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Searching for the QCD critical point via the rapidity dependence of cumulants
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The search for a possible critical point in the QCD phase diagram is ongoing in heavy-ion collision
experiments at the BNL Relativistic Heavy Ion Collider (RHIC) which scan the phase diagram by scanning the
beam energy; a coming upgrade will increase the luminosity and extend the rapidity acceptance of the solenoidal
tracker at RHIC (STAR) detector. In fireballs produced in RHIC collisions, the baryon density depends on
rapidity. By employing Ising universality together with a phenomenologically motivated freeze-out prescription,
we show that the resulting rapidity dependence of cumulant observables sensitive to critical fluctuations is
distinctive. The dependence of the kurtosis (of the event-by-event distribution of the number of protons) on
rapidity near midrapidity will change qualitatively if a critical point is passed in the scan. Hence, measuring
the rapidity dependence of cumulant observables can enhance the prospect of discovering a critical point, in
particular if it lies between two energies in the beam energy scan.
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A central goal of heavy-ion collision experiments is to map
the QCD phase diagram as a function of temperature T and
baryon chemical potential μB [1–3]. At zero μB , the phase
diagram features a continuous crossover from quark-gluon
plasma (QGP) to ordinary hadronic matter as a function of
decreasing T [4–8]. Increasing μB corresponds to doping
the QGP with an excess of quarks over antiquarks. As in
condensed-matter physics, after the discovery of a new form
of strongly correlated matter, here the strongly coupled liquid
called QGP, a more complete understanding requires mapping
its phase diagram as a function of T and doping. It is an
open question whether the crossover at zero doping becomes a
sharp first-order phase transition as the doping μB is increased
beyond some critical point [3,9]. At nonzero μB where lattice
calculations become extremely difficult [10,11], there are no
first-principles theoretical calculations which provide reliable
guidance as to whether there is a critical point in the phase
diagram of QCD, or its location if it does exist [12–15].
Model calculations suggest the existence of a critical point,
but disagree wildly on its location in the (μB, T ) plane
[14,15]. Reducing the beam energy increases the μB of the
QGP produced in a heavy-ion collision [3,16–18] (principally
because lower energy collisions make less entropy but also
because they deposit more of their baryon number in the
plasma) but it also reduces the temperatures achieved. So,
these experiments can scan the crossover (and potentially
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critical) regime of the phase diagram out to some value of
μB corresponding to the lowest energy collisions that reach
the crossover (critical) temperature [1,2]. If a critical point is
located in the regime that is within reach, it may be detected
experimentally.

The search for a critical point in the phase diagram of
QCD at the BNL Relativistic Heavy Ion Collider (RHIC)
is currently underway, with collisions at energies ranging
from

√
s = 200 AGeV down to

√
s = 7.7 AGeV, produc-

ing fireballs that freeze-out with chemical potentials in the
range 25 � μB � 400 MeV [17,18]. This exploration will
be extended to higher μB , albeit at lower temperatures, via
collisions at lower

√
s at the Nuclotron-based Ion Collider

fAcility (NICA) at the Joint Institute for Nuclear Research
(JINR) in Dubna, Russia [19], now under construction, and
fixed target collisions at RHIC and at the future GSI Facility
for Antiproton and Ion Research (FAIR) [20]. Phase I of the
RHIC beam energy scan (BES-I) was completed in 2014,
with no signs of a critical point for μB < 200 MeV and with
tantalizing but inconclusive results at larger μB , in collisions
with 19.6 � √

s � 7.7 AGeV [1,2,9,21–23]. Phase 2 of the
scan (BES-II), to begin in 2019 [9,23], will focus on this
regime with increased luminosity and consequently much
higher statistics. One of the improvements planned before
BES-II is an upgrade of the inner time projection chamber
(iTPC) at STAR, which will extend its rapidity acceptance for
protons from |y| < 0.5 in BES-I to |y| < 0.8 in BES-II [24].

