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ABSTRACT 

 This thesis presents a method for detecting outlier meteors and bolides within 

Doppler radar data using unsupervised machine learning. Principal Component Analysis 

(PCA), k-means Clustering, and t-Distributed Statistical Neighbor Embedding (t-SNE) 

algorithms are introduced as existing methods for outlier detection. A combined PCA and 

t-SNE method that uses a Nearest Neighbor Density Pruning method for dataset size 

reduction is also described. These methods are implemented to classify unlabeled radar 

data from four radar data sites from two bolide events: the KFWS radar for the Ash Creek 

bolide and the KDAX, KRGX, and KBBX radars for the Sutter’s Mill bolide. The 

combined PCA + t-SNE method gives an accuracy rate of 99.7% and can classify the data 

in less than 8 minutes for a 121,000 return sized dataset. However, the classifier’s recall 

and precision rates remained low due to difficulties in correctly classifying true positive 

bolides. Some ideas for improving algorithm accuracy, speed, and related follow-on 

applications are proposed. Overall, the algorithm presented in this research is a viable 

method to help NASA scientists with bolide detection and meteorite recovery. 
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I. INTRODUCTION 

There are countless asteroids in orbit around the Sun, leftover from the creation of 

the solar system 4.6 billion years ago. An estimated 1.1 to 1.9 million asteroids greater than 

1 km in size exist in the main asteroid belt between Mars and Jupiter alone, and as of 12 

November 2019, a total of 21,379 asteroids have been found to have trajectories that take 

them across Earth’s orbit. Of these, 901 of which have a diameter greater than 1 km [1]. 

Asteroids of varying sizes regularly come close enough to enter into the Earth’s 

atmosphere, as seen in Figure 1; however, it is inevitable that another asteroid of a massive 

enough in size will penetrate all the way to the surface, impacting the ground and 

generating a crater like that near Winslow, Arizona, or explode in the atmosphere, 

generating a blast wave such as in the case of the Chelyabinsk, Russia event, denoted as 

the red circle in Russia in Figure 1 [2]. Therefore, the National Aeronautics and Space 

Administration (NASA) has been tasked with studying such objects in order to understand 

the potential threats that they pose to Earth’s population. Even a relatively small asteroid 

impacting over a major population area would result in an extreme loss of life, and larger 

impactors have the potential to result in severe global catastrophic damage. In the extreme 

case, it is possible that Earth could experience another extinction level event such as the 

Chicxulub impact, which resulted in the extinction of the dinosaurs 65 million years ago 

[3]. 

 
Figure 1. Bolides reported by U.S. government sensors 15 April 1988 to 05 

November 2019. Source: [2]. 
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A. MOTIVATION 

The motivation behind NASA’s research is to increase the recovery rate of 

meteorite remains on Earth. In order to better defend our planet against asteroid strikes, as 

much information as possible needs to be understood about the composition and physical 

attributes of asteroids. Therefore, one of NASA’s goals is to better characterize the asteroid 

population through the recovery and subsequent analysis of these asteroid fragments (e.g., 

meteorites) that exist earthbound [4,5]. 

Unfortunately, the research longevity of meteorite fragments is relatively short. 

This is because the longer the amount of time has passed after a meteorite has reached the 

surface, the higher the likelihood that it has encountered inclement weather, native bacteria, 

or humans that have spoiled or acquired the sample, rendering the fragment’s research 

viability decreased [6]. Therefore, it is in NASA’s best interests to identify the fall locations 

of any meteorites as quickly as possible so they can rapidly dispatch a recovery team for 

recovery. 

In order to recover a meteorite, the impact site must be found. This is completed 

through trajectory analysis via a dark flight model that predicts the debris field location 

from the position of the meteor in the sky, its trajectory, and the atmospheric condition at 

the time it was observed [7,8]. Previous research has already completed this task, but efforts 

still need to be completed to better determine the inputs to the dark flight model [6]. 

Therefore, all the potential meteor sighting reports must be analyzed and verified so that 

analysis with the dark flight model is not wasted on false sightings.  

It is estimated that only 0.1% of recoverable meteorites are reported, which are the 

meteors that burn the brightest when they enter the atmosphere and often explode, gaining 

the name of “bolides” [9]. These 0.1% are often reported by civilian observers on websites 

like the American Meteor Society’s website, through social media, or in news reports 

[10,11]. However, even with this help, finding actual meteor events is difficult for humans. 

Therefore, machine-based methods are a potential source for identifying and verifying 

bolide fall locations among all the information that has been traditionally used to constrain 

meteorite fall sites [12]. 
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B. PROBLEM STATEMENT 

This thesis focuses on one non-human source of bolide information: Doppler radar 

data from the National Oceanic and Atmospheric Administration (NOAA). However, due 

to the volume of data collected by the weather radar sites, the number of potential bolide 

events that need to be verified, and the speed requirement for meteorite recovery, 

automation is essential. Therefore, the goal of this thesis is to determine whether it is 

feasible or not to detect and classify bolides in Doppler radar data using machine learning 

techniques to support automation. The method to do so is by building a detection and 

classification algorithm and employing it against known bolide events. At its core, the 

problem to be solved is an outlier detection problem, where the goal is to identify the outlier 

meteor events within all the terrestrial weather radar noise. 

C. BACKGROUND 

A brief introduction into relevant topics is helpful in understanding the scope of 

this thesis and the research completed by previous scientists. Therefore, the nomenclature 

of Near-Earth Objects, an overview of radar theory, and a summary of machine learning 

are introduced as they relate to the problem statement. The goal is not to provide a 

comprehensive background, but rather to establish a common foundation of knowledge for 

the rest of this thesis. 

1. Nomenclature of Near-Earth Objects 

In order to understand why bolide and meteor detection is important, it is first 

necessary to understand the difference between the terms used up to this point. Near-Earth 

Objects are defined as either asteroids or comets (composed of rock and metal or ice and 

rock respectively), that orbit within 1.3 astronomical units (AU) of the Sun [13]. They vary 

vastly in size and orbit trajectories, but are viewed as remnants from the formation of our 

solar system. This makes them a valuable and desirable source of information into a 

window from history 4.6 billion years ago [14]. Furthermore, they pose a risk to humanity, 

and according to Section 321 of the NASA Authorization Act of 2005, NASA’s objectives 

are to characterize the physical characteristics of Near-Earth Objects, among other tasks 

[13]. Through the study of asteroid interactions with the Earth’s atmosphere, and the 
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subsequent meteorite fragments that survive to reach the surface, mitigation strategies to 

deflect, or neutralize an incoming asteroid can be created and refined. 

The subset of Near-Earth Objects that are predominantly asteroids are known as 

Near-Earth Asteroids, of which there are 4 groups depending on their orbit. Atiras are 

asteroids that orbit inside the Earth’s orbit around the sun. Amors are asteroids that orbit 

between the Earth and Mars. Lastly, Atens and Apollos are asteroids that have their semi-

major axis smaller or greater than that of the Earth’s semi-major axis, causing them to cross 

Earth’s orbit [14]. The importance of all these types of asteroids is that their orbits put them 

in proximity with the Earth and due to gravitational perturbations, could pose a potential 

impact risk. 

When an asteroid orbits close enough to Earth, it is pulled into Earth’s gravity well. 

When it does, it enters the atmosphere and impacts the gasses in the atmosphere while 

traveling at speeds around 11 to 73 km/s [15,16]. This friction causes the asteroid to heat 

up and ablate, where the hot gasses enter the Earth’s atmosphere and irradiate light. The 

emission of light makes the asteroid visible to observers and gains the asteroid an alternate 

name of a meteor (or meteoroid for small asteroids < 1 m in diameter). For the meteors that 

are excessively bright and detonate during orbital entry, they gain the additional 

nomenclature of bolides [15]. However, some meteors are large enough in size that their 

velocities decrease in the atmosphere before ablating completely. When this happens, they 

enter a dark flight phase, where the meteor remnants continue descending towards the 

ground without emitting light. Those remnants that reach the surface of the Earth are known 

as meteorites [15]. 

The ablative phase of the meteor’s descent prior to dark flight is of importance to 

this research. This is because as the meteor ablates and fragments, it enters the atmosphere 

where both the meteor and the expanding cloud of debris can reflect radar energy [16]. This 

solid core of reflected energy surrounded by lower magnitude radar returns are therefore 

associated with the solid meteor and the ionized tail of ablative material, respectively, and 

provide a marker to look for when identifying meteors and bolides within Doppler radar 

returns [15]. 
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2. Radar Theory 

The theory of how radars function is based upon transmitted and received 

electromagnetic energy. Using Equation 1, a radar transmits energy at the speed of light, c, 

with a certain wave frequency, f , and wavelength, λ  [17]. The wave propagates outwards 

from the transmitter is either absorbed, refracted, or reflected by all objects in its path. A 

small fraction of the radiated energy is directed back towards the radar’s receiver, usually 

collocated with the transmitter, and measured [18]. The returned electromagnetic energy, 

E , has a signal amplitude A  which is a function of the angle θ and phase ϕ, range r, 

frequency f, time t , and signal phase ψ , as seen in Equation 2. Using this information with 

Equations 1 and 2, the radar system calculates the range from the receiver to the pulse, and 

certain radars can determine other factors like speed or shape of the object that reflected 

the energy [17]. For this thesis, the radar is used as a near constant source of information 

regarding meteors within the atmosphere. 

 83 10c f m sλ= = ×  (1) 
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3. Machine Learning 

Artificial Intelligence (AI) is the study of how to build rationally acting agents. The 

intent is to build an intelligent entity that behaves based on what it knows in order to 

accomplish a stated goal [19]. This is no easy feat, and multiple skills are needed to 

accomplish this intent. The agent must have knowledge representation to store information, 

apply that stored knowledge to determine courses of action, and a learning mechanism to 

improve and adjust based on the environment in which the agent operates [20]. The study 

of AI is multidisciplinary, drawing inspiration and perspective from fields such as 

philosophy, mathematics, economics, neuroscience, psychology, linguistic, computer 

science, and control theory. This multidisciplinary approach results in different fields 

approaching the problem of building artificial agents in different ways [19]. This thesis 

follows in that vein, applying elements of planetary science, radar theory, artificial 
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intelligence, and machine learning together to solve the outlier detection problem of 

identifying bolides and meteors within Doppler radar data. 

D. REVIEW OF LITERATURE 

Science advances due to the incremental steps made by each successive generation 

of scientists. This section pays homage to the dedication and efforts of previous researchers 

in the fields of meteorology, planetary science, and meteor detection. Their methods paved 

the way for this manuscript and its multidisciplinary approach. 

1. Doppler Radar 

Research into Doppler radar extends back into World War II. However, from a 

weather perspective the 1979 seminal paper by Doviak et al. in [21] provided a 

comprehensive overview into the subject of identifying and using weather echoes, from 

which a significant body of work is derived. In the decades since their work was completed, 

both radar hardware and radar analysis software advanced enough that Schmidt et al. could 

identify individual rain drops from within radar observations [22]. In those observations, 

small particles could be identified using power spectrum analysis and those small particles 

were identified as composed of materials other than liquid water or ice. This was further 

affirmed by Kent et al. who used NASA’s Debris Radar system, a Doppler radar, to detect 

and characterize debris from the Space Shuttle during launch [23]. However, one of the 

larger uses of Doppler radar became the tracking of volcanic ash, which this research views 

as a conceptual proxy for meteor debris and is used to understand ranges of reflectivity 

values for rocky debris [24–26]. Unfortunately, the value as a proxy is limited because the 

magnitude of debris generated during a volcanic eruption was significantly larger than that 

generated during the re-entry and ablation of a meteor. 

2. Meteor Analysis 

Similar to radar theory, research into asteroids and meteors has a history that 

extends to the early 20th century and continued to develop throughout the century. For 

instance, the research of Ceplecha et al. in 1998 is an excellent primer on the subject [15]. 

This work provides a thorough analysis on several subjects of importance to this thesis, 
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including the origins of asteroids within the solar system, phases of flight of meteors inside 

the atmosphere, and methods of detection. Then, in 2018, the work of Silber et al. added to 

the overall meteor knowledge base through a summary paper that focuses upon the 

interactions of meteors within the atmosphere, their ablation, and fragmentation [16]. 

Contrasting against these overview papers is the research conducted by Simon et al. [27] 

and Brown et al. [8] that focuses upon the Park Forest meteorite on 26 March 2003, and 

Popova et al. [28] who focused upon the Chelyabinsk airburst on 15 February 2013. 

Although their research provided information relative to the radar signatures of the 

individual meteorites, they furthered the background into how a single meteor enters the 

atmosphere and penetrates to the surface. Furthermore, all of the works in this section 

remain strictly within the field of planetary science. 

3. Meteor Discovery within Doppler Radar 

The fields of radar theory, planetary science, and computer science are pulled 

together by several individuals working together, in particular M. Fries et al. and Hankey 

et al., in numerous papers [4,5,29]. They pioneered the technique to search through Doppler 

weather radar data for meteor signatures, and Hankey provided a comprehensive guide in 

how to acquire and analyze the data from a computer and database perspective. This 

technique has been used on many different meteorite entry events by Fries et al., 

confirming its usefulness as a valid technique for meteor falls in Texas, Ontario, 

Wisconsin, Illinois, California, and various other locations [12,30–34]. Furthermore, some 

of their research incorporated data sources in addition to Doppler radar data, like seismic 

data and extracted information such as the fall mass from the radar signature [7,11,35,36]. 

Although this body of work is noteworthy and valid, the time spent analyzing the data for 

such events is significant, even with Hankey’s techniques. This thesis attempts to reduce 

the time and workload spent discovering bolides through automation. 

4. Artificial Intelligence and Machine Learning 

The final field that needs to be introduced is that of AI and its subset, machine 

learning. The field itself goes back to the mid-20th century with a very rich history of 

diverse applications, especially as it grew in the 21st century. However, its application to 
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the field of asteroid and meteor discovery is much smaller and more recent. Using machine 

learning for image classification has gained prevalence in recent years as supervised 

learning techniques have become more advanced; this has enabled their application 

towards astronomy classification problems. Djorgovski et al. used unsupervised clustering 

algorithms for machine assisted discovery of star clusters and galaxies within the Digital 

Palomar Observatory Sky Survey [37]. Similarly, Fayyad et al. used decision trees and 

other algorithms to classify faint sky images as stars and galaxies [38]. Lastly, Galindo et 

al. used a supervised learning, convolutional neural network to detect meteors within 

closed circuit television imagery [39]. However, these works focused on classifying 

imagery via pixel analysis, as compared to Misra et al. who used supervised learning with 

artificial neural networks to classify asteroids based upon their spectral class [40] or 

Smeresky who used neural networks and evolutionary techniques to classify asteroids from 

features derived from imagery [41]. Limited research existed on bolide detection using 

non-pixel related data until Rumpf et al. used a multi-stage filtering algorithm on time 

sequenced lightning data from the Geostationary Operational Environmental Satellite 

(GOES) 16 and 17 satellites [42]. Their research is innovative in both the dataset it uses 

and the method of analysis, but also inherently different from the technique and dataset in 

this research. 

5. Uniqueness by Combining Fields of Study 

Each of the previous fields have provided methods to address the meteor and bolide 

detection process. Furthermore, varying levels of progress and success have been reached 

in those fields, especially with the research completed by Fries and Hankey et al. The 

research in this thesis will attempt to follow on from their work in an attempt to address 

the speed limitation of the bolide detection problem. Therefore, by adding a machine 

learning perspective to the problem, a multi-disciplinary approach will enhance the already 

achieved results to use Doppler radar data to detect and identify bolides and meteors. 

E. OUTLINE OF REMAINING CHAPTERS 

The remaining chapters will provide a further background to the problem, and then 

go through the process of developing a method for the automated detection of bolides. 
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More specifically, Chapter II will provide a review of weather radar, including Doppler 

radar systems and introduce the dataset used in this thesis. Chapter III will provide a 

foundation of AI, how that differs from machine learning, and how to use machine learning 

for data analysis. Chapter IV will describe the process of preparing the dataset for the 

machine learning algorithms. Chapter V will introduce the machine learning algorithms 

used to detect bolides, and analyze their results and effectiveness. Lastly, Chapter VI will 

detail future works and the conclusion.  
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II. WEATHER RADAR 

The U.S. government is responsible for operating a continuous radar network across 

the continental United States, Hawaii, Alaska, and several overseas locations. The 

oversight for this network is shared by the Department of Commerce, the National Oceanic 

and Atmospheric Administration, the Department of Defense, and the Federal Aviation 

Administration as a subsidiary of the Department of Transportation. The NOAA in 

particular, within the Department of Commerce, is required to supply climate and 

meteorological information using systems owned and operated by the Department of 

Defense and Department of Transportation [43]. To accomplish the above goals, a network 

of over 160 Weather Surveillance Radar systems was established in the 1970s to replace 

an earlier system of radars [44]. The name of this radar system was the Weather 

Surveillance Radar–1988 Doppler (WSR-88D), and had primary functions of acquiring 

radar data, producing radar products, and displaying results [43]. 

