A COMPUTER SIMULATION ANALYSIS OF A SUGGESTED APPROXIMATE CONFIDENCE INTERVAL FOR SYSTEM MAINTAINABILITY
by

Carl Flack Logan

United States Naval Postgraduate School

THESIS

A COMPUTER SIMULATION ANALYSIS OF A
SUGGESTED APPROXIMATE CONFIDENCE INTERVAL FOR SYSTEI MAINTALNABILITY

by

Carl Flack Logan

MAK LNT

Approved for public releasc; distribution urlimited.

A Computer Simulation Analysis of a Suggested Approximate Confidence Interval for System Maintainability
by

Carl Flack Logan
Lieutenant Commander, United States Navy
B.S., United States Naval Academy, 1963

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH
from the
NAVAL POSTGRADUATE SCHOOL
March 1971

LIbrary
 maval postgraduate school

ABSTRACT

This paper presents an accuracy analysis of a suggested approximate confidence interval for system maintainability parameters.

Technically, the simulation demonstrates feasible ranges of parameter applicability for a fit of linear combinations of generated gamma variates to the gamma distribution, using the method of moments.

The simulation has application to the classical confidence interval for mean time to repair of a series system, under the assumptions of gamma distributed repair times, and method of moments estimators.

The paper provides no validated conclusions although it does display parameters and ranges of apparent extremely high model validity.

TABLE OF CONTENTS

I. INTRODUCTION 5
II. SUMMARY G
III. THE STATISTICAL MODEL T
A. SERIES ASSUMPTION T
B. FAILURE RATE ASSUMPTION τ
C. GAMMA ASSUMPTION 8
D. SYSTEM MTTR OBTAINED $8:$
E. CONFIDENCE LIMIT OB'TAINED 8
IV. THE SIMULATION PROCEDURE 12
A. THE SIMULATION PROGRAM EXPLAINED 14
V. RESULTS 16
APPENDIX A - The Gamma Distribution 21
APPENDIX B - The Exponential Distribution 23
APPENDIX C - The Chi-Square Distribution 25
APPENDIX D - The Method of Moments 28
APPENDIX E 30
COMPUTER PROGRAM 31
BIBLIOGRAPHY 35
INITIAL DISTRIBUTION LIST 36
FORM DD 1473 37

LIST OF TABLES

Table Eage
I Results of Cases I, II, III, IV 19
II Results of Cases V, VI, VII, VIII 20

I. INTRODUCTION

The purpose of this paper is to present a computer simulation in order to investigate the adequacy of a suggested approximate confidence interval for system maintainability parameters. In a technical sense, it will demonstrate feasible ranges of parameter applicability for a fit of linear combinations of generated gamma variates to the gamma distribution, using the method of moments. The application of the simulation is to the classical confidence interval for nean time to repair a system, under the assumptions of series components; gamma distributed repair times, and method of moments estimators. The parameters of the distributions that vere investigated were selected so that the maintainability curves would be representative of those curves presently of interest ir industry.

II. SUMMARY

A procedure for a fit of linear combinations of generated gamma variates to the gamma distribution, using the method of moments is presented in Chapter III. A simulation of this procedure is proposed in Chapter IV and the results are tabulated in Tables I and II of Chapter V.

III. THE STATISTICAL MODEL

A. SERIES ASSUMPTION

Suppose we are given a system of components which are not necessarily series, where the time to failure of the ith component of the system has the exponential (λ_{i}) distribution.

Then,

1) for the case where there are k_{i} identical components in series of type i within the system, set $\lambda_{i}{ }^{\prime}=k_{i} \lambda_{i}$.
2) for the case where there are h_{j} identical components in parallel of type j within the system, set $\lambda_{j}{ }^{\prime}=\lambda_{j}{ }^{h}{ }_{j}$

Therefore, for some parallel-series combination there is obtainable a series system of uniquely different comonents whose failure ratios are assumed to be exponential.

Thus, the system being described is a series system with k different components and failure rates $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{i}{ }^{r}, \lambda_{j}{ }^{r}, \cdots, \lambda_{k}$ where all the λ_{i} are in the same units.
B. FAILURE RATE ASSUNPTION

Let X_{i} denote the time to failure of component i, where X_{i} has the exponential (λ_{i}) distribution. Thus,

$$
\begin{equation*}
f_{x_{i}}\left(x_{i} ; \lambda_{i}\right)=\lambda_{i} e^{-\lambda_{i} x_{i}} \tag{3-1}
\end{equation*}
$$

We further assume that the system fails when exactly one component fails or the component which caused the system failure takes the longest time to repair.
电
C. GAMMA ASSUMPTION

