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The master equation plays an important role in many
scientific fields including physics, chemistry, systems biology,
physical finance and sociodynamics. We consider the master
equation with periodic transition rates. This may represent
an external periodic excitation like the 24 h solar day in
biological systems or periodic traffic lights in a model
of vehicular traffic. Using tools from systems and control
theory, we prove that under mild technical conditions every
solution of the master equation converges to a periodic
solution with the same period as the rates. In other words,
the master equation entrains (or phase locks) to periodic
excitations. We describe two applications of our theoretical
results to important models from statistical mechanics and
epidemiology.

1. Introduction
Consider a physical system that can be in one of exactly N
possible configurations and let xi(t) denote the probability that the
system is in configuration i at time t. We record the probabilities
of all configurations at time t by the (column) state-vector

x(t) :=
⎡
⎣ x1(t)

...
xN(t)

⎤
⎦. Every entry of this vector takes values in the closed

interval [0, 1].
The master equation describes the time evolution of these

probabilities. It can be explained intuitively as describing the
balance of probability currents going in and out of each possible
state. To formulate the master equation for a specific model, one
needs to know the rates of transition pij from configuration i to
configuration j. A rigorous derivation of the master equation for a
chemically reacting gas-phase system that is kept well stirred and
in thermal equilibrium is given in [1]. The master equation plays
a fundamental role in physics (where it is sometimes referred
to as the Pauli master equation), chemistry, systems biology,
sociodynamics and more. (For example, see the monographs [2,3]
for more details.)
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In this paper, we treat the general case where the transition rates pij may depend on both time t and on

the probability distribution x(t) at time t. The resulting system of differential equations (see (1.2) below)
constitutes a time-varying nonlinear dynamical system.

Note that even the special case, where the transition rates do not depend on the state x (the master
equation (1.2) is then linear), is of general interest because it is intimately connected with the theory of
Markov processes on finite configuration spaces. The relation is the following: such a Markov process
is uniquely determined by an initial probability distribution on the configurations 1, . . . , N and by
transition probabilities (Qτ (t))ij that denote the probabilities to be in configuration i at time t given that
the system is in configuration j at time τ < t. These transition probabilities need to satisfy the Chapman–
Kolmogorov equations which are essentially equivalent to the condition that the columns of the matrix
Qτ (t) satisfy the linear version of the master equation known as the forward equation in the theory of
Markov processes [4,5].

In many physical systems, the number of possible configurations N can be very large. For example,
the well-known totally asymmetric simple exclusion principle TASEP model (e.g. [6,7] and the references
therein) includes a lattice of n consecutive sites, and each site can be either free or occupied by a particle,
so the number of possible configurations is N = 2n. In such cases, simulating the master equation and
numerically calculating its steady state may be difficult even for small values of n and special methods
must be applied (e.g. [7,8]).

Here, we are interested in deriving theoretical results that hold for any N. Specifically, we consider the
case where the transition rates pij(t, x) are periodic in time t with a common period T > 0. In this situation,
we arrive at a T-periodic master equation. For such systems, we consider the problem of entrainment
(or phase-locking):

Problem 1.1. Given a system described by a T-periodic master equation, determine if for every initial
condition the probabilities xi(t), i = 1, . . . , N, converge to a periodic solution with period T. If this is so,
determine if the periodic solution is unique or not.

In other words, if we view the transition rates as a T-periodic excitation, then the problem is to
determine if the state of the system entrains, that is, converges to a periodic trajectory with the same
period T. If this is so, an important question is whether there exists a unique periodic trajectory γ and
then every solution converges to γ .

Entrainment is important in many natural and artificial systems. For example, organisms are often
exposed to periodic excitations like the 24 h solar day and the periodic cell-cycle division process. Proper
functioning often requires accurate entrainment of various biological processes to this excitation [9].
For example, cardiac arrhythmia is a heart disorder occurring when every other pulse generated by
the sinoatrial node pacemaker is ineffective in driving the ventricular rhythm [10].

Epidemics of infectious diseases often correlate with seasonal changes and the required interventions,
such as pulse vaccination, may also need to be periodic [11]. In mathematical population models, this
means that the so-called transmission parameter is periodic, with a period of 1 year, and entrainment
means that the spread of epidemics converges to a periodic pattern with the same period. As another
example, traffic flow is often controlled by periodically varying traffic lights. In this context, entrainment
means that the traffic flow converges to a periodic pattern with the same period as the traffic lights.
This observation could be useful for the study of the green wave phenomenon [12]. Another example,
from the field of power electronics, involves connecting a synchronous generator to the electric grid.
The periodically varying voltage in the grid may be interpreted as a periodic excitation to the generator,
and proper functioning requires the generator to entrain to this excitation (e.g. [13] and the references
therein).

Our main results provide affirmative answers for problem 1.1 under quite general assumptions.
Basic regularity assumptions on the transition probabilities that are required throughout the paper are
summarized in assumption 2.1. In theorem 2.2, we then formulate with (2.5), see also (2.3), a condition
that guarantees entrainment. It is observed in corollary 2.3 that condition (2.5) is always satisfied in the
linear case. Uniqueness of the periodic attractor is shown in theorem 2.5 under the additional assumption
of irreducibility, a condition that is well known in the theory of Markov processes (a definition of
irreducibility is provided just before the statement of theorem 2.5).

In the special case of time-invariant rates, problem 1.1 reduces to determining if every solution
converges to a steady state, and whether there exists a unique steady state. Indeed, time-invariant rates
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are T-periodic for any T > 0 and thus entrainment means convergence to a solution that is T-periodic for
any T > 0, i.e. a steady state. This basic observation is the content of corollary 2.4.

As the xis represent probabilities,

xi(t) ∈ [0, 1] for all i and
∑

j

xj(t) = 1, (1.1)

for all t ≥ t0. The structure of the master equation guarantees that if x(t) satisfies (1.1) at time
t = t0, then (1.1) holds for all t ≥ t0 even when the xis are not necessarily linked to probabilities
(see (1.9) below). Our results also hold of course in this case. The next example demonstrates such
a case.

Example 1.2. An important topic in sociodynamics is the formation of large cities due to population
migration. Haag [2, ch. 8] considers a master equation describing the flow of individuals between N
settlements. The transition rates pij in this model represent the probability per time unit that an
individual living in settlement i will migrate to settlement j. A mean-field approximation of this master
equation yields a model in the form (1.2), where xi represents the average density at settlement i,
and pij = exp((xj − xi)kij), with kij > 0. This models the fact that the rate of transition from settlement i
to settlement j increases when the population in settlement j is larger than in i, i.e. the tendency of
individuals to migrate to larger cities. Note that the rates here are state-dependent, but not time-
dependent. However, it is natural to assume that migration decisions depend on the season. For example,
the tendency to migrate to colder cities may decrease (increase) in the winter (summer). This can be
modelled by adding time dependence, say, changing the scaling parameters kij to functions kij(t) that
are periodic with a period of 1 year. Then the transition rates depend on both state and time, and are
periodic.

It is important to note that, in general, nonlinear dynamical systems do not entrain to periodic
excitations. Indeed, Nikolaev et al. [14] discusses two ‘simple looking’ nonlinear dynamical systems
whose response to periodic forcing is chaotic (rather than periodic). Moreover, these systems commonly
appear as components of larger sensing and signal transduction pathways in systems biology. This
highlights the importance of proving that entrainment does hold in specific classes of dynamical
systems.

Although entrainment has attracted enormous research attention, it seems that it has not been
addressed before for the general case of systems modelled using a T-periodic master equation. Here
we apply the theory of cooperative dynamical systems admitting a first integral to derive conditions
guaranteeing that the answer to problem 1.1 is affirmative. In §3, we describe two applications of
our approach to important systems from statistical physics. The first is the totally asymmetric simple
exclusion process (TASEP). This model has been introduced in the context of biocellular processes [15]
and has become the standard model for the flow of ribosomes along the mRNA molecule during
translation [16,17]. More generally, TASEP has become a paradigmatic model for the statistical mechanics
of non-equilibrium systems [6,7,18]. It is in particular used to study the stochastic dynamics of interacting
particle systems such as vehicular traffic [19].

The second application is to an important model from epidemiology called the stochastic susceptible–
infected–susceptible (SIS) model.