The energy of a heavy-ion collision sets the initial T and
μB of the QGP which is created, with lower energy collisions
being more baryon rich. The QGP then follows a trajectory
in the (T ,μB ) plane as it expands and cools. If there is a
critical point in the QCD phase diagram within the range of
μB which is accessible in the BES, then at some collision
energies the fireball produced may pass through or near the
critical region, while at higher (lower) collision energies the

2469-9985/2018/98(6)/061901(6) 061901-1 Published by the American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.98.061901&domain=pdf&date_stamp=2018-12-13
https://doi.org/10.1103/PhysRevC.98.061901
https://creativecommons.org/licenses/by/4.0/


BREWER, MUKHERJEE, RAJAGOPAL, AND YIN PHYSICAL REVIEW C 98, 061901(R) (2018)

fireball produced will pass the critical point on the low (high)
μB side. The theoretical challenge is to describe the unique
signatures of this scenario which would be observable in data
from the BES.

A critical point in a thermodynamic system is characterized
by an enhanced correlation length. Although the correlation
length itself is not observable because the critical order pa-
rameter σ couples to all hadrons, the nth cumulant moments
κn of the event-by-event distribution of the measured multi-
plicity N of various particle species, for example, κ4[N ] =
〈(δN )4〉 − 3〈(δN )2〉2, scale with powers of the correlation
length ξ near a critical point [25]. Protons couple more
strongly to σ than pions or kaons, making cumulants of
the proton multiplicity good observables with which to look
for critical fluctuations [26,27]. The non-Gaussian cumulants
κ3[N ] = 〈(δN )3〉 ∼ ξ 9/2 and κ4[N ] ∼ ξ 7 scale with higher
powers of the correlation length than the Gaussian cumulants
and are therefore more sensitive to critical behavior [25,27].
Furthermore, an analysis that is valid for any critical point in
the same (3D Ising) universality class has shown that κ4 will
also change sign near a QCD critical point [28,29]. Nonmono-
tonic behavior and a sign change of the fourth cumulant as a
function of the beam energy are characteristic signatures of
the presence of a critical point which can be searched for in
the RHIC BES.

The dependence of fluctuation measures on the total rapid-
ity acceptance has been studied before [30–32] upon assuming
that μB , and hence ξ and κ4, do not depend on rapidity.
However, the baryon density does depend nontrivially on
rapidity at RHIC BES energies (see, e.g., Refs. [33–35]).
Even at top RHIC and LHC energies, the baryon density
is significant at very large rapidity, around two units of
rapidity below that of the incident beams, although building
instrumentation to make the required measurements to explore
the hot baryon-rich matter produced in this regime presents
considerable challenges [3,33]. Since the correlation length
and fluctuations become very large near a critical point, the
rapidity dependence of the baryon density gives rise to a
strong, nontrivial rapidity dependence of the cumulants near
a critical point which was not incorporated in previous work.
Furthermore, since each rapidity is associated with a different
value of μB and therefore probes a different part of the critical
region on the phase diagram, we shall see that integrating over
the full rapidity acceptance averages out interesting features
in the cumulants which are characteristic of critical behavior.
Instead, we propose that binning the cumulants in rapidity
gives a more crisp picture of the critical regime, and demon-
strate that the rapidity dependence of these binned cumulants
near midrapidity will change qualitatively if a critical point
is passed in the BES. We therefore propose this observable
as a complementary means by which to observe the presence
of a critical point at the BES. In particular, it provides a
new, and distinctive, signature by which to determine whether
downward steps in the collision energy take us past a critical
point in the phase diagram.

Rapidity dependence of μB . In this Rapid
Communication, we illustrate the effect that the rapidity
dependence of μB at RHIC BES energies has on the rapidity
dependence of cumulants, and propose using this toward

discovering (or ruling out) a critical point using RHIC BES
data.

Since the baryon density at freeze-out is symmetric in the
space-time rapidity ys for symmetric heavy-ion collisions, for
small |ys | the deviation from boost invariance takes the form

μB (ys ) ∼ μB,0 + α y2
s , (1)

with μB,0 and α constants that depend on the beam energy√
s. We shall use this form for illustrative purposes, noting

of course that it cannot be relied upon at large |ys |. As we
have discussed, the basis of the BES is that downward steps
in

√
s yield upward steps in μB,0. For illustrative purposes,

we shall pick three values of μB,0 within the BES range and
see what happens if these steps were to happen to take us past
a possible critical point. The value of α has been measured
in CERN Super Proton Synchrotron (SPS) collisions with√

s = 17.3 AGeV, where α = 50 MeV [34]. At this (and all
higher, and some lower) beam energies, α > 0 because the
baryon number density is peaked at roughly two units of
rapidity below the beam rapidity, meaning that it is less at
ys = 0 than at larger |ys | [3,16]. In BNL Alternating Gradient
Synchrotron (AGS) collisions with

