
If' " '» *

; • -

y

.'1 • ;<

. mi

AN ANALYSIS OF THE DYNAMICS OF TOWING CABLES

Millard Sherwood Firebauq

•

3*1





LIBRARY
NAV

' SCEOOB««
,

CALIF.. 93940 *

AN ANALYSIS OF THE DYNAMICS OF TOWING CABLES

by

Millard Sherwood Firebaugh (^UTCDfc)

//

S.B., Massachusetts Institute of Technology
(1961)

S.M., Massachusetts Institute of Technology
(1966)

Nav.E., Massachusetts Institute of Technology
(1966)

Submitted in partial fulfillment of the requirements for the
Degree of Doctor of Science

at the

Massachusetts Institute of Technology
January, 1972





An Analysis of the Dynamics of Towing Cables

Millard Sherwood Firebaugh

Submitted to the Department of Ocean Engineering in January 14

,

1972, in partial fulfillment of the requirements for the degree
of Doctor of Science.

Abstract

The linearized dynamic and kinematic equations for the
three-dimensional motions of a faired towing cable in a
uniform flow are formulated with special attention to the
hydrodynamic forces. Sinusoidal kinematic boundary conditions
are applied to the cable at the tow point and simple dynamic
boundary conditions are applied at the towed body. Analysis
is done in the frequency domain. The resulting equations are
solved numerically. The method is shown to be applicable over
a range of practical cases. A computational difficulty
involving the interaction of growing solutions with round-off
error is identified. Demonstrably the difficulty may be put
off by increasingly precise computation. The effect of import-
ant physical parameters of the problem on the motions trans-
mitted from the tow point down the cable to the towed body are
evaluated. Results are understood in terms of the natural
frequencies of the oscillatory modes which combine to produce
the cable dynamics. A design principle is established for
minimizing towed body motions by partially decoupling the tow
point from the towed body using moderately extensible cables.
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Chapter 1

INTRODUCTION

Background

A ship tows a body suspended at the end of a long cable

The cable is slender and curvatures are small so bending

moments are negligible. The ship proceeds at velocity U in

a seaway and bounces around a lot. As it moves along its

motion is somehow transmitted to the towed body through the

cable. The central question addressed by this thesis is,

"what motions are transmitted to the towed body through the

cable?" Real towed body systems now generally employ a

fairing that is mostly free to rotate about the cable. So

the cable is assumed to have a freely rotating fairing

attached. Real cables stretch under load so the cable is

assumed to be extensible.

In the absence of any excitation a steady towing situa-

tion exists, a problem solved by Pode (1951). The basis of

the solution of the unsteady problem with an excitation

present will be the assumption that the motion consists of

small perturbations of the motion variables about their

steady values leading to linear equations. These equations

may be solved in the time domain with the method of charact-

eristics or in the frequency domain assuming sinusoidal

excitations of the tow point. Although both approaches have

merit the frequency domain solutions are compatible with the

existing body of knowledge concerning ship motions and with

a formulation of the hydrodynamics of cable fairings derived
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from thin wing theory. Knowledge of the ocean wave spectrum

combined with response amplitude operators for a given tow

ship can be converted to a spectrum of tow point velocities

making an understanding of cable dynamics in the frequency

domain appropriate. The frequency domain approach will be

pursued here.

Before proceeding to the details of this paper it may be

instructive to compare the problem posed to the classical

problem of the motions of a vibrating string. A string is

stretched between two points whose locations are fixed. The

tension in the string is considered constant throughout its

length. For certain conditions its rest position is a

straight line between the end points. The string is considered

to be inextensible . Its motions are described by the wave

equation \p = c 2
\p where \p is the displacement of the string

from its rest position.

The problem posed in this thesis differs from the class-

ical vibrating string problem in the following respects: the

boundary conditions are more complicated than the simple kine-

matic conditions described above. One boundary of the tow

cable is subject to a kinematic condition consisting of pre-

scribed motions. The other boundary is subject to a dynamic

condition consisting of prescribed forces, themselves functions

of the kinematic variables at the boundary. The tension in the

cable is not constant throughout. In fact the tension increases

in some fashion from the body end to the towpoint end of the

cable. The equilibrium condition of the cable is a non-linear
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space curve. The cable is extensible, and finally it is

operating subject to hydrodynamic and gravitational forces.

The towing cable is a complicated combination of a vibrating

string, a compound pendulum and a distributed mass-spring

system all with significant viscous damping.

The solution of the cable problem will in various ways

include the solutions to these classical problems. Of course,

the coupling between the various problems is considerable and

so the features of each are only outstanding in certain

special cases. This thesis will formulate the problem in its

complexity, apply the frequency domain analysis to plausible

designs and bring the above notions to mind again while

interpreting the results.

Antecedents

The problem of determining the cable configuration for a

steady tow was comprehensively solved by Pode (1951) . Both

before and after Pode ' s solution investigators have studied

hydrodynamic loading functions for cables. Their work is

summerized by Casarella and Parsons (1970) . In the same

survey a number of investigations into the unsteady motions

of cables are also summarized, of which the work of Whicker

is very relevant to this thesis.
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Whicker (1957) studied the dynamics of an unfaired,

inextensible cable with drag but no added mass. He examined

the transverse and longitudinal motions of the cable in a

plane parallel to the towing direction. He presented two

schemes for solution, one employing the method of character-

istics and the other a linearized frequency domain approach.

Neither solution scheme could be fully implemented without

extensive computer aid so only simplified special cases were

worked out. The special cases considered in this thesis in

Appendix III where coincident with those of Whicker, verify

his results.

Abkowitz (1965, 1967) considered the torsional and

lateral vibrations of a towing cable with the fairing bound

to the cable. His interest was in establishing cable para-

meters for which this system would be stable with respect to

hydrodynamic flutter. Abkowitz showed that for some cable

and fairing parameters in the range of practical interest

stability was marginal and flutter could be expected. Pri-

marily because of flutter and more general kiting instabilities

most faired cable systems now employ fairings which are more

or less rotationally unrestrained.

Schram and Reyle (1968) used the method of characteristics

to analyze the transverse, longitudinal and lateral motions

of an inextensible cable system with drag but no added mass.

They developed transfer functions comparing the amplitude of

surface excitations to the amplitude of towed vehicle motion.

Their analysis was complicated by the assumption that the
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cable was inextensible. Then a pair of equations in the first

order system are parabolic instead of hyperbolic creating

difficulties for the well-posedness of the initial value

problem.

Huffman (1969) considered an extensible bare cable

towed system undergoing transverse and longitudinal vibrations

while being towed through air. He used the method of char-

acteristics to describe cable configurations, variations in

tension and towed body displacements from equilibrium for

various combinations of cable parameters. His method was

fully implemented numerically and since all the equations

were hyperbolic, was well posed. As mentioned before however,

these solutions in the time domain are not particularly

compatible with the spectral analysis of ship motions. Of

course, Huffman's interest was not in sea systems but in air

towed systems so that this incompatibility was not a detriment

to his selection of the method of characteristics as the

proper approach to the problem solution.

Kerney (1971) used a small pertubation scheme to analyze

the two-dimensional motions of an inextensible cable with

added mass. Kerney' s frequency domain analysis differs little

from the method applied here or from the original proposal of

Whicker. In implementing his solution numerically he encoun-

tered difficulties left unresolved.

The concern of the present study is an extensible cable,

with a freely rotating fairing attached, towing a body and

excited by transverse, longitudinal and lateral motions
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emanating from the tow ship. The significance of the freely

rotating fairing is that it greatly reduces drag on the cable

It can transmit no moment to the cable but it can transmit a

side force the nature of which will be investigated. The

results of the study concern the response of the cable and

the towed body to sinusoidal excitations.
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Chapter 2

FORMULATION

Coordinate Systems

A right-handed Cartesian coordinate system moves with the

local position of the cable with its x axis along the

direction of the mean tow velocity U . The y axis points

opposite to the direction of gravitational attraction and the

z axis points to starboard. Another right-handed Cartesian

system unsubscripted is imbedded in the towing cable in such

a way that were the tow ship stationary with the cable hanging

straight below this x, y, z system would point in the same

directions as the x , y , z system at all points along the

cable. When the tow ship is moving with velocity U through

the stationary ocean the cable streams behind and below the

tow ship in a complicated space curve so that at each point

along the cable the cable coordinate system will point in

different directions from the x ,y , z system. The relation
o J o o J

between the x, y, z system and the x , y , z system isJ * o o o

defined at each point of the cable by two angles, the trail

angle
<J>

and the kite angle \p . The trail angle 4> is the angle

measured between the y axis of the cable system and the xJ J o

axis of the ship system considering a rotation about the z

axis. The kite angle \\> is then formed by a rotation about

the x axis. The relationship between the two systems shown

in figure 2.1 is given by the following transformation matrix

which is formed by a procedure similar to that of Abkowitz

(1969) .
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X sine})

y = cosip cos<}>

z
h 4

w
-sini|) coscj)

-cost))

cosiJj sin<j> sin^

-sini/> sine}) cosip

x
o

vV

(2.1)

In the case of steady towing as shown by Pode (1951)

there is no kiting but there is a trail angle $ . In the

ensuing analysis perturbations about the steady values are to

be used. The trail angle and kite angle are written as the

sum of steady values and perturbation values which are small

compared with the steady values, thus

<J>
=

<J>* + $

$ * ty* + jp and furthermore ip* = 0.

Under these circumstances the transformation matrix elements

may be expanded in a Taylor Series giving for the zeroth and

first order in the perturbation quantities

x sin<t>*+coscf>*$ -cos(f>*+sin<{>*$

cos<f>*-sin<J>*$ sincf)*+cos<f)*$

-$ cos<f>* -$ sine})*

ol
f \

X
o

IP Yo

1J ^v

(2.2)
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Angular velocities to first order in perturbation quantities

are 3$/3t and 3$/3t. Accelerations in the x, y, and z

directions are given by

3U a, 3$
a. = — — v* —*-

x at
v

3t

a
y = H +u*H < 2 - 3a"c >

3w , - 30a
z

=
3t

+ V* 3t

where u, v, and w are the velocities of the cable in the x,

y, and z directions respectively. As before the velocities

are the sum of steady values and perturbation values, and can

be written as

u = u* + ti

v = v* + v

w sa w* + w but w* = so w = w

Dynamic Equations

Consider a differential element of a faired towing cable

such as shown in figure 2.2. The components of forces in

each of the three directions of the cable coordinate system

must be in equilibrium. For the unsteady case contributions
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Figure 2.1

Coordinate Systems

Figure 2.2

Differential Element of Faired Cable
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to the forces are made by the inertia of the cable and the

fairing, the tension in the cable, the weight of the cable

and the fairing and the fluid flow over the surface of the

fairing. Assume that the fairing is segmented into very

short segments each of which is mounted on frictionless

bearings on the cable so that forces are transmitted from the

fairing to the cable but no twisting moment is trains^ f"t**a^ -

This assumption appears to be a fairly accurate description

of many real systems.

The inertial forces acting on a differential element are

X<i>=-mds(§f-v*!t)

Y
(i)

= -mds(§| + u* §§) (2.4a-c)

-7(1) * /3W * M.\Z = -mds
(
^ + v* ^)

where the force components in the respective directions are

given by the upper case letters. The mass per unit length

of the cable and fairing is m and the length of the differ-

ential element in the loaded condition is ds

.

The gravitational forces are:

X* g) = (m-pv)ds g(cos<J>*-sin<{>*$)

Y* g) = -(m-pV)ds g (sin<J>*+cos<f>*$) (2.5a-c)

Z
(g) = (m-pV)ds g$sin<j>*

24





where p is the density of the water in which the system is

operating, V is the volume per unit length of the fairing and

cable in the loaded condition and g is the acceleration due to

gravity.

The tension forces acting on the cable are

V (T) m4. 3d)* , * 9d>* , m . 9$X v
' = -T* tt*- ds - T tt^ ds - T* ^- ds

dS dS dS

„(T) 9T* , 9T , ,~ a .

Y = *— ds + -r— ds (2.6a-c)
dS d S

z
(t> . T . |i ds

as

where T is the tension which is the sum of a steady value and

a perturbation value, that is T = T* + T.

