Doc ID: 6689691

((b) (3)-P.L. 86-36

Instructor Notes

A

Updated about 2 years ago by in COMP 3321
F 3 144 6

(U//FOUO) Instructor notes for COMP 3321.

Recommendations

UNCLASSIFIEDAFOR-OFHCIAL USE-ONLEY—

(U) So, you're teaching the Python class. What have you gotten yourself into? You should probably take a few moments (or possibly a few days) to
reconsider the life choices that have put you in this position.

(U) Course Structure

(U) As mentioned in the introduction, this course is designed for flexibility. When taught in a classroom setting, a single lesson or module can be
covered in a session that lasts between 45 and 90 minutes, depending on the topics to be covered. The standard way to structure the course is as
a full-time, two week block. During the first week, the ten lessons are covered with morning and afternoon lectures. During the second week, up to
ten modules are covered in a similar manner, as needed or requested by the students in the class. (If the class needs are not known, take a vote).
During the first few days of class, students should choose a project to work on. On the last day, students should report back on their progress and, if
possible, demonstrate their work. Instructors should be available outside of lectures to assist students with exercises and projects.

(U) The two week block is not the only way of teaching the course. The material could be presented at a more leisurely pace, for instance during a
weekly brown bag lunch that continues for several months. Alternatively, if students are already prepared (or willing to do some of the initial lessons
in a self-study manner), a great deal can be accomplished in a two or three day workshop. For instance, if all students already have a basic
knowledge of Python, they might well start with the lessons on tooling and writing modules and packages, then move on to cover various modules
of interest.

Approved for Release by NSA on 12-02-2019, FOIA Case # 108165

Doc ID: 6689691

(U) Instructional Style

(U) When teaching mathematics, the common practice of the instructor writing solutions on the chalkboard is a moderating method that helps
students keep up. Writing on a chalkboard is not usually helpful when teaching programming, but the same principle applies; as the instructor, you
should adopt practices that help you slow down. We recommend that you have a live, interactive session displayed at the front of the room, large
enough for all the students to see. This session can either be a terminal session or a Jupyter notebook. The important detail is that in most cases
the commands should not be pre-populated; e.g. you should not just execute cells from an existing Jupyter notebook. The materials are present to
help you prepare, and as a reference for the students as they work on exercises; they are not an acceptable substitute for the shared experience of
teaching and learning. You will make unexpected mistakes as you write code live in front of the class. Don't worry, relax, and let the students help

you--it will help them learn the principles and figure out how to solve their own problems. This is not a substitute for proper preparation; too

many mistakes and fumbles will cause your students to lose interest in the course and trust in you.

(U) Ongoing Development

(b): (3)—P.5,

86-36

(UHFOYE) The developers of this course believe that the current materials are sufficiently v_vell.develdp'e;:l to be an effective aid for the course.

However, improvements, extensions, and refinements are always welcome. To that end; we have attempted to make it easy to contribute to the
|origina| COMP 3321 materials. If you want to make changes for your

project. The documentation is based on the NSAG fork of|

own purposes, feel free to clone that repository or fork any of these notebooks on the Juptyer Gallery. Please submit a change request on the
Gallery if you'd like to make a one-off contribution, including new or improved exercises, additions to lessons or modules, or entirely new lessons or
modules. If you would like to be a collaborator on all of the COMP 3321 notebooks, contact the COMP3321 GlobalMe group and ask to be added.

(U) A possible icebreaker

(U) To get the students interacting with each other as well as thinking about code at an abstract level, consider the following icebreaker. Instructor

becomes human compiler to interpret written instructions to get out of the room.

(U) Phase | -- discussion with whole class

(U) Invent a programming language together, one sufficient for this task. Clearly explain the task, showing where in the room the instructor will begin

and how big a step is.

(U) Take suggestions from students about what instructions they will want to use. Write each instruction on the board. Be clear that everything

written on the paper must come from syntax on the board. No other syntax allowed.

(U) Make sure the instructor and students agree about precisely what each instruction means. As the instructor, be certain the list on the board is

enough for you to solve the problem. Give hints until it's complete.
(V) Let the students come up with the syntax. But here are some syntax examples they may come up with.

» step(n) -- takes in an integer and causes instructor to take n steps.

Doc ID: 6689691
» turn(d) -- takes in a number in degrees and caused instructor to turn clockwise that many degrees. Students may abuse this and put in

numbers that lead to dizzyness, e.g. turn(1440)

» obstacle -- returns boolean indicating rather an obstacle is directly in front of instructor. Variations for checking to the left or right may be
desirable as well.

« if <>then < > else <> -- first blank takes boolean (make sure boolean functions exist!). Second blanks take instructions.
» while <>: <> -- takes boolean function and any expression

+ not -- expression to reverse a boolean

» any integer

(U) Phase Il -- break into teams
(U) Teams of 3-5 students tend to be appropriate.

(U) Each team produces a piece of paper with computer instructions for the human compiler to get out of the room. Only allowable syntax is what is
written on the board. Should take no more than 15 minutes.

(U) Phase lll -- demonstrations

(U) One at a time, the instructor takes a team's solution and follows the instructions, literally and fairly. Does the instructor get out of the room?

(U) Introductory e-mail

(U) There are a couple things it would be nice if the students could have done in advance, in particular having GITLAB accounts and INHERE
agreements. | have the COMP3321 learning facilitators send the following e-mail to enrolled students:

(U) Aloha--
(U) You are receiving this e-mail because you are registered for COMP3321 beginning <..>.

(V) If at all possible, we could use you do a few setup things in advance to make class go smoothly on the first day. Really, two simple things that
will take a minute of your time and save us hours on the first day of class.

(U) 1) GO iagree and find, read and agree to the INHERE user agreement. P.L. 86-36

(U) 2) GO gitlab. e B R

(U) In more detail: R

(U) 1) The course will be run 'vl'a'LABéér\-lCH and NBGALLERY. Before using this, you will need to agree,to.the terms of service and
@cknowledge this. Instructions can be found here: https:/nbgallery.nsa.ic.gov/ (GO NBGALLERY) by clicking GET A BENCH. We only
need you to follow the first step, outlined below. Be careful going further because LABBENCH macpiﬁes self-destruct two weeks after creation, so
you'll want a fresh one the first day of class. J*

(U) GO iagree. Search "inhere". Read the INHERE user agreement and agree to it. will eventually acknowledge this agreement. That's
what we need.

Doc ID: 6689691 P.L. 86-36
(U) 2) GO gitlab. By going there once, an account will be created. That's all we need before we start.

Aishriigs- P ssasssasess - g
(V) If you want to go further and use git from the command line fo.llzav:/ mstructlons here: hitps:/fveik. hsa |c QOVZW‘lh-/éI‘VWmdiS
(U) There are several options presented. Whateve-r-you gan . gette work Is “fine. T g - " ‘_ s " L *
(U) 3) Optional. The class wilt be'run off LA-B'B.E;\ICH But some people prefer to use:;nachfné.'This will take soﬁ1;z setup work. Install
Anaconda :ﬁ)y following these instructions: h_ttp__.[[produgtlgn,tradegraft.g_oj.___s_a._ig_.-gb_vﬂtryﬁ_gﬁz_fg . '
(U) If you have any issues with the instructions, please contact the instrygtor. ‘<.'.>- ‘ n -

o &
* .
. .

(U) Submitting projects -+

(U) A possible avenue for submitting of projects is GITLAB. The instructor adds all students in the class to the
Gitlab group comp3321D‘A new project is created within that group entitled class-projects-Mmm-YYYY. Students will submit their code to
Gitlab. This can be easily accomplished through the web application by finding the '+' sign and copying and pasting code. The web application does
not allow for the creation of folders. Students who need folders can make them from the command line or get help doing so.

UNCLASSIFIED/AFOR-OFHCIAE USE-ONLY

Doc ID: 6689692

(b) (3)=P.L. 86=36

Python Programming ...

Updated 3 months ago bx‘ Jin

».Python3 thumbnail

Cpyinon | compizai |

(UHBY0Y Course introduction and syllabus for COMP 3321, Python Programming.

Recommendations

UNCLASSIFIED//FoR-OSFHGHALLUSE-ONEY—
(U) Hlstory

..in December, 1989, | was looking for a "hobby" programming project that would keep me occupied durlng the
week around Christmas. My office ... would be closed, but | had a home computer, and not much else on my
hands. | decided to write an interpreter for the new scripting language | had been thinking about lately: a
descendent of ABC that would appeal to Unix/C hackers. | chose Python as a working title for the project, being
in a slightly irreverent mood (and a big fan of Monty Python's Flying Circus)

Guido van Rossum, Foreword for Programming Python, 1st Edition.

(U) Motivation

(U) Python was designed to be easy and intuitive without sacrificing power, open source, and suitable for everyday tasks, with quick development
times. It makes the layers between programming and problem solvingseem as thin as possible. It's suitable for:

« Opening an interactive session to solve the Daily Puzz,

« Writing a script that automates a tedious and time-constiming t&sk,

Footer Text...

IAoorovpd for Release hv NSA on 12-02-2019. FOTA Case # 108165 I

Doc ID: 6689692 . .) 5 L
» Creating a quick web service or an extensive web application, and

* Doing advan mathemati

(U) If you don't know any programming languages yet, Python is a good place to start. If you already know a different language, it's easy to pick
Python up on the side. Python isn't entirely free of frustration and confusion, but hopefully you can avoid those parts until long after you get some
good use out of Python.

(U) Programming is not a spectator sport! The more you practice programming, the more you will learn in this class, both in breadth and depth.
Python practically teaches itself--the goal of your instructors is to guide you to the good parts and help you move just a little bit more quickly than
you would otherwise. Happy Programming!

|#.Xkcd-python

(U) Objective

(U) The goal of this class is to help students accomplish work tasks more easily and robustly by programming in Python. To pass the course, each
student must write at least one Python program that has substantial personal utility or is of significant personal interest. When choosing a project,
students are encouraged to first think of work-related tasks. For students who need help getting started, several suggestions for possible projects
are found at the bottom of this page. On the first day, instructors will lead a discussion where project ideas are discussed.

(U) This class is designed for students of varying backgrounds and levels of experience, from complete novice to competent programmer. Asking
each student to design and implement their own project allows everyone to learn and progress at an individual pace.

(U) Logistics

(U#BYO} This course is designed to be suitable for self-learning. Even if no formal offerings are available for your schedule, you may access and
work on the modules of this course at any time. Even if you don't have access to a recent version of Python on a workstation or virtual machine, you
can access a personalized Jupyter notebook available on LABBENCH. For an individual pursuing this self-study option, it is recommended to first
cover the Python Basics roughly in order, then select as many of the Useful Modules as seem appropriate. You can also use this Jupyter
notebook to experiment and write solutions to exercises.

(UHFSHHO) One possibility for a group of potential students who start out with a different amounts of programming experience is to use Jupyter as a
self-study tool until everyone has a basic understanding of programming, then follow up with an abbreviated instructor-led course (anywhere from
two days to a week or more, depending on needs).

(U) In the Classroom

(U) For a two week course: there will be a morning lecture and an afternoon lecture every day. The morning lecture will last between an hour and
ninety minutes; the afternoon lecture will be somewhat shorter. If a lecture is going too fast, please ask questions to slow us down! If it's going
too slow, feel free to work ahead on your own. Bease Ealkor Dooter Tenk. ..

Doc ID: 6689692
(UHFOBO} You will either use Python within :knvironment or within LABBENCH.
| |Nh|Ie we will poin out some differences between the Python 3.x and 2.x lines, this course will focus on Python
3. If you need or want to run Python oh Lmux probably W|thrn.a MachineShop VM, we'll work with you. To the extent possible, we will write code in
platform-agnostic manner and point out feattires that are unlque‘to specnf c versions of Python. .

(U) Although lectures will only take up two or three hohrs.each day, we epcourage you to spend the remainder of yQur day programming in Python,
either on your own or in groups, but in the classroom if possnbie. At least one Jnstructor will be available in the classroom during normal business
hours. e ¥

.
. .

(U) This course is a work in progress; we welcome all suggestions. There are mQre Uéeful Modules than we can hppe to cover in a two-week
class; instructors will take a vote to determine which modules to cover. If there is anbther topic that you would like to have covered, especially along
the lines of "How would I do x, v, or z in Python?", please ask--if there's enough interests we'ﬂ sover itina Iecture We'd even be happy to have

.
.

you contribute to the course documentation! Talk to an instructor to find out how. iy 5

.
-

P.L. 86-36

(U) Table of Contents
(U) Part |: Python Basics (Week 1)

(V) Lesson 01: Introduction: Your First Python Program
(V) Lesson 02: Variables and Functions
o (U) Optional: Variable Exercises
o (U) Optional: Function Exercises
e (U) Lesson 03: Flow Control
o (U) Optional: Flow Control Exercises
o (U) Lesson 04: Container Data Types
* (U) Lesson 035: File Input and Output
o (V) lIEEREIETETTM Lesson 06: Development Environment and Tooling
o (U) Lesson 07: Object Orienteering: Using Classes
o (U) Lesson 07: Supplement
* (U) Lesson 08: Modules, Namespaces, and Packages
o (U) Supplement: Modules and Packages
o (U) Lesson 09: Exceptions, Profiling, and Testing
« (U) Lesson 10: Iterators, Generators and Duck Typing
o (U) Supplement: Pipelining with Generators
e (U) Lesson 11: String_Formatting

Please Enter Footer Text...

Doc ID: 6689692

(U) Part II: Useful Modules (Week 2)

(L) Module: Collections and ltertools

o (U) Supplement: Functional Programming

o (U) Supplement: Recursion Examples
(V)) Module: Command Line Arguments
(U) Module: Dates and Times

o (U) Datetime Exercises
(U) Module: Interactive User Input with ipywidgets
(U) Module: GUI Basics with Tkinter

o (U) Supplement: Python GU| Programming Cookbook
V) Under Construction Module: Logging
(VR e = Module: Math and More

o (U) Supplement: COMP3321: Math, Visualization, and More!
(U) Module: Visualization
(V) Module: Pandas

((8)] under Construction

Module: A Bit About Geos

(V) BULEECL o ol Module: My First Web Application

[(1)] under Construction Mggglg Network Communication Over HTTPS and Sockets
o (U) Supplement: H nd PKI Concepts
o (UHFESU6) Supplement: Python, HTTPS, and LABBENCH

(U) Module: HTML Processing with BeautifulSoup

(V) lEREe L mu il Module: Operations with Compression and Archives

(V) Bt =l Module: Regular Expressions

W o ol Module: Hashes
(U) BELEEEETEE Module: SQL and Python
o (U) Supplement: Easy Databases with sqlite3
(U) Module: Structured Data: CSV, XML, and JSON
(U) Module: System Interaction
o (U) Supplement: Manipulating Microsoft Office Documents with win32com
(U) Module: Threading and Subprocesses
(U= Distributing_a Python Package at NSA
(U) Module: Machine Learning_ Introduction

(U) Homework

(V) Day_1 Homework

Please Enter Footer Text...

Doc ID: 6689692
* (V) Day 2 Homework

(U) Exercises (with Solutions)

» (U) Dictionary and File Exercises

 (U) Structured Data and Dates

» (U) Datetime Excercises
» (U) Object-Oriented Programming_and Exceptions

(U) Class Projects

(U) Click here to get to a notebook containing instructions for password checker and password generator projects.

(U) Project Ideas

» (U) Write a currency conversion script

» (U) Write a web application

* (U) Do Project Euler problems

» (V) Eind Anomalous Activity on the BigCorp Network
» (U) RSA Encryption Module, Part 2

» (U) Pick a project from one of the Safari books below

(U) General Resources

(U) Python Language Documentation

(U) Bython 2.7.10
(V) Python 2.7 on DevDocs

(U) Bython 3.4.3
(U) Python 3.5 on DevDocs

(UAHOUEO)NSA Course Materials

Please Enter Footer Text...

Doc ID: 668969

2
(V) Instructor Notes

(U#FeYey COMP 3321 Learn Python server

(UH‘FG'UQ‘)CRYP3320(CESVerSiOﬂOttrle.(.:O‘u_'_'_rse)-.....-......-.-‘_.'..-..'-...-._..---.

(UL P material
(UHOUYO) CADP Python Class

(U) Books

(U) Automate the Boring Stuff with Python

(U) Black Hat Python: Python Programming_for Hackers and Pentesters
(U) Dive into Python

(U) Expert Python Programming

(U) Head First Python

(U) High Performance Python (advanced)

(V) Learning Python

(U) Learning Python Programming (videos)

(U) Programming Python

(V) Python Crash Course (includes 3 sample projects)

(U) Python Playground (more sample projects)

(V) Python Pocket Reference (consider getting a print copy)

(V) Python Programming for the Absolute Beginner (even more sample projects, games & quizzes)

(U) Think Python
(U) Safari Books (General Query)

(U) Other

(V) Einal Project Schedule Generator

o (U) Just a little notebook for randomly generating a schedule for students to present their final projects for COMP3321.

(UHBY6) The Python group on NSA GitLab
(U) The Hitchhiker's Guide to Python!

(U#FeUJ) Python on Wikilnfo
(U) Python on StackOverflow

(U) Additional targeted resources (often excerpts from thelabove)taredinkedineachdesson and module.

(b) (3)~PB.L.

86-36

Doc ID: 6689692

UNCLASSIFIEDHFOR-OFHCIAL USEONLY-

Please Enter Footer Text...

Doc ID: 6689693

Lesson 01: Introduction: Your First Python

(b) (3)~R.L.

86-36

Program

Updated 8 months ago by[_______|in COMP 3321

- 3 24 2693 747

Cress L pytnon

(U) Covers Anaconda installation, the python interpreter, basic data types, running code, and some built-ins.

Recommendations

UNCLASSIFIED/FoR-OHHESHALTUYSE-ONEY-
(U) Welcome To Class!

(U) Let's get to know each other. Stand up and wait for instruction.

(U) Who has a specific project in mind?

(U) Method 1: Anaconda Setup

(U) Alternately, follow this tradecraft hub article. https://production.tradecraft.proj.nsa.ic.gov/entry/29475

(U) We will be using version 4.4.0 of the Anaconda3 Python distribution, available from Get Software. Anaconda includes many packages for large-

scale data processing, predictive analytics, and scientific computing.

(U) Installation Instructions

Approved for Release by NSA on 12-02-2019, FOIA Case # 108165

Doc ID: 6689693 _)
1. (U) Click on the link above

2. (U) Click on the "Download Now" button
3. (U) Accept the agreement and click "Next"

4. (U) Click "Next"
5. (U) Download "Anaconda3-4.4.0-Windows-x86_64.exe
6. (U) Open the folder containing the download (typically this is your "Downloads" folder)

7. (U) Doubleclick the Anaconda3-4.4.0-Windows-x86_64.exe file

8. (U) Click "Next" to Start the installer
9. (V) Click the "I Agree" button to accept the license agreement
10. (U) Choose to install for "Just Me" and click "Next"
11. (UHBYO) Select a destination folder on your U: drive (such as U:\private\anaconda3)
1. (UH2UY63 Click the "Browse..." button, Click on "Computer" and select the U: drive
2. (UHFBUYO5 Select "My Documents” and press "OK" [Note: DO NOT Make a folder named anaconda3]

3. (UHOU6Y) In the Destination Folder input area add "anaconda3" as the folder name
4. (UFSY6)-Click "Next"

12. (U) Click "Install" to begin the install (leave checkboxes as is)
13. (U) Wait about 30 minutes for the install to complete
P.L. 86-36
(U) Running python
.'.-.-.-,.--'-""""" o’ ”

(U) You can run python directly on yourgpesktop and immediately interact with it: " .

1. (U) Open a Windows command window (Type "cmd" in the Windows Programs search bar)
2. (U) Type "python" in the command window . :

(U) Running Jupyter
' |

(U) Alternately, you can run python in a browser from a web-enabled pgho’n, called a jupyter notebook.
JThe Notebook Gallery is at go nbgallery. For this class, however, we'l each

o
S ® 2 ueyg s

start up our own individual Jupyter web-portal to run our class notebooks.

1. (U) From the Windows Start menu, search for "jupyter”

2. (U) Right-click on Jupyter Notebook in the results and select Properties
3. (UHBUO) In the "Target" field, add " u:\private" at the end (after "notebook") [Note: don't forget the space before u:\private]

4. (U) Click Apply and then OK
5. (U) Search for jupyter again in the start menu and click on Jupyter Notebook to run it
6. (U) Wait a few moments...This should launch Jupyter in your browser at hittp://localhost:8888/tree

(U) Method 2: LABBENCH Setup

Doc ID: 6689693

(UHFHOUJO) Step 1: Access to LABBENCH

» (UAFOUYO) go iagree and read and accept the INHERE User Agreement.

(UHFOUPO)-This is a prerequisite for access to LABBENCH, a VM system where we will be working. It may take a few hours for the approval to
propagate through the system.

(U) Step 2: Visit Jupyter Gallery

1. (UHFUY6} g0 jupyler

2. (U) Click on the Jupyter Gallery logo to get to the Gallery.

