

商務印書館發行

7647 復異初級中學教科書

下 册

處明禮編著段育華校訂

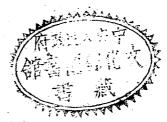
商務印書館發行

百 次 下 册

§ 103,	引論
§ 104.	怎樣解分式方程式
習是	图九十一
§ 105.	用化整法往往得鑑根 233
§ 106.	偽根何自而來
§ 107.	不用驗算,怎樣決定根的異傷 236
習是	组九十二
習是	選九十三
智是	夏九十四
第十二	章 乘方及開方242
I	影方 242
§ 108.	單項式乘 n 次方 242
§ 109.	二項式乘 n 次方 248

Ⅱ 開方
§ 110. 關於開方的幾個名詞 ······ 245
§ 111. 單項式關 n 次方 ························· 246
§ 112. 多項式開 n 次方(因子法) ······· 246
§ 113. 多項式開平方(通法) ····································
習題九十六
§ 114. 多項式開立方(通法) ····································
習題九十七
第十三章
§ 115. 不等數
§ 116. 不等式
§ 117. 不等式的分類 ····································
§ 118. 證恆不等式 ····································
習題九十八 258
§ 119. 解不等式
習題九十九
§ 120. 一元一次不等式的圖形 ····································
習題一百
第十四章 不盡根數 虛數 根式方程式 261
I 不盡根數

§	121.	不盡根數的需要	261
§	122.	不盡根數何以爲不盡?不盡根數的性質	262
§	123.	不盡根式化簡的原理	264
§	124.	不盡根數化簡後的形狀	265
	習題	一百零一	266
8	125.	不盡根式的加減	267
	習題	是一百零二	268
8	126.	不盡根式的乘法	269
	智題	5一百零三	270
§		不盡根式的除法	
	習過	6~百零四	273
		靉	
	128.	虚數的需要及其性質	273
§	129.	虛數的化簡	275
કું	130.	虚數的加減	275
	習題	三一百零五	276
C()	131.	虚數乘法	277
		9一百零六	
- 8		植數除法	
	N	更一百零七 man min min min min min min min man min min min min min min min min min mi	


4		代	製	
. , ,	Ⅲ 根	式方程式	*******	289
	§ 183. †	及式方程式的解	法 及應用	280
	習題-	一百零八		283
	第十五章	比 比例	變數法	284
			詞 ····································	
	習覺-	一百零九		286
	11 比多	j		286
		•. • • • • • • • • • • • • • • • • • •		•
	§ 137.	比例的重要定理	***************	288
	§. 138. T	前節定理的應用	*****************	291

				•
		•	***************************************	
	§ 140.	函數(應變數),自	變數	298
	§ 141.	函數的種類		300
	§ 142.	正變,有理函數之		 30 0
	1.0	• .		•
	§ 143.	国發、有理函數之		

		and the second s	•
\$	144.	등 變	306
	智是	一百十二	307
第	十六章	章 級數	308
§	145.	級數的需要	308
§	146.	何謂級數	- 309
	I 4	等差級數	51 0
§	147.	等差級數	8 1 9
8	148.	等差級數的公項	311
§	149.	怎樣插入等差中項	31 2
	習是	三百十三	\$1 3
ş	150 .	怎樣求等差級數 n 項的和	····· 313
		可一百十四	
		比級數	
ş	151.	等比級數	315
8	152.	等比級數的公項	316
8	153.	怎樣插入等比中項	317
	習題	一百十五	318
		求等比級數 n 項的和 ········	
	· 習題	〔一百十六 ····································	320
3	155.	無限遞減等比級數的和	321

習題一百十七	22
習題一百十八 32	23
第十十音 指數 對數	•
I 指数 32	
§ 156. 指數意義的推廣 ····································	24
§ 157. 分指數的意義 ····································	24
§ 158. 零指數的意義 ····································	25
§ 159. 負指數的意義 ····································	
習题一百十九。	26
Ⅱ 對數	28
§ 160. 對數的需要 ····································	28
§ 161. 對數是什麼 ····································	28
習题一百二十	30
§ 162. 對數的三大定律 ····································	30
§ 163. 對數的定值部份,定位部份····································	
§ 164.′ 怎樣來定位部 ··········· 8	
§ 165. 怎樣求定值部····································	
習題一百二十一 3.	
§ 166.	
習題一百二十二	36

	•		
Ş	1 67	求反對數	···· 336
	智題	8一百二十三	337
ş	168.	利用對數來計算	···· 338
	習恩	重一百二十四	···· 340
8	1 69.	指數方程式	340
	智息		341

弞

復與初級中學教科書

代 数

下册

§ 103. 引輸

- (1) 何謂分式方程式? 凡分母含有求知數的方程式,都 叫做分式方程式。例如 $\frac{1}{x}+5=x, \frac{1}{x}+\frac{1}{x-1}=2, \frac{1}{x}+\frac{1}{y}=12$ 等 都是分式方程式。而 $\frac{3}{2}x+x^2=\frac{1}{5}, \frac{x^2}{3}+\frac{x}{4}=5$ 都不是分式方程式。
 - (2) 何以需要分式方程式? 請看下題.

[問題] "二数的差是 1, 其倒數的和是 21 水道二數"。本問題若用一個未知數來解,例如,設 x=一數, x+1= 他數,從題意應得分式方程式:

$$\frac{1}{x} + \frac{1}{x+1} = \frac{21}{10}$$
°

又若用兩個未知數來解,例如,設w=大數,y=小數,那麼,從題意也應得分式方程式:

$$\begin{cases} x - y = 1 \\ \frac{1}{x} + \frac{1}{y} = \frac{21}{10} \text{.} \end{cases}$$

不但如此,任用其他方法,終得分式方程式。所以,若不利用分式方程式,這問題便無法求解。然則分式方程式還可以不要嗎?

§ 104. 怎樣解分式方程式? 分式方程式的解法,最通用的有二種,就是"化整法"與"加減法"。現在依次來講。

A. 化整法 [例] 解上節問題所得方程式

$$\frac{1}{x} + \frac{1}{x+1} = \frac{21}{10}$$

[解法] 以諸分母的 L. C. M. =10x(x+1) 乘原方程式的兩邊,便得整式方程式:

$$10(x+1)+10x=21x(x+1)$$

解之,得 $x_1 = -\frac{5}{7}, x_2 = \frac{2}{3}$ 。

把 01 和 02 分别代入原方程式驗其是否相合:

$$\frac{1}{-\frac{5}{7}} + \frac{1}{-\frac{5}{7} + 1} = \frac{21}{10}$$

$$\frac{21}{10} = \frac{21}{10};$$

$$\frac{1}{2} + \frac{1}{2} = \frac{21}{10}$$

$$\frac{21}{10} = \frac{21}{10}.$$

由上例看來,可得分式方程式的解法,如下:

第一步。 先以原方程式中所有諸分母的 L. C. M. 逼乘 方程式的兩邊。(使原方程式變為整式方程式)。

第二步。 由這整式方程式求出未知數的值。

第三步。 欲知求得的值果否適合原方程式,可把這所得的值代入原方程式的兩邊,驗其是否相合。若不相合,且非解方程有錯誤,則必有其他原因。(參看下兩節)

B. 加减法 仍取第一法之例來說明。

[例] 解方程式
$$\frac{1}{x} + \frac{1}{x+1} = \frac{21}{10}$$
。

[解法] 移項,得

$$\frac{1}{x} + \frac{1}{x+1} - \frac{21}{10} = 0$$

加減,得

$$\frac{-21x^2 - x + 10}{10x(x+1)} = 0$$

乃令分子為零,得

$$-21x^2-x+10=0$$

解之,得二根

$$x_1 = -\frac{5}{7}, x_2 = \frac{2}{3}$$

(驗算一步和本節 A的例相同)。

由上例看來,又得分式方程式的解法如下:

第二步。 用分式加減法化簡第一步所得方程式,使成 $\frac{N}{D}$ =0 之形。

下兩節)

第四步。 乃令第三步所得最簡分式的分子寫 0 而解之。 第五步。 祀第四步所得的值代入原方程式的兩邊。³ 驗其 是否相合。

習題九十一

用二注解下列各盟並驗算所得的結果:

1.
$$x + \frac{12}{x-2} = -5$$

2.
$$x-1=4-\frac{12}{x+2}$$

8.
$$\frac{1}{x+2} = \frac{1}{(x+2)(x-1)}$$
°

4.
$$\frac{1}{x-2} = \frac{8}{x+5} \times \frac{1}{x-2}$$

5.
$$3 + \frac{44}{x^2 - 1} = \frac{4}{x - 1} + \frac{11}{x + 1}$$

6.
$$1+\frac{1}{x}=\frac{1}{x-1}+\frac{1}{x^2-x}$$

7.
$$1+\frac{1}{x-2}+\frac{2}{x-1}=\frac{2}{(x-2)(1-x)}$$

8.
$$\frac{1}{x+1} + \frac{1}{x(x+1)} = 0$$

§ 105. 用化整法往往得價根 取上節第 7,8 兩題論之。

[例一] 解方程式

$$1 + \frac{1}{x-2} + \frac{2}{x-1} = \frac{2}{(x-2)(1-x)},\tag{1}$$

[解法] 用化整法去分母,得

$$(x-2)(x-1)+x-1+2(x-2)=-2$$
 (2)

解之,得

$$x = -1$$

[驗算] 以 2=-1 代入原方程式,得

$$1-\frac{1}{3}-1=-\frac{1}{3}$$
, 左右相合。

以 x=1 代入原方程式,则得

$$1-1+\frac{2}{0}=\frac{2}{0}$$
,

分數的分母不可爲 0, 故 1 不合原方程式。

∴ α=-1 為原方程式的根;而 α=1 則非其根。我們叫 他做偽根,這種偽根應當除去。

[例二] 試解方程式
$$\frac{1}{x+1} + \frac{1}{x(x+1)} = 0$$
。 (1)

解之;得

$$x = -1_{o}$$

[驗算] 以 x=-1 代入原方程式,則得

$$\frac{1}{0} + \frac{2}{-0} = 0$$

這等式無意義,故一1是原方程式的偽根。

- § 106. 信報何自而來? 欲知偽根的來源,先要明白下面 發條原理:
- (1) 方程式的兩邊,可各加(或減)以任何數或任何代數式而不變其根。
- (2) 方程式的兩邊,可各來(或除)以任何永不爲零的代數式而不變其根。
- (3) 方程式的兩邊,若各乘以可以爲零的代数式,那麽,所 得新方程式,往往增入僞根。
- (4) 方程式的兩邊,若各除以可以為零的代數式,即所得 新方程式,往往失去異根。

$$v-2=5$$

(1)

兩邊若各以 α+3 乘之,則得新方程式:

$$(x+3)(x-2)=5(x+3)$$
 (2)

鄒

$$x^2 + x - 6 = 5x + 15$$

解之,得

$$x_1 = 7, x_2 = -3$$

[例二] 有方程式
$$(x+3)(x-2)=5(x+3)$$
。 (1)

雨邊若各除以 x+8, 則得新方程式:

$$x-2=5_{o} \tag{2}$$

這方程式中只有一根 7, 而原方程式(1)則有 7 與 - 3 兩根。可 見 "拿可以為零的代數式 $\alpha+3$ 除(1)式的兩邊,其作用能使原 方程式(1)失去一根(-3)"。

明白了上面的原理,那麽,對於解分式方程式何以會得傷根,不難洞明其故了。例如,在上節例一中,由(1)式化得(2)式,乃是把(1)式兩邊各乘以(x-2)(x-1)。這乘式 (x-1)(x-2)的值在 x=1 時為零。故所得(2)式中1這個根是(1)式的偽根。

又如,在上節例二中,由(1)式化得(2)式,乃是把(1)式兩邊各乘以 x(x+1)。這乘式 x(x+1)的值在x=-1 時為零,故(2)式中 -1 這個根是(1)式的偽根。

代

§ 107. 不用驗算,怎樣決定極的異偽? 把上節總括起來,分式方程式解得的值,有時所以不合原方程式,其唯一原因,就在該值能使乘式(卽諾分母的 L. C. M.)之值為零。由此得根之異偽判定的標準如下:

用化整法求解的。 如方程式的根,能使原方程式中一個 (或多個)分母為零的,那麽,必是偽根;反之,能使諸分母皆不 為零的,必是真根。

用加減法求解的。 在§104,(B)第二步所得力程式 $\frac{N}{D}$ =0的,如依第三步把 $\frac{N}{D}$ 的成最能分式,再依第四步令第三步所得

最簡分式的分子為 0 而解之,那麼,所得的值全為真根。因為 這樣所得的值,皆能使所得最簡分式的分子為零,而不使分母 為零。

[例一] 在 § 105 例一中,x=-1 能使諸分母 x-2,x-1, (x-2)(1-x) 皆不爲零。故 x=-1 必爲 眞根。

[例二] 又如,在 § 105 例二中, x=-1 能使分母 x+1 及 x(x+1) 為署,所以必為偽根。

[例三] 在§105例一中,若用加減法化成 $\frac{N}{D}$ =0之形,並

把 $\frac{N}{D}$ 約成最簡分式而解之,那麼所得的值必非僞根。

原題:
$$1 + \frac{1}{x-2} + \frac{2}{x-1} = \frac{2}{(x-2)(1-x)}$$
 (1)

解法:
$$1 + \frac{1}{x-2} + \frac{2}{x-1} + \frac{2}{(x-2)(x-1)} = 0$$

$$m$$
減,得
$$\frac{x^2-1}{(x-1)(x-2)}=0$$
 (2)

約分,得
$$\frac{x+1}{x-2} = 0 \tag{3}$$

介

x+1=0

解得

v = -1

[注意] 由(2)式若不免約成(3)式,直接令左邊分式的分子、為等,得 $2^{2}-1=0$ 。由此求解,就有僞根 x=1 参入其間了。

習題九十二

解下列各方程式(并靠其個根):

1.
$$\frac{12+x}{2x} = \frac{12+x}{3x}$$

$$2. \frac{8x^2 - 3x + 4}{12x^2 + 5x - 3} = \frac{2}{3}$$

3.
$$\frac{(x-1)}{x-11} - \frac{3x-2}{x+1} = 3$$

4.
$$\frac{7}{x+4} - \frac{3}{x-5} = \frac{26x-25}{x^2-x-20}$$

5.
$$\frac{x}{x+4} - \frac{x-1}{x+3} = 0$$

6.
$$\frac{x-2}{x-3} + \frac{3x-11}{x-4} = \frac{4x+13}{x+1}$$

7.
$$x + \frac{2x}{x-2} - \frac{4}{x+2} = \frac{8}{(x-2)(x+2)^6}$$

8.
$$\frac{9}{x^2+3x}+1=\frac{3}{x+1}+\frac{3}{x}$$

9.
$$x+\frac{1}{x}=2$$

10.
$$x-2+\frac{1}{x-2}=1_0$$

11.
$$\frac{x+5}{x-5} + \frac{x-5}{x+5} = \frac{10}{3}$$
.

12.
$$x^2 + \frac{9}{x^2} = 10_0$$

13.
$$x^2 - 5x + \frac{1}{x^2 - bx} = 5\frac{1}{2}$$

14:
$$x^4 + \frac{1296}{x^4} = 97$$
.

[註] 第 12,13,14 三题不必化爲四次或八次方程之。

15.
$$\frac{x-8}{x-10} + \frac{x-4}{x-6} = \frac{x-5}{x-7} + \frac{x-7}{x-9}$$

[解法] 光托原方程式變寫

$$1 + \frac{2}{x-10} + 1 + \frac{2}{x-6} = 1 + \frac{2}{x-7} + 1 + \frac{2}{x-9}$$

即
$$\frac{1}{x-10} + \frac{1}{x-6} = \frac{1}{x-7} + \frac{1}{x-9}$$
 卷項,帶
$$\frac{1}{x-10} - \frac{1}{x-9} = \frac{1}{x-7} - \frac{1}{x-6}$$
 預邊各自加減,得
$$\frac{1}{(x-10)(x-9)} = \frac{1}{(x-7)(x-6)}$$
 由此得
$$(x-7)(x-6) = (x-10)(x-9)$$

[注意] 學者試用 § 104 所述二法解上面方程式, 岩弛比本解法就复数 36。

x=8

16.
$$\frac{x}{x-2} + \frac{x-9}{x-7} = \frac{x+1}{x-1} + \frac{x-8}{x-9}$$

翻之,得

17.
$$\frac{2x-3}{2x-4} + \frac{2x-8}{2x-9} = \frac{2x-4}{2x-5} + \frac{2x-7}{2x-6}$$

18.
$$x - \frac{4x+5}{x+1} + \frac{2x+5}{x+2} - \frac{x^2-10}{x+5} = \frac{x+5}{x+4}$$

19.
$$\frac{x+2}{x} + \frac{x-7}{x-5} - \frac{x+3}{x+1} = \frac{x-6}{x-4}$$

20.
$$\frac{x+3}{x+6} + \frac{x+6}{x+9} = \frac{x+7}{x+10} + \frac{x+5}{x+6}$$

習題九十三

解下列各聯立分式方程式(如有僞根應舍棄之):

1.
$$\begin{cases} 1 + \frac{2y_2}{(x-y)(x+y)} = \frac{2y}{x+y} + \frac{y}{x-y} \\ x+y=9 \end{cases}$$
 (1)

[提示] 第一注: 把(1)式移項加減化營

$$\frac{(x-2y)(x-y)}{(x-y)(x+y)} = 0$$

約為最簡分式,得

$$\frac{x-2y}{x+y}=0$$

乃令分子 x-2y 冥琴,由聯立方程式

$$\begin{cases} x - 2y = 0 \\ x + y = 9 \end{cases} \tag{1}$$

求解,就得所求的贞根。

第二法: 把(1)式用化验法整常 x2-3xy+2y2=0。乃由聯立方程式:

$$\begin{cases} x^2 - 3xy + 2y^2 = 0 & (1) \\ x + y = 9 & -(2) \end{cases}$$

求解,得兩組程。其中一組值使(1)式的分母,不臺非零,是寬陽模廳拾棄之; 他組值使(1)式的分母皆不侵等,故為異根。

2.
$$\begin{cases} 1 + \frac{y}{x} - \frac{2y}{x+y} = \frac{2y^2}{x^2 + xy} \\ 5x + 4y = 27 \end{cases}$$

3.
$$\begin{cases} \frac{x^2 - xy}{xy - y^2} = 0\\ \frac{y}{x - y} + \frac{5}{x + y} - \frac{5y}{x^2 - y^2} = 2 \end{cases}$$

4.
$$\begin{cases} \frac{1}{x} + \frac{1}{y} = \frac{5}{6} \\ x + y = 5 \end{cases}$$

$$5. \begin{cases} \frac{x}{y} + \frac{y}{x} = 2\frac{25}{36} \\ xy = 1 \end{cases}$$

6.
$$\begin{cases} \frac{x+1}{x-1} + \frac{y-1}{y+1} = 3\frac{1}{3} \\ \frac{x-1}{x+1} + \frac{y+1}{y-1} = 3\frac{1}{3} \end{cases}$$

7.
$$\begin{cases} \frac{1}{x^2} + \frac{1}{y^2} = \frac{25}{144} \\ \frac{1}{x} + \frac{1}{y} = \frac{17}{12} \end{cases}$$

[註] 本歷习以不用分式方程式解法。就是先求 $\frac{1}{x}$ =?, $\frac{1}{y}$ =? 由此再求x,y 的值。

8.
$$\begin{cases} \frac{1}{x^2} = \frac{1}{xy} + \frac{1}{4y^2} = \frac{1}{144} \\ \frac{1}{x^2} + \frac{1}{xy} + \frac{1}{4y^2} = \frac{49}{144} \end{cases}$$
9.
$$\begin{cases} \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 3 \\ \frac{2}{x} - \frac{3}{y} + \frac{4}{z} = 3 \\ \frac{3}{x} + \frac{5}{y} - \frac{7}{z} = 1 \end{cases}$$
10.
$$\begin{cases} \frac{1}{x+y} + \frac{1}{x-y} = 1\frac{1}{3} \\ \frac{1}{(x+y)^2} + \frac{4}{(x-y)^2} = 4\frac{1}{9} \end{cases}$$

[監] 先以 $\frac{1}{x+y}=u$, $\frac{1}{x-y}=v$ 代入原式,求出 u,v 的值. 無後甚求 x,y 的值。

11.
$$\begin{cases} \frac{1}{x+y} + \frac{1}{y+z} + \frac{1}{z+x} = 3 \\ \frac{1}{x+y} - \frac{1}{y+z} + \frac{1}{z+x} = 1 \\ \frac{2}{x+y} - \frac{3}{y+z} + \frac{5}{x+z} = 4 \end{cases}$$

習頭九十四

- 1. 二數的和是 15, 其各自倒数的和是 $\frac{3}{10}$ 。求置二數。
- 2. 會員若干人,平均分談 132 元的用费。若會員增加1人,那麼每人 數可少出1元。求原有會員若干人。
 - 8. 一車從甲地開往乙地。行至中途,加快速度,每小時比開車時多行

10 里。於是共經 22 小時而達乙地,倘若該車行至全程 4 時便以新速度進行。 則可早到1 小時。求甲乙爾地的距離。

4. 一级平方实其创数平方的和是36。求道敏。

代

- 5. 相類三定數,各自倒數的和是 $\frac{18}{24}$ 。。求這三數。
- 6. 有一工程,甲乙合版需時 1 1 1 日而成;乙丙合散,需時 1 5 日而成; 甲丙合版需時 1 1 1 日而成。即各人獨做各需幾日而成?
- 7. 水流每時進行里數與某船在靜水中每時所行里數相差第 10。甲乙 酮地相距 120 里、該船往返一次共經 5 小時。求該船每時所行里數。
- 8. 甲從A向B進行,乙同時從B向A進行,相會時甲比乙多行48里。 相會從甲再行8時而達B,乙再行18時而達A。求各人的速度及AB的距離。

第十二章 乘方及開方

I. 乘方

§ 108. 單項式乘N次方 把一數或一式自乘以求其二次,三次或任何次幂,叫做乘方。根據這定義實行乘⊋,那麽,

$$(a^{2})^{3} = a^{2} \cdot a^{2} \cdot a^{2} = a^{2+2+2} = a^{5},$$

$$(-x^{3})^{2} = (-x^{3})(-x^{3}) = x^{3+3} = x^{5},$$

$$(-a^{5})^{3} = (-a^{5})(-a^{5})(-a^{5}) = -a^{5+5+5} = -a^{15},$$

$$(-3a^{3})^{4} = (-3)^{4}(a^{3})^{4} = 81a^{12},$$

$$(a^m)^n = a^m \cdot a^m \cdot a^m \cdots$$
 到 n 次
$$= a^{m+m+m} \cdots$$
 到 n 次
$$= a^{mn} \cdot a^m \cdot$$

由此可知要把單項式乘 n 次方, 就是把這項的係數(依算 術方法) 乘 n 次方, 把文字的指數乘以 n, 設 n 是偶數, 答數所 冠的符號是正, 假使是奇數, 所冠的符號和與式前面原附的符號 相同。這樣, 就得所求的 n 次方。

§ 109. 二項式乘N次方 求二項式 $(a\pm b)$ 的二次幕,三次器,四次器,五次器,實行乘算,得

$$(a+b)^{2} = a^{2} + 2ab + b^{2},$$

$$(a-b)^{2} = a^{2} - 2ab + b^{2},$$

$$(a+b)^{3} = a^{3} + 3a^{2}b + 3ab^{2} + b^{3},$$

$$(a-b)^{3} = a^{3} - 3a^{2}b + 3ab^{2} - b^{3},$$

$$(a+b)^{4} = a^{4} + 4a^{3}b + 6a^{2}b^{2} + 4ab^{3} + b^{4},$$

$$(a-b)^{4} = a^{4} - 4a^{3}b + 6a^{2}b^{2} - 4ab^{3} + b^{4},$$

$$(a+b)^{5} = a^{5} + 5a^{4}b + 10a^{3}b^{2} + 10a^{2}b^{3} + 5ab^{4} + b^{5},$$

$$(a-b)^{5} = a^{5} - 5a^{4}b + 10a^{3}b^{2} - 10a^{2}b^{3} + 5ab^{4} - b^{5},$$

上列各式,等號右邊的式子叫做左邊的式子的展式。我們觀 察其乘算結果,可得二項式(a±b)乘 n 次方的規則如下:

(1)展式的項數是 n+1。

- (2) a 的指數,在第一項就是 n,以後逐項少 1,至第 n 項為 1 而止。
- (8) b 的指數,在第二項是1,以後逐項加1,至末項為n而 止。
- (4)第一項的係數是 1, 第二項的係數是 n, 以後各項的係 數是前一項的係數乘前一項 a 的指數再用前一項的項數除得的 商。
- (5)各項前面所冠符號,在二項的和的 n 次方,都是正號;但 在二項的差的 n 次方,則正負相間。

[解法]
$$(a-2b)^4 = a^4 - 4a^3(2b) + 6a^2(2b)^2 - 4a(2b)^3 + (2b)^4$$

= $a^4 - 8a^8b + 24a^2b^2 - 32ab^3 + 16b^4$ 。

[例二] 求
$$(3x+y)^5=?$$

[解法]
$$(3x+y)^5 = (3x)^5 + 5(3x)^4y + 10(3x)^3y^2$$

 $+10(3x)^2y^3 + 5(3x)y^4 + y^5$
 $=243x^5 + 405x^4y + 270x^3y^2 + 90x^2y^3$
 $+15xy^4 + y^5$

[例三] 計算 1038=?

