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Hyperfine-structure parameters and isotope shifts of 195–211At have been measured for the first time at CERN-
ISOLDE, using the in-source resonance-ionization spectroscopy method. The hyperfine structures of isotopes
were recorded using a triad of experimental techniques for monitoring the photo-ion current. The Multi-Reflection
Time-of-Flight Mass Spectrometer, in connection with a high-resolution electron multiplier, was used as an ion-
counting setup for isotopes that either were affected by strong isobaric contamination or possessed a long half-life;
the ISOLDE Faraday cups were used for cases with high-intensity beams; and the Windmill decay station was used
for short-lived, predominantly α-decaying nuclei. The electromagnetic moments and changes in the mean-square

*james.cubiss@york.ac.uk
†Present address: Centre d’Etudes Nucléaires de Bordeaux-Gradignan, 19 Chemin du Solarium, CS 10120, F-33175 Gradignan, France.
‡Present address: Technische Universität Dresden, 01069 Dresden, Germany.
§Present address: TRIUMF, 4004 Wesbrook Mall, Vancouver BC V6T 2A3, Canada.
‖Present address: RIKEN Nishina Center for Accelerator-Based Science, 351-0198 Saitama, Japan.
¶Present address: ARC Centre of Excellence for Engineered Quantum Systems, The University of Sydney, NSW 2006, Australia.

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution
of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.

2469-9985/2018/97(5)/054327(19) 054327-1 Published by the American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.97.054327&domain=pdf&date_stamp=2018-05-29
https://creativecommons.org/licenses/by/4.0/


J. G. CUBISS et al. PHYSICAL REVIEW C 97, 054327 (2018)

charge radii of the astatine nuclei have been extracted from the measured hyperfine-structure constants and
isotope shifts. This was only made possible by dedicated state-of-the-art large-scale atomic computations of the
electronic factors and the specific mass shift of atomic transitions in astatine that are needed for these extractions.
By comparison with systematics, it was possible to assess the reliability of the results of these calculations and
their ascribed uncertainties. A strong deviation in the ground-state mean-square charge radii of the lightest astatine
isotopes, from the trend of the (spherical) lead isotopes, is interpreted as the result of an onset of deformation.
This behavior bears a resemblance to the deviation observed in the isotonic polonium isotopes. Cases for shape
coexistence have been identified in 197,199At, for which a significant difference in the charge radii for ground
(9/2−) and isomeric (1/2+) states has been observed.

DOI: 10.1103/PhysRevC.97.054327

I. INTRODUCTION

Laser spectroscopy provides a powerful tool for model-
independent studies of shape coexistence and shape evolution
phenomena in nuclei. In particular, measurements of changes
in the mean-square charge radius (δ〈r2〉), magnetic dipole (μ)
and spectroscopic quadrupole (QS) moments provide insight
into the underlying nuclear structure and the collective and
single-particle properties of nuclei.

Until recently, the application of resonance photoioniza-
tion methods for the investigation of astatine isotopes was
not possible. This was due to the lack of information on
the atomic level structure in astatine atoms, as a result of
the longest-lived isotopes of astatine (e.g., 207–211At) having
half-lives of only a few hours. Recent studies at CERN and
TRIUMF [1,2] determined the astatine ionization potential
and identified a number of excited atomic states (in addition
to the two low-lying levels known since the 1960s [3]).
Several suitable ionization schemes were found, which provide
an effective way for producing isotopes of astatine online,
thereby enabling isotope shift (IS) and hyperfine structure
(hfs) measurements by resonance ionization spectroscopy to be
performed.

It should be stressed, however, that due to the absence of
a stable or very long-lived astatine isotope, it is impossible
to apply standard semiempirical or calibration procedures to
determine the atomic factors needed for the extraction of the
nuclear parameters from the hfs constants and IS values [4].
Therefore, large-scale atomic calculations are the only way to
convert atomic observables to the nuclear parameters. Such
dedicated calculations have been performed in the framework
of this study. The assessment of their reliability and the
uncertainties ascribed to them was one of the aims of the work
presented here.

To cover the whole lifetime range of the At isotopes
(from 5 h to 30 ms), the multi-reflection time-of-flight mass
spectrometer (MR-TOF MS) [5] was used for the first time,
in addition to the Windmill and Faraday cup methods that
have previously been used for photo-ion current monitoring
[6,7]. The MR-TOF MS allowed access to isotopes that could
not be investigated with the other methods, due to too long
a half-life or unfavorable α-decay branching ratios, many
of which were affected by an otherwise prohibitive amount
of isobaric contamination. This combination of measurement
techniques substantially widens the range of applicability of
the in-source resonance ionization method, making possible
the study of isotopes that would be otherwise inaccessible.

Neutron-deficient astatine (Z = 85) nuclei demonstrate
a rich variety of shape coexistence and shape evolution
phenomena. The ground states of the odd-A astatine isotopes
are usually associated with the occupation of the πh9/2 orbital
[π (3p-0h) configuration], which leads to a spin-parity
assignment of Iπ

gs = 9/2− in the vicinity of the
N = 126 shell closure. In the lighter astatine isotopes
197,199,201,203At, the 9/2− ground states coexist with
low-lying 1/2+ isomers. Furthermore, the ground states
in 191,193,195At are seen to possess spins and parities of
Iπ
gs = 1/2+ [8,9]. These 1/2+ states in the odd-A astatine

isotopes have been interpreted as spherical-shell model
intruder states, created by π (4p-1h) proton excitations across
the Z = 82 shell gap, resulting in a proton hole in the s1/2

orbital [10–15]. Alternatively, in the deformed shell-model
approach, such 1/2+ states are associated with the population
of oblately deformed Nilsson orbitals.

In the even-A astatine isotopes, isomeric states have been
observed with spins and parities of Iπ = 3+,6+,7+, and 10−
[16]. The structures of these states are expected to be similar
to those of the even-A bismuth and thallium isotopes of the
same spin. Thus, the odd proton is expected to occupy either
a πh9/2 or πs1/2 state, coupled to the odd neutron occupying
one of the low-lying νp1/2, νp3/2, νf5/2, or νi13/2 orbitals.

The main goal of the present work is the laser-spectroscopy
study of the long chain of astatine isotopes, down to 195At where
an abrupt change in nuclear structure is expected to occur. The
structure of the paper is as follows: In Sec. II, the experimental
methods are detailed; Sec. III presents a description of the
analysis of the hfs spectra, and the extraction of the nuclear
parameters (further details may be found in the Appendix);
the results for the respective nuclear electromagnetic moments
and charge radii can be found in Sec. IV; the discussion of the
results compared to other nuclei in the lead region is provided
in Sec. V; concluding remarks are made in Sec. VI.

II. EXPERIMENTAL DETAILS

A. Beam production

The IS and hfs measurements of radioactive 195–211At were
performed at the ISOLDE facility (CERN) [17], using the
in-source resonance-ionization technique [18,19]. Astatine
nuclei were produced in spallation reactions induced by the
1.4-GeV proton beam (with an average current of up to 2 μA)
from the CERN PS Booster impinging on a thick UCx target
(50 g/cm2 of 238U). The spallation products effused out of the

054327-2

https://doi.org/10.1103/PhysRevC.97.054327


CHARGE RADII AND ELECTROMAGNETIC MOMENTS OF … PHYSICAL REVIEW C 97, 054327 (2018)

IP = 9.32 eV

6p5 2Po
3/2

6p4(3P)7s 4P3/2

Continuum

λ1 = 216.2 nm 

λ2 = 795.2 nm 

λ3 = 532 nm (Nd:YAG/Nd:YVO4)

I π= 1/2+I π= 9/2–

3

1

2

1

Hyperfine splitting 

F = I + J Ground state 
F0 = 6

24
50

1

2
J = 3/2

6

F1 = 3 

5
4

3

F2 = 6 

4
5

1
2

FIG. 1. The three-step laser-ionization scheme (levels labeled
from 0 to 2) for astatine [1,2]. The electronic configurations for the
levels involved and the laser wavelengths in air for each step are
shown. The hfs for the 9/2− and 1/2+ states of odd-mass astatine
isotopes are shown schematically (not to scale). The scanning of the
hfs was performed for both the 216.2- and 795.2-nm transitions.

high-temperature target (T ≈ 2050 ◦C) as neutral atoms into
the hot cavity of the Resonance Ionization Laser Ion Source
(RILIS) [20,21]. The astatine atoms were ionized within the
laser-atom interaction region of the hot cavity by applying the
three-step astatine photoionization scheme shown in Fig. 1.
The ionization efficiency of this scheme, with all three steps
in broadband mode, is estimated to be higher than 4% [22].
The range of the yields of the investigated isotopes of astatine
was from ≈20 ions/s (195At using the WM), to ≈30 pA (205At
using the FC).

B. Photo-ion monitoring

After selective laser photoionization, the radioactive ions
of interest were extracted and accelerated to 30 keV, mass
separated by the ISOLDE high-resolution separator, and subse-
quently delivered to a counting station. For photo-ion monitor-
ing, three methods were used: the ISOLDE Faraday cup (FC),
for direct current measurements; the Windmill (WM) chamber,
for α/γ decay measurements of relatively short-lived isotopes
with T1/2 < 1 min; and the MR-TOF MS of the ISOLTRAP
experimental setup, for further mass separation and subsequent
ion counting [5]. In all three cases, the count rate of the
photo-ion beam was monitored, while the frequency, νL, of
the laser exciting the atomic transition of interest was scanned.

