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N� interaction: Meson exchanges, inelastic channels, and quasibound state
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Based on a baryon-baryon interaction model with meson exchanges, we investigate the origin of the strong
attraction in the N�(5S2) interaction, which was indicated by recent lattice QCD simulations. The long-range part
of the potential is constructed by the conventional mechanisms, the exchanges of the η meson and of the correlated
two mesons in the scalar-isoscalar channel, denoted by “σ” in the literature. The short-range part is represented
by the contact interaction. We find that the meson exchanges do not provide sufficient attraction. This means that
most of the attraction is attributed to the short-range contact interaction. We then evaluate the effect of the coupled
channels to the N�(5S2) interaction. We find that, while the D-wave mixing of the N� channel is negligible,
the inelastic ��, ��, and ��(1530) channels via the K meson exchange give the attraction of the N�(5S2)
interaction to the same level with the elastic meson exchanges. Although the elimination of these channels induces
the energy dependence of the single-channel N� interaction, this effect is not significant. With the present model
parameters fit to reproduce the scattering length of the HAL QCD result of the nearly physical quark masses, we
obtain the N�(5S2) quasibound state with its eigenenergy 2611.3 − 0.7i MeV, which corresponds to the binding
energy 0.1 MeV and width 1.5 MeV for the decay to the �� and �� channels. From the analysis of the spatial
structure and the compositeness, the quasibound state is shown to be the molecular state of N�. We also construct
an equivalent local potential for the N�(5S2) system which is useful for various applications.
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I. INTRODUCTION

Existence and properties of dibaryons have been one of the
major topics in hadron physics. Here dibaryons stand for states
of baryon number B = 2 generated by strong interactions
regardless of their structure: compact hexaquarks, baryon-
baryon, and meson-baryon-baryon molecules, etc. So far, there
is only the single well-established dibaryon state, the deuteron,
which is a proton-neutron molecule [1]. Because various
different mechanisms in strong interactions are expected to
generate dibaryons, the study of dibaryons helps to under-
stand the underlying theory of strong interactions, quantum
chromodynamics (QCD). For instance, compact hexaquarks
are closely related to the mechanism of quark confinement and
correlation of quarks inside hadrons. Hadronic molecules serve
as a valuable clue to investigate the hadron-hadron interactions,
which lead to novel few-body systems bound by hadronic
interactions.

Historically, dibaryons were first discussed in theoretical
studies. In the early stage, dibaryons analogous to the deuteron
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were predicted in Ref. [2] by combining the nucleon (N )
and the � resonance. The H dibaryon was predicted as a
compact hexaquark owing to the strongly attractive color-
magnetic interaction between quarks [3], which stimulated
various experimental searches for such dibaryons (see review
[4]). As an example of the dibaryon with meson-baryon-baryon
structure, the K̄NN state was predicted [5], motivated by the
strong attraction between the antikaon (K̄) and nucleon [6]
(see reviews [7,8]). Then, recent remarkable progress in exper-
iments and in lattice QCD simulations enables us to examine
these theoretical predictions on dibaryons. For example, the
WASA-at-COSY collaboration recently reported the d∗(2380)
in quantum numbers (JP , I ) = (3+, 0) [9–11], which may
correspond to the isoscalar �� bound state predicted in
Ref. [2]. Some hints about the H dibaryon come from lattice
QCD simulations [12–19]. In particular, the baryon-baryon
interaction in the HAL QCD method with nearly physical quark
masses [18,19] implies the existence of a resonance around the
N� threshold. Lattice QCD analyses with the nearly physical
quark masses are further suggesting new dibaryons such as the
S-wave �� bound state in JP = 0+ [20]. The J-PARC E15
experiment observed a peak structure which can be interpreted
as a signal of the K̄NN quasibound state [21,22].

In this study, we focus on yet another dibaryon system, the
N� state. This system was predicted to be bound in quark-
model calculations [23–26], and further studies within quark
models are found in Refs. [27,28]. Remarkably, the repulsive
core is expected to be absent in the elastic N� potential, in
contrast with the nuclear force, because the quark flavors in N
are completely different from those in � and hence the Pauli
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TABLE I. Baryon-baryon channels coupling to N� and their
threshold energies.

Channel Threshold [MeV]

�� 2434
�� 2511
N� 2611
� �(1530) = ��∗ 2649
�(1385) � = �∗� 2703
� �(1530) = ��∗ 2727
�(1385) �(1530) = �∗�∗ 2918

exclusion principle does not work. The absence of the repulsive
core is advantageous to generate a possible dibaryon state in
the N� system. The N� interaction in the 5S2 channel was
recently obtained in the HAL QCD analyses of the lattice QCD
data, where 2S+1LJ denotes the state with spin S, L wave, and
total angular momentum J of the N� system. Interestingly,
the results of the HAL QCD analyses suggested a strongly
attractive potential in the N�(5S2) channel without repulsive
core which supports a bound state [29–31]. Although there
are lower-energy baryon-baryon coupled channels �� and
��, it is expected that the decay of the N�(5S2) quasibound
state will be suppressed because couplings to these decay
channels are in D wave (see Table I for baryon-baryon channels
coupling to the N� state). Stimulated by the HAL QCD results,
the N� interaction was studied in the framework of chiral
perturbation theory [32]. A method to probe this dibaryon with
the correlation between N and � in high-energy heavy-ion
collisions was proposed in Ref. [33] as well.

The aim of our study is to understand the origin of the
strong attraction in the N�(5S2) channel. For this purpose,
we construct a meson exchange model for the N� interaction.
Combining the long-range meson exchange mechanisms with
the short-range interaction represented by the contact term,
we can pin down the physical origin of the attractive N�
interaction. In addition, by taking into account the coupling to
the relevant baryon-baryon inelastic channels, we can further
discuss the absorption processes and the energy dependence
of the N� interaction. These effects were assumed to be
small and are neglected in the HAL QCD analyses of the N�
interaction. Finally, the attractive N� interaction implies the
possible existence of nuclei with an � baryon. It is practically
useful to construct a local potential equivalent to the full model,
for the application to few-body calculations of � nuclei.

This paper is organized as follows: First, in Sec. II we for-
mulate the N� interaction including the inelastic contributions

as well as the elastic channels. Next, we show the expression of
the scattering amplitude and determine the model parameters
so as to reproduce the N�(5S2) scattering length calculated
in the HAL QCD analyses in Sec. III. We then discuss the
N�(5S2) interaction in Sec. IV by separately evaluating the
elastic and inelastic contributions to the interaction. We also
calculate properties of the on-shell N� scattering amplitude
and of the N� quasibound state. In Sec. V we construct
an equivalent local potential which reproduces the N�(5S2)
scattering amplitude. Section VI is devoted to the conclusion
of this study.

II. FORMULATION OF THE N� INTERACTION

First of all, we formulate the N� interaction based on the
meson exchanges with effective Lagrangians. This interaction
is then used to obtain the scattering amplitude in Sec. III.

A. Mechanisms

As for the elastic N� channel, the Okubo–Zweig–Iizuka
(OZI) rule restricts mediating mesons to those containing
both (uū + dd̄)/

√
2 and ss̄ components. Owing to this fact,

the longest range interaction should be mediated by the η
exchange [Fig. 1(a)]. In addition to η, there is a contribution
from the exchange of the light scalar-isoscalar meson “σ ,”
which should be, however, treated as the exchange of correlated
two pseudoscalar mesons due to its broad width as shown
in Fig. 1(b). In the vector channel, on the other hand, the
exchange of the light vector mesons is forbidden, because of
their ideal mixing and the OZI rule. The contributions from the
η and correlated two-meson exchanges can be determined by
empirical information as we show below. Further contributions
at short ranges, such as the exchanges of the heavier mesons
and the color magnetic interactions at quark-gluon level, are
treated as a contact term [Fig. 1(c)].

There are several inelastic channels which can couple to
N� as shown in Table I. Among them, we take into account
the two open channels �� and �� which are responsible for
the absorption processes. We also include one closed-channel
��∗, whose threshold is nearest to the N� threshold. We
consider the transition from N� to these channels through
the K exchange. We expect that, around the N� threshold,
the transitions between the inelastic channels such as �� →
�� contributes to the N� interaction only subdominantly.
Neglecting these contributions, we evaluate the box diagrams
to include the inelastic effects on the N� interaction as shown
in Fig. 1 (box).
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NN
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Ω

NN

Ω
(b)

Ω

NN

Ω
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Ω

N

K K

B(qqs)

B(qss)

N

Ω
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FIG. 1. Feynman diagrams for the N� interaction. The dashed lines represent the pseudoscalar mesons, while the solid and double lines
indicate baryons. Shaded circle denotes the correlation of two mesons, and B(qqs)B(qss) represents ��, ��, and ��(1530).
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B. Effective Lagrangians

The vertices in Fig. 1 are constructed with the effective La-
grangians, including the pseudoscalar meson P , octet baryon
B, and decuplet baryon D, based on flavor SU(3) symmetry.

The PBB coupling is governed by the chiral Lagrangian:

L = − F√
2f

〈B̄γ μγ5[∂μΦ,B]〉

− D√
2f

〈B̄γ μγ5{∂μΦ,B}〉, (1)

with the pseudoscalar meson and octet baryon fields Φ and B,
respectively, whose explicit forms are

Φ =

⎛
⎜⎝

1√
2
π0 + 1√

6
η π+ K+

π− − 1√
2
π0 + 1√

6
η K0

K− K̄0 − 2√
6
η

⎞
⎟⎠, (2)

B =

⎛
⎜⎝

1√
2
�0 + 1√

6
� �+ p

�− − 1√
2
�0 + 1√

6
� n

�− �0 − 2√
6
�

⎞
⎟⎠. (3)

The meson decay constant f is chosen at their physical
values [34]: fπ = 92.1 MeV, fK = 1.2fπ , and fη = 1.3fπ .
The parameters D = 0.795 and F = 0.465 are fixed by the
weak decays of the octet baryons.

The Lagrangian for the PBD coupling is

L = −fPBD

mπ

〈(�̄μ · ∂μΦ)B + H.c.〉, (4)

where mπ is the pion mass and the product (�̄ · Φ) represents

(�̄ · Φ)ab = εija�̄ikbΦkj , (5)

with the decuplet baryon field �:

�111 = �++, �112 = 1√
3
�+,

�122 = 1√
3
�0, �222 = �−,

(6)

for �(1232),

�113 = 1√
3
�∗+, �123 = 1√

6
�∗0, �223 = 1√

3
�∗−, (7)

for �(1385),

�133 = 1√
3
�∗0, �233 = 1√

3
�∗−, (8)

for �(1530), and

�333 = �−, (9)

for �−. The form of �abc is completely symmetric under
permutations of indices a, b, and c = 1, 2, 3. The cou-
pling constant fPBD is fixed as fPBD = 1.8 so as to re-
produce semiquantitatively the decay widths of the decu-
plet baryons: with fPBD = 1.8, we obtain ��(1232)→πN =
63 MeV,��(1385)→π� = 33 MeV,��(1385)→π� = 5 MeV, and
��(1530)→π� = 14 MeV.

Similarly, the Lagrangian for the PDD coupling is

L = −fPDD

mπ

〈(�̄μ · γ νγ5�μ)∂νΦ〉, (10)

where the product (�̄ · �) represents

(�̄ · �)ab = �̄ijb�ija. (11)

The coupling constant fPDD is fixed from the nucleon axial
charge based on the nonrelativistic SU(6) quark model [35]:

gA

2
:

f × fPDD√
2mπ

= 5

6
:

3

2
, (12)

where gA ≡ D + F = 1.26. From this analysis, we obtain
fPDD = 9gAmπ/(5

√
2f ) = 2.09.

Finally, we employ a spin-independent form for the contact
BDBD Lagrangian

L = c(�̄�)(p̄p + n̄n), (13)

with a coupling constant c as a model parameter. In general
there is a spin-dependent contact BDBD term as in Ref. [32],
which generates difference between interactions of the JP =
2+ and 1+ channels. However, the term in Eq. (13) is sufficient
in this study because we focus only on the JP = 2+ channel.

In the following we construct the N� interaction by
using these effective Lagrangians, together with the empirical
information of the two-meson correlation.

C. η exchange

The η exchange term, which is denoted VA, can be straight-
forwardly formulated according to Fig. 1(a). From the effective
Lagrangians, we can express VA in terms of the helicity
eigenstates as

VA = 2
√

2(D − 3F )fPDDmNm�

3fηmπ

F (q)2

q2 + m2
η

ūN ( p′, λ′
N )

× γ5uN ( p, λN )ū� μ(− p′, λ′
�)γ5u

μ
�(− p, λ�), (14)

where p and p′ are the center-of-mass relative momenta in
the initial and final states, respectively, q ≡ | p − p′| is the
momentum transfer, mη is the η mass, and uN and u

μ
� are the

N and � spinors, respectively (see Appendix B). The spinors
depend on the helicity λ as well as the momentum p. We
introduced a form factor F (q) of a monopole type:

F (q) = �2

�2 + q2
, (15)

with cutoff �. In the calculation of VA we used the relations

ūN (/p′
N

− /pN
)γ5uN = 2mNūNγ5uN, (16)

ū� μ(/p′
�

− /p�
)γ5u

μ
� = 2m�ū� μγ5u

μ
�, (17)

where mN and m� are the N and � masses, respectively.