[解法]
$$103^3 = (100+3)^3 = (100)^3 + 3 \cdot (100)^2 \cdot (3)^3 + 3(100) \cdot (3)^2 + (3)^3$$

習題九十五

-1. 宋下列各草項式的乘方: (a) $((a^4b^5x^2)^2_0$ (b) $(2ab^2)^3$ (e) $(3a^2b^3)^4$ (d) $(5x^2y^5)^2$ (e) $(-5ab^2)^3$ (f) $(\frac{1}{3y^2})^3$ (g) $\left(\frac{Eab^3}{2xy}\right)^2$ o (h) $\left(-\frac{x^3}{8}\right)^5$ 2. 索下列各式的歷式: (b) $(x+y)^3$ $(x+y)^2$ (d) $(x+y)^5$ (c) $(x+y)^4$ $(f) (x+y)^{7}$ (e) (x+y)8 3. 农下列各式的展式: (a) $(x-y)^8$ ° (b) $(2x-3y)^6$ ° (c) $\left(\frac{x}{2}-2y\right)^{5}$, (d) $(x-2)^{19}$ (f) $(xy+1)^{10}$ (e) $(3x+1)^{7}$ 4. 計算 995=? 985=?

II. 關方

§ 110. 關於開方的幾個名詞 求任何數M的二次釋,可 照乘方中所講,寫成 M^2 =?;求M的三次釋,或n次釋,可寫成 M^3 =?,或 M^n =? 反過來說,我們也可求何數的二次釋,三次 器,或 n 次器等於 M,用算式表示,可寫成 $\sqrt{M}=?$, $\sqrt[3]{M}=?$,或 $\sqrt[3]{M}=?$, $\sqrt[3]{M}=?$, $\sqrt[3]{M}$ 為 M 之二次方根或平方根, $\sqrt[3]{M}$ 為 M 之三次方根或平方根。 求 $\sqrt[3]{M}=?$ 〔其實就是 M = $(?)^n$ 〕 的運算叫做開方,開方就是乘方的逆運算。

代

在算式》<u>M</u>中,<u>M</u>叫做被開式, n 叫做根指數,所得結果"?"叫做 M的 n 次方根,全式少<u>M</u>叫做根式。

例如在 $\sqrt{32}$ =2中, $\sqrt{32}$ 是根式,32是被開方数,5是根指数,2是 32 的 5 次方根。

§ 111. 單項式關 n 次方 由乘法得 $(ax^p)^n = a^n x^{pn}$ 。反之,就得 $\sqrt[n]{a^n x^{pn}} = ax^p = ax^{\frac{n}{n}}$ 。 可見"要把單項式開 n 次方,就是把這項的係數(依算術方法)開 n 次方,把文字的指數除以 n;這樣,就得所求的方根。"舉例如下:

[例一]
$$\sqrt{36a^4} = 6a^2$$
。

[例二]
$$\sqrt[4]{81a^4b^8c^{12}d^{24}} = 3a^{\frac{4}{4}}b^{\frac{8}{4}}c^{\frac{12}{4}}c^{\frac{24}{4}} = 3ab^2c^3d^6$$
.

§ 112. 多項式開 n 次方(因子法) 在被開方式容易分解因子時,欲求方根,可以先把被開方式分成因子,再依 § 110 去求方根,舉例如下:——

[例一]
$$\sqrt{x^2+6xy+9y^2}=?$$

[解法] 依因子分解法,得
$$x^2+6xy+9y^2=(x+3y)^2$$

$$\sqrt{x^2+6xy+9y^2}=\sqrt{(x+3y)^2}=x+3y$$
.

[例二] 求
$$\sqrt[3]{8x^3-12x^2+6x-1}=?$$

[解法] 依因子分解法,得

$$8x^3-12x^2+6x-1=(2x-1)^3$$

$$\sqrt[3]{8x^9 - 12x^2 + 6x - 1} = 2x - 1_0$$

§ 113. 多項式開平方(題法) 依§110,可見開平方是乘方(二次)的遊算,故開平方的方法,完全可從乘方公式推出來。譬如在(a+b)的乘方既有 $(a+b)^2=a^2+2ab+b^2$;故在開平方就應有

$$\sqrt{a^2+2ab+b^2}=a+b_0$$

一切開平方的手續,完全依這公式為根據。在實際運算上,把上式改成 $\sqrt{a^2+b(2a+b)}=a+b$,於是乃有如下的算式:

(被關方式)
$$a^2+2ab+b^2$$
 $a+b$ (平方根)
$$\frac{a^2}{2a}$$
 $2ab+b^2$ $2ab+b^2$ $2ab+b^2$ 0

多項式開平方的通法,步骤如下:

- I. 把被開方式依某文字的昇鞣(或降器)排列起來。
- II. 求根的第一項。 把被開方式的第一項開平方,即得根的第一項。

從被開方式減去根的第一項的平方,得第一餘式。

III. 求根的第二項。 以根的第一項的 2 倍,除第一餘式,所得的商,就是根的第二項。

乃以根的第一項的二倍與這第二項相加,再以根的第二項 乘這所得的和。

最後自第一餘式減去這乘得的積,得第二餘式。

IV. 求根的第三項。 把已得的第一,第二兩項的和當做一項,而把要求的第三項當做第二項,仿 III 繼續去做。

[註] 這種方法只在開方可以開盡時適用。不能閱盡的只能依此法求其近似根。

「例一」 求
$$16x^4+40x^2+25$$
 的平方根。

[例二]
$$\bar{x}\sqrt{x^4+4x^3-2x^2-12x+9}=?$$

[解注]
$$x^4+4x^3-2x^2-12x+9$$
 x^2+2x-3 x^4 $2x^2$ $4x^3-2x^2-12x+9$ $2x(2x^2+2x)$ $4x^3+4x^2$ $2x^2+4x$ $-6x^2-12x+9$ $-6x^2-12x+9$ $-6x^2-12x+9$ $-6x^2-12x+9$

習題九十六

I. 下列各式是否相等,並說明其理由;

- (a) $\sqrt{c^2+a^2+e^2}=c+d+e_0$
- (b) $\sqrt{x^2-y^2}=x-y_0$
- (c) $\sqrt{x^2+y^2}=x+y_0$
- (d) $\sqrt[3]{x^3-y^3}=x-y_0$
- (e) $\sqrt[3]{x^3+y^3}=x+y_0$
- (f) $\sqrt[3]{67} = 4 + \sqrt[3]{3}$

11. 求下列各式的平方根及立方根:

(a) 64x6

- (b) 64x6y18z,21
- (c) $x^6y^{12}z^{18}w_0^{21}$
- (d) $729x^6y^6z_0^{12}$
- (e) $729a^{6m}b^{n}c_{0}^{6p}$
- (f) 4096p6xq6yr, 18zw

III. 用医子分解法求下列各式的平方根:---

- (a) $5x^2 + 6xy + y^2$
- (b) $\xi x^6 + 12x^3y^3 + 4y^6$
- (c) $25x^1 30x^2y^2 + 5y^4$
- (d) $x^2+y^2+z^2+2xy+2yz+2xz$
- (e) $4x^2+9y^2+z^2-12xy-6yz+4xz_0$

IV. 用因子分解法求下列各式的立方侵:

- (a) $m^3 + 6m^2n + 12mn^2 + 8n^3$
- (b) $27a^3 27a^2 + 9a 1_0$
- (c) $8x^3 36x^2y + 54xy^2 27y^3$
- (d) $x^6+15x^4y+75x^2y^2+125y^3$
- V. 用§113 做題 II.
- VI. 用 § 113 求下列各式的平方程:

代

- (a) $x^4+6x^3+5x^2-12x+4_0$ (b) $x^4+8x^3-64x+64_0$
- (c) $x^6+2x^5-3x^4+2x^3+10x^2-12x+9$
- § 114. 多項式開立方(通法)。 依 § 110.可見開立方是 三次乘方的逆運算,故開立方的原理也以乘方公式為根據。因 為,在(a+b)的乘方既有 $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^2$

在開方自應有 $\sqrt[3]{a^3+3a^3b+3ab^2+b^3}=a+b$ 。

一切開立方運算,完全仿此公式去推演。為布式便利起見,又把這公式改寫為 $\sqrt[3]{a^3+b(3a^2+3ab+b^2)}=a+b$ 。

而在實際運算乃有下面的算式:

(被開方式)
$$a^3 + 3a^2b + 3ab^2 + b^3$$
 $a+b$ (立方根。) a^3 $3a^2 + 3ab + b^2$ $b(3a^2 + 3ab + b^2)$ $a^3 + 3a^2b + 3ab^2 + b^3$ $a^3 + 3a^2b + 3ab^2 + b^3$ $a^3 + 3a^2b + 3ab^2 + b^3$ $a^3 + 3a^2b + 3ab^2 + b^3$

多項式開立方的通法,步骤如下:

- I. 先把被開方式依 a 的降累排列起來。
- □. 求根的第一項。 把被開方式的第一項 a³ 開立方,即 得根的第一項, a。

從被開方式減去根的第一項的立方,得第一餘式 $3a^2b+3ab^2+b^3$ 。

III. 求根的第二項。 以根的第一項平方的 3 倍 3a² 除第一餘式的首項得 b, 這就是根的第二項。

乃把 $3a^2$,第一,第二兩項之積的三倍 3ab,與第二項平方,三者相加;而以 b 乘這所得的和。

最後,從第一餘式減去這所得的積,得第二餘式。(結果是 0,故 a+b 即是所求的立方根;如所餘非零,則依下法求其第三 項。)

IV. 求权的第三項。 把已得的第一,第二兩項的和當做第一項,要求的第三項當做第二項,仿 II 繼續去做。

[註] 同 § 113 的註。

[解法]
$$27x^3 + 27x^2 + 9x + 1$$
 $3x + 1 =$ 所求之立方根 $27x^3$ $3(3x)^2 = 27x^2 + 27x^2 + 9x + 1$

[例一] 求 $\sqrt[3]{27x^3+27x^2+9x+1}$ =?

[註] 本例中 a=3x, b=1。把本例解法與上式比較,當見他們逐步相同,並沒有什麼困難。

[例二] 求
$$\sqrt[3]{x^6+6x^4+7x^3+3x^5+3x+6x^2+1}$$
 =?

[解法]
$$\frac{x^2 + x + 1}{x^6 + 3x^5 + 6x^4 + 7x^3 + 6x^2 + 3x + 1}$$

[註] 既得根的第二項 x 之後, 把 x²+x 當做第一項, 所求第三項當做 第二項, 依照求第二項的方法去求這第三項。

習題九十七

- I. 用 § 114 解習題九十六題 III。
- II. 用§114 求下列各式的立方根:
 - (a) $27x^9 54x^7 + 36x^5 8x^3$
 - (b) $1-9a+33a^2-63a^3+66a^4-36a^5+8a^5$
 - (c) $27x^6 27x^5y 18x^4y^2 + 17x^3y^3 + 6x^2y^4 3xy^5 y^8$

$$(d) \quad \frac{27x^3}{64y^3} - \frac{27x^2}{8y^2} + \frac{9x}{y} - 8_0$$

第十三章 簡易不等式

§ 115. 不等數。

我們知道正數比0大,負數比0小。又從代數數的減法,知一數A比他數B大,則A-B 常是正,若A比B小,則A-B 常

是負。於是可知

A-B>0 與 A>B 相同, A-B<0 與 A<B 相同。

關於不等數有公理如下:

I. 不等數加等數, 其和仍不等, 原來大的和仍大。

[例如] 5>4,則 5+2>4+2,即 7>6。

[注意] >, 開口一邊向左, 競旅大於; <, 開口一邊向右, 融液小於, 此在營題十三第5 照注意中已經知道了。此不等號開口一邊的向左向右, 叫做不等號的向。若>改做<, 叫做改變不等號的向。

- 口. 等數加不等數,其和亦不等,所加的大和亦大。
- Ⅲ. 從不等數減等數,其差仍不等,原來大的差仍大。

[例如] 5>4, 則 5-2>4-2, 即 3>2。

IV. 從等數減不等敵,其差亦不等,所減的大,則其差小。

[例如] 5>4, 則 7-5<7-4, 即 2<3。

此(IV)換一句話來說,可如下:

從等數減不等數,改變不等號的向。

V. 不等數的等倍數仍不等,原來大的倍數仍大。但此倍數 指算術的倍數。(就是正數的倍數)。

[例如] 5>4, 則 (5×2)>(4×2), 卽 10>8。

VI. 不等數的等分數仍不等,原來大的分數仍大。但此分數 指算術的分數。(就是正數的分數)。 [例如] 10>8, 則 $\frac{10}{2}>\frac{8}{2}$, 即 5>4。

代

§ 116. 不等式。

表示二個代數式間有大小關係的式叫做不等式。

「例如了 $(a-b)^2 > 0$, x+5 > 8。

都是不等式。

在不等式中,亦有與前款公理相類的基本性質如下:

I. a>b, 及 b>c, 則 a>c。

因為

$$a-b \equiv (a-b)+(b-c)$$

從前款,知 a>b, 則 a-b>0,

b>c, $\|b-c>0$,

於是

a-c>0,

卽

 $a>c_{\circ}$

因爲

 $(a\pm c)-(b\pm c)\equiv a-b,$

쇷

a>b, iff a-b>0,

故

 $(a\pm c)-(b\pm c)>0$,

故

 $a\pm c>b\pm c_{\bullet}$

此(工)換一句話來說,便是:

在不等式 a>b 的兩端加同數,或從此減同數 c, 此不等號 的向不變。

於是,如有 d-e>f-g;

兩端都加 e-f,可得

d-f>e-g;

若兩端都加 e+g-d-f,可得

-f+g>-d+e

卽

 $-d+e < -j+g_{\circ}$

從此可知:

- a. 變不等式一端的一項或數項的記號,可移到別一端。此 是不等式的移項。
 - b. 若變不等式兩端各項的記號,同時當變不等式的向。

因為
$$(a_1+a_2)-(b_1+b_2)=(a_1-b_1)+(a_2-b_2),$$

今從假設, $a_1 > b_1$, 即 $a_1 - b_1 > 0$,

 $a_2 > b_2$, $a_2 - b_2 > 0$,

故

 $(a_1+a_2)-(b_1+b_2)>0,$

卽

 $a_1 + a_2 > b_1 + b_2$

此(III)換一句話來說,便是:

二個同向不等式,左右各自加起來,不等號的向不變。

[注意] 二個同向不等式不能從一式減又一式。例如 $a_1 > b_1$, $a_2 > b_2$,不 能得 a1-a2>b1-b2。

代

因為

 $(a_1-a_2)-(b_1-b_2)\equiv (a_1-b_1)-(a_2-b_2)$

此 a_1-b_1 , a_2-b_2 , 雖都是正數,但其差或正或資或 0 都可以,不能定說是正。

IV. a>b, 又若 c>0, 則 ac>bc, 及 $\frac{a}{c}>\frac{b}{c}$; 若 c<0 則

ac < bc, $\not \ge \frac{a}{c} < \frac{b}{c}$.

因為

 $ac-bc \equiv (a-b)c$,

 $\frac{a}{c} - \frac{d}{c} = \frac{a - b}{c}$

今從假設,

a > b, a - b > 0,

枚

a. 若 c>0,則 ac-bc>0,即 ac>bc,

及 $\frac{a}{c} - \frac{b}{c} > 0$,即 $\frac{a}{c} > \frac{b}{c}$;

b. 若 c<0, 則 cc-bc<0, 卽 ac<be,

及
$$\frac{a}{c} - \frac{b}{c} < 0$$
,如 $\frac{a}{c} < \frac{b}{c}$

V. 若 $a_1 > b_1$, $a_2 > b_2$, 且 a_1 , a_2 , b_1 , b_2 都是正

數, 则

 $a_1a_2 > b_1b_2$

 $a_1a_2-b_1b_2 \equiv (a_1a_2-b_1a_2)+(b_1a_2-b_1b_2)$

 $\equiv a_2(a_1-b_1)+b_1(a_2-b_2)_0$

今從假設,知 $a_2 > 0$, $a_1 - b_1 > 0$, $b_1 > 0$, $a_2 - b_2 > 0$,

 $a_1a_2-b_1b_2>0$,

卽

 $a_1a_2 > b_1b_2$

§ 117. 不等式的分類。

不等式與等式相似,可分成二類:第一類,式中所含文字用 任意數代替,不等式恆能成立,此類不等式叫做恆不等式;第二 類,式中所含特別文字要用某種界限內的數值代替,不等式纔能 成立,此類不等式叫做條件不等式。

§ 118. 證恆不等式。

恆不等式的證法,已見於 § 116 證不等式的基本定理,可取 不等號兩邊二式的差看他正負,決定他的大小。或者用代數學初 步公式或恆等式,亦可得到很多的幫助。

[例] b,a 都是正數,且不相等,證

$$\frac{a+b}{2} > \sqrt{ab}$$

[證] 因為

$$\frac{a+b}{2} - \sqrt{ab} = \frac{1}{2} (a - 2\sqrt{ab} + b) = \frac{1}{2} (\sqrt{a} - \sqrt{b})^2$$

今從假設, $a \Rightarrow b$, 卽 $\sqrt{a} \Rightarrow \sqrt{b}$ 卽 $\sqrt{a} - \sqrt{b} \Rightarrow 0$,

於是

$$\frac{1}{2}(\sqrt{a}-\sqrt{b})^2>0$$
,

故

$$\frac{a+b}{2}-\sqrt{ab}>0,$$

卽

$$\frac{a+b}{2} > \sqrt{ab}$$

數

[別證] 用乘法公式

$$\alpha^2 - 2\alpha\beta + \beta^2 = (\alpha - \beta)^2$$

若 α $+ \beta$,则

$$a^2-2a\beta+\beta^2>0$$
,

卽

$$\alpha^2 + \beta^2 > 2\alpha\beta$$
,

妆

$$\frac{a^2+\beta^2}{2} > \alpha\beta_0$$

今用 $\alpha^2 = a$, $\beta^2 = b$ 代入此式, 卽得

$$\frac{a+b}{2} > \sqrt{ab}$$

習題九十八

證以下各恆不等式:

- 1. a,b 同號且不相等,證 $\frac{a}{b}+\frac{b}{a}>2$ 。
- 2. $\frac{a}{b} + \frac{c}{a}$, $\frac{a}{b} (a^2 + b^2) (c^2 + d^2) > (ac + bd)^2$.
- 8. s,b,s 部是正數而不相等,證

$$(b+c)(c+a)(a+b) > 8abc_o$$

e. a,b,c 都不相等,證

$$a^2+b^2+c^2>bc+ca+ab_o$$

§ 119. 解不等式。

條件不等式常省稱做不等式。不等式中代表未知數的文字 亦叫做元。求不等式中元所能取敬值的界限,使此不等式成立 的, 叫做解不等式。

[例一] 解不等式
$$3x-2>2x+5$$
。
移項,得 $3x-2x>5+2$
 $x>7$ 答。
[例二] 解不等式 $5x-\frac{1}{4}>7+\frac{17x}{3}$ 。

用正數 4×3 乘雨淺,得

60x-3>84+68x

移項。

60x - 68x > 84 + 3.