This chapter provides a basic overview of radar theory and how the WSR-88D radar 

operates. Furthermore, it explains how the radar information is generated, archived, and 

downloaded for individual use. Lastly, it covers the data formats of the downloaded data 

and how they are initially used for visualizing the raw radar information as a precursor step 

to preprocessing the data. 

A. RADAR BACKGROUND 

The purpose of this section is not to delve into the depths of electromagnetism or 

radar theory, but to provide a brief overview that is helpful in understanding the genesis of 

radar systems and what information is actually produced by a radar system. With that in 

mind, the acronym of “radar” is attributed to the U.S. Navy in November 1940. It stands 

for radio detecting and ranging, and the technology is a result of the experimental 

validation of James Clerk Maxwell’s thesis on electromagnetism [17]. However, the first 

radar systems were developed by the British and Germans prior to WWII, with the first 

radar ranging demonstration completed in 11 December 1924 in London, UK [17].  
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Although there are multiple types of radar, the process by which radar works is by 

using an antenna to emit an electromagnetic pulse that spread outward from the transmitter 

at the speed of light. As the electromagnetic pulse expands, it encounters objects in the path 

of that pulse [17]. The objects could be particles in the air like dust or rain, objects on the 

ground like trees or mountains, or objects in the air like birds or aircraft. Upon hitting the 

surface of the object, the electromagnetic wave is reflected, refracted, or otherwise 

scattered in all directions. 

A small portion of that energy is reflected back towards the origin source of the 

wave, where it is collected by a radar receiver that is typically co-located with the radar 

antenna [17,44]. The strength of the return is dependent upon the size, shape, and 

composition of the object’s surface, as well as the distance between the radar’s transmitter 

and the object. The loss due to distance is known as the free space path loss, and is seen 

mathematically in Equation 3, where tP  is the transmitted power, rP  is the received power, 

tG  is the gain of the transmitting antenna, R is the distance from radar to target, and rA  is 

the effective area of the receiving antenna. rA  is further defined in Equation 4 with rG  as 

the gain of the receiver and λ  as the transmission wavelength. The fact that the distance is 

raised to the fourth power shows an exponential loss in power as the distance increases and 

this artifact has an effect on many radar applications [17]. 
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Once the return energy is received, the signal is analyzed using computers. By 

measuring the elapsed time between sending the pulse and receiving a return pulse, the 

distance of an object from the radar can be estimated, using d vt=  where d  is distance, t  

is time, and v  is the velocity of light in air. Similarly, by measuring the frequency of the 

transmitted pulse, tf  against that of the received frequency rf , the velocity of the target in 

radial direction either towards or away from the radar can be determined [45]. This is 
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defined in Equation 5 as the radial velocity, and is the basis behind Doppler Radar systems, 

such as those used in weather surveillance. 
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1. Weather Doppler Systems 

Doppler weather radar systems differ from other radar systems because they are 

tuned specifically for observing weather phenomenon, just as aircraft surveillance radar 

are tuned for detection of aircraft. This means that weather radars search for particles of 

small sizes like water, snow, or ice. Furthermore, because the size of those targets are on 

the order of 1–10 cm, weather radars use microwave length electromagnetic waves, which 

have a wavelength roughly one order of magnitude higher than the diameters of target 

water, snow, etc., so as to maintain the Rayleigh approximation in Equation 6 [17]. To 

further define the Rayleigh approximation equation, bσ  is the backscatter cross section, λ  

is the wavelength of the radar, mK  is the complex refraction index of water, and D  is the 

target diameter. By maintaining this approximation, it is possible to calculate the amount 

of backscatter for the returns gathered by various weather phenomenon. However, if the 

particles are much smaller than compared to the size of the wavelength, then the radar 

energy is scattered isotopically due to Rayleigh scattering, as opposed to reflected back to 

the radar receiver; conversely, if much larger objects or those with a different mK  value 

are the target, then the amount of backscatter energy is no longer at a maximum [17]. 

Therefore, tuning the radar λ  correctly for a certain sized target is very important. 

 25 4 6( )b mK Dσ π λ=  (6) 

Multiple pieces of information can be gathered by interpreting the radar returns. 

The easiest are the pulse information, such as the azimuth/radial angle, the elevation, and 

the timing of the pulse. However, it is the data retrieved from the reflected energy that 

provides the most interesting information. The magnitude of the backscattered energy can 

be used in Equation 7 to determine ( )rη , the reflectivity value or the backscattering cross 
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section per unit volume, where ( ),  N D r  is the particle size distribution based on the 

diameter D  and range r , λ  is the radar wavelength, wK  is a specific attenuation related to 

the refractive index of water. However, it is more useful for meteorologists to understand 

this reflectivity value in meteorological terms using Rayleigh approximations when 

observing small and spherical targets like rain and snow; therefore, ( )rη  can be simplified 

into η  [17]. To do this, Equation 7 uses the reflectivity factor defined as Z in Equation 8, 

which is often viewed on the logarithmic scale using Equation 9 and defined as dBZ , the 

standard unit used for measuring radar reflectivity returns [17]. 
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The next piece of information that can be gained is velocity spectrum width, 

normally truncated to spectrum width. This measure describes the density and velocity of 

particles within the returned radar pulse, and increases in value when the spectrum of return 

electromagnetic pulse’s relative radial velocity broadens [17]. This can be better 

understood by imagining a volume of space filled with raindrops moving with random 

velocities and directions; a radar return for that volume will have a high velocity spectrum, 

indicating a region where the flow of air is chaotic. Conversely, a volume of space with 

rain falling in the same direction at the same speed will have a low spectrum width, 

indicating a region where the flow is smooth. Mathematically, Equation 10 shows that the 

velocity spectrum width is the sum of spectrum widths for shear sσ , antenna motion ασ , 

the speed of different sized particles dσ , the orientation and vibration of the particles 0σ , 

and turbulence tσ . Furthermore, variations in any of these parameters will increase the 

overall spectrum width. The benefit of determining the spectrum width for a volume of air 

is gaining a measure of the wind shear or turbulence in that volume, which yields an ability 

to determine how chaotic the environment is. 
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In summary, for each radar sweep, the WSR-88D radar provides beam information 

and radar return information. The beam information includes temporal and spatial 

information like the time, azimuth, elevation angle, etc., and also moment information, 

where radar moments are defined as the product of distance and another parameter, similar 

to how torque is a force times a distance [46]. The three radar moments are reflectivity, 

radial velocity, and spectrum width. Each of these pieces of information is parsed out along 

range gates for easy interpretation of the data. However, there are specifics unique to the 

WSR-88D radar, which will be discussed next. 

2. WSR-88D Radar 

The WSR-88D is the primary radar used for weather observations. It transmits a 

750,000 Watt pulse from a 28 Foot diameter antenna, and is optimized to detect rain, snow, 

and other weather phenomenon. At ranges within 37 km from the radar, ground clutter is 

observable, most levels of precipitation are observable within 148 km, and heavy 

precipitation is observable within 259 km [44]. The max range for sensing Doppler data 

and reflectivity data are 300 km and 460 km respectively [43]. 

The sky is scanned in one of two ways: clear air mode or precipitation mode. Clear 

air mode is used when no precipitation or limited precipitation is detected; 6 elevations 

between 0° and 5° are scanned every 10 minutes for returns. Precipitation mode is used 

during precipitation, including convective events; varying elevations are scanned between 

0° and 19.5° every 4–6 minutes, depending on the specific precipitation mode selected 

[43]. Because of the differences in scan time and elevation, the fidelity of the outputs 

changes, and the probability of finding a specific return drastically changes between the 

modes utilized. Furthermore, the scan rates are tuned for tracking slowly progressing 

phenomenon like rainfall, clouds, etc., and not suddenly appearing targets. 

The standard WSR-88D radar is a single polarization system. Because of 

atmospheric drag due to air resistance, raindrops are wider than they are tall; therefore, the 

radar uses electromagnetic signals that are horizontally polarized in order to maximize the 

reflectivity of target raindrops [17]. However, by the end of 2013, all 160 WSR-88D radar 
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sites received a dual polarization upgrade. This upgrade provides the ability to send and 

receive both horizontally polarized signals and vertically polarized signals, which provided 

additional data regarding the shape of the particles in the radar return. Where the original 

WSR-88D radar could only determine that precipitation was in a radar return, dual 

polarization enabled the ability to identify snow, rain, birds, insects, etc., in return signals 

[47].  

Identifying the types of returns within a signal was made possible by comparing 

the orthogonally polarized radar signals. The first additional analysis method is completed 

by analyzing the strength of the horizontally polarized return against that of the vertically 

polarized return. This comparison yields the overall size and shape of a target, where a 

ratio of 0 indicates a spherical target, negative values indicate a vertically oriented target, 

and positive values indicated a horizontally oriented target. This analysis is the known as 

differential reflectivity, and an estimate of this value is defined in Equation 11, where ˆ
hS  

is the estimated sample power from the horizontally polarized return signal, ˆ
vS is the 

estimated sample power from the vertically polarized return signal, and the result is on the 

logarithmic scale [17]. 
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The second additional analysis is the differential phase shift, and is a measure of 

the phase difference between the horizontal and vertical return signals. This phase 

difference is not due to movement like when measuring a Doppler shift, but rather through 

attenuation [48]. Therefore, phase shift can be used to measure precipitation levels, where 

a low DPφ  is associated with little to no attenuation due to precipitation and a high value 

indicates significant attenuation due to precipitation [17]. Differential phase shift is defined 

in Equation 12, where r  is the range, hk  and vk  are the horizontal and vertical increments 

when hydrometers exist, and DSφ  is the differential phase after scattering [17]. 
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The final analysis technique from dual polarization is the correlation coefficient 

between the horizontal and vertical at the zero lag point. The correlation coefficient ( )hv sTρ  

is a measure of the consistency in the shapes of the return signals and is derived from 

reflectivity returns. The correlation coefficient can be estimated as per Equation 13, where 

ˆ
aR and ˆ

bR  are the alternate polarization autocorrelation estimates. Values of 1 mean 

similar shapes, and values less than 1 mean dissimilar shapes [17].  
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3. Archiving Data 

The WSR-88D radar network regularly archives the radar data it produces. There 

are four levels of archived data: level I, II, III, and IV. Level I data is the lowest level radar 

data that is produced directly by the radar receiver; it is used for radar site diagnostics and 

tuning. Level II data is the digital output from the radar’s signal processor. It is raw and 

unanalyzed, but can be a starting point and input for conducting analysis. Level III data is 

analyzed data, where various algorithms have corrected aspects of the data and generated 

products that are of interest to consumers. Lastly, level IV data is the output of the radar 

product generator, and is retained for training purposes, accident investigations, or similar 

reasons [43]. Both physical copies and electronic copies of the data, especially the level II 

and III products are retained online for easy access at NOAA’s website [49]. 

B. ACQUIRING RADAR DATA 

Weather data is acquired from the NOAA online website, found at 

https://www.ncdc.noaa.gov/data-access/radar-data. The data itself is housed on Amazon 

Web Services servers, and accessible for download via a selection process on NOAA’s 

website [49]. The selection criteria involve the location, date, time, and type of data 

requested. The input can be selected via a map of the United States, inputting the radar 
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identifier, or picking from a list of radar sites, as shown in Figure 2. The date criteria 

selection is made by inputting the date via text or clicking on a calendar, and the data type 

selection is made by clicking on level II base data or various level III products, depicted in 

Figure 3 [49]. Lastly, the time is selected by determining a start and stop time for the data 

period, from which the radar mode for that period of time can be observed. The data is then 

retrieved via an emailed link or direct download method, as seen in Figure 4 [49]. Once 

selected and downloaded, a zipped archive or individual .txt files can be retrieved for 

further analysis. 

 
Figure 2. Options for using NOAA’s website for downloading radar data. 

Source: [49]. 
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Figure 3. Downloading level II radar data for the KFWS radar site. 

Source: [49]. 

 
Figure 4. Downloading radar data for the KFWS radar site on 15 February 

2009. Source: [49]. 
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C. USING NOAA’S WCT PROGRAM TO VIEW RADAR FILES 

The downloaded .txt files are labeled with the Doppler site, date, and time in the 

filename. They can be opened via notepad, or similar Word file readers; however, they are 

written in a coded format and therefore unintelligible using ASCII characters. In order to 

properly open and decipher the data within the file, the NOAA Weather and Climate 

Toolkit (WCT) is required.  

NOAA’s WCT application is a comprehensive weather application for importing, 

viewing, analyzing weather files, and exporting data. Figure 5 depicts a level II radar 

reflectivity moment output for 15 February 2009, centered on the Dallas, Texas, radar site 

KFWS. Range and radial based location information is easily discerned from the 

application, and the legend on the right side of the image provides scaling data for 

determining the strength of the radar returns found within the plotted dataset. The far right 

column also provides radar site information, including date, time, location, and radar sweep 

angle and elevation information. Not depicted are the moment, elevation, and altitude 

parameters that can be selected for a specific dataset. Other functions exist within this 

application to view the data, but are beyond the scope needed for this research. 

The last functionality that requires explanation is the ability to export the data. The 

WCT program can export data into 14 different file formats, including native network 

common data form (netCDF), comma separated value (CSV), and shapefile (polygon) file 

types. The process of exporting the data involves firstly selecting the output format and 

output directory. Secondly, various other optional parameters become enabled depending 

on the output format, such as radar moment, elevation, and location filters for radials, 

latitudes, and longitudes. Afterwards, the output file is created in the indicated directory. 

The applicable formats for this research are the Native netCDF format files with 

“filename.nc” names, and the CSV files with “filename.CSV” names. Both formats have 

their advantages and disadvantages; they will be described and compared in the following 

sections. 
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The National Oceanic and Atmospheric Administration’s Weather and Climate Toolkit 
program output for the Ash Creek bolide at 16:53:32 on 15 February 2009. The bolide is 
visible in a blue square at approximately 162° and 189 km relative to the KFWS radar site. 

Figure 5. NEXRAD level II Doppler radar reflectivity moment data from 
the Dallas, Texas, KFWS radar site. 

D. THE netCDF UNIDATA FORMAT 

The native netCDF format is as close to a representation of the raw data as possible, 

providing nearly unprocessed data from the radar sites. When selected as an export option 

within NOAA’s WCT application, all available data for each radar moment and elevation 

is assembled into one output file. This information can then be accessed via Python’s 

netCDF4 library, which imports the “filename.nc” files into a dataset file with a Python 

dictionary structure [50]. This structure enables the saving of a lot of information in a small, 

but organized package. The major components of the dataset are the directory of 

information contained in the dataset, the attributes and history of the dataset, and the 

variables contained within the dataset. 

The dataset directory is the list of accessible methods and attributes that can be used 

with the dataset. It provides both the private and public Python functions that enable the 

accessing of data. Examples would be the “file_format” attribute that returns that the 

dataset is written in “NETCDF3_CLASSIC” format and that “dir()” is a private function 

that returns this list of methods and attributes. The end result is a beneficial list of ways to 

manipulate the dataset. 
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The attributes and history of the dataset are provided via the “ncattrs()” attribute. 

This attribute provides identifier information for the dataset itself. For example, the 

Doppler radar station’s identifier and name, the location in latitude and longitude 

coordinates, the coverage start time and stop time, the level (I, II, or III) of radar data 

provided, and a summary of the data collected, among other attributes. 

The variables contained within the dataset are the most important piece of 

information, because they provide the access names to retrieve the raw data. Depending on 

the specific capabilities of the Doppler radar site, different variables will be present, 

resulting from both high fidelity and low fidelity scans. These in turn are each broken into 

two general categories: radar moments and spatial location information. The former 

provides reflectivity information in either decibels or DBZ, the latter provides spectral 

width and radial velocity information in knots, and all three are the radar returns that the 

radar sites read from various targets [43]. The latter are the azimuth, elevation, distance, 

time, radial, and distance gate information needed to determine where each radar return 

comes from. Additionally, the azimuth and radial values exist between 0 and 360°, the 

distance and distance gates are ranges from the radar’s center, the elevation is an angle 

relative to the ground, and the time is the timing of each ray. To summarize the data 

variables, the first provides the strength of the radar return, and the second provides its 

location in space and time. 

An example of the netCDF dataset with variable dimensions are found in Table 1. 

The data is as found in the netCDF database, except for two modifications. The first is 

formatting, for readability. The second is that only the lower fidelity variables are returned. 