D. Correlated two-meson exchange

To formulate the correlated two-meson exchange term VB,
we need some consideration. In this study we start with
a general form of the interaction constructed as a linear
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combination of the so-called kinematic covariants O(N)
a and

O(�)
a μν [36,37]:

VB =
∑

a

Va(t)ūN ( p′, λN )O(N)
a uN ( p, λN )

× ū
μ
�(− p′, λ�)O(�)

a μνu
ν
�(− p, λ�), (18)

where the coefficients Va are Lorentz-invariant amplitudes as
functions of the Mandelstam variable t and a specifies types
of (O(N)

a , O(�)
a μν). The kinematic covariants are built up from

the Dirac matrices and the momenta in such a way that their
bilinear spinor representations are Lorentz invariant. Then,
because the correlated two mesons in Fig. 1 are in the scalar
channel, we have only two independent types of (O(N)

a , O(�)
a μν),

for which we take

a = S : O(N)
S = 1, O(�)

S μν = gμν, (19)

a = 2M : O(N)
2M = 1, O(�)

2M μν = qμqν

m2
�

, (20)

where qμ is the four-momentum transfer. Therefore, making
the three-dimensional reduction and introducing a phenomeno-
logical form factor, we can express VB as

VB = F (q)2ūN ( p′, λ′
N )uN ( p, λN )

×
[
VS(t)ū�μ(− p′, λ′

�)uμ
�(− p, λ�)

+ V2M(t)
qμqν

m2
�

ū
μ
�(− p′, λ′

�)uν
�(− p, λ�)

]
, (21)

where t = −| p − p′|2 and qμ = (0, p − p′). We use the
monopole-type form factor in Eq. (15) with the same cutoff �.

Now our task is to evaluate the coefficients VS and V2M,
which govern the interaction strength. They are calculated with
the dispersion relation for the scattering amplitude, as done in,
e.g., Refs. [36,37]. In the N� → N� reaction, VS,2M(t) as
a function of t is analytic except for some resonance poles
and branch cuts along the real t line: the unitarity cut running
from 4m2

π to ∞ and the left-hand cuts. Therefore, neglecting
the latter one, which is irrelevant to the correlated two-meson
exchange, we may consider the dispersion relation in a general
form

VS,2M(t) = 1

π

∫ tc

4m2
π

dt ′
ImVS,2M(t ′)

t ′ − t
, (22)

where we introduced a cutoff tc instead of infinity. Equa-
tion (22) means that, to calculate the N� interaction with
the correlated two-meson exchange taking place in the region

B1

M1

M1 ′

N

N

B2

M2

M2 ′ Ω

Ω

FIG. 2. Feynman diagram for the NN̄ → ��̄ reaction. Particles
in the intermediate states are listed in Table II. Shaded circle denotes
the correlation of two mesons.

TABLE II. Particles in the intermediate states of the diagram in
Fig. 2.

B1 M1 M ′
1 B2 M2 M ′

2

N π π � η η

N η η � K K̄

� π π �∗ K K̄

� K K̄

� K K̄

�∗ K K̄

t < 0, we may consider the same amplitude but in t > 4m2
π ,

which can be achieved in the NN̄ → ��̄ reaction as shown
in Fig. 2.

In this study we formulate the NN̄ → ��̄ scattering ampli-
tude by considering the intermediate states listed in Table II.
The scattering amplitude of the two pseudoscalar mesons in
the scalar channel, denoted by the shaded circle in Fig. 2, is
calculated in the so-called chiral unitary approach [38–41]. The
details of the formulation and calculation of the NN̄ → ��̄
scattering amplitude are given in Appendix D.

We fix the cutoff tc = (1.2 GeV)2, which is the upper bound-
ary of the fit range of our ππ -KK̄-ηη scattering amplitude in
the chiral unitary approach to the experimental ππ (J = 0, I =
0) phase shift (Appendix F). The resulting VS,2M in the region
t < 0 are shown in Fig. 3.

E. Contact term

The contact term VC is straightforwardly constructed as

VC = −cF (q)2ūN ( p′, λ′
N )uN ( p, λN )

× ū� μ(− p′, λ′
�)uμ

�(− p, λ�). (23)

We here introduced the form factor F (q) as in the η and corre-
lated two-meson exchanges. The unknown coupling constant
c is to be determined by the lattice QCD data as described in
Sec. III.
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FIG. 3. Lorentz invariant amplitudes VS and V2M calculated with
the dispersion relation as functions of the Mandelstam variable t .
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TABLE III. Channels for the N�

coupled-channels scattering.

1 N� (5S2)
2 �� (3D2)
3 �� (1D2)
4 �� (3D2)
5 �� (1D2)
6 ��∗ (5S2)

F. Projection to partial waves and coupling to inelastic channels

The interaction terms above are constructed in terms of the
helicity eigenstates in momentum space as

V = V ( p′, λ3, λ4, p, λ1, λ2), (24)

where p and p′ are the relative momenta in the center-of-
mass frame in the initial and final states, respectively, and λa is
the helicity for the ath baryon in the baryon-baryon scattering
B1B2 → B3B4. Now these interaction terms are projected to
partial waves according to the method in Appendix C. As a
result, the expression of the interaction reduces to

V = Vα(p′, p), (25)

with p(′) = | p(′)| and α = (J, P,L′, S ′, L, S), where J , P ,
L(′), and S(′) are total angular momentum, parity, spin, and
orbital angular momentum of the two-body system in the initial
(final) state, respectively.

In this study we focus on the N� interaction in its S wave
with JP = 2+ (5S2 channel) where the attractive interaction
is reported by the HAL QCD collaboration. Let us discuss
contributions from the inelastic channels ��, ��, and ��∗.
Here we consider these channels with minimal orbital angular
momenta; namely, D, D, and S waves for the ��, ��, and
��∗ channels, respectively. We note that, for JP = 2+, there
are two D-wave states with different spins (3D2 and 1D2) in
each of the �� and �� channels. In summary, we take into
account the channels listed in Table III.

The evaluation of the inelastic contributions proceeds as
follows: We first calculate a coupled-channel partial-wave
projected interaction of the process j (p) → 1(p′), V1j (p′, p)
where the channel index j runs from 1 to 6 as listed in Table III.
Owing to the time-reversal invariance of the strong interaction,
we have a relation V1j (p′, p) = Vj1(p, p′). The transition to
the inelastic channels is driven by the K exchange as described
in Sec. II G. We then evaluate the box diagram in Sec. II H to ob-
tain the effective single-channel N� interaction in channel 1.1

G. K exchange for transition interaction

The transition to inelastic channels with the K exchange as
shown in Fig. 1 (box) can be formulated in a similar manner
to the case of the η exchange. Here, for simplicity we make
an approximation that the time component of the momentum

1The N�(5D2) and N�(3D2) channels couple to this sector through
the tensor force in the η exchange. We estimate this effect in Sec. IV A
and show that their contributions are small.

transfer is zero, q0 ≈ 0, and hence qμ ≈ (0, p − p′). This can
be guaranteed by the mass degeneracy in the SU(6) spin-flavor
symmetry. Then, the transition terms are constructed as

VN�→�� = − (D + 3F )fPBD(mN + m�)

2
√

3fKmπ

F (q)2

q2 + m2
K

× ū�

(
p′, λ′

�

)
γ5uN ( p, λN )

× ū�(− p′, λ′
�)qμu

μ
�(− p, λ�), (26)

VN�→�� = −
√

3(D − F )fPBD(mN + m�)

2fKmπ

F (q)2

q2 + m2
K

×ū�( p′, λ′
�)γ5uN ( p, λN )

× ū�(− p′, λ′
�)qμu

μ
�(− p, λ�), (27)

VN�→��∗ = − (D + 3F )fPDD(mN + m�)(m�∗ + m�)

6fKmπ

× F (q)2

q2 + m2
K

ū�( p′, λ′
�)γ5uN ( p, λN )

× ū�∗ μ(− p′, λ′
�∗ )γ5u

μ
�(− p, λ�), (28)

with q ≡ |q| = | p − p′|. We adopt the same form factor
F (q) with the other diagrams. Performing the partial-wave
projection in Appendix C, we obtain V1j (p′, p).

H. Inelastic contributions in box diagrams

As we explained in Sec. II A, we consider the transition
of the N� to the inelastic channels by the K exchange but
neglect the transition between the inelastic channels such as
�� → ��. In this case, the inelastic channels contribute to
the N�(5S2) interaction only through the box diagrams in
Fig. 1 (box). We can express this by using the partial-wave
projected interaction in the previous section:

Vbox(j )(E; p′,p) =
∫ ∞

0

dp′′

2π2
p′′ 2 V1j (p′, p′′)Vj1(p′′, p)

E − Ej (p′′) + i0
,

(29)
with j = 2–6. The on-shell energy Ej is

Ej (p) ≡
√

p2 + m2
j +

√
p2 + m′ 2

j , (30)

with mj and m′
j being masses of particles in channel j :

(m2,m
′
2) = (m�,m�), (m6,m

′
6) = (m�,m�∗ ), etc. We note

that the interaction Vbox(j )(E; p′,p) depends on the center-of-
mass energy E. For a real energy E > mi + m′

i , the interaction
Vbox(j )(E; p′,p) becomes complex according to the infinites-
imal quantity +i0 in the denominator. The imaginary part of
the box interaction Vbox(j ) represents the absorption of the N�
system into the channel j .

III. SCATTERING AMPLITUDE AND
PARAMETER FIXING

The N�(5S2) interaction we have formulated is composed
of

V (E; p′, p) =VA(p′, p) + VB(p′, p) + VC(p′, p)

+
6∑

j=2

Vbox(j )(E; p′, p). (31)
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Here VA, VB, VC denote the contributions from the η exchange,
correlated two-meson exchange, and contact terms projected
to the 5S2 channel, respectively. The box contribution Vbox(j )

was defined in Eq. (29).
One of the most important quantities calculated with this

interaction is the T matrix of the N�(5S2) scattering. In the
present formulation, the T matrix of the N�(5S2) scattering
is a solution of the Lippmann–Schwinger equation in a single
channel as follows:

T (E; p′, p) = V (E; p′, p) +
∫ ∞

0

dp′′

2π2
p′′ 2

× V (E; p′, p′′)T (E; p′′, p)

E − EN�(p′′) + i0
, (32)

where EN� is the on-shell energy for the N� system,

EN�(p) ≡
√

p2 + m2
N +

√
p2 + m2

�. (33)

The energy E in Eq. (32) can be analytically continued
to the complex plane. When we calculate the on-shell T
matrix Ton for the N�(5S2) scattering above the threshold,
the infinitesimal quantity +i0 in the denominator specifies
the boundary condition and gives the imaginary part of the
T matrix, which results in

Ton(k) = Kon(k)

1 + Kon(k) × iρ(k)/2
, (34)

with the relative momentum k, on-shell K matrix Kon, and
phase space ρ(k). The K matrix is calculated with the integral
equation

K(E; p′, p) = V (E; p′, p) + P
∫ ∞

0

dp′′

2π2
p′′ 2

× V (E; p′, p′′)K(E; p′′, p)

E − EN�(p′′)
, (35)

where P stands for the principal value of the integral, and the
on-shell part is

Kon(k) ≡ K(EN�(k); k, k). (36)

The phase space ρ(k) is defined as

ρ(k) ≡ k

π

√(
k2 + m2

N

)(
k2 + m2

�

)
EN�(k)

. (37)

From the on-shell T matrix, we can extract the threshold
parameters for the N� scattering in nonrelativistic quantum
mechanics such as the scattering length a and effective range
reff . In the present notation, the N�(5S2) scattering amplitude
in nonrelativistic quantum mechanics, fS , is expressed as

fS(k) = − 1

2π

√(
k2 + m2

N

)(
k2 + m2

�

)
EN�(k)

Ton(k). (38)

We can expand the inverse of the scattering amplitude, fS (k)−1,
with respect to the relative momentum k as

fS(k)−1 = −1

a
− ik + 1

2
reffk

2 + O(k4), (39)

where the scattering lengtha and effective range reff enter as the
coefficients of the zeroth- and second-order terms, respectively.
Therefore, we can calculate them from the behavior of the
scattering amplitude at the threshold:

a = −fS(k = 0), (40)

reff =
[

d2f −1
S

dk2

]
k=0

. (41)

We note that the scattering length and effective range are in
general complex if the interaction V has imaginary part as the
absorption into open channels.

Next, we would like to fix the model parameters in our
potential: cutoff � and coupling constant for the contact term
c. Among the two parameters, the cutoff � can be fixed to
be a typical hadron scale. In the present study we take the
value � = 1.0 GeV. For the coupling constant c, on the other
hand, we need information on the N�(5S2) interaction. We
employ the recent HAL QCD result on the scattering length
from lattice QCD simulations with the nearly physical quark
masses [30], in which the N�(5S2) system is found to be bound
with very small binding energy and the system is almost in the
unitary limit. In Ref. [30], they reported that the scattering
length is 7.4 ± 1.6 fm at the time range t = 11 of the lattice
simulations.2 We reproduce this value by using our model but
with hadron masses adjusted to the lattice simulations.

For the hadron masses in the lattice QCD simulations,
we adopt mlat

N = 964 MeV and mlat
� = 1712 MeV taken from

Ref. [20], mlat
� = 1123 MeV, mlat

� = 1204 MeV, and mlat
� =

1332 MeV from Ref. [19], and mlat
�∗ = 1580 MeV from Fig. 1

of Ref. [43]. They are used to calculate the on-shell energies
Ej , which enter in the denominators of the T matrix and box
interactions, while we assume that the interaction (31) remains
unchanged. In addition, to simulate the contributions from the
�� and �� channels in finite volume in our framework, we
take the real part of the box interaction Vbox(j ). Then, the
scattering length is calculated as in Eq. (40) together with
Eqs. (34)–(38) but with masses being mlat

N and mlat
� instead

of mN and m�, respectively.
In this condition, we obtain the scattering length a =

7.4 fm with the coupling constant c = −22.1 GeV−2. In the
following, we adopt this value of the coupling constant c =
−22.1 GeV−2 together with the cutoff � = 1.0 GeV. We note
that, if we keep the hadron masses in the lattice simulations
but turn on the imaginary part of the box interaction, we obtain
the scattering length a = 4.1 − 3.1i fm.

IV. PROPERTIES OF THE N� INTERACTION

Now that we have fixed parameters in our model, we discuss
the properties of the N�(5S2) interaction. In the following, we

2We would like to thank T. Iritani and HAL QCD collaboration for
providing us with the numerical value of the scattering length [42].
The HAL QCD collaboration provides a real-valued scattering length
because of N�(5S2) single-channel analysis. We also note that the
scattering length in our notation [see Eq. (39)] has the opposite sign
with respect to that in HAL QCD.
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FIG. 4. The elastic contributions to the N�(5S2) interactions
VA(p, p), VB(p, p), VC(p, p) as functions of momentum p.

use the physical hadron masses in the isospin-symmetric limit
summarized in Appendix A.