The hydrodynamic forces acting on the cable may be

written as

x
(h) = x

*(h)
+

~(h)

Y (h) m y
*(h)

+ J(h) (2.7a-c)

(h) m (h) "(h)

where as before, since the steady motion of the cable is in

* (h)the x-y plane, Z =0. Appendix I contains the details of

the hydrodynamic analysis and shows that the following

equations may be written for (2.7a-c).
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X
(h)

= -C
D£p

cds(a
1
+a

2
sin(J)*) sin<j>*U

2

-CD^p
cds[{ (a

1
+a

2
sin<t>*) 2sin 2

<()*+ (a
1
+2a

2
sin<})*)

cos 2
<J>*}U u+a

1 sin4>*cos(f)*U v]-|piTb 2 ds ~ (2.8a)OX O dt

Y
(h)

= -C
D£p

cdsfb-j+b cos<j>*)coscf>*U 2

-C_ip cds [b, sin<})*cos(})*U u+{2 (b, +b~cos(j)*) cos 2
(}>*

+ (b
1
+2b

2
cos(})*) sin 2 4>*}U

o
v] -4pTTb 2 dsu*||- (2 . 8b)

Z
(h)

= -ipC^ cds(a,+a sin<J>*)U w - iUpc 2 ds |~
U ± Z O d t

XV* ~ f
- 4m -£__ ds |1 ( 2.8c)C dt

where b, c, m , x„, C_., a i; a_, b
n
and b are defined in

Cj d j. z l z

Appendix I. Equation (2.8c) is restricted to motions of the

cable whose frequency corresponds to low reduced frequency,

uic— and for fairings made of materials with densities close to
o
that of sea water.

Combining equations (2.4a-c), (2.5a-c), (2.6a-c), and

(2.8a-c) gives the dynamic equations for a differential

element of cable.

-mds(~-v*|f-) + (m-pV)ds g (cos<j>*-sin<t>*$) -T*|4*ds-T|^*ds-T*|^- ds
o t d t oS dS dS

-C ipcds (a,+a
2
sincj>*)sin(J)*U

2 -C £pcds [{ (a,+a
2
sin<j>*) 2sin 2

4>*

+ (a
1
+2a

2
sin<|)*)cos 2

(t>*}U ti+a^incJ^cos^lMM -£p7rb 2 ds |£ = (2.9a)
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-mds(||+u*||-)-(m-pV)ds g (sin<f>*+coscj>*$) +|j*ds+|^ ds-ipC
D
cds

(b
1
+b

2
cos<j>*)cos<|>*U

2 -C ipcds[b
;

,sin(j)*cos(j)*U
o
u+{2(b

1
+b

2
cos(|)*)

cos 2
(j)*+(b

1
+2b

2
cosc|)*)sin 2 d)*}U

o
0]-^p7Tb 2 dsu*||- = (2.9b)

x„

-mds (!x+v*!f-) + (m-pV)dsg$sin(j)*+T*|i ds-*p7TC 2 ds|J -4m— v*ds |f-ot dt dS dt C at

-^pC
D
cds(a

1
+a

2
sin(t)*)U w = (2.9c)

Equations (2.9a,b) contain terms which are steady and terms

which are first order in the time varying perturbation

quantities. The steady terms may be separated from the time

varying terms to yield a pair of equations describing the

steady motion of the cable and a pair which pertain only to

the time varying parts of the motion. The steady equations

are

(m-pV)ds g cos<})*-T*|^-*ds-7pC
T
.cds(a

1
+a o sin(J)*)sin(J)*U

2 =0

(2.10a)

-(m-pV)ds g sinc()*+|^- ds-^pC cds (b
1
+b

2
cos(J)*)cos(})*U

2 =0

(2.10b)

The time-varying equations are

-mds(|£ -v*H-)-(m-pV)ds 9 sin<J>*$-T f|* ds-T* |§ ds
d t d t da oS

-C
D
£pcds[{ (a

1
+a

2
sin({)*)2sin 2

(})*+(a
1
+2a

2
sin(})*)cos 2

(})*}U
o
u

+a..sin<t>*cos<j>*U v]-£piTb 2 ds — = ° (2.11a)
J. O d t
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-mds (-rr- +u*vr) - (m-pV)ds g cosij)*$+7-ds-C^pcds [b, sinc))*coscJ>*
ox. o V. aS U _L

U
o
u+{2(b

1
+b

2
cos<J)*)cos 2

<J)*+(b
1
+2b

2
)cos(j)*)sin 2

<J)*}Uo
0]

-£p7Tb 2 ds u* || = (2.11b)

Equations (2.10a,b) are the classical steady equations for a

towed cable as determined by Pode (1951) and others. Equations

(2.11a,b) and (2.9c) are the dynamic equations for the

linearized three-dimensional motions of a faired cable.

Kinematic Equations

Kinematic relations for the differential element of

cable must also be satisfied. Again consider the element

shown in figure 2.2. Points P and Q can move relative to

each other in three ways, one way along each of the intrinsic

coordinate directions. Motion along the y direction comes

from stretching the element. Motion in the x and z directions

is caused by relative rotation of the element. The following

relations express these relative motions. In the y direction

|v*ds+|v ds+u*|l*ds+u*|i ds+a|£*ds . |_ (ds) (2.12a)
9S 3s 3s 3s 3s 3t

In the x direction

3u*, 3u , *3$*j ~3$ j *9$ j 3$ j-r— ds + 7T— ds - v*-^ ds - v^- ds - v*^ ds = - -r± ds
3s 3s 3s 3s 3s 3t

(2.12b)
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and in the z direction

I-»**!f d. + v.||ds-||ds (2.12c,

As in the case of the dynamic equations, the relations of

equations (2.12a,b) contain steady terms and time-varying

terms. The equations may then be separated each yielding two

equations, one for the steady motion and one for the time-

varying motion. Since there is no relative motion between

points P and Q for the steady motion of the cable, the trivial

results of the steady portion of equations (2.12a,b) is

expected, namely that they are satisfied by u* = sincf>* and

v* = cos(ji*. The time-varying portions give

|2 ds + u* |i ds + u f|* ds = Ir (ds) (2.13a)
dS dS dS dt

ffds- v ||* ds-v* ffds = - ffds (2.13b)

The dynamic equations and the kinematic equations for the

time-varying three-dimensional motions of the cable are six

equations in six unknowns, namely the three perturbation trans-

lational velocities u, v, w, the two perturbation angular

velocities $ and $ and the perturbation tension T. The

equations for the x and y motion are coupled together and de-

coupled from the side motions in the z direction. All the equa-

tions are written in the two independent variables s and t. The
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equations have space varying coefficients in the variables

u*, v* 7 <j>* and T* a set of variables which trivially reduce

to (j>* and T*. These quantities may be determined from the

solution of the steady equations (2.10 a,b) . Before pro-

ceeding to methods of solution some additional operations may

be performed on the cable equations to simplify the analysis.

Lagrangian Coordinate

Because the cable can stretch and because the amount of

stretch is a function of the tension T, the independent

variable s in the above equations, which measures length

along the cable, is difficult to identify. To reach some

specific value of s on the cable the observer must know the

exact state of tension in the cable. A handier variable

would be some distance between points fixed on the cable

which was independent of the state of tension. Let us call

this distance o and measure it on the unstretched cable. This

new variable is a Lagrangian coordinate in the sense that it

is fixed to the particles of the cable. For extensible cables

a simple relation exists between the Eulerian variable s and

the Lagrangian variable a; that is the stress-strain relation.

If the stress-strain relation is linear then the relation

between s and a may be written as

If- -

1 + h- x + H +
Ie (2 - 14 >
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where A is the cross-section area of the cable and E the

modulus of elasticity. The Lagrangian coordinate a may be

introduced into the dynamic and kinematic equations by a

change of variables from s to a . There will also be a change

in cable mass and volume per unit length and a change in

cable dimensions as well as an effective change in fairing

mass per unit length and fairing dimensions between the un-

stretched and stretched conditions of the cable. The rela-

tions are

x joS ~ / /oS , r* / / aS TI t , /OS -,m = m/
JZ>

c * C//W b = B//^' V = V/
9F'

and

X
G

= V/aa' m = m/
*Z (2 - 15)

where the tilde indicates values for the unstretched cable.

Making the variable change indicated by equation (2.14) and

substituting in the relations of equations (2 . 15) gives for

the steady configuration equations (2.10a,b)

(m-pV)g coscf)* ~ipCD
c (a^a^imfr*) sin^U* d+||) -T

*ff*=
°

(2.16a)

-(m-pV)g sin<})*-ipC
D
c(b

1
+b

2
cos(})*)cos(})*u2 (1+—

)

7
+|^. =

(2.16b)

for the dynamic time-varying equations (2.11a,b) and (2.9c)
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-fii<§§ -v*f£)-(m-pV)g sin<i>*$-TJf-T*|f -*pC
D
c

[{ (a,+a
2
sin<J)*)2sin 2

<l)*+(a
1
+2a

2
sin<J)*)cos 2

(f)*}U u

+a
1
sin(J)*cos(J)*U

o
v] (l+|*r) ^-^P7rB 2

|^ "7pC
D
c (a-j+a^iiKj)*)

sin<J>*U* (Hg)"* 2XE
T = (2.17a)

-ih(|^ +u*||) - (m-pV) g cosc}>*$+|^ -£pC
D
c [b

1
sin(|)*coscJ)*U

o
u

+{2 (b^b^oscf)*) cos 2
<f>*Mb +2b

2
cos<J>*) sin 2

cf)*}U
o
v] d+|*r) 7

-•^P7TB
2 U*||-^pC

D
C(b

1
+b

2
C0S(|)*)C0S(l)*U2 (1+|1)" 7 J^ = Q

(2.17b)

-m(^— +v*^rt) + (m-pV)gi|)sinc|)*+T*7r±- -tpTrc^^r- -4m— v*^-£-
dt dt do dt ~ d u

-^pC
D
c(a

1
+a

2
sin<|>*)U

o
(l+^)' w = (2.17c)

The last term in each of equations (2.17a) and (2.17b) came

from the time-varying part of the tension in the substitution

of c for c in the steady equations. Continuing the variable

change the kinematic equations (2.13a,b) and (2.12c) give

B*«*lf*«fc*-iiS! < 2 - 18a >

££ _ v 11* _v*ii m _ i£ (i+5!*-) ( 2 i8b)
3a 3a 3a 3t u AE ; U.ibdj

3&
3 a " U ^ + V

*IF
=

3t
(1+AE } (2 * 18C)
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completing the transformation of the equations of motion

from the Eulerian to the Lagrangian cable coordinate

.

Non-dimensionalization

The following definitions are made to facilitate non-

dimensionalization of the cable equations.

$ =
(J)* w = w/U

' o C = Q/% n = ^p7TC 2
/fh

t - f sin $ = u*/U
' o

T = tg/u
o

D = ip C
D
CU^

* = cos $ = V*/U
' o

6 = U 2 /*g e = 5
G
/s

u = u/U
o

N = T*/mg£ d = pV/iti h = m/m

v = v/U n = T/mg£ y = £piTB 2 /m Y = AE/mgft

Substituting these definitions into the equations of the

previous section gives for the steady configuration

N 4- dO
(l-d)cos<I> - D(a

1
+a

2
sin$) sin$(l+-) 7 = NgjJ- (2.19a)

(l-d)sin$ + D(b
1
+b

2
cos«I>) cos$(l+-) 7 =

|| (2.19b)

for the time-varying dynamic equations

(l+y)~ - cos$|£ + n||- +D[{ (a
n
+a sin$)2sin 2

<£> +
oT d T d £ ± Z

(a,+2a sin$) cos 2 $} u+a. sin<I>cos$v] (1+— )
7 + (l-d)sin$<{> +

[
2y 1 2

Sln )sin
^
1+7^ +

dF^
n = (2.20a)
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p- + (1+y) sin$f£ - l~ + D(l+-) 7 [b^in-Dcos^ +
dT dT d£ Y 1

{2 (b
1
+b

2
cos$) cos 2 $ + (b

1
+2b

2
cos$) sin 2 $}v] + (l-d)cos$(J)

+ 5_ (b..+b cos<l>)cos<I> (l+-)~* n = (2.20b)
zy i z Y

(l+n)~ + (l+4h£)cos$!^- - n|$- - (1-d) sin*i|H-
dT d T d ^

D(a
1
+a

2
sin$) (1+^)* w = (2.20c)

and finally for the kinematic equations

|H. cos,|i + l
(1+£, |4_|i v=0 (2.20d,

fr + sin$ TT~3T^T + ^^ U==0 (2.20e)
9C oC Y<5 °t "C

— + cos$ §*• _ r (l+-) ^ - sin$ -r- ^ = (2.20f)
d£ d£ Y oT d£

In order to ease the algebraic load the following non-

dimensional drag coefficients are defined and will be used

in later manipulations.

D
1

= D[(a,+a sin$) 2sin 2 $ + (a,+2a
2
sin$) cos 2

$]

D
2

= Da,sin$cos4>

D^ = D (a,+a
2
sin$) sin<I>
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D. = Db. sin$cos$
4 1

D c = D[2(b 1 +b cos$)cos 2 $+(b 1 +2b ncos$)sin
2
$]

D L Z 1 Z

D, = D (b, +b
?
cos<I>) cos$

D_ = D (a. +a
:?
sin<I')

Equations (2.19a,b) can be integrated to provide the

information from which the coefficients of equations (2.20a-f)

may be determined. Equations (2.20a-f) may be solved by

techniques described later. Before we can proceed to a

solution of these equations, conditions for the behavior of

the system at the boundaries must be described.

