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We study the Kondo effect for a �c (�∗
c ) baryon in nuclear matter. In terms of the spin and isospin [SU(2)spin ×

SU(2)isospin] symmetry, the heavy-quark spin symmetry and the S-wave interaction, we provide the general form
of the Lagrangian for a �c (�∗

c ) baryon and a nucleon. We analyze the renormalization equation at the one-
loop level and find that the coexistence of spin exchange and isospin exchange magnifies the Kondo effect
in comparison with the case where the spin-exchange interaction and the isospin-exchange interaction exist
separately. We demonstrate that the solution exists for the ideal sets of the coupling constants, including the
SU(4) symmetry as an extension of the SU(2)spin × SU(2)isospin symmetry. We also conduct a similar analysis
for the Kondo effect of a D̄ (D̄∗) meson in nuclear matter. On the basis of the obtained result, we conjecture
that there could exist a “mapping” from the heavy meson (baryon) in vacuum onto the heavy baryon (meson) in
nuclear matter.
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I. INTRODUCTION

In 1964, J. Kondo explained why the electrical resistance in
the metal which contains some impurity atoms with a nonzero
spin increases logarithmically at low temperatures [1]. The
logarithmic increase of the electrical resistance with the heavy
impurity occurs when the following conditions are satisfied:
(i) Fermi surface (degenerate state), (ii) particle-hole creation
(loop effect), and (iii) non-Abelian interaction (e.g., the spin-
exchange interaction) [2–4]. It is understood that under these
three conditions, the coupling constant for the interaction be-
comes stronger, and the Landau pole appears. Since his work
was recognized, the Kondo effect has had wider implications
for theoretical approaches in quantum systems: the renor-
malization group method [5], the numerical renormalization
group [6], the Bethe ansatz [7–9], the boundary conformal
field theory [10–16], the bosonization method [17–21], the
mean-field approximation (the large N limit) [22–36], and so
on.

The Kondo effect is not simply studied in condensed
matter physics, but is applicable to the nuclear physics where
the strong interaction plays a role of the main fundamental
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force.1 For example, we consider the case where the heavy
hadrons involving charm or bottom flavor are brought into
the nuclear matter (see Refs. [38,39] for reviews). They can
be regarded as the heavy impurity particles, because their
masses are much heavier than the light (up, down, and strange)
quarks. Several heavy hadrons have been used in the previous
studies: a D̄ meson (D− or D̄0 meson) and a D̄∗ meson
(D∗− or D̄∗0 meson) [40,41], or a D−

s meson and a D∗−
s

meson [42], in charm flavor. It is certainly true that the heavy
hadrons are not stable, because they can decay into the light
hadrons via the weak interaction. Nevertheless, it is worth
considering the heavy hadrons in the nuclear matter when we
only consider the strong interaction or the electromagnetic
interaction. The heavy hadrons may be produced in atomic
nuclei experimentally at the high-energy accelerator facilities.
Clearly, the conditions (i) and (ii) for the Kondo effect are
met; the Fermi surface and the particle-hole creations exist in
the nuclear matter at the low temperatures. When it comes
to the condition (iii), the non-Abelian interaction is pro-
vided by the spin-exchange interaction and/or by the isospin-
exchange interaction, both of which obey the SU(2)spin sym-
metry and/or the SU(2)isospin symmetry, respectively. The
research on the Kondo effect for the D̄ and D̄∗ mesons and
the D−

s and D∗−
s mesons in nuclear matter was conducted

by using the perturbative calculation [40] and the mean-field
approximation [42]. The Kondo effect for the heavy hadron
in atomic nuclei was studied in terms of the mean-field

1At an early stage, the Kondo effect was studied for deformed
nuclei, where the itinerant fermion is a nucleon and the impurity is
played by the deformed nucleus [37]. The non-Abelian interaction is
provided by the spin exchange through the Coriolis force. However,
it leads to the suppression of the Kondo effect due to the sign of the
coupling constant.
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approximation in the Lipkin model, in which the fluctuation
effect was also considered [41].

From a QCD perspective, it is noteworthy that the Kondo
effect was also studied for a charm or bottom quark in
quark matter, where the non-Abelian interaction between
the heavy quark and the itinerant light quark is provided
by the color-exchange interaction in accordance with the
SU(3)color symmetry [40,43]. This is called the QCD Kondo
effect [43]. The QCD Kondo effect was studied in various
theoretical methods: the simple perturbation [40], the (pertur-
bative) renormalization group with gluon exchange [43], the
mean-field approximation [44–47], the conformal boundary
theory [48,49]. The competition between the QCD Kondo
effect and the color superconductivity or the chiral condensate
was analyzed [50,51]. In addition, the transport properties
such as the electric conductivity and the shear viscosity were
studied [47]. It is important to mention that the QCD Kondo
effect in the quark matter with the light flavor Nf � 2 serves
the overscreened Kondo effect instead of the normal Kondo
effect with an exact screening, and it leads to the non-Fermi
liquid behavior [48–50]. The heavy quark in strong magnetic
field induces the QCD Kondo effect at the vanishing density
(the magnetically induced QCD Kondo effect), where the light
quarks are confined with degeneracy in the lowest Landau
level [52]. It was recently argued that the QCD Kondo effect
occurs even in the absence of the heavy quark in quark matter:
the color nonsinglet gapped quark in the two-flavor supercon-
ductivity (2SC) plays the role of the “heavy impurity,” and it
leads to the non-Abelian interaction with the light ungapped
quarks which do not participate to form the 2SC gap [53].

The purpose of the present paper is to study the Kondo
effect for a �c (�∗

c ) baryon in nuclear matter. The �c (�∗
c )

baryon has spin 1/2 (3/2) and isospin 1, and it can provide
the non-Abelian interaction by the spin and isospin-exchange
with a nucleon. We consider the heavy mass limit for the
heavy quark (a charm quark) [54–56], where the spin-flip and
isospin-flip interactions work on the light component in the
�c (�∗

c ) baryon, i.e., the light diquark (qq). Indeed, the spin-
flip process for the heavy quark is suppressed by the factor
�QCD/mQ with �QCD being the low-energy scale of the QCD
and mQ being the mass of the heavy quark. Thus, the spin
of a heavy quark can be regarded as the conserved quantity
in the heavy-quark mass limit. This is called the heavy-quark
spin (HQS) symmetry [54–56] (see also Refs. [57]). In the
present study, we consider only the leading-order term in
the heavy-quark mass limit, and neglect the corrections at
O(�QCD/mQ). For example, the heavy quark symmetry is
seen approximately in the small mass splitting between a �c

baryon and a �∗
c baryon (about 65 MeV) which is much

smaller than the baryon masses (2286 and 2520 MeV). The
HQS will provide us with a good approximation as the first
step to investigate the Kondo effect for the �c (�∗

c ) baryon.
The effective theory of the �c (�∗

c ) baryon can be constructed
in a general form when we follow the HQS symmetry [58–63]
(see also Refs. [57,64] for reviews), and this formalism will
be applied to the interaction between a �c (�∗

c ) baryon and
a nucleon. Given the fact that the �c (�∗

c ) baryon has two
different non-Abelian interactions of spin and isospin, i.e., the
SU(2)spin × SU(2)isospin symmetry, we will see that those two

symmetries induce rich structures of the Kondo effect. As an
ideal situation, for example, the SU(2)spin × SU(2)isospin sym-
metry will provide the SU(4) symmetry by tuning the cou-
pling constants in the interaction term appropriately. Through-
out the present study, we will perform the analysis based on
the renormalization group (RG) equation, namely the poor
man’s scaling method, as the simple perturbative method [5].
The Kondo effect induces an enhancement of the coupling
constant at around the low-energy scale, known as the Kondo
scale, for the �c or �∗

c baryon (the D̄ or D̄∗ meson) in
nuclear matter. Our main goal is to indicate the existence
of the Kondo scale. The observables which are relevant to
the Kondo effect could be the transport coefficients, such as
the heat conductivity, the electrical resistance, and the shear
viscosity, because the enhanced coupling strength can affect
these quantities drastically at around the Kondo scale. Other
possible observables are the change of the nuclear structure
in atomic nuclei: the modifications of the excitation spectra
stemming from the enhanced coupling between a nucleon and
a �c or �∗

c baryon (a D̄ or D̄∗ meson). These observables are
related to the dynamical and static properties of the system
which is geared to the Kondo effect.

Several comments are in order. In the literature, the bind-
ing of a �c (�∗

c ) baryon in nuclear matter was estimated
by the QCD sum rules [65,66]. The present discussion
about the Kondo effect will be useful for further investigation
on the binding energy. We notice that a �c baryon is not
relevant to the Kondo effect in contrast to the �c (�∗

c ) baryon,
because the light diquark (qq) in the �c baryon has spin
0 and isospin 0, and there is no exchange interaction of
spin and isospin between the baryon and a nucleon, as it was
analyzed in Ref. [67] (see also the recent work [68,69]).2

Bottom hadrons, which are in general heavier than charm
hadrons, could be more suitable for studying the Kondo
effect; however, we will not repeat the same discussion for
the bottom hadrons. Replacing a �c (�∗

c ) baryon by a �b

(�∗
b ) baryon is a straightforward task, although it would

provide more favorable conditions for greater accuracy of the
HQS symmetry. The greater accuracy is seen directly in the
mass splitting between a �b baryon and a �∗

b baryon (about
20 MeV) in comparison to their masses (5810 and 5830 MeV,
respectively).

The paper is organized as follows. In Sec. II, we intro-
duce the Lagrangian for a �c (�∗

c ) baryon and a nucleon.
We suppose the SU(2)spin × SU(2)isospin symmetry, the HQS
symmetry, and the S-wave interaction. In Sec. III, we carefully
investigate the solutions of the RG equation, and point out
that the simultaneous flipping of the spin and the isospin
is important for magnifying the Kondo effect. In Sec. IV,
we revisit the Kondo effect for a D̄ (D̄∗) meson in nuclear
matter, where the similar analysis is applicable. In Sec. V,
we surmise that the Kondo effect induces a mapping between
the heavy meson (baryon) in vacuum and the heavy baryon

2Those studies rely on the �cN interaction strength estimated by
the lattice QCD simulations [70] and the chiral extrapolations [71].
The obtained binding energy for a �c baryon is consistent with the
results by the QCD sum rules [72].
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(meson) in nuclear matter. The final section is devoted to the
conclusion.

