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CONFIDENTIAL. R.C. 279. 

MINISTRY OF HCJdE SECURITY. 

CIVIL DEFENCE RF.SEARCH CCMMITTEE. 

N otea on lL A. Bethe's "Theory of armor penetration". 

I. Static penetration. 

By Professor G. I. Ta.ylor, F. R. S. 

The first part of this pa.per describes the static stresses in a. long 
cylindrical hollow cylinder and in a flat sheet when a concentric hole is 
opened out by radial pressure applied over its surface. Within a certain 
radius the material is assumed to be overstrained and to flow radially. 
Outside this radius the conditions are elastic. For the thick cylinder, 
where it is assumed that there is no extension parallel to the axis of 
symmetry, the problem and its solution are identical with those given in text 
books of gunnery in connection with the autofrettage of guns and with those 
which have been used in designing cylinders for bigh pressure work. In thia 
case the type of the strain can be related immed!ately to a single variable, 
namely the radial displacement which is a function of one independent 
variable~ the radius, and one parameter, the radial displacement of the inner 
surface. This consideration rEIIl&.ins true when, as in the case considered 
by Dr. Bethe, the strains in the inner plastic regiai are not small. 

The hole in a thin plate is more interesting and more difficult to 
analyse because it is no longer possible to treat the strain as two dimens­
ional, so that the relationship between plastic strain and stress must be 
considered. It is usually assumed that hydrostatic pressure merely 
canpresses a plastic material without altering its strength to resist shear 
stresses. For this reason it is sanetimes convenient in canparing various , 
theories of plasticity to use reduced principal stresses o; = o-:1 - p, 

I I "--t I I I 02 = a-2 - p, 03 = o-3 - p, where 3p = Oj + a;_ + <J"- , so t.ua. a; + cr.l. + <1"'3 = O. 
Similarly reduced principal strains e: = e1 - e, 

3 ei = e.i - e , e~ = e3 - e 
where e1 + el. + e 3 = 3e and e represents the volumetric strain. The 
plasticity relations are concerned firstly with the maximum values which the 

I I I stresses <r, , <rz. , o--3 can attain before plastic flow occurs and, secondly, 
nd ~ I I I ' I ' Th with the depe ence o.a. e1 , ei , e3 on Oj , a-~ , a-3 • ese two kinda of 

plasticity condition are quite unrelated. to one another. Of the first type 
two alternative hypotheses are mentioned by Dr. Bethe, namely those of Mohr 
and v. :Mises, and he points out that there is but little difference between 
them. 

For two dimensional problems, where if the canpressibility be 
neglected we may take ea = o, the second type of plasticity condition does 
not affect the distribution of stress in the plane to which the displacements 

• I 0 I I are confined. This is because when e3 = , e, = - e2 , so that only one 
kind of strain is possible when the directions of the principal strains are 
assumed to coincide with those of principal stresses. 

The case is very different when the strain is not two dimensional. 
Here it is necessary to choose sane arbitrary law or to use experimental data. 
The problem can be visualised. by thinking of the relationship between the 
stress ellipsoid and the strain ellipsoid. 

The following points may be noticed:-

(1) The absolute magnitude of the stress ellipsoid is related to the 
strength criterion, e.g. the Mohr or v. Mises criteria. 

1 
not counting as parameters the canpressibility of the material or 
the yield strength. 
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(2) The absolute magnitude of the strain ellipsoid bears no relation-
ship to the stresses if the plastic body is ass\lllled to possess the 
property tba t flow will occur when the yield a tress is reached. 

(3) It is a necessary condition of isotropy ot the plastic material 
that the directions of the principal axes of the stresa and strain 
ellipsoids shall coincide. 

() Owin I I I I I I ii 
4 g to the fact that e 1 + ea + e3 = 0 and o-, + era. + a; = o, t s 

necessary to know only one relationship in order to detezm:ine the ratios 
1 

I I h h if pai f 1 
I 1 ikn Thi e 1 : e:i. : e3 w: en t e rat o o ~ r o er, , o-a., o-3 s own. s 

relationship can conveniently be defined in terms of two non-dimensional 
variables 1-4- and V (Lode's variables) 

