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Since the initial discovery of hydrothermal vents in 1977,
these ‘extreme’ chemosynthetic systems have been a focus
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of interdisciplinary research. The Okinawa Trough (OT), located in the semi-enclosed East China Sea
between the Eurasian continent and the Ryukyu arc, hosts more than 20 known vent sites but all
within a relatively narrow depth range (600-1880m). Depth is a significant factor in determining
fluid temperature and chemistry, as well as biological composition. However, due to the narrow
depth range of known sites, the actual influence of depth here has been poorly resolved. Here,
the Yokosuka site (2190m), the first OT vent exceeding 2000m depth is reported. A highly active
hydrothermal vent site centred around four active vent chimneys reaching 364°C in temperature, it
is the hottest in the OT. Notable Cl depletion (130 mM) and both high H, and CH4 concentrations
(approx. 10mM) probably result from subcritical phase separation and thermal decomposition of
sedimentary organic matter. Microbiota and fauna were generally similar to other sites in the OT,
although with some different characteristics. In terms of microbiota, the Hj-rich vent fluids in
Neuschwanstein chimney resulted in the dominance of hydrogenotrophic chemolithoautotrophs such
as Thioreductor and Desulfobacterium. For fauna, the dominance of the deep-sea mussel Bathymodiolus
aduloides is surprising given other nearby vent sites are usually dominated by B. platifrons and/or
B. japonicus, and a sponge field in the periphery dominated by Poecilosclerida is unusual for OT vents.
Our insights from the Yokosuka site implies that although the distribution of animal species may be
linked to depth, the constraint is perhaps not water pressure and resulting chemical properties of the
vent fluid but instead physical properties of the surrounding seawater. The potential significance of
these preliminary results and prospect for future research on this unique site are discussed.

1. Introduction

The discovery of deep-sea hydrothermal vent [1,2] brought to light various unique processes occurring
under the vast seawater mass. Four decades of cruise observations, in addition to theoretical
and experimental approaches, led to the accumulation of a large dataset and knowledge with
regards to global distribution of vent sites [3,4], heat and elemental flux between solid earth and
ocean [5,6] including sulfide ore generation [7,8], physiological and phylogenetic characteristics of
(hyper)thermophilic chemolithotrophic microbes [9,10] and vent-endemic fauna [11,12], as well as
biogeography [13]. Based on this knowledge and from the primal perspective of energetics that bridges
them [14], a generalized model predicting the relationships between underlying geology, fluid chemistry
and microbial chemosynthetic primary production [15], also applicable to presume habitability of ancient
Earth [16,17] and extraterrestrial bodies [18,19], has been built. Despite such significant progress in the
understanding of each process and links among vent rock—fluid life, one obvious key question that has
been raised since the initial discovery of vents [1] is yet poorly resolved today—that is the mechanisms
and processes behind dispersal and thus realized distributions of vent-endemic organisms [20,21].
Understanding the mechanisms and factors regulating biodiversity and biogeography on the Earth
is one of the most basic yet unresolved issues in biogeoscience. Findings from hydrothermal vent sites
led to the confirmation of deep-sea chemosynthetic ecosystems, fuelled by chemical reactions between
oxidizing components in seawater (e.g. O», SO4) and reducing components originating at/beneath the
seafloor (e.g. Hy, CHy, HjS), often in the form of symbiosis [1,13,15]. Although it is now known that
such ecosystems occur in other forms such as cold seeps and organic falls [22,23], hydrothermal vents
and the surrounding ecosystems are most widely and systematically investigated at the global seafloor
[13]. To date, more than 600 confirmed or inferred active vent sites are known [24], generally around
plate boundaries. Vents on mid-oceanic ridges are distributed like stepping stones with intervals of a
few to thousand kilometres between the neighbouring sites. Such systems pose significant difficulties
in studying how biodiversity is formed within a biogeographic province [25], as the sites are distant
and the dispersal is influenced by various factors from being in the open ocean. Indeed, such systems
tend to have geographical barriers to dispersal and distribution of dominant animal species (e.g. [26])
within a region, making studying the influence of particular factors difficult. Vent sites within back-
arc basins, on the other hand, tend to have well-mixed gene pools within basins and are well suited
for investigating various factors governing biodiversity [21]. The East China Sea (ECS) is a semi-closed
marginal sea between the Eurasian continent and the Ryukyu arc (figure 1a). The southeastern part of
the ECS is characterized by an elongated, fault-controlled depression, that is called the Okinawa Trough
(OT). The OT is an ideal study area for how the biodiversity within a site and biogeography of a species
are regulated because of its topographic and oceanographic constraints. The ECS opens to the Pacific
Ocean only via several straits shallower than 1100 m while its internal basin in the south, the southern
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Figure 1. Seafloor topography of (a) entire southern Okinawa Trough and (b) Yaeyama Graben. Grey lines and a filled red circle in (b),
respectively, represent surface ship track for geophysical observation including MBES-based hydrothermal site survey and the suggested
location of hydrothermal activity. Seafloor topography in (b) was obtained by YK14-16, KR15-16 and YK16-07 cruises while partly sourced
from a public database provided by Japan Coast Guard.

