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Consider a set of categorical variables P where at least one,
denoted by Y, is binary. The log-linear model that describes the
contingency table counts implies a logistic regression model,
with outcome Y. Extending results from Christensen (1997,
Log-linear models and logistic regression, 2nd edn. New York, NY,
Springer), we prove that the maximum-likelihood estimates
(MLE) of the logistic regression parameters equals the MLE for
the corresponding log-linear model parameters, also considering
the case where contingency table factors are not present in the
corresponding logistic regression and some of the contingency
table cells are collapsed together. We prove that, asymptotically,
standard errors are also equal. These results demonstrate the
extent to which inferences from the log-linear framework
translate to inferences within the logistic regression framework,
on the magnitude of main effects and interactions. Finally, we
prove that the deviance of the log-linear model is equal to the
deviance of the corresponding logistic regression, provided that
no cell observations are collapsed together when one or more
factors in Pn{Y} become obsolete. We illustrate the derived
results with the analysis of a real dataset.
1. Introduction
Let v = {v1,…, vn} denote a set of observations, θ = {θ1,…, θn} a
set of parameters, and consider known or nuisance quantities
ϕ = {ϕ1,…, ϕn}. Now, vi, i = 1,…, n, belongs to the exponential
family of distributions if its probability function can be written as

f(vijui, fi) ¼ exp
wi

fi
[viui � b(ui)]þ c(vi, fi)

� �
,
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where w = {w1,…, wn} are known weights, and ϕi is the dispersion or scale parameter. Regarding first-

order moments, μi≡ E(vi) = b
0
(θi). A generalized linear model relates μ = {μ1,…, μn} to covariates by

setting ζ(μ) =Xdγ, where ζ denotes the link function, Xd the covariate design matrix and γ a vector of
parameters. For a single μi, we write ζi(μi) =Xd(i)γ, where Xd(i) denotes the ith row of Xd, defining ζ as
a vector function ζ≡ {ζ1,…, ζn}.

Let P denote a finite set of P categorical variables. Observations from P can be arranged as counts in a
P-way contingency table, with cell counts denoted by ni, i = 1,…, nll. The ‘ll’ indicator alludes to a log-
linear model. The counts follow a Poisson distribution with E(ni) = μi. A Poisson log-linear interaction
model, log(m) ¼ Xlll, is a generalized linear model that relates the expected counts to P.

From Christensen [1], there is an association between log-linear modelling and multinomial logistic
regression. Consider categorical variables X, Y and Z, with JX, JY and JZ levels, respectively. Let jX, jY, jZ be
integer indices that describe the level of X, Y and Z. In a multinomial logistic regression with outcome Y,
one typically models the log-odds of an observation at level jY + 1 relative to one at level jY, log(p jYþ1=p jY ),
jY = 0,…, JY− 1. This can be viewed as equivalent to fitting a log-linear model as

log
P(Y ¼ jY þ 1jX, Z)
P(Y ¼ jYjX, Z)

� �
¼ log

P(Y ¼ jY þ 1, X, Z)
P(Y ¼ jY, X, Z)

� �
¼ log(m jYþ1,jX ,jZ )� log(m jY ,jX ,jZ ):

For more details, see [1, Section 4.6] where, in addition to the above approach, the alternative of
constructing a multinomial model to model the log-odds of an observation at level jY, jY = 1,…, JY− 1,
relative to one at fixed level JY is considered. In this manuscript, we focus on the association between
log-linear modelling and binary logistic regression. Assume that the categorical variable Y is binary.
Then, a logistic regression can be fitted with Y as the outcome, and all or some of the remaining P− 1
variables as covariates. We write, logit(p) ¼ Xltb, p ¼ (p1, . . . , pnlt ), using the ‘lt’ indicator for the
logistic model, denoting by pi the conditional probability that Y = 1 given covariates Xlt(i), and by β
the vector of model parameters.

From Agresti [2], when P contains a binary Y, a log-linear model log(m) ¼ Xlll implies a specific
logistic regression model with parameters β defined uniquely by λ. As Y is binary, jY = 0, 1. Consider
the log-linear model

log(m jY,jX ,jZ ) ¼ lþ lXjX þ lYjY þ lZjZ þ lXYjX ,jY þ lXZjX ,jZ þ lYZjY ,jZ , ðM1Þ

where the superscript denotes the main effect or interaction term. Similar to the derivation above, the
corresponding logistic regression model for the conditional odds ratios for Y is

log
P(Y ¼ 1jX, Z)
P(Y ¼ 0jX, Z)
� �

¼ log
P(Y ¼ 1, X, Z)
P(Y ¼ 0, X, Z)

� �

¼ log(m jY¼1,jX ,jZ )� log(m jY¼0,jX ,jZ )

¼ lY1 � lY0 þ lXYjX ,1 � lXYjX ,0 þ lYZ1,jZ � lYZ0,jZ :

This is a logistic regression with parameters, b ¼ (b, bX
jX , b

Z
jZ ), so that, b ¼ lY1 � lY0 , b

X
jX ¼ lXYjX ,1 � lXYjX ,0 and

bZ
jZ ¼ lYZ1,jZ � lYZ0,jZ . Identifiability corner point constraints set all elements in λ with a zero subscript equal

to zero. Then, b ¼ lY1 , b
X
jX ¼ lXYjX ,1 and bZ

jZ ¼ lYZ1,jZ . This scales in a straightforward manner to larger
log-linear models. If a factor does not interact with Y in the log-linear model, this factor disappears
from the corresponding logistic regression. Without any loss of generality, and to simplify the analysis
and notation, we henceforth assume corner point constraints.