3. (U) Click on Tour the Gallery for quick demo.

4. (UHEYO) To find the course notebooks, either search for "Syllabus" or choose Notebooks > Learning > COMP 3321 and sort by title to find
the Syllabus.

(UHFOUJO) Step 3: Set up Jupyter on LABBENCH

(UHFOUYOY At the Jupyter Gallery, click "Jupyter on LABBENCH" for a tutorial on how to get set up.

(U) Basic Basics: Data and Operations

(U) The most basic data types in Python are:

» Numbers
o Integer <type 'int'> (these are "arbitrary precision"; no need to worry whether it's 32 bits or 64 bits, etc.)
o Float <type 'float'>
o Complex <type ‘complex'> (using 1j for the imaginary number)
o Strings <type ‘str'>
o No difference between single and double quotes
o Escape special characters (e.g. quotation marks)
o Raw string r'raw string' prevents need for some escapes
o Triple-quotes allow multiple line strings
o Unicode u'‘Bert \x26 Ernie' <type ‘unicode'>
» Booleans: True and False

(U) We operate on data using

» operators, e.g. mathematical operators +, - ;the keyword in , and others

Doc ID: 6689693 , , ,
« functions, which are operations that take one or more pieces of data as arguments, e.g. type('hello'), len('world’),and

» methods, which are attached to a piece of data and called from it using a . to separate the data from the method, e.g. 'Hello
World'.split() , or 'abc’.upper()

(U) Deep in the guts of Python, these are all essentially the same thing, but syntactically and pedagogically it makes sense to separate them.
(U) Pieces of basic data can be stored inside containers, including

o Lists
» Dictionaries
« Sets

but we'll introduce those later.

(U) The Interactive Interpreter

With that basic background, let's try some things in your Windows command window...

U:\private>python
Python 3.5.1 |Anaconda 2.5.0 (64-bit)| (default, Jan 29 2016, 15:01:46) [MSC v.1900 64 bit (AMD64)] on win32
Type "help"”, "copyright", "credits" or "license" for more information.

5+7

type(5+7)

4.5 - 5.5

type(7.1 - 2.1)

13/5 # this changed in python3
13//5

15 * 43

"hello" + " world"

"hello " * 10

(U) Executing code in a file

Doc ID: 6689693
Open the file first-program.py (or anything ending with .py) in your favorite editor (I use emacs , but you can use whatever you want).

(V) If you don't have a favorite editor do this:

1. (U) Go to your Jupyter portal at http:/localhost:8888/tree
2. (U) Pull down the "New" button menu and choose "Text File"
3. (U) Click on the "Untitled1.txt" name and enter the new file name as "first-program.py"

(U) Type some Python statements in it:

5+7
9*43
8%*12

(U) Don't forget to save it (File->Save from Jupyter).
(U) To run it, give the file name as an argument to Python:

Make sure the command window is referencing the same folder as the file. That is U:\private for most.
If your command window is not referencing U:\private, do this:

1. Enter "U:"

2. Enter "cd private"

U:\private>python first-program.py
(U) Nothing appears to happen, because auto-printing of the output of a function only happens in the interpreter. Fix it up:

print (5+7)
print(9*43)
print(8**12)

(U) Built-in functions and methods

(U) Some functions work on almost any arguments that you supply:

« help(x) : shows interactive help

« dir(x) : gives the directory of the object, i.e. all the methods available

» type(x) : tells you the type of x —a type is almost the same as any other object

e isinstance(a,b) : tells if object a is an instance of b, which must be a type ; something like type(a) == b
e print

» hasattr(a,b) :tells whether a has something by the name b ; something like b in dir(a)

e getattr

Doc ID: 6689693

id

e input
(U) Constructor functions usually try to do their best with the argments you give, and return the appropriate data of the requested type:

» str:turns numbers (and other things) into their string representations

» int:truncates float , parses str ings containing a single integer, with optional radix (i.e. base), error on complex
e float : parses str ings, gives float representation of int , error on complex

« complex : takes (real,imag) numeric arguments, or parses a str for a single number

(U) Other functions only work with one or two types of data:

» Numbers:
o Functions: abs, round, float, max, min, pow (modular), chr, divmod , etc.
o Operators: Standard math, bitwise: <<, >>, &, |, ~, ~
o Methods: Numeric classes don't have methods

 Strings:

o Functions: len, min, max, ord
o Operators: +, * (with a number), in
o Methods: strip, split, startswith, upper, finhd, index , many more; use dir('any string') to find more

(U) Exercises:

1. Make a shopping list of five things you need at the grocery store. Put each item on it's own line in a cell. Remember to use quotes! Use print()
so that each of your items displays (try it first without).

2. Your groceries ring up as 9.42, 5.67, 3.25, 13.40, and 7.50 respectively. Use python as a handy calculator to add up these amounts.

3. But wait! You decide you to buy five of the last item. Re-calculate your total.

4. Using the len() function, determine the number of characters in the string "blood-oxygenation level dependent functional magnetic
resonance imaging" (Fun fact: this string is the longest entry in WordNet3.1 Index).

5. Pick your favorite snack. Use the * operator to print 100 copies of it. Modify your code to have them print with spaces between them.

6. Challenge: Run dir('any string') . Pick two methods that sound interesting and run help(‘any string'.interesting method) for both of
them. Can you figure out how to use these methods?

7. Bonus challenge: Can you figure out how to get the same output as Exercise 1 using only one print statement? If so, can you also do it in one
line of code?

UNCLASSIFIEDHFOR-OFHCIAE USEONLEY-

Doc ID: 6689693

Lesson 02: Variables and Functions

Updated 5 months ago by:iﬁ COMP 3321

p 3 3 1196 473

(U) Introduction to variables and functions in Python.

Recommendations

UNCLASSIFIED
(U) My Kingdom for a Variable

something--a number, a string, or something more complicated, like a list, an object, or even a type.

(B) (3) =Py

86=36

| (U) All the numbers and strings in the world won't do you any good if you can't keep track of them. A variable in Python is a name that's attached to

(U) Python is dynamically typed, which means that a variable, once declared, can hold different types of data over its lifetime. A variable is declared

with the = operator. Go ahead, give that value a name!

X =2

(U) In interactive mode, a _ is a reference to the last cell output.
9*8

(U) This can be especialy helpful when you forget to save the output of a long computation by giving it a name.

Doc ID: 6689693
y =x+5

(U) Notice the line y = x + 5 produced no output, so was ignored when _ was called.
isinstance(x, int)

isinstance(x, str)

(U) So, let's change what x is equal to (and even change its type!) by just reassigning the variable name.
x = "Hello"

isinstance(x, int)
isinstance(x, type(8))
isinstance(x, type('a'))

yeEX+d

(U) So what about converting from one type to another?
a = "3.123¢4"

type(a)

b = float(a)

type(b)

b

float(x) # This should fail. Why?

¢ = str(b)

[
]

int(b)

Doc ID: 6689693
(U) Go ahead and use the dir() function to see what variables you have defined. This commands shows all the objects that are defined in your

current scope (we will talk about scope later).
dir()

del x
dir()
X + 5 # Why does this crash?
(U) We can also assign variables with some fancy shortcuts:
a=b=c=290

print(a)
print(b)
print(c)

X, y=1, 2

print(x)
print(y)

Z =X, 2 # What does this do??
Z
X, Y, z=1, 2 # How about this?
Note that since the last command failed, the values of x, y, and z were unchanged.

print(x)
print(y)

Xy ¥ =¥ X # Fast Swapping!

print(x)
print(y)
(U) Variable names can be assigned to all the different object types. Keep these tricks in mind as you learn about more complex types.

(U) Let's talk lists for a minute. We'll go into details about containers later in the course, but you'll need to know the basics for one of the exercises.
Lr=-[4, %25 3 4]

Doc ID: 6689693
1 % 1

5in 1l
1 - ["One", "two", "thl"ee", "'Four‘“]

"one" in 1

(U) Exercises

1. Save a copy of your favorite snack in a variable. Using that variable, print your snack a 100 times.

2. Ask your neighbor what their favorite snack is. Save it in a variable. You should now have two variables containing snacks. Add (concatenate)
them together and print the result 100 times.

3. Using the [] notation above, make a list of five groceries and save in a variable. (If you did the earlier grocery list exercise, use those
items). Using the variable from Exercise 1, test to see if your favorite snack is " in " the list.

4. Using your grocery list from Exercise 3, and the variable from Exercise 2, test to see if your neighbor's favorite snack is on your list just as
you did for your snack.

5. Use the "fast swapping" to swap your favorite snack with your neighbor's. Print both variables to see the result. Are you happy or sad with
your new favorite snack?

(U) Functions

(U) So what else can we do with variables? Lots!
7 % 2 # Modulo operator

7 %
min(2, 7) # built-in function
max(2, 7)

dir("a")

(U) Python comes with a bunch of built-in functions. We've used a few of these already: dir(), min(), max(), isinstance(),and type() .
Python includes many more, such as:

abs(-1)

round(1.2)

Doc ID: 6689693
len("12345")

(U) But functions take memory, and there are hundreds of modules included with Python, so we can't have access to everything that Python can do
all at once. In order to use functions that aren't built in, we must tell Python to load them. We do this with the import statement:

import os

(U) This loads the os module. A module is a file containing definitions and statements, and are generally used to hold a collection of relatated
functions. The os module contains functions relating to the Operating System of the computer where Python is running.

(U) So what's contained in os ? Let's look:
dir(os)

(U) That gives you a list of everything defined in the os module.

0s.name # why doesn't name require parentheses?
os.listdir()

(U) Python has robust documentation on the standard modules. Always consult the documentation if you are unsure how to use a function.

(U) What if | don't need everything in a module?
from os import listdir

listdir()

(U) We'll get into more modules later in the class. For now we'll just touch on two others:
sys , which contains variables and functions relating to Python's interaction with the system; and random , which provides random number
generation.

import sys

dir(sys)

sys.argv # holds command Line arguments

sys.exit() # exits Python (you may not want to type this)
import random

random.randint(1, 5)

Doc ID: 6689693

random. random()

(U) Exercises

1. Make a list of your grocery prices (9.42, 5.67, 3.25, 13.40, and 7.50 respectively) and store in a variable. Use built in functions to find the

price of the cheapest and most expensive item on your grocery list.
import random and run help(random.randint) . Use randint to randomly print between 0 and 100 copies of your favorite snack.

. Run dir(random) . Find a function in random that you can use to return a random item from your grocery list. Remember you can
use help() to find out what different functions do!

. Write code to randomly select a price from your list of grocery prices, round to the nearest integer, and print the result.

. Challenge: Your grocery store is having a weird promotion called "win free change" ! A random item from your (price) list is chosen and you
pay 10 dollars. If the item is less than 10 dollars you get your item and the change back as normal; however, if you get lucky and the price is
more than 10 dollars you get the item and the difference in price back as change. Write code randomly pick a price from your price list and
print out the amount of change the cashier has to pay you during this promotion. Hint: use the built in abs function.

W N

a b

(U) Making your own functions

(U) Functions (in Python) are really just special variables (or data types) that can have input and output. Once defined, you can treat them like any
other variables.

(U) Functions are defined with a specific syntax:

« Start with the keyword def ,

followed by the function name, and

« a list of arguments enclosed in () , then

the line ends witha : , and

the body of the function is indented on following lines.

(U) Python uses white space to determine blocks, unlike C, Java, and other languages that use {} for this purpose.

(U) To have output from the function, the return keyword is used, followed by the thing to be returned. For no output, use return by itself, or just
leave it out.

def first_func(x):
return x*2

first_func(10)

first_func('hello"')

Doc ID: 6689693
(U) Wow...Python REALLY does not care about types. Here is the simplest function that you can write in Python (no input, no output, and not much

else!):

def simple():
pass # or return

simple() # BORING!

(U) Let play around a bit with a new function...we shall call this powerful function add .

def add(a, b):
return a+b

add(2, 3)
add(1)
add('a',3)
add('a','b")
add

def add2(a, b):
print (a+b)

X = add(2, 3) # What did this do?
X
X = add2(2, 3) # what did this do?
X

(U) Don't forget: function names are variables too.
x = add # What did this do?

add = 7 # And this?
add(2,3) # We broke this function. A lesson here.

x(2,3)

(U) Exercises

Doc ID: 668969

2

(S 0F OV

(U)

def

(U) Yo
def

(2,

(2,

3

1. Write an all_the _snacks function that takes a snack (string) and uses the * operator to print it out 100 times. Test your function using

each of the items on your grocery list. What happens if you enter a number into your function? Is the result what you expected?

You may have noticed that your all the_snacks function prints all your snacks squished together. Rewrite all the snacks so that it takes
an additional argument spacer . Use + combine your snack and spacer before multiplying. Test your function with different inputs. What
happens if you use strings for both snack and spacer ? Both numbers? A string and an integer? Is this what you expected?

. Rewrite all the snacks so thatit also takes a variable num that lets you customize the number of times your snack gets printed out.
. Write an in grocery list function that takes in a grocery item returns True or False depending on whether the item is on your list.
. Write a price_matcher function that takes no arguments, but prints a random grocery item and a random price from your price list every time

it is run.

. Challenge: modify your price matcher to return item, price rather than printthem. Write a free_change function that calls your

new price_matcher and uses the result to print your item and the absolute value of the change for the item assuming you paid $10.

Arguments, Keyword Arguments, and Defaults

(s b, ¢):
return (a + b) * ¢

u can give arguments default values. This makes them optional.

f(a, b, c=1):
return (a + b) * ¢

3)

3, 2)

(U) You can call arguments by name also.

£(b=
£(b=

def

(U)

1.

3

2, a=5)
2, c=5)

g(a=1, b, ¢):
return (a + b) * ¢ # What happens here?

Exercises

Rewrite all_the _snacks sothat num amd spacer have defaults of 16e and ', ' respectively. Using your favorite snack as input, try
running your function with no additional input.

Try running all_the_snacks withyour favorite snack and the spacer '! * and no additional inputs. How would you run it while inputing your
favorite snack and 42 for num while keeping the default for spacer ? Can you use this method to enter spacer and num in reverse order?

Doc ID: 6689693

Scope

(U) In programming, scope is an important concept. It is also very useful in allowing us to have flexibility in reusing variable names in function
definitions.

X =5

def f():
X =6
print(x)

O

(V) Lets talk about what happened here. Whenever we try to get or change the value of a variable, Python always looks for that variable in the most
appropriate (closest) scope.

(U) So, in the function above, when we declared x = 6, we were declaring a local variable in the definition of . This did not alter the
global x outside of the function.
If that is what you want to happen, just use the global keyword.

X =5

def f():
global x
X =6

0

(U) Be careful with scope, it can allow you to do some things you might not want to (or maybe you do!), like overriding built-in functions.

len('my string is longer than 3')

def len(x):
return 3

Doc ID: 6689693

len('my string is longer than 3')

(U) input

(U) The input function is a quick way to get data accessed from stdin (user input). It takes an optional string argument that is the prompt to be
issued to the user, and always returns a string. Simple enough!

a = input('Please enter your name: ')

(U) Advanced Function Arguments

(U) Most of the time, you know what you want to pass into your function. Occasionally, it's useful to accept arbitrary arguments. Python lets you do
this, but it takes a little bit of syntactic sugar that we haven't used before.

« List and dictionary unpacking
« List and dictionary packing in function arguments

(U) Exercises

1. Use input to ask for your favorite color and store it in the variable my color . Use input to ask for your neighbor's favorite color and store
it in the variable neighbor _color .

2. Use input to ask for your favorite number and store it in the variable my num . Run 2 + my num . Why does this fail? How can you fix it?

3. Write a "April fool's" color_swapper function that takes my color and and neighbor_color as inputs and prints a message declaring what
your and your neighbor's favorite colors are respectively. Add a line before the print that swaps the contents of the variables so that now
message is printed with your favorite colors swapped. Run your function and then print the contents of my_color and neighbor_color . How
were you able to swap them in the function without swapping them in your notebook?

4. Challenge: Write a global color swapper that swaps your colors globally. Run your function and then print the contents
of my_color and neighbor_color . Why might this be a bad idea, even for an April fool's joke?

(U) Review

1. Write a function called '"Volume' which computes and returns the volume of a box given the width, length, and height.
2. Write a function called "Volume2' which calculates the box volume, assuming the height is 1, if not given.
3. Challange: Import the 'datetime' module. Experiment with the different methods. In particular, determine how to print the current time.

Doc ID: 6689693

Lesson 2 - Function Exercises

(B (3)—P, L

86-36

o e aasnsses®
5 e e me

PR

- s s » ==

Created almost 3 years ago by| | in COMP 3321
@3 3859

m exercises

(U) Function Exercises for COMP3321 Lesson 2

Recommendations

(U) Lesson 2 - Functions Exercises

(U) Write a function isbivisibleBy7(num) to check if a number is evenly divisible by 7.
>>> isDivisibleBy7(21)

True

>>> isDivisibleBy7(25)

False

(U) Write a function isbivisibleBy(num,divisor) to check if num is evenly divisible by divisor.
>>> isDivisibleBy(35,7)

True

>>> isDivisibleBy(35,4)

False

(U) Make a function shout(word) that accepts a string and returns that string in capital letters with an exclamation mark.
>>> shout("bananas")
'BANANAS!'

(U) Make a function introduce() to ask the user for their name and shout it back to them. Call your function shout to make this happen.

>>> What's your name?
>>> Bob
HI BOB!

Doc ID: 6689693

Lesson 2 - Variable Exercises

v « = s
‘.-..uuun--
)

Created almost 3 years ago b in MP 3321
R yees g y[Jincompas21

pyon

(V) Variable Exercises for COMP3321 Lesson 2

Recommendations

(U) Lesson 2 - Variables Exercises

(U) Identify the type of each of the following variables, and add the type after each variable in a comment.

= 2999

= 90.0

= “Has"

= "\u@CAe_\uecae"
= "True"

= True

= len("sample")
100**30
=1>1

= 30%7

= 30/7

=b + 7

= 128 << 1

= bin(255)

= [m,1,k,n]

= len(o)

T O 3 83 H X W H T -hMD QO N T O
[}

(U) What value is in variable my_var at the end of these assignments?
Add a comparison after the last statement in the form of my_val ==

{b)(3) =BT

86-36

Doc ID: 6689693

my_var

my_var

my_var

my_var

my_var

my_var

= 99

+= 11

str(my_var)

*22

len(my_var)

*= 4

Doc ID: 6689693

Lesson 03: Flow Control

v

Updated over 1 year ago by| ||n COMP 3321
@3 2 855 381

(U) Python flow control with conditionals and loops (if, while, for, range, etc.).

Recommendations

UNCLASSIFIED
(U) Introduction

(b) (3)-P.L.

86-36

(U) If you have ever programmed before, you know one of the core building blocks of algorithms is flow control. It tells your program what to do next

based on the state it is currently in.

(U) Comparisons

(U) First, let's look at how to compare values. The comparison operators are > ,
what you think: return True or False depending on whether the statement is true or false.

2 &3

25 D

»>=, <, <=, l=,and ==.When working with numbers, they do

Doc ID: 6689693
(U) Python 2.x will let you try to compare any two objects, no matter how different. The results may not be what you expect. Python 3.x only
compares types where a comparison operation has been defined.

‘apple’ > ‘orange’ # case-sensitive alphabetical
‘apple’ > 'Orange’
'apple' > ['orange']

‘apple' > ('orange',)

(U) We will leave more discussion of comparisons for later, including how to intelligently compare objects that you create.

(U) Exercises

1. Write a you_won function that randomly picks a number from your price list (9.42, 5.67, 3.25, 13.40, and 7.50) and
prints True or False depending on whether the random number is greater than 10.
2. Write a function snack_check that takes a string snack and returns True or False depending on whether or not it is your favorite snack.

(U) Conditional Execution: The if Statement

(U) The if statement is an important and useful tool. It basically says, "If a condition is true, do the requested operations."
def even(n):

if (n % 2 == 0):
print('I am even!')
even(2)

even(3)

even('hello') # That was silly

(U) What if we want to be able to say we are not even? Or the user submitted a bad type? We use else and elif clauses.

Doc ID: 6689693

def even(n):
if (type(n) != int):
print('I only talk about integers')
elif (n % 2 == 0@):
print('I am even!')
else:
print('I am odd!')

even(2)
even(3)

even('hello")

(U) Exercises

1. Re-write the snack_check to take a string snack and prints an apporpriate response depending on whether the input is your favorite snack
or not.

2. Write an in_grocery list function that takes in a grocery item prints a different message depending on whether grocery_item is in your
grocery list.

3. Modify in_grocery list totestif grocery item is a string. Print a message warning the user if it is not.

4. Challenge: Re-write the you won function to randomly choose a number from your price list and print appropriate message depending on
whether you won (the number was greater than 10) or not. Also include the amount of change you will be receiving in your message. (Recall
you are winning the amount change you would have owed...).

