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Three new benzaldehyde thiosemicarbazone derivatives
namely benzaldehyde thiosemicarbazone (BST), 4-carboxyl
benzaldehyde thiosemicarbazone (PBST) and 2-carboxyl
benzaldehyde thiosemicarbazone (OCT) were synthesized and
their inhibition effects on mild steel corrosion in 0.5 M H2SO4

solution were studied systematically using gravimetric and
electrochemical measurements. Weight loss results revealed that
PBST exhibited the highest inhibition efficiency of 96.6% among
the investigated compounds when the concentration was
300 µM. The analysis of polarization curves indicated that the
three benzaldehyde thiosemicarbazone derivatives acted as
mixed type inhibitors and PBST and OCT predominantly
anodic. The adsorption process of all these benzaldehyde
thiosemicarbazone derivatives on Q235 steel surface in 0.5M
H2SO4 solution conformed to Langmuir adsorption isotherm.
Scanning electron microscopy was conducted to show the
presence of benzaldehyde thiosemicarbazone derivatives on
Q235 mild steel surface. The results of theoretical calculations
were ingoodagreementwith that of experimentalmeasurements.

1. Introduction
Mild steel has been applied as a popular construction material
in petroleum, food, chemical and engineering industries [1–3].
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Table 1. Physical and chemical properties of the synthesized compounds.

no. molecular structure abbreviations structure characterizations

1 BST C8H9N3S (mol. wt. 179)

M.P. 164–165°C

IR spectrum (KBr, cm−1)

3399, 3144, 1599, 1283, 1098

2 PBST C9H9O2N3S (mol. wt. 223)

M.P. 197–199°C

IR spectrum (KBr, cm−1)

3482, 3148, 1613, 1277, 1092

3 OCT C9H9O2N3S (mol. wt. 223)

M.P. 203–205°C

IR spectrum (KBr, cm−1)

3173, 1606, 1270, 1105

royalsocietypublishing.org/journal/rsos
R.Soc.open

sci.6:190192
2

However, mild steel is easily corroded in acidic solutions when they are serving in industrial washing, acid
de-scaling and oil well acidization [4–6], which may cause significant economic losses and security risks.
The use of inhibitors to prevent or minimize the considerable damage of mild steel in acid environment
has been found to be one of the most economical and efficient methods [7–10]. It is generally believed
that organic compounds containing heteroatoms such as nitrogen, oxygen and sulfur, or their molecular
structure containing heterocyclic rings or polar functional groups serve as excellent organic inhibitors in
acidic media [10]. The reason is that these compounds can form a strong chemical bond with the metal
on the solid/liquid surface through charge transfer [11–13] and block the active site on the mild steel
surface, thereby resisting the corrosion of mild steel in corrosive environment [14–17].

Gravimetric measurements [18,19], potentiodynamic polarization curves [20–22] and electrochemical
impedance spectroscopy (EIS) [23–26] are classical methods to evaluate the inhibition behaviour.
Theoretical calculation is a powerful technique to establish the relationship between the inhibition
behaviour and molecular structure [27–29], which is helpful for designing a more effective inhibitor
molecule. Moreover, some useful parameters, including the energy of the highest occupied molecular
orbital, the energy of the lowest unoccupied molecular orbital, the energy gap and dipole moment can
supply important information about the inhibition mechanism.

The objective of the present work is to investigate the inhibition behaviour of Q235 mild steel in 0.5 M
H2SO4 solution containing three new synthesized benzaldehyde thiosemicarbazone derivatives namely
benzaldehyde thiosemicarbazone (BST), 4-carboxyl benzaldehyde thiosemicarbazone (PBST) and
2-carboxyl benzaldehyde thiosemicarbazone (OCT) (table 1). The reason of choosing these compounds
is that, firstly, these compounds contain various adsorption centres including oxygen, nitrogen and
sulfur heteroatoms and –NH2, –OH functional groups. Secondly, benzaldehyde thiosemicarbazone
exhibited high inhibition efficiency for iron-base metallic glassy alloy in 0.5 M H2SO4 solution at 30°C,
as previous reported [30]. Thirdly, these inhibitors can be easily synthesized with high yield. The
study was carried out using weight loss measurement, potentiodynamic polarization curves, EIS and
scanning electron microscopy (SEM). The correlation between the inhibition efficiencies of different
substitution on the thiosemicarbazone compounds is discussed. Moreover, theoretical calculations
were conducted to evaluate the inhibition mechanism.
2. Methods
2.1. Materials
The studied benzaldehyde thiosemicarbazone derivatives were synthesized according to the literature
[30,31] and the chemical reaction equation is shown in figure 1. Table 1 depicts the physical and
chemical properties of the synthesized compounds.



