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ABSTRACT

Possibilistic Security Properties are widely used in the development of high-assurance se-

curity models. However, while a model may possess a security property, an implementation of the

model is not guaranteed to possess the property. We argue that the choice of a framework, and

its associated definition of refinement, is critical to ensure that an implementation maintains the

security property. We show how to use the Doubly Labeled Transition Systems to reason about

possibilistic security properties and refinement. We compare this framework to three other process

algebras frameworks and show how our framework and security model preserves the security of the

largest class of systems. As a consequence of this framework, we show how our security property

links confidentiality to availability .
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I. INTRODUCTION

A. ABSTRACT
Possibilistic Security Properties are widely used in the development of high-assurance se-

curity models. However, while a model may possess a security property, an implementation of the

model is not guaranteed to possess the property. We argue that the choice of a framework, and

its associated definition of refinement, is critical to ensure that an implementation maintains the

security property. We show how to use the Doubly Labeled Transition Systems to reason about

possibilistic security properties and refinement. We compare this framework to three other process

algebras frameworks and show how our framework and security model preserves the security of the

largest class of systems. As a consequence of this framework, we show how our security property

links confidentiality to availability.

B. PROBLEM STATEMENT
Both software engineering practices and Common Criteria high-assurance certification re-

quirements [Ref. 1, 2], dictate that high-assurance software should be developed in a layered fashion.

Ideally, using formal methods, one should develop an abstract model of a system and prove that

the model possesses a desirable property [Ref. 3]. If one implements (refines) the model and proves

that the implementation is an instance of the abstract model, the properties of the abstract model

should not have to be restated and re-proven in the refined system.

Unfortunately, using traditional methods, refinement preserves only a small subset of the

set of properties one might like to prove [Ref. 4, 5]. From a security standpoint, proving that

a refinement maintains a possibilistic security property[Ref. 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], is

even more problematic [Ref. 16]. The problem is relevant because many security attacks exploit

flaws that occur as part of the implementation process. These flaws may exist despite the fact that

the implementation is a “proper refinement” of a secure abstraction. The fact that the security

properties are not preserved by common refinement relationships has been called the “Refinement

Paradox” [Ref. 12]. An example of the refinement paradox is the introduction of covert channels in

an implementation of a “secure” abstract specification.

The problem we address is the following: given a specification framework, an abstract

specification A, a refined specification C, an information-flow security property P , and a refinement

relationship �, we would like to show that if A satisfies P , and C � A (C is a refinement of A), then

C satisfies P . Furthermore we would like to use a definition of refinement that is computationally

1



efficient and encompasses the largest set of possible refinements.

We will limit this dissertation to address the preservation of non-interference-type security

properties. We choose these properties because they are generally known and widely studied [Ref.

11]. In this dissertation, we argue that a Doubly Labelled Transition System may be well suited

for high-assurance security development, since it uses abstraction in an explicit way, and limits the

places where security flaws could be introduced in the refinement process. We will use a framework

first developed by Larsen [Ref. 17] and later adapted by Dams [Ref. 18] and Schmidt et al [Ref. 19].

Within this framework we will develop a formal definition of a security property.

In general, refinement relationships do not preserve security. Roscoe[Ref. 12] defined a

class of abstract systems for which security would be preserved by any trace and failure refinement.

We will show that our framework guarantees security for a larger class of abstract systems than

was previously described. We will show that the framework is both computationally efficient and

includes a much larger set of refinements than previous work [Ref. 12, 20, 21].

C. MOTIVATION
There has long been a desire for systems that can process sensitive information in such a

way that the information cannot be transmitted to unauthorized process. However, for more than

three decades, it has been recognized that even if no explicit communication paths are allowed,

covert channels may still exist [Ref. 22]. Often these channels are inadvertently introduced through

the refinement process. Suppose, for example, that an abstract model of a system with data storage

appears to possess a security property. Ideally, any implementation of this model should possess the

properties of the model. However the reality is that in the implementation of a data storage system,

many subtle covert channels may be created [Ref. 23]. What is needed is a framework that enables

one to go from a higher layer of abstraction to a more refined layer in a way that preserves as many

properties as possible.

As a practical example, consider the secure typing language JIF [Ref. 24] based on the

Volpano’s secure typing [Ref. 25]. While a program may be proven to be non-interfering, once the

program is complied, the secure typing is lost. Programs that are written within the framework can

be considered non-interfering at that language level of abstraction, but any communication with a

program not in the framework causes an abstraction violation and the guarantee is lost. There have

been attempts to identify and remove the covert channels that arise [Ref. 26], but there is no known

way to break out of the framework and still guarantee security.

2



D. METHODOLOGY
We address this question using process algebras. This has the advantages of being general

enough to map other frameworks to it and still formally prove that the system has certain properties.

There are two general classes of process algebras [Ref. 27]: those that use denotational semantics,

such as CSP [Ref. 28] and those that use operational semantics such as CCS [Ref. 29]. Denotational

semantics represent a system as a language, while operational semantics represent a system as a

labelled transition system. Possibilistic security properties are often expressed using denotational

semantics, while abstraction is most naturally expressed with operational semantics.

In this paper, we will convert the results presented in prior works [Ref. 12, 20, 21] into a

common, but simple framework: the Labeled Transition System. We will then present the Doubly

Labeled Transition System and compare it with the previous results.

The definitions discussed in this paper were converted into Prototype Verification System

(PVS) specifications[Ref. 30]. The lemmas and theorems were then proven in the PVS environment.

The complete specification files can be found in Appendix A and B. We use PVS as a correctness

check on our results. In addition we take advantage of the type correctness requirements, that the

PVS system automatically generates, to further check our work.

E. CONTRIBUTION
This dissertation makes the following contributions.

1. We explore the relationships among process equivalence, security and refine-
ment. In addition we show how these three definitions must be “balanced” to
ensure that security properties are preserved during the refinement process

2. We developed a security property for the DLTS framework and compare them
with previously developed properties [Ref. 12, 14, 15].

3. We develop a class of systems in the DLTS framework such that if any member
of the class possesses our security property then any refinement of the system
will also possess the property.

4. We develop an algorithm to convert a set of CSP Failures[Ref. 28] into the
Doubly Labeled Transition System[Ref. 19] and show that the DLTS refine-
ment relationship also satisfies the CSP refinement relationship.

5. We compare our results with previous attempts to address the same problem
[Ref. 12, 20, 21], and show that unlike the other results, we can guarantee

3



the security of a system that is more complex than the original and is non-
deterministic from a low-level point of view.1

6. We show that the definition of security used in our framework links the possi-
bilistic security property to availability.

1We measure the complexity of a system by the number of states required to represent it.
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II. PRELIMINARIES

In this chapter, we will introduce the conceptual framework to describe our problem. We

will begin with a brief discussion of process algebras, and then introduce the Labelled Transition

System, as the fundamental mathematical structure that we will use in this dissertation. Finally,

we will introduce the Prototype Verification System (PVS) which we use to prove our theories.

A. OVERVIEW OF PROCESS ALGEBRAS
Process Algebras were developed to mathematically model computer systems. They are

useful because they model the behavior of a computer system in a way that readily lends itself to

formal reasoning.

Process Algebras are generally categorized into Operational Semantics, a process is expressed

as a set of actions that can be taken, and Denotational Semantics, a process is represented as a set

of mathematical objects. CSP [Ref. 28] is an example of a process algebra expressed in denotational

semantics, while CCS [Ref. 29] is an example of an operation semantic process algebra. Both CSP

and CCS have a long history and been proven to be Turing complete. Our work will be done from

an operational approach but will reference the denotational approach for comparisons to other work.

In this dissertation, we are interested in process algebras because most of the information-

flow security properties have been described using some form of denotational semantics [Ref. 7, 8,

31, 9, 13, 14]. In addition, the process algebras have formal well-developed models of abstraction

and refinement.

B. THE LABELLED TRANSITION SYSTEM (LTS)
In this paper, we will present the concepts using Labelled Transition System. We chose

this approach because it is simple and because the concepts can easily be transfered to various

Operational Semantic frameworks. Formally, we will define a Labelled Transition System S in terms

of a set of states: ΣS , a set of actions: ACTS , a set of transitions: →S⊆ ΣS × ACTS × ΣS and a

distinguished starting state: s0 ∈ ΣS . Using these terms we can define a labelled transition system

S as:

Definition 2.1: Labelled Transition System

LTS
def
= 〈ΣLTS , ACTLTS , −→LTS , s0〉 (II.1)

Where both ΣLTS and ACTLTS may be infinite.

5



s0 s1

coin

soda

Figure 1. Vending Machine Example

As an example, suppose, we wanted to represent a vending machine V M . The vending

machine has two actions: coin and soda. It has two states {s0, s1}. In state s0, it is awaiting a coin.

In state s1, it has received a coin and is ready to dispense a soda. The machine has two transitions:

s0
coin→ s1 and s1

soda→ s0 . Since we do not want the machine to give out a free soda, we insist that

it start in state s0. Figure 1 gives a visual representation of V M . A formal representation is:

V M =
〈
ΣV M = {s0, s1} , ACTV M = {coin, soda} , −→V M=

{
s0

coin→ s1, s1
soda→ s0

}
, s0

〉

1. Traces
In Process Algebras, one often describes systems in terms of the sequences of actions

that they will perform. Such a pattern is called a trace. Formally, we define the type SQ ⊆
ACT ∗ as a sequence of zero or more actions〈ACT1, ACT2...ACTn〉. We define the function Head :

SQ �→ ACT as a function that returns the first action of a sequence with Head (〈〉) = 〈〉 and

Head (〈ACT1, ACT2...ACTn〉) = ACT1.1 We also define Tail : SQ �→ SQ as a function which re-

turns the original sequence without its head with Tail (〈〉) = 〈〉 and Tail (〈ACT1, ACT2...ACTn〉) =

〈ACT2...ACTn〉. The formal definition of Trace? : LTS × ΣLTS × SQ �→ Bool, 2 takes a sequence

of actions sq, an LTS S and a starting state s ∈ ΣS . The function returns TRUE if there is a

transition for each of the actions in the sequence sq. We define Trace? recursively as follows:

Definition 2.2: Trace For A Labelled Transition System

Trace?(S, s, sq)
def
= IF sq = 〈〉 THEN TRUE

ELSE ∃s′ :
(

s
Head(sq)→ s′

)
∈→S ∧ Trace? (S, s′, Tail(sq))

1We use the convention that �→ denotes a function. And A∗ is set of all possible sequences
constructed from the elements of A.

2We use the convention that F? denotes a function whose value is either True or False.
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We can use definition 2.2 to construct the set of traces that an LTS will accept. The function

Traces : LTS �→ 2SQ returns3 the set of traces of a given LTS. It is defined as:

Definition 2.3: Traces Of A Labelled Transition System

Traces(S)
def
= {sq | Trace?(S, s0, sq)}

where s0 is the distinguished starting state of SY S.

From these definitions, we can prove a simple lemma: that the empty sequence is a trace

of every system. While this lemma follows directly from definition 2.2, it forms an important base

case in many later theorems which we prove by induction on the length of the sequence.

Lemma 2.1: The Empty Sequence Is A Trace Of Every LTS

∀S ∈ LTS : Trace? (S, s0, 〈〉)

where s0 is the distinguished starting state of S.

We now apply definitions 2.1 and 2.2 to our simple vending matching example: V M . Thus

the sequence starting from s0, the sequence 〈coin, soda, coin, soda〉 represents the operation of the

vending machine as it dispenses two sodas. Likewise starting from s1, the sequence 〈soda〉 is a valid

trace. Formally Trace? (V M, s1, 〈soda〉) = TRUE. We can apply definition 2.3 as follows:

Traces(V M) = {〈〉 , 〈coin〉 , 〈coin, soda〉 , 〈coin, soda, coin〉 , ...}

2. Trace Equivalence
The fundamental relationship between two systems in process algebras is equivalence. Differ-

ent kinds of process algebras use different concepts of equivalence. Understanding how equivalence is

defined is key, because the definition of equivalence impacts the definitions of security properties and

refinement relationships. In this section, we present a brief overview of two equivalence relationships

and compare them.

The first equivalence relationship between two processes is trace equivalence =Trace⊆ LTS×
LTS. Two systems are trace equivalent if they have the same set of traces. Formally:

Definition 2.4: Trace Equivalence:

SY S1 =Trace SY S2
def
= Traces (SY S1) = Traces (SY S2)

3We use 2SQ to denote the power set of sequences.

7



Informally definition 2.4 states that , if two systems are trace equivalent they can do the

same things. Trace Equivalence is the most general of the known equivalence relationships [Ref. 32].

This means if two systems satisfy any other well-known equivalence relationship, they will also be

Trace Equivalent.

Trace equivalence can not only be used to equate systems but to define them. As we will

see in the next chapters this is exactly the way Heiko Mantel defined systems in his framework [Ref.

14]. As we will also see, defining systems in terms of sets of traces impacted his definition of security

and refinement.

3. Bi-Simulation
Operational semantics often use a different equivalence relationship. Robin Milner developed

Bi-Simulation as a way to determine if to systems in his CCS process algebra were equivalent [Ref.

29]. As we will see over the next chapters, frameworks that use operational semantics, such as

Focardi’s [Ref. 15] and our own depend on bi-simulation. We will also see that choosing the

definition of equivalence impacts the definitions of security and refinement.

We adapt Milner’s Bi-Simulation relationship to our framework. Bi-Simulation, denoted by

∼⊆ ΣLTS×ΣLTS , is a relation between the states of two LTS’s that satisfies the following condition:

Definition 2.5: Bisimulation Condition:

(∀s1 ∈ S1, s2 ∈ S2 : s1 ∼ s2 ⇔ (∀s′1 ∈ ΣS1, e ∈ ACTS1 :

s1
e→ s′1 ∈→S1=⇒ ∃s′2 ∈ ΣS2 : s2

e→ s′2 ∈→S2 ∧s′1 ∼ s′2
)
∧

(∀s”2 ∈ ΣS2, f ∈ ACTS2 :

s2
f→ s”2 ∈→S2=⇒ ∃s”1 ∈ ΣS1 : s1

f→ s”1 ∈→S1 ∧s”1 ∼ s”2

))

If such a relationship can be found, and it includes the starting states of the two LTS’s, the

two LTS’s are bi-similar: =BiSim⊆ LTS ×LTS. Note that s0−S1 is the distinguished starting state

of S1 and s0−S2 is the distinguished starting state of S2. Formally:

Definition 2.6: Bi-similar Equivalence:

S1 =BiSim S2
def
= ∃ ∼: s0−S1 ∼ s0−S2

Informally, if two systems are bi-similar, each one is able to “mimic” the transitions of the

other. From the above definitions, we can prove lemma 2.2, that if two systems are bi-similar, then

they are also trace equivalent. Given any sequence that is a trace of S1, we prove Lemma 2.2 by
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induction on the length of the sequence that the sequence is also a trace of S2. And likewise, given

any sequence that is a trace of S2, we prove Lemma 2.2 by induction on the length of the sequence

that the sequence is also a trace of S1.

Lemma 2.2: Bisimulation Implies Trace Equivalence

∀S1 ∈ LTS, S2 ∈ LTS : S1 =BiSim S2 =⇒ S1 =Trace S2

While Bi-similarity implies Trace equivalence, the reverse does not hold true. In Figure 2,

each one of the LTS’s is trace equivalent to the other, however only SY S3 and SY S4 are bi-similar.

Many different equivalence relationships have been defined for various kinds of process algebras. Of

all of them, trace equivalence is the least discriminating (accepts the largest set of systems as being

equivalent), while bi-simulation equivalence is the most discriminating[Ref. 32].

A common criticism of Bi-simulation is that it is too discriminating. If two systems are

bi-similar, they must not only agree on what they do, but they must also agree on their internal

structure. In other words, they must agree on how they do things. This violates a common axiom

of specifications, that a specification should only specify what a system does, not how it does it.

The key advantages of Bi-Simulation over other equivalence relationships is that it is much

less computationally complex to determine whether two systems are bi-similar than to determine

whether they are trace equivalent [Ref. 33]. Moller and Smolka showed that there are some conditions

under which proving trace equivalence of two systems is undecidable but proving that they are bi-

similar is decidable. However, in all circumstances determining if two systems are bi-similar is less

computationally complex than determining trace equivalence.
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4. Safety and Liveness
As stated earlier, the original motivation behind process algebras is to be able to represent

systems in a manner suitable for mathematical analysis. We will now give a brief synopsis of how

such an analysis would take place. Consider once again our simple vending machine:

V M =
〈
ΣV M = {s0, s1} , ACTV M = {coin, soda} , −→V M=

{
s0

coin→ s1, s1
soda→ s0

}
, s0

〉

Vending machines exist to make money for their owners. Therefore, we want to prove that

our vending machine is profitable. We do this by proving that for all sequences that are valid traces

of the system, the number of sodas dispensed is always less than or equal to the amount of times

the machine received payment:

∀sq ∈ SQ : sq ∈ Traces (V M) =⇒ #soda ∈ sq ≤ #coin ∈ sq

When a property applies to all traces of a system, it is a safety property. In fact any property

of the form ∀sq : sq ∈ Traces(SY S)... is a safety property. Thus, the above property is a safety

property.

The alternative type of property is a liveness property [Ref. 34]. A liveness property takes

the form ∃sq : sq ∈ Traces(SY S).... For example, a customer of our vending machine is not

concerned about the profitability of the machine, but rather wants an assurance that if he gives the

machine a coin, he will eventually receive a soda.

5. The Kripke Structure
One final introductory definition is needed. A Kripke structure K is a Labelled Transition

System where states are “decorated” with a set of atomic predicates: ATOMK . A predicate map:

IK : ΣK �→ 2ATOMK is a function that maps a state to a set of atomic predicates that are true for

a given state, i.e. for a given atomic property q ∈ ATOMK and a given state, s ∈ ΣK , if q ∈ IK(s),

then q is TRUE at state s[Ref. 5]. Thus we formally define a Kripke structure is follows:

Definition 2.7: Kripke Structure

K
def
= 〈ΣK , ACTK , ATOMK , −→K , s0, IK〉

By decorating the states with predicates, we can reason not only about what the system

has or will do, but also about the state it is in. Complete logics, such as µ- calculus were developed

precisely for such reasoning [Ref. 35].
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C. PROTOTYPE VERIFICATION SYSTEM (PVS)
In this dissertation, the main results were formulated and proven using the Prototype Verifi-

cation System (PVS)[Ref. 30]. PVS was created by SRI for the development of formal specifications

and proofs.

We choose PVS for several reasons. The first is that PVS automatically checks our work.

For example, when attempting to prove one of the theorems in one of Schmidt’s early papers[Ref.

5], we found that the published result used a ∀ quantifier when the ∃ quantifier was the correct one.

The definition was corrected in Schmidt’s later papers [Ref. 19, 36, 37]. This illustrates precisely

the type of error we are striving to avoid. The second reason is that unlike some other commonly

used theorem provers, PVS allows the direct use of both existential and universal quantifiers [Ref.

38].

One especially useful feature of PVS is that the PVS logic engine automatically checks the

types and automatically generates type consistency requirements. Again this is an area that is easily

overlooked when performing proofs.

Finally we choose PVS since high-assurance systems are often modeled using automated

tools. Our model was developed with such a tool and as a result, the theorems should be more

portable.
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III. ABSTRACTION AND REFINEMENT

In this chapter, we define and discuss abstraction and refinement and show how they are

used in computer science. We give two formal definitions of refinement and discuss their utility in

reasoning about systems. Finally we introduce two other forms of refinement that build on our basic

definitions.

A. OVERVIEW
It is impossible to study computer science without encountering abstraction. We abstract

away the complex electrical signals sent to a microchip as a stream of 1’s and 0’s. We created

machine language to abstract away the 1’s and 0’s. In 1968, Edsger Dijkstra’s constructed an entire

operating system, the THE Multiprogramming system, as a series of layered abstractions [Ref. 39].

Parnas used abstraction to create his modules [Ref. 40]. Robinson showed how abstraction could

be used in hierarchal proofs of system properties [Ref. 3]. We interconnect computers based on

layers of abstraction such as a TCP/IP stack. When the data is stored, there are yet more layers of

abstraction to describe the file system.

Yet what is abstraction? Given how often computer scientists use abstraction, it would

seem that the concept would have been carefully described years ago. Surprisingly, this is not the

case. There is still active and ongoing research to formally define and understand the nature of

abstraction and learn how to properly apply it [Ref. 41, 42, 43, 5, 44, 45, 46].

Informally abstraction is defined as:

“...the mapping from one representation of a problem to another which
preserves certain desirable properties and which reduces complexity.” [Ref.
47]

Embedded in this definition is the tension that makes understanding abstraction so difficult.

• Abstraction must preserve the desired aspects of the problem.

• Abstraction must throw away the unnecessary aspect of the problem.

The challenge is to identify which aspects of the problem must be kept and which aspects can be

thrown away. Moreover, it is equally important to understand the limits of abstraction. For, as we

shall see, not every property of an abstract system is preserved after implementation.
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The dual of abstraction is refinement. Refinement adds detail and complexity to a problem

while preserving some of the desired properties from the abstraction. Refinement is necessary if

computer scientists are to transform formal and semi-formal specification into functioning imple-

mentations.

B. BASIC REFINEMENT
We begin with a few foundational definitions. A refinement relationship is a relationship

that is true if, and only if, one system preserves some critical aspects of the other. By convention

we will use the names A for an abstract system and C for concrete. We will denote a refinement

relationship as: � ⊆ LTS × LTS. If C and A are system representations, we will denote the fact

that C is a refinement of A as C � A. We will use the term refinement to denote a system that

is in a refinement-relationship with another. As we shall see, it is sometimes necessary to relate

the internal states of one system to another. We will use the term refinement relation (in contrast

with the refinement relationship) to denote the relation between the states of systems C and A as

R ⊆ ΣC × ΣA. Thus C �R A denotes the fact that C is a refinement of A under the refinement

relation R.

1. Trace Containment
In the previous chapter, we illustrated that Trace Equivalence is the most general equivalence

relationship. Likewise, the most general refinement relationship is trace containment � ⊆ LTS ×
LTS.

Definition 3.1: Trace Containment Refinement Definition

C � A
def
= Traces(C) ⊆ Traces(A)

Informally the definition states that a concrete system C is a refinement of an abstract

system A if the set of traces of C is a subset of the traces of A. At first, this definition may seem

counter-intuitive. How can a concrete system be more complex than the abstract system if it does

fewer things? The answer is that the system adds complexity by removing any unnecessary and

often overly simplistic traces. At the same time, this definition guarantees that the the abstract

system encompasses all of the possible behaviors of any implementation.
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The Trace Containment definition of refinement is used, among others, by Jacobs 1 and

Mantel2[Ref. 20, 4].

There are a few simple properties of Trace Containment that directly follow from the defi-

nition.

Lemma 3.1: Trace Containment Is Reflexive

∀S ∈ LTS : S � S

Lemma 3.2: Trace Containment Is Transitive

∀S1, S2, S3 : S1 � S2 ∧ S2 � S3 =⇒ S1 � S3

If any relationship is both reflexive and transitive then it is called a pre-order [Ref. 48].

Thus the refinement relationship forms a pre-order. If we use the trace equivalence definition of

system equivalence we can also show that the trace refinement relationship forms a partial order:

Lemma 3.3: Trace Containment Is Anti-Symmetric

∀S1, S2 : S1 � S2 ∧ S2 � S1 =⇒ S1 =Trace S2

2. The Undecidability of Trace Containment
The main difficulty with using trace containment is that showing two systems are related

by trace containment is generally undecidable [Ref. 49]. In general there is no way to automatically

determine if a concrete system is a refinement of an abstract system. This is the same problem

that Moller and Smolka noticed when discussing computational complexity of equivalence [Ref.

33]. Because of the extreme complexity, many definitions of refinement attempt to simplify the

computation by taking into account the internal state of the system. For example, when Mantel

needed to address the refinement paradox, he had to introduce state into his framework [Ref. 20].

When Catt developed Clocked-CSP, he also needed to take into account the state of a system to

enable automatic verification of refinement [Ref. 50].

3. Simulation
Operational semantics allows one to easily and naturally reason about the internal state of

a system. Within the operational semantics framework, the simulation relation is often used as the

refinement relationship [Ref. 5]. To define simulation, we must first define a refinement relation:

1Jacobs first identified the problem we are interested in.
2We will compare Mantel’s efforts with our own in Chapter VII.
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R ⊆ (ΣC × ΣA) as a relation that links states in the abstract system to states in the concrete and

vice-versa. We require that R is left-right total. The function LeftRightTotal? : LTS×LTS×R �→
bool determines if a refinement relation is left-right total with respect to two LTS’s.

Definition 3.3: Left-Right Total

LeftRightTotal?(C, A, R)
def
= (∀c : c ∈ ΣC ⇒ ∃a : a ∈ ΣA ∧ cRa)∧

(∀a : a ∈ ΣA ⇒ ∃c : c ∈ ΣC ∧ cRa)

We state that the system, C is a refinement of A under the refinement relation R such that

LeftRightTotal?(C, A, R) if the following is true:

Definition 3.4: Simulation Refinement

C �R A
def
= ∀c, c′ ∈ ΣC , a ∈ ΣA, e ∈ ACTC :

cRa ∧ c
e→ c′ ∈−→C=⇒ ∃a′ : a

e→ a′ ∈−→A ∧ c′Ra′

Informally, any movement of the concrete system C can be mimicked by the abstract system

A. For LTS’s, Simulation Refinement implies Trace refinement. Formally:

Lemma 3.4: Simulation Refinement Implies Trace Containment

∀C, A ∈ LTS, R ⊆ (ΣC × ΣA) : C �R A =⇒ Traces(C) ⊆ Traces(A)

We prove this by induction on the length of the sequence that is a trace of C. If any sequence

is a trace of C, then the simulation definition guarantees that every step of the sequence can be

mimicked by A.

There are a few other simple properties of simulation refinement that can be proven from

the Definition 3.4. The first states that under the identity relation, every LTS is a simulation of

itself.

Lemma 3.5: Simulation Is Reflexive

∀S ∈ LTS : S �{(c, a) | c=a} S

The second shows that the simulation relationship is transitive and therefore the simulation

relationship is a pre-order.

Lemma 3.6: Simulation Is Transitive

∀S1, S2, S3 : S1 �R1 S2 ∧ S2 �R2 S3 =⇒ S1 �{(c, a) | ∃s: cR1s∧ sR2a} S3

16



If we use the bi-simulation definition of equivalence (Definition 2.6), then we can also show

that the simulation refinement relationship forms a partial order. Intuitively this is the case, since

simulation (Definition 3.4) is one half of bi-simulation(Definition 2.5).

Lemma 3.7: Trace Containment Is Anti-Symmetric

∀S1, S2 : S1 �R S2 ∧ S2 �R−1 S1 =⇒ S1 =BiSim S2

C. PROPERTIES PRESERVED BY REFINEMENT
In this section give an example of the refinement relationships that we have described above

and discuss how abstraction and refinement can be used to formally reason about the development

of systems. In addition, we discuss the limitations of the definitions.

Figure 1 shows the simple vending machine example V M from Chapter II. In the figure,

we also present two refinements. V M −C1 and V M −C2, of the abstract system V M . Informally,

V M − C1 will dispense three sodas and stop. V M − C2 will simply take some money without

dispensing any product. We also note in passing that V M − C1 requires more states to represent

than V M and is therefore more complex than V M .

If we define R as {(s0−C1, s0−A) , (s1−C1, s1−A) , (s2−C1, s0−A) , (s3−C1, s1−A) , (s4−C1, s0−A) , (s5−C1, s1−A) ,

we can prove V M − C1 �R V M . If we define R as {(s0−C2, s0−A) , (s1−C2, s1−A)}, we can prove

V M −C2�RV M . Thus both V M −C1 and V M −C2 satisfy the simulation definition of refinement

(Def 3.4) and by lemma 3.4 they both satisfy the trace containment definition of refinement (def.

3.1).

If one uses abstraction, it is critical to understand which properties of the abstract system

will be preserved by a refinement relationship. With both refinement relationships presented in this

chapter, only safety properties will be preserved [Ref. 5].

Recall from Chapter II, that a safety property was of the form of the form ∀sq : sq ∈
Traces(SY S) ⇒ ... . Also recall that for our abstract vending machine we wanted to prove that our

vending machine is profitable:

∀sq ∈ SQ : sq ∈ Traces (V M) =⇒ #soda ∈ sq ≤ #coin ∈ sq

It is easy to guarantee that any refinement (under trace containment) of V M will be prof-

itable. The trace containment definition guarantees that no new traces (behaviors) will be introduced

into a refinement of the system. Since every trace of the abstract system is profitable and new traces
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Figure 1. Vending Machine Refinement

can be introduced, we can conclude that every trace of a refinement of V M is also profitable.

