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To overcome the difficulty of having only part of compressor
characteristic maps including on-design operating point, and
accurately calculate compressor thermodynamic performance
under variable working conditions, this paper proposes a novel
compressor performance modelling method based on support
vector machine nonlinear regression algorithm. It is compared
with the other three neural network algorithms (i.e. back
propagation (BP), radial basis function (RBF) and Elman neural
networks) from the perspective of interpolation and extrapolation
accuracy as well as calculation time, to prove the validity of the
proposed method. Application analyses indicate that the
proposed method has better interpolation and extrapolation
performance than the other three neural networks. In terms of
flow characteristic map representation, the root mean square
error (RMSE) of the extrapolation performance at higher and
lower speed operating area by the proposed method is 0.89% and
2.57%, respectively. And the total RMSE by the proposed method
is 2.72%, which is more accurate by 47% than the Elman
algorithm. For efficiency characteristic map representation, the
RMSE of the extrapolation performance at higher and lower
speed operating area by the proposed method is 2.85% and
1.22%, respectively. And the total RMSE by the proposed method
is 1.81%, which is more accurate by 35% than the BP algorithm.
Moreover, the proposed method has better real-time performance
compared with the other three neural network algorithms.
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Figure 1. Compressor characteristic maps. (a) Compressor flow characteristic map. (b) Compressor efficiency characteristic map.
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1. Introduction
The gas turbine is an internal combustion type power machine which uses a continuously flowing gas as
working medium to drive an impeller to rotate at high speed and converts thermic energy into mechanical
work. It has been widely used in power plant, ship industry and transportation industry [1,2] due to the
excellent performance such as flexible start-up, high thermal efficiency, short construction period and low
pollution emission. In the process of gas turbine operation, the main components (such as turbines,
compressors and combustion chambers) may be affected by the harsh working conditions inside the
engine and the surrounding environmental pollution [3,4]. As the operating time increases, component
performance degradation or damage may occur, resulting in various serious faults [5]. Moreover, when
the performance degradation or damage of these components happens, the intrinsic performance
parameters of these components will also vary, resulting in changes of gas path measurable parameters
[6]. Therefore, accurate gas turbine thermodynamic modelling plays a key role in gas turbine performance
analysis and gas path diagnosis. The veracity of a gas turbine performance model is chiefly determined by
the expression precision of its component characteristic maps, especially for compressor maps.

The compressor performance expressed in Cartesian coordinates is usually regarded as compressor
characteristic maps, as shown in figure 1, and the compressor characteristic maps are further used in
the thermodynamic model of gas turbine engines [7]. Compressor characteristic maps (i.e. the flow
characteristic map and efficiency characteristic map) can be described by four absolute parameters (i.e.
mass flow rate, pressure ratio, isentropic efficiency and rotational speed) or four similar corrected
parameters [8]. Among these four parameters characterizing the operating point of the compressor,
as long as any two of them have been determined, the other two parameters are determined
accordingly. One of the toughest problems in the development of gas turbine performance model is
compressor modelling [9]. Usually, only part of the compressor characteristic maps containing the on-
design point is obtained by an engine test [10] bench under different operating conditions or by
numerical simulation over computational fluid dynamics with high cost [11].

A lot of efficacious methods have been proposed to improve the calculation precision of the
thermodynamic performance model for gas turbine engines, mainly through correcting the known
component characteristic maps [12–14] or producing new ones [15] based on gas path measurable
parameters. Simani et al. [16] introduced a gas turbine thermodynamic modelling method which used an
optimization algorithm to seek an optimal set of scaling factors for the component maps, and
subsequently the proposed method was expanded by Lambiris et al. [17]. Kong et al. [18] presented a
method based on the existing component characteristic maps and the scaling factors obtained under the
on-design operating point, to acquire new component characteristic maps under variable working
conditions over system identification. Recently, the artificial neural networks (ANNs) have been
theoretically used to close in upon any nonlinear function through a proper network structure, due to
the high degree of nonlinear mapping capability [19–23]. For expressing compressor characteristic maps
mathematically, Yu et al. [24] developed a data-based tri-layer back propagation (BP) neural network
applied to the Levenberg–Marquardt algorithm. Ghorbanian & Gholamrezaei [25] investigated the
modelling capability of various neural networks, as well as introducing the two models in the
performance map simulation. Peng et al. presented a method for simulating compressor characteristics
based on the radial basis function (RBF) neural network. A hybrid ANNs method integrated with partial
least square was used to model thermodynamic performance for a scroll compressor by Tian et al. [26].
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Although, many efficient methods have been performed to generate and predict the compressor