II. LAGRANGIAN FOR A �c (�∗
c ) BARYON

AND A NUCLEON

We begin by considering the nuclear matter in which a �c

(�∗
c ) baryon exists as an impurity particle, assuming that the

nuclear matter is approximately regarded as the free fermion
gas where the nucleon is described by the nonrelativistic
two-component spinor field ϕ(x). We follow the procedures
for the construction of the field of the heavy hadron based
on the HQS symmetry [58–63] (see also Refs. [57,64] for
reviews), and apply this formalism to the interaction between
a �c (�∗

c ) baryon and a nucleon. In this framework, the field
of the �c (�∗

c ) baryon can be decomposed to the diquark part
(qq) and the heavy quark part (Q), where the quantum number
of the diquark is spin 1 and isospin 1. We introduce the vector
field Aμ(x) (μ = 0, 1, 2, 3), which satisfies vμAμ = 0, for the
diquark part. We also introduce the effective heavy-quark
field uv (x), which satisfies vνγ

νuv = uv , for the heavy quark
part. We define uv (x) by uv (x) = 1

2 (1 + γμvμ)eimQv·xu(x) in
the v frame with the four-velocity vμ (v0 > 0 and vμvμ = 1)
and the heavy quark mass mQ, where u(x) is the original
four-spinor heavy-quark field at x in the four-dimensional
coordinate system. We consider that the sum is taken over
the repeated indices. The condition vνγ

νuv = uv stems from
the requirement to project the field u(x) to the positive-energy
part. It is supposed that the heavy quark is at rest in the
coordinate frame with the four-velocity vμ. In the following
discussion, we consider the static frame by setting vμ =
(1, 0). With this setup, we define the composite field for the
�c (�∗

c ) baryon:

�μ
v (x) = Aμ(x)uv (x). (1)

Notice that �μ
v has only the off-mass-shell (residual) energy-

momentum component with the energy scale smaller than the
heavy-baryon mass, because the �c (�∗

c ) baryon is supposed
to be at rest in the v frame. We also notice that �μ

v satisfies
vνγ

ν�μ
v = �μ

v and vμ�μ
v = 0. The former and latter proper-

ties are induced by vνγ
νuv = uv and vμAμ = 0, respectively.

With those two conditions, the number of degrees of freedom
in �μ

v is 3 × 2 = 6.
In the above construction, �μ

v is a superposed state of
the �c baryon (spin 1/2) and the �∗

c baryon (spin 3/2).
This reflects the concept that the spin of the diquark and
the spin of the heavy quark are good quantum numbers in
the heavy-quark symmetry, and that the �c baryon and the
�∗

c baryon can be superposed. In the physical space, it is
convenient to introduce the fields of �c baryon and �∗

c baryon
by projecting �μ

v to the �c baryon component and the �∗
c

baryon component:

�v1/2 = 1√
3
γ5γμ�μ

v (2)

for the �c baryon and

�
μ
v3/2 = �μ

v − 1
3 (γ μ + vμ)γν�

ν
v (3)

for the �∗
c baryon. Equivalently, �μ

v is expressed as a sum of
�v1/2 and �v3/2,

�μ
v = 1√

3
(γ μ + vμ)γ5�v1/2 + �

μ
v3/2. (4)

In the HQS formalism, the �c baryon and the �∗
c baryon are

degenerate in mass and are interchangeable to each other by
the HQS symmetry. For this reason, it is essential to consider
a �c baryon and a �∗

c baryon to be the effective degrees of
freedom. We will see that the heavy-quark-spin symmetry
induces the mixing between the �cN state and the �∗

c N state
(N for a nucleon) in the nuclear matter.

With the above setup, we consider the Lagrangian in the
case where a nucleon and a �c (�∗

c ) baryon interact with each
other through the S-wave interaction on low-energy scale.
The �cN (�∗

c N) interaction was considered in the one-boson
exchange model with a nonzero range [73,74]. In contrast to
them, we suppose that the �cN (�∗

c N) interaction is provided
by the contact-type with a zero range. The contact-type in-
teraction and the HQS symmetry allow us to have the most
general form of the Lagrangian:

L[
ϕ,� i

v

] = Lkin
[
ϕ,� i

v

] + Lint
[
ϕ,� i

v

]
, (5)

with the kinetic term

Lkin
[
ϕ,� i

v

] = ϕ†i
∂

∂t
ϕ + ϕ† (i∇)2

2m
ϕ + �̄ i

vi
∂

∂t
� i

v + O(1/M ),

(6)

and interaction term

Lint
[
ϕ,� i

v

] = C1ϕ
†(12 ⊗ 12)ϕ �̄ i

v (δi j ⊗ 12 ⊗ 13)� j
v

+C2ϕ
†(σ � ⊗ 12)ϕ �̄ i

v (iεi j� ⊗ 12 ⊗ 13)� j
v

+C3ϕ
†(12 ⊗ τ d )ϕ �̄ i

v (δi j ⊗ 12 ⊗ t d )� j
v

+C4ϕ
†(σ � ⊗ τ d )ϕ �̄ i

v (iεi j� ⊗ 12 ⊗ t d )� j
v

+O(1/M ), (7)

with the coupling constants CA (A = 1, 2, 3, 4). We notice that
the index μ in �μ

v is restricted to i = 1, 2, 3 in the rest frame.
The above Lagrangian is invariant under the spin symmetry
and the isospin symmetry, SU(2)spin × SU(2)isospin. In the
operator A ⊗ B acting on the nucleon (ϕ), A and B are the
operators for the spin and the isospin of a nucleon. Similarly,
in the operator A ⊗ B ⊗ C acting on the �c (�∗

c ) baryon (� i
v),

A and B are the operators for the spin of the light component
(qq) and the spin of the heavy quark (Q), respectively, and C
is the operator for the isospin of the light component (qq). 12

is the two-by-two identity matrix for spin or isospin, and 13 is
the three-by-three identity matrix for isospin. We also use the
notations σ � (� = 1, 2, 3) and τ d (d = 1, 2, 3) for the Pauli
matrices acting on the spin of a nucleon and the isospin of
a nucleon or a �c (�∗

c ) baryon, respectively. We define εi j�

(ε123 = 1; i, j, � = 1, 2, 3) as the antisymmetric tensor for the
spin of a �c baryon or a �∗

c baryon, and t d (d = 1, 2, 3) as the
operator for the isospin of a �c (�∗

c ) baryon, whose explicit
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forms are given by

t1 =
⎛
⎝0 0 0

0 0 −i
0 i 0

⎞
⎠,

t2 =
⎛
⎝ 0 0 i

0 0 0
−i 0 0

⎞
⎠, (8)

t3 =
⎛
⎝0 −i 0

i 0 0
0 0 0

⎞
⎠.

They satisfy the following relations:∑
ρ=1,2,3

(t d )μρ (t e)ρν = δd
μδe

ν − δd
ν δe

μ, (9)

and this will be used in later calculations.3 With the basis in
the isospin operator t a, the isospin components in �v1/2 and
�

μ
v3/2 are expressed as

�v1/2 =

⎛
⎜⎝

−i√
2

(
�++

c + �0
c

)
1√
2

(
�++

c − �0
c

)
−i�+

c

⎞
⎟⎠,

�
μ

v3/2 =

⎛
⎜⎝

−i√
2

(
�∗++

c + �∗0
c

)
1√
2

(
�∗++

c − �∗0
c

)
−i�∗+

c

⎞
⎟⎠. (10)

We notice that this representation is not diagonal in the charge
basis. The transformation to the diagonal form by the unitary
transformation is shown in the Appendix. It is apparent that
the Lagrangian (5) has the spin symmetry and the isospin
symmetry, SU(2)spin × SU(2)isospin for both a nucleon and
for a �c (�∗

c ) baryon. Although the numerical values of the
coupling constants CA (A = 1, 2, 3, 4) have not been known,
the discussion about the Kondo effect can proceed without
the information about the specific value of CA as it will be
presented later.

For later convenience, we rewrite the interaction term of
Eq. (5) in a compact form as

Lint
[
ϕ,� i

v

] = C1ϕ
†�ϕ �̄ i

v�̃i j�
j
v + C2ϕ

†��ϕ �̄ i
v�̃

�
i j�

j
v

+C3ϕ
†�dϕ �̄ i

v�̃
d
i j�

j
v + C4ϕ

†��dϕ �̄ i
v�̃

�d
i j � j

v

+O(1/M ), (11)

where we introduce the following operators:

� ≡ 12 ⊗ 12, �� ≡ σ � ⊗ 12,

�d ≡ 12 ⊗ τ d , ��d ≡ σ � ⊗ τ d (12)

for a nucleon (ϕ) and

�̃i j ≡ δi j ⊗ 12 ⊗ 13, �̃�
i j ≡ iεi j� ⊗ 12 ⊗ 13,

�̃d
i j ≡ δi j ⊗ 12 ⊗ t d , �̃�d

i j ≡ iεi j� ⊗ 12 ⊗ t d (13)

3Notice the relation (t a)μν = −iεaμν .

for a �c (�∗
c ) baryon (� i

v). The sum is taken over the repeated
indices.

Several comments are in order. First, the heavy-quark spin
does not flip by the interaction with a nucleon in the HQS
symmetry, and hence we have only the identity operator (12)
for the heavy quark. This is because the spin for the heavy
quark (c quark) in the �c (�∗

c ) is independent of the spin
for the light diquark (qq). Thus, to be precise, the total sym-
metry should be given by SU(2)light spin × SU(2)heavy spin ×
SU(2)isospin including SU(2)heavy spin for the spin symmetry of
the heavy quark.