The remainder of this paper is organized as follows. In the following subsection, we briefly explain
the central mathematical concepts used in the proofs of our main results theorems 2.2 and 2.5. The exact
mathematical formulation of these results is provided in §2. The subsequent section then describes the
two applications to statistical physics and to epidemiology mentioned above. This is followed by a brief
discussion of the significance of the results and an outlook on possible future directions of research in
§4. The appendix includes all the proofs. These are based on known tools, yet we are able to use the
special structure of the master equation to derive stronger results than those available in the literature on
monotone dynamical systems.

1.1. Formulation of master equation and concepts of proof
We begin by formulating the master equation, determined by given transition rates pij(t, x) ≥ 0, that
governs the evolution of the probability distribution on N configurations:
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ẋ1(t) =
N∑

j=1
j�=1

pj1(t, x(t))xj(t) −
N∑

j=1
j�=1

p1j(t, x(t))x1(t),

...

ẋN(t) =
N∑

j=1
j�=N

pjN(t, x(t))xj(t) −
N∑

j=1
j�=N

pNj(t, x(t))xN(t).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1.2)

In lemma A.4 below, it is shown in a slightly more general setting that system (1.2) defines a flow in
the set of probability distributions {x ∈ [0, 1]N |∑N

i=1 xi = 1}. For T > 0, we refer to (1.2) as the T-periodic
master equation if

pij(t + T, x) = pij(t, x), (1.3)

for all i, j, all t and all x. Note that this includes the case where one (or several) of the rates is
(are) T-periodic with T > 0, and the other rates are time-independent, as a time-independent function
satisfies (1.3) for all T. Clearly, from (1.3), it also follows that pij(t + kT, x) = pij(t, x) for any integer k. To
make the period a well-defined notion one, therefore, often requires that the period is the minimal real
number T > 0 for which (1.3) is satisfied. Then constant functions do not have a period. As we want
to include here the case of time-independent transition rates, e.g. corollary 2.3, we do not require the
minimality of the common period T in (1.3).

For small values of N, it is sometimes possible to solve the master equation and then analyse
entrainment directly. The next example demonstrates this.

Example 1.3. Consider the master equation (1.2) with N = 2 and continuous time- (but not state-)
dependent rates, i.e. pij = pij(t) ≥ 0. Then (1.2) can be written as[

ẋ1
ẋ2

]
=
[
−p12 p21
p12 −p21

][
x1
x2

]
. (1.4)

Assume also that all the rates are periodic with period T > 0. Using the fact that x1(t) + x2(t) ≡ 1 yields

ẋ1(t) = p21(t) − (p12(t) + p21(t))x1(t). (1.5)

Recall that x1(0), x2(0) ∈ [0, 1] with x1(0) + x2(0) = 1. Equation (1.5) implies that x1(t) ∈ [0, 1], for all t ≥ 0,
and thus x2(t) ∈ [0, 1], for all t ≥ 0. Solving (1.5) yields

x1(t) = exp
(

−
∫ t

0
(p12(s) + p21(s)) ds

)
(x1(0) + c(t))

and x2(t) = 1 − x1(t),

⎫⎪⎬
⎪⎭ (1.6)

where c(t) := ∫t
0 p21(τ ) exp(

∫τ
0 (p12(s) + p21(s)) ds) dτ . To analyse if every solution converges to a periodic

solution, we consider two cases.
Case 1: If p12(t) + p21(t) ≡ 0, then (1.6) yields x(t) ≡ x(0), i.e. every point in the state-space is an equilibrium
point. This means in particular that every solution is a periodic solution with period T.
Case 2: Assume that there exists a time t∗ ∈ [0, T) such that p12(t∗)+p21(t∗) > 0. (Note that by continuity
this in fact holds on a time interval that includes t∗.) The solution (1.6) is periodic with period T if and
only if x1(T) = x1(0), i.e. if and only if

x1(0) = exp(− ∫T
0 (p12(s) + p21(s)) ds)c(T)

1 − exp(− ∫T
0 (p12(s) + p21(s)) ds)

. (1.7)

It is straightforward to show that the right-hand side in this equation is in [0, 1], so in this case, there
exists a unique periodic trajectory γ (t), with γ1(0) equal to the expression in (1.7) and γ2(0) = 1 − γ1(0).
To determine if every trajectory converges to γ , let z(t) := x(t) − γ (t), that is, the difference between the
solution emanating from x0 and the unique periodic solution. Then

ż1 = −(p12 + p21)z1 and z1(0) = x1(0) − γ1(0).

As p12(t)+p21(t) is non-negative for all t, positive on a time interval and T-periodic, z1(t) converges to
zero and we conclude that any trajectory of the system converges to the unique periodic solution γ .
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Of course, when N > 2 and the rates depend on both t and x, this type of explicit analysis is impossible,

and the proof of entrainment requires a different approach.
In general, proving that a time-varying nonlinear dynamical system entrains to periodic excitations

is non-trivial. Rigorous proofs are known for two classes of dynamical systems: contractive systems and
monotone systems with additional structure like a tridiagonal Jacobian [20] or admitting a first integral.

A system is called contractive if any two trajectories approach one another at an exponential rate
[21,22]. Such systems entrain to periodic excitations [9,23]. An important special case is asymptotically
stable linear systems with an additive periodic input u, that is, systems in the form

ẋ = Ax + Bu, (1.8)

with x ∈ R
N, A ∈ R

N×N a Hurwitz matrix,1 u ∈ R
M and B ∈ R

N×M. In this case, x(t) converges to a periodic
solution γ (t) and it is also possible to obtain a closed-form description of γ using the transfer function of
the linear system [24]. We note that even in the case that the pijs in (1.2) do not depend on x, i.e. when (1.2)
is linear in x, the master equation is not of the form (1.8) because the periodic influence in (1.2) enters
through the transition rates pij and not through an additive input channel.

Next, we turn to the notion of a first integral. Define H : R
N → R by H(y) := y1 + · · · + yN . Equation (1.2)

implies that
N∑

i=1

ẋi(t) ≡ 0, (1.9)

so that the value of H(x(t)) remains constant under the flow, that is, H is a first integral of (1.2).
A system is called monotone if its flow preserves a partial order, induced by an appropriate cone K,

between its initial conditions [25]. An important special case of monotone systems is cooperative
systems for which the cone K is the positive orthant. To explain this, define a partial ordering between
vectors a, b ∈ R

n by a ≤ b if every entry of a is smaller or equal to the corresponding entry of b. For
example, for vectors in R

3

[1.1 3.12 11] ≤ [1.2 4 11],

but
[1.1 3.12 11] �≤ [1.2 0 11].

A system ẋ = f (x) is called cooperative if for any two initial conditions a, b with a ≤ b the solutions
satisfy x(t, a) ≤ x(t, b) for any time t ≥ 0. In other words, the dynamics preserves the ordering between
the initial conditions.

Cooperative systems that admit a first integral entrain to periodic excitations. It is interesting to note
that proofs of this property often follow from contraction arguments [26].

The master equation (1.2) is, in general, not contractive, although as we will show in theorem A.8
below it is on the ‘verge of contraction’ with respect to the �1 vector norm (see [27] for some related
considerations). However, (1.2) admits a first integral and is often a cooperative system (see theorem A.9
below). In particular, when the rates do not depend on the state, i.e. pij = pij(t), then (1.2) is always
cooperative.

2. Main results
We begin by specifying the exact conditions on (1.2) that are assumed throughout. For a set S, let
int(S) denote the interior of S. For any time t, x(t) is an N-dimensional column vector that includes the
probabilities of all N possible configurations. The relevant state-space is thus

Ω :=
{

y ∈ R
N | yi ≥ 0 for all i, and

N∑
i=1

yi = 1

}
.

For an initial time t0 ≥ 0 and an initial condition x(t0), let x(t; t0, x(t0)) denote the solution of (1.2) at
time t ≥ t0. For our purposes, it will be convenient to assume that the vector field associated with
system (1.2) is not only defined on the set Ω , but on all the closed positive cones

R
N
+ := {x ∈ R

N | xj ≥ 0 for all 1 ≤ j ≤ N}.
Throughout this paper, we assume that the following condition holds.

1That is, the real part of every eigenvalue of A is negative.
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Assumption 2.1. There exists T > 0 such that the transition rates pij(t, x) are: continuous and non-

negative on [0, T] × R
N+; continuously differentiable with respect to x on [0, T) × int(RN+) and the

derivative admits a continuous extension onto [0, T) × R
N+; and are jointly periodic with period T, that is,

pij(t + T, x) = pij(t, x), (2.1)

for all i, j, all t ∈ [0, ∞) and all x ∈ R
N+.