A. Elastic contributions

First we investigate properties of the N�(5S2) interaction
in the elastic N� channel, i.e., the terms VA(p′, p), VB(p′, p),
VC(p′, p) in Eq. (31). We note that the terms VA, VB, VC has no
dependence on the energyE. The contributions VA(p′ = p, p),
VB(p′ = p, p), VC(p′ = p, p) are plotted in Fig. 4 as functions
of the momentum p. As one can see from the figure, the
contact term VC is strongly attractive and gives a dominant
contribution. Other two terms, VA and VB, give moderate
attraction on top of the contact term. This finding of the weak
η and “σ” exchanges is consistent with the calculation based
on a quark model in Ref. [28]. The η exchange interaction
VA is weak because the ηNN coupling constant is small. The
correlated two-meson exchange interaction VB is also weak.
This is in contrast to the NN case, in which the broad “σ
meson” plays an important role to generate NN attraction in
the intermediate range region. The weakness of the correlated
two-meson exchange in the N� system is because the broad “σ
meson” cannot couple to the � via the ππ state [see Eq. (E11)].
Another resonance in the scalar-isoscalar channel, f0(980), has
been considered to be a KK̄ molecular state [44–46] and hence
it can couple both to N and �. However, this contribution turns
out to be also small, presumably because the heavier meson ex-
change acts only in the short-range (high-momentum) region.

To estimate the strength of the attraction, we calculate the
volume integral of the interaction in the momentum space:∫ ∞

0
dp V (p, p). (42)

The numerical results of the volume integrals of VA, VB, VC

are listed in the second, third, and fourth rows in Table IV,
respectively. We can see that the contact term (C) is about
ten times more attractive than the η or correlated two-meson
exchange. In other words, the lattice QCD scattering length
[30] requires such attractive component represented by the

TABLE IV. Volume integral (42) of the N� interaction from
each contribution in units of GeV−1. The energy is fixed as E =
2550 MeV, mN + m� = 2611.4 MeV, and 2650 MeV. Contributions
from inelastic channels are evaluated as the box terms.

Contribution 2550 MeV mN + m� 2650 MeV

A −1.11 −1.11 −1.11
B −2.22 −2.22 −2.22
C −13.21 −13.21 −13.21
N�(5D2) −0.08 −0.10 −0.12 − 0.01i

N�(3D2) −0.03 −0.03 −0.04 − 0.00i

��(3D2) −1.41 − 0.55i −1.32 − 0.94i −1.19 − 1.13i

��(1D2) −0.92 − 0.37i −0.86 − 0.62i −0.78 − 0.75i

��(3D2) −0.24 − 0.02i −0.28 − 0.09i −0.28 − 0.15i

��(1D2) −0.16 − 0.01i −0.18 − 0.06i −0.18 − 0.10i

��∗(5S2) −0.53 −0.67 −0.97 − 0.05i

Total −19.89 − 0.95i −19.97 − 1.72i −20.08 − 2.18i

contact term, in addition to the conventional meson exchanges
at long distance.

In addition to the S wave, we examine the D-wave N�
contribution as well because the η exchange term VA can mix
the S- and D-wave states owing to the tensor-force coupling,
which is essential in the NN system through the π exchange.
We note that there are two D-wave states with different spins
in the JP = 2+ state, N�(5D2) and N�(3D2), to which we
assign the channels j = 7 and 8, respectively. We calculate
the D-wave contribution to the S wave in the N� system
through the box diagrams with the intermediate state being
the N�(5D2) and N�(3D2) channels:

VD(E; p′, p) =
8∑

j=7

∫ ∞

0

dp′′

2π2
p′′ 2 V1j (p′, p′′)Vj1(p′′, p)

E − EN�(p′′) + i0
.

(43)

For the interaction Vj1 (j = 7 and 8) in the numerator of the
integrand, we consider only the N� channel, VA + VB + VC,
projected to the S and D waves in the initial and final states,

respectively. We note that the effective interaction VD depends
on the energy owing to the reduction of the D-wave channels.

The D-wave contribution to the S-wave interaction
VD(E; p, p) is plotted in Fig. 5 as a function of the momentum
p. We fix the energy in the effective interaction as E =
mN + m� = 2611.4 MeV, 2550 MeV, and 2650 MeV. Note
that the box term provides an imaginary part of the interaction
above the threshold (E = 2650 MeV). Comparing the result in
Fig. 5 with those in Fig. 4, we find that the D-wave contribution
(∼−0.4 GeV−2 at p = 0 GeV) is very tiny with respect to
the S-wave contact term (∼−22 GeV−2 at p = 0 GeV) and
hence the D-wave contribution in the S-wave interaction is
negligible. We can understand this behavior by the weak ηNN
coupling compared with the πNN coupling. We also find
that the energy dependence of the D-wave contribution in the
S-wave interaction is not significant.

To quantify the smallness of the D-wave contribution, we
calculate the volume integral (42) of VD as listed in the fifth and
sixth rows in Table IV. The volume integral from the D-wave
contribution is only ∼1% of the contact-term contribution.
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Based on these results, in the following discussions we
neglect the N�(5D2) and N�(3D2) channels.

B. Inelastic contributions

Next we investigate the effects of the inelastic channels to
the N�(5S2) interaction.

The contributions Vbox(j )(E; p′ = p, p) are plotted in
Fig. 6 as functions of the momentum p. Here we show the
sum of the 3D2 and 1D2 contributions in the �� and ��
channels, for simplicity. The energy is fixed at threshold
E = mN + m�, thus the interaction which involves open ��
or �� channel in the intermediate state has an imaginary
part. From the real part of the interaction, we observe that
the ��, ��, and ��∗ channels assist the attraction of the
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FIG. 6. The inelastic contributions to the N�(5S2) interaction
Vbox(j )(E; p, p) as functions of momentum p. The energy in the
effective interaction is fixed as E = mN + m�. In the figure �� and
�� indicates the sum of 3D2 and 1D2 contributions, respectively.

N�(5S2) interaction. Among them, the �� channel gives the
strongest attraction, which is comparable to the correlated
two-meson exchange VB (see Fig. 4). Even with the smaller
energy denominator, the interaction of the intermediate ��
channel is suppressed compared with the �� case by the
smaller KN� coupling: (D + 3F )/2

√
3 ≈ 0.63 for the

KN� coupling, and
√

3(D − F )/2 ≈ 0.29 for the KN�
coupling. The intermediate ��∗ channel becomes significant
only at higher momentum p � 0.6 GeV. As for the imaginary
part of the interaction, the intermediate �� term gives larger
contribution than the �� one, which indicates the N�(5S2)
system mainly decays to the �� channel.

We calculate the volume integral (42) from the inelastic con-
tributions, and the results are listed from the seventh to eleventh
rows in Table IV. We can see that the �� channel gives
the strongest attraction and absorption among the inelastic
channels. The sum of the real parts of the volume integrals from
the ��(3D2) and ��(1D2) contributions is similar magnitude
to the volume integral from the correlated two-meson exchange
(−2.22 GeV−1). The imaginary part grows as the energy E
increases because a larger phase space can be utilized for a
higher energy E. We can also understand from Table IV that
the energy dependence of the box interaction is not significant.
Indeed, when we vary the energy from E = mN + m� to
2550 or 2650 MeV, the shift of the volume integral in each
contribution is only �1% of the total amount of the volume
integral listed in the last row of Table IV.

C. On-shell N�(5 S2) scattering amplitude

We then calculate the on-shell N�(5S2) scattering ampli-
tude above the N� threshold and extract the scattering length
and effective range.

The N� scattering amplitude fS(k) as a function of the rel-
ative momentum k is obtained by the formula (38). Because the
inverse of the scattering amplitude fS(k)−1 is useful to extract
the scattering length and effective range, we show the result of
the inverse of the scattering amplitude fS(k)−1 in Fig. 7 (solid
and dash-dotted lines). Because the N� interaction is complex
reflecting the absorption into open channels, �� and ��,
fS(k)−1 is complex even at the threshold k = 0 GeV, which
leads to a complex scattering length. The real part of fS(k)−1

is negative at the threshold, which implies the existence of
an N� quasibound state below the threshold, and it increases
almost quadratically. In the same energy region, the imaginary
part of fS(k)−1 almost linearly decreases as a function of k
like −ik. Because the energy dependence of fS(k)−1 at low
energy is dictated by −ik + reffk

2/2 as shown Eq. (39), Fig. 7
indicates the imaginary part of the effective range is small. By
using the formulas (40) and (41), we can calculate the scattering
length a and effective range reff , respectively. In our model we
obtain a = 5.3 − 4.3i fm and reff = 0.74 + 0.04i fm. We find
that the real part of the effective range roughly corresponds to
the length scale of the N� interaction, and the imaginary part
is small, as expected. The magnitude of the scattering length is
evidently larger than the interaction range, indicating that the
N� scattering is close to the unitary limit. With these threshold
parameters, the effective range expansion (39) reproduces the
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inverse of the scattering amplitude f −1
S fairly well in the energy

range of Fig. 7.

D. N� quasibound state

Finally, by using the full N�(5S2) interaction (31) and
solving the Lippmann–Schwinger equation (32), we search
for a pole of the N�(5S2) quasibound state, indicated by the
scattering length. As a result of the numerical calculation,
we find a pole of the N�(5S2) quasibound state at Epole =
2611.3 − 0.7i MeV in the complex energy plane below the
N� threshold (2611.4 MeV). The pole exists in the first
Riemann sheet of the N� channel and in the second Riemann
sheets of the �� and �� channels. The pole position corre-
sponds to the binding energy 0.1 MeV and width 1.5 MeV.

In general, when one takes into account the imaginary part
of the potential to represent absorption into open channels,
the binding energy of a bound state in quantum mechanics
decreases. In particular, a shallow bound state may disappear
above the threshold. In the present case, the pole position of the
N�(5S2) bound state would be 2611.0 MeV if the imaginary
part of the interaction coming from the box terms were absent.
The imaginary part of the N� interaction reduces the binding
energy of the N� bound state from 0.3 to 0.1 MeV. Therefore,
we confirm that the absorptive effect by the �� and ��
channels indeed acts repulsively, but the N�(5S2) quasibound
state stays below the threshold.

The N� system is an isospin doublet, and there are two
components, p�− and n�−. In addition to the strong inter-
action, in the p�− system, the attractive Coulomb interaction
between p and �− will assist the binding more. This point
will be discussed at the end of this subsection with the wave
function of the quasibound state.

To investigate the properties of the N�(5S2) quasibound
state, we calculate its wave function from the residue of the
T matrix at the pole position, according to the approach in
Ref. [47]. The off-shell T matrix contains the pole in the

following expression:

T (E; p′, p) = γ (p′)γ (p)

E − Epole
+ (regular at E = Epole). (44)

The function γ (p) is related to the radial part of the N�
quasibound-state wave function in momentum space as

RN�(p) =
√

4πγ (p)

Epole − EN�(p)
. (45)

An important point to be noted is that the wave function
RN�(p) is already normalized when extracted from the residue
of the T matrix, as the Lippmann–Schwinger equation (32) is
inhomogeneous integral equation.

From the wave function RN�(p) in momentum space we
can calculate the wave function in coordinate space in a
straightforward way:

ψ(r) =
∫

d3p

(2π )3 ei p·rRN�(p)Y00

= Y00

2π2r

∫ ∞

0
dp p sin (pr)RN�(p), (46)

where Y00 ≡ 1/
√

4π is the spherical harmonics. The norm of
this wave function is expressed as

XN� =
∫

d3r [ψ(r)]2 =
∫ ∞

0
dr PN�(r), (47)

where we define the “density distribution” PN�(r):

PN�(r) ≡ 4πr2[ψ(r)]2. (48)

We note the absence of the complex conjugate in Eqs. (44),
(47), and (48), due to the unstable nature of the quasibound
state. As a consequence, the wave functions RN�(p), ψ(r), the
density distribution PN�(r), and the norm XN� are in general
complex.

The norm XN� from the T matrix is called compositeness
[45,48,49] and quantitatively evaluates the importance of the
N� degrees of freedom for the quasibound state in the
employed model. The compositeness XN� is unity for a purely
N� state, but it deviates from unity when the interaction
depends on the energy E as a consequence of the effective
reduction of the inelastic channels. In the present formulation,
the quasibound state can have ��, ��, and ��∗ components
whose contributions are evaluated with [50,51]

Xj = − 1

16π5

∫ ∞

0
dp p2RN�(p)

∫ ∞

0
dp′ p′ 2RN�(p′)

× ∂Vbox(j )

∂E
(Epole; p′, p). (49)

As a result, we obtain XN� = 1.00 + 0.00i within three
significant figures while we find that the others X��, X��,
and X��∗ are consistent with zero in this order. The result
indicates that the quasibound state obtained in the present
model is indeed composed of the N� channel.

Besides, using the weak-binding relation derived by Wein-
berg [1], the compositeness of a shallow bound state can be
determined only by the observable quantities, the scattering
length and the eigenenergy. The relation extended to the
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quasibound state with the finite decay width is given as [52,53]

a = R

[
2Xwb

N�

1 + Xwb
N�

+ O

(∣∣∣∣Rtyp

R

∣∣∣∣
)

+ O

(∣∣∣∣ l

R

∣∣∣∣
3
)]

, (50)

R ≡ 1/
√

−2μEh, l ≡ 1/
√

2μω, (51)

where Xwb
N� is the compositeness for the N� channel,

Eh = Epole − mN − m� = −0.1 − 0.7i MeV is the
eigenenergy of the bound state measured from the N�
threshold energy, μ = mNm�/(mN + m�) is the reduced
mass, Rtyp is the typical length scale of the interaction, and
ω = 37.7 MeV denotes the difference between the threshold
energy of the N� channel and that of the nearest channel,
��∗. We estimate Rtyp with the η meson exchange interaction
as Rtyp = 1/mη ∼ 0.4 fm. We find that |Rtyp/R| ∼ 0.1 and
|l/R|3 ∼ 0.0 are much smaller than unity, which justifies
neglecting the second and third terms in Eq. (50) to calculate
the compositeness of the N� quasibound state. Neglecting
these correction terms and using the value of the scattering
length a = 5.3 − 4.3i fm derived in the previous section,
we obtain Xwb

N� = 1.1 + 0.1i. With this complex Xwb
N�,

the real-valued compositeness, which is interpreted as the
probability [52,53], is calculated as X̃wb

N� = 1.0. This result
indicates the dominance of the N� composite component, in
agreement with the above calculation using the wave function.