There is an equivalent set of variables appended with “_HI” on to each variable, denoting 

that there is a higher fidelity output for data return and dimensionality identifier. One 

important observation from the variables is that the lower and higher fidelity variables are 

discretized differently, resulting in different dataset sizes. Therefore, it is not possible to 

natively correlate the data from one dataset to another and one moment to another; a 

conversion or interpolation method is required in order to do so. This correlation process 

has several negative consequences that will be explained later. 
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Table 1. netCDF Dataset for KFWS in Dallas/Fort Worth, Texas, on 15 
February 2009 

Attribute Value 
Station KFWS 
StationName Dallas/Fort Worth, TX, US 
StationLatitude 32.57305556 
StationLongitude -97.30305556 
time_coverage_start 2009-02-15T16:53:32Z 
time_coverage_end 2009-02-15T17:03:04Z 
Summary Weather Surveillance Radar-1988 Doppler (WSR-88D) level II data are the three 

meteorological base data quantities: reflectivity, mean radial velocity, and 
spectrum width.   

Variable Dimensions Description 
reflectivity (4, 720, 1832)  reflectivity 
timeR (4, 720)  time of each ray 
elevationR (4, 720)  elevation angle in degrees: 0 = parallel to pedestal base, 90 = 

perpendicular 
azimuthR (4, 720)  azimuth angle in degrees: 0 = true north, 90 = east 
distanceR (1832,) radial distance to start of gate 
numRadialsR (4,)  number of valid radials in this scan 
numGatesR (4,)  number of valid gates in this scan 
RadialVelocity (2, 720, 1192)  Radial Velocity 
timeV (2, 720) time of each ray 
elevationV (2, 720)  elevation angle in degrees: 0 = parallel to pedestal base, 90 = 

perpendicular 
azimuthV (2, 720)  azimuth angle in degrees: 0 = true north, 90 = east 
distanceV (1192,)  radial distance to start of gate 
numRadialsV (2,) number of valid radials in this scan 
numGatesV (2,) number of valid gates in this scan 
SpectrumWidth (2, 720, 1192)  Radial Spectrum 

 
The raw data can be plotted for analysis, even if not correlated. However, before doing 

so, some processing is necessary: the data is assigned to a NumPy array, is aligned so that the 

smallest radial value from either the azimuthR or azimuthV, is correlated to 0° as North, and 

the decision to use azimuthR versus azimuthV is determined from the radar moment type 

being processed. 

The raw radar data has a higher level of fidelity than the processed data. However, 

this fidelity comes at the cost of additional processing needed to manipulate and view the data. 

For example, because each radar site is unique and has a different starting azimuth, different 
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radar sites are not aligned with one another and require subtle data modifications to align the 

azimuths between locations. Furthermore, even this process is not perfect. Comparing the 

location of the bolide within the netCDF provides Figure 6 and the truth data from the WCT 

program in Figure 5 yield an azimuthal difference that is unique for each radar site. The cause 

is unknown, and may be partially explained by magnetic variation across the different radar 

sites, but even this does not account for the full deviation compared against the truth data. The 

second processing cost comes from correlating the sizes of the variable arrays. Because the 

variables have arrays of different dimensions, they are not correlated to the other variables 

and they are not correlated to positions over the ground via latitudes and longitudes. Two 

methods to address this could be through either interpolation and sampling or pooling of data 

points; however, both methods would result in a decrease in accuracy and introduce error. 

 
Figure 6. KFWS netCDF data from Table 1, and a bolide boxed in red 

One last defining characteristic of the netCDF dataset is that each data point within 

the dataset represented through Figure 6 has an associated value. Each value is a floating point 

value ranging in the vicinity of -50 dB to +75 dB. However, depending on the radar moment 
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being analyzed, some values may exist outside that range. The important factor is that the 

netCDF dataset exports all data from the raw data and provides a return value even if no radar 

moment return was observed, usually a value at the noise floor. In other words, no missing 

values exist within that dataset. 

E. THE CSV FORMAT 

Although the raw netCDF dataset provides a great deal of information within it, the 

CSV format provides a valuable alternative file format. Unlike the netCDF option, each 

elevation and radar moment needs to be specifically selected for export. Additional scope 

parameters are available to constrain the area of data selected for export, but are not enabled 

for this research because the full radar picture is needed for analysis. After exporting, a single 

CSV file is produced containing single elevation’s moment data. This output is compared 

against the single output created by the netCDF file format export. 

The CSV data file contains multiple rows and columns of data. One column exists for 

each of 10 features. Rows exists for azimuth and range combination, but unlike the netCDF 

format, only azimuth and range combinations where the radar moment is a non-zero value are 

retained, and can be observed by comparing the 0 valued returns in Figure 6 to the 

corresponding white space in Figure 7, where the white space denotes a complete lack of a 

return value within the dataset. This reduces the number of rows required to represent the 

dataset and reducing the overall file size. The dataset has another large advantage over the 

raw netCDF data: each azimuth and range combination is automatically correlated to its 

representative latitude and longitude location over the Earth. 

The method of identifying each row’s placement on the Earth is with a 4-point grid. 

Each of the grid points is defined by a latitude and longitude pair. Unfortunately, this requires 

special processing to interpret because the Pandas library within Python that imports the data 

into a dataframe or matrix of values does not process parentheses correctly. Furthermore, all 

four latitude and longitude pairs are within the same column of data. Because the column 

requires processing to begin with, the code necessary to separate them is a trivial addition. 

The end result yields 14 columns, identified as follows: 
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Table 2. CSV data format with attribute number and names. 

Attribute Number Attribute Name 
1 Sweep Number 
2 Sweep Time 
3 Elevation Angle 
4 Value 
5 Radial Angle 
6 Beginning Gate Range 
7 End Gate Range 
8 Relative Height 
9 Height Above Sea Level 
10 Geometry Point 1 
11 Geometry Point 2 
12 Geometry Point 3 
13 Geometry Point 4 
14 Geometry Point 5 (a repeat of Geometry Point 1) 

 

With this information in Pandas, it is possible to create a plot similar to that of Figure 6, but 

created with processed information from the 5) Radial Angle, 6) Beginning Gate Range, and 

4) Value variables. Therefore, Figure 7 is the generated heat map scatterplot, with only non-

zero moments plotted. Furthermore, the CSV data has the advantage of being properly 

correlated over the ground and requires no data modification to rotate and align the data to 0° 

North. 
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Figure 7. KFWS reflectivity plot using CSV data 

Only two negatives exist with using the CSV data instead of the netCDF data. The 

first is the extra steps to export the data from within NOAA’s WCT program. This is an 

inconvenience that can be rectified using scripting to automate the exporting process. The 

second is accuracy lost by processing the raw data into a CSV format. One example is the 

elevation angle for the data represented in Figure 7 is not exactly 4.59° over all 360 azimuth 

angles, but rather its mean elevation angle is 4.59°. This degradation is a result of an internal 

process within NOAA’s WCT program, but is of minimal consequence. Therefore, the 

advantages of the CSV dataset outweigh that of the netCDF dataset, and this research will 

primarily use the CSV dataset. 

F. SUMMARY 

In this chapter, a basic introduction into the history and theory of radar was provided. 

In particular, the United States Doppler radar network was explained, and how radar data is 

collected, retained, and retrieved from NOAA repositories. The data may be downloaded into 

two formats, each of which were compared. The netCDF format provided a higher level of 

potential accuracy, but at a cost of alignment errors and additional processing steps compared 

to that of the CSV format. Therefore, the CSV format was determined to be functionally 

superior to the netCDF format for this thesis. The CSV datasets are chosen moving forward. 
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III. ARTIFICIAL INTELLIGENCE 

The field of AI has grown tremendously in the last decade, rising to public 

awareness in nearly all aspects of society. However, the field is much older and has a much 

richer history. This chapter provides a background framework from a historical and 

technical perspective that is built upon later in this thesis. More specifically, it briefly 

covers the history of AI and machine learning, machine learning methods, search methods, 

evaluating and comparing hypotheses, and lastly how to use algorithms for data analysis. 

This chapter is a prerequisite for the application of machine learning techniques used in the 

data analysis and bolide classification problem.  

A. HISTORICAL PERSPECTIVE 

The field of machine learning and more generally AI is accepted as starting in 1943 

with Warren McCulloch and Walter Pitts [51]. Their work was inspired by biological 

neurons, based on their backgrounds in neuroscience, physiology, and computational logic. 

Through this, their research developed a model for artificial neurons and artificial neural 

networks, now known as Hebbian learning [19]. However, it was not until 1950 that the 

theory was demonstrated at Harvard University by Marvin Minsky and Dean Edmonds. 

The two undergraduate students built SNARC, a network of 40 neurons [19]. From this 

beginning, the field generated a lot of initial praise and excitement.  

After the initial successes that defined the field, growth continued until the 

expectations exceeded the pace of development. This resulted in a pullback in both interest 

and more importantly funding for AI in the 1960s and 1970s. However, this slowdown did 

not stop all progress, and the initial development of the back propagation algorithm by 

Henry Kelley in 1960 helped lay the groundwork for implementing the theory into 

functional neural networks by Rumelhart, Hinton, and Williams in 1986 [52,53]. This 

temporary respite gave way to another lull in interest and funding until the 2000s, when 

two phenomena built upon each other to sustain the current development hype the world 

currently enjoys. The first was the rise of large datasets, coinciding with the spread of the 

internet and interconnected machines. As increasingly large amounts of data were collected 
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and aggregated, an information rich diet was found to feed into the various algorithms that 

drove artificial intelligences. The second was the method to decrease the algorithm 

runtimes as the datasets grew larger: applying Graphical Processing Units to non-graphics 

based tasks. By increasing the hardware throughput, more calculations could be completed 

per second, enabling the use of larger and larger dataset sizes [19]. Due to the continued 

growth of both datasets and computational power, the current development era with regards 

to AI is likely to continue to develop and grow. 

B. MACHINE LEARNING 

The field of machine learning is a set of methods used by AI, providing an agent 

with the ability to modify its behavior based on environmental influences. The behavioral 

change is the result of taking in environmental information, performing an action based on 

an algorithm, comparing against another known action or actions, and updating the 

algorithm needed to perform future actions [20]. This can be thought of in how an agent is 

acting in an environment. The agent takes in information via sensors, calculates an action 

based on an algorithm in the performance element, and affects the environment. The 

learning occurs through the critic, learning element, and problem generator loop. The critic 

evaluates agent performance through a set of specific parameters. Then, the learning 

element uses that evaluation in conjunction with knowledge from the performance element 

on what external actions to take to update the system’s learning goals. Next, the problem 

generator uses the updated learning goals to seek out new problems that will further 

enhance the agent’s knowledge of its environment; it is the driver to continue searching the 

hypothesis space. Lastly, the problem generator’s output is fed back to the performance 

element for updating the agent’s algorithm [19].  

Although all machine learning algorithms have this general methodology, the 

implementations vastly differ. Machine learning methods are typically partitioned into 

three types: supervised learning, unsupervised learning, and reinforcement learning. Each 

has different motivations and operates best over different problem sets, and some datasets 

are not suited to certain types of machine learning at all. The supervised and unsupervised 

learning methods are briefly discussed in this thesis. 
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1. Supervised Learning 

The goal of supervised learning is to take a supervised dataset that contains input 

values, X , and corresponding true output values or targets, Y , and learn to predict the 

outputs via a trained model, ( )f X , such that the predicted Ŷ  values are as close to Y  as 

possible. By looking at the input values, determining an output through a model, and 

comparing that against the true output provides a mechanism for the machine learning 

algorithm to correct itself and improve. Another way to look at this implementation is 

through the lens of a student and teacher construct. As a student learns a subject through 

examples with known answers, the teacher will affirm correct answers and correct the 

wrong answers, guiding the student to learn the general logic or pattern to solve a specific 

problem type [20]. An example of this would be to have a student build the largest tower 

of blocks under the tutelage of a structural engineer. The student could try various methods, 

but be corrected through the guidance of the teacher to create a stable and tall tower. This 

form of learning can be very efficient, but requires a dataset with both input data and output 

targets. Supervised learning models with numeric outputs are often called regression 

models. When the output is categorical, such as in this thesis, these models are referred to 

as classification models. 

2. Unsupervised Learning 

Conversely, in unsupervised learning, there is no correct answer to accompany the 

initial data, nor is there a teacher [20]. In other words, unsupervised datasets contain input 

values X , but no true output values Y . The goal of unsupervised learning is to find 

relationships between pieces of data within the dataset. An example would be to measure 

how similar or dissimilar data points are within the dataset, and then using these measures 

to group data points into similar clusters of data. Using the previous block building 

example, this time the student has instructions to build the tallest tower out of various 

blocks, but no further guidance. The student may try various methods to build a strong and 

tall tower, but has no correct outcome to compare their achieved height against. They may 

be able to do so against other students that have the same task, or possibly against previous 

attempts by themselves if that information exists. However, in a worst case scenario, the 
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student may not even know what a tower is or what “tallest” means, and resorts to just 

putting blocks together in various ways. In this extreme example, the student may have 

built 100 block structures and upon reviewing them all, can draw conclusions on what they 

look like, showing that some of the blocks are taller than others, or smaller, or maybe find 

different relationships like sorting by bock color. Because of the various ways the block 

structures can be built and clustered, unsupervised learning can be slower or harder to 

develop, but without guidance or bias, interesting patterns can be developed that would not 

otherwise be identified. 

C. EVALUATING AND COMPARING MODELS 

In order to find the best model for a given set of inputs, it becomes necessary to 

evaluate and compare them. This can be completed using statistical measures of accuracy 

and when it is available, comparing the true output value Y  to the predicted Ŷ  value. This 

is an important aspect to machine learning because it enables some learning algorithms and 

helps prevent overfitting. 

1. Overfitting 

The process of learning is a spectrum, where an algorithm typically begins with a 

complete lack of knowledge. When an algorithm begins learning from a dataset, it will try 

to build a model or hypothesis that best represents the input to output mapping. As this 

model is refined through the addition and subtraction of terms or parameters that describe 

the model, it can become too specific [19,54]. This means that instead of learning the 

general patterns in the data, the algorithm has started to memorize the input to output 

patterns; this development signifies a shift from generalization to overfitting [55]. To use 

a curve fitting example with a linear relationship between X  and Y as seen in Figure 8, 

where X  is between 0 to 10 and observed outputs are noisy versions of ( )f X , a 

generalized predictive model would find the general pattern of the data where Ŷ X= . This 

is shown with the order 1 polynomial. However, an overfit model, such as the order 18 

polynomial has memorized the dataset and found a model with too many parameters that 

will not generalize well for any other dataset. In machine learning applications, an overfit 
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model is too specialized for general use and will perform poorly on any dataset other than 

the one it is specifically trained on. 

 
Figure 8. A supervised learning example with noise and overfitting. 

2. Training Error and Prediction Error 

The accuracy over the dataset used to fit the model versus the accuracy over a 

dataset of new observations highlights training error versus prediction error. The intent of 

machine learning is to form a model that performs such that not only the training error is 

low, but also the prediction error is as low as possible. Unfortunately, it is not possible to 

determine the prediction error from the training dataset, but it can be estimated by using 

“hold-out” subsets of the training dataset. These hold-out sets are called validation and test 

tests. The validation set is used to estimate the prediction error of models based on the 

training data sans the hold-out set. In this way, the model can be refined so that it achieves 

the lowest training error rate without overfitting. The test set is used to evaluate the 

performance of the final model fit. [54]. 

D. USING ALGORITHMS FOR DATA ANALYSIS 

1. The Validity of Machine Learning for Data Analysis 

Machine learning provides enhancements and abilities that supersede those of 

humanity in multiple aspects. Firstly, a machine or series of machines can analyze rows 
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and columns within a dataset far faster and more diligently than homo-sapiens. Secondly, 

digital methods can hold vastly superior amounts of information within the memory of the 

computers, whereas humans have only a limited working memory. Thirdly, a machine 

operates with a level of mathematical precision that is not matched by normal human 

abilities. As verification, please note what a pocket calculator can do compared to a human. 

Lastly, automated methods can determine correlations beyond that of what humanity in 2D 

or 3D can ascertain. Therefore, if digital analysis tools can be applied to a problem, the 

benefits exist as a motivation to do so. 

2. Roadmap for Applying Machine Learning 

The process of applying digital methods to a problem set are far more challenging 

than finding the reasons to do so. The roadmap to build an algorithm is broken into five 

phases: problem identification, preprocessing, learning, evaluation, and prediction [56]. 

The first phase is problem identification. In other words, without first identifying 

what the challenge is, it cannot be solved. This provides an end state to work towards, and 

is no different than when applying non-machine based problem solving methods. 

