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Femtoscopy of stopped protons
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The longitudinal proton-proton femtoscopy (Hanbury Brown–Twiss) correlation function, based on the idea
that in a heavy-ion collision at

√
s � 20 GeV stopped protons are likely to be separated in configuration space,

is evaluated. It shows a characteristic oscillation which appears sufficiently pronounced to be accessible in ex-
periment. The proposed measurement is essential for estimating the baryon density in the central rapidity region
and can be also viewed as an (almost) direct verification of the Lorentz contraction of the fast-moving nucleus.
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I. INTRODUCTION

The search for a possible phase structure of QCD has been
a focus point in strong interaction research. Lattice QCD
calculations have established that for vanishing and small
net-baryon density the transition from hadrons to quarks and
gluons is an analytic crossover [1]. The situation at larger
baryon density, on the other hand, is less clear, since at
present lattice methods cannot access this region because of
the fermion sign problem. Here one has to rely on model
calculations and a large class of these models do indeed
predict a first-order phase coexistence region which ends in
a critical point (see, e.g., Ref. [2] for an overview).

In order to explore the region of large net-baryon density
experimentally, one studies heavy-ion collisions at moderate
beam energies

√
s � 20 GeV, where a sufficient amount of

the incoming nucleons are stopped at midrapidity in order to
achieve the necessary baryon density. Indeed, since produced
baryons always come as baryon-antibaryon pairs, the only
means of producing a finite net baryon density is by stopping
the nucleons of the colliding nuclei. Thus, in order to explore
the QCD phase diagram at large baryon density, the question
of baryon stopping is essential to understand. In fact, stopping
the baryons is only a necessary condition. In addition to being
at midrapidity in momentum space, they also need to overlap
in configuration space.

The mechanism by which the incoming nucleons are
stopped is indeed a very interesting question [3–8]. How-
ever, independent of the specific mechanism, it seems rather
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unphysical that the nucleons are stopped instantaneously.
Instead, it will take time and space for the nucleons to decel-
erate. Therefore, it is rather unlikely that the stopped nucleons
will end up at z � 0, i.e., at the point of the collision of the two
nuclei. Instead, one would expect that the nucleons from the
right-going nucleus will end up at positions in configuration
space with z > 0 and the left-going ones at z < 0 so that the
stopped nucleons may actually be distributed bimodally in
configuration space. This observation was recently pointed out
in Ref. [9]. Based on a simple string model, Ref. [9] found
that for collision energies

√
s � 10 GeV the stopped nucleons

actually will not overlap significantly in configuration space.
Of course, this observation was based on a rather simple
model and it would be much better if this observation could be
verified or ruled out in experiments. This is the purpose of this
paper, where we propose to measure longitudinal Hanbury
Brown–Twiss (HBT)–type correlations (also known as fem-
toscopy [10]) of the stopped protons, i.e., protons at ycm ≈ 0
with transverse momentum not exceeding, say, 1 GeV. Since
femtoscopy does not a priori distinguish between stopped
and produced protons, it is important to choose a collision
energy which is small enough for proton production to be
negligible but sufficiently high so that the deceleration length
is large enough for the stopped protons to be separated in
configuration space. Thus an energy of

√
s � 20 GeV appears

to be a good choice since at this energy the antiproton to
proton ratio is still very small, p̄/p � 0.1 [11,12].

This paper is organized as follows: In the next section, we
present and discuss the source function based on the same
simple string model used in Ref. [9] (corrected, however,
for the Fermi motion inside a nucleus). Next, we calculate
the resulting femtoscopy correlation function before we close
with a discussion of the various issues and limitations of this
study.

II. THE SOURCE FUNCTION

The essential ingredient for femtoscopy is the underlying
source of the emitted particles, protons in our case. The source
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is the phase-space distribution of emission points, which are
typically the points of the last interaction of the protons before
they fly to the detector. Clearly a quantitative calculation of
such a source function would require a sophisticated sim-
ulation. However, we believe that certain semiquantitative
aspects can be discussed without such a treatment, and it is
this approach we will take in the following.

As already eluded to in the introduction, once two nucleons
collide it is very unlikely or possibly even unphysical for them
to come to a stop right at the collision point. Instead, they will
only come to a stop after a certain distance and time.

The distance �z and time �t between the collision and
the final space-time point (z, t ) where and when a nucleon
acquires its final rapidity y depends on the mechanism of
deceleration and thus on the model used for its description.
It is in general a function of the initial and final rapidity, Yi

and y, as well as the typical transverse mass, M⊥, the nucleon
acquires after the collision.