We then plot the density distribution PN�(r) in coordinate
space (48) in Fig. 8 (solid and dash-dotted lines). Because a
certain amount of density exists beyond r = 10 fm, the N�
quasibound state is a spatially extended system owing to the
tiny binding energy from the N� threshold. The average of
the “distance” between N� is

√
〈r2〉 = 3.8 − 3.1i fm, where

we define 〈r2〉 as

〈r2〉 ≡
∫ ∞

0
dr r2PN�(r). (52)

Although the “distance” is complex due to the resonance
nature, its absolute value largely exceeds the typical size of

baryons of 0.8 fm. Meanwhile, as explained in Ref. [51], the
dumping of the wave function outside the potential range is re-
lated to the standard expectation value of the average distance:

〈
r2

dump

〉 ≡
∫ ∞

0 dr r2|PN�(r)|∫ ∞
0 dr |PN�(r)| . (53)

The result is (〈r2
dump〉)1/2 = 6.5 fm, which indicates dumping

of the wave function to a very large distance compared with
the typical hadron scale owing to the tiny binding energy.

We also estimate the shift of the binding energy by the
Coulomb interaction in the p�− quasibound state. We cal-
culate the shift of the bound-state eigenenergy, �ECoulomb, in
a perturbation:

�ECoulomb ≡
∫ ∞

0
dr

(
−α

r

)
PN�(r), (54)

where α ≈ 1/137 is the fine-structure constant. The result is
�ECoulomb = −0.9 − 0.4i MeV. Therefore, we conclude that
both the binding energy and decay width will respectively shift
∼+1 MeV by the Coulomb interaction for the p�− bound
state.

V. EQUIVALENT LOCAL N� POTENTIAL

The existence of the N� quasibound state below the
threshold implies possible � nuclei, generated by the
attractive N� interaction. In addition, such possible � nuclei
would shift eigenenergies of �− atoms, Coulombic bound
states of �− and nuclei. To study the few-body system of
� in nuclei, it is useful to have a local N� potential in the
Schrödinger equation for which several established techniques
to perform rigorous few-body calculations are available. On
the other hand, because the momentum-space N� interaction
in the present formulation (31) is a function not only of the
momentum transfer | p − p′| but also of the momenta p and p′
individually, it is in general nonlocal. In addition, the scattering
equation (32) is formulated with semirelativistic kinematics
for baryons. Here we construct a local potential which
equivalently reproduces the N�(5S2) scattering amplitude in
this study. We first determine the local potential through the
matching with the interaction (31), and then check whether
the low-energy observables are properly reproduced.

We consider a local potential in the S-wave Schrödinger
equation[

− 1

2μr

d2

dr2
r + mN + m� + Vlocal(r)

]
ψ(r) = Eψ(r), (55)

where r is the relative coordinate of the N� system and the
reduced mass is defined as μ = mNm�/(mN + m�). Note that
the mass energy is included in the Hamiltonian in order to be
consistent with the definition of E in this paper. To parametrize
Vlocal(r), we introduce an analytic potential in momentum
space as a superposition of nine Yukawa terms with different
exchanged mass mn:

Ṽlocal(q) =
9∑

n=1

Cn

q2 + m2
n

(
�2

�2 + q2

)2

, (56)
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where q is the momentum transfer, � is a cutoff, and Cn are the strength parameters of the local potential. This local potential in
coordinate space is expressed as

Vlocal(r) =
∫

d3q

(2π )3 e−iq·r Ṽlocal(q) = 1

4πr

9∑
n=1

Cn

(
�2

�2 − m2
n

)2
[
e−mnr −

(
�2 − m2

n

)
r + 2�

2�
e−�r

]
. (57)

To determine the strength parameters Cn, we project the momentum-space potential to the S wave as

VNR(p′, p) = 1

2

∫ 1

−1
d cos θ Ṽlocal(

√
p2 − 2pp′ cos θ + p′ 2)

= 1

4pp′

9∑
n=1

Cn

(
�2

�2 − m2
n

)2{
ln

[
(p + p′)2 + m2

n

(p − p′)2 + m2
n

]
− ln

[
(p + p′)2 + �2

(p − p′)2 + �2

]

+ �2 − m2
n

(p + p′)2 + �2
− �2 − m2

n

(p − p′)2 + �2

}
. (58)

The S-wave Lippmann–Schwinger equation to obtain the T
matrix TNR, corresponding to the Schrödinger equation (55),
is expressed as

TNR(E; p′, p) =VNR(p′, p) +
∫ ∞

0

dp′′

2π2
p′′ 2

× VNR(p′, p′′)TNR(E; p′′, p)

E − ENR(p′′) + i0
, (59)

where the nonrelativistic on-shell energy is ENR(p) ≡ mN +
m� + p2/(2μ). We determine Cn by the matching of
VNR(p′, p) with V (E; p′, p) in Eq. (31) at the threshold energy
E = mN + m� as

V (E = mN + m�; p′, p) = f (p)f (p′)VNR(p′, p), (60)

with a factor to compensate the difference of the kinematics,

f (p) ≡
√
EN�(p) − mN − m�

p2/(2μ)
. (61)

With the factors f (p)f (p′), Eq. (59) coincides with the
Lippmann–Schwinger equation (32) at the threshold.

We set the cutoff as the same value with V (E; p′, p) in
Eq. (31), � = 1 GeV, and the mass parameters are chosen to
be mn = n × (100 MeV) to cover the relevant ranges of the
N� interaction. Then, we fit the coefficients Cn to satisfy the
condition (60). With nine terms in Eq. (56), we can reproduce
each component of N�(5S2) interaction in Eq. (31) fairly well
in the whole p-p′ plane. As a result of the best fit, we obtain
the parameters Cn listed in Table V.

Now we check that the local potential Vlocal(r) well
reproduces properties of the N�(5S2) scattering amplitude
around the threshold energy. Because we neglect the energy
dependence of the potential, the local potential cannot
be extrapolated to the energy region far away from the
threshold. In the following, we examine the eigenenergy of
the N� quasibound state and the low-energy scattering with
momentum k � 0.2 GeV.

First, we solve the Schrödinger equation (55) with the
local potential and obtain a quasibound state with eigenenergy
E = 2611.4 − 0.7i MeV, which reproduces the pole position
of the T matrix in Eq. (32) to an accuracy of 0.1 MeV. From

the wave function of the quasibound state, we calculate the
density distribution PN� as in Eq. (48) and normalize it by
the condition XN� = 1 in Eq. (47). The real and imaginary
parts of the resulting density distribution are plotted in Fig. 8
by the dashed and dotted lines, respectively. We can see that
the density distribution from the local potential is very similar
to that from the T matrix. We also calculate the “distance”
between N�, which results in

√
〈r2〉 = 2.8 − 4.5i fm and

(〈r2
dump〉)1/2 = 7.4 fm in the prescriptions of Eqs. (52) and (53),

respectively. These values are in fair agreement with those from
the T matrix as well.

Let us switch on the Coulomb potentialVCoulomb(r) = −α/r
for the p�− system. In the calculation of the energy shift in
a perturbation of Eq. (54), we would obtain a similar result as
in the previous section, because of the similarity of the density
distributions PN�. Instead of such a perturbative calculation,
we can easily perform the full calculation in the present case
by solving the Schrödinger equation (55) with VCoulomb +
Vlocal. As a result of the full calculation, the eigenenergy
moves to 2610.5 − 1.0i MeV, where the binding energy and
decay width shift +0.9 MeV and +0.6 MeV, respectively. The
increase of the binding energy is a natural consequence of
the attractive Coulomb interaction. The Coulomb attraction
induces the shrinkage of the wave function of the N� system,
which leads to the increase of the decay width due to the
enlarged overlap of two particles. The result of the shift of
the eigenenergy indicates that the perturbative calculation of
Eq. (54) gives a good estimation.

Second, we calculate the S-wave scattering amplitude fS(k)
from the asymptotic behavior of the wave function ψ(r)
at energy E with the local potential Vlocal(r). The resulting
fS(k)−1 is plotted in Fig. 7 as the dashed and dotted lines.
We find that fS(k)−1 nicely reproduces the result from the T
matrix, which means that the local potential Vlocal is accurate
enough to describe the N�(5S2) scattering near the threshold
k � 0.2 GeV. With fS(k)−1 from the local potential Vlocal(r),
we evaluate the scattering length and effective range as
a = 5.2 − 5.0i fm and reff = 0.78 + 0.06i fm, in fair agree-
ment with those from the T matrix. Note that the value
of the scattering length is sensitive to the small modifica-
tion of the system, reflecting the divergence in the unitary
limit.
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TABLE V. Parameters Cn for an equivalent local N� interaction. Other quantities in Eq. (56) are fixed as � = 1 GeV and mn = n ×
(100 MeV).

n A B C box ��(3D2 + 1D2) box ��(3D2 + 1D2) box ��∗ Total

1 0.02 0.06 0.07 −0.04 + 0.00i −0.01 + 0.00i 0.04 0.14 + 0.00i

2 − 2.37 − 6.21 − 6.48 4.67 − 0.19i 0.93 + 0.05i − 4.30 −13.76 − 0.14i

3 57.03 160.19 131.39 −121.94 + 5.34i −24.01 − 1.24i 104.15 306.81 + 4.10i

4 − 556.75 − 1680.33 − 1021.60 1304.16 − 59.70i 251.48 + 12.83i − 1026.45 −2729.49 − 46.87i

5 2699.73 8765.95 3548.93 −6980.93 + 287.70i −1313.42 − 62.87i 5024.22 11744.48 + 224.83i

6 − 7052.95 − 24755.80 − 5159.25 20223.50 − 534.01i 3719.98 + 167.01i − 13263.90 −26288.42 − 367.01i

7 10055.50 38369.80 667.40 −31881.20 + 69.44i −5772.02 − 262.54i 19118.60 30558.08 − 193.09i

8 − 7304.99 − 30596.40 5175.64 25509.10 + 685.14i 4577.55 + 227.55i − 14091.70 −16730.80 + 912.69i

9 2096.47 9776.40 − 3446.89 −8069.25 − 460.13i −1442.98 − 81.38i 4138.10 3051.85 − 541.51i

We show in Fig. 9 the equivalent local N�(5S2) potential in
coordinate space Vlocal(r) together with the contribution from
the contact term VC. From the figure, we confirm that the strong
attraction in the N�(5S2) interaction originates from the con-
tact term VC while other contributions give moderate attraction.
The interaction range in Fig. 9 is consistent with the effective
range ∼0.7 fm obtained from the scattering amplitude fS .

VI. CONCLUSION

In this study we have investigated the N�(5S2) interaction
based on a baryon-baryon interaction model with meson
exchanges. The long-range part has been composed of the
conventional mechanisms: exchanges of η and “σ ,” i.e., cor-
related two mesons in the scalar-isoscalar channel. The short-
range part has been represented by the contact interaction. In
addition, we have taken into account inelastic channels ��,
��, and ��(1530) which couple to the N�(5S2) system via
K exchange. The inclusion of the open channels, �� and ��,
is important to describe the absorption effects in the physical
N� system. The unknown strength of the contact interaction
was determined by fitting the scattering length of the HAL
QCD result at the nearly physical quark masses.
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FIG. 9. Equivalent local N� potential in coordinate space
Vlocal(r). The contribution from the contact term VC is also shown
for comparison. The inset represents an enlarged figure.

The constructed N�(5S2) interaction was used to calculate
the observable quantities at the physical point, including the
absorption effects. For the N�(5S2) scattering, we have ob-
tained the scattering length a = 5.3 − 4.3i fm and the effective
range reff = 0.74 + 0.04i fm. The larger magnitude of the
scattering length than the effective range indicates that the N�
interaction is close to the unitary limit, and the positive real part
indicates the existence of a shallow quasibound state below the
threshold. Indeed, in searching for the pole of the scattering
amplitude, we have found that the N�(5S2) quasibound state
is generated with its eigenenergy 2611.3 − 0.7i MeV, which
corresponds to the binding energy 0.1 MeV and the width
1.5 MeV. When the imaginary part of the interaction is
switched off, we obtain a bound state at 2611.0 MeV. Thus,
the imaginary part primarily induces the decay width, and
slightly reduces the binding energy. The main decay mode is
��, owing to the larger KN� coupling than KN� coupling.
For the p�− bound state, the attractive Coulomb interaction
further adds a shift of ∼+1 MeV both to the binding energy
and decay width. The spatial size of the N� bound state will
largely exceed the typical size of baryons.

We have discussed how the different mechanisms contribute
to the N� interaction. It turns out that the attraction dominantly
originates from the contact term. Other contributions, the η
exchange, correlated two-meson exchange, and box terms with
inelastic channels in the intermediate states, give moderate
attraction. Because we have considered all conventional mech-
anisms at the hadronic level, the discussion at the quark-gluon
level would be necessary to clarify the origin of the N�
attraction. Although the elimination of the inelastic channels
induces the energy dependence of the single-channel N�
interaction, the energy dependence has been found to be less
than 1% in the energy region 50 MeV above and below
the threshold. We have found that the contribution from the
D-wave N� states to the N�(5S2) interaction is negligible as
well. These results justify constructing a single-channel N�
potential in S wave in the HAL QCD analysis [30,31].

We have constructed an equivalent local N�(5S2) potential,
which will be useful to applications to few-body systems, such
as possible � nuclei generated by the attractive N� interaction.
To avoid the S-wave decays which would bring a large decay
width, it is essential to align the spins of � and nucleons
to the same direction so that the N� system couples to the
�� and �� decay modes only in D wave. In this sense,
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the �-deuteron bound state with JP = 5/2+ will be the most
plausible candidate of the � nuclei.

