PRACTICAL HYDRAULICS.

PRACTICAL HYDRAULICS:

A SERIES

OF

RULES AND TABLES

FOR

THE USE OF ENGINEERS, Eтc.; Eтс.

THOMAS BOX,
author of 'Practical Treatise on Heat,' 'Mill-gearing,' etc.

FIFTH EDITION.

LONDON:

E. \& F. N. SPON, 46, CHARING CROSS. NEW YORK: 446, BROOME STREET.

PREFACE TO THE SECOND EDITION.

In preparing a Second Edition of 'Practical Hydraulics' considerable alterations and additions have been made. To facilitate reference, the work has been divided into Chapters; additional Rules for Culverts and other subjects have been given, including several new Tables, and an increased number of Illustrations. These alterations were so considerable, that it was found necessary to re-write the whole, and thus opportunity was given to introduce much new and valuable information, which, it is hoped, will increase the usefulness of the work.

$$
\text { ВАтн, July, } 1870 .
$$

PREFACE TO THE FIRST EDITION

The reader must not expect, in this little book, an exhaustive treatise on Hydraulics; many such have been written, and they leave little or nothing to be desired. This work consists of a series of Rules and Tables, giving unusual facility for the solution of questions which occur in the daily practice of Engineers.

For the two leading questions-the Discharge of Pipes, and of Open Channels-two sets of Tables are given, the reason for
which may not be obvious; but it is impossible to give Tables combining extreme facility with extreme accuracy for low heads, and the author has therefore given two Tables, one giving accurate results in all ordinary cases with the least possible labour, and the other giving, with more labour, exact results in extreme cases.

For the most part the Rules and Tables have been long used in an extensive practice, and the principal reason for publishing them is the author's desire that the profession from which he has retired may have the benefit of Tables, \&c., which for many years have been very useful to himself.

Easedale, Grasmere,
July, 1867.

CONTENTS.

Chapter I.-On the Discharge of Apertures, Pipes, \&c.

PAGE
Velocity of Efflux 1
Discharge by an Orifice in a Thin Plate 1
by Short Tubes 3
Friction of Long Pipes 4
Head for Velocity of Entry 18
Bends, loss of Head by 19
Compound Water-mains, Discharge of 22
Effect of Contour of Section 24
Special Cases, Examples of 27
Delivery and Suction-pipes to Pumps 28
Service-pipes in Towns 29
General Laws for Pipes 30
Head for very Low Velocities, by Prony's Formula 31
Square and Rectangular Pipes 34
Effect of Corrosion or Rust in Pipes 35
CHAPTER II.-On Fountains, Jets, \&c.
Height of Jets with given Heads 37
Discharge of Jets 40
Jets at the End of Long Mains 40
Tath of Fountain Jets 43
Ornamental Jets 47
Chapter III.-On Canals, Culverts, and Water-courses.
Open Water-courses 48
Head due to Velocity in Open Channels 49
, to overcome Friction in Long Channels 50
River Channels of irregular Cross-section 54
Openings of Bridges 55
Submerged Openings
PAGE
55Discharge of Oval Culverts
57
Head for very Low Velocities-Eytelwein's Formula 57
Case of a Mill-stream 61
CHAPTER IV.-On Weirs, Overflow-pipes, \&c.
Weirs, Discharge and Form of 63
Effect of Thickness of Crest on the Discharge 66
" " of Velocity of Approach on 67
Correction for Short Weirs 67
Overflow-pipes to Tanks 69
" to Fountains 71
" Common 71
CHAPTER V.-On the Strength and Proportions of Water-pipes-Rainfall, \&c., \&c.
Strength of Thick Pipes by Barlow's Rule, \&c. 72
, Thin 73
Proportions and Weights of Cast-iron Socket-pipes 75
of Flange-pipes 76
Strength of Lead Pipes 78
Power of Horses, \&c., in raising Water 78
Rainfall-Heavy Rains-Rain-water Tanks 79
Weight and Pressure of Water 80

PRACTICAL HYDRAULICS.

CHAPTER I.

DISCHARGE OF APERTURES, PIPES, \&C.
(1.) "Velocity of Efflux."-The velocity with which water issues from the side of a vessel, as at A, Fig. 1, is the same as that of a body falling freely by gravity from the height H, or the distance from the centre of the orifice to the surface of the water. This velocity is given by the rule :-

$$
V=\sqrt{\mathrm{H}} \times 8
$$

In which $H=$ the height or head of water in feet, and $V=$ the velocity in feet per second. From this we may obtain another rule giving the discharge in gallons, which becomes:-

$$
\mathbf{G}=\sqrt{\mathbf{H}} \times d^{2} \times 16 \cdot 3
$$

In which $H=$ the head of water in feet, $d=$ the diameter of the orifice in inches, and $G=$ gallons discharged per minute. Table 1 has been calculated by this rule.

These rules give the theoretical velocity and discharge; for application to practice, they may require some modification to adapt them to the particular form of the orifice.
(2.) "Discharge by an Orifice in a Thin Plate."-It has been found by experiment that, when the discharging orifice is made in a thin plate, the converging currents of water approaching the aperture cause a contraction in the issuing stream, so that instead of a parallel or cylindrical jet, it becomes a conical one of the form shown by Fig. 2, the greatest contraction being at
'Iable 1,--Of the Theoretical Discharge of Water by Round Apertures of various Diameters, and under

$\begin{gathered} \text { Diam. } \\ \text { in } \\ \text { Inches. } \end{gathered}$	Head of Water in Inches.																
	1	2	3	4	5	6	7	8	9	10	12	14	16	18	20	22	24
	Discharge in Gallons per Minute.																
1		$6 \cdot 6$	8.1	$9 \cdot 4$	$10 \cdot 5$	$11 \cdot 5$	$12 \cdot 4$	$13 \cdot 3$	$14 \cdot 1$	$14 \cdot 8$	$16 \cdot 2$	$17 \cdot 6$ $70 \cdot 4$	18•8	$19 \cdot 9$ $79 \cdot 6$	21	22	23 92
2	18•8	$26 \cdot 4$	$32 \cdot 4$	$37 \cdot 6$	$42 \cdot 0$	$46 \cdot 0$	$49 \cdot 6$	$53 \cdot 2$	$56 \cdot 4$	$59 \cdot 2$	$64 \cdot 8$	$70 \cdot 4$ 158	$75 \cdot 2$	$79 \cdot 6$ 179	84 189	88 198	92 207
3	$18 \cdot 8$ $42 \cdot 2$	$59 \cdot 4$	$72 \cdot 9$	$84 \cdot 6$	$94 \cdot 5$	103	112	120	127	133	146	158	169	179	189	198	207
4	$75 \cdot 2$	106	130	150	168	184	198	213	225	237	259 405	281 440	301 470	318 497	536	352 550	368 575
5	117	165	203	235	262	287	310	332	352	370	405	440	470	497	525	550	575
6	169	237	291	338	378	414	446	479	507	533	583	663	677	716	756	792 1078	828
7	230	310	397	460	514	563	607	652	691	725	794	862	921	975	1029	1078	1127
8	301	422	518	601	672	736	793	851	902	947	1037	1126	1203	1273	4	8	472
9	381	534	656	761	850	931	1006	1077	1142	1199	1312	1425	1523	1612	1701	182	1863
10	470	660	810	940	1050	1150	1240	1330	1411	1480	1620	1760	1880	0	0	0	300
12	676	952	1168	1353	1512	1656	1785	1915	2030	2134	2333	2534	2707	2865	3024	3170	3312
14	920	1241	1588	1842	2058	2254	2430	2606	2764	2901	3175	3450	3684	3900	4116	4312	4508 5888
16	1203	1690	2074	2406	2688	2944	3174	3405	3610	3789	4147	4506	4813	5094	5376	5632 7128	5888 7452
18	1523	2138	2624	3045	3402	3726	4018	4309	4568	4795	5249	5702 7040	6091	6447 7960	8400	8800	7452 9200
20	1880	2640	3240	3760	4200	4600	4960	5320	5640	5920	6480	70 ± 0	7520	7960	8400	8800	
22	2275	3194	3920	4550	5082	5566	6002	6437	6824	7163	7841	8518	9099	9632	10164	10648	11132
24	2704	3808	4672	5414	6048	6624	7140	7660	8120	8536	9332	10136	10829	11460	12096 18900	12680	13248 20700
30	4230	5940	7290	8460	9450	10350	11160	11970	12690	13320	14580	15840	16920	17910	18900	19800	20700
($\left.\begin{array}{c}\text { Velo- } \\ \text { city in } \\ \text { feet } \\ \text { per } \\ \text { second }\end{array}\right\}$	$2 \cdot 32$	$3 \cdot 275$	$4 \cdot 01$	$4 \cdot 63$	$5 \cdot 18$	$5 \cdot 67$	$6 \cdot 13$	$6 \cdot 55$	$6 \cdot 95$	7.32	$8 \cdot 03$	$8 \cdot 67$	$9 \cdot 27$	$9 \cdot 83$	$10 \cdot 36$	$10 \cdot 87$	$11 \cdot 35$

the point C , whose distance from the plate is half the diameter of the orifice, and its diameter $\cdot 784$, that of the orifice being 1 . The form from B to C may be taken as a curve, whose radius is $1 \cdot 22$ times the diameter of the orifice.