~ - 2 O"ac - qi - 1 , 
Oj - 03 

V = 2 e~ - e3 - 1 
e 1 - e3 

where ~ ) a;, > Oi. These variables are chosen for convenience so th.at 
~ lies between -1 and +1. It seems that all plastic materials must 
satisfy the relationship e, > e.2 > e3 when er, > O-a.> a;, so that V also 
lies between -1 and +1. The observed relationship between µ. and v 
for mild steel, soft iron and copper is given in a paper by Taylor and 
Quinney 1 , and for copper, iron and nickel by Lode2. For all these 
metals the relationship is substantially that shown in Fig.1, which also 
contains Taylor and Quinney'a experimental results. This experimental 
relationship may be canpared with that which exists in all Newtonian 
viscous fluids, namely f«- = v . It is found experimentally that ff- = V 
for lead. at atmospheric temperature and for glass heated till it is just 
soft enough to flow. In developing theories of plastioity sane workers 
have assumed the relationahip /A = V • It seems unlikely that the 
divergence between the observed relationship and the asS\lllled fA" • )> 

will give rise to much error in calculating stress and strain distri­
butions. It will be noticed that the assumption /)- = \) , though used 
by v. Mises, is quite unrelated to v. Kises' criterion of strength. The 
relationship I"- = V could equally well be used with Mohr's strength 
relationship, namely that flow begins when o; - er~ = constant = Y. 

Bethe's stress-strain assumption. 

Bethe considers two regions of plastic flow, the outer one 
extending inwards frcm the outer limit of plastic flow r = r 1 to the radius 
r = r.l. at which the tangential stress ceases to be a tension. In this region 
the radial stress must be taken as ~ , the tangential tension as o; , and a;,_ , 
the intennediate stress normal to the sheet, ia zero. Between r = r 1 and 
r = r.2, therefore, Lode's variable fA- is positive but <1. At r = r1 , /A- 1 
since at that point cr2 = 0-1 = o. In this region Bethe's strain assumption 
(which he attributes to llohr) is that the plastic flow is limited to the plane 
of the sheet, no thickening occurring (see p. 9 ot Bethe's report). If the 
strain is limited to the plane of the sheet e~ = O and if the effect of 
canpressibility is neglected e3 = -e,. Thus in the region r

1
>r >r;a., V = o. 

This is sh~ in Fig. 1 by means of the line AB. 

Though Bethe's strain assumption is very far frcm what is observed 
in experiments in which plastic strains are measured, yet this does not 
necessarily detract frcm the value of his calculation of stress distribution 
in the region r,>r>r:a., because with the "ideal" plastic body, which begins 
to flow as soon as the stress reaches a given value and continues flowing 
until the stress is reduced, an infinitesimal plastic strain JllAY enable the 
equilibrium. stress distribution to be attained. In other words, if onls a 
small thickening of the sheet does occur it will produce only a negligible 
effect on the stress distribution. 

------------------------------------------------------------------------------
1 Phil. Transo Roy. Soo., 230, 1931. 
2 -

"Versuche dber den Einfluss der mittleren Hauptspannung aut das 
Fliessen der l4etalle, Eisen, Kupfer und Nickel", z. Physik, 
vol. 36 ( 1926). 
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In the range r, > r > r;a., when the maximum stress difference is that 
between the two principal stresses in the plane of the sheet, the equation of 
equilibrium is sufficient, withKohr's strength cond.iticxi prescribing a 
constant difference between them, to detennine the stress. Inside the radius 
r:i., i.e. when r.i.> r > b where b is the radius of the hole, the tangential 
stress o; cannot remain positive (tensile). Two alteniatives remain -

{a) 

(b) 

er, becanes negative (i.e. there can be a canpressive 
tangential stress) or 

o; = o. 

Bethe rejects alternative {a) because in that case o; would be the 
intennediate principal stress and by his strain assumption it would be 
necessary that no strain cruld take place in the tangential direction. Thia 
would preclude any radial displacemento He is left with {b) as the cmly 
possible altemative consistent with his strain assumption, namely er, = o. 
This alternative, however, suffers frcm very severe disadvantages. The stress 
at every point is one which is symmetrical about the radial direction, i.e. 
the stress ellipsoid at any point is a spheroid whose axis ot symmetry is 
along a radius. On the other hand the plastic strain which according to 
Bethe's calculation results tran this symmetrical or uni-directional stress is 
very far frcm symmetrical and is variable along the radius. Expressed in 
tenns of Lode's variables the stress in the ranger~> r >bis represented by 
fl = 1 while the strain is indeterminate and covers a range of the line ft ::r 1 

in Fig.1. 

Since the alternative (a) that CJ# becanes a ccmpressive stress when 
r < r~ is perfectly possible if other stress-strain assumptions are used, it 
will be seen that the sole reason for Bethe's conclusion that OB= 0 is that 
he assumes that when a stress is applied in one direction (e.g. a pure 
pressure or tension unaceanpanied by transverse stresses) the strain is 
C<Xllpletely ind.etenninate. A round. bar, for instance, when stretched in an 
ordinary testing ma.chine,, would,, it it obeyed Bethe ' s stress-strain law, in 
general acquire an elliptical section and it is this assumed asymmetrical 
property of plastic material which alone is res~ible tor Bethe's conclusion 
that 08 = o. 