Let relint(Ω) denote the relative interior of Ω , that is,

relint(Ω) =
{

y ∈ R
N | yi > 0 for all i, and

N∑
i=1

yi = 1

}
.

Note that if the rates are only defined on x ∈ Ω , with partial derivatives with respect to xj on
relint(Ω) with continuous extensions to Ω , then they can be extended to R

N+ so that the conditions
in assumption 2.1 hold. For example, by defining them to be constant on rays through the origin and
multiplied by a cut-off function χ (|x|1), where χ is a smooth function with a compact support in [0, ∞),
satisfying χ (s) = 1 for s = 1, and where |x|1 denotes the �1-norm of x.

We now determine the conditions guaranteeing that (1.2) is a cooperative dynamical system. Note
that (1.2) can be written as

ẋ(t) = f (t, x) := A(t, x(t))x(t), (2.2)

where A ∈ R
N×N is a matrix with entries

aij(t, x(t)) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

pji(t, x(t)), if i �= j,

−
N∑

k=1
k �=i

pik(t, x(t)), if i = j.
(2.3)

The Jacobian of the vector field f is the N × N matrix

J(t, x) := ∂f (t, x)
∂x

= A(t, x) + B(t, x), (2.4)

where B is the matrix with entries bij :=∑N
k=1 xk(∂aik/∂xj). Recall that a matrix M ∈ R

n×n is called Metzler

if every off-diagonal entry of M is non-negative. It follows that if pji(t, x) + ∑N
k=1 xk(∂aik(t, x)/∂xj) ≥ 0, for

all i �= j, all t ≥ t0 and all x ∈ Ω then J(t, x) is Metzler for all t ≥ t0 and all x ∈ Ω .
We can now state our first result.

Theorem 2.2. Suppose that

pji(t, x) +
N∑

k=1

∂aik(t, x)
∂xj

xk ≥ 0, for all i �= j, t ≥ t0, x ∈ Ω . (2.5)

Then, for any t0 ≥ 0 and any x(t0) ∈ Ω the solution x(t; t0, x(t0)) of (1.2) converges to a periodic solution with
period T.

If the rates depend on time, but not on the state, i.e. pij = pij(t) for all i, j, then the condition in
theorem 2.2 always holds, and this yields the following result.

Corollary 2.3. If pij = pij(t) for all i, j, then for any t0 ≥ 0 and any x(t0) ∈ Ω the solution x(t; t0, x(t0)) of (1.2)
converges to a periodic solution with period T.

Thus, theorem 2.2 describes a technical condition guaranteeing entrainment, and this condition
automatically holds in the case where all the rates are functions of time only.

If the rates depend on the state, but not on time then we may apply theorem 2.2 for all T > 0. Thus,
the trajectories converge to a periodic solution with an arbitrary period, i.e. a steady state. This yields the
following result.

Corollary 2.4. If pij = pij(x) for all i, j and in addition condition (2.5) holds, then for any t0 ≥ 0 and any x(t0) ∈
Ω the solution x(t; t0, x(t0)) of (1.2) converges to a steady state.

In some applications, it is useful to establish that all trajectories of (1.2) converge to a unique periodic
trajectory. Recall that a matrix M ∈ R

n×n, with n ≥ 2, is said to be reducible if there exists a permutation
matrix P ∈ {0, 1}n×n, and an integer 1 ≤ r ≤ n − 1 such that P′MP = [ B C

0 D

]
, where B ∈ R

r×r, D ∈ R
(n−r)×(n−r),

C ∈ R
r×(n−r) and 0 ∈ R

(n−r)×r is a zero matrix. A matrix is called irreducible if it is not reducible. It is well
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known that a Metzler matrix M is irreducible if and only if the graph associated with the adjacency
matrix of M is strongly connected [28, theorems 6.2.14 and 6.2.24].

Theorem 2.5. Suppose that the conditions in theorem 2.2 hold and, furthermore, that there exists a time t∗ ≥ t0
such that A(t∗, x) + B(t∗, x) is an irreducible matrix for all x ∈ Ω . Then (1.2) admits a unique periodic solution γ

in Ω , with period T, and every solution x(t; t0, x(t0)) with x(t0) ∈ Ω converges to γ at an exponential rate.

Example 2.6. Consider the system in example 1.3. This is of the form (2.2) with

A(t) =
[
−p12(t) p21(t)
p12(t) −p21(t)

]
.

If there exists a time t∗ such that p12(t∗), p21(t∗) > 0 then A(t∗) is irreducible. We conclude that, in this case,
all the conditions in theorem 2.5 hold, so the system admits a unique T-periodic solution γ and every
trajectory converges to γ . This agrees of course with the results of the analysis in example 1.3 above
where we arrived at the same conclusion under the slightly weaker assumption that p12(t∗) + p21(t∗) > 0.

The next section describes an application of our results to two important models.

3. Applications
3.1. Entrainment in totally asymmetric simple exclusion process
The totally asymmetric simple exclusion process (TASEP) is a stochastic model of particles hopping
along a one-dimensional chain. A particle at site k hops to site k + 1 (the next site on the right) with
an exponentially distributed probability2 with rate hk, provided the site k + 1 is not occupied by another
particle. This simple exclusion property generates an indirect link between the particles and allows to
model the formation of traffic jams. Indeed, if a particle ‘gets stuck’ for a long time in the same site,
then other particles accumulate behind it. At the left end of the chain particles enter with a certain entry
rate α > 0 and at the right end particles leave with a rate β > 0 (figure 1).

As pointed out in the introduction, TASEP has become a standard tool for modelling ribosome
flow during translation, and is a paradigmatic model for the statistical mechanics of non-equilibrium
systems. We note that in the classical TASEP model the rates α, β and hi are constants, but several papers
considered TASEP with periodic rates [29–31] that can be used, for example, as models for vehicular
traffic controlled by periodically varying traffic signals.

It was shown in [32] that the dynamic mean-field approximation of TASEP, called the ribosome flow
model (RFM), entrains. However, the RFM is not a master equation and the proof of entrainment in [32]
is based on different ideas. For more on the analysis of the RFM, see e.g. [33–36].

For a chain of length n, denoting an occupied site by 1 and a free site by 0, the set of possible
configurations is {0, 1}n, and thus the number of possible configurations is N = 2n. The dynamics of
TASEP can be expressed as a master equation with transition rates pij that depend on the values α, β

and hi, i = 1, . . . , n. For the sake of simplicity, we will show this in the specific case n = 2, but all our
results below hold for any value of n.

When n = 2, the possible configurations of particles along the chain are C1 := (0, 0), C2 := (0, 1), C3 :=
(1, 0) and C4 := (1, 1). Let xi(t) denote the probability that the system is in configuration Ci at time t, for
example, x1(t) is the probability that both sites are empty at time t. Then x1 may decrease (increase) due
to the transition C1 → C3 [C2 → C1], i.e. when a particle enters the first site (a particle in the second site
hops out of the chain). This gives

ẋ1(t) = −αx1(t) + βx2(t).

Similar considerations for all configurations lead to the master equation ẋ = Ax, with

A :=

⎛
⎜⎜⎜⎝

−α β 0 0
0 −α − β h1 0
α 0 −h1 β

0 α 0 −β

⎞
⎟⎟⎟⎠ .

If the entry, exit and hopping rates are time dependent and periodic, all with the same period T, one easily
sees that the resulting master equation satisfies assumption 2.1 as well as all assumptions of theorem 2.2.
Hence, we conclude that every solution of the master equation starting in Ω converges to a periodic

2We consider the continuous time version of TASEP here.
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site 2 site n

hn−1a bh1

…

site 1

Figure 1. The TASEPmodel includes particles randomlyhopping alonga chain ofn sites. Note that theparticle in site 1 cannot hop forward
because site 2 contains a particle.
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Figure 2. Probabilities x1(t) (black square), x4(t) (red asterisk) and x8(t) (blue circle) as a function of t in example 3.1.

solution with period T. Moreover, if there exists a time t∗ such that α(t∗), β(t∗), h1(t∗) > 0, then A(t∗) is
irreducible. Hence, the conditions of theorem 2.5 are also satisfied, so we conclude that the periodic
solution is unique and convergence takes place at an exponential rate. It is not difficult to show that the
same holds for TASEP with any length n.