Let T_{i} denote the time required to repair the ith component and suppose that T_{i} has the gamma distribution. Thus, $T_{i} \sim \Gamma\left(t_{\dot{I}} ; a_{i}, b_{i}\right) .$. Therefore,

$$
\begin{equation*}
f_{i}\left(t_{i} ; a_{i}, b_{i}\right)=\frac{a_{i}^{b_{i}} t_{i}^{b_{i}}{ }^{-I} e^{-a_{i} t_{i}}}{\Gamma\left(b_{i}\right)} \tag{3-2}
\end{equation*}
$$

is the density equation with

$$
\begin{equation*}
\mathrm{E}\left[\mathrm{~T}_{i}\right]=\frac{\mathrm{b}_{i}}{\mathrm{a}_{i}}=\mu_{i} \tag{3-3}
\end{equation*}
$$

which is the mean time to repair (MTTR) for the ith component.
D. SYSTEM MTTR OBTAINED

Let θ denote the mean time to repair zor the system. Therefore,

$$
\begin{equation*}
\theta=\sum_{i} P \text { [component } i \text { fails first] } \mu_{i} \tag{3-4}
\end{equation*}
$$

and, if the assumption of a series system is valid, then

$$
\lambda=\sum_{i=1}^{k} \lambda_{i}
$$

and

$$
\begin{equation*}
\theta=\operatorname{MTTR}=\sum_{i=1}^{k}\left(\frac{\lambda_{i}}{\lambda}\right)\left(\frac{b_{i}}{a_{i}}\right) \tag{3-5}
\end{equation*}
$$

E. CONFIDENCE LIMIT OBTAINED

An estimated upper confidence limit for system maintainability, denoted by $\hat{\theta}_{u}$, has been proposed. $\hat{\theta}_{u}$ was derived by the following procedure:

For any component $i, T_{11}, T_{12}, T_{13}, \cdots T_{i_{i}}$ is a random sample on T_{i}, the time to repair component i. Failure data is also available on component i, so that an estimate $\hat{\lambda}_{i}$ of λ_{i} is possible.

Thus, θ can be estimated by $\hat{\theta}$ where

$$
\begin{equation*}
\hat{\theta} \doteq \sum_{i=1}^{k} \frac{\lambda_{i}}{\lambda} \bar{T}_{i} \tag{3-6}
\end{equation*}
$$

and

$$
\bar{T}_{i}=\frac{1}{n_{i}} \sum T_{i j}
$$

Moreover, because of the large amount of industrial testing, it can be assumed that $\hat{\lambda}_{i} \doteq \lambda_{i}$, and for purposes of derivation we shall treat the $\hat{\lambda}_{i}$ as though they are constants. Thus,

$$
\begin{align*}
& \hat{\theta} \doteq \sum_{i=1}^{k} \frac{\lambda_{i}}{\lambda} \bar{T}_{i}, \tag{3-7}\\
& E[\hat{\theta}] \doteq \sum_{i=1}^{k} \frac{\lambda_{i}}{\lambda}\left(\frac{b_{i}}{a_{i}}\right) \tag{3-8}
\end{align*}
$$

and

$$
\begin{equation*}
\left.\operatorname{var}(\hat{\theta}) \doteq \sum_{i=1}^{k}\left(\frac{\lambda_{i}}{\lambda}\right)\right)^{2 b_{i}}\left(\frac{a_{i}}{{ }^{2}}\right) . \tag{3-9}
\end{equation*}
$$

We shall fit a two parameter gamma to the density of $\hat{\theta}$ and obtain the upper confidence limit from this fitted distribution. Thus we are assuming $\hat{\theta} \sim \Gamma(a, b)$ and use will be made of the method of moments to make the fit. Through use of formulas (3-8) and (3-9)

$$
\begin{equation*}
E[\hat{\theta}] \doteq \sum_{i=1}^{k} \frac{\lambda_{i}}{\lambda}\left(\frac{b_{i}}{a_{i}}\right)=\frac{b}{a} \tag{3-10}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{var}(\hat{\theta}) \doteq \sum_{i=1}^{k}\left(\frac{\lambda_{i}}{\lambda}\right)^{2}\left(\frac{b_{i}}{a_{i}^{2}}\right)=\frac{b}{a^{2}} \tag{3-11}
\end{equation*}
$$

The parameters a and b can be solved for, as follows:

$$
\begin{equation*}
a=\frac{\sum_{i=1}^{k}\left(\frac{\lambda_{i}}{\lambda}\right)\left(\frac{b_{i}}{a_{i}}\right)}{\sum_{i=1}^{k}\left(\frac{\lambda_{i}}{\lambda}\right)\left(\frac{b_{i}}{a_{i}^{2}}\right)} \tag{3-12}
\end{equation*}
$$

and

$$
\begin{equation*}
b=\frac{\sum_{i=1}^{k} \frac{\lambda_{i} b_{i}}{\lambda} \frac{2}{a_{i}}}{\sum_{i=1}^{k}\left(\frac{\lambda}{\lambda}\right)^{2} \frac{b_{i}}{a_{i}^{2}}} \tag{3-13}
\end{equation*}
$$