Second, we remark that the propagator of the nucleon with
an energy p0 and a three-dimensional momentum p in nuclear
matter with the chemical potential μ is given by

i

p0 − (Ep − μ) + iε′

= iθ (Ep − μ)

p0 − (Ep − μ) + iε
+ iθ (μ − Ep)

p0 − (Ep − μ) − iε
, (14)

with ε > 0 an infinitely small number. Ep = p2/(2m) is the
energy of the nucleon with a mass m, and μ is the chemical
potential for the nucleon. Notice the difference in the pole
positions between the particle component (Ep > μ) and the
hole component (Ep < μ). The propagators of the �c and �∗

c
baryons with an energy p0 are given by

iδαβ

p0 + iε
,

iδαβδi j

p0 + iε
, (15)

in rest frame. Notice that the energy in the denominator (p0)
describes the residual momentum of the �c and �∗

c baryons.
Third, we remark that the �c baryon and the �∗

c baryon can
decay via �c → �cπ and �∗

c → �cπ , whose decay widths
are around 2 and 15 MeV, respectively [75]. In the present
study, we consider that the �c and �∗

c baryons are in the
quasistable states whose lifetimes are long enough. We also
neglect the coupling between the �cN (�∗

c N) and the �cN
state. Those subjects are left for future work.

III. RENORMALIZATION GROUP EQUATION

In the Kondo effect, the coupling constants in the medium
are enhanced logarithmically in the low-energy region, and
the system becomes a strongly coupled one. In this situation,
the coupling constants are not the constant values literally, but
they should be regarded as the effective coupling constants
whose property is dependent on the relevant energy scale in
the medium. We therefore study how the coupling constant
CA (A = 1, 2, 3, 4) in Eq. (11) is changed into the effective
coupling constants in terms of the Kondo effect. We use the
renormalization group (RG) equation.

A. Brief review of RG equation in the Kondo effect

We begin by briefly reviewing the derivation of the RG
equation for the Kondo effect at a simple setting. As usual,
we follow the poor man’s scaling proposed by Anderson in
Ref. [5] as a standard procedure. Treating the impurity particle
as an infinitely massive one, we consider the Kondo effect
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FIG. 1. The diagrams of the effective interactions between an itinerant fermion (thin lines) and an impurity particle (thick lines) in the
SU(N ) interaction. (a) Leading-order term. (b),(c) Next-to-leading terms (the loop-integral terms). Panels (b) and (c) indicate the particle state
and the hole state, respectively, in the intermediate states.

with one single non-Abelian interaction between an itinerant
fermion (whose mass is m) in the Fermi gas and the heavy
impurity. We suppose that they belong to the fundamental
representation of the SU(N ) symmetry, and the interaction
between the itinerant fermion and the heavy impurity is
provided by the non-Abelian interaction Lint = g(λa)i j (λ

a)k�

with the coupling constant g and the Gell-Mann matrices λa

(a = 1, 2, . . . , N2 − 1) in the SU(N ) symmetry. For example,
the case of N = 2 is the spin-exchange interaction, in which
an attraction between the itinerant fermion and the heavy
impurity is provided in the spin-antiparallel channel for g < 0
and in the spin-parallel channel for g > 0.

Let us consider the scattering amplitude for the itinerant
fermion and the impurity. In the perturbation, the scattering
amplitude is given at the tree level at the leading order, and
it is affected with particles (nucleons) and holes (nucleon
holes) in the intermediate states in the loops at the next-to-
leading order. The latter contribution supplies the logarithmic

divergence at the infrared energy scale near the Fermi surface,
and leads to the breakdown of the perturbative treatment. In
order to solve this problem, we consider the RG equation
by resumming the logarithmic contributions for the coupling
constant. Following Ref. [5], we divide the energy of the
virtually excited particles and holes into the small pieces. We
then introduce the energy scale �, which is measured from
the Fermi energy, and examine how the effective coupling
constants are affected by the small modification of �. We
estimate the coupling constants on the lower-energy scale � −
d� by including the loop effect of the particle-hole creations
with the energy-shell between � − d� and �. The initial
value of the coupling constant starting in the RG equation is
given by the bare coupling constant in vacuum, g.

We denote the interaction coupling at the energy scale �

by g(�). Considering the diagrams at tree level and one loop
in Fig. 1, we obtain the renormalization group equation for
g(�),

N2−1∑
a=1

ig(� − d�)(λa)i j (λ
a)kl

=
N2−1∑
a=1

ig(�)(λa)i j (λ
a)kl +

N2−1∑
a,b=1

ig(�)ig(�)
N∑

i′,k′=1

(λa)ii′ (λ
a)kk′ (λb)i′ j (λ

b)k′l

∫
shell

d p0

2π

d3 p
(2π )3

i

p0 − (Ep − μ) + iε′
i

−p0 + iε

+
N2−1∑
a,b=1

ig(�)ig(�)
N∑

i′,k′=1

(λa)ii′ (λ
b)kk′ (λb)i′ j (λ

a)k′l

∫
shell

d p0

2π

d3 p
(2π )3

i

p0 − (Ep − μ) + iε′
i

p0 + iε
, (16)

where E = p2/(2m), ε is a small positive number, and ε = ε for p0 > Ep − μ (particle) and ε = −ε for p0 < Ep − μ (hole).
μ is the chemical potential for the itinerant fermions. Considering that the integral region for the momentum is limited to the
energy shell, |Ep − μ| ∈ [� − d�,�], we adopt the following approximations near the Fermi surface:

∫
shell

d p0

2π

d3 p
(2π )3

i

p0 − (Ep − μ) + iε′
i

−p0 + iε
	 −iρ0

d�

�
, (17)

and

∫
shell

d p0

2π

d3 p
(2π )3

i

p0 − (Ep − μ) + iε′
i

p0 + iε
	 iρ0

d�

�
, (18)
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where we leave only the leading terms for a small d�/� 
 1. We introduce ρ0 ≡ m3/2√2μ/(2π2) for the state-number density
at the Fermi surface. We also use the relationships for the Gell-Mann matrices,

N2−1∑
a,b=1

N∑
i′,k′=1

(λa)ii′ (λ
a)kk′ (λb)i′ j (λ

b)k′l = 4

(
1 − 1

N2

)
δi jδk� +

(
− 4

N

) N2−1∑
a=1

(
λa

i j

)
(λa)kl ,

N2−1∑
a,b=1

N∑
i′,k′=1

(λa)ii′ (λ
b)kk′ (λb)i′ j (λ

a)k′l = 4

(
1 − 1

N2

)
δi jδk� +

(
2N − 4

N

) N2−1∑
a=1

(
λa

i j

)
(λa)kl . (19)

Thus, we simplify Eq. (16) to the simplified form:

ig(� − d�) = ig(�) + ig(�)ig(�)

(
− 4

N

)(
−iρ0

d�

�

)
+ ig(�)ig(�)

(
2N − 4

N

)(
iρ0

d�

�

)
. (20)

Taking the limit d� → 0 for a small strip of the momentum shell, we finally obtain the RG equation,
d

dλ
g(λ) = −2ρ0Ng(λ)2, (21)

with the energy scale λ = − ln(�/�0). Here � is the energy scale moving from the high-energy to the low-energy region, and
�0 is the ultraviolet-energy scale as the initial point. We emphasize that the the minus sign in the right-hand side in Eq. (21)
stems from the coefficients in the identities in Eq. (19) as the nontrivial factors by the non-Abelian properties of the λa matrices.
The solution of the RG equation (21) is found to be

g(λ) = g

1 + 2ρ0Ngλ
, (22)

with g being the coupling constant in vacuum or in the interaction Lagrangian. Given that the energy scale runs from
λ = 0 (the high-energy scale) to λ → ∞ (the low-energy scale), we find that the negative coupling constant (g < 0)
leads to divergence of the coupling constant g(λ) at λK = −1/(2ρ0Ng) or �K = e1/(2ρ0Ng) and that the positive coupling constant
(g > 0) leads to the vanishing coupling constant [g(λ) → 0]. The relevant fixed point in the former case produces the Kondo
effect, while the irrelevant fixed point in the latter does not. Thus, the coupling strength in the spin-antiparallel channel is
enhanced, while that in the spin-parallel channel is suppressed. Therefore, the coupling constant becomes enhanced at the
low-energy scale by virtue of the non-Abelian property of the interaction.

B. RG equation for �c and �∗
c baryon

Now we apply the RG equation for the coupling constants for the nucleon and the �c and �∗
c baryon in Eq. (11), where the

relevant energy should be �0 as an initial scale. Repeating the similar argument in the previous subsection, at the one-loop order,
we find that the RG equation reads

4∑
A=1

iCA(� − d�)(�A)ab
αβ (�̃A)i j

μν

=
4∑

A=1

iCA(�)(�A)ab
αβ (�̃A)i j

μν +
4∑

A,B=1

iCA(�)iCB(�)(�A)ac
αγ (�̃A)ik

μρ (�B)cb
γ β (�̃B)k j

ρν

∫
shell

d p0

2π

d3 p
(2π )3

i

p0 − (Ep − μ) + iε′
i

−p0 + iε

+
4∑

A,B=1

iCA(�)iCB(�)(�A)ac
αγ (�̃B)ik

μρ (�B)cb
γ β (�̃A)k j

ρν

∫
shell

d p0

2π

d3 p
(2π )3

i

p0 − (Ep − μ) + iε′
i

p0 + iε
, (23)

where the term on the left-hand side denotes the effective
coupling constants on the energy scale � − d�, and, on the
right-hand side, the first term denotes the effective coupling
constant on the energy scale �, and the second (third) term
denotes the loop integrals with particle (hole) creation in
the energy shell between � − d� and � (Fig. 2). In the
above equation, the indices in the operator �A and �̃A (A =
1, 2, 3, 4) are shown as