削

-8x > 87

用負數 -8 除兩邊,得 $x<-10\frac{7}{8}$,

即凡比-10-7小的一切值都適合所設不等式。

習題九十九

解下諸不等式:

1.
$$\frac{1}{15}x < \frac{7}{3}$$

2.
$$-x > -7_{o}$$

4.
$$x-\frac{5}{7} > \frac{2}{9}x+2$$

5.
$$\frac{3x}{8} - \frac{2x-1}{12} > \frac{3x+1}{6} - \frac{5}{4}$$

§ 120. 一元一次不等式的圖形。

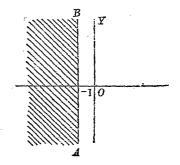
一元一次不等式化成最簡後的形式是

$$x < a$$
, $\not \equiv b < x_o$

此中 a,b 都表已知的代數數。此中只有一個變數 x, 故表

數尺上一點 +3 右邊的全部份。

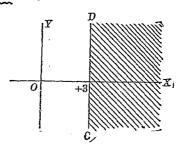
若將上二式當做二元一次不等式的特例, 如


x < 0y + a, \emptyset x > 0y + b,

則可表示一個平面中的界限。

[例三] x<-1 當做 x<0y-1。

先令 $x_1 = 0y - 1$,則 $x < x_1$ 。


 $x_1=0y-1$ 的圖形是右圖中直 線 $AB,x< x_1$ 表示現在所求界

限中的各點是在 AB 直線的左邊,便是圖中有陰影的一部份。

[例四] x>3 當做 x>0y+3。

先令 $x_2=0y+3$,此式的圖形是右圖中的直線CD。 $x>x_2$ 表示現在所求界限中的各點是在 CD 直線的右邊。

習題一百

下譜一元不等式當做二元不等式用圖表其界限:

1.
$$\frac{1}{15}x < \frac{7}{3}$$
°

2.
$$-x > -7$$

3.
$$x > 0_0$$

4.
$$-5 < x < -3_0$$

5.
$$6x-8<3x+2$$

6.
$$x-\frac{5}{7}>2x+3$$

第十四章 不盡根數 虛數 根式方程式

I. 不盡根數

§ 121. 不盡根數的需要 [問題一] 設有方程式 x²-2=0, 試求其根。依前面二次方程式解法解之,得

$$x=\pm\sqrt{2}$$

[問題二] 設有方程式 38-2=0, 試求其根。

代

先用移項法,得

$$x^3 = 2$$

再把兩邊各開立方,得 $x=\sqrt[3]{2}$

由上面例看來,可見解二次以上的方程式,所得的值,有時 非含有根號,(如~2,3~2,~5,~10 之類)不可。

但是√2的值究竟是多少?整數呢?小數呢?有限小數呢?還是循環小數呢? 答曰√2非整數,非有限小數,亦非循環小數(理由詳見下節)。若用小數來表√2的值,其位數必多至無窮而不循環。所以若把√2依開方手續去開方,無論演至何年何月,終無盡止之時。所以√2即做不盡根數。

同樣。√2, √5, 之類也都是不盡根數。(理由詳見下節)。

§ 122. 不盡振數可以爲不靈? 不盡振數的性質 把任何整數開若干次方,如型/N之類,如不能得整數,則必爲不盡根數。理由何在?述之於下:——

先看特例:
$$\sqrt{2} \div \frac{a}{b} \left(\frac{a}{b}$$
 是既約分數 $\right)$

[證] 假定
$$\sqrt{2} = \frac{a}{b}$$
,

應有
$$2 = \frac{a^2}{b^2}$$
。

今 $\frac{a}{b}$ 是既約分數,則b不能整除a、自然也不能整除 a^2 。b 既不

能整除 a^2 , 當然 b^2 更不能整除 a^2 。 b^2 既不饒整除 a^2 , 怎樣能 得整數 2?故

$$2 = \frac{a^2}{h^2}$$

所以

$$\sqrt{2} = \frac{a}{b}$$

再證通例:

$$\nabla N \Rightarrow \frac{a}{b} \left(\frac{a}{b}$$
 是既約分數)。

[證]

假定
$$\sqrt[n]{N} = \frac{a}{b}$$
,

應有

$$N = \left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}$$

因 b 不能整除 a, 所以也不能整除 a^m 。 b 既不能整除 a^m , 當然 b^m 更不能整除 a^m 。故 $\frac{a^m}{b^m}$ 不等於任何整數,良好亦不等於 N。故

$$N \Rightarrow \frac{a^m}{b^m},$$

所以

$$\sqrt[m]{N} + \frac{a}{b}$$
.

明白了 $\sqrt{2}$ $\stackrel{\alpha}{=}$ $\frac{\alpha}{b}$, $\sqrt[m]{N}$ $\stackrel{\alpha}{=}$ $\frac{\alpha}{b}$, 那麼對於 $\sqrt{2}$, $\sqrt[m]{N}$ 何以不盡 之故,不難一想而知。因爲,假若 √2, 17 可化爲有限小數,或循 環小數,依算術上"任何有限小數,任何循環小數,均可化成分 數"的道理, $\sqrt{2}$, $\sqrt[N]{N}$ 應可化為分數,這樣,便和上面已證的結果矛盾了。

所以總而言之, $\sqrt[n]{N}$ 如不能開得整數,則其眞值也不能用 小數來表示。但可用小數來表牠的近似值。例如 1.4; 1.41; 1.414;等等都是 $\sqrt{2}$ 的近似值,而非眞值。 $\sqrt{2}$ 的眞值就是一個 "自乘可以得"2"的數。同樣, $\sqrt[n]{N}$ 就是一個"乘m次方可以得N" 的數。用算式來表, $\sqrt[n]{N}$ 的性質如下:

$$(\sqrt[m]{N})^m = N_o$$

在不盡根數 \sqrt{N} 中,為稱述便利計,我們把m叫做根的次數,N叫做被開方數。

- § 123. 不靈視式化簡的原理 在沒有討論不盡根式各種原理之前,我們先要注意幾條條件:
 - (1)本章所用 a,b,N, ……等字母,皆取正值。
- (2)♥√N可得加個值,但是現在只論其正的一值,就是此正 值的m器是 N。

如 $2^2=4$, $(-2)^2=4$, 則 2 與 -2 皆為 4 之方根。但根據上 述條件, 2 只認為是 $\sqrt{4}$ 的方根, -2 是 $-\sqrt{4}$ 的方根。

(3) 加為奇數時,型一刃只論其一型刃一值。

如3/-27只論其一3/27一值。

照此規定,可得化簡根式原理如下:

(A)
$$\sqrt[m]{a}\sqrt[m]{b} = \sqrt[m]{ab}.$$
[證]
$$(\sqrt[m]{a}\sqrt[m]{b})^m = (\sqrt[m]{a})^m (\sqrt[m]{b})^m$$
$$= ab = (\sqrt[m]{ab})^m$$

丽邊各開那次方,得 型面型 b=型 ab。

$$(B) \qquad \frac{\sqrt[m]{a}}{\sqrt[m]{b}} = \sqrt[m]{\frac{a}{b}},$$

$$\begin{bmatrix} \overrightarrow{m} & \overrightarrow{a} \\ \overrightarrow{w} & \overrightarrow{b} \end{bmatrix}^m = \frac{(\sqrt[m]{a})^m}{(\sqrt[m]{b})^m} = \frac{a}{b} = \left(\sqrt[m]{\frac{a}{b}}\right)^m$$

兩邊各開
$$m$$
次方,得 $\frac{\sqrt[m]{a}}{\sqrt[m]{b}} = \sqrt[m]{\frac{a}{b}}$ 。

$$(C) \qquad \qquad \underset{\sim}{\text{min}} = \underset{\sim}{\text{m}} \sqrt{a^n} \circ$$

$$[\stackrel{\cong}{\boxtimes}] \qquad (\stackrel{\boxtimes}{\boxtimes} a^{np})^{mp} = a^{np} \tag{1}$$

$$(\sqrt[m]{a^n})^{mp} = [(\sqrt[m]{a^n})^m]^p = (a^n)^p = a^{np}$$
 (2)

 $(\sqrt[mp]{a^{np}})^{mp} = (\sqrt[m]{a^n})^{mp}$ 故

兩邊各開 mp 东方,得 ♥ anp = ** an。

- § 124. 不盡根數化簡後的形狀 依據上節(A),(B)((C)) 三條,仟何不盡根數,都可化成另一不盡根數使合下面的標準:
 - 被開方數內任何質因子的指數,不高於根的次數。 (1)[§ 123(A)].
 - (2) 被開方數內各個質因子的指數與根的次數,不再有

相同因子。[§ 123(C)]。

(3) 被開方數不含分母。[§123(B)並參看 §127 例~ 注意]。

[例一]
$$\sqrt{8} = \sqrt{2^2 \times 2} = \sqrt{2^2} \sqrt{2} = 2\sqrt{2}$$
。

[例二]
$$\sqrt[3]{48} = \sqrt[3]{8 \times 6} = \sqrt[3]{6} \sqrt[3]{6} = 2\sqrt[3]{6}$$

[例三]
$$2\sqrt{64 \times 27} = 2\sqrt{64} \sqrt[6]{27} = 2\sqrt[6]{27}$$
。

$$=2\sqrt[6]{3^3}=2\sqrt{3}$$

[例四]
$$\sqrt[4]{36} = \sqrt[4]{6^2} = \sqrt{6}$$
。

[例五]
$$\sqrt{\frac{1}{2}} = \sqrt{\frac{2}{4}} = \frac{\sqrt{2}}{\sqrt{4}} = \frac{\sqrt{2}}{2}$$
。

[例六]
$$\sqrt[3]{\frac{1}{a^2b}} = \sqrt[3]{\frac{ab^2}{a^3b^3}} = \sqrt[3]{\frac{ab^2}{ab}}$$
。

習頭一百零一

化簡下列各式:

- 1. \(\sqrt{288}\) o
- 2. $\sqrt{20}$
- 3. \$\square{128}_2

- 4. $\sqrt{250}$
- 5. $\sqrt[3]{250}$
- 6. ₹<u>5000</u>。

- 7. $\sqrt[3]{-2187}$ 10. \$\frac{4}{3125}_0
- 8. \$\frac{5}{245}_0 11. \$\frac{1}{800}_0
- 9. \$\square \frac{3}{256} \cdot \end{array} 12. \$\frac{125}{125}0

- 13, $\sqrt[6]{216}$
- $14. \sqrt[6]{1125}$
- 15. $\sqrt{\frac{2}{7}}$.

- 16. $\sqrt[3]{\frac{3}{A}}$ 17. $\sqrt{\frac{2a}{b}}$
- 18. $\sqrt[3]{\frac{14}{27}}$.

20.
$$\sqrt[3]{(x+y)^5}$$
 o

21.
$$\sqrt{1849(a+b)^2(a-b)^3}$$

22.
$$\sqrt{a^3+3a^2b+3ab^2+b^3}$$

23.
$$\sqrt{x^4y^6 + x^6y^4}$$

24.
$$\sqrt[3]{x^3y^0+x^8y^3}$$

25.
$$\sqrt{a^3+2a^2b+ab^2}$$

26.
$$\sqrt[3]{8x^4y-24x^3y^2+24x^2y^3-8xy^4}$$

在下列各式內,把根號外的係數化入根號之內:

27.
$$11\sqrt{3} = \sqrt{11^2}\sqrt{3} = \sqrt{121}\sqrt{3} = \sqrt{363}$$
.

20.
$$\frac{ab}{a-b} \sqrt{\frac{a^2-b^2}{a^2b^2}}$$
,

30.
$$\frac{4}{11}\sqrt{\frac{77}{8}}$$
°

§ 125. 不靈根式的加減 兩個不靈根式,除係數外,別無 他處不同的,叫做同類根式。

幾個同類根式可以加減成一個根式;幾個不同類根式,不能 加減成一個根式。(這與以前所述"同類項可以加減成一項;不同 類項不能相加或相減成一項,"其理相同。學者可比較一下)。

[例—]
$$3\sqrt{5}+2\sqrt{5}-4\sqrt{5}$$

= $(3+2-4)\sqrt{5}=\sqrt{5}$.

[例二]
$$3\sqrt{5}+3\sqrt{3}=6\sqrt{5}$$
。 對否? 何故? $8\sqrt{5}+3\sqrt{3}=6\sqrt{3}$ 。 對否? 何故? $3\sqrt{5}+3\sqrt{3}=6\sqrt{8}$ 。 對否? 何故?

[例三]
$$3\sqrt{5}+2\sqrt[3]{5}=3\sqrt{5}+2\sqrt[3]{5}$$
,何故?

「例四]
$$\sqrt{20} + \sqrt{45} = 2\sqrt{5} + 3\sqrt{5}$$

$$=(2+3)\sqrt{5}=5\sqrt{5}$$

[例五]
$$\sqrt{2} + \sqrt{\frac{1}{2}} + \sqrt{3} + \sqrt{75}$$

= $\sqrt{2} + \frac{\sqrt{2}}{2} + \sqrt{3} + 5\sqrt{3}$
= $\frac{3}{2}\sqrt{2} + 6\sqrt{3}$

由上列諸例看來,可得不盡根式的加減規則如下;

第一步。 化各個不盡根式成最簡的形狀。

第二步。 把同類根式的係數,依其原冠的符號加減之,以 這所得結果置於公共根式之前,作為根式的係數。

第三步。 把不同類諸根式,依其原冠的符號,分別用加減 號聯結起來(以示相加或相減之意)。

習題一百零二

試化簡下列各式:

- 1. 5/45-2/20+8/5.
- 2. $5\sqrt{63}+6\sqrt{7}-8\sqrt{28}$
- 3. $\sqrt{44}+5\sqrt{176}-2\sqrt{99}$
- 4. $5\sqrt{363}-2\sqrt{243}+3\sqrt{192}$
- 5. $5\sqrt[3]{81} 7\sqrt[3]{192} + 4\sqrt[3]{648}$
- 6. $\sqrt{2} + 5\sqrt{\frac{1}{2}} \sqrt{\frac{1}{8}} + \sqrt{50}$
- 7. \$\frac{3}{2} + 5 \frac{3}{2} 6 \sqrt{4}.

8.
$$\sqrt[3]{81} + \sqrt[3]{\frac{1}{9}}$$

9.
$$3\sqrt{147} - \frac{7}{3}\sqrt{\frac{1}{3}} - \sqrt{\frac{1}{27}}$$

10.
$$\sqrt[3]{-54} - 4\sqrt[3]{-16} + 5\sqrt{250}$$

11.
$$3\sqrt{5}+\sqrt{50}+\sqrt{10}-\sqrt{50}$$

12.
$$\sqrt{\frac{1}{2}} + \sqrt{\frac{1}{8}} - \sqrt{\frac{1}{3}} + \sqrt{\frac{1}{76}}$$

15.
$$3\sqrt{x} + 4\sqrt{y} - 6\sqrt{x} + 7\sqrt{y}$$

16.
$$\sqrt{(a+b)^2c} + \sqrt{(a-b)^2c} - 2a\sqrt{c}$$

17.
$$\sqrt{\frac{a^2+b^2}{ab}} + 2 + \sqrt{\frac{a^2+b^2}{ab}} - 2 + \sqrt{\frac{a}{b}} + \sqrt{\frac{b}{a}}$$

18.
$$\sqrt{\frac{y}{x}} + \sqrt{\frac{x}{y}} + \sqrt{\frac{1}{xy}} + \sqrt{xy} + \sqrt{\frac{1521}{x^3y + 2x^2y^2 + xy^3}}$$

§ 126. 不盡混式的乘法 依前 § 123 (A)可見兩個同來根可以相乘。不同次根,如欲相乘,須先求各根式根指數的 L. C. M., 根據□√a¬=□/a¬¬, 各以同級乘各根式的根指數,和被開方式的指數,使各根式均得以所求出的 L. C. M. 為根指數;這樣把不同次根化為同次根,然後相乘。

[例一]
$$\sqrt{2}\sqrt{84}\sqrt{6} = \sqrt{2\times84\times6}$$

= $\sqrt{2\times2^2\times3\times7\times2\times3}$
= $\sqrt{2\times2\times3\sqrt7} = 12\sqrt7$

$$\sqrt[3]{2}\sqrt{3} = \sqrt[6]{2^2}\sqrt[6]{3^3}$$

$$=\sqrt[6]{2^2 \times 3^3} = \sqrt[6]{108}$$

[例三]
$$\sqrt{2}(\sqrt{3}+\sqrt{24})=\sqrt{2}\sqrt{3}$$

$$+\sqrt{2}\sqrt{24}=\sqrt{2\times3}+\sqrt{2\times24}$$

$$=\sqrt{6}+4\sqrt{3}$$

[例四]
$$(\sqrt{2} + \sqrt{3})(\sqrt{5} + \sqrt{7})$$

$$=\sqrt{2}\sqrt{5}+\sqrt{3}\sqrt{5}$$

$$+\sqrt{2}\sqrt{7}+\sqrt{3}\sqrt{7}$$

$$=\sqrt{10}+\sqrt{15}+\sqrt{14}+\sqrt{21}.$$

[倒五]
$$(\sqrt{a} + \sqrt{b})(\sqrt{a} - \sqrt{b})$$

$$=(\sqrt{a})^2-(\sqrt{b})^2=a-b_0$$

[註] 根式 $\sqrt{a} + \sqrt{b}$ 與根式 $\sqrt{a} - \sqrt{b}$ 二者叫做共軛根式。共軛根式的積,恆不含根式。這個結果很為重要。學者務宜注意。

習題一百零三

求下列各積:

1.
$$\sqrt{2} \times \sqrt{5} \times \sqrt{10}$$
°

2.
$$\sqrt{3} \times \sqrt{24} \times \sqrt{5}$$

4.
$$\sqrt[3]{25} \times \sqrt[3]{\frac{1}{200}}$$
.

5.
$$\sqrt[3]{2} \times \sqrt{5}$$
.

7.
$$2\sqrt{3}(1+\sqrt{2}+\sqrt{3})_{\circ}$$

8.
$$3\sqrt{2}(\sqrt{2}-\sqrt{3}+\sqrt{5})_{c}$$

9.
$$(2+\sqrt{3})(3+\sqrt{5})$$

10.
$$(\sqrt{2} + \sqrt{3})(\sqrt{3} + \sqrt{5})_{0}$$

11.
$$(-\sqrt{2}+\sqrt{3})(\sqrt{2}-\sqrt{3})$$

12.
$$(\sqrt{2}+\sqrt{3})(\sqrt{2}-\sqrt{3})_{0}$$

13.
$$(-\sqrt{2}+\sqrt{3})(-\sqrt{2}-\sqrt{3})_{\circ}$$

14.
$$(\sqrt{3} \pm \sqrt{5})(\sqrt{20} + \sqrt{12})_{\circ}$$

15.
$$(\sqrt{x}+3\sqrt{y})(\sqrt{x}-3\sqrt{y})$$

16.
$$(\sqrt{x+y}+\sqrt{x-y})(-\sqrt{x+y}+\sqrt{x-y})_0$$

§ 127. 不靈極式的除法 不盡根式的除法,就是把被除 數與除數同乘以同一適當的根式,使除數(不是被除數)不含 根式。

[例一]
$$\frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{\sqrt{3}\sqrt{3}} = \frac{\sqrt{3}}{3}$$
。

[注意] 在 $\frac{1}{\sqrt{3}}$ $\frac{\sqrt{3}}{3}$ 之中,二者同有 $\sqrt{3}$;而前式的分子是 1,後式的分

母是 3。似乎
$$\frac{1}{\sqrt{3}}$$
 比 $\frac{\sqrt{3}}{3}$ 較簡,那麼我們何必把 $\frac{1}{\sqrt{3}}$ 化成 $\frac{\sqrt{3}}{3}$ 呢?原因如下?

設
$$\sqrt{3}$$
的近似值為 1.73205 。由 $\frac{1}{\sqrt{3}}$ 直接求牠的近似值,須潢 $\frac{1}{1.73205}$

陰算。但若由 $\sqrt{\frac{3}{8}}$ 求牠的近似值,只須演算 $\frac{1.73205}{3}$ 。 這種求近似值的方 法非但比較便利,並且亦比較精雜。

[例二]
$$\frac{3}{\sqrt{8}} = \frac{3}{2\sqrt{2}} = \frac{3 \times \sqrt{2}}{2\sqrt{2} \times \sqrt{2}} = \frac{3\sqrt{2}}{2\sqrt{4}} = \frac{3\sqrt{2}}{4}$$
。

[例三]
$$\frac{5}{\sqrt[3]{4}} = \frac{5 \times \sqrt[3]{2}}{\sqrt[3]{4} \times \sqrt[3]{2}} = \frac{5 \sqrt[3]{2}}{\sqrt[3]{8}} = \frac{5 \sqrt[3]{2}}{2}$$
。

[例四]
$$\frac{a^2}{\sqrt{x} + \sqrt{y}} = \frac{a^2(\sqrt{x} - \sqrt{y})}{(\sqrt{x} + \sqrt{y})(\sqrt{x} - \sqrt{y})}$$
$$= \frac{a^2(\sqrt{x} - \sqrt{y})}{x - y} \circ$$

[例五]
$$\frac{2}{\sqrt{2} + \sqrt{3} + \sqrt{5}}$$

$$= \frac{2 \times (\sqrt{2} + \sqrt{3} - \sqrt{5})}{(\sqrt{2} + \sqrt{3} + \sqrt{5})(\sqrt{2} + \sqrt{3} - \sqrt{5})}$$

$$= \frac{2 \times (\sqrt{2} + \sqrt{3} - \sqrt{5})}{2 + 3 + 2\sqrt{6} - 5}$$

$$= \frac{2 \times (\sqrt{2} + \sqrt{3} - \sqrt{5}) \times \sqrt{6}}{2\sqrt{6} \times \sqrt{6}}$$

$$= \frac{2 \times (\sqrt{12} + \sqrt{18} - \sqrt{30})}{2\sqrt{36}}$$

$$= \frac{2 \times (2\sqrt{3} + 3\sqrt{2} - \sqrt{30})}{12}$$

$$= \frac{2\sqrt{3} + 3\sqrt{2} - \sqrt{30}}{6}$$

[例六]
$$\frac{b^2}{\sqrt{a^2+b^2}+a} = \frac{b^2(\sqrt{a^2+b^2}-a)}{(\sqrt{a^2+b^2}+a)(\sqrt{a^2+b^2}-a)}$$
$$= \frac{b^2(\sqrt{a^2+b^2}-a)}{(a^2+b^2)-a^2}$$
$$= \frac{b^2(\sqrt{a^2+b^2}-a)}{b^2}$$
$$= \sqrt{a^2+b^2}-a_{\bullet}$$

習題一百零四

求下列各式的結果:

1. $\sqrt{3} \div \sqrt{2}$

2. $\sqrt{2} \div \sqrt{3}$

3. $3 \div \sqrt{2}$

4. $2 \div \sqrt{3}$

5. $3 \div \sqrt[3]{2}$

6. 2÷3/3°

7. 43-3/20

8. 3/2÷4/30

9. $1 \div (\sqrt{3} + \sqrt{5})_0$ 10. $(2 - \sqrt{3}) \div (1 + \sqrt{3})_0$

11. $(\sqrt{2} + \sqrt{3}) \div (\sqrt{2} - \sqrt{3})$

12. $(\sqrt{7} - \sqrt{19}) \div (\sqrt{7} + \sqrt{19})_{\circ}$

13. $1\div(1+\sqrt{2}+\sqrt{3})_{0}$

14. $(1+\sqrt{2}-\sqrt{3})\div(1+\sqrt{2}+\sqrt{3})$

15. $\sqrt{3} \div \sqrt{250}$ o

16. $(3+\sqrt{5})(\sqrt{5}-2)\div(5-\sqrt{6})$

17.
$$\frac{\sqrt{x}}{\sqrt{x}-\sqrt{y}} \div \frac{\sqrt{x}+\sqrt{y}}{\sqrt{x}}$$
.