Figure 1. Chemical reaction equation of the studied compounds.

Table 2. Chemical composition (mass fraction, wt%) of Q235 mild steel samples.

C Mn Si S P Fe

0.16 0.53 0.30 <0.055 <0.045 Bal.
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2.2. Weight loss measurements
Weight loss experiments were performed in 500 ml 0.5M H2SO4 solution containing different
concentrations of benzaldehyde thiosemicarbazone derivatives. The testing time is 8 h at 298 K. Square
specimens of Q235 carbon steel having dimensions 50 × 25 × 5 mm were used for the gravimetric tests.
The chemical composition of Q235 carbon steel is shown in table 2. The Q235 specimens were accurately
weighed after degreasing with acetone and drying in N2. After 8 h corroding time, the Q235 samples
were moved out and the surface was scrubbed with a bristle brush, and then weighed again. For each
case, at least triplicate experiments were conducted and the average results are reported.

The corrosion rate for Q235 mild steel was derived from the following expression [32]:

CR ¼ 87:6�W
A� t� r

, ð2:1Þ

where W is the mass loss of Q235 mild steel without and with addition of inhibitors in milligrams,
A equals 32.5 cm2 in our experimental condition, t is the testing time of 8 h, ρ is the Q235 mild steel
density of 7.86 × 103.

Thus, the inhibition efficiency (IE%) and surface coverage (θ) can be obtained from the corrosion rate
using the following equation [32]:

IEð%Þ ¼ 1� CRinhi

CRfree

� �
� 100 ð2:2Þ

and

u ¼ 1� CRinhi

CRfree
, ð2:3Þ

where CRinhi and CRfree are the obtained corrosion rates of Q235 mild steel with and without
benzaldehyde thiosemicarbazone derivatives in 0.5M H2SO4 solution, respectively.
2.3. Potentiodynamic polarization studies
The electrochemical measurements were carried out in a cylindrical glass cell of 250 ml with traditional
three electrodes. A saturated calomel electrode (SCE) and a large platinum foil were employed as
reference and counter electrode, respectively. Cylindrical Q235 mild steel sealed with Teflon was used
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as working electrode and the exposed area was 0.50 cm2. The exposed surface was abraded with fine

sand paper and then polished to mirror using 2.5 µm diamond paste, cleaned with double-distilled
water and finally immersed into the electrochemical glass cell containing 0.5M H2SO4 solution
without and with different concentrations of benzaldehyde thiosemicarbazone derivatives for at least
1 h. When the open circuit potential (Eocp) reached a steady state, the potentiodynamic polarization
study was performed using CHI660A electrochemical workstation at a scan rate of 1 mV s−1. The
scanning potential ranges from Eocp− 250 mV to Eocp + 250 mV. Tafel extrapolation method was
employed to obtain some useful parameters, including corrosion potential (Ecorr), corrosion current
density ( jcorr), anodic and cathodic Tafel slopes. The inhibition efficiency ηP (%) is then derived from
the corrosion current density as follows:

hP% ¼ 1� jinhi
jfree

� �
� 100%, ð2:4Þ

where jinhi and jfree are the obtained corrosion current densities with and without BST, PBST and OCT
inhibitors, respectively.

2.4. Electrochemical impedance experiments
EIS was conducted using PARSTAT 2273 measurement unit in the frequency range of 10 mHz–100 kHz
at Eocp and the scanning always initiated from high frequency to low frequency. The voltage amplitude
was 5 mV. Each concentration was repeatedly tested three times or more and the average results were
calculated. The EIS experimental data was analysed using Z-View software. The inhibition efficiency
ηEIS (%) can be obtained from the charge transfer resistance as follows:

hEIS% ¼ Rct � R0
ct

Rct
, ð2:5Þ

where R0
ct and Rct are the charge transfer resistance for Q235 mild steel in uninhibited and inhibited

solution, respectively.