5. Advanced challenge: Write a function that imports datetime and uses it to determine the current time. This function should print an
appropriate message based on the time ex: if the current time is between 0900 and 1000, print the message "Morning Lecture time!"

(U) Looping Behavior
(U) The while Loop

(U) The while is used for repeated operations that continue as long as an expression is true.

(U) The famous infinite loop:
while (2 + 2 == 4):
print('forever')

(U) A mistake that may lead to an infinite loop:

Doc ID: 6689693
i=9

while (i <= 20):
print(i)

(U) The below is probably a more sensible thing to type.

i=0
while (i <= 20):

print(i)
i+=1

(U) break and continue

(U) For more control, we can use break and continue (they work just as in C). The break command will break out of the
smallest while or for loop:

i=20
while(True):
i+=1
print(i)
% (1 == 28):

break

(U) The continue command will halt the current iteration of the loop and continue to the next value.
i=0

while(True):

i+=1

2fF (i == 10):
print("I am 10!")
continue

print (i)

A% (i == 20):
break

Doc ID: 6689693

(U) The else clause

(U) You can also have an else statement at the end of a loop. It will be run only if the loop completes normally, that is, when the conditional
expression results in False . A break will skip it.
i=0
while (i < 2):
print(i)
i+4+=1
else:
print("This executes after the condition becomes false.")
print("Done!")

i =9
while (i < 2):

print (i)

if True:

break

i4=1
else:

print("This won't print because the loop was exited early.")
print(“Done!")

(U) Exercises

Hint: you will not need continue or break for these exercises.

1. Previously we printed out many copies of a string using the * operator. Use a while loop to print out 10 copies of your favorite snack. Each
copy can be on it's own line, that's fine.

2. Mix and match! Write a while loop that uses the * to print multiple copies of your favorite snack per line. Print out 10 lines with the number
of copies per line corresponding to the line number (your first line will have one copy and your last line will have 10).

3. Challenge: Write a while loop that prints 100 copies of your favorite snack on one single (wrapped) line. Hint: use + .

(U) The for loop

(U) The for loop is probably the most used control flow element as it has the most functionality. It basically says, "for the following explicit items,
do something." We are going to use the listtype here. More interesting properties of this type will follow in another lesson.

Doc ID: 6689693
tor i An [1,2,3,4,5; 8,8, "¢]:
print(i)

(U) The variable i "becomes" each value of the list and then the following code is executed:
Tar i AN [1,2,3,4,5, 6%,)
print(i, type(i))

for c in ‘orange':
print(c)

(U) Exercises

1. Write a for loop that prints out each character in the string "blood-oxygenation level dependent functional magnetic resonance imaging"
(Fun fact: this string is the longest entry in WordNet3.1 Index).

2. Take your grocery list of five items (or create one). Write a for loop to print out the message "Note to self, buy: " and then the grocery item.

3. Write a for loop that prints out a numbered list of your grocery items.

4. Clearly your favorite snack is more important than the other items on your list. Modify your for loop from Exercise 3 to use break stop
printing once you have found your favorite snack in your list. Question: Could you have achieved the same result without using a break ?
Bonus: if your snack isn't in the list, have your code print a warning at the end.

5. Challenge: use the string method split to write a for loop that prints out each word in the string "blood-oxygenation level dependent
functional magnetic resonance imaging". Hint: run help(str.split)

(U) for Loop Fodder: range and xrange

(U) Ok, that is great...but | want to print 1,000,000 numbers! The range function returns a list of values based on the arguments you provide. This
is a simple way to generate 0 through 9:

print(range(10))

for i in range(19):
print(i)

for i in range(190, 20):
print(i)

for i in range(10, 20, 2):
print(i)

Doc ID: 6689693

for i in range(100, 0, -5):
print(i)

(U) This makes a great tool for keeping a notion of the index of the loop!

a = "mystring"

for i in range(len(a)):
print("The character at position " + str(i) + " is " + a[i])

(U) Incidentally, the enumerate function is the preferred way of keeping track of the loop index:

for (i, j) in enumerate(a):
print("The character at position " + str(i) + " is " + 3Jj)

(U) In Python 3, the range function produces an iterator. For now, think of an iterator as an object that knows where to start, where to stop, and
how to get from start to stop, but doesn't keep track of every step along the way all at once. We'll discuss iterators more later.

(U) In Python 2, xrange acts like Python 3's range . range in Python 2 produces a list, so the entire range is allocated in memory. You should
almost always use xrange instead of range in Python 2.

b = range(100000000) # Ohh, that was fast
b # It's just an object!
for i in range(10000):

if (1 X 2 == 0):

print(i)

b = range(0, 1000000, 100)
b
b[@]
b[1]
b[2]

b[-1]

(U) Exercises

Doc ID: 6689693 _ , _
1. Use range to write a for loop to print out a numbered grocery list.

2. Use enumerate to print out a numbered grocery list. You've now done this three ways. What are some pros and cons to each technique?
There are often several different ways to get the same output! However, usually one is more elegant than the others.

3. Use range to write a for loop that prints out 10 copies of your favorite snack. How does this compare to useing a while loop?

4. Challenge: Write a "Guess my number" game that generates a random number and gives your user a fixed number of guesses.
Use input to getthe user's guesses. Think about what loop type you might use and how you might provide feedback based on the user's
guesses. Hint: what type does input return? You might need to convert this to a more useful type... However, now what happens if your
user inputs something that isn't a number?

UNCLASSIFIED

Doc ID: 6689693

Lesson 3 - Flow Control Exercises

LI
s s 88
"o ee
v T & LR
. a0

Updated almost 3 years ago by]| Jin COMP 3321
A3 331157

(U) Flow Control Exercises for COMP3321 Lesson 3

Recommendations

(U) Lesson 3 - Flow Control Exercises

(U) Change the loop below so that it prints numbers from 1 to 10.

for i in range(9):
print(i)

(U) Using a for loop and enumerate, write a function getindex(string, character) to recreate the string method .index

"skyscraper".index('c')
4

getindex("skyscraper”,'c')
4

(U) Using the shout function from the first set of basic exercises, write a shout_words(sentence) function that takes a string argument and "shouts"
each word on its own line.

shout_words("Everybody likes bananas")

EVERYBODY!

LIKES!
BANANAS'!

Doc ID: 6689693
(U) Write an extract_longer(length,sentence function that takes a sentence and word length, then returns a list of the sentence's words that

exceed the given length. If no words match the length, return False.

extract_longer(5, "Try not to interrupt the speaker.")
["interrupt', 'speaker. ']

extract_longer(7, "Sorry about the mess.")
False

Doc ID: 6689693

(b) (3)=P.L: 86—36

Lesson 04: Container Data Types

v .
w. B0 WURSE .

- 5 @ W 8,89 AW

e " = = 8@

Updated almost 3 years ago by in MP 3321
A3 2838415

T

(U) Lesson 04: Container Data Types

Recommendations

UNCLASSIFIED
(U) Introduction

(U) Now that we've worked with strings and numbers, we turn our attention to the next logical thing: data containers that allow us to build up
complicated structures. There are different ways of putting data into containers, depending on what we need to do with it, and Python has several
built-in containers to support the most common use cases. Python's built-in container types include:

list
tuple
dict

set
frozenset

aRrON -~

(U) Of these, tuple and frozenset are immutable, which means that they can not be changed after they are created, whether that's by addition,
removal, or some other means. Numbers and strings are also immutable, which should make the following statement more sensible:
the variable that names an immutable object can be reassigned, but the immutable object itself can't be changed.

(U) To create an instance of any container, we call its name as a function (sometimes known as a constructor). With no arguments, we get an empty
instance, which isn't very useful for immutable types. Shortcuts for creating non-empty 1list s, tuple s, dict s, and even set s will be covered in
the following sections.

list()

Doc ID: 6689693
dict()

tuple()

set()

(U) Many built-in functions and even some operators work with container types, where it makes sense. Later on we'll see the behind-the-scenes
mechanism that makes this work; for now, we'll enumerate how this works as part of the discussion of each separate type.

(U) Lists

(U)A 1list is an ordered sequence of zero or more objects, which are often of different types. It is commonly created by putting square brackets [
1 around a comma-separated list of its initial values:

a=['spam', 'eggs', 5, 3.2, [1e0, 200, 300]]

fruit = ['Apple’, 'Orange', 'Pear', 'Lime']
(U) Values can be added to or removed from the list in different ways:

fruit.append(’'Banana’)

fruit.insert(3, 'Cherry')

fruit.append(['Kiwi', 'Watermelon'])

fruit.extend(['Cherry’, 'Banana‘'])

fruit.remove('Banana’)

fruit

fruit.pop()

fruit.pop(3)

fruit

(U) The + operator works like the extend method, except that it returns a new list.
a + fruit

Doc ID: 6689693

a

fruit

(U) Other operators and methods tell how long a list is, whether an element is in the list, and if so, where or how often it is found.
len(fruit)

fruit.append('Apple’)

'Apple' in fruit

‘Cranberry’ not in fruit

fruit.count('Apple’)

fruit.index('Apple') # Careful--can cause an error

fruit.index('Apple’, 1)

(U) List Comprehension

(U) Great effort has been to make lists easy to work with. One of the most common uses of a list is to iterate over its elements with a for loop,
storing off the results of each iteration in a new list. Python removes the repetitive boilerplate code from this type of procedure with list
comprehensions. They're best learned by example:

a =[i for i in range(10)]

b = [i**2 for i in range(10)]

(i
I

= [[1, i**2, i**3] for i in range(19)]

Q.
|

= [[i, i**2, i**3] for i in range(10) if i % 2] # conditionals!

m
I

[[i+j for i in 'abcde'] for j in 'xyz'] # nesting!

(U) Sorting and Reordering

Doc ID: 6689693
(U) Sorting is another extremely common operation on lists. We'll cover it in greater detail later, but here we cover the most basic built-in ways of

sorting. The sorted function works on more than just 1ist s, but always returns a new list with the same contents as the original in sorted order.
There is also a sort method on 1list s that performs an in-place sort.

fruit.remove(['Kiwi', 'Watermelon']) # can't compare List with str
sorted_fruit = sorted(fruit)

sorted_fruit == fruit
fruit.sort()

sorted_fruit == fruit

(U) Reversing the order of a list is similar, with a built-in reversed function and an in-place reverse method for list s. The reversed function
returns an iterator, which must be converted back into a list explicitly. To sort something in reverse, you could combine the reversed and
the sorted methods, but you should use the optional reverse argument onthe sorted and sort functions.

r_fruit = list(reversed(fruit))
fruit.reverse()
r_fruit == fruit

sorted(r_fruit, reverse=True)

(U) Tuples

(U)Much like a 1ist ,a tuple is an ordered sequence of zero or more objects of any type. They can be constructed by putting a comma-
separated list of items inside parentheses (), or even by assigning a comma-separated list to a variable with no delimiters at all. Parentheses are
heavily overloaded--they also indicate function calls and mathematical order of operations--so defining a one-element tuple is tricky: the one
element must be followed by a comma. Because a tuple is immutable, it won't have any of the methods that change lists, like append or sort .

a = (1, 2, '"first and second')
len(a)

sorted(a)

a.index(2)

a.count(2)

Doc ID: 6689693
b = ll', |2', l3l

type(b)

c_raw = ‘1’
c_tuple = '1°,
c_raw == c_tuple
d_raw = ('d")
d_tuple = ('d',)

d_raw == d_tuple

(U) Interlude: Index and Slice Notation

(U) For the ordered containers 1ist and tuple , as well as for other ordered types like str ings, it's often useful to retrieve or change just one
element or a subset of the elements. Indexand slice notation are available to help with this. Indexes in Python always start at 0. We'll start out with a
new list and work by example:

animals = ['tiger', 'monkey', 'cat', ‘'dog', 'horse', 'elephant']
animals[1]

animals[1] = ‘chimpanzee’

animals[1:3]

animals[3] in animals[1:3]

animals[:3] # starts at beginning

animals[4:] # goes to the end

animals[-2:]

animals[1:6:2] # uses the optional step parameter

animals[::-1] == list(reversed(animals))

Doc ID: 6689693 o . _
(U) Because slicing returns a new list and not just a view on the list, it can be used to make a copy (technically a shallow copy):

same_animals = animals

different_animals = animals[:]

same_animals[@] = 'lion’
animals[@]

different_animals[@] = 'leopard’
different_animals[0] == animals[@]

(U) Dictionaries

(U) A dict is a container that associates keys with values. The keys of a dict must be unique, and only immutable objects can be keys. Values
can be any type.

(U) The dictionary construction shortcut uses curly braces { } with a colon : between keys and values (e.g. my_dict = {key: value, keyl:
valuel}). Alternate constructors are available using the dict keyword. Values can be added, changed, or retrieved using index notation
with keys instead of index numbers. Some of the operators, functions, and methods that work on sequences also work with dictionaries.

bugs = {"ant": 10, "praying mantis": 0}
bugs[‘'fly'] = 5

bugs.update({'spider': 1}) # Like extend
del bugs['spider']

"fly' in bugs

5 in bugs

bugs['fly ']

(U) Dictionaries have several additional methods specific to their structure. Methods that return lists, like items , keys , and values , are not
guaranteed to do so in any particular order, but may be in consistent order if no modifications are made to the dictionary in between the calls.
The get method is often preferable to index notation because it does not raise an error when the requested key is not found; instead, it
returns None by default, or a default value that is passed as a second argument.

Doc ID: 6689693
bugs.items() # Llist of tuples

bugs.keys()
bugs.values()
bugs.get('fly")
bugs.get('spider")
bugs.get('spider’', 4)
bugs.clear()

bugs

(U) Sets and Frozensets

(U) A set is a container that can only hold unique objects. Adding something that's already there will do nothing (but cause no error). Elements of
a set must be immutable (like keys in a dictionary). The set and frozenset constructors take any iterable as an argument, whether it's

a list, tuple, or otherwise. Curly braces { } around a list of comma-separated values can be used in Python 2.7 and later as a shortcut
constructor, but that could cause confusion with the dict shortcut. Two sets are equal if they contain the same items, regardless of order.

numbers = $8%([1,1,1,1,1,3,3,3,3,3,2,2,2,3,3,4])

letters = set('TheQuickBrownFoxJumpedOverThelLazyDog' .lower())

a ={} # dict

more_numbers = {1, 2, 3, 4, 5} # set
numbers.add(4)

numbers.add(5)

numbers.update([3, 4, 7])

numbers. pop() # could be anything

numbers.remove(7)

Doc ID: 6689693

numbers.discard(7) # no errror

(U) A frozen set is constructed in a similar way; the only difference is in the mutability. This makes frozen sets suitable as dictionary keys, but frozen
sets are uncommon.

a = frozenset([1,1,1,1,1,3,3,3,3,32,2,2,3,3,4])

(U) Sets adopt the notation of bitwise operators for set operations like union, intersection, and symmetric difference. This is similar to how
the + operator is used for concatenating list s and tuple s.

house_pets = {'dog', ‘cat', 'fish'}

farm_animals = {'cow', 'sheep’', 'pig', 'dog', 'cat'}
house_pets & farm_animals # intersection
house_pets | farm_animals # union

house_pets ~ farm_animals # symmetric difference

house_pets - farm_animals # asymmetric difference

(U) There are verbose set methods that do the same thing, but with two important difference: they accept 1list s, tuple s, and other iterables as
arugments, and can be used to update the set in place. Although there are methods corresponding to all the set operators, we give only a few
examples.

farm_animal_list = list(farm_animals) * 2
house_pets.intersection(farm_animal_list)
house_pets.union(farm_animal_list)

house_pets.intersection_update(farm_animal_ list)

(U) Comparison of sets is similar: operators can be used to compare two sets, while methods can be used to compare sets with other iterables.
Unlike numbers or strings, sets are often incomparable.

house_pets = {'dog', 'cat', 'fish'}
farm_animals > house_pets

house_pets < farm_animals

Doc ID: 6689693

house_pets.intersection_update(farm_animals)
farm_animals > house_pets

house_pets.issubset(farm_animal_list)

(U) Coda: More Built-In Functions

(U) We've seen how some built-in functions operate on one or two of these container types, but all of the following can be applied to any container,
although they probably won't always work; that depends on the contents of the container. There are some caveats:

» (U) When passed a dictionary as an argument, these functions look at the keys of the dictionary, not the values.

« (U) The any and all functions use the boolean context of the values of the container, e.g. @ is False and non-zero numbers are True,
and all strings are True except for the empty string '' , whichis False .

« (U) The sum function only works when the contents of the container are numbers.
generic_container = farm_animals # or bugs, animals, etc.

all(generic_container)
any(generic_container)

‘pig' in generic_container
‘pig' not in generic_container
len(generic_container)
max(generic_container)
min(generic_container)

Sum([l, 2) 3) 4, 5])

Lesson Exercises

Exercise 1 (Euler's multiples of 3 and 5 problem)

Doc ID: 6689693 : i
If we list all the natural numbers below 10 that are multiples of 3 or 5, we get 3, 5, 6 and 9. The sum of these multiples is 23.

Find the sum of all the multiples of 3 or 5 below 1000.

Exercise 2

Write a function that takes a list as a parameter and returns a second list composed of any objects that appear more than once in the original list

» duplicates([1,2,3,6,7,3,4,5,6]) should return [3,6]
» what should duplicates(['cow','pig','goat','horse’,'pig']) return?

Exercise 3

Write a function that takes a portion mark as input and returns the full classification

« convert_classification('"U//FOUQ") should return 'UNCLASSIFIED//FOR OFICIAL USE ONLY"
« convert_classification('S//REL TO USA, FVEY") should return 'SECRET//REL TO USA, FVEY"

UNCLASSIFIED

Doc ID: 6689693

Lesson 05: File Input and Output

o . @ W NN
L R LA

Updated almost 2 years ago by | | in 'Q-Q-MP 3321
A3 39841

pyon | cso]

(U) Lesson 05: File Input and Output

Recommendations

UNCLASSIFIED
(U) Introduction: Getting Dangerous

(b) (3)-P.L.

86-36

(U) As you probably already know, input and output is a core tool in algorithm development and reading from and writing to files is one of the most

common forms. Let's jump right in just to see how easy it is to write a file.
myfile = open('data.txt', ‘'w')
myfile.write("I am writing data to my file")
myfile.close()

(U) And there you have it! You can write data to files in Python. By the way, the variables you put into that open command are the filename (as a
string--do not forget the path) and the file mode. Here we are writing the file, as indicated by the ‘w' as the second argument to the open function.

(U) Let tear apart what we actually did.
open('data.txt', 'w')

(U) This actually returns something called a file object. Let's name it!

(V) Opening a file that already exists for writing will erase the original file.
myfile = open('data.txt', 'w')

Doc ID: 6689693 , . ‘ _ _
(U) Now we have a variable to this file object, which was opened in write mode. Let's try to write to the file:
myfile.write("I am writing data to my file")

myfile.read() # Oops...notice the error

myfile.close() # Guess what that did...

(U) There are only a few file modes which we need to use. You have seen 'w' (writing). The others
are 'r' (reading), 'a’' (appending), ‘r+' (reading and writing), and ‘b’ (binary mode).

myfile = open('data.txt', 'r')

myfile.read()

myfile.write("I am writing more data to my file") # Oops again...check our mode
mydata = myfile.read()

mydata # HEY! Where did the data go....

myfile.close() # don't be a piggy

(U) A cool way to use contents of a file in a block is with the with command. Formally, this is called a context manager. Informally, it ensures that
the file is closed when the block ends.

with open('data.txt') as f:
print(f.read())

(U) Using with is a good idea but is usually not absolutely necessary. Python tries to close files once they are no longer needed. Having files open
is not usually a problem, unless you try to open a large number all at once (e.g. inside a loop).

(U) Reading Lines From Files

(U) Here are some of the other useful methods for file objects:

lines_file = open('fewlines.txt', 'w')
lines_file.writelines("first\n")
lines_file.writelines(["second\n", "third\n"])

lines_file.close()

Doc ID: 6689693
(U) Similarly:
lines_file = open('fewlines.txt', 'r')
lines_file.readline()
lines_file.readline()

lines_file.readline()

lines_file.readline()

(U) And make sure the file is closed before opening it up again in the next cell

lines_file.close()

(U) Alternately:
lines = open('fewlines.txt', 'r').readlines() # Note the plurality

lines

(U)[EE) both read and readline(s) have optional size arguments that limit how much is read. For readline(s) , this may return incomplete
lines.
(U) But what if the file is very long and | don't need or want to read all of them at once. file objects behave as their own iterator.

lines_file = open('fewlines.txt', 'r')

for line in lines_file:
print(line)

The below syntax is a very common formula for reading through files. Use the with keyword to make sure everything goes smoothly. Loop through
the file one line at a time, because often our files have one record to a line. And do something with each line.

with open('fewlines.txt') as my_file:
for line in my_file:
print(line.strip()) # The strip function removes newlines and whitespace from the start and finish

The file was closed upon exiting the with block.