OT (SOT), reaches depths greater than 2000 m (figure 1a). Despite only approximately 1300 km of the
long axis (NE-SW direction), more than 20 hydrothermal vent sites have been detected here [27-29].
This close proximity among vent sites, in addition to the semi-enclosed oceanographic setting (e.g. [30]),
provides high connectivity among each vent site within the OT [21].

Most of the OT vent sites investigated so far are located within a narrow range of water depth
between 950 and 1880 m [27,31]. The predominant factor determining the fluid temperature is pressure,
which depends on the seawater depth, and the temperature is, in turn, the significant factor determining
the fluid chemistry [6]. Fluid chemistry is indeed similar among the OT sites, in general [32]. The
narrow range of depths also allows prosperity of similar species which have physiological advantage
against the pressure range around 10-15MPa. In fact, research of microbes and vent fauna inhabiting
OT hydrothermal sites in the past decades [33-35] have revealed a well-mixed genetic pool among the
OT sites, except the two sites shallower than 900 m [36]. If a hydrothermal vent site is discovered at
another distinct water depth range within the OT, it would provide insights to understand and evaluate
the significance of depth, temperature, pressure and fluid chemistry in determining the biodiversity
and biogeography. Such information is truly valuable towards effective conservation and management
of vent resources and biodiversity in the light of possible upcoming anthropogenic exploitation of OT
hydrothermal vents [37,38].

- =
.
. O
-
L=
=)
=
=
v
=}
o,
. ™
-
=
=
=
=
=
.=
—1
Ca
=)

2
=]
)
Y
)
L
=)
LS
Y
.S
c
R
L
MY
g
—
-
|

o




R/V Yokosuka plume o By (;-()'m

EM22
-——— 1000 m

-——1500 m

-—2000

Om 500 m1000 m
()

AUV URASHIMA
SeaBat7125

100 m -

Figure 2. Images acquired by MBES equipped on (a) R/V Yokosuka and (b) AUV URASHIMA. Anomalous reflections elongating vertically in
water column over the western end of the Yaeyama Knoll suggest some compounds which have physical properties distinct from seawater
such as (0, bubbles/hydrates and hydrothermal fluid.

In this study, we surveyed the seafloor deeper than 2000 m in the SOT and discovered a hydrothermal
fluid vent site at 2190m depth, much deeper than the other known sites (approx. 1880m) [39]. The
existence of the present site was initially detected as an anomalous acoustic reflection of water column at
the western end of the Yaeyama Knoll (figures 1b and 2); dives using the Remotely Operated Vehicle
(ROV) KAIKO successfully located and surveyed the new vent site (figure 3). This new vent site is
named “Yokosuka’ to honour the R/V Yokosuka which has contributed greatly to exploration of the global
geofluid vent sites (e.g. [40—43]), including finding the initial signatures of the present site. The fluid of
the Yokosuka site exhibited temperature up to 364°C, the highest recorded among all known OT sites
(figure 4), the previous high temperature being 331°C recorded from the pNoho site (table 1). In the
following, we outline the general picture of this new, hydrogeographically distinct, hydrothermal site in
the OT with preliminary results from interdisciplinary studies across geochemistry, mineralogy, as well
as microbiota and faunal composition.

2. Material and methods

2.1. Yaeyama Knoll at the southern Okinawa Trough

2.1.1. Geological background

The SOT is characterized by active back-arc rifting of the eastern end of the Eurasian continental margin
which forms a typical topographic feature, the Yaeyama Graben (figure 1a). The Yaeyama Knoll is a
young volcanic ridge (less than 1Ma) [48] located in association with the rifting at the center of the
graben (figure 1b). The knoll is elongated in east-west direction, parallel to the graben, so volcanism
is considered to be constrained by normal faults forming the rift structure. The knoll is about 200 m
high, and the shallowest water depth is 2050 m. The western end of the knoll is branched, forming two
minor ridges.
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Figure 3. Event map for the Yokosuka site, large area map showing all relevant dive tracks is presented on the top with an expanded
map of the hydrothermally active area (indicated by a solid box) on the bottom. Indications of each symbol are shown in the legend.

2.1.2. Hydrological background

The water depth of the Yaeyama Graben reaches 2300 m, far deeper than the deepest surrounding strait
of ECS, the Kerama Gap (approx. 1100 m). Seawater deeper than 1100 m in the SOT is upwelled into the
lower thermocline below the overlaying Kuroshio Current [30] with turnovers around 4.7-9.4 years [49].
The deep-water ventilation may allow larvae of vent-endemic animals to migrate from/into shallower
hydrothermal vent sites beyond hydrogeographical barriers.

2.1.3. Cruises and dives

Water column observation using acoustic devices such as multibeam echo sounder (MBES) and side
scan sonar systems have been successfully applied to exploration of seafloor hydrothermal vents in
the last decade [28,29,49-52]. Particularly, the MBES survey from the sea-surface is far more effective
in detecting and roughly locating undiscovered hydrothermal fluid venting sites because of extensive
seafloor coverage [28] when compared to conventional hydrocast survey [4,53]. During the R/V Yokosuka
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Figure 4. Pressure—temperature plot for the global hydrothermal sites (dataset used from [15,32]). An open star and open circles,
respectively, represent the Yokosuka site and other QT sites, whereas black dots represent global hydrothermal sites. A broken curve and
the grey hexagon, respectively, represent the two-phase boundary and critical point for 3.5% NaCl solution [44]. A horizontal broken-dot
line represents the deepest strait in the East China Sea.