Example 3.1. When n = 3, the possible particle configurations are C1 := (0, 0, 0), C2 := (0, 0, 1),
C3 := (0, 1, 0), C4 := (0, 1, 1), . . . , C8 := (1, 1, 1). Let xi(t) denote the probability that the system is in
configuration Ci at time t. The TASEP master equation in this case is ẋ = Ax, with

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−α β 0 0 0 0 0 0
0 −α − β h2 0 0 0 0 0
0 0 −α − h2 β h1 0 0 0
0 0 0 −α − β 0 h1 0 0
α 0 0 0 −h1 β 0 0
0 α 0 0 0 −h1 − β h2 0
0 0 α 0 0 0 −h2 β

0 0 0 α 0 0 0 −β

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We simulated this system with the rates

α(t) = 1 + cos(t), β(t) = 1 + cos(t + π ), h1 = 1
2 , h2 = 1

4

and initial condition x(0) = [ 1
8 . . . 1

8 ]′. Note that all the rates here are jointly periodic with period 2π .
Figure 2 depicts x1(t) (black square), x4(t) (red asterisk) and x8(t) (blue circle) as a function of t (we depict
only three xis to avoid cluttering the figure). Note that as the entry rate α(t) is maximal and the exit
rate β(t) is minimal at t = 0, the probability x8(t) [x1(t)] to be in state (1, 1, 1) [(0, 0, 0)] quickly increases
(decreases) near t = 0. As time progresses, the probabilities converge to a periodic pattern with period 2π .
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S(t) I(t)

c(t)

a(t)

b(t)

recovery

infection by contact

infection by external agent

Figure 3. Three mechanisms for transitions between the classes of susceptible and infected and the associated rates.

Entrainment of the probabilities xi has consequences for other quantities of interest in statistical
mechanics. For instance, an important quantity is the occupation density, i.e. the probability that site k is
occupied, often denoted by 〈τk〉, cf. [37,38]. Denoting the kth component of the configuration Ci ∈ {0, 1}n

by Ci,k, a straightforward computation reveals that

〈τk(t)〉 =
N∑

i=1

Ci,kxi(t).

It is thus immediate that the occupation densities also converge to a unique periodic solution.
This phenomenon has already been observed empirically in [29] that studied a semi-infinite and finite

TASEP coupled at the end to a reservoir with a periodic time-varying particle density. This models, for
example, a traffic lane ending with a periodically varying traffic light. The simulations in [29] suggest
that this leads to the development of a sawteeth density profile along the chain, and that ‘The sawteeth
profile is changing with time, but it regains its shape after each complete period. . .’ [29, p. 011122-2] (see
also [30,31] for some related considerations).

Our results can also be interpreted in terms of the particles along the chain in TASEP. As the
expectation of the occupation densities 〈τk〉 converges to a periodic solution, this means that, in the long
term, the TASEP dynamics ‘fluctuates’ around a periodic ‘mean’ solution (see e.g. the simulation results
depicted in fig. 5 in [32]). Moreover, in [30,31] it was found for closely related models that the limiting
periodic density profiles (whose existence is also guaranteed by our results) have an interesting structure
that depends in a non-trivial way on the frequency of the transition rates.

3.2. Entrainment in a stochastic susceptible–infected–susceptible model
The stochastic SIS model plays an important role in mathematical epidemiology [39]. But, as noted in [40],
it is usually studied under the assumption of fixed contact and recovery rates. Here, we apply our results
to prove entrainment in an SIS model with periodic rates.

Consider a population of size N divided into susceptible and infected individuals. Let S(t) [I(t)] denote
the size of the susceptible (infected) part of the population at time t, so that S(t) + I(t) ≡ N. We assume
two mechanisms for infection. The first is by contact with an infected individual and depends on the
contact rate a(t). The second is by some external agent (modelling, say, insect bite) with rate c(t). The
recovery rate is b(t) (figure 3). We assume that a(t), b(t) and c(t) are continuous and take non-negative
values for all time t.

If I(t) = n (so S(t) = N − n), then the probability that one individual recovers in the time interval
[t, t + dt] is b(t)n dt + o(dt), and the probability for one new infection to occur in this time interval
is a(t)n((N − n)/N) dt + c(t)((N − n)/N) dt + o(dt). For n ∈ {0, . . . , N}, let Pn(t) denote the probability
that I(t) = n. This yields the master equation:

Ṗn = ((n − 1)a + c)
(

1 − n − 1
N

)
Pn−1 −

(
(na + c)

(
1 − n

N

)
+ nb

)
Pn + (n + 1)bPn+1, (3.1)
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Figure 4. Probabilities P0(t) (black asterisk), P1(t) (red circle) and P2(t) (blue square) as a function of t in example 3.3.

for n ∈ {0, 1, . . . , N}, where we define P−1 = PN+1 := 0, and for simplicity omit the dependence on t. This
set of N + 1 equations may be written in matrix form as

ẋ = Mx,

where x := [P0 P1 . . . PN]′ ∈ [0, 1]N+1, M := P − D, with D := diag(0, b, 2b, . . . , Nb), and P is the (N + 1) ×
(N + 1) matrix:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−cq0 b 0 0 . . . 0 0 0
cq0 −(a + c)q1 2b 0 . . . 0 0 0
0 (a + c)q1 −(2a + c)q2 3b . . . 0 0 0
0 0 (2a + c)q2 −(3a + c)q3 . . . 0 0 0

...
0 0 0 0 . . . ((N − 2)a + c))qN−2 −((N − 1)a + c)qN−1 bN
0 0 0 0 . . . 0 ((N − 1)a + c)qN−1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where qi := 1 − i/N. Note that M(t) is Metzler, as a(t), b(t) and c(t) are non-negative for all t. Thus,
theorems 2.2 and 2.5 yield the following result.

Corollary 3.2. If a(t), b(t) and c(t) are all T-periodic then any solution of (3.1) with x(0) ∈ Ω ⊂ R
N+1 converges

to a T-periodic solution. Furthermore, if there exists a time t∗ ≥ 0 such that

b(t∗)c(t∗) > 0, (3.2)

then there exists a unique T-periodic solution γ in Ω and every solution converges to γ .

Example 3.3. Consider the stochastic SIS model with N = 3, a(t) = 1, b(t) = 3 + 3 cos(t + 0.5) and c(t) =
2 − 2 sin(t + 0.75). These rates are non-negative and jointly T-periodic for T = 2π and clearly there
exists t∗ ≥ 0 such that b(t∗)c(t∗) > 0. Figure 4 depicts Pi(t), i = 0, 1, 2, (note that P3(t) = 1 − P0(t) − P1(t) −
P2(t)) as a function of time t for the initial condition P(0) = ( 1

4 )14 ∈ Ω . It may be seen that every
Pi(t) converges to a periodic solution with period 2π . Taking other initial conditions x(0) ∈ Ω yields
convergence to the same periodic solution.

Note that if the irreducibility condition (3.2) does not hold then the system may have several periodic
solutions. To see this, consider, for example, the case b(t) = c(t) ≡ 0. Let ei ∈ R

N+1 denote the vector with
entry i equal to one and all other entries zero. Then both x(t) ≡ e1 and x(t) ≡ eN+1 are (periodic) solutions
of the dynamics.
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4. Discussion
In his 1929 paper on periodicity in disease prevalence, Soper [41] states: ‘Perhaps no events of human
experience interest us so continuously, from generation to generation, as those which are, or seem to be,
periodic.’ Soper also raised the question of whether the observed periodicity in epidemic outbreaks is the
result of a ‘seasonal change in perturbing influences, such as might be brought about by school break-up
and reassembling, or other annual recurrences?’ In modern terms, this amounts to asking whether the
solutions of the system describing the dynamics of the epidemics entrain to periodic variations in the
transmission parameters.

Here, we studied entrainment for dynamical systems described by a master equation. We considered
a rather general formulation where the transition rates may depend on both time and state. Also, we
did not assume any symmetry conditions (e.g. detailed balance conditions [3, ch. V]) on the rates. We
also note that this formulation implies similar results for nonlinear systems. Indeed, consider the time-
varying nonlinear system:

ẋ = f (t, x) (4.1)

and assume that f (t, 0) = 0, for all t. Let J(t, x) := (∂f/∂x)(t, x) denote the Jacobian of the vector field. Then

ẋ =
∫ 1

0

d
ds

f (t, sx) ds

= A(t, x)x,

where A(t, x) := ∫1
0 J(t, sx) ds. If A(t, x) has the form (2.3) then the results above can be applied to (4.1).