The next phase is data preprocessing, and this refers to an action performed on the 

dataset. Depending on the dataset, different actions need to be taken. Datasets can be large, 

small, sparse, redundant, filled with many variables or features, few features, can be stored 

in difficult or archaic languages or data structures, and may or may not have associated 

descriptors defining all variables [56]. For these reasons, preprocessing standardizes the 

data and turns it into something useable. Therefore, the input to data preprocessing is raw 

data, and the output is a dataset in the correct format, size, shape, and labels needed to send 

into the machine learning algorithm [56]. 

Learning is the phase dedicated to selecting and tuning the machine learning model. 

Depending on the dataset constructed via the preprocessing phase, supervised, 

unsupervised, or reinforcement learning algorithms may be selected for use. For example, 

if output data is not available, then supervised learning is not possible without processing 

the raw data in some way to generate a supervised dataset. Similarly, some problems are 

not well adapted for reinforcement learning, for example classification type problems. 
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Once the model is selected, it is tuned for optimal performance, then executed for 

validation, and finally metrics gathered for further analysis and optimization [56]. This 

cycle repeats until the overall performance reaches an acceptable threshold. 

The fourth phase is the evaluation phase. Whereas the learning phase iterates 

through training data to select the best model to represent the data, a second dataset is used 

to independently test the model: the test dataset. Therefore, after the model is selected and 

finally tuned, it is given a final test to determine whether it can apply to a new and unique 

dataset. If it fails to achieve the metrics observed in the learning phase during the test, it 

could be too specialized or the wrong model entirely. At that point, significant changes 

may be required to be made to the model or even the type of machine learning algorithm 

chosen. Conversely, if it passes, the model is ready for operation as a predictor [56]. 

The final phase is the prediction phase. If the evaluation phase passes with 

acceptable performance metrics, then new data can be introduced into the machine learning 

algorithm and the outputs received [56]. The end product may need to be adjusted so that 

the output format is as needed by follow on processes, but the prediction process remains 

valid. 

E. SUMMARY 

This chapter provided a background into AI and machine learning. A brief history 

of the field is provided, followed by an introduction into machine learning where both 

supervised and unsupervised learning are explained. The theory behind how to evaluate 

and compare models is given, and how that relates to overfitting so that algorithmic 

decisions within this thesis can be understood. Lastly, a high level roadmap for how to 

apply the theory to an actual problem was provided.  
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IV. METHODS 

This chapter provides an introduction to the experiments conducted for this thesis. 

It covers the programming language used, how the dataset was preprocessed, the 

experimental design, and the statistical background needed for analyzing and comparing 

machine learning approaches for identifying bolides from within radar returns. 

A. CODING LANGUAGE 

1. Python 

The programming language used in this research is Python [57]. It is a higher level 

programming language that offers several attributes well suited for research. The language 

has relatively simple syntax, the language is free to implement, and has a large number of 

available libraries and modules. 

Python’s syntax is simplistic and easy to learn, and is well documented in online 

publications. It is a dynamic language, which makes it straight forward to both code and 

read. Furthermore, it enables prototyping, decreasing the time, effort, and often the number 

of lines of code needed for projects. However, the benefit of easier programing comes with 

a cost: Python has worse performance than other, lower level languages [58]. However, 

this decrease in performance is an acceptable negative, because once prototyped code is 

validated, it can be rewritten in a lower level language to increase execution speed if 

required. 

Python is also a free language. The language’s software can be downloaded and 

installed both easily and rapidly. Furthermore, certain operating systems, like Linux, 

typically come with Python already installed by default. Once the software is installed, it 

can be further modified under an open source license, and then exported to other users. 

This has resulted in the proliferation of the software across many users each of which 

modifies and adds to what Python as a whole can do. As a result, there exists a vast amount 

of libraries and modules that have been implemented within the language framework [58]. 

Multiple libraries were installed and used during this research; the primary ones were 

NumPy, Pandas, Scikit-learn, and matplotlib. 
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2. NumPy Library 

NumPy is a science and engineering library in Python that provides multiple 

computational tools. This includes tools that enable linear algebraic manipulations, Fourier 

transforms, generating and using random numbers, and additional features. However, the 

primary benefit it provides is the capability to manipulate and modify N-dimensional arrays 

of data efficiently and quickly [59]. This library is limited to using and manipulating 

numbers, but there are other libraries that provide expanded non-numeric object handling. 

3. Pandas Library 

Where NumPy falls short, Pandas fills in with new capabilities: Pandas enables the 

handling of non-numerical objects in an object called a dataframe. It can handle numeric, 

string, time series, etc., forms of data in N-dimensional arrays. Pandas is designed to parse 

and handle data analysis tasks, so indexing, reshaping, and managing missing data are all 

within its limits [59]. Unfortunately, it is computationally slower than NumPy, but the 

enhanced data structures are extremely beneficial because real world datasets are rarely 

only numerical.  

4. Scikit-learn Library 

NumPy and Pandas provide methods to aggregate, sort, and manipulate data. 

However, they do not provide methods to analyze or learn from the data. Scikit-learn 

provides tools to perform those additional actions [59]. The library enables pre-built 

searching, clustering, and interpolation methods, along with additional classification and 

regression tools through its estimator interface, where models are instantiated and fit with 

training data via learning [60]. 

5. Matplotlib Library 

Matplotlib is a plotting library for use with Python [59]. It was originally designed 

to mimic MATLAB’s features, but has grown since its inception. It includes all the basic 

plots expected within a GUI, and is not limited to typical line graphs, scatter plots, and heat 

map plots [61]. Its visualization functions enable easy data visualization. 
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B. DATA PREPROCESSING 

The process of downloading the raw data files from NOAA’s website and exporting 

them via NOAA WCT application as either netCDF or CSV files was described in Chapter 

II. Furthermore, of the two methods, the CSV format was determined to be superior for 

multiple reasons, and chosen as the most beneficial output format. Therefore, the CSV 

format is used as the baseline for further data preprocessing, where the dataset is 

transformed into something that can be used within machine learning algorithms for further 

analysis.  

The exact steps and methods required to preprocess a dataset is unique to that 

problem and dataset, but a bolide detection algorithm includes raw dataset creation, dataset 

characterization, feature selection, processed dataset creation from selected features, and 

exporting the processed dataset. This research follows this process, and generates an output 

useable by machine learning algorithms. Furthermore, the first step beings with importing 

the CSV data into Python. 

1. Importing CSV Data into Python 

The import process relies upon the Pandas library and a few supporting functions. 

The required input is a directory path containing the WCT application’s exported CSV 

files. With this path, Python creates a list of CSV files, opens the files, and uses Pandas to 

read the file contents into a dataframe. This sequential process yields a list of dataframes, 

one for each of the radar moments and time periods 0t , 1t , and 2t  associated with the 

original CSV files in the directory. Furthermore, each dataframe is created with radialAng 

and begGateRan set as the two-layer index; this convention is utilized for the remainder of 

this thesis. The variable names with their abbreviation are found in Table 2, and the visual 

output produced via Matplotlib is found in Figure 9. In Figure 9, raw CSV data for time 1t

was exported and plotted to depict the differing dimensionalities of the data. One note to 

highlight is that the reflectivity moment has 2 data points in the top right that are not present 

in the radial velocity and spectrum width moments, identified in the 2 yellow boxes. 
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Figure 9. Raw CSV data for the Ash Creek bolide plotted to depict the 

differing dimensionalities of the data 

2. Merging the Radar Moments Together 

The process of data aggregation is completed through the database management 

tools inherent to Pandas. The merge function takes the list of radar moments for each time 

frame, and conducts an outer join with each data point’s radialAng and begGateRan 

parameters as the enabled left and right index values. The result is a dataframe with a two-

layer index and a column for each radar moment with the following columns in the 

dataframe: radialAng, begGateRan, Ref, RV, and SW. 

3. Initial Problems with the CSV Dataset 

The primary issue with the CSV dataset is that each radar moment is unique in its 

dimensionality. This is because after exporting the radar data from the WCT application, 

only non-zero returns are contained within the dataset. An example of this is depicted in 

Figure 9, where the radar reflectivity, radial velocity, and spectrum width moments are 

depicted from left to right respectively. All three plots contain multiple data points at 

approximately 89000 m and 160°, but only the reflectivity plot contains data points at both 

167000 m and 319°, and 174000 m and 353°. Those two data points correspond to rows 

within the CSV dataset that do not exist within the radial velocity and spectrum width 
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datasets, and therefore the reflectivity moment has a length at least 2 units longer than that 

of the radial velocity and spectrum width radar moments. The result is that data cannot be 

easily combined from different radar moments without the creation of missing values or 

Not a Number (NaN) values. Unfortunately, NaN values sometimes result in errors when 

a dataset containing them is analyzed with a machine learning algorithm. Therefore, they 

must be eliminated or otherwise resolved before proceeding. 

A second and more minor issue that exists with the dataset is that sometimes the 

data is coded erroneously by the radar sites. The typical range of a dataset value is roughly 

-50 to +75, depending on the radar moment, as shown by the legend on the right hand side 

of Figure 10, the reflectivity returns for the KDAX radar on 22 April 2012. However, 

occasionally the radar outputs an erroneous return, such as in the purple RF region in Figure 

10. The reason for the appearance of this artifact is unknown, but is clearly artificial. 

Furthermore, it is coded in the CSV dataset with a value of +800, significantly different 

from the nominal range described above. However, it is because the coding is so far outside 

the normal range that it is easily detected, and subsequently mitigated by removing all data 

points with radar moment values greater than 400. Unfortunately, this removal does result 

in additional missing values, which require further processing to address. 

 
Figure 10. NEXRAD reflectivity plot within the WCT application, depicting 

an erroneous RF return 
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4. Replacing Missing/NaN Values 

Three methods are attempted to resolve the appearance of missing values within 

the dataset of raw and merged radar moments. The first is to replace all of the existing data 

points with interpolated values, the second is to replace only the missing data points with 

interpolated values, and the third is to replace the missing values with radar moment 

minimum return values. Although all three methods are viable options, the first two have 

substantial flaws that inhibited their use. 

The first method can be considered full interpolation. The input is the dataset of 

raw and merged radar moments and grid length L . The output is a dataset of interpolated 

values aligned to grid size 2L . The interpolation is applied to each radar moment and each 

time frame for which a raw CSV file exists. The method is through Python’s “griddata” 

function using the linear interpolation parameter; two other interpolation parameter options 

were investigated, but not chosen due to results that skewed a higher amount of data points. 

Figure 11 depicts the interpolated grid data for each radar moment with the original raw 

data points overlaid in black for timeframe t1 where 200L = . 

 
Figure 11. Fully interpolated data for the Ash Creek bolide plotted with raw 

data points denoted in black 
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This approach successfully creates an interpolated grid of points using the input 

data; however, two weaknesses become apparent. The first is that as the 2L  grid density 

increases, the temporal cost of performing the interpolation increases exponentially. This 

cascades into substantially longer computational times for follow on analysis, making the 

cost too high to make a large L  feasible. The second weakness is a distortion in the data 

inherent from replacing the raw data points with interpolated readings. Figure 12 depicts 

the results of each radar moment plotted against one another. Because the interpolated 

dataset is interpolated linearly between raw data points, radar returns appear where there 

should be no valid returns and hold skewed values from what they should be. In Figure 12, 

these skewed returns can be identified easily as the blue-green, triangular artifact. The 

conclusion is that the linear interpolation in essence blurs the real data points too much to 

be useful, and is therefore discarded as a useful method to preprocess the data. 

 
Figure 12. Fully interpolated data, plotted in 3D with radar moments as an 

axes for the Ash Creek bolide 
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The second method of resolving the existence of missing values is to only replace 

the missing values with interpolated values using a Nearest Neighbors (NN) approach, 

which finds the points closest to a point of interest using Euclidean distance [62]. 

Proportionally, this method results in a dataset of mainly of raw data points, with a small 

percentage of missing value points replaced with interpolated values. Three steps are 

required to execute this change. The first is to create an interpolated dataframe, identical 

in process to the full interpolation method. The second step is to create a K-D tree to 

categorize the data points by their radial angle and range. A K-D tree uses the median 

values of a set of values to iteratively split the data into successive halves and generate a 

binary tree that in this case partitions data points into groups of two. The third and final 

step is to use the K-D tree for a NN search using Euclidean distance to find the closest 

interpolated point within each partition of data points, where the Euclidean distance 

between any two given points p  and q  in n dimensional space is defined in Equation 14 

[62,63]. This calculation is trivial because each partition only holds 2 data points, resulting 

in a quick search to identify the closest interpolated point and its associated radar moment 

data, which is then used to replace the missing value. 

 2
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This method of replacing missing values does come with flaws, which result in its 

dismissal as a viable method to resolve missing values. The K-D tree is a fast algorithm for 

lower dimensional data, such as this case with only 2 dimensions. However, the tree can 

sometimes miss the actual closest nearest neighbor because it only looks for the closest 

point within a single partition of data points. This inaccuracy has a negative effect on the 

outcome of this approach, but it is not the driving factor behind abandoning the approach. 

The issue still lies with the interpolated data, which is not accurate enough due to the 

blurring of the data points. Because the NN method still relies upon the interpolated data, 

the negatives previously discussed with the interpolated data still apply, although smaller 

in magnitude because far fewer interpolated points are used. The results of plotting the 3 

radar moments against one another, with range information for coloring is depicted in 
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Figure 13. The triangular interpolation artifact has been removed, but the data points still 

have more dispersion in the 3D cloud of data point than is helpful in identifying a bolide. 

 
Figure 13. Partially interpolated data, plotted in 3D with radar moments as 

axes for the Ash Creek bolide 

The two previous attempts to use interpolation to replace the missing values 

resulted in an increase in point cloud blurring and dispersion, necessitating a method that 

does not rely upon interpolation. Therefore, the third and most useful method to replace 

the NaNs with acceptable values is completed through a Pandas “fill” command. The 

rationale is that in most cases, a missing value exists because no return is observed in that 

region, with a small subset of missing values existing because they were coded as an 

erroneous radar moment value of +800 and subsequently removed earlier in preprocessing. 

Therefore, most of the missing values should hold a value equivalent to “no return,” but 

because the scale of the radar moments is the logarithmic decibels scale, a zero return is 

not the lowest value, but instead in the center of the distribution of values. Attempts to 
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revert the dataset out of the logarithmic scale dispersed the data too far to be useful, and 

another method is required to process the missing values. 

The alternate solution is instead to replace the missing values not with zero, but 

with the smallest radar return found elsewhere in that list of radar returns. This is 

accomplished using the Pandas “fillna()” command, which fills in NaN values with a user 

value, in this case the minimum value for a radar moment in a given time was used. The 

output when the three radar moments are plotted against one another is depicted in Figure 

14. Comparing it against the fully interpolated dataframe shows a similar image, but 

looking at Figures 15 and 16 show that replacing interpolated values with minimum values 

drastically changes the distribution of the data points. In all three radar moments, the 

distribution is pulled to the left, where there are more minimum values due to the “fillna()” 

command, achieving the desired effect in the steps after preprocessing. 

 
Figure 14. Missing values removed and plotted in 3D with radar moments as 

axes for the Ash Creek bolide 
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Figure 15. Distribution of the radar moments when interpolation is used to 

fill in missing values 

 
Figure 16. Distribution of radar moments when the missing values are 

replaced with minimum values 
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The result of this step of preprocessing is a dataset containing the three radar 

moment features from the original raw dataset, but without any missing values, which have 

been replaced with minimum values. The results are depicted in Figure 17, and are a basis 

for moving forward towards the next step in preprocessing the dataset. 

 
Figure 17. Radar returns for the Ash Creek bolide updated with missing 

values replaced by minimum values 

5. Creating a Range Scaled Feature 

The original dataset has three features: reflectivity, radial velocity, and spectrum 

width. However, because strength of each return is based upon the distance from the radar 

site, returns from small, but close objects can have the same magnitude return as those from 

larger, but further away objects. As a trivial example, a bird 10 meters away may have the 

same return magnitude as an aircraft 100 kilometers away. This is observed in Figure 17, 

where there are substantially more returns closer in to the radar than there are further away, 

where the smallest returns at far distances are too small be even be picked up by the radar’s 

receiver. 

