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CONFIDENTIAL. R.C. 279.

MINISTRY OF HOME SECURITY.

CIVIL DEFENCE RESEARCH COMMITTEE.

Notes on H.A. Bethe's "Theory of armor penetration".

I. Static penetration.

By Professor G.I. Taylor, F.R.S.

The first part of this paper describes the static stresses in a long
cylindrical hollow cylinder and in a flat sheet when a concentric hole is
opened out by radial pressure applied over its surface. Within a certain
radius the material is assumed to be overstrained and to flow radially.
Outside this radius the conditions are elastic. For the thick cylinder,
where it is assumed that there is no extension parallel to the axis of
symmetry, the problem and its solution are identical with those given in text
books of gunnery in connection with the autofrettage of guns and with those
which have been used in designing cylinders for high pressure work. In this
case the type of the strain can be related ately to a single variable,
namely the radial displacement which is a function of one independent
variable{ the radius, and one parameter, the radial displacement of the inner
surface. This consideration remains true when, as in the case considered
by Dr. Bethe, the strains in the inner plastic region are not small.

The hole in a thin plate is more interesting and more difficult to
analyse because it is no longer possible to treat the strain as two dimens-
ional, so that the relationship between plastic strain and stress must be
considered. It is usually assumed that hydrostatic pressure merely
campresses a plastic material without altering its strength to resist shear
stresses. For this reason it is sametimes convenient in camparing various
theories of plasticity to use reduced principal stresses 0', =0 =P
G, =63-P o3= 03~ D, where 3p = o; + 0, +0,, 80 that o ,'+o-J_'+a—3sO.
Similarly reduced principal strains e/ -e,-e, e =e,~-¢e, e =e3 ~-¢e
where €, + €; + €5 = 3¢ and e represents the volunetric strain. The
plasticity relations are concerned firstly with the maximum values which the
stresses c' - oa ’ 0—3 can a.tta.in before plastic flov occurs and, secondly,
with the dependence of e, 5 e g e3 on 0' » 0'3 - 0-3 - These two kinds of
plasticity condition are quite unrelated to one another. Of the first type
two alternative hypotheses are mentioned by Dr. Bethe, namely those of Mohr
and v. Mises, and he points out that there is but little difference between

them.

For two dimensional problems, where if the compressibility be
neglected we may take e; = O, the second type of plasticity condition does
not affect the distribution of stress in the plane to which the displacements
are confined. This is because when e3 =0, e, = - el, S0 that only one
kind of strain is possible when the directions of the principal strains are
assumed to coincide with those of principal stresses. i

The case is very different when the strain is not two dimensional.
Here it is necessary to choose some arbitrary law or to use experimental data.
The problem can be visualised by thinking of the relationship between the
stress ellipsoid and the strain ellipsoid.

The following points may be noticed:-

(1) The absolute magnitude of the stress ellipsoid is related to the
strength criterion, e.g. the Mohr or v. Mises criteria.

1
not counting as parsmeters the campressibility of the material or
the yield strength.
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(2) The absolute magnitude of the strain ellipscid bears no relation-
ship to the stresses if the plastic body is assumed to possess the
property that flow will occur when the yield stress is reached.

(3) It is a necessary condition of isotropy of the plastic material
that the directions of the principal axes of the stress and strain
ellipsoids shall coincide.

(&) Owing to the fact that e] + e + ) =0 and 0, + 6,'+ 03 = 0, it is
necessary to know only one relationship in order to determine the ratios
e, : e, : e, when the ratio of any pair of o; , C., 05 is knom. This
relationship can conveniently be defined in terms of fwo non-dimensional
variables 4 and V (Lode's variables)

B = Zu-. -1, V= 222- 22 _ 4
o, = 03 o il

where 6, > O, > 0. These variables are chosen for convenience so that
p lies between -1 and +1. It seems that all plastic materials must
satisfy the relationship e, > e,> e, when O; > 03> 03, 80 that ¥V also
lies between -1 and +1.© The observed relationship between p and V
for mild steel, soft iron and copper is given in a paper by Taylor and
Quinney', and for copper, iron and nickel by Lode?. For all these
metals the relationship is substantially that shown in Fig.1, which also
contains Taylor and Quinney's experimental results. This experimental
relationship may be compared with that which exists in all Newtonian
viscous fluids, namely . =y . It is found experimentally that p =V
for lead at atmospheric temperature and for glass heated till it is just
soft enough to flow. In developing theories of plasticity same workers
have assumed the relationship p =y . It seems unlikely that the
divergence between the observed relationship and the assumed p = v
will give rise to much error in calculating stress and strain distri-
butions. It will be noticed that the assumption g =V , though used
by v. Mises, is quite unrelated to v. Mises' criterion of strength. The
relationship p =V could equally well be used with Mohr's strength
relationship, namely that flow begins when o¢; - 03 = constant = Y.