Boundary Conditions

The six first order PDE ' s which comprise the model for

the cable dynamics require six boundary conditions for their

solution. Analysis in the characteristic plane shows that

three conditions at each end of the cable need to be specified,

Boundary conditions can be either dynamic or kinematic meaning

that either the forces acting on or the motions of an end of

the cable may be specified. Different combinations suit

different problems. For example, a common towing situation

involves a ship towing a cable and towed body which are small

compared to the ship. Here there is little feedback from the

cable dynamics to the ship motions so kinematic B.C.'s are
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appropriate at the upper boundary of the cable. The motions

of the towed body are not predictable in advance but the

forces on the cables resulting from the motions of the towed

body are, so dynamic conditions are appropriate at the lower

boundary. Such a set of B.C.'s will be used for the remainder

of this study. However, there are other interesting cases,

notably the opposite of the above case which happens when a

submerged submarine tows a surfaced buoy in which case the

kinematic conditions are applied to the lower end of the

cable and the dynamic conditions to the upper end. More

complex B.C.'s will result for situations in which the towed

body develops forces on the tow ship comparable to those

resulting from its being in a seaway.

Specifying three dynamic B.C.'s amounts to specifying

the three components of the force vector applied to the cable

from the body in each of the three directions of the cable

coordinate system. Similarly three kinematic conditions

correspond to motions in each of the three directions. The

simplest hydrodynamic shape which could be towed would be a

sphere towed from its center of gravity. Such a shape would

result in three simple equations which are developed in

Appendix II. These equations for the dynamic boundary

conditions at the towed body end of the cable are

-<W 'ft -'sf'-^SVc'r + I
+
h-

<»* 2 e+»*v*v),

+ (M
B
-pV

B )g
coscj>* -(M

B
-pV

R )g
sincj)*$ + f

x
= (2.21a)
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"<M
B
+V (H + U*H>-^CTABU (r +

JT
+ h (V* 2V+U*V*U))

o o o

-(M
B
-pV

B )g sin(f)*-(M
B
-pV

B )g
coscf)*$+T*+T+f = (2.21b)

-(M
B+yB ) (|| +v*||) + (M

B
-pV

B )g
lp sine))* -JpC^D^f^ =

(2.21c)

where M_ is the mass of the body, Vn its volume, y_, its
a an

added mass, Cm its drag coefficient, AD the cross sectional

area of the body and f , f , f are disturbing forces applied

to the body from the surroundings which will vanish for most

circumstances

.

The simplest conditions under which a body might be

towed would be straight ahead on a calm sea. A slightly

more complicated and more interesting condition is for the

tow point to be moving ahead with velocity U but with super-

posed sinusoidal oscillations in velocity resulting from ship

motions. Huffman (1969) considered a towed sphere and straight

ahead motion of the tow point without oscillation. Unsteady

motion was introduced by the disturbing forces on the sphere.

Whicker (1957) considered the case for sinusoidal oscillations

of the tow point. The former set of B.C.'s are particularly

appropriate when using the method of characteristics to solve

the cable dynamic equations. The latter approach is better

for solution in the frequency domain. Once the frequency

response of the tow system is known, the effect of a random

excitation from the sea surface on the motions of the towed

body may be evaluated.
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Suppose the tow point is moving with the following

velocities in the x , y , z coordinate system
o J o o J

u = U + 6uo o

o

W = 6W
o

where 6%l, tit, and -6u> are surge, heave, and sway perturbation

velocities. These perturbation velocities are determined by

resolution of the six degrees of freedom motions of the ship

into translational velocities of the tow point. Application

of the transformation (2.2) gives

u* + ti = sin<f>*U + cosd)*U $ + sin<f>*4li - cos<J>*fTe (2.22a)o o

v* + v = cos<J)*U - sin4>*U $ + cos^li + sin$* ICe. (2.22b)

w = - $cos<£*U + *u) (2.22c)

If the surface perturbations vanish, the result is Huffman's

B.C.'s and if they are sinusoidal with frequency dependent

amplitude, the result is Whicker's B.C.'s. Of course, the

perturbations could be arbitrary functions of time if desired.
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Equations (2.21) and (2.22) are a simple set of

boundary conditions. More complicated dynamic conditions

for the towed body are discussed in Appendix II. Equations

(2.21) and (2.22) now need to be non-dimensionalized. The

following definitions are made

M = M
B
/m£, k = yB

/m£, C = £pCT
A
B
u 2 /mg£ , a = pVg/m£

X = f /mgl, V = f /mgA, Z = f /fngS,
j± y z,

Applying the above definitions and separating the equations

into steady and unsteady terms gives the steady B.C.'s at

the towed body, that is for £ =

$(0) = tan
~ 1 (^~) (2.23a)

N(0) = C /l+(^-) 2 (2.23b)

and the time varying B.C.'s for r, =

-(M+k)(^- -cos$^-)-C(u+sin 2 $u+sin^cos$v)-(M-a)sin$cj)+X =
dT dT

(2.24a)

-(M+k) (-^ +sin$^F-)-C (v+cos 2 <3>v+sin$cos$u) - (M-a) cos$<t>+n+^=0
di di

(2.24b)

-(M+k) (— +cos<I>|^)-Cw+(M-a)sin<I><t> + Z = (2.24c)
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The steady kinematic B.C.'s at C = 1 are trivially satisfied.

The time varying conditions are

u = cos$<f> + a (2.25a)

v = -sin$<}) + 3 (2.25b)

w = -cos*i/; + e (2.25c)

with a = (sin<p*6lx - cos<|>*fik)/U , 3 = (cosij)*^ + sin<J>*fi&) /U ,

e = 4W/U .
' o

The problem is now formulated in sets of equations for

the steady configuration, for the cable dynamics and kinematics

and for the dynamic and kinematic boundary conditions

.
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Chapter 3

SOLUTION

Frequency Domain Analysis

Suppose the towed system is excited by sinusoidal

oscillations of the tow point so that in equations (2.25a-c)

we have for a, 3, and e

a = Re a e
1VT

(3.1a)

3 = Re 3 e
1VT

(3.1b)

e = Re I e
1VT

(3.1c)

where Re indicates that the real part is to be taken. This

notation will hereafter be suppressed and it will be under-

stood that the operation of taking the real part must be

t
wU

performed in interpreting results. Also t = ==**. so v =

where w is the usual angular frequency. Given the above

excitation we assume solutions to equations (2.20a-f) of the

form

u = u(c)e
1VT

etc. (3.2)

These solutions are then substituted into equations (2.20a-f)

resulting in a set of ordinary first order linear differential

equations in the variables u(c) etc. These equations cast

into normal form are
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|f
= £25* (-(l+y)ivu+cos$iv^-D

1
(l+^)^u-D

2
(l+^)^v-(l-d)

sin^-[^(l^)^+|i]n)- J<l+*>iv5+ |f
v (3.3a)

d| m zsin* (-(n.p)iVu+cos$iv^-D
1
(l+|)*u-D

2
(l+|)*v-(l-d)

sin^-[^(l+|)-*+|i]n) + iy ivn -
f£ u (3.3b)

|| = i(-(l+y)ivu+cos$iv4)-D
;L

(l+^)^u-D
2
(l+^)^v-(l-d)

• *T r 3 ,, ,N. -£, d$,— .

tin**- [=—(!+— )
z + -r—]n)

2y
XJ
-"Y'

" d£ J "' (3.3c)

— = ivv + (l+y)sin$iv<f)+D
4
(l+-)*u+D

5
(l+-)*v +(l-d)

cos*? + 2^- (1+|)~* n (3.3d)

dw = cos*
(( 1+n)ivw +(l+4h^)cos*iv^-(l-d)sin*i/;+D

7
(l+-) 7w

IN— d* —
+ ±(l+-)ivi|; + sin*|^ ty (3.3e)

|| = |((l+n)ivw +(l+4hC)cos*ivij7 -(l-d)sin** +D
?
(1+-) 7 w)

(3.3f)

Equations (3.3a-f) consist of real and imaginary parts. They

may be further simplified by dividing the solutions into real

and imaginary parts. That is

u = u + iu etc.
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The above relations may be substituted into equations (3.3a-f)

giving a set of twelve equations in the real and imaginary

parts of the original six dependent variables. The boundary

conditions may be similarly treated. The set of twelve

equations with associated boundary conditions divide into two

sets of coupled equations, one set of eight for the longitud-

inal-transverse vibrations and one set of four for the lateral

vibrations. These two sets may be written in matrix form with

their associated B.C.'s as shown below.
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d?

du T

^1
d?

dv T

£°|*_ D (1+
N 1-

N 1 v

cos* (1+M)v ^V^-if 1

COS*
(l+y )v Sg^D^uS)'

i^v^-f1

sin*
N

(1+U)v

sin*
N

(1+V)v

f2l
dq

dn,

dT

3: (!*)*
N v

Y

i (1+U)V

D
4
U^)*

SpiD
a (l4f)*

[ TJ
D
1
U y' d? J

-i (1+VN v

Y

o
4
(i+

N
?
)'

? <»?>*

D
5
(l^l*

I^,^*-^

sifiD
2
c»a)4

? <»?>*

D
5 <uf>*

cos* (1-d) sinj
N

.[2°|!l-l (1+E, ]v
cos$ , 3 ,, .N.-fr .

d*,
~ N~

l
2Y
U

Y
"'dC

cos 2 *

N
1., N, , cos* ( l-d)sin*
5(1+7> 1V n

sin 2 *

N
(1-d)

sin*cos*v
N

(1-d) sin<i

N

cos*v
N

(1-d) COS'S

sin*cos*v
N

sin 2 *(l-d)
N

(l-d)sinj
N

• (l+y) sin*v

(l+p)sin*v (l-d)cosl

sin$ , 3 n .N>-£ d$,

N~ 1

2y
U

y dc
J

1_
Y6

I^K>-* + $

2 Y Y

2s*
t

3 (1+
N -* + dlj

N 2y Y d£

1_
Y 6

siSi[ 3
(1+

N -i + |ij
N 2y Y "5

N l
2Y
U

Y d c
J

2 Y Y

(3.4)
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C (l+sin 2 $) (M+k)v

(M+k)v -C(l+sin 2 $)

Csin$cos$

-Csin$cos$

-Csin$cos$ -(M-a)sin$ - (M+k) cos$v

-Csin$cos<J> (M+k)cos$v -(M-a)sin*

-C(l+cos 2 $) (M+k)v (M-a)cos$ +(M+k)sin$v 1

-(M+k)v -C(l+cos 2
$) -(M+k)sin$v -(M-a)cos$

uR (OY

UjtO)

v
R (0)

v
z
(0)

V 0)

* x
(0)

n
R
(0)

njtO)

f o o

10 -cos$

-cos$

10 +sin$

10 +sin<S>

u
R (D-

iijd)

V
R
(1)

v
x
(l)

R (l)

^(D

n
R
(l)

rTjd)

aR (v)

a,, (v)

3 R
(v)

B x
(v)

(3.5)
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dw

dT

dw..

dT

dip,

dT

dip.

:~S±d
7
cu$>*

.£2Hi(l+n)v
N

N Y

d+n)v
N

2£ii(i+n)v

N »7«^*COS

(i+n)v
N

N v

Y

m.« • *d*, [

cos2$ (l+4hQy- i(l+7)v]
[22E*(i-d)sin*+sin4g|-] l N 6 Y

1,-, ,N,[-C° s ff-(H-4hg)m-g-(l+^)vl
[£2|*(i-d)sin* + sin$ g^r]

(l-d)sin^
N

0±4hLL Cos$v
N

U±iMi COS$V
N

(l-d)sinj
N

(3.6)

(M+k)v (M-a)sin^

-(M+k)v -C - (M+k) cos$v

(M+k)cos<)>v w„(0) 1

(M-a)sinO WjtO)

*R (0)

* x
(0)

1 cos$

1°
cos<

wR
(l>'

w
t
(l)

*R <1) Br (vJ

.

^(1)
l

£
i
(V)

.

(3.7)
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Equations (3.4) and (3.5) and equations (3.6) and (3.7)

for the spatial dependence of motion variables are cast into

a normal form for linear boundary value problems.

The terms of the coefficient matrices of these cable

dynamic equations have a complicated spatial dependence

arising from the solution of the non-linear steady configur-

ation equations. Therefore a numerical integration scheme is

essential for their solution. A two part scheme is used.

First, the steady configuration equations are integrated.

Then, those results are used in the integration of the

dynamic equations. The numerical scheme was implemented on

the IBM 370/155 at the M.I.T. Information Processing Center.