Finally, we remark on the possibility of the experimental
investigation of the N� interaction and the quasibound state.
Because the N� system has strangeness S = −3, practical
candidate is the production in heavy-ion collisions [54,55].
Thanks to the small decay width, the N� quasibound state
should be observed as a narrow peak in the invariant mass
spectrum of the �� system near the N� threshold. In fact,
the production yield of the N� bound state is estimated in
Ref. [56] to be of the order of 10−3 per central collision at
RHIC and LHC, assuming the binding energy of the N�
system as 19 MeV. If the binding energy is much smaller, as
we find in this paper, the production yield should be enhanced.
Another tool, as discussed in Ref. [33], is the p�− two-body
correlation which reflects the low-energy interaction of the
p�− system. Because we have shown that the imaginary part
of the scattering length has the same magnitude as the real part,
the coupling to the open channels should be taken into account
to study the realistic p�− correlation function.
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APPENDIX A: MASSES AND WIDTHS OF HADRONS

In this study we use isospin symmetric masses for
hadrons [34]: mπ = 138.0 MeV, mK = 495.6 MeV, and
mη = 547.9 MeV for mesons, mN = 938.9 MeV, m� =
1115.7 MeV, m� = 1193.2 MeV, and m� = 1318.3 MeV for
octet baryons, and m� = 1210.0 MeV, m�∗ = 1384.6 MeV,
m�∗ = 1533.4 MeV, and m� = 1672.5 MeV for decuplet
baryons. In addition, the widths of the decuplet baryons are
�� = 100.0 MeV, ��∗ = 37.1 MeV, and ��∗ = 9.5 MeV.

APPENDIX B: CONVENTIONS

In this Appendix we summarize our conventions of baryons
used in this study.

Throughout this study the metric in four-dimensional
Minkowski space is gμν = gμν = diag(1,−1,−1,−1), and the
Einstein summation convention is used. The Dirac matrices γ μ

satisfy

{γ μ, γ ν} = 2gμν. (B1)

In the present study we choose the standard representation for
the Dirac matrices:

γ 0 =
(

1 0
0 −1

)
, γ =

(
0 σ

−σ 0

)
, (B2)

with the Pauli matrices σ , and

γ 5 ≡ iγ 0γ 1γ 2γ 3 =
(

0 1
1 0

)
. (B3)

The Dirac spinors for a positive-energy solution are ex-
pressed as u( p, s) with its three-momentum p and helicity λ,
and its normalization is

ū
(

p, λ′)u( p, λ) = δλ′λ, (B4)

where ū ≡ u†γ 0. We employ the following explicit form of the
Dirac spinors

u( p, λ) =
√

E(p) + M

2M

(
χλ

σ · p
E(p)+M

χλ

)
, (B5)

where M is the mass of the particle, p ≡ | p|, and E(p) ≡
(p2 + M2)1/2. The two-component spinor χλ is chosen to be
helicity eigenstates

χ+1/2 =
(

e−iφ/2 cos (θ/2)

e+iφ/2 sin (θ/2)

)
,

χ−1/2 =
(−e−iφ/2 sin (θ/2)

e+iφ/2 cos (θ/2)

)
,

(B6)

where θ and φ are the polar and azimuthal angles of the
momentum p, respectively. In fact, χλ satisfies

1

2

σ · p
p

χ±1/2 = ±1

2
χ±1/2. (B7)

Owing to this relation, one can simplify the spinors in Eq. (B5)
as

u( p, λ) =

⎛
⎜⎝

√
E(p)+M

2M
χλ√

E(p)−M
2M

2λχλ

⎞
⎟⎠. (B8)

The Dirac spinors for a negative-energy solution is then
calculated as v( p, λ) ≡ iγ 2u∗( p, λ), or explicitly

v( p, λ) =

⎛
⎜⎝−

√
E(p)−M

2M
χ−λ√

E(p)+M
2M

2λχ−λ

⎞
⎟⎠, (B9)

which is normalized as

v̄( p, λ′)v( p, λ) = −δλ′λ. (B10)

The Dirac spinors satisfy the following relations:

(/p − M)u( p, λ) = 0, (/p + M)v( p, λ) = 0, (B11)

and ∑
λ

u( p, λ)ū( p, λ) = /p + M

2M
,

∑
λ

v( p, λ)v̄( p, λ) = /p − M

2M
,

(B12)
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with pμ = (E(p), p) and /p ≡ pμγ μ.
Next, eμ( p, λ) denotes the polarization vectors for the spin

1 particle of three-momentum p, helicity λ, and mass M . The
vectors are chosen to be helicity eigenstates:

eμ( p,±1) = ±1√
2

(0,− cos φ cos θ ± i sin φ,

− sin φ cos θ ∓ i cos φ, sin θ ),

eμ( p, 0) = E(p)

M

(
p

E(p)
, cos φ sin θ, sin φ sin θ, cos θ

)
.

(B13)

These are obtained by boosting the helicity eigenstates at the
rest frame of the particle eμ(0, λ) = (0, êλ) with the three-
vector êλ:

ê+1 =
(

− 1√
2
,− i√

2
, 0

)
, ê0 = (0, 0, 1),

ê−1 =
(

1√
2
,− i√

2
, 0

)
,

(B14)

to the direction of the z axis to have a momentum p and then
rotate to the direction of (θ, φ), where the momentum is p =
(p cos φ sin θ, p sin φ sin θ, p cos θ ). The polarization vectors
are normalized as

eμ( p, λ′)e∗
μ( p, λ) = −δλ′λ, (B15)

and satisfy the following relations:

pμeμ( p, λ) = 0, (B16)

∑
λ

eμ( p, λ)e∗ ν( p, λ) = −gμν + pμpν

M2
. (B17)

Finally, the Rarita–Schwinger spinors for the spin- 3
2 parti-

cle, uμ( p, λ), are constructed from the Dirac spinors u( p, λ)
in Eq. (B8) and polarization vectors eμ( p, λ) in Eq. (B13) as

uμ( p, λ) =
∑
λ1,λ2

〈1 1/2 λ1 λ2|3/2 λ〉eμ( p, λ1)u( p, λ2),

(B18)

with the Clebsch–Gordan coefficients 〈j1 j2 m1 m2|J M〉.
More explicitly, the Rarita–Schwinger spinors are

uμ(3/2) = eμ(1)u(1/2),

uμ(1/2) =
√

2

3
eμ(0)u(1/2) +

√
1

3
eμ(1)u(−1/2),

uμ(−1/2) =
√

1

3
eμ(−1)u(1/2) +

√
2

3
eμ(0)u(−1/2),

uμ(−3/2) = eμ(−1)u(−1/2), (B19)

where we omitted the argument p for the Dirac spinors
and polarization vectors. The Rarita–Schwinger spinors are
normalized as

ūμ( p, λ′)uμ( p, λ) = −δλ′λ, (B20)

and satisfy the following relations:

(/p − M)uμ( p, λ) = 0, (B21)

pμuμ( p, λ) = 0, γ μuμ( p, λ) = 0. (B22)

In addition, in the rest frame of the particle, the Rarita–
Schwinger spinors satisfy u0(0, λ) = 0 and

∑
λ

ui(0, λ)ūj (0, λ) =
(

2δij /3 − iεijkσ
k/3 0

0 0

)
. (B23)

In a similar manner, we can construct the Rarita–Schwinger
spinors for the antiparticle vμ( p, λ) as

vμ( p, λ) =
∑
λ1,λ2

〈1 1/2 λ1 λ2|3/2 λ〉e∗ μ( p, λ1)v( p, λ2),

(B24)
which satisfy the following normalization and relations:

v̄μ( p, λ′)vμ( p, λ) = δλ′λ, (B25)

(/p + M)vμ( p, λ) = 0, (B26)

pμvμ( p, λ) = 0, γ μvμ( p, λ) = 0. (B27)

APPENDIX C: PARTIAL-WAVE PROJECTION
OF INTERACTIONS

In this Appendix we show formulas of the pro-
jection of baryon-baryon interactions to general partial
waves. Here the baryon-baryon scatterings are denoted
by B1(pμ

1 , λ1)B2(pμ
2 , λ2) → B3(pμ

3 , λ3)B4(pμ
4 , λ4), where the

momenta p
μ
a (a = 1, 2, 3, and 4) satisfy p

μ
1 + p

μ
2 = p

μ
3 + p

μ
4

and λa is the helicity of the baryon Ba . Since we consider
scatterings in the center-of-mass frame, we can write the three-
momenta as p ≡ p1 = − p2 and p′ ≡ p3 = − p4. Without
loss of generality, we can choose the coordinates such that

p = (0, 0, p), p′ = (p′ sin θ, 0, p′ cos θ ), (C1)

with the scattering angle θ . The mass of the baryon Ba is
expressed as ma .

We calculate the partial-wave matrix elements of the in-
teraction Vα by following the Jacob–Wick formulation [57],
where α specifies the quantum numbers of the system (see
below). First, according to Feynman diagrams, we calcu-
late the interactions in terms of the helicity eigenstates as
V ( p′, λ3, λ4, p, λ1, λ2), whose explicit forms are shown in
the main part of this manuscript. Then, the interactions are
projected to the total angular momentum J as

V J (p′, λ3, λ4, p, λ1, λ2)

= κ(p′, p)

2

∫ 1

−1
d cos θ dJ

λ1−λ2 λ3−λ4
(θ )

× V ( p′, λ3, λ4, p, λ1, λ2), (C2)

where d
j
m′m is the Wigner d matrix and the factor κ(p′, p) is

defined as

κ(p′, p) ≡
√

m1m2m3m4

E1(p)E2(p)E3(p′)E4(p′)
, (C3)
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with Ea(p) ≡ (p2 + m2
a)1/2. The factor κ was introduced so as

to satisfy the optical theorem with the correct coefficients.
Finally, the interaction used for the Lippmann–Schwinger

equation (32) is obtained as

Vα(p′, p) =
∑

λ1,λ2,λ3,λ4

√
(2L + 1)(2L′ + 1)

2J + 1

× 〈j3 j4 λ3 − λ4|S ′ S ′
z〉〈L′ S ′ 0 S ′

z|J S ′
z〉

× 〈j1 j2 λ1 − λ2|SSz〉〈LS 0 Sz|J Sz〉
× V J (p′, λ3, λ4, p, λ1, λ2), (C4)

where ja is the spin of the baryon Ba , L(′), and S(′) are the
orbital angular momentum and spin in the initial (final) state,
respectively, Sz ≡ λ1 − λ2, and S ′

z ≡ λ3 − λ4.
Note that the orbital angular momentum L and spin S may

take different values in the initial and final states as long as the
total angular momentum J and parity3 P = (−1)L of the sys-
tem are conserved. An important example is the mixing of the
S- and D-wave components for the N� system. In this sense,
the quantum number is specified as α = (J, P,L′, S ′, L, S).

APPENDIX D: CORRELATED TWO-MESON EXCHANGE

In this Appendix we summarize our formulation of the
correlated two-meson exchange, for which we concentrate on
the exchange of the scalar-isoscalar channel (JP , I ) = (0+, 0).
The contribution of the correlated two-meson exchange was
expressed as VS,2M in Eq. (21). According to the dispersion
relation (22), to calculate the correlated two-meson exchange
taking place in the region t < 0, we may consider the same
amplitude but in t > 4m2

π , which can be achieved in the
NN̄ → ��̄ reaction as shown in Fig. 2.

Let us formulate the NN̄ → ��̄ reaction in Fig. 2. We fix
the nucleon momenta p

μ
N = (

√
t/2, p) and p

μ

N̄
= (

√
t/2,− p)

with p = (0, 0, p), and the � momenta p
μ
� = (

√
t/2, p′)

and p
μ

�̄
= (

√
t/2,− p′) with p′ = (p′ sin θ, 0, p′ cos θ ) and the

scattering angle θ . Because we concentrate on the scalar
channel, the scattering amplitude of the NN̄ → ��̄ reaction
can be evaluated as the matrix element of the corresponding
T matrix T̂ J=0, which contains VS,2M according to crossing
symmetry:

〈��̄( p′, λ�, λ�̄)|T̂ J=0|NN̄ ( p, λN, λN̄ )〉
= δλNλN̄

δλ�λ�̄
× v̄N (− p, λN )uN ( p, λN )

×
[
VS(t)ūμ

�( p′, λ�)v� μ(− p′, λ�)

+ V2M(t)
PμPν

m2
�

ū
μ
�( p′, λ�)vν

�(− p′, λ�)

]
, (D1)

where P μ ≡ p
μ
N + p

μ

N̄
= (

√
t, 0) and the constraints λN = λN̄

and λ� = λ�̄ are necessary to construct J = 0. Here we note

3Note that all baryons in this study have positive parity.

some relations for the spinors:

v̄N (− p,±1/2)uN ( p,±1/2) = ip

mN

, (D2)

ū
μ
�

(
p′,±3/2

)
v�̄ μ(− p′,±3/2) = ip′

m�

, (D3)

ū
μ
�( p′,±1/2)v�̄ μ(− p′,±1/2) = − ip′

3m�

(
1 + 4p′ 2

m2
�

)
,

(D4)

PμPν

m2
�

ū
μ
�( p′,±3/2)vν

�(− p′,±3/2) = 0, (D5)

PμPν

m2
�

ū
μ
�( p′,±1/2)vν

�(− p′,±1/2) = −2ip′ 3t

3m5
�

, (D6)

where double-sign corresponds.
To calculate VS,2M in the region t < 0 via the dispersion

relation (22), we need ImVS,2M(t) in t > 4m2
π . For this purpose,

we first recall the unitarity of theS matrix: Ŝ†Ŝ = 1. Expressing
this relation in terms of the T matrix of the NN̄ → ��̄
reaction in the scalar channel, we have

i〈��̄|T̂ J=0|NN̄〉 − i〈��̄|T̂ J=0 †|NN̄〉
=

∑
n

ρn(t)θ
(
t − m2

th(n)

)〈��̄|T̂ J=0 †|n〉〈n|T̂ J=0|NN̄〉,
(D7)

where we omitted the parameters ( p′, λ�, λ�̄) for the ��̄
state and ( p, λN , λN̄ ) for the NN̄ state. On the right-hand side,
n = ππ , KK̄ , ηη, . . . denote possible physical channels, mth(n)

is its threshold, and ρn(t) is its phase space. In particular,

ρPP̄ (t) = NPP̄

8π

√
t − 4m2

P

t
, (D8)

for n = P P̄ = ππ , KK̄ , ηη, with the mass of the pseudoscalar
meson mP and the symmetry factor for identical particles:
Nππ = Nηη = 1/2 and NKK̄ = 1. Therefore, by using the
relation in Eq. (D1) and 〈A|T̂ †|B〉 = 〈B|T̂ |A〉∗, we can rewrite
(D7) as

δλN λN̄
δλ� λ�̄

× v̄N (− p, λN )uN ( p, λN )

×
[
−2 ImVS(t)ūμ

�( p′, λ�)v� μ(− p′, λ�)

−2 ImV2M(t)
PμPν

m2
�

ū
μ
�( p′, λ�)vν

�(− p′, λ�)

]

=
∑

n

ρn(t)θ
(
t − m2

th(n)

)〈n|T̂ J=0|��̄〉∗〈n|T̂ J=0|NN̄〉. (D9)

This is a general formula to calculate ImVS,2M(t) in the region
t > 4m2

π . In the equation the magnitudes of the momenta of N
and �, p(t) and p′(t), respectively, take their on-shell values

p(t) =
√

t

4
− m2

N, p′(t) =
√

t

4
− m2

�. (D10)

Note that the unitarity relation (D9) is defined above the
kinematic threshold of the NN̄ → ��̄ reaction, i.e., t > 4m2

�.
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However, one can perform the analytic continuation into the
pseudophysical region t < 4m2

�, where p′(t) [and p(t) in
t < 4m2

N ] is pure imaginary.
In general, n in Eq. (D9) should run all possible physical

channels, but it is well known that the scalar-isoscalar channel
in the region 4m2

π < t � 1 GeV2 is dominated by the contri-
butions from the dynamics of ππ and coupled channels of
two pseudoscalar mesons. Therefore, below we restrict the
summation in Eq. (D9) to the physical ππ , KK̄ , and ηη states.