We proved that entrainment indeed holds under quite mild technical conditions. This follows from
the fact that the master equation is a cooperative dynamical system admitting a first integral. Owing to
the prevalence of the master equation as a model for natural and artificial phenomena, we believe that
this result will find many applications. To demonstrate this, we described two applications of our results:
a proof of entrainment in TASEP and in a stochastic SIS model.

The rigorous proof that the solutions of the master equation entrain is of course a necessary first
step in studying the structure of the periodic trajectory (or trajectories), and its dependence on various
parameters. Indeed, in many applications it is of interest to obtain more information on the periodic
trajectory, e.g. its amplitude. Of course, one cannot expect in general to obtain a closed-form description
of the limit cycle. However, for contractive dynamical systems there do exist efficient methods for
obtaining a closed-form approximation of the limit cycle accompanied by explicit error bounds [23].
Developing a similar approach for the attractive limit cycle of the master equation may be an interesting
topic for further research. In the specific case of TASEP with fixed rates, there exists a powerful
representation of the steady state in terms of a product of matrices [7,37]. It may be of interest to try
and represent the periodic steady state using a similar product, but with matrices with periodic entries.
This could be used in particular to study the effects of periodic perturbations to the boundary-induced
phase transitions that have been observed for TASEP in [42].
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Appendix A. Proofs of theorems 2.2 and 2.5
The proofs of theorems 2.2 and 2.5 are based on known tools from the theory of monotone dynamical
systems admitting a first integral with a positive gradient (e.g. [43–45]). We present in this appendix
a self-contained proof taking full advantage of the technical simplifications that our specific setting
permits. This, in particular, allows us to prove that the results hold on the closed state-space and also that
irreducibility at a single time point is enough to guarantee convergence to a unique periodic solution.
Without loss of generality we always assume that the initial time is t0 = 0. It is convenient to work with
the �1 vector norm |x|1 =∑

i |xi|.
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We begin by introducing some notation. First recall the notation

R
N
+ := {x ∈ R

N | xj ≥ 0 for all 1 ≤ j ≤ N},
for the closed positive cone. Define a set of vector fields by

F := {f : [0, ∞) × R
N
+ → R

N | properties (i)–(v) below are satisfied},
where

(i) f is continuous;
(ii) for all j ∈ {1, . . . , N}, (∂f/∂xj)(t, x) exists for (t, x) ∈ [0, ∞) × int(RN+) and has a continuous extension

onto [0, ∞) × R
N+. Thus, J(t, x) from (2.4) is defined on [0, ∞) × R

N+ to be the continuous extension
of (∂f/∂xj)(t, x);

(iii) J(t, x) is Metzler for all (t, x) ∈ [0, ∞) × R
N+;

(iv)
∑N

i=1 fi(t, x) = 0 for all (t, x) ∈ [0, ∞) × R
N+;

(v) f (t, 0) = 0 for all t ∈ [0, ∞).

For T > 0, let FT := {f ∈F | f (t + T, x) = f (t, x) for all (t, x) ∈ [0, ∞) × R
N+}, that is, the set of vector fields

in F that are also T-periodic.
It is straightforward to check that f (t, x) = A(t, x)x with A defined by (2.3) belongs to FT if

assumption 2.1 and the assumptions of theorem 2.2 hold. Therefore, theorem 2.2 follows from the
following result.

Theorem A.1. If f ∈FT then for all x0 ∈ Ω the solution x(t; x0) of the initial value problem

ẋ = f (t, x), x(0) = x0,

is asymptotically T-periodic, i.e. there exists a solution γ : R → Ω of γ̇ = f (t, γ ), with γ (t + T) = γ (t) for all t ∈ R,
and

lim
t→∞

|x(t; x0) − γ (t)|1 = 0.

Let
FΩ

irr := {f ∈F | there exists t∗ ≥ 0 such that J(t∗, x) is irreducible for all x ∈ Ω}.
The next result is a generalization of theorem 2.5.

Theorem A.2. If f ∈ (FT ∩ FΩ
irr) then the differential equation ẋ = f (t, x) admits a unique T-periodic

solution γ : R → Ω . Moreover, there exists α > 0 such that for any initial condition x0 ∈ Ω the corresponding
solution x(t; x0) satisfies

|x(t; x0) − γ (t)|1 < 2e−αt|x0 − γ (0)|1,

i.e. the solution converges to γ with exponential rate α.

Complete proofs of theorems A.1 and A.2 are provided in the following seven subsections. We begin
by showing in lemma A.4 that solutions of ẋ = f (t, x), f ∈F that start in the closed state-space R

N+ are
unique and remain in R

N+ for all positive times. In the second subsection, we prove that for the subset
of linear vector fields f in F the flow is cooperative, and non-expansive or even contractive in the case
of irreducibility. The latter property is then generalized to the nonlinear setting (theorem A.8), which is
enough to prove theorem A.2 in subsection A.4. The cooperative behaviour for nonlinear vector fields is
stated in theorem A.9. In subsection A.6, we argue that the non-expansiveness of the flow together with
the existence of a fixed point in the ω-limit set of the period map implies the asymptotic periodicity of the
solution. The proof that such a fixed point exists is deferred to the final subsection. It uses the cooperative
behaviour of the flow as well as the fact that the first integral H has a positive gradient, i.e. ∇H ∈ int(RN+).

A.1. Positive invariance ofRN+
Our first goal is to establish in lemma A.4 below that for any x0 ∈ R

N+ a unique solution x(t; x0) exists for
all t ∈ [0, ∞) and remains in the closed cone R

N+. Denote

B :=
{

B ∈ R
N×N

∣∣∣∣∣B is Metzler and
N∑

i=1

Bij = 0 for all j ∈ {1, . . . , N}
}

.
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Proposition A.3. Assume that f ∈F . Then there exists a continuous map B : [0, ∞) × R

N+ × R
N+ →B such

that
f (t, x) − f (t, y) = B(t, x, y)(x − y) for all t ≥ 0 and all x, y ∈ R

N
+. (A 2)

Moreover, for any index j the following property holds. If x ∈ R
N+ with xj = 0 then fj(t, x) ≥ 0 for all t ≥ 0.

Proof. Equation (A 2) follows from the fundamental theorem of calculus with

B(t, x, y) =
∫ 1

0
J(t, y + s(x − y)) ds for all t ≥ 0 and x, y ∈ int(RN

+).

By assumptions (iii) and (iv) on f , we conclude that B(t, x, y) ∈B. Moreover, assumption (ii) implies that
this formula actually defines B as a continuous map on [0, ∞) × R

N+ × R
N+ into B. Equation (A 2) also

holds on the closed cone R
N+ due to assumption (i). The second claim follows from f (t, x) = B(t, x, 0)x and

the fact that B(t, x, 0) is Metzler. �

Lemma A.4. Assume that f ∈F . Then for every x0 ∈ R
N+ the initial value problem ẋ = f (t, x), x(0) = x0, admits

a unique solution x( · ; x0) : [0, ∞) → R
N+. Moreover,

H(x) =
N∑

j=1

xj

is a first integral of the dynamics, i.e. (d/dt)H(x(t; x0)) ≡ 0.

Proof. By assumption (i) on f and by proposition A.3, the vector field f satisfies the hypotheses of the
Picard–Lindelöf theorem, however, with a domain of definition R

n+ which is not open. Introduce the
auxiliary extension

f̃ (t, x) := f (t, |x1|, . . . , |xN|).
Note that f̃ : [0, ∞) × R

N → R
N is well defined. The Picard–Lindelöf theorem yields existence and

uniqueness of a maximal solution x̃( · ; x0) : Jx0 → R
N of the initial value problem ẋ = f̃ (t, x), x(0) = x0, with

Jx0 = [0, bx0 ) for some bx0 > 0 that might be infinite. Note that H is a first integral by property (iv) of f , that
carries over to f̃ .

On R
N+, the solutions x( · ; x0) and x̃( · ; x0) coincide. We now show that for x0 ∈ R

N+ the solution x̃(t; x0) ∈
R

N+ for all t ∈ Jx0 . If x0 = 0 then x̃(t; x0) ≡ 0 by assumption (v) on f , so x̃(t; x0) ∈ R
N+. If x0 ∈ R

N+ \ {0}, we argue
by contradiction. Assume that there exists τ > 0 such that x̃(τ ; x0) ∈ (RN \ R

N+). For ε ∈ R, let

f̃ε : [0, ∞) × R
N → R

N , f̃ε(t, x) := f̃ (t, x) + ε

⎛
⎜⎜⎝

1 · · · 1
...

