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The literature is reviewed concerning the sensitivity of the Dicke radiometer, excluding gain fluc-
tuations. Discrepancies are pointed out and a new derivation of sensitivity using a Fourier transform
method is used to resolve these discrepancies and to extend the results to radiometers with lossy
switches.

Experimentally it is shown that radiometers using a half-wave square-law. linear-law, intermediate-
law, or envelope detectors all have a sensitivity equal to the theoretical full-wave square-law detector
(within the #20 percent uncertainty of the experiment).
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1. Introduction

At the National Bureau of Standards a switching radiometer is used to compare microwave
noise sources with a standard hot load [1],' and a sum-and-difference-correlation radiometer is
being developed to compare microwave cryogenic noise sources which uses a switching radiometer
as a component [2].

Although there is extensive literature discussing the Dicke radiometer, existing publications
are difficult to use. This is partly due to a series of errors and corrections and partly due to
divergent assumptions, notation, and forms. The literature as a whole has unresolved differences
between various statements of the sensitivity for the Dicke radiometer.

The purpose of this paper is to review the literature (sec. 2), derive the sensitivity of the
Dicke radiometer in a form which includes switch noise (sec. 3), and to compare the derived
sensitivity with experiment (sec. 4). The sensitivity is rederived, rather than making a further
correction, for two reasons. First, a statement of sensitivity is needed in a form general enough
to include the prior literature. This facilitates identifying discrepancies. Second, a basically
different derivation helps to avoid prior errors and to increase confidence where agreements are
obtained.

2. Review of the Literature

To facilitate comparison between the various authors in the literature, a brief discussion of a
model switching radiometer is presented. The literature is compared in terms of this model.
The symbols of this paper may be converted to the notation of the other authors by means of
appendix A. Also contained in appendix A are equivalent statements of predetector bandwidth
B, and postdetector integration constant 7.

*Sponsored by Advanced Research Projects Agency, Project DEFENDER; ARPA Order No. 515.
**Microwave Circuit Standards, National Bureau of Standards Laboratories, Boulder, Colo. 80302.
! Figures in brackets indicate the literature references at the end of this paper.
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2.1. Basic Switching Radiometer

The basic switching radiometer is shown in figure 1. Essentially the power from a noise
source at the effective temperature T is compared with a noise source at effective temperature Ts.
It is usually advantageous to operate the radiometer with a known and variable T» which is made
equal to Ty. The comparison of T to T, is effected by switching the input of a receiver from
T\ to T, and examining the output of the receiver for a signal correlated with the switching fre-
quency. Uncorrelated terms (for example, the internal noise of the receiver) do not contribute
to the de output of the correlator.

The noise voltage y:(¢) from the noise source at temperature T is connected to the receiver
through a variable coupler of voltage transmission coefficient a;(¢). Similarly y.(¢) from noise
source T is fed through a variable coupler with voltage transmission coefficient a»(¢t). The internal
noise of the amplifier referred to the input of the amplifier has effective temperature T,. The
signal y,(¢), the input to an ideal noiseless amplifier, is

ys(t)=ai(t)y1(t) + ax(t)y2(t) + yu(t), (1)

where y,(t) is the voltage needed to represent the amplifier noise. Ideally the transmission
coeflicients a,(t) and a2(t) vary from zero to one periodically with period vg!. Typically a,(¢) and
a(t) are 180° out of phase. The transmission coefficient a,(t) is referred to as the voltage modula-
tion. The power transmission coefficient p(t) = a?(t) is referred to as the power modulation.
From the modulation a;(t) is generated a periodic reference signal c(¢) which then goes to the multi-
plier. The reference signal c(t) is referred to as the correlation and usually is sinusoidal or square
wave.
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2.2. General Comments

Eleven papers (as noted in table 1) are here reviewed which contain statements concerning
the sensitivity of a Dicke radiometer. There is an underlying agreement among eight of these
and the remaining three retain many of the essential features. In order to recognize this agree-
ment, various definitions must be related (see appendix A) and account taken of the modulation
and correlation assumed.

There is an important difference among the various agreeing papers. The nature of this
difference is essential to the general understanding of the literature, so it will be discussed before
commenting on individual papers.

The radiometer described by Dicke [3] modulates the noise source by means of a variable
attenuator which has nearly the same temperature as the noise source of interest. The papers
of Goldstein [4, 5], Strom [6, 7], Strum [8], Knight [9], and Johnson [10], collectively referred to as
GSSKJ, calculate the sensitivity of a somewhat different radiometer.  The GSSKJ version of the
Dicke radiometer modulates the noise source of interest by an ideal noiseless device, which could
be a variable attenuator at the absolute zero of temperature. This corresponds to 7> =0 °K in
the model introduced in section 2.1. The Dicke radiometer was originally a null device but this
concept was extended by Goldstein to include an off-null operation. This introduces many prac-
tical differences. For example, a radiometer operated off-null is not immune from receiver gain
instabilities. The radiometer described by GSSK] is a special case of the papers of Kelly, Lyons
and Root [11, 12], Colvin [13], and Tiuri [14] collectively referred to as KLRCT. However, GSSK]
and KLRCT differ in detail. For example, GSSKJ’s results indicate somewhat greater fluctua-
tions in the radiometer output due to the input noise source (T) than the corresponding KLRCT
results.

The origin of the discrepancy lies in the different technique of obtaining the output of the
square law detector relative to the input. GSSK]J use an autocorrelation method and handle the
resulting squared terms by means of a theorem usually attributed to Rice [15]. Rice’s theorem
for square law devices is rigorous for stationary Gaussian processes. KLRCT essentially apply
Rice’s theorem directly, neglecting the usually small nonstationary aspect of the signal at the detec-
tor input. The errors introduced by this simplifying assumption go to zero as the noise sources
being compared approach the same temperature (T, =T.), and the receiver is switched between
the two sources in such a way that the power to the receiver is constant throughout the switching
cycle.

The calculations in this paper are as precise as the GSSKJ calculations. Thus detailed
agreement with KLRCT is expected only when T =T,.