Considering the log-odds implied by a logistic regression, more than one log-linear models provide
the same structure. For example, the log-linear model, log(μjYjXjZ) = λ + λXjX + λYjY + λZjZ + λXYjX jY + λYZjY jZ, implies
the same conditional log-odds structure for Y as (M1). However, as shown in Christensen [3, Section
3.3.2] in conjunction with Christensen [1, Sections 11.1 and 12.4], the log-linear model that determines
exactly the same logistic structure is the one that contains all possible interaction terms between the
categorical factors in Pn{Y}. Other log-linear models, even when they imply the same log-odds,
impose additional constraints on the logistic structure. To avoid any confusion, the description of our
results in this manuscript will expound that the considered log-linear model contains all possible
interaction terms between the categorical factors in Pn{Y}.

The relationship between β and λ can be described as β = Tλ, where T is an incidence matrix [4]. In the
context of this manuscript, matrix T has one row for each element of β, and one column for each element
of λ. The elements of T are zero, except in the case where the element of β is defined by the corresponding
element of λ. The number of rows of T cannot be greater than the number of columns.
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In Papathomas [5], the correspondence between the two modelling frameworks within the Bayesian

framework was studied, deriving exact and asymptotic results. In this manuscript, we focus on the
frequentist framework, and derive results on maximum-likelihood estimates (MLE), interval estimates
and deviances. Christensen [1] offers a comprehensive account of log-linear and logistic regression
modelling. In Christensen [1, ch. 11], results on the equivalence between MLE and confidence
intervals were derived. We extend these results, by also considering the case where factors present in
the contingency table and log-linear model are not present in the corresponding logistic regression
model, and some of the contingency table cells are collapsed together. This case is not considered in
[1,2] or, to the best of our knowledge, in any other published work. As stated in theorem 3.2, the
MLE for the parameters of the logistic regression equals the MLE for the corresponding parameters of
the log-linear model. Theorem 3.3 states that, asymptotically, standard errors for the logistic regression
and corresponding log-linear model parameters are equal. Subsequently, Wald confidence intervals [2]
are asymptotically equal.

For theorem 3.4, we stipulate that the logistic model is fitted to a dataset where no cell observations
are collapsed together when one or more factors in Pn{Y} are not present in the logistic regression. Then,
we prove that the deviance of the log-linear model equals the deviance of the corresponding logistic
regression. Christensen [1, p. 371] refers to this equality, by considering a simple logistic regression
with two parameters and showing that the likelihood ratio test statistic (LRTS) for the log-linear
model equals the LRTS for the logistic regression. This is done by using the invariance of the MLE
and the properties of the product-binomial sampling scheme [1, Section 2.6]. Christensen [1, p. 365]
also shows that applying the logistic regression to a contingency table implies that the sampling
scheme of the contingency table is product-binomial instead of multinomial. As these results are
based on a logistic regression with two parameters, a general mathematical proof is required,
provided in appendix A.

In §2 we provide additional notation and essential derivations for the log-linear and logistic
regression model, then §3 contains the main contributions in this manuscript. In §4, the
correspondence from a log-linear to a logistic regression model is illustrated using real data. We
conclude with a discussion, where we also consider possible practical implications of our results.
2. Deviances and the information matrix
The deviance of a generalized linear model is crucial for assessing goodness of fit [6]. Let û denote the
MLE of θ. Let L(θsat, v) and L(θsim, v) denote the log-likelihood for the saturated model, and for a simpler
model, respectively. The deviance is defined as

D(û, v) ¼ �2[L(ûsim, v)� L(ûsat, v)]:

Then,

D(û, v) ¼ �2
Xn
i¼1

wi

fi
(viûi,sim � b(ûi,sim))þ c(vi, fi)

 

�
Xn
i¼1

wi

fi
(viûi,sat � b(ûi,sat))þ c(vi, fi)

!

¼ �2
Xn
i¼1

wi

fi
vi(ûi,sim � ûi,sat)� wi

fi
(b(ûi,sim)� b(ûi,sat))

 !
:

Denote by ĝ the MLE of γ, and I (ĝ) the information matrix X`
d VXd. (V will be specified below for

both modelling frameworks as Vlog�linear and Vlogistic.) Then, from Agresti [2], asymptotically

ĝ � N(g, I�1):

2.1. Log-linear regression
Consider a vector n of counts ni i = 1,…, nll. Now, N ¼Pnll

i¼1 ni, and,

f(nijmi) ¼
e�mimni

i

ni!
,
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with ui ¼ log(mi), b(ui) ¼ eui and c(ni, fi) ¼ �log(ni!). Also, wif

�1
i ¼ 1, so that wi = 1 implies ϕi = 1. Note

that, mi ¼ b0(ui) ¼ eui , and Var(ni) ¼ fiw�1
i b00(u) ¼ eui . For the log-linear model, log(m) ¼ Xlll, Xll is a

nll × nλ design matrix of covariates, and zi(mi) ¼ log(mi). Given the above,

D(m̂, n) ¼ �2
Xnll
i¼1

ni(log(m̂i)� log(ni))� m̂i þ ni

 !

