
PHYSICAL REVIEW C 97, 044908 (2018)

Chiral phase transition at finite chemical potential in 2 + 1-flavor soft-wall anti–de Sitter space QCD
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The phase transition from hadronic matter to chirally symmetric quark-gluon plasma is expected to be a rapid
crossover at zero quark chemical potential (μ), becoming first order at some finite value of μ, indicating the
presence of a critical point. Using a three-flavor soft-wall model of anti–de Sitter/QCD, we investigate the effect
of varying the light and strange quark masses on the order of the chiral phase transition. At zero quark chemical
potential, we reproduce the Columbia Plot, which summarizes the results of lattice QCD and other holographic
models. We then extend this holographic model to examine the effects of finite quark chemical potential. We
find that the the chemical potential does not affect the critical line that separates first-order from rapid crossover
transitions. This excludes the possibility of a critical point in this model, suggesting that a different setup is
necessary to reproduce all the features of the QCD phase diagram.
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I. INTRODUCTION

The investigation of the phase diagram for quark matter
is a major project of nuclear physics. In particular, heavy-
ion community is interested in mapping the phase transition
between hadronic matter and the quark-gluon plasma as a
function of temperature and baryon chemical potential. In
particular, the search for the expected critical point in this phase
boundary is the focus of the next run at the Relativistic Heavy
Ion Collider (RHIC) at Brookhaven National Laboratory. A
robust theoretical description of the phase boundary is thus a
worthy goal.

Results from lattice QCD have demonstrated that the decon-
finement phase transition at zero quark chemical potential (μ)
is a rapid crossover. Extending lattice results to finite chemical
potential is prevented by a well-known obstacle known as the
sign problem. Techniques exist for extending lattice QCD to
finite but relatively small values of μ, results which show no
evidence of a critical point but place limits on its location [1–3].

Phenomenological models inspired by the anti–de Sit-
ter/conformal field theory (AdS/CFT) correspondence [4–6]
have succeeded in describing some aspects of the quark-gluon
plasma [7,8]. Previous work has mapped the chiral phase
transition as a function of temperature and quark chemical
potential [9–14]. In two-flavor models, the phase transition is
a crossover for zero quark mass and second order for nonzero
quark mass. This is consistent with lattice QCD models, which
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find the order of the order of the chiral phase transition to
be dependent on the light and strange quark masses. Some
holographic models have shown evidence of a critical point by
examining baryon susceptibilities [15–18], but these models do
not examine chiral symmetry restoration, which is the focus of
this work.

The chiral phase structure for varying quark masses is
summarized by the Columbia Plot [19,20], sketched in Fig. 1.
Visualizing μ as a third axis of the Columbia Plot, the second-
order line becomes a critical surface. To achieve the expected
critical point in the T −μ plane, the critical surface should have
the curvature shown in Fig. 2, with the physical point being
in the crossover region at μ = 0. The behavior of a pure gauge
theory, found in the upper-right corner of the plot, is beyond
the scope of this work.

Our previous work [9] examined light quarks only, cor-
responding to the Nf = 2 line of the Columbia Plot, where
ms is effectively infinite. In this regime, the chiral phase
transition is a rapid crossover for finite quark mass and
second-order for massless quarks. The authors of Ref. [21]
studied the Columbia Plot at zero chemical potential in a
soft-wall model of AdS/QCD. In this paper, we reproduce
these results and extend this holographic analysis to finite
chemical potential.

II. SOFT-WALL MODEL

To consider the thermodynamics of AdS/QCD, we use an
asymptotically anti–de Sitter 5D black hole metric,

ds2 = L2

z2

[
−f (z)dt2 + dx2

i + dz2

f (z)

]
. (1)

Following the procedure established in our previous work and
in Refs. [22–24], we model finite temperature and chemical
potential with a charged black hole described by the 5D
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FIG. 1. A sketch of the expected Columbia Plot, indicating the
order of the chiral phase transition as a function of light and strange
quark masses at zero chemical potential. The crossover region is
separated from regions of first-order phase transitions by second-order
phase transition lines.

AdS–Reissner-Nordström metric

f (z) = 1 − (1 + Q2)

(
z

zh

)4

+ Q2

(
z

zh

)6

, (2)

where zh is the location of the event horizon and Q = qz3
h

is the black hole charge with the constraint 0 < Q2 < 2. The
chemical potential and temperature are uniquely determined
by the charge and horizon position

μ = κ
Q

zh

, (3)

T = 1

πzh

(
1 − Q2

2

)
. (4)

Note that μ is the quark chemical potential, with a value one
third of the baryon chemical potential. As in Ref. [11] we take
κ = 1.