characteristic maps in unknown regions based on the known and limited experimental data from the
manufacturers or performance decks, the simulation accuracy of the conventional methods for the
interpolation and extrapolation performance of compressor characteristic maps under off-design working
conditions is usually unsatisfactory. Due to the high nonlinearity of these characteristic parameters, it is
tough to establish a mathematical expression via a small amount of sample. Moreover, the training
process of ANNs, which is similar to a black box problem, is very complicated and time-consuming, and
it is difficult to correctly reflect the concrete input–output relationships of a compressor system in many
cases. The networks are very susceptible to the network weights of initialization and are prone to
converge to diverse local minima with different weights, failing network training. Therefore, it is
necessary to propose a compressor characteristic map expression method with perfect interpolation and
extrapolation performance to accurately realize the thermodynamic calculation of the compressor
performance under off-design working conditions. In order to further improve the accuracy of the
compressor performance model in a small amount of experimental data, this paper puts forward a novel
method for representing the compressor characteristic maps based on support vector machine (SVM)
nonlinear regression algorithm. Furthermore, the highlights of the paper are as follows:

(a) A novel method based on support vector machine nonlinear regression algorithm is proposed for
representing the characteristic maps to accurately realize the thermodynamic calculation of
compressor performance under variable working conditions.

(b) The accuracy of the interpolation and extrapolation performance by the proposed method and three
other neural networks (BP, RBF and Elman) is comparatively analysed.

(c) The real-time performance by the proposed method and three other neural networks (BP, RBF and
Elman) is also comparatively analysed.

The rest of the article is arranged as below. In §2, the detail description of the algorithms is developed.
Furthermore, §3 presents the comparison and analysis of the various methods, with the conclusions in §4.
2. Methodology
2.1. Traditional methods

2.1.1. BP neural network

BPalgorithm is an effectivemulti-layer feed-forward network, whosemathematical principle is the forward
propagation of the signal and the back propagation of the error. The ultimate networkoutputs are as close as
possible to the expected outputs by continuously regulating the network connection weights by network
training. The network structure is constituted of the input layer, hidden layer and output layer, as shown
in figure 2. wij is the weight from the input layer to the hidden layer, and wjk denotes the weight from the
hidden layer to the output layer, where i, j and k represents the number of neurons in each layer, respectively.

It is indispensable to initialize the following parameters for a BP neural network before training.
(1) The number of neurons on the hidden layer
The number of neurons on the hidden layer determines the expressive power of the network, which

determines the complicated degree of the decision boundary. When the number of neurons on the
hidden layer is large, the training error may become small, but the error rate of the test sample will be
high in this case, resulting in an over-fitting phenomenon. On the other hand, if the number of
neurons on the hidden layer is tiny, the network does not have enough freedom to fit the training set,
which also leads to a high test error rate.

(2) Activation function
The activation function from the input layer to the hidden layer generally requires nonlinearity,

saturation and continuity, while the activation function from the hidden layer to the output layer is
linear. For the compressor characteristic parameters, the input and output parameters have a highly
nonlinear relationship, and therefore the sigmoid transfer function is adopted in the hidden layer.
There are two types of sigmoid transfer functions that are frequently used as follows.

For the logarithmic sigmoid transfer function, the function expression in Matlab toolbox is logsig
as follows:

f ¼ 1
1þ e�n : ð2:1Þ
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Figure 2. Schematic diagram of a BP neural network.
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For the hyperbolic tangent sigmoid, the function expression in Matlab toolbox is tansig as follows:

f ¼ en � e�n

en þ e�n : ð2:2Þ

(3) Initialize weights
The weights cannot be simply initialized to 0, otherwise the learning process will not start. The

weights from the input layer should be within the range of � 1=
ffiffiffiffi
D

p� �
, wij , 1=

ffiffiffiffi
D

p� �
, where D is the

dimensionality of the input vector. The weights from the hidden layer to the output layer should be
within the range of ��

1=
ffiffi
l

p �
, wjk ,

�
1=

ffiffi
l

p �
, where l is the number of neurons on the hidden layer.