A detailed account of hfs scanning with the Windmill setup
can be found in Refs. [6,7]. The following will describe how hfs
measurements were performed using the MR-TOF MS device.

1. The MR-TOF MS

The MR-TOF MS was used for cases where the isotope of
interest was either too long-lived, the α-decay branching ratio

was unfavorable, or the levels of isobaric contamination from
surface-ionized francium were too high for measurements
to be performed using the Windmill system or a Faraday
cup. The suppression of isobaric contamination was the very
reason for implementing the MR-TOF MS at ISOLTRAP,
with high-purity samples being an important condition in the
context of precision mass spectrometry in Penning traps [23]. A
schematic overview of the MR-TOF MS is shown in Fig. 2(a).

The mass-separated ion beam from ISOLDE was first
delivered to the ISOLTRAP’s radio-frequency quadrupole
(RFQ) cooler and buncher [24], and then ejected as a bunch
toward the MR-TOF MS, with a typical bunch width of 60 ns
and energy spread of 60 eV. The cooled and bunched ions
were then trapped inside the MR-TOF MS and separated
into their isobaric constituents, following typically 1000
reflections between the electrostatic mirrors of the device.
The ions were then extracted from the cavity and detected
with an electron multiplier situated behind the MR-TOF MS,
obtaining a well-separated time-of-flight (TOF) spectrum
[see Fig. 2(b)].

The ion-counting application of the MR-TOF MS differs
qualitatively from the TOF measurements used for mass
determinations [25–27], as the former requires a very linear
response of the recorded count rate with the incident photo-ion
current. Such a large dynamic range (suppression of contam-
inating ions with respect to the ions of interest) of ≈104 was
achieved by employing a MagneTOFTM secondary electron
multiplier ion detector (DM291, ETP, Ermington, Australia)
and a multichannel scaler (p7887, Fast ComTec, München,
Germany) time digitizer, both having ≈1 ns time resolution.
In order to bring the number of simultaneously recorded ions
within the range of linear counting (<10 ions per isobaric
species), the accumulation time of the ions in the RFQ (beam
gate) was reduced to a few tens of microseconds. This is a
significantly shorter time window than that required for ion
separation in the MR-TOF MS (≈30 ms). This reduction was
compensated by running the MR-TOF MS at a frequency of
10 to 20 Hz (i.e., >10 ion bunches separated and detected
per second), an operation mode that was previously exploited
for ion stacking in a Penning trap, for high-precision mass
measurements [28]. This mode of operation provides a crucial
advantage for recording of high-statistic hfs spectra, in a
similar measurement time to that required by the Windmill
detection system, ensuring the MR-TOF measurements were
unaffected by target-ion-source instabilities (in particular, of
the laser setup). Furthermore, under this operation mode it
was unnecessary to rescale the beam gate during a single hfs
measurement, thus avoiding systematic errors due to beam-
gate nonlinearity.

Figure 2(b) illustrates the A = 210 TOF spectrum separated
by the MR-TOF MS and measured on the electron multiplier,
for the peak ionization efficiency of 210At. Even at the maxi-
mum 210At ionization rate, the contamination from 210Fr is ≈6
times larger. Nevertheless, the francium peak is completely
separated by the MR-TOF MS and a mass-resolving power of
≈1.7 × 105 was achieved. By placing an appropriate TOF
gate, it was possible to count the photoionization efficiency
of astatine, in a quasi-background-free manner.
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FIG. 2. (a) A schematic overview of the MR-TOF MS device in operation for a scan of 210At, (b) an example of a typical time-of-flight
(TOF) spectrum, and (c) the recorded hfs spectra, with (red circles) and without (black squares) a TOF gate placed on the 210At ions, with
intensities normalized for clarity. A mixed-species ion bunch (black bunches) from the RFQ enters the drift-tube of the MR-TOF MS through
the central aperture of the first electrostatic mirror with an energy of ≈3.2 keV, before being decelerated by the in-trap lift electrode to ≈2 keV.
The ions are then reflected multiple times between two electrostatic mirrors, separating the isobaric 210At (red) and 210Fr (blue) constituents
temporally, in accordance with the difference in their respective masses. The separation process takes ≈35 ms, providing a mass-resolving
power of ≈1.7 × 105 (a maximum resolving power of ≈3 × 105 has been achieved [29]). In order to extract the ion bunches, the voltage of
a central in-trap lift electrode is switched when the ions are passing in the direction of the detector, thus ejecting them from the device. A
high-resolution ion-counting system is then used to record a TOF spectrum, such as the one shown in panel (b). A TOF gate may then be placed
in order to count the photo-ion production rate as a function of the scanned laser frequency, in order to produce hfs spectra such as that shown
by the red circles in panel (c). The black squares in the plot in panel (c) represent how the hfs spectra would look without the placement of a
TOF gate (i.e., without the mass-resolving capabilities of the MR-TOF MS).

The single-ion sensitivity of the electron multiplier alone
was not sufficient to perform an adequate study of the highly
contaminated astatine isotopes. To illustrate this, Fig. 2(c)
shows the resulting hfs of 210At before (black squares) and
after (red circles) the TOF gate is applied. As can be seen from
this plot, the fluctuations in count rate due to the francium
background washes out the fine features of the hfs structure of
210At. Thus, without the mass-resolving power of the MR-TOF
MS, it would not have been possible to perform hfs and IS
measurements on a number of the isotopes presented in this
work.

C. In-source laser spectroscopy

The IS and hfs measurements were performed for two tran-
sitions (λ1 = 216.2 and λ2 = 795.4 nm; see Fig. 1). Examples

of the hfs spectra from scanning the 216- and 795-nm transi-
tions in 197Atm (I = 1/2) are shown in the top and bottom pan-
els of Fig. 3, respectively. Spectra obtained for selected astatine
isotopes are shown in Fig. 4 (216 nm) and Fig. 5 (795 nm).
The hfs of the second transition was better resolved than that
of the first and is therefore more suitable for hfs-constants
measurements. However, atomic calculations are usually much
more reliable for the atomic ground states than for excited
states, due to the increase in the number of valence electrons in
excited states. The measurements for two different transitions
enable us to check the validity of the atomic calculations (see
Secs. IV B and IV C).

For IS and hfs measurements of the λ1 = 216-nm transition,
a frequency-tripled scanning dye laser in a narrowband mode
(linewidth of ≈1 GHz before frequency tripling) was used,
while a titanium:sapphire (Ti:Sa) laser operated in a broad-
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FIG. 3. Examples of experimental spectra, collected of the (a)
λ1 = 216-nm transition and (b) λ2 = 795-nm transition, for the
1/2+ isomeric state in 197At. The measurements were performed
by counting the number of α particles with Eα = 6705 keV using
the Windmill setup, as a function of the laser frequency detuning.
Frequency detuning is shown with respect to the hfs centroids. The
solid red lines represent a fit to the data. The calculated positions and
expected relative intensities of the individual hyperfine components
are indicated by the vertical blue bars.

band mode (≈5 GHz) was used to excite the λ2 = 795-nm
transition. For hfs measurements of the 795-nm transition,
the frequency of the Ti:Sa laser was scanned in narrowband
mode (linewidth of ≈1 GHz) and a broadband (≈12 GHz)
frequency-tripled dye laser was used for the first excitation
step. In both cases, either a Nd:YAG or Nd:YVO4 laser was em-
ployed for a final nonresonant ionization step (λ3 = 532 nm),
and the power of the narrowband laser is reduced to avoid line
broadening caused by saturation.

During the experimental campaign, hfs spectra of 205At were
recorded on a regular basis with a Faraday cup, or the MR-
TOF MS, in order to check the stability of the experimental
conditions. More details on the laser and detection setups are
given in Refs. [7,19,30], and references therein.

III. EXPERIMENTAL DATA ANALYSIS

A. Position and relative intensities of hfs components

The positions of the hyperfine components, νF,F ′
, are

determined by the formulas [4]

νF,F ′ = ν0 + δνF ′ − δνF , (1)

where ν0 is the position of the center of gravity of the hfs, the
prime symbol denotes the upper level of the transition, and

δνF = A
C

2
+ B

3
4C(C + 1) − I (I + 1)J (J + 1)

2(2I − 1)(2J − 1)IJ
, (2)

where I is the nuclear spin, J is the atomic spin,
C = F (F + 1) − I (I + 1) − J (J + 1), and F is the total an-
gular momentum of the atom (F = I + J). The parameters A and
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FIG. 4. Examples of experimental hfs spectra collected for the
λ1 = 216-nm transition, for (a) 197At (I = 9/2), (b) 198At (I = 3),
(c) 203At (I = 9/2), (d) 205At (I = 9/2), and (e) 211At (I = 9/2).
Frequency detuning is shown with respect to the centroid of 211At. The
solid red lines represent a fit to the data. The vertical, black-dashed
lines represent the center of gravity of the hfs. The vertical blue bars
indicate the calculated positions, and expected relative intensities of
the individual hyperfine components. The isotope the hfs belongs to,
and the device used for the measurement are given in the insets.

B are the magnetic dipole and electric quadrupole hyperfine
coupling constants, respectively:

A = μBe(0)

IJ
, (3)

B = eQS

〈
∂2Ve

∂z2

〉
, (4)

where Be(0) and 〈 ∂2Ve

∂z2 〉 are the magnetic field and the electric
field gradient produced by the electrons at the site of the
nucleus, respectively.