Now, the foregoing rule gives the maximum velocity, or that at the point of greatest contraction C, and if the diameter be taken there, the rules would give the true velocity and discharge without correction. But it is obvious that the velocity at the aperture itself (or at B) would be less than at C in the ratio of the respective areas at the two points, or as 1^{2} to $\cdot 784^{2}$ or 1 to $\cdot 615$, and in that case, the diameter being taken at B, the velocity there would become $\mathrm{V}=\sqrt{\mathrm{H}} \times 8 \times \cdot 615$ and the discharge $G=\sqrt{\mathrm{H}} \times d^{2} \times 16 \cdot 3 \times \cdot 615$. From this we get for apertures in a thin plate, the rules :-

$$
\begin{aligned}
\mathbf{G} & =\sqrt{ } \overline{\mathrm{H}} \times d^{2} \times 10 \\
\mathrm{H} & =\left(\frac{\mathrm{G}}{d^{2} \times 10}\right)^{8} \\
d & =\left(\frac{\mathrm{G}}{\sqrt{\mathbf{H}} \times 10}\right)^{\frac{1}{2}}
\end{aligned}
$$

Thus, with 3 inches diameter and 16 feet head, the discharge would be $\sqrt{16} \times 3^{2} \times 10$, or $4 \times 9 \times 10=360$ gallons per minute. The head for 150 gallons per minute with 2 inches diameter $=\left(\frac{150}{4 \times 10}\right)^{2}=14.06$ feet; and the diameter for 200 gallons per minute with 20 feet head would be $\left(\frac{200}{4 \cdot 47 \times 10}\right)^{\frac{1}{2}}=$ $2 \cdot 11$ inches, \&c., \&c.
(3.) "Discharge by Short Tubes."-When the aperture is of considerable thickness, or has the form of a short tube, not less in length than twice the diameter, the amount of contraction is found to be less, and the discharge greater, than with a thin plate. Fig. 3 shows a tube 1 inch diameter and 2 inches long; the greatest contraction is in that case $\cdot 9$ inch diameter, and its pro-
portional area $\cdot 9^{2}=\cdot 81$, or say $\cdot 8$ of the area of the tube. For short tubes therefore the rules become:-

$$
\begin{aligned}
\mathbf{G} & =\sqrt{\mathbf{H}} \times d^{2} \times 13 \\
\mathbf{H} & =\left(\frac{\mathrm{G}}{d^{2} \times 13}\right)^{2} \\
d & =\left(\frac{\mathrm{G}}{\sqrt{\mathrm{H}} \times 13}\right)^{\frac{1}{2}}
\end{aligned}
$$

Table 2 has been calculated by these rules; thus, for a 7 -inch pipe discharging 450 gallons, the Table shows that the head necessary to generate the velocity at entry is 6 inches; this is irrespective of friction, which, in fact, for so short a tube as the rule supposes, would be practically nothing. This Table applies to all cases of pipes; for instance, Fig. 4 shows the inlet end of a main from a reservoir, which will require for the velocity at entry alone the amount of head shown by the Table. When, as is usually the case, the pipe is of considerable length, the head due to friction must also be allowed for.
(4.) "Friction of Long Pipes."-With a long pipe there is not only the loss of head due to the velocity at entry, but also another loss due simply to the friction of the water against the sides of the pipe, so that in all cases the head consumed may be considered as composed of two portions :-one, the amount due to velocity of entry, irrespective of friction; and the other, the amount due to friction alone. Thus, in Fig. 8 the head h gives a certain velocity of discharge by the short pipe A; but to give the same velocity in the long main $\mathbf{B C}$, the head H^{\prime} is necessary, of which h^{\prime} is consumed in generating the velocity at ontry, being the same as for A, and the rest, or H, in the friction of the long pipe : the total head is, of course, the sum of the two.
(5.) The loss of head by friction may be calculated by the following rules:-

$$
\begin{aligned}
\mathrm{G} & =\left(\frac{(3 d)^{5} \times \mathrm{H}}{\mathrm{~L}}\right)^{\frac{1}{2}} \\
\mathrm{H} & =\frac{\mathrm{G}^{2} \times \mathrm{L}}{(3 d)^{5}}
\end{aligned}
$$

Tabla 2.-Of the Actual Discharge by Short Tubes of various Diameters, with Square Edges and under Different Heads of Water Pressure, being $\frac{s}{10}$ ths of the Theoretical Discharge.

$\begin{gathered} \text { Diam. } \\ \text { in } \\ \text { Inches. } \end{gathered}$	Head of Water in Inches.																
	1	2	3	4	5	6	7	8	9	10	12	14	16	18	20	22	24
	Discharge in Gallons per Minute.																
1	$3 \cdot 76$	5•28	$6 \cdot 48$	7.52	$8 \cdot 4$	$9 \cdot 2$	$9 \cdot 9$	$10 \cdot 6$	$11 \cdot 3$	$11 \cdot 8$	$13 \cdot 0$	$14 \cdot 1$	$15 \cdot 0$	$15 \cdot 9$	$16 \cdot 8$	$17 \cdot 6$	$18 \cdot 4$
2	$15 \cdot 042$	$21 \cdot 12$	$25 \cdot 9$	$30 \cdot 1$	$33 \cdot 6$	$36 \cdot 8$	$39 \cdot 7$	$42 \cdot 6$	$45 \cdot 1$	$47 \cdot 4$	$51 \cdot 8$	$56 \cdot 3$	$60 \cdot 2$	$63 \cdot 7$	$67 \cdot 2$	$70 \cdot 4$	$73 \cdot 6$
3	33.8	$47 \cdot 5$	$58 \cdot 3$	$67 \cdot 7$	$75 \cdot 6$	$82 \cdot 4$	$89 \cdot 6$	$96 \cdot 0$	$101 \cdot 6$	$106 \cdot 4$	$116 \cdot 8$	126	135	143	151	158	166
4	$60 \cdot 2$	$84 \cdot 8$	104	120	130	147	158	170	180	189	207	225	241	254	269	282	294
5	93-6	132	162	188	210	230	248	266	282	ž6	324	352	376	398	420	440	460
6	135	190	233	270	302	331	357	382	406	426	466	530	542	573	605	634	662
7	194	248	318	368	411	450	486	522	553	580	636	689	737	780	823	862	902
8	241	338	414	481	538	589	634	681	722	758	829	901	962	1018	1075	1126	1178
9	305	427	525	609	680	745	805	863	914	959	1049	1140	1218	1290	1361	1426	1490
10	376	528	648	752	840	920	992	1064	1129	1184	1296	1408	1504	1592	1680	1760	1840
12	541	762	934	1082	1210	1325	1428	1532	1624	1707	1866	2027	2166	2292	2419	2536	2650
14	736	993	1268	1474	1646	1803	1944	2085	2211	2321	2540	2760	2947	3120	3293	3450	3606
15	846	1188	1458	1692	1890	2070	2232	2394	2288	2664	2916	3168	3384	3582	3780	3960	4140
16	962	1352	1659	1925	2150	2355	2539	2724	2888	3031	3318	3605	3850	4075	4301	4406	4710
18	1218	1710	2099	2436	2722	2981	3214	3447	3662	3836	4199	4562	4873	5158	5443	5702	5962
20	1504	2112	2592	3008	3360	3680	3968	4256	4512	4736	5184	5632	6016	6368	6720	7040	7360
22	1820	2552	3136	3640	4065	4452	4801	5149	5459	5730	6272	6814	7279	7705	8131	8518	8905
24	2163	3046	3737	4331	4838	5299	5712	6128	6496	6828	7465	8108	8663	9168	9676	10144	10598
30	3384	4752	5832	6768	7560	8280	8928	9576	10152	10656	11664	12672	13536	14328	15120	15840	16560

$$
\begin{aligned}
d & =\left(\frac{\mathrm{G}^{2} \times \mathrm{L}}{\mathrm{H}}\right)^{\frac{1}{5}} \div 3 \\
\mathrm{~L} & =\frac{(3 d)^{5} \times \mathrm{H}}{\mathrm{G}^{2}}
\end{aligned}
$$