Formally:

∀sq ∈ SQ : sq ∈ Traces (V M − C1) =⇒ #soda ∈ sq ≤ #coin ∈ sq

and

∀sq ∈ SQ : sq ∈ Traces (V M − C2) =⇒ #soda ∈ sq ≤ #coin ∈ sq

Recall also from Chapter II that the other type of property is a liveness property [Ref. 34].

A liveness property takes the form ∃sq : sq ∈ Traces(SY S).... In our example, the customer wants
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s ∈ ΣK φ ∈ LAtom q ∈ Atom Z ∈ Identifier

φ ::= q | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | �φ | � φ | µZ.φ | νZ.φ | Z

s |= q IFF q ∈ IK(s)

s |= ¬φ IFF s � φ

s |= φ1 ∧ φ2 IFF s |= φ1 ∧ s |= φ2

s |= φ1 ∨ φ2 IFF s |= φ1 ∨ s |= φ2

s |= �φ IFF ∀s′ SUCH THAT s → s′ ∧ s′ |= φ

s |= �φ IFF ∃s′ SUCH THAT s → s′ ∧ s′ |= φ

s |= µZ.φ IFF ∃i ≥ 0 such that s |= φiWHERE
{

φ0 = FALSE
φi+1 = [φi/Z]φ

s |= νZ.φ IFF ∀i ≥ 0 , s |= φiWHERE
{

φ0 = TRUE
φi+1 = [φi/Z]φ

Note [φi/Z] represents the syntactic substitution of φi for all free occurrences of Z in φ.

Figure 2. Modal mu-Calculus for Finite-State Kripke Structures [Ref. 5]

an assurance that if he gives the machine a coin, he will eventually receive a soda. Formally:

∀sq ∈ SQ : sq ∈ Traces (V M) ∧ #soda ∈ sq < #coin ∈ sq =⇒
∃sq′ ∈ SQ : sq′ ∈ Traces (V M) ∧ #soda ∈ sq′ = #coin ∈ sq′

While the abstract specification does contain this property, the system V M −C2 does not.

Informally this means that the system can take money without eventually dispensing a product and

still be considered a “correct” implementation of V M . As we shall see, the refinement relationships

presented in this chapter do no preserve liveness.

1. Proving Properties of Kripke Structures
Schmidt showed that the simulation refinement relationship is guaranteed to preserve only

safety and not liveness properties. He did this using Kripke structures. What follows is a brief

summary of his results. The full treatment can be found in [Ref. 5].

To enable his proofs, Schmidt used the logic of Modal mu-calculus for finite-state Kripke

structures. This logic is laid out in Figure 2 taken from [Ref. 5].

Modal logic uses two modal operators: the � operator and the � operator. The � operator

denotes properties that are true for all states reachable from a given state after a single transition.

The � operator is the logical dual of the � operator, and denotes properties that are true for at
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least one state that is reachable from a given state after a single transition. For labelled transitions,

these operators are denoted [i] and 〈i〉where i is the label of the transition. The logic also includes

two recursion operators: µ and ν that express properties that are true for sequences of transitions.

This modal logic gives a more precise formulation for expressing safety and liveness proper-

ties. Safety properties can be expressed as a0 |= νR.p ∧ �R. Informally, this means that from state

a0 and for all states that can ever be reached from a0, property p holds. Liveness properties can

similarly be expressed as a0 |= µS.p ∧ �S. Informally, this means that starting from state a0 there

is always a path where property p holds.

2. Limitations Of Abstraction with Kripke Structures
With this logic, it is critical to know what properties can still be proven after refinement.

In other words, if there is some property φ, for some abstract state a, such that a |= φ, and if c

is a related to a in a refinement relationship cRa, under what circumstances must the property be

true of the refined state: c |= φ? However in order to do this, Schmidt had to modify the definition

of Simulation Refinement (Definition 3.4) to take into account the properties of states. Property

reflecting simulation is similar to the simple simulation definition of refinement, but relates the

Kripke Structures to each other (Definition 2.7). The key difference is that the atomic predicates

that must be true in the concrete states, must be reflected in the abstract state.

Definition 3.5: Property Reflecting Simulation Refinement

C �R A
def
= (∀c, c′ ∈ ΣC , a ∈ ΣA, e ∈ ACTC :

cRa ∧ c
e→ c′ ∈−→C=⇒ ∃a′ : a

e→ a′ ∈−→A ∧ c′Ra′
)
∧

(∀c, ∈ ΣC , a ∈ ΣA : cRa =⇒ IA(a) ⊆ IC(c))

With this definition, Schmidt asked under what circumstance would the following inference hold:

Definition 3.6: Property Preservation Across Refinement

∀C, A ∈ K, c ∈ ΣC , a ∈ ΣA, φ : C �R A ∧ cRa ∧ a |= φ =⇒ c |= φ

Schmidt showed that for property reflecting simulations, the negation and the � operator

are not preserved under refinement[Ref. 5]. Thus under our definition of refinement, we are only

guaranteed that c |= φ if a |= φ and φ is of the following form.

φ ::= q | φ1 ∧ φ2 | φ1 ∨ φ2 | �φ | µZ.φ | νZ.φ | Z

In other words, safety, but not liveness properties are preserved by simulation refinement.
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3. Determining the Refinement Relationship
If a refinement relation exists between two Kripke structures, one system can be shown to

be a refinement of another in at least O(nm) where n is the number of states and m is the number of

transitions [Ref. 33]. However, determining whether a relationship exists is, in general, undecidable.

D. OTHER FORMS OF REFINEMENT
This sections summarizes two other forms of refinement. These other forms build off of the

concepts presented above. We present these other forms for comparison and to use in our description

of future work in Chapter IX. The treatment here will be informal.

1. Weak Refinement
Weak refinement [Ref. 51, 46] is the process of adding internal (hidden) transitions into the

structure. For those familiar with CCS, weak refinement is the process of revealing internal τ events.

Figure 3, based on an example in [Ref. 46], illustrates the concept. In the figure the top line shows

an abstract clock, incrementing the tick of the seconds is considered internal. The bottom line,

depicts a refinement where the seconds are explicitly specified. The doted lines show the refinement

relationship between the states. Notice that in the abstract system, internal events do not affect the

abstract state, but in the concrete system they do.

2. Non-Atomic Refinement
Non atomic refinement [Ref. 52, 46], also known as action refinement [Ref. 53], is an

operation that replaces a singe labelled transition with a complete LTS. Figure 4 shows an example
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where a single abstract event: the entering of a pin number in an ATM, is replaced by a series of

concrete events[Ref. 52]. Non-Atomic Refinement requires that we define a mapping ρ from each

abstract transition to a set of finite sequences of concrete transitions. Furthermore, notice from

the figure, that in a non-atomic refinement there may be intermediate concrete states that are not

mapped to an abstract state in the refinement relation. This form of refinement is useful when

modeling compilation.

E. SUMMARY
Abstraction and refinement are dual concepts. For trace-based systems, a concrete system

is a refinement of an abstract system if it the set of traces of a concrete system is a subset of the set

of traces of the abstract system. For labelled transition systems, a concrete system is a refinement

of an abstract system if and only if the abstract system is able to simulate the concrete system.

This definition of refinement is guaranteed to preserve safety properties, but not necessarily liveness

properties. The definitions of refinement can be weakened to account for internal operations and

non-atomic operations.
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IV. INFORMATION FLOW SECURITY

In this chapter, we give a formal definition of information flow security, apply it to our

labelled transition system and compare it to other conceptions of information flow security.

A critical concept at the heart of this dissertation is a definition of security. Within the

security community, there has been considerable debate and research about such a definition [Ref.

54, 55, 22, 56, 57, 58, 6, 59, 60, 61, 62, 16].

A. HISTORY
But what exactly is security? While many people would recognize a security problem when

they encounter one, very few could give a precise definition of exactly what it means to be secure.

Without a formal understanding of the definition of security, it is impossible to develop any kind of

logical test for it. More fundamentally, without a formal definition of security, it is impossible to claim

that a computer system is or is not secure. In general, security has generally had five components:

confidentiality, integrity, availability, authentication and non-repudiation. For this dissertation, we

will focus on the class of information-flow security properties which include confidentiality and

integrity. Later in the dissertation we will show that specifying an information-flow property must

be done with availability requirements.

1. Mandatory Access Control Policies and Models
By 1972, researches recognized the need to restrict what a process could do and with whom

and what it could communicate[Ref. 55]. Organizations required a security policy that could be

imposed on all subjects and objects in an orderly fashion. Lampson developed one of the early

formulations of the problem [Ref. 22]. The problem consisted of an untrusted program that is

given access by a customer to private information. The customer will use the program only if some

guarantee exists that the program cannot leak sensitive information. Lampson identified several

important aspects of the confinement problem that are still relevant today including:

• The ability to isolate the program in some way.

• The need for a trusted “supervisor” program that enforces confinement.

• The existence of covert channels, both timing and storage, though which in-
formation can be transmitted.

While Lampson’s paper described a civilian application. It was the American military’s classification

scheme that drove the advancement in Mandatory Access Control (MAC) security policies. In the
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military classification system a dominance relationship exists, a person with a high clearance should

be allowed access to larger set of information than one with a lower clearance. Popek sketched out

a formal model of this security policy [Ref. 63], followed shortly thereafter by Bell and LaPadula

[Ref. 56]. Bell and LaPadula’s primary contribution was the introduction of the simple security

(ss) property and the *-property. The ss-property stated that a subject is allowed to read an object

when the classification of the subject dominates, or is equal to, the classification of the object. The

*-property stated that a subject is allowed to write to an object when the classification of the object

dominates, or is equal to, the classification of the subject. The model stated that a system that is

proven to possess the ss-property and *-property will conform to military policy and is therefore

secure.

In 1976, Dorthy Denning’s PhD. dissertation[Ref. 64] provided a more general approach to

security policies. Denning was interested in information flow policies which, as its name implies,

specifies whether information may flow from one domain to another. For example, using the military

model, information in a Top Secret domain should not make its way into an Unclassified domain.

Denning argued that there must be a partial order of information domains (sometimes referred to as

classes)[Ref. 57]. Using this partial ordering, the policy can be represented as a lattice. In fact, she

proved that any sensible information flow policy could be represented this way. Denning showed that

information must be allowed to flow between two classes in at most one direction. If information

flowed freely between two classes, two classes would be equivalent. A second restriction, is that the

graph representing information flow must be free of cycles. If a cycle exists, transitivity would allow

information to flow freely between all of the vertices in the cycle. Given these two restrictions, the

set of allowable flows must form a lattice.

It is simple to show how both the Bell and LaPadula models and the Biba integrity model

[Ref. 65] could be represented as a lattice. The dominance relationship of security labels becomes

the partial order of security classes. The ss-property and *-property both ensure that information

flows in a single direction. Similarly, the Biba integrity policy, which can be shown to be the dual

of the Bell and LaPadula model, can also be represented as a lattice. In this case, information is

allowed only to flow from higher integrity classes to lower integrity classes. The result is that the

information flow properties we use in this dissertation can also be used to guarantee integrity since

information is prevented from flowing from low integrity subjects to high integrity objects.

2. Separation
In 1981, Rushby expanded on this idea by putting forward a proposal for a separation kernel

[Ref. 60]. Rushby argued that lattice based security policies with trusted processes introduced too
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Figure 1. Visualization of Proof of Separability[Ref. 60]

many complexities into development of high assurance applications. His solution was to model

the system as a collection of processes that communicate only in very specific ways. His concept

of security was to prove that communication between processes should be restricted to approved

channels. The corollary was that if the implementer “cut the wires” of communication into and out

of a process, there was no way for a process to tell anything about the other processes on the same

machine. In this way, the process was separated and for all intents and purposes was running on its

own machine.

In his description of a separation kernel, Rushby gives a unique way of proving two processes

are separated [Ref. 60]. In his model the separated processes are viewed as abstract state machines.

Each state machine can “see” only a limited portion of the entire system. These abstract state

machines are deterministic, based only upon their state. The actual concrete system is also a state

machine that includes all the abstract machines. Rushby defined an abstraction function for each

abstract state machine that maps the states of the concrete machine into the state of the abstract

machine.

To prove separation, one must show that when a concrete machine performs an operation

on behalf of one abstract machines, the operation does not change the abstract state of the other

abstract machines. Figure 1, from Rushby’s paper, illustrates a concrete machine with two processes:

Red and Black. In this problem, the Red process is separated from the Black process. The machine

performs a concrete operation (COP) on behalf of a Red process. When the abstraction functions

REDABS and BLACKABS are applied, the state for the Red process changes as if the function had

been performed on a dedicated machine. While the same operation does not change the abstract

state at all for the Black process.
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3. Non-Interference
In 1982, Goguen and Meseguer attempted to provide a more generalized view of security

by claiming that security policies could be represented by a series of non-interference relationships

[Ref. 6]. As with Separation, the system was modeled as an abstract state machine. A system

possessed the noninterference property if only those process that were permitted by the policy could

change the abstract state that another process “sees”[Ref. 66]. The property was useful in describing

information flow and seemed to be independent of earlier models, since non-interference was thought

to be intransitive. An intransitive security policy would allow process a to interfere with process b

and process b to interfere with process c and yet also guarantee that process a could not interfere with

process c. Unfortunately, Rushby showed that the non-interference relationship was transitive and

therefore security policies described by non-interference relationships reverted back into a lattice

[Ref. 16]. Noninterference is simpler than the ss and *-property because it does not require a

definition of “read” and “write” and is not subject to attacks that abuse these definitions [Ref. 62].

Noninterference is a “possibilistic" security property. This means that observation from

a low-security point-of-view will not yield any high-security information since it is possible that

the high-security events have or have not occurred. Other researchers[Ref. 25, 67, 26, 24] have

used language structures (typing in several cases ) to describe “weaker” or “more realistic” security

properties. This approach explicitly does not address covert channels. It does not directly deal with

the refinement question and it does not describe the role of non-determinacy in the description of

security properties and their refinements.

B. NON-DETERMINISTIC SECURITY PROPERTIES
While noninterference is a simple and elegant security property, it was originally defined

for deterministic systems [Ref. 11] and later adapted to non-deterministic systems[Ref. 68]. In this

section, we present several formulations of non-deterministic security properties. We show that there

are two main considerations: how, a system is represented and how strong1 the property is. Most

of the papers published focused on developing and comparing security properties based on their

relative strengths [Ref. 7, 8, 61, 31, 9, 10, 13]. Our focus is not on comparing security properties,

but on how the framework used to represent the system impacts the security property.

1One security property is stronger than another if a system possessing the stronger property will
also possess all of the information flow guarantees of a weaker property.
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1. Preliminaries
To address this topic, we must now assume that the set of actions is divided up into two

disjoint sets: LOW and HIGH such that ACT = LOW ∪ HIGH and LOW ∩ HIGH = ∅. For

purposes of this dissertation, the two labels are sufficient. However, if more were needed, we could

further divide the set of labels up so long as the set of labels formed a lattice.

Our goal is to protect the HIGH actions. We assume the existence of an observer that is

authorized to know both HIGH and LOW actions and another observer that is only authorized

to see LOW actions. The Low-security observer is assumed to have complete knowledge of both

the systems design and the sequence of LOW actions that a system engages in. The challenge is

therefore to ensure that a Low-security user cannot use the information available to him to infer

information about the occurrence (or non-occurrence) of HIGH actions.

To begin to relate security and equivalence, we will need to introduce the restriction operator.

Restriction2, \ : SQ×ACT �→ SQ returns a sequence of actions identical to sq but containing only

actions in the set ACT . The formal definition uses the cons operator from LISP which concatenates

an item to a sequence.

Definition 4.1: Restriction

sq\ACT
def
= IF sq = ∅THEN ∅

ELSIF Head(sq) ∈ ACT THEN : cons (Head(sq), Tail(sq)\ACT )

ELSE Tail(sq)\ACT

We can now use the restriction operator to formally state what the Low security user is able

to observe. Formally, the low security user is now able to observer both the system design and the

sequence of actions that the system engages in restricted to low: sq\LOW .

In the next two sections, we will show how Heiko Mantel and Riccardo Focardi each for-

mulated an information flow security property. We will translate their properties into our LTS

framework and compare them.

2. Mantel’s Formulation
Recently Heiko Mantel proposed a comprehensive and expressive way of representing and

comparing security properties with denotational semantics [Ref. 14, 69]. His framework is simple

2The notation comes from the CCS restriction operator. Our definition is identical to the one
used in CCS [Ref. 29].
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but expressive enough to translate previously identified properties [Ref. 7, 8, 61, 9, 10, 13] into the

framework. By putting the different properties into a common framework, a comparison can then

be made.

The key to understanding his formulation, is that a system is described simply as a set of

traces. Mantel’s defines a new type: Event System (ES) as tuple: ES = 〈ACTES , IES , OES , TRES〉.
Where ACTES is the alphabet of actions, IES ⊆ ACTES is the set of input actions, OES ⊆ ACTES

is the set of output actions and TRES ⊆ 2SQES is the set event sequences that the process can

engage in3.

Mantel borrows from McLean[Ref. 70] the concept of a Low-Level Equivalence Set (LLES).

We define the function LLES : ES × SQES �→ 2SQES that returns the set of sequences that look the

same as the given sequence for a given system from a low point-of-view. Formally:

Definition 4.2: Low Level Equivalence Set

LLES (S, sq)
def
= {sq′ | sq′ ∈ TRS ∧ sq′\LOW = sq\LOW}

The Low Level Equivalent Set describes the set of sequences that appear the same from a

low-level point of view. Recall from Chapter II the definition of trace equivalence.

Definition 2.4: Trace Equivalence:

SY S1 =Trace SY S2
def
= Traces (SY S1) = Traces (SY S2)

In trace equivalence, two systems are equivalent if they have the same set of traces. For security, the

Low Level Equivalence Set describe the set of traces that appear the same from a low point-of-view.

This is a similar concept. Understanding the link between system definition and security definition

is a key point of this dissertation. We now show how Mantel used the LLES to put forward his

security property.

Mantel’s key insight was to view security as a closure property of the LLES with respect to

an alteration function (for example purge all of the high-security inputs of the sequence). By using

different alteration functions, Mantel mapped previously described properties into his framework.

The power of the framework was that it allowed the different security properties to be directly

compared.

One of the simplest security properties he describes is the RE : ES �→ Bool or Removal of

Events property [Ref. 14]. Using Mantel’s event system, where S is an Event System (S ∈ ES) it

is expressed as:

3Recall that SQES = ACT ∗
ES .
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Definition 4.3: Mantel’s RE Property

RE (S)
def
= ∀sq : sq ∈ TRS =⇒ ∃sq′ : sq′ ∈ LLES (S, sq) ∧ sq′\HIGH = 〈〉

Informally, a system possesses the RE property, if for every trace of the system, there is another

trace that appears the same from a low users point of view, but does not contain any HIGH events.

We can translate this result into our LTS framework RE : LTS �→ Bool as follows:

Definition 4.4: Mantel’s RE Translation

RE (S)
def
= ∀sq : Trace? (S, s0, sq) =⇒ Trace? (S, s0, sq\LOW )

The rest of Mantel’s work was dedicated to expressing previously published security prop-

erties in a common framework which he calls MAKS (Mantel’s Assembly Kit for Security). The

different properties use different alteration functions and have additional closure restrictions. For

example, some properties require that only the high-security inputs must be removed.

The key point is to observe the connection between defining the system as a set of traces and

defining the security property using the low-level trace equivalence relationship. We now turn our

attention to a different system definition and show how changing the definition of a system changes

the definition of security.

3. Focardi’s Security Properties
Focardi [Ref. 15] developed several security properties using operational semantics, specif-

ically a modification of the CCS process algebra [Ref. 29]. Processes in CCS can be represented

as a labelled transition system as described in Chapter II. As stated in Chapter II, bi-simulation is

the fundamental equivalence relationship in CCS [Ref. 29]. In this section we will present two of

Focardi’s security properties. The rest of the properties build on these two but take into account

CCS hidden (τ) actions.

To define his security properties, Focardi uses two equivalence relationships. The first is

Low-Level Trace Equivalence. This is similar to the Low-Level Equivalence Set (Definition 4.2).

The difference is that, since we use operational semantics, we can frame our discussion using state.

We now give a formal definition for Low-Level Trace Equivalence, ≈LOW
Trace⊆ ΣLTS1×ΣLTS2, adapted

to our common LTS framework. Let S1 and S2 be a Labelled Transition System of type LTS. Let s1

and s2 be states of S1 and S2 respectively (s1 ∈ ΣS1 and s2 ∈ ΣS2). Low-Level Trace Equivalence

is the formally defined as:
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Definition 4.5: Low Level Trace-Equivalence

s1 ≈LOW
Trace s2

def
= ∀sq : Trace? (S1, s1, sq\LOW ) ⇔ Trace? (S2, s2, sq\LOW )

Notice the connection between the definition of Trace-Equivalence (Definition 2.4) used to

describe a process and Low-Level Trace Equivalence used to describe security. The difference is the

removal of the LOW security events from the sequence.

The second equivalence relationship is Low-Level Bi-Simulation: ∼LOW
BiSim⊆ ΣLTS1 ×ΣLTS2.

Low Level Bi-Simulation is an adaptation of bisimulation. Let S1 and S2 be a Labelled Transition

System of type LTS. Let s1 and s2 be states of S1 and S2 respectively (s1 ∈ ΣS1 and s2 ∈ ΣS2).

The formal definition for Low-Level Bi-Simulation: ∼LOW
BiSim⊆ ΣLTS1×ΣLTS2 adapted to our common

LTS framework is as follows:

Definition 4.6: Low Level Bi-Simulation

s1 ∼LOW
BiSim s2

def
= (∀s′1 ∈ ΣS1, e ∈ ACTS1 :

e ∈ LOW ∧ s1
e→ s′1 ∈→S1=⇒ ∃s′2 ∈ ΣS2 : s2

e→ s′2 ∈→S2 ∧s′1 ∼LOW
BiSim s′1

)
∧

(∀s”2 ∈ ΣS2, f ∈ ACTS2 :

f ∈ LOW ∧ s2
f→ s”2 ∈→S2=⇒ ∃s”1 ∈ ΣS1 : s1

f→ s”1 ∈→S1 ∧s”1 ∼LOW
BiSim s”2

)

Again, notice the connection between the definition of bi-simulation (Definition 2.5) used to

describe a process and low-level bi-simulation used to describe security. The difference is that the

∼LOW
BiSim relation only takes into account the set of LOW actions.

We now present two of Focardi’s security properties. The first is Strong Nondeducibility

Composition: SNDC : LTS �→ Bool.

Definition 4.7: Strong Non-deducibility Composition

SNDC (S1)
def
= ∀s1, s2 ∈ ΣS1, e ∈ ACTS1 : e ∈ HIGH ∧ s1

e→ s2 ∈→S1=⇒ s1 ≈LOW
Trace s2

Note from the quantification that s1 and s2 are both states in the LTS: S1 thus for the definition

of Low-Level Trace Equality (Definition 4.5). Thus the equation would be instantiated: ∀sq :

Trace? (S1, s1, sq\LOW ) ⇔ Trace? (S1, s2, sq\LOW ).

30



s0

s2 s4

s1

s3 s5

h

l1 l2 l1 l2

Figure 2. Visualizing Focardi’s Properties

SNDC is a trace based security property that is roughly equivalent to Mantel’s RE property.

Focardi also proved the property equivalent to non-inference[Ref. 9].

The second property is Strong Bi-simulation Nondeducibility Composition SBNDC : LTS �→
Bool.

Definition 4.8: Strong Bi-simulation Non-deducibility Composition

SNBDC (S1)
def
= ∀s1, s2 ∈ ΣS1, e ∈ ACTS1 : e ∈ HIGH ∧ s1

e→ s2 ∈→S1=⇒ s1 ∼LOW
BiSim s2

SBNDC is virtually identical to SNDC. The difference is in the equivalence relationship used.

These properties can easily be illustrated. Figure 2 shows a very simple process with one

high-security action h ∈ HIGH and two low-security actions l1, l2 ∈ LOW . This system illustrated

in the figure satisfies both SNDC and SBNDC, since for the only high-security transition, s0
h→ s1, the

state s0 and s1 are both Low-Level Trace Equivalent s0 ≈LOW
Trace s1 and in a Low-Level Bi-Simulation

relationship: s0 ≈LOW
Trace s1.

However just as in Chapter II, where we showed that two processes may be trace equivalence

but not bi-similar, a process may also be SNDC (Low Trace Equivalent) but not SBNDC (Low-View

Bi Similar). Figure 3 shows a process that satisfies SNDC, but not SBNDC. While no high-security

information can be learned by watching what the system does, high-security information can be

learned by observing what the system does not do. If, after preforming action l1, the system refuses

to preform action l2, we can conclude that the system is in state s3 and that action h has occurred.

Note that this type of security flaw cannot be discovered when a system is only expressed

as a set of traces4. The consequence is that just as a smaller number of systems are equivalent using

4As Mantel did.
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Figure 3. Visualizing Focardi’s Properties

bi-simulation than using trace equivalence [Ref. 32], so also a smaller number of systems will be

declared secure using a security property that relies on low-level bi-simulation than one that relies

on low-level trace equivalence.

C. THE REFINEMENT PARADOX
Simply stated, the refinement paradox arises from the fact that an abstract system may

satisfy an information-flow security property, but a valid refinement of that system may not. This

section will explain the interactions between refinement relationships and information flow security

properties that results in the paradox.

1. Background
Formal methods have long been used in the development of high-assurance software. To

receive an A-1 certification under the Orange book [Ref. 1], or an EAL-7 rating under the Common

Criteria [Ref. 2], a formal security model must be created. A Formal Top-Level Specification (FTLS)

is created and “shown to be an instance of the model.” Next a Detailed Specification (DTLS) is

created that is an “instance of the FTLS.” Finally, the code is generated from the DTLS. Each of

these instantiations is a refinement of the layer above. Bell and LaPadula’s model [Ref. 56] defined

security as a safety property. As we have shown in the Chapter III, safety properties are preserved
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under common definitions of refinement. Therefore it was not necessary to prove that the the next

layer down possessed the *-property and the ss-property.

One of the problems with the Bell and LaPadula style of security models is that they contain

covert channels. A covert channel occurs whenever information flow occurs in a way not allowed by

the security policy [Ref. 22]. A classic example of a covert channel is the position of a disk arm

[Ref. 23]. If a low-security user can measure the latency between a read request and its fulfillment,

a high-security user can transmit a message to a low-security user by reading different files, and

hence moving the position of the arm. In the Bell and LaPadula model, the movement of the arm

falls outside the set of “read” and “write” operations that the *-property and ss-property cover. The

movement is just a side-effect of an allowed operation. As a result, after implementation, a system

designer must look for covert channels [Ref. 71, 72].

A key advantage of the information flow approach over the Bell and LaPadula approach

is that it avoids hidden channels [Ref. 59]. Non-interference type properties do not rely on a

definitions of “Read” and “Write” and therefore are not subject to channels resulting from actions

that fall outside of these terms [Ref. 11]. The key problem with using information-flow properties is

to show that any implementation of the model is a refinement of that model. As we shall see, once a

model is refined, the property is no longer guaranteed and the designer has to re-prove the property

in the refinement.

2. An Example of the Refinement Paradox
The refinement paradox can be shown with a simple example. Figure 4 shows two simple

systems. The abstract system possesses Mantel’s RE property (Definition 4.4), SNDC (Definition

4.7) and SBNDC (Definition 4.8). The concrete system is a refinement under the trace containment

refinement relationship (Definition 3.1) and under the simulation refinement relationship (definition

3.4) where R = {(s0, s0) , (s1, s1) , (s2, s2) , (s3, s3) , (s4, s4) , (s5, s5)}. However, the refinement

satisfies neither Mantel’s RE property, nor SNDC nor SBNDC. Informally if a low-security observer

observes the concrete system engaging in action b, that observer could conclude that the high-security

transition, h, has occurred.

