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The time-scales theory provides a powerful theoretical
tool for studying differential and difference equations
simultaneously. With regard to Herglotz type variational
principle, this generalized variational principle can deal with
non-conservative or dissipative problems. Combining the two
tools, this paper aims to study time-scales Herglotz type
Noether theorem for delta derivatives of Birkhoffian systems.
We introduce the time-scales Herglotz type variational problem
of Birkhoffian systems firstly and give the form of time-scales
Pfaff–Herglotz action for delta derivatives. Then, time-scales
Herglotz type Birkhoff’s equations for delta derivatives are
derived by calculating the variation of the action. Furthermore,
time-scales Herglotz type Noether symmetry for delta
derivatives of Birkhoffian systems are defined. According to
this definition, time-scales Herglotz type Noether identity and
Noether theorem for delta derivatives of Birkhoffian systems
are proposed and proved, which can become the ones for delta
derivatives of Hamiltonian systems or Lagrangian systems in
some special cases. Therefore, it is shown that the results of
Birkhoffian formalism are more universal than Hamiltonian
or Lagrangian formalism. Finally, the time-scales damped
oscillator and a non-Hamiltonian Birkhoffian system are given
to exemplify the superiority of the results.
1. Introduction
In 1988, Hilger proposed the definition of a time scale T, which is
an arbitrary non-empty closed subset of the real numbers R, in
order to analyse continuous and discrete systems uniformly [1].
For instance, if we choose a continuous time scale, i.e. T ¼ R,
this time-scale calculus is the same as the calculus of the
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classical continuous system; if T ¼ Z, the calculus is changed to that of the discrete system with step size

μ = 1; if T ¼ qN0 (q . 1), this calculus can solve the problems of quantum systems. Therefore, compared
with a single scale, more general results can be obtained based on different time scales. Moreover, the
physical essence of those systems can be depicted more accurately by using the time scales theory.
The time-scales dynamic equations can provide mathematical models for some processes dependent
on continuous-time variables, discrete-time variables and piecewise continuous-time variables, such as
the logistic model in biology and the cobweb model in economics [1,2]. Thus it can be seen that the
time-scales theory has important theoretical significance and extensive application prospect in various
fields [3–6]. Bartosiewicz & Torres [7] found the Noether conserved quantity for delta derivatives
based on the time-scales calculus of variation in 2008. It is well known that Noether theorem reveals
that conservation quantities of mechanics are directly related to the invariance of actions under
infinitesimal transformations. Time-scales Noether theorems are proved not only for delta derivatives,
but for nabla derivatives by Martins & Torres [8] in 2010. After that, Malinowska & Martins [9] put
forward the second time-scales Noether theorem for delta derivatives in 2013. In the same year, time-
scales Noether theorem for delta derivatives of non-conservative non-holonomic systems was studied
by Cai et al. [10]. Then, the study of time-scales symmetries and conservation quantities was extended
to Birkhoffian systems [11] and Hamiltonian systems [12–14].

In the majority of above articles, their variational principles are the classical extremum principles, for
example, the famous Hamilton principle, whose action is defined by an integral. However, in general,
the Hamilton principle of non-conservative systems is an instability action principle, because the
absence of a functional makes its variation equal to zero [15]. Whereas, Herglotz type variational
principle can deal with this problem to give the variational description for non-conservative systems by
the action functional defined by a differential equation [16]. Based on the Herglotz variational problem,
Lagrangians and Hamiltonians with physical meaning can be established for non-conservative systems.
Lazo et al. obtained the generalized Einstein’s field equations for a non-conservative gravity by using
the Lagrangian of Herglotz type and applied them to cosmology and gravitational waves [17]. In
addition, they constructed Lagrangians of Herglotz type with physical meaning, such as vibrating string
under viscous forces, non-conservative electromagnetic theory, non-conservative Schrödinger equation
and Klein–Gordon equation, to describe non-conservative systems and quantum systems [18].
Moreover, when these functions do not depend on the action functional, Herglotz variational principle
can be reduced to the classical integral variational principle, which can deal with conservative
problems. Since Herglotz type variational principle provides a new method for studying non-
conservative systems, Herglotz type Noether theorems of mechanical systems have been investigated in
recent decades, including non-conservative Lagrangian systems [19,20], non-conservative Hamiltonian
systems [21], Birkhoffian systems [15,22], non-conservative non-holonomic systems [23] and other
complex systems [24–31]. But so far, time-scales Herglotz variational principle is rarely studied, and the
results are limited to Lagrangian formalism [32,33] and Hamiltonian formalism [34].