To take into account the saturation of transitions, pumping
processes between hfs components, and population redistribu-
tion of hfs levels, the experimental hfs spectra were fitted using
a similar method to that described in Ref. [7] for the polonium
isotopes. In this work, additional considerations were made
for the polarization of the laser light and possible detuning of
the broadband laser radiation from the resonance. A detailed
description of the fitting procedure is given in the Appendix.

B. Hyperfine splitting constants

Prior to this work, there existed no experimental data for
hyperfine coupling constants of any atomic level of astatine.
Therefore, in order to determine the proper A- and B-constant
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(d) 205At (I = 9/2), and (e) 211At (I = 9/2).

ratios, it was necessary to perform a preliminary analysis of
the hfs for chosen isotopes.

1. The 795-nm transition

The limitation on the resolution of in-source laser spec-
troscopy due to Doppler broadening of the spectral lines
prevents the separation of individual hyperfine components in
the hfs spectra of high-spin nuclei (see Fig. 5). As the hfs of
astatine isotopes have not been measured prior to this study,
there are no high-resolution data available to fix the ratios of the
hyperfine constants for the upper and lower electronic levels
of the transition used in this study (as, for example, was done
in the case of thallium nuclei [31]). Instead, the well-resolved
hfs spectra for the 197Atm (Iπ = 1/2+) and the hfs spectra for
205At (Iπ = 9/2−) obtained with high statistics were used in
order to fix these ratios for all other isotopes of astatine.

For 197Atm (I = 1/2), the quadrupole hfs coupling constant
B equals zero and all four hfs components were observed
in the 795-nm line (see Fig. 3). From the relative intensities
and frequency ordering of the hfs components, the signs of
the magnetic hfs constants can be determined: A1 < 0 and
A2 > 0 (here, and throughout the text, the indices corre-
spond to the level numbering used in Fig. 1). Analysis of
the spectra recorded when the 216-nm laser radiation was
frequency detuned from the resonance position allowed for
the unambiguous determination of the frequency ordering
of all hfs components and the conclusion that |A1| < |A2|.
Fitting the 197Atm (I = 1/2) spectra with these constraints gave
A2/A1 = −1.73(2). This fixed A-constant ratio was used for
the fitting of the other I = 1/2 nuclei (195Atg , 199Atm).

The collected statistics for the reference isotope 205At,
combined with the aforementioned restrictions on the A1

and A2 values, were sufficiently high to accurately determine
the ratio of the magnetic hfs constants for I = 9/2 states:
A2/A1 = −1.69(2). The ratio of quadrupole hfs constants was
also estimated: |B2/B1| < 0.1. In the fitting of the hfs spectra
for states with I > 1/2, the A2/A1 ratio of hfs constants was
fixed to those of 205At (I = 9/2).

The possible change of the A-constant ratio for the I �=
9/2, 1/2 is less than 1.2% (from comparison of A2/A1 for the
I = 9/2 and I = 1/2 isotopes where this change is expected
to be largest). The change of the fixed ratio A2/A1 leads to
the corresponding change of the A1 factor (which was varied
during fitting). In order to account for this possible variation
of the A2/A1 ratio, an additional uncertainty of 1.2% for I �=
9/2, 1/2 nuclei was added to the experimental A factors.

2. The 216-nm transition

The hfs components of the 216-nm spectra were poorly
resolved; therefore the corresponding values of A1 and B1

obtained by fitting 795-nm spectra were used. The ratio A1/A0

was determined from fitting hfs of 197Atm with I = 1/2:
A1/A0 = −0.54(8). This ratio was fixed for the fitting of
216-nm transition spectra, for all astatine isotopes. Using this
fixed A1/A0 ratio, the ratio of quadrupole hfs constants was
determined: B0/B1 = −5(2). The values obtained for the hfs
coupling constants (A1 and B1) and IS for both of the scanned
transitions are reported in Table I.

In the fitting procedure, the spins for the majority of the
investigated isotopes were fixed in accordance with Ref. [16].
In the case of 202Atg , the I = 3 spin assignment of Ref. [32]
was used. For 199Atm, the results from Ref. [13] were taken into
account. The discussion and justification for the 206At I = 6
spin assignment is given in Sec. V A 3.

IV. EXTRACTION OF NUCLEAR PARAMETERS

A. Magnetic moments

The nuclear magnetic moments can be calibrated using the
known moments of another isotope of the element under study,
via the ratio (see Ref. [33])

μ = μref
I

Iref

A

Aref
(1 + ref	A), (5)

where the index ref points to the reference isotope with the
independently measured magnetic moment μref and ref	A

is the relative hyperfine structure anomaly (HFA) stemming
from the finite charge and magnetization distribution inside the
nucleus [34]. This parameter is dependent on both the nuclear
and atomic states. In particular, the HFA reveals itself in the
change in the ratio of the A constants for different atomic levels
with the change of atomic mass and nuclear spin. Generally,
the HFA is less than 1%. The observed difference of the order
of 1% between A2/A1(197Atm, I = 1/2) and A2/A1(205Atg ,
I = 9/2) (see Sec. III B 1) may be regarded as the indication
of the applicability of this estimation in the astatine case. For
the states with the same spin and similar magnetic moment, the
HFA is usually less than 0.1%. Correspondingly, an additional
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TABLE I. Measured values of the hyperfine splitting constants and isotope shifts for the studied astatine isotopes. Statistical errors from
the fitting of the hfs data are given in round brackets. For isotopes with I �= 9/2, 1/2 an additional uncertainty of 1.2% due to indeterminacy
of A-constants ratio is added. The values of T1/2 are taken from Ref. [16].

A(4P3/2) B(4P3/2) δν205
216 δν205

795

Nucleus Iπ T1/2 (MHz) (MHz) (MHz) (MHz) Detection method

195Atg (1/2+) 290(20) ms −1287(20) 2050(75) WM
195Atm (7/2−) 143(3) ms −424(11) −1221(150) 1251(75) WM
196At (3+) 387(14) ms −498(15) −382(80) 3086(120) WM
197Atg (9/2−) 381(6) ms −342(4) −690(50) −7190(750) 3466(75) WM
197Atm (1/2+) 2.0(2) s −1235(10) −2975(750) 1598(75) WM
198Atg (3+) 4.1(3) s −538(12) −353(90) −8731(750) 3944(75) WM
198Atm (10−) 1.03(15) s −102(3) 261(150) 3675(75) WM
199Atg (9/2−) 6.92(13) s −351(4) −573(50) 3099(75) WM
199Atm (1/2+) 310(80) ms −1275(30) 912(120) WM
200Atg (3+) 43(1) s −570(13) −302(50) 3408(75) WM
200Atm1 (7+) 47(1) s −271(7) −578(70) 3222(75) WM
200Atm2 (10−) 3.5(1) s −108(3) 323(150) 3003(100) WM
201At (9/2−) 83(2) s −357(4) −574(90) 2299(75) MR-TOF MS
202Atg (3+) 184(1) s −554(16) −325(80) 2649(120) WM
202Atm (7+) 182(2) s −259(9) −392(80) 2330(120) WM
203At 9/2− 7.4(2) min −357(4) −437(50) −3437(900) 1332(75) MR-TOF MS
204At 7+ 9.22(13) min −0.276(7) −372(50) 1257(75) MR-TOF MS
205At 9/2− 26.9(8) min −365(3) −367(50) 0 0 MR-TOF MS, FC
206At (6+)a 30.6(8) min −292(9) −254(60) −242(75) MR-TOF MS
207At 9/2− 1.80(4) h −368(4) −273(50) 2201(900) −1334(75) MR-TOF MS
208At 6+ 1.63(3) h −298(10) −238(150) −1801(75) MR-TOF MS
209At 9/2− 5.41(5) h −368(4) −241(50) 6232(750) −2788(75) MR-TOF MS
210At (5)+ 8.1(4) h −379(10) −253(70) −3427(75) MR-TOF MS
211At 9/2− 7.214(7) h −367(4) −201(70) 9423(900) −4318(100) MR-TOF MS

aFor I = 5, δν205
795 = −117(75) MHz, A = −347(10) MHz, and B = −176(60) MHz. Spin assignment for 206At is discussed in Sec. V A 3.

1% error was added to the magnetic moments for astatine
isotopes with I �= 9/2, and 0.1% error for isotopes with I =
9/2, since the reference 211At has I = 9/2.

There are no data available for the magnetic moments of
ground states in isotopes of astatine, and therefore the exper-
imental g factor of the high-spin nuclear isomeric state with
Iπ = 21/2− in 211At was used as a reference. This isomeric
state belongs to the lowest seniority ν = 3 states in 211At, and
is formed by three h9/2 protons coupled to [h3

9/2]21/2− .
A number of experimental and theoretical investigations

have proven the admixtures of states belonging to other
configurations and to collective excitations to this high-spin
state in all N = 126 isotones to be small [35–38]. For these
pure states, the additivity rule (see Ref. [39]) is applicable:
g(hn

9/2) = g(h9/2). The purity of the corresponding states is
supported by the similarity of the experimental g factors of the
h3

9/2 high-spin states (21/2− and 17/2−) with the g factor of
the h9/2 ground state in 213Fr126: g(9/2−,213Frg) = 0.885(11);1

g(21/2−,213Frm) = 0.888(3) [42]; and g(17/2−,213Frm) =
0.88(16) [36].