For the available data, this then becomes:

$$
\begin{equation*}
\hat{b}=\frac{\sum_{i=1}^{k} \frac{\hat{\lambda}_{i}}{\hat{\lambda}} \bar{T}_{i}}{\sum_{i=1}^{k}\left(\hat{\lambda}_{i}{ }^{2}{ }^{2}\right)} S_{i}{ }^{2}{ }^{2} \tag{3-14}
\end{equation*}
$$

where,

$$
S_{i}=\frac{1}{n_{i}^{-1}} \sum_{j=1}^{n_{i}}\left(T_{j}-\bar{T}\right)^{2}
$$

If b is an integer, $2 \hat{\theta} a$ has the $\chi_{(2 b)}^{2}$ distribution; therefore, define (2b) as the integer closest to 2 b and the following approximate confidence interval can be formed:

$$
\begin{align*}
1-\alpha & =P\left[2 \hat{\theta} a>x_{(1-\alpha)(2 b)}^{2}\right] \tag{3-15}\\
& =P\left[\frac{2 \hat{\theta} a}{(2 b)}>\frac{x_{(1-\alpha)(2 b)}^{2}}{(2 b)}\right] \\
& =P\left[\frac{b}{a}<\frac{\hat{\theta}(2 b)}{x_{(1-\alpha)(2 b)}^{2}}\right] \\
& \doteq P\left[\frac{b}{a}<\frac{\hat{\theta}(2 \hat{b})}{x_{(1-\alpha)(2 \hat{b})}^{2}}\right] \tag{3-16}
\end{align*}
$$

where the approximate equality compensates for the use of estimators. Finally, the choice of $\alpha=.20$ results in the following:

$$
\begin{equation*}
.80 \doteq P\left[\frac{b}{a}<\frac{\hat{\theta}(2 \hat{b})}{x_{(.80)(2 b)}^{2}}\right] \tag{3-17}
\end{equation*}
$$

Thus, the desired suggested approximate 80% confidence limit for system maintainability is $\hat{\theta}(2 \hat{b}) / \chi^{2}(.8)(2 \hat{b})$.

IV. THE SIMULATION PROCEDURE

As explained in Chapter III, the system to be simulated consists of k components in logical series with system maintainability (θ) expressed as:

$$
\begin{equation*}
\theta=\sum_{i=1}^{k}\left(\frac{\lambda_{i}}{\lambda}\right)\left(\frac{b_{i}}{a_{i}}\right) \tag{4-1}
\end{equation*}
$$

where b_{i} / a_{i} is the true maintainability of the $i t h$ component of the system.

Denote an upper confidence limit for θ by $\hat{\theta}_{u}$. If $\hat{\theta}_{u}$ is in fact the exact 100 (1- 1)\% upper confidence limit for θ, then

$$
P\left[\frac{b}{a}<\frac{\hat{\theta}(2 \hat{b})}{\chi_{(1-\alpha)(2 \hat{b})}^{2}}\right] \doteq 1-\alpha
$$

holds to a reasonably close approximation.
In fact, b/a should then be the α th percentile point of the simulated distribution of \hat{A}_{u}.

The choice of $\alpha=.20$ defined $\hat{\theta}_{u(2)}$ as the $20 t h$ percentile point of the distribution of $\hat{\theta}_{u}$.

In order to investigate this distribution，a computer was utilized to generate the required gamma variates．Then， 500 values of $\hat{\theta}_{\text {u }}$ were computer and ordered such that

$$
\begin{equation*}
\hat{\theta}_{\mathrm{u} 1}<\hat{\theta}_{\mathrm{u} 2}<\hat{\theta}_{\mathrm{u} 3}<\cdots<\hat{\theta}_{\mathrm{u} 500} \tag{4-2}
\end{equation*}
$$

Since it was desired to display the 80% upper confidence limit for $\theta\left(\hat{\theta}_{u(.2)}\right)$ ，which implies 80% of the ordered values be greater than $\hat{\theta}_{u(.2)}$ ， the 20th percentile point of the $\hat{\theta}_{u}$ distribution was found．This 20th． percentile point is the 100 th ordered value in formula（4－2）above and， if the procedure is correct，should approximately equal $\frac{b}{a}$ ．

The primary measure of accuracy for the simulation will be the value of

$$
\begin{equation*}
\frac{\left|\hat{\theta}_{u 100}-\frac{b}{a}\right|}{b / a} \tag{4-3}
\end{equation*}
$$

which is an expression relating the estimated value of system maintain－ ability $\left(\hat{\theta}_{\mathrm{ulOO}}\right)$ to the gamma value for $\operatorname{MTR}(\mathrm{b} / \mathrm{a})$ ．Thus，the accuracy of the simulation is presented in the notion of relative error．

Also，the statistic

$$
\begin{equation*}
\left.\frac{[⿰ ⿰ 三 丨 ⿰ 丨 日 寸}{u j} \geq \mathrm{b} / \mathrm{a}\right] \tag{4-4}
\end{equation*}
$$

will be computed in order to display the relative error between the true value of system maintainability (b / a) and the number of generated esti－ mates of this value $\left(\hat{\theta}_{u j}\right)$ ．

