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We solve the integration-by-parts (IBP) identities needed for the computation of any planar two-
loop five-point massless amplitude in QCD. We also derive some new results for the most complicated
non-planar topology with irreducible numerators of power as high as six. We do this by applying a
new strategy for solving the IBP identities which scales better for problems with a large number of
scales and/or master integrals. Our results are a proof of principle that the remaining non-planar
contributions for all two-loop five-point massless QCD amplitudes can be computed in analytic form.

I. INTRODUCTION

Gauge theories, whose predictivity is dependent on
calculations of scattering amplitudes at higher pertur-
bative orders, have been hugely successful in describing
natural phenomena. The focus of this work is on per-
turbative Quantum Chromodynamics (QCD) which can
be viewed as a prototype for a generic unbroken non-
supersymmetric gauge theory. QCD is also special be-
cause multiloop QCD amplitudes are the backbone of
theoretical predictions for precision collider observables
like the ones measured at the Large Hadron Collider.

At present, calculations in massless QCD are possible
at four (partially five) loops [1–5] for self-energy diagrams
and three (partially four) loops [6–11] for vertex-like pro-
cesses. Four-point massless amplitudes are fully known
through two loops (partially three) [12–17] while five-
point ones are only known at one loop. The goal of this
work is to extend the two-loop frontier to the five-point
massless QCD amplitudes.

The integration-by-parts identities (IBP) approach
[18, 19] has been the method of choice for comput-
ing multiloop QCD amplitudes. The method has pro-
duced countless results; see some recent reviews [20, 21].
The way the IBP approach works is rather simple. A
generic squared or suitably decomposed multiloop UV-
unrenormalized amplitude can be written as

M =

N∑
i=1

fiIi . (1)

The above expression follows from a straightforward
application of Feynman rules applied to the process at
hand and, if appropriate, after summation over spin
and/or color. Throughout this work we assume that all
divergences are regulated by working in d = 4−2ε dimen-
sions. The coefficients fi are rational functions of kine-
matic invariants and the space-time dimension d, and Ii
are scalar Feynman integrals. The number N of such in-
tegrals tends to be very large and grows quickly with the
number of loops, legs and/or parameters in the problem.

The IBP approach makes it possible to express the
Feynman integrals Ii appearing in eq. (1) as linear com-

binations of a small number of Feynman integrals Îm

Ii =

N̂∑
m=1

ci,mÎm . (2)

The integrals Îm are known as master integrals (or simply
masters) and the coefficients ci,m are rational functions of
the kinematic invariants and the space-time dimension.

The utility of the IBP approach stems from the fact
that N̂ � N . For example, for the problem we consider
in the present paper, N̂ ∼ O(102) while N ∼ O(104).

Finally, substituting eq. (2) in eq. (1) one gets the de-
sired minimal form for the amplitude in eq. (1)

M =

N̂∑
m=1

ĉmÎm , with ĉm =

N∑
i=1

ci,mfi . (3)

The evaluation of the bare amplitude M consists of
two steps: first, solve the IBP equations by deriving the
required set of coefficients ci,m appearing in eqs. (2,3)

and, second, evaluate the master integrals Îm.
The subject of this work is the calculation of the coef-

ficients ci,m. We note that they are process-independent
in the sense that they are the same for every massless
two-loop five-point amplitude. Their universality is one
of the advantages of the IBP method. All process-specific
information is encoded into the coefficients fi which are
comparatively easy to compute.

The master integrals Îm are also process independent.
In the context of eq. (2) they are interpreted as a basis

of the N̂ -dimensional vector space V ≡ {Ii} spanned by
the infinite number of possible integrals Ii. We note that
the choice of such a basis is not unique; moreover, it can
happen that two or more master integrals are linearly
related to each other when viewed as integrals. In the
context of the IBP approach, however, the masters have
to be treated as independent basis elements. In this work
we will not be concerned with their evaluation since this
is a separate, albeit not unrelated [22–29] problem. All
planar master integrals relevant for the present work are
known in analytic form [30].

The solving of the IBP identities in the past 20 years or
so has been based on the Laporta algorithm [31]. Many
computer implementations of this algorithm exist [32–
38]. Although it produces exact results, the method is
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numeric in nature, i.e. it cannot be expected to solve
problems of arbitrary complexity. As experience shows,
the evaluation of the massless two-loop five-point QCD
amplitudes is at the boundary of what is possible with
the existing implementations of the Laporta approach.