2.5. Scanning electron microscopy measurements
The Q235 mild steel surface after corroded in 0.5 M H2SO4 solution at 298 K without and with inhibitors
was observed with SEM model Hitachi SU80 instrument at an accelerating voltage of 5 kV at 2000×
magnification. EDX detector model coupled with SEM was used to evaluate the surface composition
of Q235 mild steel.

2.6. Theoretical calculations
As described in previous literature [33,34], the geometric optimizations of the synthesized derivatives
and quantum chemical calculations were performed using the functional hydride B3LYP density
functional theory (DFT) formalism. During the calculations, the electron basis set 6-31G (d, p) in the
standard Gaussian-03 software package was employed. As a result, some useful quantum chemical
parameters, such as energy of the lowest unoccupied molecular orbital (ELUMO), the energy of the
highest occupied molecular orbital (EHOMO), the energy gap (ΔE) between LUMO and HOMO,
the ionization potential (I ), the electron affinity (A), dipole moment, the global hardness (η) and the
global softness (σ) were calculated.
3. Results and discussion
3.1. Weight loss tests
The inhibitive effect of the synthesized benzaldehyde thiosemicarbazone derivatives (BST, PBST and
OCT) for Q235 mild steel in 0.5 M H2SO4 solution at 298 K was initially investigated with weight loss
measurements. The calculated values of corrosion rate, inhibition efficiency and surface coverage are
summarized in table 3. Obviously, the corrosion rate decreased considerably with addition of these
compounds compared to the blank, which may be related to the strong adsorption of these
compounds onto Q235 mild steel surface and forming a protective physical barrier to resist the acid
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Figure 2. Open circuit potential for Q235 mild steel in 0.5 M H2SO4 solution without and with 300 µM BST, PBST and OCT inhibitor.

Table 3. The weight loss parameters for Q235 steel in 0.5 M H2SO4 containing different concentrations of BST, PBST and OCT
inhibitor at 298 K.

inhibitor Cinh (μM) CR (mg cm−2 h−1) η (%) θ

blank 0 6.09 —

BST 50 2.75 54.8 0.548

100 1.71 71.9 0.719

200 1.12 81.6 0.816

300 0.87 85.7 0.857

PBST 50 2.33 61.7 0.617

100 1.24 79.6 0.796

200 0.66 89.2 0.892

300 0.21 96.6 0.966

OCT 50 2.11 65.4 0.654

100 1.37 77.5 0.775

200 0.76 87.5 0.875

300 0.40 93.4 0.934
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attack [35]. It is clear that with increasing the inhibitor concentration, the inhibition efficiency also
increased and the highest value was found to be 85.7%, 96.6% and 93.4% for BST, PBST and OCT
compounds, respectively at 300 µM, suggesting that these inhibitors effectively inhibited the Q235
mild steel corrosion in acidic medium. It can also be deduced from table 3 that at the same
concentration, the inhibition efficiency follow the order: PBST >OCT > BST, indicating that PBST
exhibits the best inhibitive performance compared to other two benzaldehyde thiosemicarbazone
derivatives. This result may be correlated with its molecular structure of –COOH functional group at
the ρ-substitution (table 1).