The analysis for this proposed method was conducted using different combinations of values of the gamma input parameters，varying λ_{i} values， one of two values for k ，and n_{i} values of $10,20,50$ ，and 100 ．
A. THE SIMULATION PROGRAM EXPLAINED

Available in Appendix E is a flow chart for the computer simulation. An explanation of the blocks on that diagram follow:

1) Dimension the computer matrix as required to include the possible values for the following input parameters:

$$
\begin{aligned}
& \mathrm{k} \\
& \lambda_{1}, \lambda_{2}, \cdots, \lambda_{k} \\
& \left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right), \cdots,\left(a_{k}, b_{k}\right) \\
& n_{1}, n_{2}, \cdots, n_{i}
\end{aligned}
$$

2) Generate the following n_{i} random repair times according to the gama distribution with parameters ($\mathrm{a}_{\mathrm{i}}, \mathrm{b}_{\mathbf{i}}$). Utilize the IBM Scientific Subroutine Package GAMMA to get:

$$
\begin{aligned}
& \mathrm{T}_{11}, \mathrm{~T}_{12}, \mathrm{~T}_{13}, \cdots, \mathrm{~T}_{1 \mathrm{n}_{1}} \\
& \mathrm{~T}_{21}, \mathrm{~T}_{22}, \mathrm{~T}_{23}, \cdots, \mathrm{~T}_{2 \mathrm{n}_{2}} \\
& - \\
& - \\
& - \\
& \mathrm{T}_{\mathrm{k} 1}, \mathrm{~T}_{\mathrm{k} 2}, \mathrm{~T}_{\mathrm{k} 3}, \cdots, \mathrm{~T}_{\mathrm{kn}}^{\mathrm{k}}
\end{aligned}
$$

3) For each row above, compute the mean value (\bar{T}_{i}) and the variance $\left(S_{i}{ }^{2}\right)$ to get the pairs:

$$
\overline{\mathrm{T}}_{1}, \mathrm{~s}_{1}{ }^{2} ; \overline{\mathrm{T}}_{2}, \mathrm{~s}_{2}^{2} ; \cdots ; \overline{\mathrm{T}}_{\mathrm{k}}, \mathrm{~s}_{\mathrm{k}}^{2}
$$

4) Utilize formula (3-14) to compute the method of moments estimate of the unknown parameter b, denoted by \hat{b}.
5) Compute the integer closest to $2 \hat{b}$ for use with the $x^{2}(2 \hat{b})$ distribution.
6) Utilize formula (3-6) to compute the estimate of system maintainability θ, denoted by $\hat{\theta}$.
7) Utilize formula (3-16) and the χ^{2} farmula (see Appendix C) to compute the approximate upper confidence limit on system maintainability. Denote this value as $\hat{\theta}_{u}$.
8) Repeat step 2 through step 7 a total of 500 times.
9) Utilize the IBM SSP SHSORT to order the 500 values of $\hat{\theta}_{u}$ from smallest to largest.
10) Pick out the 100th value of the above ordering ($\hat{\theta}_{\mathrm{ulO}}^{\mathrm{l}} \mathrm{O}$) and print out this value as the 20 th percentile point of the distribution..
11) Compute the value of b / a and then utilize formula (4-3) to compute the primary measure of accuracy for the simulation. Print out this value.
12) Utilize formula (4-4) to compute another measure of simulation accuracy. Print out this value.

V. RESULTS

For the procedure as presented in Chapter III, the value of system maintainability will follow the gama distribution. The parameters of the distribution were chosen so that the maintainability of each component was at a preselected value position on the curve or would be representative of those curves currently obtainable in industrial applications. (See Appendix A.) The following cases were simulated:

CASE \#

INPUT PARAMETERS
I
$\mathrm{k}=15$
$a_{i}=10, b_{i}=1$
$\lambda_{i}=.005$
$n_{i}=10,20,50,100$
II
$\mathrm{k}=15$
$a_{i}=10, b_{i}=2$
$\lambda_{i}=.005$
$n_{i}=10,20,50,100$
III $\quad \mathrm{k}=15$
$a_{i}=5, b_{i}=1$
$\lambda_{i}=.005$
$n_{i}=10,20,50,100$
IV

$$
k=15
$$

$$
a_{i}=30, b_{i}=1, i=1,2, \cdots, 10
$$

$$
a_{i}=10, b_{i}=1, i=11,12, \cdots, k
$$

$$
\lambda_{i}=.005
$$

$$
n_{i}=10,20,50,100
$$

V
$k=15$
$a_{i}=30, b_{i}=1, i=1, \cdots, 10$
$a_{i}=10, b_{i}=1, i=11, \cdots, k$
$\lambda_{i}=.01$
$n_{i}=10,20,50,100$
VI
$\mathrm{k}=30$
$a_{i}=30, b_{i}=1, i=1, \cdots, 10$
$a_{i}=10, b_{i}=1, i=11, \cdots, k$
$\lambda_{i}=.005$
$n_{i}=10,20,50,100$
VII
$\mathrm{k}=30$
$a_{i}=30, b_{i}=1, i=1, \cdots, 10$
$a_{i}=10, b_{i}=1, i=11, \cdots, k$
$\lambda_{i}=.01$
$n_{i}=10,20,50,100$
VIII
$\mathrm{k}=15$
$a_{i}=5, b_{i}=1$
$\lambda_{i}=.05$
$n_{i}=10,20,50,100$