18. $(2\sqrt{3}+3\sqrt{2})\div(5+2\sqrt{6})$

19.
$$\frac{y^2}{x + \sqrt{x^2 - y^2}}$$
 20. $\frac{r^3}{\sqrt{x^2 + a^2} + a}$

$$20. \quad \frac{r^3}{\sqrt{x^2+a^2}+a^2}$$

設 $\sqrt{3}=1.73205$, $\sqrt{5}=2.23607$,求下列各商到小數四位:

21.
$$\frac{3+\sqrt{5}}{\sqrt{5}-2}$$

21.
$$\frac{3+\sqrt{5}}{\sqrt{5}-2}$$
° 22. $\frac{\sqrt{5}+\sqrt{3}}{2-2\sqrt{15}}$ °

II. 虚數

§ 128. 虚數的需要及其性質

[問題一] 設有方程式 22+1=0, 試求其根。依二次方程

式解法解之,得 $x=\pm\sqrt{-1}$ 。

[問題二] 設有方程式 x2+x+1=0, 試求其根。

依公式求解,得
$$x = \frac{-1 \pm \sqrt{-3}}{2} = -\frac{1}{2} \pm \frac{\sqrt{-3}}{2}$$
。

代

由上二例看來,可見解二次方程式所得的值,有時非含質數的平方根不可。

但是,負數的平方根,如 $\sqrt{-1}$ 之類,果為何值? +1 呢? 物 -1 呢?假定 $\sqrt{-1}$ =+1,那麼把兩邊各自平方,應得 -1=+1,於理不通。可見 $\sqrt{-1}$ =+1。假定 $\sqrt{-1}$ =-1,把兩邊各自平方,應得 -1=+1,於理不通。可見 $\sqrt{-1}$ 也非-1。然則 $\sqrt{-1}$ 究為何值?應之曰 " $\sqrt{-1}$ 就是平方能得 -1 的一個數。不但如此,在通例, $\sqrt{-a}$ 就是平方能得 -a 的一個數"。用算式來表, $\sqrt{-a}$ 的性質如下:

$$(\sqrt{-a})^2 = -a_0$$

在以前,任何正負整數,分數或不盡根數,其平方恆為正數 而今一 的平方,如 a 取正值時卻為負數。這一 a 的性質和 以前所述的正負整數分數或不盡根數等等,不是大不相同嗎?的 確 : 逈然不同。因其性質不同,故各予以不同的專名。依習慣,把 一 a 叫做虛數。對於虛數而言,一 4 叫做實數。

[註一] 虚實二數非同類之數,猶之男女非同性之人。問以一4,以一3,

√-1,等各為那個實數,猶之問阿哥,阿弟各為父親的第幾女,這語自然不 通。

[註二] 因來解二次方程式 $x^2+a^2=0$ 必然產生一種新數 $\sqrt{-a^2}$ 。這種 事例並沒有什麼可怪的地方。在算學上每解一種新的問題,往往有一種新數 的產生。例如(1)求解 3x-5=0 及其同類方程式,乃有分數的產生;(2)求解 $x+a^2=0$,乃有頁數的產生,(3)求解 $x^2-3=0$,及其同類方程式,乃有不盡根數的產生。此類事例,業已數見不鮮,絕不希奇。何以到了虛數,就要兩 樣看待呢!所要注意的,新數原非舊數,不能以舊數來表示,例如分數不能以整數來表示;頁數不能以正數來表示;不盡根數不能以整數或分數來表示;當然,虛數也不能以實數來表示。

§ 129. **点數的化**簡 為便利計 $\sqrt{-1}$ 常省寫為i (即 $\sqrt{-1}=i$)。由是,任何虛數均可以i的倍數表之。例如,

$$\sqrt{-4} = \sqrt{4}\sqrt{-1} = 2 i_{o}$$

$$\sqrt{-9} = \sqrt{9}\sqrt{-1} = 3 i_{o}$$

$$\sqrt{-3} = \sqrt{3}\sqrt{-1} = \sqrt{3} i_{o}$$

$$\sqrt{-k^{2}} = \sqrt{k^{2}}\sqrt{-1} = k i_{o}$$

$$\sqrt{-m} = \sqrt{m}\sqrt{-1} = \sqrt{m} i_{o}$$

$$\sqrt{-12} = \sqrt{12}\sqrt{-1} = \sqrt{12} i = 2\sqrt{3} i_{o}$$

§ 130. 虚数的加減 例如 ai+bi=? 欲答這個問題,先 要明白 ai 與 bi 的意義。

由上節知 ai=i 的 a 倍, bi=i 的 b 倍,

數

故
$$ai+bi=i$$
 的 $(a+b)$ 倍。

代

$$ai+bi=(a+b)i_{\circ}$$

同理
$$ai-bi=(a-b)i$$
。

[例一]
$$3i+4i=(3+4)i=7i_{\circ}$$

[例二]
$$3i+4i-8i=(3+4-3)i=-i$$
。

[例三]
$$2i+\sqrt{3}i=(2+\sqrt{3})i$$
。

[例四]
$$2+2i+5-\sqrt{-36}=2+2i+5-6i$$

= $(2+5)+(2-6)i$

$$=7-4i_{0}$$

[例五]
$$\sqrt{-a^2} + \sqrt{-b^2} + \sqrt{-c}$$
$$= ai + bi + \sqrt{c}i$$
$$= (a + b + \sqrt{c})i$$

習頭一百零五

求下列各式的結果:

- 1. 3i+4i-6i+ia
- 2. $-i-2i-3i_0$
- 3. $xi+yi-zi_0$
- 4. $\sqrt{-36} + \sqrt{-144} \sqrt{81}i_0$
- 5. $\sqrt{-36} \sqrt{144}$
- 6. $\sqrt{-2} \sqrt{-4} \sqrt{9}$

7.
$$\sqrt{-a^2c^3+a^3c^2}+\sqrt{-(a-c)^3}$$

8.
$$\sqrt{-\frac{1}{5}} + \sqrt{-\frac{1}{16}}$$
 9. $\sqrt{-\frac{2}{3}} + \sqrt{-54}$

9.
$$\sqrt{-\frac{2}{3}} + \sqrt{-54}$$

10.
$$\sqrt{-a^2-2ab-5^2}+\sqrt{-a^2+2ab-b^2}$$

§ 131. 虛數乘法 由 § 128 知 $i^2=-1$,故 i=i, $i^2=-1$, $i^3=-i$, $i^4=1$,

$$i^5 = i$$
, $i^6 = -1$, $i^7 = -i$, $i^8 = 1$

推之, $i^{4n+1}=i$, $i^{4n+2}=-1$, $i^{4n+3}=-i$, $i^{4n+4}=1$ 。

日此得虚數的乘法如下:

$$ai \times bi = abi^2 = -ab$$
,
 $ai \times bi \times ci = abci^3 = -abci$
 $ai \times bi \times ci \times di = abcdi^4 = abcd_o$.
 $ai \times bi \times ci \times di \times ei = abcdei$

[6]
$$-3i \times 4i = -12i^2 = -12(-1) = 12$$

[例二]
$$\sqrt{-2} \times \sqrt{-3} \times \sqrt{-49}$$

 $=\sqrt{2} i \times \sqrt{3} i \times 7i$
 $=7\sqrt{2}\sqrt{3} i^3 = -7\sqrt{6} i_0$

[例三]
$$2i(3-4i) = 2i \times 3 - 2i \times 4i$$

= $6i - 8i^2 = 8 + 6i$ 。

[註] 一個質數和一個虛數用加減號相連,叫做複數,例如 (3+2i),

(3-4i), (a+bi), (a-bi)都是複數。

代

「例四] (3+2i)(4-3i)

$$= 3 \times 4 - 3 \times 3i + 4 \times 2i - 3i \times 2i$$

$$= 12 - 9i + 8i - 6i^{2}$$

$$= 18 - i_{2}$$

[例五] $(a+bi)(a-bi)=a^2-b^2i^2=a^2+b^2$ 。

[註] a+bi和 a-bi 二者叫做共轭複数。兩個共轭複数的積恆局質數。 看結果也很重要。學者宜熟記之。

習題一百零六

1. 求證 -1=1。

L證]
$$\sqrt{-3} \times \sqrt{-5} = \sqrt{3} i \times \sqrt{5} i = \sqrt{3 \times 5} i^2 = -\sqrt{15}$$
。 (1) 依 § 123(A), $\sqrt{-3} \times \sqrt{-5} = \sqrt{(-3) \times (-5)} = \sqrt{15}$ 。 (2)

比較(1),(2)得

$$-\sqrt{15} = \sqrt{15}$$

兩邊各除以、/15,得

$$-1=1_{0}$$

[注意] 上面證註,錯在何處? 公式 $\sqrt{N} \times \sqrt{N} = \sqrt{MN}$,在 M 、N 意 是預數時,是否仍能適用? 然則 $\sqrt{-3} \times \sqrt{-5}$ 可否化成 $\sqrt{(-3)} \times (-5)$?

求下列各式的結果:

- 2. $2i \times 3i \times 4i \times 5i_0$
- 3. $\sqrt{-4} \times \sqrt{-9} \times \sqrt{-16} \times \sqrt{-25}$
- 4. $\sqrt{7} \times \sqrt{-6} \times \sqrt{-7} \times \sqrt{60}$
- 5. $\sqrt{-8} \times \sqrt{-2} \times \sqrt{-75} \times \sqrt{3}$.
- 6. (3+4i)(3-4i)

7.
$$(7+8i)(8-7i)_0$$

8.
$$(1+2i)(1-2i)(1-4i)$$

9.
$$(3+5i)(3-5i)(3^2+5^2i)_0$$

10.
$$(1+i)(3+4i)(1-2i)(3-4i)$$

11.
$$(7-\sqrt{-64})(7+\sqrt{-64})(1-i)^2$$

12.
$$(\sqrt{2} - \sqrt{3} i)^2 (\sqrt{2} + \sqrt{3} i)^2$$

13.
$$(7+\sqrt{-24})(7+\sqrt{24})_0$$

§ 132. 虛敦除法 以虛數(或複數)除實數或虛數(或 複數),就是以適當的虛數(或複數)同乘設除數與除數,使除 數(不是被除數)化爲實數。

[例一]
$$\frac{1}{i} = \frac{i}{i^2} = \frac{i}{-1} = -i_o$$
[例二]
$$\frac{1}{32i^3} = \frac{i}{32i^4} = \frac{i}{32} \circ$$
[例三]
$$\frac{1}{1+2i} = \frac{1-2i}{(1+2i)(1-2i)} = \frac{1-2i}{1+4} = \frac{1}{5} - \frac{2}{5}i_o$$
[例四]
$$\frac{\sqrt{2}-3i}{\sqrt{2}+\sqrt{3}i} = \frac{(\sqrt{2}-3i)(\sqrt{2}-\sqrt{3}i)}{(\sqrt{2}+\sqrt{3}i)(\sqrt{2}-\sqrt{3}i)}$$

$$= \frac{2-3\sqrt{3}-(3\sqrt{2}+\sqrt{6})i}{2+3}$$

$$= \frac{2-3\sqrt{3}-(3\sqrt{2}+\sqrt{6})i}{5}$$

習題一百零七

衣下列各式的結果:

1. $1 \div 5i^5 \div 3i^3$

2. (3+2i)÷i3÷i15

3. $(7+8i)\div(7-8i)$ 4. $(7-8i)\div(7+8i)$

5. $(1+\sqrt{3}i)(1-\sqrt{3}i)\div(1+4i)$

6. $(\sqrt{2}+\sqrt{3}i)\div(\sqrt{2}-\sqrt{3}i)$

7. $1 \div (2 + \sqrt{3}i) \div (2 - \sqrt{3}i)$

8. $-8 \div \sqrt{3} - \sqrt{5}i) \div (\sqrt{3} + \sqrt{5}i)$

9. $(3+\sqrt{2}i)^2 \div (3-\sqrt{2}i)_0$

10. $1 \div (\sqrt{3} + \sqrt{-315})^2 \div (\sqrt{3} - \sqrt{-315})^2$

11. $\sqrt{-a+b} \div \sqrt{-a^2+2ab-b^2}$

12. $(a^2+b^2) \div (a+bi)_a$

13. $(a^2+2ab+b^2) \div (\sqrt{a}+\sqrt{b}i)$

14. $(c+di)\div(a+bi)_0$

III. 根式方程式

§ 133. 根式方程式的解法及應用 根號內含有未知數的 方程式叫做根式方程式。 例如 $\sqrt{x+1}=5$, $\sqrt{x}+\sqrt{x+1}=10$ 等都是根式方程式, 而 $\sqrt{3}+\alpha=5$, $\sqrt{3}\alpha+\sqrt{3}=\sqrt{6}$ 等則非 根式方程式。

求解應用問題,有時可得根式方程式。舉例於下:

[例一] 把某數與 36 的和關平方, 從這平方根減去某數, 其結果等於6,求某數。

「解法」 設 x= 某數,從題意應得方程式

$$\sqrt{x+36} - x = 6 \tag{1}$$

由此方程式怎樣去求定的值,非設法棄去根號不可。怎樣可去根

號,非把兩邊各自平方不可。但若由(1)式直接平方,那麼牠的左邊將成 $\alpha+36+\alpha^2-2x\sqrt{x+36}$ 。去了一個方根,又來一個方根了。故必先移項,使其一邊不含方根如下式:

$$\sqrt{x+36} = x+6$$
 (2)

然後平方,得
$$x+36=(x+6)^2$$
 (3)

$$x+36 = x^2+12x+36$$

解之、得

$$x_1 = 0, x_2 = -11_0$$

[驗算] (1)以 x=0 代入(1)式,則得等式 $\sqrt{0+36}-0$ =6。左右相合。故 x=0 確為(1)式的 與根。又以 0代入原題,也合題意,故 0是所求的數。

(2)以x=-11代入(1)式,則得方程式 $\sqrt{-11+36}-(-11)$ =6,左右不合,故x=-11不是(1)式的真根,我們叫牠做僞 根。(註)

[例二] 於某數與5之和的平方根加入某數本身的平方根,其結果等於某數4倍與9之和的平方根,求某數。

[解法] 設 x= 某數,從題意得方程式:

$$\sqrt{x+5} + \sqrt{x} = \sqrt{4x+9} \tag{1}$$

平方,得 $x+5+x+2\sqrt{x(x+5)}=4x+9$

移項,得 $2\sqrt{x(x+5)} = 2x+4$

就是 $\sqrt{x(x+5)} = x+2$

平方,得

 $x(x+5) = x^2 + 4x + 4$

化館,得

x=4

[驗算] 以 2=4 代入原方程式(1),左右相合,故 4是(1) 式的填根。又以 4 代入原題,也能適合,故 4 是所求的數。

代

[註] (1)優楼何自而來? 這個問題可由(2),(3)二式的關係去母 決。

$$\sqrt{x+30} - (x+6) = 0$$
 (2)

$$(x+36)-(x+6)^2=0$$
 (3')

$$\mathbb{E} \left[\sqrt{x+36} - (x+6) \right] \left[\sqrt{x+36} + (x+6) \right] = 0, \tag{3"}$$

可見由(2)式變為(3)式,是把(2')式的兩邊同乘以 $\sqrt{x+\infty}+(x+6)$ 。當x=-11 時,這乘式的值等於零,故由 \$ 106(3),知 x=-11 是(2'),(1) 式的係根。

(2)有時何以不增僞根? 設有方程式

$$x+1-3\sqrt{x-1}=0_{0} \tag{1}$$

, 試求其根。依法移項平方, 得

$$(x+1)^2 = 9(x-1)_a \tag{2}$$

解之,得 x=2 或 5。二者俱是(1)式的真根。這裏何以不增偽根呢?再就兩方程式(1),(2)的關係來研究:

由(2) 移項, 得
$$(x+1)^2 - 9(x-1) = 0$$
 (2')

愛郎 $(x+1+3\sqrt{x-1})(x+1-3\sqrt{x-1})=0_o$ (2")

可見由(1)式變為(2)式,是把(1)式的兩邊同乘以 $x+1+3\sqrt{x-1}$ 。今當x-2或5時,這乘式的值皆不為零,故x=2,或5皆是(1)式的眞根,而非像根。

總之。 把方程式(4)兩邊各自平方,得方程式(B),有時可增固根有時 不增個根。增不增的判定,原可依本[註](1),(2)去推求,但最简易的方法, 選是以解得的值代入原方程式(4)去驗算。

習頭一百零八

解下列各方程式並芬別其是根或儒根、

1.
$$3x+2-\sqrt{x(x+24)}=0_0$$
 2. $3x+2-\sqrt{9x(x+3)}=0_0$

2.
$$3x+2-\sqrt{9x(x+3)}=0$$

3.
$$\sqrt{x} + \sqrt{x} = 5$$

3.
$$\sqrt{x} + \sqrt{x+3} = 5_0$$
 4. $\sqrt{x+12} + \sqrt{x-12} = 6_0$

5.
$$x^2 - 5 + \sqrt{3x^2 - 5} = 0_0$$

6.
$$\sqrt{x} + \sqrt{x+3} = \sqrt{6x+3}$$

7.
$$\sqrt{3x+3} + \sqrt{3x+10} = \sqrt{13+6x_0}$$

$$v. \sqrt{x+3} - \sqrt{x+6} = \sqrt{2x-6}$$

9.
$$\frac{\sqrt{x-2}}{\sqrt{x+2}} + \frac{\sqrt{x+2}}{\sqrt{x-2}} = 10_{\circ}$$

10. $x^2 + 5x + 2 - 3\sqrt{x^2 + 5x} = 0$

「解法」 化原式成 $(\sqrt{x^2+6x})^2-3\sqrt{x^2+6x}+2=0$,依二次方程式解法 標 $\sqrt{x^2+5x}=1$, $\sqrt{x^2+5x}=2$ 。由此再求 x 的能。

「注意] 假若依常法,把原方程式移填平方,则得四次方程式,求解的手 描就很庞短了。

- 11. $2x^2+3x-5\sqrt{2x^2+3x}=-6$
- 12. $x^2+x+3-2\sqrt{x^2+2x+3}=35-x_0$
- 13. $\sqrt[3]{x+8}=3$
- 14. $\sqrt[4]{x+9} + \sqrt{x+9} = 6_0$
- 15. $-\sqrt[3]{x-37} + \sqrt[3]{x} = 1_0$
- 16. 短形的對角線比關多1市尺,周圍長14市尺。求其面證。
- 17. 兩數的差是 19, 其各自平方根的差是 1。求這兩數。
- 18. 以兩該的和除這兩數的差,得一。以這兩數平方根的和除這兩數 的差,得¹。求這兩數。

- 19. 解下列各方程式,是否需把兩邊各自平方? 何故?
 - (a) $3x + \sqrt{2} = 5x \sqrt{3}$;
 - (b) $\sqrt{3}x + 2\sqrt{2} = \sqrt{2}x + 2\sqrt{3}$;

代

- (c) $\sqrt{3}x + \sqrt{2}x + \sqrt{6}x = 4 x_0$
- 20. 配上題各方程式。

第十五章 比 比例 變數法

I. 比

- § 134. 關於比的重要名詞 為便於說明起見,先述下列 幾個重要名詞:
- (1) 比及比值 同類二數量的大小關係,以一量含有他量的倍數表示,叫似這二數量的比。如欲表示 a 與 b 的比,普通寫成 a:b。比既是表示一量含有他量的倍數關係,則比的值,或此值,即為這二數量的商。所以 a:b, 也可寫成 a÷b, 或 a/b。
- (2) 比的兩項。在 a:b 中 a 叫做比的前項, b 叫做比的後項, a 與 b 統稱比的兩項。

把比和除法及分數比較來看,就得下面的關係:

(3) 優比,劣比。比值大於1的叫做優比,比值小於1

的叫做劣比。

例如 4:5 是劣比, 5:4 是優比。然則比中的優比,劣比,與 分數中的假分數,真分數有沒有關係?

- (4) 正比,反比。 $a:b \neq a$ 和 b 正比。a 的倒數和 b 的倒數的比,如 $\frac{1}{a}:\frac{1}{b}$,是 a 和 b 的反比。假使前項 $\frac{1}{a}$ 和後項 $\frac{1}{b}$ 同時用 ab 去乘,得 b:a; 所以 a 和 b 的反比,就是 b 和 a 的正比。
- § 135. 比的重要定理 關於比的定理最簡而最要的有下 列三條:
- (1) 比的兩項,若各以同數(或正或負但不為零)去同 乘或同除,那麼這比值不變。

[證]
$$a:b=\frac{a}{b}=\frac{ma}{mb}=ma:mb$$
。

- (2) 比的兩項,若各以同數(或正或負)去同加或同減, 那麼這比值恆變(原來比值為1的除外)。
 - [證] 以 $\frac{a}{b}$ 表原比的值, $\frac{a+n}{b+n}$ 表新比的值,則原比與新比

的差為

$$\frac{a+n}{b+n} - \frac{a}{b} = \frac{ab+bn-ab-an}{b(b+n)} = \frac{(b-a)n}{b(b+n)} = 0 \quad (:b = a)$$

$$\frac{a+n}{b+n} + \frac{a}{b}$$

習題一百零九

- 1. 用最简分數表下列各比的值:
 - (a) 49:56_o

- (b) 32:40_o
- (c) $3\frac{1}{2}$: $2\frac{1}{2}$
- (d) $x^2-y^2:x^2+2xy+y^2$
- (e) $x-y:\sqrt{x}+\sqrt{y}$ (f) $a^3-b^3:a^2-b^2$

2. 化筒下列各比:

(a)
$$\frac{1}{x^4+x^2y^2+y^4}:\frac{1}{x^2-xy^2-y^2}$$

(b)
$$\frac{1}{x-y}:\frac{1}{\sqrt{x}+\sqrt{y}}$$

(c)
$$\frac{1}{64+x^4}:\frac{1}{x^2+4x+8}$$

- 3. 求下列各式中 x 與 y 的比:
- (a) $8x+2y=7x+8y_0$
- (b) $ax + by = cx + dy_0$
- (c) $x^2 + 5xy = y^2 2xy_0$ (d) $3x^2 + 4xy + y^2 = 0_0$

II. 比例

- § 136. 比例的重要名詞。 為說明便利起見,先釋下列諸 名詞:
- (1) 比例,正比例,反比例。 在 a,b,c,d 四數中,假如 $\frac{a}{b} = \frac{c}{d}$,我們就說 a,b,c,d 四數成比例,也可以說成正比例。

例如 4:6=10:15, 我們說 4,6,10,15 成比例。 又如 4,10,15,4 不庐比例,因為 4:10=15:4。

在 a,b,c,d 四數中,假如 $\frac{1}{a} = \frac{1}{c}$,我們說 a,b,c,d 四數成 $\frac{1}{b} = \frac{1}{a}$

反比例。假使等號左邊的分子,分母各乘 ab,右邊的各乘 ca,得 $\frac{b}{a} = \frac{d}{c}$;所以 a,b,c,d 四數的反比例等於 b,a,d,c 四數的正比 例。

- (2) <u>外項</u>,內項。 在比例 $\frac{a}{b} = \frac{c}{d}$ (卽 a:b=c:d) 中,b,c 二數叫做內項; a,d 二數叫做外項。
- (3) 比例第四項。 在 a:b=c:d 中, d 叫做 a,b,c 的比例第四項。

例如 4,6,10 的比例第四項是 15;0 6,4,10 的比例第四項則是 $6\frac{2}{3}$,而非 15。何故?