It would seem better to abandon the attempt to give a reasoned 
justification of the assumption that og = 0 when r4 > r > b and to fall back on 
the fact that this assumption enables a stress distribution to be dete:rmined 
w1 thout reference to the strain. The equilibrium equation then suffices to 
detennine the thickness of the plate. Canparison between the results 
obtained by assuming that 0-6 = 0 and those observed experimentally mi~t then 
afford a justification for this assumption as being adequate tor demonstrating 
the features of the mechanics of the problem which do not d&pend on the 
relationship between plastic stress and strain. 

Though Bethe manages, by endowing his plastic material with the 
ability to suffer unsymnetric strains when subjected to a symnetrical stress, 
to avoid all consi'deration of successive steps by whioh any given 
configuration of finite strain is attained, this simplification cannot in 
general be ma.de. In fact, so far as I am aware, no problem of plastic flow 
which involves finite displacements has ever been obtained ucept in cases 
such as the expansion of an infinite cylindrical tube by intern.al pressure, 
where symnetry alone enables the strain to be determined. For this reason it 
seems desirable to to:nnulate the equations for plastio radial flow round a 
hole in a sheet in a fann which can be applied to 8J\Y desired law ot strength 
such as Mohr's or v llises' or any desired relationship between Lode's 
variables f and V • 

Analysis of strain round an expanding radial hole in a sheet. 

When a hole is enlarged the finite strain at 8.l\Y stage ia made up 
of infinitesimal elements of strain which vary as the enlargement proceeds. 
Thus when a small .pin hole in a plate is enlarged. we musts udy t e small 
strain produced in an element of the sheet which was originally a.t radius a 
tran the pinhole, when the hole enlarges fran radius b to ra.d.iu b + ~b. 
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In the more general case when the initial radius of the hole in the 
unstretched sheet is not zero this is very difficult to analyse, but when the 

expansion starts fran a small pinhole it may be expected that the configur­

ation when the hole ha.a radius b.z. will be similar to that round the hole when 

its radius is b 1 except that the radii where a:ny given thickness occurs will 

be changed in· the ratio ba/b 1• Thus if h is the thickness and u the radial 

displacement, it may be assumed that h/ho and u/b and also the stresses are 

f'unctions of s/b only: where h 0 ia the initial thickness of the sheet. 

To simplify matters I have assumed that the canpressibility is so 

small that it may be neglected and the material taken as incanpressible. 
The relationship between the small strain which occurs at any radius during 

the expansion of the hole through a small increase in radius fran b to 

b + ~ b ca:n be understood. by referring to Fig. 2. Here the ordinates 
represent u and the abscissae r. 

The initial radial distance s of the element which at a subsequent 

stage in the opening out of the hole is at radius r is related to u by the 
equation 

r = s + u. . • • • • ( 1) 

In Fig.2, therefore, the displacement of' a particle fran its initial radius s 

i• represented by a line drawn at 45° to the axes. In particular the 
displacement of the particles which

0
were initially at the pinpoint where the 

hole bega:n is represented by the 45 line 0 PoP1 • The curved line P
0

.A Q0 

represents the relationship between r and u which it is the object of the 

analysis to calculate. At a subsequent stage of the expansion, when the 
hole has expanded fran radius b to radius b + Sb, the curve P1 B C Q 1 

representing displacement is similar to P0 A Q0 but with its linear dimensions 

increased in the ratio (b + S b) : b;. thus in Fig. 2 P1 Po = AC = .!Q = J b 

so that OP0 AO r b 

AD = rSlVb. (2) 

It $r is the change in r for a given particle of material when the hole 

expands fran b to b + ~b, Sr is found by drawing the line AB at 45 ° to the 

axes to meet the curve P1 BC Q / in B. If ~ b/b is small enough, the arc CB 

may be taken as straight so that if 1T - d is the slope of' CB to the axis 

OU az: = - ta:n C( • . .... (3} 

If f3 is the a:ngle A 0 Q0 , tan ;3 = u/r. 
ABCD (Figo2) 

Fran the geanetry of the figure 

~ r = AF = BF = CE tan« + DA ta:njS - (DA-~r)tana +DA tanjS 

Hence 

and frcm ( 2) 

Sr = (tan o<. + tan,§) DA 
\ 1 + tan a 

Q £) ~r = r - ~r r ~b 
_ ()u b 

()r 

• • • • • (4) 

..••• (5) 

. • • • • ( 6) 

The radial strain canponent during the expansion of the hole fran b 

to b + ~b is ...l...(~ ) and differentiating (6) with respect to r keeping 

~b constant, ~r or 

I 

1 

1 

1 

1 

1 

1 

I 
I 
1 

I 
I 

I 
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fr (Sr) = • • • • • (7) 

Since the strain during expansion of the hole f'rcm b to b + ~ b ia 
proportional to ~b/b, it is convenient to detine strain canponenta C.,., £9 
and Bz. so that straina during the small enlargement Sb are €,. ~b/b, 
E,, ~ b/b, Cz. ~b/b. With this definition 

• • . • • ( 8) 

The tangential strain is simply 

[ ~ -~] _ r ~r 

- 1 - ~ 
'ar 

••••• (9) 

and the strain perpendicular to the sheet is 

.... (10) 

The thickness h at any stage can be found simply tran the equation of' 
continuity: it is given by 

h 
• • • • ( 11) ho = 

where h
0 

is the initial thickness of the sheet. 