In the last column of table 1, which appears later in this paper, prior calculations of the radi-
ometer sensitivity are indicated by modulation and correlation type. Those calculations which
differ with this paper are marked with an asterisk. Although Goldstein [4, 5], Strum [8], and
Knight [9] are marked with an asterisk, they are considered to be in the group of eight having under-
lying agreement. More will be said of this in the detailed comments which follow.

2.3. Specific Comments

In 1946, Dicke [3] suggested modulating a noise signal under study as a means of distinguishing
the signal of interest from the noise originating in the amplifying system and also to reduce the
fluctuations in the radiometer output due to receiver gain instabilities. He derived the sensitivity
of a radiometer using a statistical approach for square-wave modulation and sinusoidal correlation.
In the analysis Dicke assumed that the detector was square-law, then he generalized to the linear
detector. Selove [16] corrects an error in the generalization to the linear detector and Strom
[6, pp 37 and 68] challenges an overall factor. For a square-wave modulation and sinusoidal
correlation, Dicke obtained a sensitivity which is a factor of 2 greater than the result to be obtained
in this paper and thus comparable with the accepted sensitivity of an ideal (no gain fluctuations)
total power radiometer [11, 12, 13, or 14]. Because the switching radiometer cannot have com-
parable sensitivity, Dicke’s result must be in error.
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In 1955, Goldstein [4] analyzed the switching radiometer using sinusoidal-voltage modulation
(or switching), sinusoidal correlation and square-law detection making use of the autocorrelation
function and assuming the noise signal had a Gaussian distribution. However, as noted above,
he assumed a noiseless modulator which corresponds to assuming 7> = 0 °K. Goldstein’s result
as corrected by himself [5] and Johnson [10] agrees with a special case of the analysis to be
presented.

Also in 1955 Bunkin and Karlov [17] analyzed the switching radiometer using the autocorrela-
tion method. Their analysis assumes a Gaussian noise distribution, square-wave modulation and
sinusoidal correlation. In addition, the effects of amplifier gain fluctuations are considered.
This paper depends to some extent on other papers in the Russian literature which are not readily
available. It was not established for certain if the paper agrees in all details, but no obvious
discrepancies occur.

Strom [6, 7] shows that the sensitivity of the switching radiometer is unaltered if a biased diode
is used as the detector instead of a square-law detector. He obtains a sensitivity that is less by a
factor V2 than the expected value because the out-of-phase rejection of noise by the correlator
was not taken into account.

Strum [8] discusses the effect of fluctuations in various components of a radiometer system
and discusses various types of linear detectors. He comments on the use of an IF amplifier in an
analysis. Strum defines a generalized bandwidth which reduces to the usual one for rectangular
bandpass but is not equivalent in general to that used by Dicke: Kelly, Lyons, and Root; Ward and
Richardson; Tiuri; and in this paper.

Kelly, Lyons, and Root [11, 12] analyzed a general comparison radiometer (T} and 7: arbitrary)
for arbitrary modulation and correlation. They treated gain fluctuations and optimized the modu-
lation wave form depending on the rms amplitude of the gain fluctuations. They also presented
a proof that a square-law detector is superior to any other detector law for Gaussian noise (ignoring
gain fluctuation of the amplifier). Except for the differences off-null already noted, there is no
disagreement with this paper.

Colvin [13] discusses the switching radiometer under rather general conditions as part of an
extensive survey of various radiometers. Again, except for the off-null differences discussed, there
is no disagreement with this paper.

Knight [9] considers a radiometer with asymmetrical rectangular modulation and correlation.
The calculation is of the Goldstein type. In his paper, eqs (3) and (4) lack the factor 27 on the
right-hand side which occurred in his prior equations. Knight’s corrected equations are a special
case of the analysis to be presented. However, his extension to the balanced radiometer operation
did not take into account the fluctuation of the output due to the noise sources.

Ward and Richardson [18] consider a power sinusoidal modulated radiometer with IF ampli-
fiers of different image and signal responses. The sensitivity obtained is that expected for a total
power radiometer, and for the same reason as noted for Dicke’s paper, this must be in error.

Johnson [10] corrected Goldstein’s results and extended the calculation to include various
combinations of sinusoidal and square-wave modulations and correlations. However, in Johnson’s
extension to square-wave modulation his (1/4) o20% term should be replaced by o202%.2

Tiuri [14] states the radiometer sensitivity for several modulations and correlations. The
results are the expected ones within the approximations already discussed.

3. Analysis

The sensitivity of the switching radiometer depicted in figure 1 is determined by calculating
the ratio of the dc output of the radiometer y,» and the rms fluctuations at the output, or». The
time dependent noise voltages will be denoted by y(¢) with a subscript denoting the point in the
circuit shown in the circles in ficure 1. An IF amplifier is not used in figure 1 but is treated in
appendix C.

2This has been acknowledged by Johnson in a private communication.
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3.1. The Fourier Transform

The Fourier transform preserves required phase information. Because the transform of a
random function does not converge, all the noise voltages y(t) are defined to be zero except for
—T/2 <t<T/2. The truncated function of y(¢) has identical properties with y(¢) in the limit
T — . Thus by y(t) it will be understood the truncated function of y(¢). The Fourier transform
of ¥(¢) is denoted Y (v), again with a subscript to denote point in the circuit.