¼ 2
Xnll
i¼1

nilog
ni
m̂i

� �
� 2

Xnll
i¼1

ni þ 2
Xnll
i¼1

m̂i:

From Agresti [2, p. 140], when the log-linear model contains an intercept,
Pnll

i¼1 ni ¼
Pnll

i¼1 m̂i. Then,

D(m̂, n) ¼ 2
Xnll
i¼1

nilog
ni
m̂i

� �
: (2:1)

The diagonal matrix Vlog�linear has non-zero elements exp{Xll(i)l̂}, i = 1,…, nll.

2.2. Logistic regression
Assume that yi, i = 1,…, nlt, is the proportion of successes out of ti trials. Now, N ¼Pnlt

i¼1 ti, and,

f(tiyijpi) ¼ ti
tiyi

� �
ptiyii (1� pi)

ti�tiyi ,

where ui ¼ logit(pi), b(ui) ¼ log(1þ eui ) and c(yi, fi) ¼ log ti
tiyi

� �
. Also, wif

�1
i ¼ ti, so that wi = 1 implies

fi ¼ t�1
i . Note that

E(yi) ¼ b0(ui) ¼ eui

1þ eui
¼ pi and Var(yi) ¼ fi

wi
b00(ui) ¼ 1

ti

eui

(1þ eui )2
¼ pi(1� pi)

ti
:

For the logistic regression, logit(p) ¼ Xltb, Xlt is a nlt × nβ design matrix, and zi(pi) ¼ logit(pi). Given
the above

D(y, p̂) ¼ �2
Xnlt
i¼1

tiyi log
p̂i

1� p̂i

� �
� log

yi
1� yi

� �� 	
� tilog

1
1� p̂i

� �
þ tilog

1
1� yi

� � !

¼ �2
Xnlt
i¼1

tiyilog( p̂i)� tiyilog(yi)

 

þ
Xnlt
i¼1

(ti � tiyi)log(1� p̂i)� (ti � tiyi)log(1� yi)

!
:

After some algebra,

D(y, p̂) ¼ 2
Xnlt
i¼1

tiyilog
tiyi
ti p̂i

� �
þ 2

Xnlt
i¼1

(ti � tiyi)log
ti � tiyi
ti � ti p̂i

� �

¼ 2
Xnlt
i¼1

tiyilog
yi
p̂i

� �
þ 2

Xnlt
i¼1

(ti � tiyi)log
1� yi
1� p̂i

� �
:

(2:2)

The diagonal matrix Vlogistic has non-zero elements tiexp{Xlt(i)b̂}exp{1þ Xlt(i)b̂}
�2, i = 1,…, nlt.
3. Results
To facilitate the derivation of theoretical results, we introduce the following additional notation. Without
any loss of generality, let x.1 be the binary Y factor, and x.2,…, x.q the q− 1 factors that are present
in the log-linear model but disappear from the logistic regression model as they do not interact
with Y. Denote the rest of the factors by x.q+1,…, x.P. Each element of n is denoted by nj, j = ( j1,…, jP),
0≤ jp≤ Jp− 1, p = 1,…, P, where Jp is the number of levels of x.p. Here, j, identifies the combination of
variable levels that cross-classify the given cell. We define L as the set of all nll cross-classifications, so
that, L ¼ �P

p¼1[j p]. Elements yj and μj are defined analogously.
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Lemma 3.1. Assume that the log-linear model contains all possible interaction terms between the categorical

factors in Pn{Y}: Then, for all 0≤ jp≤ Jp− 1, p = 2,…, P,

n0,j2,...,jP þ n1,j2,...,jP ¼ m̂0,j2,...,jP þ m̂1,j2,...,jP :

Proof. The proof is given in appendix A. ▪
Theorem 3.2. Assume that the log-linear model contains all possible interaction terms between the categorical

factors in Pn{Y}: Then, the MLE b̂ of the parameters of the logistic-regression is equal to the MLE of the
corresponding parameters of the log-linear model.

Proof. The proof is given in appendix A. ▪
Theorem 3.3. Assume that the log-linear model contains all possible interaction terms between the categorical

factors in Pn{Y}: Then, asymptotically, the standard error for each element of β is equal to the standard error for the
corresponding parameter of the log-linear model.

Proof. The proof is given in appendix A. ▪
The proofs for theorems 3.2 and 3.3 include the case where factors present in the log-linear model are

not present in the corresponding logistic regression and some of the contingency table cells are collapsed
together. For completeness, our proofs also include the case where all factors in Pn{Y} are present in the
logistic regression model. Theorem 3.4 postulates that nlt = nll/2, i.e. the number of proportions fitted by
the logistic regression should be half the number of cell counts in the contingency table. This happens
either because all factors in Pn{Y} are present in the logistic regression, or because counts in cells with
the same cross-classification considering x.q+1,…, x.P are not collapsed. This is important for observing
equal deviances for the log-linear model and the corresponding logistic regression. Intuitively, when
nlt = nll/2, the number of observations fitted by the logistic regression is in direct correspondence with
the number of observations fitted by the log-linear model. When nlt < nll/2, a logistic regression model
with the same number of parameters fits a smaller number of observations, something that naturally
results in a smaller deviance compared to the deviance observed when the contingency table is not
collapsed. This is illustrated in §4 with the analysis of a real dataset.

Theorem 3.4. Assume that the log-linear model contains all possible interaction terms between the categorical
factors in Pn{Y}: Assume also that the corresponding logistic regression is fitted to a dataset where nlt = nll/2.
Then, the deviance of the log-linear model equals the deviance of the corresponding logistic regression.