For a given collision space-time point (zc, tc) in the center-
of-mass frame of the two nucleons, we thus have

z = zc ± �z(Yi, y, M⊥),

t = tc + �t (Yi, y, M⊥), (1)

where the plus sign refers to the right-going particles and the
minus sign to the left-going ones.

One sees from (1) that, in order to construct the source
needed for femtoscopy, we need a distribution of the colli-
sion points in space and time and a model or theory which
determines �z and �t .

A. Distribution of collision points

Let us start with the collision point distribution. Here, we
follow Ref. [9] and assume that the distribution of nucleons
inside the target and projectile nuclei can be reasonably
described by a Gaussian. In this case, the longitudinal (z-
direction) and transverse components of the collision point
distribution factorize and subsequently we will concentrate
on the collision point distribution in the z direction, which,
following Ref. [9], we assume to be proportional to the
overlap of the distribution of the nucleons in the left- and
right- moving nuclei.

We thus have

Wc(zc, tc) ∼ e−γ 2[zc−ζL (tc )]2/R2
L e−γ 2[zc−ζR (tc )]2/R2

R �(tc), (2)

where

ζL(t ) = −ζR(t ) = ζ0 − V t ; ζ0 � RL,R/γ , (3)

are the positions of the centers of the nuclei at the time t . ζ0

and −ζ0 are positions of the centres of left-moving and right-
moving nuclei at t = 0 before the nuclei have any contact
with each other. This implies ζ0 � RL,R/γ and tc � 0. Also,
γ = cosh(Ycm) denotes the Lorentz contraction factor for the
incoming nuclei in the center-of-mass frame, which we are
working in.

B. Distribution of nucleon emission points z and t

Consider first the right-movers. For the distribution of z and
t , we have

WR(z, t ) =
∫

dzcdtcWc(zc, tc)δ(z − zc − �z)δ(t − tc − �t )

∼ e−γ 2[z−�z−Z]2/R2
L e−γ 2[z−�z+Z]2/R2

R �(t − �t ) (4)

with Z ≡ ζ0 − V (t − �t ).
For left-movers, the formula differs by the sign of �z:

WL(z, t ) ∼ e−γ 2[z+�z−Z]2/R2
L e−γ 2[z+�z+Z]2/R2

R �(t − �t ). (5)

For identical nuclei, we have

W (z, t ; Pi, Pf )

= WL(z, t ) + WR(z, t ) ∼ (
e−[z+�z]2/�2

c + e−[z−�z]2/�2
c
)

× e−Z2/�2
c �(t − �t ), (6)

where ζ0 � R/γ , �2
c = R2/2γ 2, and the dependence on the

initial and final momenta is implicit via �z and �t .
What remains then is to determine �z and �t . For nucleons

with small transverse velocities, the simplest model is that of
linear energy loss, as for instance used in the Lund model [13]
or the Bremsstrahlung model [14]. Using the conditions1

dE/dz = σ, dP/dt = σ, (7)

where σ denotes the energy loss per unit length or string
tension, one obtains [9]

�z(Pi, Pf , σ ) = Ei − E f

σ
, E f = M⊥ cosh y, (8)

�t (Pi, Pf , σ ) = Pi − Pf

σ
, Pf = M⊥ sinh y. (9)

Here Pi = M sinh(Yi ), Ei =
√

M2 + P2
i , and Pf = M⊥ sinh(y),

E f =
√

M2
⊥ + P2

f are the initial and final longitudinal momenta

and energies.
These equations determine �z and �t for initial and final

longitudinal momenta, Pi and Pf , transverse mass of the final
proton, M⊥, and for a given rate of energy loss σ (string
tension). In reality, the string tension is not a constant but
may fluctuate from collision to collision (e.g., depending on
number of constituent quarks wounded in a given collision).
Since it is unlikely, however, that a nucleon with only one
or two wounded quarks may fully stop, the sample of the
nucleons with the final rapidity y ≈ 0 is expected to be largely
dominated by those with three wounded quarks. Thus we shall
ignore fluctuations due to the string tension and take σ =
3σ0 = 3 GeV/fm. For the transverse mass, we subsequently
will chose a value of M⊥ = 1.2 GeV (we verified that the
results are not sensitive to the actual value of M⊥).

1The second condition expresses the equation of motion with the
force equal to σ . It is exact when the transverse velocity of the
nucleon vanishes. We have verified that for the nucleons of transverse
momenta not exceeding 1 GeV the corrections are negligible.
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FIG. 1. Femtoscopy correlation function for (a)
√

s = 20 GeV and (b)
√

s = 14 GeV. The black dashed lines represent the result of our
model calculation while the solid blue lines are obtained by doubling the value of width of the collision point distribution, �c.