Jacobs was the first to identify the refinement paradox [Ref. 4]. He saw that security

properties were not preserved under CSP’s formulation of refinement. John McLean developed a

method of refining a non-interfering system into code [Ref. 73]. However, his work demanded

that the code must be an exact match of the model. Upon further investigation, he showed that

noninterference was not a first order property of traces, but rather a second order property of trace

sets[Ref. 11]. A first-order trace property can be observed in each trace generated from the execution

33



s0 s1

s2 s4s3 s5

a

h

b a b

Low-Security Transition High-Security Transition

s0 s1

s2 s4

a

h

a

s5

b

s3

Abstract System

Concrete System

Figure 4. An Example of the Refinement Paradox

of the system. For instance, it is possible to see if any given trace violates a safety or a liveness

property. A second-order trace property is not a property of an individual trace, rather it is a

property of a set of traces. Since information-flow security is a second order property, it is not

possible to see a violation of a the property simply by observing the execution of a single trace.

Rather one must prove that for every trace in the system that contains high actions, there is another

possible trace in the set of traces in the system that is equivalent from a low point of view.

Based on the current state of the practice, there is little point in generating any abstract

models or specifications for systems that use information-flow properties, since the property must be

re-proven at each level. But doing away with a layered design would violate all the best practices for

software design and analysis. Therefore it is critical to find methods of refining abstract specifications
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to machine code in a manner that will preserve an information flow security property.
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V. THE DOUBLY LABELLED TRANSITION
SYSTEM

In this chapter, we will introduce the Doubly Labelled Transition System (DLTS). We will

give the motivation for its development, give a formal definition for the DLTS, show how we encode

the DLTS using PVS and finally, show how the DLTS permits a different definition of refinement.

A. INTRODUCTION
To address the refinement paradox, we are going to add to our definition of a labelled

transition system. In a standard labelled transition system, the transitions define an upper bound

on the set of behaviors. Any refinement is constrained by this bound. Now we introduce a second set

of transitions that will define a lower bound on the set of behaviors. This framework was originally

developed by Larsen [Ref. 17] and then adapted by Dams [Ref. 18] and Schmidt [Ref. 5]. The

notation we use was adapted from Schmidt.

Formally, we define a Doubly Labelled Transition System (DLTS) in terms of a set of states:

Σ, a set of actions: ACT , a set of May transitions: May−→⊆ Σ×ACT ×Σ, a set of Must transitions:
Must−→⊆ Σ × ACT × Σ, such that Must−→⊆May−→and a distinguished starting state: s0 ∈ ΣS . Using these

terms we define a labelled transition system S as a set of states and two sets of transitions:

Definition 5.1: Doubly Labelled Transition System

S
def
=

〈
ΣS , ACTs, →May

S , →Must
S , s0

〉

The Doubly Labelled Transitions Systems were developed as an extension to the basic

labelled transition system, specifically so one could specify conditions that would guarantee that

liveness properties would be preserved by any refinement. To accomplish this, Schmidt defined two

kinds of transitions. The first is called the May transition. The May transitions of the DLTS are

semantically identical to the transitions of the LTS described above. Informally a May transition

denotes a transition that may or may not exist in any refinement. The second kind of transition

is the Must transition. Informally a Must transition denotes a transition that must exist in any

refinement. For consistency we require that any Must transition is also a May transition. Thus

between any two states in a system, there are three possibilities:

1. There are no transitions between the states (the transition is not an element
of →May). This means that in any refinement, there will be no transition
between the refinements of the states.
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2. There is a May transition but no Must transitions between the states. This
means that in any refinement of the states, there could be a May transition,
a Must transition or no transition at all.

3. There is a May transition and a Must transition between the states. This
means that in any refinement of the first state, there will be a Must transition
that leads to a refinement of the second state.

An alternate way of understanding the semantics of a Must-transition is that Must-transitions

imply an additional liveness (or availability) requirement. For example, suppose there was a simple

vending machine which could engage in only two actions: coin and soda. At an abstract level, the

machine can only engage in traces of the form 〈coin, soda, coin soda...〉. Figure 1, shows a simple

model of the machine. In the figure, we adopt the convention that May transitions are represented

as dotted lines and Must transitions as solid lines. In the figure, the coin operation is a May

transition because the machine may not always accept a coin (if it has run out of soda). However,

if it has accepted the coin, it now is in a state such that it must always be able to dispense the

product.

Labeling the transitions has several important consequences. Schmidt has shown that with

only one set of labels, the only properties that are preserved by refinement are safety properties.

With the second set of labels, it is now possible to preserve liveness properties [Ref. 5].

To begin the formal proof process we encoded these definitions into PVS. Figure 2 gives the

basic PVS specification.

This specification can be interpreted as follows. The basic non-empty types are State,

Action. Everything else is described in terms of these fundamental elements. Trans is a data type

that represents a transition. An individual transition is a tuple that consists of three elements: an

old state (Trans‘oldSt) of type State, a label of type Action (Trans‘act) describing the transition,

and a new state (Trans‘newSt) of type State.

In PVS notation, a DLTS is a tuple containing the following items:
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basic_dlts [State: TYPE+, Action: Type+]: THEORY
BEGIN
Trans: TYPE = [# oldSt: State, act: Action, newSt: State #]
s0: State

DLTS: TYPE+ = [# States : setof[State],
Actions: setof[Action],
MayT : {May: setof[Trans] | (FORALL (t: Trans) :

member(t, May) =>
(member(t‘oldSt, States) &
member(t‘act, Actions) &
member(t‘newSt, States)))},

MustT : {Must: setof[Trans] | (FORALL (t: Trans) :
member(t, Must) => member(t, MayT))},

Start : {s0: State | member(s0, States)} #]
TransitionsAreDefinedByElements: LEMMA(FORALL (t1, t2: Trans):

t1 = t2 IFF
t1‘oldSt = t2‘oldSt &
t1‘act = t2‘act &
t1‘newSt = t2‘newSt)

END basic_dlts

Figure 2. basic_dlts.pvs

1. States, is the set of states that comprise the system It corresponds to ΣS in
definition 5.1.

2. Actions, is the set of action labels that are used to label the transitions. It
corresponds to ACTS in definition 5.1.

3. MayT is the set of nondeterministic, labelled transitions that may occur be-
tween states. It corresponds to →May

S ⊆ ΣS × ACTS × ΣS in definition 5.1.
MayT is the first dependent type1 in the system. The type restriction de-
mands that a transition can only occur between the set of states enumerated
in States and be labelled with the an action label from Actions

4. MustT is the set of nondeterministic, labelled transitions that must occur
between states. It corresponds to →Must

S ⊆ ΣS ×ACTS ×ΣS in definition 5.1.
MustT is also a dependent type. The type restriction demands that every
Must transition is also a May transition for consistency.

1In PVS, a dependent type is a type that depends on earlier type in the tuple.
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5. Start is the distinguished starting state corresponding to s0 in definition 5.1.
Start is restricted to a start in States.

The lemma TransitionsAreDefinedByElements, which follows the DLTS description, simply states

that two transitions that have the same old state, new state and action are the equivalent.

B. DOUBLY LABELLED KRIPKE STRUCTURE
In this section we describe the Doubly Labelled Kripke Structure (DLKS) [Ref. 36]. Just as

the Doubly Labelled Transition System extends the Labelled Transition System, so also the DLKS

is an extension of the basic Kripke structure presented in Chapter II. This section gives the formal

definition of the DLKS and shows how Schmidt and Huth extended their definition of modal µ-

calculus to use a three-valued logic [Ref. 36]. The provides a framework for the description of some

of the future work presented in Chapter IX.

Recall that a Kripke structure (Definition 2.7) is a Labelled Transition System in which

states are “decorated” with a set of atomic predicates: ATOMK . Recall also that a predicate map:

IK : ΣK �→ 2ATOMK is a function that maps a state to a set of atomic predicates that are true for

a given state, i.e. for a given atomic property q ∈ ATOMK and a given state, s ∈ ΣK , if q ∈ IK(s),

then q is TRUE at state s[Ref. 5].

The Doubly Labelled Kripke Structure is similar to the Doubly Labelled Transition System

(Definition 5.1) except that it not only has two transition labels but also has two predicate maps. The

first map is the set of May predicates: IKMay : ΣK �→ 2ATOMK . These predicate are semantically

identical to the unlabeled predicate maps of the basic Kripke Structure. The second map is the set

of Must predicates: IMust
K : ΣK �→ 2ATOMK . By decorating the states with predicates, we can

reason not only about the sequences of actions the system may engage in, but also about the state

it is in. Thus we formally define a Doubly Labelled Kripke Structure is follows [Ref. 36]:

Definition 5.2: Doubly Labelled Kripke Structure

K
def
=

〈
ΣK , ACTK , ATOMK , −→May

K , −→Must
K , IMay

K , IMust
K

〉

For consistency, we require that:

Axiom 5.1: Doubly Labelled Kripke Structure Predicate Map Consistency

Condition

∀q ∈ ATOMK , s ∈ ΣK : q ∈ IMust
K (s) =⇒ q ∈ IMay

K (s)

We also encoded the DLKS into PVS. In fact all of the proofs for the next four chapters, have

been proven both for the DLTS and DLKS. For simplicity, we will only show the proofs relating to
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Trans: TYPE = [# oldSt: State, act: Action, newSt: State #]
PredicateMap: TYPE+ = [State -> setof[Atom]]
DLTS: TYPE+ =

[# States : setof[State],
Actions: setof[Action],
Atoms : setof[Atom],
MayT : {May: setof[Trans] | (FORALL (t: Trans) :

member(t, May) =>
(member(t‘oldSt, States) &
member(t‘act, Actions) &
member(t‘newSt, States)))},

MustT : {Must: setof[Trans] | (FORALL (t: Trans) :
member(t, Must) => member(t, MayT))},

MayP : {P: PredicateMap |
(FORALL (r: Atom, s: State) :

(member(s, Stares) &
member(r, P(s)) =>

member(r, Atoms)},
MustP : {Q: PredicateMap |

(FORALL (r : Atom, s: State) :
(member(s, States) &
member(r, Q(s))) =>

member(r, MayP(s)))} #]

Figure 3. DLTS Definition.

the DLTS. Any difference with the specifications that use the DLKS from the specifications that

use the DLTS will be noted explicitly.

Figure 3 gives the basic PVS specification. The specification is similar to the specification

of the DLTS but with two additional items described below.

We define a new basic type: Atom. An Atom is a predicate that may or may not be true

at a given state. A PredicateMap : State �→ setof[Atom] is a function that maps a state to a set

of atomic predicates that are related to that state.

Thus in addition to the elements of the DLTS, a DLKS is a tuple containing the following

additional items:

1. Atoms, is the set of atomic predicates that the model will consider. It corre-
sponds to ATOMK in the above notation.

41



2. MayP a function that maps a state to the set of predicates that may be true
at that state. It corresponds to IMay

K : ΣK �→ 2ATOMK . The type restriction
is designed such that if an atomic predicate is in the set of Atoms, and not in
the set returned by MayP for a given state, then the predicate is FALSE for
that state.

3. MustP a function that maps a state to the set of predicates that must be true
at that state. It corresponds to IMust

K : ΣK �→ 2ATOMK . The type restriction
is designed such that if an atomic predicate is in the set returned by MustP
for a given state, then the predicate is TRUE for that state. In addition we
demand for consistency that any predicate that must be true for a given state,
may be true as well.

C. REFINEMENT AND THE DLTS
We modify the refinement relation to take into account the second set of labels. For a

standard labelled transition system we required that the abstract system was able to simulate the

transitions of the concrete. In a similar way, for a DLTS we require that the abstract system is

able to simulate the May transitions of the concrete system. However, for the Must transitions,

we now reverse the relationship by requiring that the concrete system is able to simulate the Must

transitions of the abstract system. In this way, the Must transitions are guaranteed to be preserved

in any refinement of the system.

Central to the definition of refinement is a refinement relation that connects states of the ab-

stract system to the states of the concrete R ⊆ (ΣC × ΣA). As with the basic simulation-refinement

definition we require that the refinement relation is LeftRightTotal?(C, A, R) (Definition 3.3).

Intuitively, the LeftRightTotal? restriction guarantees that every concrete state is related to some

abstract state and likewise every abstract state is related to some concrete state.

For clarity, we will break the refinement relationship for the DLTS into two parts: CSimulate? :

DLTS × DLTS × R �→ Bool and ASimulate? : DLTS × DLTS × R �→ Bool. We state that

the system, C is a refinement of A under the refinement relation R if the refinement relation is

LeftRightTotal?(C, A, R) and if the pair of systems it satisfies the following definition:

Definition 5.3: DLTS Refinement Relationship

C �R A
def
= CSimulate? (C, A, R) ∧ ASimulate? (C, A, R)

The function CSimulate? returns TRUE is the abstract system is able to simulate the May tran-

sitions of the concrete. Note that this is identical to the entire Simulation Refinement Relationship

(definition 3.4) for the LTS:
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Definition 5.4: DLTS Refinement Relationship (Part 1)

CSimulate?(C, A, R)
def
= ∀c, c′ ∈ ΣC , a ∈ ΣA, e ∈ ACTC :

cRa ∧ c
e→ c′ ∈−→May

C =⇒ ∃a′ : a
e→ a′ ∈−→May

A ∧ c′Ra′

However, now in ASimulate?, we require that the concrete system is able to simulate the Must

transitions of the abstract system:

Definition 5.5: DLTS Refinement Relationship (Part 2)

ASimulate?(C, A, R)
def
= ∀a, a′ ∈ ΣA, c ∈ ΣC , e ∈ ACTA :

cRa ∧ a
e→ a′ ∈−→Must

A =⇒ ∃c′ : c
e→ c′ ∈−→Must

C ∧ c′Ra′

From Definitions 5.3 to 5.4, we can now show the formal justification for the three possible

cases of transitions between two states described in the previous pages. Suppose that there is no

May-transition between two abstract states. Then from the contra-positive of Definition 5.4, we

know that any refinement of those states cannot contain a May transition between them. If there

is a Must-transition between two abstract states, then from Definition 5.5, there will be a must

transition between the refinements of those states. If however, there is a May transition between

two abstract states but no identical Must transition, then from Definition 5.3, a refinement of those

two states may contain a Must transition, a May transition or no transition at all.

For a Double Labelled Kripke Structure, the refinement relationship has all properties of

the above definitions, however, we must now also take into account the predicates. Formally we

require:

Definition 5.6: DLKS Refinement Relationship

C �R A
def
= ASimulate? (C, A, R) ∧ CSimulate? (C, A, R) ∧ PropertyPreserve?(C, A, R)

Where PropertyPreserve? : DLTS × DLTS ×R �→ Bool is a function that determines if

all of the properties in the abstract system are preserved in the concrete.

Definition 5.7: DLKS Refinement Relationship (part 3).

PropertyPreserve?(C, A, R)
def
=

(
∀c, ∈ ΣC , a ∈ ΣA : cRa =⇒

(
IMay

C (c) ⊆ IMay
A (a)

)
∧ (IMust

A (a) ⊆ IMust
C (c)

))
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StateTuple: TYPE = [# cSt: State, aSt: State #]
StateMap: TYPE = setof[StateTuple]
LeftRightTotal?(C , A : DLTS, R: StateMap) : bool =

(FORALL (sc: State) : member(sc, C‘States) =>
(EXISTS (sa: State) : member(sa, A‘States) &

member((# cSt:=sc, aSt:=sa #), R))) &
(FORALL (sa: State) : member(sa, A‘States) =>

(EXISTS (sc: State) : member(sc, C‘States) &
member((# cSt:=sc, aSt:=sa #), R)))

Figure 4. Left-Right Total PVS Spec

Informally, this condition requires that any predicate that is true in the abstract state:

r ∈ IMust
A (a), must be true in the related concrete state r ∈ IMust

C (c). Likewise we require that

any predicate that is false in the abstract state: q /∈ IMay
A (a), must also be false in the related the

related concrete state q /∈ IMay
C (c). However, any predicate that is unknown in the abstract state:

p /∈ IMust
A (a) ∧ p ∈ IMay

A (a) can be true, false or unknown in its related concrete state.

1. Encoding The DLTS Refinement Relationship
Figure 4 shows the PVS encoding of the LeftRightTotal?(C, A, R) requirement (Definition

3.3). In the encoding we define StateTuple as a pair of two states: cSt and aSt. We define StateMap

as a set of StateTuple. StateMap is therefore the basic type of our refinement relation R. The

function LeftRightTotal? determines if a give R is left-right total with respect to two DLTS’s.

Figure 5 shows the PVS encoding of the DLTS refinement relationship (Definition 5.5). In

the encoding we define StateTuple as a pair of two states: cSt and aSt. We define Refines is a

type signature describing a function which takes two DLTS’s, and a left-right total StateMap and

returns a boolean value. SafelySimulate? is a function of the Refines signature that determines

if a every transition of the concrete system can be simulated by the abstract system. Note that the

name was chosen because this part of the definition preserves safety properties.

Figure 6 shows the PVS encoding of the second part of the DLTS refinement relationship

(Definition 5.5). LivelySimulate? is a function of the Refines signature that determines if a every

transition of the abstract system can be simulated by the concrete system.

Figure 7 shows the PVS encoding of the third part of the DLKS refinement relationship

(Definition 5.7). PropertyPreserve? is a function of the Refines signature that determines that

every property that is known in the abstract system is also known in the concrete.
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Refines: TYPE = [C: DLTS, A : DLTS,
R: {SMap: StateMap | LeftRightTotal?(C, A, SMap)} ->
bool]

ASimulate? : Refines = LAMBDA
(C, A : DLTS, R: {SMap: StateMap | LeftRightTotal?(C, A, SMap)}) :

(FORALL (tc : Trans, sa: State) :
(member(tc, C‘MayT) &
member(sa, A‘States) &
member((# cSt:=tc‘oldSt, aSt:=sa #), R)) =>

(EXISTS (ta: Trans) :
(member(ta, A‘MayT) &
ta‘oldSt = sa &
ta‘act = tc‘act &
member((# cSt:=tc‘newSt, aSt:=ta‘newSt #), R))))

Figure 5. PVS Encoding of ASimulate?

CSimulate? : Refines = LAMBDA
(C, A : DLTS, R: {SMap: StateMap | LeftRightTotal?(C, A, SMap)}) :

(FORALL (ta : Trans, sc: State) :
(member(ta, A‘MustT) &
member(sc, C‘States) &
member((# cSt:=sc, aSt:=ta‘oldSt #), R)) =>

(EXISTS (tc: Trans) :
(member(tc, C‘MustT) &
tc‘oldSt = sc &
ta‘act = tc‘act &
member((# cSt:=tc‘newSt, aSt:=ta‘newSt #), R))))

Figure 6. PVS Encoding of CSimulate?
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PropertyPreserve?: Refines = LAMBDA
(C, A : DLKS, R: {SMap: StateMap | LeftRightTota?l(C, A, SMap)}) :

(FORALL (sc, sa: State):
(member(sc, C‘States) &
member(sa, A‘States) &
member((# cSt:=sc, aSt:=sa #), R)) =>

(subset?(C‘MayP(sc), A‘MayP(sa)) &
subset?(A‘MustP(sa), C‘MustP(sc))))

Figure 7. PVS Encoding of Property Preserve

Refines?IsReflexive: LEMMA
(FORALL (SYS : DLTS):

Refines?(SYS, SYS, {r: StateTuple | r‘cSt = r‘aSt}))
Refines?IsTransitive: LEMMA

(FORALL (SYS1, SYS2, SYS3 : DLTS,
R1: {SMap: StateMap | LeftRightTotal(SYS1, SYS2, SMap)},
R2: {SMap: StateMap | LeftRightTotal(SYS2, SYS3, SMap)}):

(Refines?(SYS1, SYS2, R1) & Refines?(SYS2, SYS3, R2)) =>
Refines?(SYS1, SYS3, {r: StateTuple | EXISTS (s: State):

member((# cSt:=r‘cSt, aSt:=s #), R1) &
member(s, SYS2‘States) &
member((# cSt:=s, aSt:=r‘aSt #), R2)}))

Figure 8. DLTS Refinement Properties

2. Properties of The Refinement Relationship
As with the LTS in Chapter II, we now state the lemmas that indicate that the refinement

relationship is reflexive and transitive and thus is a pre-order. We have proven these lemmas using

PVS and show the results in the Appendix.

Lemma 5.1: Refinement for a DLTS is Reflexive

∀S ∈ DLTS : S �{(s, s)|s∈Σ} S

Lemma 5.2: Refinement for a DLTS is Transitive

∀S1, S2 S3 ∈ DLTS : S1 �R1 S2 ∧ S2 �R2 S3 =⇒ S1 �R1(R2) S3

In Figure 8 we give the PVS encoding of these two lemmas.
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Trace?(SYS: DLTS, s0 : State, sq: Sequence) : RECURSIVE bool =
IF Tr = null THEN TRUE
ELSE (EXISTS (t : Trans) : t‘act = car(sq) & t‘oldSt = s0 &

member(t, SYS‘MayT) & Trace?(SYS, t‘newSt, cdr(sq)))
ENDIF

MEASURE Tr BY < <

Figure 9. dlts_trace.pvs Part 2

Recall from Chapter II, that one often describes systems in terms of the sequences of actions

that they will perform. Recall also that a sequence of actions that a system will perform is called

a trace. We can adapt the our definition of a trace (Definition 2.2) to the DLTS as follows.

Trace? : DLTS × ΣDLTS × SQ �→ Bool is defined as follows:

Definition 5.8: A Trace of an Doubly Labeled Transition System

Trace?(S, s, sq)
def
= IF sq = ∅ THEN TRUE

ELSE ∃s′ :
(

s
Head(sq)→ s′

)
∈−→May

S ∧ Trace? (S, s′, Tail(sq))

Note that definition 5.8 takes into account only the May transitions when determining if the sequence

will be accepted by the DLTS. As we stated at the beginning of the chapter, the May transitions

of the DLTS’s are semantically identical to the unlabeled transition of the LTS. Also note that

although the DLTS has a specified starting state s0, our definition allows us to reason about a

trace starting from any given state. Therefore Definition 5.8 is identical to Definition 2.2 under our

correspondence between LTSand DLTS.

Figure 9 gives the PVS encoding of this function. Because, the function is recursive, PVS

requires that we prove that the recursion is well-ordered and thus will terminate. By default, PVS

will automatically prove that the recursion will terminate if the recursion is based on the length of

the list.

A very important check on our definition of traces is the fact that the traces of the abstract

system should contain all of the traces of any refinement of that system. The fact was expressed in

the most general refinement relationship: Trace Containment.

Definition 3.1: Trace Containment Refinement Relationship (Repeated)

Traces(C) ⊆ Traces(A)
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AbstractSimulation: LEMMA
(FORALL (C, A : DLTS, sc, sa: State, sq: Sequence,

R : {SMap: StateMap | LeftRightTotal(C, A, SMap)}) :
(Trace?(C, sc, sq) & Refines?(C, A, R) & member(sa, A‘States) &
member((# cSt:=sc, aSt:= sa #), R)) =>

Trace?(A, sa, sq))

Figure 10. dlts_trace.pvs Part 3

We prove formally in PVS the lemma AbstractSimulation. The lemma states that, using

our definition of Traces for a DLTS (Definition 5.8) and the refinement relationship for a DLTS

(Definition 5.3), every trace of a refinement is also a trace of the abstract system. Figure 10 shows

the formal encoding of this lemma. The lemma is proven by induction on the length of the trace.

The lemma guarantees that the refinement process cannot introduce any behavior that is not already

described in the abstraction.

Lemma 5.3: Abstract Simulation for a DLTS.

∀C, A,∈ DLTS, c ∈ ΣC , a ∈ ΣA, sq ∈ SQ, R ⊆ (±C ×±A) : Trace?(C, c, sq)∧ (C �R A)∧ cRa =⇒
Trace?(A, a, sq)

Finally, consider the vending machine example from Chapters II and III. Figure 11 shows

the vending machine example V M now represented as a DLTS where the solid lines represent

Must transitions and the dotted lines represent May transitions. In the figure, we also present two

potential refinements: V M −C1 and V M −C2, of the abstract system V M . Informally, V M −C1

will dispense three sodas and stop. V M − C2 will simply take some money without dispensing any

product.

When the vending machine was represented as a LTS in Chapter III, both V M − C1 and

V M −C2 were valid refinements of V M . However now only V M −C1 is a valid refinement of V M .

Since s0−A
soda→ s1−A is a Must transition, the transition must exist from any refinement of the state

s1−A. Therefore, there is no way to define R such that V M −C2 satisfies Definition 5.3. Informally,

the advantage of the DLTS is that we can require that any valid refinement (implementation) of

our vending machine must dispense a product if it has taken a coin.

48



  coin

soda

coin

soda

coin

soda

coin

soda

coin

VM

VM-C1

VM-C2

0-As 1-As

0-C1s

s

s

s

s

s

s

s s1-C1

3-C1

5-C1

2-C1

4-C1

6-C1

0-C2 1-C2

Figure 11. Vending Machine Refinement

D. PRESERVING LIVENESS IN THE DLKS
In this section, we show how Schmidt and Huth used the definition of the DLKS to ensure

that the refinement relationship preserves both safety and liveness properties [Ref. 37, 36]. To

demonstrate how liveness properties can be preserved by using the second set of labels, Huth,

Schmidt and Jagadeesan have developed a Modal µ-calculus for finite-state Kripke structures. This

logic is laid out in Figure 2. Note that in the figure, we define ρ to be an environment mapping

variables Z to elements of P (ΣK) × P (ΣK). With this we can now define negation and recursion.

The logic takes advantage of the three-valued nature of the DLTS. The two modal operators

are the � operator which represents properties that are true for all transitions and the � operator

that indicates that there exists a transition where the property is true. Since the label of transitions

are often important, they are represented as [a] and 〈a〉. In two-value logic, only statements made
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s ∈ ΣK φ ∈ LAtom q ∈ Atom a ∈ Act Z ∈ Identifier

φ ::= � | p | Z | ¬φ | φ1 ∧ φ2 | [a]φ | 〈a〉φ | µZ.φ

‖�‖ def
= 〈ΣK , ΣK〉

‖p‖ def
=

〈{
s ∈ ΣK |p ∈ Lmust(s)

}
, {s ∈ ΣK |p ∈ Lmay(s)}〉

‖φ1 ∧ φ2‖ def
= 〈‖φ1‖nec ∩ ‖φ2‖nec ‖φ1‖pos ∩ ‖φ2‖pos〉

‖[a]φ‖ def
=

〈{
s ∈ ΣK |FOR SOME s′,

(
s1

a→ s′ ∈→may
)
∧ (s′ ∈ ‖φ‖nec)

}
,{

s ∈ ΣK |FOR SOME s′,
(
s1

a→ s′ ∈→must
)
∧ (s′ ∈ ‖φ‖pos)

}〉

‖〈a〉φ‖ def
=

〈{
s ∈ ΣK |FOR SOME s′,

(
s1

a→ s′ ∈→must
)
∧ (s′ ∈ ‖φ‖nec)

}
,{

s ∈ ΣK |FOR SOME s′,
(
s1

a→ s′ ∈→may
)
∧ (s′ ∈ ‖φ‖pos)

}〉

‖Z‖ρ
def
= ρ (Z)

‖µZ.φ‖ρ IS THE LEAST FIXED POINT OF THE MONOTONE FUNCTION

d �→ ‖Z‖ρ[Z �→d] : P (ΣK) × P (ΣK) → P (ΣK) × P (ΣK)

Figure 12. Modal mu-Calculus for Finite-State Kripke Structures (After [Ref. 19])

with � operator are true of a refinement of the system. In the three valued logic, we can add

statements that include the � operator and negation. With this foundation, we can formally express

safety and liveness properties [Ref. 36].

E. SUMMARY
In this chapter we have developed the framework of the Doubly Labelled Transition System.

We showed how the framework provides for an alternate definition of refinement and showed how

this framework of refinement can preserve both safety and liveness properties. Finally we gave the

definition of the Doubly Labelled Kripke Structure. This structure is virtually identical to the DLTS

but adds the ability to decorate the states with predicates.

The DLTS framework gives us a more complete foundation for abstraction, but it still does

not eliminate the refinement paradox since as McLean noted, possibilistic security is not a first order

safety or liveness property, but rather a second order property of the set of possible traces [Ref. 11].

In the next chapter we will show the class of security properties that are preserved by refinement.
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VI. THE DLTS AND THE REFINEMENT
PARADOX

In this chapter, we define a security property for the DLTS. We then define a class of

DLTS’s such that if an abstract DLTS is secure then any valid1 refinement is also guaranteed to

be secure. Finally we discuss the implications of this work on the implementation of high assurance

systems.