The following form is used for the Fourier transform pair:

Y(v)=f " ety () d, (2)

y(t):f - el2mtY (v)dy. (3)

The Fourier transform or inverse transform of a product (in either ¢t or v space) is the convolution
of the transforms of the two factors (convolution theorem). With the choice in (2) and (3), the
convolutions (denoted by %) are defined by

y.l'(t)*y:(t)5f7 y.l'(t_[’)yz([’)d[,, (4')
and
Y.,-(v)*Y:(u)EJ i Yo(v—v")Y.(v")dv'. (5)

3.2. The Power Spectral Density and the Wiener-Khintchine Theorem

The power spectral density W (v) is related to the Fourier transform of y(t) in the following
manner [19],

Lim Y (»)Y*(v)

W(u):’[‘acc T ;] (())

where the asterisk denotes the complex conjugate. It can be shown that W (v)dv is the power
dissipated in a 2-Q) resistor due to the spectral components between v and v+ dv in the voltage y(t).
The Wiener-Khintchine Theorem is stated [20]

W (v) :fx R(t)e-2mtdy, (7

so that
R(t)ZIQc W (v)elzmvidy, (8)

where R(t) is the autocorrelation function defined by

= Illm _1_ Tiz ' ’ ’
R(@) = 75 7 J/zy(t )(t" +t)dt'. 9)

Using (8) and (9) for t =0,

y‘-’([):jx W(v)dv, (10)

where the bar indicates the time average in the interval — T/2 to + T/2.
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The analysis is ultimately stated in terms of measurable properties of the input noise signals

(21, 22]:

1
W](V):§ le,

W) =3 kT, (11)
W) =2 kT
n\V 9 ns

where £=1.3805%10-23 J °K~! is the Boltzmann constant. The factor 1/2 in (11) occurs because
the power spectral density is defined for both positive and negative frequencies.

3.3. The Switch

A model for the switch discussed in section 2.1 led to eq (1). For this analysis a more general
¥s(t) composed of an arbitrary number of periodically modulated noise signals will be used. The
voltage modulation of the ith signal [a;(¢)] is analyzed into its Fourier components:

ai(t)= 2 Aj, mei™>mvot, (12)

m

where m takes all integer values between —o and +. Similarly the correlation signal is
decomposed:

C(t) _— E Cmejnﬂmrot' (13)

m

The following associated transmission coefficients are also required:

pilt) = ai(t), (14)
qi(t) = pH(t) =ai(v), (15)
wij(t) = ai(t)a;(t), (16)
vi(t) = af(t)ai(e), (17)

which are decomposed into
pi(t)=>" Pi, me™m™y!, (18)
qi(t) =" Qi, mei™>m™, (19)
wij(t) =" Uy, meim2mot, (20)

and

vi(t) =Y Vij, meim2mot, (21)

m
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3.4. The y(t), Y(v), W(v) Description

Each element of the radiometer depicted in figure 1 is described by the modification to y(t)
before and after the element. Thus,

ys(t)=2 ai(t)yi(t) (22)
ya(t)= ha(t) K ys(t), (23)
yo(t)=y3(t), (24)
yr1(t) =he(t) % yolt), (25)
yu(t)=c(t)yri(t), (26)
Yra(t) = hpa(t) ke yult), (27)

where ha(t), hpi(t), hps(t) are the impulse response functions [20] of the amplifier, bandpass filter
and low pass filter, respectively, and c(¢) is defined in (13).
Taking the Fourier transforms of (22) to (27) and using (12),

Y‘\'(V):EMAL _nYi(v+ muy), (28)
Yiwv)=H.v)Ys(v), (29)
Yo(w)=Y.i(v) %k Yi(v), (30)
Yiiwv)=Hpi(v)Yp(v), V (31)
Yut) = 2 ConXrlv ), (32)
Yio(v)=Hps(v)Yu(v). (33)

The Fourier transform of the impulse response function is known as the system function, or
transfer function, denoted H(v),

Hy) = f - e > h(t)dt, (34)

— %

and will be used to define the power response function G (v),

Gwv)=Hw)H*®). (35)
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The power spectral density is obtained from (28) to (33) by means of (6) and (B—1) of appendix
B. This results in

W)= Ai,-nA? nWiv+ muy).. (36)
W a(w) =G (0)Ws(v), (37)
o) =10 T-17,0) Y0, (38)
Wii(v)=Gp1(v)Wp(v), (39)
Wa(v) = i C_mC* W i(v+ muy), (40)
We2(v)=Gra(v) W u(v), (41)

where G.4(v) (see eq 35) is the power response of the amplifier, etc. The spectral density of Wp(v)
will not be deduced from W,(v) due to the complication arising from W ,(v) being nonstationary.

3.5. Calculation of ¥,

The calculation of yr» (d-c output of the radiometer) is based on the following relationship
(see appendix B):

— Lim Y50
YF2= 10 —’%—) (42)

Using (31) to (33),
Yo (0) = HﬁZ(O) i C_nHpy (mV()) Yl)(mV()) . (43)

m=-—oo

The task now is to obtain Y, (mve) in terms of the known power spectral densities of (11). The
approach is to cast Yp(mwo) in a form to utilize the relationship (see appendix B)

Lin Lo0)_ "
where
K,= f T W.(v)d, (45)

and Y,,(0) is the Fourier transform of y2(¢) for v=0, where y,(¢) is a noise function with zero

mean.
If we assume a flat amplifier response so that H, (v + mvy) = H4(v), then (29) may be written,

Y,|(V) = EAI', ApYi*A(V+pV())’ (4'6)

i,p

where Yix4(v) is the Fourier transform of h,(z)%y:(t), etc. The approximation for the transfer
function of the amplifier, H(v) might seem unrealistic for large p, but generally 4; , decreases
rapidly with increasing |p|.
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Substituting (46) into (30) will give terms of the form

Ye(v+ pro) kY. (v+quo) = Yz (v+ pro + quo) ,

(47)

where Y,.(v) is the Fourier transform of y,(¢)y:(¢), x, z are any of the subscripts 1% A4, 2% A4 or

nkA. Equation (47)is valid even whenx=z. For a proof of (47) see appendix B.

We are now in a position to use (44) to facilitate the evaluation of (30).

Because Y,.(v + pv

+qvo) gives no contribution except for x=z and v+ pvy+qro=0 (see appendix B), then by re-

taining only nonzero terms and excluding m =0 (because 4;, y=0),
Lim Y,
e w = 2 Ai, oAi, ~q-mKixa,
inq
where from (6), (11), and (45), for i=1 or 2,

Kiwa =%kT,- f " Gaw)dv.