C. Fermi motion

In the case of a nucleus-nucleus collision, the nucleons in-
side the target and projectile nuclei experience Fermi motion.
Consequently, the initial momentum of the colliding nucleons
is distributed around the nominal (mean) value of the nucleus-
nucleus collision. This broadens the emission source in the
longitudinal spatial direction and thus affects the femtoscopy
signal. We have

WF (z, t, Pi, Pf ) =
∫

dPiGF (Pi − 〈Pi〉)W (z, t ; Pi, Pf ), (10)

where GF (Pi − 〈Pi〉) is the distribution of the actual initial
momentum Pi of the nucleon around the average 〈Pi〉. We shall
take it in the form

GF (Pi − 〈Pi〉) ∼ e−[Pi−〈Pi〉]2/�2
F ,

�F = γ

√
2

5
kF � γ 165 MeV, (11)

where kF is the Fermi momentum.2 Note that due to the
Lorentz boost the width of the distribution �F scales with
the Lorentz factor γ , �F ∼ γ . This increases substantially the
width of this distribution in the energy region of interest.

III. THE HBT CORRELATION FUNCTION

The femtoscopic longitudinal correlation function we are
seeking is given by [10,15]

C(δqz; δq0) − 1 = −1

2

|	(δqz; δq0)|2
|	(δqz = 0; δq0 = 0)|2 , (12)

where δqz is the difference of the longitudinal momenta
of the two protons, δq0 is the difference of their energies,

2The value of �F follows from the demand that the distribution
GF exhibits the same variance as the Fermi gas with the Fermi
momentum kF . Also, we ignore the small effect of the binding energy
of the nucleons and instead assume that we can treat the nucleons as
free particles.

and

	(δqz, δq0; Pi, Pf )=
∫ ∞

−∞
dzeizδqz

∫ ∞

�t
dte−itδq0W (z, t ; Pi, Pf )

(13)

is the Fourier transform of the density.
Since we are working with Gaussians, the Fourier trans-

forms are straightforward. We have

	(δqz, δq0; Pi, Pf ) ∼ cos[δqz�z]e−(δqz�c )2/4e−iδq0 (�t+ζ0/V )

× e−(δq0�c )2/(4V 2 ), (14)

where for the Fourier transform in t it was essential to use the
condition ζ0 � R/γ which allowed us to integrate over time
from −∞.

Thus, the final result for the correlation function, including
Fermi motion, is

CF (δqz; δq0) − 1 = −1

2

|	F (δqz; δq0)|2
|	F (δqz = 0; δq0 = 0)|2 , (15)

where

	F (δqz, δq0; Pi, Pf )

=
∫

dPiGF (Pi − 〈Pi〉)	(δqz; δq0; Pi, Pf )

∼ e− �2
c +�2

F /σ2

4 (δq2
z +δq2

0 )
[

cos (δqz�Z ) cosh

(
δq0δqz

�2
F

2σ 2

)

+ i sin (δqz�Z ) sinh

(
δq0δqz

�2
F

2σ 2

)]
, (16)

where we have omitted a common phase which does not play
any role in the correlation function. Here, we have assumed
that the momentum dependence of the shift �z, Eq. (8), may
be approximated by

�z = Ei − E f

σ
= Ei − 〈Ei〉

σ
+ 〈Ei〉 − E f

σ
� Pi−〈Pi〉

σ
+�Z;

�Z ≡ (〈Ei〉 − E f )/σ, (17)

where 〈Ei〉 is the mean (nominal) energy of the incident nuclei
and �Z denotes the shift in space for the mean energy. We fur-
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FIG. 2. Same as Fig. 1 but with strong and Coulomb interaction effects included.

ther assumed that the velocity of the nuclei in the c.m. frame
is close to unity, V � 1. For the energies under consideration,√

s > 10 GeV, these should be very good approximations and
indeed we find that the resulting correlation function agrees
with the full result within a few per mille.

IV. RESULTS

The correlation function (15) evaluated for δq0 = 0 (cor-
responding to protons with equal and opposite rapidities) is
shown in Fig. 1. Here, we used for the radius R = 7 fm and
M⊥,1 = M⊥,2 = 1.2 GeV. In Fig. 1(a), we show the predicted
femtoscopy correlation function for a collision energy of√

s = 20 GeV and in Fig. 1(b) for
√

s = 14 GeV. The black
dashed lines represent the result for the model discussed
above. The blue solid lines are the results, where we doubled
the width �c of the collision point distribution in order to
allow for additional smearing (induced, e.g., by a nonzero
proton radius not taken into account in our model). One
sees characteristic oscillations of the correlation function,
reflecting the two maximum structure of the source density.