A. SECURITY PROPERTY FOR A DLTS
Recall from Chapters II and IV that the definition of security is dependent on the definition

of system equivalence. Recall also that Process Algebra’s that use Operational Semantics typically

use Bi-simulation as their equivalence relationship. Finally, recall that to define a security property

Focardi modified the definition of bi-simulation to Low-Level Bisimulation (Definition 4.6).

In a similar manner, we will also modify the definition of bi-simulation so that it is restricted

to a set of actions and takes into account the May and Must transitions of the DLTS framework.

We define a restricted bi-similar relationship: ∼2ACTDLTS

DLTS ⊆ Σ × Σ as a relationship between states

of a SY S over a set of actions Acts. For a given SY S of type DLTS, a relationship is a restricted

bi-similar relationship if it satisfies the following properties:

Definition 6.1: Restricted Bi-similarity

1. It is restricted to the domain of states of the SY S: ∀s1, s2 : s1 ∼Acts
SY S s2 ⇒

s1 ∈ ΣSY S ∧ s2 ∈ ΣSY S

2. It is reflexive: ∀s : s ∈ ΣSY S ⇒ s ∼Acts
SY S s

3. It is commutative: ∀s1, s2 ∈ ΣSY S : s1 ∼Acts
SY S s2 ⇒ s2 ∼Acts

SY S s1

4. It simulates the may transitions over the set of actions in Acts:

∀s1, s2, s′ ∈ ΣSY S, e ∈ ACTSY S : s1 ∼Acts
SY S s2∧e ∈ Acts∧s1

e→ s′ ∈May−→SY S ⇒
∃s” : s2

e→ s” ∈may−→SY S ∧s′ ∼Acts
SY S s”

5. It simulates the must transitions over the set of actions in Act:

∀s1, s2, s′ ∈ ΣSY S, f ∈ ACTSY S : s1 ∼Acts
SY S s2∧f ∈ Acts∧s1

f→ s′ ∈Must−→SY S ⇒
∃s” : s2

f→ s” ∈must−→SY S ∧s′ ∼Acts
SY S s”

1A valid refinement is a system that satisfies the DLTS refinement relationship (Definition 5.3)
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Informally, Definition 6.1 requires that every pair of states in ∼Acts
SY S behave identically when the

actions are restricted to the set Acts. Figure 1 shows the PVS encoding of Definition 6.1. In

the figure, BiSimEq is a function that determines if a refinement relation :Eq ⊆ ΣSY S × ΣSY S is

a relation that satisfies the conditions for restricted bi-simulation. It might seem more intuitive

to simply encode the relation directly rather than to encode a function which determines if some

arbitrary relation is of the correct type. The answer lies in how to express the concept so that we

could encode the definition in PVS. In CCS, Milner considered process similar if each was able to

mimic the actions over a sequence of some length. Bi-similarity was the condition that existed if the

length of the sequence was allowed to approach infinity [Ref. 29]. To encode this concept in PVS

terms would require an infinitely recursive definition. Such a relationship cannot be legally encoded

in PVS, which led us to the present definition of BiSimEq.

1. Defining The Property
With the definition of of restricted bi-similarity, we can define a new security property.

Recall from Chapter IV, that we divided the set of all action into two disjoint subsets: HIGHand

LOW such that ACT = LOW ∪ HIGH and LOW ∩ HIGH = ∅. We desire to protect the set

of HIGH security actions from an observer who knows the design of the system and can observe

only the set of actions in LOW . BiSimSecure? : DLTS �→ Bool is a security property that ensures

that high-security information cannot be inferred by observing the set of LOW action in a DLTS.

Formally:

Definition 6.2: Bisimulation Security Condition For DLTS

BiSimSecure?(SY S)
def
= ∀s1, s2, e : e ∈ HIGH ∧

(
s1

e→ s2

)
∈May−→SY S⇒

s1 ∼LOW
SY S s2

Informally the property states that every high-security transition cannot alter the behavior

from a low point-of-view. This security property is similar to Focardi’s SBNDC (Definition 4.8)

property but with adaptations made to accommodate the three-valued framework [Ref. 15]. Figure

2, shows the PVS encoding of the property.

2. Comparing The Property
In this section we show that our security property (Definition 6.2) is sufficient to ensure

that a system that possesses the security property will also be non-interfering.

We define a DLTS to be TraceSecure? : DLTS �→ Bool if for every sequence of actions

that is trace of the system, there is another sequence that is also a trace of the system but does not
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BiSimEq(SYS: DLTS, Actions: setof[Action], Eq: StateMap) : bool =
(FORALL (s1, s2: State):

member((# cSt:=s1, aSt:=s2 #), Eq) =>
(member(s1, SYS‘States) & member(s2, SYS‘States))) &

(FORALL (s: State):
member(s, SYS‘States) =>

member((# cSt:=s, aSt:=s #), Eq)) &
(FORALL (s1, s2: State):

member((# cSt:=s1, aSt:=s2 #), Eq) =>
member((# cSt:=s2, aSt:=s1 #), Eq)) &

(FORALL (t1: Trans, s2: State):
(member((# cSt:=t1‘oldSt, aSt:=s2 #), Eq) &
member(t1‘act, Actions) &
member(t1, SYS‘MayT)) =>
(EXISTS (t2: Trans):

t2‘oldSt = s2 &
t2‘act = t1‘act &
member(t2, SYS‘MayT) &
member((# cSt:=t1‘newSt, aSt:=t2‘newSt #), Eq))) &

(FORALL (t1: Trans, s2: State):
(member((# cSt:=t1‘oldSt, aSt:=s2 #), Eq) &
member(t1‘act, Actions) &
member(t1, SYS‘MustT)) =>
(EXISTS (t2: Trans):

t2‘oldSt = s2 &
t2‘act = t1‘act &
member(t2, SYS‘MustT) &
member((# cSt:=t1‘newSt, aSt:=t2‘newSt #), Eq)))

Figure 1. Restricted Bi-Simulation Conditions

BiSimSecure?(SYS: DLTS) : bool =
EXISTS (Eq: StateMap):

BiSimEq(SYS, LowAct, Eq) &
(FORALL (t: Trans):

High?(t‘act) &
member(t, SYS‘MayT) =>

member((# cSt:=t‘oldSt, aSt:=t‘newSt #), Eq))

Figure 2. Restricted Bi-Simulation Conditions
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contain any high-security actions. We develop this notion of noninterference from [Ref. 16]. In order

to define the property, we first define a Purge function. The Purge : SQ × ACT �→ SQ function

takes a sequence of actions sq and returns the subsequence of sq with the “high-security” actions

removed. The definition uses the cons operator which takes an action and a sequence and prepends

the action to the head of the sequence.

Definition 6.3: Purge of a Sequence

Purge(sq)
def
= IF sq = 〈〉 THEN 〈〉

ELSIF Head(sq) ∈ LOW THEN cons (Head(sq), Purge (Tail(sq)))

ELSE Purge (Tail(sq))

Using the definition of Purge, we formally define trace security of a system as follows.

Definition 6.4: Trace Security For A Doubly Labelled Transition System

TraceSecure?(SY S)
def
= ∀sq : Trace? (SY S, s0, sq) ⇒ Trace? (SY S, s0, Purge(sq))

A system is TraceSecure? if for every sequence of actions sq that is a trace of the system, there

is another sequence that is identical from a low point-of-view, but does not have and high-security

actions. Intuitively, observing only the low-security actions of a TraceSecure? system will not allow

the observer to determine if any high-security actions have or have not occurred.

We proved formally in PVS that, if a DLTS is BiSimSecure?, it is also TraceSecure?.

Lemma 6.1: BiSim Secure is Trace Secure

∀SY S ∈ DLTS : BiSimSecure?(SY S) ⇒ TraceSecure?(SY S)

B. CLASS THAT PRESERVES SECURITY
In this section, we define a class of systems that are guaranteed to have a secure refinement,

To accomplish this, we define the set of complete actions CompleteAct : DLTS �→ 2ACT to

be a function that returns the set of actions of a system such that every May transition involving

the action is also a Must transition.

Definition 6.5: Set Of Complete Actions of a DLTS

CompleteAct(SY S)
def
=

{
e ∈ ActSY S | ∀s1, s2 :

(
s1

a→ s2

)
∈may−→SY S⇒

(
s1

a→ s2

)
∈must−→SY S

}
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LowViewCompleteHasSecureRefinements: LEMMA
(FORALL (C, A : DLTS, R: {SMap: StateMap | LeftRightTotal(C, A, SMap)}) :

(Refines?(C, A, R) &
BiSimSecure?(A) &
subset?(LowAct, CompleteAct(A)) =>

BiSimSecure?(C))

Figure 3. Refinements of A Low-View Complete System Are Secure

With this definition, we can define a new class of systems. A system is Low-View complete

if every low security transition is both a May and a Must transition. Formally:

Definition 6.6: Low-View Complete

LowViewComplete?(SY S)
def
= Low ⊆ CompleteAct(SY S)

We now can prove that a system that is both LowViewComplete? and BiSimSecure? is

guaranteed to have refinements that are also BiSimSecure?. Formally:

Theorem 6.2: Refinements of A Low-View Complete System Are Secure

∀C, A ∈ DLTS, R ⊆ (ΣC × ΣA) :

BiSimSecure?(A) ∧ C �R A ∧ LowViewComplete?(A) =⇒ BiSimSecure?(C)

This means that we can now guarantee the security of the refinements of some DLTS

systems. We will show in Chapter VIII, that the systems can be non-deterministic from a low-

level point of view. Note also that the DLTS refinement relationship (Definition 5.3) allowed for

refinements that were more complex than the original abstract system. Therefore we can guarantee

the security of any implementation of an abstract system that satisfies our conditions even if the

implementation is more complex. As we will show in Chapter VII, this is a key advantage over

previous attempts to address the refinement paradox [Ref. 20, 21].

Figure 3 shows the PVS encoding of Theorem 6.2.

In addition, since the refinement relationship is transitive (Lemma 5.2), any sequence of

refinements of a low-view complete system that was proven secure will also be secure. Suppose we had

a series of refinements: C1, C2, ... Cn, each representing a layer of abstraction. As long as somewhere

in the layers of abstraction, one of the systems was BiSimSecure? and LowViewComplete?, the final

implementation will be secure. Formally:
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Theorem 6.3: Sequence Of Refinements of A Low-View Complete System Are

Secure

∀Cn, ... C3, C2, C1 ∈ DLTS :

Cn � ....C3 � C2 � C1 ∧ ∃j : BiSimSecure?(Cj) ∧ LowViewComplete?(Cj) =⇒ BiSimSecure?(Cn)

A key advantage of this class of systems is that the security property may be proven at

a level of abstraction where there are a small number of states when determining the restricted

bi-simulation relationship ∼LOW
SY S is easily decidable. However, the final implementation may have

a much larger (potentially infinite) number of states so that finding the restricted bi-simulation

relationship ∼LOW
SY S is undecidable.

C. LINKING SECURITY TO AVAILABILITY
Traditionally, computer security has been described as consisting of: Confidentiality, In-

tegrity and Availability. Confidentiality and Integrity have long been seen as duals of one another,

since both are concerned with information flow. For example, the Bell and LaPadula Confidentiality

policy [Ref. 56] and the Biba Integrity policy [Ref. 65] can be implemented with the same mech-

anism. The only difference is that a “high” Confidentiality label corresponds to a “low” Integrity

label. Availability on the other hand has been largely an independent consideration.

However, using the three-valued framework forces us to link availability with information

flow (confidentiality and integrity). Recall that in order to prove that a pair of unlabeled transition

systems satisfies the refinement relationship, one merely needs to prove an abstract system can sim-

ulate all of the transitions of the concrete. See definition 3.4 above. This definition of refinement

guarantees that no new behavior is introduced in the concrete system. Hence this refinement rela-

tionship preserves safety properties. The fundamental problem is that a system that deadlocks is a

valid refinement (since it does not perform any behaviors outside of the abstract specification).

The DLTS framework, was specifically created to address the fact that Definition 3.4 only

guarantees what an implementation will not do. By using the three-valued refinement relationship

(Definition 5.3), the implementor now has an additional burden. In order to satisfy the Must

transition, the implementor must prove a liveness property. We have shown that any refinement, that

satisfies Definition 5.3, a secure LowViewComplete? system, is also secure (Theorem 6.2). Practically,

this means that in order to guarantee security of an implementation one must prove the validity of

the refinement. To do that, one must prove the availability of the system for the set of low-security

actions.
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This availability linking shows up especially well under action refinement [Ref. 74] (some-

times called non-atomic refinement [Ref. 46]). In action refinement, a single transition is replaced

by an entire labelled transition system whose start and end state corresponds to the two states of

the abstract transition. For example, a single action that we call sort might be replaced with an

entire subroutine represented as a labelled transition system. In the three-valued framework, if the

single abstract action is a Must transition, one needs to show that the sort algorithm will in fact

terminate and result in the correct state.

Other researchers have made note of a similar link between secrecy and availability. For

example, when Kemmerer [Ref. 75] tried to show the security of the Data Secure Unix system he

was surprised to note that this required proofs of termination of some of his subroutines. Recently,

Zheng and Myers have developed a security policy based on availability [Ref. 76]. However, we

believe that we are the first to link the need to satisfy availability to the refinement paradox.
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VII. COMPARISON TO OTHER WORKS

In this chapter we compare our effort to two previous works. Because of the combination

of our definition of refinement and our definition of security, our results extend to a larger class of

systems than those of previous efforts.

A. MANTEL’S EFFORT
1. Introduction
After developing his MAKS took kit (Discussed in Chapter IV), Heiko Mantel addressed

the refinement paradox in a paper published in 2001 [Ref. 20]. To do so, he needed to mod-

ify his basic event system. Recall that Mantel defined a an event system ES: as tuple: ES =

〈ACTES , IES , OES , TRES〉. Where ACTES is the alphabet of actions, IES ⊆ ACTES is the set of

input actions, OES ⊆ ACTES is the set of output actions and TRES ⊆ 2SQ is the set event sequences

that the process can engage in. To address the refinement paradox, he now needed to enrich his

event system with the concept of “state.” Mantel named this enriched system a State Event System

SES. An SES is a tuple that includes all of the elements of his previous event system except the

set TRES. Instead, Mantel included the set SSES as the set of States of his event system with a

distinguished starting state s0 ∈ ΣSES to denote the initial state of the system. In addition, Mantel

defined his system by a set of transitions: −→SES⊆ ΣSES × ACTSES × ΣSES . Finally, Mantel

restricted his state event system to only consider systems that were deterministic. (I.E. every action

leads to a distinct state).

Definition 7.1 Mantel’s State Event System.

SES = 〈ΣSES , ACTSES , ISES , OSES , −→SES , s0〉

Observe that this is almost identical to the basic Labelled transition system we presented

in Chapter II (Definition 2.1).

When Mantel used his original event system, his definition of equality, refinement and

security centered around traces. For example, his definition of refinement, stated that a concrete

system is a refinement of an abstract system if the set of traces of the concrete system are a subset

of the traces of the abstract:

TRA ⊇ TRC
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When Mantel switched to his new SES system, he also changed his definitions of refinement,

equality and security. For purposes of comparison, the greatest change occurs in his new definition

of refinement. Simply stated, given two SES′s: C and A. C is a refinement of A if they share the

same set of Actions and States and if the set of transitions −→C is contained within −→A.

Definition 7.2 Mantel’s Definition of Refinement for Two State Event Sys-

tems.

C � A
def
= −→A⊇−→C

Practically, this means that the refined system will be identical to the abstract system but

with some transitions “disabled.”

2. Concept
Mantel’s refinement method assumes the designer identifies a set of transitions, that are

permitted by abstract specification but will not be implemented in the concrete system). Since

the SES is deterministic, the transition can be uniquely identified by its starting state and action

(SSES × ACTSES). Mantel’s equations then determine the smallest set of state-action pairs that

must either be added to or removed from the candidate set for the system to be secure.

The following example is taken directly from Mantel’s paper [Ref. 20] and is meant to

illustrate how the process works. Figure 1 shows the steps. In the upper left, an abstract system is

created and then proven to be secure. Next, the pairs (s1, l2),(s3, h) and (s3, l1) are put forward as

a candidate set to be removed from the refined system. The solutions to Mantel’s equations identify

that the closest secure refinement is to either leave the abstract system unchanged, or to add(s4, l1)

to the candidate set. Once this is done, the refined system is secure.

3. Comparison
When comparing Mantel’s work to our own, there are several key differences. The first is

that Mantel does not set out find the conditions that will guarantee a secure refinement, rather he

presents a test that will search for flaws that might arise from implementation. Unlike our class,

which we showed in Theorem 6.3 is preserved across multiple layers of refinement, Mantel’s test

must be applied at each layer.

The second key difference is that the class of systems in his SES framework is limited to

the set of deterministic systems. In our Labelled Transition System and Doubly Labelled Transition

System, no such restriction is made.
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Figure 1. Mantel’s Example of Secure Refinement [Ref. 20]
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The final difference is in the set of systems that are valid refinements under Mantel’s frame-

work and ours. We can easily translate a system defined in Mantel’s SES into a DLTS. The States,

and Actions translate directly and the transitions, of Mantel’s SES correspond to may transitions

of the DLTS. With this translation, it is trivial to prove that Mantel’s definition of refinement is

sufficient to guarantee refinement under the DLTS framework. This is formally expressed in Lemma

7.1.

Lemma 7.1 Mantel’s Definition of Refinement Implies DLTS Refinement

∀C, A ∈ DLTS : C �Mantel A =⇒ C �R={(i, j) | i=j} A

While Mantel’s definition is sufficient, it is unnecessarily strict. Consider the example, from

Chapter V of the vending machine. Figure 2, shows an abstract and concrete system that satisfy

the DLTS definition of refinement, but can never satisfy Mantel’s definition of refinement. Mantel’s

definition demands that the concrete system have the same set of states as the abstract system,

where as our refined system has more states than the abstract system. One measure of complexity is

the number of states necessary to represent a system. By definition, Mantel’s concept of refinement

will not permit a refinement that is more complex than the abstraction. Put another way, the

abstraction cannot be less complex than the implementation. This is fundamental since, as noted

in Chapter III, the entire reason for abstraction is to reduce complexity.

In summary, the advantages of our framework over Mantel’s are that: it does not need to

be re-applied at each level of refinement, it will work on both deterministic and non-deterministic

systems and it allows refinements that are more complex than the abstraction.

B. BOSSI’S EFFORT
1. Introduction
Bossi [Ref. 21] put forward another attempt to solve the refinement paradox by exploring

the conditions necessary to preserve Focardi’s security properties [Ref. 15]. Bossi claimed that

she had found a more general solution than Mantel [Ref. 20]. Unlike Mantel, whose method finds

the set of transitions that must be added or removed from a given candidate set, Bossi develops a

property of the refinement relationship that will ensure that security is preserved under refinement.

To understand her claim, it is necessary to understand her definition of equivalence and refinement.

Recall from Chapter IV, that Focardi [Ref. 15] developed his security properties using a modification

of the CCS process algebra [Ref. 29].
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Figure 2. Vending Machine Refinement

In this section, we will show how to apply Bossi’s results to the two security properties

we presented in Chapter IV. The first property is Strong Nondeducibility Composition SNDC :

LTS �→ Bool.

Definition 4.7: Strong Non-deducibility Composition (Repeated)

SNDC (S1)
def
= ∀s1, s2 ∈ ΣS1, a ∈ ACTS1 : a ∈ HIGH ∧ s1

a→ s2 ∈→S1=⇒ s1 ≈LOW
Trace s2

The second property is Strong Bi-simulation Nondeducibility Composition SBNDC : LTS �→ Bool.

Definition 4.8: Strong Bi-simulation Non-deducibility Composition (Repeated)

SBNDC (S1)
def
= ∀s1, s2 ∈ ΣS1, a ∈ ACTS1 : a ∈ HIGH ∧ s1

a→ s2 ∈→S1=⇒ s1 ∼LOW
BiSim s2
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Recall that the difference between these to properties is the low-level equivalence relationship used.

2. Concept
Bossi begins with the simulation definition of refinement repeated here:

Definition 3.4: Simulation Refinement (Repeated)

C �R A
def
= ∀c, c′ ∈ ΣC , a ∈ ΣA, e ∈ ACTC :

cRa ∧ c
e→ c′ ∈−→C=⇒ ∃a′ : a

e→ a′ ∈−→A ∧ c′Ra′

However, Bossi adds a restriction to the refinement relation R. She requires R ⊆ (ΣC × ΣA) to be

a relation such that if (c, a) ∈ R and (c′, a) ∈ R then c = c′. In other words, every abstract state

can be related to at most one concrete state. Thus R−1is a function and therefore if (c, a) ∈ R,

then we can write R−1 (a) = c.

With this definition of refinement, Bossi shows that if the low-view equivalence relation is

preserved across R, then the concrete system is secure. We define PreservesTraceEq? : LTS×R �→
bool as a function that returns true if the refinement relation preserves low-view-trace equivalence

for all states in the LTS Formally:

Definition 7.3: R Preserves Low-View Trace Equivalence

PreservesTraceEq?(S R)
def
= ∀s1, s2 ∈ ΣS :, s1 ≈LOW

Trace s2 =⇒ R−1 (s1) ≈LOW
Trace R−1 (s2)

With this definition, Bossi proved that any refinement relation that preserved low-view trace

equivalence would also preserve the SNDC (definition 4.7) security property. Formally:

Theorem 7.2: Bossi’s Condition To Preserve SNDC

∀C, A ∈ DLTS, a1, a2 ∈ ΣA, R : SNDC (A)∧C �RA∧PreservesTraceEq?(AR) =⇒ SNDC (C)

In a similar manner, we can define PreservesBisim? : LTS ×R �→ bool as a function that

returns true if the refinement relation preserves a low-view-Bi-Simulation relationship (Definition

4.6) for all states in the LTS Formally:

Definition 7.4: R Preserves Low-View Bi-Simulation

PreservesBiSim?(S R)
def
= ∀s1, s2 ∈ ΣS :, s1 ∼LOW

BiSim s2 =⇒ R−1 (s1) ∼LOW
BiSim R−1 (s2)
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With this definition, Bossi proved that any refinement relation that preserved a low-view

Bi-Simulation relationship would also preserve the SNBDC (definition 4.8) security property. Formally:

Theorem 7.3: Bossi’s Class That Preserves SBNDC

∀C, A ∈ DLTS, a1, a2 ∈ ΣA, R : SNBDC (A) ∧ C �R A ∧ PreservesBiSim?(AR) =⇒ SNBDC (C)

3. Comparison
The problem with Bossi’s conclusion is that like Mantel, her definition of refinement is too

restrictive. A central requirement of refinement is that the refined system should be more complex

than the abstract system. Yet by requiring every abstract state to map to at most one concrete

state guarantees that the refinement will be less complex than the original.

To illustrate the short coming, consider the following abstraction and refinement as shown

in Figure 3. In this trivial example, a printer receives jobs from low security and high security

processes. A low security process can spool the job (print spool) and will either receive a print

message if the job printed successfully or a no paper message if the printer is out of paper. At any

time a high-security process can submit a print job h. The system is modeled by the abstract LTS

A. In the figure we also present a refinement C. In the refinement we show that the printer either

will have paper or not at the time that the print spool message is sent. Thus the time that the

message is sent is the only determining factor in whether or not the printer has paper.

This simple example satisfies the simulation definition of refinement (Definition 3.4), but

fails Bossi’s extra condition on the refinement relation since abstract state s1 is mapped to two

states in the concrete system s1 and s3. Suppose we simply ignored Bossi’s extra restriction in

PreservesTraceEq? and PreservesBiSim?. The trouble arises with states s1and s2 in the abstract

system. The two states are both low-view trace equivalent s1 ≈LOW
Trace s2 and low-view bi-similar

s1 ∼LOW
BiSim s2. The problem is that each one is related to two states in the concrete system. Suppose

we picked one of the related states in the concrete system: say s1 since (s1, s1) ∈ R and s4 since

(s4, s2) ∈ R. The question is does R preserve the low-view equivalence relationship? The answer

is no since s1 ≈LOW
Trace s4 and s1 ∼LOW

BiSim s4 are false. Yet it turns out that both the abstract and

concrete systems possess the two security properties SNDC and SNBDC.

Thus while Bossi has identified a class of refinements for which security is guaranteed to be

preserved, her class is limited to the set of refinements that are less complex than their abstraction.

Since we have stated in Chapter III that the entire point of an abstraction is to be less complex

than the implementation, this class seems to be of limited utility. In comparison, our class does not

share the same limitations.
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VIII. COMPARISON TO CSP PROPERTIES

In this chapter we compare our result to Roscoe’s [Ref. 12]. To do this, we will introduce

failure equivalence, taken from the CSP formalisms [Ref. 28]. We show how we can encode a failure

in our DLTS framework and present an algorithm to convert a CSP system into a DLTS. Finally

we translate Roscoe’s result into the DLTS framework. We will show that our result allows for

security to be preserved for a larger class of systems.

A. FAILURE IN CSP AND IN THE DLTS
In Chapter II, we introduced a Trace (Definition 2.2). Recall that a Trace is a sequence of

actions that a system will perform. We now turn our attention to actions that a system will not

perform. The set of actions that a system will not perform in a given state is called a refusal. A

sequence of actions that a system will perform followed by the set of actions that it will refuse is

known a a failure. Failures are a critical notion in CSP because a system can be completely defined

by the set of possible actions and by the set of Failures [Ref. 28].

We will now develop a definition of failure in our LTS framework and then show how it can

be applied in the DLTS framework. The work is original in that it translates the notion of failure

into the LTS framework, but follows closely the CSP definition of a failure found in Hoare’s CSP

book [Ref. 28]. In CSP a failure is a pair consisting of a sequence of actions the “failure” will perform

followed by a set of actions it will refuse to perform. We will formally define the pieces first and

then give the formal definition of a failure.

A refusal is an action that a system will not perform from a given state. Refusals :

LTS × ΣLTS �→ 2ACT is a function that returns the set of actions that a system may refuse to

perform from a given state, Refusals(SY S, s) ⊆ ACTSY S . We define a refusal as follows

Definition 8.1: Refusals Of A Labelled Transition System

Refusals(SY S, s)
def
=

{
e | e ∈ ACTSY S ∧ ∀s′ : s

e→ s′ /∈→SY S

}

Intuitively, the set of refusals is the set of all actions in ACTSY S , that the system cannot

perform at the given state.

We next define the function Path? : LTS × ΣLTS × ΣLTS × SQ �→ Bool. The function is

closely related to Trace? (Definition 2.2), the difference being that we now take into account both

the starting and ending state of the sequence. If, starting from an initial state si, it is possible to
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reach state se through the sequence sq, then there is a path from si to se by sq. We formally define

Path? as follows:

Definition 8.2: Path Of A Labelled Transition System

Path? (SY S, si, se, sq)
def
= IF sq = ∅ THEN si = se

ELSE ∃s′ : s
Head(sq)→ s′ ∈→SY S ∧ Path? (SY S, s′ se, Tail(sq))

We define the function After : LTS × ΣLTS × SQ �→ 2ΣLTS as one that returns the set of

states that an LTS may be in after engaging in a sequence of actions, from a given starting state.

After is defined as follows:

Definition 8.3: The States Of An LTS After A Sequence

After(SY S, si, sq)
def
= {se | Path? (SY S, si, se, sq)}

We are now ready to give the formal definition of a failure of an LTS. A failure is a pair

consisting of a trace that a system can engage in followed by a set of actions that a system may

refuse to engage in. The function Failure? : LTS × ΣLTS × SQ × 2ACT �→ Bool returns TRUE if

the sequence-action pair is a failure for a given system. It is formally defined as:

Definition 8.4: A Failure Of An LTS

Failure?(SY S, s, sq, Acts)
def
= Trace? (SY S, s, sq)∧

Acts ⊆ {a | ∃se : se ∈ After(LTS, s, SQ) ∧ a ∈ Refusals(LTS, se)}

We can use this definition to construct the set of failures that are associated with an LTS.

The function Failures ⊆ LTS �→ 2(SQ, 2ACT ) returns the set of failure pairs for a system. It is

defined as:

Definition 8.5: Failures Of A Labelled Transition System

Failures(SY S)
def
= {(sq, Acts) | Failure?(SY S, s0, sq, Acts)}

Two systems are Failure Equivalent, =Failure⊆ LTS × LTS, if they have the same set of

Failures.