It is a simple matter to verify that (10) is consistent with (11). 

These expressions for strain take simple :f Oima when expressed in 
tenns of a new independent variable '8 = r"' and a new dependent variable 
'? = a :a. = ( r-u) .l.. Making these transf onna ti ems and writing 

(8) and (9) becane 

~ p = d'f , 

E~ = 1 - i 
~p 

while {11) reduces to the ·simple form h/ho = p. 

It is a simple matter to deduce ( 14) directly tran ( 15). 

The stress equilibrium equation for a thin sheet is 

fr {ha;) + h(o)"; o-;) • o 

•••• { 12) 

• • • • { 13) 

.... {14) 

.... ( 15) 

• • • • ( 16) 
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Two possible alternatiTe tom.a tor the strength conditicn might 
be conaidered:-

(a) Kohr' a atreaa criterion which may be written 

o-e - crl" = Y 

or - <J,.. • y 

it ~ i• poaitiTe, 

it 09 is negatift, 

i.e. tensile~ 
i.e. (17) 
Callpr8S8i'N 

(b) Mises' ccm.dition which 11Ja3 be written, when CT'1 = O, 

;i.. 4 
a;: + a, - a; er-.,. • conatant ••• 0 (f8) 

This reduces to - er.,. = constant it o-9 = 0 and so is identical with 
Kohr' s in that case. 

If Bethe's assumption that er, = 0 canbined with er-,. • constant 1a 
used, (16) leads to 

hr • cona tant = hor ~ (19) 

where rJ., is the outer boundary o'f the region of finite plutic strain. 
Substituting in (11) 

, 
Ea. 
r 

which giTea on integration 

i(r-u)2; 
, 

• IT,_ + constant 

Since u = O when r = rd the constant is -!Cr;):i and 

u = r - J (2r - r~)rd 

The inner boundary is where b = r = u, so that fran (22) 

I 

b • ~:i. 

which is Bethe's result if r; is identified with his r..2.. 

Plastic strain assumption fA- = v. 

•••• (20) 

• u. (2i) 

0. 0. (22) 

• • • • (23) 

The only simple law so far propoaed for the relationship between 
plastic stress and strain which is consistent with isotropy and at the same 
time resmbles what is observed with metals ia that represented in Lode's 
variables b,y !-'- = v, i.e. small strains or rates of extension in the 
principal directions are proportional to Oj - p, cr.2. - p, 03 - p. In the 
present case where oz - 0 this ia represented by the equation 

.... (24-) 

Substituting (15) and (24) in (16) the equilibrium coodition reduces to 

d < > .P.2i- (£ .. -e,) 2d3 Pa; • ~ 2e .... E, = o ... 0 (25) 
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This equatioo must be used in conjunction with a strength criterion. Mohr's 
criterion (a) will be used. In this case (25) assumes two different to:rma 
according as CS"p is negative (i.e. canpressive) or positive (i.e. tangential. 
tension). These are 

<T.., negative, o;. = -Y so that (25) becanes 

2q + R (e ... -cs ) 
! 2e .. + t6 

.... 
06 positive, 0). - <11 = -Y so that f'ran (2l+) (),. = 2 ft-+ Er (-Y) 

t.'r -e.. 

Substituting for E,.. and f," fran (13) and (14) the resulting 
equations may be written:-

<Tt negative (tangential canpresaion) 

(26) 

q"' (lt.?1) + q (-1 + ~) + R f .:1 + :!/...) = o 
p:a. 'JP °! \_ !P 

•••• {28) 

In this case 

= 
4q + R 

' -2q + R I 
:J 

and in tema of Mohr' a strength criterion the stresses are 

o; = -Y, 

0-8 positive (tangential tension) 

• • • • (29) 

•••• (30) 

3-(2Lp2) f ·p - ~) -- 4·,_{"q3 + ....2.(l?l: + .!l..) + 2q (-1 + }± _ l.:!!) " \ ., p 4 q !P3 p.t rP~ !P 

where w is written for 
3 

~ i.e. d'7]~ • 
dJ d? 

.... {31) 

The expressions for Ce/£,. and o;/o--r cannot be simplified by 
using the equation of equilibrium and the tull expressions derived f'rcm. 
( 13), ( 14) and ( 24) must be used, namely 

1 - ..?l. Jp • • • • (32) 

and in terms of Mohr's ccmdition er; - <r3 • Y the stresses are now 
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CJ,. = -Y/( 1 - ~/ o;.) 

