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Convective stability of global thermodynamic equilibrium
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We apply the convection stability criterion to a fluid in global thermodynamic equilibrium with a rigid rotation
or with a constant acceleration along the streamlines. Different equations of state describing strongly interacting
matter are considered, and for each of them the analyzed system is found to be stable with respect to convection.
This finding brings new evidence for physical relevance of nonstatic global equilibrium states. Our results can
be directly used for other similar media to check their convective stability.
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Introduction. Convection is a common physical phe-
nomenon taking place in fluids, i.e., gases and liquids [1]. We
encounter it in Earth’s atmosphere and oceans as well as in
convective zones of stars where it is responsible for a very
efficient transport of matter and energy from the central hot
parts to the outer cooler layers.

If the entropy per particle decreases with increasing alti-
tude in Earth’s atmosphere, the latter becomes convectively
unstable [2]. In a hydrodynamic evolution with the gravity
effects neglected, the particles in an accelerated fluid element
experience an inertial force in the direction opposite to the
acceleration. This situation is analogous to that of a gas in a
gravitational field, hence, the hydrodynamic flow may become
convectively unstable. This idea was put forward in Ref. [3]
and worked out in Ref. [4]. The convective stability condition
derived therein involves a combination of thermodynamic and
hydrodynamic variables that characterize locally the fluid.
Usually, a full space-time dynamics of the system as well as
its equation of state, should be known to apply this criterion.

In this Rapid Communication we analyze the problem of
convective stability of a relativistic fluid in global thermo-
dynamic equilibrium (GTE) with a rigid rotation or with a
constant local acceleration along the streamlines. Throughout
the text we neglect the effects of gravity. The GTE with
rotation has brought a lot of attention in the past years as in
most cases the rigid rotation implies the spin polarization of
particles forming the fluid (due to the spin-orbit interaction).
Such a polarization-vorticity coupling forms nowadays the
basis for explanation of the heavy-ion data showing nonzero
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global polarization of the � hyperons [5–8]. The GTE with
acceleration1 has become also interesting lately [9,10] be-
cause of its relation to the Unruh effect [11].

Nonstatic global equilibria with rotation and acceleration
are interesting per se as they represent exact solutions of the
relativistic Boltzmann equation [12] and can be obtained from
the requirement of stationarity of the statistical operator in
the Zubarev formalism [13,14]. Therefore, the question of
convective stability of such configurations is of fundamental
importance.

Global thermodynamic equilibrium. GTE is defined by the
four-vector βμ satisfying the Killing equation, ∂μβν + ∂νβμ =
0 and by a constant ratio of the chemical potential μ to the
temperature T , μ/T = const.2 The field βμ is interpreted as
the ratio of the flow four-vector uμ and local temperature T ,
namely, βμ = uμ/T . The solution of the Killing equation (in
the flat space-time) is

βμ = bμ + ωμγ xγ , (1)

where bμ is a constant four-vector and ωμγ is an antisymmet-
ric tensor with constant coefficients. Below we consider two
special cases for bμ and ωμγ .

GTE with rotation. In the first case (GTE with rotation) we
assume that b0 �= 0, bi = 0, ω0i = −ωi0 = 0, and the only
nonzero components of the tensor ωij are ω12 and ω21, with
ω12 = −ω21 = ω b0 > 0. This choice corresponds to a rigid
rotation around the z axis. In this case, the four-velocity field
has the following structure:

u0 = γ, u1 = −γωy, u2 = γωx, u3 = 0,
(2)

1Although in the GTE with rotation we deal with centripetal
acceleration, by the GTE with acceleration we mean here only the
case with a constant local acceleration of fluid elements along the
streamlines.

2We use natural units with c = h̄ = kB = 1 with the metric tensor
gμν = diag(1, −1, −1, −1). The space-time coordinates are xμ =
(x0, xi ) = (t, x, y, z).
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where γ = 1/
√

1 − ω2r2 is the Lorentz factor and r =√
x2 + y2 is the distance from the rotation axis.
The GTE conditions for T and μ give

T = T0γ, μ = μ0γ, (3)

where T0 = 1/b0 and μ0 are constants. Equations (3) are the
special case of the Tolman-Klein conditions for thermody-
namic equilibrium of fluids in gravitational fields [15,16], see
also [17,18].