Similarly, the g factor of the πh9/2 ground state of
211At (N = 126) should be equal to the g(h9/2−) val-
ues extracted from the high-spin data, using the simple

1Recalculated using A(P1/2) hfs constants from Ref. [40] and using
μ(210Fr) from Ref. [41] as a reference.

shell-model rules. The g factors of the high-spin isomers
in 211At were measured in Ref. [43], g(21/2−,211Atm) =
0.917(18) and in Ref. [44], g(21/2−,211Atm) = 0.921(9).2 The
weighted mean of the results from Refs. [43,44] is g(h9/2) =
g(21/2−,211At) = 0.920(9). The corresponding magnetic mo-
ment value, μ(211Atg) = 4.139(37) μN , was used as a reference
in Eq. (5). The same approach was applied in Ref. [45] for
actinium isotopes. Magnetic moments calculated using Eq. (5)
are presented in Table II. Systematic errors stemming from the
HFA and the uncertainty in the μref value are given in curly
brackets.

To check the validity of the choice of μref , the g fac-
tor for isomers with Iπ = 29/2+ in astatine, francium, and
actinium were calculated using the additivity relation with
g(h9/2) = g(21/2−). These isomers are supposed to have a
pure [(h2

9/2)8 ⊗ i13/2] configuration [35]. The g factor for the
29/2+ isomers was calculated using g(πi13/2) = 1.246(20)
from Ref. [36] (see also Ref. [46], and references therein). The
results of the additivity-relation calculations agree with the
experimental data [36,37,43,44] for g(29/2+) in 211At, 213Fr,
and 215Ac, within the limits of experimental uncertainties.

2Recalculated with the diamagnetic shielding and Knight-shift cor-
rections from Ref. [43]; an additional 20% error for the diamagnetic
shielding and Knight-shift corrections is taken into account.
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TABLE II. Extracted values of the change in mean-square charge radii, the mean-square deformation extracted from the IS data (see
Sec. IV C), and the magnetic and quadrupole moments for astatine isotopes. Errors due to the statistical uncertainties in the extracted hyperfine
parameters in Table I are given in round brackets. Systematic uncertainties are given in curly brackets, in δ〈r2〉, stemming from the theoretical
indeterminacy of the F and M factors for δ〈r2〉A,205; in μ, due to the uncertainty in μref and the HFA indeterimnacy; and in QS , resulting from
the uncertainty in the theoretical B0/QS , and the experimental B1/B0 ratios.

Nucleus N Iπ δ〈r2〉A,205 (fm2) βDM μ (μN ) QS (b)

195Atg 110 (1/2+) −0.171(7){9} 0.21(2) 1.611(25){39}
195Atm 110 (7/2−) −0.101(7){5} 0.22(2) 3.714(97){90} −2.04(25){100}
196At 111 (3+) −0.262(10){13} 0.17(2) 3.739(110){90} −0.64(13){35}
197Atg 112 (9/2−) −0.296(7){15} 0.15(3) 3.849(45){54} −1.15(8){60}
197Atm 112 (1/2+) −0.133(7){7} 0.19(2) 1.546(13){37}
198Atg 113 (3+) −0.338(7){17} 0.11(4) 4.037(94){97} −0.59(15){30}
198Atm 113 (10+) −0.315(7){16} 0.12(3) 2.554(81){62} 0.44(25){25}
199Atg 114 (9/2−) −0.265(7){13} 0.12(3) 3.955(45){56} −0.95(8){50}
199Atm 114 (1/2+) −0.075(10){4} 0.17(2) 1.595(38){39}
200Atg 115 (3+) −0.293(7){15} 0.08(4) 4.279(96){110} −0.50(8){50}
200Atm1 115 (7+) −0.277(7){14} 0.09(5) 4.74(13){12} −0.96(12){50}
200Atm2 115 (10−) −0.258(9){13} 0.10(4) 2.694(82){65} 0.54(25){30}
201At 116 (9/2−) −0.197(7){10} 0.10(4) 4.025(45){57} −0.96(15){50}
202Atg 117 (3+) −0.229(10){11} 0.04(9) 4.16(12){10} −0.54(13){30}
202Atm 117 (7+) −0.201(10){10} 0.06(6) 4.54(16){11} −0.65(13){30}
203At 118 9/2− −0.115(7){6} 0.08(5) 4.021(45){57} −0.73(8){35}
204At 119 7+ −0.109(7){5} 0.05(8) 4.84(13){12} −0.62(8){30}
205At 120 9/2− 0 0.08(4) 4.111(34){58} −0.61(8){30}
206At 121 (6+)a 0.020(7){1} 0.06(6) 4.39(13){11} −0.42(10){20}
207At 122 9/2− 0.115(7){6} 0.08(4) 4.150(45){59} −0.45(8){25}
208At 123 6+ 0.155(7){8} 0.07(4) 4.48(14){11} −0.40(25){20}
209At 124 9/2− 0.240(7){12} 0.09(3) 4.141(45){59} −0.40(8){20}
210At 125 (5)+ 0.295(7){15} 0.09(3) 4.74(12){11} −0.42(12){20}
211At 126 9/2− 0.372(9){19} 0.09(2) 4.139(37)b −0.33(12){20}
aFor I = 5, δ〈r2〉A,205 = 0.009(7){1} fm2, μ = 4.34(12){11} μN , QS = −0.29(10){15}. Spin assignment for 206At is discussed in Sec. V A 3.
bReference value.

These results support the assumption that g(21/2−,211Atm) =
g(9/2−,211Atg).

Magnetic moments may be also evaluated using calculated
values of Be(0) [see Eq. (3)], but in this case the systematic
uncertainties would be much larger (see Sec. IV B 1 for more
details).

B. Quadrupole moments

For astatine, there are no independently measured values
of QS . Thus, the calibration of QS cannot be made with
the same method as was used for the magnetic moments. To
obtain QS from the measured hfs constant B, through the
Eq. (4), the electric field gradient resulting from the electronic
density at the nucleus has to be known. In the present work,
this field gradient for the astatine atomic ground state was
calculated by applying the multiconfiguration Dirac-Hartree-
Fock (MCDHF) method [47]. In order to check the theoretical
approach, the factor A/g was also calculated and compared
with experimental results.

1. Hyperfine calculations with MCDHF theory

In the framework of the MCDHF approach, numerical-
grid wave functions have been generated by means of the
atomic structure code GRASP [48], as self-consistent solutions

of the Dirac-Hartree-Fock equations [49]. The electrostatic
electron-nucleus interaction was generated from a nuclear
charge density distribution, which was approximated by the
two-component Fermi function, normalized to Z [50]. All
other nuclear electromagnetic moments were neglected. Breit
and QED corrections [51] were neglected, since they are
expected to be negligible at the current level of accuracy.
The full description of numerical methods, virtual orbital sets,
electron substitutions, and other details of the computations
can be found in Refs. [52–55].

The results of the calculations are A0/g = 850(150) MHz
and B0/QS = −3000(300) MHz/b, respectively. The accura-
cies of the final values have been estimated with the methods
described in Ref. [54].

The theoretical (A1/g) factor can be calculated using the
simple relation:(

A1

g

)
theor

=
(

A1

A0

)
exp

(
A0

g

)
theor

, (6)

where (A1/A0)exp = −0.54(8) (see Sec. III B 2).
The calculated value (A1/g)theor = −460(150) MHz agrees

fairly well in the limits of uncertainties with the exper-
iment: (A1/g)exp = A1(211At) I (211At)/μ(211At) = −399(13)
MHz. This supports the B/QS-factor calculation. It is worth
noting that in Ref. [56], B/QS factors for astatine homologues
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FIG. 6. Dependence of QS on the number of protons (nπ ) in
the h9/2 shell, for astatine (nπ = 3, present work; hollow symbols);
actinium (nπ = 7), [59]; francium (nπ = 5) [61]; and bismuth (nπ =
1) [62]. The blue triangles represent the N = 124, and the red squares
represent the N = 126 isotopes.

with different principal quantum number n (chlorine, n = 3;
bromine, n = 4; iodine, n = 5) were calculated using the
coupled cluster method. These results may be extrapolated to
astatine (n = 6) assuming that the Z and n dependence of the
B/QS factor may be described by the formulas from Ref. [57].
The result of the extrapolation, B0/QS = −3170 MHz/b,
agrees with the theoretical value quoted above.

2. Values of QS extracted from the hyperfine data

The QS values derived from the measured hfs quadrupole
constants given in Table I are presented in Table II. Semimagic
nuclei with N = 126 can be described by the seniority scheme
[58]. In this framework, QS should have a linear correlation
with the number of protons occupying the h9/2 orbital. This
linearity was confirmed in Ref. [59] for Z = 83, 87, 89. Our
new data for QS(211At126) fit to this straight line (see Fig. 6).
The observed values of QS(N = 126) nuclei are reproduced
well by large-scale shell-model calculations [59]. In particular
for 211At126, the theoretically calculated value of QS,theor =
−0.266 b [59,60] is in good agreement with the measured
value of QS,exp = −0.33(12) b. The value of QS(209At124) also
follows the seniority-scheme systematics for QS(N = 124)
(see Fig. 6). These observations support the result of the B/QS-
factor calculation and the magnitude of the ascribed errors.
The agreement of QS(211,209At) with the seniority-scheme
systematics within the experimental statistical errors suggests
the estimated systematic uncertainty is too large. Therefore,
in the discussion of quadrupole moments, only the statistical
errors will be taken into account.