(U) Moving Around With tell and seek

Doc ID: 6689693
(U) The tell method returns the current position of the cursor within the file. The seek command sets the current position of the cursor within the

file.
inputfile = open('data.txt', 'r')

inputfile.tell()
inputfile.read(4)
inputfile.tell()
inputfile.seek(®)

inputfile.read()

(U) File-Like objects

(U) There are other times when you really need to have data in a file (because another function requires it be read from a file perhaps). But why
waste time and disk space if you already have the data in memory?

(U) A very useful module to make a string into a file-like object is called stringzo . This will take a string and give it file methods
like read and write .

import io

mystringfile = io.StringIO() # For handing bytes, use io.BytesIO
mystringfile.write("This is my data!") # We just wrote to the object, not a filehandle
mystringfile.read() # Cursor is at the end!

mystringfile.seek(9)

mystringfile.read()

newstringfile = io.StringIO("My data") # The cursor will automatically be set to @

(U) Now let's pretend we have a function that expects to read data from a file before it operates on it. This sometimes happens when using library
functions.
def iprintdata(f):
print(f.read())

iprintdata('mydata') # Grrr!
my_io = io.StringIO('mydata')

iprintdata(my_io) # YAY!

Lesson Exercises
Get the datg

Copy sonnet from htt

Rs://urn.nsa.ic.gov/t/tx6qm and paste into sonnet.txt.

Exercise 1

y

first letter capitalized to the output file. Remove all punctuation except apostrophe.

i i i sonnet_caps.txt
capitalize('sonnet-tXt', 'sonnet_caps.txt') => capitalized words written to

Exercise 2

tuation
icti ini for each word. Remove all punc

Write a function called file word_count() that takes a file name and returns a dictionary containing the counts

except apostrophe. Lowercase all words.

File—word-count('sonnet.txt') =>{ "1t 4, 'me': 2, ...}

Extra Credit

Wiite the counts dictionary to a file, one key:value per line.

UNCLASSIFIED

Doc ID: 6689693

Lesson 06: Development Environment and

Tooling o e

. "
v s w®
="

Created over 3 years ago by | Jin COMP 3321
M3 1407 9

(U) Lesson 06: Development Environment and Tooling

Recommendations

(U) Package Management

(U) The Problem: Python has a "batteries included" philosophy—it has a comprehensive standard library, but by default, using other packages
leaves something to be desired:

« Python doesn't have a classpath , and unless you are root , you can't install new packages for the whole system.

» How do you share a script with someone else when you don't know what packages are installed on their system?

« Sometimes you have to use Project A, which relies on a package that requires awesome-package v.1.1, but you're writing Project B and
want to use some features that are new in awesome-package v.2.0?

« The best-in-class package manager isn't in the Python standard library.

(U) The Solution: virtualenv

(U) The virtualenv package creates virtual environments, i.e. isolated spaces containing their own Python instances. It provides a utility script
that manipulates your environment to activate your environment of choice.

(U) It's already installed and available on the class VM. The -p flag indicates which Python executable to use as the base for the virtual
environment:

Doc ID: 6689693

[] 1$ virtualenv NEWENV -p /usr/local/bin/python
Newpythonexecutablem NEwENV/bln/python""'"""""""""""""""""""
Installing SetUPTODLS. . vie s oo e srmin v sraim e o1 o178 5 5 855 0 #isss woer esdios 530,185 ores s done. P.T,. 86-36
INSTALLING PAP.o s wvinim o0 s1itisis minewia 8 mioymnn sl stmse s s ot 4750 701 81010 90581800 o) o1 82000 oriaie . #5015 done. o s e e
(L |ﬂvmu;wﬂmﬁ""-"."..'.'..-'-::::::::::a::====k:ﬁzkufﬁﬁ'
/usr‘/local/bin/python AL il " .- .- .' .- p PR ‘. . 5k s
[I 1% source NEWENY/bin/aetdwate """ " et e
(NEWENV) [[T <13 "which python .;,':-'3‘." ’ TR :: 7
~/NEWENV/bin/python Tt i W
(NEWENV) [[S— T Scactivate e Ll
[l I':]$ “".-“‘..
(U) The virtualenv package can be gmg_l_o_a_d_egand run asa scrlpt to create a virtual environment based on any recent Python installation. A

virtual environment has the package manager pip pre-mstalled which can be hooked into the internal mirror of the Python Package Index
(PyPl) by exporting the correct addreSS to the P2 INDEX_URL environment variable:

. .
" -

{ I3 echo .$PiP‘_INDEX_URL
http://bbtuxezz.gp;nroj.nsa.ic.gov/PYPI
[T ~1$ python

Python 2.7.5 (default, Nov 6 2013, 10:23:48)
[GCC 4.4.7 20120313 (Red Hat 4.4.7-3)] on linux2
Type "help", "copyright"”, "credits" or "license" for more information.

import requests
Traceback (most recent call last):

File "<stdin>»", line 1, in <module>
ImportError: No module named requests

exit()

Doc ID: 6689693

[| ~]$ source NEWENV/bin/activate
[| ;13 .source NEWENV/Bih activate. 101 it iiitt ittt atrnnnnnnnns
(NEWENV) [] v1$.pip install requestscec0000080s0s0ss0ss] P.L. 86-36
Downloading/unpacking requests ’
Downloading requests-2.0.0.tar.gz (362kB): 362kB downloaded SPTeC . ;Q?- .
Running setup.py egg_info for package requests e wit * ’,:22% : .
. . @ w "‘O'O.'.. : .
Installing collected packages: requests L b o gy . =
Running setup.py install for requests oy ® e B . .
P » . .. - . - -
«® L ' o“’ * .' .. . »
Successfully installed requests Y LR ’.:.' % = . - i
Cleaning up... Y R Rk ¥ gy . o
(NEWENV) [[I ~1$ python e L : > : :
Python 2.7.5 (default, Nov 6 2013, 10:23:48) .".“ . e S " »
[GCC 4.4.7 20120313 (Red Hat 4.4.7-3)] on linux2 oo o w o . .
Type "help", "copyright", "credits" or "license" for more inPbsmeion..~ : B 2 .
import requests ot Pe N i] .
requests.__version__ 5 o v & . .
“ *» - L . - el
‘o '.“ .0 .' . i~ -
. o . . g ® =
. hed % { -
'2.0.0' A o . > . . '
. * . > > -
. Rl * N -
. * . . 5 -
import sys oy T e . * " % .
o‘ .‘“ . . b - ol
. o . ™~ . . "
sys.path o Mo o . . 5 .
" * é . . . &
e “" * - - = .

['*, */home———7/NEWEN®/1ib/python27.zip", '/home/:[/NENENV/Lib/pythonz.7', '/home/:’NEwENV/1ib/Pythbn2.7/p1at—
linux2', '/home/:jmeweww1ib/pythohz 7/1ib-tk', '/home/[——J/NEWENV/1ib/python2.7/1ib-old", ' /home/[___J/NEWENV/1i
b/python2.7/1ib-dynldad’, /usr/local/ilb/pythonz 7', '/usr/local/lib/python2.7/plat-1linux2’', '/usr/local/lib/python2.7/1ib-t
k', /home/:/NEWENV/llb/pythpnz 7/site- packages]

exit() *

(NEWENV) [[] ~1$ pip freeze
requests==2.0.0
wsgiref==0.1.2

Doc ID: 6689693 i)
Now we have a place to install custom code and a way to share it!
+ Develop code inside ~/NEWENV/1ib/python2.7/site-packages

« Capture installed packages with pip freeze >> requirements.txt and install them to a new virtualenv with pip install -r
requirements.txt .

(U) The Ultimate Package

(U) 1python is an alternative interactive shell for Python with lots of cool features, among which are:

» tab completion,

« color output,

« rich history recall,

« better help interface,

+ 'magic' commands,

» a web-based notebook interface with easy-to-share files, and
« distributed computing (don't ask about this)

(U) To get started:

Doc ID: 6689693

(NEWENV) [[| '-;]_$_pip install ipython
Downloading ipython-1.1.0.tar.gz (8'.fM'B’:' 8.7MB" downlvaded » » « « s 4 i, ..

Successfully installed ipython

Cleaning up... ,
(NEWENV) [[T <1% "ipython ’3'
Python 2.7.5 (default, Nov 6 2013, 10:23:48) ..'3
Type "copyright"”, "credits" or "license" for more information. Pl
t

%

s
IPython 1.1.0 -- An enhanced Interactive Python. 2 ¥ 3’

3
? -> Introduction and overview of IPython's features. ;‘zz
%quickref -> Quick reference. ‘*..‘:3
help -> Python's own help system. .." z’
object? -> Details about 'object’', use 'object??' for extra details. % .:'
In [1]: 1s ot ..'.'
BASE3/ Hello World.html Hello World.ipynb NEWENV/ .’30 ..'~
In[2]: hist .".’ Sur
1s o’ ...~
hiSt 0.0‘ .‘..'
In[3]: import os M "
In[4]: os.path #press tab i '0:’
os.path os.pathconf os‘pgtﬁconf_na;tfes os.pathsep
In [4]: os.path ..:,’ .:.'

(U) To use the web interface, you havé 0 install.sg'pblemental packages:

R . .

(NEWENV) [] ;v‘]% pip install pyzmg tornado jinja2 pygments
(NEWENV) [[I ~1% ipy.thbn' notebook --no-mathjax

(U) Just two more packages are rgqﬁiréd to get awesome inline graphics
(NEWENV) [[] ~1% pip install numpy

(NEWENV) [T ~1$ pip install matplotlib

P.L. 86-36

Doc ID: 6689693

Lessoon 07: Object Orienteering: Using Classes

(b) (3)-P.L. 86-36

-

Updated 9 months ago by} | in 'Q'Q'IV'IF" 3. 321 f
@3 4721356

(U) Introduction to classes, objects, and inheritance in Python.

Recommendations

UNCLASSIFIED
(U) Introduction

(U) From the name of it you can see that object-oriented programming is oozing with abstraction and complication. Take heart: there's no need to
fear or avoid object-oriented programming in Python! It's just another easy-to-use, flexible, and dynamic tool in the deep toolbox that Python makes
available. In fact, we've been using objects and object oriented concepts ever since the first line of Python code that we wrote, so it's already
familiar. In this lesson, we'll think more deeply about what it is that we've been doing all along, and how we can take advantage of these ideas.

(U) Consider, for example, the difference between a function and a method:

name = "Mark"
len(name) # function

name.upper() # method

(U) In this example, name is an instance of the str type. In other words, name is an object of that type. An object is just a convenient wrapper
around a combination of some data and functionality related to that data, embodied in methods. Until now, you've probably thought of

every str justinterms of its data, i.e. the literal string "mMark" that was used to assign the variable. The methods that work with name were
defined just once, in a class definition, and apply to every string that is ever created. Methods are actually the same thing as functions that

live inside a class instead of outside it. (This paragraph probably still seems really confusing. Try re-reading it at the end of the lesson!)

Doc ID: 6689693

(U) Your First class

(U) Just as the keyword def is used to define functions, the keyword class is used to define a type object that will generate a new kind of object,
which you get to name!. As an ongoing example, we'll work with a class that we'll choose to name Person :

class Person(object):
pass

type(Person)
type(Person) == type(int)
nobody = Person()

type(nobody)

(U) At first, the person class doesn't do much, because it's totally empty! This isn't as useless as it seems, because, just like everything else in
Python, classes and their objects are dynamic. The (object) after Person is not a function call; here it names the parent class. Even though
the person class looks boring, the fundamentals are there:

« the person class is just as much of a class as int or any other built-in,
» we can make an instance by using the class name as a constructor function, and
« the type of the instance nobody is Person, just like type(1) is int.
(U) Since that's about all we can do, let's start over, and wrap some data and functionality into the person :

class Person(object):
species = "Homo sapiens"”
def talk(self):
return "Hello there, how are you?"

nobody = Person()
nobody. species

nobody . talk()
(U) It's very important to give any method (i.e. function defined in the class) at least one argument, which is almost always called self . This is
because internally Python translates nobody.talk() into something like Person.talk(nobody) .

(U) Let's experiment with the person class and its objects and do things like re-assigning other data attributes.

somebody = Person()

Doc ID: 6689693

somebody.species = 'Homo internetus'’
somebody.name = "Mark"
nobody . species

Person.species = "Unknown"
nobody . species

somebody . species

Person.name = "Unknown"

nobody . name

somebody . name

del somebody.name

somebody . name

(U) Although we could add a name to each instance just after creating it, one at a time, wouldn't it be nice to assign instance-specific attributes like
that when the object is first constructed? The __init__ function lets us do that. Except for the funny underscores in the name, it's just an ordinary
function; we can even give it default arguments.
class Person(object):
species = "Homo sapiens"
def __init__ (self, name="Unknown", age=18):
self.name = name
self.age = age
def talk(self):
return "Hello, my name is {}.".format(self.name)

mark = Person("Mark", 33)
generic_voter = Person()
generic_worker = Person(age=41)

generic_worker. age

Doc ID: 6689693

generic_worker.name

(U) In Python, it isn't unusual to access attributes of an object directly, unlike some languages (e.g. Java), where that is considered poor form and
everything is done through getter and setter methods. This is because in Python, attributes can be added and removed at any time, so the getters
and setters might be useless by the time that you want to use them.

mark.favorite_color = "green"
del generic_worker.name

generic_worker.name

(U) One potential downside is that Python has no real equivalent of private data and methods; everyone can see everything. There is a
polite convention: other developers are supposed to treat an attribute as private if its name starts with a single underscore (_). And there is also
a trick: names that start with two underscores (__) are mangled to make them harder to access.

(U)The __init__ method is just one of many that can help your class behave like a full-fledged built-in Python object. To control how your object
is printed, implement __str__, and to control how it looks as an output from the interactive interpreter, implement _ repr__ . This time, we won't
start from scratch; we'll add these dynamically.

def person_str(self):
return "Name: {@}, Age: {1}".format(self.name, self.age)

Person.__str__ = person_str

def person_repr(self):
return "Person('{0@}',{1})".format(self.name, self.age)

Person.__repr__ = person_repr
print(mark) # which special method does print use?

mark # which special method does Jupyter use to auto-print?

(U) Take a minute to think about what just happened:

» We added methods to a class after making a bunch of objects, but every object in that class was immediately able to use that method.
» Because they were special methods, we could immediately use built-in Python functions (like str) on those objects.

(U) Be careful when implementing special methods. For instance, you might want the default sort of the Person class to be based on age. The
special method __ 1t (self,other) will be used by Python in place of the built-in 1t function, even for sorting. (Python 2 uses __cmp__ instead.)
Even though it's easy, this is problematic because it makes objects appear to be equal when they are just of the same age!

T

Doc ID: 6689693

def person_eq(self, other):
return self.age == other.age

Person.__eq__ = person_eq
bob = Person("Bob", 33)

bob == mark

(U) In a situation like this, it might be better to implement a subset of the rich comparison methods, maybe just __ 1t and _ gt ,orusea
more complicated __eq__ function that is capable of uniquely identifying all the objects you will ever create.

(U) While we've shown examples of adding methods to a class after the fact, note that it is rarely actually done that way in practice. Here we did
that just for convenience of not having to re-define the class every time we wanted to create a new method. Normally you would just define all class
methods under the class itself. If we were to do sowiththe __str_ , repr_ ,and __eq _ methods for the Person class above, the class would
like the below:

class Person(object):
species = "Homo sapiens"”
def __init__ (self, name="Unknown", age=18):
self.name = name
self.age = age
def talk(self):
return "Hello, my name is {}.".format(self.name)
def __str__(self):
return "Name: {0}, Age: {1}".format(self.name, self.age)
def __repr__(self):
return "Person('{0}',{1})".format(self.name, self.age)
def __eq__ (self, other):
return self.age == other.age

(U) Inheritance

(U) There are many types of people, and each type could be represented by its own class. It would be a pain if we had to reimplement the
fundamental person ftraits in each new class. Thankfully, inheritance gives us a way to avoid that. We've already seen how it
works: Person inherits from (or is a subclass of) the object class. However, any class can be inherited from (i.e. have descendants).

Doc ID: 6689693
class Student(Person):

bedtime = 'Midnight’

def do_homework(self):
import time
print("I need to work.")
time.sleep(5)
print("Did I just fall asleep?")

tyler = Student("Tyler"”, 19)
tyler.species
tyler.talk()

tyler.do_homework()

(U) An object from the subclass has all the properties of the parent class, along with any additions from its own class definition. You can still easy to
override behavior from the parent class easily--just create a method with the same name in the subclass. Using the parent class's behavior in the
child class is tricky, but fun, because you have to use the super function.
class Employee(Person):
def talk(self):
talk_str = super(Employee, self).talk()
return talk_str + " I work for {}".format(self.employer)

fred = Employee("Fred Flintstone", 55)
fred.employer = "Slate Rock and Gravel Company"

fred. talk()

(U) The syntax here is strange at first. The super function takes a class (i.e. a type) as its first argument, and an object descended from that
class as its second argument. The object has a chain of ancestor classes. For fred , that chainis [Employee, Person, object] .

The super function goes through that chain and returns the class that is after the one passed as the function's first argument.

Therefore, super can be used to skip up the chain, passing modifications made in intermediate classes.

(U) As a second, more common (but more complicated) example, it's often useful to add additional properties to subclass objects in the constructor.

Doc ID: 6689693

class Employee(Person):
def __init_ (self, name, age, employer):
super(Employee, self).__init__ (name, age)
self.employer = employer
def talk(self):
talk_str = super(Employee, self).talk()
return talk_str + " I work for {}".format(self.employer)

fred = Employee("Fred Flintstone", 55, "Slate Rock and Gravel Company")

fred. talk()

(U) A class in Python can have more than one listed ancestor (which is sometimes called polymorphism). We won't go into great detail here, aside
from pointing out that it exists and is powerful but complicated.

class StudentEmployee(Student, Employee):
pass

ann = StudentEmployee("ann", 58, "Family Services")
ann.talk()

bill = StudentEmployee("bill", 20) # what happens here? why?

(U) Lesson Exercises

(U) Exercise 1

(U) Write a Query class that has the following attributes:

« classification

« justification

» selector
(U) Provide default values for each attribute (consider using none). Make it so that when you print it, you can display all of the attributes and their
values nicely.

your class definition here

(U) Afterwards, something like this should work:

Doc ID: 6689693
queryl = Query (kiR betes , "Primary email address of Zendian diplomat", "ileona@stato.gov.zd")

print(queryl)

(U) Exercise 2

(U) Make a RangedQuery class that inherits from Query and has the additional attributes:

» begin date
« end date

(U) For now, just make the dates of the form YYYY-MM-DD. Don't worry about date formatting or error checking for now. We'll talk about
the datetime module and exception handling later.

(U) Provide defaults for these attributes. Make sure you incorporate the Query class's initializer into the RangedQuery initializer. Ensure the new
class can also be printed nicely.

your class definition here

(L) Afterwards. this should work:
query2 = RangedQuery (“Forr STy it—tO=tfm—fyii= . "Primary IP address of Zendian diplomat", "10.254.18.162", "2016-12-01", "201¢

4

print(query2)

(U) Exercise 3

(U) Change the Query class to accept a list of selectors rather than a single selector. Make sure you can still print everything OK.

UNCLASSIFIED

Doc ID: 6689693

Lesson 07: Supplement

Updatgd41°1 months ago by[________]in COMP 3321
a3

(U) Supplement to lesson 07 based on exercises from previous lectures.

Recommendations

You may have written a function like this to check if an item is in your grocery list and print something snarky if it's not:
def in_my_list(item):
my_list = ['apples','milk’','butter','orange juice']
if item in my_list:
return ‘'Got it!'
else:
return 'Nope!’

in_my_list('apples')
in_my_list('chocolate')

But what if | really wanted chocolate to be on my list? | would have to rewrite my function. If | had written a class instead of a function, | would be

able to change my list.
class My_list(object):
my_list = ['apples','milk', 'butter','orange juice']
def in_my_list(self,item):
if item in self.my_list:
return 'Got it!'
else:
return ‘Nope!’

Doc ID: 6689693
december = My _list()

december.in_my list('chocolate')
december.my_list =december.my_list +['chocolate’]

december.in_my list('chocolate"')

Now | have a nice template for grocery lists and grocery list behavior
jan = My_list()

december.my_list

jan.my_list

This isn't helpful:
print(december)

So we overwrite the __str__ function we inherited from object:

class My_list(object):
my_list = ['apples', 'milk’, 'butter’,'orange juice']

def __str__(self):
return 'My list: {}'.format(', '.join(self.my_list))
def __repr__(self):
return self._ str_ ()
def in_my_ list(self,item):
if item in self.my_list:
return 'Got it!’
else:
return 'Nope!’

december = My_list()
print(december)

december

Maybe | also want to be more easily test if my favorite snack is on the list...