Bethe's stress-strain assumption.

Bethe considers two regions of plastic flow, the outer one
extending inwards from the outer limit of plastic flow r = r, to the radius
r = r, at which the tangential stress ceases to be a tension. In this region
the radial stress must be taken as o; , the tangential tension as 0; , and 03 ,
the intermediate stress normal to the sheet, is zero. Between r = r, and
r = r,, therefore, Lode's variable p is positive but <1. Atr=1r, n =1
since at that point 0; = 6, = 0. In this region Bethe's strain assumption
(which he attributes to Mohr) is that the plastic flow is limited to the plane
of the sheet, no thickening occurring (see p.9 of Bethe's report). If the
strain is limited to the plane of the sheet e, = O and if the effect of
compressibility is neglected e; = -e,. Thus in the region r>ror,, V=0,
This is shown in Fig.1 by means of the line AB.

Though Bethe's strain assumption is very far fram what is observed
in experiments in which plastic strains are measured, yet this does not
necessarily detract from the value of his calculation of stress distribution
in the region r,>r>r,, because with the "jdeal" plastic body, which begins
to flow as soon as the stress reaches a given value and continues flowing
until the stress is reduced, an infinitesimal plastic strain may enable the
equilibrium stress distribution to be attained. In other words, if only a
small thickening of the sheet does occur it will produce only a negligible
effect on the stress distribution.

y "Versuche #iber den Einfluss der mittleren Hauptspannung auf das

Fliessen der Metalle, Eisen, Kupfer und Nickel", Z. Fhysik,
vol. 36 (1926).
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In the range r, >r > r,, when the maximum stress difference is that
between the two principal stresses in the plane of the sheet, the equation of
equilibrium is sufficient, with Mohr's strength condition prescribing a
constant difference between them, to determine the stress. Inside the radius
Ty, i.e. when r,>r > b where b is the radius of the hole, the tangential
stress g; cannot remain positive (tensile). Two alternatives remain -

(a) 0, becames negative (i.e. there can be a compressive
tangential stress) or

(b) 0p = 0.

@

Bethe rejects alternative (a) because in that case 0, would be the
intermediate principal stress and by his strain assumption it would be
necessary that no strain could take place in the tangential direction. This
would preclude any radial displacement. He is left with (b) as the only
possible alternative consistent with his strain assumption, namely 0; = O.
This alternative, however, suffers from very severe disadvantages. The stress
at every point is one which is symmetrical about the radial direction, i.e.
the stress ellipsoid at any point is a spheroid whose axis of symmetry is
along a radius. On the other hand the plastic strain which according to
Bethe's calculation results fram this symmetrical or uni-directional stress is
very far fram symmetrical and is variable along the radius. Expressed in
terms of Lode's variables the stress in the range r,> r > b is represented by
p = 1 while the strain is indeterminate and covers a range of the line p=1
in Fig.1.

Since the alternative (a) that 0, becames a campressive stress when
r { r, is perfectly possible if other stress-strain assumptions are used, it
will be seen that the sole reason for Bethe's conclusion that Op = O is that
he assumes that when a stress is applied in one direction (e.g. a pure
pressure or tension unaccompanied by transverse stresses) the strain is
campletely indeterminate. A round bar, for instance, when stretched in an
ordinary testing machine, would, if it obeyed Bethe's stress-strain law, in
general acquire an elliptical section and it is this assumed asymmetrical
property of plastic material which alone is respomsible for Bethe's conclusion
that 0, = O.