C. Changes in the mean-square charge radii

The IS between two nuclei is defined as

δνAA′ = νA − νA′
, (7)

where ν is the position of the center of gravity of the hfs
belonging to isotopes A and A′. The change in the mean-square
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FIG. 7. King plot for the 216-nm vs 795-nm transitions. The red
line is a linear fit of the data.

charge radii between two nuclei, δ〈r2〉AA′ , is extracted from the
measured δνAA′

by the relations [63]

δν
A,A′
λ = Fλδ〈r2〉AA′ + Mλ

A − A′

AA′ , (8)

where A and A′ are the atomic mass numbers of the two
isotopes, Fλ is the electronic factor, and Mλ is the mass
factor, which is the sum of normal mass shift (NMS) constant
MNMS

λ = ν
mp/me

(ν is the transition frequency) and specific

mass shift (SMS) constant MSMS
λ .

The measurement of the IS for two different transitions
allows one to draw a King plot [63]. Using such a plot allows
for the consistency of the experimental data to be checked, by
the comparison of the modified isotope shifts (see Fig. 7):

σ
A,A′
λ ≡ δνA,A′ AA′

A − A′ . (9)

Following Eq. (8), the modified isotope shifts for different pairs
of isotopes should follow a straight line:

σ
A,A′
216 = κσ

A,A′
795 + s. (10)

The slope of this line is equal to the ratio of the electronic
factors, κ216

795 = F216/F795, and the intersection of the regres-
sion line with the y axis is equal to the linear combination of
the mass shift constants for the transitions involved:

s = M216 − F216

F795
M795. (11)

The linear fit in Fig. 7 testifies to the consistency of the ex-
perimental data. Experimental values, κ216

795 = −2.275(41) and
s216

795 = 2990(1600) GHz u, may be compared with the results
of the corresponding theoretical calculations (see Table III). It
should be noted that the ratio of the F factors for the similar
transitions in polonium, κ256

843 = −2.241(68) [64], proved to be
very close to the astatine ratio.

To determine the MSMS and Fλ parameters for the
λ1 = 216-nm and λ2 = 795-nm transitions, large-scale
MCDHF calculations were performed with the same tools
and methods as those described in Sec. IV B 1. The operators
for the hyperfine interaction and isotope shift in atoms are
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TABLE III. Results of the large-scale MCDHF calculations
(normal font) of the atomic factors of astatine. The values of κ216

795

and s216
795 extracted from the experimental data are included for

comparison (bold font). Uncertainties for the computational models
were estimated based on the stabilization of the results when going
from one approximation to another.

Parameter λ = 216 nm λ = 795 nm

MSMS GHZ u 690(350) −580(100)
F MHz/fm2 25 200(2600) −11470(570)

−2.19(15)
κ216

795 −2.275(41)
630(640)

s216
795 2990(1600)

different, and thus their sensitivities to different types of
electron correlations also differ [65]. For heavy atoms, it is
impossible to include all important electron-correlation effects.
Therefore, in hfs and IS calculations, one should use different
wave functions constructed in the framework of different
approaches to electron correlations. It is for this reason that
two types of large-scale atomic calculations were applied, one
for calculating the IS and the other for the hfs. Similar to the
above, systematically enlarged wave function expansions were
applied. These included core polarization and core-valence
correlations to compute these isotope parameters and to obtain
insight into their convergence [66]. Different computational
models were used and different classes of correlations were
incorporated into the isotope-shift parameters [67]. Although
the individual results for the specific mass- and field-shift
parameters seem to stabilize with the size of the expansion,
it was not possible to demonstrate a real convergence. The
results of these computations are shown in Table III.

The agreement with experiment for the F -factor ratio κ
is excellent. However, as described in Ref. [68], even uncor-
related Dirac-Fock calculations often reproduce ratios of F
factors quite well. The absolute precision of the calculated F
factors is still a matter of discussion. The agreement for the
combined mass-shift factor, s, may be regarded as reasonable
(in the limit of 1.5 σexp). A similar agreement was observed
in the neighboring polonium chain (Z = 84), where similar
calculations were performed and compared to experimental
results [64].

The validity of the calculated F factor may be checked
by comparison with the results for the adjacent isotopic
chains. One can expect that the change in the mean-square
charge radius between isotopes with neutron numbers N1

and N2, δ〈r2〉N1,N2 , has a simple Z dependence, at least for
N1,N2 = 126,124 due to the proximity of the closed neutron
shell. This assumption was confirmed in Ref. [31] by the
analysis of the available IS data for some elements in the
lead region. Remarkably, the Z dependence of δ〈r2〉126,124

for Z = 80–88 follows a simple parabolic law [31]. Recently
measured IS for several actinium isotopes (Z = 89) [59]
enabled the determination of δ〈r2〉126,124 for Z = 89 by the
application of large-scale atomic calculations similar to those
in the present paper. This new point lies on the continuation
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FIG. 8. Z dependence of δ〈r2〉126,124. Experimental data for
Z = 80–82, 84, 87, 88 (black filled circles, see Ref. [31] and ref-
erences therein) and Ac (Z = 89, hollow black circle) [59]. The
data point for astatine (Z = 85, red triangle) was calculated using
F795 = −11470(570) MHz/fm2 and MSMS

795 = −580(100) GHz u,
taking into account both statistical and systematic errors. The blue
curve is the parabolic fit described in Ref. [31].

of the parabolic fit for Z = 80–88 from Ref. [31] (see Fig. 8),
which substantiates the presumed parabolic Z dependence of
δ〈r2〉126,124.

The value of δ〈r2〉126,124 (Z = 85) calculated using Eq. (8),
with F and M factors for the 795-nm transition in astatine,
follow the same parabolic curve (see Fig. 8). This may be
regarded as additional supporting evidence of the validity of the
atomic calculations for the astatine F factor, and the assigned
uncertainties.

The values of δ〈r2〉, evaluated from the measured IS and
the calculated F and M factors, are presented in Table II.

It is generally acknowledged that the main isotopic trend of
the δ〈r2〉 is described by the droplet model (DM) (see Ref. [69]
and references therein). Deviations from the DM trend can be
attributed to the development of the mean-square quadrupole
deformation (〈β2〉):

〈r2〉 = 〈r2〉DM

(
1 + 5

4π
〈β2〉

)
, (12)

where 〈r2〉DM is the mean-square charge radius calculated by
DM with zero deformation. The values of |βDM | ≡ 〈β2〉1/2

were calculated using Eq. (12) from experimental δ〈r2〉 val-
ues with DM parameters taken from Ref. [69] and setting
|β|(209At) = |β|(208Po) = 0.086 (see Ref. [70]). The values of
βDM are presented in Table II.

V. DISCUSSION

Similar 1/2+ intruder states to those found in the asta-
tine isotopes are well known in neighboring isotones, such
as bismuth (Z = 83) nuclei, in which they are created by
π (2p-1h) excitations [10]. In the bismuth isotopes, the excita-
tion energies of the 1/2+ intruder states decrease approaching
the N = 104 (187Bi) neutron midshell [71]. Moreover, this
intruder state becomes the ground state in 185Bi [72–74]. It
was suggested that this downward trend in the energy of the
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FIG. 9. Magnetic dipole moments for (a) the 9/2− and (b) 1/2+

states of the odd-A astatine (red triangles; present work), thallium
(green downward triangles; Ref. [78] and references therein), bismuth
(black circles) [31,62,79], and francium (blue squares) [61,80,81]
isotopes. The filled and hollow symbols indicate ground and isomeric
states, respectively. The dashed lines are to guide the eye only.

intruder isomers in bismuth could arise from the crossing of
two different 1/2+ states [74]; a prolate-deformed 1/2+ state,
associated with a 1/2+[660] Nilsson orbital, would cross the
weakly oblate-deformed intruder state, producing the observed
reduction in energy of the 1/2+ state.

The possible analogy with the 1/2+ intruders in the bismuth
chain could be an important one for the astatine nuclei. A
similar mechanism could be responsible for the downward
trend of astatine intruder-state energies. The measurement
of the magnetic moment for the 1/2+ states would help in
the unravelling of this possible admixture of oblate-prolate
configurations.

A comparison of astatine and polonium (Z = 84) isotopes
can also be instructive, since the former can be considered
as produced by coupling an extra proton to the underlying
polonium core. Earlier measurements of the polonium charge
radii showed an onset of deformation from 199Po (N = 115)
onward [7,64,70]; thus, a similar deformation effect can be
expected in the astatine chain. Indeed, the systematics of
low-lying states in polonium isotopes prove to be remarkably
similar to those of the corresponding astatine nuclei [75,76].
In particular, the drop in the excitation energy of the 2+ states
when going from 200Po to 196Po was found to be analogous
to the behavior of 11/2− states in 201–197At. This decrease
in energy has been interpreted as evidence for an increase in
collectivity and an onset of deformation near 196Po and 197At,
respectively.

A. Magnetic moments

1. Odd-A states with Iπ = 1/2+ and 9/2−

In Fig. 9, the magnetic moments of the odd-A astatine
ground and isomeric states with Iπ = 9/2− and Iπ = 1/2+
are compared with the magnetic moments of states with
equal spin in francium, bismuth and thallium. The magnetic
moments of the 9/2− states follow a linear, weakly decreasing
A dependence [see Fig. 9(a)], with a trend toward the Schmidt

value (μS = 2.6 μN ) below N = 126. This linear dependence
may be attributed to the decrease of the first-order core-
polarization correction – a result of the gradual decrease in
the occupancy of the νi13/2 shell. This explanation is similar
to that of Ref. [77], where this mechanism was applied for
the explanation of the similar A dependence of the (νi13/2)−n

Pb-isomer g factor. It is worth noting that the slope of the
corresponding N dependencies is the same for the thallium,
bismuth, and astatine isotopes [see Fig. 9(a)]. This constancy
supports the proposed interpretation. It is important to note
the independence of the magnetic moments on the nature and
deformation of the state, as I = 9/2− is a deformed intruder
in the thallium isotopes, while it is predominantly a spherical
(at least around N = 126), ground state in bismuth, astatine,
and francium (see also Ref. [39]).