3.2. Open circuit potential curves
The open circuit potential for Q235 mild steel in 0.5 M H2SO4 solution without and with 300 µM BST,
PBST and OCT inhibitor is depicted in figure 2. It can be seen that the OCP reached a steady state
after 1 h immersion time. Apparently, the OCP value moved in the negative direction with addition of
300 µM BST, PBST and OCT inhibitor compared to the blank. This shift may be correlated to the
adsorption of these compounds on mild steel surface.
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Figure 3. Polarization curves for Q235 mild steel in 0.5 M H2SO4 solution containing different concentrations of (a) BST, (b) PBST
and (c) OCT inhibitor.
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3.3. Potentiodynamic polarization curves
Figure 3 shows the polarization curves for Q235 mild steel in 0.5M H2SO4 solution containing different
concentrations of BST, PBST and OCT inhibitor. Apparently, the current densities of both the anodic and
cathodic branches decreased with addition of benzaldehyde thiosemicarbazone derivatives, indicating
that both the anodic and cathodic reaction rates were resisted which was generally due to the adsorption
of these inhibitors at the active sites on the surface. It is noticeable that the shape of polarization curves
without inhibitors is similar to that with addition of these three inhibitors. This phenomenon
demonstrated that the addition of these inhibitors did not change the corrosion mechanism of Q235 mild
steel dissolution in 0.5M H2SO4 solution [36] and the inhibitive effect of these inhibitors is originated
from the coverage of inhibitor molecules at the active sites to restrain their exposure to the acidic
environment. In addition, it can be seen that there was no obvious trend observed in the Ecorr values for
BST inhibitor compared to the blank, which moves to the positive direction with less than 85 mV in the
presence of PBST and OCT inhibitors, suggesting that these inhibitors were of mixed type and PBST and
OCT predominantly anodic [37–39]. The values of Ecorr, jcorr, cathodic and anodic Tafel slopes, and ηP (%)
are listed in table 4. Obviously, jcorr values decreased remarkably with addition of these inhibitors
compared to the uninhibited. With increasing inhibitors concentration from 0 to 300 µM, the values of
jcorr decreased from 375.8 µA cm−2 to 50.2, 34.8 and 36.1 µA cm−2 for BST, PBST and OCT inhibitors,
respectively. Therefore, ηP exhibited a maximum value of 87.1%, 90.7% and 90.4% for BST, PBST and
OCT inhibitor, respectively. Observation of table 4 shows that the inhibition efficiency obeys the order:
PBST >OCT> BST, which is in good accordance with the gravimetric tests.

3.4. Electrochemical impedance spectroscopy measurements
The representative Nyquist plots for Q235 mild steel dissolution in 0.5 M H2SO4 solution at 298 K in the
absence and presence of different concentrations of BST, PBST and OCT inhibitors are shown in figure 4.
It is apparent that the Nyquist plots were considerably influenced after the addition of these
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Figure 4. Nyquist plots for Q235 mild steel corrosion in 0.5 M H2SO4 solution at 298 K containing different concentrations of (a) BST,
(b) PBST and (c) OCT.

Table 4. Polarization parameters for Q235 mild steel corroded in 0.5 M H2SO4 containing different concentrations of BST, PBST
and OCT inhibitor at 298 K.

inhibitor
Cinh
(μM)

Ecorr
(mV)

βa
(mV dec−1)

−βc
(mV dec−1)

jcorr
(μA cm−2) ηP (%)

blank 0 −479.1 113.9 102.4 375.8

BST 50 −477.2 119.5 105.0 218.5 41.9

100 −479.9 121.5 102.6 122.9 67.3

200 −478.8 116.7 97.7 54.1 85.6

300 −475.6 109.0 100.2 50.2 87.1

PBST 50 −457.1 102.9 110.1 167.3 55.5

100 −448.6 105.2 108.3 67.2 82.1

200 −458.8 98.6 110.4 51.9 86.2

300 −460.4 100.4 108.2 34.8 90.7

OCT 50 −456.2 98.4 126.8 198.6 47.1

100 −450.6 102.1 124.3 90.6 75.9

200 −455.8 98.3 112.9 53.0 85.8

300 −459.3 100.9 121.5 36.1 90.4
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inhibitors into 0.5M H2SO4 solution, which diameter was greater than that in the blank solution,
suggesting that the Q235 mild steel dissolution process was remarkably restrained by these inhibitors.
As observed, for the uninhibited case, the impedance spectrum contains only one depressed
capacitive loop, while after the addition of BST, PBST and OCT inhibitors, the Nyquist plots show



Qdl

Rct

Rs

Qf

Qdl

Rct

Rf

Rs

(a)

(b)

Figure 5. EEC model used to simulate the EIS data. (Rs: solution resistance, Qdl: double layer capacitance; Rct: charge transfer
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Table 5. EIS parameters for Q235 mild steel in 0.5 M H2SO4 containing different concentrations of BST, PBST and OCT inhibitor.