In order to account for this phenomenon, three new features are created. They are 

equivalent to the original three features, except scaled by range using Equation 15 where 
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range is the distance from the radar site to the radar return. The results are depicted in 

Figure 18, and show an image similar to that of Figure 17 except certain returns are more 

pronounced and the color bar scale covers a larger range. This is the desired effect in order 

to regularize the data based on distance and make more distant objects stand out against 

closer objects. 

 
scaledValue Value Range= ×  (15) 

 
Figure 18. Radar Moment data for the Ash Creek bolide scaled by range and 

plotted 

6. Creating a Change Detection Feature 

The original three radar moment features and the range scaled features exist for 

each time slice: 0t , 1t , and 2t . However, each independent feature lacks any way to link 

the information from one time slice to another. This is contrary to how a human would 

identify the appearance of a bolide within a dataset; a human would look at a radar moment 

for each time slice and ask what changed from 0t  to 1t  and from 1t  to 2t . If an object 

covering multiple pixels with high reflectivity, radial velocity, and spectrum width values 

appeared in 1t  from a blank region in 0t , and then disappeared in the 2t  dataset, then that 
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would register as something to investigate further as a potential bolide. Therefore, Equation 

16 was developed as a method to simulate this approach of anomaly detection. In short, it 

identifies if a pixel has a large change from any one time slice to another, under the 

assumption that the pixel changes from weather are more slow and gradual than from other 

sources, like bolides. Originally, the difference between the maximum and minimum 

values was not squared, but after initial analysis, increasing the magnitude of the difference 

increased the sensitivity of this feature. Therefore, Equation 16 is applied to the 0t , 1t , and 

2t  datasets of a single radar moment. The outputs of the process are three datasets with the 

maximum change for each radar moment. Each one is plotted in Figure 19, and can be 

analyzed for changes between 0t , 1t , and 2t  for each radar moment. 

 2
0 1 2 0 1 2[max( , , ) min( , , )]Pixel t t t t t t∆ = −  (16) 

Unfortunately, the issue of erroneously coded data described in Section IV.B.3 

appears again, which makes information within Figure 19 less helpful than it could be. To 

better understand the issue, Figures 20 and 21 depict the WCT program’s output for the 

KRGX NEXRAD site on 22 April 2022. In the reflectivity moment, return values at 230° 

and 90 m from the radar are depicted within the nominal range; however, in the radial 

velocity moment, returns at that same radial and distance are coded as RF. The RF return 

is coded at +800 in the CSV dataset and subsequently removed from the dataset by the 

preprocessor. A similar effect occurs in the spectrum width radar moment, where the 

returns are also coded as RF. The consequence is that only the reflectivity moment will 

register a change, rather than all three radar moments. The implication is that searching for 

bolides via pixel changes fails in two thirds of the plots because the data is not present, 

which confuses the overall process. 
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Figure 19. Change detection for the Ash Creek bolide between times t0, t1, 

and t2 

 
Figure 20. Reno, Nevada KRGX NEXRAD site on 22 April 2022, displaying 

reflectivity data with a valid return at 230° and 90 km 
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Figure 21. Reno, Nevada KRGX NEXRAD site on 22 April 2022, displaying 

radial velocity data with an invalid return at 230° and 166 km 

A method to overcome the absence of pixel changes in each radar moment is to 

look for and retain a change in any moment. In this manner, the greatest magnitude pixel 

change is kept for further analysis in a single dataset, rather than individual datasets for 

each radar moment. Mathematically, this is described in Equation 17, and results in a single 

database to identify whether a pixel has changed in any moment and time slice. This 

provides the time varying change information needed to identify outliers in the dataset. 

Visualized, Figure 22 is an aggregation of the three subplots in Figure 19, and provide a 

single, comprehensive plot for detecting change in a dataset. 

 
, 0 1 2 0 1 2

0 1 2 0 1 2

0 1 2 0 1 2

max([max ( , , ) min ( , , )],
[max ( , , ) min ( , , )],
[max ( , , ) min ( , , )])

Ref RefPixel max

RV RV

SW SW

t t t t t t
t t t t t t
t t t t t t

∆ = −

−
−

 (17) 
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Figure 22. Max change for the Ash Creek Bolide, aggregated from all radar 

moments and times 

7. Dual Polarization Features 

The last three features added to the dataset are found on radars after receiving the 

dual polarization upgrade no later than the end of 2013 [47]. The three additional features 

are differential reflectivity, correlation coefficient, and differential phase, and are described 

in Chapter 2. They are not modified in the execution of post-processing code, and treated 

equivalently to the original three radar moments: reflectivity, radial velocity, and spectrum 

width. However, in writing the preprocessor’s code, multiple checks need to be generated 

to check for and handle whether a specific dataset had the three additional features or not. 

This results in the dimensionality of the dataset increasing by potentially 3 features. 

8. Dataset Feature Description 

The developed preprocessor creates a dataset that contains 12 features. They have 

been described throughout this chapter, but summarized for convenience in Table 2. This 

dataset is the output of the preprocessor and contains all the information used in the 

subsequent analysis steps. 
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Table 3. Output dataset created by the developed preprocessor 

Abbreviation Full Name Purpose 
radialAng Radial Angle Index information for pixel location 
begGateRan Beginning Gate Range Index information for pixel location 
Ref Reflectivity Return value for a radar moment 
RV Radial Velocity Return value for a radar moment 
SW Spectrum Width Return value for a radar moment 
Ref_scaled Reflectivity scaled by range Normalized radar return values 
RV_scaled Radial Velocity scaled by range Normalized radar return values 
SW_scaled Spectrum Width scaled by range Normalized radar return values 
Ref_change Reflectivity pixel change Return change data for t0, t1, and t2 
RV_change Radial Velocity pixel change Return change data for t0, t1, and t2 
SW_change Spectrum Width pixel change Return change data for t0, t1, and t2 
Max_change Max change for a pixel Max change in Ref, RV, and SW for 

a pixel for t0, t1, and t2 
CC Correlation Coefficient Dual Polarization return value 
DP Differential Phase Dual Polarization return value 
DR Differential Reflectivity Dual Polarization return value 

 

C. EXPERIMENTAL DESIGN AND LIMITATIONS 

This research relied upon data from a small sample of bolide events, each of which 

was verified to contain a bolide as per published documentation [31,36]. In total, each of 

the 4 datasets is listed in Table 3 with the associated date of the bolide and the NEXRAD 

radar site. Each of the 4 events contains the requisite raw data that produces the information 

in Table 2 when inputted into the developed preprocessor. 

Table 4. List of datasets with verified bolides 

Bolide Location Date Radar Site Number of Data Points 
(after preprocessing) 

Ash Creek, Texas 15February2009 KFWS 15,262 
Sutter’s Mill, California 22April2012 KDAX 66,388 
Sutter’s Mill, California 22April2012 KRGX 137,332 
Sutter’s Mill, California 22April2012 KBBX 121,782 

 
After initial data exploration and data preprocessing, this research focused upon 

exploring machine learning algorithms to determine the best method to identify outlier 
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bolides from nominal radar returns from weather phenomenon such as clouds, rain, etc. 

Multiple algorithms were tested for their ability to identify outliers, their parameters tuned 

for optimal performance, and the results analyzed and discussed. 

The approaches tested were selected based on two limitations of the bolide 

detection problem. The first was the sparseness of the dataset. Not only were there a limited 

number of verified bolide events captured on radar, written about, and published, but the 

number of radar returns or pixels within a NEXRAD radar’s dataset was extremely small. 

For instance, the Ash Creek, Texas, bolide was identified with 15 radar returns, while the 

raw dataset contained 15,263 or 0.098% of the data. Similarly, the Sutter’s Mill KRGX 

NEXRAD site had 137,332 radar returns, with only 23 or 0.017% identifying the bolide. 

The second factor that made bolide detection difficult was the nature of the data itself. 

Because the raw data was unsupervised, many machine learning techniques and algorithms 

were unavailable, as they required truth data as an input. Generating a supervised dataset 

was possible, but again due to the sparseness of the dataset, unsupervised data was 

identified as the primary method to characterize and classify potential bolides. 

D. PERFORMANCE STATISTICS 

Minimal statistical analysis was required in this research. This was primarily due 

to the aforementioned limitations of the small number of bolide datasets analyzed. 

However, some statistical analysis was conducted to provide some rigor in the results. This 

included the computation of a confusion matrix, accuracy, precision, recall, and lastly a 

pruning rate. 

A confusion matrix is a method used to represent the percentage of correctly and 

incorrectly classified objects. Table 4 depicts a confusion matrix, with the number of 

correctly classified objects in the green boxes and incorrectly classified objects in the red 

boxes. The goal is to maximize the occurrence of green, True Negative (TN) and True 

Positive (TP) values, while minimizing the occurrence of red, False Negative (FN) and 

False Positive (FP) values. The method to populate the confusion matrix is through 

summing the number of values classified in each of the categories, based on results from 

an algorithm. If an algorithm determined that 1 of 10 data points was classified as a bolide, 
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and it was actually a bolide, then the TP value is 1. Similarly, if 5 of 10 data points were 

correctly classified as not a bolide, then the TN value is 5. However, if 1 of 10 data points 

was classified as a bolide, but not actually a bolide then the FP value would be 1, and if 3 

data points were classified as not bolides, but were actually bolides, then they would be FN 

[56].  

Table 5. Confusion Matrix example and definition 

 Predicted Values 

Actual Values 

 Negative Positive 

Negative True Negative (TN) False Positive (FP) 

Positive False Negative (FN) True Positive (TP) 

 
Although the confusion matrix is helpful in visualizing data, it can be used to 

generate even more helpful statistics. The first performance metric that is helpful to analyze 

is accuracy (AC), and is defined in Equation 18. The second is recall or the True Positive 

Rate (TPR), and is defined in Equation 19. The third is the specificity or True Negative 

Rate (TNR), defined in Equation 20. Fourth is precision, defined in Equation 21. These 

statistics provide well known metrics within the machine learning community which can 

be used to compare methods and identify better and worse results [56]. 

 
TN TPAC

TN TP FN FP
+

=
+ + +

 (18) 

 
TPTPR recall

TP FN
= =

+
 (19) 

 
TNTNR specificity

TN FP
= =

+
 (20) 

 
TPprecision

TP FP
=

+
 (21) 
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The last statistic used for analysis is the pruning rate for both bolide and non-bolide 

data points. This metric was created for this thesis with the purpose of acting as an 

intermediary tool in order to analyze the performance of pruning a dataset. This measure 

was necessary due to the size of some of the datasets and the lengths of time needed to 

complete certain machine learning algorithms. The pruning rate is a simple metric. It is the 

ratio of the number of points pruned or removed from the dataset to the total number of 

points in the dataset. 

E. SUMMARY 

This chapter described the preparatory steps for transforming the dataset from an 

input CSV to the Pandas dataframe format needed by the machine learning algorithms. 

Furthermore, the software language and coding libraries used to complete this 

transformation were introduced. Finally, the experimental design and performance 

statistics used to conduct the experiments and measure its outcome were provided. 
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V. APPLICATION OF UNSUPERVISED MACHINE LEARNING 
TO BOLIDE DETECTION 

This chapter describes the process and results of using various unsupervised 

machine learning algorithms in an effort to detect bolides within Doppler radar data. The 

goal of this thesis is to take the output dataset from the preprocessor, denoted as the data 

in Table 2, and apply various machine learning techniques to analyze and identify outlier 

bolides, while rejecting the nominal weather returns and terrestrial ground returns. Because 

the data is unlabeled, meaning there is no truth data that identifies each radar return, 

multiple unsupervised learning algorithms are attempted to identify the bolides: principle 

component analysis, k-means clustering, t-Distributed Stochastic Neighbor Embedding (t-

SNE), and lastly a combination of these algorithms. Each algorithm is described, applied 

against the problem datasets, and performance assessed.  

A. COMPLETING A BASELINE ANALYSIS OF THE DATASET 

The first step of applying the machine learning algorithms to the dataset is creating 

a baseline to compare against. Figure 23 shows the information from Table 2 for the Ash 

Creek bolide from 15 February 2009. Each plot depicts a 3D scatterplot of three features, 

with colors coding for the distance from the radar site to the radar return. The left plot has 

the three base radar moments, the middle plot shows the scaled version of the base radar 

moments, and the right plot depicts the change from t0 to t1 to t2 for each base radar 

moment. Lastly, the green Xs represent the radar returns associated with the Ash Creek, 

Texas, bolide, found at 161° and 90,000 m (9.0e 04+  m) from the radar site in Figure 17. 

This plot will be considered the baseline plot. 



60 

 
Figure 23. 3-D plots representing the data input to the analyzer; green Xs 

denote bolide returns 

Visual analysis of the distribution and shape of the returns from Figure 23 shows 

no clustering of all the bolide returns in any of the three plots. The closest clustering comes 

from the change detection plot on the far right of the figure, but although the bolide returns 

are more closely clustered, they are not separated from all the non-bolide returns. The only 

other notable feature is seen in the left and middle plots, where there appears to be 2–3 

distinct groups of bolide points. Therefore, upon visual inspection, the plots are not easily 

separable using linear methods, but this level of separation can be used as the standard to 

measure against. 

B. PRINCIPAL COMPONENT ANALYSIS 

1. Method Description 

Principle Component Analysis (PCA) is the first method tried to analyze the radar 

data. This method has its origins with Pearson in 1901, but has been used in numerous 

ways since [55]. Although this multivariate analysis technique has many applications, two 

of the greatest benefits are through dimensionality reduction, feature selection, and data 

visualization [55,56]. The primary application for this research will be feature selection 

and subsequent visualization for outlier detection. 
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PCA gives an ortho-normal rotation of a multivariate dataset, 1,..., nx x , of 

dimension q  and size n . The orthogonal length-one vectors 1,..., qν ν , defined as the 

Principal Components (PCs), determine the rotation [55,56,64]. The first PC, 1ν , gives the 

projection of the dataset with the largest (sample) variance. That is, among all length one 

vectors, ν , the first PC maximizes the variance given by Equation 22 where 
1

1 n
t

ix x
n

ν= ∑  

is the vector of the dataset sample means.  
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The variance of a linear function of features may be expressed more compactly as 
tν νΣ  where Σ  is the sample variance-covariance matrix of the dataset (with sample 

variances on the diagonal and covariances on the off-diagonal of Σ ). Subsequent PCs 

maximize the projected dataset variance among all length one vectors orthogonal to 

proceeding PCs. Thus, PCA gives a sequence of PCs with corresponding non-increasing 

variances 1 ... 0qλ λ≥ ≥ ≥  [55,56,64]. Often, the first several PCs are used to construct new 

features from the original dataset. For example, we use the first three PCs to display higher 

dimensional data in three dimensions. More generally, the projection of the dataset onto 

the first k  PCs may be used in analysis in place of the original q variables. If the variances 

corresponding to the unused PCs are small, not much is lost with this dimension reduction. 

The PCs and the corresponding variances are respectively the eigenvectors, v , and 

eigenvalues, λ , of Σ . An example, where 2q =  and 2k = , is depicted in Figure 24 

reproduced from [65]. Here, the two variables are standardized by subtracting their 

respective sample means and dividing by their sample standard deviations prior to 

performing PCA. Thus, the plot on the right of Figure 24 is an ortho-normal rotation of the 

rescaled data. This rescaling puts all of the original variables on the same scale. Further 

details of PCA can be found in [55,56]. 
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Figure 24. A PCA transformation using eigenvalues and eigenvectors. 

Source: [65]. 

2. PCA implementation 

Using the Scikit-learn library enables easy access to PCA methods [66]. The output 

of the preprocessor is used as the input to the PCA process, using the features from Table 

2. A check was also executed to determine if the dual polarization features were available. 

If the dual polarization features were available within the dataset, a PCA model was created 

with 13 features; if they were not available, a PCA model was created with 10 features. In 

both cases, features are standardized prior to PCA to help in the model fitting process. After 

PCA, the outputted PC’s (the eigenvectors), the corresponding variances (the eigenvalues), 

and the rotated data are saved. 

3. Analysis 

Plotting the information from Scikit-learn’s implementation of the PCA method 

yields Figure 25. The left plot in Figure 25 can be used to determine the importance of each 

PC relative to the full dataset. The sum of the eigenvalues, equal to the sum of the original 

dataset variables’ variances, is a measure of dataset variability. The left plot of Figure 25 

gives ratio of each eigenvalue to the sum of the eigenvalues. For example, PC1 has a 

variance of 29%, showing that it represents 29% of the overall variance in the dataset. PC2 
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has a variance of 18% and PC3 has a variance of 13%. Collectively, they can represent 

approximately 60% of the dataset variability. The right plot of Figure 25 shows the 

“singular values,” which are proportional to the square-root of the eigenvalues. These are 

proportional to the standard-deviations of the dataset, projected along each PC. They 

represent a different way to look at how each PC contributes to the dispersion of the data, 

and in this case confirms how each PC affects the whole dataset. The interesting feature of 

this output is that there is no clear break where additional PCs no longer matter. All the 

PCs are important as far as representing the data is concerned. Furthermore, for a dataset 

with a small number of features like 10–13, it appears to be beneficial to keep all the 

features. 

