aTD224 .W2W37

W37

Jlture

Natural Resources Conservation Service

J States

tment of

Washington Basin Outlook Report January 1, 1995

Basin Outlook Reports and Federal - State - Private Cooperative Snow Surveys

For more water supply and resource management information, contact: Local Natural Resources Conservation Service Field Office or Scott Pattee Acting Water Supply Specialist

Natural Resources Conservation Service W. 316 Boone Ave., Suite 450 Spokane, WA 99201-2348 (509) 353-2341

How forecasts are made

Most of the annual streamflow in the Western United States originates as snowfall that has accumulated high in the mountains during winter and early spring. As the snowpack accumulates, hydrologists estimate the runoff that will occur when it melts. Predictions are based on careful measurements of snow water equivalent at selected index points. Precipitation, temperature, soil moisture and antecedent streamflow data are combined with snowpack data to prepare runoff forecasts. Streamflow forecasts are coordinated by Natural Resources Conservation Service and National Weather Service hydrologists. This report presents a comprehensive picture of water supply conditions for areas dependent upon surface runoff. It includes selected streamflow forecasts, summarized snowpack and precipitation data, reservoir storage data, and narratives describing current conditions.

Snowpack data are obtained by using a combination of manual and automated SNOTEL measurement methods. Manual readings of snow depth and water equivalent are taken at locations called snow courses on a monthly or semi-monthly schedule during the winter. In addition, snow water equivalent, precipitation and temperature are monitored on a daily basis and transmitted via meteor burst telemetry to central data collection facilities. Both monthly and daily data are used to project snowmelt runoff.

Forecast uncertainty originates from two sources: (1) uncertainty of future hydrologic and climatic conditions, and (2) error in the forecasting procedure. To express the uncertainty in the most probable forecast, four additional forecasts are provided. The actual streamflow can be expected to exceed the most probable forecast 50% of the time. Similarly, the actual streamflow volume can be expected to exceed the 90% forecast volume 90% of the time. The same is true for the 70%, 30%, and 10% forecasts. Generally, the 90% and 70% forecasts reflect drier than normal hydrologic and climatic conditions; the 30% and 10% forecasts reflect wetter than normal conditions. As the forecast season progresses, a greater portion of the future hydrologic and climatic uncertainty will become known and the additional forecasts will move closer to the most probable forecast.

To file a complaint, write the Secretary of Agriculture, U.S. Department of Agriculture, Washington, D.C., 20250, or call (202) 720-7327 (voice) or (202) 690-1538 (TDD). USDA is an equal employment opportunity employer.

The United States Department of Agriculture (USDA) prohibits discrimination in its programs on the basis of race, color, national origin, sex, religion, age, disability, political beliefs and marital or familial status. (Not all prohibited bases apply to all programs). Persons with disabilities who require alternative means for communication of program information (braille, large print, audiotape, etc.) should contact the USDA Office of Communications at (202) 720-5881 (voice) or (202) 720-7808 (TDD).

Washington Water Supply Outlook

January 1995

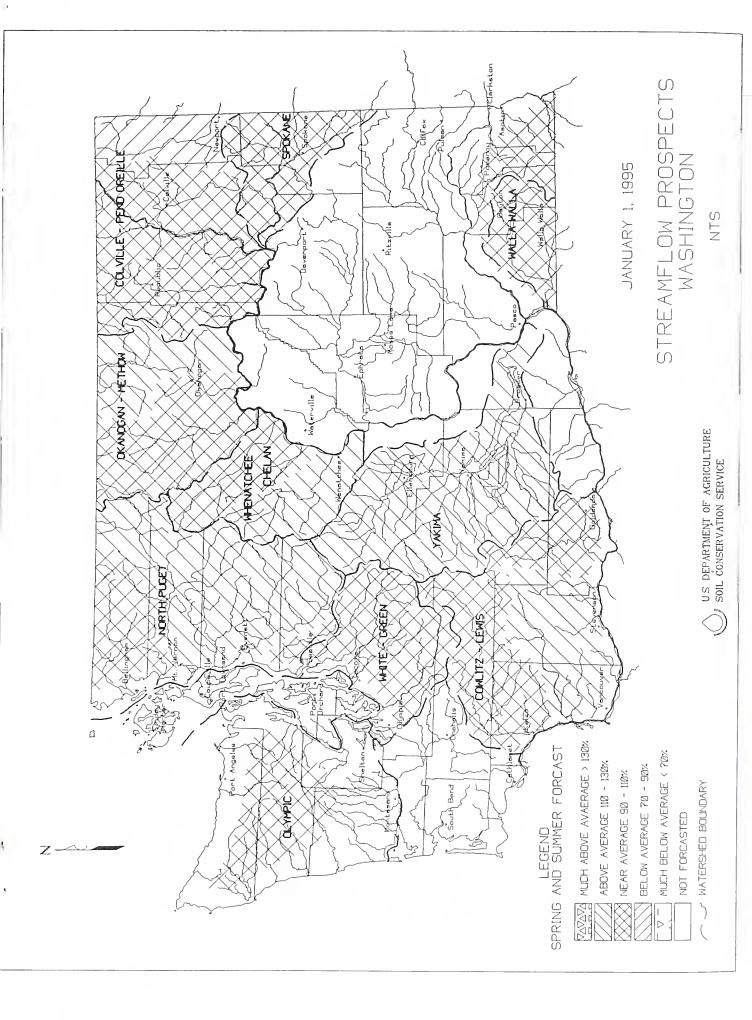
General Outlook

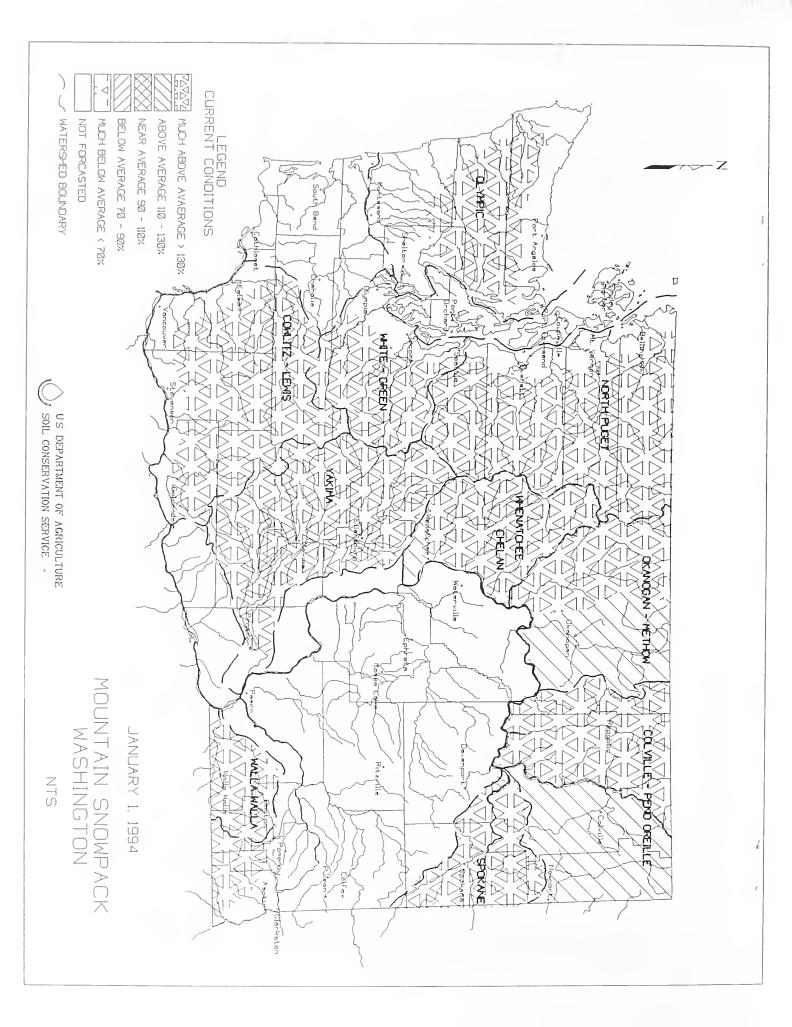
The snowpack varies from a high of 188% of average in the White-Green-Cedar River Basins to a low of 124% in the Spokane Basin. Washington SNOTEL sites averaged 165% of the normal snowpack for January 1. Forecasts for April-September runoff vary from 116% of average for the Yakima River near Parker to 86% for the Pend Oreille Lake inflow. December SNOTEL precipitation was 136% of normal statewide. It varied from 144% of average in the Cowlitz-Lewis River Basins to 85% in the Spokane River Basin. Year-to-date precipitation varies from 160% in the Walla Walla Basin to 113% in the Olympic Peninsula. December temperatures were near to slightly above normal for the state. Spokane was three degrees above, Walla Walla area at normal, and the westside was near normal at one degree above on average. December streamflows varied from 157% of normal for the South Fork Walla Walla to 63% on the Snake River. January 1 reservoir storage varies greatly throughout the state.

Snowpack

The January 1 SNOTEL reading showed the snowpack to be 165% of average. Snowpack varied over the state, with the Spokane-Pend Oreille River Basins the lowest with 124% of average, and the White-Green-Cedar River Basins the highest at 188% of normal. Westside averages include the North Puget River Basins with 168% of average, the Olympics with 143%, and the Lewis-Cowlitz averaged 171% of normal. Snowpack along the east slopes of the Cascade Mountains include the Yakima with 158%, and the Wenatchee with 150%. Snowpack in the Okanogan was at 152%, and the Walla Walla River Basin had 155%. Maximum snow cover was at Paradise SNOTEL near Mount Rainier, with a water content of 47.3 inches. This site would normally have 24.8 inches of water content on January 1.