...
...

1 · · · 1

⎞
⎟⎟⎠ x − εNx

and denote by x̃(·; x0, ε) the unique maximal solution of ẋ = f̃ε(t, x), x(0) = x0. Note that by the definition
of f̃ε the function H is also a first integral for this dynamical system.

Now by the continuous dependence of solutions on parameters there exists ε0 > 0 such that
x̃(τ ; x0, ε0) ∈ (RN \ R

N+). This implies that there exists a time s ∈ [0, τ ) such that x(s; x0, ε0) leaves R
N+, i.e.

there exists k ∈ {1, . . . , N} with

x̃k(s; x0, ε0) = 0 and ˙̃xk(s; x0, ε0) ≤ 0. (A 3)

We will show that this is a contradiction. As ˙̃xk(s; x0, ε0) = (f̃ε(s, x̃(s; x0, ε0)))k, the definition of f̃ε and (A 3)
yield ˙̃xk(s; x0, ε0) = (f̃ (s, x̃(s; x0, ε0)))k + ε0

∑N
i=1 x̃i(s; x0, ε0). By the second statement in proposition A.3,

(f̃ (s, x̃(s; x0, ε0)))k ≥ 0, so ˙̃xk(s; x0, ε0) ≥ ε0
∑N

i=1 x̃i(s; x0, ε0). As H is also a first integral for ẏ = f̃ε(t, y), we
obtain ˙̃xk(s; x0, ε0) ≥ ε0H(x0) > 0. This contradicts (A 3).

We have established that x̃ remains in the compact set {z ∈ R
N+ | H(z) = H(x0)} and it follows that the

solution x̃(t; x0) exists for all t ≥ 0. As the solutions x( · ; x0) and x̃( · ; x0) coincide on R
N+, this completes the

proof. �

A.2. Linear time-varying systems
The properties that are essential in the proofs of our main results are cooperativeness, non-expansiveness
and contractivity of the flow. As it turns out, it is convenient to first prove these properties for linear
time-varying systems. Let

A := {A : [0, ∞) →B | A is continuous}.



14

rsos.royalsocietypublishing.org
R.Soc.opensci.5:172157

................................................
Lemma A.5. Assume that A ∈A. Then the initial value problem ẋ = A(t)x, x(0) = x0 ∈ R

N+, has a unique
solution x( · ; x0) : [0, ∞) → R

N that satisfies the following properties:

(a) x(t; x0) ∈ R
N+ and H(x(t; x0)) = H(x0) for all t ≥ 0.

(b) If xj(t∗; x0) > 0 for some j ∈ {1, . . . , N} and t∗ ≥ 0, then xj(t; x0) > 0 for all t ≥ t∗.
(c) If x0 �= 0 and A(t∗) is irreducible for some t∗ ≥ 0, then x(t; x0) ∈ int(RN+) for all t > t∗.

Proof. Existence and uniqueness of the solution are immediate from the linearity and continuity of A.
The proof of (a) follows from lemma A.4 and the fact that f (t, x) := A(t)x belongs to F for each A ∈A.
To prove (b), assume that xj(t∗; x0) > 0. Let y(t) := xj(t; x0). Then y solves the scalar initial value problem

ẏ = g(t, y), y(t∗) = xj(t
∗; x0) > 0,

where

g(t, y) := ajj(t)y + b(t), b(t) :=
∑
k �=j

ajk(t)xk(t; x0) ≥ 0.

Thus, letting q(t) := ∫t
t∗ ajj(u) du yields

y(t) = eq(t)
(

y(t∗) +
∫ t

t∗
e−q(s)b(s) ds

)

≥ eq(t)y(t∗)

> 0,

for all t ≥ t∗.
To prove property (c), first note that irreducibility of A(t∗) implies that there exists δ > 0 such that

A(t) is irreducible for all t ∈ [t∗, t∗ + δ). (A 4)

This follows from the fact that irreducibility is equivalent to the associated adjacency graph being
strongly connected, i.e. certain edges have positive weights, and the continuity of A(t).

Pick x0 ∈ R
n+ \ {0}. We consider two cases.

Case 1: x(t∗; x0) ∈ int(RN+). Then the claim follows from property (b).
Case 2: x(t∗; x0) ∈ ∂R

N+. Fix t > t∗. As H(x(t∗; x0)) = H(x0) > 0, there exists k ∈ {1, . . . , N − 1} such that
exactly k entries of x(t∗; x0) are positive and the other entries are zero. Note that by property (b), these k
entries remain positive for all t ≥ t∗. Assume w.l.o.g. that the first k entries of x(t∗; x0) are positive. Then
in block form

ẋ(t∗; x0) =
(

U V
Y Z

)⎛
⎜⎜⎜⎜⎝

x1(t∗; x0)
...

xk(t∗; x0)
0

⎞
⎟⎟⎟⎟⎠ ,

with U ∈ R
k×k and Z ∈ R

(N−k)×(N−k). As A(t∗) is Metzler and irreducible, every entry of Y is non-negative
and at least one entry is positive, so there exists j > k such that ẋj(t∗; x0) > 0. Therefore, at least k + 1 entries
of x(t; x0) are positive for t > t∗. Now an inductive argument and using (A 4) completes the proof. �

Let

S :=
⎧⎨
⎩Q ∈ R

N×N

∣∣∣∣∣∣ qjk ≥ 0 for all j, k = 1, . . . , N and
N∑

j=1

qjk = 1 for all k = 1, . . . , N

⎫⎬
⎭

denote the set of N × N stochastic matrices, and let

S+ := {Q ∈ S | qjk > 0 for all j, k = 1, . . . , N}
denote the subset of stochastic matrices with positive entries. For A ∈A let ΦA : [0, ∞) → R

N×N be the
fundamental matrix of ẋ = Ax, that is, the solution of

Φ̇(t) = A(t)Φ(t), Φ(0) = IN .

As the columns of ΦA(t) are x(t; ej), where ej ∈ R
N+ denotes the jth canonical unit vector, the next result

follows from properties (a) and (c) in lemma A.5.
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Corollary A.6. Assume that A ∈A. Then

(a) ΦA(t) ∈ S for all t ≥ 0.
(b) If A(t∗) is irreducible for some t∗ ≥ 0, then ΦA(t) ∈ S+ for all t > t∗.

We now use this to prove non-expansiveness with respect to the �1-norm and contractivity in the case
of irreducibility. The first step is to note that stochastic matrices have useful properties with respect to
this norm.

Proposition A.7. If Q ∈ S and x ∈ R
N, then |Qx|1 ≤ |x|1. If Q ∈ S+ and x ∈ (Rn \ {0}) with H(x) = 0, then

|Qx|1 < |x|1.

Proof. The first statement follows from

|Qx|1 =
N∑

j=1

∣∣∣∣∣
N∑

k=1

Qjkxk

∣∣∣∣∣
≤

N∑
j=1

N∑
k=1

Qjk|xk|

=
N∑

k=1

|xk|

= |x|1. (A 5)

To prove the second statement, pick x �= 0 such that H(x) = 0. Then there exist k1, k2 ∈ {1, . . . , N} such
that xk1 < 0 < xk2 . Thus, if Q ∈ S+ then for any j ∈ {1, . . . , N},∣∣∣∣∣

N∑
k=1

Qjkxk

∣∣∣∣∣<
N∑

k=1

Qjk|xk|

because the sum on the left contains both positive and negative terms. Now arguing as in (A 5) completes
the proof. �

A.3. Non-expansiveness and contractivity
Using the results for time-varying linear systems, we now turn to proving non-expansiveness and
contractivity for the nonlinear dynamical system.

Theorem A.8. Suppose that f ∈F . Then

(a) For any x0, y0 ∈ R
N+ the function

t �→ |x(t; x0) − x(t; y0)|1 is non-increasing on [0, ∞). (A 6)

(b) If there exists t∗ ≥ 0 such that J(t∗, x) is irreducible for all x ∈ Ω then for any t̂ > t∗ there exists Mt̂ < 1
such that

|x(t̂; x0) − x(t̂; y0)|1 ≤ Mt̂|x0 − y0|1 for all x0, y0 ∈ Ω . (A 7)

Proof. Fix t1 ≥ 0 and x0, y0 ∈ Ω . Let z(t) := x(t + t1; x0) − x(t + t1; y0). By proposition A.3, ż(t) = C(t)z(t),
with z(0) = z0 := x(t1; x0) − x(t1; y0), and C ∈A given by

C(t) := B(t + t1, x(t + t1; x0), x(t + t1; y0)),

for all t ≥ 0. Hence, z(t) = ΦC(t)z0 for all t ≥ 0.
To prove (A 6), pick t2 ≥ t1. By corollary A.6(a), ΦC(t2 − t1) ∈ S and proposition A.7 yields

|x(t2; x0) − x(t2; y0)|1 = |z(t2 − t1)|1
= |ΦC(t2 − t1)z0|1
≤ |z0|1
= |x(t1; x0) − x(t1; y0)|1

and this proves (A 6).
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To prove (A 7), let

P := {x ∈ R
N | H(x) = 0 and |x|1 = 1}.