Now our task is to calculate the scattering amplitudes of the
NN̄ → P P̄ and ��̄ → P P̄ (P P̄ = ππ , KK̄ , ηη) reactions
in the scalar-isoscalar channel. Here, to simplify the evaluation
of the N� interaction from the NN̄ → ��̄ amplitude, NN̄ is
in the particle basis, i.e., NN̄ = pp̄ or nn̄, while the P P̄ is in
the isospin basis with I = 0:

|ππ (k)〉 = − 1√
3
|π+(k)π−(−k) + π0(k)π0(−k)

+π−(k)π+(−k)〉, (D11)

|KK̄(k)〉 = − 1√
2
|K+(k)K−(−k) + K0(k)K̄0(−k)〉,

(D12)

|ηη(k)〉 = |η(k)η(−k)〉, (D13)

where k is the relative momentum of mesons. We explicitly
write the off-shell amplitudes of the NN̄ → P P̄ and ��̄ →
P P̄ reactions as

TNN̄→P P̄ (t, k, p, λN ) = 〈P P̄ (k)|T̂ J=0|NN̄ ( p, λN, λN )〉,
(D14)

T��̄→P P̄ (t, k, p′, λ�) = 〈P P̄ (k)|T̂ J=0|��̄( p′, λ�, λ�)〉.
(D15)

Helicities are constrained as λN = λN̄ and λ� = λ�̄ so as to
construct J = 0. Because of this S-wave nature, the left-hand-
side depends only on the magnitude of the momenta. Owing to
the parity invariance of the underlying strong interaction, the
amplitudes TNN̄→P P̄ and T��̄→P P̄ have relations

TNN̄→P P̄ (t, k, p, λN ) = TNN̄→P P̄ (t, k, p,−λN ), (D16)

T��̄→P P̄ (t, k, p′, λ�) = T��̄→P P̄ (t, k, p′,−λ�). (D17)

Therefore, while TNN̄→P P̄ does not depend on λN , T��̄→P P̄

has two independent components of λ� = 3/2 and 1/2. Note
that momenta p, p′, and k are independent of t in the off-shell
amplitudes. One can easily obtain the on-shell amplitudes of
the NN̄ → P P̄ and ��̄ → P P̄ reactions by putting on-shell
momenta of the baryons q(t) and q ′(t) in Eq. (D10) and

k(t) =
√

t

4
− m2

P , (D18)

respectively.
The NN̄ , ��̄ → P P̄ amplitudes are calculated according

to the diagram in Fig. 10. To this end, we label the two meson
channels ππ , KK̄ , and ηη as j = 1, 2, and 3, respectively, and
we project the Born term, i.e., the first term in Fig. 10, into the

+

FIG. 10. Diagrammatic equation for the NN̄ → P P̄ and ��̄ →
P P̄ scattering amplitudes. Solid and dashed lines represent baryons
and mesons, respectively. Shaded circle denotes the correlation of two
mesons.

scalar channel as

V
(N)
j (t, k, p) = 1

2

∫ 1

−1
d cos θk〈j (k)|V̂ |NN̄ ( p, λN, λN )〉,

(D19)

V
(�)
j (t, k, p′, λ�) = 1

2

∫ 1

−1
d cos θ ′

k〈j (k)|V̂ |��̄( p′, λ�, λ�)〉,

(D20)

where θ
(′)
k is the angle between p(′) and k. The explicit forms of

the matrix elements of V̂ are shown in Appendix E. Next, we
evaluate the diagram in Fig. 10 according to the prescription
by Blankenbecler–Sugar [58] as

TNN̄→j (t, k, p) = V
(N)
j (t, k, p) +

3∑
l=1

Nl

∫ ∞

0
dk′ k′ 2

2π2

× T
(2m)
j l (t)V (N)

l (t, k′, p)

ωP (l)(k′)[t − 4ωP (l)(k′)2]
, (D21)

T��̄→j (t, k, p′, λ�) = V
(�)
j (t, k, p′, λ�)

+
3∑

l=1

Nl

∫ ∞

0
dk′ k′ 2

2π2

×T
(2m)
j l (t)V (�)

l (t, k′, p′, λ�)

ωP (l)(k′)[t − 4ωP (l)(k′)2]
, (D22)

where T
(2m)
j l is the scalar-isoscalar l → j meson–meson scat-

tering amplitude and ωP (l)(k) ≡ (k2 + m2
P (l))

1/2 with P (l) be-

ing the meson in lth channel. In general, T
(2m)
j l should be an

off-shell amplitude and thus depends on the relative momenta
k and k′ as well. In the present study, we employ the so-called
chiral unitary approach to describe T

(2m)
j l together with the

on-shell approximation, as explained in Appendix F, so T
(2m)
j l

is a function only of t .
With appendixes E and F, all the ingredients in the above

amplitudes are determined. We can check how the NN̄ → ππ
amplitude in the present formulation works by calculating the
Frazer–Fulco amplitude for the NN̄ → ππ reaction [59]

f 0
+(t) = ip(t)mN

4
√

3π
TNN̄→ππ (t, k(t), p(t)), (D23)

where the factor is due to the transition to the Frazer–Fulco
amplitude in isospin basis. The result is shown in Fig. 11
together with quasi-empirical values taken from Ref. [60].
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FIG. 11. Frazer–Fulco amplitude f 0
+ for the NN̄ → ππ reaction.

Points represent quasi-empirical values taken from Ref. [60].

The comparison indicates that our approach reproduces the
quasi-empirical values semiquantitatively well.

Finally, we evaluate ImVS,2M(t) in t > 4m2
π from the on-

shell amplitudes in Eqs. (D21) and (D22) and the relation (D9).
We express the right-hand side of Eq. (D9), i.e., the sum of the
products of the phase space ρj and amplitudes of the j →
��̄ and NN̄ → j reactions, as F (t, λ�). We note that the
product T ∗

��̄→j
TNN̄→j contains the uncorrelated contributions

depicted as the box diagram in Fig. 12 which eventually causes
the double counting in the N� interaction with the η exchange
term and with the box contributions of the inelastic channel in
Sec. II H. We must cancel this double counting by subtracting
the product of the Born terms. As a result, F (t, λ�) is

F (t, λ�) ≡
3∑

j=1

ρj (t)θ
(
t − m2

th(j )

)
× [

T��̄→j (t, k(t), p′(t), λ�)∗TNN̄→j (t, k(t), p(t))

−V
(�)
j (t, k(t), p′(t), λ�)∗V (N)

j (t, k(t), p(t))
]
. (D24)

With this and Eqs. (D2)–(D6), we have

ImVS(t)

= − F (t, 3/2)

2ū
μ
�( p′, 3/2)v�̄ μ(− p′, 3/2)v̄N (− p, 1/2)uN ( p, 1/2)

= − 2mNm�F (t, 3/2)√(
4m2

N − t
)(

4m2
� − t

) , (D25)

N

N Ω

Ω

FIG. 12. Feynman box diagram for the NN̄ → ��̄ reaction.
Solid and double lines in the intermediate state represent baryons,
and dashed lines represent mesons.
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FIG. 13. ImVS and ImV2M in our model.

ImV2M(t) = m2
�

PμPνū
μ
�( p′, 1/2)vν

�(− p′, 1/2)

×
[
− F (t, 1/2)

2v̄N (− p, 1/2)uN ( p, 1/2)

− ImVS(t)ūμ
�( p′, 1/2)v� μ(− p′, 1/2)

]

= − 4mNm3
�√(

4m2
N − t

)(
4m2

� − t
)(

4m2
� − t

)
t

× [
3m2

�F (t, 1/2) + (
t − 3m2

�

)
F (t, 3/2)

]
.

(D26)

In Fig. 13 we plot ImVS and ImV2M in our model as functions
of t > 4m2

π . As one can see, ImVS takes a non-negligible value
only for t � 1 GeV2. This may be interpreted as the exchanges
of the f0(980) and correlated KK̄ states. On the other hand,
ImV2M has a contribution at just above the threshold t = 4m2

π

as well, reflecting the contributions from the broad “σ” meson
and correlated ππ .

Next, we use the dispersion relation (22) to evaluateVS,2M(t)
in t < 0, where the correlated two-meson exchange takes
place in the N� elastic scattering. Here we perform the
integration with a cutoff tc instead of infinity, which we take
tc = (1.2 GeV)2, which is the upper boundary of the fit range
of our ππ -KK̄-ηη scattering amplitude in the chiral unitary
approach to the experimental ππ (J = 0, I = 0) phase shift
(Appendix F).

APPENDIX E: EXPLICIT FORMS OF THE BORN TERMS
FOR THE N N̄ , ��̄ → MESON-MESON REACTIONS

Here we show the explicit forms of the Born
terms for the N ( p, λN )N̄ (− p, λN ) → P (k)P̄ (−k) and
�( p′, λ�)�̄(− p′, λ�) → P (k)P̄ (−k) reactions, where
P P̄ = ππ , KK̄ , and ηη. Here p, p′, and k are the relative
momenta of NN̄ , ��̄, and P P̄ , respectively, for which we
take, without loss of generality, p = (0, 0, p), p′ = (0, 0, p′),
and k = (k sin θ, 0, k cos θ ) throughout this section. We
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define four-momenta p
μ
N = (

√
t/2, p), p

μ

N̄
= (

√
t/2,− p),

p
μ
� = (

√
t/2, p′), p

μ

�̄
= (

√
t/2,− p′), k

μ
P ≡ kμ = (

√
t/2, k),

and k
μ

P̄
≡ k′μ = (

√
t/2,−k). Helicities of antiparticles are

constrained as λN̄ = λN and λ�̄ = λ� so as to construct J = 0.

1. N N̄ → meson-meson

First, the NN̄ → ππ , KK̄ , and ηη Born terms are calculated as

〈ππ (k)|V̂ |NN̄ ( p, λN, λN )〉 = FπNNVNNN + FπN�VN�N + (k ↔ −k), (E1)

〈KK̄(k)|V̂ |NN̄ ( p, λN, λN )〉 = FKN�VN�N + FKN�VN�N + FKN�∗VN�∗N, (E2)

〈ηη(k)|V̂ |NN̄ ( p, λN, λN )〉 = FηNNVNNN + (k ↔ −k). (E3)

The notation (k ↔ −k) means to add the symmetrized
contributions for the identical two-meson systems. Here FPBB

and FPBD are coupling constants which are given by

FπNN = −
√

3(D + F )2

4f 2
π

, FπN� = − 2√
3

f 2
PBD

m2
π

, (E4)

FKN� = − (D + 3F )2

12
√

2f 2
K

, FKN� = −3(D − F )2

4
√

2f 2
K

, (E5)

FKN�∗ = − 1

2
√

2

f 2
PBD

m2
π

, FηNN = (D − 3F )2

12f 2
η

. (E6)

Terms VNBN and VNDN are the amplitudes of the octet- and
decuplet-baryon exchange for the NN̄ scattering, respectively,
as functions of t , k, and p:

VNBN (t, k, p) = − F (k)2v̄N (− p,+1/2)/k′γ5SB(pN − k)

× /kγ5uN ( p,+1/2), (E7)

where SB(p) is the propagator of the octet baryon B

SB(p) ≡ /p + mB

(pμ)2 − m2
B

, (E8)

with its mass mB , and

VNDN (t, k, p, λN ) =F (k)2v̄N (− p,+1/2)k′
μS

μν
D (pN − k)

× kνuN ( p,+1/2), (E9)

where SD(p) is the propagator of the decuplet baryon D

S
μν
D (p) = /p + mD

(pμ)2 − m2
D

[
gμν − 1

3
γ μγ ν

− 2pμpν

3m2
D

+ pμγ ν − pνγ μ

3mD

]
, (E10)

with its mass mD . As for the form factor F (k) in the NN̄ ,
�� → P P̄ amplitudes, we employ the monopole type in
Eq. (15) and use the same value of the cutoff � = 1 GeV.
We do not include the width of the decuplet baryons in the
propagator. Note that neither VNBN nor VNDN depend on the
helicity λN , so we take λN = +1/2 here.