cruise YK14-16 in 2014, the MBES system (EM122, 12kHz) detected a reflection anomaly in its water
column records that arose vertically from the seafloor, suggesting hydrothermal activity, at the southern
minor ridge at the western end of the Yaeyama Knoll (figures 1b and 2a). During the YK16-07 cruise
and a dive of the Autonomous Underwater Vehicle (AUV) URASHIMA (dive no. 252) in 2016, acoustic
anomalies were also detected by the AUV-based MBES (SeaBat7125, 200 kHz) (figure 2b) and side scan
sonar (EdgeTech2200, 120kHz) above the seafloor of the northern slope of the minor ridge (figure 3).
Based on these localization data, deep dives using the ROV KAIKO (with vehicle KAIKO Mk-IV) were
conducted during R/V Kairei cruises KR15-16 (dive no. 668) in 2015 and KR16-16 (dive nos. 715, 718, 719)
in 2016 (figure 3). The Yokosuka site was successfully discovered on dive no. 715.

2.2. Sampling and analyses

2.2.1. Fluid and rock chemistry

High-temperature hydrothermal fluids emerging from the chimneys were collected during ROV
dives by a gas-tight fluid sampler, the WHATS-3 [31], in addition to ambient seawater collected
by Niskin samplers as references. The full-fluid sample list is provided in electronic supplementary
material, table S1. Fluid sampling and chemical analyses of the fluids collected followed procedures
previously published (e.g. [31,54]). Fluid pH, alkalinity, NH4 concentrations and H»S concentrations
were determined by a pH meter with titration and colorimetry [55]. Concentrations of Mg, Na, K, Ca,
Sr, Si, B, Li, Fe, Min, Zn, Cl and SO4 were determined with inductively coupled plasma optical emission
spectrometry (ICP-OES: SPS5510; Hitachi High-Tech Science Corporation) and/or ion chromatography
(IC: Dionex ICS-2100 and ICS-1600; Thermo Fisher Scientific) after appropriate sample dilution using
Milli-Q deionized water (typically 200- to 2000-fold). Dissolved gases in the fluid samples were
extracted on-board with a vacuum line, and concentrations of H,, CHy, CO, CO, and Cy;Hg were
determined onshore by gas chromatography with a helium ionization detector (GC-HID: GC4000, GL
Sciences) and a flame ionization detector. Stable isotope ratios of CO,, CHy, CO, Hy and HyO were
determined by continuous-flow isotope ratio mass spectrometry and a liquid water isotope analyser
(Los Gatos Research, Inc.) and reported with delta () notation to express the relative difference between
minor/major isotope ratio (R) of a sample and the international standards (VSMOW for hydrogen and
oxygen or VPDB for carbon) (8 = [(Rsample/ Rstandard) — 1]) in the permil scale [56].

A massive volcanic rock collected at non-hydrothermal seafloor was crushed to obtain unaltered
inner-part fragments for subsequent chemical analyses. The fragments were washed with Milli-Q water
in an ultrasonic bath and then further crushed to powder form using tungsten carbide and agate
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Table 1. Endmember fluid chemistry of the Yokosuka site. Data from other Okinawa Trough sites and ambient seawater measured in this -
study are also presented for comparison.

region southern OT southern OT southern OT  mid OT i southern OT
field Yokosuka Daiyon Hatoma Sakai Izena lheya North  Yokosuka
Yonaguni

ambient
seawater
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mills. Abundances of major and trace elements were determined by X-ray fluorescence analysis and
ICP-quadruple mass spectrometry, respectively, using procedures reported previously [57].

2.2.2. Microbiological analyses

A single chimney structure (1300-11600g) was collected from each of the three vents, the
Neuschwanstein, Hohenschwangau and Heidelberg vents (figure 3), for microbiology. Immediately
after the recovery on-board, samples were stored at —80°C until use. To estimate the abundance of
microbial cells, chimney samples (0.8-1.6g) were fixed with 3.7% formaldehyde-phosphate buffered



saline (PBS) for 2h at 4°C. After washing with PBS three times, samples were sonicated on ice with
eight 5s pulses with VP-050 ultrasonic homogenizer (power, 20%: TAITEC, Koshigaya, Japan) with 5s
pauses between power pulses. Suspended cells were filtered on 0.2 pum pore size Isopore filters (Merck
Millipore, Schwalbach, Germany), and stained with SYBR Gold (Thermo Fisher Scientific, Waltham, MA,
USA) for 10 min. After washing with PBS, microbial cells were counted in triplicate with an ECLIPSE Ni
epifluorescence microscope (Nikon, Tokyo, Japan).

For DNA extractions, chimney samples were pulverized with a mortar and pestle in liquid nitrogen.
DNA was extracted from each chimney sample (2.7-4.6g) using the TRIzol reagent (Thermo Fisher
Scientific) as described elsewhere [58]. V4-V5 regions of the 16S rRNA gene were amplified and analysed
with a MiSeq sequencer (Illumina, San Diego, CA, USA) as previously described [59]. Sequences were
processed using the QIIME software package [60]. Operational taxonomic units (OTUs) were selected
based on 97% similarity level using the UCLUST [61] and were assigned to a reference taxonomic
classification using the SILVA 119 [62] and the RDP classifier (SSU ref NR 119; http:/ /www.arb-silva.
de/no_cache/download/ archive/release_119/Exports). The raw sequence data have been deposited in
GenBank/EMBL/DDBJ with the accession no. DRA005734.