(�1)ab
αβ = δabδαβ, (�2)ab

αβ = (σ �)abδαβ,

(�3)ab
αβ = δab(τ d )αβ, (�4)ab

αβ = (σ �)ab(τ d )αβ (24)

for the nucleon part, and

(�̃1)i j
μν = δi jδμν, (�̃2)i j

μν = iεi j�δμν,

(�̃3)i j
μν = δi j (t d )μν, (�̃4)i j

μν = iεi j�(t d )μν (25)

for the �c (�∗
c ) baryon part. Here a, b = 1, 2 and α, β = 1, 2

are for the spin and the isospin of a nucleon, respectively, and
i, j = 1, 2, 3 and μ, ν = 1, 2, 3 are for the spin and for the
isospin of a diquark component (qq) in a �c (�∗

c ) baryon,
respectively. We consider that the sum over the spin direction
(� = 1, 2, 3) and the isospin direction (d = 1, 2, 3) is included
if necessary. Utilizing the momentum integrals in Eqs. (17)
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FIG. 2. The diagrams of the effective interactions between a nucleon and a �c (�∗
c ) baryon in nuclear matter. The thin lines are for the

nucleon and the thick lines are for the �c (�∗
c ) baryon. (a) Leading-order term. (b),(c) Next-to-leading terms (the loop-integral terms). Panels

(b) and (c) indicate the particle state and the hole state, respectively, in the intermediate states.

and (18), we rewrite the RG equation (23) as

d

dλ
C1(λ) = 0,

d

dλ
C2(λ) = ρ0[4C2(λ)2 + 8C4(λ)2],

d

dλ
C3(λ) = ρ0[−4C3(λ)2 − 8C4(λ)2],

d

dλ
C4(λ) = ρ0[8C2(λ)C4(λ) − 8C3(λ)C4(λ)], (26)

for each channel A = 1, 2, 3, 4. Here, we introduce the new
variable λ ≡ − ln(�/�0) instead of the energy scale �. The
high-energy scale �0 for which the RG equation starts is set
to be equal to the chemical potential of the nuclear matter μ

or the cutoff energy scale D in the pointlike interaction in
Eq. (11). In the present discussion, however, there is no ne-
cessity to specify the value of �0 explicitly. We notice that the
variable λ changes from λ = 0 to λ → ∞ in correspondence
to the change from the high-energy scale to the low-energy
scale. As seen in Eq. (26), C1(λ) is not affected by the change
of λ, and hence the spin and isospin-independent channel
are not subject to the medium effect. Thus, we will consider
only C2(λ), C3(λ), and C4(λ) in the following discussions.
For convenience, we use the following dimensionless effective
coupling constants:

C̃2(λ) ≡ 4ρ0C2(λ),

C̃3(λ) ≡ −4ρ0C3(λ), (27)

C̃4(λ) ≡ 4ρ0C4(λ),

instead of C2(λ), C3(λ), and C4(λ), and rewrite the RG equa-
tion (26) as

d

dλ
C̃2(λ) = C̃2(λ)2 + 2C̃4(λ)2,

d

dλ
C̃3(λ) = C̃3(λ)2 + 2C̃4(λ)2, (28)

d

dλ
C̃4(λ) = 2[C̃2(λ) + C̃3(λ)]C̃4(λ).

Those are the basic equations used in the following discus-
sions. Notice that we have added the minus sign for C3(λ)
in Eq. (27) simply for the appearance of the equations.
The initial conditions are given as C̃2(0) = 4ρ0C2, C̃3(0) =
−4ρ0C3, and C̃4(0) = 4ρ0C4 with C2, C3, and C4 being
the coupling constants in the interaction Lagrangian (11).
In Fig. 3, we plot the right-hand side of Eq. (28), i.e.,
the vector (C̃2(λ)2 + 2C̃4(λ)2, C̃3(λ)2 + 2C̃4(λ)2, 2[C̃2(λ) +
C̃3(λ)]C̃4(λ)) in the three-dimensional parameter space
(C̃2(λ), C̃3(λ), C̃4(λ)), and also show the stream lines for
(C̃2(λ), C̃3(λ), C̃4(λ)) varying with λ and the several initial
conditions (C̃2, C̃3, C̃4) at λ = 0 as the solutions of Eq. (28).
The initial conditions are plotted by the dots in the figure.
We notice that, for the increasing λ, there are some initial
conditions giving the stream lines convergent to zero and the
other initial conditions giving the stream lines divergent. In
the following subsections, we will investigate the solutions of
Eq. (28) in detail. We will find that the C4 term, i.e., the spin
and isospin-dependent term in Eq. (11), plays an important
role to extend the parameter region of the coupling constants
in which the Kondo effect occurs.

C. Analytical solutions in special cases

Although Eq. (28) may look simple, it is difficult to obtain
the analytic solution due to the nonlinearity of the equation.
Therefore, we have to perform the numerical calculation. In
order to understand roughly the properties of the solutions be-
fore the numerical computing, we seek to obtain analytic solu-
tions by restricting the parameter space to simpler subspaces
and focusing on special cases: (i) C̃4(λ) = 0, (ii) C̃3(λ) = 0
[or C̃2(λ) = 0], (iii) C̃2(λ) = C̃3(λ) with |C̃4(λ)| 
 1, and (iv)
C̃2(λ) = C̃3(λ) = ±

√
2/3 C̃4(λ). We will show that, in the last

case, the SU(4) symmetry is realized as an extension from
the SU(2)spin × SU(2)isospin symmetry in the Lagrangian. The
simple settings from (i) to (iv) will provide us with fresh
insights about the Kondo effect for the �c (�∗

c ) baryon in the
nuclear matter.

1. Conventional case

We consider the case of C̃4(λ) = 0 (C4 = 0), i.e., neglect-
ing the spin and isospin-dependent term in the interaction.

045201-7



SHIGEHIRO YASUI AND TOMOKAZU MIYAMOTO PHYSICAL REVIEW C 100, 045201 (2019)

FIG. 3. Left: the plot of the vector (C̃2(λ)2 + 2C̃4(λ)2, C̃3(λ)2 + 2C̃4(λ)2, 2[C̃2(λ) + C̃3(λ)]C̃4(λ)), i.e., the right-hand side of Eq. (28) in
the three-dimensional parameter space (C̃2(λ), C̃3(λ), C̃4(λ)). Right: the stream lines of (C̃2(λ), C̃3(λ), C̃4(λ)) as the solutions of Eq. (28).
The initial conditions (C̃2, C̃3, C̃4) are expressed by dots. The solid and dashed lines with gray indicate the manifold in the SU(4) limit (cf.
Sec. III C 4).

Then, the RG equation (28) is transformed to

d

dλ
C̃2(λ) = C̃2(λ)2,

d

dλ
C̃3(λ) = C̃3(λ)2, (29)

d

dλ
C̃4(λ) = 0.

We find that C̃4(λ) is constant, while C̃2(λ) and C̃3(λ) change
according to the change of the energy scale. Because C̃2(λ)
and C̃3(λ) are decoupled, the spin-dependent term and the
isospin-dependent term obeys the usual Kondo effect with
a single non-Abelian symmetry. The Kondo effect of the
single non-Abelian symmetry is summarized in Sec. III A.
The solutions of C̃2(λ) and C̃3(λ) are found to be

C̃2(λ) = C̃2

1 − C̃2λ
, C̃3(λ) = C̃3

1 − C̃3λ
, (30)

with C̃2 = 4ρ0C2 and C̃3 = −4ρ0C3 as the initial condition at
λ = 0. Thus, the three-dimensional parameter space is essen-
tially reduced to the one-dimensional one. Let us consider the
behavior of the solution C̃2(λ) in detail in the energy scales
from λ = 0 (high energy) to a larger value (low energy).
For the positive value of C2 (C2 > 0), we notice that C̃2(λ)
becomes divergent at the end of the energy scale � = �K with
�K = �0e−1/(4ρ0C2 ). �K is called the Kondo scale (the Landau
pole) whose quantity is smaller than �0 due to the exponential
factor. At the Kondo scale, the coupling constant becomes
sufficiently large. Thus, the system becomes a strongly cou-
pled one and the nonperturbative analysis should be adopted.
For the negative value of C2 (C2 < 0), the effective coupling
constant becomes zero without divergence in the low-energy
limit (λ → ∞), and hence such interaction disappears in the
ground state.

A similar analysis is applied to the case of C̃3(λ). We find
that the effective coupling constant becomes divergent at the
Kondo scale �′

K = �0e1/(4ρ0C3 ) for the negative value of C3

(C3 < 0), while it disappears for the positive value of C3 (C3 >

0). Notice that the sign of C3 for the Kondo effect is different

from that of C2 due to the definition in Eq. (27) and that the
values of �K and �′

K can be different in general.
So far we have set C̃4(λ) = 0 (C4 = 0) by neglecting the

spin and isospin-dependent term in Eq. (11), and have seen
that C2 < 0 and C3 > 0 lead to the absence of the Kondo
effect. However, this is the case only for C̃4(λ) = 0 (C4 = 0).
In the following cases, we will demonstrate that the Kondo
effect can occur even for C2 < 0 and C3 > 0 when a nonzero
value of C̃4(λ) is considered.