The matter fields are described by the action

S = 1

2k

∫
d5x

√−ge−�(z) Tr[|DX|2 + Vm(X)], (5)

where X contains the scalar and pseudoscalar meson fields. We
exclude the vector and axial-vector meson fields to focus on
chiral dynamics. The dilaton field �(z) acts to smoothly cut off
the action and introduce confinement in soft-wall AdS/QCD
models. A quadratic IR dilaton �(z → ∞) ∼ z2 is required for
linear confinement [6,25]. In order to dynamically solve for the
chiral field, the dilaton must become negative quadratic in the

FIG. 2. The critical surface separates first order from crossover
phase transitions. Image taken from Ref. [20].

UV limit [12]. One example of a dilaton profile that produces
good meson spectra in the zero-temperature limit [9] is

�(z) = −μ2
1z

2 + (
μ2

0 + μ2
1

)
z2

[
1 − exp

(−μ2
2z

2
)]

, (6)

with μ0 = 430 MeV, μ1 = 830 MeV, and μ2 = 176 MeV.
The vacuum expectation value (VEV) of the scalar field

describes the chiral symmetry breaking of the model. In a two-
flavor symmetric model, the VEV is given by

〈X〉 = χ (z)

2
I, (7)

where I is the Nf × Nf identity matrix. Allowing for flavor
asymmetry, the scalar VEV takes the form

〈X〉 =

⎛
⎜⎝

χl (z)√
2

0 0

0 χl (z)√
2

0

0 0 χs (z)√
2

⎞
⎟⎠, (8)

where the normalization factor is chosen to give the kinetic
term its canonical form.

The features of this particular model are established by the
choice of scalar potential Vm(X). The AdS/CFT dictionary
establishes the mass term, and a quartic term is necessary
to obtain independent sources of explicit and spontaneous
chiral symmetry breaking [6,26,27]. We also include t’Hooft
determinant term in the scalar potential to introduce flavor
mixing [12]. The potential becomes

Vm(X) = m2
5|X|2 + 4v4|X|4 + γ Re[det(X)], (9)

where γ = 6
√

2 v3. As before, we take v4 = 8, and in the
following set v3 = −3.

III. CHIRAL SYMMETRY RESTORATION

To examine the chiral dynamics, we consider the behavior
of the background chiral fields. The chiral potential is found
to be

V (χ ) = 〈Tr[Vm(X)]〉 = m2
5

(
χ2

l + 1
2χ2

s

) + 3v3χ
2
l χs + v4

(
2χ4

l + χ4
s

)
. (10)
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(a)

(b)

FIG. 3. Numerical solutions for the chiral fields and associated test functions, for the cases (a) σl = (488.528 MeV)3, σs = (482.004 MeV)3

and (b) σl = (488.595 MeV)3, σs = (482.010 MeV)3.

Varying the action (5) yields the equations of motion

χ ′′
l −

[
3f (u) − uf ′(u) + uf (u)�′(u)

uf (u)

]
χ ′

l + 1

u2f (u)

(
3χl − 3v3χlχs − 4v4χ

3
l

) = 0, (11)

χ ′′
s −

[
3f (u) − uf ′(u) + uf (u)�′(u)

uf (u)

]
χ ′

s + 1

u2f (u)

(
3χs − 3v3χ

2
l − 4v4χ

3
s

) = 0, (12)

where we have changed variables to u = z/zh. The coupling
of the light and strange sectors is evident and vanishes in the
case v3 = 0. The UV boundary conditions on the chiral fields
are determined by the AdS/CFT dictionary

χl(u → 0) = mlζzhu + σl

ζ
z3
hu

3, χs(u → 0)

= msζzhu + σs

ζ
z3
hu

3, (13)

where ml = mu,d is the light quark mass and ms is the strange
quark mass, and there are two chiral condensates σl = 〈ūu〉 =
〈d̄d〉 and σs = 〈s̄s〉. The normalization ζ = √

Nc/(2π ) is
determined from large-N QCD [28]. For a given quark mass,
we solve for the chiral condensates as a function of temperature
and baryon density. Previous work shows that the T and μ
dependence of the phase transition is qualitatively equivalent
[9]. For clarity of illustration, we will plot σl, σs as functions
of temperature only.

A. Numerical shooting method

The chiral condensates σl and σs are determined by nu-
merically solving the boundary value problem (11) and (12),
subject to the UV boundary condition (13) and the near-horizon
condition that the chiral fields are regular.