Precipitation


December precipitation reported from National Weather Service stations showed Central and Southeastern Washington to be near normal with the westside and northern edge ranging from 120-150% of normal. Accumulated precipitation from October 1, 1994 is above average for the state. Precipitation ranges from 113% of normal in the Olympic Peninsula River Basins, to 160% in the Walla Walla River Basin. December precipitation varied from 85% of average in the Spokane River Basin, to 144% in the Cowlitz-Lewis River Basins. SNOTEL sites in Washington showed high elevation water year precipitation values to be 136% of average. Maximum reportable precipitation was at the Alpine Meadows SNOTEL site near Monroe, with 68.6 inches since October 1, 1994; Alpine Meadows is a new SNOTEL site installed in the Tolt River Watershed last summer, therefore an accurate average has not yet been established.


Reservoir

Reservoir storage in Washington was generally below average for January 1. Reservoir storage in the Yakima Basin was 285,000 acre feet, 49% of normal. Storage at other reservoirs included Roosevelt at 106% of average, and the Okanogan reservoirs, 98% of normal for January 1. The power generation reservoirs include the following: | Coeur d'Alene Lake, 53,500 acre feet, or 42% of normal; Chelan Lake, 115,500 acre feet, 89% of average and 48% of capacity, and Ross Lake at 132% of average and 38% of capacity.

Streamflow

Forecasts for summer streamflow are for near to above average. They vary from 116% of average for the Yakima near Parker to 86% of normal for the Pend Oreille Lake inflow. January forecasts for some west side streams include: Cedar River at Cedar Falls, 106%; Green River, 109%; and the Dungeness River, 94%. Some eastside streams include the Snake River below Lower Granite Dam, 92%; the Wenatchee River, 115%; and the Colville River, 104%. December streamflows varied greatly throughout the state. The South Fork of the Walla Walla near Milton Freewater was the highest at 157% of average, and the Snake below Lower Granite Dam with 63% of normal was the lowest in the state. Other streamflows were the following percentage of normal: the Cowlitz River, 145%; the Okanogan River, 67%; the Spokane River, 98%; the Columbia at the Canadian border, 79%, and the Yakima River at Kiona, 87%.

BASIN SUMMARY OF SNOW COURSE DATA

JANUARY 1995

SNOW COURSE	ELEVATIO			WATER CONTENT	LAST YEAR	AVERAGE 1961-90	SNOW COURSE	ELEVA			DEPTH	CONTENT		1961-90
PEND OREILLE RIVER							GROUSE CAMP	PILLOW	5380	1/01/95		14.05	7.8	8.9
BENTON MEADOW	2370	1/04/95	12	3.5	2.8	2.7	DOMMERIE FLATS		2200	12/29/94	25	8.0	2.6	3.9
BENTON SPRING	4920	1/04/95	39	12.5	7.0	8.0	LOST HORSE	PILLOW	5000	1/01/95		9.15	5.9	15.3
BUNCHGRASS MDWPILL	.OW 5000	1/01/95		17.8S	11.1	10.9	MORSE LAKE	PILLOW	5400	1/01/95		40.25	18.3	19.1
HOODOO BASIN	6050	1/01/95		24.7E	12.3	20.4	OLALLIE MDWS I	PILLOW	3960	1/01/95		29.25	15.9	20.3
HOODOO CREEK	5900	1/01/95		21.0E	10.8	18.0		PILLOW	4200	1/01/95		22.35	9.9	12.4
LOOKOUT PILL		1/01/95		14.3	8.4	13.5	STAMPEDE PASS I	PILLOW	3860	1/01/95		34.45	10.5	16.7
NELSON CA	N. 3100	12/28/94	38	10.1	6.0	7.2	TUNNEL AVENUE	DILLOU	2450	12/27/94	53	16.4	6.1	8.1
KETTLE RIVER BARNES CREEK CA	N. 5300	1/02/95	38	10.9	9.2	8.7	WHITE PASS ES I AHTANUM CREEK	PILLOW	4500	1/01/95		15.55	7.5	9.8
BIG WHITE MTN CA		12/31/94	43	12.2	8.0	7.2		PILLOW	6000	1/01/95		13.55	7.6	9.0
COLVILLE RIVER NO REP		,,						PILLOW	5000	1/01/95		9.15	5.9	15.3
OMAK LAKE, TWIN LAKES							MILL CREEK							
MOSES MIN PILL	.OW 4800	1/01/95		8.55	4.1	6.5	HIGH RIDGE I	PILLOW	4980	1/01/95		16.75	5.1	9.7
SPOKANE RIVER								PILLOW	5530	1/01/95		20.05	8.5	12.9
FOURTH OF JULY SUM		1/03/95	22	6.4	3.0	3.4	LEWIS - COWLITZ RI							
	d) 6110	1/01/95		28.7E	13.7	23.6 15.7		PILLOW PILLOW	3200	1/01/95 1/01/95		34.1S	13.9	11.5
MOSQUITO RDG PILL SUNSET PILL		1/01/95 1/01/95		19.4 14.3	9.7 8.4	15.7	LONE PINE P PARADISE PARK P		3800 5500	1/01/95		21.45 47.15	12.7 17.3	12.0 23.6
LOOKOUT PILL		1/01/95		14.3	8.4	13.5		PILLOW	5900	1/01/95		34.05	12.9	20.1
NEWMAN LAKE	••••	1, 01, 10			•••	1010		PILLOW	4500	1/01/95		15.95	7.5	10.5
QUARTZ PEAK PILL	OW 4700	1/01/95		16.45	9.3	8.5		PILLOW	4050	1/01/95		22.35	10.1	15.2
OKANOGAN RIVER							SPENCER MDW F	PILLOW	3400	1/01/95		21.55	10.3	9.4
ENDERBY CA	N. 6200	12/31/94	67	16.5	16.9	18.6		PILLOW	3100	1/01/95		3.15	2.4	1.8
GREYBACK RES CA		1/03/95	24	6.1	4.5	3.1		PILLOW	4250	1/01/95		28.4E	14.1	20.2
HAMILTON HILL CA		1/01/95	30	7.6	4.7	8.4	WHITE PASS ES P	PILLOW	4500	1/01/95		15.55	7.5	9.8
HARTS PASS PILL ISINTOK LAKE CA		1/01/95 12/29/94		27.65 3.7	11.7	17.9 3.5	WHITE RIVER		6000	1/01/95		22.75	7 6	12 5
ISINTOK LAKE CA MISSEZULA MTN CA		12/29/94	22 31	3.7	2.1 3.4	3.5		PILLOW PILLOW	5400	1/01/95		40.25	7.6 18.3	13.5 19.1
MT. KOBAU CA		12/29/94	29	7.1	3.6	6.3	GREEN RIVER	ET BLOW	3400	1/01/95		10.23	10.5	17.1
SALMON MDWS PILL		1/01/95		7.95	4.2	3.9		PILLOW	3200	1/01/95		13.85	3.5	8.3
SILVER STAR MIN CA	N. 6000	1/02/95	55	17.5	10.3	13.4	GRASS MOUNTAIN	#2	2900	12/29/94	15	6.1	.0	4.8
SUMMERLAND RES CA	N. 4200	12/28/94	26	5.3	2.8	4.5	LESTER CREEK		3100	12/29/94	46	14.6	6.6	. 8.0
WHITE ROCKS MTN CA	N. 6000	12/29/94	50	15.0	8.4	11.6	LYNN LAKE		4000	12/29/94	41	15.8	.0	7.6
METHOW RIVER							SAWMILL RIDGE		4700	12/29/94	64	22.5	8.7	13.3
HARTS PASS PILL		1/01/95		27.65	11.7	17.9	STAMPEDE PASS P	PILLOW	3860	1/01/95		34.45	10.5	16.7
SALMON MDWS PILL	OW 4500	1/01/95		7.95	4.2	3.9	TWIN CAMP		4100	12/29/94	51	16.7	7.8	10.0
CHELAN LAKE BASIN LYMAN LAKE	5900	1/01/95		38.9E	16.7	23.5	CEDAR RIVER MT. GARDNER P	PILLOW	2860	1/01/95		11.95	4.3	5.8
LYMAN LAKE PILL		1/01/95		42.15	18.0	25.4	TINKHAM CREEK P		3000	1/01/95		19.05	8.4	7.6
MINERS RIDGE PILL		1/01/95		33.45	16.4	25.6		PILLOW	3240	1/01/95		16.45	6.2	9.5
PARK CK RIDGE PILL	OW 4600	1/01/95		23.25	10.7	18.4	SNOQUALMIE RIVER							
RAINY PASS PILL	OW 4780	1/01/95		32.25	12.7	15.4	OLALLIE MDWS P	PILLOW	3960	1/01/95		29.25	15.9	20.3
ENTIAT RIVER							SKYKOMISH RIVER							
POPE RIDGE PILL	OW 3540	1/01/95		14.95	7.1	9.1	STAMPEDE PASS P		3860	1/01/95		34.45	10.5	16.7
WENATCHEE RIVER							STEVENS PASS P		4070	1/01/95		32.55	8.3	15.3
BERNE-MILL CREEK (12/30/94	69	20.1	9.3	11.2	STEVENS PASS SA	AND SD	3700	12/30/94	80	23.6	10.4	14.6
BLEWETT PASS#2PILL CHIWAUKUM G.S.	OW 4270 2500	1/01/95 12/30/94	30	12.75 9.3	6.3 4.2	8.3 4.8	SKAGIT RIVER HARTS PASS P	PILLOW	6500	1/01/95		27.65	11.7	17.9
FISH LAKE PILL		1/01/94		9.3 23.05	4.2	4.8	LYMAN LAKE	TELOW	5900	1/01/95		27.85 38.9E	16.7	23.5
LYMAN LAKE	5900	1/01/95		23.03 38.9E	16.7	23.5		PILLOW	5900	1/01/95		42.15	18.0	25.4
LYMAN LAKE PILL		1/01/95		42.15	18.0	25.4		PILLOW	4780	1/01/95		32.25	12.7	15.4
MERRITT	2140	12/30/94	42	12.5	4.1	7.1	THUNDER BASIN P		4200	1/01/95		20.05	11.9	15.3
STEVENS PASS PILL	OW 4070	1/01/95		32.55	8.3	15.3	BAKER RIVER							
STEVENS PASS SAND :		12/30/94	80	23.6	10.4	14.6	DOCK BUTTE	AM	3800	12/29/94	106	48.0	21.6	25.7
TROUGH #2 PILLO		1/01/95		8.95	6.1	4.9	EASY PASS	AM	5200	12/29/94	144	65.0	22.0	27.1
UPPER WHEELER PILLO		1/01/95		7.55	5.0	5.9	JASPER PASS	AM AM	5400 3600	12/29/94	156	64.0 45.0	30.1 22.6	37.9 30.1
SQUILCHUCK CREEK NO RI STEMILT CREEK	EPURI						MARTEN LAKE	AM	5800	12/29/94 12/29/94	104 108	42.0	14.4	24.4
UPPER WHEELER PILL	OW 4400	1/01/95		7.55	5.0	5.9	MT. BLUM ROCKY CREEK	AM AM	2100	12/29/94	72	30.0	6.3	11.7
COLOCKUM CREEK		_,, , , , , ,					SCHREIBERS MDW	AM	3400	12/29/94	77	33.0	16.9	21.9
TROUGH #2 PILLO	DW 5310	1/01/95		8.95	6.1	4.9	SF THUNDER CK	AM	2200	12/29/94	18	6.8	. 0	4.5
YAKIMA RIVER							WATSON LAKES	AM	4500	12/29/94	84	35.0	18.4	24.2
BLEWETT PASS#2PILLO	DWI 4270	1/01/95		12.75	6.3	8.3	ELWHA RIVER NO REP	PORT						
BUMPING LAKE (NEW)	3400	12/28/94	32	9.3	5.2	7.5	MORSE CREEK NO REP							
BUMPING RIDGE PILLO		1/01/95		18.05	9.2	9.6	DUNGENESS RIVER NO	REPORT						
CORRAL PASS PILLO		1/01/95		22.7S	7.6	13.5	QUILCENE RIVER		1050	1/01/05		14.77	11 5	11 2
FISH LAKE	3370	12/28/94	78	23.7	12.1	10.7			4050	1/01/95		16.7S	11.5	11.3
FISH LAKE PILLO GREEN LAKE PILLO		1/01/95 1/01/95		23.05 13.55	13.4 7.6	12.4 9.0	WYNOOCHEE RIVER NO	- REPORT						
CALIFIC TIME		1/ UI/ 7J	-	10.00		2.0								