In 1927, Birkhoff, Poincare’s successor, proposed a new type of integral variational principle and a new set
of differential equations ofmotion [35]. The new variational principlewas named as Pfaff–Brikhoff principle,
and the new equations were called Birkhoff’s equations by Santilli [36]. And a mechanical system that
describes motion or a physical system that describes state with Birkhoff’s equations was called a
Birkhoffian system, so Birkhoffian mechanics was born. The new mechanics has a number of nice
properties. For example, Birkhoff’s equations are not only self-adjoint but also autonomous, and semi-
autonomous Birkhoffian systems have Lie algebraic structures and exact symplectic forms [37]. Thus,
Birkhoffian mechanics has developed rapidly and has wide applications in many fields, for instance,
hadron physics, statistical mechanics, engineering mechanics and biophysics [36]. Another thing to notice
is that a Birkhoffian system is a more extensive mechanical system, which can be applicable to the
Lagrangian system, Hamiltonian system, holonomic system and non-holonomic system [38].

The pervasiveness of Birkhoffian system motivates us to study time-scales Herglotz variational
principle of Birkhoffian systems and its Noether theorem. As we know, all conserved quantities in
mechanics are directly related to the invariance of action under a series of infinitesimal transformations,
such as energy conservation, momentum conservation and conservation of moment of momentum. The
time-scales Herglotz type Noether theorem of Birkhoffian systems has important practical applications
for conservative and non-conservative processes in continuous and discrete cases, for example, finding a
new solution from a known one, reducing equations, testing computer code and so on. The outline of
this paper is as follows. In §2, the time-scales preliminaries of delta derivatives and exponential
functions are recalled. Section 3 is our main results: firstly, we introduce the time-scales Herglotz
variational problem for delta derivatives of Birkhoffian systems; secondly, the time-scales Herglotz type
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Birkhoff’s equations for delta derivatives are deduced; then, the time-scales Herglotz typeNoether identity

and theorem for delta derivatives of Birkhoffian systems are formulated. In §4, the results of Hamiltonian
systems and Lagrangian systems are listed to account for the relationship of Hamiltonian, Lagrangian and
Birkhoffian systems. Section 5 gives the time-scales damped oscillator of Birkhoffian system and a non-
Hamiltonian system as examples. Finally, we offer some conclusions in §6.
publishing.org/journal/rsos
R.Soc.open

sci.6:191248
2. Time-scales preliminaries
A time scale T is an arbitrary non-empty closed subset of the set R of real numbers. Let T be a time scale, for
t [ T, the forward jump operator s : T ! T is defined by s(t) ¼ inf {s [ T : s . t} and s(supT) ¼ supT,
if supT [ T; the backward jump operator r :T ! T is defined by r(t) ¼ sup {s [ T : s , t} and
r(infT) ¼ infT, if infT [ T. If σ(t) > 0, σ(t) = 0, ρ(t) > 0, or ρ(t) = 0, then t is called right-scattered, right-
dense, left-scattered and left-dense, respectively. The graininess function m : T ! R is defined by μ(t) = σ(t)− t,
μ(t)≥ 0. For delta derivative, the set Tk is defined by Tk ¼ Tn(r(supT), supT] if supT , 1, and Tk ¼ T if
supT ¼ 1. If f : T ! R is a function, then fs : T ! R is defined by fs(t) ¼ f(s(t)) for all t [ T, i.e. fs ¼ f � s.

Definition 2.1. Assume f : T ! R is a function and t [ Tk. fD(t) is called the delta derivative of f at t
if for any given ɛ > 0, there is a neighbourhood U of t (i.e. U ¼ (t� d, tþ d)> T) such that

j f(s(t))� f(s)� fD(t)(s(t)� s)j � 1js(t)� sj for all s [ U:

Generally, we can denote fD(t) by (Δ/Δt)f (t). And we call f delta differentiable on Tk if fD(t) exists for
all t [ Tk. Note that if T ¼ R, for any t [ R, then σ(t) = ρ(t) = t, μ(t)≡ 0 and fD(t) ¼ f 0(t). And if T ¼ Z, for
each t [ Z, then σ(t) = t + 1, μ(t)≡ 1 and fD(t) ¼ f(tþ 1)� f(t).

Definition 2.2. A function f : T ! R is called rd-continuous provided it is continuous at the right-
dense points in T and its left-sided limits exist (finite) at all left-dense points in T. The set of
rd-continuous functions f : T ! R will be denoted by Crd ¼ Crd(T) ¼ Crd(T, R). The set of functions
f : T ! R that are differentiable and whose derivative is rd-continuous is denoted by
C1
rd ¼ C1

rd(T) ¼ C1
rd(T, R).

Definition 2.3. A function f : T ! R is called regulated provided its right-sided limits exist (finite) at
all right-dense points in T and its left-sided limits exist (finite) at all left-dense points in T. The indefinite
integral of a regulated function f is defined byð

f(t)Dt ¼ F(t)þ c,

where c is an arbitrary constant. And the definite integral of f is defined byðb
a
f(t)Dt ¼ F(b)� F(a) for all a, b [ T:

A function F : T ! R is called an antiderivative of f : T ! R provided

FD(t) ¼ f(t)

holds for all t [ Tk.