From Eq. (3) we conclude that T and μ grow with a
distance from the center. Since they cannot grow to infinity,
the flow profile (2) may be realized only within a cylinder with
the radius rmax < 1/ω. For a rigid rotation defined above, the
four-acceleration has the form [19]

aμ = uν∂νu
μ = −γ 2ω2(0, x, y, 0). (4)

GTE with acceleration. In the second case (GTE with acceler-
ation) we choose bμ = 0, ωij = 0, and the only nonvanishing
components of the tensor ωμν are ω03 and ω30 with ω03 =
−ω30 > 0. The form of the four-velocity flow in this case is3

uμ = (z/τ, 0, 0, t/τ ), (5)

where τ = √
z2 − t2 (note a reversed role played by t and z

components compared to the seminal Bjorken model). The
four-acceleration is given by the expression,

aμ = 1

τ 2
(t, 0, 0, z). (6)

The motion of the fluid described by Eqs. (5) and (6) takes
place in the region where z2 − t2 > 0. The fluid elements
move along the hyperbolas z2 − t2 = 1/A2 with A being a
constant local acceleration,

xμ = 1

A
[sinh(Aλ), 0, 0, cosh(Aλ)]. (7)

Here λ is the proper time, uμ = dxμ/dλ and aμ = duμ/dλ.
The global-equilibrium conditions for T and μ in this case are
[20] as follows:

T = T0
τ0

τ
, μ = μ0

τ0

τ
, (8)

where T0, μ0, and τ0 are constants satisfying the condition
T0τ0 ω03 = 1. Note that this implies ω03 > 0 as we have
assumed above. Note also that constants appearing in (3) and
(8) are not related.

Condition for convection stability. In Ref. [4] the following
condition for the convection stability of the fluid was derived

�2 = − 1

w

(
∂w

∂σ

)
P

aμ∂μσ > 0. (9)

Here w = ε + P is the enthalpy density, where ε is the energy
density and P is the pressure, and σ is the entropy per baryon
(since we consider relativistic systems, in what follows we
identify μ with the baryon chemical potential). If the system

3Other possible forms of the flow in global equilibrium with
acceleration correspond to a translation of the tz-coordinate system,
see Ref. [20].

is stable, it has small oscillations with frequency �. If the
stability condition (9) is not satisfied, � becomes imaginary,
and the instability timescale is given by |�|−1.

Using the thermodynamic identity (∂w/∂σ )P =
(T/cP )(∂ε/∂T )P , where cP is the specific heat at constant
pressure and the fact the specific heat is positive,4 we can
rewrite the stability condition as(

∂ε

∂T

)
P

aμ∂μσ < 0. (10)

If in the local rest frame the acceleration is directed along the
z axis a = (dv/dt ) ẑ, Eq. (10) is reduced to(

∂ε

∂T

)
P

dv

dt

dσ

dz
< 0. (11)

According to the equivalence principle, this situation corre-
sponds to the case where the fluid is placed in the gravi-
tational field with the gravitational acceleration � = −� ẑ =
−(dv/dt ) ẑ. In this way we obtain the formula that can be
applied as the stability criterion of Earth’s atmosphere [4],

�

(
∂ε

∂T

)
P

dσ

dz
< 0. (12)

For a nonrelativistic system where the energy density ε is
dominated by the mass density ρ, the condition (12) is reduced
to that given in Ref. [2]. We note that the derivative (∂ρ/∂T )P
is negative for matter that expands when heated at constant
pressure, hence, (12) implies that the atmosphere is stable if
the entropy per particle increases with increasing altitude.

Let us come back to the discussion of the GTE. In this case
the fluid’s acceleration as well as its temperature and chemical
potential are known, hence, the convection stability condition
can be directly applied. Using Eqs. (3) and (4) or (6) and (8)
we can rewrite the condition (9) in the form

�2 = ακconv(T ,μ) > 0, (13)

where α = T0ω
4 r2/(1 − ω2r2)5/2 > 0 for the case with ro-

tation and α = T0τ0/τ
3 > 0 for the case with acceleration.

Consequently, the convective stability of both the GTE with
rotation and the GTE with acceleration is defined by the same
thermodynamic coefficient,

κconv(T ,μ) = 1

w

(
∂w

∂σ

)
P

(
∂σ

∂T
+ μ

T

∂σ

∂μ

)
. (14)

The coefficient κconv is determined completely by the equation
of state.

For conformal systems the trace of the energy-momentum
tensor vanishes, hence ε = 3P and (∂w/∂σ )P =
(∂ε/∂σ )P = 0. This means that conformal systems are
in neutral equilibrium with respect to convection. Therefore,
to study nontrivial effects we have to consider nonconformal
systems.

4The specific-heat cP is defined here as T (∂σ/∂T )P with σ being
the entropy per baryon. One expects that this quantity is positive for
systems with positive baryon number. We check this property for
each equation of state considered in this Rapid Communication and
find that it is fulfilled.
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FIG. 1. The coefficient κconv(T , μ) obtained for the equation of
state (15) with m = 150 MeV.