Cinh
(μM)

Rs
(Ω cm2)

Qf
(Ω−1 sn cm−2)

Rf
(Ω cm2)

Rct
(Ω cm2)

Qdl
(Ω−1 sn cm−2) ndl

ηEIS
(%)

blank 0 0.88 ± 0.02 33.4 ± 1.1 175 ± 6.1 0.968 —

BST 50 1.05 ± 0.03 242 ± 10 2.16 ± 0.08 78.4 ± 1.8 84.6 ± 4.3 1 57.4

100 0.99 ± 0.03 206 ± 8 2.44 ± 0.04 126.9 ± 3.2 72.2 ± 2.0 1 73.7

200 1.02 ± 0.02 169 ± 4 12.1 ± 0.16 306.4 ± 8.3 56.6 ± 2.2 0.945 89.1

300 1.02 ± 0.03 132 ± 5 16.8 ± 0.12 408.9 ± 7.6 51.4 ± 3.1 0.922 91.8

PBST 50 1.08 ± 0.02 213 ± 7 9.24 ± 0.14 175.6 ± 5.2 73.6 ± 3.5 0.948 80.9

100 0.93 ± 0.02 182 ± 5 11.2 ± 0.16 252.3 ± 4.9 71.4 ± 2.4 0.916 86.7

200 0.96 ± 0.03 130 ± 3 13.6 ± 0.12 371.6 ± 8.2 46.4 ± 1.3 0.953 91.0

300 0.89 ± 0.02 114 ± 2 17.4 ± 0.23 485.3 ± 7.1 32.2 ± 0.9 0.942 93.2

OCT 50 0.84 ± 0.03 225 ± 6 3.58 ± 0.11 113.4 ± 2.6 84.6 ± 1.7 0.974 70.5

100 1.03 ± 0.02 196 ± 4 6.26 ± 0.15 242.2 ± 5.6 58.2 ± 1.3 0.906 86.2

200 1.06 ± 0.02 143 ± 3 11.4 ± 0.12 356.5 ± 8.2 41.2 ± 1.2 0.930 90.6

300 0.97 ± 0.03 128 ± 4 15.7 ± 0.14 460.8 ± 11 24.8 ± 0.8 0.961 92.8
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two capacitive loops which may correspond to the double electric layer and film capacitance,
respectively. Obviously, the diameter of the capacitive loops became larger with the increase of
inhibitor concentration. Figure 3 also shows that the centres of the impedance loops are below the real
axis. This finding indicates a non-ideal electrochemical behaviour at the metal/solution interface
[40,41], which generally resulted from the surface roughness and heterogeneities [42,43]. Therefore, a
constant phase element CPE (Q) was used to replace capacity [44] and the thus improved
electrochemical equivalent circuit (EEC) is depicted in figure 4, which was used to analyse the EIS
data. The admittance of a CPE can be calculated using the following expression [45]:

YCPE ¼ Y0ðjvÞn, ð3:1Þ

where Y0 is the magnitude, j equals −1, ω is the angular frequency, and n is the phase shift, representing
the surface inhomogeneity [46] (figure 5).

The fitted results are summarized in table 5. It can be seen that the values of Rct increased upon rising of
inhibitors concentration, suggesting a higher corrosion resistance by the adsorption of these inhibitors onto



PBST OCT

blank BST(a) (b)

(c) (d)

Figure 6. Surface morphology of Q235 mild steel after being corroded in 0.5 M H2SO4 solution at 298 K in the absence (a) and
presence of 300 µM (b) BST, (c) PBST and (d) OCT.
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Q235mild steel surface. TheRct values reached 408.9, 485.3 and460.8 Ω cm2 for BST, PBSTandOCT inhibitors
respectively, when their concentration was 300 µM. Accordingly, the inhibition efficiency exhibited a
maximum value of 91.8%, 93.2% and 92.8% for BST, PBST and OCT, respectively. Oppositely, the Qdl