(4) 比例中項 在 a:b=b:c 中, b 叫做 a,c 的比例中 項。

例如 4:6=6:9, 故 6 是 4 與 9 的比例中項。

(5) 比例第三項。 在 a:b=b:c 中, c 叫做 a,b 的比例 第三項。 例如 4:6=6:9, 故 9 是 4 與 6 的比例第三項。

又如 2:3=10:15, 但 10 非 2 與 3 的比例 第 三 項, 因 為 2:3+3:10。

- § 137. 比例的重要定理。 關於比例的定理,最簡要的如下:
 - (1) 四數兩兩的積相等,則此四數成比例。

即 若 ad=bc, 則 a:b=c:d; 若四數成比例(a:b=c:d),則:

(2) 兩外項的積等於兩內項的積。

en ad=bc.

(3) 內項和外項可以交換。

即 b:a=d:c。

(4) 內項可以交換。

即 a:c=b:d_o

(5) 二比相等,其各前項與後項的和對於後項的比亦相等。

即 $a+b:b=c+d:d_o$

(6) 二比相等,其各前項與後項的差對於後項的比亦相等。

即 a-b:b=c-d:d。

(7) 二比相等,各前項與後項的和對於與後項的差其比亦相等。

卽
$$a+b:a-b=c+d:c-d$$
。

(8) 諸比相等時,若把所有諸比前項的和, 此所有諸比後 項的和,那麽新比的值,亦與原有諸比相等,叫做連比定理。

$$\mathbb{N} \qquad \frac{a+c+e+g+\cdots}{b+d+f+h+\cdots} = \frac{a}{b} = \frac{c}{d} = \frac{e}{f} = \frac{g}{h} = \cdots$$

兩邊各除以 bd, 就得 $\frac{ad}{bd} = \frac{bc}{bd}$ 。

$$\frac{a}{b} = \frac{c}{d}$$

[證] (2) 原設
$$\frac{a}{b} = \frac{c}{d}$$
,

兩邊各乘以 bd, 得 $bd \times \frac{a}{b} = \frac{c}{d} \times bd$ 。

$$ad=bc_{\circ}$$

[證] (3) 原設
$$\frac{a}{d} = \frac{c}{d}$$
,

兩邊各除以
$$ac$$
, 得 $\frac{ad}{ac} = \frac{bc}{ac}$ 。

$$\frac{b}{a} = \frac{d}{c}$$

[證] (4)原設 a:b=c:d,

由(2),得 $ad=bc_0$

兩邊各除以 cd, 得 $\frac{ad}{cd} = \frac{bc}{cd}$ 。

 $a:c=b:d_a$

[證] (5) 原設 $\frac{a}{h} = \frac{c}{d}$,

兩邊各加以 1, 得 $\frac{a}{b}+1=\frac{c}{d}+1$ 。

 $\frac{a+b}{b} = \frac{c+d}{d}.$

[證] (6) 原設 $\frac{a}{b} = \frac{c}{d}$,

兩邊各減以 1, 得 $\frac{a}{h} - 1 = \frac{c}{d} - 1$ 。

 $\frac{a-b}{b} = \frac{c-d}{d}$

[證] (7) 原設 $\frac{a}{b} = \frac{c}{d}$,

由(5)得 $\frac{a+b}{b} = \frac{c+d}{d}.$ (A)

由(6)得 $\frac{a-b}{b} = \frac{c-d}{d}$ (B)

$$(A)$$
÷ (B) ,就得 $\frac{a+b}{a-b} = \frac{c+d}{c-d}$ °

[證], (8) 原設
$$\frac{a}{b} = \frac{c}{d} = \frac{e}{f} = \frac{g}{h} = \dots$$

如以 r 表原有諸比的值,則

$$a=br$$
, $c=dr$, $e=fr$, $g=hr$

$$\frac{a+c+e+g+\dots}{b+d+f+h+\dots} = \frac{br+dr+fr+hr+\dots}{b+d+f+h+h+\dots} =$$

$$\frac{(b+d+f+h+\dots)r}{b+d+f+h+\dots} = r = \frac{a}{h} = \frac{c}{d} = \frac{e}{f} = \frac{g}{h} = \dots$$

§ 138. 前節定理的應用。 前節諸定理,在幾何方面應用 很廣。學者能於此時多加訓練,將來在幾何方面,定能事半功倍。 反之,此時對於上述諸理,若不能應用自如,將來學習幾何,自然 分外叫苦。這是就學習幾何一方面說。

再就代數本身說,前節諸理也很重要。倘能應用純熟,將 見出化入神,對於很難的問題,略施妙計,便得其解。茲舉數 例於下:

第一。 關於證明等式者:

[例一] 若 a:b=c:d, 求證

$$(a+b+c+d)(a-b-c+d)$$

$$=(a-b+c-d)(a+b-c-d)_{\bullet}$$

:.
$$(a+b):(a-b)=(c+d):(c-d)$$
。 [上節(7)]

$$(a+b):(c+d)=(a-b):(c-d).$$
 [上節(4)]

$$(a+b+c+d): (a+b-c-d)$$

$$= (a-b+c-d): (a-b-c+d), \qquad [上節(7)]$$

$$(a+b+c+d)(a-b-c+d)$$

$$=(a-b+c-d)(a+b-c-d), \qquad [上節(2)]$$

[例二] 若 a:b=c:d,

求證 $(ab+cd):(ab-cd)=(a^2+c^2):(a^2-c^2)$

$$\therefore \frac{a}{c} \cdot \frac{a}{c} = \frac{b}{d} \cdot \frac{a}{c}$$
 何故?

[例三] 若 a:b=b:c=c:d,

求證
$$\frac{a^2+b^2+c^2}{ab+bc+cd} = \frac{ab+bc+cd}{b^2+c^2+d^2}$$
。

[證法] 原設各比=
$$\frac{a}{b} = \frac{b}{c} = \frac{c}{d}$$
 (A)

故用 135 定理(1),得各比= $\frac{a^{-1}}{b \cdot a}$ = $\frac{b \cdot b}{c \cdot b}$ = $\frac{c \cdot c}{d \cdot c}$

再用 135 定理(3), 得各比=
$$\frac{a^2+b^2+c^2}{ab+bc+cd}$$
 (B)

又由原設(A),用定理(1),得

各比=
$$\frac{ab}{b \cdot b}$$
= $\frac{bc}{c \cdot c}$ = $\frac{cd}{a \cdot d}$

再用定理(3),得 各比=
$$\frac{ab+bc+cd}{b^2+c^2+d^2}$$
 (C)

比較(B),(C),就得
$$\frac{a^2+b^2+c^2}{ab+bc+cd} = \frac{ab+bc+cd}{b^2+c^2+d^2}$$
。

第二。 關於解方程式者:

[例四] 解方程式
$$\frac{2x^2+3x+\sqrt{x-1}}{2x^2+3x-\sqrt{x-1}} = \frac{\sqrt{x-1}+2}{\sqrt{x-1}-2}$$

[解法] 由 § 137(7),得

$$\frac{2x^2+3x+\sqrt{x-1}+2x^2+3x-\sqrt{x-1}}{2x^2+3x+\sqrt{x-1}-2x^2-3x+\sqrt{x-1}}$$

$$=\frac{\sqrt{x-1}+2+\sqrt{x-1}-2}{\sqrt{x-1}+2-\sqrt{x-1}+2}$$

就是
$$\frac{2(2x^2+3x)}{2\sqrt{x-1}} = \frac{2\sqrt{x-1}}{2\cdot 2}$$

$$2(2x^2+3x)=(\sqrt{x-1})^2$$

$$2(2x^2+3x)=x-1_0$$

$$\therefore 4x^2 + 6x - x + 1 = 0$$

解之,得
$$x_1 = -1, x_2 = -\frac{1}{4}$$
。

E] 解聯立方程式
$$\begin{cases} \frac{x+y+xy}{x+y-xy} = 5 \\ \frac{x-y+xy}{x-y-xy} = -\frac{1}{3} \end{cases}$$
 (A)

數

(B)

用 § 137, (7)化(A), (B)二式成

$$\begin{cases} \frac{2(x+y)}{2xy} = \frac{6}{4} = \frac{3}{2} \\ \frac{2(x-y)}{2xy} = -\frac{2}{4} = -\frac{1}{2} \end{cases}$$

就是

$$\begin{cases} \frac{1}{y} + \frac{1}{x} = \frac{3}{2} \\ \frac{1}{y} - \frac{1}{x} = -\frac{1}{2} \end{cases}$$
 (A')

解之,得

$$\begin{cases} \frac{1}{y} = \frac{1}{2} \\ \frac{1}{x} = 1 \end{cases} \qquad \therefore \begin{cases} y = 2 \\ x = 1 \end{cases}$$

習題一百十

1. 求下列各組製的比例第四項:

(a) $3.9.5_0$ (b) $7.8.9_0$ (c) $a+b.a-b.a^2+2ab+b^2_0$

2. 求下列各組數的比例中項:

(a) 4.9_{\circ} (b) 5.5_{\circ} (c) $x+y,x-y_{\circ}$ (d) $A.B_{\circ}$

8. 求下列各組數的比例第三項:

(a) 4.9_c (b) 5.3_c (c) $x+y_1x-y_2$ (d) $A.B_0$

4. 求下列各比例式中的缺项;

- (a) 3:6=7:? (b) 3:?=15:10, (c) 9a:8b=?:7c,
- 5. 下列各組比例式中,那幾個能成立?
 - (a) 36:39=72:79
- (b) 126:168=99:133₅
- (c) 347:199=1736:999 (d) $1:\sqrt{7}=\sqrt{7}:7$
- 6. 仿 § 135 (3) 連比定理的證法,能否證 § 137 中(2)-(7) 諮定 理?試用此法證明該節中的(5),(6),(7)三條。
 - 7. 仿前題證法,證明 § 138 例一,例二。

[注意] 此法與 § 138 所用證法, 那一個比較簡而巧? 那一個比較稍有 挂房可循?

- 8. 若 a:b=c:d, 試用 § 137 所述語定理,證明:
 - (a) $a+b:a+b+c+d=a:a+c_0$
 - (b) $a^2+c^2:b^2+d^2=a^2:b^2$
 - (c) la^2+mc^2 : pab+qcd=lab+mcd: pb^2+qd^2
- 9. 利用 § 137 所述諸定理,證明下列二定理:

若(1) a+b-3c-3d:a-b-3c+3d=2a+2b-c-d:2a-2b-c+d,

 $\mathbb{R}(2)$ $ab+cd:ab-cd=a^2+c^2:a^2-c^2$,

则各有下面的结果:

$$a:b=c:d_a$$

- 10. (a)若 a:b=c:d, 證 $a^2+b^2+c^2+d^2:b^2+d^2=c^2+d^2:d^2$ 。
 - (b)若 $a^2+b^2+c^2+d^2$: $b^2+d^2=c^2+d^2$: d^2 , 求證

$$a:b=c:d$$
, $a:b=-c:d$

11. 解下列各方程式:

(a)
$$\frac{x^3+2x^2+3x+4}{x^3-2x^2+3x-4} = \frac{x+2}{x-2}$$

(b)
$$\frac{\sqrt{x+1}+\sqrt{x-2}}{\sqrt{x+1}-\sqrt{x-2}} = \frac{\sqrt{5x+1}+\sqrt{x+1}}{\sqrt{5x+1}-\sqrt{x+1}}$$

12. 解聯立方程式:

(a)
$$\begin{cases} \frac{x+y+xy}{x+y-xy} = -11 \\ \frac{2x-y-xy}{2x-y-vy} = -\frac{1}{5} \end{cases}$$
(b)
$$\begin{cases} \frac{x+y+xy}{x+y-xy} = -11 \\ \frac{y+z+yz}{y+z-yz} = -\frac{19}{5} \\ \frac{x+z+xz}{x+z-xz} = -\frac{17}{3} \end{cases}$$

代

13. 分36 爲 3 份使其比爲 3:4:5。

[解法] 設 a,b,c 為所求的三份,由題意得。

$$\frac{a}{3} = \frac{b}{4} = \frac{c}{5}$$

用連比定理得

$$\frac{a}{3} = \frac{b}{4} = \frac{c}{5} = \frac{a+b+c}{3+4+b} = \frac{36}{12} = 3$$

$$\begin{cases} a=3\times 3=9\\ b=4\times 3=12\\ c=5\times 3=15 \end{cases}$$

14. 求分 105 爲四份,使這四份的比爲 2:3:4:5。

16. 传連比定理的證法,證本節例三

[提示] 設 $\frac{a}{b} = \frac{b}{c} = \frac{c}{a} = r$,則 a = br,b = cr,c = dr,代入求證之式的 兩邊,各自化簡,察其結果是否相同。

[注意] 這個方法在比及比例問題中顯用極度,學者移宜留意。能把這個方法應用純熟,那麼關於比及比例的問題,可以十解八九了。

17. (a)
$$\frac{d}{b} = \frac{c}{d} = \frac{e}{f}$$
, $\frac{3a^4h^2 + \frac{1}{2}a^2c^2 - 5c^4f}{5b^4 + 2b^2f^2 - 5f^6} = \frac{a^4}{b^2}$

(b) $\frac{a}{b} = \frac{c}{d} = \frac{e}{f}$, $\frac{1}{2}$ $\frac{a}{b^2} = \frac{c}{b^2} = \frac{e}{b^2}$

$$\frac{a}{b} = \frac{c}{d} = \frac{e}{f} = \sqrt[5]{\frac{1c^5 - n(c^5 + nc^5)}{1b^5 + m(c^5 + nf^6)}}$$

18. $\frac{a}{b} = \frac{c}{m} = \frac{c}{n}$, $\frac{a}{b} = \frac{c}{m}$

$$\frac{b^2 + a^2}{b^2 + a^2} + \frac{m^2 + b^2}{m + b} + \frac{n^2 + c^2}{n + c} = \frac{(l + m + n)^2 + (a + b + c)^2}{(l + m + n) + (a + b + c)^2}$$

III. 變數法

§ 189. 常數,變數。 [問題] 某人現有國幣 5 元。以後每日收入 3 元。岡 2 日後,此人應有若干元?

設所求元數是 y, 則由題意應得下面的等式:

$$y = 3x + 5$$

在這等式中, x,y 約關係如下:

若 x =	1,	2,	3,	4,	ō,	6,	7,	8,	
則 y =	8,		+ -	17,	3		f	1	

可見 x,y 的值都是可變的數,所以 x,y 叫做變數。對於變數而言,不變之數如 3,5 等叫做常數。

在通例,凡在一個問題中,某量(或數)的值若可為種種不同的數,那麽,這個量(或數)就叫做變量(或變數)。反之,其值固定無可變易的量(或數),對於變量(或變數)而言,叫做常量

(或常數)。

[例一] 每人每日吃飯四碗,x 人於y 日內共吃飯 4xy 碗。 在此問題中,人數(x),日數(y)、碗數(4xy)都是變數,而 4 則為常數。

[例二] 在 3x-2y=8 中, 那個是變數, 那個是常數?

[例三] 在 3x+5=6x-7 中,3,5,6,7 等固然是常數,就是 x 也是常數而非變數,因為 x 只能有一值,決不可變為他值。

- § 140. 函數(應變數),自變數。 在前節問題中,當 x 的值改變時, y 也隨之而變。這樣, 我們把 y 叫做 x 的函數。(自然當 y 值改變時, x 的值也隨 y 而變, 所以也可以把 x 叫做 y 的函數)。推之,
- (A) 在任何甲乙兩個變量中,當乙量改變時,甲量若亦隨之而變,那麼,甲量就叫做乙量的函數,或乙量的應變數。而乙量,對於應變數而言,叫做自變數。

當甲量為乙量的函數時,甲乙二量之間,必有固定關係。這關係究為怎樣的形式,則有時已知,有時未知。

[例一] 據幾何定理"圓周 = 2π× 半徑"。在圓周,半徑二量之中,當半徑改變時,圓周亦隨之而變,故圓周是半徑的函數而半徑是自變數。又當圓周改變時,半徑亦隨之而變,故半徑也是圓周的函數,而圓周是自變數。

[例二] 當每人食量一定時,若干人所需食品的總量,隨人數而改變,故人數是自變數,所需食品總量為人數的函數。又人數多少可隨食品總量而改變,故人數也是所需食品總量的函數,而所需食品總量也可以是自變數。

[例三] 在
$$(a)3x+5y-8=0$$
, $(b)x^2-y^2+9=0$

中, $x \in Y$ 的函數; y 也是 x的函數。即 x,y 可互為自變數。

[例四] 小兒體重和他的年齡有關,故體重是年齡的函數, 而年齡是自變數。又年齡亦與體重有關,故年齡也是體重的函數 而體重是自變數。(但是欲知這種函數關係,究為怎樣的形式,那 就不像前三例易於推求了)。

(B) 在甲,乙,丙三個(或甲,乙,丙,丁四個)變量中,當乙,丙(或乙,丙,丁),諸量改変時,甲量若亦隨之而變,那麼甲量就叫做乙,丙(或乙,丙,丁)諸量的函數,或乙,丙,(或乙,丙,丁)諸量的應變數。而乙,丙,(或乙,丙,丁)諸量,對於甲量而言,叫做自變數。

當甲量爲乙,丙,丁諸量的函數時,甲,乙,丙,丁,諸量之間 必有固定關係,這關係的實際情形或爲已知,或爲未知。

[例五] 據幾何定理"矩形的面積=長×闊"在這等式中, 長,闊二量或二量之一改變時,面積隨之而變,故面積是長闊二 量的函數,而長,闊二量是自變數。

[例六] 設 y 是每人每日的食量,則 x 人於 t 日內,所需食品的總量是 S=xyt。此處食品總量 (S) 是人數 (x),日數 (t),每人每日食量 (y) 三量的函數;而人數 (x),日數 (t),每人每日食量 (y) 是自變數。

[例七] 利息是本金,利率,期數三量的函數;而本金,利率,期數三量是自變數。

[註] 函數概念乃近世科學上最要觀念之一。無數科學家終日所研究的; 第一步,量與量之間有無關係? 第二步,量與量之間究有若何關係,能不能用 函嚴關係的算式來表示?

§ 141. 函數的種類。 函數的範圍旣廣,函數的種類所多。函數的形式,有已知的,有未知的(如上節例四)。僅就已知的說,有代數函數,有非代數函數(如 $y=\sin x, y=a^x$ 之類)。僅就代數函數說,有一元函數[就是含一個自變量的函數,如上節(A)所述],有多元函數[就是含多個自變量的函數,如上節(B)所述]。僅就一元的說,有無理函數(如 $y=\sqrt{x^2+1}$ 之類),有有理函數(如 $C=2\pi r$, $U=\frac{1}{3}\pi h r^2$ 之類)。僅就有理的說,又有一次與高次之分。詳而論之,爲算學中的一枝喚做函數論的事,不在本書範圍以內。下面所要討論的,是函數的正變,倒變,聯

§ 142. 正變。 有理函數之一。 假使一輛火車, 用相同

的速率,在 60 分鐘內可走 40 公里;那麽 30 分鐘可走 20 公里, 120 分鐘可走 80 公里。所走距離和時間的比完全相同 $\left(\frac{40}{60} = \frac{2}{3}\right)$, $\frac{20}{30} = \frac{2}{3}$, $\frac{80}{120} = \frac{2}{3}$)。用 x 表時間,y 表距離,k 表速率,可列式 如下:

$$\frac{y}{x} = k = 常數$$

[例一] 假定各人食量相同,若干人(x)所需食品的總量(y)、隨人數而正變、因為 y=kx。

[例二] 速度一定時,所行里數(d),隨所經時數(t)而正變,因為 d=kt。

「例三」 若 y=3x, 則 y 隨 x 而正變。

[例四] 若 y=3x+1,則不能直接說y 隨x 而正變。因 為 $\frac{y}{x}$ 中常數。

關於正變 y=kx 的問題通常有二類:

- (A) 巴知 k,x (或 y), 求 y (或 x)。 求法甚易,茲不贅 x
 - (B) 已知x,y的一組對應值 x_1,y_1 及另一值 $x_2(或 y_2)$,

欲求 x_2 的對應值 y_2 ,(或 y_2 的對應值 x_2)。

[解法] 先由 $y_1 = kx_1$ 求出 k, 仿(A)解之。

例如,已知 $y \propto x$ 且當 $x_1 = 3$ 時, $y_1 = 5$, 問 $x_2 = 7$ 時, $y_2 = 7$

[解] 以 $x_1=3$, $y_1=5$ 代入 y=kx, 得

代

$$5=k\times 3$$
,就是 $k=\frac{5}{3}$ 。

故本題的正變關係是 $y = \frac{5}{3}x$ 。

今
$$x_2=7$$
, 故 $y_2=\frac{5}{3}\times 7=\frac{35}{3}=11\frac{2}{3}$ 。

[計] 正變與比例的關係。設 x_1, y_1 為 x, y 的相應數值; x_2, y_2 亦然。 依欠代入 y=kx 中,應得

$$\begin{cases} y_1 = kx_1 \\ y_2 = kx_2 \end{cases}$$

相除,得

$$\frac{y_1}{y_2} = \frac{x_1}{x_2}$$

就是說 "y 的各值與x 的對應值應成正比例"。根據這種關係也能解上例。

習頭一百十一

- 1. 依§141 所述函數的種類,作一簡表以示函數的類別。
- 2. 任率一元函數的事例五條,二元函數的事例五條。
- 學生學習成績,是不是教師教法的函數?這種函數關係能不能用簡明算式來表示?
 - 4. 自由ত體下降的距離(s)是不是所經時間(t)的函數?這函數能不能

用簡明算式來表示(在物理學中,有公式 $s=\frac{1}{2}gt^2$)?