Analysis of convection stability for strongly interacting
matter. In QCD the conformal symmetry is broken by the
finite quark masses and renormalization scale. In order to
analyze the impact of these two effects, we study initially
(following Ref. [4]) two simple models inspired by the weakly
interacting quark-gluon plasma (QGP): In the first case we
consider QGP with two massless and one massive quarks,
whereas in the second case we consider an interacting QGP
with two massless quarks [21]. The corresponding equations
of state are defined by the following expressions for pressure:

Pm(T ,μ) = 37

90
π2T 4 + 1

9
μ2T 2 + μ4

162π2

+ 2

π2
T 2m2 cosh

( μ

3T

)
K2

(m

T

)
, (15)

P�(T ,μ) = 37

90
π2

(
1 − 110αc

37π

)
T 4

+
(

1 − 2αc

π

)(
1

9
μ2T 2 + μ4

162π2

)
. (16)

In Eq. (15) m is the quark mass, and K2 is the modified Bessel
function. Below we use the value m = 150 MeV to mimic the
presence of the strange quark. In Eq. (16) αc is the running
coupling constant αc = 6π/[29 ln(T/�)] with � being the
renormalization scale [21]. In the numerical calculations we
use � = 150 MeV.

In Figs. 1 and 2 we show the coefficients κconv(T ,μ) ob-
tained for the equations of state (15) and (16), respectively, in
the range of 0.6 GeV � T � 1 GeV and 0 � μ � 0.5 GeV.
Although these two equations of state break conformal sym-
metry in a different way, we observe that κconv is positive
in both cases. The calculated values of κconv are very small
κconv ∼ 10−7 − 10−6 GeV−1, however, the smallness of κconv

may be compensated by the factors α in Eq. (13)—we note
that α’s diverge at the system’s boundaries. In any case,
we find that the fluids described by Eqs. (15) and (16) are
convectively stable.

Studying the systems described by Eqs. (15) and (16)
we have found that they differ by the sign of the derivative
(∂ε/∂T )P . Despite this difference, the coefficient κconv(T ,μ)

FIG. 2. The coefficient κconv(T , μ) obtained for the equation of
state (16) with � = 150 MeV.

turns out to be positive in the two cases. This suggests that
κconv may be positive for a very broad class of equations
of state. As it is difficult to deliver a general proof of this
property, one can check that it holds indeed for small values
of the baryon chemical potential. In this case the pressure can
be written in the form

P (T ,μ) = P0(T ) + 1
2χB (T )μ2, (17)

where χB (T ) = (∂n/∂μ)T > 0 is the baryon number suscep-
tibility and P0(T ) is the system’s pressure for μ = 0. A direct
calculation of the coefficient κconv(T ,μ), up to quadratic
terms in μ, gives the expression,

κconv(T ,μ) = [T χBP ′′
0 − P ′

0(χB + T χ ′
B )]2μ2

T 2χBP
′3
0

. (18)

Here the prime denotes the derivative with respect to T , for
example, P ′

0 = dP0/dT . Since P ′
0 > 0 we find that κconv > 0.

Another simple equation of state that can be analyzed
analytically has the form

P (T ,μ) = eμ/T m2T 2K2

(m

T

)
. (19)

Equation (19) describes classical particles with the mass m
(we ignore here all irrelevant constants). One can check that
the κconv coefficient is independent of μ in this case and can
be written in the form κconv = f (x)/T , where x = m

T
and the

function f is a combination of the Bessel functions that is
positive. Note that f (x) ≈ 2x

5 for x → ∞ and f (x) ≈ x4

16 for
x → 0.

The two schematic equations of state discussed earlier
may be valid at very high temperatures. In order to analyze
realistic equations of state we consider now the ideal hadron
gas (HG) model with the input defined by the SHARE code
[22].5 In the latter approach, all well established hadronic

5For T < 200 MeV this model of the hadron gas agrees well with
other equations of state used for description of heavy-ion collisions,
for example, see Ref. [23].
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FIG. 3. The coefficient κconv(T , μ) obtained for the HG equation
of state with the input from SHARE [22].

resonances are included. In the calculation of the thermody-
namic properties we neglect the hadron widths and excluded-
volume corrections. The coefficient κconv(T ,μ) for the hadron
gas is shown in Fig. 3 in the range of 0 � T � 0.15 and
0 � μ � 0.45 GeV. We observe again that it is positive,
indicating the convective stability of the hadron gas in global
equilibrium.

As yet another equation of state we use the result of
Refs. [24,25] which gives the three-loop thermodynamic
potential of QCD using the hard-thermal-loop perturbation
theory reorganization of the finite temperature and density
QCD. This equation of state leads to a very good agreement
with all the available lattice data for temperatures above 300
MeV. The corresponding κconv coefficient as shown in Fig. 4
is positive, however, for certain regions of T and μ several

FIG. 4. The coefficient κconv(T , μ) obtained for the equation of
state derived in Ref. [24].

orders of magnitude larger than the values obtained from the
simplified equations of state (15) and (16).

Conclusions and outlook. We close our considerations
with the statement that global thermodynamic equilibrium
with rotation or acceleration is convectively stable for several
phenomenologically relevant equations of state of strongly
interacting matter. Therefore, our present results support the
validity of the concept of nonstatic equilibria. Certainly, in
the future it would be interesting to explore other equations
of state that describe matter at large values of the baryon
chemical potential. This could become a topic of a similar
analysis of convection if more reliable information about the
phase diagram at finite T and μ is available.
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