It would seem better to abandon the attempt to give a reasoned
Justification of the assumption that o, = O when r,>r >b and to fall back on
the fact that this assumption enables a stress distribution to be determined
without reference to the strain. The equilibrium equation then suffices to
determine the thickness of the plate. Comparison between the results
obtained by assuming that O, = O and those observed experimentally might then
afford a Justification for this assumption as being adequate for demonstrating
the features of the mechanics of the problem which do not depend on the
relationship between plastic stress and strain.

Though Bethe manages, by endowing his plastic material with the
ability to suffer unsymmetric strains when subjected to a symmetrical stress,
to avoid all consideration of successive steps by which any given
configuration of finite strain is attained, this simplification cannot in
general be made. In fact, so far as I am aware, no problem of plastic flow
which involves finite displacements has ever been obtained except in cases
such as the expansion of an infinite cylindrical tube by internal pressure,
where symmetry alone enables the strain to be determmined. For this reason it
seems desirable to formulate the equations for plastic radial flow round a
hole in a sheet in a form which can be applied to any desired law of strength
such as Mohr's or v. Mises' or any desired relationship between Lode's

variables 4 and v .
Analysis of strain round an expanding radial hole in a sheet.

When a hole is enlarged the finite strain at any stage is made up
of infinitesimal elements of strain which vary as the enlargement proceeds.
Thus when a small pin hole in a plate is enlarged we must study the small
strain produced in an element of the sheet which was originally at radius s
fram the pinhole, when the hole enlarges from radius b to radius b + $b.
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In the more general case when the initial radius of the hole in the
unstretched sheet is not zero this is very difficult to analyse, but when the
expansion starts from a small pinhole it may be expected that the configur-
ation when the hole has radius b, will be similar to that round the hole when
its radius is b, except that the radii where any given thickness occurs will
be changed in'the ratio b,/b;. Thus if h is the thickness and u the radial
displacement, it may be assumed that h/ho and u/b and also the stresses are
functions of s/b only: where h, iz the initial thickness of the sheet.

To simplify matters I have assumed that the campressibility is so
small that it may be neglected and the material taken as incampressible.
The relationship between the small strain which occurs at any radius during
the expansion of the hole through a small increase in radius fram b to
b + § b can be understood by referring to Fig.2. Here the ordinates
represent u and the abscissae r.

The initial radial distance s of the element which at a subsequent
stage in the opening out of the hole is at radius r is related to u by the

equation

r = 8+ u Svin 8H4)

In Pig.2, therefore, the displacement of a particle fram its initial radius s
is represented by a line drawn at 45° to the axes. In particular the
displacement of the particles whichowere initially at the pinpoint where the
hole began is represented by the 45" line OEF . The curved line P,AQ,
represents the relationship between r and u which it is the object of the
analysis to calculate. At a subsequent stage of the expansion, when the
hole has expanded from radius b to radius b + §b, the curve P, BCQ,
representing displacement is similar to F,AQ, but with its linear dimensions
increased in the ratio (b +§b) : b; thus in Fig.2 BPo _ AC _ AD _ SDb
so that OF, A0 r b

AD = rdb/b. ST

If Sr is the change in r for a given particle of material when the hole
expends fram b to b + b, §r is found by drawing the line AB at 45° to the
axes to meet the curve P, BCQ, in B. If 3b/b is small enough, the arc CB
may be taken as straight so that if T -d is the slope of CB to the axis

- - tan o . irereh &5

If A is the angle A0 Qo tanﬁ = u/r. Fram the geametry of the figure
ABCD (Fig.2)

Sr = AP = BF = CE tana + DA tan/8 = (DA-dr)tanct +DA tan /8

«biie st
Hence
$r = ("‘;“’: ;a;a:.ﬁ)m kB
and from (2)
u_u
or = :-3:;. r% PR ¢ S

The radial strain component during the expansion of the hole fram b
tob +3b is ) (S and differentiating (6) with respect to r keeping
r

§b constant,
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Since the strain during expansion of the hole fram b to b + 3b is
proportional to §b/b, it is convenient to define strain canponents B
and Bz so that strains during the small enlargement &b are £ _3b/b,
€,9b/b, £,8b/b. With this definition

€. = _[ riﬂu)":l si;‘i wratd 1

1"ar

The tangential strain is simply

§, i & ar B

and the strain perpendicular to the sheet is
. P Ea ppdapig 1

The thickness h at any stage can be found simply fram the equation of
continuity: it is given by

B = (1 -%)(1 - coni ()

where ho is the initial thickness of the sheet.