In these rules $d=$ diameter of the pipe in inches.
$\mathrm{L}=$ length in yards.
$\mathrm{H}=$ head of water in feet.
$\mathrm{G}=$ gallons per minute.
These rules require the use of logarithms to work them easily : thus, to find the discharge by a 7 -inch pipe 3797 yards long with 45 feet head, we have:-

$$
\begin{aligned}
7 \times 3 & =21= \\
\cdot & \frac{1 \cdot 322219}{5 \cdot 611095} \\
\times 45 & =\frac{1 \cdot 653213}{8 \cdot 264308} \\
\div 3797 & =\frac{3 \cdot 579441}{4 \cdot 684867} \\
& \underline{2 \cdot 342433}=220 \text { gallons per minute. }
\end{aligned}
$$

Again, to find the head necessary to discharge 320 gallons per minute by an 8 -inch pipe 3457 yards long, we have :-

$$
\begin{aligned}
320 & =2 \cdot 505150 \\
& \frac{2}{5 \cdot 010300} \\
\times 3457 & =\frac{3 \cdot 538699}{8 \cdot 548999} \\
8 \times 3=24=1 \cdot 380211 \times 5 & =\frac{6 \cdot 901055}{1 \cdot 647944}=44 \cdot 46 \text { feet head. }
\end{aligned}
$$

And again, to find the diameter for 110 gallons per minute with 56 feet head, the length being 273 yards, we have :-

$$
\begin{aligned}
& 110= 2 \cdot 041393 \\
& \times 273=\frac{2}{4 \cdot 082786} \\
& \div 56=\frac{2 \cdot 436163}{6 \cdot 518949} \\
&5) \frac{1 \cdot 748188}{\cdot 954152}
\end{aligned}
$$

Table 3 has been calculated by these rules, and will greatly facilitate the calculation of pipe questions, it also has the great advantage of requiring only the simple rules of arithmetic.
(6.) 1st. Having G, L, and d given, to find H. In the Table opposite the given number of gallons, and under the given diameter, is found the head due to a length of one yard, and multiplying that number by the given length in yards, gives the required head of water in feet. Thus, taking our former illustration in (5), the head to deliver 320 gallons per minute by an 8 -inch pipe 3457 yards long-opposite 320 gallons in the Table, and under 8 inches diameter, is $\cdot 01286$ feet, and $\cdot 01286 \times$ $3457=44 \cdot 46$ feet, the head sought.
(7.) 2 nd. To find d, having H, L, and G given. Divide the given head of water in feet by the given length in yards, and the nearest number thereto in the Table opposite the given number of gallons will be found under the required diameter. Thus, to find, the diameter for 110 gallons per minute with 56 feet head, the length being 273 yards, we have $\frac{56}{273}=\cdot 205$, looking for which in the Table opposite 110 gallons we find it under 3 inches, the diameter sought (see 5). Again, to find the diameter for 320 gallons, 20 feet head, and 1600 yards long, we have $\frac{20}{1600}=\cdot 0125$, the nearest number to which, in the Table $(\cdot 01286)$ is found under 8 inches, the diameter sought, In most cases the tabular number will not be the exact number.
Table 3.-Of the Head of Water consumed by Friction with Pipes 1 yard long.

$\begin{aligned} & \text { Gallons } \\ & \text { per } \\ & \text { Minute. } \end{aligned}$	Liameter of the fipe in Inches						
	1	$1 \frac{1}{2}$	2	$2 \frac{1}{2}$	3	$3 \frac{1}{2}$	4
	Head of Water in Feet.						
1	-0041	-00054	-00012	-000042	-000016	$\cdot 0000078$	-000004
2	-0164	-00216	-00051	-000168	-000067	-0000313	- 000016
3	-0370	-00487	-00115	-000379	-000152	-0000705	-000036
4	-0658	-00867	-00205	-000674	-000271	-000125	-000064
5	-1028	-01354	-00321	-001053	-000423	-000195	-000100
6	-1481	-01950	-00463	-001517	-000609	-000282	-000144
7	$\cdot 2016$	-02655	-00630	-002064	-000830	-000383	-000196
8	- 2633	- 03468	-00823	-002696	-001084	-000501	-000257
9	- 3333	-04389	-01041	-003413	-001372	-000634	-000325
10	-411	0541	-01286	-00421	-00169	-000783	-000401
20	$1 \cdot 64$	2167	-0514	-01685	-00677	-00313	-00160
30	$3 \cdot 70$	-4877	-115	-03792	-0152	-00707	-00361
40	$6 \cdot 58$	- 8670	-205	-06742	-0271	-01253	-00643
50	$10 \cdot 28$	$1 \cdot 35$	-321	-1053	-0423	-01958	-01004
60	$14 \cdot 81$	1.95	- 463	-1517	-0609	-02820	-01446
70	$20 \cdot 16$	$2 \cdot 65$	-630	-2064	-0830	-03839	-01969
80	$26 \cdot 33$	$3 \cdot 46$	-823	- 2696	-1084	-05014	-02572
90	$33 \cdot 33$	$4 \cdot 38$	$1 \cdot 041$	$\cdot 3413$	-1372	-06346	-03255
	Diameter of the Pipe in Inches.						
	5	6	7	8	9	10	12
	Head of Water in Feet.						
10	-000131	-000052	- 000024	-000012	-0000069	-00000411	-00000165
20	-000526	-000211	-000097	-000050	-0000278	-00001646	-00000661
30	-001185	-000476	- 000220	-000113	-0000627	-00003703	-00001488
40	-002003	-000804	- 000372	-000191	-0001060	-00006259	-00002515
50	-003292	-001323	-000612	-000314	-0001742	-0001028	-0000413
60	-004741	-001905	-000881	-000452	-0002569	-0001481	-0000595
70	-006453	-002593	-001200	-000615	-0003415	-0002016	-0000810
80	-008428	-003386	-001567	-000803	-0004460	-0002633	-0001058
90	$\cdot 010667$	-004286	-001983	-001017	- 0005645	- 0003333	-0001339

Hydraulic Table 3-continued.

Gallons per Minute.	Diameter of the Pipe in Inches.											
	1	$1 \frac{1}{2}$	2	$2 \frac{1}{2}$	3	$3 \frac{1}{2}$	4	5	6	7	8	9
	Head of Water in Feet.											
100	$41 \cdot 1$	$5 \cdot 4$	$1 \cdot 28$	$\cdot 421$	-169	$\cdot 078$	$\cdot 0401$	-01317	-005292	-00244	$\cdot 001256$	$\cdot 00069$
110	$49 \cdot 7$	$6 \cdot 5$	1.55	-509	-205	-094	-0486	-01539	-006403	-00296	$\cdot 001519$	$\cdot 00084$
120	$59 \cdot 2$	$7 \cdot 8$	$1 \cdot 85$	-606	-243	-112	-0578	-01896	-007620	-00352	-001808	$\cdot 00100$
130	$69 \cdot 5$	$9 \cdot 1$	$2 \cdot 17$	$\cdot 712$	$\cdot 286$	$\cdot 132$	-0679	-02225	-008943	$\cdot 00413$	$\cdot 002122$	$\cdot 00117$
140	$80 \cdot 6$	$10 \cdot 6$	$2 \cdot 52$	$\cdot 825$	-332	$\cdot 153$	$\cdot 0788$	-02581	-010372	-00480	$\cdot 002461$	$\cdot 00136$
150	$92 \cdot 5$	$12 \cdot 1$	2.89	-948	-381	$\cdot 176$	-0904	-02963	.011907	-00551	-002826	$\cdot 00156$
160	$105 \cdot 3$	$13 \cdot 8$	$3 \cdot 29$	1.078	-433	$\cdot 200$	-1028	-03371	-013547	-00626	-003215	-00178
170	$118 \cdot 9$	$15 \cdot 6$	$3 \cdot 71$	$1 \cdot 217$	-485	$\cdot 226$	-1161	-03806	-015293	$\cdot 00707$	$\cdot 003629$	-00201
180	$133 \cdot 3$	17.5	$4 \cdot 16$	$1 \cdot 365$	-549	$\cdot 253$	-1312	-04267	$\cdot 017146$	$\cdot 00793$	$\cdot 004069$	-00225
190	$148 \cdot 5$	$19 \cdot 5$	$4 \cdot 64$	1.521	-611	$\cdot 282$	$\cdot 1450$	$\cdot 04754$	$\cdot 019104$	-00884	$\cdot 004534$	-00251
200	$164 \cdot 6$	$21 \cdot 6$	$5 \cdot 14$	$1 \cdot 685$	-677	$\cdot 313$	- 1607	-05268	$\cdot 021168$	-00979	-005024	-00278
210	$181 \cdot 4$	$23 \cdot 8$	$5 \cdot 67$	1.858	$\cdot 747$	$\cdot 345$	-1772	-05807	$\cdot 023337$	-01080	-005538	-00307
220	$199 \cdot 1$	$26 \cdot 2$	$6 \cdot 22$	$2 \cdot 039$	-819	$\cdot 379$	-1945	-06374	$\cdot 025613$	-01185	-006079	-00337
230	$217 \cdot 6$	$28 \cdot 6$	$6 \cdot 80$	$2 \cdot 229$	-896	$\cdot 414$	$\cdot 2126$	-06966	$\cdot 027995$	-01295	$\cdot 006644$	-00368
240	$237 \cdot 0$	$31 \cdot 2$	$7 \cdot \frac{10}{10}$	$2 \cdot 427$	-975	$\cdot 451$	$\cdot 2314$	$\cdot 07585$	-030482	-01410	$\cdot 007234$	-00401
250	$257 \cdot 1$	$33 \cdot 8$	$8 \cdot 03$	2.633	1.058	$\cdot 489$	$\cdot 2511$	-08231	. 033075	-01530	$\cdot 007850$	-00435
260	$278 \cdot 1$	$36 \cdot 6$	$8 \cdot 69$	$2 \cdot 848$	$1 \cdot 145$	-529	$\cdot 2716$	-08902	-035773	-01655	-008490	-00471
270	$299 \cdot 9$	$39 \cdot 5$	$9 \cdot 37$	$3 \cdot 071$	1.234	$\cdot 571$	$\cdot 2929$	-09600	-038578	-01785	$\cdot 009156$	-00508
280	$322 \cdot 6$	$42 \cdot 4$	$10 \cdot 08$	$3 \cdot 303$	$1 \cdot 328$	$\cdot 614$	$\cdot 3150$	$\cdot 10325$. 041489	-01920	-0098 4	-00546
290	$346 \cdot 0$	$45 \cdot 5$	10.81	$3 \cdot 544$	$1 \cdot 424$	-658	$\cdot 3379$	-11075	. 044506	-02059	-010562	-00586
300	$370 \cdot 3$	$48 \cdot 7$	11.58	$3 \cdot 792$	1.524	$\cdot 705$	$\cdot 3617$	-11853	$\cdot 047628$	-02204	$\cdot 011304$	-00627
310	$395 \cdot 4$	$52 \cdot 0$	$12 \cdot 35$	$4 \cdot 049$	$1 \cdot 627$	$\cdot 752$	$\cdot 3162$	$\cdot 12655$	$\cdot 050856$	$\cdot 02353$	$\cdot 012070$	$\cdot 00699$