0-9 = -Y~) I (1 -o;/~) 

) 
) 

~ 
• • • • (.33) 

It will be seen that (.31) is an ordinary differential equation of 
the third order and first degree while (28) is of the second order and 
second degree. The reason for this difference lies in th f'oI111 of Mohr's 
strength condition. When ap is positive three boundary conditions can be 
assigned at any given value ~ (i.e. of r). These might, for instance11 be 
u/r, h/h0 and <J,. which can be transfoI111ed directly in assigned values of q, 
p and 7J • When OD is negative CJ,. cannot be assigned arbitrarily; it is 
in tact constant. Thua only p and "? oan be assigned arbitrarily. 

Boundary condition at the elastic-plastic boundar,y. 

The elastic stresses due to radial displacement in an infinite 
sheet are 

= <Je • Cl. 0 (34) 

. 
where r 1 is the radius at which o; - ()" = -Y. The corresponding 
radial displacement is 

u 1 + m(.!)~ 
2 E r 

• • • • (35) 

where B is Young's llodulua and m is Poisson ' s ratio. In the present 
investigation canpressibility will be neglected and we will take m = t. 
In the elastic regicm therefore 

~ (1 -1!~) 
2 E ~ 

• • • 0 (36) 

At the inner bound.ar,y of the elastic region therefore 

q = o, • • 0 0 (37) 

At the outer boundary of the plastic region since 08 is positive M:ohr' a 
criterion ensures that o;. - oa = -Y. Since CY,. is necessarily continuous 
through r = 1j , and it is assumed ~t <r;. - 09 =' -Y at the elastic limit 
in the elastic regicm, 0-9 must be continuous through r • r, and equal to 
iY. It is important to notice the reason why o-9 is continuous at the 
plastic boundary in this case, because it ia not necessary in general th.a 
ag shall be c<ntinuous when Mohr's criterion is used. It will be shown 
in fact that 08 is discontinuous on the circle r = r~ within the plastic 
region where o;, = o. 

Strains and displacements when lj > r > r+· 

In the region within the circle r r, where o; is positive, it 
will be found that the strains are amal.l, being of order Y/E. Assuming 
that 77 = s ( 1 - rx '?,) and p = 1 + ~ p,, where <X = 3Y/2E 

p = ~ = 1 - Ci"} - 0( ~ ~. so that P, -7}, -~~· . • • • (38) 
dl c d~ d~ 

and q = S? = <X ~ • -o<~ ~ + s d"i) 0 •• • (.39) 
d! d'S d'! dl~ 
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When as is positive 

.... (40) 

Substituting frcm (38) and (39) in (40) and neglecting teims in Ol .:t. ccmpared 
with those containing ol 

CJr = 4Y (4 + 3't ) 
'f-"+ l 1¥' 

• • • • (41) 

where 'f' = d 1)1/d~ and l/)
1 = dlp /dJ'. 

Substituting this in (27) 

• • • • (42) 

Neglecting tenns which contain a'. as a. factor oanpared. with those that do 
not, p may be taken as 1 and (42) may then be integrated. giving 

4J + i .f.n ~ = constant 
4'+~lf'' 

•••• (43) 

The boundary conditions at r = r 1 are Pt = O, 171 = O, q = 0, so that 
't' '! = -1 , ~.a. 41' = -2 'I' ~ = 2. The constant in ( 43) is therefore 
-1 + iln(r;1"). Writing~ tor --!n('!/r/1), (43) therefore becanea 

•••• (44) 

The integral of (44) is 

..Cn o/ + ~ + 3fn(3 + "5) = constant 

or 'f ~ f 1 + !fllC~ r;-t)} 
3 

= -1 .... (45) 

the constant being chosen so that the correct boundary conditions are 
satisfied at r = r 1 • 

Since 4" 1 = d ?J,/d'5°, (45) may be integrated. Hence 

7l = ' - * c·~) ·1, 2(1 + !s)2 "' . ... ~ 

The equation for the thickness is 

~ = ~ = 1 -a ( '11+ ~) = 1 +"' [t -2(1
1:f'SJ•J •••• (47) 

The displacement is 

k I 
~1 z 

U:.) ~1"J2 • • • • (48) 
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The stress can be fO\llld by substituting fran (44) 

6 
+ ~ 1 ~ for ~ in (41) - 3 + '5 for~ d ~ , i.e. T 

It is found that 

o; = -iY(1 -'S) = 4Y { 1 - 2fn{r/r1 )} ... 0 (49) 

and hence 
OB = Y - o-,. -= iY { 1 + 2-ln{r/r, ) } •••• (50) 

This is the well known resul.t which can be obtained without considering the 
strains and displacements, if it is assumed that the thiclmess of the plate 
doea not vary. 