Definition 8.6: Failures Equivalence Of A Labelled Transition System

S1 =Failures S2
def
= Failures(S1) = Failures(S2)
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Figure 1. Two LTS’s and their sets of Failures

1. Example of A Failure In an LTS
In order understand what a failure is, it is critical to understand the definition of After

(Definition 8.4). In CSP, there is no primitive type “state”. A system is defined only by the observable

set of actions that it will and will not do. In a CSP context, a failure may be informally described

as follows: “After observing the system perform the sequence of actions 〈x, y, z〉, the system refused

to perform the actions {w, x}. In an LTS, “state” is a central component. After, represents the set

of all of the possible states the system could be in after performing the given sequence.

Figure 1 shows a simple example of two Labelled Transition Systems. In the figure, the

two systems have one key difference: their set of refusals after the sequence 〈a〉. In the top system,

the set of refusals is simply {a}. However, in the bottom system, the set is {a, b, c}. This may

seem counterintuitive since the bottom system may be able to perform the sequence〈a, b〉 and 〈a, c〉.
However, after performing sequence the 〈a〉, the system may in one of two possible states, s1a or

s1b. If the system is in the state s1a, it will refuse to perform actions in the set {a, c}. Likewise,

if the system is in the state s1b it will refuse to perform actions in the set {a, b}. If an observer

sees the second system perform the sequence 〈a〉, there is no way of knowing the internal state of

the system, therefore the observer states that the set of refusals after 〈a〉, is the union of the set of

refusals at state s1a and s1b: {a, b, c}.
When a system may refuse to perform an action that it may also accept, we call the system

nondeterministic. The function Deterministic? : LTS �→ Bool will return TRUE if there is no

action, that after a given sequence, can be both part of a trace and the set of refusals. It is defined

as follows:
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Definition 8.7: Deterministic Labelled Transition System

Determinsitic?(SY S)
def
= ∀s1, s2, s′ ∈ ΣSY S , e ∈ ACTSY S , sq ∈ ACT ∗

SY S :

s1 ∈ After(SY S, s0, sq)∧ e
s1 → s′ ∈→SY S⇒

�s2 : s2 ∈ After(SY S, s0, sq) ∧ e ∈ Refusals(SY S, s2)

2. Failure Equivalence Comparison
Recall that the definition of Failure?(Definition 8.4) determines if a pair sq ×Acts is such

that the system will perform the sequence sq and will subsequently refuse to perform any of the

actions in the set Acts. If we only consider the sequence-failure pairs where the set of refusals is

empty, we can derive the set of the traces. Hoare proved that the definition of failure contains the

definition of a trace [Ref. 28].

Lemma 8.1: Failure Includes Trace:

∀SY S ∈ LTS, s ∈ ΣSY Ssq ∈ ACT ∗
SY S : Trace?(SY S, s, sq) ⇔ Failure?(SY S, s, sq, ∅)

From this lemma, it is trivial to show that if two systems are failure equivalent, then they

are also trace equivalent.

Lemma 8.2: Failure Equivalence Implies Trace Equivalence:

∀S1, S2 ∈ LTS : ⇔ S1 =Failure S2 ⇒ S1 =Trace S2

In order for two systems to be trace equivalent, they must agree on what they do. In order

for two systems to be failure equivalent, they must not only agree on what they do, but also on what

they do not do.

In order for two systems to be bi-similar, they must agree not only on what they do and do

not do, but also on their internal structure. Research has shown that if two systems are bi-similar,

they are also failure equivalent [Ref. 32].

Lemma 8.3: Bi-Simulation Implies Failure Equivalence:

∀S1, S2 ∈ LTS : ⇔ S1 =BiSim S2 ⇒ S1 =Failure S2

Figure 2 gives an illustration of the different equivalence relationship. In the figure, we show

four systems. All four are trace equivalent. Systems 2 through 4 are failure equivalent. Systems 3

and 4 are bi-similar.
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Figure 2. Equivalence Relationships

3. Failures In The DLTS
In order to compare our results with Roscoe’s, we had to not only define a Failure in

a Labelled Transition System Framework, but to also define it in a Doubly Labelled Transition

System Framework. This required adapting the previous definitions (8.1 - 8.7) so that they took

into account both the May and Must. Transitions.

Recall that in Definition 8.1, we defined a refusal as an action for which there was no tran-

sition from the given state. However, now there are two sets of transitions. What set of transitions

should be used to define the refusal? We chose to define refusals using the Must transitions. Defining

a refusal this way ensures that we take into account all of the possible refusals for any refinements

of the states. Thus the function Refusals : DLTS × ΣDLTS �→ 2ACTDLT S is defined for a DLTS

as follows:

Definition 8.8: Refusals Of A Doubly Labelled Transition System

Refusals(SY S, s)
def
=

{
e | e ∈ ACTSY S ∧ ∀s′ : s

e→ s′ /∈→Must
SY S

}

Just as the definition of refusals captured the maximum possible set of refusals for any

refinement, so our definition of path will take into account the greatest set of possible paths for any

refinement. We do this by using the May transitions.

We define Path? : DLTS × ΣDLTS × ΣDLTS × SQ �→ Bool as the function that returns

TRUE if, starting from an initial state si, it is possible to reach state se through the sequence sq

via May transitions. We formally define Path? as follows:
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Definition 8.9: Path Of A Doubly Labelled Transition System

Path? (SY S, si, se, sq)
def
= IF sq = ∅ THEN si = se

ELSE ∃s′ : s
Head(sq)→ s′ ∈→May

SY S ∧ Path? (SY S, s′ se, Tail(sq))

We re-define the function After : DLTS × ΣDLTS × SQ �→ 2ΣDLT S . The only difference

from Definition 8.3 is that the function uses the DLTS version of the Path? function defined above.

Definition 8.10: The States Of An DLTS After A Sequence

After(SY S, si, sq)
def
= {se | Path? (SY S, si, se, sq)}

Finally, we redefine the function Failure? : DLTS ×ΣDLTS ×SQ× 2ACT �→ Bool so that

it works with the DLTS. Again the only difference Definition 8.4 is that the function uses the DLTS

definitions of returns After (Definition 8.10), Trace? (Definition 5.8) and Refusals (Definition 8.8).

Definition 8.11: A Failure Of An DLTS

Failure?(SY S, s, sq, Acts)
def
= Trace? (SY S, s, sq)∧

Acts ⊆ {a | ∃se : se ∈ After(LTS, s, SQ) ∧ a ∈ Refusals(LTS, se)}

Finally we adapt the function Failures ⊆ DLTS �→ 2(SQ, 2ACT ) to the DLTS framework

by using the new definition of Failure? for the DLTS.

Definition 8.12: Failures Of A Labelled Transition System

Failures(SY S)
def
= {(sq, Acts) | Failure?(SY S, s0, sq, Acts)}

Figure 3, shows the PVS encoding of Definitions 8.9 - 8.12 into the PVS syntax.

4. Proving the Correctness of the Failure Definition
To understand the the adaptation, it is critical to understand the CSP definition of refine-

ment. CSP uses the Failure Containment as its refinement relationship:

Definition 8.13: Failure Containment Refinement Definition

C � A
def
= Failures(C) ⊆ Failures(A)
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Refusals(SYS: DLTS, s: State): setof[Action] =
{a: Action | (FORALL (sn: State):

NOT member((# oldSt := s,
act := a,

newSt := sn #), SYS‘MustT))}
Path?(SYS: DLTS, s0, se: State, sq: Sequence): RECURSIVE bool =

IF sq = null THEN s0 = se
ELSE (EXISTS (t : Trans) : t‘act = car(sq) &

t‘oldSt = s0 &
member(t, SYS‘MayT) &
Path?(SYS, t‘newSt, se, cdr(sq)))

ENDIF
MEASURE Tr BY < <
After(SYS: DLTS, States: {Sts: setof[State] | subset?(Sts, SYS‘States)},

sq: Sequence): setof[State] =
{se: State | EXISTS (s0: State):

member(s0, States) & Path?(SYS, s0, se, Tr)}
Failure?(SYS: DLTS, s0: State, Tr: Trace, Acts: setof[Action]) : bool =

member(s0, SYS‘States) &
Trace?(SYS, s0, Tr) &
subset?(Acts, {a: Action |

EXISTS (s: State):
member(s, After(SYS, {s1: State | s1 = s0}, Tr)) &

Figure 3. Failure Definition In PVS

Since the DLTS already has a refinement relationship (Definitions 5.3-5.5) we wanted to

prove that the DLTS definition of Refinement (Definition 5.3) combined with our definition of

Failure (Definition 8.12) would satisfy the CSP definition of refinement (Definition 8.13). We prove

the following Theorem using PVS:

Theorem 8.4: Failures Of The Concrete System Are Contained By The Ab-

stract System:

∀C, A ∈ DLTS, a ∈ ΣA, c ∈ ΣC , sq ∈ SQ, Acts ∈ 2ACTC , R :

C �R A ∧ Failure?(C, c, sq, Acts) ∧ cRa =⇒ Failure?(A, a, sq, Acts)

Informally this states that abstract system must contain all of the failures of the concrete.
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From this theorem it is easy to see that any pair of systems that satisfy the DLTS refinement

relationship will also satisfy the CSP refinement relationship.

B. CONVERTING FROM CSP TO DLTS
Hoare stated that any system defined using CSP could be defined by a set of failures [Ref.

28]. In this section, we present an algorithm that can convert a set of failures into a DLTS. We

will argue that the result of algorithm is the most abstract DLTS possible in the sense that any

other DLTS that has an equivalent set of failures is a refinement of the DLTS produced by the

algorithm. We use this result to compare our main results to Roscoe’s result [Ref. 12] in the next

section.

Figure 1 shows our algorithm. The algorithm assumes that the Failure Set is from a valid

CSP process as defined in Chapter III of the CSP book [Ref. 28]. This means that if a sequence is

in the set of failure pairs, then there must exist a failure pair with each prefix of the sequence. For

example if there is a sequence 〈a, b〉 is in a failure pair, then there must exist a failure pair with

sequence 〈a〉, and another pair with sequence 〈〉. In addition, for each unique sequence sq from a

pair (sq, Acts), we only consider the “largest” set of refusals of Acts. For example, suppose that in

the set of failures there was a sequence 〈a, b〉 such that the set included the following failure pairs:

(〈a, b〉 , {b, c}), (〈a, b〉 , {b}), (〈a, b〉 , {c}) and (〈a, b〉 , ∅). We would give the algorithm on the pair

(〈a, b〉 , {b, c}) since the refusal set {b, c} contains all of the possible refusals after the the sequence

〈a, b〉.
Several comments about the algorithm are in order. The algorithm starts with a single state

s0. It then takes each sequence of length 1 and adds a May transition for each action. If the action

is not in the set of refusals for the sequences of length 0, the action is “promoted” to a Must action.

Thus the algorithm builds up the DLTS in a breadth first manner. By building up the DLTS

in this manner, it means that every sequence will lead to a unique state. Any non-determinism is

contained solely in the fact that the transitions are May and not Must. This is important because it

guarantees that for every DLTS with an equivalent set of failures will be a refinement of the DLTS

produced by the algorithm. We prove this by defining R. Suppose C and A are DLTS’s and A was

produced by the algorithm defined above and Failures(C) = Failures(A). We then define R as

follows.

Definition 8.13: Refinement Relationship To Validate Algorithm

cRa
def
= ∃sq : Path?(A, s0, a, sq) ∧ Path?(C, s0, c, sq)
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Algorithm 1 Failure Set To DLTS

1. Order Failure Set By Length Of Sequences
2. Set n = 1
3. Set i = 1
4. Set S =〈
ΣS = {s0} , ACTs = Act, →May

S = ∅, →Must
S = ∅, s0 = s0

〉
5. WHILE there exist Failures with Sequences of Length n DO:
5.1 FOR Each Failure With Sequence of Length n DO:
5.1.1 Set ΣS = ΣS ∪ si where si is a new state
5.1.2 Set i = i + 1
5.1.3 Set e = nth Action in the Sequence
5.1.4 Set sq’ = First n-1 Actions in the Sequence
5.1.5 Set s’ = After (S, s0, sq′)

5.1.6 Set →May
S =→May

S ∪s
e′ → si

5.1.7 Set Acts to be the refusals of the failure pair such that the Sequence i
5.1.8 IF e is not a member of Acts THEN Set →Must

S =→Must
S

∪s
e′ → si

5.1.9 Set n = n + 1
6. Return S

We then prove the lemma by induction on the set of sequences that are reachable from s0 with a

length of n.

C. ADAPTING ROSCOE’S RESULT
Roscoe proved that the if the system was deterministic from a “low-security point-of-view”,

a security property will be preserved by refinement. In this section we will translate this result into

our DLTS framework and prove it in PVS.

1. CSP Determinism
Determinism has a different meanings in the CSP and Labelled Transition System contexts.

In the Labelled Transition System context, a transition is deterministic if an action results in a

unique state. Thus, a transition is a function such that for any given state, a given action will

result in one unique state. CSP however, has no concept of “state”. In CSP, determinism refers to

behavior. A behavior is deterministic if, after performing a given sequence, the next action is either

part of a valid trace, or will be refused but not both. We now translate this behavior into our DLTS

framework. Determinsitic? : DLTS �→ Bool will return TRUE if a given DLTS is deterministic
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Failures(SYS1) = {(〈〉, {b}), (〈a〉, {a, b}), (〈a,b〉, {a, b})}s
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Failures(SYS2) = {(〈〉, {b}), (〈a〉, {a, b}), (〈a,b〉, {a, b})}

Failures(SYS3) = {(〈〉, {b}), (〈a〉, {a}), (〈a,b〉, {a, b})}

Figure 4. Failures and Determinism

in the CSP sense. It is formally defined as follows:

Definition 8.14: Deterministic DLTS

Determinsitic?(S)
def
= ∀s ∈ ΣS , e ∈ ACTS , sq ∈ ACT ∗

S : s ∈ After (S, s0, sq) ⇒
Trace? (S, s, 〈e〉) = ¬Failure? (S, s0, sq, {e})

CSP determinism is often confusing at first, but can be illustrated in Figure 4. In the figure,

both SY S1 and SY S2 are non-deterministic. SY S1 is nondeterministic because, after executing the

sequence 〈a〉, the system may be either in state s1 or s2. If the system is in state s1, it may execute

the action b. If the system is in state s2, it will refuse to execute action b. Because the sequence

〈a, b〉 is a trace of SY S1 and the pair (〈a〉 , {b}) is a failure of SY S1, the system is non-deterministic.

SY S2 is also non-deterministic because the sequence 〈a, b〉 is a trace of SY S2 and the pair

(〈a〉 , {b}) is a failure of SY S2. After executing the sequence 〈a〉, the SY S2 will be in state s1.

Since s1
b→ s2 ∈→May

SY S2, the sequence〈a, b〉 is a trace of SY S2. However, since s1
b→ s2 /∈→Must

SY S2,

the pair (〈a〉 , {b}) is a failure of SY S2.

SY S3 is the only deterministic system in the figure. For every sequence of actions that is a

trace of the system, the next action is either part of a trace or a refusal but not both.

We will now propose two conditions on our DLTS and show that these conditions guarantee

determinism in the CSP sense. The first condition is uniqueness. A system is Unique? : DLTS �→
Bool will return TRUE if every transition labelled with an action in the set is unique for all the

states in the system. Formally:
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Definition 8.15: Unique DLTS

Unique?(S)
def
= ∀s, s′, s” ∈ ΣS , e ∈ ACTS :

e
s → s′ ∈→May

S ∧ e
s → s” ∈→May

S ⇒ s′ = s”

We have already stated in the previous section that our algorithm for converting a Failure set

to a DLTS will generate unique transitions. However, this condition alone is not sufficient. Consider

again SY S2 in Figure 4. In the figure, Unique?(SY S2) however, ¬Deterministic?(SY S2). Notice

that in the figure, SY S1 and SY S2 are failure equivalent. Thus from a CSP perspective, they are

the same. Therefore if we want to develop conditions to ensure determinism, simply ensuring the

uniqueness of the transitions is insufficient.

In order to ensure determinism, we define the function Complete? : DLTS �→ Bool This

function will return TRUE if every May transition is also a Must Transition. In our formalization,

this occurs only when the set of all the May transitions is equal to the set of all Must transitions.

Definition 8.16: Complete DLTS

Complete?(S)
def
= →May

S =→Must
S

With these two definitions, we were able to prove in PVS, that if a system is complete and

unique, it is deterministic in the CSP sense. Formally:

Lemma 8.5: Complete and Unique is Deterministic

∀S ∈ DLTS : Complete?(S) ∧ Unique?(S) ⇒ Deterministic?(S)

The encoding of these conditions and Lemma 8.5 is shown in Figure 5.

Since Roscoe’s results only deal with the systems that are deterministic from a low-point-of

view, we must modify Definitions 8.15 and 8.16. We define the function CompleteAct : DLTS �→
2ACT to return the set of all actions in the system where every May transition with that action is

also a Must transition. This definition was already presented in Chapter VI (Definition 6.4), but

we repeat it here again.

Definition 6.4: Set of Complete Actions of a DLTS (Repeated)

CompleteAct(S)
def
=

{
e | ∀s1, s2 ∈ ΣS : s1

e→ s2 ∈→May
S ⇔ s1

e→ s2 ∈→Must
S

}

We define the function UniqueAct : DLTS �→ 2ACT to return the set of all actions in the

system where every May transition with that action is unique. Formally:
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Complete?(SYS: DLKS): bool = SYS‘MayT=SYS‘MustT
Unique?(SYS: DLKS): bool =

(FORALL (t1, t2: Trans):
(member(t1, SYS‘MayT) & member(t2, SYS‘MayT) &
t1‘oldSt = t2‘oldSt & t1‘act = t2‘act) => t1 = t2)

Deterministic?(SYS: DLKS): bool =
(FORALL (s0, se: State, sq: Sequence, e: Action):
(s0 = SYS‘Start & member(se, After(SYS, s0, sq))) =>

Trace?(SYS, se, cons(e, null)) =
NOT Failure?(SYS, SYS‘Start, sq, e))

CompleteAndUniqueIsDeterministic: LEMMA (FORALL (SYS: DLKS):
Complete?(SYS) & Unique?(SYS) => Deterministic?(SYS))

Figure 5. CSP Determinism for a DLKS

Definition 8.17: Set of Complete Actions of a DLTS

UniqueAct(S)
def
=

{
e | ∀s, s′, s” ∈ ΣS : s

e→ s′ ∈→May
S ∧s

e→ s” ∈→May
S ⇒ s′ = s”

}

The set of deterministic actions consists of the set of those actions that are both complete

and unique. Formally:

Definition 8.18: Set of Deterministic Actions of a DLTS

DeterminsiticAct(S) def= {e | e ∈ CompleteAct(S) ∧ e ∈ UniqueAct(S)}

Thus when we speak of a DLTS that is deterministic from a low point of view, we shall refer

to the set of systems such that LOW ⊆ DeterminsiticAct(S). Figure 6, shows the PVS encodings

of these definitions.

2. CSP Security Property
In this section, we create a security property that is comparable with the previous properties

we described and that we will use to compare with our results. Recall that in Chapter VI, we defined

a security property based on low-level bi-simulation (Definition 6.2), and in Chapter IV, we showed

a security property based on low-level trace equivalence (Definition 4.6). Since processes in CSP are

defined as sets of Failures, and we have already shown in Chapter IV how process equivalence in

closely tied to security, we will define a security property based on low-level failure equivalence.
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CompleteAct(SYS: DLKS) : setof[Action] =
{e: Action | (FORALL (t: Trans):
( t‘act = e) => (member(t, SYS‘MayT) IFF member(t, SYS‘MustT)))}

UniqueAct(SYS: DLKS) : setof[Action] =
{e: Action | (FORALL (t1, t2: Trans):

(t1‘oldSt = t2‘oldSt & t1‘act = t2‘act & t1‘act = e &
member(t1, SYS‘MayT) & member(t2, SYS‘MayT)) => t1 = t2)}

DeterministicAct(SYS: DLKS) : setof[Action] =
{e: Action | member(e, CompleteAct(SYS)) & member(e, UniqueAct(SYS))}

Figure 6. Deterministic Actions Of A DLKS

We define low-view failure equivalence as a relationship between states such that a failure

of one state is a failure of another. The relationship is denoted: ≈LOW
Failure⊆ ΣLTS × ΣLTS and is

formally adapted to our common DLTS framework as follows.

Definition 8.19: Low Level Failure-Equivalence

s1 ≈LOW
Failure s2

def
= ∀sq ∈ ACT ∗

S , Acts ⊆ 2ACTS :

Failure? (S, s1, sq\LOW, Acts ∩ LOW ) ⇔ Failure? (S, s2, sq\LOW, Acts ∩ LOW )

With this equivalence definition, we can define a security property similar to the one in

(Definition 4.7), but that uses Low-Level Failure Equivalence. We define the function BaseSecure? :

DLTS �→ Bool to return TRUE if for every high security action, the new and old state are failure

equivalent. Formally:

Definition 8.20: Base Secure DLTS

BaseSecure(S)
def
= ∀s, s′ ∈ ΣS , e ∈ ACTS : e ∈ HIGH ∧ s

e→ s′ ∈→May
S ⇒ s ≈LOW

Failure s′

Using PVS, we proved that this security property was sufficient to ensure Trace Security

(Definition 6.3) Formally:

Lemma 8.6: BiSim Secure is Trace Security

∀S ∈ DLTS : BaseSecure?(S) ⇒ TraceSecure?(SY S)

We also define a DLTS to be FailureSecure? : DLTS �→ Bool if the high-security actions

do not impact the set of Low-Security Failures. We develop this notion of as an extension of

TraceSecure? (Definition 6.3). Formally we define failure security of a DLTS system as follows.
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Definition 6.3: Trace Security For A Doubly Labelled Transition System

FailureSecure?(SY S)
def
= ∀sq ∈ ACT ∗

S , Acts ∈ 2ACTS :

Failure? (S, s0, sq, Acts) ⇒ Failure? (SY S, s0, Purge(sq), Acts ∩ LOW )

A system is FailureSecure? if for every failure pair (sq, Acts) that is a failure of the system, there

is another failure pair that is identical from a low point-of-view, but does not have any high-security

actions. Intuitively, observing only the low-security actions of a FailureSecure? system will not

allow the observer to determine if any high-security actions have or have not occurred.

We proved in PVS that for any DLTS, if the system was BaseSecure?, it was also FailureSecure?.

Lemma 8.7: Base Secure is Failure Secure

∀SY S ∈ DLTS : BaseSecure?(SY S) ⇒ FailureSecure?(SY S)

Finally we proved in PVS that this security property is weaker than the BiSimSecure?

security property developed in Chapter VI.

Lemma 8.8: BiSimSecure is BaseSecure

∀SY S ∈ DLTS : BiSimSecure?(SY S) ⇒ BaseSecure?(SY S)

D. ROSCOE’S RESULT AND COMPARISON
In this section, we will give Roscoe’s result and show that our property is an extension of

it.

Roscoe’s result states simply that if a system is deterministic from a low point of view, then

any refinement of it will be also secure. We used PVS to prove this version of Roscoe’s result in our

framework:

Theorem 8.9: Roscoe’s Result

∀C, A ∈ DLTS, R : BaseSecure?(A) ∧ LOW ⊆ DeterminsiticAct(A) ∧ C �R A ⇒
BaseSecure?(C)

We can rewrite this theorem by expanding the definition of DeterminsiticAct(A).
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Theorem 8.9: Roscoe’s Result (Expanded)

∀C, A ∈ DLTS, R : BaseSecure?(A)∧LOW ⊆ CompleteAct(A)∧LOW ⊆ UniqueAct(A)∧C�RA ⇒
BaseSecure?(C)

We can compare this result with our own from Chapter VI. (Theorem 6.2) The Theorem is

presented with the definition of LowViewComplete? expanded.

Theorem 6.2: Refinements of A Low-View Complete System Are Secure (Re-

peated)

∀C, A ∈ DLTS, R : BiSimSecure?(A) ∧ C �R A ∧ LOW ⊆ CompleteAct(A) ⇒ BiSimSecure?(C)

Comparing the class of systems, Roscoe’s showed that the security property of systems that

are deterministic from a low point of view, LOW ⊆ CompleteAct(A)∧LOW ⊆ UniqueAct(A), will

be preserved by refinement. We showed that if one uses a stronger definition of system equivalence:

bi-simulation, we can guarantee the security of a larger class of systems: LOW ⊆ CompleteAct(A).

Such systems may be non-deterministic from a low point of view.

In this chapter, we compared our result to Roscoe’s. We did this by translating the funda-

mental equivalence relationship in CSP: the Failure, into our DLTS framework. We then presented

an algorithm to convert a failure set to a DLTS. Finally we translated Roscoe’s result into the

DLTS framework and showed that our result allowed for the security property to be preserved for

a larger class of systems provided that a stronger security property was used.
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IX. FUTURE WORK

In this chapter, we discuss the steps necessary to extend our framework to cover other forms

of refinement. We show some of the preliminary work that we have taken in this direction and

identify the work that still remains.

A. COMPOSITION AND WEAK REFINEMENT
Composition is an operation that takes the specification of two systems and returns a third.

In order to formally discuss composition, one often need to be able to differentiate between “internal”

and “external” actions. In addition, one often need to distinguish between “input” and “output”

actions. These distinctions are important because when two systems are composed, the actions that

were external to each of the components may become internal to the composed system. In CSP [Ref.

29], for example, when two systems are composed the intra-system action and co-action (output and

input) are collapsed into a special hidden action known as τ .

Closely associated with composition is weak refinement. Weak refinement a relationship

between two systems in which the internal behavior of the concrete system is taken into account,

but ignored in the abstract revealed system. A good abstract model will often hide or ignore the

internal actions and focus exclusively on the observable external behavior. However when the system

is implemented it is often decomposed into a set of cooperating sub-systems. These sub-systems will

perform some actions that will be externally observable and some actions that will be considered

“internal” in the final composition. Therefore a weak refinement relationship must relate two systems

even though the concrete system takes into account a greater set of actions.

In order to develop a theory of weak refinement we need to develop a theory of composition

to show how the internal transitions are created. In this section, we show the progress we have made

thus far. The concept involves a novel use of the DLKS.

1. The Ordered DLKS
Recall that the DLKS defined in Chapter V, was identical to the DLTS with the states

decorated with a set of predicates. In our simple vending machine example, from Chapter II, a

predicate might be that payment has been received. The concept of “State” was a basic type. Now

we propose to define state as simply a set of predicates. Intuitively, there must have been some fact

about the system that caused the designer to separate the states in the first place. By re-defining

the type state as a collection of predicates, we make this information explicit. We show that this
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ordered_dlts [Action: TYPE+, Context: TYPE+] : THEORY
EXPORTING ALL WITH dlts_determinism[State, Action, Context]

BEGIN

Atm: TYPE = setof[Context]
State: TYPE = [# MayP: setof[Atm], MustP: setof[Atm] #]

IMPORTING dlts_determinism[State, Action, Context]
Valid?(s: State): bool = subset?(s‘MustP, s‘MayP)

Figure 1. ordered_dlts.pvs Part 1

is replacement is valid. Then we will explore its consequences. Defining state in this manner will

make it easier to test for refinement and will be easier to map to a real implementation. However,

it will come with an important consistency requirement.

Modal µ calculus [Ref. 19] is intimately tied to the Doubly Labelled Kripke Structures.

The calculus enables reasoning about safety and liveness properties in a three-valued logic. Up until

now, we have “decorated” the states with a set of predicates. But there is no reason that we cannot

go one step further and define the state by the set of predicates. This would not be possible in a

two valued logic, because there is no sound way of expressing negation. However in a three-valued

logic we can easily do this.

In our PVS encoding, State was an undefined type. Now, we will create a new subtype

of Doubly Labelled Kripke Structure: one in which the state is defined as a set of May and Must

predicates. Because, as we will show later, these predicates form a partial order, we will call this

new subtype and Ordered DLKS. The Ordered DLKS inherits all of the properties of the plain

DLKS, except for the fact that State is defined. Figure 1 gives the beginning of the PVS encoding.

In the figure, a state is defined by two sets of predicates: the set MayP ⊆ 2ATOMK for the

set of “may predicates” and the set MustP ⊆ 2ATOMK for the set of “must predicates.” Formally

ΣK �→ 2ATOMK × 2ATOMK .