The magnetic moments of the 1/2+-intruder states in
astatine are in good agreement with μ(1/2+) of the thal-
lium and bismuth isotopes [see Fig. 9(b)], with all values
lying in a narrow range of μ = 1.5–1.65 μN . Similar to the
I = 9/2 states, we note the independence of the μ(1/2+)
values on the nature and deformation of the states; the
I = 1/2+ state is the normal, spherical ground state in thal-
lium, while it is an excited deformed intruder state in bismuth
and astatine.

It was proposed earlier that the violation of the parabolic N
dependence of the 1/2+ excitation energy, in, e.g., 185,187Bi,
may be connected to the admixture of the prolate 1/2+ state,
associated with a 1/2+[660] Nilsson orbital, with the weakly
oblate-deformed 1/2+[400] state [74]. A similar mechanism
could be considered for the lightest astatine isotopes. However,
as μ(1/2+[660]) > 3 μN at β > 0.15 (Nilsson model calcula-
tions; see details in Ref. [7]), the assumed admixture would
lead to a noticeable increase of the magnetic moment in the
astatine chain, which is not observed in our data.

2. 195Atm, (Iπ = 7/2−)

The measured magnetic moment μexp(195Atm) =
3.71(10) μN , is reasonably close to μtheor(7/2−[514]) =
3.2 μN . The latter value was calculated using the standard
Nilsson model (see details in Ref. [7]), and represents the
magnetic moment of a one-particle state, with the odd proton
occupying the 7/2−[514] Nilsson orbital at a quadrupole
deformation β2 = −0.2. A rotational gyromagnetic ratio,
gR = 0.4, and the standard renormalization, gs = 0.7gfree

s ,
were used in these derivations.

The difference between the experimental and theoretical
values could be due to Coriolis mixing, which should be
taken into account for high-spin states with a moderate de-
formation. Within the framework of the particle-plus-rotor
model (see details in Ref. [7]), μtheor(7/2−

1 ) = 3.8 μN for the
lowest 7/2− state with a predominantly 7/2−[514] Nilsson
configuration. This theoretical value is in good agreement with
μexp(195Atm) = 3.71(10) μN , which supports the proposed in-
terpretation of the 195Atm as an oblately deformed state, with
the odd proton primarily occupying the 7/2−[514] Nilsson
orbital [8].
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FIG. 10. The magnetic dipole moments for the (a) 3+ (πh9/2 ⊗
νp3/2), (b) 6+ (πh9/2 ⊗ νf5/2), (c) 7+ (πh9/2 ⊗ νf5/2), and (d)
10− (πh9/2 ⊗ νi13/2) states of the odd-N astatine (red triangles,
present work), bismuth (black circles) [62,79], and francium (blue
squares) [61,80,81] isotopes. The filled and hollow data points
represent the ground and isomeric states, respectively. The dashed
lines represent values for the astatine isotopes, calculated using the
additivity relation.

3. Even-A astatine isotopes

The magnetic moments of the even-A astatine states with
Iπ = 3+, 6+, 7+, and 10− are plotted in Figs. 10(a), 10(b) 10(c),
and 10(d), respectively, along with those of the states with
matching spins and parities in francium and bismuth isotopes.
In all cases, the values of μ for astatine nuclei follow the
trends observed in the bismuth and francium states of the
same spin and parity.

The discussion of the magnetic moments of the even-A as-
tatine isotopes will be guided by comparisons with estimations
from the additivity relation [39] to obtain information on the
underlying configurations. According to the additivity relation,
the magnetic moment of a two-particle state in an odd-odd nu-
cleus with spin I can be calculated using the following formula:

μadd = I

2

(
μp

ip
+ μn

in

)

+ I

2

(
μp

ip
− μn

in

)
ip(ip + 1) − in(in + 1)

I (I + 1)
, (13)

where the subscriptsp andndenote the odd proton and neutron,
respectively; i is the single-particle angular momenta; and μp,
μn are the single-particle magnetic moments. The values of μp

were taken to be equal to the magnetic moments of neighboring
even-N astatine isotopes, such that μp(AtN ) = μ(AtN+1).

Similarly, the magnetic moments of the adjacent odd-N polo-
nium nuclei were used for μn, giving μn(AtN ) = μ(PoN ).

Calculations by the additivity relation were performed with
the following configuration assignments: Iπ = 3+ : (πh9/2 ⊗
νp3/2); Iπ = 6+ : (πh9/2 ⊗ νf5/2); Iπ = 7+ : (πh9/2 ⊗ νf5/2);
Iπ = 10− : (πh9/2 ⊗ νi13/2).

In almost all cases, the magnetic moments are well
described by the additivity relation (see Fig. 10). For
210At125 (not shown in Fig. 10), μexp(5+) = 4.74(12) μN and
μadd(5+; πh9/2 ⊗ νp1/2) = 4.82μN . This agreement between
the experimental values and those calculated using the additiv-
ity relation testifies to the purity of the assigned configurations.

It is worth noting that the decrease of μ(3+) when going
from N = 115 to N = 111 is connected by the additivity
relation with the increase of the magnetic moment of the
3/2+ isotonic polonium states [μ(199Po115) = −0.912(65)μN ;
μ(195Po111) = −0.601(42)μN ]. This increase was explained in
Ref. [7] as the result of the gradual increase in deformation of
the corresponding polonium isotopes. Thus, the behavior of
the magnetic moments for the 3+ states in astatine isotopes
may also be related to a similar deformation change.

The only case for which the experimental results are not
well described by the additivity rule is 206At (N = 121),
when presuming an I = 5 spin assignment [82]. Under
this assumption, μadd(5+) differs markedly from the exper-
imental value obtained for 206At: μadd(5+; πh9/2 ⊗ νf5/2) =
3.89μN , μexp(5+) = 4.34(12) μN . A possible admixture from
a (πh9/2 ⊗ νp3/2) configuration would lead to the even
larger discrepancy between the experimental and calcu-
lated values, as μadd(5+; πh9/2 ⊗ νp3/2) = 3.44μN . However,
μadd(6+; πh9/2 ⊗ νf5/2) = 4.39μN is in good agreement with
μexp(6+) = 4.39(13) μN [see Fig. 10(b)].

The previous I = 5 assignment for 206Atg was based upon
the observed β-decay feeding to the 4+ and 6+ states in 206Po,
with nearly equal logf t values [82]. In contrast, our additivity-
relation analysis would support an I = 6 spin assignment
for the ground state of 206At. Such an assignment was also
proposed in Ref. [83], in which the hindrance factor of the
210Fr(I = 6) → 206At α decay was found to be surprisingly
small (HFα = 2.1) for a decay connecting states of different
spins (6+ to 5+). As one of the possible explanations, the
authors of Ref. [83] suggested that the ground state of 206At
has Iπ = 6+, while the low-lying levels at 6 and 31 keV are
similar to the 5+ and 4+ states in the 204Bi isotone, respectively.

B. Quadrupole moments

1. Odd-A isotopes

The increase in collectivity when going away from the
closed shell is reflected in the increase of the absolute values
of QS (see Table II). For well-deformed axially symmetric
nuclei, the quadrupole moment can be related to the quadrupole
deformation parameter, via the relation

QS = I (2I − 1)

(I + 1)(2I + 3)

3e√
5π

ZR2
0βQ

(
1+ 1

7

√
20

π
βQ+· · ·

)
,

(14)

054327-12



CHARGE RADII AND ELECTROMAGNETIC MOMENTS OF … PHYSICAL REVIEW C 97, 054327 (2018)

FIG. 11. Quadrupole deformation parameters calculated using
Eq. (14), for odd- (filled symbols) and even-N (hollow symbols)
ground states of astatine nuclei. For A = 195, the 7/2− isomeric state
is shown. The dashed lines are to guide the eye only.

where βQ represents the deformation parameter extracted from
the value of QS and R0 = 1.2 × A1/3. However, as was shown
in Ref. [39] and references therein, it is also instructive to use
this relation for nuclei with small deformations. The values
of βQ extracted using this formula give an insight into the
development of collectivity (note that in Ref. [39], Eq. (14)
was applied to nuclei with N = 116 − 126 at βQ ≈ 0.05, in
particular to 211,209At).

The values of βQ extracted using Eq. (14) for the ground
states of the odd-A I = 9/2 and the even-A astatine nuclei
are shown in Fig. 11 (for A = 195, the isomeric Iπ = 7/2−
state is shown). The values of βQ vary linearly (from −0.02
to −0.07) as the neutron number decreases away from the
N = 126 closed neutron shell, until N = 112. This gradual
change is interrupted by a sudden increase in deformation
(from −0.07 to −0.15) between 197Atg and 195Atm. A similar
dramatic change in the deformation from 0.10 to −0.21 was
theoretically predicted between 199At and 198At in Ref. [84],
using the microscopic-macroscopic (MM) calculations with
the finite-range droplet model.