(d) Denotes discontinued site.(E) Denotes estimated water content(S) Denotes SNOTEL site

Washington Snow Story by Suzzane Pate, PAS

Where *was* that white Christmas? Not to worry, say snowpack trackers at Natural Resources Conservation Service -- the snow season is just barely underway. Because mountain snow provides more than 75% of the water in the West, NRCS monitors its accumulation from January through June at sampling sites in 11 western states. Data collected manually and by remote sensors provide the scientific basis for streamflow forecasts critical to water management and use throughout the year.

Water Supply Specialist Scott Pattee coordinates the snow survey program in Washington State and keeps a vigilant eye on the snowfall at 107 sampling locations statewide.

"I oversee the training of our volunteer and staff surveyors, make sure their equipment is up to speed, and see to it that all the automated sampling sites are in good working order," he explained. Pattee additionally samples snow at sites near Spokane and Dayton, and accompanies maintenance crews to snowpack telemetry (SNOTEL) stations.

"We use the buddy system, and we work in the mountains year round," Pattee said. "It may be below-zero weather and blowing snow, but if a site goes down we still have to go in and try to get it fixed."

"My travel to do snow surveys can vary from 20 minutes to 8 hours just to reach the area of a site. Then it can be a daylong snowshoe or snowmobile trip to reach the sampling site itself. Depending on the snow conditions, sometimes I cross-country ski, or drive a Snow-Cat."

Snow survey information occasionally is gathered by fixed-wing flyby to visually check snow depth markers, and by helicopter access to remote sites for manual measurements.

Despite the difficulties in getting to the sites, Pattee feels rewarded by what he observes on the way. "One of the largest attractions of my job is getting into the mountains and having the opportunity to see the wildlife, and how the land is being used. I'm reassured that current land use activities are becoming more environmentally kind, compared to yesteryear's scars, such as large scale clearcutting without reforestation or erosion control practices," Pattee continued. "From what I see I conclude that land management agencies and entities are learning to value and manage the land and natural resources better."

"Our surveys are geared to private landowners and irrigators for the predictability of water available to them in the coming season, so they won't go to the expense of putting in a crop and then losing it for lack of water," said Pattee. "In the Ellensburg area, for instance," he recalled, "they haven't planted as much sweet corn for the canneries because of low water years based on the data NRCS provided."

"Our snow survey program is sitting pretty sound," said Pattee, "and it's getting stronger because of current environmental issues. For example, we hope that our information is used by governing agencies that regulate reservoir drawdowns for fish passage. We also maintain one of the most complete one-stop-shopping data bases of climatic data available to the public."

"I absolutely love my work," concluded Pattee, "because it gives me the sense that I can make a positive difference on our environment and the living things that depend on our natural resources."

Interpreting Streamflow Forecasts

Introduction

Each month, five forecasts are issued for each forecast point and each forecast period. Unless otherwise specified, all streamflow forecasts are for streamflow volumes that would occur naturally without any upstream influences. Water users need to know what the different forecasts represent if they are to use the information correctly when making operational decisions. The following is an explanation of each of the forecasts.

Most Probable (50 Percent Chance of Exceeding) Forecast. This forecast is the best estimate of streamflow volume that can be produced given current conditions and based on the outcome of similar past situations. There is a 50 percent chance that the streamflow volume will exceed this forecast value. There is a 50 percent chance that the streamflow volume will be less than this forecast value.

The most probable forecast will rarely be exactly right, due to errors resulting from future weather conditions and the forecast equation itself. This does not mean that users should not use the most probable forecast; it means that they need to evaluate existing circumstances and determine the amount of risk they are willing to take by accepting this forecast value.

To Decrease the Chance of Having Too Little Water

If users want to make sure there is enough water available for their operations, they might determine that a 50 percent chance of the streamflow volume being lower than the most probable forecast is too much risk to take. To reduce the risk of not having enough water available during the forecast period, users can base their operational decisions on one of the forecasts with a greater chance of being exceeded (or possibly some point in-between). These include:

70 Percent Chance of Exceeding Forecast. There is a 70 percent chance that the streamflow volume will exceed this forecast value. There is a 30 percent chance the streamflow volume will be less than this forecast value.

90 Percent Chance of Exceeding Forecast. There is a 90 percent chance that the streamflow volume will exceed this forecast value. There is a 10 percent chance the streamflow volume will be less than this forecast value.

To Decrease the Chance of Having Too Much Water

If users want to make sure they don't have too much water, they might determine that a 50 percent chance of the streamflow being higher than the most probable forecast is too much of a risk to take. To reduce the risk of having too much water available during the forecast period, users can base their operational decisions on one of the forecasts with a smaller chance of being exceeded. These include:

30 Percent Chance of Exceeding Forecast. There is a 30 percent chance that the streamflow volume will exceed this forecast value. There is a 70 percent chance the streamflow volume will be less than this forecast value.

10 Percent Chance of Exceeding Forecast. There is a 10 percent chance that the streamflow volume will exceed this forecast value. There is a 90 percent chance the streamflow volume will be less than this forecast value.

Using the forecasts—an example

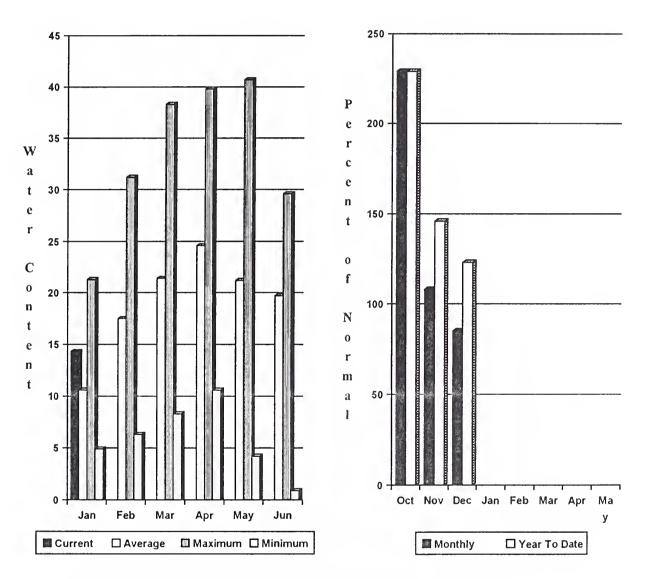
Using the Most Probable Forecast. Using the example forecasts shown below, users can reasonably expect 36,000 acre-feet to flow past the gaging station on the Mary's River near Deeth between March 1 and July 31.

Using the Higher Exceedance Forecasts. If users anticipate a somewhat drier trend in the future (monthly and seasonal weather outlooks are available from the National Weather Service every two weeks), or if they are operating at a level where an unexpected shortage of water could cause problems, they might want to plan on receiving only 20,000 acre-feet (from the 70 percent chance of exceeding forecast). In seven out of ten years with similar conditions, streamflow volumes will exceed the 20,000 acre-foot forecast.

If users anticipate extremely dry conditions for the remainder of the season, or if they determine the risk of using the 70 percent chance of exceeding forecast is too great, then they might plan on receiving only 5000 acre-feet (from the 90 percent chance of exceeding forecast). Nine out of ten years with similar conditions, streamflow volumes will exceed the 5000 acre-foot forecast.

Using the Lower Exceedance Forecasts. If users expect wetter future conditions, or if the chance that five out of every ten years with similar conditions would produce streamflow volumes greater than 36,000 acre-feet was more than they would like to risk, they might plan on receiving 52,000 acre-feet (from the 30 percent chance of exceeding forecast) to minimize potential flooding problems. Three out of ten years with similar conditions, streamflows will exceed the 52,000 acre-foot forecast.