Lemma 2.4. Assume f , g : T ! R are delta differentiable at t [ Tk: The properties of delta derivatives are:

( f þ g)D(t) ¼ fD(t)þ gD(t); (2:1)

(cf)D(t) ¼ c fD(t), c [ R; (2:2)

( fg)D(t) ¼ fD(t)g(t)þ fs(t)gD(t) ¼ f(t)gD(t)þ fD(t)gs(t); (2:3)

and
f
g

� �D

(t) ¼ fD(t)g(t)� f(t)gD(t)
g(t)gs(t)

, g(t)gs(t) = 0: (2:4)

Definition 2.5. For h > 0, Ch ¼ {x [ C : x = �(1=h)}, let Zh be the strip
Zh :¼ {x [ C : �(p=h) , Im(x) � (p=h)}. The cylinder transformation jh : Ch ! Zh is defined by

jh(x) ¼
1
h
Log(1þ xh):
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Here, Log is a principal logarithm function. For h = 0, let Z0 :¼ C, then ξ0(x) = x is defined for all

x [ C.

Definition 2.6. A function g : T ! R is regressive if 1 + μ(t)γ(t)≠ 0 for all t0 [ Tk holds. If g [ R, the
exponential function is defined by

eg(t, s) ¼ exp
ðt
s
jm(t)(g(u))Du

� �
for s, t [ T:

Here, the set of rd-continuous and regressive functions f : T ! R are denoted by R ¼ R(T) ¼ R(T, R).

Lemma 2.7. If t, s, r [ T, g [ R, and t0 [ T is fixed, we list the following properties of exponential
functions:

eDg (t, t0) ¼ g(t) eg(t, t0); (2:5)

esg (t, s) ¼ eg(s(t), s) ¼ (1þ m(t)g(t)) eg(t, s); (2:6)

1
eg(t, s)

¼ eg(s, t); (2:7)

eg(t, s) eg(s, r) ¼ eg(t, r); (2:8)

and [eg(s, t)]
D ¼ �g

esg (t, s)
: (2:9)

Lemma 2.8. Suppose eg(t, s) is regressive. Let t1 [ T and y1 [ R, the unique solution of the initial value
problem

yD ¼ g(t)yþ f(t) and y(t1) ¼ y1

is given by

y(t) ¼ eg(t, t1)y1 þ
ðt
t1
esg (t, u) � f(u)Du:

Lemma 2.9. Let g∈Crd, g : [a, b] ! Rn, thenðb
a
gT(t)hD(t)Dt ¼ 0 for all h [ C1

rd with h(a) ¼ h(b) ¼ 0

holds if and only if

g(t) ¼ c for c [ Rn:

The above definitions, lemmas and the specific proof processes of lemmas can be referred to in the
literature [1].
3. Main results
First, we indicate that the time-scales Herglotz variational problem for delta derivatives of Birkhoffian
systems is a functional extremum problem of determining the function an(t) that extremizes z(t2),
where the action z(t) is a solution of

zD(t) ¼ Rn(t, asv(t), z(t))a
D
n (t)� B(t, asv(t), z(t)), (n, v ¼ 1, 2, . . . , 2n) (3:1)

with the boundary conditions

an(t)jt¼t1 ¼ an1, an(t)jt¼t2 ¼ an2, (n ¼ 1, 2, . . . , 2n) (3:2)

and the initial condition

z(t)jt¼t1 ¼ z1: (3:3)

Here, asv(t) ¼ (a4 � s)(t), t [ T, Rn : R� R2n � R ! R are the time-scales Herglotz type Birkhoff’s
functions, and B : R� R2n � R ! R is the time-scales Herglotz type Birkhoffian. aν1, aν2 and z1 are
constants.
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Definition 3.1. The functional z determined by equation (3.1) is called the time-scales Pfaff–Herglotz

action.

Next, we derive the time-scales Herglotz type Birkhoff’s equations. From the calculation of
isochronous variation on both sides of equation (3.1), it follows that

dzD ¼ @Rn

@asv
dasv þ @Rn

@z
dz

� �
aDn þ RndaDn � @B

@asv
dasv � @B

@z
dz: (3:4)

Considering the exchange relationships [10]

D

Dt
(dq) ¼ d

D

Dt
q

� �
¼ dqD and (dq)s ¼ dqs:

Formula (3.4) can be written as

(dz)D ¼ A(t)þ @Rn

@z
aDn � @B

@z

� �
dz, (3:5)

where

A(t) ¼ @Rn

@asv
aDn � @B

@asv

� �
dasv þ RndaDn : (3:6)

According to the condition (3.3), equation (3.5) satisfies the initial value condition

dz(t1) ¼ 0: (3:7)