2. Two-dimensional case I

By setting C̃3(λ) = 0 in Eq. (28), we consider the two-
dimensional parameter space spanned by (C̃2(λ), C̃4(λ)). We
present the case of C̃3(λ) = 0 for the demonstration. A sim-
ilar conclusion is reached also for (C̃3(λ), C̃4(λ)) by setting
C̃2(λ) = 0. By setting C̃3(λ) = 0, the RG equation (28) is
reduced to

d

dλ
C̃2(λ) = C̃2(λ)2 + 2C̃4(λ)2,

d

dλ
C̃4(λ) = 2C̃2(λ)C̃4(λ). (31)

To find the solution, we eliminate C̃2(λ) in the above equa-
tions, and obtain the equation for C̃4(λ),

C̃4(λ)
d2

dλ2
C̃4(λ)− 3

2

(
d

dλ
C̃4(λ)

)2

− 4C̃4(λ)4 = 0. (32)

Interestingly, this nonlinear differential equation has a simple
analytical solution. As a result we obtain the solutions

C̃2(λ) =
(−C̃2

2 + 2C̃2
4

)
λ + C̃2

1 − 2C̃2λ + (
C̃2

2 − 2C̃2
4

)
λ2

,

C̃4(λ) = C̃4

1 − 2C̃2λ + (
C̃2

2 − 2C̃2
4

)
λ2

, (33)

with C̃2 = 4ρ0C2 and C̃4 = 4ρ0C4 as the initial condition. The
Kondo effect occurs when C̃2(λ) and C̃4(λ) become divergent
at a large value of λ as the Kondo scale. To find the Kondo
scale, we solve (C̃2

2 − 2C̃2
4 )λ2 − 2C̃2λ + 1 = 0, and we obtain
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FIG. 4. The flow diagram on the C̃2(λ)-C̃4(λ) plane for C̃3(λ) = 0 [or the C̃3(λ)-C̃4(λ) plane for C̃2(λ) = 0]. Left: the plot of the vector
(C̃2(λ)2 + 2C̃4(λ)2, 2C̃2(λ)C̃4(λ)) on the right-hand side of Eq. (31). The gray region is the region where the effective coupling constants
become zero in the low-energy limit and the Kondo effect does not occur. The Kondo effect can occur outside this gray region. Right: the
solution (C̃2(λ), C̃4(λ)) in Eq. (33) is shown by the red lines, where the initial conditions in each line are denoted by the points. The initial
points in the gray region in the left converge into zero in the low-energy limit, while the other initial points become divergent.

λ = λ± with λ± = 1/(C̃2 ±
√

2C̃4). In order for that either
λ+ > 0 or λ− > 0 is satisfied, the values of C̃2 and C̃4 should

satisfy C̃4 > −C̃2/
√

2 or C̃4 < C̃2/
√

2 in the two-dimensional
parameter space (C̃2, C̃4). The Kondo scale �K is obtained as

�K = �0 exp

(
− 1

4ρ0 max(C2 + √
2C4,C2 − √

2C4)

)
for C̃4 > −C̃2/

√
2 and C̃4 < C̃2/

√
2,

�K = �0 exp

(
− 1

4ρ0(C2+
√

2C4)

)
for C̃4 >−C̃2/

√
2 and C̃4 < C̃2/

√
2, (34)

�K = �0 exp

(
− 1

4ρ0(C2−
√

2C4)

)
for C̃4 <−C̃2/

√
2 and C̃4 < C̃2/

√
2,

with �0 being the high-energy scale (μ or D) as the initial
condition. The equation forms of the Kondo scale are depen-
dent on the region of (C̃2, C̃4).

In Fig. 4, we plot the region where the Kondo effect
occurs. In the left panel, we show the two-dimensional vector
(C̃2(λ)2 + 2C̃4(λ)2, 2C̃2(λ)C̃4(λ)), i.e., the right-hand side in
Eq. (31). The gray region is the area of C̃4(λ) < −C̃2(λ)/

√
2

and C̃4(λ) > C̃2(λ)/
√

2. In the right-hand panel, the solution
Eq. (33) is shown by the streaming red lines. The initial values
of (C̃2(λ), C̃4(λ)) are denoted by the points. When the initial
points are in the gray region (left-hand panel), the effective
coupling constants become zero at the end of the low-energy
scale, which indicates that the Kondo effect does not occur.
On the other hand, when the initial points are outside the
gray region (left-hand panel), the effective coupling constants
become infinity, and accordingly the Kondo effect occurs.
Here the existence of the C4 term is important. In Sec. III C 1,
we showed that the negative value of C̃2(λ) has not led to the
Kondo effect, when the C4 term is absent (C4 = 0). However,
when the C4 term is present (C4 �= 0), the negative value
of C̃2(λ) can produce the Kondo effect as long as C̃4(λ) >

−C̃2(λ)/
√

2 or C̃4(λ) < C̃2(λ)/
√

2 is satisfied. Therefore, we
conclude that the nonzero value of |C̃4(λ)| is important to

enhance the parameter region of C̃2(λ) to realize the Kondo
effect. The above conclusion applies also to the case for the
two-dimensional space (C̃3(λ), C̃4(λ)) with C̃2(λ) = 0.

3. Two-dimensional case II

We consider the solutions in the case of C̃2(λ) = C̃3(λ).
In addition, we suppose a small value of |C̃4(λ)|. For con-
venience, we introduce a function C̃23(λ) ≡ C̃2(λ) = C̃3(λ),
expressing the RG equations for C̃23(λ) and C̃4(λ) as

d

dλ
C̃23(λ) = C̃23(λ)2 + 2C̃4(λ)2,

d

dλ
C̃4(λ) = 4C̃23(λ)C̃4(λ). (35)

By eliminating C̃23(λ) in the two equations, we find the simple
equation for C̃4(λ):

C̃4(λ)
d2

dλ2
C̃4(λ) − 5

4

(
d

dλ
C̃4(λ)

)2

− 8C̃4(λ)4 = 0. (36)

For a further simplification, we introduce the function F (λ)
defined by C̃4(λ) = 1/(F (λ))4 with F (λ) > 0. Then, the
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FIG. 5. The flow diagram on the C̃23(λ)-C̃4(λ) plane. Left: the plot of the vector (C̃23(λ)2 + 2C̃4(λ)2, 4C̃23(λ)C̃4(λ)) on the right-hand side
of Eq. (35). The gray region is the region where the effective coupling constants become zero in the low-energy limit and the Kondo effect
does not occur. The Kondo effect can occur outside this gray region. Right: the solution (C̃23(λ), C̃4(λ)) in Eq. (35) is shown by the red lines,
where the initial conditions in each line are expressed by the points. The initial points in the gray region in the left converge into zero in the
low-energy limit, while the other initial points become divergent.

equation for F (λ) reads

d2

dλ2
F (λ) + 2

F (λ)7
= 0, (37)

which looks much simpler than Eq. (36). However, it is still
difficult in general to find an analytical solution of F (λ). Here
we try to find an approximate solution, and for this purpose
we restrict our attention to a small value of |C̃4(λ)|, i.e.,
|C̃4(λ)| 
 1 or F (λ)  1, where the perturbation can be used.
Then, the equation for F (λ) is reduced to d2F (λ)/dλ2 ≈ 0,
and the solution is found to be F (λ) 	 c1λ + c2 with the
appropriate constants c1 and c2. The values of c1 and c2 should
be fixed by the initial condition of C̃23(λ) and C̃4(λ) at λ = 0.
Finally, we obtain the approximate solution,

C̃23(λ) 	 2C̃23

2 − C̃23λ
, C̃4(λ) 	 16C̃4

(2 − C̃23λ)4
, (38)

with C̃23 = 4ρ0C2 = −4ρ0C3 and C̃4 = 4ρ0C4 as the initial
condition. The perturbative approach involving the above so-
lution requires that C̃23(λ) and C̃4(λ) should not be divergent,
and the denominators in C̃23(λ) and C̃4(λ) should satisfy
2 − C̃23λ > 0 for any λ > 0. It indicates that the range of the
value of C̃23(λ) should be restricted to C̃23(λ) < 0 as long as
the value of |C̃4(λ)| is small (|C̃4(λ)| 
 1).

In Fig. 5, we plot the two-dimensional vector field
(C̃23(λ)2 + 2C̃4(λ)2, 4C̃23(λ)C̃4(λ)), i.e., the right-hand side
of Eq. (35). We also plot the solutions (C̃23(λ), C̃4(λ))
starting from λ = 0 by the streaming lines. It is shown
that the solutions from the initial points with the negative
value of C̃23(λ) [C̃23(λ) < 0] and the small value of |C̃4(λ)|
[|C̃4(λ)| 
 1] become convergent to zero for λ → ∞. From
the numerical calculation, we find that the initial points in
the gray region defined by C̃23(λ) > C̃4(λ) and C̃23(λ) <

−C̃4(λ) do not lead to the divergence. The initial points
outside this gray region can lead to the divergence and

therefore can produce the Kondo effect. From the above
analysis, we conclude that the nonzero value of C̃4(λ) ex-
tends the parameter region of (C̃23(λ), C̃4(λ)) for the Kondo
effect.

4. One-dimensional case—the SU(4) limit

Finally, we consider the one-dimensional case that the
parameter (C̃2(λ), C̃3(λ), C̃4(λ)) is restricted to the one-
dimensional space C̃2(λ) = C̃3(λ) = ±√

2/3 C̃4(λ). In this
case, we introduce the function C̃(λ) defined by C̃(λ) ≡
C̃2(λ) = C̃3(λ) = ±

√
2/3 C̃4(λ) for the short notation. Here,

SU(2)spin × SU(2)isospin in the Lagrangian (5) happens to be
extended to the SU(4) symmetry according to the impli-
cation relation SU(2) × SU(2) ⊂ SU(4). We call this one-
dimensional case the SU(4) limit. The SU(4) symmetry
is made explicit by introducing the operators of the 15
generators in the SU(4) symmetry, λa/2 or ρa (a =
1, 2, . . . , 15), where the operators λa and ρa are defined by

λ1 = σ 1 ⊗ 12, λ2 = σ 2 ⊗ 12, λ3 = σ 3 ⊗ 12,

λ4 = 12 ⊗ τ 1, λ5 = 12 ⊗ τ 2, λ6 = 12 ⊗ τ 3,

λ7 = ±σ 1 ⊗ τ 1, λ8 = ±σ 1 ⊗ τ 2, λ9 = ±σ 1 ⊗ τ 3,

λ10 = ±σ 2 ⊗ τ 1, λ11 = ±σ 2 ⊗ τ 2, λ12 = ±σ 2 ⊗ τ 3,

λ13 = ±σ 3 ⊗ τ 1, λ14 = ±σ 3 ⊗ τ 2, λ15 = ±σ 3 ⊗ τ 3,

(39)

and

ρ1 = s1⊗ 12⊗ 13, ρ2 = s2⊗ 12⊗ 13, ρ3 = s3⊗ 12⊗ 13,

ρ4 = 13⊗ 12⊗ t1, ρ5 = 13⊗ 12⊗ t2, ρ6 = 13⊗ 12⊗ t3,

ρ7 =
√

3

2
s1 ⊗ 12 ⊗ t1, ρ8 =

√
3

2
s1 ⊗ 12 ⊗ t2,
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ρ9 =
√

3

2
s1 ⊗ 12 ⊗ t3, ρ10 =

√
3

2
s2 ⊗ 12 ⊗ t1,

ρ11 =
√

3

2
s2 ⊗ 12 ⊗ t2, ρ12 =

√
3

2
s2 ⊗ 12 ⊗ t3,

ρ13 =
√

3

2
s3 ⊗ 12 ⊗ t1, ρ14 =

√
3

2
s3 ⊗ 12 ⊗ t2,

ρ15 =
√

3

2
s3 ⊗ 12 ⊗ t3. (40)

