys (B16)
in (B5) yields
s k2 ’_ /
sinh (7'r2u - TYs) LB +B2coth(nu) —o. (B17)
sin“(m«s) coth(m ys)

Exploiting standard trigonometric identities, it can be rewritten as

wzﬂnfi_—zmz +B +B2g=0, (B18)
where
z = coth (7ys), (B19)
m = coth ('), (B20)
and ?= Si?}f(ﬂj@)' (B21)
sin“(mig)

Essentially, (B 18) is a third-order equation for m:

Bym® + (By + w?)zm? — Quw?*z? + By)m + (w?z* — By)z =0. (B22)

It has three solutions; among them, those with Re(cosh_1 m) > 0 are bounded.

Combinations of parameters for which all three solutions of (B22) are bounded are shown in figure 1
in the text; part of figure 1h (with ys =0.15) is reproduced in figure 8. Stability boundaries outlined in
this figure were corroborated by direct numerical solution of (B1). Initial conditions were set, rather
arbitrarily, as

d2x dx

—=x=0, —=

dr? dt
The solution was examined at =400 and classified as either diverging or converging. All solutions
behaved as predicted.

1. (B23)

— Y

Appendix C. Numerical examples

Table 2 summarizes the details of all numerical examples shown in the paper.
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Figure 8. Direct numerical solution of equation (B 1) with ks = 0.2, ys = 0.15, §;/v4 =1and &, /v, = 0.2. Solid line marks the
stability boundary found by examining the solutions of (B 22); red and black dots mark diverging and converging solutions of (B 1).

Table 2. Numerical examples.
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Appendix D. Physical data

The data in this appendix were collected from the earlier studies ([4] and [11-14]); they are reproduced
in the first six columns of table 3. In particular, m* is the mass of a bird in kilograms, 2s and 25 are the

span and the wing area in metres and square metres, respectively, A is the aspect ratio, f* is the wing-beat
frequency at cruise in cycles per second and v is the observed velocity at cruise in metres per second. u*
is the velocity at which the drag in the adjoint non-flapping flight is minimal; it was estimated with u* =
(m*g)l/ 2(pS)~Y2(x ADy)~1/4, where Dy is the parasite drag coefficient [15]. The numbers shown in the
table were based on Dg = 0.015 and standard density; one can verify that u* provides a fair approximation
for v. u* replaced v when the latter was not included in the original data. In the following columns,
w=2mf*s/v is the reduced frequency, m = m*/pSs is the reduced mass; L, has been computed with (A
2). The next four columns reflect (5.21), (5.22), (5.14) and (5.15), respectively; ¥ and 82/y» have been
estimated with ¢ =0.5.

The choice of 0.015 for Dy was somewhat arbitrary, as the actual value of the drag coefficient depends
on the shape of the bird’s body and its size relative to the wing; moreover, Dy changes with the Reynolds
number. Preliminary design tools found in reference [16] suggest that a tailless airplane, featuring an
elliptical wing with aspect ratio of eight, and a double-ogive body, two root-chords long and a half root-
chord in diameter, should have Dy between 0.015 and 0.018 at chord-based Reynolds numbers between
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200000 and 80000. This estimate is based on the assumption that the boundary layer on its surface is
turbulent. It drops by half if the boundary layer can be assumed laminar.
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