Each case is specified by the relevent input parameters and the varying number of random repair times generated (n_{i}). The cases differ most significantly in their values for the parameters of the Gamma distribution. However, the value of λ_{i} is varied as is the value of k, the number of components in series. Of course, all of the cases were run over an identical range for n_{i}.

The results are compiled in the following tables. The column headings are self-explanatory and their use has been discussed earlier in this report.
TABLE I

$\begin{aligned} & \text { CASE } \\ & \text { NO. } \end{aligned}$	n_{i}	$\begin{gathered} \text { 20th } \\ \text { PERCENTILE } \end{gathered}$	b / a	$\frac{\left\|\hat{\theta}_{u}-b / a\right\|}{b / a}$	$\frac{\left[\hat{F}_{\mathrm{\theta j}} \geq \mathrm{b} / \mathrm{a}\right]}{500}$
I	10	. 09570	. 10000	. 04304	. 61200
	20	. 09787	. 10000	. 02129	. 66400
	50	. 09917	. 10000	. 00832	. 72600
	100	. 09999	. 10000	. 00009	. 80000
II	10	. 19575	. 20000	. 02125	. 69400
	20	. 19710	. 20000	. 01451	. 69800
	50	. 20051	.20000	. 06253	. 82400
	100	. 20132	. 20000	. 00661	. 89400
III	10	. 19649	. 20000	. 01754	. 71800
	20	. 20071	. 20000	. 00356	. 81600
	50	. 20283	. 20000	. 01414	. 89800
	100	. 20456	. 20000	. 02282	. 94600
IV	10	. 05225	. 05556	. 05947	. 60800
	20	. 05378	. 05556	. 03188	.65000
	50	. 05491	. 05556	. 01165	. 70400
	100	. 05538	. 05556	. 00318	. 75800

TABLE II
RELEVENT STATISTICS OF COMPUTER SIMULATION FOR CASES V - VIII

$\begin{aligned} & \text { CASE } \\ & \text { NO. } \end{aligned}$	n_{1}	$\begin{gathered} \text { 20th } \\ \text { PERCENTILE } \end{gathered}$	b/a	$\frac{\left\|\hat{\theta}_{u}-b / a\right\|}{b / a}$	$\frac{\left[\# \hat{\theta}_{u j} \geq b / a\right]}{500}$
V	10	. 05225	. 05556	. 05947	. 60800
	20	. 05378	. 05556	. 03188	. 65000
	50	. 05491	. 05556	.01165	. 70400
	100	. 05538	. 05556	. 00318	. 75800
VI	10	. 07552	. 07778	.02907	.64200
	20	. 07612	. 07778	.02130	. 63800
	50	. 07751	. 07778	.00785	. 71400
	100	. 07777	. 07778	. 00009	. 80000
VII	10	. 07552	. 07778	.02907	.64200
	20	. 07612	. 07778	.02130	. 63800
	50	. 07717	. 07778	. 00785	. 71400
	100	.07777	. 07778	. 00009	. 80000
VIII	10	. 19649	. 20000	.01754	.71800
	20	. 20071	. 20000	.00356	.81600
	50	. 20283	. 20000	. 01414	. 89800
	100	. 20456	. 20000	. 02282	. 94600

APPENDIX A

THE GAMMA DISTRIBUTION

Use of the gamma function to describe maintenance-time functions has been described in the literature.

The gamma distribution is a two-parameter function.

$$
f_{T_{i}}\left(t_{i} ; a_{i}, b_{i}\right)=\frac{a_{i}^{b_{i}} t_{i}^{b_{i}}-I}{} e^{-a_{i} t_{i}}
$$

The parameters are denoted by the letters a and b. Of the two, b is considered to be the more critical because it controls the shape of the curve; while a merely determines the scale of the axes.

Figure 1. Gamma density function;
$\mathrm{a}=1, \mathrm{~b}=0,1,3,5$
For the distribution as presented, the parameters a and b are restricted by the inequalities $\mathrm{a}>0, \mathrm{~b} \geq 0$. AIso, both a and b will remain as whole numbers.

The b parameter is seen to vary as a function of the repair concept. When the repair concept being described involves relatively simple actions (e.g., black box replacement, etc..) and very few long downtime tasks, the b parameters will be a small number. As the downtime=density involves more time-consuming actions, the b parameter will take on a larger value.

Throughout the Iiterature it has beem shown that the gamma distribution could be used to describe a family of distribution curves varying from the negative exponential to the normal. Thus, by suitable choice of the parameters a and b, the downtime of a wide variety of reasonably complex equipments can be described.