Let g(t) ¼ @Rn

@z a
D
n � @B

@z, by lemma 2.8 and the properties (2.6), (2.7), (2.8), the solution of equations (3.5) and
(3.7) is

dz(t) ¼ eg(t, t1)
ðt
t1
esg (t1, u) � A(u)Du: (3:8)

From the boundary conditions (3.2), we have δz(t2) = 0. And consider that the action z(t) yields its
extremum at t = t2, so that ðt2

t1
esg (t1, t) � A(t)Dt ¼ 0: (3:9)

Substituting formula (3.6) into equation (3.9), it follows thatðt2
t1
esg (t1, t)

@Rn

@asv
aDn � @B

@asv

� �
dasv þ RndaDn

� �
Dt ¼ 0: (3:10)

From the property (2.3) of delta derivatives, we obtainðt2
t1
esg (t1, t)

@Rn

@asv
aDn � @B

@asv

� �
dasvDt

¼
ðt2
t1

ðt
t1
esg (t1, u)

@Rn

@asv
aDn � @B

@asv

� �
Du

� �
dav

� �D(

�
ðt
t1
esg (t1, u)

@Rn

@asv
aDn � @B

@asv

� �
Du

� �
(dav)

D

�
Dt

¼
ðt
t1
esp(t1, u)

@Rn

@asv
aDn � @B

@asv

� �
Du

� �
dav

� �����
t2

t1

�
ðt2
t1

ðt
t1
esp(t1, u)

@Rn

@asv
aDn � @B

@asv

� �
Du

� �
(dav)

DDt

¼ �
ðt2
t1

ðt
t1
esg (t1, u)

@Rn

@asv
aDn � @B

@asv

� �
Du

� �
(dav)

DDt: (3:11)

Substituting formula (3.11) into equation (3.10), we haveðt2
t1

esg (t1, t)Rv �
ðt
t1
esg (t1, u)

@Rn

@asv
aDn � @B

@asv

� �
Du

� �
(dav)

DDt ¼ 0: (3:12)
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By lemma 2.9, we obtain

esg (t1, t)Rv �
ðt
t1
esg (t1, u)

@Rn

@asv
aDn � @B

@asv

� �
Du ¼ const,

(v ¼ 1, 2, . . . , 2n):

(3:13)

By delta differentiation of both sides of equation (3.13), we derive the time-scales Herglotz type Birkhoff’s
equations

D

Dt
esg (t1, t)Rv

h i
� esg (t1, t)

@Rn

@asv
aDn � @B

@asv

� �
¼ 0, (v ¼ 1, 2, . . . , 2n): (3:14)

Remark 3.2. If T ¼ R, then σ(t) = t, μ(t) = 0, esg (t1, t) ¼ exp (�Ð tt1 ((@Rn=@z) _an � (@B=@z))du). Thus,
equations (3.14) become the Herglotz type Birkhoff’s equations in the continuous case [22]

exp �
ðt
t1

@Rn

@z
_an � @B

@z

� �
du

� �
@Rv

@an
� @Rn

@av

� �
_an þ @B

@av
þ @Rv

@t

�

þ Rn
@Rv

@z
� @Rn

@z
Rv

� �
_an � @Rv

@z
Bþ Rv

@B
@z

�
¼ 0,

(v ¼ 1, 2, . . . , 2n): (3:15)

Remark 3.3. If the time-scales Herglotz type Birkhoffian and Birkhoff’s functions do not contain z,
i.e. zD(t) ¼ Rn(t, asv(t))a

D
n (t)� B(t, asv(t)), then γ(t) = 0, esg (t1, t) ¼ 1. Thus, equations (3.14) change to the

time-scales Birkhoff’s equations based on the traditional variational problem [11]

RD
v � @Rn

@asv
aDn þ @B

@asv
¼ 0, (v ¼ 1, 2, . . . , 2n): (3:16)

Then, we study the time-scales Herglotz type Noether theorem for delta derivatives of Birkhoffian
systems. Let U be a set of C1

rd functions an : [t1, t2] ! Rn. We introduce the infinitesimal
transformations of the one-parameter group with respect to time t on U

�t ¼ tþ 1t (t, av, z) and �an(�t) ¼ an(t)þ 1jn(t, av, z), (3:17)

where τ, jn are infinitesimal generators, and ɛ is an infinitesimal parameter. Then, under the
transformations (3.17), we can write the time-scales Pfaff–Herglotz action z(t) as �z(�t) ¼ z(t)þ ~Dz(t),
where ~D denotes total variation. According to the literature [10], we know ~Dq ¼ dqþ qD~Dt.

Definition 3.4. If the time-scales Pfaff–Herglotz action z is acted on by the infinitesimal
transformations (3.17), and ~Dz(tb) ¼ 0 holds for any subinterval [ta, tb] ⊆ [t1, t2] with ta, tb [ T, then
the invariance is called the time-scales Herglotz type Noether symmetry of Birkhoffian systems under
the infinitesimal transformations.