 
Figure 25. PCA process output: scaled PCA variance and singular values for 

the Ash Creek, Texas, bolide 

The projected dataset from PCA can be plotted and compared against the baseline 

analysis plot in Figure 23. This is what is plotted in Figure 26: PCs 1, 2, and 3 are used in 

a 3D scatterplot, with PC 4 used to color the data points. In this manner 4 dimensions of 

data are available for analyzing where the non-bolide points are in relation to the large 
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circles with Xs, denoting bolide locations. Looking at the plot, most of the data points are 

located in a cluster in the center, with most of the bolide points and some additional points 

visible as outliers. Furthermore, the bolide points are found in 3 mini-clusters, which 

prevents the results of this dataset from being easily separable. However, the PCA 

projection is an improvement upon the results of Figure 23. Lastly, using PC 4 yields no 

additional information; the colors of all bolide points are different. Therefore, even though 

a 4D tesseract plot cannot be seen directly, there is enough information to state that bolides 

are not separable in the 4th dimension. 

 
Figure 26. Scatterplot of PCA transformed data from the Ash Creek, Texas, 

bolide with PC4 coloring 

4. Limitations 

Figure 26 is a helpful plot in isolating where the bolide vs. non-bolide points are 

located. The non-bolide points are predominantly clustered in the center of the plot, while 

the bolides are the outliers and more distant from the center. However, this result is 

particular to the Ash Creek, Texas, dataset. Using the KDAX radar data for the Sutter’s 

Mill, CA bolide yields the plot in Figure 27. There are substantially more data points 

overall comparing the number of data points from the Sutter’s Mill bolide datasets in Table 
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3 against those of the Ash Creek bolide dataset, and the bolide points are no longer outliers 

when compared to the rest of the radar returns. The results are similar when comparing the 

datasets from the KBBX and KRGX radar sites. Secondly, because PCA only reduces 

variance at the expense of the local structure of the data, a lot of higher dimensional 

information is lost. Therefore, even though PCA was observed to be helpful in isolating 

bolides in some cases, PCA alone is not capable of doing so in the majority of cases tested. 

Further analysis using different techniques is required. 

 
Figure 27. Scatterplot of PCA transformed data from the KDAX Sutter’s 

Mill, California, bolide with PC4 coloring 

C. K-MEANS CLUSTERING 

1. Method description 

The bolide data points in Figure 26 and Figure 27 are not easily separable from the 

non-bolide data points. However, looking at the two figures raises the question of whether 

a relationship exists between the centroid of all the data points and the distance to each of 

the bolide data points. Within unsupervised learning, k-means clustering is a method that 

could be used in order to characterize this relationship. 
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K-means clustering is a well-known and computationally efficient algorithm to 

separate data point into clusters [67]. It works on both high and low dimensional datasets 

and compares the similarity of each data point in order to assign similar data points into 

the same clusters. It is implemented algorithmically in [65]. 

The algorithm itself is completed using 4 steps. The user initializes the algorithm 

with k numbers of clusters, which firstly generates random initial locations for cluster 

centroids jµ where 1,...,j k= . Secondly, each data point is assigned to the nearest of the 

k clusters using the Euclidean distance calculation defined in Chapter IV, Equation 14 [67]. 

Thirdly, the centroid locations for each cluster are recalculated using Equation 23, where 

jµ  is the mean location of the cluster data points, jm  is the number of data points in that 

cluster, and x the data points within cluster jC . Lastly, the fourth step is repeating steps 2 

and 3 until the cluster locations no longer move and convergence has occurred [56,68].  

 1
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µ
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= ∑  (23) 

Convergence occurs when the inertia, also known as the within-cluster sum of 

squares criterion, is minimized and ceases to change on subsequent iterations of the 

algorithm. The inertia is defined in Equation 24 [68]. 
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The k-means clustering algorithm [65,67] does have flaws. One is that the number 

of clusters must be assigned before running the algorithm, so dynamic expansion or 

elimination of clusters is not allowed. Secondly, an optimal solution will always be found, 

but will often be a locally optimal solution and not a globally best solution. Thirdly, the 

algorithm fails to properly cluster nonlinear boundaries [65]. Fourthly and lastly, the 

program runtime scales with the number of data points in the dataset, meaning it falls prey 

to the curse of dimensionality [65]. 
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2. k-means Clustering Implementation 

The Scikit-learn library has a k-means algorithm, which is used in this research. 

The documentation provides adequate information on how to call and modify the function 

calls. Therefore, the only decision required is to determine the number of clusters to use in 

the function call. However, this is not an easy number to determine. The ideal situation 

would be to have two clusters, where all the bolides would cluster in one group and all the 

non-bolide points would cluster in the other group. However, looking at the plotted output 

from the PCA process in Figure 26 and Figure 27, this ideal case is not likely due to the 

distribution of the data points throughout the graph of the first three principal components. 

Therefore, the algorithm is executed once for 1k =  clusters and once for 2k =  clusters to 

return the centroid of each cluster and the within-cluster sum of squares value for each case 

in an attempt to determine experimentally whether it is possible to cluster the data points 

into bolide and non-bolide clusters. Furthermore, the k-means algorithm is applied to the 

PCA projected data. 

3. Analysis 

The results of running the algorithm for the Ash Creek, Texas, dataset are depicted 

in Figure 28 for 2 clusters and Figure 29 for 1 cluster. The baseline plots are the same as 

those produced from the PCA process, but with large red Xs to denote the cluster centroids 

from the k-means clustering algorithm. Analyzing Figure 28 shows that after the algorithm 

finishes clustering the dataset, the data points are split roughly down the middle of the 

dataset. Therefore, the centroids are both towards the center of all the data points, which 

can be seen in Figure 28. This means that due to a nonlinear boundary separating bolides 

from non-bolides, the data could not be split into a bolide cluster and a non-bolide cluster, 

and another method of analysis was required. 
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Figure 28. Scatterplot of PCA transformed data from the Ash Creek, Texas, 

bolide plus 2k =  k-means clusters denoted by two Xs. 

Looking at the results from Figure 29 shows the centroid for the full dataset. The 

purpose behind determining the location of the centroid is to then calculate the distance 

from the centroid to each of the bolide returns. For the Ash Creek, Texas, bolide, the mean 

Euclidean distance from centroid to all the bolides is 12.7 units; however, for the Sutter’s 

Mill, California, bolide, the mean Euclidian distance is 3.17 units. The full list of results is 

in Table 5, but comparing all the minimum, maximum, and mean values shows little 

consistency, even from the same Sutter’s Mill bolide viewed from 3 different radar sites. 

Table 6. Minimum, Maximum, and Mean Euclidean distances from the k-
means process 

Bolide Location Min Distance Max Distance Mean Distance 

Ash Creek, TX (KFWS) 6.31 units 19.1 units 12.7 units 

Sutter’s Mill, CA (KDAX) 1.28 units 8.09 units 3.17 units 

Sutter’s Mill, CA (KRGX) 7.26 units 8.82 units 7.83 units 

Sutter’s Mill, CA (KBBX) 2.35 units 6.51 units 3.70 units 
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Figure 29. Scatterplot of PCA transformed data from the Ash Creek, Texas, 

bolide plus 1k =  k-means clusters denoted by a single X. 

4. Limitations 

The k-means algorithm correctly assigns all the data points into either one or two 

clusters, and identifies the centroid. However, this was found to be unhelpful for bolide 

detection due to the location of the clusters being too similar. Similarly, using a single 

cluster to determine the minimum, maximum, and mean squared distances from centroid 

to bolides is unhelpful on its own due to the variability among different bolide events and 

datasets. Therefore, using k-means clustering as a method for bolide detection is 

insufficient, and alternative techniques should be tried. 

D. T-DISTRIBUTED STOCHASTIC NEIGHBOR EMBEDDING 

One of the limitations of both PCA and k-means clustering is that both of the 

previously described methods only use data in three dimensions for plotting and up to a 

fourth for data point coloring. However, up to 10 additional dimensions worth of data exists 

from the dataset of 13 features and could be used for clustering. Unfortunately, it is not 

possible for humans to visualize information in 3 or greater dimensions. Therefore, a 

method of dimensionality reduction is needed, but something unlike the linear reduction 

methods used by PCA, which when visualized in lower dimensions tends to obscure 
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clusters that are linearly separable in higher dimensions. Instead, manifold learning 

provides a mechanism to represent the nonlinear structure of data in lower dimensions [69]. 

In particular, this research uses the more recently developed t-Distributed Stochastic 

Neighbor Embedding (t-SNE) method of dimensionality reduction for visualizing data and 

cluster analysis. 

1. Method Description 

The t-SNE algorithm is an improvement to the original Stochastic Neighbor 

Embedding method from 2002, and was developed by van der Maaten and Hinton in 2008 

[70]. t-SNE functions by measuring the distances between data points in higher 

dimensional space and using a cost function to drive convergence towards the best fit for 

that relationship in lower dimensional space [70]. This lower dimensional mapping can be 

used in either 2D or 3D as a way to visualize the dataset in ways that cannot otherwise be 

done. 

t-SNE maps higher dimensional data points to those in lower dimensions through a 

series of steps. The first step is by converting the Euclidean distances between data points 

into affinities, which are a way to relate the various distances between data points. The 

original SNE relies upon a Gaussian distribution methodology in Equation 25 to create the 

conditional probability |j ip  where 2
iσ  is the variance, and both ix  and jx  are data points. 

The equation effectively gives nearby data points relatively high values, and distant data 

points values approaching 0 [70]. Mapping the affinities to lower dimensional space is done 

using a Gaussian distribution to form the conditional probability |j iq  found in Equation 26 

where iy  and jy  are analogous to ix  and jx , except in lower dimensional space. The 

minimization occurs using a gradient descent algorithm to minimize a cost function, where 

the cost function is the Kullback-Leibler divergences. However, this method results in what 

van der Maaten and Hinton deemed a “crowding problem” where optimizing the cost 

function becomes difficult and clusters of data points appear to congregate together in the 

same region without enough gaps between them [70].  
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Fixing the optimization difficulties was accomplished by swapping out the 

Gaussian distribution for a Student’s t-distribution with one degree of freedom [70], but 

only in the lower dimensional mapping. This is completed using Equation 27 when 

calculating the conditional probabilities in the lower dimensional space. In essence, the 

higher and lower dimensional spaces are no longer symmetric with regard to their 

distribution mappings, and this tends to create greater distances between clusters in the 

lower dimensional space while still retaining the closeness of near points in the clusters 

[70]. This can be seen by comparing the two distributions in Figure 30, where the 

distributions only overlap in two specific points and otherwise enable the asynchronous 

mapping used by t-SNE. 
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Figure 30. Comparison of a student T-Distribution vs. a Normal Distribution 
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The last piece of the algorithm that needs to be explained is the perplexity value. 

This value is the number of nearest neighbors used when calculating the conditional 

probabilities, and acts as a smoothing function for structure of the data points. It is defined 

in Equation 28, where iP  is the perplexity and |j ip  is the conditional probability between 

data points [70]. The effect of the perplexity value is that larger values make the lower 

dimensional output less effected by the local structure because more data points are used 

in the mapping process, while a smaller perplexity enables closer adherence to the local 

structure. Typically, perplexity values between 5 and 50 are advised [69].  
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2. t-SNE Implementation 

The t-SNE package within the Scikit-learn library was used for bolide detection in 

this research. The input to the algorithm was the PCA transformed dataset and multiple 

tuning parameters, and the outputs were 3D in nature, from which both 2D and 3D plots 

were created. The only input parameters that are modified from defaults were the 

initialization value of “pca” for additional global stabilization, a random state of 0 which 

sets the random number generator seed for reproducibility, a perplexity value of 50, and 

lastly a max number of iterations of 250 to speed up the algorithm. 

3. Analysis 

The results of the t-SNE algorithm are depicted in Figures 31–34. Both a 2D and 

3D output are shown with the data created from the t-SNE output and the coloring done 

with the distance from radar site to radar return. The bolides are highlighted with Xs in the 

circles. For the Ash Creek, Texas, bolide, the separation is excellent in both 2D and 3D 

plots. Furthermore, all of the bolides are congregated together in one cluster, indicating 

that they are near each other in higher dimensional space. Lastly, note that the coloring is 

only based upon the distance from the radar site, and bears no meaning as one of the PCA 

transformed input values to the algorithm. 
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Figure 31. t-SNE output for the Ash Creek, Texas, bolide in 2D and 3D 

Looking at the Sutter’s Mill, California, results, there is less separation between 

bolide to non-bolide points than there is for the Ash Creek bolide. Each cluster of bolide 

points appears a little separated from the non-bolide points; however, without knowing the 

exact locations of the points, each of Figures 32–34 have multiple small clusters of data 

points that could be confused with the bolide points. Fortunately, these small clusters are 

distant from the bulk of the non-bolide points, so although it is not clearly linearly 

separable, it is a helpful outcome. This outcome is also present in all three results showing 

that it is not a one-off result. 
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Figure 32. t-SNE output for the Sutter’s Mill, California, bolide from the 

KDAX radar in 2D and 3D 

 
Figure 33. t-SNE output for the Sutter’s Mill, California, bolide from the 

KRGX radar in 2D and 3D 
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Figure 34. t-SNE output for the Sutter’s Mill, California, bolide from the 

KBBX radar in 2D and 3D 

4. Limitations 

There are two limitations to the t-SNE algorithm: one minor and one major. The minor 

issue has already been identified, the fact that the bolide returns are only linearly separable in 

the best and most ideal of cases. Otherwise, the bolide returns could be confused with non-

bolide returns. The major issue is the computational cost of executing the algorithm. The 

complexity of the algorithm is 2( )O n  in both memory and computational requirements, 

which is a substantial cost [70]. Furthermore, the creators of the algorithm warn against 

datasets with greater than 10,000 data points, which is the case in this research. In a practical 

sense, the four bolide datasets require substantial and impractical amounts of time to complete. 

The Ash Creek bolide requires 25 minutes to complete, but the Sutter’s Mill bolide requires 

3, 8, and 16 hours to complete for the KDAX, KRGX, and KBBX radars respectively. 

Because of the time sensitivity needed for recovery, this algorithm is not viable on its own. 

E. COMBINING ALGORITHMS 

The PCA, k-means, and t-SNE algorithms were each applied to multiple bolide 

algorithms; unfortunately, each one was individually not capable of identifying bolides. In 
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particular, the PCA and t-SNE algorithms showed much promise in detecting outlier bolide 

radar returns among the non-bolide returns, but neither yielded a clear separation of the two 

classes and the computation cost for t-SNE was too high for regular, expeditious use. These 

limitations pointed towards a path forward: firstly, creating a method to lower the 

computational cost of t-SNE, and secondly, combining it with the existing PCA and t-SNE 

algorithms into a more comprehensive algorithm for bolide detection.  

1. Method Description 

The more complex of the two steps forward is reducing the computational cost by 

reducing the size of the dataset. The original dataset size varies between 15,000 to 121,000 

data points as shown in Table 3, each with 10 to 13 features each. This is substantially more 

than the 10,000 data point maximum limit identified by van der Maaten and Hinton [70]. 

Therefore, a substantial reduction in data points is required to enable using t-SNE in a 

reasonable amount of time. 

The method proposed in this research is a Nearest Neighbors Density Pruning 

(NNDP) method, which uses data point filtering based on the Nearest Neighbors algorithm. 

The NN algorithm itself can be used as a classifier that memorizes a training dataset to 

determine classification bounds that new data points can be compared against [56,62]. 

However, it is not the classification piece that helps in this case, but rather the aspect of the 

algorithm that calculates the Euclidean distance from a given data point, p, to the nearest m  

surrounding data points, jq  for 1,...,j m= , that is important [63]. Therefore, building upon 

the Euclidean distance formula from Equation 14, the mean distance to the nearest m  data 

points is calculated using Equation 29 where the sum of the distances from each data point p 

to every other point 1,..., mq q  is averaged by dividing by the number of points m. This output 

provides a way to determine how close, on average, a single point is compared to the 

surrounding data points.  
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The mean distance mµ  to the m closest points then provides a parameter that can 

be tuned using an upper and lower bound to separate out and remove non-bolide returns. 

For example, a single radar return data point that is distant from the 50 surrounding data 

points will have a very large 50µ ; this data point is unlikely to be a bolide because bolides 

typically comprise multiple data returns clustered together. Conversely, a non-bolide data 

point that is closely surrounded by similar non-bolide data points would have a very small 

50µ  value. By iteratively tuning the Upperµ  and Lowerµ  bounds, there exists a method to 

remove data points that are unlikely to be bolides. 