Steady Configuration Solution

The equations for the steady configuration (2.19a,b)

subject to the initial values at t, = given by equations

(2.23a,b) may be integrated by any of the standard integration

schemes for a system of non-linear/ first order, ordinary

differential equations. Hamming's Predictor-Corrector method

was used as provided by IBM (1970) in their Scientific Sub-

routine Package. The problem is straightforward and the

choice of a particular method of integration is not crucial.

The results of the steady configuration must be put into the

coefficient matrix of the dynamic equations when solving them.

The simplest technique is to make up a table of the values of

the solution variables, tension and trail angle, as they are

generated at each step. The table may be accessed with a
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value of the independent variable. Later when values are

needed to compute the terms in the coefficient matrices of

the dynamic equations the table may be entered with a value

of 5 and linear interpolation between adjacent tabular values

of $ and N used to generate the correct values. A step size

should be selected which will provide accuracy consistent with

the requirements of later steps in the computational scheme.

As mentioned before the results of the integration of

the steady configuration equations have been considered in

detail by other investigators, nevertheless, some observations

are appropriate to assist in understanding the results of the

investigation of the dynamic equations. Perhaps the most

striking feature of the steady configuration of a towed cable

is the sweeping curve it makes in space. Near the towed body,

curvature is likely to be pronounced with the curve flattening

as it moves nearer the tow point. Imagine a cable with no

body at the end. Such a cable will have no curvature. The

angle at which it tows, called the critical angle, will be

found by setting d$/dc = in equation (2.19a) giving the

transcendental equation

N l

(l-d)cos<D
c

= D(a
1
+a

2
sin<l>

c
) sin$

c (1+^)
7 (3.8)
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Equation (3.8) shows that the critical angle is the angle

achieved by the cable as a result of balancing its weight

with viscous drag forces. Equation (2.19b) may still be

integrated to give tension along the cable. The initial

value of tension at £ = will be zero in the absence of a

body. The tension will vary linearly along the cable as long

as y >>N which is the usual case.

Now imagine a body moving at the towing velocity. The

resultant force from the body's weight and drag will also

make an angle with the horizontal in general different from

and certainly independent of the critical angle described

above. This angle is found in equation (2.23a). When the

body is attached to the cable the resultant force on the

body from weight and drag must be matched by the cable which

is then deformed from its linear trajectory. The effect of

this body constraint is propagated up the cable toward the

towpoint dying out as it goes. Therefore the greatest curva-

tures are found closest to the body. Equation (3.8), not to

mention common sense, shows that the greater the drag the

smaller the critical angle and therefore the shallower the

tow for a given length of cable. Similar reasoning applies

to the towed body.

In most towed body situations designers seek to minimize

the length of cable necessary to attain a desired towing

depth for obvious economic reasons. Therefore a premium is

placed on drag reduction both of the cable fairing and the

towed body. This is the principal reason for moving to the
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complication of a fairing on the tow cable. The other

important reason is to minimize variable drag and side force

by minimizing vortex shedding effects. An additional tech-

nique frequently employed to drive a towed body deeper is to

equip it with a depressor which is a hydrofoil designed to

develop large downward directed lift forces. A typical steady

configuration is shown in figure 3-1. When d$/d£ 5* due to

the presence of a body at the end of the cable, the left hand

side of equation (2.19b) is no longer constant and therefore

N no longer varies linearly up the cable.

Dynamics Solution

Equations (2.29) and (2.31) subject to the boundary

values expressed in equations (2.30) and (2.32) may be

integrated similarly to the equations for the steady configura-

tions by any of several standard integration schemes. The

process is a bit more complicated because boundary conditions

must be met at both ends of the integration interval instead

of just at the beginning. Kerney (1971) solves his equations

by a shooting technique, in which initial values are specified

as the boundary values at one end, say C = 0, with missing

values supplied arbitiarily. Then the integration is carried

out and the computed values at ? = 1 are compared with the

desired values given by the boundary conditions. The process

is repeated with different arbitrary values. Then advantage

is taken of the linearity of the problem to compute the correct
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S^7

0.0

u

Depth
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0.5

Figure 3.1

Typical Steady Configuration
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missing values. A more direct approach is provided in the

IBM Scientific Subroutine LBVP (an acronym for Linear Bound-

ary Value Problem) . This routine uses solutions of the ad-

joint problem to systematically transfer the boundary values

at one boundary along the cable to the other end and then

integrates the resulting initial value problem by a standard

routine, again the Hamming Predictor-Corrector algorithm,

HPCG.

The lateral vibration, cable dynamics equation (3.6) with

associated B.C.'s in equation (3.7) may be used to show how

the adjoint technique is applied in LBVP. Equation (3.6) is

written as

dw
dC

= A w

where A is the coefficient matrix and w =

The adjoint problems are

dT
= " A w

W
R

r \

Wi

W
I

W2

*R
*~

W 3

KJ Wi+

(3.9)

(3.10)

with W =

wr
w 2

w 3

I J

subject to four sets of B.C.'s

Wl . = E. , k=l,2,3,4 such that for k=l, E.. and for each
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successive value of k a corresponding adjoint variable boundary

value at £ = 1 is unity, all others vanishing. There are now

five problems being considered: the original boundary value

problem and four adjoint initial value problems, one for each

value of k. The adjoint problems may now be integrated by

HPCG from £ = 1 to c, = , thus obtaining values for the ad-

joint variables at C = in each of the adjoint problems.

(j ]^ (j —kTNow -r-[£ W. w. ] = -rp[W w] where the superscript k refers

to the k adjoint problem. Carrying out the differentiation

on the R.H.S. and substituting from equations (3.9) and (3.10)

d k
gives jtt[£ W. w. ] =0 which may be integrated giving

ZWVw.L , - ZW. w.l A =0 since equation (3.9) is homogen-
l l

'

£=1 . li 1 ?=0 ^ r
l s

l

+ v»

eous. The k adjoint B.C. at t, = 1 may be applied giving

I

w
i
wil c =o = w

k l

? =i
(3 - 11)

There four of these equations, one for each value of k. Now

the B.C.'s from the original problem are used. Suppose they

are written as

Bwl . = (3.12a)

Cw| . m e (3.12b)

where B and C are 2x4 coefficient matrices, that is (3.12a)

and (3.12b) give two equations each. Substituting from

(3.11) into (3.12b) for each value of k gives two equations

now in terms of the unknowns w|
Q
which combined with
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equation (3.12a) gives four simultaneous equations in four

unknowns, namely the initial values of the original problem.

The coefficients of the terms in these equations are all

known being combinations of the towed body parameters, the

trail angle at x> = and 1 obtained from the steady con-

figuration solution, the frequency of interest and finally

the solutions of the adjoint problems. These four equations

may now be solved simultaneously to give the initial values

for the integration of the original equations by HPCG. The

transverse-longitudinal problem is handled similarly.

Solution Difficulties

The numerical scheme presented above is useful over a

wide range of practical interest. It suffers, however, from

a purely computational malady as frequency, cable length or

viscous damping is increased. The character of the solution

of equations (3.4) and (3.6) is determined by the eigenvalues

of the coefficient matrices. Were the coefficients constant

instead of space varying, the solution to the equations would

be simply found by calculating the eigenvalues and their

associated eigenvectors. Solutions would be of the form

u(£) = Z c.e x ^ where c. are the eigenvectors and A. the
i

eigenvalues. Such a procedure is in fact used in Appendix III

to verify the validity of the numerical method in certain

special cases wherein the coefficient matrices of equations

(3.4) and (3.6) are constant. The coefficient matrices being

space varying means that their eigenvalues change along the
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cable but that does not affect the essence of this argument.

Suppose an eigenvalue, A., has a large positive real part.

Then the quantity, e i
, occurring when the B.C.'s at £ = 1

are satisfied, has a very large positive real part. Therefore

arbitrary constant in c. must be made extremely small in order

to match a reasonable boundary value.

Physically, the solution consists of dying and growing

waves emanating from the excitation at z, = 1. Since the towed

body end of the cable is free to move about, subject to the

constraint of the dynamic B.C. at x, = , a little of the

growing solution is needed to satisfy this B.C. The growing

solution eigenvalue has a positive real part and the dying

solution a negative real part. As the solution is more and

more damped, because the frequency, steady tow velocity, or

damping coefficients have increased, or because the distributed

damping along the cable has had a greater effect because the

cable is longer, less and less of the growing solution is

needed to satisfy the B. C. at r, = 0. If so little of the

solution is needed that the value of the arbitrary constant

in the eigenvector cannot be made small enough because of

round-off in the computer, the numerical scheme will fail to

provide a solution. Kerney (1971) apparently had similar

difficulty. Practically, this difficulty seems not to be

egregious since the more highly damped situations are exactly

those in which the least motion is transmitted to the towed

body.
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In the computional scheme employed using the subroutine

LBVP the difficulty manifests itself in repeated attempts to

subdivide the integration step size in order to compute the

solution within a small error bound. The error bound is small

in order to test appropriately for loss of significance in the

Gaussian elimination algorithm used to solve the set of

simultaneous algebraic equations generated with the adjoint

solutions for the boundary values at t, = 0.

Reducing round-off error by moving to higher precision

is a way of enlarging the range of parameters for which solu-

tions may be found using the method described in this thesis.

Comparison of solution efforts using single and double pre-

cision shows that solutions which fail in single precision go

forward in double precision. FORTRAN compilers are becoming

available in extended precision so the range may be increased

still further without resorting to the complexity of multiple

precision programming. Table 3.1 shows the value of the

largest positive real part of the eigenvalues of the coeffici-

ent matrix computed for the point on the cable where the

largest values occur when the solution method fails in single

and double precision. Table 3.1 shows that the solution

proceeds for much larger positive real parts of the eigen-

values corresponding to a larger range of problem parameters

,

in this case frequency, when it is executed in double

precision.
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CABLE d=0.125 y=2775.0 M=2.755 C=0.373 a=1.38 D=9.48 6=0.00438
DATA b=0.555 c=2.22 y=0.214 k=0.69 n=3 .44 £=0 . 5 h=0.5

precision step size error requirement positive real part
of eigenvalue at
solution failure

single 0.005 0.00001 13.43 at v=0.175

double 0.004 0.000004 20.90 at v=0.375

Comparison of Single and Double Precision Programs

Table 3.1

While the solution difficulty described above is

troublesome, the method of solution is useful since many

practical situations may still be considered. Furthermore,

the difficulty can be put off to some degree by increasingly

precise computation.

Future efforts directed toward more sophisticated solution

schemes which avoid the above difficulty are merited. When the

excitation frequency is greatly increased, the short wave

length approximation will apply. That is the steady configura-

tion trail angle and tension will change slowly over a wave

length so the approximation is made that they are constant

over a range of several wave lengths . The WKBJ method

(cf. Morse and Feshbach (1953)) then applies. Using the same

approximation Milgram (1971) suggests that a Green's function

approach will work. Another useful line of investigation

might be to look for ways to control the growing exponential

solution in the numerical scheme, perhaps by segmenting the

integration range in some fashion.
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Chapter 4

RESULTS

The utility of the formulation and solution scheme for

towing cable dynamics presented above can be demonstrated by

applying it to a plausible cable design and examining the

results. First a standard reference spectrum of tow point

motions is prescribed. For the results described in this

chapter the towpoint translational perturbation velocities in

the x , y , z coordinate system are specified. The
o o o * c

amplitudes of these perturbation velocities are unity when

normalized with respect to the tow velocity U . A typical

input perturbation is u /U = iTu./\3 = 1 cosvt . Because the

system described is linear the results for any arbitrary

spectrum may be readily obtained from the results for this

flat spectrum with a normalized amplitude of unity. Second,

this disturbance is applied to a basic towing cable and body

design which is representative of real towing situations.

Appendix IV contains a description of this system and shows

how the non-dimensional parameters were obtained. The basic

trial cable design envisions towing a 40 in. diameter sphere

at 16 ft. per sec. with a 1200 ft. steel cable.

The greatest interest in these matters is in the motion

of the towed body and in the largest unsteady values of

tension in the cable. Such values are calculated and presented

graphically. However, motions and tension anywhere along the

cable could be determined as well. The amplitude of the
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motions is of more consequence than phase so only amplitudes

are presented, again normalized with respect to steady tow

velocity U
q

for the resulting velocities or with respect to

the weight in air of the entire cable for the tensions.

Furthermore, the output velocities have again been trans-

formed from the cable coordinate system x, y, z back to the

locally vertical system x , y , z via the transformation ino o o

equation (2.2)

.

After the motions and tensions of the basic cable are

established, significant parameters are varied over a wide

range. Cable lengths from 300 to 1800 ft., steady tow

velocities from 0.1 to 48 ft. per sec, and moduli of

elasticity from 2.5 x 10 k psi to virtually inextensible are

considered. Variations were made one parameter at a time

using the basic cable as a reference. Other parameters

could also be varied and indeed probably would be in a

design situation. Length and velocity variations seem most

significant since for any design these parameters are likely

to vary during the use of the system. Modulus of elasticity

was varied because the predicted results of moving to

springier cables are particularly interesting. Finally,

researchers have frequently ignored the added mass of the

cable in previous investigations so the basic cable was

considered sans cable added mass and results compared.