Proof. The proof is given in appendix A. ▪
4. Illustration
Edwards & Havránek [7] presented a 26 contingency table in which 1841 men were cross-classified by six
binary risk factors {A, B, C, D, E, F} for coronary heart disease. Adopting the notation in Agresti [2], a
single letter denotes the presence of a main effect, two-letter terms denote the presence of the implied
first-order interaction and so on and so forth. The presence of an interaction between a set of
variables implies the presence of all lower-order interactions plus main effects for that set. Consider
the log-linear model

log(m) ¼ ACþ ADþ AEþ BCDEF: (M2)

Treating A as the outcome, the corresponding logistic regression is

logit(p) ¼ CþDþ E: (M3)

The deviances, MLE and standard errors for the relevant parameters of both models are given in table 1,
after fitting the models in R using the ‘glm’ function. We observe that corresponding quantities are
equal. To obtain equal deviances, although factors B and F are not present in the logistic regression,
the logistic model was fitted to a dataset where contingency table cell counts discriminated only by B
and F were not collapsed together. This resulted in nlt = 32. The datasets for (M2) and (M3) are given
in appendix A. The design matrix X(M3)

lt is shown below, with ` denoting the transpose, with some of



Table 1. Deviances, MLE and standard errors for the relevant parameters of log-linear model (M2) and the corresponding logistic
regressions (M3) and (M4). (Standard errors are given in brackets.)

log-linear model (M2), log(m) ¼ AC þ ADþ AE þ BCDEF , deviance = 33.51

A AC AD AE

MLE −0.4140 (0.0892) 0.5501 (0.0958) −0.3684 (0.0967) 0.4893 (0.0973)

outcome is A (M3), logit(p) ¼ C þ Dþ E, deviance = 33.51

intercept C D E

MLE −0.4140 (0.0892) 0.5501 (0.0958) −0.3684 (0.0967) 0.4893 (0.0973)

outcome is A (M4), logit(p) ¼ C þ Dþ E, deviance = 3.47

intercept C D E

MLE −0.4140 (0.0892) 0.5501 (0.0958) −0.3684 (0.0967) 0.4893 (0.0973)

royalsocietypublishing.org/journal/rsos
R.Soc.open

sci.7:191483
6

the rows identical.

X(M3)
lt ¼

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0

0
BBB@

1 1 1 1 1 1 1 1 1 1 1 1

0 0 1 1 0 0 1 1 0 0 1 1

1 1 1 1 0 0 0 0 1 1 1 1

0 0 0 0 1 1 1 1 1 1 1 1

1
CCCA

`

:

As factors B and F disappear from the logistic regression that corresponds to (M2), one may decide to
collapse together the contingency table cells with the same cross-classification considering C, D and E.
A logistic regression is fitted, denoted by (M4). It only contains main effects for C, D and E, as
does (M3). The dataset for (M4) is shown in appendix A. The design matrix for (M4) is

X(M4)
lt ¼

1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1

0
BB@

1
CCA

`

:

Relevant output is given in table 1. MLE and standard errors are equal, as theorems 3.2 and 3.3 hold.
However, as cells are collapsed together and nlt≠ nll/2, the deviances differ.
5. Discussion
The results in Christensen [1] and this manuscript demonstrate the extent to which inferences from the
log-linear framework translate to inferences within the logistic regression framework, on the magnitude
of main effects and interactions.

When factors are not present in the logistic regression, one may choose to collapse the counts in the
contingency table cells that are only discriminated by the obsolete variables x.2,…, x.q. Logistic regression
parameter estimates and associated standard errors are not affected by collapsing the cell counts. This is
shown in the proofs for theorems 3.2 and 3.3 in appendix A. However, the logistic regression fitted to the
collapsed dataset, returns a different deviance compared to a logistic regression with the same covariates
(parameters) fitted without collapsing. This is expected, as two models with the same number of parameters
are fitted to a different number of data points. The deviance naturally increases for the larger dataset.

Our results concern two of the most popular approaches for the analysis of categorical observations
and the correspondence between them. Theoretical derivations on such associations improve
understanding and enhance the models’ use, as advances for one framework are not always readily
available to the other. For instance, to describe the joint probability distribution between covariates,
Zhou et al. [8] adopt a PARAFAC factorization. Marginal independence is modelled with fixed
baseline vectors, providing expressions for parameters of the log-linear models that correspond to the
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adopted latent class model. Another example is Papathomas & Richardson [9], where the use of

employing variable selection within clustering to assist log-linear modelling is investigated, without
examining logistic regression models.
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Appendix A.
Proof of Lemma 3.1. To facilitate this and subsequent proofs, the following notation is introduced,

similar to Papathomas [5]. Using the incidence matrix T discussed in §1, write the mapping between
β and λ as β = Tλ, where

T ¼
l(1)

..