√
s = 5.5 AGeV, though,

the beam rapidity is low enough that the baryon number
density peaks at ys = 0 and α < 0 [16]. The

√
s at which α

changes from positive to negative is not known but is likely
near the lower end of the BES range. Ultimately, measure-
ments of the ratios of the mean particle number distribution
for different species from the RHIC BES should be used to
measure how μB at freeze-out depends on ys at each BES
collision energy, and hence to determine the value of α at each
energy. For illustrative purposes here, we shall investigate the
consequences of choosing α = 50 MeV at each of our three
values of μB,0 as well as checking how things change if we
choose α = −50 MeV instead at our largest value of μB,0.

Cumulants in the critical regime. Order parameter fluctua-
tions near a critical point induce fluctuations in the event-by-
event particle multiplicities. Throughout this work, we will
consider the cumulants of protons, as these are expected to
be most sensitive to critical fluctuations [27]. From previous
work [25,27,28,31], the contribution to the fourth cumulant
of the proton multiplicity distribution coming from critical
fluctuations (denoted by the subscript σ ) takes the form

κ4[N ]σ =
∫

x
K4 ξ 7T 2

(
g

∫
p

χp

γp

)4

, (2)

where the x integral is a space-time integral over the freeze-
out hypersurface, where T , μB , and consequently ξ (μB, T )
and K4(μB, T ) (proportional to the kurtosis of the event-
by-event distribution of the fluctuating order parameter, see
below) can take on different values at different points on
the freeze-out hypersurface, where g is the σ -proton-proton
coupling which we set to the same benchmark value g = 7
used in Ref. [27], where the p integral is a momentum-
space integral over the protons at the point x, where χp =
fp(1 − fp)/T if we assume local equilibrium with fp the
Fermi-Dirac distribution boosted by the radial flow velocity
at the point x, and where γp =

√
p2 + m2/m with m the

proton mass. We note that this freeze-out prescription allows

061901-2



SEARCHING FOR THE QCD CRITICAL POINT VIA THE … PHYSICAL REVIEW C 98, 061901(R) (2018)

us to convert the space-time rapidity dependence of μB into
momentum-space rapidity dependence of κ4[N ]σ . [See Eq. (3)
for details.] We follow Ref. [31] and use a blast wave model
to obtain the radial flow velocity and freeze-out hypersurface,
taking the freeze-out curve in the (T ,μB ) plane from the fit to
experimental data found in Refs. [17,18]. Following Ref. [31],
we shall make the approximation χp ≈ fp/T and use the
Boltzmann distribution for fp, allowing us to do some of the
integrals analytically.

The shape of the dependence of K4 and ξ on μB and T
are governed by universal properties of critical fluctuations. A
critical point in the QCD phase diagram, if it exists, is known
to be in the same universality class as the 3D Ising model [36–
40]. The mapping of the Ising variables (r, h) onto the QCD
variables (μB, T ) is not universal, but for illustrative purposes
we employ the widely used assumption [41] that the Ising r
axis (and hence the line of first-order transitions) is parallel to
the QCD μB axis, and the Ising h axis is parallel to the QCD
T axis. For illustrative purposes, we shall place a hypothetical
QCD critical point at μB = 260 MeV, T = 160 MeV. The
3D Ising universality then determines K4 at some point away
from the critical point in terms of the direction in which that
point lies in the (μB, T ) plane, and ξ in terms of this angle,
the distance away from the critical point, and one nonuniversal
parameter whose choice determines the contour on the phase
diagram where ξ = 1 fm, as illustrated in Fig. 1. Because once
ξ is less than 1 fm the magnitude of κ4 ∝ ξ 7 is negligible,
for simplicity we set ξ = 0 outside the critical regime. (For
details, see Refs. [27,28,42,43].)

Following Ref. [31], we cast the momentum integration
in terms of the momentum-space rapidity y and transverse
momentum p⊥, which are measured in experiment:

∫
p

1

γp
→ 2m

(2π )3

∫ yc+�y/2

yc−�y/2
dy

∫ pmax

pmin

p⊥dp⊥
∫ 2π

0
dψ . (3)

We have introduced a finite acceptance in both rapidity and
transverse momentum. We will keep pmin = 0.4 GeV and
pmax = 2 GeV throughout. We shall compute κ4 using two
different kinds of rapidity cuts, either varying �y with yc = 0,
in which case |y| < ymax ≡ �y/2, or varying yc with fixed bin
width �y.