values decreased with the increase of inhibitors concentration. The reason may be that the synthesized
benzaldehyde thiosemicarbazone derivatives adsorbed on the metal surface and formed a stronger
chemical bond with steel than water molecules, thus the previously absorbed water molecules were
replaced [47,48]. Additionally, the values of n were all near to 1 in the absence and presence of these
inhibitors (table 5), suggesting the homogeneous nature of the surface. Moreover, it is worth noting that
the inhibition efficiencies of PBST and OCT inhibitor are higher than that of BST at the same concentration,
which may be correlated to the presence of –COOH functional group in the molecular structure.
3.5. Surface investigation
SEM images of Q235 mild steel samples after being corroded in 0.5M H2SO4 solution without and with
addition of 300 µM BST, PBST and OCT inhibitors are shown in figure 6. It is observed that the Q235 mild
steel surface was strongly damaged without inhibitors (figure 6a), while the surface was smooth and
compact when 300 µM inhibitors was added (figure 6b–d), indicating that benzaldehyde
thiosemicarbazone derivatives formed a protective physical barrier on the mild steel surface and
retarded the aggressive acid attack. The presence of these inhibitors was further confirmed by EDX
spectra, as shown in figure 7. It is worth noting that no characteristic peaks for nitrogen (N) and
sulfur (S) can be found in the uninhibited solution (figure 7a), whereas both of them appeared on
Q235 mild steel surface in 0.5M H2SO4 solution containing 300 µM inhibitors (figure 7b–d), which
indicated the presence of these inhibitor molecules to form a protective film on the Q235 mild steel
surface. Moreover, the percentage atomic contents of elements obtained from EDX measurements for
Q235 mild steel samples in the absence and presence of 300 μM BST, PBST and OCT is given in
table 6. It also can be seen that the percentage atomic content of Fe reduced sharply with addition of
300 µM BST, PBST and OCT inhibitors compared to the blank, which was due to the surface coverage
of these inhibitor molecules on Q235 mild steel surface.
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Figure 7. EDX spectra of Q235 mild steel surface in 0.5 M H2SO4 at 298 K in the absence (a) and presence of 300 µM (b) BST,
(c) PBST and (d) OCT.

Table 6. EDX spectra results for mild steel samples in the absence and presence of 300 µM BST, PBST and OCT.

inhibitor Fe C N S

blank 70.78 29.22 — —

BST 67.84 27.53 2.82 1.81

PBST 62.54 26.52 6.64 4.30

OCT 64.65 26.65 5.07 3.63
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3.6. Adsorption isotherm
To further explore the adsorption mechanism of BST, PBST and OCT inhibitors onto Q235 mild steel in
0.5M H2SO4 solution, different adsorption isotherms, including Langmuir, Flory-Huggins, Temkin,
Freundlich and Frumkin isotherm models were employed. In the present study, a linear relationship
between c/θ values and inhibitors concentration c was established, as shown in figure 8, which
indicated that the adsorption of these inhibitors on Q235 mild steel surface in 0.5M H2SO4 solution
conformed to Langmuir adsorption isotherm with the following expression [49,50]:

c
u
¼ 1

Kads
þ c, ð3:2Þ

where Kads is the equilibrium constant of inhibitors adsorption onto Q235 mild steel surface, which
values can be obtained from the intercept of figure 8. According to the relationship between the
standard free energy of adsorption DG0

ads and Kads, DG0
ads can be calculated from the value of Kads

using the following equation [51]:

Kads ¼ 1
55:5

exp
�DG0

ads

RT

� �
, ð3:3Þ

where R is the molar gas constant and T is the absolute temperature. The calculated equilibrium constant
Kads and standard free energy of adsorption DG0

ads are summarized in table 7.
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Figure 8. Langmuir isotherm for adsorption of (a) BST, (b) PBST and (c) OCT molecules onto Q235 mild steel in 0.5 M H2SO4
solution.

Table 7. The values of Kads and DG0ads for Q235 mild steel in the presence of BST, PBST and OCT inhibitors in 0.5 M H2SO4
solution.

inhibitor Kads(×10
4/M) DG0ads (kJ mol

−1) slope R2

BST 2.62 −35.1 1.04 0.999

PBST 3.26 −35.7 0.98 0.999

OCT 2.97 −35.4 1.00 0.992
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In our present measurements, the values of DG0
ads are found to be −35.1, −35.7 and −35.4 kJ mol−1 for

BST, PBST and OCT inhibitors, respectively. It is reported that the adsorption of organic inhibitor
molecules onto metal surface follows physical adsorption through electrostatic interaction when the
value of DG0

ads was positive to −20 kJ mol−1, which conforms to chemisorptions involving charge
sharing or charge transfer between the metal surface and inhibitor molecules when DG0

ads value was
negative to −40 kJ mol−1 [52–54]. Therefore, it is reasonable to deduce that the adsorption process of
BST, PBST and OCT inhibitors onto Q235 mild steel surface is a combination of both chemisorptions
and physisorption, which are predominant chemisorptions.