Thus, for the usual case that Cy=0, (42), (43), (48) and (49) combine to give,

i,m

Yr2 = \B12 { 2 Cn:Hl"l (mV(l)Pi, —mTi}y

where

A :% kHp2(0)[2G.4(0) % G.4(0) ]2,

and

l:fx GA(V)(ZV:r
B

2G4(0)%k G 4(0)’
0 o el £,
"G4k Ga)dy
=T A0k Ca0)

(48)

(49)

(50)

(1)

(52)

(©3)

and P; » defined in (18) is introduced by means of (B—=7) of appendix B. The term B is the con-
volution bandwidth of the amplifier. For a rectangular power response, B is the width of the

nonzero response in hertz (cycles per second).
3.6. Calculation of oy

The rms fluctuation (standard deviation) o, is defined by

=
02, = y2,(t) — yra(t).

The bar indicates the time average in the interval —7T/2 to T/2. Using (10) this may be written,

x*© ——2
o= [ Wrstid— 3.
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If the §-function term [23] from (38) is separated from Wr:(v) of (41), denoted by a prime,
0'2,2:[7 W,,(v)dv. (54)

Combining (22), (23), and (24), and assuming the modulation frequency is small compared
with the amplifier bandwidth so the modulation factor distortion is negligible, then

yo(0) =[S arlymatt) 1, 55)

where
yixa(t) = ha(t) kyi(2). (56)

Expanding (55) and using (14) and (16),

yo(8) = pi(6) Yiwa(t) + 273 wi(£)y ina () ¥ ixa(2)- (57)

i<j
Taking the Fourier transform of (57), then using (6) and (B—2), to obtain the power spectral density,

W)= E Pi, - nP¥ o W' sn, igea v+ mvo) +4 E Uij, U5, W isa, jaea (v +muo), (58)

i,m i<j,m

where Wixa x4 (v) is the power spectral density of yix4(2)y %4 (t) and the primes indicate o-func-
tion terms are omitted. It can be shown [15] that

Wisa ina ) =2[C.0)Wi»)] k [GCsw)Wi(v)], (59)
where G.(v) is introduced in (37). Also for i # j,

Wik, jxa 0)= [Ca0)Wi(v) | K [Gav)W(v)]. (60)
Using (59), (60), (10), (B—8), and (B—9) to simplify (58) and then using (39),

1
W;,~1(V) :E k2 [Z Qi, 0T12+2 ; Vij, ()TjTJ':| G]-‘](V)[GA(V)*GA(V)], (61)
where Q;, o and Vjj, o are defined via (19) and (21).

For the computation of Wp2(v) using (41), only Wy (v) for v = 0 will contribute because of the
narrow low pass filter F1. Consequently in using (40) and (61), Gp1(v == mwo)[G4(v=muo) Kk Ga(vEmuy))
may be replaced by Gy 1(mvy)[G.(mvo) % G.(mvy)] because the power transfer functions are even in v.

Furthermore, in the case where C, decreases rapidly with increasing |n|, then to a good approxi-
mation G4(mvo)k G4(mvy) = G4(0)% G(0). Therefore,

Wi )= nae [2 0. T2V OT;TJ-] Cral0)/GrlO), (62)

i<j
where A is defined in (51) and

1/2
M = |:Z C—meme(mv(,)] " (63)

m
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Thus using (54),

1/2
Tpe = \NMr—1/2 [Z Qi oT?+2 E Vi, ,,7','7’_,']
i i<J

(64)

where

! Efx Grav)dv[Gr2(0). (65)

3.7. Sensitivity

A measure of a radiometer’s sensitivity is o, (dyrz/dT1). It is customary to specify instead,
the minimum resolvable change in Ti, denoted ATy,;,. Using the criterion that a change in y,
denoted Ayrs due to a change in T, is resolved when Ayrs = o2, then
Tr2

ATmin =77
dy/dT, (&)

Using (50) and (64),

1/2
M| i +23 Vil

i<)

ATmin - () (67)

VBr {2 C wHpi(mvo) Py }

m

where B, 7, C_n, Hp1(v), Qi,0,Vij, 0, M are defined in (53), (65), (13), (34), (19), (21), and (63) respec-
tively.

a. Radiometers With Premultiplier Filter

Most radiometers have a narrow (compared with vy) bandpass filter (denoted F1 in figure 1)
preceding the multiplier. For this type of radiometer the sensitivity is independent of the cor-
relation wave form. This follows from the fact that Hy, (mvg) in (50) is zero except for m==+1.
For this case,

/A
[2 Qi, T2 +2 2 Vi, ()TiTj]l :

ATy == = ,
V2Bt |P;, 1| cos

(68)

where
CIHFI(VO)PI, — 7= lclHrl(Vo)Pl, 71|€i""

The sensitivity for particular modulation wave forms are shown in table 1.

b. Radiometers With No Premultiplier Filter

To simplify the calculations, assume the transfer function of the bandpass filter is constant
in phase and amplitude and equal to Hpi(vg). In this case (67) becomes

R 1/2
[P [ S QuoTr+2 3, Vi oT T |
: = : (69)

[c(tp:(D]VBr

ATmin:

where c¢(t)pi(t) is introduced via (B—10) of appendix B and c(¢) is introduced in an analogous manner.
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TABLE 1. AT,y for special ideal switching radiometers. The amplifier noise is T3; Q3 0=1 for all radiometers; d is the
fraction of the time the transmission coefficient differs from zero.
1/2

Ay =F(B) 2| 3 QuoTi+23 Vi o1

i<j

Modulation Correlation F Q1,0 02,0 Viz,o Vis, 0 Vs, o | Prior calculations
1. Square wave sinusoidal V2 1/2 1/2 0 1/2 1/2 a* c e*t g0 j*t k°
2. Square wave square wave |2 1/2 1/2 0 1/2 1/2 e*t fo h*f j*t§ kO
3. Voltage sinusoidal | sinusoidal 2V2 35/128 | 35/128 | 3/128 | 3/8 '3/8 b*tF d* Tt e*t jT
4. Voltage sinusoidal | square wave |7 35/128 | 35/128 | 3/128 | 3/8 3/8
5. Power sinusoidal | sinusoidal 2V2 3/8 3/8 1/8 1/2 1/2 ghiEaky
6. Power sinusoidal | square wave | 3/8 3/8 1/8 1/2 1/2
7. Power sawtooth sinusoidal Vor 1/3 1/3 1/6 1/2 1/2 &
8. Power sawtooth square wave |4 1/3 1/3 1/6 1/2 1/2
9. Rectangular_, sinusoidal 17/(\/5 sin 7d) d 1-d 0 d 1-d
10. Rect. (d = 2) square wave |d~! d 1-d |0 d 1—d
11. Rect. (d= %) square wave |(l1—d)! d 1-d |0 d L=
12. Rectangular rectangular [d(1—d)]-12 d 1—d |0 d 1—d h*¥

*Results of author conflict with this paper as noted in footnote.