Using the shooting method converts a the boundary value
problem into an initial value problem, and we vary σl, σs until
we find a combination that satisfies the near-horizon condition.
Integrating closer to the singular points at u = 0, 1 increases
the sensitivity of the method, and for this analysis we let u range
from 10−2 to 1−10−2. Because it is difficult to determine when
the chiral fields χl, χs are regular, we isolate the singular parts
of the equations of motion,

testl = u2 f ′

f
+ 1

f

(
3χl − 3v3χlχs − 4v4χ

3
l

)
, (14)

tests = u2 f ′

f
+ 1

f

(
3χs − 3v3χ

2
l − 4v4χ

3
s

)
, (15)

and analyze their near-horizon behavior to determine the
existence of a regular solution.
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FIG. 4. Dependence of σ on T for zero and nonzero values of μ and (a) ml = ms = 10 MeV, (b) ml = ms = 35 MeV, and (c) ml = ms =
45 MeV. In all cases, chemical potential has no effect on the order of the phase transition.

We show a representative case for μ = 0, T = 140 MeV,
ml = 40 MeV, and ms = 70 MeV. Figure 3 shows that when
σl = (488.528 MeV)3 and σs = (482.004 MeV)3, tests is reg-
ular as it approaches the horizon while testl diverges to positive
infinity. When the shooting parameters are altered slightly to
σl = (488.595 MeV)3 and σs = (482.010 MeV)3, the behav-
ior of the test functions reverses. This signals that there is a
regular solution for both chiral fields in this region of parameter
space. It is important to note that although the qualitative
difference in the test functions is clear, the corresponding
change in σl (respectively, σs) is 0.04% (respectively, 0.004%)
and is indistinguishable in Fig. 3.

B. Flavor-symmetric case

We begin our analysis with the flavor-symmetric case. This
is represented by the dashed line ml = ms on the Columbia
Plot. In this case, χl = χs , reducing (11) and (12) to the single
equation of motion

χ ′′ −
[

3f (u) − uf ′(u) + uf (u)�′(u)

uf (u)

]
χ ′

+ 1

u2f (u)
(3χ − 3v3χ

2 − 4v4χ
3) = 0, (16)

subject to the UV boundary condition (13). Using a numerical
shooting method, we find the value of σ that produces solutions
to (16) that are regular at the black hole horizon. When
nontrivial solutions exist, they are energetically favored over
the trivial solution χ (u) = 0 [12]. Chiral symmetry restoration
is realized at values of T ,μ where nontrivial regular solutions
do not exist, making the trivial solution the only solution and
signifying σ = 0.

Although this version of the model is flavor symmetric,
it does not simply mimic the two-flavor results of Ref. [9],
which represent the top line of the Columbia Plot, where
ms is effectively infinite. The inclusion of the cubic t’Hooft
determinant term in the scalar potential breaks the χ ↔ −χ
symmetry, giving energetic preference to positive chiral fields
[12]. As a result, the σ ↔ −σ symmetry found in the two-
flavor case is also broken, allowing first-order phase transitions
for some values of the quark mass.

The order of the phase transition is determined by the way
in which the order parameters σ goes to zero. In a first-order
transition, the order parameter is discontinuous at the critical
temperature or chemical potential. In a second-order transition,
the order parameter is continuous, but there is a discontinuity in
its first derivative. A rapid crossover transition is characterized
by an order parameter that is both continuous and smooth.

FIG. 5. Dependence of σl and σs on T with ml = 40 MeV, ms = 70 MeV and (a) μ = 0 MeV and (b) μ = 300 MeV.
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FIG. 6. The Columbia Plot for (a) μ = 0 MeV and (b) μ = 300 MeV. The shaded region indicates mass values where a first-order phase
transition is produced, and the dashed line shows the line of second-order phase transitions separating it from the crossover region. The dotted
line indicates the line of ms = ml .

The critical value of the quark mass separating first-order
and crossover phase transitions is mq = 35 MeV. Figure 4
shows examples of first-order, second-order, and crossover
transitions for representative values of the quark mass and
chemical potential. This critical quark mass is found to be
independent of μ, implying that this flavor-symmetric model
cannot produce a critical point in the T −μ plane.

C. 2+1-flavors

Finding no critical point in the flavor-symmetric case, we
extend the model to 2+1 flavors. The shooting is extended to
find values of σl and σs that yield regular solutions for both
chiral fields. Figure 5 shows a representative case for ml =
40 MeV, ms = 70 MeV at μ = 0 MeV, and μ = 300 MeV. As
in the flavor-symmetric case, the order of the phase transition
is not affected by the chemical potential. From Fig. 5 it is clear
that σl and σs differ. In fact, by examining the case where
ml = 0 MeV, ms = 200 MeV, we find that σl undergoes a
second-order transition while the phase transition for σs is first
order. In the case that the orders do not agree, we characterize
the transition by the higher-order transition of the two order
parameters.