- 5. 利息是不是本金的函數?是不是利率的函數?是不是期數的函數?照 單利算,這函數關係該是怎樣的式子?照複利算,這函數關係又是怎樣的式子?
 - 6. 代數式 x^2+5x , $\sqrt{x+5}$, $\frac{x^2}{x+1}$, 都是 x 的函數嗎?
 - 7. 代數式 x^2+xy , 3x+5y, 8x-7y+9 各是護元函數?
- 8. 代數式 3x+6 是不是 x 的函數?設 x 表 1,2,3,4,……50 何者 能使 3x+6 之信偿零?當 x=-2 昧,函數 3x+6 的值是多少?
- 9. x^2+5x-6 是不是 x 的函數?設 x=1, 函数 x^2+5x-6 的值是 多少? x=-6, 這函數的值又是多少?設 x= 任何其他數值, 這函數的值是 否贷零?
- - 11. 已知 ycx, 當 x=5 時, y=6, 周 x=7 時, y=?
 - 12. 已知 $y^2 \propto x^3$, 當 x=4 時, y=8, 同 y=729 時, x=?
 - 13. 已知 $y \propto \sqrt{x}$,當 x=25 時, y=15,問 x=? 時, y=6。
 - 14. 已知 $x \propto y$, 求證 $x + y \propto x y$ 。

[解法] 原設
$$x \propto y$$
 ... $\frac{x}{y} = k$

如 $x+y = x-y_0$

- 15. 已知 xccy, 求證 lx+mycclx-my。
- 16. 已知 $x \propto y$, 求證 $x^2 + xy + y^2 \propto x^2 xy + y^2$ 。
- 17. 已知 $ax^2+bxy+cy^2=0$, 求證 xxy_0

- 18. 已知 $x^2 + xy + y^2 \cos^2 xy + y^2$, 求證(1) $x \cos y$,(2) $x + y \cos x y$,
- 19. 當甲數增大時,若乙數隨甲數而增大,則甲數是否隨乙數而正變?試 就下列三例驗明你的答案:
 - (a) $y = 3x + 5_0$ (b) $y = x^2_0$ (c) $y = \sqrt{x_0}$
 - 20. 若 $y \propto x$, 依第五章作圖以明 x,y 相應變化的關係。
- § 143. 倒變。 有逕函數之二。 假使一件工作 6 人去做, 8 小時可以做完; 那麽, 12 人須 4 小時, 2 人須 24 小時, 這就是說:人數增加,時間可以比例減少; 反之,人數減少,時間須比例增加; 但所需的總時間(即人數乘每人的工作時間)總是等於一人做完這件事所需的時間。用 x 表人數, y 表每人的工作時間, k 表做完這事所需的總時間,可列式如下:

xy=k=常數。

二變量 x,y 之間,如有 "xy=k= 常數" 的關係,我們就

說 "y 隨 x 而倒數", 記以 $y \propto \frac{1}{x}$; 其實, 也就是 $y = \frac{k}{x}$ 。

[例一] 若干人分食定量食品 k。每人應得的分量(y),隨人數(x)而倒變;人數(x)也隨每人所得的分量(y)而倒變。 (因為 xy=k=常量)。

[例二] 欲行一定距離d, 所需時數 t 隨速度 s 而倒變, 速度也隨所需時數而倒變,因為 st-d= 定量。

[例三] 當 x^2y^3 = 常量時,則 y^3 隨 x^2 而倒變, x^2 也隨 y^3

而倒變。

[例四] 當甲量變大時,乙量減小;甲量減小時,乙量增大,如此則甲量與乙量間示必便有"甲量×乙量=常數"的關係。例如在 $y=\frac{1}{x+2}$ 中,x增大,則y減小;x減小,則y增大。但xy不 為常數。故不能直接說y隨x而倒變。

關於倒變 xy=k 的問題,通常亦有二類:

- (A) 已知k,x(或 y), 求 y(或 x)。求法甚易, 茲不贅述。
- (B) 已知 x,y 的一組對應值 x_1,y_1 及另一值 x_2 (或 y_2), 求 x_2 的對應值 y_2 (或 y_2 的對應值 x_2)。

[例] 已知 $y \propto \frac{1}{x}$, 當 $x_1 = 3$ 時, $y_1 = 5$, 間 $x_2 = 7$ 時, $y_2 = ?$

[解] 以 x_1, y_1 的值代入xy = k,得

$$k=3 \times 5 = 15$$

故本題的倒變關係是

$$xy=15$$

$$\Leftrightarrow x_2=7, \text{ the } y_2=\frac{15}{x_2}=\frac{15}{7}=2\frac{1}{7}.$$

[註] 倒變與比例的關係。設 x,y 的對壓值是 x1,y1 及 x2,y1 代入倒變公式 xy=k 中,得下列二式

$$\begin{cases} x_1 y_1 = k \\ x_2 y_2 = k \end{cases}$$

所以

 $x_1y_1 = x_2y_2$

$$\frac{x_1}{x_2} = \frac{y_2}{y_1}$$

就是說"农的各值與农的對應值應成反比例"。根據這種關係也能解上例。

§ 144. 聯變。當 y 隨 x,z 的積而正變時,我們就說"y 質 x,z 而聯變"。聯變的定理如下:

當北為常數時, 9 若隨 2 而正變; 且當 2 為常數時, 9 又隨 x 而正變; 那麼,當 x, z 俱變時, y 必隨 x, z 而聯變。

第一步。 邓 不變, 當 z 由 z 養為 z 時, y 由 y 變爲 y'。依 § 142 [註] 應得

$$\frac{y_1}{y'} = \frac{z_1}{z_2} \tag{1}$$

第二步。 22 不變,當 x 由 x1 變為 x2 時, y 由 y' 變為 y2。 依 § 143 [註] 應得

$$\frac{y'}{y_2} = \frac{x_1}{x_2} \tag{B}$$

$$(A),(B)$$
相乘得 $\frac{y_1}{y'} \cdot \frac{y'}{y_2} = \frac{x_1 z_1}{x_2 z_2}$

 $\frac{y_1}{x_1 z_1} = \frac{y_2}{x_2 z_2} =$ 常數。

 $\frac{y}{xx} = k_o$

[例一] 時數一定,所行距離隨速度而正變;速度一定,所

行距離隨所經時數而正變。故時數,速度兩樣都變時,所行距離 衛時數,速度而聯變。

[例二] 當 s 不變時, $y \cos \frac{1}{t}$;當 t 不變時, $y \cos$ 今當 $s_1 = 4$,

 $t_1=1$ 時, $y_1=8$ 。問 $s_2=3$, $t_2=6$ 時, $y_2=?$

[解法] 由上述定理,知 yocs· $\frac{1}{t}$ 即 $y = \frac{ks}{t}$ 。

以 s_1,t_1,y_1 的值代入上式,得 $8=\frac{k\cdot 4}{1}$,即 k=2。

故本題的聯變關係是 $y=\frac{2s}{t}$ 。

再以 s_2, t_2 的值代入上式,得 $y_2 = \frac{2 \times 3}{6} = 1$ 。

[又法] 由
$$y = \frac{ks}{t}$$
, 得 $\frac{yt}{s} = k$ 。

故
$$\frac{y_1 t_1}{s_1} = k = \frac{y_2 t_2}{s_2}$$

$$\frac{8\times 1}{4} = \frac{y_2 \times 6}{3}$$

$$y_2=1$$

習題一百十二

1. 已知 $y \propto \frac{1}{x}$, 當 x=1 時, y=2, 問 x=3, y=?

- 代
- 2. 已知 $y \propto \frac{1}{x^3}$, 當 x=2 時, y=1, 問 x=1, y=?
- 3. 已知 $y^2 \propto \frac{1}{t^3}$, 當 y=1 時, t=1, 問 y=64, t=?
- 4. 已知 $x+y \propto \frac{1}{x-y}$, 當 x=5 時, y=4, 問 x=4, y=7
- 5. 已知 $x \propto y$, $y \propto \frac{1}{z}$, $z \propto \frac{1}{t}$, 那麼, x 體 t 而正變, 抑魔 $\frac{1}{t}$ 而正變)
- 6. 已知 y 随 x,z 而聯變, 又随土, 10而聯變, 武求 y 與 x, z, t, u 的關係。其中含不含未定的量?這量是常量環是變量?
- 7. 已知 V 隨 r3 而正學, A 隨 r2 而正學, 問 (a) V2 蹟 A3 而正 是,抑倒變? A 隨 V 的何種函數而正變?
- 8. 當甲量隨乙量而倒髮時,乙量是不是隨甲量而倒變? 試用算式來證 明?
- 9. 工廠對於工友每日發給工资,當做工人數不變時,所發工管腦每日 工作時數而正變;當每日工作時數一定時,所發工資鹽做工人數而正變。某日, 工友 100 人,各做工 10 小時,共愛工資 125 元。次日,工人 95 名,各做工 11 小時, 間該登工資共業元?
- 10. x 人於 y 日內所需食物的總量是 t_0 當 x 一定時, t 證 y 而正 選諾 y 一定時, t 隨 x 而正變。今當 x=100, y=5 時, t=1000。 間當 x=150, y=15 B, t=?
 - 11. 若 $y \propto \frac{1}{x}$, 作圖以示 x,y 相應變化的關係。

第十六章 級數

§ 145. 級數的需要 [問題一]自1 起幾個蓮鑄奇數的和

县 400?

設 x 是所求的個數,則因第 1 個奇數是 $2 \times 1 - 1$;第 2 個奇數是 $2 \times 2 - 1$;第 3 個奇數是 $2 \times 3 - 1$,……,故第 x 個奇數是 $2 \times 2 - 1$,於是從題意得方程式:

$$1+3+5+7+9+\cdots+(2x-1)=400$$

怎樣由這方程式去求 æ, 非先求出左逢的和不可; 怎樣求出左 邊的和,這就是級數的問題。

[問題二] 某國因國難當頭,力求緊縮。軍政費支出逐年減少 $\frac{1}{10}$,十年後共計節省 $10^{10}+9^{11}$ 元,問原來預算每年若干元?

設 x=原來預算的元數,從顯意得方程式:

$$10x - \left(\frac{9}{10}x + \frac{9^2}{10^2}x + \frac{9^3}{10^3}x + \frac{9^4}{10^4}x + \dots + \frac{9^{10}}{10^{10}}x\right) = 10^{10} + 9^{11}$$
。
怎樣解這方程式,非先求出括號內的結果不可,這又是級數的問題。

§ 146. 何謂級數? 凡依一定規則構成諸數依某次序排 列起來而得一數羣,這數羣就叫做級數。級數中的第幾數叫做級 數的第幾頁。

[例一] $1,3,5,7,9,\dots$ 成一級數,(他構成的規則是第n 項=2n-1)。

[例二] 1,2,4,8,16,成一級數, (牠構成的規則是第

 $n \, \bar{\mathfrak{p}} = 2^{n-1}$)。

[例三] $1^2, 2^2, 3^2, 4^2, 5^2, \dots$ 成一級數,(牠構成的規則是第n項= n^2)。

[例四] $\frac{1}{2}$, $\frac{2}{3}$, $\frac{3}{4}$, $\frac{4}{5}$, 亦成一級數,(牠樣成的領則是第n項= $\frac{n}{n+1}$)。

[例五]、 $1 \times 2 \times 3$, $2 \times 3 \times 4$, $3 \times 4 \times 5$, $4 \times 5 \times 6$,…… 亦成一級數,[牠構成的規則是第n項 =n(n+1)(n+2)]。

由上面諸例看來,可見級數的種類很多。全部理論,非初等 代數所能盡述;本章所講的,不過是等差級數,等比級數兩種影 了。

I. 等差級數

§ 147. 等差級數。 如果級數相隣的後項減前項的差額相等,這種級數叫做等差級數。等差級數的通式是

 $a, a+d, a+2d, a+3d, \dots, a+(n-1)d_o$

d 叫做公差:如取正值時,各項的值依次增加:如取負值時,各項的值依次減小。

例如,上節例一的級數就是等差級數,牠的公差是2。

又如 10, 5, 0, -5, -10, -15, ·······亦成等差級數, 物的公差是 -5。

又如 $1,\frac{3}{2},2,\frac{5}{2},3,\frac{7}{2},4,\frac{9}{2},5$,亦成等差級數,牠的 公差是 $\frac{1}{2}$ 。

§ 148. 等差級數的公項。 由上節定義,可見等差級數中任何一項必可化成 a+(?)d 之形,d 的係數比該項所在的項數 ϕ 1。所以第 k 項應為 a+(k-1)d,用算式來表,就是

$$t_k = a + (k-1)d_o \tag{A}$$

t_k 叫做等差級數的公項。

已知等差級數的第1項 a 及其公差 d,那麼其他各項,都可由這公式(A)去求出。

[例一] 求 1,4,7,10,……的第 20 項。

[解法] 本題 a=1, d=4-1=3, k=20。故所求的一項 是 $t_{20}=1+(20-1)\times 3=1+19\times 3=58$ 。

[例二] 等差級數第 2 項是 3, 第 6 項是 -5, 求其第 10 項。

[解法] 倘能求出第一項 a 及公差 d, 便易求得第十項。求 a 求 d 的方法,就是利用(A)式列出聯立方程式以求其根。今由 題意,得聯立方程式

$$\begin{cases} 3 = t_2 = a + (2 - 1)d & (1) \\ -5 = t_6 = a + (6 - 1)d & (2) \end{cases}$$

數

就是 $\begin{cases} a+d=3 & (1') \\ a+5d=-5 & (2') \end{cases}$

解之,得

a = 5, d = -2

代

$$t_{10} = 5 + (10 - 1)(-2) = 5 - 18 = -13_{\circ}$$

§ 149. 怎樣插入笔差中項? 在等差級數 $a, x_1, x_2, x_3,$ x_m , b中, $x_1, x_2, x_3,$ x_m 諸數統叫做 a,b 的等差中項。

已知 a,b 二數,怎樣在 a,b 之間插入加個等差中項?這個問題也可由上節公式(A)去解決。

因為

$$x_1 = a + d$$

 $x_2 = a + 2d$

 $x_m = a + md_0$

如能求得 d,則這問題便能全部解決了。故先設法求 d: 因 a 是等差級數的第 1 項,b 是第 m+2 項。故用(Δ)得 b=a+(m+1)d。

由此求得 $d = \frac{b-a}{m+1}$ 。

[例].試在3與18之間插入4個等差中項。

[解決] 因 3 是等差級數的第一項, 18 是等差級數的第 6 項, 故用(A)式, 得 18=3+5d 就是

$$d = \frac{18 - 3}{5} = 3$$

٠.

所求等差中項是6,9,12,15。

習題一百十三

来下列各級數的第 n 項:

- 1. 3,6,9,12,.....
- 2. 9,1,-7,-15,....

寫出下列各級數的前 10 項:

3.
$$a=100, d=-15$$

4.
$$a=8, d=1\frac{1}{3}$$

辅足下列二級數到第8項:

- 5. $5,3\frac{1}{2}, 2_0$
- 6. $a,a+2b,a+4b_0$
- 7. 等差級數的第5項是10, 第16項是32。求其第10項。
- 8. 等差級皷的第3項是50,第11項是10。求其第20項。
- 9. 試在3與30之間插入9個等差中項。、
- 10. 試在 100a 與 -103a 之間插入 20 個等差中項。
- § 150. 怎樣求等差級數 n項的和? 設有 n 項等差級數 如下形:

[求法] 首項爲a,末項爲l,項數爲n,其和爲S,則

$$S = a + (a+d) + (a+2d) + \dots + (l-2d) + (l-d) + l$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$S = l + (l-d) + (l-2d) + \dots + (a+2d) + (a+d) + a$$

相加得
$$2S = (a+l)+(a+l)+(a+l)+\cdots+(a+l)+(a+l)+(a+l)$$

= $n(a+l)$ 。

代

$$S = \frac{n(a+l)}{2}.$$
 (B)

叉因 l=a+(n-1)d,

$$S = \frac{n[a+a+(n-1)d]}{2} = \frac{n[2a+(n-1)d]}{2}. (C)$$

[例一] 求 $S=1+2+3+4+\cdots+100$ 。

[解法] 本題 a=1, l=100, n=100。用(B)。

$$S = \frac{100}{2}(1+100) = 5050_{\circ}$$

[例二] 求
$$3+1\frac{1}{2}+0+\cdots$$
 +第 1000 項。

[解法] 本題
$$a=3$$
, $d=1\frac{1}{2}-3=-1\frac{1}{2}$, $n=1000$ 用(C),

$$\therefore S = \frac{1000}{2} \left[2 \times 3 + 999 \times \left(-\frac{3}{2} \right) \right] = -746250_{\circ}$$

習題一百十四

求下列各級數的和: (1-3)

- 2. 1+3+5+7+....+231
- 3. 5+10+15+20+ +2000
- 4. 求 100 與 2000 之間所有6的倍數的和。
- 5. 自1至 1000 間,所有4的倍數的和,比所有3的倍數的和大多少。 或小多少?
 - 6. 等差級數的第4項是 12, 第 30 項是 64, 求其首 100 項的和。
- 7. 等差級數內首 100 項的和是 5000, 公差是 2, 求第 1項, 第 10 項, 第 100 項。
 - 8. 等差級數的第1項是 1, 公差是 3,n 項的和是 590, 求項數 n。
- 9. 等差級數的總和是 1000, 項數是 50, 第一項是 10, 求最後1項 及公差。
- 10. 等差級數內首 9項的和是 126,最後 2項的和是 42,求首 2項的和。
 - 11. 解 § 145 問題一。
 - 12. 自-5 起, 連續幾個 5 的倍敏的和是 3700?
 - 13. 解方程式 $x+4x+7x+10x+\cdots+34x=21630$
- 14. 物證從空中自由下墮, 第一秒內降下 16 呎; 以後每秒內所降的距離永比前秒內所降距離多 32 呎。今後飛機上投一炸彈, 經 12 秒鐘而達地面,間潰機距地面幾呎?
- 15. 石子一粒,自由墜入井中,3秒鐘後聽到石子壁水的聲音,問井的水面,距地面幾呎?(假定音的速度是每秒 1000 呎)。

II. 等比級數

§ 151. 等比級數 如果級數相鄰的後項與前項的比都相等,叫做等比級數。這種級數的通式是,

a, ar, ar^2 , ar^3 ,, ar^n

r 叫做公比:如 r 為正數,則大於 1 時,各項的值依次增加;小於 1 時,各項的值依次減小。

[例一] 1,2,4,8,16,……成等比級數。牠的公比是 2。

[例二] $1,-\frac{1}{3}, \frac{1}{9}, -\frac{1}{27}, \frac{1}{81}, \dots$ 成等比級數。物

的公比是 $-\frac{1}{3}$ 。

§ 152. 等比級數的公項 由上節定義,可見等比級數中任何一項必為 ar? 之形, r 的指數比該項所在的項數少 1。故第 k 項應為 ar^{k-1}。用算式來表就是:

$$t_k = ar_o^{k-1} \tag{A}$$

t_k 叫做等比級數的公項。

已知等比級數的第一項 a 及其公比 r,那麼其他各項,都可由這公式(A)去求出。

[例一] 求 1,2,4,8,……的第20項。

[解法] 本題 a=1, r=2, k=20

$$t_{20} = 1 \times 2^{20-1} = 2^{19}$$

[註] 求等比級數的第 k 項所得的值 ark-1,往往是一個位數很多的數

不必乘出。本題結果 219 也不必乘出。

[例二] 等比級數內第 2 項是 2, 第 6 項是 32, 求其第 10 項。

[解法] 本題 $t_2=2$, $t_6=32$, 由題意,應用公式

(A), 得聯立方程式
$$\begin{cases} ar = 2 \\ ar^5 = 32 \end{cases}$$
 (1)

解之,得

$$r=2, a=1$$

$$t_{10} = 1 \times 2^{10-1} = 2^9 = 512_0$$

已知 a,b 二數,怎樣在 a,b 之間插入m個等比中項。這個問題也可用前節公式(A)去解決。

因為

$$x_1 = ar$$

$$x_2 = ar^2$$

.....

$$x_m = ar^m \circ$$

如能求得 τ ,則這問題便可全部解決了。故先求 τ :因 α 是等比級數第1項,b是第m+2項,故用(A)式得 $b=av^{m+1}$,由此求得

$$r = \sqrt[m+1]{\frac{b}{a}}$$

[例] 在2與64之間插入4個等比中項。

[解法] 因 a=2, b=64, m=4。故 64 是等比級數的第 6 項,故用(A)式,得

$$2r^5 = 64$$

卽

$$r=2_{o}$$

∴ 所求等比中項是 2×2, 2×2², 2×2², 2×2²,

習題一百十五

求下列各級數的第n項:

1. 3,6,12,24,.....

2.
$$-7$$
, -2 , $-\frac{4}{7}$, $-\frac{8}{49}$,.....

3.
$$9,1,\frac{1}{9},\frac{1}{81},\dots$$

寫出下列名級數的前5項:

4.
$$a=-10$$
, $r=-3$

5.
$$a=100$$
, $r=\frac{1}{2}$

6.
$$a=10$$
, $t_{10}=5120$

辅足下列各級數到第6項:

7.
$$\frac{2}{3}$$
, 1, $\frac{3}{2}$,

8.
$$2,\sqrt{2},1_0$$

- 9. 等比級數的第5項是 50, 第8項是 400, 求其第3項, 第11項。
- 10. 等比級數的第4項是4,第8項是16。求其第5項,第16項,第20項。

- 11. 在1與243之間插入4個等比中項。
- 12. 在5與 320 之間插入5個等比中項,插入11個等比中項。
- § 154. 求等比級數 n項的和。 級數的種類既然很多(參看 § 146)求和的方法,自然各不相同。例如,若仿 § 150 求等差級數 n 項之和的方法,以求等比級數 n 項之和,其法便全然無效。你們自己試試看,然後再看下面的解法。

[求法] 設古項為a,未項為 ar^{n-1} ,項數為n,其和為 S_n , 則 $S_n = a + ar + ar^2 + ar^3 + \dots + ar^{n-2} + ar^{n-1}$ 。

$$rS_n = ar + ar^2 + ar^3 + \dots + ar^{n-2} + ar^{n-1} + ar^n$$

兩式相減,得

$$S_n - rS_n = a - ar^n$$

$$S_n = \frac{a(1-r^n)}{1-r}, \qquad (B)$$

又田 $t_n = ar^{n-1}$,

$$S_n = \frac{a - rt_n}{1 - r}$$
 (C)

[例一] 求 1,2,4,8,16,……前 10 項的和。

[解法] 本題 a=1, r=2, n=10。用公式(B),得

$$S_{10} = \frac{1 - 2^{10}}{1 - 2} = 2^{10} - 1_{\circ}$$

[例二] 求
$$1+\frac{2}{3}+\frac{4}{9}+\cdots+\frac{32}{243}=$$
?

[解法] 本題 a=1, $r=+\frac{2}{3}$, $t_n=\frac{32}{243}$, 故用(C)式,得

$$S = \frac{1 - \frac{2}{3} \cdot \frac{32}{243}}{1 - \frac{2}{3}} = \frac{665}{243} = 2\frac{179}{243}$$

習題一百十六

求下列各級數的和:(1-4)

- 1. $3+\frac{3}{5}+\frac{3}{25}+\cdots\cdots+第10項$ 。
- 2. 1+3+9+27+……+第20項。
- 3. $1-2+4-8+16-\cdots+(-1)^{n-1}2^{n-1}+\cdots+ 第20 項。$
- 4. $1+\sqrt{2}+2+2\sqrt{2}+\cdots+第50項$ 。
- 5. 求1與 1500 間所有2的冪數(即 2^k)的和。
- 6. 求1與 1500 間所有3的篡數(即 3%)的和。
- 7. 等比級數的第 4 項是 24, 第 7 項是 192, 求其首 10 項的和,首 20 項的和,首 50 項的和。
 - 8. 等比級數的首 98 項和是 2100-4, 公比是 2。求其第 10 項。
- 9. 等比級數首 9項的積是 512, 第 9項是 4。求其首 9項的和, 首 18 項的和。
 - 10. 求級數 $1, -\frac{1}{3}, \frac{1}{9}, -\frac{1}{27}, \frac{1}{81}, \dots$ 中第 10 項至第 20 項的和。
 - 11. 解 § 145 問題二。
- 12. 俗說"臭蟲一隻每夜共生七子, 次夜老小臭蟲又各生七子,以後繁殖悉依此法,"今若有臭蟲一隻, 問一星期後共有老小臭蟲若干隻? 二星期後 如何?