We keep using the notations A ⊗ B and A ⊗ B ⊗ C which
were introduced in Eq. (7), along with the antisymmetric
tensor εi jk . λa and ρa are normalized as tr λaλb = 4 δab and
tr ρaρb = 12 δab, respectively. Adopting the restriction of the
parameter C̃2(λ) = C̃3(λ) = ±√

2/3 C̃4(λ) and the operators
λa and ρa, we rewrite the Lagrangian (11) as

Lint
[
ψ,� i

v

] = C1 ϕ†ϕ �̄v�v − C
15∑

a=1

ϕ†λaϕ �̄vρ
a�v,

(41)

with C ≡ C2 = C3 = ±√
2/3C4. It is easy to prove that

Eq. (41) is invariant under the SU(4) symmetry. We notice
that the SU(2)spin symmetry and the SU(2)isospin symmetry
are unified to the SU(4) symmetry. Thus, it provides the
Kondo effect for a single non-Abelian symmetry. Regarding
the coupling constant C as the effective coupling constant
dependent on the energy scale C(λ), the RG equations reads

d

dλ
C̃(λ) = 4C̃(λ)2, (42)

with C̃(λ) ≡ 4ρ0C(λ). This is indeed obtained by setting
C̃(λ) = C̃2(λ) = C̃3(λ) = ±√

2/3 C̃4(λ) in Eq. (28). The so-
lution is given in a simple equation as

C̃(λ) = C̃

1 − 4C̃λ
, (43)

with C̃ = 4ρ0C as the initial condition at λ = 0. The region
of the parameter space for the Kondo effect is limited to C̃ >

0, i.e., C̃2 = C̃3 > 0. From the RG equation, we obtain the
Kondo scale �K = �0e−1/(4C̃i ) (i = 1, 2) with �0 being the
initial energy scale for the RG flow. We note that the sign of
C̃4 is irrelevant to the condition for the Kondo effect, because
of the positive and negative signs in C̃(λ) = ±√

2/3 C̃4(λ). In
the right panel in Fig. 3, we plot the line (manifold) which is
constrained by C̃2(λ) = C̃3(λ) = ±√

2/3 C̃4(λ) as the SU(4)
limit. We observe that the nonzero value of |C̃4(λ)| leads to the
Kondo effect. The relevant sign of C̃4(λ) is either of C̃4(λ) > 0
for C̃2(λ) > 0 and C̃3(λ) > 0 or C̃4(λ) < 0 for C̃2(λ) < 0 and
C̃3(λ) < 0, depending on C̃(λ) = ±√

2/3 C̃4(λ). Thus, the
nonzero value of |C̃4| is important to bring about the Kondo
effect in the SU(4) limit.

D. Flow diagrams in general cases

In the previous subsections, we highlighted special cases
where the nonzero value of |C4|, i.e., the spin and isospin-
dependent interaction in the Lagrangian (11), extends the

parameter region of C̃2, C̃3, and C̃4 and allows the Kondo
effect to occur. As a summary, we consider the solutions
(C̃2(λ), C̃3(λ)) which is projected to the two-dimensional
surface with a constant value of C̃4(λ). We suppose the initial
conditions of |C̃4| = 0, 0.5, and 1 for the numerical demon-
stration. The results are shown in Fig. 6. For each C4, the ini-
tial conditions of C̃2 and C̃3 are shown by the dots in the figure.

Under the initial condition of C̃4 = 0, the Kondo effect
occurs for C̃2 > 0 or C̃3 > 0 and does not for both C̃2 < 0
and C̃3 < 0. This is confirmed directly in the figure, because
the flows in the former are divergent toward large C̃2(λ) and
C̃3(λ), while the flows in the latter stop at C̃2(λ) = C̃3(λ) = 0.
In contrast, if C̃4 has a nonzero value for the initial condition,
the Kondo effect can occur even for both C̃2 < 0 and C̃3 <

0. For example, let us see the initial points of C̃2 = −1.0
and C̃3 = −0.2 for |C̃4| = 0.5 and the initial points of C̃2 =
−1.0 and C̃3 = −0.4 for |C̃4| = 1. Therefore, we understand
numerically that the nonzero value of C̃4 helps to extend the
region of the parameter space of C̃2 and C̃3 for which the
Kondo effect occurs.

Comparison of the Kondo scales allows us to grasp the
importance of the C4 term, and to do so we consider the Kondo
scales for the SU(2) symmetry in C4 = 0 and for the SU(4)
symmetry in C4 �= 0. In the former case, assuming C̃2 = C̃3,
we have obtained the Kondo scale �

SU(2)
K = �0e−1/C̃i (i =

2, 3) as shown in Sec. III C 1. The symmetry is SU(2), because
the C2 term and the C3 term are completely decoupled. In the
latter case, assuming C̃2 = C̃3 = ±√

2/3 C̃4, we have obtained
the Kondo scale �

SU(4)
K = �0e−1/(4C̃i ) (i = 2, 3; C̃2 = C̃3) as

shown in Sec. III C 4. As the two Kondo scales are strongly
influenced by the exponential factors, their magnitudes are
quite different: �

SU(2)
K 
 �

SU(4)
K . Therefore, keeping the same

coupling constants C2 and C3, we find that the C4 term, i.e.,
the mixing term of both spin and isospin, enhances the Kondo
scale. Such enhancement makes the Kondo effect with the
nonzero value of C4 occur on higher energy scales than the
case of C4 = 0. This conclusion supports the argument that
the C4 term is important to magnify the Kondo effect for the
�c (�∗

c ) baryon in nuclear matter.

E. Estimates of the Kondo scales

Before ending the discussion about the Kondo effect for
the �c and �∗

c baryon, we examine numerically the depen-
dence of the effective coupling constants on the variation
of the energy scale. For example, we can reasonably regard
the energy scale � in the RG equation as the temperature in
the system, T ≈ �. As far as we know, however, we have
no sufficient data to uniquely determine the coupling constant
Ci (i = 1, 2, 3, 4) in the bare Lagrangian (11). Thus we have
to resort to the semiquantitative approach for restricting the
range of the values of Ci. As a system similar to the �c and
�∗

c baryon, we may consider a �c baryon with spin 1/2 and
isospin 0 whose constituent is udc with a ud diquark.4 As for

4The �c baryon dose not induce the Kondo effect in nuclear matter,
because the spin-flip amplitude of the �c is suppressed by O(1/mc )
with a charm quark mass mc.
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FIG. 6. The solutions C̃2(λ), C̃3(λ), and C̃4(λ) of the RG equation (28) on the two-dimensional (C̃2(λ), C̃3(λ)) plane. The initial conditions
given by (C̃2, C̃3) at each point and |C̃4| = 0, 0.5, 1. The solutions are projected to the (C̃2(λ), C̃3(λ)) plane when they grow in the three-
dimensional (C̃2(λ), C̃3(λ), C̃4(λ)) space.

the interaction between a �c baryon and a nucleon, there is
an available result from the analysis for the scattering length
(a ≈ 0.89 fm) in the combination of the lattice QCD simu-
lations [70] and the chiral extrapolations [71].5 In Ref. [67],
based on the HQS formalism in a similar manner as Eq. (11),
the possible combinations of the coupling constants and the
three-dimensional momentum cutoff parameter were obtained
to reproduce the scattering length a ≈ 0.89 fm. They are
roughly on the order of 10–16 GeV−2 and 0.3–0.5 GeV. The
momentum cutoff parameter would be reasonable because its
inverse should be relevant to the spatial size of the hadrons.
As a crude estimate, we may use similar values for �c and
�∗

c baryons. As a typical value, we assign �0 = 0.5 GeV
and C = Ci (i = 2, 3) to be around a few GeV−1: C = 1, 2,
3 GeV−2. We consider the values smaller than 10–16 GeV−2

in order to avoid the overestimates.
With those values, we estimate the Kondo scale �

SU(4)
K =

�0e−1/(16ρ0Ci ) (i = 2, 3; C2 = C3) with C2 = C3 = ±√
2/3C4

in the SU(4) limit (cf. Sec. III C 4). We remind that ρ0 =
m3/2√2μ/(2π2) is the state-number density at the Fermi
surface. This quantity turns out to be ρ0 = 0.0013 GeV2 at
μ = 0.04 GeV in the normal nuclear-matter density. Then, we
obtain �

SU(4)
K = 0.001, 0.012, 0.027 GeV for C2 = C3 = 1, 2,

3 GeV−2, respectively. In terms of the temperature in normal
nuclear matter, the values of those Kondo scales are thought
to be large, and hence the Kondo effect should occur. We also
consider the Kondo scale �

SU(2)
K = �0e−1/(4ρ0Ci ) (i = 2, 3)

with C2 = C3 in the SU(2) limit (cf. Sec. III C 1). In this case,
we obtain numerically �

SU(2)
K = 6 × 10−10, 9 × 10−6, 2 ×

10−4 GeV for C2 = C3 = 1, 2, 3 GeV−2, respectively. Thus,
the Kondo scale in the SU(2) limit will not be so relevant
to the real systems. We notice that only the difference between
the Kondo scale in the SU(4) limit and that in the SU(2) limit
lies in the difference of the coefficients in the exponential
functions. In Fig. 7, we show the plots of C̃(λ) = C̃i(λ) (i =

5See also the related studies of the �c baryon in nuclear mat-
ter [67–69].

2, 3) with the bare couplings C = Ci = 1, 2, 3 GeV−2 for the
SU(2) limit and the SU(4) limit, where the differences of the
Kondo scales are seen clearly.