Hydraulic Table 3-continued.

Hydraulic Table 3-continued.

Hydraulic Table 3-continued.

$\begin{gathered} \text { Gallons } \\ \text { per } \\ \text { Minute. } \end{gathered}$	Diameter of the Pipe in Inches.								
	10	12	14	15	16	18	20	21	24
	Head of Water in Feet.								
100	-000411	-000165	-0000765	-0000541	-0000392	-0000217	-0000128	$\cdot 0000100$	$\cdot 00000516$
110	$\cdot 000497$	-000200	$\cdot 0000925$	-0000655	-0000474	-0000263	-0000155	-0000121	-00000625
120	$\cdot 000592$	-000238	-0001101	-0000780	-0000565	-0000313	-0000185	-0000145	-00000744
130	$\cdot 000695$	-000279	-0001293	-0000915	-0000663	-0000368	-0000217	-0000170	-00000873
140	$\cdot 000806$	$\cdot 000324$	-0001499	-0001062	$\cdot 0000769$	-0000426	-0000252	$\cdot 0000197$	-00001012
150	-000925	$\cdot 000372$	-0001721	$\cdot 0001219$	-0000883	-0000490	-0000289	-0000226	-00001162
160	$\cdot 001053$	$\cdot 000 \pm 23$	$\cdot 0001958$	$\cdot 0001387$	-0001004	$\cdot 0000557$	-0000329	-0000257	-00001323
170	-001189	-000477	-0002211	-0001566	-0001134	$\cdot 0000629$	-0000371	-0000291	-00001493
180	$\cdot 001333$	$\cdot 000535$	-0002479	-0001755	$\cdot 0001270$	$\cdot 0000705$	-0000416	-0000326	$\cdot 00001674$
190	$\cdot 001485$	$\cdot 000597$	-0002762	-0001956	-0001416	-0000786	-0000464	-0000363	-00001865
200	-001646	-000661	-0003060	-0002167	$\cdot 0001569$	-0000871	-0000514	-0000403	-00002067
210	$\cdot 001814$	-000729	-0003374	-0002389	-0001730	-0000960	-0000567	-0000444	-00002279
220	-001991	-000800	-0003703	-0002622	$\cdot 0001899$	-0001054	-0000622	-0000487	-00002501
230	-002176	-000874	-0004047	-0002866	-0002076	-0001152	-0000680	-0000533	-00002733
240	-002370	-000952	-0004407	-0003121	-0002260	-0001254	$\cdot 0000740$	-0000580	-00002977
250	-002572	-001033	-0004782	-0003387	-0002452	-0001361	-0000803	-0000629	-00003231
260	-002781	-001117	-0005172	-0003662	-0002653	-0001472	-0000869	-0000681	-00003493
270	$\cdot 003000$	-001205	-0005578	-0003950	-0002861	$\cdot 0001587$	-0000937	$\cdot 0000734$	-00003767
280	-003226	-001296	-0005998	-0004248	-0003076	-0001707	-0001008	-0000789	-00004051
290	-003460	-001390	-0006435	-0004557	$\cdot 0003300$	-0001831	-0001081	-0000847	-00004346
300	-003703	-001488	-0006886	-0004877	$\cdot 0003532$	-0001960	$\cdot 0001157$	-0000906	-00004651
310	$\cdot 003954$	-001589	$\cdot 0007353$	$\cdot 0005207$	$\cdot 0003771$	$\cdot 0002093$	$\cdot 0001235$	$\cdot 0000968$	-00004966

Hydraulic Table 3-continued.

$\begin{aligned} & \text { Gallons } \\ & \text { per } \\ & \text { Minute. } \end{aligned}$	Diameter of the Pipe in Inches.								
	10	12	14	15	16	18	20	21	24
	Head of Water in Feet.								
320	-004213	-001693	-0007832	-0005549	-0004018	$\cdot 0002230$	$\cdot 0001316$	-0001032	-00005292
330	-004481	-001800	$\cdot 0008332$	-0005901	-0004273	$\cdot 0002371$	-0001400	-0001097	-00005628
340	-004757	-001911	-0008845	-0006264	-0004536	-0002517	$\cdot 0001486$	001164	-00005974
350	-005041	-002026	-0009373	-0006638	-0004807	-0002678	$\cdot \cdot 0001575$	${ }^{\cdot} \cdot 00001305$	$\cdot \cdot 00006697$
360	-005333	-002142	-0009916	-0007023	-0005082	-0002822	-0001666	-0001305	-00006637
370	-005633	-002264	$\cdot 0001047$	-0007418	-0005372	-0002981	$\cdot 0001760$	${ }_{\cdot}^{\cdot 00001379}$	$\begin{array}{r} \cdot 00007075 \\ \cdot 00007462 \end{array}$
380	-005942	-002388	$\cdot 0011048$	$\cdot 0007825$	-0005667	-0003145	$\cdot{ }^{\cdot 0001856}$	$\cdot \cdot 0001532$	-00007860
390	-006259	-002515	-0011638	-0008242	-0005969	$\cdot \cdot 0003312$	$\cdot 0001956$	-0001612	-00008269
400 410	-006584	. 002646	-0012242	$\cdot 0008670$ $\cdot 0009109$	-0006279	$\cdot{ }^{\cdot 0003484}$	${ }^{\cdot} \cdot 000205770$	$\cdot{ }^{\cdot} 00001693$	$\cdot 00008687$
410	-006917	-002780	-0012862	-0009109	$\cdot 0006597$.00038841			
420	.007259	. 00202917	${ }_{\cdot}^{\cdot 0013497}$	${ }^{\cdot 0009559}$	-0006923	${ }^{\cdot} \cdot 0003841$	${ }^{\cdot} \cdot 00022688$		$\stackrel{\bullet 00009116}{\cdot 0000955}$
430	-00760	-00305	-001414	-001002	$\cdot \cdot 000725$	$\cdot{ }^{\cdot 000402}$	-000248	$\cdot 000195$	-0001000
440 450	.00796 .00833	$\cdot{ }^{\cdot} \cdot 00320$.001481 .001549	$\stackrel{.001049}{\cdot 001097}$.000759 .000794	$\cdot 000421$	$\cdot{ }^{\cdot} 0000260$	$\cdot 000204$	$\cdot 0001046$
450 460	-00833	$\cdot 00334$ $\cdot 00349$.001549	$\cdot \cdot 001097$.000830	-000460	-000272	-000213	-0001093
460	-00870			-001197	-000866	-000481	-000284	-000222	-0001141
470 480	-00909	$\cdot{ }^{\cdot 0036581}$	-001690	-001248	-000904	$\cdot 000501$	$\cdot 000296$	-000232	-0001190
490	-00988	-00397	-001837	-001301	-000942	-000522	-000308	-000241	-0001245
500	-01028	-00413	-001912	$\cdot 001354$	-000981	-000544	-000321	$\cdot 000251$	-0001292
520	. 01112	-00447	-002069	-001464	-001061	-000588	-000347	-000272	-0001397
540	$\cdot 01200$	-00482	-002231	-001580	-001144	-000635	$\cdot 000374$	-000293	-0001507
560	$\cdot 01290$	$\cdot 00518$	-002399	-001699	$\cdot 001230$	$\cdot 000683$	-000403	-000315	-0001620

Hydraulid Table 3-continued.