.

l(nlY )

0
B@

1
CA,

and λ(k), k ¼ 1, . . . , nlY , is a vector of zeros with the exception of one element that is equal to one. This
element is in the position of the kth λ parameter with a Y in its superscript. With nlY we denote the
number of parameters in λ with a Y in their superscript. To ease algebraic calculations, and without
any loss of generality, rearrange the elements of λ, creating a new vector λr, so that T changes
accordingly to, Tr ¼ (I 0), where I is an nβ × nβ identity matrix. (Vector μ is similarly rearranged to
μr.) The rows and columns of Xll are also rearranged accordingly to create Xrll, so that

Xrll ¼ X�
lt Xll�lt
0 Xll�lt

� �
: (A1)

Xll− lt is a square (nll/2 × nll/2) matrix. This is because we consider the log-linear model that, in
addition to the terms that involve Y, contains all possible interaction terms between the categorical
factors in Pn{Y}. The number of parameters that correspond to the intercept, main effects and
interactions for Pn{Y} is nll/2. Xlt

�
is a nll/2 × nβ matrix. When q = 1, all factors other than Y remain in

the logistic regression model as covariates. When no cell counts are collapsed, either because q = 1, or
because we opt not to collapse, Xlt

�
=Xlt, and nll = 2 × nlt. When the cell counts that are only

discriminated by the obsolete variables x.2,…, x.q are collapsed, by rearranging the rows of Xrll when
necessary, we can write Xlt

�
as, X�

lt ¼ (X`
lt X

`
lt . . .X

`
lt )

`, where X`
lt is repeated (J1− 1) × J2 ×… × Jq times.

For example, for q = 2, Xlt repeats J2 times within Xlt
�
, and nll = 2 × J2 × nlt. When q = P, the

corresponding logistic regression model only contains an intercept, and one may decide to fit the
logistic regression to a collapsed contingency table that only contains two cells describing the total
number of counts where Y = 0 and Y = 1. Then, nll = 2 × J2 ×… × JP × nlt.

We can now write β = Trλr. For example, assume the log-linear model (M1) describes a 3 × 2 × 2
contingency table. Then, q = 1, and the standard arrangement of the elements of λ would be such that,

Xll ¼

1 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0
1 1 0 1 0 1 0 0 0 0
1 0 1 1 0 0 1 0 0 0
1 0 0 0 1 0 0 0 0 0
1 1 0 0 1 0 0 1 0 0
1 0 1 0 1 0 0 0 1 0
1 0 0 1 1 0 0 0 0 1
1 1 0 1 1 1 0 1 0 1
1 0 1 1 1 0 1 0 1 1

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

, l ¼

l
lX1
lX2
lY1
lZ1
lXY11
lXY21
lXZ11
lXZ21
lYZ11

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

, T ¼
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1

0
BB@

1
CCA:
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After rearranging

Xrll ¼

1 0 0 0 1 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0
1 0 1 0 1 0 1 0 0 0
1 0 0 1 1 0 0 1 0 0
1 1 0 1 1 1 0 1 1 0
1 0 1 1 1 0 1 1 0 1
0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0
0 0 0 0 1 0 1 0 0 0
0 0 0 0 1 0 0 1 0 0
0 0 0 0 1 1 0 1 1 0
0 0 0 0 1 0 1 1 0 1

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

, lr ¼

lY1
lXY11
lXY21
lYZ11
l
lX1
lX2
lZ1
lXZ11
lXZ21

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

, Tr ¼
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0

0
BB@

1
CCA:

See Papathomas [5] for another example where q = 2. From Agresti [2, p. 138], the likelihood equations
for a log-linear model log(mr) ¼ Xrlllr are

X
j1,...,jP

n j1,...,jPXrll(j1,...,jP),j �
X
j1,...,jP

m̂ j1,...,jPXrll(j1,...,jP),j ¼ 0,

where Xrll(j1,...,jP),j is the element of Xrll in the row that corresponds to n j1,...,jP , and column j, j = 1,…, nλ. As
log(mr) ¼ Xrlllr, includes all interactions between factors other than Y, Xll− lt is the design matrix for a
saturated log-linear model for all factors other than Y. Because Xll− lt repeats within Xrll (as shown in
(A1)), the nll/2 likelihood equations for log(mr) ¼ Xrlllr, j = nβ + 1,…, nλ, are also the likelihood
equations of a saturated log-linear model for fitting the nll/2 observations, n0,j2,...,jP þ n1,j2,...,jP :

X
j2,...,jP

(n0,j2,...,jP þ n1,j2,...,jP )Xll�lt(j2,...,jP),j

¼
X
j2,...,jP

(m̂0,j2,...,jP þ m̂1,j2,...,jP )Xll�lt(j2,...,jP),j:

Here, Xll�lt(j2,...,jP),j is the element of Xll− lt in the row that corresponds to y j2,...,jP , and column j, j = nβ + 1,…,
nλ. As these are the likelihood equations of a saturated model,

n0,j2,...,jP þ n1,j2,...,jP ¼ m̂0,j2,...,jP þ m̂1,j2,...,jP ,

and this completes the proof. ▪
Proof of Theorem 3.1. All factors in Pn{Y} are present in the logistic regression, or no collapsing of cells. From

Agresti [2, (p.193)] the likelihood equations for the logistic regression model, logit(p) ¼ Xltb, are

X
j2,...,jP

t j2,...,jPy j2,...,jPXlt(j2,...,jP),j �
X
j2,...,jP

t j2,...,jP p̂1,j2,...,jPXlt(j2,...,jP),j ¼ 0,

for j = 1,…, nβ. Now,

m̂1,j2,...,jP

m̂0,j2,...,jP
¼ exp(Xrll(1,j2,...,jP)l̂r)

exp(Xrll(0,j2,...,jP)[nb þ 1 : nl]l̂r[nb þ 1 : nl])

¼ exp(Xrll(1,j2,...,jP)[1 : nb]l̂r[1 : nb]) ¼ exp(Xlt(j2,...,jP)b̂) ¼
p̂1,j2,...,jP

