Cameron Stewart

Pb-66.1

Problem Statement:

(i) Verify that the polynomial in (1) on 66-2 is a Laguerre polynomial, except for a minus sign.
(ii) Find the expressions of $P_{N}(u)$ for various values of N, and compare them to a table of Laguerre polynomials.
(iii) Plot the associated Laguerre polynomials for $n=3$, and $\alpha=0,-1,-2,-3,-4$.

Solution:

i.)

The given equation is:

$$
\begin{equation*}
P_{N}(u)=u+\sum_{n=2}^{N}(-1)^{n-1} \frac{(N-1)(N-2) \ldots(N-n+1)}{n!(n-1)!} u^{n}, N \geq 2 \tag{Eq.1}
\end{equation*}
$$

Which is a solution to the associated Laguerre differential equation:

$$
\left.x y^{\prime \prime}+(\alpha+1-x) y^{\prime}+N y=0 \quad \text { (Eq. } 2\right)
$$

(In this case: $\alpha=-1$)
(Source: https://docs.google.com/file/d/OB9xP2cHngVLiT2o5NGN6LXdtcjA/edit?pli=1)

Some nomenclature is needed:
The term: $(N-1)(N-2) \ldots(N-n+1)$ can be expressed by a pochammer symbol for the falling factorial. The equation below describes this notation.

$$
\begin{equation*}
(\mathrm{N})_{\mathrm{n}}=N(N-1)(N-2) \ldots(N-n+1) \tag{Eq.3}
\end{equation*}
$$

(Source: https://en.wikipedia.org/wiki/Pochhammer symbol)
This can be related to a binomial coefficient by:

$$
\begin{equation*}
\frac{(N)_{n}}{n!}=\binom{N}{n} \tag{Eq.4}
\end{equation*}
$$

(Source: https://en.wikipedia.org/wiki/Pochhammer symbol)
Which has the explicit form:

$$
\binom{N}{n}=\left\{\begin{array}{cc}
\frac{N!}{n!(N-n)!} & \text { for } 0 \leq n \leq N \tag{Eq.5}\\
0 & \text { otherwise }
\end{array}\right.
$$

(Source: http://mathworld.wolfram.com/BinomialCoefficient.html)

Cameron Stewart

If (Eq.4) is substituted into (Eq. 1):

$$
\begin{equation*}
P_{N}(u)=u+\sum_{n=2}^{N}\binom{N}{n} \frac{(-1)^{n-1}}{N(n-1)!} u^{n} \tag{Eq.6}
\end{equation*}
$$

Plugging (Eq.5) into (Eq.6):

$$
\begin{equation*}
P_{N}(u)=u+\sum_{n=2}^{N}\binom{N}{n} \frac{(N-1)!(-1)^{n-1}}{n!(N-n)!(n-1)!} u^{n} \tag{Eq.7}
\end{equation*}
$$

The closed form expression for the associated Laguerre polynomial where $\alpha=-1$ is:

$$
\left.L_{N}^{-1}(u)=\sum_{n=0}^{N}\binom{N-1}{N-n} \frac{(-1)^{n}}{n!} u^{n} \quad \text { Eq. } 8\right)
$$

(Source: http://mathworld.wolfram.com/AssociatedLaguerrePolynomial.html)

Expanding the binomial according to (Eq.5):

$$
\binom{N-1}{N-n}=\left\{\begin{array}{cl}
\frac{(N-1)!}{(N-n)!(n-1)!} & \text { for } 0 \leq N-n \leq N-1 \tag{Eq.9}\\
0 & \text { otherwise }
\end{array}\right.
$$

Plugging (Eq.9) into (Eq.8):

$$
\begin{equation*}
L_{N}^{-1}(u)=\sum_{n=1}^{N} \frac{(N-1)!}{(N-n)!(n-1)!} \frac{(-1)^{n}}{n!} u^{n} \tag{Eq.10}
\end{equation*}
$$

And taking the term for $\mathrm{n}=1$ outside of the sum:

$$
\begin{equation*}
L_{N}^{-1}(u)=-u+\sum_{n=2}^{N} \frac{(N-1)!}{(N-n)!(n-1)!} \frac{(-1)^{n}}{n!} u^{n} \tag{Eq.11}
\end{equation*}
$$

Multiplying (Eq.7) by -1:

$$
\begin{equation*}
-P_{N}(u)=-u+\sum_{n=2}^{N}\binom{N}{n} \frac{(N-1)!(-1)^{n}}{n!(N-n)!(n-1)!} u^{n} \tag{Eq.12}
\end{equation*}
$$

(Eq.11) and (Eq.12) are the same expression, therefore the given polynomial (Eq.1) differs from an associated Laguerre polynomial by a factor of -1 .