A physical feel for a complicated problem like this may

be elusive. But the idea of a damped oscillator is basic to

the physics of this interaction and so the natural frequencies
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are of interest. Bearing in mind that this idea is not

being applied as a tool of analysis but rather as a way of

understanding, natural frequencies of various idealisations

of the problem are calculated, compared to sample results

and discussed.

Basic Cable System

The results from applying the solution method to the

basic system are shown in figure 4.1. The magnitude of the

unsteady tension n , at the tow point where it is greatest

rises approximately quadratically with increasing frequency

in the higher frequency range. This is expected for the

nearly inextensible steel cable and reflects the increasing

inertial forces at higher frequencies. The magnitude is

largest at the tow point because the cable there must carry

the load of its entire length and the body as well. The

amplitude of lateral velocity w decays rapidly with in-

creasing frequency showing the effect of heavy viscous damping

v and u cannot decay substantially because they are inom om J J J

the plane of the steady configuration and the near inexten-

sibility of the cable implies that most of the tow-point

motion will be transferred to the body. Some energy is re-

moved from the cable by the viscous damping but most is

transmitted down the cable to the body. The relation between

the amplitude of the vertical and horizontal components seems

to be a strong function of the relation between the trail

angle at the tow-point and towed body, as will be apparent

in later figures.
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Figure 4.1

Motions and Tensions - Basic Cable
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Variation of Cable Parameters

The results of varying the length of the cable are shown

in figures 4.2 and 4.3. Table 4.1 shows the values of the

cable parameters used. As cable length increases, motions

are diminished because there is more total damping, that is

the same drag per unit length is acting over a longer length

of cable. The vertical and horizontal motions tend toward a

limit defined by the relation of the angle of the resultant

force at the towed body and the cable critical angle. As the

cable becomes longer and longer the angle at the towpoint

approaches the critical angle, and so the motions approach a

limiting case. As length increases the lateral motion of the

towed body becomes more and more rapidly damped with increasing

frequency.

The variations of steady tow velocity give more dramatic

results. Table 4.2 and figures 4.4, 4.5, and 4.6 show the

results of varying velocity from 0.1 ft. per sec. where the

cable is nearly hanging vertically below the tow point to

48 ft. per sec. where it is towing nearly horizontally.

The two striking features are the appearance of resonances

when the linearized viscous damping is quite small correspond-

ing to U being small and the way in which the predominant

motion shifts from vertical when the cable is hanging vertically

to horizontal when the cable is extended horizontally. In

both cases the vibrations normal to the cable are being

damped while the longitudinal vibrations are transferred

directly to the towed body. The lateral motion at the

smallest towing velocity of 0.1 fps may be in error at the
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1 ft. Y M C a 6 k

300 16640.0 16.56 2.240 8.28 0.0264 4.14

600 8320.0 8.28 1.120 4.14 0.0132 2.07

900 5550.0 5.52 0.746 2.76 0.00879 1.38

1200 4160.0 4.14 0.560 2.07 0.0066 1.03

1500 3330.0 3.31 0.448 1.656 0.00528 0.828

1800 2775.0 2.755 0.373 1.380 0.00438 0.690

Changes from Basic Cable Parameters for Length Variations

Table 4.1

U f .p. s.
o r C D 6

0.1 0.0000219 0.00037 0.00000026

1 0.00219 0.037 0.000026

3 0.01967 0.333 0.000235

6 0.0786 1.331 0.000938

12 0.314 5.33 0.00375

18 0.706 11.92 0.00843

24 1.256 21.30 0.0150

48 5.020 85.30 0.0599

Changes from Basic Cable Parameters for Tow Velocity Variations

Table 4.2

E psi x 10 6
Y

oo 99999999.0

- 10 2080.0

5 1040.0

0.5 104.0

0.1 20.8

0.05 10.4

0.025 5.2

Changes from Basic Cable Parameters for Elasticity Variations

Table 4.3
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Cable Parameters - see table 4.1
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velocity magnitude
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Figure 4.2

Vertical and Horizontal Motion - Length Variation
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normalized
velocity magnitude

Cable Parameters - see table 4.1
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Figure 4.3

Lateral Motion and Tension - Length Variation
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Cable Parameters - see table 4.2

normalized
velocity magnitude

horizontal velocity at
towed body

om 1 ?=0

48 fps

angular frequency w

Figure 4.4

Horizontal Motions - Steady Velocity Variation
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Cable Parameters - see table 4.2
normalized
veloci ty magni tude

1.0

0.5

0.0
0.0

T—

angular frequency w

Figure 4.5

Vertical Motions - Steady Velocity Variation
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normalized Cable Parameters - see table 4.2

velocity magnitude

1.0

0.5-

0.0

JPZ "Tl angular frequency w

Figure 4.6

Lateral Motions - Steady Velocity Variation
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higher frequencies because the low reduced frequency criterion

in the derivation of the lateral hydrodynamic forces is being

violated. Note that the shapes of curves near resonances in

the various figures are only approximate due to the narrow

bandwidths sometimes encountered.

Most investigators of tow cable dynamics have assumed

that the tow cable was inextensible. This certainly seems a

reasonable assumption for a steel cable. Huffman (1970), how-

ever, recognized that if a time domain solution by the method

of characteristics is to be attempted the cable must be

assumed extensible so that the initial value problem is well-

posed, an unusual case where complicating the problem makes it

more tractable. The results shown in figure 4.7 are another

reason why cable extensibility is important. The more elastic

the cable the less it couples the surface motions to body.

Potential resonances are unlikely to be a significant problem

because there is considerable viscous damping present. In

figure 4.7 vertical and horizontal normalized velocities of

the towed body are shown for cables with moduli ranging from

2.5 x 10 k psi to inextensible and the associated natural

frequencies for an idealized mass-spring oscillator of

similar proportions. Associated cable parameters are shown

in table 4.3. For the more elastic cables there is a great

deal of coupling between the transverse and longitudinal modes

of vibration. Transverse damping is much greater than long-

itudinal damping. Energy is coupling from the stress waves

into the transverse tension waves and then being damped out
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Cable Parameters - see table 4.3
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Horizontal and Vertical Motions - Elasticity Variation
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because of the viscous effects. Bringing the natural frequen-

cies of the longitudinal stress waves and the transverse tension

waves into the range of the forcing frequency facilitates damp-

ing and reduces the motions of the towed body. Figure 4.7

shows how the perturbation velocities of the towed body are

greatly attenuated for the lower values of modulus of elastic-

ity. This process might be abetted in a real system by inserting

springs at intervals along the cable or by choosing a cable

material with a fairly low modulus of elasticity.

A solution was generated for the basic cable system with-

out added mass. Results were within 1.0% of those of the basic

system with added mass. Ignoring cable added mass is justified

for cable systems similar to the basic one studied here.

Natural Frequencies

The natural frequencies of the modes of oscillation for

three idealizations of the cable dynamics problem may be

readily calculated. The first such idealization is that of a

compound pendulum. Ignoring viscous effects on the cable and

considering it to be straight, the linearized pendulum equa-

tion for transverse motions is

(M+k+i(l+y) )in£
3
$ + (N(0)ifig£ 2 +£mg£ 2 sin$)<|> =0 (4.1)

giving

/N(0)+sin<J>/2 /g - - . . . . . ,. .,wpt = / M+k+Hl+y

)

'

/ i
lateral motions (4.2)

/N(0)+sin$/2 /g_ .. ,.WP£ / M+k+i(l+n) / I
{

'
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where the restoring force of the pendulum is composed of

gravitational forces on cable and body and viscous drag

forces on the body. A second idealization is to suppose that

the cable is a straight stretched string with supports at each

end offering infinite impedance, subject to constant tension

and again that viscous effects are negligible. Then the

appropriate equation is the wave equation and the well known

results (cf. Morse (1948)) for the fundamental natural

frequencies of transverse and lateral motion are

/N(o) /g , /N(o) /g ,, , c >

"Tt - * /TI+yy~ /I and WT£ = V (W /£ (4 ' 4 ' 5)

Finally the extensibility of the cable gives rise to

longitudinal stress waves which cause the cable system to re-

semble a mass spring oscillator, the natural frequencies of

which may be calculated from the Rayleigh method (cf.

Timoshenko and Young (1955) ) to give

/ y /q AE
W
s

= / (M+k-4) /t f°r a Spring constant K = ~
(4.6)

again ignoring viscous effects on the cable and assuming it

to be straight. Figures 4.8 and 4.9 show the consequences of

allowing the fairing drag coefficient of the basic cable to

vanish. The appropriate natural frequencies are shown for

comparison. Figure 4.10 shows the horizontal and vertical

velocities at the towed body for a similar situation except

with a rather small modulus of elasticity. Comparing figure
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4.10 with 4.7 shows the effect of heavy viscous damping dis-

tributed along the cable. In the case shown in figure 4.10

there is viscous damping only on the towed body so modified

resonances are apparent in the frequency response curves. In

figure 4.7 for the same modulus of elasticity the damping is

very large and the resanances have vanished. Even in figure

4.10 though, the advantaae of reduced cable modulus in

limiting the motions of the towed body is apparent.

Figures 4.8, 4.9 and 4.10 indicate that the basic motions

of the system are those of various simple harmonic oscillators

coupled in complicated ways. When the fairing drag coefficient

is restored to a reasonable value the system becomes heavily

damped and resonant behavior at the natural frequencies

vanishes.
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Chapter 5

CONCLUSION

Design Impact

The results of this thesis may be summarized by mention-

ing their possible impact on the design of a towed cable

system. The first result is a formulation and a method of

analysis which may be easily implemented, using the FORTRAN

Scientific Subroutine Package. The formulation is complete

considering motions in three dimensions with a faired, exten-

sible cable. The method allows the designer to use, directly,

existing studies of ship motions in the frequency domain.

Using the formulation and method the designer can find the

towed body motions for given tow-point motions. The difficulty

with the method is its susceptibility to overflow on the com-

puter caused by the round-off error interacting with the grow-

ing exponential solution. This difficulty is mitigated by

three factors: it is associated with increasing viscous damp-

ing and does not foreshadow any reasonance phenomenon, it may

be put-off by employing more precise computation, and the

range of application of the method already includes many

practical designs. A second result is that fairing added

masses are not important and may be ignored in typical designs

without appreciable change in resulting motions. Nevertheless

the formulation of cable fairing hydrodynamics of Appendix I

is available. A third result is that designers may use fairly

elastic cables and take advantage of the heavy viscous damping

to minimize motions by creating a system in which the fundamen-
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tal natural frequencies of transverse tension waves and

longitudinal stress waves are small and are in the range of

excitation by the tow point motions.

Suggestions for Future Work

The present need in cable dynamics is for experiments to

test the various studies which have been performed. Experi-

ments are needed in two areas , cable system dynamics as

formulated in the body of this thesis and the unsteady hydro-

dynamics of fairings as formulated in Appendix I. Froidevaux

(1968) has devised a scheme using an inertial platform to

measure towed body motions which may serve as a useful start.

The point is that the theory of this thesis and its antece-

dents have not been systematically evaluated by experiment ex-

cept for the steady drag forces on the cables and the steady

configurations

.

Theoretical work is needed to compare the method of char-

acteristics solutions of Schram and Reyle (1968) and Huffman

(1970) with the frequency domain solutions of Kerney (1971)

and of this thesis. A general formulation of the unsteady

hydrodynamics of cable fairings in three dimensions is needed

to replace the compound approach of Appendix I. Finally more

general dynamic boundary conditions need to be developed to

handle the case of a small tow ship and a large body where

motions of the body affect motions of the tow ship and cases

where the towed body is a more general shape than the sphere

employed in this thesis.
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Appendix I

HYDRODYNAMICS OF CABLE FAIRINGS

Introduction

No general formulation of the hydrodynamics of cable

fairings exists. Previous investigators have largely confined

their attention to the drag on a fairing resulting from a

steady flow co-planar with the configuration of the cable.

The problem of interest in these investigations was to find

the drag forces normal and tangential to the fairing as a

function of the trail angle, that is the angle of inclination

of the fairing to the inflow velocity vector. Most investi-

gators have developed loading functions. These functions are

the normal and tangential drag forces normalized with respect

to the drag force on the fairing when the trail angle is 90°

.

Casarella and Parsons (1970) present most of the significant

results in a table of loading functions for faired cables.