In years when users expect extremely wet conditions for the remainder of the season and the threat of severe flooding and downstream damage exists, they might choose to use the 76,000 acre-foot (10 percent chance of exceeding) forecast for their water management operations. Streamflow volumes will exceed this level only one year out of ten.


	UPPER	RHUMBOLDT	RIVER BAS	IN				
			STREA	MFLOW	FORECAS	TS		
		<dri </dri 	ER Fl	TURE CO	NDITIONS	WETT	ER> 	
FORECAST POINT	FORECAST PERIOD	 90% (1000AF)		0% (Most I	Exceeding Probable) % AVG.) (1	30%	10% 1	
MARY'S RIVER nr Deeth	MAR-JUL	5.0	20.0	36	77	52	76	47
	APR-JUL	8.0	17.0 I I	31	74 I I	45	67	42
	MAR-JUL	6.0	16.0	24	79	32	43	31
LAMOILLE CREEK nr Lamoille				~~	96.1	30	41	30
LAMOILLE CREEK nr Lamoille	APR-JUL	4.0	15.0 I I	22	75	50	-11	

For more information concerning streamflow forecasting ask your local SCS field office for a copy of "A Field Office Guide for Interpreting Steamflow Forecasts".

Spokane River Basin

Mountain Snowpack* (inches)

Precipitation* (% of normal)

*Based on selected stations

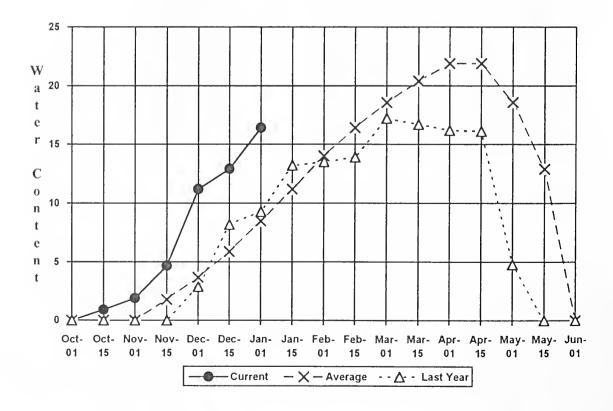
The January 1 forecasts for summer runoff within the Spokane River Basin are 103% of normal, compared to 77% last year at this time. The forecast is based on a snowpack that is 135% of average and precipitation that is 123% of normal for the water year. Precipitation for December was 85% of average. Streamflow on the Spokane River was 98% of average for December. January 1 storage in Coeur d'Alene Lake was 115,500 acre feet, 89% of normal, and 48% of capacity. Temperatures in the basin were 3 degrees above normal during December.

For more information contact your local Natural Resources Conservation Service office.

3

SPOKANE RIVER BASIN

Streamflow Forecasts - January 1, 1995

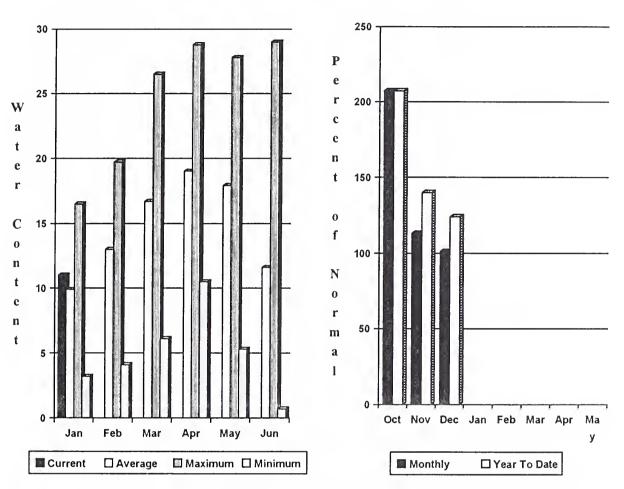

		<<	Drier	Futu	re Co	nditions		Wetter	>>	1
		1								1
Forecast Point	Forecast			Chance	Of E	xceeding *				1
	Period	90%	70%			Probable)	1	30%	10%	30-Yr Avg.
		(1000AF)	(1000AF)	(100	OAF)	(% AVG.)	(1000AF)	(1000AF)	(1000AF)
SPOKANE near Post Falls (2)	APR-SEP	2020	2500		20	103		3140	3620	2730
SPONANE NEAL POST FALLS (2)	APR-JUL	1930	2400	1 27		103	1	3030	3520	
	APK-00L	1930	2400	1 21	1 /	103		3030	3500	2633
SPOKANE at Long Lake	APR-JUL	2200	2690	i 30	16	103	i	3350	3830	2936
	APR-SEP	2400	2900	32	45	103	1	3590	4090	3159
				i			1			
SPOKANE RIVER BA	SIN			1		SPOKANE	E RIVER	BASIN		
Reservoir Storage (1000 AF) - End	of Decembe	er	1		Watershed	Snowpac	k Analysi	s - Janua	ry 1, 1995
	Usable	*** [lash]	le Storage '	***				Number	Thio	Year as % of
Reservoir	Capacity	This	Last		Water	shod		of		
Kepervoll	Capacity	Year		Va I	Mater	Shed		Data Site		
	 	1697		\vy ≔≂== ===						TI Average
COEUR D'ALENE	238.5	115.5	60.5 13	30.5	Spoka	ne River		11	180	135
				i						•

* 90%, 70%, 30%, and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

The average is computed for the 1961-1990 base period.

The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
 The value is natural flow - actual flow may be affected by upstream water management.

Quartz Peak SNOTEL Elevation 4700 ft.



Colville - Pend Oreille River Basins

Mountain Snowpack* (inches)

ţ

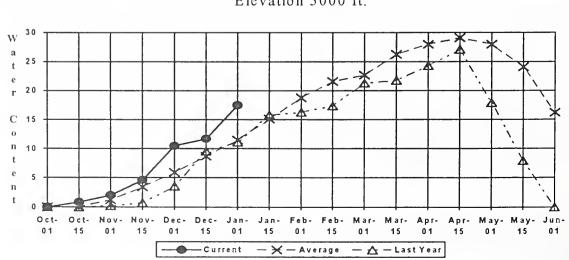
Precipitation* (% of normal)

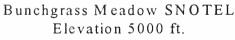
*Based on selected stations

The forecast for the Kettle River streamflow is for 102% of normal, the Pend Oreille below Box Canyon, 87%, and the Priest River near Priest River, 92% of normal for the summer runoff period. Forecast for the Columbia River at Birchbank is for runoff to be 99% of average. December streamflow was 73% of normal on the Pend Oreille River, 79% on the Columbia at the International Boundary, and 70% on the Kettle River. January 1 snow cover was 124% of normal on the Pend Oreille. Snowpack at Bunchgrass Meadow SNOTEL site contained 17.8 inches of water, compared to the average January 1 reading of 10.9 inches. Precipitation during December was 101% of average, bringing the water year-to-date to 124% of normal. Temperatures were 3 degrees above normal for December.

COLVILLE - PEND OREILLE RIVER BASINS

Streamflow Forecasts - January 1, 1995

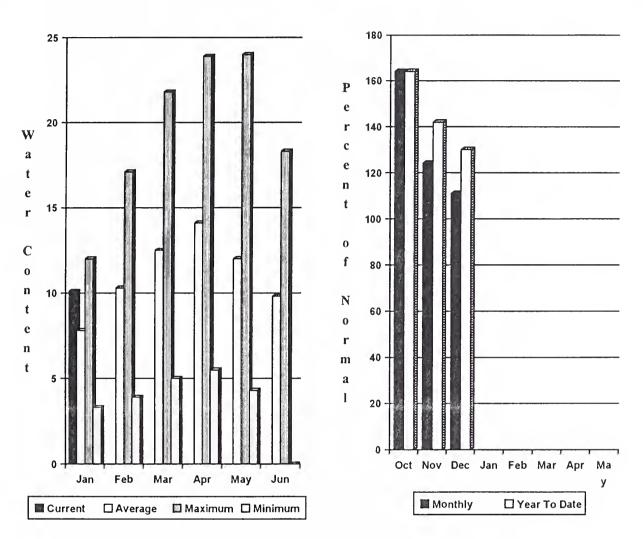

		<<====	Drier -		Future Co	onditions	Wetter	. =====>>	
Forecast Point		90% (1000AB	70%	5 F)	0% (Most (1000AF)	Exceeding * == Probable) (% AVG.)	30% (1000AF)	10%	 30-Yr Avg (1000AF)
PEND OREILLE Lake Inflow (1,2)	APR-JUL APR-SEP APR-JUN	5920 6510 4720	9620 10600 8210		11300 12400 9800	86 86 86	13000 14200 11400	16700 18300 14900	13150 14370 11390
PRIEST nr Priest River (1,2)	APR-JUL APR-SEP	440 470	655 695		750 800	92 92	845 905	1060 1130	814 868
PEND OREILLE bl Box Canyon (1,2)	APR-JUL APR-SEP APR-JUN	6940 7620 6060	10100 11100 8820		11600 12700 10070	87 87 87	13100 14300 11300	16300 17800 14100	13380 14590 11570
CHAMOKANE CK nr Long Lake	MAY-AUG	1.6	5.7	ļ	8.5	90	11.3	15.4	9.4
COLVILLE at Kettle Falls	APR-SEP APR-JUL APR-JUN	71 66 62	110 102 95	1 	136 126 117	104 105 105	162 151 139	200 187 172	131 120 111
KETTLE near Laurier	APR-SEP APR-JUL APR-JUN	1280 1420 1310	1730 1650 1510		1890 1800 1650	102 102 104	2050 1950 1790	2500 2180 1990	1854 1761 1585
COLUMBIA at Birchbank (1,2)	APR-JUL APR-SEP APR-JUN	26500 33000 19400	32200 40200 23500	 	34800 43400 25410	 99 99 99	37400 46600 27300	43100 53800 31400	35140 43810 25670
COLUMBIA at Grand Coulee Dm (1,2)	APR-SEP APR-JUL APR-JUN	43900 37100 29200	56400 47500 37300		62100 52300 41050	96 96 96 96	67800 57100 44800	80300 67500 52900	64850 54543 42756
COLVILLE - PEND ORE Reservoir Storage (100	CILLE RIVER 00 AF) - End	BASINS of Decem	ber		1	COLVILLE - Watershed Sno	PEND OREILL	E RIVER BAS is - Januar	SINS Sy 1, 1995
Reservoir	Usable Capacity 	*** Usa This Year	ble Storag Last Year	e *** Avg	 Water 	shed	Numbe of Data Si	r This ===== tes Last	Year as % of Yr Average
ROOSEVELT	5232.0	4837.7		4547.9		11e River	0	0	0
BANKS	715.0	135.5	673.5	618.3	 Pend	Oreille River	63	162	111
					 Kettl	e River	2	134	145


* 90%, 70%, 30%, and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

The average is computed for the 1961-1990 base period.