To simplify the interpretation of our results, we shall
show the critical contribution to the cumulants normalized
by the average number of protons, ω4,σ ≡ κ4[N ]σ /〈N〉. This
cumulant ratio has the advantage that if the background
(noncritical) contribution were Poisson distributed it would
contribute ω4,σ = 1, meaning that our results in Figs. 1 and
2 should be interpreted as critical contributions to be added to
a background of order 1.

Results and conclusions. In this section, we demonstrate
that the rapidity dependence of μB makes the rapidity depen-
dence of cumulants sensitive to critical fluctuations in a way
that yields distinctive, qualitative, observable consequences.
In Fig. 1 we first compute the dependence of the cumulant
ratio ω4,σ on the total rapidity acceptance ymax. This depen-
dence was studied previously in Ref. [31] upon assuming that
μB itself is constant in rapidity; we find striking consequences
of the rapidity dependence of μB . Next, motivated by the

expanded rapidity coverage that the STAR iTPC upgrade will
bring, we compute ω4,σ for bins in rapidity, something that
has not been considered previously. We find that the rapidity
dependence of the cumulant ratio is a sensitive and interesting
probe of critical behavior.

In Fig. 1 we consider a hypothetical set of scenarios
motivated by the possibility that there may be a QCD critical
point within the energy range to be explored by the RHIC
BES. We imagine a critical point at μc

B = 260 MeV, and
in the first three rows of the figure we consider heavy-ion
collisions with three decreasing values of the beam energy
such that freeze-out at midrapidity occurs at μB,0 = 200, 230,
and 240 MeV. In all three rows, we choose α = 50 MeV,
corresponding to the measured value from SPS collisions with√

s = 17.3 GeV and μB,0 = 237 MeV. Because a real critical
point may lie at larger μc

B than this, where α may become
negative, in the fourth row we flip the sign of α. The right
column of Fig. 1 shows ω4,σ binned in rapidity bins of width
�y = 0.4 centered around y = ±yc, an observable which to
our knowledge has not been considered before. This is a
more sensitive observable to the unique features of critical
behavior than the dependence on the total rapidity acceptance
in the center column because it isolates contributions coming
from more similar values of μB , and the correlation length
and other features of the critical regime are sensitive to μB

near μc
B . We see many interesting qualitative features in the

rapidity dependence of ω4,σ . For example, if μB,0 is in the
red region, where ω4,σ is negative and relatively small in
magnitude, larger and positive contributions to ω4,σ can be
found at larger rapidity. This can be seen in the middle panels
of the first and second rows, but it is much more striking in the
right panels, indicating the value of binning in rapidity. On the
other hand, if μB,0 lies in the blue region, in the right column
the largest value of ω4,σ is obtained for the bin centered at
y = 0, with ω4,σ decreasing with increasing rapidity while
staying positive if α > 0 as in the third row or decreasing
with increasing rapidity while becoming negative if α < 0 as
in the fourth row. Both the sign change and the nonmonotonic
behavior in ω4,σ , as a function of the rapidity acceptance in
the center panel of Fig. 1 and even more so as a function
of the rapidity bin in the right panel of Fig. 1 are new results of
this work. They arise from the rapidity dependence of μB at
freeze-out in collisions at RHIC BES energies, and provide
distinctive signatures if decreasing the beam energy in this
scan takes μB,0 past a critical point.

To complement Fig. 1, Fig. 2 shows the cumulant ratio ω4,σ

binned in rapidity for a fixed beam energy (fixed μB,0) as the
location of the critical point μc

B is changed. There are several
features of binning the cumulants in rapidity which we believe
will make doing so an important way to probe the critical
region, if a critical point is discovered in the RHIC BES. First,
ω4,σ increases with |yc| if freeze-out at midrapidity occurs at
a μB,0 that is well below μc

B , in the red region, whereas it will
decrease with |yc| if μB,0 is closer to or larger than μc