Definition 9.1: DLKS State as a Predicate

s
def
= (MayPs, MustPs)

The semantics of the predicates is as follows:

Condition 9.1: Semantics of the Predicates
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Ordered?(SYS: DLKS): bool =
(FORALL (s: State):
s‘MayP = SYS‘MayP(s) & s‘MustP = SYS‘MustP(s))

ORDERED_DLKS: TYPE={SYS: DLKS | Ordered?(SYS)}

AllStatesAreValid: LEMMA
(FORALL (SYS: ORDERED_DLKS, s: State) :
member(s, SYS‘States) => Valid?(s))

Figure 2. ordered_dlts.pvs Part 2

p ∈ ATOMK ∧ p /∈ MayP ⇒ p is FALSE

p ∈ ATOMK ∧ p ∈ MayP ∧ p /∈ MustP ⇒ p is UNKNOWN

p ∈ ATOMK ∧ p ∈ MayP ∧ p ∈ MustP ⇒ p is TRUE

For consistency, we require that p ∈ MustP ⇒ p ∈ MayP .

Valid? : ΣK �→ Bool is a function that tests if a state is well formed. If it returns, FALSE

the state is inconsistent. one in which MustP � MayP .

Definition 9.2: Valid State

Valid?(s)
def
= MayPs ⊆ MustPs

In Figure 2 we show the formal PVS encoding of the Ordered DLKS. Informally an

Ordered DLKS is a DLKS where the May and Must predicates are equivalent to the May and

Must predicates returned by the Predicate Map for that state. Because of the type restriction on

the DLKS predicate map, we can conclude, as the lemma AllStatesAreValid states, that every

state of an Ordered DLTS is a valid one.

Lemma 9.1: All States Are Valid

∀K ∈ OrderedDLKS, s ∈ ΣK : Valid?(s)

We now argue the justification for defining the states by the predicates. Given any labelled

transitions system, we must be able to enumerate each state. We can turn this enumeration into a

unique predicate. We then can assign each predicate only once in the sets of predicate and hence

will have a one to one mapping for each state. However, the real power of the model is that it can

simplify the proof of implementation.
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Recall that if one is given a refinement relationship R, the proof verification of refinement

can occur in O(nm) time1. The challenge however is finding a suitable R. When we define the

state by the set of predicates, we get R for free. Because of the three-valued logic, we can define an

ordering of the states. Mathematically, we shall denote this ordering as follows: �⊆ ΣK × ΣK . We

define the ordering as follows:

Definition 9.3: Order Of States

s1 � s2
def
= Valid? (s1) ∧ Valid? (s2)∧
MayPs2 ⊆ MayPs1∧
MustPs1 ⊆ MustPs2

Intuitively if s1 � s2, we state that s2 is more general than s1, and know that everything that is

known in the more general state is also known in the less general state.

Figure 3 illustrates our partial order for a system with only one predicate p. At the top of

the partial order is the state where p ∈ MayP ∧ p /∈ MustP . In this state, p is unknown and could

be either true or false. Therefore this state is more general than the state where p is true and also

more general than the state where p is false. The state where p is true is neither more or less general

than the state where p is false. If we were to relax the restriction that both the states had to be

valid, our partial order would have a lower bound: the invalid state where p ∈ MustP ∧ p /∈ MayP .

We can prove that this property is a near partial order because it is reflexive (for all valid

states), transitive and antisymmetric. We say that this is a near partial order because we must

limit the ordering to those states which are valid. In figure 4 we show the PVS encoding of the

partial order and the lemmas that show it is a partial order. Note that we use the PVS function

MoreGeneral to denote the infix symbol �.

With multiple predicates, the predicates form half of a lattice as Figure 5 shows. At the top

of the lattice is the most general state possible: the state where all predicates are unknown. The

least general valid states are those where every predicate has a definite value (either true or false).

With this ordering of states, we now have define our refinement relation. Informally, a refinement

of a state is one that is less general than the abstract state. Formally:

Definition 9.4: Refinement Relationship Of Ordered DLKS

cRa
def
= c � a

1Where n is the number of states and m is the branching factor.
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p ∈ MayP
p ∉ MustP

p ∉  MayP
p ∈ MustP

p ∉  MayP
p ∉ MustP

p ∈ MayP
p ∈  MustP

p is UNKNOWN

p is TRUEp is FALSE

p is INVALID

Figure 3. Partial Order Of A Single Predicate

MoreGeneral(s1, s2: State): bool =
subset?(s2‘MayP, s1‘MayP) & subset?(s1‘MustP, s2‘MustP) &
Valid?(s1) & Valid?(s2)

StateOrderIsReflexive: LEMMA
(FORALL (s: State): Valid?(s) => MoreGeneral(s, s))

StateOrderIsTransitive: LEMMA
(FORALL (s1, s2, s3: State):
(MoreGeneral(s1, s2) & MoreGeneral(s2, s3)) => MoreGeneral(s1, s3))

StateOrderIsAntiSymmetric: LEMMA
(FORALL (s1, s2: State):
(MoreGeneral(s1, s2) & MoreGeneral(s2, s1)) => s1 = s2)

Figure 4. ordered_dlts.pvs Part 3
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All Predicates are Unknown

All Predicates are Defined

Invalid States

Figure 5. Partial Order Of Multiple Predicates

The state ordering definition of R is a very natural relation to use. By employing it, the

PropertyPreserve? clause (Definition 5.7) of the refinement relationship is satisfied automatically.

Formally:

Lemma 9.2: All States Are Valid

∀C, A ∈ OrderedDLKS, c ∈ ΣC a ∈ ΣA : cRa ⇒ Imay
A (a) ⊇ Imay

C (c) ∧ Imust
C (c) ⊇ Imust

A (a)

The use of state order does have some important consequences. The first is that the relation

is not guaranteed to be LeftRightTotal? (Definition 3.3), this burden will still fall to the designer.

The second and more important burden is intra-system consistency which we will explore in the

next section. However, in order to explore consistency, we need to create a product operator.

2. Product Of State
Most composition frameworks define a state product operation. This is often used in the

composition of two systems. With most frameworks, this is simply a cross product operation.

However, in a three-valued system, the need for consistency introduces an added wrinkle.

A simple product operation is a function that takes two states and returns another state.

Formally: ΣK1 × ΣK2 �→ ΣK3. Once we define the state as a set of May and Must predicates, our
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Product(s1, s2: State): State =
(# MayP := intersection(s1‘MayP, s2‘MayP),

MustP := union(s1‘MustP, s2‘MustP) #)
ProductIsCommutative: LEMMA

(FORALL (s1, s2: State): Product(s1, s2) = Product(s2, s1))
ProductPreservesSelf: LEMMA

(FORALL (s: State): Product(s, s) = s)

Figure 6. ordered_dlts.pvs Part 4

operation must return those sets. Informally, when we combine two states, anything that Must be

true in either state Must be true in the combined state. Likewise anything that May not be true

in either state May not be true in the product. Formally we may then define the product operation

as:

Definition 9.5: Cross Product Operation

s1 × s1
def
= {MayPs1 ∩ MayPs2, MustPs1 ∪ MayPs2}

It is easy to prove that the product operation is idempotent (s × s = s), commutative

(s1×s2 = s2×s1) and has an identity element: the state with all predicates being unknown. Figure

6 encodes these concepts in PVS.

We will now give an intuitive explanation for the product operator. Figure 7 shows a simple

example of the product operation on two states. In the figure, one state has the following predicate

lists: MayP = {a, b, c} , MustP = {a}. Informally, this means that a is true, and predicates

b and c are unknown. In the second state, the predicate list is MayP = {a, c} , MustP = {}.
Informally, this means that b is false, and predicates a and c are unknown. When these two states

are combined by taking the intersection of the MayP sets and the union of the MustP sets, we get

MayP = {a, c} , MustP = {a}. Which intuitively means that a is true, b is false, and c is unknown.

The product operator is not closed with respect to the set of all valid states. We will now

give an intuitive explanation for the product operator. In Figure 7, one state has the following

predicate lists: MayP = {a, b, c} , MustP = {a, b}. Informally, this means that a and b are true,

and predicate c is unknown. In the second state, the predicate list is MayP = {c} , MustP = {}.
Informally, this means that a and b are false, and predicate c is unknown. When these two states

are combined, as illustrated in Figure 8 we get MayP = {c} , MustP = {a, b}. This state is invalid

since a, b ∈ MustP ∧ a, b /∈ MayP . Intuitively, the reason the state is invalid is that the original

two states cannot be combined since their predicates are contradictory.
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MayP = {a, b, c}
MustP = {a}

MayP = {a, c}
MustP = {}

MayP = {a, c}
MustP = {a}

a: True
b: Unknown
c: Unknown

a: Unknown
b: False

c: Unknown

a: True
b: False

c: Unknown

Figure 7. Product Operator Example

MayP = {a, b, c}
MustP = {a, b}

MayP = {c}
MustP = {}

MayP = {c}
MustP = {a, b}

a: True
b: True

c: Unknown

a: False
b: False

c: Unknown

a: Invalid
b: Invalid

c: Unknown

Figure 8. Product Operator Example
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Compatible?(s1, s2: State): bool =
Valid?(s1) & Valid?(s2) & Valid?(Product(s1, s2))

CompatibleIsReflexive: LEMMA
(FORALL (s: State): Valid?(s) => Compatible?(s, s))

CompatibleIsCommutative: LEMMA
(FORALL (s1, s2: State): Compatible?(s1, s2) = Compatible?(s2, s1))

Figure 9. ordered_dlts.pvs Part 5

We therefore will define a function called Compatible?. Compatible? ⊆ Σ × Σ �→ Bool is

a relation which determines if two states can be combined. The relation is true if and only if both

the states are valid and the product of those two states are valid.

Definition 9.6: Compatible States

Compatible?(s1, s2)
def
= Valid?(s1) ∧ Valid?(s2) ∧ Valid?(s1 × s2)

Informally this means that the two states can be combined since they do not disagree on the truth

value of a predicate. Since the product operation is idempotent, any valid state is Compatible?

with itself. Therefore Compatible? is reflexive. Since the definition of Compatible? is symmetric,

Compatible? is commutative. Figure 9 shows the PVS encoding of the Compatible? relation and

some of its basic properties.

3. Some Properties of the Product Operation
We will conclude this section with some lemmas that show some of the properties of the

product operation and its interaction with the state order. Since the product operation results in

the state containing the maximum amount of information from its two parent states: the product

of any two compatible states is less general than either of the states. Formally:

Lemma 9.3: Product Is Less General

∀s1, s2 : Compatible?(s1, s2) ⇒ (s1 × s2) � s1 ∧ (s1 × s2) � s2

If one state is more general than another, the product of the two states will be equal to the

less general state. In other words, combining a more general state with a less general state will add

no new information to the less general state. Formally:

Lemma 9.4: Product Preserves Less General

91



ProductIsLessGeneral: LEMMA
(FORALL (s1, s2: State): Compatible?(s1, s2) =>
(MoreGeneral(s1, Product(s1, s2)) & MoreGeneral(s2, Product(s1, s2))))

ProductPreservesLessGeneral: LEMMA
(FORALL (s1, s2: State):

MoreGeneral(s1, s2) => Product(s1, s2) = s2)
MoreGeneralStatesAreCompatible: LEMMA
(FORALL (s1, s2: State):

MoreGeneral(s1, s2) => Compatible?(s1, s2))
TwoMoreGeneralStatesAreCompatible: LEMMA
(FORALL (s1, s2, s3: State):
(MoreGeneral(s1, s3) & MoreGeneral(s2, s3)) => Compatible?(s1, s2))

Figure 10. ordered_dlts.pvs Part 6

∀s1, s2 : s2 � s1 ⇒ (s1 × s2) = s2

Based on the previous lemma, any state that is more general than another is compatible

with it. Formally:

Lemma 9.5: More General States Are Compatible

∀s1, s2 : s2 � s1 ⇒ Compatible?(s1, s2)

If two states are more general than a third state, those states are compatible. Intuitively,

two states are compatible if they have a common descendant. The product operator produces the

least general descendant of both states. Formally:

Lemma 9.6: Two More General States Are Compatible

∀s1, s2, s3 : s3 � s1 ∧ s3 � s2 ⇒ Compatible?(s1, s2)

Each of these simple lemmas is encoded in Figure 10.

4. Remaining Work
Once we have redefined state and define the product operator, we can defined part of the

composition operations. The operation is of the form Compose : OrderedDLKS×OrderedDLKS �→
OrderedDLKS. We focus now on the set of states that will form the composed system. Typically,

when composing two sets of states the cross-product of the sets are taken. This assumption can

hold if the states are independent from each other. However, with our product operator we can now
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compose systems that have shared dependencies. The trick is to use only the set of states that are

valid. Thus we propose the following piece of the composition operation

Definition 9.7: Proposed State of Composition Operation

ΣS1×S2 = {s | ∃s1 ∈ ΣS1, s2ΣS2 : s = s1 × s2 ∧ Compatible?(s1, s2)}

From this point the work deals with how to handle the Must transitions. Suppose one of

the systems had a Must transitions s1
e→ s2. Suppose further that there did not exist a state sx

in the second system such that Compatible?(s2, sx). If that were the case, the Must transition

could not exist. The question arises whether or not a Must transition needs to be preserved by

composition. If it does, then it appears that not every pair of systems can be correctly composed.

Intuitively this seems reasonable, but more work is needed.

Once the method of compositions is defined, then we can encode internal and external

actions. With this encoding, we should be able to develop a theory of weak refinement. From

a security perspective, a great deal of work has been done examining the preservation of security

across composition [Ref. 61, 10, 45, 69]. We hope to be able to incorporate those results into our

framework.

B. NON-ATOMIC REFINEMENT
In non-Atomic refinement [Ref. 46], sometimes known as action refinement[Ref. 53], a single

action is replaced by a set of actions. For example, there may be an action dial to represent the

entering in of a phone number. However, in reality, this is not one single action, but a set of actions.

From the perspective of our framework, this involves replacing a single transition with an entire

DLTS or DLKS.

We hypothesis that defining states as a set of predicates will be quite useful in this endeavor.

By doing so, the predicates form the start and end state of the OrderedDLKS.

There are two interesting questions that remain. The first is how to non-atomically refine a

Must transition. We hypothesize that this would involve a DLKS such that there is a Must-path

from the initial state to a final state. The second question is what, if any, restrictions would be

placed on the predicates of the intermediate states in the system. Preliminary results suggest that

only the unknown predicates can vary or else any safety properties might be lost.

In this chapter, we have laid the foundation for a composition operation to support weak

refinement and non-atomic refinement. We have attempted to do so by re-defining the basic type

state as a set of predicates. We have already noted that not all of the states of the two components

93



can compose and believe that this may have important consequences when dealing with the Must

transitions.
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X. CONCLUSION

In the dissertation, we have shown how the Doubly Labelled Transition Systems can be

applied to the refinement paradox. We began by comparing some of the different ways that systems

are expressed. Specifically we compared systems that are expressed as sets of traces, sets of failures

and as labelled transition systems. We then looked at the close relationship between how a system

is defined, how refinement is expressed and the low-view equivalence relation that lies at the heart

of the security property. Table I shows a summary of the results.

Figure 1 shows a graphical view of the relative strength of the relationships1. Note that in

the figure, Traces are the weakest, followed by failures, then the LTS simulation relationships followed

1Assuming an allowance is made for the Low-Level-Equivalence Set, where we state that members
of the set satisfy the Low-View Trace Equivalence relationship.

Framework Equality Refinement Security Equivalence Rela-
tionship

Trace Sets
(Mantel)

Trace Equality
(Definition 2.4)
Traces(S1) =
Traces(S2)

Trace Containment
(Definition 3.1)
Traces(C) ⊆ Traces(A)

Low Level Equivalent Set
(Definition 4.2):
The sequences of action ap-
pear identical when restricted
to low actions.

Failure Sets
(CSP)

Failure Equality
(Definition 8.6)
Failures(S1) =
Failures(S2)

Failure Containment
(Definition 8.13)
Failures(C) ⊆
Failures(A)

Low-View Failure Equiva-
lence
(Definition 8.19):
The failure pairs appear iden-
tical when restricted to low
actions.

Labelled Tran-
sition System
(CCS)

Bi-simulation
(Definition 2.5)
Each system can simu-
late the transitions of the
other.

Simulation
(Definition 3.4)
The Abstract system can
simulate the transitions
of the Concrete.

Low-View Bi-similarity
(Definition 4.6):
Beginning from the two
states, each system can
simulate the Low transitions
of the other.

Doubly Labelled
Transition Sys-
tem

Bi-simulation
(Definition 6.1)
Each system can simu-
late the all the May and
Must-transitions of the
other.

Double Simulation
(Definition 5.3)
The Abstract sys-
tem can simulate the
May-transitions of the
Concrete. The Concrete
system can simulate the
Must-transitions of the
Abstract.

Low View Bi-similarity
(Definition 6.1)
Beginning from the two
states, each system can
simulate the Low May and
Must-transitions of the other

Table I. System Equality, Security and Refinement
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Figure 1. Relative Strength of Equivalence, Security and Refinement Relationships

by the DLTS refinement relationships. The exception to this rule is the refinement relationships.

This is significant because of the properties that are preserved. Traces generally define what a

system does. Failures define what a system does and does not. labeled transition systems (LTS’s

and DLTS’s) defines what a system does and does not do as well as how it does it. However, because

an LTS only has a single set of labels, it can only preserve what a system does (not what it does not

do) across refinement.

This sets up a mismatch between equality, security and refinement as illustrated in Figure

2. The vertical axis gives an ordering of the kinds of equivalence used in the various definitions of

security. A stronger equivalence between systems implies that a smaller set of pairs of systems can

be proved equivalent. A stronger equivalence relation, yields a more restrictive security property.

The horizontal axis gives an ordering of the definitions used for refinement. A stronger refinement

implies that fewer pairs of processes can be proved to be in a refinement relationship. The key is to

ensure that the definition of the system, the definition of refinement and the definition of security

all agree with each other about the type of properties that are preserved.

If a refinement relation does not preserve a minimal set of behaviors in the implementation,

security flaws can be introduced. The DLTS refinement relationship is one way of rectifying this

deficiency. Thus like Roscoe (who used sets of failures), we can state that security properties are

preserved across the set of low-view deterministic systems. We showed that using the DLTS frame-
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Roscoe's Class
Low-View Deterministic Refinement Is Less 

Complex than the Original

Determinisitc

Bibighaus' Class
Low-View Complete

                                   Bossi's
                                 Class

Mantel's 
Class

Figure 3. Summary Of Properties and Refinement

work allows us to guarantee the security even for the refinements of some low-view nondeterministic

systems. By comparison, when a system is defined as an unlabeled transition system or as a set of

traces, the only way that the security property can be preserved is to use a definition of refinement

that is less complex than the original

Figure 3 shows the classes of systems that can be proven secure using the various frameworks.

The result is that while our definitions may be the most restrictive, counter-intuitively our framework

allows for the largest class of refinements to be proven secure.

Finally we argued that using this framework links the proof of security to a series of avail-

ability requirements. This result is a side effect of the Must-transitions. By defining the system

with Must transitions, we are guaranteeing that any implementation must be responsive and hence

available.
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APPENDIX A: DLTS PVS SPECIFICATIONS

This appendix shows the PVS specifications for the Doubly Labelled Transition System.

These files along with the proof files are available electronically.
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Algorithm 2 basic_dlts.pvs
basic_dlts [State: TYPE+, Action: Type+]: THEORY

BEGIN
Trans: TYPE = [# oldSt: State,

act: Action,
newSt: State #]

% Tuple that describes a transition
% from state one to state two
% that is labeled by an action.
% This is a state variable we use only to
% prove that the DLTS type is non-empty.
s0: State
% A DLTS must take the following form:
% 1 - A set of states for the transition system
% 2 - A set of actions that are the labels of the transitions.
% 3 - A May Transition relation of transitions that might occur
% 4 - A Must Transition relation of transitions that must occur.
% 5 - A Distinguished Starting State
DLTS: TYPE+ =
[# States : setof[State],

Actions: setof[Action],
MayT : {May: setof[Trans] | (FORALL (t: Trans) :

member(t, May) =>
(member(t‘oldSt, States) &
member(t‘act, Actions) &
member(t‘newSt, States)))},

MustT : {Must: setof[Trans] | (FORALL (t: Trans) :
member(t, Must) => member(t, MayT))},

Start : {s0: State | member(s0, States)} #]
TransitionsAreDefinedByElements: LEMMA

(FORALL (t1, t2: Trans): t1 = t2 IFF
t1‘oldSt = t2‘oldSt & t1‘act = t2‘act & t1‘newSt = t2‘newSt)

END basic_dlts
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Algorithm 3 dlts_refinement.pvs

dlts_refinement [State: TYPE+, Action: TYPE+] : THEORY
EXPORTING ALL WITH basic_dlts[State, Action]

BEGIN

IMPORTING basic_dlts[State, Action]

% This section defines the theory of refinement for a dlts.

% A state map relates states from the concrete system to the
% abstract system.
StateTuple: TYPE = [# cSt: State, aSt: State #]
StateMap: TYPE = setof[StateTuple]

% A state map is left-right-total if every state in the
% abstract and concrete are related.

LeftRightTotal?(C , A : DLTS, R: StateMap) : bool =
(FORALL (sc: State) : member(sc, C‘States) =>
(EXISTS (sa: State) : member(sa, A‘States) &

member((# cSt:=sc, aSt:=sa #), R))) &
(FORALL (sa: State) : member(sa, A‘States) =>
(EXISTS (sc: State) : member(sc, C‘States) &

member((# cSt:=sc, aSt:=sa #), R)))

Refines: TYPE = [C: DLTS, A : DLTS,
R: {SMap: StateMap | LeftRightTotal(C, A, SMap)} -> bool]

% CSimulate? is the classic definition of refinement. It demands
% that any transition of a concrete system can be mimicked by the
% corresponding abstract system.
CSimulate? : Refines = LAMBDA
(C, A : DLTS, R: {SMap: StateMap | LeftRightTotal?(C, A, SMap)}) :
(FORALL (tc : Trans, sa: State) :

(member(tc, C‘MayT) &
member(sa, A‘States) &
member((# cSt:=tc‘oldSt, aSt:=sa #), R)) =>
(EXISTS (ta: Trans) :

(member(ta, A‘MayT) &
ta‘oldSt = sa &
ta‘act = tc‘act &
member((# cSt:=tc‘newSt, aSt:=ta‘newSt #), R))))

101



Algorithm 4 dlts_refinement.pvs (cont)

CSimulateIsReflexive : LEMMA (FORALL (SYS : DLTS):
CSimulate?(SYS, SYS, {r: StateTuple | r‘cSt = r‘aSt}))

CSimulateIsTransitive: LEMMA
(FORALL (SYS1, SYS2, SYS3 : DLTS, R1: {SMap: StateMap |

LeftRightTotal?(SYS1, SYS2, SMap)}, R2: {SMap: StateMap |
LeftRightTotal?(SYS2, SYS3, SMap)}) :

(CSimulate?(SYS1, SYS2, R1) & CSimulate?(SYS2, SYS3, R2)) =>
CSimulate?(SYS1, SYS3, {r: StateTuple | EXISTS (s: State):

member((# cSt:=r‘cSt, aSt:=s #), R1) &
member(s, SYS2‘States) &
member((# cSt:=s, aSt:=r‘aSt #), R2)}))

% ASimulate? was developed to ensure liveness properties. It demands
% that any transition of an abstract system can be mimicked by the
% corresponding concrete system.
ASimulate? : Refines = LAMBDA
(C, A : DLTS, R: {SMap: StateMap | LeftRightTotal(C, A, SMap)}) :

(FORALL (ta : Trans, sc: State) :
(member(ta, A‘MustT) &
member(sc, C‘States) &
member((# cSt:=sc, aSt:=ta‘oldSt #), R)) =>
(EXISTS (tc: Trans) :
(member(tc, C‘MustT) &
tc‘oldSt = sc &
ta‘act = tc‘act &
member((# cSt:=tc‘newSt, aSt:=ta‘newSt #), R))))

ASimulateIsReflexive: LEMMA (FORALL (SYS : DLTS):
ASimulate?(SYS, SYS, {r: StateTuple | r‘cSt = r‘aSt}))

ASimulateIsTransitive: LEMMA
(FORALL (SYS1, SYS2, SYS3 : DLTS, R1: {SMap: StateMap |

LeftRightTotal?(SYS1, SYS2, SMap)}, R2: {SMap: StateMap |
LeftRightTotal?(SYS2, SYS3, SMap)}) :

(ASimulate?(SYS1, SYS2, R1) & ASimulate?(SYS2, SYS3, R2)) =>
ASimulate?(SYS1, SYS3, {r: StateTuple | EXISTS (s: State):

member((# cSt:=r‘cSt, aSt:=s #), R1) &
member(s, SYS2‘States) &
member((# cSt:=s, aSt:=r‘aSt #), R2)}))
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Algorithm 5 dlts_refinement.pvs (cont.)
% This is the full definition of refinement with a DLTS.

Refines? : Refines = LAMBDA
(C : DLTS, A : DLTS,
R: {SMap: StateMap | LeftRightTotal?(C, A, SMap)}):
CSimulate?(C, A, R) & ASimulate?(C, A, R)

% This lemma shows that Refines? is reflexive
Refines?IsReflexive : LEMMA (FORALL (SYS : DLTS):

Refines?(SYS, SYS, {r: StateTuple | r‘cSt = r‘aSt}))
% This lemma shows that Refines? is also transitive and therefore is a
% pre-order
Refines?IsTransitive : LEMMA

(FORALL (SYS1, SYS2, SYS3 : DLTS, R1: {SMap: StateMap |
LeftRightTotal?(SYS1, SYS2, SMap)}, R2: {SMap: StateMap |
LeftRightTotal?(SYS2, SYS3, SMap)}) :

(Refines?(SYS1, SYS2, R1) & Refines?(SYS2, SYS3, R2)) =>
Refines?(SYS1, SYS3, {r: StateTuple | EXISTS (s: State):

member((# cSt:=r‘cSt, aSt:=s #), R1) &
member(s, SYS2‘States) &
member((# cSt:=s, aSt:=r‘aSt #), R2)}))

END dlts_refinement
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Algorithm 6 dlts_trace.pvs

dlts_trace [State: TYPE+, Action: TYPE+]: THEORY
EXPORTING ALL WITH dlts_refinement[State, Action]
BEGIN

IMPORTING dlts_refinement[State, Action]

% Here we set up the mapping of a trace
Sequence: TYPE = list[Action]

% This is simple lemma that helps define a list.
cdrDef: LEMMA(FORALL(a: Action, sq: Sequence):

cdr(cons(a, sq)) = sq)
% This function determines is a trace is a member of a system
Trace?(SYS: DLTS, s0 : State, sq: Sequence) :RECURSIVE bool =

IF sq = null THEN TRUE
ELSE

(EXISTS (t : Trans) : t‘act = car(sq) &
t‘oldSt = s0 & member(t, SYS‘MayT) &
Trace?(SYS, t‘newSt, cdr(sq)))

ENDIF
MEASURE sq BY < <
% Abstract systems should contain the traces of a concrete systems
AbstractSimulation: LEMMA

(FORALL (C, A : DLTS, sc, sa: State, sq: Sequence,
R: {SMap: StateMap | LeftRightTotal?(C, A, SMap)}) :

(Trace?(C, sc, sq) &
Refines?(C, A, R) &
member(sa, A‘States) &
member((# cSt:=sc, aSt:= sa #), R)) =>

Trace?(A, sa, sq))
Path?(SYS: DLTS, s0, se: State, sq: Sequence): RECURSIVE bool =

IF sq = null THEN s0 = se
ELSE

(EXISTS (t : Trans) : t‘act = car(sq) &
t‘oldSt = s0 &
member(t, SYS‘MayT) &
Path?(SYS, t‘newSt, se, cdr(sq)))

ENDIF
MEASURE sq BY < <
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Algorithm 7 dlts_trace.pvs (cont)

TraceIsPath: LEMMA (FORALL (SYS: DLTS, s0 : State, sq: Sequence):
Trace?(SYS, s0, sq) =>

EXISTS (se: State): Path?(SYS, s0, se, sq))
PathIsTrace: LEMMA

(FORALL (SYS: DLTS, s0, se : State, sq: Sequence):
Path?(SYS, s0, se, sq) => Trace?(SYS, s0, sq))

PathIsInStates: LEMMA
(FORALL (SYS: DLTS, s0, se : State, sq: Sequence):
(Path?(SYS, s0, se, sq) & member(s0, SYS‘States)) =>

member(se, SYS‘States))
PathSimulation: LEMMA

(FORALL (C, A : DLTS, sc0, sce, sa0: State, sq: Sequence,
R: {SMap: StateMap | LeftRightTotal?(C, A, SMap)}) :

(Path?(C, sc0, sce, sq) &
Refines?(C, A, R) &
member(sa0, A‘States) &
member((# cSt:=sc0, aSt:= sa0 #), R)) =>
(EXISTS (sae: State): Path?(A, sa0, sae, sq) &

member((# cSt:=sce, aSt:= sae #), R)))

Refusals(SYS: DLTS, s: State): setof[Action] =
{a: Action |

(FORALL (sn: State):
NOT member((# oldSt := s, act := a, newSt := sn #),

SYS‘MustT))}
RefusalsContainedByAbstraction: LEMMA

(FORALL (C, A : DLTS, sc, sa: State,
R: {SMap: StateMap | LeftRightTotal?(C, A, SMap)}) :

(Refines?(C, A, R) &
member(sa, A‘States) &
member(sc, C‘States) &
member((# cSt:=sc, aSt:= sa #), R)) =>

subset?(Refusals(C, sc), Refusals(A, sa)))
After(SYS: DLTS, States:

{Sts: setof[State] | subset?(Sts, SYS‘States)},
sq: Sequence): setof[State] =
{se: State | EXISTS (s0: State):

member(s0, States) & Path?(SYS, s0, se, sq)}
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Algorithm 8 dlts_trace.pvs (cont.)