(1) - The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

(2) - The value is natural flow - actual flow may be affected by upstream water management.



Okanogan - Methow River Basins

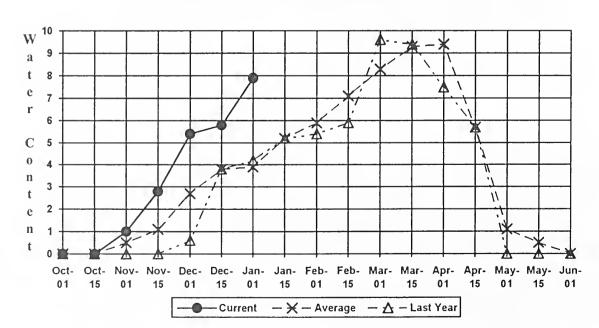
Mountain Snowpack* (inches)

Precipitation* (% of normal)

*Based on selected stations

Summer runoff forecast for the Okanogan River is 110% of normal; the Similkameen River, 116%, the Methow River, 108%, and Salmon Creek, 98% of normal. January 1 snow cover on the Okanogan was 125% of normal, and the Methow, 163%. December precipitation in the Okanogan-Methow was 111% of normal, with water year-to-date at 130% of average. December streamflow on the Methow River was 103% of normal, 67% on the Okanogan River, and 73% on the Similkameen. Snow water content at the Harts Pass SNOTEL, elevation 6500 feet, was 27.6 inches; normal for this site is 17.9 inches. Temperatures were slightly above normal for December. Storage in the Conconully Reservoir was 5706 acre feet, which is 44% of capacity and 97% of the January 1 average.

OKANOGAN - METHOW RIVER BASINS

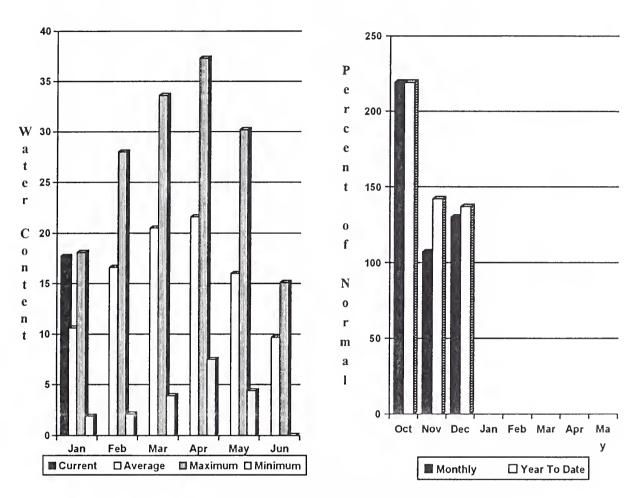

Streamflow	Forecasts ·	- January	1, 19	95

		<<=====	Drier ==		Future Co	onditions		Wetter	=====>>>	1	
Forecast Point	Forecast Period	 90% (1000AF)	70% (1000AF)	1 5		Exceeding ' Probable) (% AVG.)	1	30% 1000AF)	10% (1000AF		0-Yr Avg (1000AF
SIMILKAMEEN nr Nighthawk (1)	APR-SEP APR-JUL APR-JUN	840 990 900	1440 1350 1170	== === 	1620 1510 1290	116 116 116	= ===== 	1800 1670 1410	2390 2030 1680		1399 1304 1113
KANOGAN RIVER nr Tonasket (1)	APR-SEP APR-JUL APR-JUN	830 950 865	1560 1400 1210		1790 1600 1360	110 109 110		2020 1800 1510	2740 2250 1860		1624 1467 1234
ALMON CREEK near Conconully	APR-JUL APR-SEP	6.8 7.1	15.9 16.5	1	22.0 22.8	$\frac{115}{114}$	1	28 29	37 39		19.1 20
(ETHOW RIVER near Pateros	APR-SEP APR-JUL APR-JUN	565 660 565	895 825 705		1020 940 805	108 108 108	 	1150 1050 905	1460 1220 1050		942 873 746
OKANOGAN - METHOW I Reservoir Storage (100		of Decembe	er		========= 	OKANOGA Watershed			R BASINS is - Jan	uary 1,	1995
eservoir	Usable Capacity 	This Year	le Storage La <i>s</i> t Year	*** Avg	 Water 			Numbe of Data Si	==		as % of Average
ALMON LAKE	10.5	7.4	9.0	7.5		ogan River		10	16	 5	125
ONCONULLY RESERVOIR	13.0	5.7	8.4	5.9	 Metho 	w River		2	22	3	163

The average is computed for the 1961-1990 base period.

(1) - The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

(2) - The value is natural flow - actual flow may be affected by upstream water management.



Salmon Meadows SNOTEL Elevation 4500 ft.

Wenatchee - Chelan River Basins

Mountain Snowpack* (inches)

Precipitation* (% of normal)

*Based on selected stations

Precipitation during December was 130% of normal in the basin and 137% Runoff for the Entiat River is forecast to be for the year to date. The April-September forecast for the Chelan normal for the summer. River is for 111%, for the Wenatchee River it is 115%, and 106% on the Squilchuck-Stemilt. Icicle Creek is forecasted to be 111% of normal this summer. Streamflow for December on the Chelan River was 90% of average and on the Wenatchee River it was 73% of normal. January 1 snowpack in the Wenatchee Basin was 179% of average, which is 220% of last year. The Chelan Basin was 154% of average along with Colockum Ridge at 182% and Stemilt Creek at 127% of normal. Snowpack on the Entiat River was at 164% of average. Reservoir storage in Lake Chelan was 343,700 acre feet or 91% of January 1 average and 51% of capacity. Lyman Lake SNOTEL had the most snow water with 42.1 inches of water. This site would normally have 25.4 inches.

WENATCHEE - CHELAN RIVER BASINS

Streamflow Forecasts - January 1, 1995

		<<=====	Drier		Future C	onditions =	Wetter	=====>>	1
Forecast Point	Forecast	1		(°)	hance Of	Exceeding * :			
lorecast ronne	Period	90%	70%			Probable)		10%	30-Yr Avg.
		(1000AF)	(1000AF)	1	(1000AF)	· · ·		(1000AF)	
CHELAN RIVER near Chelan	APR-SEP	1020	1230	- I	1287	111	1350	1550	1160
	APR-JUL	1010	1080		1127	110	1180	1250	1024
	APR-JUN	810	860	- [890	110	920	970	812
STEHEKIN near STEHEKIN	APR-SEP	760	825	1	870	105	I 915	980	827
	APR-JUL	665	705	i	736	105	765	810	701
	APR-JUN	535	550	i	565	105	580	595	538
ENTIAT RIVER near Ardenvoir	APR-SEP	155	198		227	100	l I 255	300	227
ENTIAL RIVER HEAL ALDENVOIL	APR-JUL	141	190	1	207	100	235	275	206
	APR-JUN	119	149	i	170	101	191	220	169
	ALL 0000	115	11.5	i i	1.0	101	1 191	220	109
WENATCHEE R. at Peshastin	APR-SEP	1260	1640	i	1880	115	2120	2500	1636
	APR-JUL	1160	1480	1	1700	114	1920	2240	1485
	APR-JUN	935	1190	1	1370	114	1550	1800	1204
STEMILT nr Wenatchee (miners in)	MAY-SEP	97	126		146	106	166	195	138
ICICLE CREEK nr Leavenworth	APR-SEP	280	355	i	410	111	465	540	370
	APR-JUL	255	330	1	377	111	425	500	340
	APR-JUN	205	260	1	300	111	340	395	270
COLUMBIA R. bl Rock Island Dam (2)	APR-SEP	49200	61200	1	69300	98	77400	89400	70485
	APR-JUL	41700	51800	i	58700	98	65600	75700	59736
	APR-JUN	32800	40700	Ì	46070	98	51400	59300	47007
				 =====		ا 			
WENATCHEE - CHELAN B Reservoir Storage (1000			r		1		E - CHELAN RIV Nowpack Analys		y 1, 1995
	Usable 1		e Storage				Numbe		Year as % of
Reservoir	Capacity	This	Last		I Wate	rshed	of		
1100021022	capacity	Year	Year	Ava	I nace.	L OILCU	Data Si		Yr Average
	1	TCGT	rcar	avy	1		para SI	nase	II Average

11 Wenatchee River 222 179 0 Squilchuck Creek 0 0 Stemilt Creek 1 150 127 146 182 Colockum Creek 1 1 _____

Entiat River

344.7 378.7 | Chelan Lake Basin

226

210

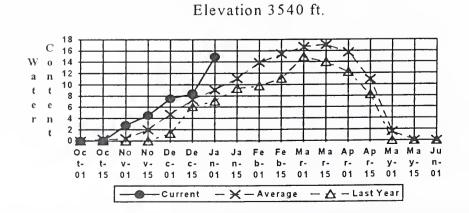
154

164

4

1

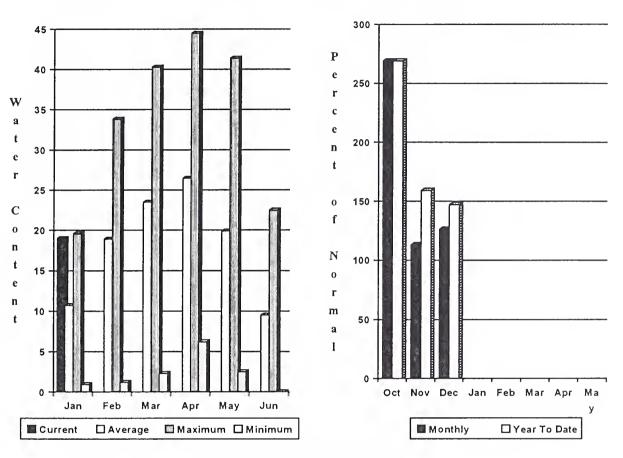
* 90%, 70%, 30%, and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.