IV. REVISITING D̄ AND D̄∗ MESONS

Now we consider other systems where multiple numbers
of non-Abelian symmetries exist, and here we focus on the
Kondo effect for a D̄ (D̄∗) meson in terms of the SU(2)
spin symmetry and the SU(2) isospin symmetry. Although
there have been many studies on the D̄N (D̄∗N) interac-
tion [76–83] and the properties of a D̄ (D̄∗) meson in nuclear
systems [84–111] in the literature, there are only a few studies
on the Kondo effect for a D̄ (D̄∗) meson. In the previous
studies, only the isospin symmetry was taken in Refs. [40,41],
and only the spin symmetry was taken in Ref. [42]. In
the present study, we extend their discussions to the case
where both of them exist. We introduce Hv defined by Hv =
(γ μP∗

vμ + iγ5Pv ) 1+v/
2 with P∗

vμ ∼ (qQ̄)spin 1 (μ = 0, 1, 2, 3) for
the vector meson and Pv ∼ (qQ̄)spin 0 for a pseudoscalar me-
son. We note that the asterisk (∗) denotes the vector field, not
the complex conjugate. The vector field satisfies vμP∗

vμ = 0
and H̄v = γ 0H†

v γ 0. Under the spin and isospin symmetries
and the S-wave interaction at the low energies, we write the
interaction Lagrangian as follows:

L[ψ, Hv] = L0[ψ, Hv] + Lint[ψ, Hv], (44)

with the kinetic term

L0[ψ, Hv] = ϕ†i
∂

∂t
ϕ + ϕ† (i∇)2

2m
ϕ + tr H̄v

(
−i

∂

∂t

)
Hv,

(45)

and the interaction term

Lint[ψ, Hv] =
4∑

i=1

ds
i

2
ψ̄�iψ tr H̄v�iHv

+
4∑

i=1

3∑
a=1

dt
i

2
ψ̄�iτ

aψ tr H̄v�iτ
aHv. (46)
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FIG. 7. The plots of C̃(λ) = C̃i(λ) (i = 2, 3) as functions of �/�0 for (a) the SU(2) limit and for (b) the SU(4) limit, respectively. The
horizontal dashed lines are the values of the coupling constants at the initial condition (� = �0), and the vertical dashed lines indicate the
Kondo energy scales.

We define the Dirac matrices by �1 = 1, �2 = γ μ, �3 =
σμν = (i/2)(γ μγ μ − γ νγ μ), �4 = γ μγ5, �5 = γ5, and here
tr stands for the trace over the Dirac matrices. We in-
troduce ds

i and dt
i (i = 1, 2, 3, 4) for the coupling con-

stants in each isospin channel (singlet and triplet). The

coefficient 1/2 is used for later convenience. In the interac-
tion term, the relativistic field ψ for a nucleon is reduced
to the nonrelativistic form as ψ t = (ϕ, 0)t in the following
discussion. Then, we rewrite Lint[ψ, Hv] in terms of Pv and
P∗i

v as

Lint[ψ, Hv] = D1 ϕ†ϕ

⎛
⎝ 3∑

i, j=1

δi jP∗i†
v P∗ j

v + P†
v Pv

⎞
⎠

+ iD2

3∑
k=1

ϕ†σ kϕ

⎛
⎝ 3∑

i, j=1

εi jkP∗i†
v P∗ j

v − (
P∗k†

v Pv− P†
v P∗k

v

)
⎞
⎠ + D3

3∑
a=1

ϕ†τ aϕ

⎛
⎝ 3∑

i, j=1

δi jP∗i†
v τ aP∗ j

v + P†
v τ aPv

⎞
⎠

+ iD4

3∑
k=1

3∑
a=1

ϕ†σ kτ aϕ

⎛
⎝ 3∑

i, j=1

εi jkP∗i†
v τ aP∗ j

v − (
P∗k†

v τ aPv − P†
v τ aP∗k

v

)⎞⎠, (47)

in the rest frame vμ = (1, 0), where we define the new cou-
pling constants by D1 = −(ds

1 − ds
2), D2 = 2ds

3 + ds
4, D3 =

−(dt
1 − dt

2), and D4 = 2dt
3 + dt

4. Equation (47) is invariant
under the flavor symmetry for the light quark and under the
spin symmetries for the spin of the light quark and the heavy
antiquark. In terms of the spin symmetry, the transformation
of Pv and P∗i

v is given by

Pv �→ Pv + δPv = Pv − 1
2θ iP∗i

v ,

P∗i
v �→ P∗i

v + δP∗i
v = P∗i

v + (− 1
2εi jkθ jP∗k

v + 1
2θ iPv

)
, (48)

for the small rotation angle θ i (i = 1, 2, 3).
For the coupling constants in the Lagrangian (47), we con-

sider the effective coupling constants Da(λ) (a = 1, 2, 3, 4)
which follows the RG equation, as we have considered for a
�c (�∗

c ) baryon in Sec. III. Referring to the similar diagram
in Fig. 2 and using the momentum integrals (17) and (18) as
well as the identities (19), we obtain the RG equations

d

dλ
D̃1(λ) = 0,

d

dλ
D̃2(λ) = 2D̃2(λ)2 + 6D̃4(λ)2,

d

dλ
D̃3(λ) = 2D̃3(λ)2 + 6D̃4(λ)2,

d

dλ
D̃4(λ) = 4[D̃2(λ) + D̃3(λ)]D̃4(λ), (49)

with λ = − ln(�/�0), where we define the dimensionless
quantities by

D̃1(λ) ≡ −ρ0 D1(λ), D̃2(λ) ≡ −ρ0 D2(λ),

D̃3(λ) ≡ −ρ0 D3(λ), D̃4(λ) ≡ −ρ0 D4(λ). (50)

Here, the minus sign is put by convention. The RG equa-
tion (49) is essentially the same as the RG equation for a �c

(�∗
c ) baryon, Eq. (26) or Eq. (28). Thus, we obtain the similar

behavior for the Kondo effect which indicates the importance
of the spin and isospin-dependent term with D4.

As a simple case, we consider the SU(4) limit by setting
D(λ) ≡ D2(λ) = D3(λ) = ±D4(λ). The SU(4) symmetry is a
large group which includes the SU(2)spin symmetry and the
SU(2)isospin symmetry as its subgroups. In this limit, the RG
equation of D̃i(λ) (i = 2, 3, 4) is reduced to

d

dλ
D̃(λ) = 8D̃(λ)2, (51)
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with D̃(λ) ≡ D̃2(λ) = D̃3(λ) = ±D̃4(λ), and we obtain the
analytical solution

D̃(λ) = D̃

1 − 8D̃λ
, (52)

with D̃ = D̃(0) as the initial condition. In the low-energy scale
(a large value of λ  1), this solution indicates the divergence
at the Kondo scale, �K = �0e1/8ρ0D for D < 0, while it leads
to the convergence to zero for D > 0. We denote D ≡ D2 =
D3 = ±D4 for the (bare) coupling constant Di (i = 2, 3, 4) in
the Lagrangian (47).

V. DISCUSSION: MESON-BARYON MAPPING INDUCED
BY THE KONDO EFFECT

So far we have demonstrated that the presence of the spin
and isospin-exchange term magnifies the Kondo effect, i.e.,
the increase of the Kondo scale �K. This has been based on
the perturbative analysis as we have relied on the RG equation.
On the energy scale near or lower than the Kondo scale,
however, the perturbative approach is no longer useful due to
the enhanced coupling strength, and hence the nonperturbative
approach should be adopted. So far there have been several
nonperturbative analyses such as the numerical renormaliza-
tion method [6], the Bethe ansatz [7–9], the boundary confor-
mal field theory [10–16], the bosonization method [17–21],
the mean-field approximation (the large N limit) [22–36],
and so on. One of the present authors has conducted the
analysis based on the mean-field approximation for D−

s and
D∗−

s mesons in nuclear matter [42] and for a D̄ meson in
an atomic nucleus [41]. It is still open to question how we
should systematically analyze the nonperturbative properties
of the Kondo effect on the low-energy scale for both �c and
�∗

c baryons as well as for both D̄ and D̄∗ mesons, where
the spin symmetry and the isospin symmetry should be taken
into account simultaneously. In the following, we discuss the
expected nonperturbative properties for those systems in a
qualitative manner.

It is known that one of the interesting low-energy proper-
ties in the Kondo effect is the formation of the singlet pairing
in the ground state [2–4]. Here the singlet pairing indicates the
bound state where an itinerant fermion is bound to an impurity
particle and the total spin of the bound state is singlet. In other
words, this is the dressed state surrounded by of particles and
holes around the impurity site (exact screening). The dressed
state is also known as the Kondo cloud. The singlet pairing
was studied for D−

s and D∗−
s mesons in nuclear matter [42]

and for a D̄ meson in an atomic nucleus [41]. It is also possible
that the singlet pairing exists for the D̄ and D̄∗ mesons. In
such a situation, the singlet pairing should be composed of a
nucleon (N) and a light quark (q = u, d) in the D̄ (D̄∗) meson,
i.e., the composite state (Nq) with spin 0 and isospin 0 as
the Kondo cloud. Accordingly, the D̄ (D̄∗) meson in nuclear
matter should behave as the composite state (NqQ), which has
the same spin and isospin as a �c baryon.

For a D−
s (D∗−

s ) meson, the singlet pairing as the Kondo
cloud is composed of a nucleon (N) and the s quark inside the
D−

s (D∗−
s ) meson, i.e., the composite state (Ns) with spin 0

and isospin 1/2. In fact, the singlet condensate composed of a

TABLE I. The meson-baryon mapping induced by the Kondo
effect. See the text for explanation.

Heavy hadron Dressed state (mapped) Screening type Ref.