°Results of author agrees in detail with this paper only when T, =T,.

1The calculation made was equivalent to assuming 72 =0 °K.

FA rectangular filter bandpass assumed in calculation.

4 Dicke [3] obtains a sensitivity greater by a factor 2 (thus ATy, less by factor 2) than this paper.

® Goldstein [4, 5], a minor algebraic error corrected in ref.‘j‘

¢ Bunkin, Karlov [17].

4 Strom [6, 7] obtains a sensitivity less by a factor V2 than this paper.

e Strum [8]. The bandpass defined does not agree with this paper except for rectangular bandpass.

"Kelly, Lyons, Root [11, 12] agree only when radiometer balanced.

¥ Colvin [13] agrees only for balanced, constant power radiometers.

" Knight [9]. Equations (3) and (4) of Knight's paper omit a factor 2. In addition, Knight’s results differ from this paper in that the terms in 7, and T, do
not occur.

! Ward and Richardson [18] obtained a sensitivity greater by a factor 2 V2 than this paper.

J Johnson [10] algebraic error for square wave modulation.

¥ Tiuri [14].

4. Special Results

A variety of particular radiometers have been considered in the literature (see sec. 2). These
radiometers were listed in table 1. The radiometer types shown in table 1 are ideal in three ways.
First, the switching element introduces no noise of its own, second, the maximum transmission
coeflicient is unity, and last, the relative phases of switching and correlation wave forms a(t), b(t),
and c(t) are selected to minimize AT,;,. The factor F is equal to 2-V2|P; |~! for sinusoidal cor-
relation or for radiometers with a narrow band precorrelator filter (and any reasonable correlation).
These radiometers are denoted as sinusoidal correlation in table 1. For other radiometers, F is
equal to [c2(t)]"2[c(t)p:(t)]"!. Explicitly the power modulation wave forms used are

(i) square wave modulation,

. mm
. SN
= jm2my,t .
pi(t) ;_w el (70)
(ii) voltage sinusoidal modulation,
pi1(t) =3/8+1/2 cos 27 vot +1/8 cos 47 vt; (71)
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(iii) power sinusoidal modulation,
pi1(t) =1/2+1/2 cos 2 vot: (72)

(iv) power sawtooth modulation,

pi(t) =1/24] Y 2mk)~'elk2m; (73)
k#0
(v) rectangular modulation,
sin kwd
(o) = ———— s (74)
; kr

where d is the fraction of the time that p;(¢t) differs from zero. Except for voltage sinusoidal
modulation, p»(t) is chosen such that p,(z) +p.(t) =1.

4.1. Nonideal Switch

The theory developed applies to arbitrary switching wave forms. There are two common
deviations from the ideal forms used for table 1.  First, the nonideal power transmission coefficient,
pi(t) of the switch varies from zero to pi, max instead of from zero to one. Thus,

p’/“) =Ppi, maxpi(t)ﬂ

so that
Qi o=pt mai. 05 (75)
and
Vii. 0= Pi. maxPi. max Vi, o (76)

Equations (75) and (76) may be used in place of the corresponding ideal parameters, to extend the
results of table 1 to the switch with nonideal transmission coefhcient.

A second complication is that the nonideal switch radiates thermal energy in direct proportion
to its temperature, and the fraction of incident energy absorbed. For a matched three-port device
at temperature T, the effective temperature of the radiation pg (¢)Tsy is [24]

psw(t)Tswz[I_Pl(t)_p‘l(t)]Tsw’ (77)

where the pi(t) are given by (14). The thermal noise from the switch may be treated formally as a
noise source of the temperature of the switch which is power modulated by amplitude pg(t). Thus
for the ideal square-wave modulation, rectangular modulation, power-sinusoidal modulation, and
power-sawtooth modulation of table 1,

psw(t) =0. (78)
For ideal voltage sinusoidal modulation,
(t) SRl dar vt (79)
Psw () =7 =7 cos dawot.
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TABLE 2. Balanced, constant switched power, nonideal radiometer
sensitivities.
The maximum power transmission coefficient through the switch is
Pt max = P2, max = @; T1=T,; the effective amplifier noise is T,:
and the physical temperature of the switch is Tg,.

Ti\+a'T,+(@a1-1)T,,
V Bt

ATmin=F

A. Narrow band precorrelator filter or sinusoidal correlation

Modulation F
Square wave 'rr/\/§ =222
Power sinusoidal 2V2=2.83
Power sawtooth V2r=4.44
Rectangular® 77/(\/5 sin 7d)

B. No precorrelator filter

Modulation Correlation F
Square wave square wave 2
Power sinusoidal square wave T
Power sawtooth square wave 4
Rectangular* rectangular [d(1—d)]-12
Rectangular® (d < 3) | square ds
Rectangular® (d = 3) | square (Ul =g

*d is the fraction of the time the transmission coefficient is dif-
ferent than zero.

4.2. Balanced Radiometers With Nonideal Switches

The expression for AT, simplifies when the noise sources being compared have nearly the
same effective temperature and when the power to the amplifier is constant [i.e., pi(t) +p2(¢)
=constant]. Table 2 lists the results for radiometers having nonideal switches that satisfy these
special conditions. The sensitivity indicated is for the correlation phase which minimizes AT ;.