It is a simple matter to verify that (10) is consistent with (11).

These expressions for strain take simple forms when expressed in
tems of a new independent variable § =r * and a new dependent variable
7 = 8* = (r-u)®>. Making these transformations and writing

2

p=%§- ! qz%g’} b

(8) and (9) became

= - + 2 #—72- R

s o 533 s
&, iy -'5313 o {1h)

while (11) reduces to the simple form b/h, = p. sses LI

It is a simple matter to deduce (14) directly fram (15).

The stress equilibrium equation for a thin sheet is

sé-(ho;) + -(6-"—--51 = 0 PR L
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Two possible alternative forms for the strength conditiom might
be considered:-

(a) Mohr's stress criterion which may be written

0p -0 = Y if o, is positive, i.e. tensile
or = o‘r = Y ifo—’ 1. Mg&tiw, io‘o (17)
. compressive
(b) Mises' condition which may be written, when O, = O,
2 X
C +9 - 0';0',. = constant eseo (,78)

This reduces to = 0,. = constant if 0; = O and so is identical with
Mohr's in that case.

If Bethe's assumption that Oy = O cambined with O; = constant is
used, (16) leads to

hr = constant = h,r, WS (L 2

where r is the outer boundary of the region of finite plastic strain.
Substituting in (11)

_.il = - oms - %
(1 ) (1 ) L L (20)
which gives on integration

Hr-u)* = rr, + constant bwie X8%)

Since u = O when r = r, the constant is -%(r;)"and

u = r- J(2r - ry)r, i - RER)

The inner boundary is where b = r = u, so that fram (22)

b = ir, PR ¢ 2§

which is Bethe's result if r, is identified with his r,.

Plastic strain assumption m = V.

The only simple law so far proposed for the relationship between
plastic stress and strain which is consistent with isotropy and at the same
time resembles what is observed with metals is that represented in Lode's
variables by g =V, i.e. small strains or rates of extension in the
principal directions are proportional to O; - P, 0O, = P, O3 = P In the
present case where o, = O this is represented by the equation

o . So-8s _ &+ 28
Lo~ 2 v

Substituting (15) and (24) in (16) the equilibrium condition reduces to

2% (pe3) +2,§ﬁ' (zééf%)‘ 0 eeeo (25)
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This equation must be used in conjunction with a strength criterion. Mohr's
criterion (a) will be used. 1In this case (25) assumes two different forms
according as Op is negative (i.e. campressive) or positive (i.e. tangential
tension). These are

Op negative, O, = -Y 8o that (25) becames

2q + § 26‘;-+8’ ) sees (26)
6, positive, Oy - Op = -Y so that from (24) Oy = 2_2?:_*__% (-Y)
hence 2 2 [p(.%g_;%” v 2.0 iioe S00)

Substituting for € and €4 fram (13) and (14) the resulting
equations may be written:-

Op negative (tangential campression)

2 2
q"(-‘-;;l £ q(_1 +!_;)z) =16 *2175) ‘g cees (28)
In this cass
2
é!,_,_l:g_:_! g:“{-gﬂ seee (29)
8)‘ ..2q+§, O-Y‘ p

and in terms of Mohr's strength criterion the stresses are

o;‘ = -Y) o—’ s =Y (3_67.’) ecee (30)

_Op positive (tangential tension)

I+13 2 2 2
3w(-'-'2-)( '?) N _'ai%_,,qz(%“n.pz) +2q(.1 ,2:1;_?31)
o
“’E" vityp - ° ceee (31)

3
where w is written for dq i.e. d7 -
T P

The expressions for £e/€y and 0,/03 cannot be simplified by
using the equation of equilibrium and the full expressions derived fram
(13), (14) and (24) must be used, namely

-
gx Fob.e z.P Ridn 699 _ PRy 1
3 -1+-%§+g% Or lu)qo-nxz-pa‘

and in terms of Mohr's condition O = 0, =Y the stresses are now
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oy = =Y/(1 -o—a/o;) 3
3 'Ygf)/(‘ -6/c}) ; g1 09

It will be seen that (31) is an ordinary differential equation of
the third order and first degree while (28) is of the sscond order and
second degree. The reason for this difference lies in the form of Mohr's
strength condition. When g is positive three boundary conditions can be
assigned at any given value ¥ (i.e. of r). These might, for instance, be
u/r, h/h, and O, which can be transformed directly in assigned values of g,
pand . When G, is negative 0, cannot be assigned arbitrarily; it is
in fact constant. Thus only p and % can be assigned arbitrarily.