A comparison between the deformation parameters ex-
tracted from the IS data and those from the QS values will
be presented in Sec. V C 1.

2. Even-A isotopes

The even-A astatine nuclei were analyzed in the framework
of the “quadrupole additivity rule”. The additivity rule for
magnetic moments, discussed in Sec. V A 3, is the simplest
case of a general tensor coupling scheme. In the case of the
spectroscopic quadrupole moments, it can be represented as
follows (see Ref. [85] and references therein):

Qadd
S = qpQS(jp) + qnQS(jn), (15)

with the spectroscopic quadrupole moments QS(jp,n) of the
single-particle proton and neutron states with angular momenta

FIG. 12. Comparison ofQadd
S andQ

exp
S for isotopes of astatine (red

triangles) and francium (blue squares) with (a) I = 7 (πh9/2 ⊗ νf5/2)
and (b) I = 3 (πh9/2 ⊗ νp3/2). The filled symbols indicate ground
states and the hollow ones indicate isomeric states. Results of the
calculations using the quadrupole additivity rule [Eq. (15)] are
indicated by the red-dashed and blue-dotted lines for the astatine
and francium isotopes, respectively. The black diamonds in panel
(b) represent calculations made using Eq. (14), with βQ taken from
the QS value of the adjacent even-N At.

jp,n and

qi = (−1)jp+jn+I (2I + 1)

{
jp jn I
a b ji

}

×
(

I I 2
I −I 0

)(
ji ji 2
ji −ji 0

)−1

,

(16)

where {······} and (······) are the Wigner 6j and 3j symbols,
respectively (see Ref. [86]); i = p or n; a = I , b = 2 for
ji = jp; and a = 2,b = I for ji = jn.

This quadrupole additivity rule was tested by calculating
QS for even-A francium and astatine isotopes with spins
I = 3 (πh9/2 ⊗ νp3/2) and I = 7 (πh9/2 ⊗ νf5/2). For QS(jn),
the experimental quadrupole moments of the adjacent even-
Z, odd-N isotopes were used: QS(86RnN ) [68] for 87FrN ,
and QS(84PoN ) [7,87] for 85AtN . Similarly, the experimental
quadrupole moments of the adjacent even-N francium [61,81]
and astatine (present work) isotopes were used for the values
of QS(jp). In cases where no experimental data were available,
interpolation or extrapolation was applied.

The values of QS calculated using the quadrupole additivity
rule are in good agreement with the experimental data for
astatine and francium nuclei with I = 6, 7, 10 [see Fig. 12(a)
for nuclei with I = 7; the results for I = 6, 10 are not
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FIG. 13. Changes in mean-square charge radii for the astatine
isotopes, compared with the predictions of the droplet model (pa-
rameters taken from Ref. [69]) for various deformations. The solid
line connects the data points for the ground states in astatine isotopes
and the dotted line does the same for ground or isomeric states with
I = 1/2.

shown here]. In contrast, the same calculations completely
fail to describe the QS(At, I = 3) with a (πh9/2 ⊗ νp3/2)
configuration [see Fig. 12(b)]. This may be related to the
marked increase in deformation at N < 113 (see discussion
of radii in Sec. V C). The quadrupole additivity rule stem-
ming from the spherical shell-model approach does not work
for deformed nuclei (cf. corresponding modification of the
magnetic-moment additivity rule in the case of deformation
[88]). When the astatine isotopes with N < 113 are assumed
to be deformed, one may estimate the expected quadrupole
moments for the 3+ states using Eq. (14), with βQ taken from
the QS of the adjacent even-N astatine nuclei. As is seen in
Fig. 12(b), the corresponding QS calculated using βQ values
of neighboring isotopes agrees much better with experiment
than those predicted by the quadrupole additivity rule. Thus,
the observed discrepancy with the additivity rule prediction
supports the proposed onset of deformation in astatine nuclei
at N < 113.

C. Charge radii

1. Ground states

The changes in mean-square charge radii, extracted using
Eq. (8), are shown in Fig. 13. After a near-linear decrease
between N = 126 and N = 114, the δ〈r2〉 values are observed
to increase, starting at 198At(N = 113). This increase continues
as the neutron number decreases further, with 195At seen to
have almost the same charge radius as 203At, despite the
former having eight fewer neutrons. Correspondingly, the
mean-square deformation, βDM [see Eq. (12)], remains nearly
constant and small (0.07–0.10) in 200–211At, but increases
rapidly for N < 115, to a maximum of βDM = 0.21 for 195At110

(see Table II).
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FIG. 14. Comparison of relative radii for astatine ground states
(red triangles) and isomers (red hollow triangles), with polonium (blue
circles) [64,70,87] and lead (black squares) [6,89,90] isotopes. For
clarity, the odd- and even-A isotopes are plotted separately, in order
to remove the effects of the odd-even staggering. The dashed red line
connects the data points for the I = 1/2 states in astatine.

It is instructive to use relative δ〈r2〉 values to compare the
different isotopic chains in the lead region. This normalization
has the benefit of removing the indeterminacy of the electronic
factors. The relative value of δ〈r2〉 is defined as

δ〈r2〉rel = δ〈r2〉N,126

δ〈r2〉124,122
. (17)

Figure 14 shows the changes in δ〈r2〉rel for the lead,
polonium and astatine nuclei. The IS data from Refs. [64,70,87]
and Refs. [6,89,90] were used for the polonium and lead nuclei,
respectively.

As seen in Fig. 14, the ground states of astatine isotopes
perfectly follow the N dependence of the relative radii for
polonium nuclei with N > 110. However, both isotopic chains
deviate from the nearly spherical lead trend at N < 115. In the
case of the polonium nuclei, this deviation was attributed to an
onset of deformation [64].

The systematics of low-lying states in polonium isotopes
are remarkably similar to those of the corresponding astatine
nuclei. In particular, a drop in the excitation energy of the
2+ states when going from 200Po to 198Po and a bigger
decrease between 198Po and 196Po are analogous to the behavior
observed for 11/2− and 13/2− states in 201,199,197At (see
Refs. [15,75] and references therein). These reductions in state
energies have been interpreted as evidence for an increase
in collectivity and an onset of deformation in the even-even
polonium core. Due to the similarity between the polonium and
astatine nuclei, the same increase in collectivity was proposed
to occur around 197At [76]. This conclusion is supported by
the resemblance in the behavior of astatine and polonium radii
between N = 111 and N = 126, presented in this work.

The results from two experiments, one a lifetime measure-
ment [91] and the other a Coulomb excitation study [92],
indicate that the ground state in 196Po exhibits a mixing of
spherical and weakly deformed oblate structures. Analysis of
radii and electromagnetic moments enables the extension of
this interpretation to 192,193,194,195Po [7,64,70]. The increase
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FIG. 15. (a) Comparison of experimental mean-square deforma-
tion for At isotopes. The filled red triangles represent values of βDM

[see Eq. (12)], the hollow red triangles are values for βQ [deformation
extracted from QS , see Eq. (14)], and the filled black triangles are the
predictions of the MM [84]. (b) Comparison of βBMF

DM (filled circles),
and βBMF (hollow circles), calculated using the BMF method for
the even-even polonium isotopes [100]. The values of βBMF

DM may be
regarded as theoretical estimations of experimental βDM values, and
βBMF as theoretical estimations of βQ.

in mixing of oblate and nearly spherical configurations in
the ground states of the light even-A polonium isotopes is
confirmed by in-beam and α-decay data [93,94]. Similar to
the even-A polonium nuclei, the decay pattern of odd-mass
193,195Pom,g is also understood as a result of the mixing of
the deformed (oblate) and the spherical configurations (see
Refs. [95,96] and references therein). Keeping in mind this
similarity between astatine and polonium nuclei, one can
extend this configuration-mixing interpretation to the structure
of the light astatine nuclei.

Theoretical models based on the mean-field approach (MM
or Hartree-Fock models) which do not account for configu-
ration mixing are unable to reproduce the rapid but smooth
radii increase for polonium and astatine nuclei with N < 115.
In Fig. 15(a), experimental βDM (At) values [extracted using
Eq. (12)], are compared with the results of the MM calculations
[84], which predict a sudden increase in deformation between
199At and 198At. Such behavior is not observed in the experi-
mental data, which shows a gradual increase. A similar sudden
increase is predicted between 194At and 195At, by Hartree-Fock-
Bogoliubov calculations using the Gogny D1S interaction
[97,98]. In both models, the potential energy surface for the
neutron-deficient astatine isotopes has several minima with
nearly identical depth (see also Ref. [99]). Correspondingly,
it is natural to suppose that for these nuclei mixing takes place
between configurations of different deformations. The afore-
mentioned experimental observations support this supposition.

This mixing can be taken into account in the beyond-mean-
field (BMF) approach, which combines projection techniques
with the generator coordinate method (GCM). Mean-field
wave functions are constructed by Hartree-Fock-BCS calcu-
lations. They are then projected on angular momentum and
particle number to form a basis of states that are mixed
by the GCM (see Ref. [100] and references therein). This

model, at least qualitatively, describes the unusual radii
(deformation) trend for the even-even polonium isotopes at
N < 115 [64,100].

At N = 110 (195At, 194Po), the increase in the radius of
195At110 (especially for 7/2− isomer) in comparison with
192Pb110 is evidently larger than that of 194Po110 [see Fig. 14(a)].
This increase in radius (deformation) possibly points to a
change in structure of 195At compared to 194Po, whereas heavier
astatine isotopes remain similar to their polonium cores.