APPENDIX B

THE EXPONENTIAL DISTRIBUTION

One of the most widely used distributions in fields of Reliability/ Maintainability is the one-parameter exponential function.

The function is defined by:

$$
\begin{aligned}
f\left(X_{i}, \lambda_{i}\right) & =\lambda_{i} e^{-\lambda_{i} X_{i}} & & X \geq 0 \\
& =0 & & \text { elsewhere }
\end{aligned}
$$

where λ_{i} is the failure rate associated with component i.

$$
\begin{aligned}
F\left(X_{i}\right)=P\left(X \leq x_{i}\right)=\lambda_{i} \int_{0}^{x_{i}} e^{-\lambda_{i} t_{i}} d t_{i} & =1-e^{-\lambda_{i} X_{i}} & & x_{i}>0 \\
& =0 & & x_{i} \leq 0
\end{aligned}
$$

is the cumulative distribution function, and

$$
E\left[X_{i}\right]=1 / \lambda_{i} .
$$

Thus, the expected value equals the reciprocal of the parameter λ_{i}.

$$
\operatorname{var}\left(X_{i}\right)=1 / \lambda_{i}{ }^{2}
$$

Figure 2. The exponential distribution

NOTES:

1) The exponential distribution is a special case of both the gama and weibull distributions.
2) It is the distribution which is expected when the mechanisms are so complex that many deteriorations with different failure rates are operable.
3) When parts have an exponential failure distribution, the equipment consisting of these parts also has an exponential distribution function.

APPENDIX C

THE CHI-SQUARE DISTRIBUTION

A. quite useful case of the gamma distribution accurs when $a=1 / 2$ and $\mathrm{b}=\mathrm{n} / 2$, where n is a positive integer. Then, a one-parameter family of distributions is obtainable with density function:

$$
f(z)=\frac{z^{(n / 2-1)} e^{-z / 2}}{2^{n / 2} \Gamma(n / 2)} \quad z>0
$$

A random variable z having the above density is said to have the chi-square distribution with n degrees of freedom (denoted by $\chi_{(n)}^{2}$).

In Figure 3 below, the density function for $n=1,2$, and $n>2$ is shown.

with $\mathrm{E}[\mathrm{z}]=\mathrm{n}$, $\operatorname{var}(\mathrm{z})=2 \mathrm{n}$.
Our interest in the chi-square distribution is based upon its many important applications in statistical inference.

The chi-square distribution is tabled for degrees of freedom up to 30. Thus we may find in the table that value, denoted by $x_{(\alpha)(n)}^{2}$ and satisfying $P\left(Z \leq X_{\alpha}^{2}\right)=\alpha, 0<\alpha<1$.

Figure 4. The chi-square distribution

For the case where the degrees of freedom exceed 30 ($\mathrm{n}>30$) the chi-square distribution can accurately be approximated by the normal distribution as indicated in the following theorem:

Theorem: Suppose that the random variable Y has distribution X_{n}^{2}. Then for sufficiently large n, the random variable $\sqrt{2 Y}$ has approximately the distribution $N(\sqrt{2 n-1}, 1)$. Therefore,

\square

$$
\begin{aligned}
P(Y \leq t) & =P(\sqrt{2 Y} \leq \sqrt{2 t}) \\
& =P(\sqrt{2 Y}-\sqrt{2 n-1} \leq \sqrt{2 t}-\sqrt{2 n-I}) \\
& \doteq \Phi(\sqrt{2 t}-\sqrt{2 n-1})
\end{aligned}
$$

where Φ values are obtained from the normal tables.

APPENDIX D

THE METHOD OF MOMENTS

The oldest general method for generating estimates of unknown parameters, given a sample, is known as the method of moments. It: is a comparatively simple method and it generates "reasonable" estimators. In general, the method proceeds as follows:

Given a random variable X, with distribution function F_{X} where this distribution is indexed by the unknown parameter λ. Assume the first moment of X (its mean value) is dependent in some simple way upon λ, like $\mu_{X}=g(\lambda)$. Then, given a sample of n values of X, define the first sample moment as $\overline{\mathrm{X}}$. The method of moments now specifies that $\overline{\mathrm{X}}$ be equated to $g(\lambda)$ and finally to solve for $\hat{\lambda}$. This resulting value for $\hat{\lambda}$ is the method of moments estimator of λ.