1� p̂1,j2,...,jP
,

where, a[a1 : a2], specifies the vector formed by all elements from the a1th to the a2th element of vector a,
including the a1th and a2th elements. Therefore,

p̂1,j2,...,jP ¼
m̂1,j2,...,jP

m̂0,j2,...,jP þ m̂1,j2,...,jP
:
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Thus, to estimate β, the likelihood equations areX

j2,...,jP

t j2,...,jP y j2,...,jPXlt(j2,...,jP),j

�
X
j2,...,jP

t j2,...,jP
m̂1,j2,...,jP

m̂0,j2,...,jP þ m̂1,j2,...,jP
Xlt(j2,...,jP),j ¼ 0

)
X
j2,...,jP

t j2,...,jPy j2,...,jPXlt(j2,...,jP),j �
X
j2,...,jP

m̂1,j2,...,jPXlt(j2,...,jP),j ¼ 0:

For the log-linear model, for λr[1 : nβ], the likelihood equations areX
j1,...,jP

n j1,j2,...,jPXrll(j1,...,jP),j �
X
j1,...,jP

m̂ j1,...,jPXrll(j1,...,jP),j ¼ 0,

where j = 1,…, nβ. As, Xrll(0,j2,...,jP),j ¼ 0 for all j, the likelihood equations for estimating λr[1 : nβ] areX
j2,...,jP

n1,j2,...,jPXrll(1,j2,...,jP),j �
X
j2,...,jP

m̂1,j2,...,jPXrll(1,j2,...,jP),j ¼ 0:

As, n1,j2,...,jP ¼ t j2,...,jP � y j2,...,jP , and Xlt(j2,...,jP),j ¼ Xrll(1,j2,...,jP),j, the likelihood equations for estimating β and
the corresponding λr[1 : nβ] are the same. Therefore, b̂ ¼ l̂r[1 : nb], as the number of equations equals
the number of parameters.

Factors not present in the logistic regression, with collapsing of cells. As Xlt repeats J2 × · · · × Jq times within
Xlt

�
, the likelihood equations for estimating λr[1 : nβ], for j = 1,…, nβ, are shown below:X

j2,...,jq

X
jqþ1,...,jP

n1,j2,...,jPXrll(1,j2,...,jP),j �
X
j2,...,jq

X
jqþ1,...,jP

m̂1,j2,...,jPXrll(1,j2,...,jP),j ¼ 0,

)
X

jqþ1,...,jP

tþ2,...,þq ,jqþ1,...,jP yþ2,...,þq ,jqþ1,...,jPXrll(jqþ1,...,jP),j

�
X

jqþ1,...,jP

m̂1,þ2,...,þq ,jqþ1,...,jPXrll(jqþ1,...,jP),j,

where

m̂1,þ2,...,þq ,jqþ1,...,jP ¼
X
j2,...,jq

m̂1,j2,...,jq ,jqþ1,...,jP ,

tþ2,...,þq ,jqþ1,...,jP ¼
X
j2,...,jq

t j2,...,jq ,jqþ1,...,jP

and yþ2,...,þq ,jqþ1,...,jP ¼
X
j2,...,jq

y j2,...,jq ,jqþ1,...,jP :

These are also the equations for estimating the logistic regression parameters β. So, b̂ ¼ l̂r[1:nb], as the
number of equations equals the number of parameters. ▪

Proof of Theorem 3.2. Consider a vector of cell counts n = {n1,…, nll}, and the log-linear model
log(m) ¼ Xlll. Then, from Agresti [2], asymptotically:

Var(l̂) ≃ [I (l̂)]�1 ¼ [X`
ll V(l̂)Xll]

�1:

After rearranging the rows and columns of Xll, consider the log-linear model with linear predictor Xrllλr,
for cell counts nr, where nr is n rearranged to correspond to Xrll. Now

Var(l̂r) ≃ [I (l̂r)]
�1 ¼ [X`

rllV(l̂r)Xrll]
�1 ¼ [X`

rll(V(l̂r))Xrll]
�1

¼ V1V2 0
0 V2

� �1=2 X�
lt Xll�lt

0 Xll�lt

� � !`"

� V1V2 0
0 V2

� �1=2 X�
lt Xll�lt

0 Xll�lt

� �#�1

:

V1 denotes a diagonal matrix with non-zero elements exp(X�
lt(i)(Trl̂r)), i = 1,…, nll/2. V2 denotes a

diagonal matrix with non-zero elements exp(Xll�lt(i)l̂ll�lt), i = 1,…, nll/2, where l̂ll�lt denotes the MLE
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for lrnTrlr. Now,

Var(l̂r) ≃ X�`
lt A12X�

lt X�`
lt A12Xll�lt

X`
ll�ltA12X�

lt X`
ll�lt(A12 þ A2)Xll�lt

� ��1

,

where A12 ¼ V1V2 and A2 ¼ V2. From Lutkepohl [10, p. 147, result 2(a)], and Lutkepohl [10, p. 29, line 6],
the submatrix H that is formed by the first nβ rows and columns of Var(l̂r) is

H ¼ [X�`
lt A12X�

lt � X�`
lt A12Xll�lt(X`

ll�lt(A12 þ A2)Xll�lt)
�1X`

ll�ltA12X�
lt]