2.2.3. Identification and relative abundance of megabenthos

High-quality video and images were taken using the camera system of ROV KAIKO during the deep
dives, which allowed identification of megabenthos present in various areas of the Yokosuka site. Where
possible, faunal specimens were collected using the manipulator or a slurp gun with a single-chambered
sample chamber, equipped on the ROV. Upon recovery on-board R/V Kairei, the specimens were sorted
and identified morphologically to ground-truth the video/photo-based identifications. Occurrences of
each animal species were noted for various areas visited throughout the dives by analysing all available
video and images for the areas of interest (i.e. active chimneys and peripheral faunal assemblages), and
their relative abundances were estimated using dominant-abundant-common-occasional categories (as
employed in [63]).

To investigate the extent of similarity in megabenthos species composition among different habitats
within the Yokosuka site, Jaccard’s index of similarity was calculated based on presence/absence data of
the taxa identified. Nonmetric multidimensional scaling (nMDS) was used to visualize the data, and
similarity contours based on a group-average clustering analysis was overlaid on the nMDS plot to
indicate the extent of faunal resemblance among the closely clustering habitats (after [36]).

3. Results and discussion

3.1. Overview of the Yokosuka site

Figure 3 is a summary of all dive tracks, mapped against the newly discovered chimneys, and other
indications of hydrothermal activity. During ROV KAIKO dive no. 668, the southern slope of the southern
minor ridge was surveyed for hydrothermal signatures such as increases in water column turbidity and
benthic animal density, but none was detected. A rock sample (KAIKO no. 668-R02; figure 3) was collected
to characterize the volcanic body, the chemical analysis of which revealed K-medium basaltic andesite
(island arc tholeiite; electronic supplementary material, table S1) standing on a mafic endmember of the
bimodal composition of OT volcanic rocks [64]. Some other OT hydrothermal activities, on the other
hand, are hosted by another endmember, dacite to rhyolite (e.g. [29,45,65]).

On KAIKO dive no. 715, the ROV landed at a depth of 2178 m on the northern slope of the minor
ridge, where the seafloor was covered with thick sediment. After travelling southwards for about 150 m
we arrived at a rocky field with thin sediment cover and occasionally with whip corals and sponges
growing. As we travelled further south, water became increasingly turbid and corals disappeared,
being replaced by rossellid sponges, commonly seen around other OT hydrothermal sites [66], and
we soon encountered a colony of tubeworms sustained by diffuse flow venting (depth 2205m). After
travelling about 40 m eastwards, we then encountered rusty microbial mats, a field of small pieces
of broken sulfide, and further animals typical of vents, such as the squat lobster Munidopsis spp. and
vent shrimps Alvinocaris. Another 10 m eastwards, we discovered a very active black-smoker chimney
with large flanges (approx. 12m tall, depth 2190 m at base; figures 51 and 6a). We named this chimney
‘Neuschwanstein” and collected animals, chimney and hydrothermal fluid. The highest fluid temperature
measured was 347.3°C, the highest ever recorded at this point in all of OT vents [32]. However, we
were unable to collect sufficient numbers of hydrothermal fluid sample (only one of four available

0L512L % s uado 205y BaoBuysiigndiaposeforsos:


http://www.arb-silva.de/no_cache/download/
http://www.arb-silva.de/no_cache/download/

Figure5. Major vent chimneysin the Yokosukassite. (@) Neuschwanstein chimney (max temp. = 356.9°C), (b) Hohenschwangau chimney
(max temp. = 364.1°C), (c) Heidelberg chimney (max temp. = 349.9°C) and (d) Shisa chimney.

bottles of WHATS-3 sampler [31]) because fragile flanges filled with high-temperature fluids prevented
us from approaching close to the venting orifices, for safety reasons. With poor visibility and unstable
positioning signals, we had difficulty identifying the absolute position of the ROV during this dive. In
particular, the position shown by INS (Inertia Navigation System) and SSBL (Super Short Base-Line)
were in disagreement.