The usual approach has been to conduct experiments and then

fit a curve through the data. Because the normal and

tangential drag components are basically related to the

squares of the normal and tangential velocity components, the

usual effort is directed at constructing curves from combina-

tions of sines and cosines of the trail angle. Two investi-

gators, Choo (1970) and Calkins (1970), have attempted

theoretical formulations of the loading functions although

their methods still require some experimental input.
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A more comprehensive formulation of cable fairing hydro-

dynamics than discussed above is necessary in an investigation

of the dynamics of a faired cable in a towed system undergoing

motion in three dimensions. An understanding of a three-

dimensional unsteady problem as opposed to a two-dimensional

steady problem is required. Added mass as well as viscous

effects and the effects of motions out of as well as in the

plane of the steady tow configuration must be considered. In

lieu of a general formulation which may be quite difficult the

following piecemeal approach has been used to understand the

hydrodynamics of a cable fairing segment undergoing unsteady

motions in three dimensions. The contributions of added mass

to the forces and moments on the fairing segment are written

following Imlay (1961) . The loading function formulation of

the in-plane viscous drag forces is assumed to apply to the

unsteady case. The out of plane added mass and viscous forces

are calculated from thin wing theory following Robinson and

Laurmann (1952) after imposing some additional restrictions on

the fairing. These results are then superposed to give forces

and moments on the cable fairing segment. Unfortunately there

are no experimental results available with which to test the

compound theory described above.

Before proceeding to a detailed discussion of the com-

pound hydrodynamic theory of cable fairing segments some

simple assumptions are made about the attachment of cable

fairing segments to the cable. The fairing is assumed to be

attached to the cable by a frictionless bearing such that
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forces are communicated to the cable but moments are not.

For most fairing designs this is an excellent assumption for

forces normal to the cable, less so for tangential forces.

In most cases a fairing is somewhat free to slide along the

cable and is only restrained from doing so by the proximity

of adjacent segments. In a few designs segments are attached

to collars fixed to the cable and the above assumption is

then also correct for tangential forces. In a few cases not

considered in the following theory fairings are bonded into

the structural element of the cable so that moments exerted

on the fairing about the cable axis are directly transmitted

to the cable. As shown by Abkowitz (1965, 1967) these designs

are subject to a kind of flutter instability and can apparently

also lead to remakrable kiting effects. However, in many

designs, probably to avoid the expense of attaching collars

to the cable to support each fairing segment separately,

adjacent segments are free to bunch together or are prevented

from bunching by a flexible separator between segments.

Either way a moment-side force coupling might be envisioned

in so far as a segment is prevented from aligning with the

local flow. In fact this complicated kind of attachment

might be modeled as a pair of coupled cable dynamic problems,

one for the structural cable and one for the fairing treated

as a different cable with coupling through the transmission

of normal forces from fairing to structural cable. Such an

adventure awaits a future investigator.
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Figure 1-1 shows a typical fairing segment/ associated

cable and a coordinate system with origin on the centerline

of the cable. A moderate simplification of algebra results

later if the cable radius is assumed small compared to the

chord length of the fairing so that the y axis of the coordinate

system lies essentially along the leading edge of the fairing.

The fairing is assumed to be symmetrical about its centerline

plane. Real cable fairings are designed to be symmetrical

but sometimes acquire a permanent set from being wound on a

winch drum, producing a slight asymmetry. Adjacent segments

are assumed to be infinitesimally far apart so that there are

no gaps in the fairing. Actually gaps will exist and some

complicated flow will go on in the gaps. None of the above

assumptions about the attachment of the fairing to the cable

is thought to cause significant disparity between theoretical

and actual performance of the towed cable systems.

Added Mass

The added mass tensor appropriate for the arbitrary trans-

lations and rotations of the differential fairing segment in

the cable coordinate system with its origin at the segment

mid-plane, as shown in Figure 1-2, is given below. The seg-

ment length ds is large compared to the chord of the fairing

but small compared to the radius of curvature of the cable.

The notation of Imlay (1961) is used in which each term is a

hydrodynamic force or moment derivative per unit length of

fairing with respect to the subscripted variable. Terms which

82





Figure 1-1

Typical Fairing Segment

Figure 1-2

Rotational and Translational Velocities of the Fairing Segment
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vanish do so either because of the geometrical symmetry of the

fairing segment about its centerline plane and about its mid-

plane or because the fairing is continuous in the y direction

of the cable coordinate system.

u

w z«
q

P

w M*
q

N

(1-1)

where X, Y, and Z are forces in the x, y, and z directions and

K, M, and N are moments about the x, y, and z axes respectively

The forces and moments on a rigid, isolated fairing segment of

length ds retaining only linear terms in the perturbation

variables are then given by

X = X» ds u
u

Y
(a)

= X« ds u* £

Z
(a) = Z' ds w + Z* ds q - X- ds u* qw q M u ^

K
(a)

= Z- ds v* w + Z« ds v* q + K« ds pw q P

M (a)
= Z» ds (w-u*q) + M' ds q - (Z--X-)ds u* w

q ^ q J w u

N
(a)

= -X* ds (u*v*+u*v+v*u) + N« ds r
u r

(I-2a-f)
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Some simplifications result from considering how the

above hydrodynamic forces and moments on a fairing segment

from added mass interact with the cable. Equations (I-2d)

and (I-2f) give moments about axes normal to the cable element

and are therefore bending moments. The basic cable assumption

is that bending moments are negligible. For bending moments

to contribute to cable deformation the moment at any point in

the cable must be finite, that is of 0(1). Equations (I-2d)

and (I-2f) give bending moments of 0(ds) and therefore may be

ignored in considering the cable dynamics.

Equations (I-2a) and (I-2b) will be combined with the

results of considering viscous drag forces to give the com-

ponents of the total hydrodynamic forces on the cable in the

x and y directions. X» may be estimated by assuming that the

added mass is similar to that of an elliptical section of the

same thickness. This assumption gives X* = -ij-pTrb
2 when b

is the maximum breadth of the fairing.

Equations (I-2c) and (I-2e) will be used in conjunction

with the results from thin wing theory to give the contribu-

tion to lateral forces and moments due to added mass caused

by the thickness of the fairing. These corrections to the

thin wing theory will be the terms in equations (I-2c) and

(I-2e) involving X*.' u
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Loading Functions

Viscous drag forces on cables have customarily been

given by investigators in the form of loading functions. In

the two-dimensional steady problem as shown earlier in this

paper the dependent variables are tension and trail angle.

The trail angle gives the orientations of the cable relative

to the steady flow. If the cable is oriented normal to the

flow corresponding to a trail angle of 90° the drag force

will be given by

R = -C
D i'p c ds V|v|

(1-3)

where C_ is a drag coefficient depending on Reynold's number,

C the chord length of the fairing, ds the span of the fairing

segment and V the fairing velocity vector. For the equations

of motion of the cable element the normal and tangential

components of the drag force are of interest. As the cable

is inclined to the flow these components will vary as

functions of the inclination angle, 6. Normal and tangential

loading functions may then be defined as

D , (9)
^ normal /T . .

f
n

= —^ (I-4a)

f = tangential
(I _ 4b)

t ~R

where f and f are the normal and tangential loading functions,

D^ . and D. ., are the normal and tangential compon-normal tangential ^ ^

ents of the viscous drag force and R = |r| . f and f_,_ have
1

' n t
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been measured experimentally and expressed in terms of sine

and cosine series. Casarella and Parsons (1970) give the

forms of f and f . which have been developed by various

investigators. The theoretical formulations of Calkins (1970)

and Choo (1970) are of interest but are no more useful in

the development of the theory of this paper than the experi-

mental results. In the absence of new definitive experimental

results for a variety of fairing shapes and Reynold's numbers

the loading functions developed by Whicker (1957) seem as

relevant as any. These loading functions are

f = a. sin + a_ sin 2
6

n ± z
(I-5a)

f. = b, cos + b
2

cos 2 (I-5b)

where the coefficients are a, = 1 - — , a_ = — , b, = 0.386 -

0.303 -, b- = -0.055 + 0.020 -.
c 2 c

The following development of the unsteady viscous drag

forces on a cable fairing segment using Whicker' s loading

functions could be applied to other loading functions as well

In the steady flow case the angle of inclination of the cable

to the flow, 0, is identical to the trail angle, $ . The

unsteady case is more complicated. First, the assumption is

made that the drag coefficient for the steady flow applies to

the unsteady case. Second, the local inflow velocity will

depend on unsteady as well as steady terms, similarly the
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angle of inclination of the fairing to the flow will involve

more than the trail angle alone. Neglecting for the moment

motion in the Z direction at any point along the cable the

local flow will have components in the x , y coordinate

system U + u , v . The magnitude of the inflow will then be2 o o o 3

|v| = /U 2 + 2U u + u 2 + v 2
. Then as shown in figure 1-3 the11 o o o o o

angle of inclination to the flow 6 will be given by

e =* <$>
- a (i-6)

where 8 = v /U and
<J>

= <j> * +
<J>

. Furthermore the coordinate

transformation from x , y , to x, y will give the local flow
o o J

velocities in the cable coordinate system. They are

u = u* + u = (sine))* + cos<j)*$) (U +u ) - coscf>*v (I-7a)

v = v* + v = (cos<J)* - sin(J>*$) (U +u ) + sin<}>*v (I-7b)

Equations (I-7a) and (I-7b) give

u = sin<j>*u + cos())*v (I-8a)

v = -cos<j>*u + sin<J>*v + U $ (I-8b)

Combining equations (I-8a,b) , (1-6) , (I-5a,b) , (I-4a,b) and

(1-3) will give expressions for the normal and tangential

drag forces in terms of the dependent variables of the cable

dynamics formulation.
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Inflow velocity V

U +u
o o

Figure 1-3

Inflow Velocity and Components

c^Vgp
Z

v VX ^normal

x
(v)

u*+u

Figure 1-4

Lateral Velocity and Force Diagram

Figure 1-5

Fairing Dimensions
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Dnormal
= "cn^ pc ds t ^ a

1
+a

2
sin<

f
) *^ s:i- n<

J
)
*U

o
+^ a

l
+a

2
sin^*^

2sin 2
c|)*+ (a,+2a_sin<J>*) cos 2

<J>* }u u+a, sin<j>*cosc}>'

U
q
v] (I-9a)

D^. .. n : -C^ip c ds [{b 1
+b_coscj>*}coscj>*U 2 +b.

I
sin(f>*tangential D z 12 T Y ol Y

cosc|>*U u + {2 (b
1
+b

2
cos(})*)cos 2

(})* +

(b
1
+2b

2
cos(J)*)sin 2

({)*}U
o
^] (I-9b)

Now that an expression for the normal force has been developed

the effect of the: z direction motion may be included. As shown

in figure 1-4 the normal component of the viscous drag on the

fairing has components in both the x and z directions of the

cable coordinate system. The z component results from the

small component of velocity in the z direction, w. The normal

force is along the direction of the normal velocity, therefore

it will have a z component proportional to the z direction

velocity component. Similarly the x direction component of

the normal force will be proportional to the x direction

velocity component. Retaining only terms which are steady

or linear in the perturbation quantities gives

Z
(v) = -C

D £p c ds{a
1
+a

2
sin ())*}Uo

w (I-10a)
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X
(v) = -C

D ip c ds[{a
1
+a

2
sin(})*}sin(})*U^ +

{ (a,+a
2
sin(j>*)2sin 2

<J>* + (a
1
+2a

2
sin(})*) cos 2

<}>*}

U u + a, sin<t>* coscf>* U v] (I-10b)
o 1 o

The component of the viscous force in the y direction is just

the tangential force of equation (I-9b)

.

Thin Wing Theory

An effect of the flow about the fairing in the x-z plane

is to develop a side force and moment on the fairing due to

its behavior as a hydrofoil. The fairing is assumed to be a

thin symmetrical foil moving approximately along its x axis

with velocity u* but having also a small amplitude motion in

the lateral or z direction. The resulting flow is assumed to

be unaffected by the spanwise flow in the y direction. The

results presented by Robinson and Laurmann (1952) for the two-

dimensional motion of a thin wing with constant forward speed

then apply to the fairing. These results include added mass

and vortex effects. The equations for the hydrodynamic

derivatives per unit length are

Z = Z w + Z* w + Z a+Z q + Z* qw w a q q

M=M W+M'W+M a+M q+M»qw w a q q

(I-lla,b)
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Set
where a is the fairing rotation angle and q = ttt. Corrections

must now be supplied for the thickness of the fairing and for

the effect of rotations about the x and z axes with velocities

p and r. Examination of equations (I-2c) and (I-2e) show the

presence of a term involving X %
. This term is interpreted as

a correction for thickness. Equations (I-2c) and (-2e) show

no added mass effects proportional to p or r, so the only

contribution from these rotations could be from vortex effects.