The simpler of the two steps forward is finding a way to chain multiple algorithms 

together. This process is relatively straight forward and has already been completed by 

using the PCA transformed output as the input to the k-means and t-SNE algorithms. The 

method is simply by using the output from one algorithm as the input to another algorithm, 

and because the syntax has been standardized, the only necessary decisions are what single 

algorithms and what order should the chained algorithm execute. The PCA and t-SNE 

algorithms have already been introduced as options, but the NNDP algorithm can be used 

as well. Because the density pruning method uses percentile values, the algorithm can be 

executed multiple times with independent m values, upper bounds, and lower bounds. 

Firstly, this enables increased accuracy without using very precise upper and lower bound 

values that would be required for execution in a single step. Secondly, breaking the pruning 

into multiple steps enables removing non-bolide points based upon the global structure 

using a large mµ  value and then the local structure using a small mµ  value. Because the 

local and global structures of bolides differ based upon the m value, this method will 

highlight those differences. 

2. Combined Algorithm Implementation 

Using the above knowledge of the individual methods, the overall flow of the 

combined algorithm is: 1) Conduct PCA to increase the variance of the dataset, 2) Use the 

NNDP to reduce the overall dataset size, 3) Conduct t-SNE to reduce the dimensionality 

of the dataset and cluster the bolides in that lower dimensional space, 4) Use NNDP to 

remove non-bolides from the t-SNE dataset, and 5) Output the results to the original 2D 
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radar plot with radar returns identified as probable bolides. The same Scikit-learn libraries 

previously used are again utilized and in the case of the NN library, retooled for use in this 

larger, combined algorithm. The final experiment was executed for all four bolide cases in 

Table 3, and the results analyzed for separability and accuracy in classifying bolides. 

Furthermore, the intermedia results from the combined algorithm are presented as well as 

the final results at the completion of the combined algorithm method. 

3. Intermediate Results Analysis 

The original PCA results for the Ash Creek, Texas, bolide are depicted in Figure 

26, and this dataset is then input into the NNDP algorithm. The performance of the 

algorithm is depicted in Figure 35. Each data point for the scatter plot is 50µ  for each radar 

return in 10-dimensional space. The horizontal lines are the upper and lower percentile 

bounds 99.9Upperµ =  and 96Lowerµ = . The top plot in Figure 34 is the input dataset, and 

the bottom shows the post pruning dataset, where the returns outside the bounds are 

removed from the dataset. By excluding the data points outside the upper and lower 

bounds, 96.1% of the data is excluded, leaving only 3.9% for further analysis. 

 
Figure 35. NN density pruning for the Ash Creek, Texas, bolide with 

horizontal line bounds at 96% and 99.9% 
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The results of the NNDP algorithm are shown in Figure 36. It is the same plot as 

Figure 26, except after exposure to a 96.1% pruning rate. The plot is visibly less cluttered 

after the data point reduction. However, some of the bolide radar returns have been 

removed in the process as well. This is not ideal, but some amount of false negatives are 

acceptable so that the algorithm’s Upperµ  and Lowerµ  bounds are not so overfit that the 

algorithm cannot be used for other datasets. Specifically, the original dataset had 10 

identified bolide signatures, but after the first round of pruning, only 6 remained.  

 
Figure 36. The first three principle components of the Ash Creek, Texas, 

bolide after NN Density Pruning 

The results shown in Figure 36 are then input into the t-SNE algorithm. Since there 

are substantially fewer data points, the algorithm is capable of executing in a significantly 

reduced time. The results of the t-SNE algorithm are depicted in Figure 37, and the results 

are similar to those in Figure 31, but with fewer data points, which is the desired outcome. 

However, there are still too many data points in the output dataset, so the output from the 

t-SNE algorithm are then used as the input to a second round of the NNDP algorithm. 
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Figure 37. Post NN Density pruning followed by t-SNE output for the Ash 

Creek, Texas, bolide 

Figure 38 shows the results of the second round of Density Pruning plotted with the 

first three principal components. The algorithm used a 99Upperµ =  and 92Lowerµ =  

percentile bounds and an m value of 20 that yields a 20µ  which prunes based on the local 

cluster of the bolides instead of the previous global structure. Where the original dataset 

has 10 identified bolide signatures and the first round of pruning reduces it to 6 bolide 

signatures, this second round of pruning reduces it to 4 bolides. However, the pruning rate 

is 99.7%, yielding 42 data points to review. Four of them are bolides, with 3 clustered 

together, which is a beneficial result for classification. 
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Figure 38. The first three PCs of the Ash Creek, Texas, bolide after density 

pruning 99.7% of the data points 

4. Final Results Analysis 

Although the second round of pruning depicted in Figure 38 is helpful in seeing the 

reduction in data points that should be investigated as possible bolides, it is not helpful for 

finding bolides within the original radar moment plots. Therefore, to resolve this, the 

information from Figure 38 is exported back to the original radar plots. Any of the original 

radar moment plots could have been chosen as the baseline plot, but the radar Reflectivity 

moment was chosen in Figures 39 through 42. Therefore, each of those figures shows the 

original radar reflectivity plot on the left, contrasted against the same plot on the right with 

green Xs denoting the locations of probable bolides. Each of these locations is the output 

of the combined algorithm method and represents 0.3% of the data points from the original 

dataset. 

The Ash Creek, Texas, Bolide is the most trivial of all the cases sampled. There is 

limited radar return noise that could be confused with bolide returns. The results show this 

as well, where the bolide is highly covered by green Xs, and there are limited other 

locations to investigate. In total, there are 42 data points to review as an output from the 

chaining algorithm, of which there are 6 small clusters of less than five data points, 1 cluster 
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of 6 data points, and the large cluster of 22 returns associated with the bolide. From Table 

6, the Accuracy and Specificity are very high, but the overall results are skewed in favor 

of high percentages because of the large number of non-bolides within the dataset. A better 

way to interpret the results when two classes are imbalanced, such as this case with few 

bolides and many non-bolides, is through the recall and specificity rates. These measures 

paint a more accurate, but less beneficial picture. However, even though the numerical 

numbers are not as high as they could be, the bolide is clearly identified within Figure 39, 

and a human reviewer would select it for further analysis, so the algorithm has 

accomplished its goal of distilling down the large number of results to something more 

manageable for a human to look through. Lastly, the execution time is reduced from an 

original 8 minutes in the original t-SNE algorithm down to less than one minute. Although 

this reduction was not vital for this dataset, the combined algorithm shows promise for 

applications to lager datasets. 

 
Figure 39. Final results for the Ash Creek, Texas, Bolide with possible 

bolides in green Xs on the right 
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Table 7. Confusion Matrix and associated algorithm execution results for 
the 4 bolide datasets 

  
KFWS Ash 
Creek, Texas 

KDAX Sutter’s 
Mill, California 

KRGX Sutter’s 
Mill, California 

KBBX Sutter’s 
Mill, California 

Total data points 15,626 66,388 137,332 121,782 
Bolide data points 53 69 22 21 
Non-Bolide data points 15,573 66,319 137,310 121,761 
Data points to review 42 182 375 332 
          
True Positive Points 22 9 18 10 
False Positive Points 20 173 357 322 
True Negative Points 15,553 66,146 136,953 121,439 
False Negative Points 31 60 4 11 
          
Accuracy Rate 99.67% 99.65% 99.74% 99.73% 
True Positive Rate (recall) 41.51% 13.04% 81.82% 47.62% 
True Negative Rate (specificity) 99.87% 99.74% 99.74% 99.74% 
Precision Rate 52.38% 4.95% 4.80% 3.01% 
          
Execution Time [Minutes] 0.63083084 3.835250111 6.78067112 7.317465468 

 
Reviewing the next three test cases, the Sutter’s Mill bolide from the KDAX, 

KRGX, and KBBX radars yields a similar picture. The radar dataset is significantly more 

cluttered than that of the trivial case. There are a large number of individual data points to 

review as well as clusters of data points to review in each of Figures 40, 41, and 42. 

However, this makes sense because the dataset itself is larger, with 182, 375, and 332 data 

points to review as an output from the chaining algorithm. A human reviewer would be 

able to immediately remove some of the data points since they are solitary points, reducing 

the number to review relatively easily, but the overall number of data points to review is 

still an issue that needs resolving.  

Reviewing the results in Table 6 for the Sutter’s Mill Bolide, the Accuracy and 

Specificity values are still very high, just like that of the Ash Creek Bolide. However, the 

Precision rates are much lower, and the Recall values are not consistent between the three 

radar sites. Recall rates for KDAX are very low, moderate for KBBX, and high for KRGX. 

This shows that the same event can be seen vastly differently from three different radar 

locations. The execution time of the algorithm is significantly reduced down from the 
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original 3, 8, and 16 hours to less than 4, 7, and 7 minutes respectively. Again, the data 

point reduction methods resultant from pruning enabled the use of t-SNE. 

 
Figure 40. Final results for the KDAX Sutter’s Mill Bolide with possible 

bolides in green Xs on the right 

 
Figure 41. Final results for the KRGX Sutter’s Mill Bolide with possible 

bolides in green Xs on the right 
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Figure 42. Final results for the KBBX Sutter’s Mill Bolide with possible 

bolides in green Xs on the right 

5. Limitations 

Several shortcomings of the machine learning methods tried earlier in this thesis 

were improved by chaining the algorithms together and through reducing the dataset size. 

Despite the improvement, the process proposed in this research still has limitations. Firstly, 

although the execution time is orders of magnitude lower, it could still be improved by 

better streamlining the code and further dataset reductions. Secondly, the precision and 

recall rates are low, indicating that the number of true positives and false positives needs 

to be increased. Lastly and most importantly, the number of data points a human reviewer 

needs to verify as a bolide is still quite large. In each of the four cases, only 0.3% of the 

data remains for reviewing, but when the datasets themselves are upwards of 100,000 data 

points, even the distilled number of data points is significant. Therefore, although this 

algorithm is a good step in the correct direction, it can be iterated upon and improved to 

ease the burden on the human reviewer. 

F. SUMMARY 

This chapter applied multiple machine learning approaches to detect bolides within 

Doppler radar data. After creating a baseline from preprocessing the dataset, PCA was 
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conducted and deemed helpful, but inadequate to detect bolide outliers. Next, k-means 

clustering was attempted and determined to be insufficient as well. Thirdly, t-SNE was 

found to be very helpful at taking higher dimensional data and displaying it in 2D or 3D, 

but came at such a computationally expensive cost that it was prohibitive to use. Therefore, 

a combined series of PCA and t-SNE, with density pruning through nearest neighbors 

analysis was created and found to be a viable method to identify bolide outliers.   
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VI. CONCLUSION AND FUTURE WORK 

A. CONCLUSION 

This thesis proposes a new approach for applying machine learning to the problem 

of meteor and bolide detection within Doppler radar data. This method supports the 

motivation of aiding the expedient recovery of meteorite samples in order to increase the 

knowledge of near-Earth asteroid physical properties and understand how these objects 

interact upon impacting Earth’s atmosphere. Such information will be invaluable for the 

advancement of planetary science and preparing future mitigation strategies to address the 

threat from potential Earth impacting objects. Doppler radar data is a comprehensive and 

ubiquitous source of meteor and bolide data, and this thesis developed a machine learning 

algorithm to filter through the large amounts of data to find the few outlier meteor and 

bolide signals.  

Unsupervised methods were implemented as the means to search through the 

unlabeled radar data from four radar data sites for two bolide events: the KFWS radar for 

the Ash Creek bolide and the KDAX, KRGX and KBBX radars for the Sutter’s Mill bolide. 

PCA, k-means clustering, and t-SNE were investigated as specific algorithms to classify 

the outliers, but each on its own was determined to be inadequate. PCA failed to provide 

substantial separation between the bolide and non-bolide points. k-means clustering failed 

to categorize the radar return data points into bolide and non-bolide clusters. Lastly, t-

SNE’s execution time was too long to fulfill the expedient nature of the project’s 

motivation and decreased the risk of acquiring suitable meteorite samples. However, a 

promising method was found by combining aspects of the PCA and t-SNE algorithms with 

a dataset reduction via NN Density Pruning. Through the PCA’s variance transformation 

method, the NNDP’s data reduction method, and the t-SNE’s dimensionality reduction 

method, outlier bolides could be filtered from non-bolide radar returns in reduced time. 

The empirical results showed that 99.7% of the data returns were filtered in the 

machine learning algorithm, yielding an accuracy rate of 99.73% in a significantly reduced 

time of less than 8 minutes for a 121,553 return sized dataset (Sutter’s Mill, California 
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bolide and the KBBX radar) and an accuracy of 99.67% in less than 1 minute for a 15,439 

sized dataset (Ash Creek, Texas bolide and the KFWS radar). However, the algorithm still 

has room to improve, as the Recall and Precision rates remained low due to difficulties in 

correctly classifying True Positive bolides. Overall, the algorithm presented in this research 

is a viable method to help NASA scientists with bolide detection and meteorite recovery. 

Future work to refine the algorithm will enhance these efforts. 

B. FUTURE WORK 

There are several areas of future research that can be taken as a result of completing 

this research. They condense into three focus areas. The first is a series of ways to improve 

the accuracy of the algorithm, which would resolve the largest existing limitation from the 

current method’s incarnation. The second is to improve the speed of the algorithm. The 

third and last is to use the algorithm’s filtered bolides for additional and new avenues of 

research. Each has a great potential benefit that ties back to the original problem statement 

and motivation behind this research. 

Improving the accuracy of the algorithm would significantly improve the results 

for NASA scientists. Using additional bolide events from different radars on different days 

would significantly help in this effort. Additional bolides would enable a characterization 

of the k-means distance that was relatively unhelpful due to only four data points, one for 

each of the four events analyzed in this research. It would also enable better estimation of 

calculating what the Upperµ  and Lowerµ  bounds should be without overfitting the algorithm.  

Next, additional features could be added to the dataset. This would increase the 

dimensionality of the dataset, but adding a few features should not change the execution 

time of the algorithm very much. However, it could potentially make bolides stand out 

through higher levels of variance. An example of a feature different from radar moment 

data would be seismic data, which has been proposed by Fries et al. [5].  

Lastly, the accuracy could be improved by trying to re-order the execution of the 

algorithm in this research. The NN Density Pruning, PCA, and t-SNE algorithms are all 

proven helpful in this research, but investigating different execution sequences should be 
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investigated. For instance, if the NN Density Pruning algorithm was first run on the radar 

moments plot, individual radar returns and large groups of returns from a cloud could be 

excluded from the dataset, immediately shrinking it down in size before it was transformed 

via PCA and pruned again in preparation for the t-SNE algorithm. Although not guaranteed 

to help, it is worthwhile to investigate how to increase the Precision and Recall rates. 

The second focus area would be improving the speed of the algorithm. Density 

pruning helped tremendously in this regard, but additional speed gains would enable faster 

recovery in areas of adverse weather or large human populations. Reducing the amount of 

data points input into the t-SNE algorithm would help in this regard, but execution time is 

also wasted during the preprocessing phase. One method of speed reduction would be 

through an algorithm that better exported data from NOAA’s WCT program. For the 

current algorithm, it is manually exported, but this process could be scripted. Secondly, 

coordination with American Meteor Society and their Operations Manager, Mike Hankey, 

could enable using database management tools to more quickly query for radar return data 

as was already researched [29]. 

The final focus area would be on applying the output of this research to correlate 

bolide return strength to the original mass of the bolide. Some post recovery mass 

information is known from select few samples that have reached the surface of the Earth. 

Machine learning or statistical methods could be investigated to correlate the radar return 

strength to the mass of the final sample or samples like the work completed by Brown et 

al. [8]. This research would benefit from a source of verified bolides, so it is a natural 

follow on to the current research effort.  



90 

THIS PAGE INTENTIONALLY LEFT BLANK  



91 

LIST OF REFERENCES 

[1] Chodas, P., Khudiyan, S., and Chamberlin, A., 2019, “Center for Near Earth 
Object Studies: Discovery Statistics.” Calif. Inst. Technol., Jet Propul. Lab. 
https://cneos.jpl.nasa.gov/stats/totals.html. 

[2] Chodas, P., Khudiyan, S., and Chamberlin, A., 2019,  “Center for Near Earth 
Object Studies: Fireballs.” Calif. Inst. Technol., Jet Propul. Lab. 
https://cneos.jpl.nasa.gov/stats/totals.html. 

[3] Durand-Manterola, H. J., and Cordero-Tercero, G., 2014, “Assessments of the 
Energy, Mass and Size of the Chicxulub Impactor.” 

[4] Fries, M., Matson, R., Schaefer, J., Fries, J., and Hankey, M., 2014,  “Worldwide 
Meteorite Fall Recovery Using Weather Radars.” Gold Schmidt 2014 Abstracts. 