2. ��̄ → meson-meson

Next, the ��̄ → ππ , KK̄ , and ηη Born terms are calcu-
lated as

〈ππ (k)|V̂ |��̄( p′, λ�, λ�)〉 = 0, (E11)

〈KK̄(k)|V̂ |��̄( p′, λ�, λ�)〉 = FK��V��� + FK�∗�V��∗�,

(E12)

〈ηη(k)|V̂ |��̄( p′, λ�, λ�)〉 = Fη��V��� + (k ↔ −k).

(E13)

Here FPBB and FPBD are coupling constants defined as

FK�� =
√

2
f 2

PBD

m2
π

, FK�∗� = −
√

2f 2
PDD

3m2
π

, (E14)

Fη�� = 2fPDD

3m2
π

. (E15)

Terms V�B� and V�D� are the amplitudes of the octet- and
decuplet-baryon exchange for the ��̄ scattering, respectively,
as functions of t , k, p′, and λN :

V�B�(t, k, p′, λ�) = F (k)2v̄
μ
�(− p′, λ�)k′

μSB(p� − k)

× kνu
ν
�( p′, λ�), (E16)

V�D�(t, k, p′, λ�) = F (k)2v̄� μ(− p′, λ�)/k′γ5S
μν
D (p� − k)

× /kγ5u� ν( p′, λ�), (E17)

Note that the amplitudes depend on the helicity λ� but this
dependence will be canceled when divided by the bispinor
ū

μ
�( p′, λ�)v�̄ μ(− p′, λ�) as in Eq. (D9).

APPENDIX F: MESON-MESON SCATTERING
AMPLITUDE

In this study we describe the ππ -KK̄-ηη coupled-channels
scattering amplitude in the scalar-isoscalar channel by using
the so-called chiral unitary approach [38–41]. In this approach
we calculate the scattering amplitude of two pseudoscalar
mesons T

(2m)
jk (s), where j and k are channel indices (ππ ,

KK̄ , and ηη for j = 1, 2, and 3, respectively) and s is the
Mandelstam variable, by solving the Lippmann–Schwinger
equation in the following form:

T
(2m)
jk (s) = V

(2m)
jk (s) +

∑
l

V
(2m)
j l (s)G(2m)

l (s)T (2m)
lk (s), (F1)

with the interaction kernel Vjk = Vkj taken from chiral per-
turbation theory and the loop function of two pseudoscalar
mesons Gj .
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We employ the leading-order terms of chiral perturbation
theory for the interaction kernel Vjk:

V
(2m)

11 (s) = m2
π − 2s

f 2
π

, V
(2m)

12 (s) = −
√

3s

2
√

2fπfK

,

V
(2m)

13 (s) = m2
π√

3fπfη

, V
(2m)

22 (s) = − 3s

4f 2
K

,

(F2)

V
(2m)

23 (s) = 9s − 2m2
π − 6m2

η

6
√

2fKfπ

,

V
(2m)

33 (s) = 7m2
π − 16m2

K

9f 2
η

,

where the on-shell approximation was used. The loop function
Gj is evaluated with a three-dimensional sharp cutoff qmax:

G
(2m)
j (s) = iNj

∫
d4q

(2π )4

1(
q2 − m2

j

)[
(P − q)2 − m2

j

]
= Nj

2π2

∫ qmax

0
dq

q2

ωj (q)[s − 4ωj (q)2]
, (F3)

where mj is the meson mass in j th channel, P μ = (
√

s, 0),
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FIG. 14. ππ (J = 0, I = 0) phase shift δ0
0 in the present model.

Experimental data are taken from Refs. [61–65].

ωj (q) ≡ (q2 + m2
j )1/2, and the symmetry factor is N1 = N3 =

1/2 and N2 = 1. In this construction only the cutoff qmax is the
model parameter, and we fix it by fitting the ππ (J = 0, I = 0)
scattering phase shift δ0

0 to the experimental data [61–65] up to√
s = 1.2 GeV. From the best fit, we use the value of the cutoff

qmax = 850 MeV, with which we can reproduce the phase shift
δ0

0 fairly well as shown in Fig. 14.

[1] S. Weinberg, Phys. Rev. 137, B672 (1965).
[2] F. Dyson and N. H. Xuong, Phys. Rev. Lett. 13, 815

(1964).
[3] R. L. Jaffe, Phys. Rev. Lett. 38, 195 (1977); 38, 617 (1977).
[4] H. Clement, Prog. Part. Nucl. Phys. 93, 195 (2017).
[5] T. Yamazaki and Y. Akaishi, Phys. Lett. B 535, 70 (2002).
[6] Y. Akaishi and T. Yamazaki, Phys. Rev. C 65, 044005 (2002).
[7] T. Hyodo and D. Jido, Prog. Part. Nucl. Phys. 67, 55 (2012).
[8] A. Gal, E. V. Hungerford, and D. J. Millener, Rev. Mod. Phys.

88, 035004 (2016).
[9] M. Bashkanov et al. (CELSIUS/WASA Collaboration), Phys.

Rev. Lett. 102, 052301 (2009).
[10] P. Adlarson et al. (WASA-at-COSY Collaboration), Phys. Rev.

Lett. 106, 242302 (2011).
[11] P. Adlarson et al. (WASA-at-COSY Collaboration), Phys. Lett.

B 721, 229 (2013).
[12] S. R. Beane, E. Chang, W. Detmold, B. Joo, H. W. Lin, T. C.

Luu, K. Orginos, A. Parreño, M. J. Savage, A. Torok, and A.
Walker-Loud (NPLQCD Collaboration), Phys. Rev. Lett. 106,
162001 (2011).

[13] T. Inoue, N. Ishii, S. Aoki, T. Doi, T. Hatsuda, Y. Ikeda, K.
Murano, H. Nemura, and K. Sasaki (HAL QCD Collaboration),
Phys. Rev. Lett. 106, 162002 (2011).

[14] S. R. Beane, E. Chang, W. Detmold, H. W. Lin, T. C. Luu, K.
Orginos, A. Parreno, M. J. Savage, A. Torok, and A. Walker-
Loud (NPLQCD Collaboration), Phys. Rev. D 85, 054511
(2012).

[15] T. Inoue et al. (HAL QCD Collaboration), Nucl. Phys. A 881,
28 (2012).

[16] K. Sasaki et al. (HAL QCD Collaboration), Nucl. Phys. A 914,
231 (2013).

[17] K. Sasaki et al. (HAL QCD Collaboration), Prog. Theor. Exp.
Phys. 2015, 113B01 (2015).

[18] K. Sasaki et al., PoS LATTICE 2015, 088 (2016).
[19] K. Sasaki et al., PoS LATTICE 2016, 116 (2017).
[20] S. Gongyo et al. (HAL QCD Collaboration), Phys. Rev. Lett.

120, 212001 (2018).
[21] Y. Sada et al. (J-PARC E15 Collaboration), Prog. Theor. Exp.

Phys. 2016, 051D01 (2016).
[22] T. Sekihara, E. Oset, and A. Ramos, Prog. Theor. Exp. Phys.

2016, 123D03 (2016).
[23] T. Goldman, K. Maltman, G. J. Stephenson, Jr., K. E. Schmidt,

and F. Wang, Phys. Rev. Lett. 59, 627 (1987).
[24] M. Oka, Phys. Rev. D 38, 298 (1988).
[25] Q. B. Li and P. N. Shen, Eur. Phys. J. A 8, 417 (2000).
[26] H. Pang, J. Ping, F. Wang, J. Goldman, and E. Zhao, Phys. Rev.

C 69, 065207 (2004).
[27] X. Zhu, H. Huang, J. Ping, and F. Wang, Phys. Rev. C 92, 035210

(2015).
[28] H. Huang, J. Ping, and F. Wang, Phys. Rev. C 92, 065202

(2015).
[29] F. Etminan et al. (HAL QCD Collaboration), Nucl. Phys. A 928,

89 (2014).
[30] T. Doi et al., EPJ Web Conf. 175, 05009 (2018).
[31] T. Iritani et al. (HAL QCD Collaboration) (unpublished).
[32] J. Haidenbauer, S. Petschauer, N. Kaiser, U. G. Meißner, and W.

Weise, Eur. Phys. J. C 77, 760 (2017).
[33] K. Morita, A. Ohnishi, F. Etminan, and T. Hatsuda, Phys. Rev.

C 94, 031901 (2016).
[34] C. Patrignani (Particle Data Group Collaboration), Chin. Phys.

C 40, 100001 (2016).
[35] G. E. Brown and W. Weise, Phys. Rep. 22, 279 (1975).

015205-19

https://doi.org/10.1103/PhysRev.137.B672
https://doi.org/10.1103/PhysRev.137.B672
https://doi.org/10.1103/PhysRev.137.B672
https://doi.org/10.1103/PhysRev.137.B672
https://doi.org/10.1103/PhysRevLett.13.815
https://doi.org/10.1103/PhysRevLett.13.815
https://doi.org/10.1103/PhysRevLett.13.815
https://doi.org/10.1103/PhysRevLett.13.815
https://doi.org/10.1103/PhysRevLett.38.195
https://doi.org/10.1103/PhysRevLett.38.195
https://doi.org/10.1103/PhysRevLett.38.195
https://doi.org/10.1103/PhysRevLett.38.195
https://doi.org/10.1103/PhysRevLett.38.617
https://doi.org/10.1103/PhysRevLett.38.617
https://doi.org/10.1103/PhysRevLett.38.617
https://doi.org/10.1016/j.ppnp.2016.12.004
https://doi.org/10.1016/j.ppnp.2016.12.004
https://doi.org/10.1016/j.ppnp.2016.12.004
https://doi.org/10.1016/j.ppnp.2016.12.004
https://doi.org/10.1016/S0370-2693(02)01738-0
https://doi.org/10.1016/S0370-2693(02)01738-0
https://doi.org/10.1016/S0370-2693(02)01738-0
https://doi.org/10.1016/S0370-2693(02)01738-0
https://doi.org/10.1103/PhysRevC.65.044005
https://doi.org/10.1103/PhysRevC.65.044005
https://doi.org/10.1103/PhysRevC.65.044005
https://doi.org/10.1103/PhysRevC.65.044005
https://doi.org/10.1016/j.ppnp.2011.07.002
https://doi.org/10.1016/j.ppnp.2011.07.002
https://doi.org/10.1016/j.ppnp.2011.07.002
https://doi.org/10.1016/j.ppnp.2011.07.002
https://doi.org/10.1103/RevModPhys.88.035004
https://doi.org/10.1103/RevModPhys.88.035004
https://doi.org/10.1103/RevModPhys.88.035004
https://doi.org/10.1103/RevModPhys.88.035004
https://doi.org/10.1103/PhysRevLett.102.052301
https://doi.org/10.1103/PhysRevLett.102.052301
https://doi.org/10.1103/PhysRevLett.102.052301
https://doi.org/10.1103/PhysRevLett.102.052301
https://doi.org/10.1103/PhysRevLett.106.242302
https://doi.org/10.1103/PhysRevLett.106.242302
https://doi.org/10.1103/PhysRevLett.106.242302
https://doi.org/10.1103/PhysRevLett.106.242302
https://doi.org/10.1016/j.physletb.2013.03.019
https://doi.org/10.1016/j.physletb.2013.03.019
https://doi.org/10.1016/j.physletb.2013.03.019
https://doi.org/10.1016/j.physletb.2013.03.019
https://doi.org/10.1103/PhysRevLett.106.162001
https://doi.org/10.1103/PhysRevLett.106.162001
https://doi.org/10.1103/PhysRevLett.106.162001
https://doi.org/10.1103/PhysRevLett.106.162001
https://doi.org/10.1103/PhysRevLett.106.162002
https://doi.org/10.1103/PhysRevLett.106.162002
https://doi.org/10.1103/PhysRevLett.106.162002
https://doi.org/10.1103/PhysRevLett.106.162002
https://doi.org/10.1103/PhysRevD.85.054511
https://doi.org/10.1103/PhysRevD.85.054511
https://doi.org/10.1103/PhysRevD.85.054511
https://doi.org/10.1103/PhysRevD.85.054511
https://doi.org/10.1016/j.nuclphysa.2012.02.008
https://doi.org/10.1016/j.nuclphysa.2012.02.008
https://doi.org/10.1016/j.nuclphysa.2012.02.008
https://doi.org/10.1016/j.nuclphysa.2012.02.008
https://doi.org/10.1016/j.nuclphysa.2013.06.003
https://doi.org/10.1016/j.nuclphysa.2013.06.003
https://doi.org/10.1016/j.nuclphysa.2013.06.003
https://doi.org/10.1016/j.nuclphysa.2013.06.003
https://doi.org/10.1093/ptep/ptv144
https://doi.org/10.1093/ptep/ptv144
https://doi.org/10.1093/ptep/ptv144
https://doi.org/10.1093/ptep/ptv144
https://doi.org/10.22323/1.251.0088
https://doi.org/10.22323/1.251.0088
https://doi.org/10.22323/1.251.0088
https://doi.org/10.22323/1.251.0088
https://doi.org/10.22323/1.256.0116
https://doi.org/10.22323/1.256.0116
https://doi.org/10.22323/1.256.0116
https://doi.org/10.22323/1.256.0116
https://doi.org/10.1103/PhysRevLett.120.212001
https://doi.org/10.1103/PhysRevLett.120.212001
https://doi.org/10.1103/PhysRevLett.120.212001
https://doi.org/10.1103/PhysRevLett.120.212001
https://doi.org/10.1093/ptep/ptw040
https://doi.org/10.1093/ptep/ptw040
https://doi.org/10.1093/ptep/ptw040
https://doi.org/10.1093/ptep/ptw040
https://doi.org/10.1093/ptep/ptw166
https://doi.org/10.1093/ptep/ptw166
https://doi.org/10.1093/ptep/ptw166
https://doi.org/10.1093/ptep/ptw166
https://doi.org/10.1103/PhysRevLett.59.627
https://doi.org/10.1103/PhysRevLett.59.627
https://doi.org/10.1103/PhysRevLett.59.627
https://doi.org/10.1103/PhysRevLett.59.627
https://doi.org/10.1103/PhysRevD.38.298
https://doi.org/10.1103/PhysRevD.38.298
https://doi.org/10.1103/PhysRevD.38.298
https://doi.org/10.1103/PhysRevD.38.298
https://doi.org/10.1007/s10050-000-5080-y
https://doi.org/10.1007/s10050-000-5080-y
https://doi.org/10.1007/s10050-000-5080-y
https://doi.org/10.1007/s10050-000-5080-y
https://doi.org/10.1103/PhysRevC.69.065207
https://doi.org/10.1103/PhysRevC.69.065207
https://doi.org/10.1103/PhysRevC.69.065207
https://doi.org/10.1103/PhysRevC.69.065207
https://doi.org/10.1103/PhysRevC.92.035210
https://doi.org/10.1103/PhysRevC.92.035210
https://doi.org/10.1103/PhysRevC.92.035210
https://doi.org/10.1103/PhysRevC.92.035210
https://doi.org/10.1103/PhysRevC.92.065202
https://doi.org/10.1103/PhysRevC.92.065202
https://doi.org/10.1103/PhysRevC.92.065202
https://doi.org/10.1103/PhysRevC.92.065202
https://doi.org/10.1016/j.nuclphysa.2014.05.014
https://doi.org/10.1016/j.nuclphysa.2014.05.014
https://doi.org/10.1016/j.nuclphysa.2014.05.014
https://doi.org/10.1016/j.nuclphysa.2014.05.014
https://doi.org/10.1051/epjconf/201817505009
https://doi.org/10.1051/epjconf/201817505009
https://doi.org/10.1051/epjconf/201817505009
https://doi.org/10.1051/epjconf/201817505009
https://doi.org/10.1140/epjc/s10052-017-5309-4
https://doi.org/10.1140/epjc/s10052-017-5309-4
https://doi.org/10.1140/epjc/s10052-017-5309-4
https://doi.org/10.1140/epjc/s10052-017-5309-4
https://doi.org/10.1103/PhysRevC.94.031901
https://doi.org/10.1103/PhysRevC.94.031901
https://doi.org/10.1103/PhysRevC.94.031901
https://doi.org/10.1103/PhysRevC.94.031901
https://doi.org/10.1088/1674-1137/40/10/100001
https://doi.org/10.1088/1674-1137/40/10/100001
https://doi.org/10.1088/1674-1137/40/10/100001
https://doi.org/10.1088/1674-1137/40/10/100001
https://doi.org/10.1016/0370-1573(75)90026-5
https://doi.org/10.1016/0370-1573(75)90026-5
https://doi.org/10.1016/0370-1573(75)90026-5
https://doi.org/10.1016/0370-1573(75)90026-5