Such contributions are assumed to be of higher than first

order in perturbation variables and are therefore not considered

When considering the interaction of cable motion with the

cable fairing the usual assumption (cf. Whicker (1957)) is

that the fairing instantaneously aligns with the local

direction of flow. In fact, of course, the fairing must

respond to the dynamic interaction of the hydrodynamic forces

from thin wing theory, thickness effects, and viscous drag

with gravitational, inertial and external forces, the external

force being the lateral force of contact between the cable

and the fairing. The dynamic equations for the side force

and moment per unit length acting on a fairing segment may

now be written with the parameters of the lateral motion

o, w, and ip as dependent variables. The equilibrium of

forces gives

-m [w+pv*-qu*-x_q] + (m-pl/) g (acos<J>*+iJ)sin<J>* ) +Z
(v)

+Z w+Z »w+
o WW

Z a+Z q+Z-q-X-u*q+Z = (1-12)
a q q u ^ c
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where m is the mass per unit length of fairing, V is the

volume per unit length of fairing, x is the x distance from

the origin to the center of gravity of the fairing, Z is

the viscous drag force of equation (I-10e) per unit length of

fairing segment. Z is the force on the fairing from the

cable and p = -r±. Since it is more convenient to considerr 3t

the mass of cable and fairing together in the parent problem,

those terms of equation (1-11) which will appear directly in

the inertial and gravitational force terms of the parent

problem may be lumped in with the cable external force and

(1-11) re-written as

Z = Z w + Z'W + (Z + (m-pl/)g cos<|>*)a +
c w w a

(Z +mu*-X«u*)q + (Z«+mx„)q + Z
(v)

(1-13)
q u ^ q G ^

Moment equilibrium gives

-I q+mx (w+pv*-qu*)+ (m-pf)gx (acos<}>*+tpsin(f>*) +M w+M*w+

M a+M q+M*q+X»u*w+Z * V *x = (1-14)
oi ^ <3 U p

Where I is the mass moment of inertia per unit length of the

fairing about the y axis, and x is the x distance from the

origin to the point at which the resultant viscous drag force

acts, a point near the leading edge of the fairing so x will

be small compared to the chord c. Equation (1-14) may be

rearranged to give
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(-C
D
£pcx (a

1
+a

2
sinc|>*)U

o
+Mw

+X^u*)w+(M^+mx
G
)w+mx

G
v*p+

(m-pl/)gx„ipsin<f>* = - (M + (m-pl/) gx_cos<f>*) a- (M -mx^u*)q-
\j (X o q (j

(M--I )q (1-15)

Equation (1-15) may now be solved for a as a function

of $ and w and substituted back into equation (1-13) giving

finally Z in terms of (JS and w. In view of the fact that the

solution technique of the parent problem assumes solutions

sinusoidal in time and that the hydrodynamic derivatives of

equations (I-lla,b) are functions of frequency, equations (1-13)

and (1-15) may be solved by assuming sinusoidal solutions in

time. Suppose solutions are of the forms

w = w e
ia,t

— iwt
a = a e

$ = f e
ia)t

Z = Z e
ia)t

c c

Now substituting these solutions into equations (1-13) and

(1-15) along with the values for the hydrodynamic derivatives

given by Robinson and Laurmann (1952) leads to

Z = [-(l-iH(X) )7Tpu*c+(iG(X)-i)7Tpc 2 iw-Cnipc(a 1
+a sin (J)*)Urt ]

w+[-(l-£H(A))TTpu* 2 c+(m-pl/)g cos <(>*+( (-1+|H (A)+±G (A) )

7rpu*c 2 +mu*+^7rpb 2 u*)iu)-( (-i+|G(A) )TTpc 3 +mx^)u) 2 ]a
(I " 16)
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[-C ipcx (a
1
+a

2
sin<|>*)U -^ (1-£h(X) ) 7Tpu*c

2 -^7rpb 2 u*+

( (—&+^G(X) )iTpc 3 +mx )ito]w+[mx v*io)+ (m-pl/) gx
G
sin<j>*]ij7 =

(1-17)

[-(-^(l-^H(X))7T Pu*
2 c 2 +(m-pl/)gx

G
cos(})*)-((^(-i+iH(A)) +

iG(X))7Tpu*c 3 -mxr,u*)ia)+((-T4r-!T(^-^G(A))7rpc'
f -I )co

2 ]a
<j y

where G(X) and H(X) are given in terms of Bessel functions of

the first and second kinds, that is Jn's and Yn's, as

J 2 +Y 2 +Y J..-J Y.. J J,+Y Y,
H(X) =2 ° ° ° 1 S 1

, G (X) = 2 °

<J -Y
i)2+(JrY

o
)2 x

^
J -Y

i
)2+(JrY

o
)2

QIC
where X the reduced frequency is given by X = —j- and the

argument of the Bessel functions is X/2. We bear in mind that

the inertial forces lumped into Z are of 0(a)).

Equations (1-16) and (1-17) are rather complicated, but

may be greatly simplified by placing some restrictions on the

cable fairings and the conditions under which they are towed.

First assume that the reduced frequency X is such that X<<1.

This is justified by supposing that the driving frequency for

lateral motion is the yaw frequency of the towing ship. Then

typically w*l radian per sec. as determined from data presented

in Korwin-Kroukowsky (1961) . Typical fairings usually have a

chord length less than 1 foot, so for velocities above several

feet per sec. X<<1. Second, real fairings are usually made

of materials whose density is close to that of sea water

so that gravity forces are very small, that is m-pl/sO. With

little error the fairing geometry may be approximated as
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shown in figure 1-4. m, I , b and x may be replaced with

expressions involving p and c, using the assumption that

m-pl/=0.

Equations (1-16) and (1-17) may be greatly simplified by

eliminating inertial, gravitational and thickness effects.

Assuming low reduced frequency allows us to replace G and H

by the functions of X to which they tend at low reduced fre-

quency. With the above simplifications a surprising result

follows. The side force on the cable contributed by the

hydrodynamics of fairing acting as a thin wing at low reduced

frequency, completely free to rotate about an axis through

its leading edge is given by the classical added mass for a

flat plate of the same span accelerating normal to its plane.

To this may be added an inertial contribution proportional to

the rate of change of the kiting angle arising from the center

of gravity of the fairing not lying at the axis of the

coordinate system, and the lateral component of viscous drag

given in equation (I-10a)

.

To elucidate the fairing hydrodynamics the thin wing

theory may be applied to the case of a massless flat plate to

which the fairing has been reduced proceeding in the x

direction with velocity u* being driven in harmonic oscillations

normal to its line of travel by a force applied at its leading

edge. The plate is free to rotate about its leading edge

which is the y axis of a right-handed coordinate system.

Equations for the forces and moments on the plate are
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Z-z + Z..z + Z a + z«a + Z-a = f (1-18)
z z a a a ex

M«z + M..z + M a + M»a + M..a = (1-19)
z z a a a

, . £ ia)t ia)t , - £ lootAs before z=ze ,a=ae and f = f e
o o ex o

Substituting into (1-18) and (1-19) the appropriate

expressions for the hydrodynamic derivatives from Robinson

and Laurmann (1952) gives

- (l-^H)Trpu*ciojz -(£g-£)ttpc 2
oj

2
z - (1-£h) TTpu* 2 ca +

(-l+$H+^G)7Tpu*c 2 iwa + (£-tG)7Tpc 3
oj

2
a = f (1-20)

-^(l-^H)7Tpu*c 2
iojz +(£-£G)irpc 3

u)
2 z -i(l-^H)7rpu* 2 c 2 a +

(-4+f7H+£G)TTpu*c 3
ia)a

o
-(-T^+f7G)7Tpc*w 2 a

o
= (1-21)

Equation (1-21) may be solved for a giving

Az
-[i(-f4H) + ($-*G)X]--2

a = 2 (1-22)
[ (-*+iH)+i (-fffrH+^G) X+ (rfs~§rG) A

2
]

. ojc ,where — ., = X
u*

similarly equation (1-20) may be rewritten as

Xz
[-i(l-$H)-(±G-*)X]-^ + [-(l-*H) + (-l+fH+*G)iX +

<*-^)A 2 ]a
o

- A^ (1-23)
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and substituting into (1-23) from (1-22) gives

{-[i(i-|) + c|-*)x] +Aa)-ii(i-f)+(f .-*>x]x>5a- ^
(̂1-24)

[ (-l+^H)+(-l+|H+^G)iX+(i-|G)X 2
]where A(X) =

[ (-1+iH) + (-|+|H+±G) iX + (3-7-lG) X
2

]

H(X)/ G(X), and A(X) must now be evaluated for low

reduced frequency. This is done by looking at series for

the Bessel functions J , J, , Y , Y. for small values of their
o 1 o 1

arguments. From Jahnke and Emde (1945)

J (A/2) = 1 - y4 + OCA*)
o 16

J
x
(X/2) = | + 0(X 3

)

y
q
(x/2) = |tinji -

re
lnf-

+
Te

+ 0{x " ln A)]

Y
x
(X/2) = |[- i + I In Ji - | + 0(X 3 ln X)]

where y = 1.781. Substituting these relationships into the

expressions for G and H leads to

H « |i + |1 In 2 Ji - 2*1*1 + 0(X 3 ln 2
X)

G = -In ^ + |i In
J*-

+ 0(X 2 ln 3
X)
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Substituting these expressions into the expression for A (A)

gives

A(X) = 1 - y~ + 0(X 2 ln 2
X) (1-25)

Now putting A(X), G(X), and H(X) into equation (1-24) gives

, z f

(4 + 0(X 2 ln 2 X)) \-£ = £*-
4 c -rrpu* c

or

f = -£irpc 2 (iw) 2
z . (1-26)

o o

Noticing that ico indicates differentiation with respect to

time, the results of equation (1-26) combined with (I-10a)

and the term proportional to ~-£- caused by the center of gravity
o t

of the fairing not being on the coordinate axis give

Z
c

= -*^ c2 H " ^ST v* II " C
D ±PC<a1+a2

sin**)U tf

(1-27)

Then the lateral hydrodynamic force on a segment of fairing

of length ds is

Z
(h)

= -ipC r
^cds(a

1
+a sin<J)*)U w - ^7rpc 2 ds |£D 12 O dt

4mx_ „ t
- —£ v* ds |f-

(1-28)
C dt
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Results

The total hydrodynamic force acting on the cable in the

x direction may be written by combining equations (I-2a) and

(I-10b) giving

X*
h)

= -ip7Tb 2 ds |S - C_ipcds[{a,+a sin<|>*} sinc|>*U 2 +
a t U J. -c. O

{ (a
1
+a

2
sincj)*) 2sin 2

<j)*+ (a,+2a
2
sin<|)*) cos 2

<j)*}U
o
u

(1-29)
+ a,sin(J)*cos(J)*U v]

Similarly the total hydrodynamic force acting on the cable in

the y direction is given by combining equations (I-2b) and

(I-9b)

Y
(h) = -£piTb 2 ds u* || - C

T
^pcds[{b 1 +b_cos(J>*}coscf)*U

2

dt D 12 O

+b,sin<J>*cos<J>*U u+{2 (b
1
+b

2
cos<j)*) cos 2

4>*

+ (b
1
+2b

2
cos<J)*)sin 2

(|)*}U
o
v] (1-30)

and finally the total hydrodynamic force on the cable in the

lateral direction is given by equation (1-28)

.

The above results of the compound hydrodynamic theory of

the three dimensional unsteady motions of a cable fairing

segment leave much to be desired in three areas. First the

theory is more a collection of results bound together by

assumption than a single cohesive formulation. Second, it

lacks experimental evidence by which to test its validity.

Third, the case for the non-neutrally buoyant fairing with

inertial and thickness effects retained as in equations (1-16)
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and (1-17) needs to be worked out. The usefulness of the

theory in the absence of a more comprehensive one is that it

provides a basis from which to attack the parent problem.
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Appendix II

HYDRODYNAMICS OF THE TOWED BODY

The body under tow in this thesis is a sphere towed from

its center of gravity and buoyancy. This is, of course, the

simplest possible towed body and provides the simplest dynamic

boundary condition at the end of the cable. Real towed bodies

are often quite complicated/ employing fairings to reduce drag,

depressors to promote deeper towing, and control surfaces to

alter local orientation, and in very advanced systems, prop-

ulsion. These latter bodies may impose very complicated

boundary conditions on the cable.

The equations of motion of the sphere derive from

considering the inertial forces of its mass and added mass,

its weight, and its drag all balanced by the tension in the

cable. Components of the inertial forces in the respective

coordinate directions are

F
x

= -<M
B

+ ,1 Myj - V* J-)

*?> = -<m
b

+ v<!f + u*!f>
'"- 1 *

F
2

(i)
= -% + v<H + v*!t>

where M_ is the mass of the body and y_ is the added mass

which for a deeply submerged sphere is 1/2 the displacement
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Gravitational forces are

F
x
9) = (M

B " pV
B ) 9< cos<J>* " sin<}>*$)

F (g) = -{ML - pVD ) g(sin<J>* + cosij)*$) (II-2)
y a a

F
z
9) = (M

B " pV
B } g sin 4>*#

where V_, is the volume of the sphere and p the density of the

water.