Many novel ideas for the solving of the IBP equations
have been proposed in the recent past [39–45]. These new
ideas and methods have made possible the evaluation of
specific/planar all-gluon five-point amplitudes [46–52] as
well as some non-planar ones [53]. Ideas towards solving
the IBP identities in abstract form have also been put
forward [54].

In this work we explore a different strategy for solving
the IBP identities. We demonstrate that supplement-
ing this strategy with the standard Laporta algorithm is
sufficient to solve the IBP identities needed to compute
the complete set of planar two-loop five-point amplitudes
in massless QCD (with quarks and/or gluons) in analytic
form. We also present new non-trivial non-planar results.
Based on our experience we expect that the non-planar
contributions can be computed in analytic form with our
strategy.

II. OUR STRATEGY FOR SOLVING THE IBP
IDENTITIES

Our starting point is the assumption that the IBP sys-
tem has a solution, i.e. every loop integral Ii can be
expressed though a set of basis master integrals as in
eq. (2) and that such a basis set of masters is known.

The existence and construction of a finite basis of mas-
ter integrals is an old problem [55–57]. Here we take a
pragmatic viewpoint which is informed by the observa-
tion that all problems known to us do possess such a
finite basis. There are several ways to construct such a
basis. For example, one could solve the IBP system over
a restricted set of integrals and/or use numerical values
for the kinematic invariants. In any case, finding a basis
is not a bottleneck and we consider this step to be trivial.
This is certainly true for the two-loop five-point massless
amplitudes considered here, where we have easily identi-
fied the sets of masters for all topologies.

The index i labeling the integral Ii is a composite in-
dex. It is natural to express it through the powers of the
propagators appearing in the corresponding integral. For
example, for a generic two-loop integral we have

Ii ≡ I(n1, . . . , nP ) =

∫
ddk1d

dk2
1

Πn1
1 . . .ΠnP

P

. (4)

The functions Πn are the corresponding propagators
which are bilinear functions of the loop and/or exter-
nal momenta. Specific examples are given in sec. III.
Eq. (4) can, of course, be generalized to any loop order
in a completely straightforward way.

In this notation eq. (2) now takes the form

I(n1, . . . , nP ) =

N̂∑
m=1

cm(n1, . . . , nP )Îm . (5)

Just like the index i, the index m is also a composite one
and we will sometimes use its explicit form.

To solve the IBP identities means that for any required
integral Ii one must derive the set of coefficients ci,m ap-
pearing in eqs. (2,5). In existing approaches for solving
IBP identities, the full set of coefficients ci,m (for a given
i) is derived simultaneously. In this work we pursue a dif-
ferent strategy for their solving where the projection of
Ii onto each master is derived independently. Put differ-
ently, we split the problem of solving the system of IBP
equations into N̂ independent problems, one for each of
the N̂ projections.

This strategy is implemented in the following way: we
apply the usual set of IBP identities to a modification
of the space V such that N̂ − 1 of its elements (corre-
sponding to all but one of the masters) are set to zero
beforehand. For example, in order to derive the pro-
jection onto master Î1 of any integral Ii, one first sets
Î2 = Î3 = · · · = ÎN̂ = 0 and then solves the IBP equa-
tions. This way, once the IBP system has been fully
solved, one will have a solution that is of the following
form

I(n1, . . . , nP ) = c1(n1, . . . , nP )Î1 , (6)

i.e. one will have derived the coefficients c1(n1, . . . , nP )
which are the projection of the full solution onto the
master Î1. Repeating the same approach but setting
Î1 = Î3 = · · · = ÎN̂ = 0 one derives the coefficients
c2(n1, . . . , nP ) and so on. To obtain the complete solu-

tion of the IBP system one simply needs to add all N̂
independently derived projections.

To the best of our knowledge, this strategy is new and
has not been applied before. It is easy to see why it leads
to the correct solution of the IBP equations. Its correct-
ness follows from the fact that each integral Ii has an
expansion in the set of masters Îm, i.e. at each step the
IBP equations can be rewritten as a homogeneous linear
combination of all master integrals. Since the IBP equa-
tions are themselves linear and homogeneous in terms
of the integrals Ii, one can see that the IBP equations
never mix projections belonging to different master inte-
grals. In essence, our proposal states that each of these
projections can be computed in isolation from the others.