- § 155. 無限遷減等比級數的和 在等比級數中,公比 r 的絕對值若比 1 小,那麽各項的絕對值就依次減小,以至於無窮 小。例如,在級數

$$1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \dots$$

中, $r=\frac{1}{4}$ <1,其各項的值依此減小:如第一千項的值是 $\frac{1}{2^{999}}$,分母已有三百零一位;第一萬項的值是 $\frac{1}{2^{9999}}$,分母就有三千零十位;其第十萬項,第一百萬項,或第一千萬項的值更是渺乎其小,簡直和零差不多了。所以,在求這無限遞減等比級數的和的時候,項數既然無限,上節 (\mathcal{O}) 式中的 t_n 也不妨當作零。代入 (\mathcal{O}) 式,則得

$$S = \frac{a}{1-r} - r \cdot \frac{t_n}{1-r} = \frac{1}{1-\frac{1}{2}} - \frac{1}{2} \cdot \frac{0}{1-\frac{1}{2}} = \frac{1}{1-\frac{1}{2}} = 2_{\circ}$$

這種情形不獨在本例如此。在任何等比級數中,假如(1)公比的絕對值小於1,且(2)項數無限。那麽牠的求和公式,就由上節公式

$$S = \frac{a}{1-r} - r \cdot \frac{t}{1-r}, \qquad (C)$$

變為公式

$$S = \frac{a}{1 - r}$$
 (D)

(因為在這情形下 tn 與 0極相近,可視牠為 0。)

習題一百十七

- 在等比級數中,(a)若項數無限,但公比r的絕對值不小於1,欲求 請無限等比級數的和,可否應用(D)式?
- (b) 若公比 τ 的絕對值小於1,但項數不為無限,欲求這等比級數的和,可否應用(D)式?
- 2. 然則欲求等比級數的和,何時該用(B)式?何時該用(O)式?何時該用(D)式?
 - 3. 求 $1+\frac{2}{3}+\frac{4}{9}+\frac{8}{27}+\cdots\cdots+$ 無限項的和。
 - 4. 求無限級數 $1+\frac{4}{5}+\frac{16}{25}+\frac{64}{125}+\cdots$ 的和。
 - 5. 求無限級數 $1-\frac{4}{5}+\frac{16}{25}-\frac{64}{125}+\cdots$ 的和。
 - 6. 求等比級數 $1+\frac{4}{5}+\frac{16}{25}+\cdots$ 首 1000 項的和。
- 7. 某人由甲地至乙地。第一日行全路的一半,以後每日所行距離順次 是上一日所行距離的一半。(a) 問此人行至 1000 日後行了全路的幾分之歲? (b) 設此人如此繼續進行,行至何時可行完全路?
- 8. 以 8 市尺,4 市尺,2 市尺,1 市尺, $\frac{1}{2}$ 市尺……為半徑,依大畫圖, 求證清無數小圓圓周的和,不比大圓圓周長。(圓周之長 $=2\pi \times$ 牛徑)。
 - 9. 化 34 為分數。

[解法] .34-.34+.0034+.000034+.00003034+.....

$$= .34 + \frac{.34}{100} + \frac{.34}{100^2} + \frac{.34}{100^3} + \frac{.34}{100^4} + \cdots$$

$$= \frac{.34}{1 - \frac{1}{100}} = \frac{.34}{.99}$$

10. 化(a) .123, (b) .1235, (c) .0367 爲芬效。

習題一百十八(雜題)

- 1. 在4,12之間插入二敏,使前3數成等比級數,後3數成等差級數。
- 2. (a)在等差級數 a,A,b 中, A=? (用 a,b 來表示)。 (b)在等比級數 a,G,b 中, G=? (用 a,b 來表示)。
- 3. $\frac{2}{3} + \frac{1}{3} + 0 \frac{1}{3} \frac{2}{3} \dots$. 到第 20 項的和。
- 4. 求 $\frac{2}{3} \frac{4}{9} + \frac{8}{27} \frac{64}{81} + \cdots$ 到第 20 項的和。
- 5. 求上題級敦無限項的和。
- 6. 求第3 題級數無限項的和,有定值沒有?何故?
- 7. 求 1-2+4-8+16-32+ 無限的和。

[解法] r=-2<1, n= 無限。

$$S = \frac{a}{1-r} = \frac{1}{1-(-2)} = \frac{1}{3}$$
。對不對?何故?

8. 求 $1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots$ 到 100000000 項的和。

[解法]
$$S = \frac{a}{1-r} = \frac{1}{1-\frac{1}{2}} = 2$$
。對不對?何故?

9. 因 1,3,5,7,9,......成等差級數,所以欲求 1/1+1/3+1/7+1/9++第 20 項,能用等差級數求和公式嗎? 10. 因 1,2,3,4,……成等差級數; 2,3,4,5,6,……也成等差級數, 於東 1·2+2·3+3·4+4·5+……首 20 項的和, 能用等差級數求和公式呢? 選是能 明等比級數求和公式呢?何故?

第十七章 指数 對數

I. 指數

§ 158. 指數意義的推廣。 在指數是正整數時,指數的意 發已在 § 33 講過了。這時易得下面幾條定律:

1.
$$a^m \cdot a^n = a^{m+n}$$

2.
$$a^m \div a^n = a^{m-n}$$

3.
$$(a^m)^n = a^{mn}$$

4.
$$(ab)^m = a^m b^m$$

根據這幾條定律乃能演算關於正整指數的一切問題。然而 算學家猶嫌其範圍太狹,應用不宏。於是把指數的範圍推廣,使 指數的意義不限於指數是正整數,就是分數,負數,零等等,也都 有意義。並使上列四定律不但適用於正整指數,就是在指數非正 整數時也無不可用。倘能如此,指數的功用不更宏大嗎?以下三 節,略論指數意義推廣的方法。

§ 157. 分指數的意義。 例如 a^{1/2}=?欲答這個問題,先要 明白推廣指數意義的目的何在? 如上節所述,推廣指數意義,其 目的就是"使上列四條定律,不但在整指數時適用,即在分指數也能適用"。但是要想上舉第三律可以適用,必有下式:

$$(a^{\frac{1}{2}})^2 = a^{\frac{1}{2} \times 2} = a_0$$
$$a^{\frac{1}{2}} = \sqrt{a_0}$$

然即

同樣,欲知 $a^{\frac{p}{q}}$ =?,可以先把 $(a^{\frac{p}{q}})^{q}$ 化簡,察其結果再定解答。 因為要使第三律可以適用,故必有

$$(a^{\frac{p}{q}})^q = a^{\frac{p}{q} \times q} = a^p$$

然則兩邊各開<math>q次方,不是應得 $a^{\frac{n}{q}} = \sqrt[3]{a^p}$ 嗎?由是得分指數的意義如下:

$$a^{\frac{r}{q}} = \sqrt[q]{a^p}$$

[例一] $64^{\frac{1}{3}} = \sqrt[3]{64} = 4$ 。

[例二]
$$64^{\frac{2}{3}} = \sqrt[3]{64^2} = (\sqrt[3]{64})^2 = 16$$
。

[例三]
$$64^{0.5} = 64^{\frac{1}{2}} = 2\sqrt{64} = 8$$
。

§ 158. 零指數的意義。 要使指數第一律適用於零指數, 應有

$$a^m \cdot a^0 = a^{m+0} = a^m$$

雨邊各以 am除之,應得

[例一]
$$1^0=1$$
, $2^0=1$, $3^0=1$, $4^0=1$, $n^0=1$,

[例二] 設 x=100, y=90, z=50,

求
$$(x^3+x^2y-xy^2+x-y)^0$$
÷ $(x+y+z)$ 的值。

因 $(x^3+x^2y-xy^2+x-y)^0$ 的值總是 1,故所求的值是

$$1 \div (100 + 90 + 50) = \frac{1}{240}$$

§ 159. **資指數的意義。** 要使指數第一律能適用於負胎數,應有 $a^m a^{-m} = a^{m+(-m)} = a^0 = 1$ 。

兩邊各除以 a^m ,應得 $a^{-m} = \frac{1}{a^m}$

[例一]
$$4^{-3} = \frac{1}{4^3} = \frac{1}{64}$$
。

[例二]
$$64^{-\frac{2}{3}} = \frac{1}{64^{\frac{2}{3}}} = \frac{1}{\sqrt[3]{\sqrt{4}^2}} = \frac{1}{16}$$

[註] 由上三節看來,可見要使指數定律在指數是分數,是零,或是頁數時都能適用,則 $a^{\frac{p}{q}}$ 非等於 \mathcal{J}_{ap} 不可, a^{-m} 非等於 $\frac{1}{a^m}$ 不可, a^0 非等於 1 不可。承於既令 $a^{\frac{n}{q}} = \sqrt[n]{a^p}$, $a^{-m} = \frac{1}{a^m}$, $a^0 = 1$ 之後,指數諸定律是否領能全部適合?這又是另一問題。詳而論之,非篇幅所計現在只能假定牠們是適合的,證法待學高中代數時再講。

習題一百十九

1. 求下列各式的結果:

- (a) $144^{\frac{1}{2}}$ (b) $81^{\frac{5}{4}}$ (c) $125^{\frac{4}{3}}$ (d) $216^{\frac{5}{3}}$
- 2. 求下列各式的結果(用分數來表示):
 - (a) $144^{-\frac{1}{2}}$ (b) $81^{-\frac{3}{4}}$, (c) $125^{-\frac{4}{3}}$, (d) $-216^{-\frac{5}{3}}$
- 3. 化简下式:

(a)
$$\left(\sqrt[4]{\sqrt[5]{a^2}}\right)^5 = \left(a^{\frac{2}{5}}\right)^{\frac{5}{4}} = a^{\frac{2}{5}} \times \frac{5}{4} = a^{\frac{1}{2}} = \sqrt{a}$$

[注意] 由 § 157 公式 $a^{\frac{q}{p}} = \mathcal{Y}^{\alpha p}$,可見分指數問題可以化爲根式問題; 自然,根式問題也可化爲分指數問題,(然後再依指數定律來化簡)。

(b)
$$\left(\sqrt[m]{\sqrt[n]{ab}}\right)^q$$
 (c) $\sqrt[4]{(x\sqrt{x})^3} \cdot \sqrt[3]{(x\sqrt{x})}$

(d)
$$\left(\sqrt[3]{x^3\sqrt{y}}\right)^2 \left(\sqrt[3]{y\sqrt{x^3}}\right)^3$$

4. 化下列語式使其結果只含一個根號:

(a)
$$x\sqrt{x\sqrt{x\sqrt{x}}}$$
, (b) $x\sqrt{x\sqrt{x}} \div \left(x\sqrt{x\sqrt{x\sqrt{x}}}\right)$

- 5. 計算下列各式:
 - (a) $125^{\frac{2}{3}} \times 625^{\frac{2}{3}}$ (b) $\left(\frac{1}{64}\right)^{-\frac{2}{3}} \left(\frac{1}{64}\right)^{\frac{n}{2}}$
 - (c) $16^{-\frac{1}{2}} \left(\frac{1}{16}\right)^{\frac{1}{2}} \left(\frac{1}{25}\right)^{-\frac{1}{2}}$,
- 8. 化簡下式:

(a)
$$\sqrt[5]{\frac{\sqrt{a^3}}{\sqrt[3]{a^2}}} = \left(a^{\frac{a}{2}} \times a^{-\frac{2}{3}}\right)^{\frac{1}{6}} = \left(a^{\frac{a}{2} - \frac{2}{6}}\right)^{\frac{1}{6}} = \left(a^{\frac{5}{6}}\right)^{\frac{1}{6}} = a^{\frac{1}{6}} = \sqrt[6]{a}$$

(b)
$$\sqrt[5]{\frac{3\sqrt{a^2}}{\sqrt{a^3}}}$$
 (c) $\sqrt[42]{(\sqrt[3]{a^4} \div \sqrt[4]{a^3})^{12}}$

7. 演乘除法(舉列):

(a)
$$\left(x^{\frac{1}{2}}+3\right)\left(x^{\frac{1}{2}}-5\right)=x-2x^{\frac{1}{2}}-15_{\circ}$$

(b)
$$(x-1)\div(x^{\frac{1}{3}}-1)=(x^{\frac{1}{3}}-1)(x^{\frac{3}{3}}+x^{\frac{1}{3}}+1)\div(x^{\frac{1}{3}}-1)$$

= $x^{\frac{3}{3}}+x^{\frac{1}{3}}+1$ _o

8. 演乘除法:

(a)
$$(3x^{\frac{1}{2}}+5)(5x^{\frac{1}{2}}-3)_{0}$$

(b)
$$\left(x^{\frac{1}{2}} + x^{\frac{1}{4}}y^{\frac{1}{4}} + y^{\frac{1}{2}}\right) \left(x^{\frac{1}{2}} - x^{\frac{1}{4}}y^{\frac{1}{4}} + y^{\frac{1}{2}}\right)_{\circ}$$

(c)
$$(x+y)$$
 $\div (x^{\frac{1}{3}}+y^{\frac{1}{3}})$, (d) $(x-y)$ $\div (x^{\frac{1}{4}}-y^{\frac{1}{4}})$

- 9. 解方程式 3x-4x¹+1=0。
- 10. 解方程式 2x 1-13x 1+15=0。
- 11. 解方程式 $x+x^{-1}=3\frac{1}{3}$ 。
- 12. 解方程式 x¹+3x⁻¹=4。

II. 對數

§ 160. 對數的需要 欲知對數的功用,先看下列兩題:

[問題一] 炒¹2 =? 求這數的首三位數字。怎樣解此問題? 學者有下手之處嗎?

[問題二] 解方程式 2°=7, 求 x 的首三位數字。學者對 此問題,又有下手之處嗎?

可見要解這類問題,非另有新法不可。新法是什麼? 就是利用對數。

§ 161. 對數是什麼? 先就等式 82=64 來看。這個等式

中共有三數8,2,64。已知其二,可求其他。詳細說來,共有三類:

- (1) 已知 8,2 求 8²=?·這是乘法問題。在乘法,2 叫做 8 的指數。
- (2) 已知 64,2 求(?) $^2=64$ 。這是開方問題。在開方,"?" 叫做64的平方根。因(?) $^2=64$ 是一種新運算,故另用新式 $\sqrt[2]{64}$ =?來表示。
- (3) 已知 8,64 求 8?=64。這就是對數問題了。在這等 式中,"?"叫做 64 的對數(底 8),"8"叫做底。也因 8?=64 是一 種新運算,故另創新式來表示。新式是什麽? 就是 log₈64=? 所 以下列二式:

(a)
$$\log_8 64 = ?$$
 (b) $8? = 64_\circ$

所表 8,64,? 三數的關係,二者完全相同。

推之,在通例 $a^z = M$ 中, a 叫做底, w 叫做M的對數'底 a)。因 $a^z = M$ 是一種新運算,故另用新式 $\log_a M = a$ 來表示。所以下列二式:

$$(\Psi) \quad \log_a M = x_o \qquad (Z) \quad \alpha^z = M_o$$

所表 a,x,M 三數的關係完全相同。

[例一] logs64=?

[解法] :: $8^2 = 64$:: $\log_8 64 = 2$ 。

[例二] log₄64=?

[解法] : $4^3 = 64$: $\log_4 64 = 3$ 。

由上兩例看來,又可見同樣一個數,因其所取的底不同。他的對數也就不同。

[註] 對數與指數是否相同? 由上所述,學者或要訊 "對數就是指數"其實不然! 因為在 $a^x = M$ 中, x 對於 a 叫做指數,對於 M 叫做對數。 代別可以訊 "a 的指數就是 M 的對數(底 a)" 但是不能說 "指數就是對數"。

習題一百二十

1.
$$\log_5 25 = ?$$
 $\log_5 125 = ?$ $\log_5 \frac{1}{25} = ?$ $\log_5 \frac{1}{125} = ?$

2.
$$\log_3 27 = ?$$
 $\log_9 27 = ?$ $\log_3 27^2 = ?$ $\log_9 \frac{1}{27} = ?$

3.
$$\log_{10}10=$$
? $\log_{10}100=$? $\log_{10}1000=$? $\log_{10}1000=$? $\log_{10}1=$? $\log_{10}0.1=$? $\log_{10}0.1=$? $\log_{10}0.1=$? $\log_{10}0.1=$?

§ 162. 對數的三大定律 對數的變化全以下列三律為根據:

(1)
$$\log_a MN = \log_a M + \log_a N_o$$

(2)
$$\log_a \frac{M}{N} = \log_a M - \log_a N_o$$

(3)
$$\log_a M^n = n \log_a M_o$$

$$(I) \times (II)$$
,得 $a^{x+y} = MN_o$

§ 163. 對數的定值部份,定位部份。 如上兩節所述,任 皮 都可用做對數的底。但在普通計算上,對數恆以 10 做

=.01505

(d) $\log_{10} \sqrt[20]{2} = \log_{10} 2^{\frac{1}{20}} = \frac{1}{20} \log_{10} 2 = \frac{1}{20} \times .3010$

底。這種以 10 做底的對數叫做常用對數。(常用對數的底 10 恆 略而不寫。例如, $\log_{10}34$ 恆省寫為 \log_{34} ; 反之, \log_{56} 就是 $\log_{10}56$)。

在常用對數中,任何一數 N, 不能化為1°的整次器的,物的對數必非整數而為整數與小數的和。這證數叫做對數的定位部。

§ 164. 怎樣求定位部? 先就含有一位整數的任何數》 來講:

因 1 < x < 10, 故 $\log 1 < \log x < \log 10$,

就是

 $0 < \log x < 1$

:. logx=0+ 小數

這就是說含有一位整數的數,牠的對數的定位部是 0。如果將來的小數點移右一位,就是將來乘 10¹,也就是在來原來的對數定位部 0 上加 1,所以

凡有2位整數的數,牠的對數定位部是1。

如果將 x 的小數點移右二位,就是將 x 乘 100¹ 或 10²,也就是在 x 原來的對數定位部 0 上加 ²,所以

凡有3位整數的數,牠的對數定位部是2。

推之,

凡有n位整數的數,牠的對數定位部是(x-1)。

用同樣的方法,如果將來的小數點移左一位,就是將來乘 10⁻¹,也就是在來原來的對數定位部 0 上加 一1;如果將來的 小數點移左二位,就是將來乘 100⁻¹ 或 10⁻²,也就是在來原來 的對數定位部 0 上加 一2。所以,凡小數的第一位有效數字與 小數點之間,

有 0 個 0 的, 牠的對數的定位部是 -1, 簡寫為 1, 有 1 個 0 的, 牠的對數的定位部是 -2, 簡寫為 2。 推之,

凡小數的第一位有效數字與小數點之間有n個 0的,其定位部為一(n+1),簡寫為 n+1。(此處 x+1 上面的記號"——"不作括號線用)。

[例一] 求 log 87500 的定位部。

[解法] 因 87500 有五价整數、

故 log 87500=4。·······。

[例二] 求 log .000875 的定位部。

[解法] 因 .000875 中,小數點與8之間有三個9,

[例三] 已知 log 2=.3010 求 220,240 各有幾位整數?