[5] Fries, M., Matson, R., Schaefer, J., Fries, J., Hankey, M., and Anderson, L., 2014, 
“Worldwide Weather Radar Imagery May Allow Substantial Increase in 
Meteorite Fall Recovery.” Meteorit. Soc. Meet., pp. A124–A124. 

[6] Walla, E., 2018,  “Rapid Detection and Recovery: The Science of Hunting 
Meteorites.” Univ. Ariz. News. 

[7] Laird, C., Fries, M., and Matson, R., 2017,  “A Method for Estimating Meteorite 
Fall Mass from Weather Radar Data.” LPI, The Woodlands, Texas. 

[8] Brown, P., Pack, D., Edwards, W. N., Revelle, D. O., Yoo, B. B., Spalding, R. E., 
and Tagliaferri, E., 2004,  “The Orbit, Atmospheric Dynamics, and Initial Mass of 
the Park Forest Meteorite.” Meteorit. Planet. Sci., 39(11), pp. 1781–1796. 

[9] Daintith, J., and Gould, W., eds.: Bolide. Collins Dictionary of Astronomy. 

[10] American Meteor Society. Home Page. https://www.amsmeteors.org/. 

[11] Fries, M., Laird, C., Hankey, M., Fries, J., Maton, R., and Reddy, V., 2017,   
“Estimation of Meteorite Fall Mass and Other Properties from Weather Radar 
Data.” LPI, Santa Fe, New Mexico, p. 6251. 

[12] Fries, M., and Fries, J., 2010, “Doppler Weather Radar as a Meteorite Recovery 
Tool.” Meteorit. Planet. Sci., 45(9), pp. 1476–1487. 

[13] National Aeronautics and Space Administration, 2007, “Report to Congress: 
Near-Earth Object Survey and Deflection Analysis of Alternatives.” 

[14] Chodas, P., “NEO Basics. Calif. Inst. Technol., Jet Propul. Lab Center for Near 
Earth Object Studies.” https://cneos.jpl.nasa.gov/about/basics.html. 



92 

[15] Ceplecha, Z., Borovička, J., Elford, W. G., ReVelle, D. O., Hawkes, R. L., 
Porubčan, V., and Šimek, M., 1998, “Meteor Phenomena and Bodies.” Space 
Science Review, 84(3/4), pp. 327–471. 

[16] Silber, E. A., Boslough, M., Hocking, W. K., Gritsevich, M., and Whitaker, R. 
W., 2018, “Physics of Meteor Generated Shock Waves in the Earth’s Atmosphere 
– A Review.” Adv. Space Res., 62(3), pp. 489–532. 

[17] Doviak, R. J., and Zrnić, D. S., 2006, Doppler Radar and Weather Observations. 
Dover Publications, Mineola, N.Y. 

[18] Chrzanowski, E. J., 1990, Active Radar Electronic Countermeasures. Artech 
House, Norwood, MA. 

[19] Russell, S. J., Norvig, P., and Davis, E., 2010, Artificial Intelligence: A Modern 
Approach. Prentice Hall, Upper Saddle River. 

[20] Haykin, S. S., 1999, “Neural Networks: A Comprehensive Foundation. Prentice 
Hall, Upper Saddle River, N.J. 

[21] Doviak, R. J., Zrnic, D. S., and Sirmans, D. S., 1979, “Doppler Weather Radar.” 
Proc. IEEE, 67(11), pp. 1522–1553. 

[22] Schmidt, J. M., Flatau, P. J., Harasti, P. R., Yates, R. D., Littleton, R., Pritchard, 
M. S., Fischer, J. M., Fischer, E. J., Kohri, W. J., Vetter, J. R., Richman, S., 
Baranowski, D. B., Anderson, M. J., Fletcher, E., and Lando, D. W., 2012, “Radar 
Observations of Individual Rain Drops in the Free Atmosphere.” Proc. Natl. 
Acad. Sci., 109(24), pp. 9293–9298. 

[23] Kent, B. M., Thomas, C., and Ryan, P., 2012, “The NASA Debris Radar for 
Characterizing Static and Dynamic Ascent Debris Events for Safety of Flight.”  
Proceedings of the 2012 IEEE International Symposium on Antennas and 
Propagation, IEEE, Chicago, IL, USA, pp. 1–2. 

[24] Melnikov, V., Murnan, R., and Burgess, D., “Detecting and Tracking of Airborne 
Volcanic Ash with the WSR-88Ds, Task 8 of 2016 ROC MOU, NWS Radar 
Operations Center.” 

[25] Marzano, F. S., Picciotti, E., Montopoli, M., and Vulpiani, G., 2013, “Inside 
Volcanic Clouds: Remote Sensing of Ash Plumes Using Microwave Weather 
Radars.” Bull. Am. Meteorol. Soc., 94(10), pp. 1567–1586. 

[26] Marzano, F. S., Marchiotto, S., Textor, C., and Schneider, D. J., 2010, “Model-
Based Weather Radar Remote Sensing of Explosive Volcanic Ash Eruption.” 
IEEE Trans. Geosci. Remote Sens., 48(10), pp. 3591–3607. 



93 

[27] Simon, S. B., Grossman, L., Clayton, R. N., Mayeda, T. K., Schwade, J. R., 
Sipiera, P. P., Wacker, J. F., and Wadhwa, M., 2004, “The Fall, Recovery, and 
Classification of the Park Forest Meteorite.” Meteorit. Planet. Sci., 39(4), pp. 
625–634. 

[28] Popova, O. P. and Coauthors, 2013, “Chelyabinsk Airburst, Damage Assessment, 
Meteorite Recovery, and Characterization.” Science, 342(6162), pp. 1069–1073. 

[29] Hankey, M., Fries, M., Matson, R., and Fries, J., 2017, “AMSNEXRAD-
Automated Detection of Meteorite Strewnfields in Doppler Weather Radar.” 
Planet. Space Sci., 143, pp. 199–202. 

[30] Brown, P. and Coauthors, 2011, “The Fall of the Grimsby Meteorite-I, “Fireball 
Dynamics and Orbit from Radar, Video, and Infrasound Records, Grimsby 
Meteorite Fall.” Meteorit. Planet. Sci., 46(3), pp. 339–363. 

[31] Fries, M., and Fries, J. “Partly Cloudy with a Chance of Chondrites - Studying 
Meteorite Falls Using Doppler Weather Radar.” 41st Lunar Planet. Sci. Conf. 
2010. 

[32] Fries, M., and Fries, J., 2010, “Doppler Weather Radar Observations of the 14 
April 2010 Southwest Wisconsin Meteorite Fall.” 73rd Ann. Meteor. Soc. Meet.. 
2010, 73. 

[33] Fries, M., Fries, J., and Schaefer, J., 2011, “A Probable Unexplored Meteorite Fall 
Found in Archived Weather Radar Data.” 42nd Lunar Planet. Sci. Conf. 2011, 42. 

[34] Fries, M., Fries, J., Hankey, M., and Matson, R., 2016, “Meteorite Falls Observed 
in U.S. Weather Radar Data in 2015 and 2016 (to Date).” 79th Ann. Meet. 
Meteor. Soc. 2016, 79. 

[35] Fries, M., Matson, R., Fries, J., and Hankey, M., 2013, “Faster Recovery, Better 
Science: Meteorite Fall Events Detected with Weather Radars and Seismometers 
in 2012. 44th Lunar Planet. Sci. Conf. 2013, 44. 

[36] Jenniskens, P. and Coauthors, 2012, “Radar-Enabled Recovery of the Sutter’s 
Mill Meteorite, a Carbonaceous Chondrite Regolith Breccia.” Science, 338(6114), 
pp. 1583–1587. 

[37] Djorgovski, S. G., de Carvalho, R. R., Odewahn, S. C., Gal, R. R., Roden, J., 
Stolorz, P., and Gray, A., 1997, “Data Mining a Large Digital Sky Survey: From 
the Challenges to the Scientific Results.” A.G. Tescher, ed., San Diego, CA, pp. 
98–109. 

[38] Usama M. Fayyad, S. G. Djorgovski, and Nicholas Weir, 1996, “From Digitized 
Images to Online Catalogs Data Mining a Sky Survey.” AI Mag., 17(2). 



94 

[39] Galindo, Y., and Lorena, A. C., 2018, “Deep Transfer Learning for Meteor 
Detection. Anais Do XV Encontro Nacional de Inteligência Artificial e 
Computacional (ENIAC 2018), Sociedade Brasileira de Computação - SBC, São 
Paulo, pp. 528–537. 

[40] Misra, A., and Bus, S. J., 2008, “Artificial Neural Network Classification of 
Asteroids in the Sloan Digital Sky Survey.”  

[41] Smeresky, B. P., 2015, “Optimizing near Earth Object Classification Using 
Artificial Neural Networks and Evolutionary Methods.” Master’s Thesis, Florida 
Institute of Technology. 

[42] Rumpf, C., Longenbaugh, R., Henze, C., Chavez, J., and Mathias, D., 2019, “An 
Algorithmic Approach for Detecting Bolides with the Geostationary Lightning 
Mapper.” Sensors, 19(5), p. 1008. 

[43] U.S. Department of Commerce/NOAA, 2008, “Federal Meteorological Handbook 
No. 11: Doppler Radar Meteorological Observations, Part A: System Concepts, 
Responsibilities, and Procedures.” 

[44] US Department of Commerce, NOAA, National Weather Service: About Our 
WSR 88-D Radar.” Accessed 21 August 2019. https://www.weather.gov/iwx/
wsr_88d. 

[45] Jaffe, B. M., 1973, “Forward Reflection of Light by a Moving Mirror.” Am. J. 
Phys., 41(4), pp. 577–578. 

[46] American Meteorological Society, “Glossary of Meteorology.” Accessed: 09 
October 2019. http://glossary.ametsoc.org/wiki/Moment. 

[47] Binghamton, NY, Weather Forecast Office, and U.S. Department of Commerce, 
NOAA, National Weather Service, “WSR-88D Binghamton’s (KBGM) Upgrade 
to Dual Polarization. KBGM Upgrade Dual Polarization.” Accessed 14 August 
2019. https://www.weather.gov/bgm/eventsDualPol. 

[48] US Department of Commerce, NOAA, National Weather Service, J., Mississippi 
Weather Forecast Office, 2019, NWS Jackson Dual Polarization Upgrade 
Information, “What Is Dual-Pol Radar?” Accessed 21 August 2019. 
https://www.weather.gov/jan/dualpolupgrade-products. 

[49] NOAA, “NEXRAD Data Inventory Search, National Centers for Environmental 
Information.” Accessed 13 June 2019. https://www.ncdc.noaa.gov/nexradinv/. 

[50] Brett, M., 2019, “Python Software Foundation: NetCDF4 1.5.2. Python Softw. 
Found.” https://pypi.org/project/netCDF4/. 



95 

[51] McCulloch, W. S., and Pitts, W., 1943, “A Logical Calculus of the Ideas 
Immanent in Nervous Activity.” Bull. Math. Biophysics., 5(4), pp. 115–133. 

[52] Kelley, H. J., 1960, “Gradient Theory of Optimal Flight Paths.” ARS J., 30(10), 
pp. 947–954. 

[53] Rumelhart, D. E., Hinton, G. E., and Williams, R. J., 1986, “Learning 
Representations by Back-Propagating Errors.” Nature, 323, pp. 533–536. 

[54] Mitchell, T. M., 1997: Machine Learning. McGraw-Hill, New York. 

[55] Haykin, S. S., and Haykin, S. S., 2009, Neural Networks and Learning Machines. 
Prentice Hall, New York. 

[56] Raschka, S., and Mirjalili, V., 2017, “Python Machine Learning: Machine 
Learning and Deep Learning with Python, Scikit-Learn, and TensorFlow. Packt 
Publishing, Birmingham Mumbai. 

[57] van Rossum, G. Python Language Reference. Python Software Foundation, UK. 

[58] Smith, M., 2017, “Python BeginnersGuide/Overview.” Accessed 12 Jun 2019. 
https://wiki.python.org/moin/BeginnersGuide/Overview.  

[59] Python Softw. “Found: Python Package Index.” Available: https://pypi.org/. 

[60] Buitinck, L. and Coauthors, 2013, “API Design for Machine Learning Software: 
Experiences from the Scikit-Learn Project. ArXiv: 1309.0238[cs]. 

[61] Hunter, J. D., 2007, “Matplotlib: A 2D Graphics Environment.” Comput. Sci. 
Eng., 9(3), pp. 90–95. 

[62] Vanderplas, J., 2019, “Scikit-Learn: Nearest Neighbors Documentation.” Scikit-
Learn. Accessed 14 August 2019. https://scikit-learn.org/stable/modules/
neighbors.html. 

[63] Anton, H., 1994, Elementary Linear Algebra. John Wiley, New York. 

[64] Hastings, K. J., 1997, Probability and Statistics. Addison-Wesley, Reading, Mass. 

[65] Vanderplas, J. T., 2016, “Python Data Science Handbook: Essential Tools for 
Working with Data.” O’Reilly Media, Inc, Sebastopol, CA. 

[66] Scikit-learn developers, “Scikit Learn: Principal Component Analysis (PCA).” 
Scikit Learn. https://scikit-learn.org/stable/modules/decomposition.html#pca. 

[67] Scikit-learn developers, “Scikit Learn Clustering and K-Means.” https://scikit-
learn.org/stable/modules/clustering.html#k-means. 



96 

[68] Arthur, D., and Vassilvitskii, S., 2007, K-Means++: The Advantages of Careful 
Seeding. Proceedings of the Eighteenth Annual ACM-SIAM Symposium on 
Discrete Algorithms, Society for Industrial and Applied Mathematics, 
Philadelphia, PA, USA, pp. 1027–1035. 

[69] Scikit-learn developers, “Scikit Learn Manifold Learning.’ https://scikit-learn.org/
stable/modules/manifold.html. 

[70] van der Maaten, L., and Hinton, G. E., 2008, “Visualizing Data Using T-SNE.” J. 
Mach. Learn. Res. JMLR, 9(Nov). 

 
  



97 

INITIAL DISTRIBUTION LIST 

1. Defense Technical Information Center 
 Ft. Belvoir, Virginia 
 
2. Dudley Knox Library 
 Naval Postgraduate School 
 Monterey, California 


	19Dec_Smeresky_Brendon_First8
	19Dec_Smeresky_Brendon
	I. Introduction
	A. Motivation
	B. Problem statement
	C. Background
	1. Nomenclature of Near-Earth Objects
	2. Radar Theory
	3. Machine Learning

	D. Review of Literature
	1. Doppler Radar
	2. Meteor Analysis
	3. Meteor Discovery within Doppler Radar
	4. Artificial Intelligence and Machine Learning
	5. Uniqueness by Combining Fields of Study

	E. Outline of remaining chapters

	II. Weather radar
	A. Radar Background
	1. Weather Doppler Systems
	2. WSR-88D Radar
	3. Archiving Data

	B. Acquiring Radar data
	C. Using noaa’s wct program to view radar files
	D. The netCDF Unidata Format
	E. The CSV Format
	F. Summary

	III. Artificial Intelligence
	A. Historical perspective
	B. Machine Learning
	1. Supervised Learning
	2. Unsupervised Learning

	C. Evaluating and comparing models
	1. Overfitting
	2. Training Error and Prediction Error

	D. Using algorithms for data analysis
	1. The Validity of Machine Learning for Data Analysis
	2. Roadmap for Applying Machine Learning

	E. Summary

	IV. methods
	A. Coding Language
	1. Python
	2. NumPy Library
	3. Pandas Library
	4. Scikit-learn Library
	5. Matplotlib Library

	B. Data Preprocessing
	1. Importing CSV Data into Python
	2. Merging the Radar Moments Together
	3. Initial Problems with the CSV Dataset
	4. Replacing Missing/​NaN Values
	5. Creating a Range Scaled Feature
	6. Creating a Change Detection Feature
	7. Dual Polarization Features
	8. Dataset Feature Description

	C. Experimental Design and limitations
	D. Performance Statistics
	E. Summary

	V. Application of Unsupervised machine learning TO BOLIDE DETECTION
	A. Completing a baseline analysis of the Dataset
	B. Principal Component Analysis
	1. Method Description
	2. PCA implementation
	3. Analysis
	4. Limitations

	C. k-means clustering
	1. Method description
	2. k-means Clustering Implementation
	3. Analysis
	4. Limitations

	D. T-Distributed Stochastic Neighbor Embedding
	1. Method Description
	2. t-SNE Implementation
	3. Analysis
	4. Limitations

	E. Combining Algorithms
	1. Method Description
	2. Combined Algorithm Implementation
	3. Intermediate Results Analysis
	4. Final Results Analysis
	5. Limitations

	F. Summary

	VI. Conclusion and Future Work
	A. Conclusion
	B. Future Work

	List of References
	initial distribution list