To obtain experimental predictions, the correlation func-
tion seen in Fig. 1 must be corrected for the final-state
interactions [16,17]. They are shown in Fig. 2 with strong
and Coulomb interaction effects taken into account. One sees

that although these corrections strongly affect the very small
region of δqz, the region of δqz where the oscillations are
observed remains qualitatively unchanged.

In Fig. 3, we show the corresponding time-integrated
source distribution,

W̄ (z; Pi, Pf ) =
∫

dtWF (z, t ; Pi, Pf ) ∼exp

(
− (z − �Z )2

�2
F /σ 2 + �2

c

)

+ exp

(
− (z + �Z )2

�2
F /σ 2 + �2

c

)
. (18)

Here, we used the same approximation as before, Eq. (17).
We see that the separation of the stopped protons exhibited

in the source distribution manifests itself as extra oscillation in
the femtoscopy correlation function. For a collision energy of√

s = 20 GeV, the signal is clearly visible for both the model
result as well the more conservative result, where we doubled
the width �c. At

√
s = 14 GeV, the signal is much weaker,

however.

V. CONCLUSION AND REMARKS

In conclusion, we have presented a calculation of the
longitudinal femtoscopy correlation function of stopped pro-
tons based on the observation that in a heavy-ion collision

FIG. 3. Time integrated source function for stopped protons as a function of z for (a)
√

s = 20 GeV and (b)
√

s = 14 GeV. The black
dashed lines represent the result of our model calculation while the blue solid lines are obtained by doubling the value of width of the collision
point distribution, �c. The source functions shown are normalized to unity.
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at 10 GeV � √
s � 20 GeV such protons are likely to be

separated in configuration space. The resulting correlation
function shows extra oscillations which appear sufficiently
pronounced to be accessible in experiment. Clearly such a
measurement, if feasible, would be most desirable. It will pro-
vide useful information about the longitudinal configuration
space distribution of the nucleons in a heavy-ion collision,
and, more importantly, it will provide essential constraints
on the mechanism by which baryon number is transported to
midrapidity.

Some remarks are in order:

(i) The observation of the suggested extra oscillations
will not only confirm the idea that the nucleons do
not stop immediately after collision. It should also
allow us to measure the effective distance at which
the energy is deposited in the produced particles.
Indeed, as seen from Eq. (16), 	F (and thus also
CF ) explicitly depend on �Z , the average distance
required to stop a proton.

(ii) Even if the oscillations are not seen, the measurement
will determine the (longitudinal) size of the volume
from which the protons at ycm ≈ 0 are emitted. This
should allow us to estimate the actual density of
protons in configuration space, the quantity essential
for the studies of this system. One also obtains the
upper limit on the distance the nucleons travel before
attaining the rapidity y ≈ 0, thus improving our un-
derstanding of the process of the energy loss by the
leading particles in a high-energy collision.

(iii) The definition of the longitudinal correlation function
requires that the vector δ�q points in the z direction,
i.e., δq⊥ = 0. In our approximation of the nuclear
densities as Gaussians, this restriction is not impor-
tant, as the longitudinal and transverse degrees of
freedom factorize. To increase statistics, one may thus
integrate over transverse momenta. Since the Lund

model is best justified at small transverse velocities,
and since the Gaussian form is only an approxima-
tion, it seems reasonable, however, to restrict mea-
surements to protons with transverse momenta not
exceeding, say, 1 GeV.

(iv) It turns out that the corrections due to the Coulomb
and strong interactions do not change qualitatively the
possibility of observation of the expected oscillations
of the correlation function.

(v) Our calculation ignored entirely possible correlations
between the outgoing protons due to quark mixing
at very short distances [18]. Introducing such corre-
lations may result in the correlation function being
positive in some region of δqz. As shown in Ref. [18],
however, this effect is small and should not modify
our conclusions.

(vi) Finally, let us add that our results rely strongly on
the idea that the longitudinal distribution of nucleons
inside moving nucleus are Lorentz contracted and that
this contraction survives during the collision. The pro-
posed measurement should thus provide an interesting
test of this effect (for the recent discussion of the
measurements of Lorentz contraction, see Ref. [19]).
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