Hydraulio Table 3-continued.

Gallons per Minute.	Diameter of the Pipe in Inches.						
	5	6	7		9	10	12
	Head of Water in Feet.						
2,000	$5 \cdot 2$	$2 \cdot 11$	$\cdot 97$	$\cdot 50$	$\cdot 27$	$\cdot 104$	-066
3,000	$11 \cdot 8$	$4 \cdot 76$	$2 \cdot 20$	$1 \cdot 13$	-62	-370	-148
4,000	$21 \cdot 0$	$8 \cdot 46$	$3 \cdot 91$	$2 \cdot 00$	1-11	-658	- 264
5,000	$32 \cdot 9$	$13 \cdot 23$	$6 \cdot 12$	3-14	1.74	1.02	-413
6,000	$47 \cdot 4$	$19 \cdot 05$	$8 \cdot 81$	$4 \cdot 52$	$2 \cdot 50$	$1 \cdot 48$	- 595
7,000	$64 \cdot 5$	$25 \cdot 93$	$12 \cdot 00$	$6 \cdot 15$	$3 \cdot 41$	$2 \cdot 01$	-810
8,000	$84 \cdot 2$	$33 \cdot 86$	$15 \cdot 67$	$8 \cdot 03$	$4 \cdot 46$	$2 \cdot 63$	1.05
9,000	$106 \cdot 6$	$42 \cdot 86$	$19 \cdot 83$	$10 \cdot 17$	$5 \cdot 64$	$3 \cdot 33$	$1 \cdot 33$
10,000	$131 \cdot 7$	$52 \cdot 92$	24.49	$12 \cdot 56$	$6 \cdot 97$	4.11	1.65 6.61
20,000	$526 \cdot 8$	$211 \cdot 68$	97.96	$50 \cdot 24$	$27 \cdot 88$	$16 \cdot 46$	6.61
	Diameter of the Pipe in Inches.						
	14	15	16	18	20	21	24
	Head of Water in Feet.						
2,000	-0306	-0216	-0156	-0087	-0051	- 0040	. 0020
3,000	- 0688	-0487	- 0353	-0196	. 0115	-0090	- 0046
4,000	- 122	-0867	-0627	-0348	-0205	-0161	-0082
5,000	-191	- 135	-0981	. 0544	-0321	.0251	-0129
6,000	$\cdot 275$	-195	$\cdot 141$	- 0784	-0462	-0362	-0186
7,000	$\cdot 374$. 265	$\cdot 192$	$\cdot 107$	-0630	-0493	-0253
8,000	-489	$\cdot 346$	$\cdot 251$	$\cdot 139$	-0823	-0644	-0330
9,000	. 619	- 438	$\cdot 317$	-176	$\cdot 104$	-0816	-. 0418
10,000	$\cdot 765$ 3.06	.541	-392	$\cdot 217$	-128	-100	-0516
20,000	$3 \cdot 06$	$2 \cdot 16$ $4 \cdot 87$	$1 \cdot 56$ $3 \cdot 53$.871 1.96	- 514	- 403	$\cdot \cdot 206$
30,000	6.88 12.94	$4 \cdot 87$ $8 \cdot 67$	$3 \cdot 53$ $6 \cdot 27$	1.96 3.48	$1 \cdot 15$ $2 \cdot 05$	$\stackrel{.906}{1 \cdot 61}$	-465
40,000	$12 \cdot 24$	$8 \cdot 67$	$6 \cdot 27$ $9 \cdot 81$	$3 \cdot 48$ $5 \cdot 44$	$2 \cdot 05$	1.61 2.51	.826 1.29
50,000	$19 \cdot 12$	$13 \cdot 54$	$9 \cdot 81$ 14.12	5.44	3.21	$2 \cdot 51$	1.29 1.86
60,000	$27 \cdot 54$	$19 \cdot 50$	$14 \cdot 12$	7.84 10.71	$4 \cdot 62$ $6 \cdot 30$	$3 \cdot 62$ $4 \cdot 93$	1.86
70,000	$37 \cdot 49$	$26 \cdot 55$	$19 \cdot 23$	$10 \cdot 71$	$6 \cdot 30$	$4 \cdot 93$ $6 \cdot 44$	$2 \cdot 53$ $3 \cdot 30$
80,000	$48 \cdot 97$	34.68	$25 \cdot 11$	$13 \cdot 93$	$8 \cdot 23$	$6 \cdot 44$	$3 \cdot 30$
90,000	$61 \cdot 97$ $76 \cdot 51$	$43 \cdot 89$ 54.19	$31 \cdot 78$ $39 \cdot 24$	$17 \cdot 64$ $21 \cdot 78$	$10 \cdot 41$ 12.86	$8 \cdot 16$ $10 \cdot 07$	$4 \cdot 18$ $5 \cdot 16$
100,000	$76 \cdot 51$	$54 \cdot 19$	$39 \cdot 24$	21.78	$12 \cdot 86$	$10 \cdot 07$	5•16

desired, which will only show that the exact diameter is an odd size between the standard ones in the Table. But by the former rule in (6), this can be easily checked; thus, in our case, the true head for an 8 -inch pipe would be $\cdot 01286 \times 1600=20 \cdot 57$ feet instead of 20 feet; but, of course, in most cases 8 inches is near enough for practice.
(8.) 3rd. To find G, having H, L, and d given. Divide the given head of water in feet by the given length in yards, and the nearest number thereto in the Table, under the given diameter, will be found opposite the required number of gallons. Thus, to find the discharge of a 7 -inch pipe 3797 yards long with 45 feet head, see (5), we have $\frac{45}{3797}=\cdot 01185$; and looking for this under 7 inches diameter, we find it opposite 220 gallons, the discharge sought. Again, for the discharge of a 10 -inch pipe 3000 yards long with 40 feet head, we have $\frac{40}{3000}=\cdot 01333$; and the nearest number to that we find to be $\cdot 01384$ opposite 580 gallons, the discharge sought.
(9.) 4th. To find L, having H, G, and d given. Divide the given head by the head for one yard found in the Table under the given diameter, and opposite the given number of gallons, and the result is the required length. Thus, to determine the length of 4-inch pipe to consume 12 feet head with 130 gallons per minute, we find under 4 inches and opposite 130 gallons $\cdot 0679$ the head for one yard, and hence $\frac{12}{\cdot 0679}=176$ yards, the length sought.
(1r) To avoid a needless extension of the Table, we have given only the principal numbers from 1 to 90 , and from 1000 to 100,000 gallons, leaving the intervening numbers to be supplied from the body of the general Table. In order to do this, it should be observed that the head varies as the square of the discharge, so that, for instance, ten times any given discharge will require 100 times the head, \&c., \&c. Thus, with 100 gallons, the Table shows that a 5 -inch pipe requires 01317 foot
head per yard, then with 1000 gallons the head would be $\cdot 01317 \times 100=1 \cdot 317$ foot; and with 10 gallons $\frac{\cdot 01317}{100^{-}}=$ - 0001317 foot. The application of this principle to any case in practice is very simple: say we require the head for 33 gallons with a $2 \frac{1}{2}$-inch pipe 600 yards long. Not finding 33 gallons in the Table, we take 330, the head for which is $4 \cdot 589$, therefore for 33 gallons it will be $\frac{4 \cdot 589}{100}=\cdot 04589$. This may be checked by the skeleton Table, which shows that 30 gallons require $\cdot 03792$, and 40 gallons $\cdot 06742$ foot; so that $\cdot 04589$ looks about right for 33 gallons. Then the head required in our case is $\cdot 04589 \times 600=27 \cdot 534$ feet.

Again, say we required the head for 2800 gallons with a 15 -inch pipe 500 yards long. Here we must take the head for 280 gallons from the Table, which is -0004248: for 2800 gallons, therefore, or 10 times the quantity, we should have $\cdot 0004248 \times 100=\cdot 04248$ foot. Checking this by the skeleton Table we find $\cdot 0487$ foot for 3000 gallons, showing that $\cdot 04248$ foot for 2800 gallons is about right. Hence the head sought is, in our case, $\cdot 04248 \times 500=21 \cdot 24$ feet.