D̄, D̄∗ meson �c baryonlike exact screening
D−

s , D∗−
s meson �c baryonlike exact screening [42]

�c, �∗
c baryon D̄, D̄∗ mesonlike underscreening

nucleon and a D−
s (D∗−

s ) meson was studied in the mean-field
approximation [42]. Thus, the D−

s (D∗−
s ) meson in nuclear

matter should behave like a �c baryon.
In contrast, the �c (�∗

c ) baryon cannot have the singlet
pairing. In fact it is known that the singlet pairing is not
formed when the dimensions of the representations (funda-
mental, adjoint, etc.) in SU(N ) are different in the itinerant
fermion and the impurity particle. Let us consider the itinerant
fermion with spin 1/2 and the impurity particle with spin S.
We observe that, for S > 1/2, the spin of the impurity particle
cannot be screened by the spin of one itinerant fermion,
and that there remains an unscreened spin S∗ = S − 1/2 for
the impurity site. This is called the underscreening Kondo
effect [112]. A similar situation arises for a �c (�∗

c ) baryon in
nuclear matter. That is, the spin S = 1 and the isospin I = 1
of the diquark (qq) in the �c (�∗

c ) baryon would lead to the
unscreened Kondo effect, making the Nqq state with the spin
S∗ = 1/2 and the isospin I∗ = 1/2 as the dressed state by
particles and holes. Furthermore, we argue that it would lead
to the composite state of NqqQ with spin 0 or 1 and isospin
1/2, i.e., the same spin and isospin as the qQ̄ meson such as
a D̄ and D̄∗ meson. Therefore, it is thought that the �c (�∗

c )
meson in nuclear matter should behave as the composite state
(NqqQ), which has the same spin and isospin as a D̄ (D̄∗)
meson.

The above consideration helps us introduce the concept of
the “meson-baryon mapping” induced by the Kondo effect. As
we have discussed, a D̄ (D̄∗) meson or a D−

s (D∗−
s ) meson in

nuclear matter can be regarded as a �c baryon or a �c baryon,
and a �c (�∗

c ) baryon in nuclear matter can be regarded as a D̄
(D̄∗) meson (Table I). Thus, the heavy meson is “baryonized”
and the heavy baryon is “mesonized” due to the Kondo effect.
Such a meson-baryon mapping may cast new light on the
properties and the dynamics of heavy hadrons in nuclear
matter. We comment that the simple correspondence between
the composite state (NqQ or NqqQ) and the hadronlike state
[�c-like or D̄(D̄∗)-like] holds only when both spin and isospin
are subject to the Kondo effect. When only spin (isospin)
is subject to the Kondo effect and isospin (spin) is not,
there should arise an additional degeneracy by isospin (spin)
leading to the hadronlike state whose quantum number is not
realized in vacuum. A more detailed investigation of these
things must await another occasion.

VI. CONCLUSION

We have studied the Kondo effect for a �c (�∗
c ) baryon

in nuclear matter. By virtue of the SU(2)spin × SU(2)isospin

symmetry, the HQS symmetry, and the S-wave interaction,
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we have provided the spin-exchange (or spin-nonexchange)
and isospin-exchange (or isospin-nonexchange) interactions
between the �c (�∗

c ) baryon and the nucleon. By adopting
the RG equation at one-loop order, we have found that the
coexistence of the spin exchange and the isospin exchange
magnifies the Kondo effect. We have extensively investigated
the RG equation for several cases in terms of the coupling
constants, including the SU(4)-limit case. We have also
conducted the analysis for the D̄ (D̄∗) meson with the
SU(2)spin × SU(2)isospin symmetry, and have shown the so-
lution in the SU(4) limit. In addition, we have ventured to
develop the concept of the “meson-baryon mapping” for the
�c (�∗

c ) baryon, the D̄ (D̄∗) meson, and the D−
s (D∗−

s ) meson
in the Kondo effect. It is straightforward to apply the mapping
to other heavy hadrons when the light component in the heavy
hadron has the spin interaction with a nucleon which flips the
spin and/or the isospin.

Also, we mention that several issues are left unanswered:
the corrections at O(1/mQ) (beyond the heavy-quark mass
limit); applying the �cN (�∗

c N) interaction to many-body
problems [73,74]; discussing the “meson-baryon mapping”
within the nonperturbative framework; the production mech-
anisms of the heavy hadrons in atomic nuclei; applications
to atomic nuclei. The existence of the Kondo effect will
be verified experimentally through the measurement of the
transport coefficients and the change of excitation spectra
of atomic nuclei. In the literature, the modifications of the
transport coefficients were studied for the Kondo effect in
the quark matter [47], and the excitation spectra for atomic
nuclei were studied in a simple model [41]. Those discussions
can be applied to the �c and �∗

c baryon (the D̄ and D̄∗
meson) in order to prove the existence of the Kondo effect.

In order to resolve those problems, it will be important to get
precise information of the �cN (�∗

c N) interactions (see, e.g.,
Ref. [113] for a recent work). As a more advanced topic, the
continuity of the Kondo effect between the hadronic phase
and the quark phase (see the discussions in Ref. [43]). The
continuity, which was proposed for the color-flavor locked
color superconductivity in Refs. [114,115], is now studied
intensively in view of topological objects [116–121]. It is
worthwhile to study how the Kondo cloud changes from
the hadronic matter to the quark matter. Simulations of the
Kondo effect with SU(3) symmetry in cold atomic gases
are also important [122]. It remains unclear as to how the
Kondo effect with SU(4) symmetry for a �c (�∗

c ) baryon is
related to the Kondo effect with SU(4) symmetry in condensed
matter systems, such as quantum dots, which has been studied
theoretically [123–130] and experimentally [131–134]. Those
issues need to be addressed in future work.
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APPENDIX: SPIN AND CHARGE BASIS OF �μ
v

We consider the interaction term for the spin-1/2 field (a
�c baryon) and the spin-3/2 field (a �∗

c baryon). In the rest
frame, from Eqs. (2) and (3), we utilize the expression

�v1/2 = 1√
3

∑
i

σ i� i
v, (A1)

and

� i
v3/2 =

∑
j

(
δi j − 1

3
σ iσ j

)
� j

v , (A2)

for the spin-1/2 and the spin-3/2 fields.6 Then, we rewrite the interaction term in Eq. (7) as

Lint
[
ψ,� i

v

] = C1ϕ
†ϕ

(
�

i†
v3/2�

i
v3/2 + �

†
v1/2�v1/2

)

+ C2ϕ
†σ kϕ

(
iεi jk�

i†
v3/2�

j
v3/2 − 1√

3
�

†
v1/2�

k
v3/2 − 1√

3
�

k†
v3/2�v1/2 − 2

3
�

†
v1/2σ

k�v1/2

)

+ C3ϕ
†τ dϕ

(
�

i†
v3/2t d� i

v3/2 + �
†
v1/2t d�v1/2

)

+ C4ϕ
†σ kτ dϕ

(
iεi jk�

i†
v3/2t d�

j
v3/2 − 1√

3
�

†
v1/2t d�k

v3/2 − 1√
3
�

k†
v3/2t d�v1/2 − 2

3
�

†
v1/2σ

kt d�v1/2

)
. (A3)

Here we mention that the �c baryon and the �∗
c baryon can be swapped with each other by the HQS symmetry (�c ↔ �∗

c ). In the
HQS symmetry, the heavy quark changes as uv → eiσ·θ/2uv ≈ (1 + iσ ·θ/2)uv with θ = (θ1, θ2, θ3) for the small θ i (i = 1, 2, 3).
This transformation leads to the change of the fields of �c and �∗

c baryons: � i
v: � i

v → eiσ·θ/2� i
v ≈ (1 + iσ ·θ/2)� i

v . Notice

6We take the summation over the indices i, j = 1, 2, 3 when they are repeated. Notice the constraint condition σ i� i
v = 0.
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that � i
v (i = 1, 2, 3) is in the rest frame. Then, we find that �v1/2 and � i

v3/2 change to �v1/2 + δ�v1/2 and � i
v3/2 + δ� i

v3/2,
respectively, where δ�v1/2 and δ� i

v3/2 are given by

δ�v1/2 = 1√
3
σ iδ� i

v = − i

6
θ iσ i�v1/2 + i

2
√

3
iεi jkθ iσ j�k

v3/2, (A4)

and

δ� i
v3/2 =

(
δi j − 1

3
σ iσ j

)
δ� j

v = − 1√
3

i

2
θ j

(
4

3
δi j − 2

3
iεi jkσ k

)
�v1/2 + i

2
θ k

(
2

3
δi jσ k + 1

3
δikσ j − 1

3
δ jkσ i− 1

3
iεi jk

)
�

j
v3/2.

(A5)

In terms of the isospin operator t a (a = 1, 2, 3) for �c and �∗
c baryons, the basis used in Eq. (8) may not be suitable for

describing the charged particles such as �++
c , �+

c , and �0
c , because none of t1, t2, and t3 is diagonal. Instead, it can be useful to

introduce the following operator for isospin t̂ a (a = 1, 2, 3):

t̂1 =

⎛
⎜⎝

0 −1√
2

0
−1√

2
0 1√

2
0 1√

2
0

⎞
⎟⎠, t̂2 =

⎛
⎜⎝

0 i√
2

0
−i√

2
0 −i√

2
0 i√

2
0

⎞
⎟⎠, t̂3 =

⎛
⎝1 0 0

0 0 0
0 0 −1

⎞
⎠, (A6)

which are related to t a by the unitary transformation t a = Ut̂aU † with the unitary matrix

U =
⎛
⎝

−i√
2

0 −i√
2

1√
2

0 −1√
2

0 −i 0

⎞
⎠. (A7)

We note that the commutation relation holds: [t̂ a, t̂ b] = iεabct̂ c. Then, we obtain the new field �̂v1/2 and �̂ i
v3/2 expressed by the

charge basis:

�̂v1/2 =

⎛
⎜⎝

�++
c

�+
c

�0
c

⎞
⎟⎠, �̂ i

v3/2 =

⎛
⎜⎝

�∗++
c

�∗+
c

�∗0
c

⎞
⎟⎠, (A8)

which are related to �v1/2 and � i
v3/2 through the unitary transformation �v1/2 = U †�̂v1/2 and � i

v3/2 = U †�̂ i
v3/2.
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