For the two dimensional case, such as X being distributed according to the gamma distribution with unknown parameters α and β, there is required a multi-dimensional parameter space $\Omega=E_{k}$ which in the gamma case has $k=2$. Then, this space can be defined such that $\Omega=\{(\alpha, \beta) ; \alpha>0, \beta>0\} \in E_{2}$ and further, it can be shown that

$$
\mu_{X}=\alpha \beta \text { and } \mu_{X}{ }^{2}=\alpha \beta^{2}+\alpha^{2} \beta^{2}
$$

where $\mu_{X}{ }^{2}$ is the second moment with respect to X. Then, as in the one dimensional case, a random sample is required which can be analyzed to give:

$$
\begin{aligned}
& \overline{\mathrm{X}}=\alpha \beta \\
& \mathrm{S}_{\mathrm{X}}^{2}+\overline{\mathrm{X}}^{2}=\alpha \beta^{2}+\alpha^{2} \beta^{2}
\end{aligned}
$$

which allows, as shown in Chapter III

$$
\hat{\alpha}=\frac{\bar{x}^{2}}{s_{X}^{2}} \quad \hat{\beta}=\frac{s_{X}^{2}}{\bar{X}}
$$

as acceptable estimators of the parameters α and β.

APPENDIX E

PRINT 20th
PERCENTILE
(B)

THIS PROGRAM COMPUTES THE 80 PERCENT UPPER CONFIDENCE LIMIT DIMEPSIDM THE MATRIX REAL $\% 4$ LAMEDA (100), N(100), LAM
DIMEHSION T(10n,100), TB(100), S2(100), TU(500), ALPHA(100), BETA(10

$$
\$ 01, K E Y(5 \text { (IO) }
$$

C READ INTO PROGRAM PARAMETERS OF INTEREST
$1235 \operatorname{READ}(5,1 \cap 0, E N T=4321) K,(L A M B G A(I), I=1, K),(A L D H A(J), B E T A(J), J=1, K)$ READ (5;105) NII
PROGRAM UILL LOOP 500 TIMES, GENERATING INDEPENDENT ESTIMATES OF THE 80 PERCENT UPPER CONFIDENCE LIMIT
DO $1234 \mathrm{JJ}=1,500$
GENERATE GAMMA TIMES TD REPAIR
DO $1 \quad \mathrm{I}=1, \mathrm{~K}$
$N(I)=N I$
$N \mathrm{~N}=\mathrm{N}(\mathrm{I})$
DO 1 J $=1$, NN
CALL GAMMA (BETA(I), ALPHA(I), X)
T(I,j) $=x$
1 CONTINUE
COMPUTE MEAN TIME TO REPAIR FRD FACH K GAMMAS GENERATED AND THE VARIANCE FROM THE METHCD OF MOMENTS FIT

DO $2 I=1, K$
SUM $=0.0$
SUMSQ=0.0
NN=N(I)
$003 \mathrm{~J}=1$, NN
SUM $=$ SUM $+T(I, J)$
3 SUMSQ $=$ SUMSQ $+T(I, J) * T(I, J)$
TB (I) $=$ SUM/N(I)
S2(I) $=(S U M S Q-N(I) * T B(I) * T B(I)) /(N(I)-1.0)$
2 CONTINUE
DO 4 I =1,K
$\angle A M=L A M+L A M B D A(I)$
4 CONTINUE
SUM $=0.0$
SUMSQ $\mathrm{I}=0.0$
SUM $=$ SUM + (LAMBDA (I)/LAM) $\sim T B(I)$
SUMSO = SUMSE + (LAMBDA(I)/LAH)*(LAMBDA(I)/LAM)*(S2(I)*S2(I))

5 CONTINUE
Compute value fop estimate of parameter betar called bhat BHAT $=($ SUM*SUM $) /$ SUMSQ
COMPUTE INTEGER CLOSEST TO THO BHAT
IH $=2.0 *$ BHAT
BHAT 2.5
$=$
IH
COMPUTE ESTIMATE OF MEAN TIME TO REPAIR FOR SVSTEM,CALL IT THETA
THETA $=0.0$
DO $6 \mathrm{I}=1$, K
6 CONTINUE
UTILIZE CHISQ FRRMULATIOM TO GET STATISTIC FOR CONFIDENCE LIMITS
CHISA $=(2.0 /(9.0 *$ BHAT2) $)$
CHISO= RHAT2* $11 \cdot \mathrm{C}-\mathrm{CHISA}-\mathrm{C} \cdot 34178 * S Q R T(C H I S A)) * * 3$
TU(JJ) = (THETA*BHAT2)/CHISQ

1234 CONTINUE
NOW THAT THE 500 ESTIMATED VALUES HAVE BEEN GENERATED, SORT THEM INTO ORDER
$K K=500$
00 $99 \mathrm{I}=1$, KK
KEY (I) = I
CALL SHSDRT(TU,KEY,KK)
PICK OUT AND PRINT THE 2OTH PERCENTILE ACCORDING TO THE FOLLDWING FORMAT