The AT, for the voltage sinusoidally modulated radiometer does not simplify for T =T5,.
However, for a radiometer with a narrow band precorrelator filter (or sinusoidal correlation) and
a switch where the maximum power transmission coeflicients pi1, max = P2, max = & AT min for T1=T>

is bounded by the following expressions:

3 7
[Z 8) TSW]
AT, > 2V?2

and
7

[8 T1 =F a’ng + <a‘1 _§> Tsw:|
AT in < 2V?2

VBr

For no precorrelator filter and square wave correlation, 2 V2 is replaced by 7.
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5. Experimental Procedure

The sensitivity of a Dicke radiometer similar to Wells, Daywitt, and Miller [1] was deter-
mined experimentally. A switchable circulator was used for the switch instead of a magic tee
and motor driven attenuators. The switchable circulator provided square-wave modulation at
1000 Hz. The 30 MHz output of the IF amplifier was attenuated by various amounts and then fed
to a crystal detector. The detector law of this detector is shown in figure 2. The arrows indicate
operating points for which the radiometer sensitivity was measured. The numbers near the
arrows are the minimum resolvable temperature changes measured for each level.

The mixer-preamplifier-IF amplifier voltage response is shown for one channel in figure 3.
The other channel is similar. The markers along the bottom of the figure are synthesized at 2
MHz intervals. The convolution bandwidth was calculated using a computer program based on
(53). The system bandwidth is determined from a single channel response as discussed in ap-
pendix C.

The time constant for the low pass filter of the lock-in amplifier nominally set at 10 sec inte-
grating time is based on the voltage response measurement shown in figure 4.

The recorded data were plotted on probability paper. The ordinate of this paper is the am-
plitude (voltage) of the radiometer output, and the abscissa is the percent of the time the recorder
trace exceeds the ordinate value. The scale of the paper makes the plot a straight line if the
data have normal (Gaussian) distribution. From the plot, the mean of the data is the value of the
ordinate for which the abscissa is 50 percent. The standard deviation o (for normal distribution)
is the difference in the ordinate values for abscissa values of 50 percent and 84.1 perceht (or 15.9%
and 50%). Figure 5 shows two sets of data, one before and one after a change of 0.0087 dB (21.6
°K change from 10,800 °K) of input power is made in one noise source.

The various parameters for the radiometer under test are given in table 3. The theoretical
ATin is based on table 2 for the balanced radiometer using square-wave modulation. The
experimental ATy, is the mean result of AT\/(Ayps/or) taken from four plots similar to figure 5
for a AT, =21.6 °K.

A feature common to all data and shown in figure 5 is an increase in o when the noise power
decreases from null. No change in o is noticeable when the noise power increases (out to 0.2
dB change). The cause of this feature is not known.

The radiometer sensitivity as noted in figure 2 for the radiometer at various operating points
are comparable.

6. Conclusions

The areas of agreement within the literature have been ferreted out and the nature of dis-
crepancies determined. A new analysis of the Dicke radiometer was presented which was general
enough to include all of the papers reviewed as a special case and to extend the sensitivity calcu-
lations to include radiometers with a lossy switch.

The most sensitive radiometer is a square-wave modulated radiometer with wide band (i.e.,
no premultiplier filter) square-wave correlator. However, the potential 11 percent advantage in
sensitivity for wide band square-wave correlation over systems using a narrow premultiplier filter
must be weighed against the practical difficulties associated with wide band systems. Also the
narrow band correlator insures that the output of the radiometer is proportional to the difference
of input powers [i.e., to Ty —T,; see eq (50)] independent of the asymmetry of the modulation.

The sensitivity of a square-wave modulated radiometer using a narrow precorrelator filter was
determined experimentally. The measured sensitivity was the same as the theoretical radiometer
using a full-wave, square-law detector. The sensitivity of the radiometer was independent (within
the experimental error) of whether a half-wave square-law, linear, or intermediate-law detector
was used.
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TABLE 3. Parameters of the Dicke radiometer under test

Predetection bandwidth (B)............... I
Postdetection integrating time ()
Receiver noise temperature (T',)
Maximum switch transmission ()

Switch temperature (Tsy
Noise sources (T = T5)
Switching frequency (vy)
Switching waveform

Microwave frequency (local oscillator)
I B (TR bosus aacton0060008000500860000 00006050

AT pin (experimental)........coooouiieiiiniiiiienenn.

)

9.2 MHz =+ 10%
... 18 sec =10%
.| 750 °K = 5%
(2.57)! 4%

...] 295 °K

...| 10,800 = 2.5%
.| 1000 Hz

.| Square wave

9 GHz

2.3 °K =15%

2.3 °K =20%

+03
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7. Appendix A. Equivalent Statements for B and 7 and Notation Conversion
for Literature

Various statements are used in the literature for B and 7. This section gives the definition
used in this paper in alternate forms which are easier to compare with the literature.

Using the Wiener-Khintchine Theorem, (7), and assuming the order of integration can be
interchanged, the following relationships can be proven:

G(0) %G (0) = f " Gv)dv, (A-1)
£ %0 2
f G(V)*G(V)(ll/:,:f G(V)dv] , (A=2)
2(0) :fx G(v)dv, (A-3)
H(O):fx h(t)dt, (A-4)
and Parsevals relation,
f " Ho)H*w)dv = f C Rty de, (A-5)

where g(¢) is the Fourier transform (autocorrelation function) of the power response G(v), and
h(t) and H(v) are a Fourier transform pair, with A(¢) a real function.
If instead of using frequency v in hertz (cycles per second) as a parameter, the angular fre-
quency o = 27rv is used, then the following conversions may be used:
v=o/(27),

G.(v)= 2776(0((0)9

W.(v)=2aW (),

Y.(v)=27Y,(0),

H,(v)=2mH (),

G/v)kGv) =216 () kG (W),

where the subscripts v and w are introduced to distinguish a difference in functional form. This
subscript will now be dropped. The functional form appropriate to the function used is under-

143



stood. The conversion from W(v) to W(w) is chosen so that

In the o notation,

and

The conversion system above is not unique.

Yw)=(2m) |

Ww)dv=W(w)dw.

£

e Joly(t)dt,

=00

W(w) =% @m/T)Y ()Y ).

The easiest way to determine what system a given

author is using is by examining the form used for the Wiener-Khintchine theorem, or statements

which include the autocorrelation function.

in a manner equivalent to (9).