The same principle may be applied when the discharge is the unknown quantity; thus, to find the discharge of a $2 \frac{1}{2}$-inch pipe, 700 yards long with 17 feet head, we have $\frac{17}{700}=\cdot 02428$, which, by the skeleton Table, is somewhere between 20 and 30 gallons: now, looking in the body of the Table between 200 and 300 gallons for the same figures (neglecting altogether for the moment the position of the decimal place) we find that the nearest to 2428 is 2427 , which is opposite 240 gallons; 24 gallons is therefore the true discharge. Again, to find the discharge of a pipe $1 \frac{1}{2}$-inch diameter, 200 yards long, with 4.5 feet head, we have $\frac{4 \cdot 5}{200}=\cdot 0225$, which, by Table, is between 6 and 7 gallons; now, looking between 600 and 700 gallons, we find the nearest to be 222 opposite 640 gallons, and as we know that
the true discharge is between 6 and 7 gallons, we infer that the exact quantity is $6 \cdot 4$ gallons, \&c., \&c.
(11.) The 3rd illustration in (8) for finding G may be extended so as to give a useful general view of the discharge of different sized pipes with the same length and head. Thus, we found the tabular number for 3000 yards long and 40 feet head to be $\frac{40}{3000}=\cdot 01333$, and looking for this successively undes different diameters we find that

A 6 -inch pipe discharges 160 gallons per minute

$" 7$	$"$	$"$	235	$"$	$"$	
$" 8$	$"$	$"$	330	$"$	$"$	
$" 9$	$"$	$"$	440	$"$	$"$	
$" 10$	$"$	$"$	580	$"$	$"$	
$\# 12$	$"$	$"$	900	$"$	$"$	$\& c$.

(12.) "Head for Velocity of Entry."-To the head thus found by the preceding rules and Table, that due to velocity of entry has in all cases to be added, as explained in (4). When the pipe is of the common form, with square edges, as in Figs. 3 and 4, Table 2 gives the head for velocity direct. For very long pipes this is so small in proportion to the head due to friction, that it may in such cases be neglected, and we have omitted it for that reason in the preceding illustrations; thus, we found in (5) and in (6) that with 320 gallons, by an 8 -inch pipe 3457 yards long, the head due to friction alone was $44 \cdot 46$ feet. By Table 2 it will be seen that the head for velocity at entry is rather less than 2 inches, so that in such a case it may be neglected. But when a pipe is very short, the head due to velocity may be much greater than that due to friction, and the most serious errors may be made by neglecting it. Say we had an 18 -inch pipe, 20 yards long, discharging 3000 gallons. By Table 3 the friction is $\cdot 0196 \times 20=\cdot 392$ foot; and the head due to velocity by Table 2 is 6 inches, or $\cdot 5$ foot, being more than that due to friction; so that the total head is $\cdot 392+\cdot 5=\cdot 892$ foot.
(13.) When, with a very short pipe, the head is given and the discharge has to be calculated, the case does not admit of a
simple direct solution, because we cannot tell beforehand in what proportions the total head at disposal has to be divided between overcoming friction and generating velocity. We must for such cases, apply a useful general law (27), which may be stated as follows :-" The discharge by any pipe, or series of pipes, is proportional to the square root of the head;" and conversely, "The head is proportional to the square of the discharge;" and these laws are true in pipes with bends, jets, contractions, \&c. Thus, say we require the discharge of a 12 -inch pipe 5 yards long with 10 feet head. Assume a discharge, it is unimportant whether the assumed discharge is near the true quantity or not, or whether it is too much or too little. Say, in our case, we take it at 1000 gallons per minute, then by Table 3 the head for friction is $01653 \times 5=\cdot 08265$ foot, and the head for velocity is, by Table 2, about 4 inches, or $\cdot 333$ foot, making a total of $\cdot 08265+\cdot 333=\cdot 41565$ foot, instead of 10 feet, the head at disposal. Then applying the law just given, we have $\frac{1000 \times \sqrt{10}}{\sqrt{\cdot 41565}}=\frac{1000 \times 3 \cdot 162}{\cdot 6447}=4905$ gallons. Now, if in this case the head due to velocity had been neglected, the discharge by Table 3 would be $\frac{10}{5}=2 \cdot 0=11,000$ gallons, which is more than double the true discharge. The Table 2 gives the greatest possible facility for making the calculations of head due to velocity, which should never be overlooked in cases where the pipe is short.
(14.) "Loss of Head by Bends."-There is another source of loss of head in pipes-namely, change of direction, or bends. The best formula for calculating this loss is that of Weisbach, which may be modified into the following :-

$$
\begin{aligned}
& \mathrm{H}=\left\{\cdot 131+\left(1 \cdot 847 \times\left(\frac{r}{\mathrm{R}}\right)^{\frac{7}{2}}\right\} \times \frac{\mathrm{V}^{2} \times \phi}{960},\right. \\
& \text { and } \mathrm{V}^{2}=\frac{960 \times \mathrm{H}}{\phi \times\left\{\cdot 131+\left(1.847 \times\left(\frac{r}{\mathrm{R}}\right)^{\frac{7}{2}}\right\}\right.}
\end{aligned}
$$

In which $H=$ the head due to change of direction, in inches.
$r=$ radius of the bore of the pipe, in inches.
$\mathrm{R}=$ radius of the centre line of the bend, in inches.
$\phi=$ angle of bend, in degrees.
$\mathrm{V}=$ velocity of discharge, in feet per second.
Thus, say we require the loss of head by a bend of 9 inches radius in a 6 -inch pipe, discharging 800 gallons per minute, with an angle of 55°. A 6 -inch pipe containing roughly $\frac{6^{2}}{30}=1 \cdot 2$ 800
gallon per foot run, the velocity of discharge will be $\frac{800}{1 \cdot 2 \times 60}$ $=11 \cdot 1$ feet per second. To find $\left(\frac{r}{\mathrm{R}}\right)^{\frac{7}{2}}$, or in our case $\left(\frac{3}{9}\right)^{\frac{7}{2}}$, we have $\frac{3}{9}=\cdot 3333$.

Then the log. of $\cdot 3333=\overline{1} \cdot 522835$
7

$$
\frac{2 \longdiv { 4 \cdot 6 5 9 8 4 5 }}{\overline{2 \cdot 329922}}=\cdot 02137=\left(\frac{3}{9}\right)^{\frac{7}{2}}
$$

Then $\left\{\cdot 131+(1 \cdot 847 \times \cdot 02137\} \times \frac{11 \cdot 1^{2} \times 55}{960}=1 \cdot 2 \mathrm{inch}\right.$, the head required.

Table 4 has been calculated by the second formula. The first part is adapted to bends of the radius usually met with in practice ; this may vary slightly with different makers, but not so much as to affect the result seriously. Fig. 6 gives the proportions of the 8 -inch bend as an illustration. The second part of the Table gives the loss by quick bends of the proportions given by Fig 7 , which are sometimes necessary in special cases; they are commonly named "elbows."

Table 4 requires but little explanation; it shows, for instance, that an ordinary 8 -inch bend, with 18 inches radius, consumes 3 inches head when passing 1970 gallons per minute; but a quick 8 -inch bend with 6 inches radius consumes 12 inches

head when passing nearly the same quantity, or 1950 gallons, and these, it should be observed, are the heads due simply to change of direction, and do not include the head due to velocity or to friction. Thus, for instance, if the quick 8 -inch bend had a length of one yard, the head for friction by Table 3 (say for 2000 gallons) would be $\cdot 5$ foot, and the head for velocity at entry by the rule in (3), namely $\left(\frac{\mathrm{G}}{d^{2} \times 13}\right)^{2}=\mathrm{H}$ is $\left(\frac{1950}{8^{2} \times 13}\right)^{2}=5.48$ feet. Thus we have a total for such a bend of

$$
\begin{aligned}
& 1 \cdot 0 \text { feet for change of direction, } \\
& 0 \cdot 5 \text { for friction, } \\
& \frac{5 \cdot 48}{6 \cdot 98} \text { " for velocity at entry, total. }
\end{aligned}
$$

Again, in a 6 -inch pipe carrying 800 gallons, the Table shows that each common bend causes a loss of $1 \frac{1}{2}$ inches head, and each quick bend a loss of 5 inches, \&c The Table is arranged for bends of 90°, or quarter bends, as they are technically named, but it is applicable to any other angle, for the loss of head is simply proportional to the angle, the radius being the same; thus, a half-quarter bend of 45°, or one-eighth part of a circle, consumes half the head of a bend of 90°, and a bend of 180°, or half a circle, takes double, \&c., \&c.
(15.) "Discharge of Compound Water-mains."-When a long main is composed of pipes of different sizes, as is very frequently the case, the head for each must be separately calculated, and the sum total taken. Thus, if we required 300 gallons per minute through a main 1200 yards long, composed of 800 yards of 7 -inch, 300 yards of 6 -inch, and 100 yards of 5 -inch pipe, the head would be-

$$
\text { By Table } 3 .
$$

300 gallons 7 -inch $=\cdot 022 \times 800=17 \cdot 6$ feet head

$$
\begin{array}{lll}
" \quad & \quad 6 & =\cdot 0476 \times 300=14 \cdot 28 \\
" & " & 5
\end{array} \quad=\cdot 1185 \times 100=\frac{11 \cdot 85}{43 \cdot 73} \text { total. }
$$