On dive no. 718, the ROV landed northeast of the best-estimated position of the Neuschwanstein
chimney (figure 3). The seafloor was mostly sediment-covered, with occasional rossellid sponges. After
exploring the vicinity against poor visibility for about an hour, we encountered a field of broken sulfide
pieces inhabited by squat lobsters, similar to that seen near Neuschwanstein. Climbing a mound nearby
the sulfide field revealed a large, mushroom-like black-smoker chimney with many flange structures.
This chimney was obviously distinct from Neuschwanstein, and we named it ‘Hohenschwangau’
(approx. 7m tall, depth 2190m at base, figure 5b). Sampling of animals, chimney fragments and
hydrothermal fluid was carried out; the highest temperature recorded was 364.1°C, even higher than
Neuschwanstein and close to the boiling point at its depth (figure 4) [44]. After sampling and travelling
northwest, we located a spot of shimmering water about 20m away from Hohenschwangau. Further
exploring the area, we travelled through an area of brown discoloration, apparently old dead chimneys
covered by small sponges (as is typical for OT vent periphery areas), and finally, back to rocky
seafloor. Then, to the southwest of Hohenschwangau, a very large area of diffuse flow venting appeared
(figure 6g). This area was visually dominated by a branching demosponge in the order Poecilosclerida
(similar to previously reported from the Minami-Ensei vent site) [66]. The occurrence of this type of
sponge field here is intriguing as the Minami-Ensei site is a very shallow site (Depression B where
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Figure 6. Megafaunal communities of the Yokosuka site. (a) Overview of shrimp aggregations on the top of the Neuschwanstein
chimney. (b) Close-up of a Shinkaicaris leurokolos alvinocaridid shrimp aggregation on the Hohenschwangau chimney. (c) Shinkaia
crosnieri squat lobsters near the base of the Hohenschwangau chimney. (d) Large aggregations of scale worms (black dots) on the surface
of the Shisa chimney. (e) A typical animal colony around the base of chimneys of the Yokosuka vent field dominated by Alvinocaris
longirostris shrimps, Munidopsis ryukyuensis squat lobsters, and Provanna clathrata snails. (f) Peripheral tubeworm (Lamellibrachia
sp. and Alaysia sp.) bush 50 m east of the Neuschwanstein chimney. (g) Overview of a peripheral community visually dominated by
poecilosclerid sponges near the Heidelberg chimney. (h) Close-up of the sponge-dominated peripheral community, most notable animals
being Lamellibrachia sp. and Alaysia sp. tubeworms and B. aduloides mussels.
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poecilosclerid sponges were common is around 700 m deep [67]). We then moved southeast for about
30m, where we discovered a further large mound-like chimney with large flange structures. This
was clearly different from either Neuschwanstein or Hohenschwangau, and we named it “Heidelberg’
(approx. 10m tall, depth 2165 m at base, figure 5c). Again we carried out sampling of animals, chimney
pieces and hydrothermal fluids; the highest recorded temperature was 349.9°C.

For the final dive at the Yokosuka site (no. 719), the ROV landed on sediment-covered seafloor
southwest of Neuschwanstein. After travelling for about 100 m northeast, we encountered sediments
with brown discoloured mat followed shortly by white microbial mat and broken sulfide pieces.
Continuing along the same direction, we soon found a large mound-like chimney that only had
concentrated venting at a bulge-like flange structure at the side. We gave it a name, “Shisa’ (approx.
10m tall, depth at base 2188 m, figure 5d), but no sampling was carried out. Carrying on the same
direction past Shisa, we at last rediscovered Neuschwanstein chimney and commenced hydrothermal
fluid sampling (maximum temperature 356.9°C). Although we further travelled eastward up to 400 m
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away from the four discovered chimneys, the seafloor was consistently rocky with occasional sponges
after leaving Neuschwanstein and no further signs of hydrothermal activity were found.

3.2. Fluid chemistry

Concentrations of each chemical species dissolved in the fluid samples are shown in the magnesium
diagram (figure 7) and all analytical results are listed in electronic supplementary material, table S2.
The fluid pH of samples, with low magnesium concentrations, ranged between 5.3 and 5.7. Cl and
Na concentrations of the low-Mg fluids were significantly lower than those of the ambient seawater
(figure 7), being approximately one-third of their seawater values. As Cl has few removal processes
during subseafloor fluid circulation, the result is interpreted to be due to subcritical phase separation
(boiling) (figure 4) and preferential emergence of the resulting vapour-rich phase fluid (e.g. [68,69]).
Fluids showing Cl enrichment compared with the seawater level were not found within the Yokosuka
site, although simultaneous venting of vapour-rich and -depleted phases at distinct localities within a
hydrothermal field has been found (e.g. [45,47,70]).

Mg diagrams of each chemical species did not display a single mixing line from Mg-rich ambient
seawater to Mg-depleted endmember fluid composition (figure 7), suggesting intra-field (inter-chimney)
variation of the venting fluid chemistry. The estimated endmember fluid of the Neuschwanstein
chimney contains relatively abundant ions, approximately 1.5 times higher than those of Heidelberg
and Hohenschwangau chimneys. Inter-chimney differences in fluid chemistry probably result from
differences in magnitudes and patterns of the two-phase segregation, due to uniform Na/Cl and K/Cl
ratios among chimneys (table 1). Nevertheless, even in the Neuschwanstein fluid, estimated endmember
concentrations of ion species (Cl, Na, K, Ca, Sr, Li, etc.) were the lowest values among those observed so
far among all OT hydrothermal sites (table 1).

The endmember K/Cl value, which is a representation of the K content in the primitive upwelling
fluid without influence from the phase separation, is significantly lower in the Yokosuka site fluids (0.055)
than fluids of other OT sites (greater than 0.09) [32,46]. As the fluid K content is dominated by that of
the host rock, which interacts with fluid flowing in the subseafloor, the low K/Cl value of the Yokosuka
fluid points to a low KO in the host rock. This seems to be consistent with basaltic andesite and its low
K>0 content (0.9%) exhibited by the Yaeyama Knoll body, which is probably identical to the subseafloor
host rock of the Yokosuka site.