The chiral phase structure at a particluar μ is summarized
by finding the second-order line in the Columbia Plot. Fig-
ure 6 shows representative Columbia Plots for μ = 0 and
μ = 300 MeV. We find the tricritical point, marking the end
of the first-order region, at ms = 200 MeV. At greater ms

values, second-order transitions occur at ml = 0 and rapid
crossover transitions occur for finite values. The physical point
ml = 5 MeV, ms = 95 MeV is within the first-order region,
contradicting expectations from lattice results at μ = 0. The
location of the second-order line may be adjusted by the choice
of input parameters, but this work is focused on the dependence
of the phase transition order on chemical potential.

At small ms there are deviations in the second-order line
on the order of 1 MeV as μ is varied. However, these small
changes are likely numerical artifacts rather than evidence
of a qualitative change. Thus, the phase transition order is
unaffected by μ, indicating that the critical surface depicted
in Fig. 2 has zero curvature in this model, and no critical point
in the T −μ plane is possible.

FIG. 7. Projection of χf onto V (χ ) as a function of temperature
for the case ml = ms = 10 MeV and μ = 0.010 GeV. Symmetry
restoration is clear at Tc ∼ 0.185 GeV.
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FIG. 8. Projection of χ
f
l and χf

s onto the surface of V (χl,χs),
parameterized by temperature in the range T = [0.1,0.23] GeV.

D. Chiral potential

Further analysis reveals how the solutions to (16) relate to
the flavor-symmetric scalar potential (10). In particular, the
effects of spontaneous symmetry breaking is evident from the
vacuum states of potential. We examine V (χf ), where χf ≡
χ (u → 1) is the near-horizon value of the chiral field. Figure 7
shows the temperature-independent potential for a represen-
tative case with ml = ms = 10 MeV and μ = 10 MeV. The
near-horizon solution is projected onto the potential, showing
first-order chiral symmetry restoration as T → Tc. The trivial
solution χ (u) = 0 is also plotted, but below T = Tc it is
energetically disfavored. Because mq is small, the effects of
explicit symmetry breaking are small, and at χf = 0, chiral
symmetry is restored. The potential is asymmetric in χf , in
contrast to the two-flavor model which also permits negative
solutions for χ, σ .

We perform a similar analysis for the 2+1-flavor potential
(10). With three flavors, we now project the temperature
dependence of χ

f
l and χ

f
s onto the surface given by V (χl,χs).

Figure 8 shows a representative case with ml = 30 MeV,
ms = 100 MeV, and μ = 0.1 GeV. The path along the surface
is parameterized by temperature, ranging from 0.1 GeV to
0.23 GeV. The transition is crossover and the chiral fields
do not vanish, a result of explicit chiral symmetry breaking
due to the nonzero quark masses. As in the two-flavor case,
when T → Tc the effects of spontaneous symmetry breaking
disappear.

IV. CONCLUSION

In this work, we investigate the chiral phase transition
in 2+1-flavor soft-wall AdS/QCD at finite temperature and
quark chemical potential. The scalar VEV is modified to
include strange quarks and higher-order terms in the scalar
potential are included in the action. A quartic term allows
for independent sources of explicit and spontaneous chiral
symmetry breaking, while a cubic t’Hooft determinant term
allows for flavor mixing and first-order phase transitions. All
analysis is performed in the finite chemical potential regime,
using the AdS–Reissner-Nordström metric. Using the shooting
method we numerically solve for the chiral field and extract
the dependence of the chiral condensates on temperature and
chemical potential.

In the flavor-symmetric case where ml = ms , we find
critical quark mass mc = 35 MeV separates first-order from
crossover transitions. In agreement with lattice results and
other nonperturbative methods, we find the second-order curve
that separates first-order from crossover transitions for the
flavor asymmetric case. When ms is above the tricritical point,
the results are consistent with the two flavor model, where the
transition is second order at ml = 0 and crossover otherwise.

This paper presents improvements on earlier results by
incorporating finite chemical potential in a 2+1-flavor model,
enabling exploration of the full chiral dynamics. Because the
this holographic model admits no critical point in the T −μ
plane. Future work in this area should provide qualitative
differences at finite quark chemical potential. One possibility
is to couple quark chemical potential to the light quarks only.
A modified black hole metric may also introduce qualitative
differences between the effects of temperature and chemical
potential. Finally, for a self-consistent model, the dilaton and
black hole metric should be solved dynamically from the
gravity action rather than being parameterized by hand.
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