Boundary condition at the elastic-giastic boundary.

The elastic stresses due to radial displacement in an infinite
sheet are

-6r = O0p = 3r’/r* eeoe (34)

where r, is the radius at which 6. - G, = -Y. The corresponding small
radial displacement is :

¥ 1;n(%)_:4; ' D B 1Y)

where E is Young's Modulus and m is Poisson's ratio. In the present
investigation campressibility will be neglected and we will take m = 3.
In the elastic region therefore

N = r2'<1 =%)1 = 5 ( -»%%-‘.%3') eeee (36)

At the inmer boundary of the elastic region therefore

p:d”]/dg = 1, q=0, 7 =§(1 -%%) v £ 5)

At the outer boundary of the plastic region since Op is positive Mohr's
criterion ensures that O, - O = =Y. Since O, is necessarily continuocus
through r = r, , and it is assumed that O, - O, = -Y at the elastic limit
in the elastic region, 0, must be continuous through r = r, and equal to
Y. It is important to notice the reason why Op is continuous at the
plastic boundary in this case, because it is not necessary in general that
0, shall be contimuous when Mohr's criterion is used. It will be shown
in fact that Op is discontinuous on the circle r = r, within the plastic
region where Gg = O.

Strains and displacements when r; >X >Xa.

In the region within the circle r = r, where Og is positive, it
will be found that the strains are small, being of order Y/E. Assuming
that 7 = & (1 -(xa),) and p = 1 +ap,, where X = 3Y/2E

p = %:1-‘aﬂ).-a‘§%ﬂsb so that p = —77,-3%.332' Lsak 18)

and q = %§ =O(.§'55L = -“(2%+3%%) cese (.39)




When O is positive
= =Y M = 1‘! -p“?)/;‘*l"'q% PRSI £ 7
b (&r-s,) "<-p+n/*5+7) P -

Substituting from (38) and (39) in (40) and neglecting temms in «* canpared
with those containing «

Oy = -‘gy(u+¢%) ek AMEY

where = d7),/d¥ and Y'= dy/da¥.

Substituting this in (27)

4 R .
AT A ek

Neglecting terms which contain & as a factor compared with those that do
not, p may be taken as 1 and (42) may then be integrated giving

W 2
s +%4n¥ = constant ioed {&3)

The boundary conditions at r = r, arep, =0, 7, =0, q =0, 80 that
vY¥ =1, 3*¢'=-2¢y¥=2. The constant in (43) is therefore
-1 + §€a(r*). \Writing 5 for £n(¥/r?), (43) therefore becomes

The integral of (44) is
Loy + 5 + 3(3 +3) = constant
2 SRR S T\ £o] S vess (45)

the constant being chosen so that the correct boundary conditions are
satisfied at r = r.

Since ¥ ¥ = d7%,/d%, (45) may be integrated. Hence

= 3 i ceevoe
WA T .
The equation for the thickness is

h d a 1 1+3
LR TARSTGAL JRERG ["’m} ey

The displacement is

%

u=3" - 77}" = fanr = sar |:.-Z.(1 +§3)—2- i-:l cose LAB)
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The stress can be found by substituting fram (44)
Gl i 18 3y
R 17y f'or\’,'a’%t L aifor y in (1)
It is found that

o;

Y(1 -3) = -3 {1 - 2n(z/r,)} 60s 52(49)

and hence
% = Y-on = {1+ 26(x/r,)} ceen (50)

This is the well known result which can be obtained without considering the
strains and displacements, if it is assumed that the thickness of the plate
does not vary.

Values when op = 0.

The radius r, at which gz= 0 is fram (50) r, = r,/Ye = 0.606r,
and corresponds with ¥ = -1.