Values when Of = o. 

The radius r.;a. at which 09 = 0 is fran (50) r" = r 1 / ./8 = O. 6o6r.
1 

and corresponds with ~ = -1. 

Though the stress distribution in the range r, > r > r:L is 
identical with that fCXllld in Bethe's investigation the displacements and 
strains are not the same. For the case when Poisson's ratio is t Bethe 
finds the displacement when o-8 = 0 is 

• . . • ( 51) 

Putting "S = -1 in (4.8) the displacement according to the present strain 
hypothesis is 

The displacement is in fact about 6 per cent. greater than that calculated. 
on Bethe's strain hypothesis. 

Putting :S = -1 in (47) the value of h/hc, at r = r.:t is 1 + ~c(. 
and fran (39) and (44) · 

q = -ot(2~+ ~) = -ol~~ - ; :~) = -«~(3 !-s) 
hence fran (45) 

q = 

so that when 3' = -1, 

q - - 27 ol. - lb . • • • • ( 53) 
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Boundary values at 09 = O. 

At the circle r = r 2 where 09 • o, p and 'Y) are continuous. Juat 
inside the circle therefore, where o-9 is negative 

•••• ( 54) 

and p • h = 1 + ioe. 
ho 

When o-9 is negative q is detel'111ined by ( 28) when ?JI'! and p are 

giTen~ Substituting in (28) fran (54) the values of q ~ found by solving 

the resulting quadratic equation are (neglecting terms in oc..~) 

- 1 - 202 °' 
4 b4 

and • . • • (55) 

Neither of these values is the same a.a q = -27~/16, the value just outside 

the boundaiy, so that q is not continuous at r • r;z.. 

Trying firat the value q '! = + 31ct/8, E .. and e,, are calculated 
·rran ( 13) and ( 14). Their values are 

t... = + 3§« and le=-~ 

so that fran (24) 

JUL -2 27 + 35 19 
<r,. = 2 35 - 2 - -33 

and since a;. is continuous and equa1 to -Y, a-., would be positive. This ia 

inconsistent with the condition that 0-8 is negative or zero inside r = r..z., 
thus the solution q '! = + 31oe/8 must be rejeated.. The only alternative, 

q S = -t.- 22~ °'must therefore be correct. It will be noticed that this 

involves a discontinuity, not only in q but in er- and consequently in <Y.,. 

This discontinuity arises f'ran the fo:nn of' Mohr's criterion. It would not 
occur if von Mises' criterion had been used. 

Discontinuity in £.,. and CJe • 

Substituting q = -1 - ~ct , p = 1 +lo( , 1')/'f = 1 - ~ 
4 o4 2 8 

in ( 13) and ( 14), it ia found that c = - 27c< , l!.-r = - t - <X and 
substituting these in (24) 

9 8 

When <X is small, i.e. when E/Y is small, we may neglect cl and take as the 

boundaiy condition at r = r~ for calculating the stresses and displacements 

when r <. r :i the values 

p = 1,. 77/J = 1, • • • • ( 56) 

and the stressea are 0->- = -Y, 0-8 = ,;.y. 

Thus the stresa Cf67 suddenly changes tran 0 to a canpresaive streaa 

of' ,;.y at the radius r = r !2.. 
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a and atrain when r< r 0 • 

To calculate the distribution of atreaa and plastic strain inside 
the radius r = r.:t, (28) must be solved step by step. This could be don 
uaing the bound.a.rj' values 1') lr;i"' = 1 = 23oe/8, p = 1 + 3ocl2, q'!' = -!-81ocl16 
for any given value of o<. , but it will suffice for the present work to neglect 
the 11111&.l.l terms c taining o<. and take as the boundary values ~ /r; a 1 , 
p = 1, qr;: = - *· If 85 is the magnitude of a small step, the correspond­
ing changes p and ?J may be taken aa 

'iJ 77 = P 3 ~ + ~<al ).2 

Sp = q$s ] 0... ( 57) 

. 
.Af'ter calculating the lues ot p and ?') at the end of eaoh step these 
values are i erted in (28) and the resulting quadratic tOl:' q ia solved, 
the root which derives by continuous variation of 7J and p trcm qr2.~ = - <t 
being oho en in each oaa o 

The results of application of thia proceaa are given in Table 1 
and are shown graphically in Fig. 3o Valuea of the principal variables 
~Ir.,.,~ and 7J lr4

4 are given in cola. 1 and 2, Table 1. Values of p and ~cv:J.:t 
are given in cola. 3 and 4.o Using these values of p, q and s values of 
<581 <J't' calculated :f"ran ( 29) are given in col. 8, and the correapmd1 ng 
values of <Yl'/Y and a-8 /Y in cola. 9 and 10. It will be seen that <Ye which 
begins aa a cc:mpressive stress equal to half the radial stresa at the outer 
limit of the region of finite plastic flow rapidly decreases till when 
'S Ir:= o. 3 5 it beca:nes zero ,and if the process ia carri d f'urther, using ( 29), 
oe becanes a tenaiono When llr: = 0.30, tor instance, the calculated value 
of ~l<>r is -Oo 124-o For values of l /r; leas 'than O. 35, therefore, the 
alternative form (31) of the equilibri equatioo must be used. 