�1

¼ [X�`
lt A12X�

lt � X�`
lt A12Xll�ltX�1

ll�lt(A12 þ A2)
�1(X`

ll�lt)
�1X`

ll�ltA12X�
lt]

�1

¼ [X�`
lt A12X�

lt � X�`
lt A12(A12 þ A2)

�1A12X�
lt]

�1

¼ [X�`
lt (A12 � A12(A12 þ A2)

�1A12)X�
lt]

�1

¼ [X�`
lt (A12 � A12(A12(I þ A�1

12 A2))
�1A12)X�

lt]
�1

¼ [X�`
lt (A12 � A12(I þ A�1

12 A2)
�1)X�

lt]
�1:

Thus,

H ¼ [X�`
lt (V1V2 � V1V2(I þ V�1

1 V�1
2 V2)

�1)X�
lt]

�1

¼ [X�`
lt (V1V2 � V2

1V2(I þ V1)
�1)X�

lt]
�1

¼ [X�`
lt [(V1V2(I þ V1)� V2

1V2)(I þ V1)
�1]X�

lt]
�1

¼ [X�`
lt (V1V2(I þ V1)

�1)X�
lt]

�1:

All factors in Pn{Y} are present in the logistic regression, or no collapsing of cells. Assume cell counts are not
collapsed (by choice or when q = 1), so that nlt = nll/2 and Xlt

�
=Xlt. We now use the standard result (e.g. [11,

(p. 200)]) that, asymptotically, the Binomial distribution Bin (ti, (exp(Xlt(i)(Trlr)))=(1þ exp(Xlt(i)(Trlr)))) of
a data point ti yi, i = 1,…, nlt, can be approximated by Poisson (ti(exp(Xlt(i)(Trlr)))=(1þ exp(Xlt(i)(Trlr)))).
Considering the Poisson log-linear model, the Binomial observation ti− ti × yi follows the Poisson
distribution:

Poisson (exp(Xll�lt(i)l̂ll�lt)):

Therefore, approximately,

ti
1

1þ exp(Xlt(i)(Trl̂r))
≃ exp(Xll�lt(i)l̂ll�lt):

In matrix notation, we can now write that, asymptotically,

Var(Trl̂r) ¼ Tr(Var(l̂r))T`
r

¼ I 0ð Þ(Var(l̂r))
I
0

� �

¼ (X`
lt VlogisticXlt)

�1,

where Vlogistic has diagonal elements tiexp{Xlt(i)b̂}exp{1þ Xlt(i)b̂}
�2, i = 1,…, nlt. (X`

lt VlogisticXlt)
�1 is,

asymptotically, the variance of b̂ when the logistic regression is fitted directly, and this completes the
proof when no collapsing of cell counts takes place.

Factors not present in the logistic regression, with collapsing of cells. When one chooses to collapse the
counts in the contingency table cells that are only discriminated by the obsolete variables x.2,…, x.q,

H ¼ [X`
lt (V1,reduced(I þ V1,reduced)

�1)][V2,1 þ V2,2 þ � � � þ V2,(j1�1)�j2�����jq ]Xlt]
�1,

where V1,reduced denotes a diagonal matrix with non-zero elements exp(Xlt(i)(Trl̂r)), i = 1,…, nlt. V2,k,
k = 1,…, J2 × · · · × Jq, denotes a diagonal matrix with elements exp(Xll�lt(nlt (k�1)þi)l̂ll�lt). Similar to the
previous case, we use the standard result that, asymptotically, the Binomial distribution
Bin (ti, (exp(X�

lt(i)(Trlr)))=(1þ exp(X�
lt(i)(Trlr)))) of a data point ti yi, i = 1,…, nlt, can be approximated

by Poisson (ti(exp(X�
lt(i)(Trlr)))=(1þ exp(X�

lt(i)(Trlr)))). When cell counts are collapsed, the Binomial
observation ti− ti × yi is formed by adding J2 × · · · × Jq independent Poisson cell counts. Considering
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the Poisson log-linear model, ti− ti yi follows the Poisson distribution:

Poisson (exp(Xll�lt(i)l̂ll�lt)þ � � � þ exp(Xll�lt(nlt (J2�����Jq�1)þi)l̂ll�lt)):

Therefore, approximately

ti
1

1þ exp(Xlt(i)(Trl̂r))

≃ exp(Xll�lt(i)l̂ll�lt)þ � � � þ exp(Xll�lt(nlt (J2�����Jq�1)þi)l̂ll�lt):

In matrix notation, we can now write that, asymptotically

Var(Trl̂r) ¼ Tr(Var(l̂r))T`
r

¼ I 0ð Þ(Var(l̂r))
I
0

� �

≃ [X`
lt (tV1,reduced(I þ V1,reduced)

�2)Xlt]
�1

¼ (X`
lt VlogisticXlt)

�1,

where t is a diagonal matrix with diagonal elements the number of trials ti, and Vlogistic has diagonal
elements tiexp{Xlt(i)b̂}exp{1þ Xlt(i)b̂}

�2, i = 1,…, nlt. (X`
lt VlogisticXlt)

�1 is, asymptotically, the variance of
b̂ when the logistic regression is fitted directly, and this completes the proof. ▪

Proof of Theorem 3.3. Assume that no cell observations are collapsed when one or more factors in
Pn{Y} are not present in the logistic regression. From (2.2),

D(p̂, y)

¼ 2
X
j2,...,jP

n1,j2,...,jP log
n1,j2,...,jP

n0,j2,...,jP þ n1,j2,...,jP
� exp(Xlt(j2,...,jP)b̂)