Note that if y, z ∈ Ω with y �= z then (y − z)/|y − z|1 ∈P .
Pick t̂ > t∗ and x0, y0 ∈ Ω . Equation (A 7) clearly holds if x0 = y0, so we may assume that x0 �= y0. Then

|x(t̂; x0) − x(t̂; y0)|1 = |ΦC(t̂)(x0 − y0)|1

= m
(

x0, y0,
x0 − y0

|x0 − y0|1

)
|x0 − y0|1,

where m : Ω × Ω × P → R is defined by m(x0, y0, v) := |ΦC(t̂)v|1. Let

Mt̂ := max{m(x, y, v) | x ∈ Ω , y ∈ Ω , v ∈P}.

This is well defined, as the matrix C(t) = Cx0,y0 (t) = B(t, x(t; x0), x(t; y0)) depends continuously on x0, y0 ∈
Ω for all t ≥ 0 (see proposition A.3) and thus ΦCx0,y0

(t̂) is also continuous in x0, y0. We conclude that

|x(t̂; x0) − x(t̂; y0)|1 ≤ Mt̂|x0 − y0|1.

Thus, to complete the proof we only need to show that Mt̂ < 1. To prove this, denote x∗ := x(t∗; x0), y∗ :=
x(t∗; y0). Then

Cx0,y0 (t∗) = B(t∗, x∗, y∗) =
∫ 1

0
J(t∗, y∗ + s(x∗ − y∗)) ds.

As J is Metzler (i.e. all its off-diagonal elements are non-negative) and, by assumption, J(t∗, z) is
irreducible for all z ∈ Ω , we conclude that Cx0,y0 (t∗) is also irreducible. Corollary A.6 implies that
ΦCx0,y0

(t̂) ∈ S+. Picking a maximizer (x0, y0, v0) ∈ Ω × Ω × P of m, i.e. Mt̂ = m(x0, y0, v0), it follows from
proposition A.7 that Mt̂ < |v0|1 = 1. �

A.4. Proof of theorem A.2
We can now prove theorem A.2. We note that the proof proceeds without the explicit use of the
cooperative behaviour of dynamical systems (though we will use this property for the proof of
theorem A.1; see subsections A.5 and A.6).

Note that for f ∈FT a solution γ̇ = f (t, γ ), γ : [0, ∞) → Ω , is T-periodic if and only if x(T; γ (0)) = γ (0).
Thus, consider the period map PT : R

N+ → R
N+ defined by

PT(a) := x(T; a). (A 8)

In other words, PT(a) is the value of x(T) for the initial condition x(0) = a. Observe that PT(Ω) ⊆ Ω (as
H is a first integral of ẋ = f (t, x)). Moreover, for f ∈ (FT ∩ FΩ

irr) there exists t∗ ∈ [0, T) such that J(t∗, x) is
irreducible for all x ∈ Ω . Then T > t∗, so theorem A.8(b) implies that PT is Lipschitz on the closed set Ω

with Lipschitz constant MT < 1. The Banach fixed point theorem implies that PT has a unique fixed point
in Ω , that is, there exists a unique T-periodic function γ : R → Ω that solves γ̇ = f (t, γ ). Fix α > 0 such
that

max{ 1
2 , MT} ≤ e−αT. (A 9)

Pick x0 ∈ Ω and t ≥ 0, and let k ∈ N0 be such that kT ≤ t ≤ (k + 1)T. Then theorem A.8 yields

|x(t; x0) − γ (t)|1 ≤ |x(kT; x0) − γ (kT)|1
≤ (MT)k|x0 − γ (0)|1
≤ e−αTk|x0 − γ (0)|1
= e−αT(k+1)eαT|x0 − γ (0)|1
≤ eαTe−αt|x0 − γ (0)|1
≤ 2e−αt|x0 − γ (0)|1,

where the last inequality follows from (A 9). Thus, every solution x(t; x0) converges to the unique periodic
solution γ (t) at an exponential rate.
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A.5. Cooperative behaviour
For the proof of theorem A.1, we use some elegant topological ideas from [44,45], which are based on
the cooperative behavior of the dynamical system generated by a vector field f ∈F . To formulate this
concept, we introduce some more notation.

Let p, q ∈ R
N , and let A be a bounded non-empty subset of R

N . Then we write

(a) p ≤ q :⇔ pj ≤ qj for all j ∈ {1, . . . , N},
(b) [p, q] := {x ∈ R

N | p ≤ x ≤ q},
(c) inf A := c ∈ R

N with cj := inf{aj | a ∈ A},
sup A := d ∈ R

N with dj := sup{aj | a ∈ A},
(d) p ≤ A ⇔ p ≤ a for all a ∈ A

q ≥ A ⇔ q ≥ a for all a ∈ A.

It is straightforward to verify that inf A ≤ A ≤ sup A and that for all x, y ∈ R
N with x ≤ A, y ≥ A we have

x ≤ inf A and y ≥ sup A.
The following theorem summarizes the monotone behaviour with respect to the order ≤.

Theorem A.9. Let f ∈F and x0, y0 ∈ R
N+ with x0 ≤ y0. Then x(t; x0) ≤ x(t; y0) for all t ≥ 0. If, in addition,

(x0)j < (y0)j for some j ∈ {1, . . . , N}, then xj(t; x0) < xj(t; y0) for all t ≥ 0.

Proof. We use again that z(t) := x(t; y0) − x(t; x0) satisfies ż = C(t)z, z(0) = z0 := y0 − x0 ∈ R
N+ with C(t) :=

B(t, x(t; y0), x(t; x0)) ∈B and C ∈A. The claim then follows from statements (a) and (b) of lemma A.5. �

A.6. ω-Limit sets of PT and proof of theorem A.1
The concept of ω-limit sets for the discrete time dynamical system induced by the period map PT : Ω → Ω

from (A 8) is pivotal for the proof of theorem A.1. For a ∈ Ω this set is

ωT(a) := {x ∈ Ω | there is a sequence nk → ∞ with lim
k→∞

Pnk
T (a) = x}.

We first state a few standard facts about this set.

Proposition A.10. Let f ∈F . Pick T > 0. Then for all a ∈ Ω we have

(a) ωT(a) is a closed, non-empty subset of Ω ;
(b) PT(ωT(a)) = ωT(a);
(c) ωT(b) ⊆ ωT(a) for all b ∈ ωT(a).

Proof. Statements (a) and (b) follow from [46, eqn. (4.7.2) and lemma 4.7.4] because Pk
T(a) evolves in

the compact set Ω .
To prove (c), pick b ∈ ωT(a). Property (b) implies that Pnk

T (b) ∈ ωT(a) for all nk ∈ N, and as ωT(a) is closed
limk→∞ Pnk

T (b) ∈ ωT(a). �

The following lemma, that is proved in the subsequent subsection, provides all that is needed to prove
theorem A.1.

Lemma A.11. Let f ∈FT. Then for every x ∈ Ω its limit set ωT(x) contains a fixed point of PT.

Proof of theorem A.1. Pick x0 ∈ Ω and denote by z ∈ ωT(x0) the fixed point of PT that exists according to
lemma A.11. As z is a fixed point and as f ∈FT is T-periodic, the solution γ (t) := x(t; z) is also T-periodic.
As z ∈ ωT(x0) there exists a subsequence Pnk

T (x0) → z as k → ∞. For any j ∈ N and t ≥ njT, we have by
theorem A.8(a),

|x(t; x0) − γ (t)|1 ≤ |x(Tnj; x0) − γ (Tnj)|1 = |Pnj

T (x0) − z|1.