The IBP solving strategy described here is indepen-
dent of the approach used for solving the system of IBP
equations. In practice, we will use the standard Laporta
algorithm but one does not have to. In fact, we arrived
at this idea while trying to find a way for solving the
IBP system in closed form. We hope to return to this in
a future work.

We have checked the correctness of our strategy in a
number of non-trivial examples, such as the complete
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two-loop four-point amplitude (cross-checked with the
program Reduze [34, 35]) and a number of two-loop five-
point planar and non-planar cases as explained in detail
in sec. III.

At this point it will be beneficial to contrast our strat-
egy to the usual way of solving IBP identities and to
discuss the origin of increased efficiency. To this end we
need to introduce the notion of sector which is well-known
in the IBP literature.

A sector is effectively a sub-topology indexed by 0s
and 1s and defined by the position of a subset of propa-
gators. For example, [1, 1, 1, 0, . . . , 0] represents a sector.
In the notation of eq. (4) this sector contains all integrals
I(n1, . . . , nP ) for which n1,2,3 > 0 while n4,...,P ≤ 0. The
number of different propagators that define a sector is
called its weight. For example, the sector [1, 1, 1, 0, . . . , 0]
is of weight 3. A sector is called a zero-sector if all in-
tegrals that belong to it vanish. For the massless two-
loop five-point amplitudes, all sectors with weight < 3
are zero-sectors. Some sectors with weight ≥ 3 are also
zero-sectors.

Our strategy can lead to a more efficient solving of the
IBP system for several reasons. First, once N̂−1 masters
are set to zero, many sectors become zero-sectors and
thus do not need to be computed. In practice, this is a
major simplification.

Second, setting masters to zero at the outset of the
calculation simplifies the intermediate steps. The reason
is that, taking the example of the Laporta algorithm, the
IBP equations that will be solved first are generated from
seeds that are in some sense close to the master integrals.
1 In this way the information about vanishing masters
is incorporated into the resulting IBP equations early
on in the solving process. In large systems with many
masters, our strategy could lead to a significant reduction
in the size of the intermediate expressions. This, in turn,
would reduce the computer memory requirement that is
the limiting factor in solving large problems.

Third, by solving for one master at a time one can
parallelize the problem by computing several projections
at the same time. The amount of parallelization achieved
is only restricted by the available computer memory and
CPU. One should keep in mind that, as we explain in
sec. III, the run-times for different masters can be vastly
different.

III. RESULTS

For definiteness, in this work we focus on the squared
two-loop amplitudeM = 〈A(2)|A(0)〉 for the process qq̄ →
q′q̄′g. From the viewpoint of the IBPs it is representative

1 Assuming that, as is usually the case, the masters are chosen with
the help of the same ordering criterion that is used to generate
the seeds for solving the IBP equations.
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FIG. 1: The 8-propagator topologies B1, B2, C1 and C2. B1

and C1 are the most complicated non-planar and planar
topologies, respectively.

of the other massless five-point two-loop amplitudes.
The Feynman integrals appearing in M belong to sev-

eral topologies. We label the family of non-planar ones
B and the family of planar ones C. There are two non-
planar topologies (B1 and B2) that have the maximum
possible number of propagators (eight) as well as two
computationally simpler topologies with fewer than eight
propagators. For the planar case, we have two topologies
with eight propagators (C1 and C2) and one more, C3,
with seven propagators. All master integrals needed in
the computation of the three planar C topologies have
been computed in analytic form [30] within the approach
of ref. [58]. The four topologies with the maximum num-
ber of propagators are shown in fig. 1.

The B and C families of topologies are defined through
the following sets of 11 propagators:

B =
{
k21, k

2
2, (k1 + p1)2, (k1 + p1 + p2)2,

(k2 − p3)2, (k2 − k1 − p3)2,

(k2 − k1 − p1 − p2 + p4)2, (k2 + p4)2,

(k2 + p1 + p2)2, (k2 + p1)2, (k1 + p3)2
}

(7)

C =
{
k21, k

2
2, (k1 + p1 + p2)2, (k1 − k2)2,

(k2 + p1)2, (k2 + p1 + p2)2, (k2 − p3)2,

(k1 + p1 + p2 − p3)2, (k1 + p1 + p2 − p3 − p4)2,

(k2 − p3 − p4)2, (k1 + p1)2
}
. (8)

The momenta p1 and p2 are incoming while p3 and p4
are the two independent outgoing momenta.