Doc ID: 6689693

class My_list(object):
my_list = ['apples’,'milk’', 'butter’,'orange juice']
def __init__ (self,snack='chocolate'):
self.snack = snack
def __str__ (self):
return 'My list: {}'.format(', '.join(self.my_list))

def in_my_list(self,item):
if item in self.my_list:
return 'Got it!’'
else:
return 'Nope!’
def snack_check(self):
return self.snack in self.my_list

#My favorite snack is chocolate... But in january I'm going to pretend it's oranges
jan = My _list('apples')
jan.snack_check()

#But in February, I'm back to the default

feb = My_list()
feb.snack_check()

About that object...
dir(object)

These are all the things you inherit by subclassing object.
class caps_list(My_list):
def in_my_list(self,item):
response = super(caps_list,self).in_my_list(item)
return response.upper()
shouty = caps_list()

shouty.in_my list('chocolate')

dir(caps_list)

You can also call the super class directly, like so:

Doc ID: 6689693
class caps_list(My_list):
def in_my_list(self,item):
But you still have to pass self
response = My list.in_my_list(self,item)
return response.upper()

shouty = caps_list()
shouty.in_my list('chocolate')

Super actually assumes the correct things... Most of the time.
class caps_list(My_list):
def in_my list(self,item):
response = super().in_my_list(item)
return response.upper()

shouty = caps_list()
shouty.in_my_list('chocolate’)

help(super)

Doc ID: 6689693

Lesson 08: Modules, Namespaces, and

PaCkageS . (b) (3)-P.L. 86-36

-
s s
. ® ._®
-
- " L
v -
. LR

Updated over 2 years ago by| | in beP 3321
@3 2 464 207

python

(UAOYEO) A lesson on Python modules, namespaces, and packages for COMP3321.

UNCLASSIFIEDAFOR-OFHCIAEUSE-ONLY

(U) Modules, Namespaces, and Packages

(U) We have already been using modules quite a bit -- every time we've run import , in fact. But what is a module, exactly?

(U) Motivation

(U) When working in Jupyter, you don't have to worry about your code disappearing when you exit. You can save the notebook and share it with
others. A Jupyter notebook kind of behaves like a python script: a text file containing Python source code. You can give that file to the python
interpreter on the command line and execute all the code in the file (kind of like "Run All" in a Jupyter notebook):

$ python awesome.py

(U) There are a few significant limitations to sharing code in Jupyter notebooks, though:

1. what if you want to share with somebody who has python installed but not Jupyter?
2. what if you want to share part of the code with others (or reuse part of it yourself)?

Doc ID: 6689693 . »
3. what if you're writing a large, complex program?

(U) All of these do have native solutions in Jupyter:

1. convert the notebook to a script (File > Download as > Python)
2. copy-paste...?
3. make a big, messy notebook...?

(U) ...but they get unwieldy fast. This is where modules come in.

(U) Modules

(U) At its most basic, a module in Python is really just another name for a script. It's just a file containing Python definitions and statements. The
flename is the module's name followed by a .py extension. Typically, though, we don't run modules directly -- we import their definitions into our
own code and use them there. Modules enable us to write modular code by organizing our program into logical units and putting those units in
separate files. We can then share and reuse those files individually as parts of other programs.

(U) Standard Modules

(U) Python ships with a library of standard modules, so you can get pretty far without writing your own. We've seen some of these modules already,
and much of next week will be devoted to learning more about useful ones. They are documented in full detail in the Python Standard Library.
reference.

(U) An awesome example

(U) To understand modules better, let's make our own. This will put some Python code in a file called awesome.py in the current directory.

contents =
class Awesome(object):
def __init__ (self, awesome_thing):
self.thing = awesome_thing
def _ _str__ (self):
return "{0.thing} is awesome!!!".format(self)

a = Awesome("Everything")
print(a)

T

with open('awesome.py', 'w') as f:
f.write(contents)

Doc ID: 6689693 . ;
(U) Now you can run python awesome.py onthe command line as a Python script.

(U) Using modules: import

(U) You can also import awesome.py here as a module:
import awesome

(U) Note that you leave out the file extension when you import it. Python knows to look for a file in your path called awesome.py .

(U) The first time you import the module, Python executes the code inside it. Any defined functions, classes, etc. will be available for use. But notice
what happens when you try to import it again:

import awesome

(V) It's assumed that the other statements (e.g. variable assignments, print) are there to help initialize the module. That's why the module is only
run once. If you try to import the same module twice, Python will not re-run the code -- it will refer back to the already-imported version. This is
helpful when you import multiple modules that in turn import the same module.

(U) However, what if the module changed since you last imported it and you really want to do want to re-import it?
contents = """
class Awesome(object):
def __init__ (self, awesome_thing):
self.thing = awesome_thing
def __str__ (self):
return "{0.thing} is awesome!!!".format(self)

def cool(group):
return "Everything is cool when you're part of {0}".format(group)

a = Awesome("Everything")
print(a)

with open('awesome.py', 'w') as f:
f.write(contents)

(U) You can bring in the new version with the help of the importlib module:

import importlib
importlib.reload(awesome)

Doc ID: 6689693
(U) Calling the module's code

(U) The main point of importing a module is so you can use its defined functions, classes, constants, etc. By default, we access things defined in
the awesome module by prefixing them with the module's name.

print (awesome.Awesome("A Nobel prize"))
awesome. cool("a team")

print (awesome.a)

(U) What if we get tired of writing awesome all the time? We have a few options.

(U) Using modules: import _ as

(U) First, we can pick a nickname for the module:
import awesome as awe

print (awe.Awesome("A book of Greek antiquities"))
awe.cool("the Python developer community")

print (awe.a)

(U) Using modules: from __ import

(U) Second, we can import specific things from the awesome module into the current namespace:
from awesome import cool

cool("this class")
print (Awesome("A piece of string")) # will this work?

print(a) # will this work?

(U) Get everything: from ___ import *

(V) Finally, if you really want to import everything from the module into the current namespace, you can do this:

Doc ID: 6689693
from awesome import * # BE CAREFUL

(U) Now you can re-run the cells above and get them to work.

(U) Why might you need to be careful with this method?

what if you had defined this prior to import?
def cool():
return "Something important is pretty cool"

cool()

(U) Get one thing and rename: from ___ import as

(U) You can use both from and as if you need to:
from awesome import cool as coolgroup

cool()

coolgroup("the A team")

(U) Tidying up with __ main__

(U) Remember how it printed something back when we ran import awesome ? We don't need that to print out every time we import the module.
(And really aren't initializing anything important.) Fortunately, Python provides a way to distinguish between running a file as a script and importing it
as a module by checking the special variable _ name__ . Let's change our module code again:

Doc ID: 6689693

contents = """
class Awesome(object):
def __init_ (self, awesome_thing):
self.thing = awesome_thing
def __str__(self):
return "{@.thing} is awesome!!!".format(self)

def cool(group):
return "Everything is cool when you're part of {@}".format(group)

if __name__ == '__main__':
a = Awesome("Everything")
print(a)

with open('awesome.py', 'w') as f:
f.write(contents)

(U) Now if you run the module as a script from the command line, it will make and print an example of the Awesome class. But if you import it as a
module, it won't -- you will just get the class and function definition.

importlib.reload(awesome)

(U) The magic here is that __name__ is the name of the current module. When you import a module, its __name__ is the module name
(e.g. awesome), like you would expect. But a running script (or notebook) also uses a special module at the top level called _ main__:

__name__

(U) So when you run a module directly as a script (e.g. python awesome.py),its _ name__ is actually _ main__, not the module name any longer.

(U) This is a common convention for writing a Python script: organize it so that its functions and classes can be imported cleanly, and put the "glue”
code or default behavior you want when the script is run directly under the _ name__ check. Sometimes developers will also put the code in a
function called main() and call that instead, like so:

def main():
a = Awesome("Everything")
print(a)

if _ pame__ == '__main__'

Doc ID: 6689693

(U) Namespaces

(V) In Python, namespaces are what store the names of all variables, functions, classes, modules, etc. used in the program. A namespaces kind of
behaves like a big dictionary that maps the name to the thing named.

(U) The two major namespaces are the global namespace and the /ocal namespace. The global namespace is accessible from everywhere in the
program. The local namespace will change depending on the current scope -- whether you are in a function, loop, class, module, etc. Besides local
and global namespaces, each module has its own namespace.

(U) Global namespace

(U) dir() with no arguments actually shows you the names in the global namespace.
dir()

(U) Another way to see this is with the globals() function, which returns a dictionary of not only the names but also their values.
sorted(globals().keys())

dir() == sorted(globals().keys())
globals()['awesome']
globals()['cool’]

globals()['coolgroup’]

(U) Local namespace

(U) The local namespace can be accessed using locals() , which behaves just like globals() .

(U) Right now, the local namespace and the global namespace are the same. We're at the top level of our code, not inside a function or anything
else.

globals() == locals()

(U) Let's take a look at it in a different scope.

Doc ID: 6689693

sound/

_init__.py

formats/
__init__.py
wavread.py
wavwrite.py
aiffread.py
aiffwrite.py

effects/
__init__.py
echo.py
surround.py
reverse.py

filters/
__init__.py
equalizer.py
vocoder.py
karaoke.py

Top-level package
Initialize the sound package
Subpackage for file format conversions

Subpackage for sound effects

Subpackage for filters

(U) You can access submodules by chaining them together with dot notation:

import sound.effects.reverse

(U) The other methods of importing work as well:

from sound.filters import karaoke

(U) _init__.py

(U) What is this special __init__.py file?

» (U) Its presence is required to tell Python that the directory is a package
« (U) It can be empty, as long as it's there
« (U) It's typically used to initialize the package (as the name implies)

Doc ID: 6689693
__init__.py can contain any code, but it's best to keep it short and focused on just what's needed to initialize and manage the package. For

example:

» (U) setting the __all__ variable to tell Python what modules to include when someone runs from package import *

« (U) automatically import some of the submodules so that when someone runs import package , then they can run package.function rather
than package.submodule.function

(U) Installing packages

(U) Packages are actually the common way to share and distribute modules. A package can contain a single module -- there is no requirement for it
to hold multiple modules. If you're wanting to work with a Python module that is not in the standard library (i.e. not installed with Python by default),
then you will probably need to install the package that contains it. Python developers don't usually share or install individual module files.

(U) pip and PyPI

(U) On the command line, the standard tool for installing a package is pip , Python's package manager. (pip ships with Python by default
nowadays, but if you're using an older version, you may have to install it yourself.) To use pip , you need to configure it to point at a package
repository. On the outside, the big repository everyone uses is called PyPI (a.k.a. the Cheese Shop).

(UHOU6>r REPOMAN and nsa-pip

(UHFEB0) REPOMAN also imports and hosts a mirror of PyPI on the high side. Additionally, there is a nsa-pip server that connects to both
REPOMAN's PyPI mirror and a variety of internal NSA-developed packages hosted on GitLab.

» (UHOUO) List of internal NSA packages
» (UHOUO) Links to some NSA package docs

(U) ipydeps & pypki2

(UHFEY63} If you are working in a Jupyter notebook, it can be awkward trying to install packages from the command line with pip and then use
them. Instead, ipydeps is a module that allows you to install packages directly from the notebook. It also uses the pypkiz module behind the
scenes to handle HTTPS connections that need your PKI certificates.

import ipydeps (b) (3)-P.L. 86-36

ipydeps.pip('prettytable’) i 8

(U#FBUYB} Another thing that ipydeps does behind the scenes is try to install operatlng‘ system {rmoh 'Python) dependencies that the package
needs in order to install and run correctly. That is manually configured by, the Jupytér'team here at NSA. If you run into trouble installing a package
with ipydeps in Jupyter on LABBENCH, contact] Jand provide the name of the package you are trying to install and the errors
you are seeing.

Doc ID: 6689693

Modules and Packages

. n
s mw o
hd - = ®
w (.

Updated almost 3 years ago by| || in 'QQMP 3321
@A 3 307 60

Cicss Jsceass | oitab] pytron

(U) Lesson 08: Modules and Packages

Recommendations

(U) | see you like Python, so | put Python in your Python

(U) We've seen how to write scripts; now we want to reuse the good parts. We've already used the import command, which lets us piggyback on
the work of others—either through Python's extensive standard library or through additional, separately-installed packages. It can also be used to
proactively leverage the long tail of our own personal production. In this lesson, we cover, in much greater depth, the mechanics and principles of
writing and distributing modules and packages. Suppose you have a script named my_funcs.py in your current directory. Then the following works
just fine:

import my_funcs
import my_funcs as m

import importlib
importlib.reload(m)

from my_funcs import string_appender

from my_funcs import * # BE CAREFUL

(V) If you change the source file my_funcs.py in between import commands, you will have different versions of the functions imported. So what's
going on?

(U) Namespaces

Doc ID: 6689693
(U) When you import a module (what we used to call merely a script), Python executes it as if from the command line, then places variables and

functions inside a namespace defined by the script name (or using the optional as keyword). When you from <module> import <name> , the

variables are imported into your current namespace. Think of a namespace as a super-variable that contains references to lots of other variables, or
as a super-class that can contain data, functions, and classes.

(V) After import, a module is dynamic like any Python object; for example, the reload function takes a module as an argument, and you can add
data and methods to the module after you've imported it (but they won't persist beyond the lifetime of your script or session).

import my_funcs as m

def silly func(x):
return "Silly {}!".format(x)

m.silly func = silly func

m.silly func("Mark")

Silly Mark!

(U) In contrast, the from <module> import <function> command adds the function to the current namespace.

(U) Preventing Excess Output: The Magic of __main__

(U) Suppose you have a script that does something awesome, called awesome.py :

class Awesome(object):
def __init__ (self, awesome_thing):
self.thing = awesome_thing
def __str__ (self):
return "{@.thing} is AWESOME.".format(self)

P.Ls. 86=36

a = Awesome("BASE Jumping")
print(a) Ry n

(U) This can be executed from the command Iine_ or jraported: * gue®

(VENV) [1E3 bython awe§ome:ﬁy"
BASE Jumping is AWESOME _,.-""
(VENV) [I1$ python

Doc ID: 6689693
import awesome

BASE Jumping is AWESOME.

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

NameError: name 'a’' is not defined

awesome. a

<awesome.Awesome object at ©x7fa222a8b410>

print (awesome.a)

BASE Jumping is AWESOME.

(U) You don't want that print statement to execute every time you import it. Of equal importance, awesome.a is probably extraneous within an
import. Let's fix it to get rid of those when you import the module, but keep them when you execute the script.

class Awesome(object):
def __init__ (self, awesome_thing):
self.thing = awesome_thing
def __str__ (self):
return "{@.thing} is AWESOME.".format(self)

if _name__ == '_main__":
a = Awesome("BASE Jumping")
print(a)

(U) We can do even better. There are some situations, e.g. profiling or testing, where we would want to import the module, then look at what would
happen if we run it as a script. To enable that, move the main functionality into a function called main() :

Doc ID: 6689693

class Awesome(object):
def __init_ (self, awesome_thing):
self.thing = awesome_thing
def __str_ (self):
return "{@.thing} is AWESOME.".format(self)

def main():
a = Awesome("BASE Jumping")
print(a)

if __name__ == '_main__':
main()

(U) From Modules to Packages

(U) A single Python module corresponds to a file. It's not hard to imagine a situation where you have several related modules that you want to
group together in the equivalent of a folder; the Python term for this concept is a package. We make a package by

 creating a folder
 putting scripts/modules inside it
» adding some Python Magic (which obviously will involve __ in some way, shape, or form)

(U) For example, we'll put awesome.py in a package called feelings—later on, we'll add terrible.py and totally rad.py The directory structure

IS:
feelings/
— awesome.py
}—— _init__.py

- __main__.py

(U)The __init__.py file is REQUIRED; without it, Python won't identify this folder as a package. However, __main__.py is optional but nice; if you
have it, you can type python feelings and the contents of __main__.py will be executed as a script. (NB: Now you can postulate on what if
__name__ == '__main__': is really doing.

(U)The __init__.py file can contain commands. Much like the __init () functionofa class ,the __init__.py is executed immediately
after importing the package. One common use is to expose modules as package attributes; all this takes is import <module_name> in the
package's __init__.py file.

Doc ID: 6689693

(U) Onward to the Whole World

Pretty soon, you'll want to share the feelings packages with a wider audience. There are thousands of people who want to do Awesome stuff, but
don't have the time to make their own version, which wouldn't be as good as yours anyway, so they're counting on you to provide this package in a
convenient, easy-to-install manner.

(U) Shareable Packages

(U) The _setuptools package (which is built on distutils), used in conjunction with virtual environments and publicly accessible repositories in
revision control systems make sharing your work as easy as pip install ing a package from PyPl. You are using a revision control system, aren't
you? This lesson assumes that you use git and push your repositories to GitLab

(U) To make the feelings package available to the whole world, it should be placed at the root of a git repository, alongside a setup script
called setup.py ,i.e.

feelings_repo
|— feelings/
| — awesome.py

| F— _init__.py
| Y“— __main__.py
L— setup.py

(U) The setup.py scriptimports from one of two packages that handle management and installation of other packages. We'll use setuptools in
this example, because it is more powerful and installed by default in virtual environments. In simple cases like this one, the built-in distutils module
is more than adequate. and functionally identical.

(U) The script calls a single function, setup , and takes metadata about the package, including the name and version number of the package, the
name and email of the developer responsible for the package, and a list of packages (or modules). It looks like this:

from setuptools import setup

setup(name="pyTest", P.L. 86-36
version='9.0.1",
description="The simplest Python Package. imaginabdle™,
author=] |) e .

author_email="] 18
packages=['feelings'],

)

Doc ID: 6689693
(U) To use distutils instead of setuptools, change the first line to read from distutils.core import setup . Two powerful advantages

of setuptools over distutils are:

» Dependency management, so that external packages available in PyP! will be installed automatically, and
» Automatic creation of entry point shell scripts that hook into specified functions in your code.

Pl 86=36

(U) Sharing Packages

(U) We have bigger fish to fry-we want to get the Awesome -ness out into the world, and we'te almost there. Once the changes have been commited
and pushed to GitLab, we can share them with one simple pip command. Inside: of a virtual environment, anyone with access to GitLab can execute

$ pip install -e git+git@gitlab.coi.nsa.ic.gov: [feelings.git#egg=Ffeelings

(U) The -e flag installs the repository as editable, a.k.a. in developer mode. This means that the full git repository is cloned inside the virtual
environment's src folder and can be modified or updated in place (e.g. using git clone) without requiring reinstallation. The #egg=feelings is
necessary for pip install to work, and must be added manually; it is neither required nor even used by GitLab.

(U) Once your user has pip install -ed your package, that's it! She can now do awesome stuff, like
from feelings import awesome

a = awesome.Awesome("“Dostoyevsky")
print(a)
Dostoyevsky is AWESOME.

(U) Even better, it only takes little more work for her to include your package as a dependency in her packages and applications!

Doc ID: 6689693

Lesson 09: Exceptions, Profiling, and Testing

(b)i(3)~-P.L. 86-36

-

Updated 8 months ago by in COMP 3321
M 3 539 281

(U) Exception handling and code testing and profiling in Python.

Recommendations

UNCLASSIFIED
(U) Introduction

(U) Attention to exception handling, profiling, and testing distinguishes professional developers writing high-quality code from amateurs that hack
around just enough to get the job done. Each topic warrants many hours of discussion on its own, but Python makes it possible to start learning and
using these principles with minimal effort. This section covers basic ideas to get you interested and see the usefulness of these ideas and modules.

Let's begin...by making some errors.

(U) Exceptions

(U) Python is very flexible and will try its absolute best to do whatever you ask it to, but sometimes you can just confuse it way too much. The first
type of error is the syntax error. By this point in the course, we've all seen more than enough of these! They happens when Python cannot parse

what you typed.
for i in range(10)

Doc ID: 6689693

def altered_cool():
print (awesome.Awesome(‘Artisanal vinegar')) # still there?
print (coolgroup('the intelligentsia'))
cool = 'hipster'
lumberjack = True
print (sorted(locals().keys()))
print(locals()['cool'])

altered_cool()
‘lumberjack' in globals()
globals()['cool']

globals() == locals()

(U) Module namespaces

(U) Finally, each module also has its own module namespace. You can inspect them using the module's special __dict__ method.

sorted(awesome.__dict__.keys())

guess what?
dir(awesome) == sorted(awesome.__dict__.keys())

awesome.__dict_ ['cool'] # can also print this to get the memory Location

didn't we just see that here?
globals()['coolgroup']

dir(awe)
awe.__dict_ ['cool']
awe == awesome

id(awe) == id(awesome)

(U) Modifying module namespaces

Doc ID: 6689693
(U) You can add to module namespaces on the fly. Keep in mind, though, that this will only last until the program exits, and the actual module file

will be unchanged.

def more_awesome():
return "They're awesome!"

awe.exclaim = more_awesome
awe.exclaim()
‘exclaim® in dir(awe)

‘exclaim’ in dir(awesome)

(U) Packages

(U) What if you want to organize your code into multiple modules? Since a module is a file, the natural thing to do is to gather all your related
modules into a single directory or folder. And, indeed, a Python package is just that: a directory that contains modules, a special __init__.py file,

and sometimes more packages or other helper files.