7.1

The definition of B is in (52):

Using (A—2),

or (A-1),

. Equivalent Statements for B

®© 2
[ GA(V)dV}

==C0

B= . ORCa0)

© Caw)KCav)dy

B= . 0%C.0

[ ) GA(V)dV]Z
p=Lti== 1

fo G3(v)dv

Beginning with (A-8), noting that G.4(v) = H4(v)Hi(v), and converting to ® notation,

Beginning with (A-8), applying (A—3) to the numerator and (A-5) to the denominator,

© 2

[ f |HA(w)|2dw]
B=- 73; .
4wf |H 4(w)|*dw

g0

The autocorrelation function is universally defined

(A-6)

(A7)

(A-8)

(A-9)

(A-10)



Using a normalized autocorrelation function, pa(t) = ga(t)/g4(0),

(ZB)”:ff pA(t)dt. (A-11)

7.2. Equivalent Statements for 7

The definition of 7 is from (65):
771:"’ Gra(v)dv[Grs(0). (A-12)
Noting that Grs(v) = Hp2(v)HF,(v) and converting to the o convention,

fx |sz(w)|2a'w
=1 —

T T 2mHLw=0) s

Using (A—4), and (A-5), and assuming a causal system such that A(¢) =0 for t <0,

fx h%.,(t)dt
7 St (A-14)

% 2
T ]

7.3. Literature Conversion

Several representative statements from the literature referring to the minimum resolvable
change in temperature for a radiometer near balance (7, =T.) and for AT ;, < T, will be converted
to the notation of this paper.

a. Dicke [1946]

Dicke’s [3] equation (21) for square-wave modulation and cosine correlation is,

iz L] [ sore]”

_T oy x : (A-15)
vz S(O)f |F (w)|2dw

Using (A-9) and (A—-13) and the following conversions,
AT= AT win,
T=T,=Ts,,
N=(T,+T))T, (for T, =290 °K),
Flw)=Hi(w),
S(w)=Hps(w),
and (A-15) becomes

AT in=m(Ty+ T,)(8B7)~ 12,
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b. Goldstein [1955, 1956]

For voltage sinusoidal modulation and sinusoidal correlation Goldstein [4, 5] obtains
03,=40%Vvyla. (A-16)

Goldstein’s work corresponds to Ty =T>=0 °K and

o= kAT min,

o3=kTy,
y=@n
a=B8,

where / is Boltzman’s constant. Thus (A-16) becomes

AT, = 4T, (2B7) 12,

c. Bunkin and Karlov [1955]

For square-wave modulation and sinusoidal correlation, Bunkin and Karlov obtain [17]

1 AQAQ
Aw AQ,+ AQ

2 1/2
AT 1 AT ]} ok

ST:W(T1H+ T") { Tin+Te+§ (Tin+ Te)?

1+

If the precorrelator bandwidth A€); is much greater than the postcorrelator low pass filter band-
width AQ, then

TS ~ A,
Using the following conversions
8T = AT nin,
Tiu="Tn,
T.=T,,
Aw=27B,
AQ =71,

for AT <1, (A-17) becomes
AT in=m(T+T,)2B71)~ 12,

d. Kelly, Lyons, and Root [1958, 1963]

For square-wave modulation and detection, (49) and (31) of Kelly, Lyons, and Root [12] becomes
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Equations (A—11) and (A—14) are used to establish the conversion for B and 7. Using the following

conversions,
AT = AT nin,
I,=T,=T,,
Tw=T,,
['(0)=0, (for zero gain fluctuations)
B=B8B,
T=T,

(A—18) becomes

AT in=2(T1 + T,)(B7)~ 12

e. Knight [1962]
For rectangular modulation and rectangular correlation, Knight [9] obtains
2

‘_S‘_zﬂa((rfc—"'i)( a )( _a ) -
N 2l'oy atb l at+b)’ (A-19)

where the 27 omitted in Knight’s eq (4) is added. The appropriate resolution criterion is S/N=1.
With this condition, then

o3 — %= kAT yin,
@ =5
alla+b)=d,
I'=a/7,
a=1B,
and (A-19) becomes

AT \in=Tr[Brd(1 —d)]- 12

8. Appendix B. Theorems on the Fourier Transtorm

Several theorems involving the Fourier transform of the time function y,(t) and y.(t) of zero
mean are proved in this appendix:

sk
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for y.(t) uncorrelated with y.(t), and

.1
Lim 7 Yes(0)Y %100 (+') =0, ®-2

unless y.(t) = yz(t), y:(t)=1y.(t), and v=1', and

T Y(0)
Y= = (B-3)
and
. Y (0) [
Lim 20— [ w0, (B4
and
Yo+ pro) K Y.(v+ qro) =Y (v + pro+ quy), (B-5)
and
1 (92 .
P, = ) f_ o a(t)ermrvotdt, (B—6)
and
P r= i Ai, mAi, r —m, (B-7)
and
Oi,(]:El)i,mP?j"n (B—8)
and
Vij,() = z l/Tij. m L,,'T. ms (B—9)

m

where P; , and A4;,, are defined in (18) and (12) respectively, and © = v ! is one period of the periodic
signal p(¢), and

Y CoPi,—a=c(t)p:(1) (B-10)

where

1 (e
c(t)pi(t) = —é-f c(t)pi(t)dt. (B-11)

-9/2

8.1. Theorem 1

Taking the inverse transform (3) of the left-hand side of (B—1), then taking inverse transform of
Y.(v) and Ys(v) and interchanging the order of integration, one obtains (Lim T — « is understood)

T“‘J';C e2mY, (n)Y§F(w)dv=T 'ff Y\(l')Yz(t')dt/dt"fx

ej271v(l —t' + l")dv_
€x©
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The integration over v yields the Dirac delta function 6(t—t'+1t") [24].
Thus integrating over t',

T ‘fejz’”"Yl(v)Y;"(v)dv=T'‘fﬁc yi(t +t")ya(1")dt”.

If y1(t) and y:(1) are not correlated, then the integral on the right is finite, and when divided by T
tends to zero as T— . Thus, the left-hand side is zero, the Fourier transform is also zero and
(B—1) is proved.