Each of the volatile species dissolved in the endmember fluid was notably abundant (table 1). The
endmember fluid of the Neuschwanstein chimney contained much more volatiles, except H,S, than
the other two chimneys (figure 7). Though the high volatile concentrations are mostly attributable to
preferential venting of the vapour-enriched phase through subseafloor fluid boiling under subcritical
condition [71] (suggested by the depletion of Cl), fluid-sediment interaction is also expected to generate
and contribute some volatiles. The Yokosuka site hydrothermal fluids contained CHy and Hy both as high
as 10 mM, the first example among all global hydrothermal sites investigated so far [54,72] (figure 8). The
high concentrations of CHy and Hj, comparable to H,S (up to 8.2mM), potentially provide large yields
of bioavailable energy for hydrogenotrophic and methanotrophic metabolisms in the mixing zone [15].
Relative abundance of methane against ethane (C;/C; ratio) ranges 75-140, lower than typical range in
the OT fields (approx. 103 [73]).

The abundance of CHy in sediment-associated hydrothermal sites, including the Yokosuka site,
is thought to result from the thermal decomposition of sedimentary organic matter and microbial
methanogenesis in the anoxic sediment [73,74]. The 813C—CHy value of —25.7% of the Yokosuka
fluid is the uppermost value in the §'3C-CHy range observed in the sediment-associated sites (—58
to —25%0) and suggests a predominance of thermogenic CHy rather than biogenic one. The C;/Cy
ratio supports the thermogenic origin of methane. As abundant Hy exceeding 1 mM is only seen with
ultramafic-rock- and fresh basalt-hosted hydrothermal activities [54,68,72], the basaltic andesite-hosted
activity of the Yokosuka site probably constrains H, and CHy concentrations to as low as 0.1 mM in the
subseafloor fluid reservoir (figure 8). As thermal interaction of sediment beneath the vent can provide
additional H; to the upwelling fluid [47], thermogenic Hy input prior to phase separation would be
able to account for the abundant Hy observed. The §2H values of CHy (—110%0) and Hy (—356%o)
are in accordance with the hydrogen isotope equilibrium with H,O having §2H-H,O of +0%. at the
endmember fluid temperature of 364°C [75]. The lower 82H-H, value in the Neuschwanstein chimney
fluid, containing significant sulfate (no. 719-W1), may be attributable to microbial Hy oxidation after
fluid cooling in the sampler bottle. Previously, hydrogenotrophic sulfate reducers, in particular, were
reported to decrease the $*H-H, value approximately below —600%. [76,77]. Indeed, microbiological
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analysis revealed hydrogenotrophic sulfate-reducing microbes inhabiting the Neuschwanstein chimney
(see the next section), supporting this hypothesis.

The CO; concentration of Yokosuka site fluids (approx. 300 mM) was as high as vent fluids from
other SOT hydrothermal sites (table 1). Although magma degassing is presumed to be the initial source
of abundant CO; in the subseafloor fluid reservoir of back-arc hydrothermal sites (e.g. [70,78]), the § Bc-
CO, values varied among the chimneys (—11 to —6%o). Inputs of thermogenic CO, with §13C-CO, of
approximately 25 %o after branching of the upwelling fluid into each chimney, in addition to the primitive
CO; having 813C—CO; of —6 to 0%. [79], may be accountable for the inter-chimney §13C—CO, variation
in the Yokosuka site. The isotope effect on phase separation is another possible source of this variation,
but it seems inconsistent with small variations in isotope ratios exhibited by other volatiles. Microbial
production/consumption is not considered to be an attributable source due to the lack of carbon species
comparable with CO;, from a stoichiometric viewpoint.

3.3. Microbial composition

The total microbial cell counts (meanzstandard deviation) in chimneys from Neuschwanstein,
Hohenschwangau and Heidelberg vents were 2.3 x 107 £2.9 x 10° cells g~!, 1.2 x 10 £2.0 x 10° cells g~}
and 1.4 x 107 £3.3 x 10° cells g~ !, respectively. These cell abundances were similar with those previously
reported from other deep-sea vents (10°-108cellsg™ [80-83]), despite the notable enrichment of
energetic molecules in the fluid.