Doc ID: 6689693

File “"<ipython-input-1-6f7914dd2e%a>", line 1
for i in range(10)

A

SyntaxError: invalid syntax
(U) Python could not parse what we were trying to do here (because we forgot our colon). It did, however, let us know where things stopped making
sense. Note the printed line with an tiny arrow (») pointing to where Python thinks there is an issue.

(U) The statement SyntaxError: invalid syntax is an example of a special exception called a SyntaxError. It is fairly easy to see what happened
here, and there is not much to do besides fixing your typo. Other exceptions can be much more interesting.

(U) There are many types of exceptions:
import builtins

This will display a Lot of output.

To make it scrollable, select this cell and choose
Cell > Current Output > Toggle Scrolling
help(builtins)

Python 2 used to have this info in the “exceptions™ module
Python 3 moved it into “builtins”® for consistency

So for python 2, try this instead:

import exceptions

dir(exceptions)

(U) | bet we can make some of these happen. In fact, you probably already have recently.
1/0

def f():
1/

Q)

1/9°

import chris

file = open('data’,'w')

file.read()

Doc ID: 6689693

(U) Exception Handling

(U) When exceptions might occur, the best course of action to is to handle them and do something more useful than exit and print something to the

screen. In fact, sometimes exceptions can be very useful tools (e.g. KeyboardInterrupt). In Python, we handle exeptions with
the try and except commands.

(U) Here is how it works:

1. (U) Everything between the try and except commands is executed.
2. (V) If that produces no exception, the except block is skipped and the program continues.
3. (U) If an exception occurs, the rest of the try block is skipped.

4. (V) If the type of exception is named after the except keyword, the code after the except command is executed.
5. (U) Otherwise, the execution stops and you have an unhandled exception.

(U) Everything makes more sense with an example:
def f(x):
try:
print ("I am going to convert the input to an integer")
print (int(x))
except ValueError:
print ("Sorry, I was not able to convert that.")

f(2)
£LR)
f('two"')
(U) You can add multiple Exception types to the except command:

. except (TypeError, ValueError):

(U) The keyword as lets us grab the message from the error:

Doc ID: 6689693

def be_careful(a, b):

try:
print(float(a)/float(b))

except (ValueError, TypeError, ZeroDivisionError) as detail:
print("Handled Exception: ", detail)

except:
print(“Unexpected error!")

finally:
print("THIS WILL ALWAYS RUN!")

be_careful(1,9)
be_careful(1,[1,2])
be_careful(l, 'two")

be_careful (16**400,1)

float(16**400)

(U) We've also added the finally command. It will always be executed, regardless of whether there was an exception or not, so it should be used
as a place to clean up anything left over from the try and except clauses, e.g. closing files that might still be open.

(U) Raising Exceptions

(U) Sometimes, you will want to cause an exception and let someone else handle it. This can be done with the raise command.
raise TypeError('You submitted the wrong type')

(U) If no built-in exception is suitable for what you want to raise, defining a new type of exception is as easy as creating a new class that inherits
from the Exception type.

class MyPersonalError(Exception):
pass

raise MyPersonalError("I am mighty. Hear my roar!")

Doc ID: 6689693

def locater (myLocation):
if (myLocation<®):
raise MyPersonalError("I am mighty. Hear my roar!")
print (myLocation)

locater(-1)

(U) When catching an exception and raising a different one, both exceptions will be raised (as of Python 3.3).

class MyException(Exception):
pass

try:
int("abc")
except ValueError:
raise MyException("You can't convert text to an integer!")

(U) You can override this by adding the syntax from None to the end of your raise statement.

class MyException(Exception):
pass

try:
int("abc")
except ValueError:
raise MyException("You can't convert text to an integer!") from None

(U) Testing

(U) There are two built-in modules that are pretty useful for testing your code. This also allows code to be tested each time it is imported so that a
user on another machine would notice if certain methods did not do what they were intended to ahead of time.

(U) The doctest Module

(U) The doctest module allows for testing of code and value assertions in the documentation of the code itself. It also works with exceptions; you
just copy and paste the appropriate Traceback thatis expected (just the first line and the actual exception string are needed). You may
incorporate doctest into a module or script. See the official Python documentation for details.

Doc ID: 6689693

This is the "example" module.
The example module supplies one function, factorial(). For example,

>>> factorial(5)
120

def factorial(n):
"""Return the factorial of n, an exact integer >= 0.

>>> [factorial(n) for n in range(6)]
is, 1, %, &5, 28, 130)

>>> factorial(30)
265252859812191058636308480000000
>>> factorial(-1)

Traceback (most recent call last):

ValueError: n must be >= 0

Factorials of floats are OK, but the float must be an exact integer:
>>> factorial(30.1)

Traceback (most recent call last):

ValueError: n must be exact integer

»>>> factorial(30.0)

265252859812191058636308480000000

It must also not be ridiculously large:
>>> factorial(1le100)
Traceback (most recent call last):

OverflowError: n too large

non

import math
if not n >= 0:

raise ValueError("n must be >= 8")
if math.floor(n) != n:

Doc ID: 6689693
raise ValueError("n must be exact integer")

if n+l == n: # catch a value Like 1e360
raise OverflowError("n too large")
result = 1
factor = 2
while factor <= n:
result *= factor
factor += 1
return result

if _pame__ == "__main__":
import doctest
doctest.testmod()

(U) This lesson can be tricky to understand from the notebook. It will make the most sense if you copy and paste the above code into a file
named factorial.py , then from the terminal run:

python factorial.py -v
Note that you don't have to include the doctest lines in your code. If you remove them, the following should work:

python -m doctest -v factorial.py

(U) The unittest Module

(U) The unittest module is much more stuctured, allowing for the developer to create a class of tests that are run and analyzed flexibly. To create a
unit test for a module or script:

e import unittest,

« create a test class as a subclass of the unittest.TestCase type,

» add tests as methods of this class, making sure that the name of each test function begins with the word ‘test’, and
e add unittest.main() to your main loop to run the tests.

Doc ID: 6689693

import unittest
... other imports, script code, etc.
class FactorialTests(unittest.TestCase):
def testSingleValue(self):
self.assertEqual(factorial(5), 120)

def testMultipleValues(self):
' self.assertRaises(TypeError, factorial, [1,2,3,4])

def testBoolean(self):
self.assertTrue(factorial(5) == 120)

def main():
""" Main function for this script
unittest.main() # Check the documentation for more verbosity levels, etc.
... rest of main function ...

import unittest
dir(unittest.TestCase)

(U) Profiling

(U) There are many profiling modules, but we will demonstrate the cProfile module from the standard library. To use it interactively, first import the
module, then call it with a single argument, which must be a string that could be executed if it was typed into the interpreter. Frequently, this will be a
previously-defined function.

import cProfile

Doc ID: 6689693

def long(upper_limit=100000):

for x in range(upper_limit):
pass

def short():
pass

def outer (upper_limit=100000):
short()
short()
long()

cProfile.run('outer()")

cProfile.run('outer(10000000) ")

(U) The output shows

ncalls: the number of calls,

tottime: the total time spent in the given function (and excluding time made in calls to sub-functions),

percall: the quotient of tottime divided by ncalls

cumtime: the total time spent in this and all subfunctions (from invocation till exit). This figure is accurate even for recu
rsive functions.

percall: the quotient of cumtime divided by primitive calls

filename:lineno(function): provides the respective data of each function

(U) The quick and easy way to profile a whole application is just to call the cProfile main function with your script as an additional argument:

$ python -m cProfile myscript.py

(U) Another useful built-in profiler is timeit. It's well suited for quick answers to questions like "Which is better between A and B?"
$ python -m timeit "'for i in range(100):' ' str(i)’
import timeit

timeit.timeit(.join(str(n) for n in range(100))',number=20000)

Doc ID: 6689693
mySetup =
def myfunc(upper_limit=100000):

return range(upper_limit)

timeit.timeit('myfunc()',number=1000,setup=mySetup)

Exercise 1: Write a custom error and raise it if RangeQuery is created with dates not in the correct format.

Exercise 2: Given the list of tuples: [("2016-12-01", "2016-12-06"),("2015-12-01", "2015-12-06"),("2016-2-01", "2016-2-06"),("01/03/2014",
"02/03/2014"), ("2016-06-01", "2016-10-06")] write a loop to print a rangeQuery for each of the date ranges using "FSASHAREETO-HEA— Y,
"Primary IP address of Zendian diplomat", "10.254.18.162" as your classification, justification and selector.

Inside the loop, write a try/except block to catch your custom error for incorrectly formated dates.

UNCLASSIFIED

Doc ID: 6689693

Lesson 10: Iterators, Generators and Duck

(b) (3)-P.L.

86-36

Typing

Updated 9 months ago by]| in COMP 3321
@A 3 556 273

Cress L pyvon

(V) lterators, generators, sorting, and duck typing in Python.

Recommendations

UNCLASSIFIED
(U) Introduction: List Comprehensions Revisited

(U) We begin by reviewing the fundamentals of lists and list comprehension.

melist = [i for i in range(1, 100, 2)]
for i in melist: # how does the Loop work?
print(i)

(U) What happens when the list construction gets more complicated?
noprimes = [j for i in range(2, 19) for j in range(i*2, 500, i)]

primes = [x for x in range(2, 500) if x not in noprimes]

print(sorted(primes))

(U) Can we do this in one shot? Yes, but...

Doc ID: 6689693

nesting madness !
primes = [x for x in range(2, 500) if x not in [j for i in range(2, 19) for j in range(i*2, 500, i)]]

(U) lterators

(V) To create your own iterable objects, suitable for use in for loops and list comprehensions, all you need to do is implement the right special
methods for the class. The __iter__ method should return the iterable object itself (almost always self), and the _ next__ method defines the
values of the iterator.

(V) Let's do an example, sticking with the theme previously introduced, of an iterator that returns numbers in order, except for multiples of the
arguments used at construction time. We'll make sure that it terminates eventually by raising the stopIteration exception whenever it gets
to 200 . (This is a great example of an exception in Python that is not uncommon: handling an event that is not unexpected, but requires
termination; for loops and list comprehensions expect to get the StopIteration exception as a signal to stop processing.)

class NonFactorIterable(object):
def __init__ (self, *args):
self.avoid_multiples = args
self.x = @
def _ next__ (self):
self.x += 1
while True:
if self.x > 200:
raise StopIteration
for y in self.avoid_multiples:
if self.x % y == 0:
self.x += 1
break
else:
return self.x
def __iter__ (self):
return self

silent_fizz_buzz = NonFactorIterable(3, 5)
[x for x in silent_fizz_buzz]
mostly prime = NonFactorIterable(2, 3, 5, 7, 11, 13, 17, 19)

partial_sum = ©

Doc ID: 6689693

for x in mostly_ prime:
partial_sum += X

partial_sum

mostly prime = NonFactorIterable(2, 3, 5, 7, 11, 13, 17, 19)
print (sum(mostly prime))

(U) It may seem strange that the __iter_ method doesn't appear to do anything. This is because in some cases the iterator for an object should
not be the same as the object itself. Covering such usage is beyond the scope of the course.

(U) There is another way of implementing a custom iterator: the __getitem__ method. This allows you to use the square bracket [] notation for
getting data out of the object. However, you still must remember to raise a StopIteration exception for it to work properly in for loops and list
comprehensions.

Another iterator example

In the below example, we create an iterator that returns the squares of numbers. Note that in the __next__ method, all we're doing is iterating our
counter (self.x) and returning the square of that counter number, as long as the counter is not greater than the pre-defined limit (self.limit).
The while loop in the previous example was specific to that use-case; we don't actually need to implement any looping at allin __next__, as
that's simply the method called for each iteration through a loop on our iterator.

Here we're also implementing the _ getitem _ method, which allows us to retrieve a value from the iterator at a certain index location. This one
simply calls the iterator using self.__next__ untilit arrives at the desired index location, then returns that value.

Doc ID: 6689693
class Squares(object):

def __init__ (self, 1limit=200):
self.limit = limit
self.x = @

def __next__ (self):
self.x += 1
if self.x > self.limit:
raise StopIteration
return (self.x-1)**2

def _ getitem (self, idx):
initialize counter to ©
self.x = ©
if not isinstance(idx, int):
raise Exception("Only integer index arguments are accepted!")
while self.x < idx:
self. next_ ()
return self.x**2

def __iter_ (self):
return self

my_squares = Squares(limit=20)
[x for x in my_squares]
my_squares[5]

since we set a Limit of 20, we can't access an index location higher than that
my_squares[25]

(U) Benefits of Custom Iterators

1. (U) Cleaner code

2. (V) Ability to work with infinite sequences

3. (U) Ability to use built-in functions like sum that work with iterables
4. (U) Possibility of saving memory (e.g. range)

Doc ID: 6689693

(U) Generators

(U) Generators are iterators with a much lighter syntax. Very simple generators look just like list comprehensions, except they're surrounded with
parentheses () instead of square brackets [] . More complicated generators are defined like functions, with the one difference being that they

use the yield keyword instead of the return keyword. A generator maintains state in between times when it is called; execution resumes starting
immediately after the yield statement and continues until the next yield is encountered.

y = (x*x for x in range(30))
print(y) # hmm...

def xsquared():
for i in range(30):
yield i*i

def xsquared_inf():

X =0

while True:
yield x*x
X = 1

squares = [x for x in xsquared()]
print(squares)

(U) Another example...days of the week!
def day_of_week():
i=0
days = ["Monday","Tuesday","Wednesday","Thursday","Friday", "Saturday"”,"Sunday"]
while True:
yield days[i%7]
i+=1
day_of_week()

import random
def snowday(prob=.01):
r = random.random()
4% ¢ < prob:
return "snowday!"
else:
return "regular day."

Doc ID: 6689693

n==90
for x in day_of_week():
today = snowday()

print(x + " is a " + today)

n+=1

if today == "snowday!":
break

weekday = (day for day in day_of_week())

next (weekday)

(U) Pipelining

(U) One powerful use of generators is to connect them together into a pipeline, where each generator is used by the next. Since Python evaluates
generators "lazily," i.e. as needed, this can increase the speed and potentially allow steps to run concurrently. This is especially useful if one or two
steps can take a long time (e.g. a database query). Without generators, the long-running steps will become a bottleneck for execution, but
generators allow other steps to proceed while waiting for the long-running steps to finish.

import random

Get the fractional part of a string representation of a float
def frac_part(v):

v = str(v)

i, F = vsplit(™:*)

return f

traditional approach
results = []
for i in range(20):

r = random.random() *100 # generate a random number
r_str = str(r) # convert it to a string
r_frac = frac_part(r_str) # get the fractional part

r_out = float('@.' + r_frac) # convert it back to a float
results.append(r_out)

results

Doc ID: 6689693

generator pipeline

rand_gen = (random.random() * 100 for i in range(20))
str_gen (str(r) for r in rand_gen)

frac_gen = (frac_part(r) for r in str_gen)

out_gen = (float('@.'+r) for r in frac_gen)

]

results = list(out_gen)
results

(U) Sorting

(U) In Python 2, anything iterable can be sorted, and Python will happily sort it for you, even if the data is of mixed types--by default, it uses the
built-in emp function, which almost always does something (except with complex numbers). However, the results may not be what you expect!

(U) In Python 3, iterable objects must have the __ 1t (1t = less than) function explicitly defined in order to be sortable.

(U) The built-in function sorted(x) returns a new list with the data from x in sorted order. The sort method (for 1ist s only) sorts a list in-place
and returns None .

int data = [16, 1, 5,4, 2]
sorted(int_data)

int_data

int_data.sort()

int_data

(U) To specify how the sorting takes place, both sorted and sort take an optional argument called key . key specifies a function of one
argument that is used to extract a comparison key from each list element (e.g. key=str.lower). The default value is None (compare the elements
directly).

users = ['hAckerl', 'TheBoss', 'botman’', ‘turingTest']
sorted(users)

sorted(users, key=str.lower)

(U)The __1t__ function takes two arguments: self and another object, normally of the same type.

Doc ID: 6689693

class comparableCmp(complex):
def _ 1t_ (self, other):
return abs(self) < abs(other)

a = 3+4j

o
1]

5+127j

a<b

1}

al = comparableCmp(a)

bl

]

comparableCmp(b)
al < b1
c = [bl, ai1]

sorted(c)

(U) Here's how it works:

1. the argument given to key must be a function that takes a single argument;
2. internally, sorted creates function calls key(item) on each item in the list and then
3. sorts the original list by using __ 1t on the results of the key(item) function.

(U) Another way to do the comparison is to use key :

def magnitude_key(a):
return (a*a.conjugate()).real

magnitude_key(3+47)

sorted([5+3], 1j, -2j, 35+08j], key=magnitude_key)

(U) In many cases, we must sort a list of dictionaries, lists, or even objects. We could define our own key function or even several key functions for
different sortina methods:

list_to_sort = [{'lname':'Jones', 'fname':'Sally'}, {'lname':'Jones', 'fname':'Jerry'}, {'lname':'Smith', 'fname':'John'}, {'lr
>

def lname_sorter(list_item):
return list_item['lname']

Doc ID: 6689693

def fname_sorter(list_item):
return list_item['fname']

def lname_then_fname_sorter(list_item):
return (list_item['lname'], list_item['fname'])

sorted(list_to_sort, key=1lname_sorter)
sorted(list_to_sort, key=fname_sorter)

sorted(list_to_sort, key=1lname_then_fname_sorter)

(U) While it's good to know how this works, this pattern common enough that there is a method in the standard library operator package to do it
even more concisely.

import operator

lname_sorter = operator.itemgetter('lname') # same as previous Lname_sorter

(U) The application of the itemgetter method returns a function that is eqivalent to the 1name_sorter function above. Even better, when passed
multiple arguments, it returns a tuple containing those items in the given order. Moreover, we don't even need to give it a name first, it's fine to do
this:

sorted(list_to_sort, key=operator.itemgetter('lname'))

sorted(list_to_sort, key=operator.itemgetter('lname', ‘fname')) # same as using Lname_then_fname_sorter

(U) To use operator.itemgetter with list sor tuple s, give it integer indices as arguments. The equivalent function for objects
is operator.attrgetter .

(U) Since we know so much about Python now, it's not hard to figure out how simple operator.itemgetter actually is; the following function is
essentially equivalent:
def itemgetter_clone(*args):
def f(item):
return tuple(item[x] for x in args)
return f

(U) Obviously, operator.itemgetter and itemgetter_clone are not actually simple-it's just that most of the complexity is hidden inside the
Python internals and arises out of the fundamental data model.

(U) Duck Typing

Doc ID: 6689693
(U) All the magic methods we've discussed are examples of the fundamental Python principle of duck typing: "If it walks like a duck and quacks

like a duck, it must be a duck." Even though Python has isinstance and type methods, it's considered poor form to use them to validate input
inside a function or method. If verification needs to take place, it should be restricted to verifying required behavior using hasattr . The benefit of
this approach can be seen in the built-in sum function.

help(sum)

(U) Any sequence of numbers, regardless of whether it's a 1ist, tuple, set, generator, or custom iterable, can be passed to sum .

(U) The following is a comparison of bad and good examples of how to write a product function:
def list_prod(to_multiply):
if isinstance(to_multiply, list): # don't do this!
accumulator = 1
for i in to_multiply:
accumulator *= i
return accumulator
else:
raise TypeError("Argument to_multiply must be a list")

def generic_prod(to_multiply):

if hasattr(to_multiply, '__iter_ ') or hasattr(to_multiply, ‘__getitem__'):
accumulator = 1
for i in to_multiply:

accumulator *= i

return accumulator

else:
raise TypeError("Argument to_multiply must be a sequence")

list_prod([1,2,3])
list_prod((1,2,3))

generic_prod((1,2,3))

(U) Having given that example, testing for iterability is one of a few special cases where isinstance might be the right function to use, but not in
the obvious way. The collections package provides abstract base classes which have the express purpose of helping to determine when an
object implements a common interface.

(V) Finally, effective use of duck typing goes hand in hand with robust error handling, based on the principle that "it's easier to ask for forgiveness
than permission."

Doc ID: 6689693

Exercises

1. Add a method to your 'RangedQuery’ class to allow instances of the class to be sorted by 'start_date'.

2. Write an iterator class 'Reverselter' that takes a list and iterates it from the reverse direction.

3. Write a generator which will iterate over every day in a year. For example, the first output would be 'Monday, January 1.
4. Modify the generator from exercise 2 so the user can specify the year and initial day of the week.

UNCLASSIFIED

Doc ID: 6689693

Pipelining with Generators

o e e
R
= ="
w aw
...
M
- o N
LI
LI
PR
. "

Created over 3 years ?59<2)°by| |
. Python3 thumbnail

fess] oa | wanstormation | pipeine] pipsining Ciaunary |

(U) Defining processing pipelines with generators in Python. It's simply awesome.

Recommendations

Pipelining with Generators

Imagine you're doing your laundry. Think about the stages involved. Roughly speaking, the stages are sorting, washing, drying, and folding. The
beauty though is that even though these stages are sequential, they can be performed in parallel. This is called pipelining.