AfterIsContainedInStates: LEMMA
(FORALL (SYS: DLTS, States:
{Sts: setof[State] | subset?(Sts, SYS‘States)}, sq: Sequence):

subset?(States, SYS‘States) =>
subset?(After(SYS, States, sq), SYS‘States))

AfterIsContainedByAbstract: LEMMA
(FORALL (C, A : DLTS, sa0, sc0, sce: State, sq: Sequence,

R: {SMap: StateMap | LeftRightTotal?(C, A, SMap)}) :
(Refines?(C, A, R) & member(sc0, C‘States) &
member (sa0, A‘States) &
member((# cSt:=sc0, aSt:= sa0 #), R) &
member(sce, After(C, {sc1: State | sc1 = sc0}, sq))) =>

(EXISTS (sae: State):
member((# cSt:=sce, aSt:= sae #), R) &
member(sae, A‘States) &
member(sae, After(A, {sa1: State | sa1 = sa0}, sq))))

% This is the definition of a failure
Failure?(SYS: DLTS, s0: State, sq: Sequence,

Acts: setof[Action]): bool =
member(s0, SYS‘States) &
Trace?(SYS, s0, sq) &
subset?(Acts, {a: Action | EXISTS (s: State):
member(s, After(SYS, {s1: State | s1 = s0}, sq)) &
member(a, Refusals(SYS, s))})

% Abstract systems contain the failures of a concrete systems.
FailuresSimulation: LEMMA

(FORALL (C, A : DLTS, sa, sc: State, sq: Sequence,
Acts: setof[Action],
R: {SMap: StateMap | LeftRightTotal?(C, A, SMap)}) :
(Failure?(C, sc, sq, Acts) &
Refines?(C, A, R) &
member(sc, C‘States) &
member (sa, A‘States) &
member((# cSt:=sc, aSt:= sa #), R)) =>

Failure?(A, sa, sq, Acts))
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Algorithm 9 dlts_trace.pvs (cont.)

% This function restricts a trace to the supplied set of actions
Restrict(sq: Sequence, Actions: setof[Action]) :

RECURSIVE Sequence =
IF sq = null THEN null
ELSIF member(car(sq), Actions) THEN

cons(car(sq), Restrict(cdr(sq), Actions))
ELSE Restrict(cdr(sq), Actions) ENDIF
MEASURE sq BY < <

RestrictionOfRestriction: LEMMA
(FORALL (sq: Sequence, Actions: setof[Action]):
Restrict(Restrict(sq, Actions), Actions) =

Restrict(sq, Actions))
RestrictedTrace: LEMMA

(FORALL (sq: Sequence, Actions: setof[Action]):
(sq = Restrict(sq, Actions) & NOT(sq = null)) =>
cdr(sq) = cdr(Restrict(sq, Actions)))

END dlts_trace
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Algorithm 10 dlts_determinism.pvs

dlts_determinism[State: TYPE+, Action: TYPE+]: THEORY
EXPORTING ALL WITH dlts_trace[State, Action]

BEGIN
IMPORTING dlts_trace[State, Action]
% A system is complete if the May-transitions are the
% Must-transitions
Complete?(SYS: DLTS): bool = SYS‘MayT=SYS‘MustT
% A system is unique if there are not two or more transitions from
% the same state
Unique?(SYS: DLTS): bool =

(FORALL (t1, t2: Trans):
(member(t1, SYS‘MayT) &
member(t2, SYS‘MayT) &
t1‘oldSt = t2‘oldSt &
t1‘act = t2‘act) =>

t1 = t2)
% This is the classic CSP definition of determinism
Deterministic?(SYS: DLTS): bool =

(FORALL (s0, se: State, sq: Sequence, a: Action):
(s0 = SYS‘Start & member(se, After(SYS, s0, sq))) =>

Trace?(SYS, se, cons(a, null)) =
NOT Failure?(SYS, SYS‘Start, sq, a))

% If A System Is Unique, there is only one possible state after a
% sequence
UniqueImpliesAfterIsUnique: LEMMA

(FORALL (SYS: DLTS):
Unique?(SYS) =>

(FORALL (s0, se1, se2: State, sq: Sequence):
(Path?(SYS, s0, se1, sq) &
Path?(SYS, s0, se2, sq)) =>
se1 = se2))

% A system is Deterministic if it is complete and unique.
CompleteAndUniqueIsDeterministic: LEMMA
(FORALL (SYS: DLTS):

Complete?(SYS) & Unique?(SYS) => Deterministic?(SYS))
% The set of complete actions are those where the set of must
% actions equals the set of may actions
CompleteAct(SYS: DLTS) : setof[Action] =

{a: Action | (FORALL (t: Trans): (t‘act = a) =>
(member(t, SYS‘MayT) IFF member(t, SYS‘MustT)))}
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Algorithm 11 dlts_determinism.pvs (cont.)

% The set of unique actions are those where there is only one action
% per state UniqueAct(SYS: DLTS) : setof[Action] =

{a: Action | (FORALL (t1, t2: Trans):
(t1‘oldSt = t2‘oldSt &
t1‘act = t2‘act &
t1‘act = a &
member(t1, SYS‘MayT) &
member(t2, SYS‘MayT)) =>

t1 = t2)}

% The set of deterministic Transitions are the set of actions that
% are unique to a state and complete.
DeterministicAct(SYS: DLTS) : setof[Action] =
{a: Action | member(a, CompleteAct(SYS)) &

member(a, UniqueAct(SYS))}
DeterministicActionsHaveUniquePath: LEMMA

(FORALL (SYS: DLTS, s0, se1, se2: State, sq: Sequence):
(Path?(SYS, s0, se1, Restrict(sq, DeterministicAct(SYS))) &
Path?(SYS, s0, se2, Restrict(sq, DeterministicAct(SYS))) =>

se1 = se2))
% This lemma states that traces deterministic actions are preserved
% by refinement
RefinementPreservesDetActionsTraces: LEMMA
(FORALL (C, A : DLTS, sa, sc: State, sq: Sequence,

R: {SMap: StateMap | LeftRightTotal?(C, A, SMap)}) :
(Refines?(C, A, R) &
member(sa, A‘States) &
member(sc, C‘States) &
member((# cSt:=sc, aSt:=sa #), R)) =>

(Trace?(C, sc, Restrict(sq, DeterministicAct(A))) IFF
Trace?(A, sa, Restrict(sq, DeterministicAct(A)))))
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Algorithm 12 dlts_determinism.pvs (cont).

% This lemma states that traces deterministic actions are preserved
% by refinement
RefinementPreservesDetActionsPaths: LEMMA
(FORALL (C, A : DLTS, sa0, sae, sc0: State, sq: Sequence,

R: {SMap: StateMap | LeftRightTotal?(C, A, SMap)}) :
(Refines?(C, A, R) &
member(sa0, A‘States) &
member(sc0, C‘States) &
member((# cSt:=sc0, aSt:=sa0 #), R) &
Path?(A, sa0, sae, Restrict(sq, DeterministicAct(A)))) =>

(EXISTS (sce: State):
Path?(C, sc0, sce, Restrict(sq, DeterministicAct(A))) &
member((# cSt:=sce, aSt:= sae #), R)))

% This lemma states that failures of deterministic actions are
% preserved by refinement
RefinementPreservesDetFailures: LEMMA

(FORALL (C, A : DLTS, sa, sc: State, sq: Sequence,
Acts: setof[Action],
R: {SMap: StateMap | LeftRightTotal?(C, A, SMap)}) :

(Refines?(C, A, R) &
member(sa, A‘States) &
member(sc, C‘States) &
member((# cSt:=sc, aSt:=sa #), R)) =>

(Failure?(C, sc, Restrict(sq, DeterministicAct(A)),
intersection(Acts, DeterministicAct(A))) IFF

Failure?(A, sa, Restrict(sq, DeterministicAct(A)),
intersection(Acts, DeterministicAct(A)))))

END dlts_determinism
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dlts_equivalence[State: TYPE+, Action: TYPE+]: THEORY
EXPORTING ALL WITH dlts_determinism[State, Action]
BEGIN
IMPORTING dlts_determinism[State, Action]
% Two states are trace equivalent for a set of actions if they
% accept the same trace and failure.
Equivalent?(SYS: DLTS, s1, s2: State, Actions: setof[Action]): bool=
(FORALL (sq: Sequence, Acts: setof[Action]):

(Failure?(SYS, s1, Restrict(sq, Actions),
intersection(Acts, Actions)) IFF

Failure?(SYS, s2, Restrict(sq, Actions),
intersection(Acts, Actions))))

% We now prove that this is an equivalence relationship
EquivalentReflexive: LEMMA
(FORALL (SYS: DLTS, s: State, Acts: setof[Action]) :

Equivalent?(SYS, s, s, Acts))
EquivalentTransitive: LEMMA
(FORALL (SYS: DLTS, s1, s2, s3: State, Acts: setof[Action]) :

(Equivalent?(SYS, s1, s2, Acts) &
Equivalent?(SYS, s2, s3, Acts)) =>
Equivalent?(SYS, s1, s3, Acts))

EquivalentCommutative: LEMMA
(FORALL (SYS: DLTS, s1, s2: State, Acts: setof[Action]) :

Equivalent?(SYS, s1, s2, Acts) IFF
Equivalent?(SYS, s2, s1, Acts))

% This lemma states that equivalence is preserved by refinement
% for the deterministic Actions
RefinementPreservesDetEq: LEMMA
(FORALL (C, A : DLTS, sa1, sa2, sc1, sc2: State,

R: {SMap: StateMap | LeftRightTotal?(C, A, SMap)}) :
(Refines?(C, A, R) &
Equivalent?(A, sa1, sa2, DeterministicAct(A)) &
member(sa1, A‘States) &
member(sa2, A‘States) &
member(sc1, C‘States) &
member(sc2, C‘States) &
member((# cSt:=sc1, aSt:=sa1 #), R) &
member((# cSt:=sc2, aSt:=sa2 #), R)) =>
Equivalent?(C, sc1, sc2, DeterministicAct(A)))

END dlts_equivalence

111



Algorithm 14 dlts_security.pvs

dlts_security[State: TYPE+, Action: TYPE+]: THEORY

EXPORTING ALL WITH dlts_equivalence[State, Action]

BEGIN
IMPORTING dlts_equivalence[State, Action]
% We demand that we are given a set of high-security transitions
% that we must protect
High?(a: Action) : bool
% The Low actions are the complement of this set
LowAct: setof[Action] = {a: Action | NOT High?(a)}
HighAct: setof[Action] = {a: Action | High?(a)}
% Finally we define our security condition
BaseSecure?(SYS: DLTS) : bool =

FORALL (t: Trans):
High?(t‘act) & member(t, SYS‘MayT) =>
Equivalent?(SYS, t‘oldSt, t‘newSt, LowAct)

% This function determines is a trace is a member of a system
Purge(sq: Sequence) :
RECURSIVE Sequence =
IF sq = null THEN null
ELSIF High?(car(sq)) THEN Purge(cdr(sq))
ELSE cons(car(sq), Purge(cdr(sq))) ENDIF
MEASURE sq BY < <

% We equate the purge function with the restriction
PurgeIsARestriction: LEMMA
(FORALL(sq: Sequence): Purge(sq) = Restrict(sq, LowAct))

RepeatedPurge: LEMMA
(FORALL(sq: Sequence): Purge(Purge(sq)) = Purge(sq))

% If a system is base secure, the set of refusals will remained
% unchanged if the high actions are purged
BaseSecureHasEqRefusals: LEMMA
(FORALL (SYS: DLTS, s0, se: State, a: Action, sq: Sequence):

(BaseSecure?(SYS) &
Path?(SYS, s0, se, sq) &
member(a, Refusals(SYS, se)) &
member(a, LowAct)) =>

(EXISTS (se2: State):
Path?(SYS, s0, se2, Restrict(sq, LowAct)) &
member(a, Refusals(SYS, se2))))
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Algorithm 15 dlts_security.pvs (cont.)

% We give the classic trace based security condition
TraceSecure?(SYS: DLTS): bool =

FORALL(s: State, sq: Sequence):
Trace?(SYS, s, sq) => Trace?(SYS, s, Purge(sq))

FailureSecure?(SYS: DLTS): bool =
FORALL(s: State, sq: Sequence, Acts: setof[Action]):

Failure?(SYS, s, sq, Acts) =>
Failure?(SYS, s, Purge(sq), intersection(Acts, LowAct))

% These two lemmas shows that our security condition is secure
SecureIsTraceSecure: LEMMA
(FORALL (SYS: DLTS) : BaseSecure?(SYS) => TraceSecure?(SYS))

SecureIsFailureSecure: LEMMA
(FORALL (SYS: DLTS) : BaseSecure?(SYS) => FailureSecure?(SYS))

% This is Roscoe’s Theorem
RoscoesClaim: LEMMA

(FORALL (C, A : DLTS,
R: {SMap: StateMap | LeftRightTotal?(C, A, SMap)}) :

(Refines?(C, A, R) &
BaseSecure?(A) &
DeterministicAct(A) = LowAct) =>
BaseSecure?(C))

END dlts_security
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dlts_security_pt2[State: TYPE+, Action: TYPE+]: THEORY
EXPORTING ALL WITH dlts_security[State, Action]

BEGIN
IMPORTING dlts_security[State, Action]

% Here we define our new equivalence condition
BiSimEq(SYS: DLTS, Actions: setof[Action], Eq: StateMap) : bool =
(FORALL (s1, s2: State):

member((# cSt:=s1, aSt:=s2 #), Eq) =>
(member(s1, SYS‘States) & member(s2, SYS‘States))) &

(FORALL (s: State): member(s, SYS‘States) =>
member((# cSt:=s, aSt:=s #), Eq)) &

(FORALL (s1, s2: State):
member((# cSt:=s1, aSt:=s2 #), Eq) =>

member((# cSt:=s2, aSt:=s1 #), Eq)) &
(FORALL (t1: Trans, s2: State):
(member((# cSt:=t1‘oldSt, aSt:=s2 #), Eq) &
member(t1‘act, Actions) &
member(t1, SYS‘MayT)) =>

(EXISTS (t2: Trans):
t2‘oldSt = s2 &
t2‘act = t1‘act &
member(t2, SYS‘MayT) &
member((# cSt:=t1‘newSt, aSt:=t2‘newSt #), Eq))) &

(FORALL (t1: Trans, s2: State):
(member((# cSt:=t1‘oldSt, aSt:=s2 #), Eq) &
member(t1‘act, Actions) &
member(t1, SYS‘MustT)) =>
(EXISTS (t2: Trans):

t2‘oldSt = s2 &
t2‘act = t1‘act &
member(t2, SYS‘MustT) &
member((# cSt:=t1‘newSt, aSt:=t2‘newSt #), Eq)))

% We show that it is stronger than trace equivalence
BiSimEqIsTraceEq: LEMMA
(FORALL (SYS: DLTS, s1, s2: State, Actions: setof[Action],

sq: Sequence, Eq: StateMap):
(member((# cSt := s1, aSt := s2 #), Eq) &
BiSimEq(SYS, Actions, Eq) &
Trace?(SYS, s1, Restrict(sq, Actions))) =>

Trace?(SYS, s2, Restrict(sq, Actions)))

114



Algorithm 17 dlts_security_pt2.pvs (cont.)

% We show that it is stronger than trace equivalence
BiSimEqIsPathEq: LEMMA
(FORALL (SYS: DLTS, s1i, s1e, s2i: State, Actions: setof[Action],

sq: Sequence, Eq: StateMap):
(member((# cSt := s1i, aSt := s2i #), Eq) &
BiSimEq(SYS, Actions, Eq) &
Path?(SYS, s1i, s1e, Restrict(sq, Actions))) =>
(EXISTS (s2e: State):

Path?(SYS, s2i, s2e, Restrict(sq, Actions)) &
member((# cSt := s1e, aSt := s2e #), Eq)))

% We show that it is stronger than failure equivalence
BiSimEqIsFailureEq: LEMMA
(FORALL (SYS: DLTS, s1, s2: State, Actions, Acts: setof[Action],
sq: Sequence, Eq: StateMap):

(member((# cSt := s1, aSt := s2 #), Eq) &
BiSimEq(SYS, Actions, Eq) &
Failure?(SYS, s1, Restrict(sq, Actions),

intersection(Acts, Actions))) =>
Failure?(SYS, s2, Restrict(sq, Actions),

intersection(Acts, Actions)))
% We show that this equivalence is stronger than trace and failure
% equivalence
BiSimEqIsEquivalent: LEMMA
(FORALL (SYS: DLTS, s1, s2: State, Acts: setof[Action],

Eq: StateMap) :
(BiSimEq(SYS, Acts, Eq) &
member((# cSt := s1, aSt := s2 #), Eq)) =>
Equivalent?(SYS, s1, s2, Acts))

% Finally we define our security condition
BiSimSecure?(SYS: DLTS) : bool =
EXISTS (Eq: StateMap):

BiSimEq(SYS, LowAct, Eq) &
(FORALL (t: Trans):

High?(t‘act) &
member(t, SYS‘MayT) =>
member((# cSt:=t‘oldSt, aSt:=t‘newSt #), Eq))

% We show that this a s stronger security condition
BiSimSecureIsBaseSecure: LEMMA
(FORALL (SYS: DLTS) : BiSimSecure?(SYS) => BaseSecure?(SYS))
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Algorithm 18 dlts_security_pt2.pvs (cont.)

% We show that refinement preserves the equivalence for complete
% actions
BiSimEqPreservedByRefinement: LEMMA
(FORALL (C, A : DLTS, Eq: StateMap, Actions: setof[Action],

R: {SMap: StateMap | LeftRightTotal?(C, A, SMap)}) :
(Refines?(C, A, R) &
BiSimEq(A, Actions, Eq) &
subset?(Actions, CompleteAct(A))) =>

(EXISTS (EqC: StateMap):
BiSimEq(C, Actions, EqC) &
(FORALL (sa1, sa2, sc1, sc2: State):

(member((# cSt := sa1, aSt := sa2 #), Eq) &
member(sc1, C‘States) & member(sc2, C‘States) &
member((# cSt:=sc1, aSt:=sa1 #), R) &
member((# cSt:=sc2, aSt:=sa2 #), R)) =>

member((# cSt := sc1, aSt := sc2 #), EqC))))
% This is our extension to Roscoe’s Theorem
RoscoesExtention: LEMMA
(FORALL (C, A : DLTS,

R: {SMap: StateMap | LeftRightTotal?(C, A, SMap)}) :
(Refines?(C, A, R) &
BiSimSecure?(A) &
subset?(LowAct, CompleteAct(A)) =>

BiSimSecure?(C)))
END dlts_security_pt2
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APPENDIX B: DLKS PVS SPECIFICATIONS

This appendix shows the PVS specifications for the Doubly Labelled Kripke Structure.

These files along with the proof files are available electronically.
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Algorithm 19 basic_dlks.pvs

basic_dlks [State: TYPE+, Action: Type+, Context: TYPE+]: THEORY
BEGIN

% This theory describes the fundamentals of the Doubly Labeled
% Kripke Structure.
Atom: TYPE+ = setof[Context] % An atomic predicate defines a set of

% running contexts that share some
% truth

Current: Context % The current context of the machine
Trans: TYPE = [# oldSt: State, act: Action, newSt: State #]

% Tuple that describes a transition
% from state one to state two
% that is labelled by an action.

PredicateMap: TYPE+ = [State -> setof[Atom]]
% This type is a mapping from a state
% to a set of atomic predicates.

% This is a state variable we use only to
% prove that the DLTS type is non-empty.
s0: State
% A DLKS must take the following form:
% 1 - A set of states for the transition system
% 2 - A set of atomic predicates that are properties of the state
% 3 - A set of actions that are the labels of the transitions.
% 4 - A May Transition relation of transitions that might occur
% 5 - A Must Transition relation of transitions that must occur.
% 6 - A May-Predicate function that returns the set of predicates
% that might be true for a given state
% 7 - A Must-Predicate function that returns the set of predicates
% that are true for a given state
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Algorithm 20 basic_dlks.pvs (cont.)

DLKS: TYPE+ =
[# States : setof[State],

Actions: setof[Action],
Atoms : setof[Atom],
MayT : {May: setof[Trans] | (FORALL (t: Trans) :

member(t, May) =>
(member(t‘oldSt, States) &
member(t‘act, Actions) &
member(t‘newSt, States)))},

MustT : {Must: setof[Trans] | (FORALL (t: Trans) :
member(t, Must) => member(t, MayT))},

MayP : {P: PredicateMap | (FORALL (r : Atom, s : State) :
(member(r, Atoms) &
member(s, States) &
NOT(member(r, P(s)))) =>
NOT member(Current, r))},

MustP : {Q: PredicateMap | (FORALL (r : Atom, s : State) :
(member(s, States) &
member(r, Q(s))) =>
(member(r, Atoms) &
member(Current, r) &
member(r, MayP(s))))},

Start : {s0: State | member(s0, States)} #]
TransitionsAreDefinedByElements: LEMMA
(FORALL (t1, t2: Trans):

t1 = t2 IFF
t1‘oldSt = t2‘oldSt & t1‘act = t2‘act & t1‘newSt = t2‘newSt)

END basic_dlks
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Algorithm 21 dlts_refinement.pvs

dlks_refinement [State: TYPE+, Action: TYPE+, Context: TYPE +] : THEORY
EXPORTING ALL WITH basic_dlts[State, Action, Context]

BEGIN

IMPORTING basic_dlks[State, Action, Context]

% This section defines the theory of refinement for a dlks.

% A state map relates states from the concrete system to the
% abstract system.
StateTuple: TYPE = [# cSt: State, aSt: State #]
StateMap: TYPE = setof[StateTuple]

% A state map is left-right-total if every state in the
% abstract and concrete are related.

LeftRightTotal?(C , A : DLKS, R: StateMap) : bool =
(FORALL (sc: State) : member(sc, C‘States) =>
(EXISTS (sa: State) : member(sa, A‘States) &

member((# cSt:=sc, aSt:=sa #), R))) &
(FORALL (sa: State) : member(sa, A‘States) =>
(EXISTS (sc: State) : member(sc, C‘States) &

member((# cSt:=sc, aSt:=sa #), R)))

Refines: TYPE = [C: DLKS, A : DLKS,
R: {SMap: StateMap | LeftRightTotal(C, A, SMap)} -> bool]

% CSimulate? is the classic definition of refinement. It demands
% that any transition of a % concrete system can be mimicked by the
% corresponding abstract system.
CSimulate? : Refines = LAMBDA
(C, A : DLKS, R: {SMap: StateMap | LeftRightTotal?(C, A, SMap)}) :
(FORALL (tc : Trans, sa: State) :

(member(tc, C‘MayT) &
member(sa, A‘States) &
member((# cSt:=tc‘oldSt, aSt:=sa #), R)) =>
(EXISTS (ta: Trans) :

(member(ta, A‘MayT) &
ta‘oldSt = sa &
ta‘act = tc‘act &
member((# cSt:=tc‘newSt, aSt:=ta‘newSt #), R))))
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Algorithm 22 dlks_refinement.pvs (continued)

CSimulateIsReflexive : LEMMA (FORALL (SYS : DLKS):
CSimulate?(SYS, SYS, {r: StateTuple | r‘cSt = r‘aSt}))

CSimulateIsTransitive: LEMMA
(FORALL (SYS1, SYS2, SYS3 : DLKS, R1: {SMap: StateMap |

LeftRightTotal?(SYS1, SYS2, SMap)}, R2: {SMap: StateMap |
LeftRightTotal?(SYS2, SYS3, SMap)}) :

(CSimulate?(SYS1, SYS2, R1) & CSimulate?(SYS2, SYS3, R2)) =>
CSimulate?(SYS1, SYS3, {r: StateTuple | EXISTS (s: State):

member((# cSt:=r‘cSt, aSt:=s #), R1) &
member(s, SYS2‘States) &
member((# cSt:=s, aSt:=r‘aSt #), R2)}))

% ASimulate? was developed to ensure liveness properties. It demands
% that any transition of an abstract system can be mimicked by the
% corresponding concrete system.
ASimulate? : Refines = LAMBDA
(C, A : DLKS, R: {SMap: StateMap | LeftRightTotal(C, A, SMap)}) :

(FORALL (ta : Trans, sc: State) :
(member(ta, A‘MustT) &
member(sc, C‘States) &
member((# cSt:=sc, aSt:=ta‘oldSt #), R)) =>
(EXISTS (tc: Trans) :
(member(tc, C‘MustT) &
tc‘oldSt = sc &
ta‘act = tc‘act &
member((# cSt:=tc‘newSt, aSt:=ta‘newSt #), R))))

ASimulateIsReflexive: LEMMA (FORALL (SYS : DLKS):
ASimulate?(SYS, SYS, {r: StateTuple | r‘cSt = r‘aSt}))

ASimulateIsTransitive: LEMMA
(FORALL (SYS1, SYS2, SYS3 : DLKS, R1: {SMap: StateMap |

LeftRightTotal?(SYS1, SYS2, SMap)}, R2: {SMap: StateMap |
LeftRightTotal?(SYS2, SYS3, SMap)}) :

(ASimulate?(SYS1, SYS2, R1) & ASimulate?(SYS2, SYS3, R2)) =>
ASimulate?(SYS1, SYS3, {r: StateTuple | EXISTS (s: State):

member((# cSt:=r‘cSt, aSt:=s #), R1) &
member(s, SYS2‘States) &
member((# cSt:=s, aSt:=r‘aSt #), R2)}))
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Algorithm 23 dlks_refinement.pvs (cont.)

% Properties must be both reflected and preserved. This states that
% anything that may not be true in the abstract system may not be true
% of the concrete. Likewise it requires that anything that must be
% true of the abstract system must also be true of the concrete.
PropertyPreserve?: Refines = LAMBDA

(C, A : DLKS, R: {SMap: StateMap | LeftRightTotal?(C, A, SMap)}) :
(FORALL (sc, sa: State):

(member(sc, C‘States) &
member(sa, A‘States) &
member((# cSt:=sc, aSt:=sa #), R)) =>
(subset?(C‘MayP(sc), A‘MayP(sa)) &
subset?(A‘MustP(sa), C‘MustP(sc))))

PropertyPreserveIsReflexive: LEMMA
(FORALL (SYS : DLKS):

PropertyPreserve?(SYS, SYS, {r: StateTuple | r‘cSt = r‘aSt}))
PropertyPreserveIsTransitive: LEMMA

(FORALL (SYS1, SYS2, SYS3 : DLKS,
R1: {SMap: StateMap | LeftRightTotal?(SYS1, SYS2, SMap)},
R2: {SMap: StateMap | LeftRightTotal?(SYS2, SYS3, SMap)}) :

(PropertyPreserve?(SYS1, SYS2, R1) &
PropertyPreserve?(SYS2, SYS3, R2)) =>
PropertyPreserve?(SYS1, SYS3,

{r: StateTuple | EXISTS (s: State):
member((# cSt:=r‘cSt, aSt:=s #), R1) &
member(s, SYS2‘States) &
member((# cSt:=s, aSt:=r‘aSt #), R2)}))

% This is the full definition of refinement with a DLKS.
Refines? : Refines = LAMBDA

(C : DLKS, A : DLKS,
R: {SMap: StateMap | LeftRightTotal?(C, A, SMap)})
CSimulate?(C, A, R) &
ASimulate?(C, A, R) &
PropertyPreserve?(C, A, R)
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Algorithm 24 dlks_refinement.pvs (cont.)