Theorem 3.5. If the time-scales Pfaff–Herglotz action z is invariant on U under the infinitesimal
transformations (3.17), then

@Rn

@t
aDn � @B

@t

� �
tþ @Rn

@asv
aDn � @B

@asv

� �
jsv þ Rnj

D
n þ (mRD

n a
Ds
n � Bs)tD ¼ 0 (3:18)

holds for all t∈ [t1, t2]. Formula (3.18) is called the time-scales Herglotz type Noether identity for delta derivatives
of Birkhoffian systems.

Proof. On the basis of definition 3.4, we know ~Dz(tb) ¼ 0. Then, from equation (3.1), we obtain

~DzD ¼ ~D(RnaDn � B) ¼ ~DRnaDn þ Rn
~DaDn � ~DB

¼ @Rn

@t
~Dtþ @Rn

@asv
~Dasv þ @Rn

@z
~Dz

� �
aDn þ Rn

~DaDn

� @B
@t

~Dt� @B
@asv

~Dasv � @B
@z

~Dz: (3:19)
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Because of the property (2.3), we can calculate

~DzD ¼ D

Dt
(~Dz)� zD

s D

Dt
(~Dt): (3:20)

Taking into account equations (3.20) and (3.1), formula (3.19) can change to

D

Dt
(~Dz) ¼ @Rn

@t
~Dtþ @Rn

@asv
~Dasv

� �
aDn þ Rn

~DaDn � @B
@t

~Dt� @B
@asv

~Dasv

þ @Rn

@z
aDn � @B

@z

� �
~Dzþ (RnaDn � B)s

D

Dt
(~Dt), (3:21)

where ~Dt ¼ 1t(t, av, z), ~Dan ¼ 1jn(t, av, z). Note the initial condition ~Dz(ta) ¼ 0 that the solution of
equation (3.21) is

~Dz(t) ¼ eg(t, ta)
ðt
ta
esg (ta, u)

@Rn

@t
~Dtþ @Rn

@asv
~Dasv

� �
aDn þ Rn

~DaDn

�

� @B
@t

~Dt� @B
@asv

~Dasv þ (RnaDn � B)
s D

Dt
(~Dt)

�
Du: (3:22)

Then, when t = tb, we have

ðtb
ta
esg (ta, t)

@Rn

@t
aDn � @B

@t

� �
tþ @Rn

@asv
aDn � @B

@asv

� �
jsv

�
þRnj

D
n þ (mRD

n a
Ds
n � Bs)tD]1Dt ¼ 0: (3:23)

According to the arbitrariness of integral interval, we obtain

esg (ta, t)
@Rn

@t
aDn � @B

@t

� �
tþ @Rn

@asv
aDn � @B

@asv

� �
jsv

�
þ Rnj

D
n þ (mRD

n a
Ds
n � Bs)tD] ¼ 0: (3:24)

▪Since esg (ta, t) . 0, theorem 3.5 is proved.
Theorem 3.6. If the transformations (3.17) correspond to the time-scales Herglotz type Noether symmetry for
delta derivatives of Birkhoffian systems, then there exists a conserved quantity in the form of

IN ¼ esg (ta, t)Rvjv þ
ðt
ta

esg (ta, u)
@Rn

@u
aDn � @B

@u

� ���

þ esg (ta, u)
@Rn

@asv
aDn � @B

@asv

� �
aDv � D

Du
( esg (ta, u)Rv)aDv

�
t

þ esg (ta, u)(mR
D
n a

Ds
n � Bs)tD}Du ¼ const. (3:25)

Proof.

D

Dt
IN ¼ D

Dt
( esg (ta, t)Rv)jsv þ ( esg (ta, t)Rv)jDv þ esg (ta, t)

@Rn

@t
aDn � @B

@t

� ��

þ esg (ta, t)
@Rn

@asv
aDn � @B

@asv

� �
aDv � D

Dt
( esg (ta, t)Rv)aDv

�
tþ esg (ta, t)(mR

D
n a

Ds
n � Bs)tD

¼ esg (ta, t)
@Rn

@t
aDn � @B

@t

� �
tþ Rnj

D
n þ (mRD

n a
Ds
n � Bs)tD

� �

þ D

Dt
( esg (ta, t)Rv)(jsv � aDvt)þ esg (ta, t)

@Rn

@asv
aDn � @B

@asv

� �
aDvt

¼ esg (ta, t)
@Rn

@t
aDn � @B

@t

� �
tþ @Rn

@asv
aDn � @B

@asv

� �
jsv

�

þRnj
D
n þ (mRD

n a
Ds
n � Bs)tD]

þ D

Dt
( esg (ta, t)Rv)� esg (ta, t)

@Rn

@asv
aDn � @B

@asv

� �� �
(jsv � aDvt):
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Considering formulae (3.14) and (3.18), we can easily get

D

Dt
IN ¼ 0:

Integrating the above formula, therefore the theorem is proved. ▪

Remark 3.7. If T ¼ R, i.e. σ(t) = t, μ(t) = 0, then formula (3.18) becomes the Herglotz type Noether
identity of Birkhoffian systems in the continuous case [22]

@Rn

@t
_an � @B

@t

� �
tþ @Rn

@av
_an � @B

@av

� �
jv þ Rnjn � B _t ¼ 0: (3:26)

And the conserved quantity (3.25) changes to the Herglotz type Noether conserved quantity of classical
Birkhoffian systems [22]

IN ¼ exp �
ðt
ta

@Rn

@z
_an � @B

@z

� �
du

� �
(Rnjn � Bt) ¼ const: (3:27)

Remark 3.8. If T ¼ hZ, h > 0, i.e. σ(t) = t + h, μ(t) = h, then formula (3.18) can be written as

@Rn

@t
aDn � @B

@t

� �
t(t)þ @Rn

@asv
aDn � @B

@asv

� �
jv(tþ h)þ Rnj

D
n (t)

þ [mRD
n a

D
n (tþ h)� B(tþ h)]tD(t) ¼ 0:

(3:28)

And the conserved quantity (3.25) changes to

IN ¼ eg(ta, tþ h)Rvjv þ
ðt
ta

eg(ta, uþ h)
@Rn

@u
aDn � @B

@u

� �
þ eg(ta, uþ h)

��

� @Rn

@av(uþ h)
aDn � @B

@av(uþ h)

� �
aDv � D

Du
( eg(ta, uþ h)Rv)aDv

�
t

þ eg(ta, uþ h)[hRD
n a

D
n (uþ h)� B(uþ h)]tD}Du ¼ const:

(3:29)

Formulae (3.28) and (3.29) are the Herglotz type Noether identity and Noether conserved quantity of
Birkhoffian systems in the discrete case.

4. Some special cases
The above results of Birkhoffian systems can be applied to Hamiltonian systems and Lagrangian systems
under certain cases.

Case 1: Let

asn ¼ qsn , (n ¼ 1, 2, . . . , n)
pn�n, (n ¼ nþ 1, nþ 2, . . . , 2n),

�
(4:1)

Rn ¼
pn, (n ¼ 1, 2, . . . , n)
0, (n ¼ nþ 1, nþ 2, . . . , 2n)

�
(4:2)

and B(t, asn (t), z(t)) ¼ H(t, qss (t), ps(t), z(t)), (s ¼ 1, 2, . . . , n): (4:3)

Here, H is the time-scales Hamiltonian for delta derivatives, qs(s = 1, 2,…, n) are generalized coordinates,
and ps(s = 1, 2,…, n) are generalized momenta. From equations (3.14), we can obtain

@H
@ ps

� qDs ¼ 0,
D

Dt
( esg (t1, t) ps)þ esg (t1, t)

@H
@qss

¼ 0, (s ¼ 1, 2, . . . , n), (4:4)

where γ(t) =−(∂H/∂z). Equations (4.4) are the time-scales Herglotz type Hamilton canonical equations for
delta derivatives [34].

Next, the transformations (3.17) in phase space can be expressed as

�t ¼ tþ 1t(t, q j, p j, z),
�qs(�t) ¼ qs(t)þ 1js(t, q j, p j, z)

and �ps(�t) ¼ ps(t)þ 1hs(t, q j, p j, z),

9>=
>; (4:5)

where τ, ξs, ηs are infinitesimal generators. By theorems 3.5 and 3.6, we can also obtain the time-scales
Herglotz type Noether identity and Noether conserved quantity for delta derivatives of Hamiltonian
systems.
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Theorem 4.1. If the time-scales Hamilton-Herglotz action z of Hamiltonian systems is invariant on U under

the infinitesimal transformations (4.5), then

qDs hs þ psjDs � @H
@t

t� @H
@qss

jss �
@H
@ ps

hs þ (( psqDs )
s � psqDss �Hs)tD ¼ 0 (4:6)

holds for all t∈ [t1, t2]. Formula (4.6) is called the time-scales Herglotz type Noether identity for delta derivatives of
Hamiltonian systems.

Theorem 4.2. If the transformations (4.5) correspond to the Herglotz type Noether symmetry for delta
derivatives of Hamiltonian systems, then there exists a conserved quantity in the form of

IN ¼
ðt
ta

esg (ta, u) ( psqDs �H)
s
tD � @H

@u
þ @H
@qss

qDs � psqDDs

� �
t

� ��

þ m
D

Du
[ esg (ta, u) ps] �

D

Du
(js � qDs t)

�
Duþ esg (ta, t) ps(js � qDs t)

¼ const: (4:7)

