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Bifidobacterium longum (B. longum) could accumulate Selenium (Se)

and nano-Se in the form of Se-B. longum and Nano-Se-B. longum,
respectively. In this study, the effect of Nano-Se-B. longum
in diabetic mice was evaluated. Physiological and metabolic

parameters such as blood glucose, body weight, serum insulin

level, intraperitoneal glucose tolerance test (IPGTT), food intake,

water consumption and urine output were evaluated. The

expression of insulin signalling pathway-related proteins was

evaluated by western blotting. Haematoxylin and eosin (H&E)

was used for histological examination of the liver, pancreas and

kidney sections. Creatinine levels in serum (SCr) and blood urea

nitrogen (BUN) were measured. Nano-Se-B. longum was the best

in terms of delaying the onset of diabetes. Nano-Se-B. longum
decreased blood glucose and body weight compared with

those noted for the model group. IPGTT, food intake, water

consumption and urine output significantly increased and

serum insulin levels significantly decreased in the model group

compared with those in all the Nano-Se-B. longum-treated mice.
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Histological results showed that the Nano-Se-B. longum-treated mice were better than the model group

mice in terms of pathological changes. The expression of insulin signalling pathway-related proteins

was upregulated in the Nano-Se-B. longum-treated groups. A significant increase in SCr and BUN

levels was noted in the model group. This study for the first time reported the dose-dependent

preventive effect of Nano-Se-B. longum on the onset of diabetes and renal damage. The mechanism

may be related to changes in insulin signalling.
blishing.org
R.Soc.open

sci.5:181156
1. Introduction
B. longum, a Gram-positive anaerobic bacterium present in the human gastrointestinal tract, protects the

host against viral infections [1,2]. Bifidobacteria are used as probiotics for supporting digestion in many

countries [3]. Our previous studies showed that B. longum has anti-cancer effects on solid liver cancer

[4–9]. To date, numerous studies have demonstrated the benefits of probiotics in managing metabolic

disorders including diabetes. Currently, research groups are focusing on this novel concept.

Se, an essential micronutrient for the health of both humans and animals, is actively involved in animal

physiology via various selenoproteins [10]. Se supplementation was reported to decrease plasma glucose

levels in diabetic rats [11] and humans [12]. Se has also been proven to induce a sustained improvement

of glucose homeostasis in diabetic individuals to regulate vital metabolic processes such as glycolysis

and gluconeogenesis [13]. The administration of selenium at suitable doses was shown to improve

kidney impairments of diabetic kidney disease (DKD) by changing the lipid contents, restoring the

ordered structure of the lipids and membrane dynamics [14]. Treatment of diabetic rats with a

combination of insulin and Se was effective in controlling blood glucose [15]. However, recent

epidemiological studies indicated supranutritional selenium intake and high plasma selenium levels as

possible risk factors for the development of type 2 diabetes [16]. Numerous studies have reported the

organification of Se through a microorganism fermentation technique for the production of organic Se

compounds with higher biological activities and lower toxicity than those of inorganic Se. Organic Se

can be absorbed and used rapidly, making it a focus area in recent years [17]. Nano-Se accumulated in

B. longum existed in the form of selenoproteins and the main component of the organic Se was SeMet.

It attracts even more attention thanks to its high bioavailability and lower toxicity. Nano-Se was found to

have a hepatoprotective effect, a tumour inhibitory effect, and to improve the immune function of mice

[18,19]. These selenoproteins play a preventive role in some degenerative conditions including cancer,

inflammatory diseases, neurological diseases, ageing, infertility and infections through specific cellular

pathways [20]. Although the mechanisms underlying the anti-diabetic activities of Se are not fully

understood, some of the proposed mechanisms include antioxidant protection and stimulation of the

immune system. In our previous studies [4,9], we found that B. longum could accumulate Se in the form

of Se-B. longum, affecting tumour growth and immune function in tumour-bearing mice.

Previous studies showed that dietary supplementation with multiple probiotic strains, including

Lactobacillus acidophilus, L. casei, L. rhamnosus, L. bulgaricus, B. breve, B. longum and S. thermophilus, has

been shown to prevent elevations in fasting plasma glucose in diabetic patients [21]. Oral administration

of Bifidobacterium spp. lowers serum glucose, enhances the expression of proteins involved in the insulin

signalling pathway and improves adipokine profile in diabetic mice [22]. A recent study focused on the

anti-diabetic effect of Bifidobacterium spp. and its molecular mechanism [23]. However, the protective

effects of Nano-Se-B. longum in a high glucose model have not yet been studied in detail. The effects of

Nano-Se-B. longum on renal function are also unknown. In this study, wild-type B. longum (WT

B. longum), Se-B. longum and Nano-Se-B. longum were used to compare their protective effect on the onset

of streptozotocin (STZ)-induced diabetes.