3.7. Effect of temperature
To further obtain the thermodynamic and activation parameters, weight loss experiments were
performed at different temperatures ranging from 25°C to 55°C. The calculated corrosion rate and
inhibition efficiency under different temperatures are listed in table 8. It is apparent that the corrosion
rate increases with raising temperature for all these inhibitors. Meanwhile, the inhibition efficiency
increases with temperature as well, which corresponds to the chemisorptions mechanism of inhibitor
molecule onto metal surface. This phenomenon has been explained by the specific interaction between
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Figure 9. Log CR versus 1/T for Q235 mild steel in 0.5 M H2SO4 solution.

Table 8. Weight loss parameters for Q235 mild steel corroded in 0.5 M H2SO4 solution with addition of 200 µM BST, PBST and
OCT inhibitors at different temperatures.

inhibitor
temperature
(°C)

blank
CR (mg cm−2 h−1)

200 µM
CR (mg cm−2 h−1) η (%)

BST 25 6.09 1.12 81.6

35 6.79 1.24 81.7

45 7.83 1.39 82.2

55 9.16 1.59 82.6

PBST 25 6.09 0.66 89.2

35 6.79 0.70 89.7

45 7.83 0.75 90.4

55 9.16 0.80 91.3

OCT 25 6.09 0.76 87.5

35 6.79 0.83 87.8

45 7.83 0.92 88.3

55 9.16 1.01 90.0
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inhibitor molecule and mild steel [55–58]. The apparent activation energy (Ea) is calculated by Arrhenius
equation [59],

log (CR) ¼ �Ea

2:303RT
þ log(A), ð3:4Þ

where Ea is the apparent activation energy and A is the Arrhenius pre-exponential factor.
The Ea values were obtained from the slope of Arrhenius plot as shown in figure 9 and the results are

shown in table 9. It is obvious that Ea values for the Q235 mild steel dissolution in 0.5M H2SO4 solution



Table 9. The apparent activation energy of mild steel corroded in 0.5 M H2SO4 without and with addition of 200 µM BST, PBST
and OCT inhibitors.

inhibitor Ea (KJ mol
−1)

blank 11.1

BST 9.45

PBST 5.25

OCT 7.76
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containing 200 µM inhibitors were smaller than that in the uninhibited. It was previously reported that
the adsorption of organic inhibitor molecules follows chemisorptions mechanism when Ea value was
unchanged or lower compared to the blank [37,60], which was explained by some of the energy being
consumed in the chemical reaction. This finding furthermore supports the conclusion that was
inferred from the Langmuir isotherm that the adsorption behaviour of the synthesized compounds on
mild steel surface conforms to chemisorptions.
3.8. Effect of immersion time
The impact of immersion time on the inhibition efficiency for 300 µM BST, PBST and OCT inhibitors onto
Q235 mild steel in 0.5M H2SO4 solution at 298 K is shown in figure 10. It can be seen that during the
initial 8 h, the inhibition efficiency increased with immersion time for PBST and OCT inhibitor,
whereas 12 h for BST inhibitor, which may be correlated to the film growth and rearrangement of the
BST, PBST and OCT inhibitor molecules on Q235 surface. After that, the inhibition efficiency
decreased with prolonging immersion time, which may be linked to desorption or dissolution of
adsorbed inhibitor molecules [61]. It is noticeable that during the whole testing immersion time, the
inhibition efficiency of PBST and OCT inhibitors is higher than that of BST inhibitor. Moreover, the
inhibition efficiencies of all these inhibitors were still over 90% after 96 h immersion time, suggesting
that these synthesized inhibitors were all long-term effective inhibitors for Q235 mild steel in 0.5M
H2SO4 solution.
3.9. Quantum chemical calculations
To explore the correlation between the inhibition behaviour and molecular structures, the quantum
chemical calculation were performed, and the optimized geometry structures and the frontier
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Figure 11. Optimized structure of BST, PBST and OCT and the protonated forms.