The average is computed for the 1961-1990 base period.

CHELAN LAKE

The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
 The value is natural flow - actual flow may be affected by upstream water management.

676.1 343.7



Pope Ridge SNOTEL

Yakima River Basin

Mountain Snowpack* (inches)

Precipitation* (% of normal)

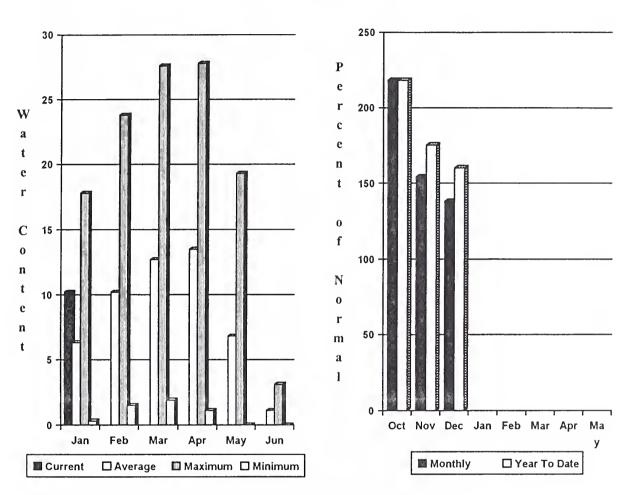
*Based on selected stations

January 1 reservoir storage for the five major reservoirs was 285,000 acre feet, 49% of average. January 1 summer streamflow forecasts are for above normal in the Yakima Basin. Forecasts for the Yakima River at Cle Elum are for 110% of normal. Naches River, 114%; the Yakima River at Parker, 116%, Ahtanum Creek, 104%, and the Tieton River, The Klickitat River near Glenwood should be at near normal 115%. flows this summer. December streamflows are looking good compared to last year , with the Yakima River at Parker 104% of normal, 104% for the Yakima near Cle Elum, and 128% for the Naches River. January 1 snowpack was 178% based upon 15 snow courses and SNOTEL readings Green Lake SNOTEL also reported 150% of within the Yakima basin. average snowpack for Ahtanum Creek. December precipitation was 126% of normal and 147% for the water year-to-date. Temperatures were 2.5 degrees above average for December. Volume forecasts for the Yakima As such, they may differ from the U. S. Basin are for natural flow. Bureau of Reclamation's forecast for the total water supply available which includes irrigation return flow.

YAKIMA RIVER BASIN

Streamflow Forecasts - January 1, 1995

							, 		440000000000000
							Wetter		
Forecast Point	Period	90% (1000AF)	70% (1000A)	F) 5	0% (Most (1000AF)	Probable) (% AVG.)	30% (1000AF)	10% (1000AF)	30-Yr Avg. (1000AF)
KEECHELUS LAKE INFLOW	APR-JUL APR-SEP APR-JUN	106	128 135 113		143 151 125	115 112	158 167 137	180 182 155	124 135 109
KACHESS LAKE INFLOW	APR-JUL APR-SEP APR-JUN	94 98 84	115 119 101		129 134 112	114	144 150 123	165 171 140	111 118 99
CLE ELUM LAKE INFLOW	APR-JUL APR-SEP APR-JUN	375 400 325	440 470 375		480 515 404		520 560 435	585 630 480	409 448 345
YAKIMA at Cle Elum	APR-JUN APR-JUL APR-SEP	610 690 805	720 825 910		795 915 1009	110 110 110	870 1010 1110	980 1140 1210	721 832 915
BUMPING LAKE INFLOW	APR-SEP APR-JUL APR-JUN	112 106 89	139 128 105		155 142 116	114	 171 156 127	199 177 144	136 124 104
AMERICAN RIVER near Nile	APR-SEP APR-JUL APR-JUN	104 95 78	122 112 92		135 123 102	113	 147 135 112	166 152 126	118 109 92
RIMROCK LAKE INFLOW	APR-SEP APR-JUL APR-JUN	200 184 148	250 210 170		273 231 184	116	295 250 199	345 280 220	238 200 162
NACHES near Naches	APR-SEP APR-JUL APR-JUN	740 670 570	865 790 670		950 867 737	115	l 1030 l 945 l 805	1160 1060 900	832 755 651
AHTANUM CREEK nr Tampico (2)	APR-SEP APR-JUL APR-JUN	27 25 22	40 36 31		48 44 38	105	57 52 45	69 63 55	46 42 36
YAƘIMA near Parker	APR-SEP APR-JUL APR-JUN	1820 1670 1480	2110 1940 1720		2310 2130 1880	116 118 118	2510 2320 2040	2800 2590 2280	1994 1805 1597
KLICKITAT near Glenwood	APR-JUN APR-SEP	78 99	99 126		113 145	103 103	128 163 	149 190	110 140
YAKIMA RIVER BASI Reservoir Storage (1	N 000 AF) - End	of Decembe	er		1	YAKIMA R. Watershed Si	IVER BASIN Nowpack Analys	is - Januar	y 1, 1995
Reservoir	Usable Capacity	*** Usabl	le Storag Last	e ***	 Water:		Numbe: of	This	Year as % of fr Average
KEECHELUS					!========	a River			
KACHESS	239.0	62.0	27.5	159.1	 Ahtanu	um Creek	1	178	150
CLE ELUM	436.9	85.8	20.1	230.2	1				
BUMPING LAKE	33.7	16.7	3.1	6.3	1				
	198.0	60.4	24.8		1				


* 90%, 70%, 30%, and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

The average is computed for the 1961-1990 base period.

The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
 The value is natural flow - actual flow may be affected by upstream water management.

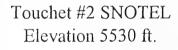
Mountain Snowpack* (inches)

Precipitation* (% of normal)

*Based on selected stations

December precipitation was 138% of average, bringing the year-to-date precipitation to 160% of normal. January 1 snowpack was at 162% of normal. The forecast is for 109% of average streamflow in the Walla Walla River for the coming summer, for the Snake River, 92%, and 109% for Mill Creek. December streamflow was 157% of normal on the Walla Walla River, 63% for the Snake River, and 112% on the Grande Ronde River near Troy. The Touchet SNOTEL site had 20.0 inches of water equivalent, the normal January 1 reading for this site is 12.9 inches. Temperatures were 1 degree above average for December.

WALLA WALLA RIVER BASIN

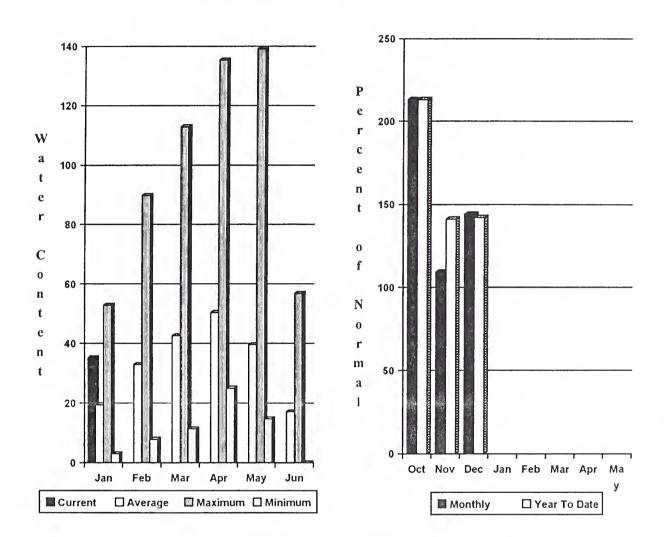

Streamflow Forecasts - January 1, 1995

		<<======	Drier		Future Co	onditions	Wetter	>>	
Forecast Point	Period	90% (1000AF)	70% (1000AF)		0% (Most	Exceeding * == Probable) (% AVG.)		10% (1000AF)	 30-Yr Avg. (1000AF)
GRANDE RONDE at Troy (1)	MAR-JUL APR-SEP	705 615	1210 1080		1440 1290	98 98	1670 1500	2190 1960	1471 1312
SNAKE blw Lower Granite Dam (1,2)	APR-JUL APR-SEP	9090 10300	16600 18700		20000 22500	92 92	23400 26300	31000 34700	21650 24360
MILL CREEK at Walla Walla	APR-SEP APR-JUL APR-JUN	8.8 8.8 8.7	14.6 14.6 14.5		18.6 18.6 18.4	109 110 110	2 3 2 3 2 2	28 28 28	17.1 16.9 16.7
SF WALLA WALLA nr Milton Freewater	APR-JUL	46	53	1	58	109	62	69	53
COLUMBIA R. at The Dalles (2)	APR-SEP APR-JUL APR-JUN	65300 55700 45200	82200 70700 57300		93900 80800 65500	95 95 95	106000 90900 73700	124000 106000 85800	98982 84760 68925
WALLA WALLA RIVER B. Reservoir Storage (100		of Decembe	r				LA RIVER BASI owpack Analys		ary 1, 1995
Reservoir	Usable Capacity 		e Storage Last Year	*** Avg	 Water 	shed	Numbe of Data Si	===	S Year as % of Yr Average
99111212121					1	Creek	2	2 7 0	162

* 90%, 70%, 30%, and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

The average is computed for the 1961-1990 base period.