Though the stress distribution in the range r,>r >r, is
identical with that found in Bethe's investigation the dlsplaceunents and
strains are not the same. For the case when Poisson's ratio is % Bethe
finds the displacement when 043= 0 is

u, = %ar,a/rz = %(x,rz(e) = %¢r1(2.718) Rd (51)

Putting 5 = -1 in (48) the displacement according to the present strain

hypothesis is
0.%& (5‘(;%;: 8 1) = %ara(%l) = far,(2.875) .. (52)

The displacement is in fact about 6 per cent. greater than that calculated
on Bethe's strain hypothesis.

Putting 3 = -1 in (47) the value of h/h, at r = r, is 1 + 3«
and from (39) and (44)

< d o _6+ = S
‘“(Z‘V*Ese) “'”(2 '3“:5;‘) ““’(3 .

hence fram (45) .

ffe
U]

xS
G +3)( + 35)°

q =

so that when 3 = -1,

R Y . o
Q= -2l eses (53)




Boundary values at Op = O.

At the circle r = r, where 0, = 0, p and 7) are continuous. Just
inside the circle therefore, where o, is negative

% = 1=-an = 1+o"(§(2%’ﬁ-1) = 1-%“ eeee (54)

| BRI
and,ps.il-;-1+%o(

When o} is negative g is determined by (28) when 7/% and p are
given. Substituting in (28) from (54) the values of q§ found by solving
the resulting quadratic equation are (neglecting terms in o?)

e de RERS T
Q¥ = 3 _z,‘:.cc and Q4% -Z-BE‘ . (55)

Neither of these values is the same as q = -27x/16, the value just outside
the boundary, so that q is not continuous at r = r, .

Trying first the value q§ = + 319¢/8, §, and {, are calculated
fram (13) and (14). Their values are

Ep = +_555 and Eez—ggﬁ
so that from (24)

O _ =2(27) + 35

o5 >

and since 0; is continuous and equal to -Y, Op would be positive. This is
inconsistent with the condition that O, is negative or zero inside r = r,,
thus the solution q¥ = + 310/8 must be rejeated. The only alternative,
Q% = -%- 2%%_0( must therefore be correct. It will be noticed that this

involves a discontinuity, not only in q but in £, and consequently in g .
This discontinuity arises from the form of Mohr's criterion. It would not
occur if von Mises' criterion had been used.

Discontinuity in &- and Op .

Substitutin = ol '« 202 a e det ={ -2
6 g oS, P g /s _.é.ﬁ

in (13) and (14), it is found that § = -2/, &n=-%Z - and
substituting these in (24) i .

se z 1.8
or 2§Tg

When & is small, i.e. when E/Y is small, we may neglect o and take as the
boundary condition at r = r; for calculating the stresses and displacements

when r < r, the values

p = 1,°%/¥ =1, a¥ =-% i#. < H56)

and the stresses are 0, = -Y, Op = 2Y.

Thus the stress o, suddenly changes fram O to a compressive stress
of %Y at the radius r = r,.
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Calculation of stress and strain when r<r,.

To calculate the distribution of stress and plastic strain inside
the radius r = r,, (28) must be solved step by step. This could be done
using the boundary values 7/r> =1 - 23«/8, p =1 + 3%/2, q¥= =% -81x/16
for any given value of o , but it will suffice for the present work to neglect
the small temms containing  and take as the boundary values ¥ /ri = 1,
p=i, ary = - 3% If §§ is the magnitude of a small step, the correspond-
ing changes p and 7 may be taken as

ps¥ + xa(s¥)? }
ad¥

After calculating the values of p and %) at the end of each step these
values are inserted in (28) and the resulting quadratic for q is solved,
the root which derives by continuous variation of % and p fram gr}= - %
being chosen in each case. )

]

87
3P

cees (57)

The results of application of this process are given in Table 1
and are shown graphically in Fig.3. Values of the principal variables
§/r2 and 7/r;* are given in cols. 1'and 2, Table 1. Values of p and -qry ?
are given in cols. 3 and 4. Using these values of p, q and ¥ values of ‘
0s/ 0y calculated fram (29) are given in col. 8, and the corres
values of 0;/Y and Op/Y in cols. 9 and 10. It will be seen that o, which
begins as a compressive stress equal to half the radial stress at the outer |
limit of the region of finite plastic flow rapidly decreases till when
§/ri= 0.35 it becomes zero,and if the process is carried further, using (29), l
o, becomes a tension. When ¥/r] = 0.30, for instance, the calculated value
of 0p/6 is =0.124. For values of ¥ /r; less ‘than 0.35, therefore, the
alternative form (31) of the equilibrium equation must be used.