% This is the full definition of refinement with a DLKS.
Refines? : Refines = LAMBDA

(C : DLKS, A : DLKS,
R: {SMap: StateMap | LeftRightTotal?(C, A, SMap)}):
CSimulate?(C, A, R) & ASimulate?(C, A, R)

% This lemma shows that Refines? is reflexive
Refines?IsReflexive : LEMMA (FORALL (SYS : DLKS):

Refines?(SYS, SYS, {r: StateTuple | r‘cSt = r‘aSt}))
% This lemma shows that Refines? is also transitive and therefore is a
% pre-order
Refines?IsTransitive : LEMMA

(FORALL (SYS1, SYS2, SYS3 : DLKS, R1: {SMap: StateMap |
LeftRightTotal?(SYS1, SYS2, SMap)}, R2: {SMap: StateMap |
LeftRightTotal?(SYS2, SYS3, SMap)}) :

(Refines?(SYS1, SYS2, R1) & Refines?(SYS2, SYS3, R2)) =>
Refines?(SYS1, SYS3, {r: StateTuple | EXISTS (s: State):

member((# cSt:=r‘cSt, aSt:=s #), R1) &
member(s, SYS2‘States) &
member((# cSt:=s, aSt:=r‘aSt #), R2)}))

END dlks_refinement
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Algorithm 25 dlks_trace.pvs

dlks_trace [State: TYPE+, Action: TYPE+, Context]: THEORY
EXPORTING ALL WITH dlts_refinement[State, Action, Context]
BEGIN

IMPORTING dlks_refinement[State, Action, Context]

% Here we set up the mapping of a trace
Sequence: TYPE = list[Action]

% This is simple lemma that helps define a list.
cdrDef: LEMMA(FORALL(a: Action, sq: Sequence):

cdr(cons(a, sq)) = sq)
% This function determines is a trace is a member of a system
Trace?(SYS: DLKS, s0 : State, sq: Sequence) :RECURSIVE bool =

IF sq = null THEN TRUE
ELSE

(EXISTS (t : Trans) : t‘act = car(sq) &
t‘oldSt = s0 & member(t, SYS‘MayT) &
Trace?(SYS, t‘newSt, cdr(sq)))

ENDIF
MEASURE sq BY < <
% Abstract systems should contain the traces of a concrete systems
AbstractSimulation: LEMMA

(FORALL (C, A : DLKS, sc, sa: State, sq: Sequence,
R: {SMap: StateMap | LeftRightTotal?(C, A, SMap)}) :

(Trace?(C, sc, sq) &
Refines?(C, A, R) &
member(sa, A‘States) &
member((# cSt:=sc, aSt:= sa #), R)) =>

Trace?(A, sa, sq))
Path?(SYS: DLKS, s0, se: State, sq: Sequence): RECURSIVE bool =

IF sq = null THEN s0 = se
ELSE

(EXISTS (t : Trans) : t‘act = car(sq) &
t‘oldSt = s0 &
member(t, SYS‘MayT) &
Path?(SYS, t‘newSt, se, cdr(sq)))

ENDIF
MEASURE sq BY < <
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Algorithm 26 dlks_trace.pvs (cont.)

TraceIsPath: LEMMA (FORALL (SYS: DLKS, s0 : State, sq: Sequence):
Trace?(SYS, s0, sq) =>

EXISTS (se: State): Path?(SYS, s0, se, sq))
PathIsTrace: LEMMA

(FORALL (SYS: DLKS, s0, se : State, sq: Sequence):
Path?(SYS, s0, se, sq) => Trace?(SYS, s0, sq))

PathIsInStates: LEMMA
(FORALL (SYS: DLKS, s0, se : State, sq: Sequence):
(Path?(SYS, s0, se, sq) & member(s0, SYS‘States)) =>

member(se, SYS‘States))
PathSimulation: LEMMA

(FORALL (C, A : DLKS, sc0, sce, sa0: State, sq: Sequence,
R: {SMap: StateMap | LeftRightTotal?(C, A, SMap)}) :

(Path?(C, sc0, sce, sq) &
Refines?(C, A, R) &
member(sa0, A‘States) &
member((# cSt:=sc0, aSt:= sa0 #), R)) =>
(EXISTS (sae: State):

Path?(A, sa0, sae, sq) &
member((# cSt:=sce, aSt:= sae #), R)))

Refusals(SYS: DLKS, s: State): setof[Action] =
{a: Action |

(FORALL (sn: State):
NOT member((# oldSt := s, act := a, newSt := sn #),

SYS‘MustT))}
RefusalsContainedByAbstraction: LEMMA

(FORALL (C, A : DLKS, sc, sa: State,
R: {SMap: StateMap | LeftRightTotal?(C, A, SMap)}) :

(Refines?(C, A, R) &
member(sa, A‘States) &
member(sc, C‘States) &
member((# cSt:=sc, aSt:= sa #), R)) =>

subset?(Refusals(C, sc), Refusals(A, sa)))
After(SYS: DLKS, States:

{Sts: setof[State] | subset?(Sts, SYS‘States)},
sq: Sequence): setof[State] =
{se: State | EXISTS (s0: State):

member(s0, States) & Path?(SYS, s0, se, sq)}
AfterIsContainedInStates: LEMMA
(FORALL (SYS: DLKS, States:
{Sts: setof[State] | subset?(Sts, SYS‘States)}, sq: Sequence):

subset?(States, SYS‘States) =>
subset?(After(SYS, States, sq), SYS‘States))
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Algorithm 27 dlks_trace.pvs (cont.)

AfterIsContainedByAbstract: LEMMA
(FORALL (C, A : DLKS, sa0, sc0, sce: State, sq: Sequence,

R: {SMap: StateMap | LeftRightTotal?(C, A, SMap)}) :
(Refines?(C, A, R) & member(sc0, C‘States) &
member (sa0, A‘States) &
member((# cSt:=sc0, aSt:= sa0 #), R) &
member(sce, After(C, {sc1: State | sc1 = sc0}, sq))) =>

(EXISTS (sae: State):
member((# cSt:=sce, aSt:= sae #), R) &
member(sae, A‘States) &
member(sae, After(A, {sa1: State | sa1 = sa0}, sq))))

% This is the definition of a failure
Failure?(SYS: DLKS, s0: State, sq: Sequence,

Acts: setof[Action]): bool =
member(s0, SYS‘States) &
Trace?(SYS, s0, sq) &
subset?(Acts, {a: Action | EXISTS (s: State):
member(s, After(SYS, {s1: State | s1 = s0}, sq)) &
member(a, Refusals(SYS, s))})

% Abstract systems contain the failures of a concrete systems.
FailuresSimulation: LEMMA

(FORALL (C, A : DLKS, sa, sc: State, sq: Sequence,
Acts: setof[Action],
R: {SMap: StateMap | LeftRightTotal?(C, A, SMap)}) :
(Failure?(C, sc, sq, Acts) &
Refines?(C, A, R) &
member(sc, C‘States) &
member (sa, A‘States) &
member((# cSt:=sc, aSt:= sa #), R)) =>

Failure?(A, sa, sq, Acts))
% This function restricts a trace to the supplied set of actions

Restrict(sq: Sequence, Actions: setof[Action]) :
RECURSIVE Sequence =
IF sq = null THEN null
ELSIF member(car(sq), Actions) THEN

cons(car(sq), Restrict(cdr(sq), Actions))
ELSE Restrict(cdr(sq), Actions) ENDIF
MEASURE sq BY < <

RestrictionOfRestriction: LEMMA
(FORALL (sq: Sequence, Actions: setof[Action]):
Restrict(Restrict(sq, Actions), Actions) =

Restrict(sq, Actions))
RestrictedTrace: LEMMA

(FORALL (sq: Sequence, Actions: setof[Action]):
(sq = Restrict(sq, Actions) & NOT(sq = null)) =>
cdr(sq) = cdr(Restrict(sq, Actions)))

END dlks_trace
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Algorithm 28 dlks_determinism.pvs

dlks_determinism[State: TYPE+, Action: TYPE+, Context: TYPE+]: THEORY
EXPORTING ALL WITH dlts_trace[State, Action, Context]

BEGIN
IMPORTING dlks_trace[State, Action, Context]
% A system is complete if the May-transitions are the
% Must-transitions
Complete?(SYS: DLKS): bool = SYS‘MayT=SYS‘MustT
% A system is unique if there are not two or more transitions from
% the same state
Unique?(SYS: DLKS): bool =

(FORALL (t1, t2: Trans):
(member(t1, SYS‘MayT) &
member(t2, SYS‘MayT) &
t1‘oldSt = t2‘oldSt &
t1‘act = t2‘act) =>

t1 = t2)
% This is the classic CSP definition of determinsism
Deterministic?(SYS: DLKS): bool =

(FORALL (s0, se: State, sq: Sequence, a: Action):
(s0 = SYS‘Start & member(se, After(SYS, s0, sq))) =>

Trace?(SYS, se, cons(a, null)) =
NOT Failure?(SYS, SYS‘Start, sq, a))

% If A System Is Unique, there is only one possible state after a
% sequence
UniqueImpliesAfterIsUnique: LEMMA

(FORALL (SYS: DLKS):
Unique?(SYS) =>

(FORALL (s0, se1, se2: State, sq: Sequence):
(Path?(SYS, s0, se1, sq) &
Path?(SYS, s0, se2, sq)) =>
se1 = se2))

% A system is Deterministic if it is complete and unique.
CompleteAndUniqueIsDeterministic: LEMMA
(FORALL (SYS: DLKS):

Complete?(SYS) & Unique?(SYS) => Deterministic?(SYS))
% The set of complete actions are those where the set of must
% actions equals the set of may actions
CompleteAct(SYS: DLKS) : setof[Action] =

{a: Action | (FORALL (t: Trans): (t‘act = a) =>
(member(t, SYS‘MayT) IFF member(t, SYS‘MustT)))}
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Algorithm 29 dlks_determinism.pvs (cont.)

% The set of unique actions are those where there is only one action
% per state
UniqueAct(SYS: DLKS) : setof[Action] =

{a: Action | (FORALL (t1, t2: Trans):
(t1‘oldSt = t2‘oldSt &
t1‘act = t2‘act &
t1‘act = a &
member(t1, SYS‘MayT) &
member(t2, SYS‘MayT)) =>

t1 = t2)}

% The set of deterministic Transitions are the set of actions that
% are unique to a state and complete.
DeterministicAct(SYS: DLKS) : setof[Action] =
{a: Action | member(a, CompleteAct(SYS)) &

member(a, UniqueAct(SYS))}
DeterministicActionsHaveUniquePath: LEMMA

(FORALL (SYS: DLKS, s0, se1, se2: State, sq: Sequence):
(Path?(SYS, s0, se1, Restrict(sq, DeterministicAct(SYS))) &
Path?(SYS, s0, se2, Restrict(sq, DeterministicAct(SYS))) =>

se1 = se2))
% This lemma states that traces deterministic actions are
% preserved by refinement
RefinementPreservesDetActionsTraces: LEMMA
(FORALL (C, A : DLKS, sa, sc: State, sq: Sequence,

R: {SMap: StateMap | LeftRightTotal?(C, A, SMap)}) :
(Refines?(C, A, R) &
member(sa, A‘States) &
member(sc, C‘States) &
member((# cSt:=sc, aSt:=sa #), R)) =>

(Trace?(C, sc, Restrict(sq, DeterministicAct(A))) IFF
Trace?(A, sa, Restrict(sq, DeterministicAct(A)))))
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Algorithm 30 dlks_determinism.pvs (cont.)

% This lemma states that traces deterministic actions are preserved
% by refinement
RefinementPreservesDetActionsPaths: LEMMA
(FORALL (C, A : DLKS, sa0, sae, sc0: State, sq: Sequence,

R: {SMap: StateMap | LeftRightTotal?(C, A, SMap)}) :
(Refines?(C, A, R) &
member(sa0, A‘States) &
member(sc0, C‘States) &
member((# cSt:=sc0, aSt:=sa0 #), R) &
Path?(A, sa0, sae, Restrict(sq, DeterministicAct(A)))) =>

(EXISTS (sce: State):
Path?(C, sc0, sce, Restrict(sq, DeterministicAct(A))) &
member((# cSt:=sce, aSt:= sae #), R)))

% This lemma states that failures of deterministic actions are
% preserved by refinement
RefinementPreservesDetFailures: LEMMA

(FORALL (C, A : DLKS, sa, sc: State, sq: Sequence,
Acts: setof[Action],
R: {SMap: StateMap | LeftRightTotal?(C, A, SMap)}) :

(Refines?(C, A, R) &
member(sa, A‘States) &
member(sc, C‘States) &
member((# cSt:=sc, aSt:=sa #), R)) =>

(Failure?(C, sc, Restrict(sq, DeterministicAct(A)),
intersection(Acts, DeterministicAct(A))) IFF

Failure?(A, sa, Restrict(sq, DeterministicAct(A)),
intersection(Acts, DeterministicAct(A)))))

END dlks_determinism
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Algorithm 31 dlks_equivalence.pvs

dlks_equivalence[State: TYPE+, Action: TYPE+, Context: TYPE+]: THEORY
EXPORTING ALL WITH dlks_determinism[State, Action, Context]
BEGIN
IMPORTING dlks_determinism[State, Action, Context]
% Two states are trace equivalent for a set of actions if they
% accept the same trace and failure.
Equivalent?(SYS: DLKS, s1, s2: State, Actions: setof[Action]): bool=
(FORALL (sq: Sequence, Acts: setof[Action]):

(Failure?(SYS, s1, Restrict(sq, Actions),
intersection(Acts, Actions)) IFF

Failure?(SYS, s2, Restrict(sq, Actions),
intersection(Acts, Actions))))

% We now prove that this is an equivalence relationship
EquivalentReflexive: LEMMA
(FORALL (SYS: DLKS, s: State, Acts: setof[Action]) :

Equivalent?(SYS, s, s, Acts))
EquivalentTransitive: LEMMA
(FORALL (SYS: DLKS, s1, s2, s3: State, Acts: setof[Action]) :

(Equivalent?(SYS, s1, s2, Acts) &
Equivalent?(SYS, s2, s3, Acts)) =>
Equivalent?(SYS, s1, s3, Acts))

EquivalentCommutative: LEMMA
(FORALL (SYS: DLKS, s1, s2: State, Acts: setof[Action]) :

Equivalent?(SYS, s1, s2, Acts) IFF
Equivalent?(SYS, s2, s1, Acts))

% This lemma states that equivalence is preserved by refinement
% for the deterministic Actions
RefinementPreservesDetEq: LEMMA
(FORALL (C, A : DLKS, sa1, sa2, sc1, sc2: State,

R: {SMap: StateMap | LeftRightTotal?(C, A, SMap)}) :
(Refines?(C, A, R) &
Equivalent?(A, sa1, sa2, DeterministicAct(A)) &
member(sa1, A‘States) &
member(sa2, A‘States) &
member(sc1, C‘States) &
member(sc2, C‘States) &
member((# cSt:=sc1, aSt:=sa1 #), R) &
member((# cSt:=sc2, aSt:=sa2 #), R)) =>
Equivalent?(C, sc1, sc2, DeterministicAct(A)))

END dlks_equivalence
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Algorithm 32 dlks_security.pvs

dlks_security[State: TYPE+, Action: TYPE+, Context: TYPE+]: THEORY

EXPORTING ALL WITH dlks_equivalence[State, Action, Context]

BEGIN
IMPORTING dlks_equivalence[State, Action, Context]
% We demand that we are given a set of high-security transitions
% that we must protect
High?(a: Action) : bool
% The Low actions are the complement of this set
LowAct: setof[Action] = {a: Action | NOT High?(a)}
HighAct: setof[Action] = {a: Action | High?(a)}
% Finally we define our security condition
BaseSecure?(SYS: DLKS) : bool =

FORALL (t: Trans):
High?(t‘act) & member(t, SYS‘MayT) =>
Equivalent?(SYS, t‘oldSt, t‘newSt, LowAct)

% This function determines is a trace is a member of a system
Purge(sq: Sequence) :
RECURSIVE Sequence =
IF sq = null THEN null
ELSIF High?(car(sq)) THEN Purge(cdr(sq))
ELSE cons(car(sq), Purge(cdr(sq))) ENDIF
MEASURE sq BY < <

% We equate the purge function with the restriction
PurgeIsARestriction: LEMMA
(FORALL(sq: Sequence): Purge(sq) = Restrict(sq, LowAct))

RepeatedPurge: LEMMA
(FORALL(sq: Sequence): Purge(Purge(sq)) = Purge(sq))

% If a system is base secure, the set of refusals will remained
% unchanged if the high actions are purged
BaseSecureHasEqRefusals: LEMMA
(FORALL (SYS: DLKS, s0, se: State, a: Action, sq: Sequence):

(BaseSecure?(SYS) &
Path?(SYS, s0, se, sq) &
member(a, Refusals(SYS, se)) &
member(a, LowAct)) =>

(EXISTS (se2: State):
Path?(SYS, s0, se2, Restrict(sq, LowAct)) &
member(a, Refusals(SYS, se2))))
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Algorithm 33 dlks_security.pvs (cont.)

% We give the classic trace based security condition
TraceSecure?(SYS: DLKS): bool =

FORALL(s: State, sq: Sequence):
Trace?(SYS, s, sq) => Trace?(SYS, s, Purge(sq))

FailureSecure?(SYS: DLKS): bool =
FORALL(s: State, sq: Sequence, Acts: setof[Action]):

Failure?(SYS, s, sq, Acts) =>
Failure?(SYS, s, Purge(sq), intersection(Acts, LowAct))

% These two lemmas shows that our security condition is secure
SecureIsTraceSecure: LEMMA
(FORALL (SYS: DLKS) : BaseSecure?(SYS) => TraceSecure?(SYS))

SecureIsFailureSecure: LEMMA
(FORALL (SYS: DLKS) : BaseSecure?(SYS) => FailureSecure?(SYS))

% This is Roscoe’s Theorem
RoscoesClaim: LEMMA

(FORALL (C, A : DLKS,
R: {SMap: StateMap | LeftRightTotal?(C, A, SMap)}) :

(Refines?(C, A, R) &
BaseSecure?(A) &
DeterministicAct(A) = LowAct) =>
BaseSecure?(C))

END dlks_security
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Algorithm 34 dlts_security_pt2.pvs

dlks_security_pt2[State: TYPE+, Action: TYPE+, Context]: THEORY
EXPORTING ALL WITH dlts_security[State, Action, Context]

BEGIN
IMPORTING dlts_security[State, Action, Context]

% Here we define our new equivalence condition
BiSimEq(SYS: DLKS, Actions: setof[Action], Eq: StateMap) : bool =
(FORALL (s1, s2: State):

member((# cSt:=s1, aSt:=s2 #), Eq) =>
(member(s1, SYS‘States) & member(s2, SYS‘States))) &

(FORALL (s: State): member(s, SYS‘States) =>
member((# cSt:=s, aSt:=s #), Eq)) &

(FORALL (s1, s2: State):
member((# cSt:=s1, aSt:=s2 #), Eq) =>

member((# cSt:=s2, aSt:=s1 #), Eq)) &
(FORALL (t1: Trans, s2: State):
(member((# cSt:=t1‘oldSt, aSt:=s2 #), Eq) &
member(t1‘act, Actions) &
member(t1, SYS‘MayT)) =>

(EXISTS (t2: Trans):
t2‘oldSt = s2 &
t2‘act = t1‘act &
member(t2, SYS‘MayT) &
member((# cSt:=t1‘newSt, aSt:=t2‘newSt #), Eq))) &

(FORALL (t1: Trans, s2: State):
(member((# cSt:=t1‘oldSt, aSt:=s2 #), Eq) &
member(t1‘act, Actions) &
member(t1, SYS‘MustT)) =>
(EXISTS (t2: Trans):

t2‘oldSt = s2 &
t2‘act = t1‘act &
member(t2, SYS‘MustT) &
member((# cSt:=t1‘newSt, aSt:=t2‘newSt #), Eq)))

% We show that it is stronger than trace equivalence
BiSimEqIsTraceEq: LEMMA
(FORALL (SYS: DLKS, s1, s2: State, Actions: setof[Action],

sq: Sequence, Eq: StateMap):
(member((# cSt := s1, aSt := s2 #), Eq) &
BiSimEq(SYS, Actions, Eq) &
Trace?(SYS, s1, Restrict(sq, Actions))) =>

Trace?(SYS, s2, Restrict(sq, Actions)))
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% We show that it is stronger than trace equivalence
BiSimEqIsPathEq: LEMMA
(FORALL (SYS: DLKS, s1i, s1e, s2i: State, Actions: setof[Action],

sq: Sequence, Eq: StateMap):
(member((# cSt := s1i, aSt := s2i #), Eq) &
BiSimEq(SYS, Actions, Eq) &
Path?(SYS, s1i, s1e, Restrict(sq, Actions))) =>
(EXISTS (s2e: State):

Path?(SYS, s2i, s2e, Restrict(sq, Actions)) &
member((# cSt := s1e, aSt := s2e #), Eq)))

% We show that it is stronger than failure equivalence
BiSimEqIsFailureEq: LEMMA
(FORALL (SYS: DLKS, s1, s2: State, Actions, Acts: setof[Action],
sq: Sequence, Eq: StateMap):

(member((# cSt := s1, aSt := s2 #), Eq) &
BiSimEq(SYS, Actions, Eq) &
Failure?(SYS, s1, Restrict(sq, Actions),

intersection(Acts, Actions))) =>
Failure?(SYS, s2, Restrict(sq, Actions),

intersection(Acts, Actions)))
% We show that this equivalence is stronger than trace and failure
% equivalence
BiSimEqIsEquivalent: LEMMA
(FORALL (SYS: DLKS, s1, s2: State, Acts: setof[Action],

Eq: StateMap) :
(BiSimEq(SYS, Acts, Eq) &
member((# cSt := s1, aSt := s2 #), Eq)) =>
Equivalent?(SYS, s1, s2, Acts))

% Finally we define our security condition
BiSimSecure?(SYS: DLKS) : bool =
EXISTS (Eq: StateMap):

BiSimEq(SYS, LowAct, Eq) &
(FORALL (t: Trans):

High?(t‘act) &
member(t, SYS‘MayT) =>
member((# cSt:=t‘oldSt, aSt:=t‘newSt #), Eq))

% We show that this a s stronger security condition
BiSimSecureIsBaseSecure: LEMMA
(FORALL (SYS: DLKS) : BiSimSecure?(SYS) => BaseSecure?(SYS))

134



Algorithm 36 dlks_security_pt2.pvs (cont.)

% We show that refinement preserves the equivalence for complete
% actions
BiSimEqPreservedByRefinement: LEMMA
(FORALL (C, A : DLKS, Eq: StateMap, Actions: setof[Action],

R: {SMap: StateMap | LeftRightTotal?(C, A, SMap)}) :
(Refines?(C, A, R) &
BiSimEq(A, Actions, Eq) &
subset?(Actions, CompleteAct(A))) =>

(EXISTS (EqC: StateMap):
BiSimEq(C, Actions, EqC) &
(FORALL (sa1, sa2, sc1, sc2: State):

(member((# cSt := sa1, aSt := sa2 #), Eq) &
member(sc1, C‘States) & member(sc2, C‘States) &
member((# cSt:=sc1, aSt:=sa1 #), R) &
member((# cSt:=sc2, aSt:=sa2 #), R)) =>

member((# cSt := sc1, aSt := sc2 #), EqC))))
% This is our extension to Roscoe’s Theorem
RoscoesExtention: LEMMA
(FORALL (C, A : DLKS,

R: {SMap: StateMap | LeftRightTotal?(C, A, SMap)}) :
(Refines?(C, A, R) &
BiSimSecure?(A) &
subset?(LowAct, CompleteAct(A)) =>

BiSimSecure?(C)))
END dlts_security_pt2
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APPENDIX C: PVS SPECIFICATIONS FOR
FUTURE WORK

This appendix shows the PVS specifications for the Doubly Labelled Kripke Structure where

in which we redefine state as a set of predicates. This work is presented in support of the Future

Work chapter. These files along with the proof files are available electronically.
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Algorithm 37 ordered_dlks.pvs

ordered_dlks [Action: TYPE+, Context: TYPE+] : THEORY
EXPORTING ALL WITH dlks_determinism[State, Action, Context]

BEGIN
Atm: TYPE = setof[Context]
% For an ordered dlts, a state is completely defined by the must and
% may predicates.
State: TYPE = [# MayP: setof[Atm], MustP: setof[Atm] #]
IMPORTING dlts_determinism[State, Action, Context]
% A state is valid if the must predicates are a subset of the may
% predicates
Valid?(s: State): bool = subset?(s‘MustP, s‘MayP)
% Two states can be composed by merging there predicates
Product(s1, s2: State): State =

(# MayP := intersection(s1‘MayP, s2‘MayP),
MustP := union(s1‘MustP, s2‘MustP) #)

ProductIsCommutative: LEMMA
(FORALL (s1, s2: State): Product(s1, s2) = Product(s2, s1))
ProductPreservesSelf: LEMMA
(FORALL (s: State): Product(s, s) = s)
% Two States are compatible if there composition is valid
Compatible?(s1, s2: State): bool =

Valid?(s1) &
Valid?(s2) &
Valid?(Product(s1, s2))

CompatibleIsReflexive: LEMMA
(FORALL (s: State): Valid?(s) => Compatible?(s, s))

CompatibleIsCommutative: LEMMA
(FORALL (s1, s2: State):

Compatible?(s1, s2) = Compatible?(s2, s1))

% We order states by their predicates. Informally we say that s1 is
% more general than s2.
MoreGeneral(s1, s2: State): bool =
subset?(s2‘MayP, s1‘MayP) &
subset?(s1‘MustP, s2‘MustP) &
Valid?(s1) &
Valid?(s2)
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%We show that this forms a partial order
StateOrderIsReflexive: LEMMA
(FORALL (s: State): Valid?(s) => MoreGeneral(s, s))

StateOrderIsTransitive: LEMMA
(FORALL (s1, s2, s3: State):

(MoreGeneral(s1, s2) &
MoreGeneral(s2, s3)) =>

MoreGeneral(s1, s3))
StateOrderIsAntiSymmetric: LEMMA
(FORALL (s1, s2: State):

(MoreGeneral(s1, s2) &
MoreGeneral(s2, s1)) =>

s1 = s2)
% The following are a few small lemmas that helped with other proofs
ProductIsLessGeneral: LEMMA

(FORALL (s1, s2: State):
Compatible?(s1, s2) =>
(MoreGeneral(s1, Product(s1, s2)) &
MoreGeneral(s2, Product(s1, s2))))

ProductPreservesLessGeneral: LEMMA
(FORALL (s1, s2: State):

MoreGeneral(s1, s2) => Product(s1, s2) = s2)
MoreGeneralStatesAreCompatible: LEMMA
(FORALL (s1, s2: State):

MoreGeneral(s1, s2) => Compatible?(s1, s2))
TwoMoreGeneralStatesAreCompatible: LEMMA
(FORALL (s1, s2, s3: State):

(MoreGeneral(s1, s3) &
MoreGeneral(s2, s3)) =>
Compatible?(s1, s2))

ProductOrder: LEMMA
(FORALL (s1, s2, s3, s4: State):

Product(Product(s1, s2), Product(s3, s4)) =
Product(Product(s1, s3), Product(s2, s4)))

ProductOfTwoMoreGeneralStates: LEMMA
(FORALL (s1, s2, s3: State):

(MoreGeneral(s1, s3) &
MoreGeneral(s2, s3)) =>

MoreGeneral(Product(s1, s2), s3))
MoreGeneralCompStatesAreCompatible: LEMMA
(FORALL (s1, s2, s3: State):

(MoreGeneral(s1, s2) &
Compatible?(s2, s3)) =>

Compatible?(s1, s3))
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MoreGeneralProducts: LEMMA
(FORALL (s1, s2, s3: State):

MoreGeneral(Product(s1, s2), Product(s2, s3)) =>
Product(s2, s3) = Product(Product(s1, s2), s3))

% A DLKS is ordered if the predicates fully define the states
Ordered?(SYS: DLKS): bool =

(FORALL (s: State):
s‘MayP = SYS‘MayP(s) &
s‘MustP = SYS‘MustP(s))

% An Ordered DLKS is one in which the predicates uniquely define
% a state
ORDERED_DLKS: TYPE={SYS: DLKS | Ordered?(SYS)}
% This is just a small type correctness lemma
AllStatesAreValid: LEMMA
(FORALL (SYS: ORDERED_DLKS, s: State) :

member(s, SYS‘States) => Valid?(s))
END ordered_dlks
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