Remark 4.3. If T ¼ R, i.e. σ(t) = t, μ(t) = 0, esg (ta, t) ¼ exp (
Ð t
ta
(@H=@z) dt), then formula (4.6) becomes

the Herglotz type Noether identity of Hamiltonian systems in the continuous case

_qshs þ ps _js �
@H
@t

t� @H
@qs

js �
@H
@ ps

hs �H _t ¼ 0, (4:8)

and the conserved quantity (4.7) changes to the Herglotz type Noether conserved quantity of
Hamiltonian systems [21]

IN ¼ exp
ðt
ta

@H
@z

du
� �

( psjs �Ht) ¼ const: (4:9)

Case 2: Let

H(t, qss (t), ps(t), z(t)) ¼ psqDs � L(t, qss (t), q
D
s (t), z(t)) (4:10)

and

ps ¼ @L
@qDs

, (s ¼ 1, 2, . . . , n): (4:11)

The partial derivative of equation (4.10) with respect to qss , ps, z, respectively, we have

@H
@qss

¼ � @L
@qss

,
@H
@ ps

¼ qDs ,
@H
@z

¼ � @L
@z

: (4:12)

Thus, equations (3.14) become

D

Dt
esg (t1, t)

@L
@qDs

� �
� esg (t1, t)

@L
@qss

¼ 0, (s ¼ 1, 2, . . . , n), (4:13)

where g(t) ¼ @L
@z.

The infinitesimal transformations (3.17) in configuration space can be expressed as

�t ¼ tþ 1t(t, q j, z), �qs(�t) ¼ qs(t)þ 1js(t, q j, z), (4:14)

where τ and ξs are infinitesimal generators. Similarly it is possible to obtain the time-scales Herglotz type
Noether identity and Noether conserved quantity for delta derivatives of Lagrangian systems according
to theorems 3.5 and 3.6.

Theorem 4.4. If the time-scales Hamilton-Herglotz action z of Lagrangian systems is invariant on U under
the infinitesimal transformations (4.14), then

@L
@t

tþ @L
@qss

jss þ
@L
@qDs

jDs þ Ls � @L
@qDs

qDss

� �
tD ¼ 0 (4:15)

holds for all t∈ [t1, t2]. Formula (4.15) is called the time-scales Herglotz type Noether identity for delta derivatives
of Lagrangian systems [32].
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Theorem 4.5. If the transformations (4.14) correspond to the time-scales Herglotz type Noether symmetry for

delta derivatives of Lagrangian systems, then there exists a conserved quantity in the form of

IN ¼
ðt
ta

esg (t1, u) LstD þ @L
@t

þ @L
@qss

qDs þ @L
@qDs

qDDs

� �
t

� ��

þm
D

Du
esg (ta, u) �

@L
@qDs

� �
� D
Du

(qDs t)
�
Duþ esg (ta, t) �

@L
@qDs

� (js � qDs t)

¼ const: (4:16)

Remark 4.6. If T ¼ R, i.e. σ(t) = t, μ(t) = 0, esg (ta, t) ¼ exp (�Ð tta (@L=@z) dt), then formula (4.15) becomes
the Herglotz type Noether identity of Lagrangian systems in the continuous case

@L
@t

tþ @L
@qs

js þ
@L
@ _qs

_js þ L� @L
@ _qs

_qs

� �
_t ¼ 0: (4:17)

And the conserved quantity (4.16) changes to the Herglotz type Noether conserved quantity of
Lagrangian systems

IN ¼ exp �
ðt
ta

@L
@z

du
� �

@L
@ _qs

(js � _qst)þ Lt
� �

¼ const: (4:18)
1248
5. Examples

Example 5.1. Suppose the time-scales Herglotz type Birkhoffian and Birkhoff’s functions are,
respectively,

B ¼ 1
2

(as1 )
2 þ (as2 )

2
h i

þ az, R1 ¼ a2, R2 ¼ 0, (5:1)

where zD ¼ as2 a
D
1 � (1=2)[(as1 )

2 þ (as2 )
2]� az, and α is a constant.

When T ¼ R, then σ(t) = t, μ(t) = 0, esg (t1, t) ¼ exp [a(t� t1)]. From the Herglotz type Birkhoff’s
equations (3.15), we have

exp [a(t� t1)] � (aa2 þ _a2 þ a1) ¼ 0 and �exp [a(t� t1)] � ( _a1 � a2) ¼ 0, (5:2)

i.e.

aa2 þ _a2 þ a1 ¼ 0 and _a1 � a2 ¼ 0: (5:3)

Let x = a1, _x ¼ a2; the Birkhoff’s equations (5.3) can become the damped oscillator

€xþ a _xþ x ¼ 0: (5:4)

And its Noether conserved quantity has been given in the literature [22].
When T ¼ hZ, h > 0, then σ(t) = t + h, μ(t) = h, esg (t1, t) ¼ exp [a(tþ h� t1)]. From equations (3.14), we

obtain

exp [a(tþ h� t1)] � [aass2 þ (as2 )
D þ as1 ] ¼ 0 and �exp [a(tþ h� t1)] � (aD1 � as2 ) ¼ 0: (5:5)

Let x = a1, xD ¼ as2 ; then

xDD þ axDs þ xs ¼ 0: (5:6)

The equation (5.6) can be called the time-scales damped oscillator. Now, we study its Noether conserved
quantity on time scale T ¼ hZ.