The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
 The value is natural flow - actual flow may be affected by upstream water management.


35 W 30 a t 25 e r Δ . 20 С 0 15 ١ Δ n ١ t 10 e ١ ١ n 5 t 0 込 Dec- Jan- Jan- Feb- Feb- Mar- Mar- Apr- Apr- May- May- Jun-Oct- Oct- Nov- Nov- Dec-15 01 15 01 15 01 01 15 01 15 01 15 01 01 15 01 15 - X - Average - - ⚠ - Last Year - Current

2

÷

Mountain Snowpack* (inches)

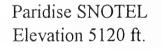
Precipitation* (% of normal)

*Based on selected stations

The forecast for summer runoff in the Lewis River is 111% of normal. The Cowlitz River is forecasted for 109% of normal runoff. December streamflow on the Cowlitz River was 145% of average, and 151% on the Lewis River. December precipitation was 144% of normal, bringing the precipitation to 142% of average for the water year. January 1 snow cover for the Cowlitz River was 170%, and for the Lewis River it was 198%, compared to 71% and 96% respectively, a year ago. The Paradise Park SNOTEL recorded the most water content for the basin with 47.1 inches of water. Normal January 1 water content is 23.6 inches. Temperatures were 2 degrees above normal for December.

COWLITZ - LEWIS RIVER BASINS

Streamflow Forecasts - January 1, 1995

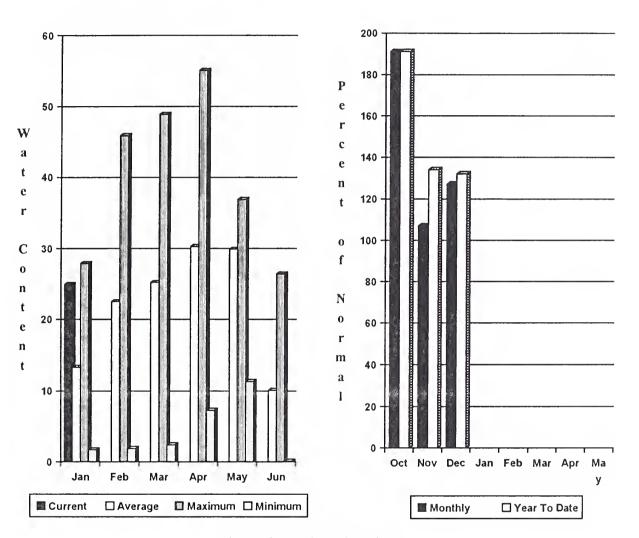

		<<-======	Drier	Future C	onditions =	===== Wetter	====>>	
		1						
Forecast Point	Forecast							
	Period	90%	70%		Probable)	1 30%	10%	30-Yr Avg.
		(1000AF)	(1000AF)	(1000AF)	(% AVG.)	(1000AF)	(1000AF)	(1000AF)
LEWIS RIVER at Arie1 (2)	APR-SEP	615	1130	1340	111	1 1550	2060	1204
	APR-JUL	715	985	1167	111	1 1350	1620	1051
	APR-JUN	635	875	1035	111	1200	1430	933
COWLITZ R. bl Mayfield Dam (2)	APR-SEP	1000	1780	2150	109	1 2520	3290	1970
COMBILS R. DI Mayfield Dam (2)	APR-JUL	1090	1570	1890	109	2210	2690	1970
	APR-JUN	930	1330	1610	109	1 1890	2290	1477
	APR-JUN	930	1330	1610	109	1 1090	2290	1477
CCWLITZ R. at Castle Rock (2)	APR-SEP	1600	2620	2890	108	3160	4030	2667
constra in at captro noon (1)	APR-JUL	1940	2280	2520	108	2760	3100	2325
	APR-JUN	1650	1950	2155	108	2360	2660	1995
	ALK-00H	1000	1,20	2133	100	1 2300	2000	1999
KLICKITAT near Glenwood	APR-JUN	78	99 I	113	103	128	149	110
	APR-SEP	99	126 I	145	103	163	190	140
			1					
COWLITZ - LEWIS RI				ł		- LEWIS RIVER		
Reservoir Storage (10	100 AF) - End	of Decembe	-	I		nowpack Analys		
	Usable	*** Ucabl	e Storage **			Numbe		Year as % of
Reservoir	Capacity	This	Last		rshed	of		
Reservoir	Capacity	Year	Year Av	,	Ished	Data Si		Yr Average
	 	Tear		'y :=== ======				TI Average
				Cow1	itz River	6	239	170
				1				- •
				Lewi.	s River	4	207	198
				I				

* 90%, 70%, 30%, and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

The average is computed for the 1961-1990 base period.

ę

The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
 The value is natural flow - actual flow may be affected by upstream water management.



White - Green - Cedar River Basins

Mountain Snowpack* (inches)

Precipitation* (% of normal)

*Based on selected stations

Summer runoff is forecasted to be 109% of normal for the Green River and 103% for the Cedar River near Cedar Falls, for the Rex River 114%, the South Fork of the Tolt River at 103% and for the Cedar River at Cedar Falls, 106%. January 1 snowpack was 193% of normal in the White River Basin and 180% in the Green River Basin. Water content on January 1 at the Stampede Pass SNOTEL, at an elevation of 3860 feet, was 34.4 inches. This site has a January 1 average of 16.7 inches. December precipitation was 127% of normal, bringing the water year-to-

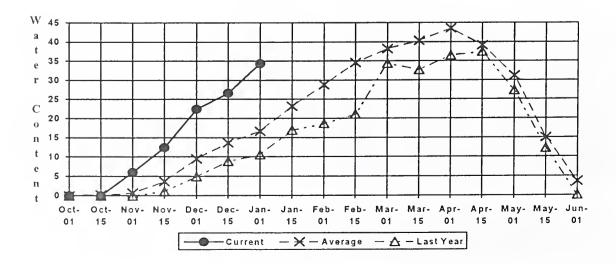
 date to 132% of average. Temperatures were 1 degree above average for December.

WHITE - GREEN - CEDAR RIVER BASINS

Streamflow Forecasts - January 1, 1995

		<<=====	Drier	Future	e Conditions		Wetter	====>>	I.
Forecast Point	Forecast			= Chance ()f Exceeding	*			
	Period				st Probable)		30%		30-Yr Avg.
		(1000AF)	(1000AF)	(1000 <i>A</i>	(% AVG.)	1 (1000AF)	(1000AF)	(1000AF)

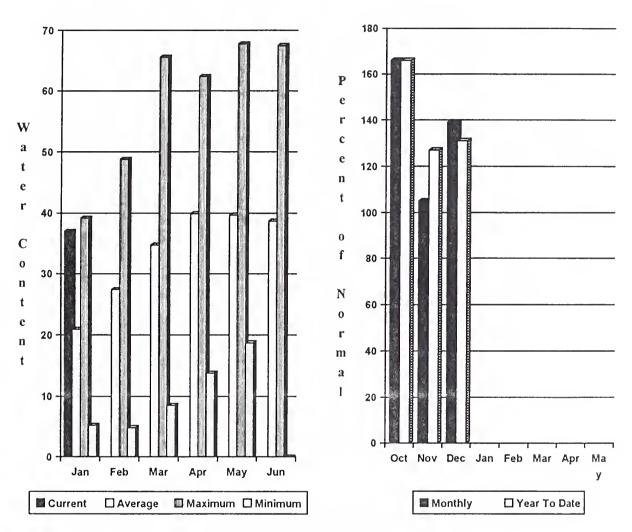
		<<======	Drier ====	== Future	e Conditions		Wetter	=====>>	1
Forecast Point	Forecast	========		= Chance C	of Exceeding	* ======	;		I
	Period	90%	70%	1 50% (Mo	st Probable)	1	30%	10%	30-Yr Avg.
		(1000AF)			(% AVG.)			(1000AF)	(1000AF)
REEN RIVER below Howard Hanson Dam		215	2 5 5	283		== = = = = = = = = = = = = = = = = =	310	355	257
	APR-SEP	225	275	310	109	i	345	395	285
	APR-JUN	181	225	257		i	290	335	234
			200	1		i	200	555	201
EDAR RIVER near Cedar Falls	APR-JUL	51	68	1 80	103	i	91	108	77
	APR-SEP	56	75	1 86	103	I	100	119	85
	APR-JUN	48	61	1 70	102	I	79	92	68
EX RIVER near Cedar Falls	APR-JUL	20	27	I I 31	115		36	42	27
	APR-SEP	22	29	1 34			39	47	30
	APR-JUN	20	25	29			33	38	25
	MERC CON	20	25	2.	115	i i	55	50	25
EDAR RIVER at Cedar Falls	APR-JUL	43	70	1 88	107	i	106	132	82
	APR-SEP	40	69	88	106	1	107	136	83
	APR-JUN	48	71	1 86	107	1	101	123	80
OUTH FORK TOLT near Index	APR-JUL	12.1	14.3	 15.8	104		17.3	19.5	15.2
oolii lokki lobli kedi likdex	APR-SEP	14.0	16.6	18.3			20	23	17.8
	APR-JUN	9.9	11.8	1 13.1			14.4	16.3	13.1
	ALK OON	5.5	11.0	13.1	100	i	11.1	10.5	15.1
WHITE - GREEN - CEDA								RIVER BASI	
Reservoir Storage (1000	AF) - End	of Decembe		1	Watershed	Snowpack	k Analysi	is - Januai	ry 1, 1995
	Usable		e Storage *				Number		Year as % of
eservoir	Capacity	This	Last	I Wa	tershed		of		
		Year		vgl					Yr Average
				•	ite River		2	243	193
				1 1	ICS VIAST		2	240	195
ę.				Gr	een River		7	334	180
				i co	dar River		0	0	0


* 90%, 70%, 30%, and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

The average is computed for the 1961-1990 base period.