Since <rl' ia continuous and equal to -Y at "f Ir: = Oo 35 and 08 a 0 
when S Ir~ is just greater than o. 35, while :Mohr's criterion ensure• that 
0-.- - <Y"s = -Y when o-. ia positive, it seems that 08 a 0 when ~ lr2

4 ia ~t 
leas than O. 3 5o Since both CY;. and o; are therefore in thia case continuous 
through the radius where <Ye changes sign, e ... and e.9 are also continuous. 
Hence t'rcm (13) q is ccntinuoua. The values o:f' "} 1 p and q at 'Slrt' = 0.35 
can therefore be inserted in (31) and the value of w = dl?J/d -S- 3 at 
! Ir; = O. 35 determ:i.ned. 

The changes in lJ , p and q during the first step Ss in the new 
region ar~ calculated using the fcmnulae 

~71 = P~S + h(~~)2 
+ iw(~'J') 3 

~ p = q s ! + t.r<~ st 
~ q = "'~s 

... o (58) 

Values of ?Jlr,..'-, p, -qr; and wr:J.4 found in this w~ are given in the lower 
part of Table 1 , correspond.in~ with O .. 3 5 > ~ ~2 > O. 205. Values of o-9 Io-,. , 
<J.,./Y and {T,,/Y tra:n (32) and {33) are given i"h cols. 8, 9, 10 of Table 1. 

Condi tioos at edge of hole. 

It will be een in Table 1 that as ~Ir~:! decreases to O. 21 , ~cv:1 
and wr2,.. are ri ing very rapidly. A study o:f' the values of the te:nu in 
(31) reveal.a that by the time "!Ir: = O .. 21 is reached, one teim on the R.H. S. 
o:f' the equation and one on the L. H. S. are larger than ~ other terms. The 
limiting tom. of' the equation when '>'} ia small is in :fact · 

= - 2q • • • • ( 59) 



- 13 -

Thia equatioo can be integrated twice, thus 

A ?1 -k-3 - q : I 

and p:l = B - 6A ?'] 1:J 
•••• ( 60) } 

A and B being the two constants of integration. To determine the constants 
the values of ?J/r: = 0.012, p = 2.326, qr:= -23.22 can be used at s= 0.21. 
The resulting values of A and B are 

-% A = 1 • 217r :t 3 , B = 6. 78. 

The limiting value of p when 7J = O is therefore 

p = .j 6. 78 = 2. 61 
~•O 

( 61) 

Thia is the limiting value of h/h0 at the edge of the hole and may ~e 
canpared with Bethe's value 2.0. It is not very different fran the value 
at s /r; = O. 21; to find the l1mi ting value of ~ therefore it ia 
sufficient to take pas constant and equal to 2.b1 in the interval during 
which 1J decreases fran 0.012 to o. Thus the limiting value of s /r; 
corresponding with the edge of the hole is 

'S, r-l. = 0.21 - 0•012 = 0.205 
'1=0 .t 2. 61 

The ratio radius of finite p1aatio deformation is 
radius of hole 

..!). -
b -

1 
J 6 .. 265 = 2e21 

This may be canpared with Bethe's value 2.0. 

• • • • ( 62) 

•••• (63) 

Substituting the approximate limiting forms of p and q fran (40) 
in (32) the limiting tom for <J9 / o-,.. is 

Lt 
7/•0 

= 7. 3 ~ 1 
4o 86 77'i+ z. 78 -

Thia tends to the value -1 as indicated in the la.st figure of col.8 and the 
corresponding values of a-'I' and 09 are theref'ore -0. 5Y and +O. 5Y. 

It will be noticed that the stress at the internal boundary could 
have been predicted a priori if it had been possible to aasume that h/h0 

is finite at r = b, beoauae clearly the total amounts of strain in the 
tangential and radial directions are both infinite at a hole which baa been 
enlarged f'ran a pinhole. Thus the state of strain at the hole is such 
that symmetry alone must ensure that oz is exactly half way between o-"" and 
09 • Since Oi. = 0, ot- = - OB • Similar considera tiona can be used to 

understand w}zy' the stress at points just inside the boundary r = r~ 
corresponds with (09/ or) = +O. 5, for at the edge of the region of finite 
plastic displacement, where the radial displacement ia zero, f. 8 = o. Thus 
C.., = - Cz. and cr-8 must therefore be exactly half way between er-"' and O-z • 

Hence, since ~ = 0, 0-e = -!-~· 
Expressions in tezms of radius of hole. 