From equation (3.18), the Herglotz type Noether identity on this time scale is

�as1 j
s
1 þ (aD1 � as2 )j

s
2 þ as2 j

D
1 þ [h(as2 )

DaDs1 � Bs]tD ¼ 0: (5:7)

The above equation has a solution

t ¼ 1, j1 ¼ exp
ðt
t1

as1
aD1 � has1

Du

� �
: (5:8)
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There is no limit to ξ2. Thus, by theorem 3.6, the Herglotz type conserved quantity of the Birkhoffian

system on this time scale is

IN ¼ exp
ðt
t1

aas1
aD1 � has1

Du

� �
as2 ¼ const: (5:9)

Example 5.2. Let us study a non-Hamiltonian Birkhoffian system, whose time-scales Herglotz type
Birkhoffian and Birkhoff’s functions for delta derivatives are, respectively,

B ¼ 1
2
(as3 )

2 þ 1
2
(as4 )

2 � z, R1 ¼ as2 þ as3 , R2 ¼ as4 , R3 ¼ R4 ¼ 0, (5:10)

where z satisfies the differential equation

zD ¼ (as2 þ as3 )a
D
1 þ as4 a

D
2 � 1

2
(as3 )

2 � 1
2
(as4 )

2 þ z: (5:11)

Now, we study the Herglotz type Noether conserved quantity of the non-Hamiltonian system (5.10) on a
time scale of

T ¼ {2m : m [ Z}< {0}: (5:12)

From the time scale (5.12), it is obvious that σ(t) = 2t and μ(t) = t. According to definition 2.6,
we have eg(t1, t) ¼ exp (�Ð tt1 (1=u)Log(1þ u)Du), where g(t) ¼ (@Rn=@z)aDn � (@B=@z) ¼ 1. Then,
esg (t1, t) ¼ (1þ t) eg(t1, t). From equations (3.14), the time-scales Herglotz type Birkhoff’s equations of
the system can be obtained, as follows:

D

Dt
[esg (t1, t) � (as2 þ as3 )] ¼ 0,

D

Dt
[esg (t1, t) � as4 ]� esg (t1, t)a

D
1 ¼ 0,

� esg (t1, t) � (aD1 � as3 ) ¼ 0 and� esg (t1, t) � (aD2 � as4 ) ¼ 0: (5:13)

From equation (3.18), the Herglotz type Noether identity on this time scale is

{m[(as2 þ as3 )
DaDs1 þ (as4 )

DaDs2 ]� Bs}tD þ aD1 j
s
2 þ aD1 j

s
3

þ aD2 j
s
4 � as3 j

s
3 � as4 j

s
4 þ (as2 þ as3 )j

D
1 þ as4 j

D
2 ¼ 0: (5:14)

Hence, one solution to the above equation is

t ¼ 1, j1 ¼ 1, j2 ¼ 0: (5:15)

There is no limit to ξ3 and ξ4. Therefore, the Herglotz type conserved quantity of the system on the time
scale can be obtained by theorem 3.6, as follows

IN ¼ esg (t1, t) � (as2 þ as3 ) ¼ const: (5:16)
6. Conclusion
The time-scales Herglotz variational principle for delta derivatives of Birkhoffian systems is introduced
and its time-scales Pfaff–Herglotz action is put forward. The time-scales Herglotz type Birkhoff’s
equations (3.14) are obtained, which can reduce to the Herglotz type Birkhoff’s equations (3.15) of
continuous systems or the time-scales Birkhoff’s equations (3.16) based on the traditional variational
problem. The time-scales Herglotz type Noether identity and Noether conserved quantity for delta
derivatives of Birkhoffian systems, i.e. theorems 3.5 and 3.6, are new main results. Herglotz type
Noether identities and Noether conserved quantities of Birkhoffian systems are given in continuous
and discrete cases, respectively. On account of the universality of Birkhoffian systems, theorems 3.5,
3.6 of Birkhoffian systems can become theorems 4.1, 4.2 of Hamiltonian systems or theorems 4.4, 4.5
of Lagrangian systems in special cases. Therefore, the correctness and the generality of the results are
verified. Because of the advantage of time-scales Herglotz variational principle, the results of this
paper not only are applicable to discrete and continuous Birkhoffian systems but also can be used to
solve conservative and non-conservative problems. Moreover, it should not be neglected that the
results of this paper provide a theoretical basis for computer programming. Similarly, it is possible to
expand to study time-scales Herglotz type Noether theorem for nabla derivatives or mixed derivatives
by the method of this paper.
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