royalsocietypublishing.org/journal/rsos
R.Soc.open

sci.6:190192
14
molecule orbital density distributions of these inhibitors as well as their protonated forms are presented
in figures 11 and 12. The useful parameters, such as EHOMO, ELUMO, energy gap ΔE and dipole moment
were determined and applied to explore the correlation between the inhibitor molecular structure and
mild steel. According to the frontier molecular orbital theory, EHOMO is related to the ability of a
molecule to donate electrons to appropriate electron acceptors, thus, a molecule exhibits stronger
tendency to donate electrons to the steel vacancy d-orbital in the present study when the calculated
EHOMO value is higher. Whereas, ELUMO corresponds to the electron accepting ability of the molecule,
and a molecule has higher capability of accepting electrons when the calculated ELUMO value is lower
[27,62,63]. Furthermore, the energy gap ΔE is an important parameter to evaluate the inhibitive effect
of the inhibitor molecules. It was previously inferred [64,65] that an inhibitor possesses higher
inhibition efficiency when its ΔE value is smaller, because lower energy is needed to remove an
electron from the last occupied orbital.

According to Lukovits theorem [61], the value of ionization potential (I ) and the electron affinity (A)
can be derived from ELUMO and ELUMO by the following equations:

I ¼ �EHOMO ð3:5Þ

and

A ¼ �ELUMO: ð3:6Þ

Additionally, the absolute electronegativity (χ), the global hardness (ρ) and softness (σ) of the
inhibitor molecule are defined as follows:

x ¼ I � A
2

, ð3:7Þ
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Table 10. Theoretical parameters of BST, PBST and OCT inhibitor and the protonated forms.

parameters BST PBST OCT BST-H+ PBST-H+ OCT-H+

EHOMO (eV) −5.9772 −6.1944 −6.0986 −10.1295 −10.3085 −10.3322
ELUMO (eV) −2.1490 −2.7433 −2.5512 −6.2983 −6.5176 −6.4123
ΔE (eV) 3.8282 3.4511 3.5474 3.8312 3.7909 3.9199

μ (D) 5.4560 3.1922 4.3649 4.3037 10.8639 9.4524

I (eV) 5.9772 6.1944 6.0986 10.1295 10.3085 10.3322

A (eV) 2.1490 2.7433 2.5512 6.2983 6.5176 6.4123

χ (eV) 4.0631 4.4689 4.3249 8.2139 8.4131 8.3722

ρ (eV) 1.9141 1.7256 1.7737 1.9156 1.8954 1.9599

σ [(eV)−1] 0.5224 0.5795 0.5638 0.5220 0.5276 0.5102
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r ¼ I � A
2

ð3:8Þ

and

s ¼ 1
r
: ð3:9Þ

All of these calculated quantum chemical parameters are summarized in table 10. It is apparent that
the neutral form of PBST inhibitor as well as its protonated form PBST-H+ has a minimum value of
ELUMO and lowest value of ΔE which is well in agreement with its highest inhibition efficiency.
Moreover, PBST inhibitor shows the lowest value of dipole moment (μ), which will favour
accumulation of the inhibitor [66]. However, there is still a controversy about the correlation between
the dipole moment and inhibition efficiency that many researchers suggested that the inhibition
efficiency increased with the increase of dipole moment [67,68], while others stated that inhibitor
molecule with a lower value of dipole moment revealed higher inhibition efficiency [66]. Generally,
the value of electronegativity χ represents the chemical potential and a higher value indicates better
inhibition performance. In addition, an inhibitor always shows a higher inhibition efficiency when the
value of global hardness is smaller according to the hard-soft acid base (HSAB) principle [69].
Inspection of table 10 also demonstrates that PBST has the highest electronegativity and lowest global
hardness, resulting in the maximum inhibition efficiency compared to the other two inhibitors, which
is consistent with the result of weight loss and electrochemical measurements.
4. Conclusion
Gravimetric measurements, polarization curves, electrochemical impedance spectroscopy and scanning
electron microscopy (SEM) were used to study the inhibition behaviour of three new benzaldehyde
thiosemicarbazone derivatives for mild steel in 0.5M H2SO4 solution. Results revealed that all these
compounds are good inhibitors for Q235 steel in 0.5M H2SO4 solution and PBST inhibitor showed the
maximum inhibition efficiency of 96.6% at 300 µM. The inhibition efficiency increases with increasing
inhibitors concentration and temperature. The results of polarization curves indicated that these three
compounds behaved as mixed type and PBST and OCT predominantly anodic. The adsorption of
these inhibitors on Q235 steel surface was according to Langmuir adsorption isotherm. The results
of theoretical calculation and SEM studies were found to be in good agreement with that of weight
loss and electrochemical measurements.
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