Therefore, we examined whether oral administration of Nano-Se-B. longum can delay the onset of

STZ-induced diabetes, possibly by affecting the insulin signalling pathway. It was also investigated

whether Nano-Se-B. longum ameliorates the damage to renal function caused by high glucose levels.
2. Material and methods
2.1. Nanoparticle formulation and size measurements
Nanoparticles were prepared as described earlier [19]. Briefly, 1 ml of 25 mM sodium selenite (Sangon

Biotech Co., Ltd., Shanghai, China), 4 ml of 25 mM reduced glutathione (Sangon Biotech Co., Ltd.,
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Shanghai, China), and 20 mg bovine serum albumin (Sangon Biotech Co., Ltd., Shanghai, China)

were mixed. The pH was adjusted to 7.2 with sodium hydroxide, which led to the formation of red

nano-Se and oxidized glutathione (GSSG). The red solution was dialysed against double distilled

water for 96 h with the water changing every 24 h to separate GSSG from Nano-Se under magnetic

stirring. The final solution containing Nano-Se and BSA was subjected to centrifugation at 13 000 r.p.m.

for 10 min. The pellet thus recovered was subjected to washing by its re-suspension in deionized water

followed by centrifugation at 13 000 r.p.m. for 10 min, to remove possible organic contamination present

in the nanoparticles. Finally, the pellet was freeze-dried using a lyophilizer and stored at room

temperature. Size measurements were performed using a Zetasizer Nano-ZSE (Malvern Instruments,

Malvern, UK) with Zetasizer Software v. 7.12. The results are reported as the average of 40–44

measurements+ s.d.
R.Soc.open
sci.5:181156
2.2. Preparation of WT B. longum, Se-B. longum and nano-Se-B. longum strain
for administration

B. longum NQ-1501 was obtained from the Inner Mongolia Shuangqi Medical Industry Corporation

(Inner Mongolia, China) and anaerobically cultured at 378C in TPY medium. Se enrichment of B.
longum was performed according to the previously established protocol [8]. Briefly, sodium selenite

was purchased from Shanghai LuYuan Fine Chemical Factory, weighed, and dissolved in 200 ml TPY

medium at a concentration of 25 mg ml21. Nano red elemental Se was dissolved in 200 ml TPY

medium at 5 mg ml21. B. longum, Se-B. longum and Nano-Se-B. longum were cultivated overnight in

TPY medium anaerobically. This overnight culture was diluted 1 : 25 in TPY medium and cultivated

at 378C until the OD600 reached about 0.2. The cultured strains were collected and then washed three

times with 5% glucose saline by centrifugation at 3500 � g for 5 min at 48C. The collected strains were

resuspended in 0.1 ml of 13% milk just prior to use. Live bacteria were prepared daily for

administration to each mouse.
2.3. Animals
The mice (aged between 4 and 5 weeks (w)) were maintained in a specific pathogen-free animal facility

under a 12 h light–dark cycle at an ambient temperature of 218C. They were provided with water and

foods ad libitum.
2.4. Induction of experimental diabetes
Male mice (C57BL/6) aged 4–5 w were purchased from Nanjing model animal research center of

Nanjing University and diabetes was induced with STZ (Merck, Darmstadt, Germany) as previously

described [24]. Briefly, after overnight fasting (deprived of food for 12 h and allowed free access to

water), diabetes was induced in mice by i.p. injection of STZ dissolved in 0.1 M cold citrate buffer

(pH ¼ 4.5) at a dose of 50 mg kg21 body weight for 5 consecutive days. Control mice were injected

with citrate buffer alone. Diabetes was confirmed by the determination of fasting blood glucose level

on the third-day post-final administration of STZ. Mice with fasting blood glucose levels greater than

or equal to 11.1 mM were considered diabetic. Blood glucose levels were monitored every week after

diabetes was confirmed using the glucose meter (Sinocare Inc., Changsha, Hunan, China).
2.5. Effect of WT B. longum, Se-B. longum and nano-Se-B. longum on glucose level
The effects of WT B. longum, Se-B. longum and Nano-Se-B. longum on glucose levels of STZ-induced

diabetes were determined. The prepared viable organism suspension in 0.1 ml was administered by

gavage once a day for 4 w simultaneously. Fifty mice were randomly divided into five groups:

Control group—normal; Model group—STZ-induced diabetic mice; WT B. longum group, Se-B. longum
group and Nano-Se-B. longum group—STZ-induced diabetic mice treated with 3 � 1010 bacteria kg21,

respectively. Strain prepared in 0.1 ml of viable microorganism suspension was administered by

gavage once a day for 4 w simultaneously. Diabetes was induced in mice by i.p. injection of STZ for

5 consecutive days on the 25th day after strain administered.
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2.6. Dose-dependent effect of nano-Se-B. longum
Nano-Se-B. longum prepared in 0.1 ml of viable microorganism suspension was administered by gavage

once a day for 4 w simultaneously. Overall, we assessed 60 mice in the six experiments. There were six

groups as follows:

Control group: normal;

Model group: STZ-induced diabetic mice;

Low dose group: STZ-induced diabetic mice treated with 7.5 � 109 bacteria kg21 Nano-Se-B. longum
(treated);

Middle dose group: STZ-induced diabetic mice treated with 1.5 � 1010 bacteria kg21 Nano-Se-B.
longum (treated);

High dose group: STZ-induced diabetic mice treated with 3 � 1010 bacteria kg21 Nano-Se-B. longum
(treated);

Toxicity test group: normal mice treated with 3 � 1010 bacteria kg21 Nano-Se-B. longum
n
sci.5:181156
2.7. Physiological assessment and metabolic analysis
The protective effect of Nano-Se-B. longum in mice was studied at different doses administered for 4 w.

Nano-Se-B. longum was administered during the injection of STZ. Blood glucose levels were monitored 3

days to 8 w after the final STZ injection using a glucometer via the caudal vein. Serum insulin levels

were determined using Rat/Mouse Insulin ELISA (Millipore Corp, Billerica, MA, USA) at the end of the

experiment. Food intake, water consumption and urine output were measured after the mice were

placed in metabolic cages overnight. At the eighth week after final STZ injection, eyeball blood was

collected and the mice were euthanized. At the end of the experiment, the levels of SCr and BUN were

also determined using the assay kit (Nanjing Jiancheng Bioengineering Institute, Nanjing, Jiangsu,

China). IPGTT was performed in mice on the seventh week after final STZ injection (n ¼ 3). For IPGTT,

mice were subjected to an overnight fast followed by an intraperitoneal glucose injection (1.0 g kg21).

Blood glucose was measured at 0, 15, 30, 60, and 90 min after the injection.
2.8. Western blotting analysis
The liver samples were isolated from all the mice and then snap-frozen in liquid N2 for subsequent

protein extractions. The collected tissue samples were lysed in ice-cold lysis buffer (20 mM Tris–

HCl (pH ¼ 7.5), 150 mM NaCl, 1% Triton-X 100, 1 mM EDTA) and a protein inhibitor cocktail for

30 min. The supernatant was boiled with Laemmli sample buffer for SDS-PAGE. The following

antibodies were used: anti-IRS1, anti-phospho-IRS1 (pIRS1), anti-GSK-3b, anti-phospho-GSK-3b

(pGSK-3b), anti-AKT and anti-phospho-AKT (pAKT) (Thr308) (Cell Signaling Technology, Beverly,

MA); anti-b-actin monoclonal antibody, anti-a-tubulin and anti-GAPDH were purchased from Santa

Cruz Biotechnology Inc. (Santa Cruz, Delaware, USA). Goat anti-rabbit IgG and goat anti-mouse

IgG were from Jackson ImmunoResearch Europe Ltd. The band densities were quantified by using

Image J program.
2.9. Histological analysis
To observe the morphological changes of the liver, pancreas and kidney, H&E staining was carried out as

described before [25]. In brief, the liver, pancreas and kidney tissues were fixed in 4% paraformaldehyde

for 16–24 h and transferred to ethanol. Then, the samples were embedded in paraffin and sectioned at

5 mm, followed by H&E staining.
2.10. Statistical analysis
Data are presented as means+SEM. The difference between two groups was analysed by a two-tailed

Student’s t-test using Prism software (GraphPad, San Diego, CA). Values were considered statistically

significant at p , 0.05.
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3. Results
3.1. Effects of WT B. longum, Se-B. longum and nano-Se-B. longum on glucose levels

of STZ-induced diabetes
Nano-Se-B. longum exhibited the best effect on fasting blood glucose levels (figure 1). Thus, Nano-Se-B.
longum was chosen for further studies.