Microbial community structures were assessed via 165 rRNA gene amplicon sequencing. The
PCR amplicon was not obtained from Hohenschwangau chimney, which had the lowest cell
density. A total of 1169 different OTUs were identified from Neuschwanstein and Heidelberg
chimneys on the basis of classification with greater than or equal to 97% of identity. Although
the proportions of archaeal reads were low (1.3% and 1.2% in Neuschwanstein and Heidelberg,
respectively), Methanococcales and Thermoplasmatales members were the most frequently detected
archaea in Neuschwanstein and Heidelberg, respectively. Members of the order Methanococcales
are hydrogenotrophic methanogens widely distributed in the OT hydrothermal fields [81,84,85]. The
most abundant phylum was Proteobacteria in both chimney structures; 81.1% and 80.3% of reads
in Neuschwanstein and Heidelberg, respectively. At the class level, the microbial communities were
dominated by the phylotypes of Epsilonproteobacteria (60.1% and 71.1% in Neuschwanstein and
Heidelberg, respectively), and were followed by the phylotypes of Deltaproteobacteria (16.3% and 6.3%
in Neuschwanstein and Heidelberg, respectively) (figure 9). Members of the class Epsilonproteobacteria
represent common and prevalent microorganisms in deep-sea vents of various depths [86]. Most of
the known deep-sea vent Epsilonproteobacteria are strict chemoautotrophs using hydrogen and/or
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sulfur compounds as electron donors and nitrate, oxygen and sulfur compounds as electron acceptors
[87]. Among Epsilonproteobacteria, members of the genus Thioreductor were frequently detected in the
Neuschwanstein chimney (figure 9). In contrast, members of the genera Sulfurovum and Sulfurimonas
(order Campylobacterales of the class Epsilonproteobacteria) were abundant in the Heidelberg chimney.
All of these Epsilonproteobacteria are mesophilic chemoautotrophs [87]; however, Thioreductor species
lack the ability to use sulfur compounds as the energy source and instead uses Hp as the primary
energy source [80]. In previous studies in the OT hydrothermal fields, members of Thioreductor had a
relatively limited distribution compared with those of Sulfurovum and Sulfurimonas [35,81,84,85]. For
example, in the Iheya North Original hydrothermal site (water depth = approximately 1000 m; maximum
fluid temperature =311°C), members of Campylobacterales were frequently detected in the vicinity
of deep-sea hydrothermal vents. By contrast, members of the genus Thioreductor were dominantly
detected only in the in situ cultivation device deployed into the gas-rich fluid flow [84]. Similarly,
hydrogenotrophic sulfate-reducing bacteria, e.g. Desulfobacterium species of the class Deltaproteobacteria,
were abundantly detected only in Neuschwanstein chimney. These suggested that more Hj-rich vent
fluids in Neuschwanstein resulted in the dominance of hydrogenotrophic chemolithoautotrophs within
the associated chimney structure.

3.4. Megabenthos composition

In the hydrothermally active areas of the Yokosuka vent site, 21 species of megabenthos were identified
(table 2), including two demosponges common in the periphery, four gastropods, one bivalve, six
annelids including two tubeworms, and eight crustaceans including three alvinocaridid shrimps. All
were species already known to be present in OT hydrothermal vents [36], although some could not be
identified to species level (such as the poecilosclerid sponge) and a few still await formal taxonomic
description (such as Alvinocaris sp. sensu [34]). The vent field could be divided into a few visually distinct
regions differing in the dominant taxa and species present, including surface of active chimneys, base
of active chimneys, diffuse flow sites dominated by tubeworm bushes, and periphery area dominated
by poecilosclerid sponges. The species richness of the regions increased from focused vigorous venting
towards weakly hydrothermally influenced peripheral areas (table 2).

On the two most active chimneys (figure 6a), Shinkaicaris leurokolos shrimps, Branchinotogluma sp.
scale worms and Paralvinella aff. hessleri polychaetes lived in closest proximity to high-temperature
effluents (figure 6b), with all three being present on Neuschwanstein but P. aff. hessleri being absent
in Hohenschwangau. These three species found to dominate the area close to vent effluent are known
to be the most heat-tolerant of vent animals found in OT, and are usually found close to a vent orifice
[34,88]. Further away from the fluid source, a high abundance of two species of Alvinocaris shrimps
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(A. longirostris and A. sp. sensu [34]) was observed. Some individuals of the squat lobster Shinkaia crosnieri
were present in the lower part of the chimney in Hohenschwangau, although this was not the case in
Neuschwanstein. This distribution reflects different tolerance levels of the animals and that Alvinocaris
and Shinkaia are less able tolerate strong vent effluents [34,36] of the two black-smoker chimneys. A
commensal polychaete, Amphisamytha sp., was found on the body surface of S. crosnieri across the
vent field.

At Heidelberg chimney where venting was less robust, zonation was not as clear with the two species
of Alvinocaris being equally abundant but with S. crosnieri being present at much higher abundance
(figure 6c). Paralvinella was not present, and Branchinotogluma was present only in low abundance. Three
more peripheral molluscs including two snails in genus Provanna and one limpet in genus Bathyacmaea
were present too, albeit in low abundances (category ‘occasional’, table 2). The Shisa chimney is rather
strange in that although it was not vigorously venting at all, its entire surface was nonetheless covered
by a high abundance of Branchinotogluma sp. scale worms (figure 6d). The top of the chimney appeared
to be devoid of other megabenthos, although alvinocaridid shrimps became abundant in the lower parts.
As Shisa chimney was not observed in detail and no samples were taken, it is currently not known why
only Branchinotogluma sp. was abundant there.

The bases of all four chimneys were similar in faunal composition. Most notably, images of the
bases are dominated by a high abundance of Alvinocaris shrimps and Munidopsis squat lobsters (mostly
M. ryukyuensis with M. longispinosa co-occurring at low abundance; figure 6¢). Shinkaia crosnieri is often
present too but in low abundance, the same can be said for the shrimp Lebbeus shinkaiae. Upon closer
examination, a high abundance of Provanna clathrata snails was revealed, occasionally together with low
abundances of P. subglabra and Bathyacmaea sp. limpets. Very rarely, one or two Bathymodiolus aduloides
mussels were seen. Further away from the chimney base, an unidentified demosponge begins to cover
sulfide deposits.