TAKAYASU SEKIHARA, YUKI KAMIYA, AND TETSUO HYODO PHYSICAL REVIEW C 98, 015205 (2018)

[36] H. C. Kim, J. W. Durso, and K. Holinde, Phys. Rev. C 49, 2355
(1994).

[37] A. Reuber, K. Holinde, H. C. Kim, and J. Speth, Nucl. Phys. A
608, 243 (1996).

[38] J. A. Oller and E. Oset, Nucl. Phys. A 620, 438 (1997); 652, 407
(1999).

[39] J. A. Oller, E. Oset, and J. R. Pelaez, Phys. Rev. Lett. 80, 3452
(1998).

[40] J. A. Oller, E. Oset, and J. R. Pelaez, Phys. Rev. D 59, 074001
(1999); 60, 099906 (1999); 75, 099903 (2007).

[41] J. A. Oller and E. Oset, Phys. Rev. D 60, 074023 (1999).
[42] T. Iritani et al. (HAL QCD Collaboration) (private communica-

tion).
[43] K.-I. Ishikawa et al. (PACS Collaboration), PoS LATTICE 2015,

075 (2016).
[44] V. Baru, J. Haidenbauer, C. Hanhart, Y. Kalashnikova, and A. E.

Kudryavtsev, Phys. Lett. B 586, 53 (2004).
[45] T. Sekihara, T. Hyodo, and D. Jido, Prog. Theor. Exp. Phys.

2015, 063D04 (2015).
[46] T. Sekihara and S. Kumano, Phys. Rev. D 92, 034010

(2015).
[47] T. Sekihara, Phys. Rev. C 95, 025206 (2017).
[48] T. Hyodo, D. Jido, and A. Hosaka, Phys. Rev. C 85, 015201

(2012).
[49] T. Hyodo, Int. J. Mod. Phys. A 28, 1330045 (2013).
[50] J. Formánek, R. J. Lombard, and J. Mareš, Czech. J. Phys. B 54,

289 (2004).

[51] K. Miyahara and T. Hyodo, Phys. Rev. C 93, 015201 (2016).
[52] Y. Kamiya and T. Hyodo, Phys. Rev. C 93, 035203 (2016).
[53] Y. Kamiya and T. Hyodo, Prog. Theor. Exp. Phys. 2017, 023D02

(2017).
[54] S. Cho, T. Furumoto, T. Hyodo, D. Jido, C. M. Ko, S. H. Lee,

M. Nielsen, A. Ohnishi, T. Sekihara, S. Yasui, and K. Yazaki
(ExHIC Collaboration), Phys. Rev. Lett. 106, 212001 (2011).

[55] S. Cho, T. Furumoto, T. Hyodo, D. Jido, C. M. Ko, S. H. Lee,
M. Nielsen, A. Ohnishi, T. Sekihara, S. Yasui, and K. Yazaki
(ExHIC Collaboration), Phys. Rev. C 84, 064910 (2011).

[56] S. Cho et al. (ExHIC Collaboration), Prog. Part. Nucl. Phys. 95,
279 (2017).

[57] M. Jacob and G. C. Wick, Ann. Phys. 7, 404 (1959); 281, 774
(2000).

[58] R. Blankenbecler and R. Sugar, Phys. Rev. 142, 1051 (1966).
[59] W. R. Frazer and J. R. Fulco, Phys. Rev. 117, 1603 (1960).
[60] O. Dumbrajs, R. Koch, H. Pilkuhn, G. c. Oades, H. Behrens,

J. j. De Swart, and P. Kroll, Nucl. Phys. B 216, 277 (1983).
[61] S. D. Protopopescu et al., Phys. Rev. D 7, 1279 (1973).
[62] G. Grayer et al., Nucl. Phys. B 75, 189 (1974).
[63] K. N. Mukhin, O. O. Patarakin, M. M. Sulkovskaya, L. V.

Surkova, and A. F. Sustavov, Pis’ma Zh. Eksp. Teor. Fiz. 32,
616 (1980) [JETP Lett. 32, 601 (1980)].

[64] R. Kaminski, L. Lesniak, and K. Rybicki, Eur. Phys. J. direct 4,
1 (2002).

[65] J. R. Batley et al. (NA48-2 Collaboration), Eur. Phys. J. C 70,
635 (2010).

015205-20

https://doi.org/10.1103/PhysRevC.49.2355
https://doi.org/10.1103/PhysRevC.49.2355
https://doi.org/10.1103/PhysRevC.49.2355
https://doi.org/10.1103/PhysRevC.49.2355
https://doi.org/10.1016/0375-9474(96)00256-4
https://doi.org/10.1016/0375-9474(96)00256-4
https://doi.org/10.1016/0375-9474(96)00256-4
https://doi.org/10.1016/0375-9474(96)00256-4
https://doi.org/10.1016/S0375-9474(97)00160-7
https://doi.org/10.1016/S0375-9474(97)00160-7
https://doi.org/10.1016/S0375-9474(97)00160-7
https://doi.org/10.1016/S0375-9474(97)00160-7
https://doi.org/10.1016/S0375-9474(99)00427-3
https://doi.org/10.1016/S0375-9474(99)00427-3
https://doi.org/10.1016/S0375-9474(99)00427-3
https://doi.org/10.1103/PhysRevLett.80.3452
https://doi.org/10.1103/PhysRevLett.80.3452
https://doi.org/10.1103/PhysRevLett.80.3452
https://doi.org/10.1103/PhysRevLett.80.3452
https://doi.org/10.1103/PhysRevD.59.074001
https://doi.org/10.1103/PhysRevD.59.074001
https://doi.org/10.1103/PhysRevD.59.074001
https://doi.org/10.1103/PhysRevD.59.074001
https://doi.org/10.1103/PhysRevD.60.099906
https://doi.org/10.1103/PhysRevD.60.099906
https://doi.org/10.1103/PhysRevD.60.099906
https://doi.org/10.1103/PhysRevD.75.099903
https://doi.org/10.1103/PhysRevD.75.099903
https://doi.org/10.1103/PhysRevD.75.099903
https://doi.org/10.1103/PhysRevD.60.074023
https://doi.org/10.1103/PhysRevD.60.074023
https://doi.org/10.1103/PhysRevD.60.074023
https://doi.org/10.1103/PhysRevD.60.074023
https://doi.org/10.22323/1.251.0075
https://doi.org/10.22323/1.251.0075
https://doi.org/10.22323/1.251.0075
https://doi.org/10.22323/1.251.0075
https://doi.org/10.1016/j.physletb.2004.01.088
https://doi.org/10.1016/j.physletb.2004.01.088
https://doi.org/10.1016/j.physletb.2004.01.088
https://doi.org/10.1016/j.physletb.2004.01.088
https://doi.org/10.1093/ptep/ptv081
https://doi.org/10.1093/ptep/ptv081
https://doi.org/10.1093/ptep/ptv081
https://doi.org/10.1093/ptep/ptv081
https://doi.org/10.1103/PhysRevD.92.034010
https://doi.org/10.1103/PhysRevD.92.034010
https://doi.org/10.1103/PhysRevD.92.034010
https://doi.org/10.1103/PhysRevD.92.034010
https://doi.org/10.1103/PhysRevC.95.025206
https://doi.org/10.1103/PhysRevC.95.025206
https://doi.org/10.1103/PhysRevC.95.025206
https://doi.org/10.1103/PhysRevC.95.025206
https://doi.org/10.1103/PhysRevC.85.015201
https://doi.org/10.1103/PhysRevC.85.015201
https://doi.org/10.1103/PhysRevC.85.015201
https://doi.org/10.1103/PhysRevC.85.015201
https://doi.org/10.1142/S0217751X13300457
https://doi.org/10.1142/S0217751X13300457
https://doi.org/10.1142/S0217751X13300457
https://doi.org/10.1142/S0217751X13300457
https://doi.org/10.1023/B:CJOP.0000018127.95600.a3
https://doi.org/10.1023/B:CJOP.0000018127.95600.a3
https://doi.org/10.1023/B:CJOP.0000018127.95600.a3
https://doi.org/10.1023/B:CJOP.0000018127.95600.a3
https://doi.org/10.1103/PhysRevC.93.015201
https://doi.org/10.1103/PhysRevC.93.015201
https://doi.org/10.1103/PhysRevC.93.015201
https://doi.org/10.1103/PhysRevC.93.015201
https://doi.org/10.1103/PhysRevC.93.035203
https://doi.org/10.1103/PhysRevC.93.035203
https://doi.org/10.1103/PhysRevC.93.035203
https://doi.org/10.1103/PhysRevC.93.035203
https://doi.org/10.1093/ptep/ptw188
https://doi.org/10.1093/ptep/ptw188
https://doi.org/10.1093/ptep/ptw188
https://doi.org/10.1093/ptep/ptw188
https://doi.org/10.1103/PhysRevLett.106.212001
https://doi.org/10.1103/PhysRevLett.106.212001
https://doi.org/10.1103/PhysRevLett.106.212001
https://doi.org/10.1103/PhysRevLett.106.212001
https://doi.org/10.1103/PhysRevC.84.064910
https://doi.org/10.1103/PhysRevC.84.064910
https://doi.org/10.1103/PhysRevC.84.064910
https://doi.org/10.1103/PhysRevC.84.064910
https://doi.org/10.1016/j.ppnp.2017.02.002
https://doi.org/10.1016/j.ppnp.2017.02.002
https://doi.org/10.1016/j.ppnp.2017.02.002
https://doi.org/10.1016/j.ppnp.2017.02.002
https://doi.org/10.1016/0003-4916(59)90051-X
https://doi.org/10.1016/0003-4916(59)90051-X
https://doi.org/10.1016/0003-4916(59)90051-X
https://doi.org/10.1016/0003-4916(59)90051-X
https://doi.org/10.1006/aphy.2000.6022
https://doi.org/10.1006/aphy.2000.6022
https://doi.org/10.1006/aphy.2000.6022
https://doi.org/10.1103/PhysRev.142.1051
https://doi.org/10.1103/PhysRev.142.1051
https://doi.org/10.1103/PhysRev.142.1051
https://doi.org/10.1103/PhysRev.142.1051
https://doi.org/10.1103/PhysRev.117.1603
https://doi.org/10.1103/PhysRev.117.1603
https://doi.org/10.1103/PhysRev.117.1603
https://doi.org/10.1103/PhysRev.117.1603
https://doi.org/10.1016/0550-3213(83)90288-2
https://doi.org/10.1016/0550-3213(83)90288-2
https://doi.org/10.1016/0550-3213(83)90288-2
https://doi.org/10.1016/0550-3213(83)90288-2
https://doi.org/10.1103/PhysRevD.7.1279
https://doi.org/10.1103/PhysRevD.7.1279
https://doi.org/10.1103/PhysRevD.7.1279
https://doi.org/10.1103/PhysRevD.7.1279
https://doi.org/10.1016/0550-3213(74)90545-8
https://doi.org/10.1016/0550-3213(74)90545-8
https://doi.org/10.1016/0550-3213(74)90545-8
https://doi.org/10.1016/0550-3213(74)90545-8
http://www.jetpletters.ac.ru/ps/1433/article_21812.shtml
https://doi.org/10.1007/s1010502c0004
https://doi.org/10.1007/s1010502c0004
https://doi.org/10.1007/s1010502c0004
https://doi.org/10.1007/s1010502c0004
https://doi.org/10.1140/epjc/s10052-010-1480-6
https://doi.org/10.1140/epjc/s10052-010-1480-6
https://doi.org/10.1140/epjc/s10052-010-1480-6
https://doi.org/10.1140/epjc/s10052-010-1480-6