3.2. Effects of nano-Se-B. longum on physiological and metabolic parameters
Blood glucose testing is the gold standard for the subclinical diagnosis of diabetes. Nano-Se-B. longum-treated

mice exhibited notably lower fasting blood glucose levels (figure 2a) and higher body weight (figure 2b) than

model mice. Because glucose homeostasis is mainly regulated by insulin, we also detected its serum

concentration (n ¼ 6). Fasting insulin levels were higher in Nano-Se-B. longum-treated mice (figure 2c) than

in model mice. Twenty-four-hour food intake, water intake and urine volume were measured (n ¼ 10)

and found to be decreased with an increase in the dosage of Nano-Se-B. longum (figure 3). In the IPGTT

assay (n ¼ 3), the glucose levels decreased significantly in model group mice (figure 4), indicating an

improved glucose clearance after Nano-Se-B. longum intervention in a dose-dependent manner.

3.3. Effects of nano-Se-B. longum on morphological changes in the liver and pancreas
Histological analysis of the liver and pancreas by H&E staining showed a notable difference between Nano-
Se-B. longum-treated and control mice. As shown in figure 5a, there were no obviously harmful changes in

the control mice and toxicity test group mice. A small amount of fat vacuoles was observed in part of the

pancreatic section in the model, low, middle, and high dose groups (black arrow). Small amounts of

inflammatory cells were only visible in the tissue in the model group (red arrow). With the increase in the

dosage of Nano-Se-B. longum, the degree of lesion decreased gradually. As shown in figure 5b, no

obviously harmful changes in the control mice and toxicity test group were noted. The hepatic cells were

edematous and the cytoplasm was loose in the tissue (black arrow) in the STZ-treated groups, while the

degree of lesion decreased gradually with an increase in the dosage of Nano-Se-B. longum. Small amounts

of inflammatory cells were visible in the tissue (red arrow) in the model group and the degree of infiltrated

inflammatory cells decreased with an increase in the dosage of Nano-Se-B. longum (red arrow). Overall, the

progression of liver and pancreas pathological damage was slowed after Nano-Se-B. longum treatment.

3.4. Nano-Se-B. longum improved liver insulin signalling sensitivity
To investigate the molecular mechanisms underlying hypoglycaemia, we studied the insulin signalling

pathway, which plays a critical role in glucose homeostasis. The mice were assessed for the presence

of pIRS1, pGSK-3b and pAkt (Thr308). As shown in figure 6a,c, the expression of pIRS-1 and pAkt
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increased significantly in the liver from the treatment group compared with that in the control mice.

pGSK-3b levels decreased markedly in the trial group compared with that in control mice (figure 6b).

The expression of insulin signalling pathway proteins was upregulated, which showed that Nano-Se-B.
longum improved liver insulin signalling sensitivity.

3.5. Protective role on renal function
The influence of Nano-Se-B. longum on the kidney is attributable to its effects on the glomeruli. With the

increase in Nano-Se-B. longum dosage, mesentery cell hyperplasia and glomerulus atrophy decreased

gradually (black arrow) (figure 7a). Nano-Se-B. longum markedly decreased the levels of BUN and SCr

in serum in STZ-induced mice compared to control mice (figure 7b,c). These data suggest that

Nano-Se-B. longum may improve the renal function damaged by diabetes.
4. Discussion
In this study, the effects of WT B. longum, Se-B. longum and Nano-Se-B. longum on glucose were measured.