(4) Learning rate and threshold
The learning rate determines the network training convergence speed, which can be set to 0.1 initially.

If the training speed is too slow, the learning rate can be increased. If the criterion function is diverged
during the learning process, the learning rate will be reduced. The threshold determines whether the
training process can be stopped.

2.1.2. RBF neural network

Both the BP neural network and the RBF neural network are nonlinear multi-layer feed-forward
networks. For any BP network, there is always an RBF network that can replace it and vice versa.
However, there are many differences between these two neural networks, such as network structure,
training process and approximation performance.

The input layer of anRBFneural network is directly connected to the hidden layer, which is equivalent to
transporting the input vector to the hidden layer directly. There are several activation functions for the
hidden layer. Moreover, themost frequently applied activation function is the Gaussian function as follows:

fðrÞ ¼ exp � r2

2s2

� �
, ð2:3Þ

where σ is an extended constant of the radial basis function, which reflects the width of the function image,
and the smaller the σ, the narrower the width. The transfer function of the RBF neural network takes the
distance kX � Cjk from the input vector to the centre vector as an independent variable and replaces r of
the Gaussian function with kX � Cjk.

The parameters associated with the RBF neural network that need to be determined, are the data
centre C, extended constant σ, and weights from the hidden layer to the output layer. The RBF neural
network can determine the corresponding network topology according to specific problems, owing to
the characteristics of self-learning, self-organization and adaptive functions. The structural diagram of
an RBF neural network is shown in figure 3, where y represents the actual output on the output layer,
P delegates the number of neurons on the hidden layer, w denotes the weight from the hidden layer
to the output layer and ϕ indicates the data centre of neurons on the hidden layer.

2.1.3. Elman neural network

The Elman neural network was put forward by J. L. Elman, aiming at the speech processing problem,
which is a quintessential dynamic recursive neural network. A support layer is added to the hidden
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Figure 3. Structural diagram of an RBF neural network.
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layer on the basis of a BP network structure to attain the goal of memory, such that the system could
adapt to time-varying property and enhance the global stability of the network.

It hasmore computing power than the feed-forward network and can be applied to address the problem
of fast optimization as well. The structural diagram of an Elman neural network is shown in figure 4.

The mathematical expressions of the Elman neural network are as follows:

ynðtÞ ¼ f ðw3xmðtÞÞ, ð2:4Þ

xmðtÞ ¼ gðw2xcðtÞ þ w1ðudðt� 1ÞÞÞ ð2:5Þ

and xcðtÞ ¼ xmðt� 1Þ, ð2:6Þ

where yn is the n-dimensional output node unit vector; xm represents an m-dimensional middle layer
node vector; ud indicates a d-dimensional input node vector; xc is an m-dimensional vector of the
feedback state; w3 means the weight from the intermediate layer to the output layer; w2 means
the weight from the connection layer to the intermediate layer; w1 means the weight from the input
layer to the intermediate layer; f () is the transfer function of neurons on the output layer, which is the
linear combination of the intermediate layer output; g() is the transfer function of neurons on
the intermediate layer, and the sigmoid transfer function is often used.
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2.2. Support vector machine nonlinear regression algorithm

Support vector machine (SVM) has been applied extensively in data classification, regression estimation,
function approximation and other fields. Its idea is very similar to that in the classification when SVM is
applicable to the function regression. Therefore, only the concept of loss function needs to be introduced,
and a ε-insensitive loss function proposed by Vapnik is represented by