Drag forces are found by considering the sphere to be

moving through the water with velocity W. The drag is then

given by F = -£pC_ S|w|w where C is a drag coefficient

which is a function of Reynold's number and A is the frontal
is

area of the sphere. But

W = /u* z + v*^ (1+ +2 .

—it + *2 .
—+-z-)

1 u* +v* u* +v*

retaining only the steady terms and the terms linear in the

perturbation velocities. Drag force components are

F^d) = -± PCT
A
B

|W| (u* + u)

F^
d)

= -ipCT
A
B

|W| (v* + v) (II-3)
t

F (

z

d)
= -ipCT

A
B

|W| w
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And finally

„(d) i _ ,. T,2 /U* u u* 2 u U*V*Vv
F
x

= "*pCT
A
B

U
o (U"

+
U"

+
"U»-

+ —(p- )

o o o o

p(d) _ l r , n 2 /V* V
,
V* 2 V ,

V*U*U . (T T -.A\F - -
7 PCT

A
B

U
q
(— + — + --^- + —jp-) (H-4)

J o o o o

where U = /u*"
2 + v* z

o

Tension acts only in the y direction along the cable and is

given by

F
(T) = T* + T (H-5)

Combining equations (II-l, 2, 4, 5) gives the equations of

motion for a towed sphere.

/** j. x i*& *3$ x i n . n2 ,u* u (u* 2 u+u*v*vh" (M
B
+y

B ) ( 8t " V
8t

}
-7pC

T
A
B
U
o (U-

+
IT

+
U 3 > +

o o o

(M_-pV_) g(cos<t>* - sin(J>*$) + f =0
O D X

/«« -l. \ /9v *3$\ i ~ * rT 2 /V* v (v* 2 v+v*u*u) ." (M
B
+V (

9t
+ U #^ pC

T
A
B
U
o (iT

+ r +
IP

]

o o o

-(M -pVD ) g(sin(})* + COS(j)*$) + T* + T + f =0do y

- (MB^B )(lf
+ V*H ) + (M

B- pV g • Sin^ ^ pC
T
A
B
U
o * + f

Z =
°

(H-6)

In these euqations f , f and f are included as the1 x y z

source of possible perturbing forces such as might be created

by body control mechanisms. For the simplest case these

vanish.
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Considering a general body towed at some arbitrary point

vice a sphere towed at its center of gravity and buoyancy

complicates matters. Moments must be considered in writing

the equations of motion of the body and method of attachment

of the body to the tow cable becomes a matter of critical

interest. Eames (1966) considered the general problem in some

detail.
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Appendix III

SPECIAL CASES

The elements of the coefficient matrix of the cable

equations of motion are constant for certain special cases.

Solutions can then be constructed from the eigenvalues and

eigenvectors of the coefficient matrix. Two cases are con-

sidered. In one case the cable is neutrally buoyant and has

no viscous drag. The cable tows in a straight line at what-

ever trail angle is specified by the towed body weight and

drag. As before, the lateral motions may be considered

separately from the transverse-longitudinal motions. In a

second case the cable and the towed body are neutrally buoy-

ant. Normal viscous drag acts on the cable but no tangential

drag. The trail angle is zero, that is the body tows directly

astern of the tow point. In this case lateral motions, trans-

verse motions and longitudinal motions are all decoupled and

the lateral and transverse modes are identical in form

differing only in the value of cable added mass. The point

is to show that the results obtained from these special cases

by a simple analysis agree with the results obtained from the

general formulation and analysis when specialized for the

same cases.

As mentioned before in Chapter 3 when the coefficient

matrix is constant solutions are obtained as follows

|| = [a] x (III-l)
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where x is the appropriate vector of n dependent variables

and [a] is an n x n coefficient matrix.

|a-Xl| = (IH-2)

gives n eigenvalues of [a] .

[a]c. = X.c. (III-3)

gives i eigenvector of [a] associated with i eigenvalue.

n . .

x = Z c. e AlC (III-4)
l

l

gives the solution in terms of the arbitrary constants of the

c. Boundary conditions provide n equations in the n arbitrary

constants when the equations (III-4) are substituted into them

for the values of the dependent variables. Solution of these

equations gives the values of the n arbitrary constants, which

are substituted back into (III-4) giving the final form of the

solution.

The equations of motion are first written in their com-

plex normal forms and specialized for the particular case at

hand. The above steps are accomplished. The results are

transformed into the local vertical coordinate system and the

motions at the towed body are compared with those given by

the general formulation, method and program. In all cases

the comparison shows agreement. Even for these simple cases

the algebra and the computation of the results is tedious so

simple arithmetic programs were written to do this work.
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Neutrally Buoyant Cable Without Drag

Lateral Motions

The equations of motion are

'dw^

dC
f-lvJU±B± cos$

iv(i+n)
N

-iv(
cos

N

ivcos<j>

N

K
* *

W

*

4 i.

(III-5)

with d = 1, D = 0, h = 0, y +

The steady configuration equations give

|| = o, f|
= 0, N = c/l+tan"«, •-•,.- tan'

1 (^)

(III-6)

The boundary conditions are

£ = (iv(M+k)+C)w + (iv (M+k)cos$- (M-a) sin$) i|> =

(III-7)

C - 1 w + cos$ lp = e

The eigenvalues are

2

= f ± g

2 „2f = -ivp; g = iv/p z +q

_ cos$n
# _ / (1+n)

P 2N ' q / N6

Recalling that w = w + cos$i() we may, after some algebra,

write
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w = -ivp (£-1) (- [ (cos<I>p+T-)C+ (M-a) sin<i>p] sin (v/p^+q^) +

(-[ (cos$p+-r-)C+ (M-a) sin$p] sin (v/p z +q 2
) +

/p z +q z N 2 cos$
, ,M ,. ,

i[ n cos(v/p^+q^"c)- * ' sinCv/p^+q^c)])

. r /p z +q z N 2 cos$ , ,—*-.—y-\ v (M+k) . , y—7-—T , , x
1 [-^—^ cos(v/p 2 +q z

) - —^ - sm(v/p z +qz )])

(III-8)

from which the magnitude of w at £ = may readily be cal-

culated. For a test cable with M= 3.0, a = 2.0, k = 1.0,

5 = 0.01, e R
= 1.0, e

T
= 0.0, c = 1.0, n = 1.0 agreement

between the above formulas and the general program was exact

to at least five significant digits for values of v from 0.0

to 1.0.

Transverse-Longitudinal Motions

The equations of motion are

fdu^

d?

d<{)

=

dv
dC

dn
[d^J

i

ivcos$ (1+y

)

N

iv (1+y)
N

ivsin$ (1+y)
N

. r cos
2

<J> l n ,N>, _ .
iv [—^ ^-(1+-) ]

ivcos$
N

-ivsin$cos$

iv (1+y) sin$

^iv

iv

^.
f

\

u

*

V

n
k J

(III-9)
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The steady configuration equations are as above for lateral

motions. The boundary conditions are

C=0 [iv (M+k)+C(l+sin 2
$) ]u+ [-iv (M+k) cos$+ (M-a) sin<£>] <j) +

Csin$cos$v =

Csin$cos<!> u + [iv (M+k) sin$+ (M-a) cos$]
(f>

+

[iv(M+k) + C(l+cos 2 $)]v -n =

C=l u-cos$((i = a = sin$ 6i± - cos$ hz

v+sin$(J> = 3 = cos$ 4u + sin$ he.

The eigenvalues are

ivcosfr / 2 4(l+y)N(l+N/yKM " "IS ("V 1 V P + 3—„2* )2N

x
s

= ±iv /h

/ 6 cos $

(111-10)

(III-ll)

The solutions are given by

u

.
n

j

biai

ciai

,M+

a 2

b 2 a2

c 2 a 2

L
d 2 a 2j

;

^C +
a 3

Ld30t 3

^3? .

e +
ait

duau

A4C (111-12)
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where the b*s, c's and d*s are combinations of eigenvalues and

coefficient matrix elements found by solving for the eigen-

vectors and the a's are the arbitrary constants of the

eigenvectors found by substituting equations (III-12) into

equations (111-10) . The resulting algrbra is tedious so

results were obtained by computer solutions from this point

on. The magnitudes of u , v and n at £=0 were calculated and' o o

compared with results from the general program for the

following cable. M=3.0, a=2.0 / k=1.0, C=1.0, y=100.0, 6=0.01,

y=1.0, 4u =1.0, iu =0.0, kn =1.0, ^ie =0.0 with v between 0.0

and 1.0. Results compared favorably through the third

significant digit. The small remaining difference seems to be

the result of the matrix inversion carried out in the special

case solution where solving for the arbitrary constants of the

eigenvectors by Cramer's Rule. The largest difference occurred

near a reasonance condition at v=0.3 and was less than 2%.

Such a reasonance is to be expected since these cases have no

damping except that which is introduced by the towed body

boundary condition.

Neutrally Buoyant Cable and Body With Normal Drag

Lateral or Transverse Motions

The equations of motion are

dw
dc

dC
I J

(iv(l+n)+D 7 )

N

(iv(l+n)+D 7 )

N

1V(
N " 6°

IV
N

\ f "

w

¥

J J

(111-13)
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with d=l, N=C, bi=b 2 =0/ M=a and $=0 so sin$=0 and cos$=l and

Y=100.0. Steady configuration of the cable is trailing dead

astern. Boundary conditions are

C = (-iv(M+k)-C)w - iv(M+k)i// =

C * 1 w \p = (111-14)

The eigenvalues are

Xi - f ± g
2

f = Z2i - iHL (111-15)r
2N 2N kx±±. ±3)

9 =
2N / ^ ~ V (n

6
' i2vD 7 (n+ —

)

Suppose we also define for convenience three more constants

A = CD 7 2 (M+k)
2N v

6

B = VC(
2N

+ h (IH-16)

G = A + iB

now as in the first case above we may write

w = «•*<*-«
(

G(egC -e" gC ) + gC(e^ +e-^)
} (III _ 17)°

G(eg -e~ g ) + gC(eg +e~g )
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The magnitude of w at £=0 may be calculated easily and com-

pared with results for the general programs. Here as before

the results are exactly similar through the fifth significant

digit. The equations for the transverse motion are identical

with n replaced by u and w, \\j replaced by u, <j> . The magnitude

of v at £=0 was calculated and again compared exactly with

results from the general program through the fifth significant

digit.

Longitudinal Motion

The equations of motion are

dv
dC

dn
dC

IV

IV

Y<5

J

n

(111-18)

for same cable parameters as in the lateral or transverse

case. The boundary conditions are

C =

K = 1

-iv(M+k)v - 2C v + n =

v = 3 = •iu

(111-19)

The eigenvalues are Xi
2

IV
(111-20)
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The solutions are

v = 4u

n = 6a

[SyJ cos (^-) - v(M+k)sin(^-) + 2iCsin(^=)]

/y 6 /y5" /y 5

[/yT cos(-— ) - v{M+k)sin(-^-) + 2iCsin (-¥-)]
/yS" /y 6 /y 6

(111-21)

[/y6[2C cos (^-) + i(/y6"sin(^=:)+v(M+k)cos(^=:))]
/y6" /y 6 /y 6

[/yd cos(-^-) - v(M+k)sin(-^-) +2iC Sin(-^-)]
/y6" /y6" /y6

(111-22)

From these solutions, as before, the magnitudes of u

and n were calculated and compared to the result from the

general program. Again agreement was exact through five

significant digits.

The results of these special cases match closely the

results of the general program lending credence to the

numerical method employed.
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Appendix IV

TRIAL CABLE

The basic towed cable system used in Chapter 4 was

developed from the following specifications.

Tow cable: length-1200 ft., diameter-1/2 in., weight
per foot of cable plus fairing-1/2 lb.,
material-steel with modulus of elasticity
20 x 10 6 psi* 1 )

Fairing: breadth-0 . 555 in., mean chord-2.22 in.,
drag coef ficient-0 . 1 (2)

Body: sphere-40 in. diameter, weight-2482 lbs.,
displacement-1241 lbs., drag coefficient-
0.15(3)

Tow Speed: 16 feet per sec. (approximately 10 kts.)

Frequency range of excitation: Angular frequency -

0.0 to 1.0

The above specifications give the following cable and body

parameters using the definitions of Chapter 2.

d=0.125 y=4160.0 M=4.14 C=0.56 a=2.07 D=9.48 6=0.0066

b=0.555 c=2.22 u=0.214 k=1.03 n=3.44 £=0 . 5 h=0 .

5

Meyers, Holm, McAllister, Handbook of Ocean and Underwater
Engineering , New York, 1969.

(2) Fathom Oceanology Limited Brochure Describing the cable
fairing called "Flexnose" distributed by Fathom Oceanology
Limited, 863 Rangeview Road, Port Credit, Ontario.

(3) Hoerner, S.F., Fluid Dynamic Drag , Midland Park, New
Jersey, 1965.
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