As t → ∞, we can take j → ∞ and this yields

lim
t→∞

|x(t; x0) − γ (t)|1 = 0,

proving theorem A.1. �

Note that the proof of theorem A.1 shows that for any x0 ∈ Ω the ω-limit set ωT(x0) cannot contain
more than one fixed point of PT. Thus, the statement in lemma A.11 can actually be strengthened to ωT(x0)
contains exactly one fixed point of PT.
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The next subsection contains the proof of the crucial lemma A.11. We have adapted the ideas presented

by Ji-Fa in [45] to our setting, which led to somewhat simplified arguments. In particular, we can replace
[44, proposition 1] that is used in the proof of lemma 3.2 of [45] by a standard application of Brouwer’s
fixed point theorem. Indeed, the claim of lemma A.11 is the existence of a fixed point of the map PT

in ωT(x). We show that ωT(x) contains an element y so that ωT(y) is a singleton, say, ωT(y) = {z}. Then
z ∈ ωT(x) by proposition A.10(c) and z is a fixed point by proposition A.10(b).

A.7. Proof of lemma A.11
We use the following notation. For y ∈ Ω , let

p(y) := inf ωT(y),

q(y) := sup ωT(y).

Note that as ωT(y) ⊆ Ω ⊂ R
N+, p(y) and q(y) exist in R

N+. Moreover, p(y) ≤ q(y) and ωT(y) is a singleton if
and only if p(y) = q(y). The existence of the desired element y in ωT(x) is established by contradiction.
Suppose that no such y exists. Denote by y0 an element in ωT(x) that minimizes the number of coordinates
j for which (p(y))j and (q(y))j differ. We then show that there exists z0 ∈ ωT(x) for which p(z0) and q(z0)
differ in a smaller number of coordinates than p(y0) and q(y0). Part (c) of lemma A.12 below states a fact
that is essential for the construction of z0. What is also crucial for the proof is the observation that p(y)
and q(y) are fixed points of PT which is formulated in lemma A.12(a). Its short proof demonstrates why
monotone dynamical systems admitting a first integral with a positive gradient are special.

For y ∈ Ω , let

Jy := {j ∈ {1, . . . , N} | (p(y))j �= (q(y))j}, (A 10)

i.e. the set of indices for which (p(y))j and (q(y))j differ.

Lemma A.12. Let f ∈FT. Then for any y ∈ Ω ,

(a) p(y), q(y) are fixed points of PT.
(b) PT([p(y), q(y)]) ⊆ [p(y), q(y)].
(c) If p(y) �= q(y) then for any z ∈ ωT(y) there exists a j ∈ Jy such that zj = (p(y))j.

To explain property (c), we introduce more notation. For v, w ∈ R
N let

�(v, w) := #{j ∈ {1, . . . , N} | vj �= wj}.

Consider the case p(y) �= q(y). For any j ∈ {1, . . . , N} \ Jy, we have pj(y) = qj(y), so zj = pj = qj. For any j ∈ Jy,
we have pj(y) < qj(y) and property (c) implies that there exists at least one such index such that pj(y) = zj.
We conclude that

�(z, p(y)) < �(q(y), p(y)). (A 11)

Proof of lemma A.12. To simplify the notation, we write from hereon p, q for p(y), q(y). Pick z ∈ ωT(y).
As p ≤ z, theorem A.9 implies that PT(p) ≤ PT(z). Thus, PT(p) ≤ ωT(y) by proposition A.10(b), and
consequently PT(p) ≤ p. As H(PT(p)) = H(p), it follows that PT(p) = p. The proof that PT(q) = q proceeds
analogously. This proves claim (a).

Claim (b) follows directly from (a) and theorem A.9.
We prove (c) by contradiction. Assume that there exists z ∈ ωT(y) such that zj > pj for all j ∈ Jy. Set

ε := min{zj − pj | j ∈ Jy}. (A 12)

Then ε > 0. Define

Γ :=
{

x ∈ [p, q] | H(x) = H(p) + ε

2

}
. (A 13)

Note that for any j ∈ {1, . . . , N} \ Jy we have pj = qj so if x ∈ Γ then xj = pj = qj. The set Γ is not empty, as
H(q) ≥ H(z) ≥ H(p) + ε. Γ is also compact and convex. Statement (b) and the fact that H is a first integral
imply that PT(Γ ) ⊆ Γ . The Brouwer fixed point theorem thus yields the existence of a fixed point of PT

in Γ , that is, there exists x∗ ∈ Γ such that PT(x∗) = x∗.
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As z ∈ ωT(y) there exists n∗ ∈ N such that |Pn∗

T (y) − z|1 < ε/3N. Define y∗ by

y∗
j :=

{
(Pn∗

T (y))j, j ∈ Jy

zj = pj = qj, otherwise.

As |Pn∗
T (y) − y∗|1 + |y∗ − z|1 ≤ |Pn∗

T (y) − z|1, we have |Pn∗
T (y) − y∗|1 < ε/3N and

|y∗ − z|1 <
ε

3N
. (A 14)

Observe that
x∗

j = pj = zj = y∗
j for j ∈ {1, . . . , N} \ Jy

and
x∗

j ≤ pj + ε

2
≤ zj − ε

2
< y∗

j for j ∈ Jy,

where the first inequality follows from (A 13), the second from (A 12) and the third from (A 14).
Summarizing, x∗ ≤ y∗. As PT(x∗) = x∗, theorem A.9 implies that x∗ ≤ Pk

T(y∗) for all k ≥ 0. As
∑

j(x
∗
j −

pj) = ε/2, there exists j0 ∈ {1, . . . , N} such that x∗
j0

≥ pj0 + ε/2N. Then (Pk
T(y∗))j0 ≥ pj0 + ε/2N for all k ≥ 0.

As PT is non-expansive by theorem A.8(a), we have in addition |Pk
T(y∗) − Pk+n∗

T (y)|1 ≤ |y∗ − Pn∗
T (y)|1 <

ε/3N for all k ≥ 0. Hence for all m ≥ n∗,

(Pm
T (y))j0 ≥ pj0 + ε

2N
− ε

3N
= pj0 + ε

6N
.

We conclude that any r ∈ ωT(y) satisfies rj0 ≥ pj0 + ε/6N, and thus

pj0 = inf{rj0 | r ∈ ωT(y)} ≥ pj0 + ε

6N

and this contradiction proves (c). �

We can now prove the crucial lemma A.11.

Proof of lemma A.11. As noted above, we need to show that there exists y ∈ ωT(x) such that p(y) = q(y).
To do this, for y ∈ Ω let

m(y) := �(p(y), q(y))

and for x ∈ Ω , let
α(x) := min{m(y) | y ∈ ωT(x)}.

It suffices to show that α(x) = 0 for all x ∈ Ω . We achieve this by contradiction. Assume that there exists x ∈
Ω for which α(x) > 0. Then there exists y0 ∈ ωT(x) with α(x) = m(y0) > 0. Let M̃ := max{�(z, p(y0)) | z ∈
ωT(y0)}. Then (A 11) yields

M̃ < α(x). (A 15)

Choose z0 ∈ ωT(y0) such that �(z0, p(y0)) = M̃. We now show that m(z0) ≤ M̃. To this end, define

J := {j ∈ {1, . . . .N} | (z0)j > pj(y0)}.

Note that M̃ = #J. As z0 ∈ [p(y0), q(y0)], we have J ⊆ Jy0 and by lemma A.12 we have J �= Jy0 . Consider the
sequence z(k) := Pk

T(z0) ∈ ωT(y0). By the second statement of theorem A.9, we have zj(k) > pj(y0) for all j ∈ J
and all k ∈ N (recall that p(y0) is a fixed point). Hence �(z(k), p(y0)) ≥ #J = M̃. As z(k) ∈ ωT(y0), we have by
the definition of M̃ also �(z(k), p(y0)) ≤ M̃ and, therefore, �(z(k), p(y0)) = M̃, and

J = {j ∈ {1, . . . , N} | zj(k) > pj(y0)} for all k ∈ N.

Thus, zj(k) = pj(y0) for all j ∈ {1, . . . , N} \ J, so

ωT(z0) ⊆ {v ∈ R
N | vj = pj(y0) for all j ∈ {1, . . . , N} \ J}.

This implies that pj(z0) = qj(z0) for all j ∈ {1, . . . , N} \ J, and thus m(z0) = �(p(z0), q(z0)) ≤ #J = M̃.
Combining this with the fact that z0 ∈ ωT(y0) ⊆ ωT(x) and (A 15) yields

α(x) ≤ m(z0) ≤ M̃ < α(x)

and this contradiction completes the proof of lemma A.11. �
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