Since 0} is continuous and equal to -Y at ¥ /r; = 0.35 and Op = O
when ¥ /r] is just greater than 0.35, while Mohr's criterion ensures that
0, - 0p = -Y when Op is positive, it seems that op = O when 35 /r;* is Just
less than 0. 35. Since both O; and 0, are therefore in this case continuous |
through the radius where 0, changes sign, & and {y are also continuous.
Hence from (13) q is continuous. The values of 7, p and q at_%/ry = 0.35 !
can therefore be inserted in (31) and the value of w = d“?; d%3 at
¥ /ri = 0.35 determined.

The changes in %, p and q during the first step §§ in the new
region are calculated using the formulae

|

|

A |

pST + 2a(SE)* + tw(sY¥)? :
I

$9 =
Sp = aS¥ + W(SY) eeeo (58)
9q = w3y

Values of ‘q/rz", P, -qra and wrz“ found in this way are given in the lower
part of Table 1, corres with 0.35> % a> 0.205. Values ofo‘,/o-,.,
6;/Y and 0;/Y fram (32) and (33) are given in cols. 8, 9, 10 of Table 1.

Conditions at edge of hole.

It will be seen in Table 1 that as 3’/1'; decreases to 0.21,; ~=qr;
and wr,' are rising very rapidly. A study of the values of the terms in
(31) reveals that by the time ¥ /r] = 0.21 is reached, one temm on the R.H.S.
of the equation and one on the L.H.S. are larger than any other termms. The |
limiting form of the equation when 7 is small is in fact: ¢

zi*a. gy gonl woua LO9) '
|
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This equation can be integrated twice, thus

-2
A7 3
. } ... (60)
B - 6A773

-
and pt

A and B being the two constants of integration. To determine the constants
the values of 7 /ry = 0.012, p = 2.326, qry = =23.22 can be used at ¥ = 0.21.
The resulting values of A and B are

A = 1021 71‘;2/3 9 B = 60 780

The limiting value of p when 7) = 0 is therefore

p = V6.78 = 2.61 e A0S

Ns0

This is the limiting value of h/h_ at the edge of the hole and may be
compared with Bethe's value 2.0. It is not very different fram the value
at ¥/r’=0.21; to find the limiting value of § therefore it is
sufficient to take p as constant and equal to 2.61 in the interval during
which 7 decreases fram 0.012 to 0. Thus the limiting value of ¥ /rl
corresponding with the edge of the hole is

% BT b B
SM = 0.21 - =52 0. 205 (62)

The ratio radius of finite plastic deformation is
radius of hole

Ba 7"61'15'? = 2,21 veed (63)

This may be compared with Bethe’s value 2.0.

Substituting the approximate limiting forms of p and q fram (40)
in (32) the limiting form for 0, /0;. is

%5
Lt 2 = _BZT% -1
1o g 4. 0678+ ©O.

This tends to the value -1 as indicated in the last figure of col.8 and the
corresponding values of O, and 0, are therefore -0.5Y and +0.5Y.

It will be noticed that the stress at the internal boundary could
have been predicted a_priori if it had been possible to assume that h/h,
is finite at r = b, because clearly the total amounts of strain in the
tangential and radial directions are both infinite at a hole which has been
enlarged fram a pinhole. Thus the state of strain at the hole is such
that symmetry alone must ensure that 0; is exactly half way between 0. and
O . Since 03 =0, Op== 0p . Similar considerations can be used to
understand why the stress at points just inside the boundary r = r,
corresponds with (0;/0;) = +0.5, for at the edge of the region of finite
plastic displacement, where the radial displacement is zero, €, = 0. Thus
€y = =€, and o, must therefore be exactly half way between o; and O, .
Hence, since @ = 0, 0p = &G

Expressions in temms of radius of hole.