1þ exp(Xlt(j2,...,jP)b̂)

 !�1
0
@

1
A

þ 2
X
j2,...,jP

n0,j2,...,jP log
n0,j2,...,jP

n0,j2,...,jP þ n1,j2,...,jP
� 1

1þ exp(Xlt(j2,...,jP)b̂)

 !�1
0
@

1
A:

This, in turn, is equal to

2
X
j2,...,jP

n1,j2,...,jP log(n1,j2,...,jP )þ 2
X
j2,...,jP

n0,j2,...,jP log(n0,j2,...,jP ) (A2)

� 2
X
j2,...,jP

n1,j2,...,jP log(exp(Xlt(j2,...,jP)b̂)) (A3)

and � 2
X
j2,...,jP

(n0,j2,...,jP þ n1,j2,...,jP )log
n0,j2,...,jP þ n1,j2,...,jP
1þ exp(Xlt(j2,...,jP)b̂)

 !
: (A4)

For the log-linear model, from (2.1),

D(m̂, n) ¼ 2
Xnll
i¼1

nilog
ni
m̂i

� �

¼ 2
X
j2,...,jP

n0,j2,...,jP log
n0,j2,...,jP
m̂0,j2,...,jP

 !
þ 2

X
j2,...,jP

n1,j2,...,jP log
n1,j2,...,jP
m̂1,j2,...,jP

 !

¼ 2
X
j2,...,jP

n0,j2,...,jP log
n0,j2,...,jP

exp(Xll(0,j2,...,jP)l̂)

 !

þ 2
X
j2,...,jP

n1,j2,...,jP log
n1,j2,...,jP

exp(Xll(1,j2,...,jP)l̂)

 !
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This, in turn, is equal to

2
X
j2,...,jP

n0,j2,...,jP log(n0,j2,...,jP )þ 2
X
j2,...,jP

n1,j2,...,jP log(n1,j2,...,jP ) (A5)

� 2
X
j2,...,jP

n1,j2,...,jP (Xrll(1,j2,...,jP)[1 : nb]l̂r[1 : nb]) (A6)

� 2
X
j2,...,jP

n0,j2,...,jPXrll(0,j2,...,jP)[nb þ 1 : nl]l̂r[nb þ 1 : nl] (A7)

and � 2
X
j2,...,jP

n1,j2,...,jPXrll(1,j2,...,jP)[nb þ 1 : nl]l̂r[nb þ 1 : nl]: (A8)

Now, (A2)=(A5) by inspection. Furthermore, from theorem 3.2, b̂ ¼ l̂r[1 : nb]. As,

Xrll(1,j2,...,jP)[1 : nb]l̂r[1 : nb] ¼ Xlt(j2,...,jP)b̂,

we have that (A3)=(A6). Finally, from Lemma 3.1,

n0,j2,...,jP þ n1,j2,...,jP ¼ m̂0,j2,...,jP þ m̂1,j2,...,jP :

Also,

1þ exp(Xlt(j2,...,jP)b̂) ¼
1

p̂0,j2,...,jP
:

Then,

(A 4) ¼ �2
X
j2,...,jP

n1,j2,...,jP log
m̂0,j2,...,jP þ m̂1,j2,...,jP

1= p̂0,j2,...,jP

 !

� 2
X
j2,...,jP

n0,j2,...,jP log
m̂0,j2,...,jP þ m̂1,j2,...,jP

1= p̂0,j2,...,jP

 !

¼ �2
X
j2,...,jP

n1,j2,...,jP log(m̂0,j2,...,jP )� 2
X
j2,...,jP

n0,j2,...,jP log(m̂0,j2,...,jP ) ¼ (A7)þ (A8):

This completes the proof of theorem 3.4. ▪
Data analysed in §4. The dataset for log-linear model (M2) is given by vector

n ¼ (44, 40, 112, 67, 129, 145, 12, 23, 35, 12, 80, 33, 109, 67, 7, 9, 23, 32, 70, 66, 50,

80, 7, 13, 24, 25, 73, 57, 51, 63, 7, 16, 5, 7, 21, 9, 9, 17, 1, 4, 4, 3, 11, 8, 14, 17, 5, 2, 7,

3, 14, 14, 9, 16, 2, 3, 4, 0, 13, 11, 5, 14, 4, 4):

The dataset for the logistic regression (M3) is

t ¼ (84, 179, 274, 35, 47, 113, 176, 16, 55, 136, 130, 20, 49, 130, 114, 23, 12, 30, 26,

5, 7, 19, 31, 7, 10, 28, 25, 5, 4, 24, 19, 8),

y ¼ 40
84

,
67
179

,
145
274

,
23
35

,
12
47

,
33
113

,
67
176

,
9
16

,
32
55

,
66
136

,
�
80
130

,
13
20

,
25
49

,
57
130

,
63
114

,
16
23

,
7
12

,
9
30

,
17
26

,
4
5
,
3
7
,
8
19

,

17
31

,
2
7
,
3
10

,
14
28

,
16
25

,
3
5
,
0
4
,
11
24

,
14
19

,
4
8

�
:

The dataset for (M4) is,

t ¼ (305, 340, 186, 230, 229, 180, 207, 164)

and

y ¼ 123
305

,
189
340

,
56
186

,
95
230

,
115
229

,
112
180

,
93
207

,
97
164

� �
:
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