A sharp increase in the quadrupole moment and βQ is
observed when going from A = 196 to A = 195 (see Fig. 11).
In contrast to this, a smooth behavior is seen in the mean-
square deformation, βDM [see Eq. (12)], with no irregularities
observed at A = 195 [see Fig. 15(a)]. The values of βDM

in nuclei with N < 115 (A < 200), i.e., exactly after the
presumed onset of deformation, is noticeably larger than the
deformation parameter βQ [see Fig. 15(a)]. This discrepancy
may be qualitatively explained in the framework of the BMF
approach. Although within the configuration-mixing BMF
method one cannot assign an intrinsic deformation to the wave
functions, it is the well-defined mean deformation βBMF that
may “play the role” of intrinsic deformation and determine the
QS value [by Eq. (14)]. By using Eq. (12) with the values of
δ〈r2〉 calculated using the BMF approach, one can estimate
the mean-square deformation. In Fig. 15(b), the mean-square
deformation parameter, βBMF

DM , is compared with the
mean-deformation parameter, βBMF , for isotonic polonium
nuclei (data are taken from Ref. [100]). Although theory
noticeably underestimates the absolute values of βDM , it
qualitatively explains the observed discrepancy between βQ

and βDM by the spread of the collective wave function in
deformation space.

2. 1/2+ states

Three 1/2+ states have been studied in the present work: the
intruder isomers 197,199Atm and 195Atg . The Iπ = 1/2+ intruder
states in 197,199Atm are seen to have a larger radius than the
corresponding normal Iπ = 9/2− states, which substantiates
the interpretation that these are shape-coexisting states.

In Figs. 13 and 14, the radii of the 1/2+ states in astatine
are seen to lie on a straight line, with no irregularity seen
where the 1/2+ state becomes the ground state, at A = 195.
A consistent picture is observed in the magnetic moments,
namely, μ(195At; 1/2+) agrees within the limits of uncertainties
with the magnetic moments of 197,199Atm [see Fig. 9(b)].
Therefore, it is unlikely that 195Atg has a different nature to
197,199Atm due to the presumed admixture of a deformed 1/2+
state associated with a prolate 1/2+[660] Nilsson orbital (see
Ref. [71], where this assumption was applied to bismuth nuclei
to explain the continuing downward trend of the excitation
energies of the 1/2+ states). The same conclusion may be
drawn from the fair agreement of μ between astatine and
thallium nuclei [see Fig. 9(b) and related discussion]. Thus,
the disappearance of the parabolic trend inherent to intruder-
isomer excitation energies [10] is more likely connected to
the change in structure of the 9/2− ground states of astatine
isotopes with N < 115, rather than an oblate-prolate mixture
in the 1/2+ states.
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VI. CONCLUSIONS

Hyperfine structure parameters and isotope shifts have been
measured in the astatine isotopic chain for 195–211At, using the
216- and 795-nm atomic transitions. Magnetic and quadrupole
moments and changes in the nuclear mean-square charge radii
have been deduced using the results of large-scale atomic
calculations. The opportunity to assess the reliability of these
calculations and their ascribed uncertainties was presented by
their comparison with systematics.

For the first time, the MR-TOF MS device was used to
perform hfs and IS measurements. The use of the device
allowed the study of isotopes that would otherwise be inac-
cessible using the standard RILIS approach, due to their long
half-lives, or the strong presence of surface ionized isobaric
contamination. Although in this study the MR-TOF MS was
used for measurements of long-lived isotopes, its application
is not limited to these cases; previous studies have measured
masses of isotopes with T1/2 < 50 ms, and production rates as
low as 10 ions per second [101].

For the 9/2− odd-A astatine ground states, a linear decrease
of the magnetic moment value with the decrease of A has
been observed. This decrease is similar to the corresponding
behavior seen for μ(9/2−) in the bismuth and francium
isotopes. The application of the additivity relation for the
magnetic moments of even-A astatine nuclei confirms their
leading configuration assignments and spins. The additivity
relation holds for all but 206At, where a spin-parity assignment
of Iπ = 6+ is proposed, based on the better agreement with
the additivity-relation calculation.

The additivity rule for the quadrupole moments of even-A
astatine and francium nuclei has been applied. It has been
shown that this rule describes QS(At) for spherical nuclei
fairly well. The failure of the rule in describing the quadrupole
moments for I = 3 At isotopes with N < 115 indicates a
possible onset of deformation in these nuclei.

The charge radii of the astatine ground states follow the
trend previously observed in isotonic polonium nuclei. Similar
to the polonium case, the strong deviation of δ〈r2〉 for astatine
from the trend of the (spherical) lead isotopes for N < 115 is
interpreted as an onset of deformation. A significant difference
in charge radii for ground and isomeric (intruder, 1/2+) states
in 197,199At is observed. The magnetic moment of 195Atg (Iπ =
1/2+) is in good agreement with those of 197Atm and 199Atm,
within the limits of experimental uncertainties. This agreement
between the μ(I = 1/2) values may indicate that all three
possess the same structure.

The marked increase of the mean-square charge radius of
195Atm (Iπ = 7/2−), in comparison with isotonic 194Po, has
been interpreted as a structural change; 195Atm is assumed
to be strongly oblate deformed, whereas the ground state
of 194Po represents an admixture of deformed and spherical
configurations with a relatively small mean deformation. This
interpretation is supported by the magnetic and quadrupole
moment measurement. The rapid change in QS when going
from 197At to 195Atm can be explained by the corresponding
increase in the mean deformation. The μ(195Atm) is well
described with the assumption of the odd proton predominantly

occupying a 7/2−[514] Nilsson orbital, at a sizable oblate
deformation.

The noticeable difference between the mean-square defor-
mation deduced from the IS data and deformation evaluated by
QS analysis, is proposed to result from the difference between
〈β2

2 〉1/2 and the mean deformation, due to the spread of the
collective wave function in deformation space. This effect has
been shown to be qualitatively described by the BMF model.
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APPENDIX: PROCEDURE FOR FITTING THE HFS DATA

The experimental hfs spectra were fitted with a convolution
of a Gaussian Doppler profile NG to describe the thermal
distribution of atomic velocities corresponding to the ion
source temperature and Pion, representing the probability of
photoionization, which depends upon the spectral density of
the laser power. In a general form, the number of photoionized
atoms for an individual hfs transition can be presented as

Nion(ν) = N0

∫
NG(ν ′)Pion(ν − ν ′)dν ′. (A1)

In a simple case (two-step photoinization scheme, well-
resolved hfs components, absence of saturation of all transi-
tions), the photoionization probability, Pion, is proportional to
the spectral density of the laser power IL, and can be presented
as

Pion(ν − ν ′) ∝
∑

SFF ′IL(ν + 	νFF ′ − ν ′), (A2)
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where SFF ′ is the relative probability of the transition [4]:

SFF ′ ∝ (2F + 1)(2F ′ + 1)

{
J ′ F ′ I
F J 1

}2

. (A3)

The intensity of hfs components calculated using Eq. (A2)
and those observed experimentally can differ significantly (see
Figs. 4 and 5). This is due to saturation effects and a finite
spectral width of the broadband laser radiation (as well as its
frequency detuning from the hfs centroid). To take into account
the saturation of transitions, pumping processes between hfs
structure components and population redistribution in the hfs
levels, the number of photo ions for each frequency step ν ′
in the integration of Eq. (A1) was calculated by solving the
rate equations for all hfs sublevels of all states in a given
photoionization scheme in a way similar to that in our previous
work (see details in Ref. [7]). To take into account the saturation
effect for polarized laser radiation more accurately, all sub-
levels with different magnetic quantum number, MF |F,MF 〉,
were included into the equations system. In this approach, the
relative probabilities, W , of |F,MF 〉 → |F ′,M ′

F 〉 transitions
are proportional to

W (MF ,F ; M ′
F ,F ′) ∝ S ′(MF ,F ; M ′

F ,F ′)IL(ν + 	νFF ′ − ν ′),

(A4)

with the relative probability of single-photon absorption S ′
defined as

S ′(MF ,F ; M ′
F ,F ′) ∝ (2F + 1)(2F ′ + 1)(

F 1 F ′
−MF Q M ′

F

)2{
J ′ F ′ I
F J 1

}2

, (A5)

where Q = MF − M ′
F = 0,±1. For linear polarization, only

transitions with 	MF = 0 are possible.
For the narrowband Ti:Sa laser, a set of equidistant resonator

modes with a Gaussian distribution of intensities IL was used.
Line-shape parameters for IL were taken from Ref. [102].
For the dye laser, a single Lorentzian line profile was used.
The width of hyperfine structure for the λ1 = 216-nm, and
λ2 = 795-nm transitions was ≈20 GHz (see Figs. 4 and 5). The
spectral width of the broadband lasers used for excitation of the
corresponding transitions is large. For example, the observed
bandwidth of the broadband dye laser was ≈30–40 GHz
after frequency tripling. Nevertheless, the finite linewidth
and especially the frequency detuning of the nonscanned
broadband laser from the hfs resonance position can distort
the relative intensities of the individual components across
the hfs. To take this into account, the spectral density of the
broadband laser radiation was represented with a Lorentzian
profile, with line-shape parameters based on the experimentally
observed profiles. The linewidth and frequency detuning from
the resonance position of this laser can be fixed or left as a free
parameter in the fitting procedure.
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