Python generators make pipelining easy and can even clarify your code quite a bit. By breaking your processing into distinct stages, the Python
interpreter can make better use of your computer's resources, and even break the stages out into separate threads behind the scenes. Memory is
also conserved because values are automatically generated as needed, and discarded as soon as possible.

A prime example of this is processing results from a database query. Often, before we can use the results of a database query, we need to clean
them up by running them through a series of changes or transformations. Pipelined generators are perfect for this.

from pprint import pprint
import random

A Silly Example

Here we're going to take 200 randomly generated numbers and extract their fractional parts (the part after the decimal point). There are probably
more efficient ways to do this, but we're doing to do it by splitting out the string into two parts. Here we have a function that simply returns the
integer part and the fractional part of an input float as two strings in a tuple.

Doc ID: 6689693
def split_float(v):

Takes a float or string of a float

and returns a tuple containing the
integer part and the fractional part

of the number, as strings, respectively.
v = str(v)

i, £ = vosplit(*y*)

return (i, '0.'+f)

The Pipeline

Here we have a pipeline of four generators, each feeding the one below it. We pprint out the final resulting list after all the stages have complete.
See the comments after each line for further explanation.

rand_gen = (random.random() * 10@ for i in range(200)) # generate 260 random floats between @ and 160, one at a time
results = (split_float(r) for r in rand_gen) # call our split_float() function which will generate the correspoding tuples
results = (r[1] for r in results) # we only care about the fractional part, so only keep that part of the tuple

results = (float(r) for r in results) # convert our fractional value from a string back into a float

pprint(list(results)) # print the final results

Why not a for-loop?

We could have put all the steps of our pipeline into a single for-loop, but we get a couple advantages by breaking the stages out into separate
generators:

» There's some clarity gained by having distinct stages specified as a pipeline. People reading the code can clearly see the transforms.

« In a for-loop, Python simply computes the values sequentially; there's no chance for automatic optimization or multi-threading. By breaking
the stages out, each stage can execute in parallel, just like your washer and dryer.

Another (Pseudo-)Example

Here's a pseudo-example querying a database that returns JSON that we need to convert to lists.

Doc ID: 6689693
import json
results = (json.loads(result) for result in db_cursor.execute(my_query))
(r['results'] for r in results)
([r['name'], r['type'], r['count'], r['source']] for r in results)

[}

results
results

Filters

We can even filter our data in our generator pipeline.

results = (r for r in results if r[2] > @) # remove results with a count of zero
foo(results) # do something else with your results

Doc ID: 6689693

(b) (3)=P,.L. 86—36

Lesson 11: String Formatting

»w -
8w e BN R W

Updated 9 months ago by in COMP 3321
@3 1 547 251

(U) Lesson 11: String Formatting

Recommendations

UNCLASSIFIED
(U) Intro to String Formatting

(U) String formatting is a very powerful way to display information to your users and yourself. We have used it through many of our examples, such
as this:
'This is a formatted String {}'.format("--->hi I'm a formatted String argument<---")
(U) This is probably the easiest example to demonstrate. The empty curly brackets {} take the argument passed into format .
(U) Here's a more complicated example:

{2} {1} and {0@}'.format('Henry', 'Bill', 'Bob')

(U) Arguments can be positional, as illustrated above, or named like the example below. Order does matter, but names can help.

‘{who} is really {what}!'.format(who="'Tony', what="'awesome')

(U) You can also format lists:

Doc ID: 6689693

cities = ['Dallas', 'Baltimore', 'DC', 'Austin', 'New York']
‘{0[4]} is a really big city.'.format(cities)

(U) And dictionaries:

lower_to_upper = {'a':'A', 'b':'B’,

cl:lcl}
"This is a big letter {@[a]}".format(lower_to_upper) # notice no quotes around a
"This is a big letter {lookup[a]}".format(lookup=lower_to_upper) # can be named

for little, big in lower_to_upper.items():
print('[-->{0:10} -- {1:10}<--]'.format(little, big))

(V) If you actually want to include curly brackets in your printed statement, use double brackets like this: {{ }} .
"{{@e}} {@}".format('Where do I get printed?')

(U) You can also store the format string in a variable ahead of time and use it later:
the_way_i_want_it = '{@:>6} = {0:>#16b} = {0:#06x}"

for i in 1, 25, 458, 7890:
print(the_way_i_want_it.format(i))

(U) Format Field Names

(U) Here are some examples of field names you can use in curly brackets within a format string.
{«<field name>}

« (U) 1: the second positional argument

(U) name : keyword argument

(U) O.var : attribute named var of the first positional argument

(V) 3[0] : element O of the fourth positional argument

(U) me_datalkey] : element associated with the specific key string 'key' of me_data

(U) Format Specification

Doc ID: 6689693
(U) When using a format specification, it follows the field name within the curly brackets, and its elements must be in a certain order. This is only for

reference; for a full description, see the Python documentation on string formatting.
{<field name>:<format spec>}

1. (U) Padding and Alignment

» > :align right

e < :align left

e = :only for numeric types

e »~ :center

1. (U) Sign

« - : prefix negative numbers with a minus sign

» + :like - butalso prefix positive numbers with a +

« ' ' :like - butalso prefix positive numbers with a space

1. (U) Base Indicator (precede with a hash # like above)

e @b :binary
e 0o :octal
e ox : hexadecimal

1. (U) Digit Separator

e , :use acomma to separate thousands

1. (U) Field Width

» leading @ : pad with zeroes at the front

1. (U) Field Type (letter telling which type of value should be formatted)

: string (the default)

: binary

: decimal: base 10

: octal

: hex uses lower case letters

: hex uses upper case

» n :like d, use locale settings to determine decimal point and thousands seperator
» no code integer : like d

« e :exponential with small e

E : exponential with big E

o £ :fixed point, nan for nota number and inf for infinity
F :same as f butuppercase NAN and INF

L]
X X 0 a o wn

Doc ID: 6689693
. : general format

:like G but uppercase

: locale settings like g

: times 100, displays as f witha %

» no code decimal : like g, precision of twelve and always one spot after decimal point

. (U) Variable Width

(U) New in Python 3.6: f-strings

Add 'f' before the string to create an f-string

Expression added directly inside the “{} brackets rather than after the format statement
X = 34

y =2

34 % 2 = {x%}"

2 O O m

—

my_name = ‘Bob’
f"My name is {my_name}"

(U) Examples
'{0:{1}.{2}f} "' .format(9876.5432, 18, 3)
'{0:010.4f}" .format(-123.456)
'{0:4+010.4F}" .format(-123.456)

for i in range(1, 6):
print('{0:10.{1}f}"'.format(123.456, i))

v = {'value':876.543, 'width':15, 'precision’':5}
"{@[value]:{@[width]}.{@[precision]}}".format(v)
data = [('Steve', 59, 202), ('Samantha', 49, 156), ('Dave', 61, 135)]

for name, age, weight in data:
print('{0:<12s} {1:4d} {2:4d}'.format(name, age, weight))

Doc ID: 6689693

same as above but with f-strings
data = [('Steve', 59, 202), ('Samantha', 49, 156), ('Dave', 61, 135)]

for name, age, weight in data:
print (f'{name:<12s} {age:4d} {weight:4d}')

UNCLASSIFIED

Doc ID: 6689693

COMIOD3321 Day01 Homework - GroceryList

(b). (3) ~P.L. 86-36

Updated almost 3 years ago by in COMP 3321
A3 2333
(pytnon |

(U) Homework for Day01 of COMP3321. Task is to sort items into bins.

Recommendations

(U) COMP3321 Day01 Homework
GroceryList

Doc ID: 6689693

myGrocerylList = ["apples", "bananas", "milk", "eggs", "bread",
"hamburgers"”, "hotdogs", "ketchup", "grapes",
"tilapia", "sweet potatoes", "cereal",
"paper plates”, "napkins", "cookies",
"ice cream”, "cherries"”, "shampoo"]

Items by category
vegetables = ["sweet potatoes"”, "carrots", "broccoli", "spinach",
"onions", "mushrooms", "peppers"]
fruit = ["bananas", "apples", "grapes", "plumbs", "cherries", "pineapple"]
cold_items = ["eggs", "milk", "orange juice", "cheese", "ice cream"]
proteins = ["turkey", "tilapia", "hamburgers", "hotdogs", "pork chops", "ham", "meatballs"]
boxed_items = [“pasta", "cereal”, "oatmeal"”, "cookies", "ketchup", "bread"]
paper_products = ["toilet paper", "paper plates"”, "napkins", "paper towels"]
toiletry_items = [“"toothbrush", "toothpaste", "deodorant", "“shampoo", "soap"]

My items by category
my_vegetables = []
my_fruit = []
my_cold_items =
my_proteins = []
my_boxed_items = []
my_paper_products = []
my_toiletry_items = []

(1

(U) Fill in your code below. Sort the items in myGroceryList by type into appropriate my_category lists using looping and decision making

print ("My vegetable list: ", my_vegetables)
print("My fruit list: ", my_fruit)

print("My cold item list: ", my_cold_items)
print("My protein list: ", my_proteins)

print("My boxed item list: ", my_boxed_items)
print("My paper product list: ", my_paper_products)
print("My toiletry item list: ", my_toiletry_items)

Doc ID: 6689694

V)

Dictionary and File Exercises

(b)) (3) -P,L. B6—36

4

==

Updated over 2 years ago by| | in COMP 3321

' 3 317 33
= D

(U) Dictionary and file exercises for COMP3321.

Recommendations

Lists and Dictionary Exercises

Exercise 1 (Euler's multiples of 3 and 5 problem)

If we list all the natural numbers below 10 that are multiples of 3 or 5, we get 3, 5, 6 and 9. The sum of these multiples is 23.

Find the sum of all the multiples of 3 or 5 below 1000.
multiples_3 = [i for i in range(3,1000,3)]
multiples_5 = [i for i in range(5,1000,5)]
multiples = set((multiples_3 + multiples_5)) # set will remove duplicate numbers
sum(multiples) # add all the numbers together

you can also do this in one line:
sum([i for i in range(3,1000) if i % 3 == @ or i% 5 == 0@])

Exercise 2

Write a function that takes a list as a parameter and returns a second list composed of any objects that appear more than once in the original list

|Approved for Release by NSA on 12-02-2019, FOIA Case # 108165 I

Doc ID: 6689694
« duplicates([1,2,3,6,7,3,4,5,6]) should return [3,6]

» what should duplicates(['cow','pig','goat','horse’,'pig']) return?
you can use a dictionary to keep track of the number of times seen
def duplicates(x):
dup={}
for i in x:
dup[i] = dup.get(i,0)+1
result = []
for i in dup.keys():
if dup[i] > 1:
result.append(i)
return result

X = [1:233:6:7:3:4)516]
duplicates(x)

#you can also just use lists...
def duplicates2(x):

dup = []
o 1Ak x:
if x.count(i) > 1 and i not in dup:
dup.append(i)
return dup

y = ['cow
duplicates2(y)

z = ['2016','2015",'2014"]
duplicates(z)

Exercise 3

Write a function that takes a portion mark as input and returns the full classification

» convert_classification('"U//FOUQ") should return 'UNCLASSIFIED//FOR OFICIAL USE ONLY'
« convert_classification('S//REL TO USA, FVEY") should return 'SECRET//REL TO USA, FVEY'

Doc ID: 6689694

just create a "lookup table" for potenial portion marks

full_classifications = {'U//FOUO' :'UNCLASSIFIED//FOR OFFICIAL USE ONLY',
‘C//REL TO USA, FVEY':'CONFIDENTIAL//REL TO USA, FVEY',
'S//REL TO USA, FVEY':'SECRET//REL TO USA, FVEY',
'S//SI//REL TO USA, FVEY': 'SECRET//SI//REL TO USA, FVEY',
'TS//REL TO USA, FVEY': 'TOP SECRET//REL TO USA, FVEY',
'TS//SI//REL TO USA, FVEY': 'TOP SECRET//SI//REL TO USA, FVEY'}

def convert_classification(x):

return full_classifications.get(x, 'UNKNOWN') # Look up the value for the portion mark

convert_classification('U//FOU0")
convert_classification('S//REL TO USA, FVEY')

convert_classification('C//SI")

File Input/Output Exercises

These exercises build on concepts in Lesson 3 (Flow Control, e.g., for loops) and Lesson 4 (Container Data Type, e.g, dictionaries). You will use all
- these concepts together with reading and writing from files

First, Get the Data

Copy the sonnet from hitps://urn.nsa.ic.gov/t/tx6gm and paste it into a new text file named sonnet.txt.

Exercise 1

Write a function called file_capitalize() that takes an input file name and an output file name, then writes each word from the input file with only the
first letter capitalized to the output file. Remove all punctuation except apostrophe.

file_capitalize('sonnet.txt', ‘'sonnet_caps.txt') => capitalized words written to sonnet_caps.txt

Doc ID: 6689694

use help('') to see what each of these string methods are doing
def capitalize(sentence):
words = sentence.split() # use split to split the string by spaces (i.e., words)
new_words = [word.strip().capitalize() for word in words] # captialize each word
return ' '.join(new_words) # create and return one string by combing words with ' '
def remove_punct(sentence):
since replace() method returns a new string, you can chain calls to the replace()
method in order to remove all punctuation in one Line of code
return sentence.replace('.’', "').replace(',', '').replace(':', '').replace(';', '")

def file_capitalize(infile_name, outfile_name):
infile = open(infile_name, 'r') # open the input file

outfile = open(outfile_name, 'w') # open the outpu file

for line in infile: # Loop through each Line of input
outfile.write(capitalize(remove_punct(line)) + ‘\n') # write the capitalized version to the output file

infile.close() # finally, close the files
outfile.close()

file_capitalize('sonnet.txt', ‘sonnet_caps.txt')

Exercise 2

Make a function called file_word_count() that takes a file name and returns a dictionary containing the counts for each word. Remove all
punctuation except apostrophe. Lowercase all words.

file_word_count('sonnet.txt"') => { 'it': 4, 'me': 1, ... }

Doc ID: 6689694

def file_word_count(infile_name):
word_counts = {}

with open(infile_name, 'r') as infile: # using 'with’ so we don't have to close the file
for line in infile: # Loop over each Line in the file
words = remove_punct(line) # we can use the remove_punct from exercise above
words = words.split() # split the line into words

for word in words: # Loop over each word
word = word.strip().lower()
add one to the current count for the word (start at @ if not there)
word_counts[word] = word_counts.get(word, 9) + 1

return word_counts # return the whole dictionary of word counts

counts = file_word_count('sonnet.txt")
counts

Extra Credit

Write the counts dictionary to a file, one key:value per line.

def write_counts(outfile_name, counts):
with open(outfile_name, ‘w', encoding='utf-8') as outfile:
to loop over a dictionary, use the items() method
items() will return a 2-element tuple containing a key and a value
below we pull out the values from the tuple into their own variables, word and count
for word, count in counts.items():
outfile.write(word + ':' + str(count) + '\n') # write out in key:value format

write_counts('sonnet_counts.txt', counts) # use the counts dictionary from Exercise 2 above

Doc ID: 6689694

L)

Structured Data and Dates Exercise

(b) (3y-P.L. 86-36

"= " " = o=
" .
"« = = = o ow
PR L L I
MR L I I B
" s " =

Updated over 3 years ago by in COMP 3321
@A 3 16413

[comp3321] cattime L json] cov J ot J tcse | norcses.

(U) COMP3321 exercise for working with structured data and dates.

Recommendations

Structured Data and Dates Exercise

Save the Apple stock data from https://urn.nsa.ic.gov/t/Oarli to aapl.csv.

Use DictReader to read the records. Take the daily stock data and compute the average adjusted close ("Adj Close") per week. Hint: Use
.isocalendar() for your datetime object to get the week number.

For each week, print the year, month, and average adjusted close to two decimal places.

Year 2015, Week 23, Average Close 107.40
Year 2015, Week 22, Average Close 105.10

Doc ID: 6689694

from csv import DictReader
from datetime import datetime

def average(numbers):
if len(numbers) ==
return 0.0
return sum(numbers) / float(len(numbers))
def get_year_week(record):
dt = datetime.strptime(record['Date'], '%Y-%m-%d')
return (dt.year, dt.isocalendar()[1])

def get_averages(data):
avgs = {}

for year_week, closes in data.items():
avgs|[year_week] = average(closes)

return avgs

def weekly_summary(reader):
weekly data = {}

for record in reader:
year_week = get_year_week(record)

if year_week not in weekly_data:
weekly_ data[year_week] = []

weekly data[year_week].append(float(record['Adj Close']))
return get_averages(weekly data)
def file_weekly_summary(infile_name):
with open(infile_name, 'r') as infile:

return weekly summary(DictReader(infile))

def print_weekly_summary(weekly data):
for year_week in reversed(sorted(weekly data.keys())):

Doc ID: 6689694

]

year = year_week[0]

week = year_week[1]

avg = weekly data[year_week]

print('Year {year}, Week {week}, Average Close {avg:.2f}'.format(year=year, week=week, avg=avg))

1]

data = file_weekly_ summary(‘aapl.csv')
print_weekly_ summary(data)

Extra

Use csv.DictWriter to write this weekly data out to a new CSV file.
from csv import DictWriter

def write_weekly summary(weekly data, outfile_name):
headers = ['Year', 'Week', 'Avg']

with open(outfile_name, ‘w', newline='"') as outfile:
writer = DictWriter(outfile, headers)
writer.writeheader()

for year_week in reversed(sorted(weekly data.keys())):
rec = { 'Year': year_week[0], 'Week': year_week[1], 'Avg': weekly_data[year_week] }
writer.writerow(rec)

data = file_weekly summary(‘aapl.csv')
write_weekly summary(data, ‘aapl_summary.csv')

Extra Extra

Use json.dumps() to write a JSON entry for each week on a new line.
import json

def write_json_weekly_summary(weekly_ data, outfile_name):
with open(outfile_name, 'w') as outfile:
for year_week in reversed(sorted(weekly data.keys())):
rec = { 'year': year_week[0], 'week': year_week[1],
outfile.write(json.dumps(rec) + '\n')

avg': weekly data[year_week] }

Doc ID: 6689694

data = file_weekly_ summary('aapl.csv')
write_json_weekly summary(data, 'aapl.json’)

Doc ID: 6689694

L)

Datetime Exercise Solutions

-
e = T T e i () e

Created almost 3 years ago by]| ! in COMP 3321
A 1147

(U) Solutions for the Datetime exercises

Recommendations

(U) Datetime Exercises

(U) How long before Christmas?
import datetime, time

print(datetime.date(2017, 12, 25) - datetime.date.today())

(U) Or, if you're counting the microseconds:
print(datetime.datetime(2017, 12, 25) - datetime.datetime.today())

(U) How many seconds since you were born?

birthdate = datetime.datetime(1985, 1, 31)
time_since_birth = datetime.datetime.today() - birthdate
print('{:,}" .format(time_since_birth.total_seconds()))

(U) What is the average number of days between Easter and Christmas for the years 2000 - 29997?

Doc ID: 6689694

from dateutil.easter import easter
total = @
span = range(2000, 3000)
for year in span:
total += (datetime.date(year, 12, 25) - easter(year)).days

average = total / len(span)
print('{:6.4f}'.format(average))

(U) What day of the week does Christmas fall on this year?
datetime.date(2015, 12, 25).strftime('%A")

(U) You get a intercepted email with a POSIX timestamp of 1435074325. The email is from the leader of a Zendian extremist group and says that
there will be an attack on the Zendian capitol in 14 hours. In Zendian local time, when will the attack occur? (Assume Zendia is in the same time
zone as Kabul)

import pytz

utc_tz = pytz.timezone('Etc/UTC")

email_time_utc = datetime.datetime.fromtimestamp(1435074325, tz=utc_tz)

attack_time_utc = email_time_utc + datetime.timedelta(hours=14)

zendia_tz = pytz.timezone('Asia/Kabul')

attack_time_zendia = attack_time_utc.astimezone(zendia_tz)

print(email_time_utc)
print(attack_time_utc)
print (attack_time_zendia)

Doc ID: 6689694

L)

Object Oriented Programming and Exceptions

Exercise

-

Created over 3 years ago by| | in COMP 3321
A3 212515

Ciess J oop] comot] exceptons Jobiecs] ciasses] exerises |

(U) COMP3321 exercise for object oriented programming and exceptions.

Recommendations

(B) (B) =P:L.

86-36

Object Oriented Programming and Exceptions Exercise

Make a class called Symbol that holds data for a stock symbol, with the following properties:

self.name
self.daily_data

It should also have the following functions:

def __init__ (self, name, input_file)
def data_for_date(self, date_str)

init(self, name, input_file) should open the input file and read it with DictReader, putting each entry in self.daily_data, using the date strings as the
keys. Make sure to open the daily data file within a try/except block in case the file does not exist. If the file does not exist, set self.daily_data to an

empty dictionary.

data_for_date(self, date_str) should take a date string and return the dictionary containing that days' data. If there is no entry for that date, return an

empty dictionary.