The radial variable is expressed in terms of the radius of the
plastic region. To express the results in terms of b, it is necessary to
tabulate r/b = 2.21/§/r,. These values are given in col.6, Table 1.
The displacements u/b = 2,21([¥ - /7 )r;'are tabulated in col.7.
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The radial displacement is shown graphically in Fig.3 which may be
campared with the diagrammatic sketch, Fig.2.

ngrhon with Bethe's results.

The thickness ratio h/h, = p is shown in Fig.) and Bethe's values,
namely h/ho = 2b/r, are also shomn. It will be seen that the main differ-
ences are that the present calculation shows the "crater" extending further
radially than Bethe's and at the same time the "crater" is much steeper close
to the hole. At first sight it might be thought that the extra thickness at
r = b above Bethe's 2h, means that the work done in expanding the hole is
greater sccording to the present calculations than in Bethe's calculations,
but this is the reverse of the truth for the radial stress at the hole is only
-4Y instead of Bethe's -~Y. In fact the work done in expanding to a given
radius is only 2.61/4 = 0.65 of the work done if Bethe's strain assumption is
used.

Fig.5 shows the distribution of stress. This is of course very
different fram Bethe's, the most striking difference being that the present
calculations predict a state of tangential tension in a ring which extends to
30% of the radius of the hole from its edge and a tangential campression from
that point to the edge of the region of large plastic distortion. 1In the
plastic region r,>r >x,,where small strains comparable with the elastic strains
occur, the stress is as calculated by Bethe, i.e. there is a tangential
tension. In this connection it may be noticed that in comparing calculations
of this kind with the behaviour of real materials a metal which experiences
considerable hardening with cold work might give results differing widely fram
the above theory. The extra hardness of the material near the hole might be
expected to prevent the formation of the thin lip shown in Fig.)4 which the
analysis predicts for an "ideal" plastic solid.

TABLE 1.
1 2 3 L 5 [4 7 8 9 10

r u 0% o3
R e o el bw) g} % % e
1.0 }1.0 | 1.0 0.25 2,21 0 [+0.50 |-1.0 | ~0.50
0.90 {0.899| 1.025 | 0.305 2.096 | .001 -1.0 | -0.47
00 & 00 795 10 055 00 381 10 978 ° 008 "’OB u!-o "1 L] 0 -Oo ul— f:
0.75 [0.741 | 1.075 | 0.431 1.915| .012 [ +0.397| -1.0 | -0.40|) R
00 70 00 687 10096 0. b’95 10 8% 0019 ‘.’00 370 -100 "0- 37 sy q;
0.65 |0.632| 1.121 | 0.566 1.782 | .024 |+0.343] -1.0 |[-0.34]) 8§
0.60 |0.575] 1.149 | 0.660 1.712| .035}+0.310]-1.0 | -0.31|) B &
0.50 |0.457] 1.257 | 0.998 1.563 | .070 |+0.212| -1.0 | -0.21 8%
0.45 |0.392] 1.317 | 1.240 1.483 | .100 |+0.152| -1.0 | -0.15 8‘1
0.40 [0.325| 1.379 | 1.583 1.398 | .138 | +0.082 | -1.0 -0.08 Eb
0.35 |0.2541 1.450 | 2.070 1.307 | 194 | +0.000 | ~1.0 0 ge
0.30 |0.179| 1.554 | 2.910 1.210 | .276 |-0.124 | -1.0 | +0.12|)
0.35 |0.254 ] 1.450 | 2.070 | 26.5|1.308 | .19 5.4
0.30 |0.178] 1.587 | 3.397 | 57.3]|1.210| .278 |-0.092| -0.916 | +0.084f ) = £
0.27 [0.129| 1.715| 5.417 | 108.0| 1.149 | .356 | ~0.168 | -0.857 | +0.143f )~ ¢,
0.24 |0.075]|1.917 | 8.357 | 281.0|1.083 | .478 | -0.328 | -0.753 | +0. 247 ) & ¢
0.22 |0.034} 2.140 | 13.98 | 934.0] 1.037 | .630 | -0.569 | -0.638 | +0.362] ) ® §
0.21 |0.012| 2.326 | 23.22 |5190.0| 1.013 | .771 | =0.739 | =0.576 | +0.424 ) B .o
0.205(0 2601 | » o [1.00 |1.00 [-1.000|-0.500 | +0.500| ) & ©
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