Two types of peripheral aggregations were sighted in the Yokosuka site, including relatively focused
diffuse flow areas dominated by tubeworm bushes (figure 6f) and large, weakly hydrothermally
influenced areas dominated by a branching poecilosclerid sponge (figure 6g) that often engulfed the
tubeworms. With the exception of Lamellibrachia being more abundant in tubeworm bush regions
where poecilosclerid sponge was not at all present, megafaunal communities observed at these two
peripheral regions were generally similar in composition and relative abundance. The mussel B. aduloides
was common, as well as gastropods Provanna spp., Lepetodrilus nux and Bathyacmaea sp. No other
Bathymodiolus species were found to inhabit the Yokosuka site, although more thorough exploration in
the future may recover other species. The dominance of B. aduloides is nevertheless of interest because
at all other OT vents it is never present in high abundance [89]), the dominant species being B. platifrons
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and B. japonicus. Perhaps, the fact that B. aduloides host sulfur-oxidizing endosymbiont (as opposed to
methane-oxidizers in B. platifrons and B. japonicus [89]) contributes to its dominance in the Yokosuka site,
but this is largely speculative at this point. Alaysia sp. tubeworm was equally abundant in both types
of peripheral habitats. The two species of Alvinocaris shrimps were also common, although Shinkaicaris
leurokolos was not seen. An unidentified demosponge was often seen covering hard substrates, more
commonly in the sponge field. A single specimen of white-coloured Lepidonotopodium? sp. scale worm
was seen in a tubeworm bush.

The results of similarity analysis of megabenthos composition among the different habitat types
identified (figure 10) revealed two highly dissimilar clusters including a ‘chimney’ cluster composed
of surfaces of the four active chimneys and a “periphery’ cluster composed of chimney bases, tubeworm-
dominated diffuse flow and sponge-dominated periphery. All habitats within each cluster had a faunal
similarity above 40%. Within the chimney cluster, Neuschwanstein and Shisa were most similar with
a faunal similarity of 80%, Hohenschwangau and Heidelberg were rather similar with a similarity of
60%. The reason for detecting the Neuschwanstein—Shisa and Hohenschwangau-Heidelberg pairs may
be attributed to the fact that the former lacks “peripheral’ taxa such as S. crosnieri completely, whereas the
latter allows some intrusion of these taxa. Within the periphery cluster, the tubeworm-dominated diffuse
flow and sponge-dominated periphery were almost identical in species composition but the chimney
base habitat was slightly more dissimilar (60% similarity).

4. Conclusion

At a depth of 2190m the Yokosuka hydrothermal vent site discovered in this study is the deepest
OT vent known so far, extending the bathymetric range of hydrothermal activities within the OT by
approximately 300 m. The highest fluid temperature recorded in the OT is also extended, as anticipated
from the depth, up to 364°C. Neither the depth nor the temperature resulted in large changes in vent
fluid compositions at this site compared with other OT sites. However, these fluids were distinct from
other OT sites due to the notably high concentrations of H, and CHy, probably resulting from inputs of
thermogenic volatiles and the preferential venting of vapour-rich phase after subseafloor fluid boiling.
Hydrogenotrophic sulfate-reducing bacteria were found to be abundant only on the Neuschwanstein
chimney, which exhausts much more H; than the other chimneys analysed. Although the potential of
available energy yield from a unit of hydrothermal fluid for chemolithotrophic microbes is high, the
total microbial cell density and the overall microbial composition of chimney habitats were not distinct
from those known from other OT vent sites. The same is true for megafaunal composition, with species
inhabiting the Yokosuka site being in common with those from other OT vents [36,66] despite water
depth and aspects of fluid chemistry being distinct.

The preliminary results presented here suggest that there is probably no biogeographic barrier
between the 2190m deep Yokosuka site and other OT vents between 800 and 1650m deep, and that
the Yokosuka site is also part of the well-mixed gene pool of deeper OT vents [21,36]. However, it has
been previously indicated that the two shallow sites between 550 and 800 m deep, Minami-Ensei Knoll
and Yoron Hole, have different fauna composition compared with other sites [36]. Our early insights
from the Yokosuka site implies that although the distribution of animal species may be linked to depth,
the constraint is perhaps not water pressure and resulting chemical properties of the vent fluid but
instead physical properties of the surrounding seawater, such as density and temperature. For example,
a hydrographic barrier for the dispersal may exist at the bottom of thermocline around 700 m [90]. The
colder water around the deeper vents may also pose developmental difficulties to larvae of species
restricted to shallow vents (and vice versa). As knowledge in biological traits of vent larvae as well
as circulation processes in the deep sea are still incomplete, expanding collaborative efforts between
physical oceanography and biology (e.g. [20,21]) and detailed analyses of genetic connectivity of shared
microbial and faunal taxa among the Yokosuka site and other OT vent sites are required in the future to
elucidate whether or not the Yokosuka site is truly well connected with other sites genetically.

According to the bathymetric data available (figure 1) the deepest part of the OT is about 2400 m deep,
meaning the Yokosuka site, being 2190 m deep, is in the deepest possible hydrogeographic zone for vents
to exist in the OT. Therefore, the apparent lack of biogeographic barrier between the Yokosuka site and
other known deeper (greater than 900 m) OT vents, as indicated by the present results, suggests that only
two bathymetric biodiversity regions (and therefore gene pools) exist in the OT, with the barrier being
around 700-900 m deep. This is an important result in understanding the biogeography and connectivity
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of vent microbes and fauna both within the OT as well as between OT and other regions such as the Izu-
Ogasawara Arc, and also highly relevant to the future conservation and management of vent resources.
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