Doc ID: 6689694

Tests

Make sure the following execute as specified in each comment. You can get the aapl.csv file from hitps://urn.nsa.ic.gov/t/0grli. The apple.csv file
should not exist.

sl = Symbol('AAPL"', 'aapl.csv')
print(sl.data_for_date('2015-08-10")) should return a dictionary for that date
print(sl.data_for_date('2015-08-09')) # should return an empty dictionary

*

s2 = Symbol('AAPL', ‘'apple.csv') ~ # should not raise an exception!
print(s2.data_for_date('2015-08-10')) # should return an empty dictionary
print(s2.data_for_date('2015-08-09"')) should return an empty dictionary

*

Doc ID: 6689695

Module: Collections and ltertools

(b) (3)-P.L. 86-36

N v w a el e e o e el B e

Updated almost 2 years ago by in COMP 3321
M3 129 110

Crcss L oytnon-

(U) Module: Collections and Itertools

Recommendations

(U) Any programming language has to strike a balance between the number of basic elements it exposes, like control structures, data types, and so
forth, and the utility of each one. For example, Python could do without tuple s entirely, and could replace the dict witha list of list s or even
asingle list where even-numbered indices contain keys and odd-numbered indices contain values. Often, there are situations that happen so
commonly that they warrant inclusion, but inclusion in the builtin library is not quite justified. Such is the case with

the collections and itertools modules. Many programs could be simplified with a defaultdict , and having one available with a single from
collection import defaultdict is much better than reinventing the wheel every time it's needed.

(U) Value Added Containers with collections

(U) Suppose we want to build an index for a poem, so that we can look up the lines where each word occurs. To do this, we plan to construct a
dictionary with the words as keys, and a list of line numbers is the value. Using a regular dict , we'd probably do something like this:

poem = """mary had a little lamb
it's fleece was white as snow
and everywhere that mary went
the lamb was sure to go"""

index = {}

Approved for Release by NSA on 12-02-2019, FOIA Case # 108165

Doc ID: 6689695

for linenum, line in enumerate(poem.split('\n')):
for word in line.split():
if word in index:
index[word].append(linenum)
else:
index[word] = [linenum]

(U) This code would be simpler without the inner if ... else ... clause. That's exactly what a defaultdict is for; it takes a function (often
a type , which is called as a constructor without arguments) as its first argument, and calls that function to create a default value whenever the
program tries to access a key that isn't currently in the dictionary. (It does this by overriding the _ missing__ method of dict .) In action, it looks
like this:

from collections import defaultdict

index = defaultdict(list)

for linenum, line in enumerate(poem.split(‘'\n')):
for word in line.split():
index[word].append(1linenum)

(U) Although a defaultdict is almost exactly like a dictionary, there are some possible complications because it is possible to add keys to the
dictionary unintentionally, such as when testing for membership. These complications can be mitigated with the get method and the in operator.

‘sheep’ in index # False

1 in index.get('sheep') # Error

‘sheep' in index # still False

2 in index['sheep'] # still False, but...

‘sheep' in index # previous statement accidentally added 'sheep'’

(U) You can do crazy things like change the default_factory (it's just an attribute of the defaultdict object), but it's not commonly used:
import itertools

def constant_factory(value):
return itertools.repeat(value).__next__

d = defaultdict(constant_factory('<missing>"))

d.update(name="John', action="ran')

Doc ID: 6689695
‘{@[name]} {@[action]} to {@[object]}’.format(d)

d # "object"” added to d

(U) A counter islike a defaultdict(int) with additional features. If given a list or other iterable when constructed, it will create counts of all
the unique elements it sees. It can also be constructed from a dictionary with numeric values. It has a custom implementation of update and some
specialized methods, like most_common and subtract .

from collections import Counter

word_counts = Counter(poem.split())
word_counts.most_common(3)
word_counts.update('lamb lamb lamb stew'.split())
word_counts.most_common(3)

C

Counter(a=3, b=1)

d = Counter(a=1, b=2)

c+d

c-d # Did you get the output you expected?
(c-d) +d

cé&d

e |-d

(U) An orderedDict is a dictionary that remembers the order in which keys were originally inserted, which determines the order for its iteration.
Aside from that, it has a popitem method that can pop from either the beginning or end of the ordering.

(U) namedtuple is used to create lightweight objects that are somewhat like tuples, in that they are immutable and attributes can be accessed
with [] notation. As the name indicates, attributes are named, and can also be accessed with the . notation. It is most often used as an
optimization, when speed or memory requirements dictate that a dict or custom object isn't good enough. Construction of a namedtuple is
somewhat indirect, as namedtuple takes field specifications as strings and returns a type , which is then used to create the named tuples. named
tuples can also enhance code readability.

from collections import namedtuple

Doc ID: 6689695

Person = namedtuple('Person', 'name age gender')

bob = Person(name='Bob', age=30, gender='male')

print('%s is a %d year-old %s' % bob) # 2.x style string formatting
print('{} is a {} year-old {}'.format(*bob))

print('%s is a %d year-old %s' % (bob.name, bob.age, bob.gender))

print('{} is a {} year-old {}'.format(bob.name, bob.age, bob.gender))
bob[@]

bob[*name "] # TypeError

bob.name

print('%(name)s is a %(age)d year-old %(gender)s' % bob) # Doesn't work
print('{name} is a {age} year-old {gender}'.format(*bob)) # Doesn't work

print('{@.name} is a {©@.age} year-old {@.gender}'.format(bob)) # Works!

(U) Finally, deque provides queue operations.
from collections import deque

d = deque('ghi‘) # make a new deque with three items
d.append('j") # add a new entry to the right side
d.appendleft('f") # add a new entry to the left side
d.popleft() # return and remove the Leftmost item
d.rotate(1) # right rotation

d.extendleft('abc') # extendleft() reverses the input order

(U) The collections module also provides Abstract Base classes for common Python interfaces. Their purpose and use is currently beyond the
scope of this course, but the documentation is reasonably good.

Doc ID: 6689695

(U) Slicing and Dicing with itertools

Given one or more list s, iterator s, or other iterable objects, there are many ways to slice and dice the constituent elements.

The itertools module tries to expose building block methods to make this easy, but also tries to make sure that its methods are useful in a variety of
situations, so the documentation contains a cookbook of common use cases. We only have time to cover a small subset of

the itertools functionality. Methods from itertools usually return an iterator, which is great for use in loops and list comprehensions, but not so good
for inspection; in the code blocks that follow, we often call 1ist on these things to unwrap them.

(U) The chain method combines iterables into one super-iterable. The groupby method separates one iterator into groups of adjacent objects,
possibly as determined by an optional argument-this can be tricky, especially because there's no look back to see if a new key has been
encountered previously.

import itertools
list(itertools.chain(range(5),[5,6])) == [0,1,2,3,4,5,6]
size_groups = itertools.groupby([1,1,2,2,2,'p','P",3,4,3,3,2])

[(key, list(vals)) for key, vals in size_groups]

(U) A deeply nested for loop or list comprehension might be better served by some of the combinatoric generators like product , permutations,
or combinations .

iter_product = itertools.product([1,2,3],['a','b','c'])

list(iter_product)

iter_combi = itertools.combinations("abcd",3)
list_combi = list(iter_combi)
list_combi

iter_permutations = itertools.permutations(“abcd",3)

list(iter_permutations)

(U) itertools can also be used to create generators:

counter = itertools.count(@, 5)
next(counter)

print(list(next(counter) for c in range(6)))

Doc ID: 6689695
(U) Be careful... What's going on here?!?

counter = itertools.count(©.2,0.1)
for ¢ in counter:
print(c)
2% c > 1.5:
break

cycle = itertools.cycle('ABCDE")

for i in range(10):
print(next(cycle))

repeat = itertools.repeat(‘'again!’)

for i in range(5):
print (next(repeat))

repeat = itertools.repeat(‘'again!', 3)
for i in range(5):
print (next(repeat))

nums = range(10,0,-1)
my_zip = zip(nums, itertools.repeat('p'))
for thing in my_zip:

print (thing)

Doc ID: 6689695

Functional Programming

v

Created over 3 years ago by| Jin COMP 3321 Ll
M3 219338 P
(UH#FOUYO) A short adaptation of| |"A practical introduction to functional programming" in Python to

supplement COMP 3321 materials. Also discusses lambdas.

Recommendations

UNCLASSIFIED
(U) Introduction

(U) At a basic level, there are two fundamental programming styles or paradigms:

» imperative or procedural programming and

» declarative or functional programming.
(U) Imperative programming focuses on telling a computer how to change a program's state--its stored information--step by step. Most
programmers start out learning and using this style. It's a natural outgrowth of the way the computer actually works. These instructions can be
organized into functions/procedures (procedural programming) and objects (object-orientedprogramming), but those stylistic improvements remain
imperative at heart.

(U) Declarative programming, on the other hand, focuses on expressing what the program should do, not necessarily how it should be

done. Functional programming is the most common flavor of that. It treats a program as if it is made up of mathematical-style functions: for a given
input x, running it through function will always give you the same output f(x) , and x itself will remain unchanged afterwards. (Note that this
is not necessarily the same as a procedural-style function, which may have access to global variables or other "inputs" and which may be able to

modify those inputs directly.)

Doc ID: 6689695

(U) TL;DR

(U) The key distinction between procedural and functional programming is this: a procedural function may have side effects--it may change the
state of its inputs or something outside itself, giving you a different result when running it a second time. Functional programming avoids side
effects, ensuring that functions don't modify anything outside themselves.

(U) NOte P.L. 86-36

(U) The contents of this notebook have been borrowed from the beginning of essay, "A practical introduction to functional
programming." A full notebook version of that essay can be found here. (Note that it uses Python 2.)

(U) Functional vs. Not

(U) The best way to understand side effects is with an example.

(U) This function is not functional:

a==0

def increment():
global a
a+=1

(U) This function is functional:

def increment(a):
return a + 1

(U) Map-Reduce

(U) Let's jump into functional coding. One common use is map-reduce, which you may have heard of. Let's see if we can make sense of it.

(U) map

(U) Conceptually, map is a function that takes two arguments: another function and a collection of items. It will

1. run the function on each item of the original collection and
2. return a new collection containing the results,

Doc ID: 6689695 - .
3. leaving the original collection unchanged.

(U) In Python 3, the input collection must simply be iterable (e.g. 1list, tuple, string).lts map function returns an iterator that runs the input
function on each item of iterable.

(U) Example 1: Name Lengths

(U) Take a list of names and get a list of the name lengths:

name_lengths = map(len, ["Mary", "Isla", "Sam"])
print(list(name_lengths))

(U) Example 2: Squaring

(U) Square every number in a list:

squares = map(lambda x: x * x, [0, 1, 2, 3, 4])
print(list(squares))

(U) A digression on lambda

(U) So what's going on with that input function? lambda will let you define and use an unnamed function. Arguments fit between the lambda and
the colon while the stuff after the colon gets implicitly returned (i.e. without explicitly using a return statement).

(U) Lambdas are most useful when:

« your function is simple and
» you only need to use it once.

(U) Consider the usual way of defining a function:

def square(x):
return x * x

square(4)
we could have done this instead

squares = map(square, [0, 1, 2, 3, 4])
print(list(squares))

(U) Now let's define the same function using a lambda:

Doc ID: 6689695

lambda x: x * x

(U) Fine, but how do we call that resulting function? Unfortunately, it's too late now; we didn't store the result, so it's lost in the ether.

(V) Let's try again:
ima_function_variable = lambda x: x * x

type(ima_function_variable)
ima_function_variable(4)

be careful!
ima_function_variable = 'something else’

our Lambda function is gone again
ima_function_variable(4)

(U) Example 3: Code Names

(U) OK, back to map . Here's a procedural way to take a list of real names and replace them with randomly assigned code names.
import random

names = ['Mary‘', 'Isla’', 'Sam']
code_names = ['Mr. Pink', 'Mr. Orange', 'Mr. Blonde']

for i in range(len(names)):
names[i] = random.choice(code_names)

print(names)

(U) Here's the functional version:
names = ['Mary', 'Isla‘', 'Sam']
covernames = map(lambda x: random.choice(['Mr. Pink', 'Mr. Orange', 'Mr. Blonde']), names)
print(list(covernames))

(U) Exercise: Code Names...Improved?

Doc ID: 6689695 . o
(U) The procedural code below generates code names using a new method. Rewrite it using map .

names = ['Mary', 'Isla‘', 'Sam']

for i in range(len(names)):
names[i] = hash(names[i])

print(names)

your code here

reduce

(U) Reduce is the follow-on counterpart to map. Given a function and a collection of items, it uses the function to combine them into a single value
and returns that result.

(U) The function passed to reduce has some restrictions, though. It must take two arguments: an accumulator and an update value. The update
value is like it was before with map ; it will get set to each item in the collection one by one. The accumulator is new. It will receive the output from
the previous function call, thus "accumulating" the combined value from item to item through the collection.

(U) Note: in Python 2, reduce was a built-in function. Python 3 moved it into the functools package.
(U) Example

(U) Get the sum of all items in a collection.
import functools

sum = functools.reduce(lambda a, x: a + x, [0, 1, 2, 3, 4])
print(sum)

UNCLASSIFIED

Doc ID: 6689695

Recursion Examples

{b) (3)=P.l.

86-36

-
»mess
..
.- ww .
= s ="
v LI

Updated over 3 by| |
'.?(213 ed 4\‘{ years ago by

Cpynon J oxampies Jisscsion] tcss | fonacei } games § o1

(U) Some simple recursion examples in Python

Recursion

Recursion provides a way to loop without loops. By calling itself on updated data, a recursive function can progress through a problem and traverse

the options.

Nth Fibonacci Number

https://wikipedia.nsa.ic.gov/en/Fibonacci_number

This returns the nth Fibonacci number in the Fibonacci Sequence using recursion.

def nth_fibonacci(n):
¥ n < 1;
return ©
elif n ==
return 1
elif n ==
return 1
else:
return nth_fibonacci(n-2) + nth_fibonacci(n-1)

nth_fibonacci(10)

Doc ID: 6689695

Fibonacci Sequence

This returns a list of the first n Fibonacci Numbers using recursion.

def fibonacci(n, seg=[]):
if len(seq) == n:
return seq
elif len(seq) == 0:
return fibonacci(n, [1])
elif len(seq) == 1:
return fibonacci(n, [1,1])
else:
next_value = seq[-2] + seq[-1]
return fibonacci(n, seq + [next_value])

fibonacci(5)

Simple Game

This simple game just takes in a list of nine elements and tries to modify each slot until all the numbers from 1 to 9 are in the list.
import random

Doc ID: 6689695
def improve(input_list, missing):
random_index = random.choice(list(range(len(input_list))))
random_value = random.choice(missing)
new_list = input_list[:]
new_list[random_index] = random_value
return new_list

def find_missing(input_list):
missing = [x for x in list(range(1,10)) if x not in input_list]
return missing

def one_to_nine(input_list):
print (input_list)
missing = find_missing(input_list)

if len(missing) == 0:
return input_list

else:
new_list = improve(input_list, missing)
return one_to_nine(new_list)

one_to_nine([1,1,1,1,1,1,1,1,1])

Simple Game Revised

This revision of the same simple game comes up with a list of possible improvements and tries to pick the best one to pursue. You'll notice that it
takes fewer attempts to reach an anser than the original version of this simple game.

Doc ID: 6689695
def improve(input_list, missing):
random_index = random.choice(list(range(len(input_list))))
random_value = random.choice(missing)
new_list = input_list[:]
new_list[random_index] = random_value
return new_list

def find_missing(input_list):
missing = [x for x in list(range(1,10)) if x not in input_list]
return missing

def score(input_list):
missing = find_missing(input_list)
return (len(missing), input_list)

def best_scoring_list(scored_lists):
lowest = 160
best_list = []

for x in scored_lists:
score = x[0]
input_list = x[1]

if score < lowest:
lowest = score
best_list = input_list

return best_list

def one_to_nine(input_list):
print (input_list)
missing = find_missing(input_list)

if len(missing) == @:
return input_list
else:
possible_improvements = [improve(input_list, missing) for i in range(len(missing))]
scored_improvements = [score(i) for i in possible_improvements]
best_list = best_scoring_list(scored_improvements)
return one_to_nine(best_list)

Doc ID: 6689695
one_to_nine([1,1,1,1,1,1,1,1,1])

Simple Game as a Tree

We can think of our strategy as a tree of options that we traverse, following branches that show that they're going to improve our chances of finding
a solution. This is an extremely simplified form of what many video games use for their Al. We put our possible_improvements in a generator so
they will only be created as needed. If we put them in a list comprehension as before, then all possible improvements would be generated even
though many of them will likely go unused. In the end, we return any() with a generator for the branches. Since any() only needs one item to be
True, it will return True as soon as a solution is found; when len(missing) == 0.

You'll notice that this results in more iterations of one_to_nine() than in the previous revision. However, the previous revision also generated a lot of
data that ends up getting discarded. In other words, there's probably more processing and memory consumed by the previous revision behind the
scenes.
def improve(input_list, missing):

random_index = random.choice(list(range(len(input_list))))

random_value = random.choice(missing)

new_list = input_list[:]

new_list[random_index] = random_value

return new_list

def find_missing(input_list):
missing = [x for x in list(range(1,10)) if x not in input_list]
return missing

def one_to_nine(input_list, prev_missing=None):
print (input_list)
missing = find_missing(input_list)

if prev_missing is None:
return one_to_nine(input_list, missing)
elif len(missing) == 0:
return True
elif len(missing) > len(prev_missing):
return False
else:
possible_improvements = (improve(input_list, missing) for i in range(len(missing)))
return any((one_to_nine(p, missing) for p in possible_improvements))

Doc ID: 6689695
one_to_nine([1,1,1,1,1,1,1,1,1])

Doc ID: 6689695

Moduole: Command Line Arguments

(b) (3)-P.L. B6=-36

s = s =
v e s assnuss

Updated almost 2 years ago by | Jin COMP 3321
M3 3B

(U) Module: Command Line Arguments

Recommendations

UNCLASSIFIED

(U) Most command line programs accept options and arguments, and many even provide help messages that indicate what options are available,
and how they are to be used. For example, the utility program mv takes two arguments, and most often moves the first argument (the source) to
the second (the destination). It has other ways of operating, which are enabled by optional flags and arguments; from a command prompt, type mv
--help to see more.

(U) There are several ways to enable this type of functionality in a Python program, and the best way to do it has been a source of contention. In
particular, this lesson will cover the argparsemodule, which was added to the standard library in Python 2.7, and not the optparse module which
was deprecated at that time.

(U) Everything passed as arguments to a Python program is available in the interpreter as the list of strings in sys.argv . In an interactive
session, sys.argv always starts outas [''].When running a script, sys.argv[@] isthe name of the script. We start by examining
what sys.argv looks like. Put the following commands in a file called argtest.py or similar:

import sys
print(sys.argv)

Doc ID: 6689695

...or make python do it!
contents = '''import sys
print(sys.argv)

with open('argtest.py’, 'w') as f:
f.write(contents)

(U) Close the file and execute it from the command line with some arguments:

the '!' at the beginning tells jupyter to send what follows to the command Line
[]pythonB argtest.py -xzf --v foo --othervar=bar filel file2

=> ['argtest.py', '-xzf', '--v', 'foo', '--othervar=bar', 'filel', 'file2']

(V) In all of the argument parsing that follows, sys.argv will be involved, although that may happen either implicitly or explicitly. Although it is often
unwise to do so within a script, sys.argv can be modified, for instance during testing within an interactive session.
(U) Note that in Jupyter you still have argv , but it may not be what you expect. If you look at it, you'll see how this Python 3 kernel is being called:

import sys
print(sys.argv)

(U) The Hard Way: getopt

(U) For programs with only simple arguments, the getopt module provides functionality similar to the getopt function in C. The main method in the
module is getopt , which takes a list of strings, usually sys.argv[1:] and parses it according to a string of options, with optional long options,
which are allowed to have more than one letter; explanations are best left to examples. This method returns a pair of lists, one containing (option,
value) tuples, the other containing additional positional arguments. These values must then be further processed within the program; it might be
useful, for instance, to put the (option, value) tuplesintoa dict . If getopt receives an unexpected option, it throws an error. If it does not
receive all the arguments it requests, no error is thrown, and the missing arguments are not present in the returned value.

import getopt
getopt.getopt('-a arg'.split(),"'a:"') # a expects an argument
getopt.getopt('-a arg'.split(), 'a:b') # no b, no problem

getopt.getopt('-b arg -a my-file.txt'.split(), 'ab:') # my-file.txt is argument, not option

Doc ID: 6689695
getopt.getopt('-a arg --output=other-file.txt my-file.txt'.split(),'a:b',['output="]) # Long options

(U) For programs that use getopt , usage help must be provided manually.

def usage():
print("""usage: my_program.py -[abh] filel, file2, ...""")

this won't actually find anything in Jupyter, since ipython3 probably doesn't have these options
opts, args = getopt.getopt(sys.argv[1:], ‘abh')

opt_dict = dict(opts)

if<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>