8.2. Theorem 2
The theorem is proved in a manner analogous to theorem 1.
8.3. Theorem 3

By definition,

2
y = Lim Tf_ » y(t)dt.

T—x

The function y(t) is truncated so that y(t) equals zero for [t| > T/2. Thus,

Too

¥=Lim %r y(Odt.

Taking the Fourier transform of y(t) and interchanging the order of integration,

=0

y=Lim %f’” Y(V)dl/jx ei2mt i,

T—x

The integration over time yields the d-function of v. Subsequent integration over v yields (B—3).
8.4. Theorem 4

Let Y, (v) be the Fourier transform of y,(t)y,(t) where y(t) and vy,(t) are random variables with
zero mean:

W)= fw e~ 2mly (t)y,(t)dt.

00

If y«(t) is not correlated to y,(t) or e 2™ then the mean of the product is zero. Thus, Y, (v) is
finite and if divided by T, will approach zero as T —> . If y,(t) = y\(t), then

T/2 )
Yxx(u)=f e 2mity2(p)dt,
- T/2

where the limits of the integral are taken from —T|2 to T/2. This does not change the value of the
integral because y(t)=0 for [t| =T/2. When yi(t) is rewritten as y%+[y2(t)—y2] and the above
equation is divided by T (the limit T — o being understood),

T/2 T/2

T~ 'Y (r)=T-! {Ff e~-i2w'dt+f e—mvt[yg(t)—y—ﬂdt}-

-T/2 - T/2
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The integral in the second term is finite and the term goes to zero as T — . The first term on the
right-hand side goes to zero unless v=0. For v=0 the term approaches yz. Thus,

{E for v=0 and x=z,

0 otherwise.

Lim Y, (v)=

T—®

Using (10) yields (B—4).
8.5. Theorem 5

Using the definition of convolution, eq (5),
Y (v+myo) kY, (v+quo) = f Y. (v +mvy)Y,(v—v' + qrodv’.
Taking the Fourier transform and interchanging the order of integrations,

Y (v+ mvo)k Y, (v+ qw)=ffx e immet vty (t)y,(t')dt dt’ f e~ =)y’

—

The integration over v' yields 8(t —t'), then the result of integrating over t' is identified as
Y, (v + mvy+ quy).

8.6. Theorem 6

To obtain (B—6), both sides of (18) are multiplied by €2 ™ and then integrated over a period,
using for p;(t) the equivalent a%(t) as noted in (14).

8.7. Theorem 7
Using (B—6) and (12),

1 O/2
] '_6 f ejmz-nuot][Ai Sej(s—l‘)Z'ergt]dt'

m,s e/l

Due to the orthogonality of different Fourier components, the integral has nonzero value only when
s=r—m. This leads directly to (B=7).

8.8. Theorems 8, 9, 10, and 11

The proof of (B—8), (B—9), and (B—10) are analogous to the proof of (B=7). Equations (13),
through (21) are needed for various definitions.

9. Appendix C. Radiometer Using an IF Amplifier

A schematic for the IF amplifier is shown in figure C—1. Instead of the amplifier shown in
figure 1, now a mixer, local oscillator, and IF amplifier are used. The amplifier noise temperature
T, of figure 1 is now interpreted as the noise temperature of the mixer-IF amplifier as referred to
the input of the mixer. Using the same notation convention as the body of the paper,

vro(t)=m cos 2mvt,
ysu(t)=mnys(t) cos 2mvqt, (C-1)

yat)=ha(t)Kysu(t),
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where 7 is the amplitude of the local oscillator of frequency v;. From (C-1), it is clear that an
ideal balanced mixer is assumed. Taking the Fourier transform,

Youw)=2n [Ysw+vi)+Ysw—ry)], (C-2)
Yaw)=H.i()Ysu). (C-3)
Applying (6),
Wsuw) =W s(v+v)+Wsv—ury)], (C—4)
Waiw)=Ga(w)W su(v). (C-5)

9.1. Calculation of ¥75

The calculation of ¥ proceeds in a manner similar to section 3.5 except (C—2) and (C—3) are
used in place of (29). Thus, instead of (46), now we have,

Yilv)= é"qz Ai, —plYixaw+ pvo+vi) +Yigs(w+pro—ri)]. (C—6)

i,p
Substituting (C—6) into (30) will give terms of the type [see eq (47)],
Yo+ mvo =)k Yao(v+ quo F v1) = Yp(v + myo+ qu)
and
Yo+ mvoxv) & Y.(v+ quo £ vi) =Yoo (v + muy + qro = 2vy). (C=7)

Using an argument similar to that used to obtain (48), noting that the terms like (C=7) do not
contribute,

. Yp(mwy) _ l ;
%Lril T_ 9 7)2%Ai, in, —(I—nlki*A- (C_g)

Equation (C-8) is identical to (48) except for the multiplicative constant 1 2.  Thus the remainder

of the calculation is unchanged except that the gain functions X of (51) now contain £ n2.  Thus,

A= 1 m*kHp(0)[2G 4(0) % G 4(0)]'2. (C-9)
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9.2. Calculation of o>

The calculation of o2 proceeds in a manner similar to section 3.5 except (C—4) and (C-5) are
used in place of (37). Because Ws(v+vi)=Ws(v—vy), (C—4) and (C—5) combined become,

Wiv) = %YIZGA(V)WNV).

Thus the calculation is similar except Wg(v) is replaced by & n2W(v). If (C9) is used for the
definition of A, then the statement of yr» and oy in (50) and (64) are otherwise unchanged.

9.3. Comments

The bandwidth B is defined in a similar manner whether the amplifier is at the signal frequency
or an IF frequency. For an [F amplifying system, B is the bandwidth of the IF amplifier. If for
some reason the signal were only in the signal channel of the IF amplifier (the noise remains in
both channels), then T, and T, would be replaced by 3T, and 3T., but no other changes. Thus,
the single channel IF radiometer would be equivalent (as far as sensitivity is concerned) to a similar
double-channel IF radiometer except it would have twice the amplifier noise temperature.
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