The results showed that Nano-Se-B. longum was the best with respect to the protective effect on high

blood glucose. Normal mice were treated with the maximum dose of Nano-Se-B. longum and no
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significant difference was observed compared to normal mice. Sudin Bhattacharya research group had

synthesized and characterized Nano-Se and found its chemoprotective (CP) activity against CP-

induced hepatotoxicity, pulmonary and genotoxicity in normal Swiss albino mice [19,26] and its anti-

tumour efficacy in the tumour-bearing Swiss albino mice [18]. The anti-genotoxic effect of Nano-Se

might be due to its antioxidant and cytoprotective activity. Now, Nano-Se-B. longum showed its safety

and protective effect in STZ-induced diabetes. We have expanded the functions of Nano-Se, providing

further understanding and insight. Some studies found that the restorative effect of selenium on
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Figure 5. Effect of Nano-Se-B. longum on the pancreas and liver morphological changes (H&E stain; 20 � 10). Histopathological
observations made on the pancreas (a) and liver (b) of experimental groups of mice and the photomicrographs presented are the
representatives of the eight mice used in each group. Representative images are shown, at a magnification of 200.
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diabetes is predominantly related to the antioxidant and insulin-like properties of selenium [14].

However, further studies are required to investigate the precise mechanisms involved in the protective

effect of Nano-Se-B. longum against diabetes.

The insulin signalling pathway controls glucose transport in liver cells. Insulin binds to insulin

receptors on the surfaces of target cells. This binding activates insulin receptor beta (IR-b), and then
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Figure 7. The protective role in the renal function. (a) Micrographs of renal sections stained with H&E. (b) The levels of BUN in
serum (n ¼ 6 per group). (c) The levels of SCr in serum. Data were shown as mean+ s.e.m. (n ¼ 6 per group). Statistical
significance was assessed by two-tailed Student’s t-test. (##p , 0.01 compared with normal group; *p , 0.05 compared with
the model group).

rsos.royalsocietypublishing.org
R.Soc.open

sci.5:181156
9

activates IRS1, thereby recruiting phosphatidylinositol 3-kinase (PI3 K) to this location. An important

target of PI3 K in liver cells is Akt/PKB, which has a key function in glucose uptake [27]. Previous

studies have shown that pIRS1 and pAkt upregulation may have improved glucose uptake by the

reduced plasma glucose levels [28]. Oral administration of Nano-Se-B. longum may give rise to

elevated plasma selenium levels by enhanced hepatic secretion of selenoproteins, which may enhance

insulin-induced signal transduction [16]. Therefore, we assessed the effects of Nano-Se-B. longum
administration on insulin signalling pathways. In our study, Nano-Se-B. longum increased the levels of

pIRS1 and pAkt proteins and decreased pGSK-3b in diabetic mice. We can reasonably speculate that

an increase in the selenoproteins induced by Nano-Se-B. longum treatment enhanced insulin sensitivity

by promoting the insulin signalling pathway.

Diabetes mellitus can cause serious health problems including macrovascular and microvascular

complications [29]. One of these is injuries to the kidney tissue that result in renal dysfunction [30].

Eight weeks after STZ diabetes induction, some indexes of renal damage such as an increase in BUN

were noted [31]. There is a large amount of evidence to support the recovery effects of selenium, at

suitable doses, on the cell membrane of diabetic kidneys. The beneficial effect of selenium on renal

lesions can be explained with its insulin-like effect [32]. Recently, Feride Severcan et al. [14] also

showed the efficiency of a low dose (1 mmol kg21) of selenium administration in the prevention of

diabetes-related complications in kidneys. We also investigated the renoprotective effect of Nano-Se-B.
longum in STZ-induced mice. Nano-Se-B. longum can decrease renal dysfunction by lowering BUN and

SCr. Our experiments in Nano-Se-B. longum-treated and STZ-induced diabetes mice revealed that

Nano-Se-B. longum exerts a protective role in delaying the onset of STZ-induced diabetes as well as

renal function. However, further studies are required to investigate the precise mechanisms involved

in the renoprotective effect.
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Our findings may facilitate the understanding of the novel effects of Nano-Se-B. longum and suggest a

newly recognized benefit of Nano-Se-B. longum in diabetic mice. This may provide a novel, feasible,

economic protection approach for diabetes, thus deserving further investigation and development.
royalsocietypublishing.org
R.Soc.open

sci.5:181156
5. Conclusion
In this study, we demonstrated that oral administration of Nano-Se-B. longum can delay the onset of STZ-

induced diabetes, possibly via its effect on the insulin signalling pathway. It was also investigated that

Nano-Se-B. longum ameliorates the damage of renal function caused by high glucose levels. Our

findings may facilitate the understanding of the novel effects of Nano-Se-B. longum and suggest a

newly recognized benefit of Nano-Se-B. longum in diabetic mice.
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