The four 8-propagator topologies shown in fig. 1 as
well as the 7-propagator one, C3, are defined by their
highest-weight sectors (see sec. II for definitions)

B1 = B [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0] ,

B2 = B [1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1] ,

C1 = C [1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0] ,

C2 = C [1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1] ,

C3 = C [1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1] . (9)
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We have identified the master integrals in each of the
five topologies in eq. (9). We find 113 masters in B1, 75
in B2, 62 in C1, 28 in C2 and 10 in C3. Their explicit
definitions, in the notation of eqs. (7,8,9), can be found
in an electronic file attached to this paper.

In this work we have computed and are making pub-
licly available all coefficients ci,m belonging to the most
complicated planar topology C1 needed for the evaluation
of the amplitude qq̄ → q′q̄′g. This includes the results
for all required integrals with irreducible numerators of
power as high as -5 and/or squared denominators.

To demonstrate the power and flexibility of our strat-
egy, we have also computed and present here the coeffi-
cients of the masters belonging to the highest-weight sec-
tor (with weight=8) for topologies B1 (9 masters) and B2

(3 masters). We have computed all integrals with numer-
ator powers as high as -6 and/or a squared denominator.
All results mentioned above are available for download
in electronic form from the following website [59].

Our results have been cross-checked in the following
ways: the masters for all five topologies in eq. (9) have
been independently derived with Reduze [34, 35]. Using
the results in refs. [40, 54] we have related all (five) inte-
grals with irreducible numerators of power -5 belonging
to topology C1 to integrals with lower numerator powers.
Using our calculation for those integrals with lower nu-
merator powers we find complete agreement with our di-
rect calculation of the integrals with numerators of power
-5. We have checked that this agreement holds for the
projections on to the full set of masters in topology C1.
This is a highly non-trivial check for both our calculation
and the results in refs. [40, 54].

We have also checked that our calculation for topology
B2 agrees with the results in ref. [53] by comparing all
integrals with numerator powers of -4 (which is the high-
est numerator power computed in that paper). Ref. [45]
has claimed to compute the planar integrals with numer-
ator power -5 with the help of the program FIRE [33, 37].
However, since that reference does not provide explicit
results or details about their calculation, we are unable
to compare.

A few comments about our calculation are in order.
We have implemented the strategy proposed in this work
in a private C++ code. A bottleneck in solving the IBP
identities is the manipulation of large rational expres-
sions. To that end we have used the program Fermat
[60].

The run-times for different master integrals are vastly
different. The calculation of the coefficients of the master
integrals in the highest-weight sector (i.e. those with the
maximum number of propagators) is simplest and takes
only a few minutes. The calculations corresponding to
masters with fewer propagators, however, become pro-
gressively more complex and can be orders of magnitude
slower.

The projections which are hardest to compute are the
ones corresponding to the masters of lowest weight (the

ones with 3 propagators for the two-loop five-point mass-
less case). We have found that the difference between the
run-times among the set of masters of lowest weight be-
longing to the same topology (there are six such masters
in topology C1) spans an order of magnitude.

The solutions of the full set of IBP identities in com-
pressed format are in excess of 20 GB and are available for
download from the website [59]. We have not attempted
to simplify the expressions for the individual coefficients
ci,m since such a simplification is likely to be useful only
at the level of the complete amplitude eq. (3).

When computing the squared amplitude 〈A(2)|A(0)〉
for the process qq̄ → q′q̄′g we have used the program
Reduze [34, 35] for the generation of the Feynman di-
agrams, for their squaring and for the summation over
color and spin traces. Some of those calculations have
been sped up with the help of the program FORM [61].
The Feynman diagrams have been visualized with the
help of the program JaxoDraw [62].

IV. CONCLUSIONS

In this work we propose and develop a new strategy
for solving the IBP identities. With its help we are able
to solve in analytic form the complete set of IBP identi-
ties required for the construction of all planar two-loop
five-point massless QCD amplitudes with quarks and/or
gluons. Since all required planar master integrals are
known, the problem of the derivation of the planar five-
point two-loop amplitudes in QCD is thus solved.

The gigabyte-size of the resulting expressions makes
their numerical evaluation non-trivial. A dedicated ef-
fort will be required if one is to use them for collider
phenomenology. We hope to report on a parallel effort
in this direction in the near future.

With the completion of the planar amplitudes all at-
tention now turns towards the remaining non-planar
topologies, which constitute a much harder problem than
the planar ones. Based on our experience in the context
of the present work we believe that our strategy will be
able to solve this problem in an acceptable timeframe.
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