If there were bends in the pipes we must add the head for
them from Table 4, but it will be found, as in the case of head for velocity, see (12), that with long mains the effect of bends is very small. Say we had

Thus, even for such a large number of bends, the loss of head is only $10 \frac{1}{2}$ inches, or $\cdot 875$ of a foot; so that the total loss is $43 \cdot 73+\cdot 875=44 \cdot 605$ feet.
(16.) When, with such a series of pipes the head is given, and the discharge has to be determined, the case does not admit of a direct solution, because we cannot tell beforehand in what proportions the given head must be divided among the different pipes. We must in that case follow the course explained in (13) : thus, say we required the discharge with 30 feet head by a main 2000 yards long, composed of 1200 yards of 8 -inch pipe with four common bends in it; 700 yards of 6 -inch pipe and three bends; and 100 yards of 5 -inch pipe, with two common and two quick bends. The first thing to be done is to assume a discharge, and calculate the head for that, as was done in the last example; it is unimportant whether the assumed discharge is near the true quantity or not. Say in our case we take it at 400 gallons. Then

$$
\begin{aligned}
& \text { By Table 3. Length. Feet. } \\
& 400 \text { gallons } 8 \text {-inch pipe } \stackrel{\text { By Table 3. }}{=} \cdot 02 \times 1200=24 \cdot 0 \text { head } \\
& \begin{array}{llll}
& 6 & =\cdot 085 \times 700=59 \cdot 5 \quad, \\
" & 5 & , & =\cdot 21 \times 100=21 \cdot 0 \quad,
\end{array}
\end{aligned}
$$

Thus we find that for 400 gallons we require $105 \cdot 3$ feet head instead of 30 feet, the head given; then by the rule in (13) we have $\frac{\sqrt{30} \times 400}{\sqrt{105 \cdot 3}}$ or $\frac{5 \cdot 447 \times 400}{10 \cdot 26}=213$ gallons, the real discharge sought. Further illustrations will be found in Chapter II.
(17.) "Effect of Contour of Section."-The contour of the section of the line of pipes is a matter of some importance. The best condition, when the pipe is of uniform diameter from end to end, is, of course, a uniform slope throughout. This, however, can rarely be obtained, the pipe having to follow the contour of the ground, as in Fig 9. If a number of open-topped pipes were inserted anywhere along the main, as at $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \& c$. , the water would rise in them to the level of the oblique line J K, which in the case of a pipe of the same bore from end to end, would be a straight line as shown; this line is termed the hydraulic mean gradient. Now, the vertical distance from any point in that line (say the top of E) to the level line K M, will give the head for friction between E and K , and the vertical distance from the same point to the level line $J \mathrm{~L}$ will give the friction between E and J : we have here supposed, of course, that the figure is correctly drawn to scale.
(18.) When, as in Fig. 11, the pipes are of different diameters, then each would have its own gradient, showing at every point the loss of head due to that particular pipe as in the figure. No loss of effect will arise from the pipe following the section of the ground, so long as the contour of the pipe does not anywhere along the line rise above the hydraulic mean gradient. Thus, in

Fig. 9, where the ground is much broken, but does not anywhere rise above the gradient, the discharge will be the same as by a pipe with a uniform slope.
(19.) But if, as in Fig. 10, a hill, as at B, rises higher than the gradient, then the pipe from C to D will be in a state of partial vacuum, air will be given out by the water, and will accumulate at the summit, and being driven forward by the water from C to B, will remain permanently in the pipe from B to G, occupying the upper part of the pipe while the water trickles down the lower part as in a trough or open channel, and the vertical head from \mathbf{B} to G is lost, the hydraulic gradient being now from A. to B, from B to G, and from G to F, this last being parallel to that from A to B , or at the same angle with the horizon. The discharge at F will therefore be, not the amount due to the head E, F on the length A, F, but that due to the head E, B on the length A, B.
(20.) In this case the size of the pipe should not be uniform from end to end: from A to B it should be of large diameter, so as to deliver at B the required quantity with the head E, B; and the pipe from \mathbf{B} to F may be of smaller diameter, so as to deliver the same quantity at \mathbf{F} with the head H, F. Say we take a case with the length $\mathrm{A}, \mathrm{F}=5000$ yards, and head $\mathrm{E}, \mathrm{F}=$ 90 feet, and that the length $\mathrm{A}, \mathrm{B}=2400$ yards, and the head $\mathrm{E}, \mathrm{B}=10$ feet, and that 500 gallons were required at F . With uniform slope we should have $\frac{90}{5000}=\cdot 018$, which, by Table 3, is a 9 -inch pipe, or rather less, for a 9 -inch pipe would deliver 500 gallons with $\cdot 01742 \times 5000=87 \cdot 1$ feet. But for the delivery at B with 10 feet head, and a 9 -inch pipe, we have $\frac{10}{2400}=\cdot 004167$, which by Table $=245$ gallons only, instead of 500 ; and, of course, this is all we should get at \mathbf{F} with such an arrangement, for whatever the size of the rest of the pipe from B to F might be, it could not deliver more than it received by the pipe A, B.

The pipe from A to B should be $\frac{10}{2400}=\cdot 004167$, by Table 3
$=$ a 12 -inch pipe ; and the pipe from B to F may be $\frac{80}{2600}=$ - $03077=$ an 8 -inch pipe by Table. We may check these results thus:-

By Table 3. Length. Head.
12 -inch pipe, 500 gallons $=\cdot 00413 \times 2400=9 \cdot 912$ feet

$$
8 \quad 500 \quad, \quad=\cdot 0314 \times 2600=\frac{81 \cdot 64}{\text { Total } 91 \cdot 552} "
$$

Thus we find the exact head to be a little more than the head at disposal, but in most cases the agreement is near enough for practice.
(21.) When a long main is composed of different sizes of pipes and passes over uneven ground, the best course is to draw the gradients on the section of the pipes so as to see at a glance that none of the hill-tops rise above them. Fig. 11 is a case in which, with a fall of 232 feet, we have a 10 -inch main 4000 yards long, an 8 -inch main 3000 yards long, and a 6 -inch main 2000 yards long. To divide the given fall in the proper proportion between the different pipes and so find the gradients, let us assume that 100 gallons are delivered; then

By Table 3. Length. A.
100 gallons 10 -inch $=\cdot 000411 \times 4000=1 \cdot 644$ feet head .

$$
\begin{array}{ll}
" & 8 "=\cdot 001256 \times 3000=3 \cdot 768 \\
" & 6 " \\
\# & =\cdot 005292 \times 2000=\frac{10 \cdot 584}{15 \cdot 996} \text { total head. }
\end{array}
$$

Now, whatever the real head may be, it would have to be divided among the several pipes in the same proportions as for 100 gallons in Col. A, and as the head in our case is $\frac{232}{15 \cdot 996}=$ $14 \cdot 504$ times the total head for 100 gallons, it follows that the real head for each pipe will be $14 \cdot 504$ times the head for the same pipe in Col. A; thus the true head

$$
\begin{aligned}
& \text { E, B for the } 10 \text {-inch pipe will be } 1 \cdot 644 \times 14 \cdot 504=23 \cdot 84 \text { feet }
\end{aligned}
$$

We can now draw the gradients on the section as in Fig. 11, and then if the contour of the ground is below them throughout, all is well.* The discharge at D may be calculated from any one of the pipes; say we take the 8 -inch; then $\frac{54 \cdot 65}{3000}=\cdot 01822=$ about 380 gallons by Table 3 .
(22.) "Special Cases."-There are many cases for the solution of which no general rules can be given-they require reasoning, with the assistance of rules. The following cases may be useful :-Say that with pipes, arranged as in Fig. 12, we require 50 gallons at B, and 100 gallons at A, and have to determine the sizes of the mains. If we assume 3 inches for E , the head for that size would be $\cdot 0423 \times 160=6 \cdot 77$ feet above the level at B, and as that point is 8 feet (or $18-10$) above the lovel at C, we have at this last point the head of $6 \cdot 77+8$ $=14 \cdot 77$ feet to deliver 50 gallons at B . Now, as A is $25-$ $18=7$ feet below C, the head on A will be $14 \cdot 77+7=$ $21 \cdot 77$ feet, and to find the size of pipe with that head for 100 gallons, we have $\frac{21 \cdot 77}{250}=\cdot 0871=$ a $3 \frac{1}{2}$-inch pipe by Table 3 . We have now only to fix the size of the pipe \mathbf{D} to carry $50+$ $100=150$ gallons: we found the head at C necessary for the pipes E and F to be $14 \cdot 77$ feet, leaving therefore only 18 $14 \cdot 77=3 \cdot 23$ feet for the friction of D , and from this we find $\frac{3 \cdot 23}{300}=\cdot 01077=$ a 6 -inch pipe by Table 3 .
(23.) Take another case shown by Fig. 13, and say that we require the head at \mathbf{D} to deliver 600 gallons at E by the single and double line of pipes; also to find what proportion of the 600 gallons passes by the two branches A, C, B and A, B. Let us assume that the pipe A, C, B carries 1000 gallons; then the head at A for that quantity would be-
1000 gallons 12 -inch pipe $=\cdot 01653 \times 1100=18 \cdot 18$ feet head

$$
" \quad 9 \quad \Longrightarrow \quad=0697 \times 800=\frac{55 \cdot 76}{73 \cdot 94} \quad \#
$$

* The principle of this method of calculating a series of gradients is due to C. E. Amos, Esq., of The Grove, Southwark.