The radial varia.ble is expressed in terms of the radius of the 
plastic region. To~ress the results in terms of b, it is necessary to 
tabulate r/b = 2.21J ~/ra.• These values are given in col.6, Table 1. 
The displac8Ilents u/b = 2.21CJ'S -./'77 )r~'are tabulated in col. 7. 



- H .. -

The radial displacement ia abown graphically in Pig.3 which may be 
caupared with the diagrammatic aketch, Fig. 2. 

Ocapariaon with Bethe' a reaul ta. 

The thickness ratio h/ho = p is shown in Fig.4 and Bethe's values, 
namely b/h 0 = 2b/r, are also shewn. It will be seen that the main dif'fer­
enoea a.re that the present calculation shoo the "crater" extending further 
radially than Bethe's and at the same time the "crater" is much steeper close 
to the hole. At first sight it might be thought that the extra thickness at 
r = b above Bethe's 2h0 means that the work done in expanding the hole is 
greater according to the present ca.lculationa than in Bethe's calculationa, 
but tbia ia the reverse of the truth for the ra.dia.l stress at the hole is only 
-iY instead ot Bethe's -Y. In fact the work done in expanding to a given 
radiua ia only 2.61/4 = 0.65 ot the work done if Bethe's atrain assumption ia 
uaed.. 

Fig.5 shon the distribution of atress. This ia of course very 
different fraD Bethe's, the most striking difference being that the preaent 
calculations predict a state of tangential tenaicm in a ring which extend.a to 
3qC of the radius of the hole frail its edge and a tangential ccmpression frcm 
that point to the edge of the region of large plastic distortion. In the 
plastic region lj > r >r~, where mall strains ccmparable with the elastic strains 
occur, the atreaa ia u calculated. by Bethe, ioeo there is a tangential 
'tenaion. In thia connection it may be noticed that in ccmparing calculationa 
ot tbia kind with the behaviour of real materials a metal which experiences 
conaiderable hardening with cold work might give results di:ffering widely frcm 
the above theory. The extra hardness of the material near the hole might be 
expected to prevent the fonnatian of the thin lip shown in Fig.4 which the 
analysis predicts for an "ideal" plastic solid. 

TABLE 1. 

1 2 3 4 5 6 7 8 9 10 

l/r~a ?J/r; -qr; wr+-
r u -2:!. ...!U:.. oc p .2. b b a-,.. y y 

1.0 1.0 1.0 0.25 2.21 0 +O. 50 -1.0 -o. 50 ~ 0.90 o.899 1.025 0.305 2.096 .001 -1.0 -0.47 
0.80 0.795 1.055 0.381 1. 978 .008 +0.440 -1.0 -0.44 )~ 
0.75 o. 741 1.075 0.431 1. 915 .012 +0.397 -1.0 -0.40 ~~ ~ 0.10 0 .. 687 1.096 0.493 1.850 .019 +0.370 -1.0 -0.37 
o.65 0.632 1.121 0.566 1., 782 .024 +0.343 -1.0 -0.34 ~a~ 
0.60 0.575 1 .• 149 o.66o 1. 712 .035 +0.310 -1.0 --0.31 ori ..µ 

o. 50 0.457 1.257 0.998 1. 563 .010 +0.212 -1.0 ~0.21 l ~ ~ O' Q) 

0.45 0.392 1. 317 1.240 1. 4.83 .100 +0.152 -1.0 -Oo 15 Q) ~ 

0.40 0.325 1.379 1. 583 1. 398 0138 +0.082 -1. c -0.08 ~ 
0.35 0.254 1.450 2.010 1.307 .194 +0.000 -1.0 0 ~~ 
0.30 0.179 1. 554 2.910 1. 210 .276 -0.124 -1.0 +0.12 ) 

0.35 0.254 1.450 2.010 26.5 1.308 .194 .. 
0.30 0.178 1. 58'7 3.397 57.3 1. 210 .278 -0.092 -0.916 +0.084 I~~ 0.27 0.129 1. 715 5.117 108.0 1o 149 • 356 -0.168 -0.857 +0.143 ..._. ori 

•• +:ta 
0.24 0.075 1. 917 8.357 281.0 1.083 .478 -0.328 -0.753 +0.247 &·~ 
0.22 0.034 2.140 13. 98 934.0 1.037 • 630 -0.569 -0.638 +0.362 Q) a 
0.21 0.012 2.326 23.22 5190.0 1.013 • 771 -0.739 -0.576 +0.424 

) ~ ~ 0.205 0 2. 61 0) ().) 1.00 1.00 -1. 000 -o. 500 +0.500 
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