L1 ¼ ðhðxÞ,yÞ ¼ 0,jhðxÞ � yj , 1
jhðxÞ � yj � 1 others

�
ð2:7Þ

where ε, the insensitive coefficient, is applied to determine the fitting accuracy.
The extension from linear SVM to nonlinear SVM is by means of a kernel function, whose basic

principle is to transform the input to another space by mapping and use a linear SVM in the new
space. Furthermore, the radial basis kernel, a commonly used kernel function, is a kind of mapping,
as shown in the following equation:

kðx, xiÞ ¼ exp �kx� xik2
s 2

( )
: ð2:8Þ

Assume that the nonlinear model is expressed as

ĥðx,wÞ ¼ ðw � wðxÞÞ þ b: ð2:9Þ

When a dataset {xi, yi}, i ¼ 1, . . . , n, xi [ Rd, yi [ R is fitted by the function, the unstructured deviation
of the whole training sample is ε as follows:

yi � ððw � wðxiÞÞ þ bÞ � 1
ððw � wðxiÞÞ þ bÞ � yi � 1

i ¼ 1, . . . , n:
�

ð2:10Þ

A relaxation factor zi � 0, z �i � 0 can be introduced in the case of considering the fitting error to make
1=2kwk2 the smallest according to the minimization criterion of structural risk.

yi � ððw � wðxiÞÞ þ bÞ � 1þ zi
ððw � wðxiÞÞ þ bÞ � yi � 1þ z �i

i ¼ 1, . . . , n:
�

ð2:11Þ

The optimization goal is correspondingly minimized.

J ¼ 1
2
kwk2 þ C

Xn
i¼1

ðzi þ z �
i Þ, ð2:12Þ

where C is the balance factor higher than naught.
Moreover, the standard ε insensitive support vector regression machine is given as

min
1
2
kwk2 þ C

Xn
i¼1

ðzi þ z �i Þ

subject to
yi � ððw � wðxiÞÞ þ bÞ � 1þ zi
ððw � wðxiÞÞ þ bÞ � yi � 1þ zi
zi � z �i � 0:

8<
:

9>>>>>=
>>>>>;

ð2:13Þ

The quadratic programming problem can be obtained using the same optimization method, and the
Lagrange Equation is established as follows:

lðw,b,zi,z �
i Þ ¼

1
2
kwk2 þ C

Xn
i¼1

ðzi þ z �
i Þ �

Xn
i¼1

bið1þ zi � yi þ ðw � wðxiÞÞ þ bÞ

�
Xn
i¼1

b �
i ð1þ z �

i þ yi � ðw � wðxiÞÞ � bÞ �
Xn
i¼1

ðhizi þ h�
i z

�
i Þ: ð2:14Þ
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The partial derivatives of the above parameters (i.e. w, b, zi, and z �

i ) should be equal to zero, then the
following equation (2.15) can be obtained:

@l
@w

¼ w�
Xn
i¼1

ðbi � b�
i ÞwðxiÞ ¼ 0,

@l
@b

¼
Xn
i¼1

ðbi � b�
i Þ ¼ 0,

@l
@zi

¼ C� bi � hi ¼ 0

and
@l
@z2i

¼ C� b�
i � h�

i ¼ 0:

9>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>;

ð2:15Þ

Equation (2.12) is further written as

min
1
2

Xn
i,j¼1

ðbi � b�
i Þðbj � b�

j Þ wðxiÞ,wðxjÞ
	 
þXn

i¼1

bið1� yiÞ þ
Xn
i¼1

b�
i ð1þ yiÞ

subject to
Pn
i¼1

ðbi � b�
i Þ ¼ 0

bi,b
�
i [ ½0, C�,

8<
:

9>>>>>>=
>>>>>>;

ð2:16Þ

where b�
i is the Lagrange multiplier, and the quadratic programming is solved.

w ¼
Xn
i¼1

ðbi � b�
i ÞwðxiÞ: ð2:17Þ

Thew cannot be expressed explicitly due to the facts that the nonlinear function w is unknown and the
dimensionality of feature space is high enough. The task of the SVM algorithm is to introduce the kernel
function technique so that the function regression bypasses the feature space and directly finds on the
input space, avoiding the calculation of the nonlinear mapping w.