WRITE 6,222$)$ MI, K, LA*BDA(1)
WRITE 6,200$)$ TU(100)
222 FORMAT ('1', 'NI = 'I5, ' K=', I5, 'LAMBDA=',FIO.5, ///1)
105 FORMAT (I5
200 FORMAT (IX,' THE 2OTH DERCENTILE IS ',F15.5)
WRITE(6,400)(TU(I), I=1,500)

```
    400 FORMAT(' ',lO(F8.4,2X))
    COMPUTE THE VALUE OF the theoretical meaN, CALL IT boA
    DENOM=O.0
    TOP=0.0
    DO 50 I = 1,K
    TOP = TOP +(LAMBDA(I)/LAM)*(BETA(I)/ALPHA(I))
    DENOM=ПENOM+(LA`BDA(I;/LAM)**2*(BETA(I)/ALPHA(I)**2)
    5 0 ~ C O N T I N U E ~
        A = TOR/DENOM
    B=TOP*%2/DENOM
    BOA = B/A
    CDMPUTE THE ACTUAL PERCENTAGE
    C=0.0
        6 0
        00 60 I =1,500
        IF (TU(I).GE.B\capA) C=C+1.n
        CONTINUE
        STAT = C.1500.0
        COMPUTE THE ABSOIUTE VALUE DF THE RELATIVE DIFFERENCE
CDMPUTE THE ABSOIUTE VALS
    PRINT OUY THE ABOVE STATISTICS , ACCORDING TO THE FOLLDUING FORMAT
    WRITE(G,?2N) BOA,STAT,B,A
    220
    $F15.5,5x,3 A IS ',F15.5)
    WRITE(6,230) E
    230 FORMAT(1X,' ARS OF VALUE IS ',F15.5)
        IN = 2n
        RANGE(1) = 0.1822 + 0.00159
        DO 91 I=2,20
    91 RANGE(I)= RANGE(I-1) + 0.00159
        K=1
        DO 98 I=1,2n
        FREQ(I) = 0.0
        DO 97 J=K,500
        IF(RANGE(I).LT.TU(J)) GO TO OG
        FREQ!I)=FREO!I )+1.0
        GO T0 97
        K=J 
        97
    4 3 2 1
        8 CONTINUF
421
END
```

SUBROUTINE GAMMA(B,A,X)
$K=B$
$T R=1.0$
$D O=1, K$
$R=R N(0)$
$5 T R=T R \approx P$
$X=-A L \cap G(T R) / A$
RETURN
END
 30

BIBLIOGRAPHY

1. Annals of Reliability and Maintainability - I967 vol 6-All Systems Go? Society of Automotive Engineers, Inc., New York., New York 10017.
a. "Maintainability Risk Analysis, Using the AnaIytical Maintenance Model", Elmer L. Peterson and Hue B. Loo.
b. "Assessment of Ground System Performance and Integration of Reliability and Maintainability with Simulated System Operations", John E. Snyder.
2. Reliability Handbook. W. Grant Ireson, Editor-in-Chief, McGraw-Hall Book Company, New York.
3. Defense Documentation Center 2
Cameron Station
Alexandria, Virginia 22314
4. Library, Code 0212 2
Naval Postgraduate School
Monterey, California 93940
5. Associate Professor M. W. Woods 1
Department of Operations Analysis
Naval Postgraduate School
Monterey, California 93940
6. Department of Operations Analysis 1
Naval Postgraduate School
Monterey, California 93940
7. LCDR C. Flack Logan, USN 1
325 North Duane
San Gabriel, California 91775
security classification of fille, body of abstractand indexina annotation must be onfered when the overall report is classified)

ORIGINATING ACTIVITY (CORpOrate author)

Naval Postgraduate School
Monterey, California 93940

Unclassified
2b. GFOUP

A Computer Simulation Analysis of a Suggested Approximate Confidence Interval for System Maintainability

4 DESCRIPTIVE NOTES (Type of report ond.inclusive detes)
Master's Thesis. March 1971

5. AUTHORIS) (Firsi name, middle iniliel. Iosinamo)

Carl Flack Logan

6. REPORT DATE March 1971	7. TOTAL NO. OFPAGES Tb. NO. OF REFS 38 2
*. CONTRACT OR GRANT NO. b. PROJECT NO	Pa. ORIGINATOR'S REPORT NUMBER(S)
c.	0b. OTHER REPORT NOIS) (Any othor numbere thet may be assigned this roport)

Approved for public release: distribution unlimited.

II. SUPPLEMENTARYNOTES \quad| 12. SPONSORINGMILITARYACTIVITY |
| ---: |
| NaVal POStgraduate School |
| Monterey, California $9394 C$ |

This paper presents an accuracy analysis of a suggested approximate confidence interval for system maintainability parameters.

Technically, the simulation demonstrates feasible ranges of parameter applicability for a fit of linear combinations of generated gamma variates to the gamma distribution, using the method of moments.

The simulation has application to the classical confidence interval for mean time to repair of a series system, under the assumptions of gamma distributed repair times, and method of moments estimators.

The paper provides no validated conclusions although it does display parameters and ranges of apparent extremely high model validity.

System maintainability
Maintainability
Maintainability confidence limit
Gamma distributed repair times
Method of moments estimators

ROLE	WT	ROLE	WT	ROLE	WT

$$
20=8
$$

A computer simulation of a suggested approximate confidence interval for system maintainability.