(1) - The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

(2) - The value is natural flow - actual flow may be affected by upstream water management.


Stampede Pass SNOTEL Elevation 3860 ft.

North Puget Sound River Basins

Mountain Snowpack* (inches)

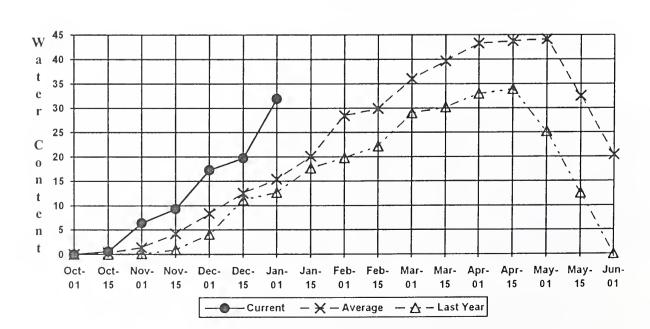
Precipitation* (% of normal)

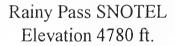
Forecast for the Skagit River streamflow is for 114% of normal for the spring and summer period. December streamflow in the Skagit River was 126% of average. Other forecast points include the Baker River at 107% and Thunder Creek at 110%. Precipitation for December was 139% of average with a water year to date at 131% of normal. January 1 snow cover in the Skagit River was 174%, the Baker River, 78% and the Snohomish River had 179% of average. Rainy Pass SNOTEL, at 4780 feet, had 32.2 inches of water content. Normal January 1 water content is 15.4 inches. January 1 reservoir storage showed Ross Lake at 132% normal and 74% of capacity. December temperatures were near normal.

For more information contact your local Natural Resources Conservation Service office.

11

NORTH PUGET SOUND RIVER BASINS

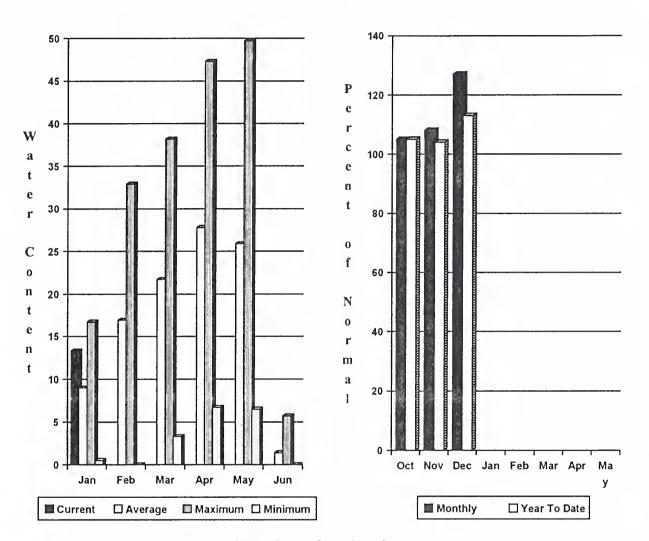

Streamflow Forecasts - January 1, 1995


		<<=====	Drier ==		Future Co	onditions =	Wetter	====>>	
Forecast Point	Forecast Period	90% (1000AF)	70% (1000AF)	1 5	0% (Most	Probable) (% AVG.)	(1000AF)	10% (1000AF)	 30-Yr Avg. (1000AF)
THUNDER CREEK near Newhalem	APR-JUL APR-SEP APR-JUN	230 320 148	245 345 166	== ==== 	259 361 178	113 110 119	270 380 190	290 400 210	230 328 149
SKAGIT RIVER at Newhalem (2)	APR-SEP APR-JUL APR-JUN	1910 1640 1260	2250 1930 1480		2490 2125 1635	114 116 116	2730 2320 1790	3070 2610 2010	2185 1830 1410
BAKER RIVER near Concrete	APR-JUL APR-SEP APR-JUN	720 950 505	820 1060 585		888 1138 636	106 107 104	955 1210 690	1050 1320 765	836 1064 611
NORTH PUGET SOUND Reservoir Storage (1	000 AF) - End					Watershed Sr	GET SOUND RIVE Nowpack Analys	is - Janua	ry 1, 1995
Reservoir	Usable Capacity !		le Storage Last Year	*** Avg	 Water	shed	Numbe of Data Si	r This ==== tes Last	Year as % of Yr Average
ROSS	1404.1			783.9		omish River	4	265	179
DIABLO RESERVOIR	90.6	88.3	87.3		 Skagi	it River	3	240	174
GORGE RESERVOIR	9.8	7.9	8.0		 Baker 	River	9	242	178

* 90%, 70%, 30%, and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

The average is computed for the 1961-1990 base period.

The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
 The value is natural flow - actual flow may be affected by upstream water management.



Olympic Peninsula River Basins

Mountain Snowpack* (inches)

Precipitation* (% of normal)

*Based on selected stations

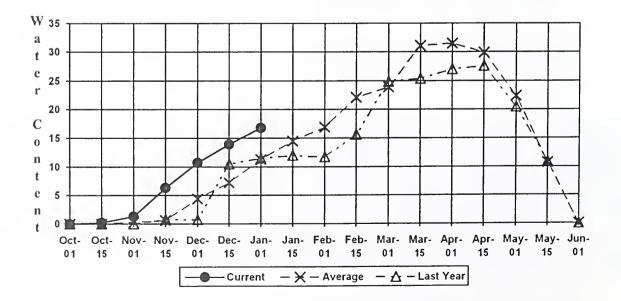
January forecasts of runoff for streamflow in the basin are for 94% of average for the Dungeness River and the Elwha River, 98%. The Big Quilcene can expect near normal runoff this summer. December precipitation was 127% of average. Precipitation has accumulated at 113% of normal for the water year. December precipitation at

- Quillayute was 20.0 inches. January 1 snow cover in the Olympic Basin was well above normal at 145%. The Mount Crag SNOTEL near Quilcene
- had 16.7 inches of snow water equivalent on January 1. Normal for* this site is 11.3 inches. Temperatures were 1 degree above normal for December.

OLYMPIC PENINSULA RIVER BASINS

Streamflow Forecasts - January 1, 1995

		<<=====	Drier ====	Future	Conditions	==== Wetter		
Forecast Point	Forecast Period	90% 90% (1000AF)	70% (1000AF)		Exceeding * == t Probable)) (% AVG.)	30% (1000AF)	10% (1000AF)	 30-Yr Avg. (1000AF)
UNGENESS RIVER nr Sequim	APR-SEP APR-JUL APR-JUN	118 97 73	137 113 84	150 123 92	94 94 94 94	163 133 100	182 149 111	160 131 98
LWHA RIVER nr Port Angeles	APR-SEP APR-JUL	385 315	450 370	 494 404 	98 97	540 440	605 495	502 417
OLYMPIC PENINSULA RIVER BASINS Reservoir Storage (1000 AF) - End of December Usable **** Usable Storage ***				I OLYMPIC PENINSULA RIVER BASINS I Watershed Snowpack Analysis - January 1, 1995 I Number This Year as % of				
eservoir	Capacity 	This Year	Last Year A	Wat vg	Watershed		tes Last	Yr Averag
				==== ====== Elw	ha River	0	0	0
				Mor	se Creek	0	0	0
				Dun	geness River	0	0	0
				Qui	lcene River	1	145	148
				Wyn	oochee River	0	0	0


* 90%, 70%, 30%, and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

The average is computed for the 1961-1990 base period.

(1) - The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

(2) - The value is natural flow - actual flow may be affected by upstream water management.

In addition to basin outlook reports, a Water Supply Forecast for the Western United States is published by the Natural Resources Conservation Service and National Weather Service monthly, January through May. Reports may be obtained from the Natural Resources Conservation Service, West National Technical Center, 101 SW Main Street, Suite 1700, Portland, OR 97204-3225.

 Issued by
 Released by

 Paul W. Johnson
 Lynn A. Brown

 Chief
 State Conservationist

 Natural Resources Conservation Service
 Natural Resources Conservation Service

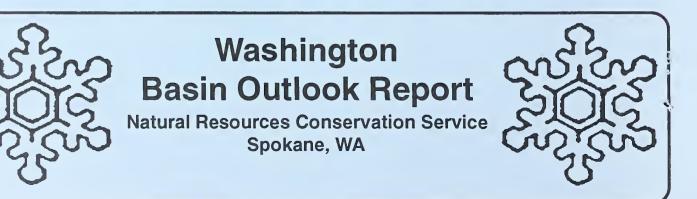
 U.S. Department of Agriculture
 Spokane, Washington

 The Following Organizations Cooperate With the Natural Resources

 Conservation Service in Snow Survey Work*:

 Canada
 Ministry of the Environment

li li	
	Vashington State Department of Ecology Vashington State Department of Natural Resources
L L	Department of the Army Corps of Engineers J.S. Department of Agriculture Forest Service J.S. Department of Commerce NOAA, National Weather Service J.S. Department of Interior Bonneville Power Administration Bureau of Reclamation Geological Survey National Park Service Bureau of Indian Affairs
G G F F V S S S S S	City of Tacoma City of Seattle Chelan County P.U.D. Pacific Power and Light Company Puget Sound Power and Light Company Vashington Water Power Company Snohomish County P.U.D. Colville Confederated Tribes Spokane County Yakama Indian Nation
V	Okanogan Irrigation District Venatchee Heights Irrigation District Iewman Lake Homeowners Association


*Other organizations and individuals furnish valuable information for the snow survey reports. Their cooperation is gratefully acknowledged.

Rock Pointe Tower II, Suite 450 W. 316 Boone Avenue Spokane, WA 99201-2349

U.S. OFFICIAL MAIL FOR PRIVATE USE \$300 ≈ 0 JAN 12'94 8501558 U.S.POSTAGE WP

3 U. S. DEPT. OF AGRICULTURE NATIONAL AGRICUL. LIBRARY CURRENT SERIAL RECORDS BELTSVILLE, MD 20705