Suppose the kernel function kðx, x0Þ satisfies the following formula:

kðx, x0Þ ¼ fwðxÞ,wðx0Þg: ð2:18Þ

Equation (2.16) can be adjusted as follows.

min
1
2

Xn
i,j¼1

(bi � b�
i )(bj � b�

j )k(xi,xj)þ
Xn
i¼1

bi(1� yi)þ
Xn
i¼1

b�
i (1þ yi)

subject to
Pn
i¼1

(bi � b�
i ) ¼ 0

bi,b
�
i [ ½0,C�:

8<
:

9>>>>>>=
>>>>>>;

ð2:19Þ

According to the KKT condition, the following equation (2.20) can be obtained:

bið1þ zi � yi þ ðw � wðxiÞÞ þ bÞ ¼ 0
b�
i ð1þ z �i þ yi � ðw � wðxiÞÞ � bÞ ¼ 0:

�
ð2:20Þ

Threshold b is calculated by equation (2.21)

b ¼ yi � (w � wðxiÞ)� 1, bi [ ð0,CÞ
b ¼ yi � (w � wðxiÞ)� 1, b�

i [ ð0,CÞ:
�

ð2:21Þ

The sample xi on or outside the boundary of the dead zone is corresponding to bi=0 and b�
i =0,

which is called a support vector.
Thus, the following equation (2.22) can be obtained:

h
^ ¼

Xn
i¼1

ðbi � b�
i Þkðxi, xÞ þ b: ð2:22Þ

The support vector machine is a learning process that converts the input sample into a high
dimensional feature space using a nonlinear conversion determined by an inner product and finds the
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regression function in the new space. The output, a linear combination of the middle nodes, is similar
to a neural network in form, and each node represents a particular support vector. Furthermore, its
weight corresponds to the Lagrange multiplier as shown in figure 5, where sv represents a support
vector set.

The known compressor characteristic data is selected as a learning sample of the support vector
machine model in this paper. Since SVM can only be applied for the approximation problem of single
output function, the corresponding learning machine must be designed for each output to realize the
model identification of multi-input and multi-output objects, as shown in figure 5.

For a compressor characteristic map, the pressure ratio and the rotational speed are considered as the
input variables of a support vector machine model, and the mass flow rate and the isentropic efficiency
are regarded as the output variables. The two support vector machines are connected in parallel to form
training samples at different rotational speeds, and it should be emphasized that all available
experimental data must be normalized prior to being trained.

The radial basis kernel function is exploited for a kernel function of the model, the width parameter as
well as balance factor C are determined and optimized by a grid optimization programme, and the
insensitive coefficient is found to be 0.01. The support vector machine model is obtained by training
and analysing the compressor characteristic data at known rotational speeds. An inverse normalization
process is performed to acquire a comparison between the training result and sample data after the
model is output.
3. Application and analysis compressor component characteristics different
algorithm prediction contrast

3.1. Forecasting comparison of the flow characteristics
In order to prove the rationality and effectivity of the proposed method, the other three neural network
algorithms (i.e. BP, RBF and Elman neural networks) are compared from the perspective of interpolation
and extrapolation accuracy as well as calculation time. The prediction of interpolation and extrapolation
performance by the different algorithms for the flow characteristic map is as shown in figures 6–8.

To further compare the prediction accuracy of the above algorithms for the flow characteristic map,
the root mean square error (RMSE) (as shown in equation (3.1)) between the experimental data and
predicted data is introduced as an evaluation index of the model performance. Moreover, the
comparative results are tabulated in table 1.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 ½ðpi � tiÞ�2
n

s
, ð3:1Þ

where pi represents the ith prediction output, ti denotes the ith test sample data and n is the sample size.
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Table 2 shows the time consumption comparison by different algorithms for predicting one
operation point.

It can be observed from figures 6–8 and table 1 that the BP neural network algorithm has superior
interpolation performance (IP) in comparison with the other three methods, but also the worst
extrapolation (generalization) performance for the flow characteristic map. The RMSE of the
extrapolation performance at higher (EPH) and lower (EPL) speed operating area by the proposed
method is 0.89% and 2.57%, respectively. Moreover, the total RMSE by the proposed method is 2.72%,
having an accuracy of 97%, which is more accurate by 47% than the Elman algorithm. In other words,
the proposed method of SVM ameliorates the prediction performance of extrapolation and
interpolation, the extrapolation performance at higher speed operating area in particular. The trend is
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Table 1. The prediction accuracy comparison of extrapolation and interpolation performance by different methods for flow
characteristic map.