B , in
the blue region. This remains true even if α changes sign, as
demonstrated in the bottom row of Fig. 1. Furthermore, a sign
change in ω4,σ as a function of y will be easier to see upon
binning in |yc| since not doing so, as in the middle panels, can
obscure it by mixing data from different regions in rapidity.
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FIG. 1. In the left column we see that we have assumed the existence of a critical point (red dot) at (μc
B, T ) = (260, 160) MeV whose

critical region, bounded by the contour where ξ = 1 fm, is colored red and blue. The colors denote the sign of ω4,σ , with ω4,σ > 0 in blue
and ω4,σ < 0 in red. Different rows correspond to different assumptions for where on the phase diagram a heavy-ion collision freezes out, cf.
collisions with varying beam energy. The black circles show where freeze-out occurs at midrapidity, from top to bottom with μB,0 = 200, 230,
240, and 240 MeV. The black dashed curves show how the freeze-out conditions change with increasing space-time rapidity, with the circle,
square, and triangle indicating freeze-out at ys = 0, 0.6, and 1.2, respectively. In the top three rows, we have chosen α = 50 MeV [see Eq. (1)]
while for the bottom row we have chosen α = −50 MeV. The middle column shows how ω4,σ computed for a rapidity acceptance |y| < ymax

depends on ymax. The right column shows how ω4,σ computed in a pair of bins with width �y = 0.4 centered at ±yc depends on yc. The
results in the middle column sum over a wide range of rapidities (with |y| between 0 and ymax) which freeze-out with a range of μB , meaning
that features from the left column are more directly visible in the right column than in the middle. In both the center and right columns, the
black dotted lines show ω4,σ with α = 0, i.e. what would have been obtained if μB = μB,0, denoted by the black circles in the left column,
everywhere. The results shown in the right and middle columns should not be taken as quantitative predictions since they depend on the many
assumptions that we made for illustrative purposes; they are illustrative of qualitative features to be expected in the rapidity dependence of
cumulants if steps in beam energy take us past a critical point.
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FIG. 2. Behavior of ω4,σ when the freeze-out conditions are as
in the first row of Fig. 1 with μB,0 = 200 MeV and α = 50 MeV,
but here the location of the critical point ranges from μc

B = 190
MeV to μc

B = 300 MeV. For each value of μc
B , namely, for each

horizontal slice across the figure, color indicates the value of ω4,σ as a
function of |yc|, with �y = 0.4 fixed as in Fig. 1. The slice indicated
by the green dashed line corresponds to the top-right panel of
Fig. 1. For μc

B < μB,0 (μc
B > μB,0), ω4,σ decreases (increases) with

increasing |yc|.

Even in cases where the sign change in ω4,σ is visible in the
middle column, as in the first and second rows, it happens
at a lower rapidity in the right panel than in the middle
panel, making it more feasible to observe at STAR via binning
in |yc|.

We conclude that the rapidity dependence of μB at RHIC
energies may result in qualitative signatures of critical fluctua-
tions manifest in the rapidity dependence of the cumulant ratio
ω4,σ . Complementary to scanning the phase diagram by taking
steps in beam energy, the rapidity dependence of μB provides
additional scans of small regions of the phase diagram. We
have seen that nonmonotonicity and a sign change of the

critical contribution to ω4,σ as a function of rapidity will
arise if the BES includes energies on both sides of a critical
point. Binning the cumulants in rapidity provides a sensitive
probe of these effects. Signatures of critical behavior in the√

s dependence of ω4,σ can therefore be cross-checked by
looking for qualitative changes in the rapidity dependence of
ω4,σ between beam energies on either side of the critical point.
We have made arbitrary choices at many points, for illustrative
purposes. A future quantitative study should include investiga-
tion of changes to these choices, as well as an investigation of
consequences of various relevant physical effects which we
have neglected in this exploratory study. These include the
consequences of the variation of the baryon density across the
fireball at a given space-time rapidity originating from fluctua-
tions in baryon stopping, for example, as in Ref. [35]. We note,
however, that determining the value of α from experimental
data as in Ref. [34] as we propose, will incorporate the most
important such consequence. The value of α obtained in this
way is an average over many events with fixed

√
s, meaning

that it will be important in future work to assess how κ4 is
influenced by event-by-event fluctuations in baryon stopping
over and above their effect on the value of α. Future studies
should also include an analysis of the quantitative effects of
nonequilibrium dynamics, in particular critical slowing down,
on the growth of the correlation length and hence on the
values of

√
s or yc at which the qualitative features that we

have found occur [41,44–46]. The effects of baryon number
conservation as well as fluctuations in baryon stopping on the
cumulants have been studied [47,48] and should be included
in a quantitative model.
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