「解法」 $(1)\log 2^{20}=20\log 2=20\times.3010=6.020$

因 log 220 的定位部是 6。故知 220 有七位整數。

(2) log 2⁴⁰=40 log 2=40×.3010=12.04
 因 log 2⁴⁰ 的定位部是 12, 故知 2⁴⁰ 有 13 位整數。

[註] 由本語(B)可見 log .356=-1+ 5514, 這式的值本來該是-4486; 所以寫為 1.5514 這樣形式的, 只為便利的緣故。便利何在?第一,任何數的定值部就是正數; 第二、任何數的定值部與牠的小數點所在的位置。 關。例如在 log 356, log 35.6, log 356, log .0356, log .001333中, 定值部都是 .5514。 這樣, 造素檢奏, 便可各省許多手續了。

§ 165. 怎樣求定值部? 這個問題本是很難的問題。直接 求解,勢必勞而無功。好在算界先賢,早已有人不辭勞苦,求得的 果造成表册。我輩後生,只要坐享其成,按表檢數就行了。

[例一] 求 log 84.6 的定值部。

[解法] 因定值部與 84.6 內小數點的位置無關, 所以只 求 log 846 的定值部就得了。

在下頁所附對數表中,先由最左一行(即N下的縱行)查出 84,再在最上一行(即N右的橫行)查出 6。由 84 向右看,同時由 6 向下看,其交叉之處有一數 9274,就是 log 846 的定值部。

故 log 84.6 的定值部為 .9274

[註] 表內所載定值部,小數點一律省而不寫;用時須自行補加。

[例二] 求 log 95600 的定值部。

仿例一在N下的縱行內查出 95,又在N右的橫行內查出 6。 由 95 向右看,由 6 向下看,其交叉處得一數 .9805,這是 log 956

N	0 - 1	1	2	3	4	5	6	7	8	9
10	0000	0453	0086	0128	0170	0212	0253	0294	0334	0374
11	0414	0453	0492	0531	0569	0607	0645	0682	0719	0755
12	0792	0828	0864	0899	0934	0969	1004	1038	1072	1106
13	1139	1173	1206	1239	1271	1303	1335	1367	1399	1430
14	1461	1492	1523	1553	1594	1614	1644	1673	1703	1732
15	1761	1790	1818	1847	1875	1903	1931	1959	1987	2014
16	2041	2068	2095	2122	2148	2175	2201	2227	2253	2279
17	2304	2230	2355	2360	2405	2430	2455	2480	2504	2529
18	2553	2577	2601	2025	2648	2672	2695	2718	2742	2765
19	2788	2810	2933	2856	2878	2900	2923	2945	2967	2989
20	5010	3052	3054	3075	3096	3118	3139	3160	#181	3201
21	3222	3243	3263	3284	3504	3324	3345	3365	3385	3404
22	3424	3444	3464	3483	3502	3522	3541	3560	3579	3598
23	3617	3636	3655	3674	3692	3711	3729	3747	3766	3784
24	3802	3820	3838	£856	3874	3892	3909	3927	3945	3962
25	3979	3997	4014	4031	4048	4065	4082	4099	4116	4133
26	4150	4166	4183	4200	4216	4252	4249	4265	4281	4293
27	4314	4330	4346	4362	4378	4353	4400	4425	4440	4456
28	4472	4487	4502	4518	4533	4548	4564	4579	4594	4609
29	4624	4639	4854	4609	4683	4658	4713	4728	4742	4757
30	4771	4786	4890	4814	4829	4843	4857	.871	4886	4900
31	4914	4928	4842	4955	4959	4983	4997	5011	5024	5038
32	5051	5065	5079	-5092	5105	5119	5132	5145	5159	5172
33	5185	5198	5211	5224	5237	5250	5263	5276	5289	5302
34	5315	5328	5340	5353	5366	5378	5391	5403	5±16	5428
35	5441	5453	5465	5478	5490	5502	5514	5527	5539	5551
36	5- C3	5575	5587	5559	5611	5623	5635	5647	5658	5670
37	5682	5694	5705	5717	572)	5740	5752	5763	5775	5786
58	5798	5809	5821	5832	5843	5855	5866	5877	5888	5890
39	5911	5922	5933	5944	5955	5966	5977	5988	5999	6010
40 41 42 43 44	6021 6128 6232 6335 6435	6031 6138 6243 6345 6-44	6253 6355	6053 6160 6263 6365 6464	6034 6170 6274 6375 6474	6075 6180 6284 6385 6484	6085 6191 6294 6395 6493	6201 6304 6405 6502	6107 6212 6314 6415 6513	6117 6222 6325 6425 6522
45 46 47 48 49	6628 6721 6812	6730 6821	6646 6739 6830	6561 6656 6749 6839 6928	6571 6665 6758 6848 6937	6580 6675 6767 6857 6946	6590 6684 6776 6866 6955	6599 6693 6785 6875 6964	6669 6702 6794 6884 6972	6618 6712 6803 6893 6981

ŏ1

N	0	18	2	3	4	5	6€	7 €	8	9
55	7404	7412	7419	7427	7435	7443	7451	7459	7466	7474
56	7482	7490	7497	7505	7513	7520	7528	7536	7543	7551
57	7559	7566	7574	7582	7589	7597	7604	7612	7619	7627
58	7634	7642	7649	7657	7664	7672	7679	7686	7694	7701
59	7703	7716	7723	7731	7738	7745	7752	7760	7767	7774
60	7782	778)	7796	7803	7810	7818	7825	7832	7839	78.6
61	7853	7860	7868	7875	7882	7889	7896	7903	7910	7917
62	7924	7931	7938	7945	7952	7959	7966	7973	7980	7987
63	7993	8000	-8007	8014	8021	8028	8035	8041	8048	805
64	8062	8069	8075	8082	8089	8096	8102	8109	8116	8122
65	8129	8136	8142	8149	8156	8162	8169	8176	8182	8189
66	8195	8202	8209	8215	8222	8228	8235	8241	8248	8254
67	8261	8267	8274	8280	8287	8293	8299	8306	8312	8319
68	8325	8331	8338	8344	8351	8357	8363	8370	8376	8382
69	8388	8395	84)1	8407	8414	8420	8426	8432	8439	8445
70	8451	8457	8463	8470	8476	8482	8488	8494	8500	8506
71	8513	8519	8525	8531	8537	8543	8549	8555	8561	8567
72	8573	8579	8585	8591	8597	8603	8609	8615	8621	8627
73	8633	8639	8645	8651	8657	£663	8669	8675	8681	8686
74	8692	8698	8704	8710	8716	8722	8727	8733	8739	8745
75	8751	8756	8762	8768	8774	8779	8785	8791	8797	8802
76	8808	8814	8820	8825	8831	8837	8842	8848	8854	8359
77	8865	8871	8876	8882	8887	88:3	8899	8904	8910	8915
78	8921	8927	8932	8938	8943	8949	8954	827)	8965	8971
79	8976	8982	8987	8993	8998	9004	9009	9615	9020	9025
80	9031	9036	9042	9047	9053	9053	9063	9069	9074	9079
81	9085	9030	9 .\$6	9101	\$106	9112	9117	9122	9128	9133
82	9138	9143	9149	9154	9159	9165	9170	9175	9180	9186
83	9191	9196	9201	9206	\$212	9217	9222	9227	9232	9238
84	9243	29248	9253	9258	9263	9269	9274	9279	9284	9289
85 86 87 88 89	9294 9345 9395 9445 9494	9299 9350 9400 9450 3499	9304 9355 9405 9455 9504	9309 9360 9410 9460 9509	9315 9365 9415 9465 9513	9320 9370 9420 9469 9518	9325 9375 9425 9474 9523	9330 9380 9430 9430 \$479 9528	9335 9385 9435 9484 9£33	9340 9390 9449 9489 9533
90	9542	9547	9552	9557	9:62	9566	9571	5 576	9581	9886
91	9590	9595	9600	9605	9609	9614	9519	9624	9628	9663
92	9633	9643	9647	9652	9657	9661	9666	9671	£675	9683
93	9685	9689	9594	9699	9703	9708	9713	9717	9722	9727
94	9731	9736	9741	9745	9750	9754	9759	9763	9768	9773
95	9777	9782	9786	9791	9795	9800	\$805	9809	9814	9818
56	9823	9827	9832	9836	9841	9845	\$850	9854	9859	9868
97	9868	9872	9877	9881	9886	9890	\$894	9899	9903	9908
98	9912	9917	9921	9926	9930	9934	9939	9943	9£48	9902
99	9956	9961	£965	9969	9974	9978	9953	9987	9991	9906

的定值部,也就是 log 95600 的定值部。

習題一百二十一(口答1-2)

1. 求下列各级的定位部:	
(a) log 187 ₀	(b) log 38700°
(c) log 00287°	(a) $\log(3.12 \times 16^3)_0$
(e) log(.781×10 ⁻⁹) _o	(f) $\log \frac{359}{751}$ °
2. 求下列各數的定值部:	• .
(a) log \$78000 _o	(b) log 45600°
(c) log .000456 _o	(d) log 7590000 _o
(e) log 579000 ₀	(f) log .0000796°
3. 已知 log 2= .3010, log 3	=.4771,求下列各對數:
(a) $\log 2^5 = ?$	(b) $\log 35 = ?$
(c) $\log 65 = ?$	(d) log 1.₺5=?
(e) log ³ √3 =?	$(f) \log \sqrt[5]{3} = ?$
4. 已知 log 3=.4771, log 5	=.6990,求下列詰數各有幾位:
(a) 5^{10} _o (b)	5^{10} (c) $\frac{3^5}{5^3}$
5. (α) 5.67 ¹⁰ 是幾位數?	(b) 7.6510 是幾位數?
(c) 5.7610 是幾位數?	(d) 7.5610 是幾位數?
66. 求對數 已知一數	,欲求牠的對數,只要來其第
The state of the s	

Ş 位, 定值兩部, 再取其和就行了。

[例一] 求 log 386=?

[解法] 依求定位部的方法求得定位部是2。

次依法檢表檢得定值部是 .5866。

 $\log 386 = 2.5866_{a}$

[例二] 求 log .000379=?

[解法] 定位部為 -4; 定值部檢得 .5786

代

 $\log .000379 = \overline{4.5786}$

習題一百二十二

- 1 求下列各對数:
 - (a) $\log 34 = ?$
- (b) $\log .34 = ?$
- (c) $\log 3400 = ?$
- (d) $\log .358 = ?$
- (e) log .00358=?
- (f) $\log 358000 = ?$
- 2. 求下列各對數:
 - (a) $\log 81^{10} = ?$
- (b) $\log .92^{10} = ?$
- (c) $\log 75.6^{10} = ?$
- (d) $\log 23.6^{\frac{1}{2}} = ?$
- (e) log 38,75=?
- (f) $\log 98800^{\frac{1}{2}} = ?$
- 3. 求下列各式的結果:
 - (a) $\log(3^2 \times 4^3 \times 5^4)_0$
- (b) $\log (5182 \div 815^3)$
- (c) $\log(98^2 \div \sqrt{89})_0$

求反對數的方法: 先由對數的定值部求出反對數各位的數

字,再由定位部決定反對數中小數點的位置。

[例一] 已知 log x=2.5514, 求 x。

[解法] 先在對數表中查出定值部 .5514。由 .5514 向左 看,得N下的縱行內相應數字是 35; 再由 .5514 向上看,得N 右的橫行內相應數字是 6。故知 .5514 是 356 的定值部。

叉因 log x 的定位部是 2, 故知 x 有三位整數。

$$x = 356$$

[例二] 已知 $\log x = 2.6857$, 求 x_0

[解法] 先在對數表中查出定值部 .6857。由 .6857向 右看,得N下的縱行內相應數字是 48;又由 .6857向上看,得 N石的橫行內相應數字是 5。故知 .6857是 485的定值部。

又因 $\log x$ 的定位部是 2,故知 x 的第一位有效數字與小數點之間應有一個 0。

$$x = .0485_{\circ}$$

[例三] 已知 $\log x = 5.5933$, 求 x_0

習題一百二十三

1. 已知 log x=2.279, 求 x。

[解法] 先在對效表中查出 2279。由 2279 向左看,得 N 下的総行內相應數字是 16; 再由 2279 向上看,得 N 右的横行內相應數字是 9。故知反對數的各位數字是 169。

又因定位部是2, 故反對歐有三位整數。

代

 $x=169_{o}$

[注意] 上面解法有沒有錯誤? 錯在何處?然則欲求反對數的各位數字, 在對數表中應查對數的全部,還是只查定值部?

這種錯誤,初學者往往不免。務宜隨時留心了

已知 log x=1.8169, 求x。
 已知 log y=2.8169, 求 y。
 已知 log x=2.8169, 求 z。
 已知 log u=3.8169, 求 u。

8. 已知 log a=5.7868, 京 a。 日知 log b=5.7875, 宋 b。
 日知 log c=5.7852, 宋 c。 日知 log d=5.8774, 宋 d。

4、 求下列各式片价 x:

- (a) $\log x = 1.9657$
- (b) $\log x = 2.97.3$
- (c) $\log x = 3.9680$
- (d) $\log x = 2.8971$
- (c) $\log x = 5.8686$
- (f) $\log x = 20.6263$
- 5。 求下列各式中的 x:
 - (a) $\log x = 2.8459$
- (b) $\log x = 4.8343$
- (c) $\log x = 4.444$
- (d) $\log x = 9.999$
- (e) $\log x = 3.333_{\circ}$
- (f) $\log x = 5.555$

§ 168. 利用對致來計算 已經知道怎樣求對數,怎樣求 反對數,那麼,關於乘,除,乘方,開方等計算問題,都可利用對數 來縮短演算手續,而 § 154 所舉諸問題,也可完全解決了。

[例一] 求 2100 的首三位數。

[解法] 先求 log 2100 是何值, 再由該值求其反對數, 這

樣,就得所求的數值。算式如下:

$$\log 2^{100} = 100 \log 2 = 100 \times .3010 = 30.10_{\circ}$$

$$2^{100} = 1.26 \times 10^{30} = 126 \times 10^{28}$$

[例二] 求學 2 的首三位數。

[解注]
$$\log 7 = \frac{1}{100} \log 2 = \frac{1}{100} \times .3010$$

= .0030。

$$\sqrt[20]{2} = 1.01$$

.[例三] 求 划.002=?

[解法] $\log \sqrt[5]{.002} = \frac{1}{5} \log .002$

$$=\frac{1}{5}(\overline{3.3010})\tag{A}$$

$$=\frac{1}{5}(\overline{5}+2.3010)$$
 (B)

$$=\overline{1}.4602$$
 (C)

. 5/.02=.289。(算到首三位數)。

[注意] 由(A)何以不直接化為(O)? 由(A)如何化為(B)? 由(B)化為(O),是否比由(A)直接求(O)來得方便?

[解法] 為寫式便利計, 設 $x = \frac{325^2 \times 532^3 \times 235^{\frac{1}{2}}}{879 \times 789 \times \sqrt{897}}$

FIJ
$$\log x = 2 \log 325 + 3 \log 532 + \frac{1}{4} \log 235$$

 $-(\log 879 + \log 789 + \frac{1}{2} \log 897)$
 $= 2 \times 2.5119 + 3 \times 2.7259 + \frac{1}{4} \times 2.3711$
 $-(2.9440 + 2.8971 + \frac{1}{2} \times 2.9528) = 6.4768$

代

x=2998000。 (算到首四位數)。

習題一百二十四

用對駁計算:

- 1. 367100
- 2. 5 367 a 3. 759°

- 4. \$\sqrt{75900}_0
- 5. .00367¹⁰⁰, 6. 17 ..0367

- 7. .007588
- 8. \$\frac{3}{.00758}
- 9. $-5672 \div 7653$
- 10. $-\sqrt{567} \div \sqrt[3]{765}$ 11. $\sqrt{567} \times \sqrt[3]{765}$
- 13. 12.3÷45.6×.00789÷.789×9.78
- 14. $\sqrt[10]{\frac{2\sqrt[3]{2}}{\sqrt{20}}}$.
- 直角三角形的斜邊是 897 市尺,一腰是 456 市尺,求他腰是幾市 天?
 - 16. 已知图的半徑是 125.6 市尺, 求其面積(圓面積 = 3.1416× 半徑)。
- § 169. 指數方程式 凡含未知指數的方程式,叫做指數

方程式。

指數方程式有時無法求解。但若可化為 a²=b 之形,那就一定可用對數去求解。

[例一] 解 § 160 所舉方程式 2²=7。

[解法] 指數方程式所以不能仿尋常方程式求解的原因, 就在未知數含於指數之內。倘能用正確方法,把這未知數移到指 數以外,那就不難求解了。今將原方程式的兩邊各取對數,如

$$\log 2^x = \log 7,$$

則得

$$x \log 2 = \log 7$$
.

於是

$$x = \frac{\log 7}{\log 2} = \frac{.8451}{.3010} = 2.808$$

[例二] 解方程式: 9*-13(3*)+36=0。

[解法] 化原式成 $3^{2x}-13(3^x)+36=0$ 。

卽

$$(3^x-4)(3^x-9)=0$$

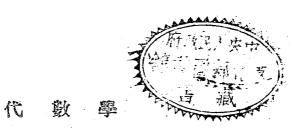
由是得

$$3^x = 4$$
 及 $3^x = 9$ 。

$$x_1 = \frac{\log 4}{\log 3} = \frac{.6021}{.4771} = 1.26$$

$$x_2 = \frac{\log 9}{\log 3} = \frac{2 \log 3}{\log 3} = 2_{\circ}$$

習題一百二十五


[題 4-7 與指數方程式無關]

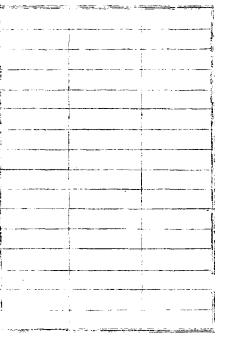
數

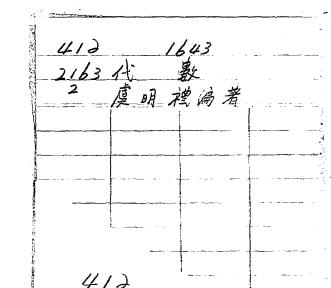
解下列各方程式:

£(a) 68=7.

- (b) \$43°=7° (o) 125°=250°
- 2. 解下列各方程式:
- (a) $2^{2x} 15(2^x) + 56 = 0$
- (b) 16±4±-58±0,
- 3. log3 80=? log62 164=? log6 40=?
- 4. 京 1+2+4+8+16+……+ 第 20 項。(算到首四位数)。
- 6. 某生第一次考試算學得40分。以後与次考試比上一次進步行。一個 期內共考6次。開該生平均成績得幾分?
- 6. 某人每月篩整 5元,連續 10年。設依月利 .5 整,一月一結,照覆利 息計。間共有本利若干元?
 - 7. 存款一項,15年後本利和5倍於本金。依証利算,年利率該是多金?
 - 8. 解方程式 2m+3m-1=8。
 - 9. 解方程式 2m×3m-1=8m+1。
 - 10. 存款一項,年利率一份, 整年资本利和 5 倍於本金?

英漢名詞索引


· · · · · · · · · · · · · · · · · · ·	•
A	D
Absolute inequality 恒不等式 257 Absolute value 經對值 37 Algebra 代數 1 Algebraical expression 代数式 6	Dependent variable 應受 298 Descending power 降暴 61 Direct proportion 正 比 例; 正比 285, 286
Antilogarithm 反對數 336	藍
Applied problem 應用問題 23 Arithmetic mean 等差中項 312 Arithmetic progression 等差級	Elimination by comparison 比 較濟去法
政 310	Elimination by substitution 代 入滑去法 78
Arrangement 新列 61	Equality 第式 14
Ascending power 昇惡 61 Axioms of equality 答量公理 15	Equation 方程式 15
-	Equation of the second degree
	or Quadratic equation 二次方
Base 底 59	程式 163
Binomial 二項式 58	Evolution or Radication 異方 242
Bracket or parenthesis mil 45	Expansion 层式 243 Exponent 指致 50, 824
C	Exponential equation 指致方量
Characteristic 定位部 331	式 340
Coefficient 孫敦 7	Expression & 8
Common legarithm 常用對致 832	Expression of common multi-
Common root 公共根 69	ple 公倍式 203
Complex fractional expression	Expression of lowest common
是分式 224	multiple 是低公倍式 204
Conditional inequality 條件不	Extraneous root 傻樱 235, 284
學式	Extreme 外項 283
Constant 常致 297	P 6
Coordinates 坐標	
Cross multiplication 十字相聚 159	Factor 因数 7
Cubic root 三次方根; 立方根 246	Factorization 因子芬解法 139.161


	;
Factorization by completing a	K
square 配方分解法 150, 154	Knewn number 已知账
Factorization by multiplying	
and dividing the first coeffi- cient 完整音系法 156	i.
Ecctorization by separating	Laws of operation 運算公律
the middle term 分裂中项法 157	Letter 文字
Formula 公式 170	Like terms or Similar terms s
Fourth proportional, the kill	類項
综四項 287	Linear equation with two un-
Fractional equation 分式方理	knowns 丽元一次方程式 SE
A 229	Linear inequality with one unknown 一元一次不容式 2
Fractional exponent 分档数 324	Logarithm 聖散
Fractional expression 分之 53	
Function MR 298	U
G	Mantissa 定值部
₹	Mesn 內項 257
General method 121 113, 250	Mean proportional 比如中東 287
Geometrical progression \$13.	Method of completing a square
经数 315	· 配方法 185
araphical colution SS 92	Monomial 罩亮会 58, 24
	N
\mathbf{H}	~ *
	Negative exponent 到提致 300
Eighest common factor 经基本	Negative number Kit 40
`原子 197	0
	Ordinate 經驗 : so
Ž.	
Identity 预禁式 14	3
Identity 医学式 14 Imaginary numbers 監監 178, 281	P
Independent variable 肯建設 298	Parentinesis 括蒙 45
Index of radicals 提指数 246	Perfect cube 完全正方 148
Inequality 不等式 254	Perfect squaré 完全平方 144
Inequal number 不等數 252	Polynomial 多思式 58
Infinite descending geometrical	Positive number IF 49
progression 無限遞減等比級數 321	Power 纂 乘方 59. 242
Integral expression 鉴式 58	Prime factor 复因子 140
Inverse proportion 反比例 286	Product 意 105
Inverse ratio or Reciprocal	Progression Sig 308
**retio 反比 285	Proportional Hill 284

英澳名詞彙則自

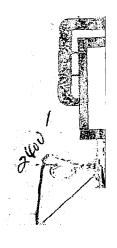
Quadratic equation or Equation of the second degree 二 大方是式		Dimentenness acceptions with
Quadratic equation or Equation of the second degree 二 大方形式	\mathbf{Q}	
### Simultaneous linear equations 表方程式		
以方程式		
Quadrinomial 四項子		-
Radical 程式		郡立一次方程式 09
Radical 程式		Simultaneous linear equations
Radical 製式	Quodent 闷 110	with two unknowns 二元即记
Radical 模式		一次方程式 8
Radical 模式	- 33	Simultaneous quadratio equa-
Radical 模式	A	tions 聯立二次方昌式 10%
Radical aquation 提出方言之 261, 280 Radicand 证据完	Radical 提示 248	Solve, to \$3 14
Radicand 養養完		Solving the equation 原方程式 1b
Ratio II		Bquare root 平方根; 二次方根 9%
Ratio is	Radication or Evolution 図方 242	
Ratio of greater inequality 任		System of ecördinates 在長期 多
Real coot 回忆 284 Real root 回忆 285 Reciprocal ratio or Inverse ratio 反比 285 Reciprocal ratio or Inverse ratio Figure Reciprocal ratio Figure Reciprocal ratio or Inverse ratio Figure Reciprocal ratio Figure Recipr	Rational functions 右星匠数 300, 304	
Real root 例如 233 Reciprocal ratio or Inverse ratio 反形 285 Reciprocal ratio or Inverse ratio Figure Ratio		
Real root 資程		m
Real root 世紀	Ratio of less inequality 分路 28.1	
Reciprocal ratio or Inverse ratio 反比 285 Reduction of fraction to a common denominator 通子 211 Root 但 15 Sign 积极 2 Similar terms or Like terms 同 285 Simplification of a fraction 约 287 Simultaneous equations 您比为 287 Simultaneous equations 您比为 287 Simultaneous equations with		
Trinomial 三克龙	Reciprocal ratio or Inverse	
Reduction of fraction to a common denominator 通子 211 Root 是		
common denominator 通子 211 Root 通		Trinomial EF15C 63, 145
Root 信		
Unknown 元		· U
Sign 积整		Tinknown #
Sign 积极		
Similar terms or Like terms 同 8	.\$	Chanomic diagram in the
Similar terms or Like terms 同 8	Rian 6986	V
Wariable Ta		•
Simplification of a fraction 的 分		
学		
Simultaneous equations 部立方 程式	-	
是完		
Simultaneous equations with		Vary inversaly, to 宏觀 304
four anknowns 四元副立方器	four anknowns 四元學立方程	Zi ·
元 89 Zero exponent 等 28 328		Zero exponent Will 323

412

2163 1643

注 意

1。借書到期請即送還 2。 請勿在書上批改, 週點


3。借去圖書如有污損遺失 等情形須照價賠償

拆角,

超月七年六十二於電本 定審部 育教 府 政 民 國 服執號二十二第字中到領

		IR TA T		-	es winds	- 			-
		**************************************			一教權印卷	版翻			中華民國三十五年十月審定本第一中華民國二十六年七月審定本
發	印	發	主	校	編		教復科		審定本
行.	刷	行	編	請	著	757	製		第二
所	所	人	者	者	耆	印册	代	初	一第七一
					·	剧地點外另定價國幣	數	級中學	版版
商	印商	朱 上	王	段	虞	加叁	安人	.用	
務各	務	海				運角			
印地	刷印	經河	雲	育	明	分	册		
書	書	南路		-,			-		
館	廠館	農	ħ	華	醠				