algorithms

RMSE

EPL IP EPH total

BP 15.408864% 1.1472180% 28.653728% 18.795259%

RBF 3.9349806% 4.7413000% 7.8800000% 5.7750000%

Elman 5.6672845% 5.1060174% 5.3362097% 5.3747763%

SVM 2.5688705% 3.8588333% 0.8907238% 2.7237937%

Table 2. Time consumption comparison by different methods for predicting one operation point.

algorithms BP RBF Elman SVM

time consumption (s) 0.084607 0.021256 0.029781 0.006427

royalsocietypublishing.org/journal/rsos
R.Soc.open

sci.7:191596
10
in excellent agreement with the sample curve and conforms to the variation law of the actual compressor
characteristic data. According to table 2, the time consumption by the proposed method for predicting
one operation point is the least, which shows the approach based on the SVM algorithm has better
real-time performance.
3.2. Forecasting comparison of the efficiency characteristics
The comparison of extrapolation and interpolation performance for the efficiency characteristic map
based on the different algorithms is shown in figures 9–11.

Here, the standard presented in equation (3.1) is also applied to evaluate the prediction accuracy of
extrapolation and interpolation performance. Moreover, table 3 shows comparative results.

Similarly, the time consumption comparison for predicting one operation point is listed in table 4.
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Figure 9. The comparison of extrapolation performance at lower speed operation area.
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Figure 10. The comparison of interpolation performance.
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It is evident from figures 9–11 and table 3 that the BP neural network algorithm has superior
interpolation performance compared with the other three methods for the efficiency characteristic
map, while it has perfect extrapolation (generalization) performance using the SVM regression
algorithm. The RMSE of the extrapolation performance at higher and lower speed operating area by
the proposed method is 2.85% and 1.22%, respectively. Moreover, the total RMSE by the proposed
method is 1.81%, having an accuracy of 98%, which is more accurate by 35% than the BP algorithm.
In other words, the proposed method ameliorates the prediction performance of extrapolation and
interpolation, the extrapolation performance of higher speed operating area in particular. It can not
only accurately reflect the changing trend of data, but also approximate the test data with a small



2.43

0.65

0.70

is
en

tr
op

ic
 e

ff
ic

ie
nc

y

0.75

0.80

0.85

2.44 2.45 2.46 2.47
flow characteristics

sample point

BP
RBF
Elman

SVM

2.48 2.49 2.50
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Table 3. The prediction accuracy comparison of extrapolation and interpolation performance by different methods for efficiency
characteristic map.

algorithms

RMSE

EPL IP EPH total

BP 1.4182046% 0.4797078% 5.1203607% 2.7620886%

RBF 1.2306698% 5.2004624% 7.9100000% 5.2366140%

Elman 2.1793671% 3.9644160% 4.6770583% 3.6753925%

SVM 1.2189916% 1.2678343% 2.8497601% 1.8067621%

Table 4. Time consumption comparison by different methods for predicting one operation point.

algorithms BP RBF Elman SVM

time consumption (s) 0.017188 0.029614 0.015301 0.005847
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error. And from table 4, the time consumption by the proposedmethod for predicting one operation point is
the least, which shows the approach based on the SVM algorithm has better real-time performance.
4. Conclusion and discussion
A novel method integrated with the support vector machine nonlinear regression algorithm is put
forward for representing the characteristic maps in this article. The regression model based on the
known compressor characteristic data is established in the Matlab operation as well as simulation
environments, and the conclusions are as follows:

(1) The proposed method based on the SVM algorithm has superior overall interpolation and
extrapolation performance than that of other commonly used neural network methods on the
representation of a compressor characteristic map, especially for the extrapolation performance of



royalsocietypublishing.org/journal/rsos
R.Soc.open

sci.7:191596
13
higher speed operating area, facilitating subsequent the calculation of compressor thermodynamic

performance under variable working conditions.
(2) The time consumption by the proposed method for predicting one operation point is the least, which

can ameliorate the real-time calculation capability of the dynamic performance simulation on a gas
turbine engine.

(3) The introduction of the proposed method, enabling to address the problems of high-dimensional and
machine learning in small sample data, as well as to avoid the structural selection of neural networks
and sinking into local minima, could achieve the global optimization.

(4) The proposed method can be anticipated to ameliorate the existing component behaviour-
based engine performance model for health monitoring, thermodynamic analysis, fault diagnosis
and prognosis.
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