And with that head at A, the pipe A, B would at the same time deliver $\frac{73 \cdot 94}{950}=\cdot 0778=790$ gallons by Table 3 ; so that the two sets of pipes deliver at B 1790 gallons with a head of $73 \cdot 94$ feet at A, and therefore (13) to deliver the 600 gallons required would take $\frac{73 \cdot 94 \times 600^{2}}{1790^{2}}=8 \cdot 3$ feet. Then, the $12-$ inch pipe from D to A would require for 600 gallons $\cdot 00595 \times$ $1100=6 \cdot 545$ feet head, and the 9 -inch pipe from \mathbf{B} to \mathbf{E}, $\cdot 02509 \times 400=10 \cdot 036$ feet; thus the total head at D will be $6 \cdot 545+8 \cdot 3+10 \cdot 036=24 \cdot 881$ feet. The pipe A, C, B will carry $\frac{600 \times 1000}{1790}=336$ gallons, therefore the pipe A, B must take the rest, or 264 gallons.
(24.) If the head had been given, and the discharge due thereto had to be determined, we must have calculated the head for an assumed discharge, and then applied the rule in (13) to find the real discharge with the true head. Thus, say that with the same arrangement of pipes, we require the discharge at \mathbf{E} with 45 feet head at D. If we assume 600 gallons, we should find 24.881 feet head as in (23); then $\frac{600 \times \sqrt{45}}{\sqrt{24 \cdot 881}}$ or $\frac{600 \times 6 \cdot 708}{4 \cdot 988}=807$ gallons, the discharge at E with 45 feet head at D, \&c.
(25.) " Delivery and Suction-pipes to Pumps."-In calculating the sizes of pipes to pumps, it should be remembered that the action of a pump is intermittent, especially where there is no air-vessel to equalize the velocity of supply and discharge. Say we have a single-acting pump 2 feet diameter and 2 feet stroke, worked by a crank, \&c., making 16 revolutions per minute. The area of the pump being $3 \cdot 1416$ feet, we should have $3 \cdot 1416 \times$ $2 \times 16=100$ gallons discharged per minute; but while the bucket is descending the delivery is nothing, and it rises to a maximum when the bucket is at the centre of its up-stroke, where
it has the velocity of the crank-pin; thus in our case the crankpath being 2 feet diameter, or $6 \cdot 28$ feet circumference, the maximum discharge at that moment is $6 \cdot 28 \times 16 \times 3 \cdot 1416=$ 314 gallons, and the pipes must be calculated for that quantity instead of 100 gallons, the mean discharge. In most cases, an air-vessel is used, which more or less effectively regulates and equalizes the velocity of discharge: where the suction-pipe is a long one, an air-vessel should be provided for that also. Table 5 gives the variation in velocity in different kinds of pumps without air-vessels.

Table 5.-Of the Velocity of Discharge by Pumps without Air-vessels.

	Velocity of Discharge.			Variation per cent.
	Max.	Mean.	Min.	
One single-acting pump, worked by a crank	$314 \cdot 16$	100	000	$314 \cdot 16$
Two ditto, worked by cranks at right angles	$222 \cdot 00$	100	000	$222 \cdot 00$
One double-acting pump	$157 \cdot 08$ $104 \cdot 76$	100	000 $90 \cdot 69$	$\begin{array}{r} 157 \cdot 08 \\ 14 \cdot 07 \end{array}$
Three-throw single-acting	$104 \cdot 76$	100	90•69	$14 \cdot 07$
$\left.\begin{array}{cccccc}\text { Four single-acting, or two double- } \\ \text { acting } & \text {.. } & \text {. } & \text {.. } & \text {.. } & \text {.. } \\ \text {.. }\end{array}\right\}$	111.00	100	78•79	$32 \cdot 21$

This Table shows that the common 3-throw pump has a more uniform discharge than any other, the maximum velocity being under 5 per cent. in excess of the mean; an air-vessel is hardly necessary for such a case, in fact large pumps throwing 600 gallons per minute have been worked for many years successfully without any air-vessel.
(26.) "Service-pipes in Towns."-The sizes of street servicepipes for town supplies cannot be calculated by the ordinary rules: we may pursue another method. Certain sizes of lead services varying with the sizes of the houses supplied have been found necessary by experience. For ordinary cases with intermittent supply we may admit that $\frac{1}{2}$-inch pipe will suffice for a house with 6 or 7 rooms, $\frac{5}{8}$-inch for 10 rooms, $\frac{3}{4}$-inch for 16 rooms, and 1 -inch for say 30 rooms. The discharging power of long
pipes varies, as the $2 \cdot 5$ power of the diameter (28), thus $4^{2 \cdot 5}=$ 32 , and we shall therefore require 32 1-inch pipes to deliver with the same head and length the same quantity of water as a 4 -inch pipe, and we may admit that a 4 -inch main would supply 32 1-inch lead services, \&c. Table 6 is calculated on these principles.

Table 6.-Service Mains for Water-Supply in Towns.

Diameter of Branch Mains	Diameter of Lead Services.			
	$\frac{1}{2}$	$\frac{5}{8}$	$\frac{3}{4}$	1
	Number of Houses supplied.			
	15	9	6	3
2	32	18	12	6
$2 \frac{1}{2}$	56	32	20	10
3	88	50	32	15
$3{ }_{4}^{1}$..	74	47	23
4	.	104	66	32

"General Laws for Pipes."-The following general statement of the laws governing pipe questions may be useful : some of these laws apply strictly only to long mains in which the head due to velocity may be neglected.
(27.) When d and L are constant, the discharge, or G, varies directly as the square root of the head, so that for heads in the ratio $1,2,3$, the discharge would be in the ratio $\sqrt{1}, \sqrt{2}$, and $\sqrt{3}$, or $1,1 \cdot 414$, and $1 \cdot 732$.

Conversely,-the head is directly as the square of the discharge, so that for discharges in the ratio $1,2,3$, we require heads in the ratio $1^{2}, 2^{3}, 3^{2}$, or $1,4,9, \& c$.
(28.) When H and L are constant, the discharge is directly as the 2.5 power of the diameter; thus with diameters in the ratio $1,2,3$, the discharge will be in the ratio $1^{2 \cdot 5}, 2^{2 \cdot 5}$, and $3^{2 \cdot 5}$, or $1,5 \cdot 6$, and $15 \cdot 6$.

Conversely,-the diameter will vary directly as the 2.5 root of the discharge; thus for discharges in the ratio $1,2,3$, the
diameter will vary in the ratio $\sqrt[2 \cdot 5]{1}, \sqrt[2 \cdot 5]{2}$, and $\sqrt[2 \cdot 5]{3}$, or $1,1 \cdot 32$, and $1 \cdot 55$, \&c.
(29.) When G and L are constant, the head will be inversely as the 5th power of the diameter; so that for diameters in the ratio $1,2,4$, the heads will be in the ratio $4^{5}, 2^{5}$, and 1^{5}, or 1024, 32 , and 1 .

Conversely,-the diameter will be inversely as the 5th root of the head; thus for heads in the ratio $1,2,4$, the diameters would be in the ratio $\sqrt[5]{4}, \sqrt[5]{2}$, and $\sqrt[5]{1}$, or $1 \cdot 32,1 \cdot 15$, and $1 \cdot 0$, \&c.
(30.) When H and d are constant, the discharge will be inversely as the square root of the length; thus for lengths in the ratio $1,2,4$, the discharge would be in the ratio $\sqrt{4,} \sqrt{2}$, and $\sqrt{1}$, or $2 \cdot 0,1 \cdot 414$, and $1 \cdot 0$, \&c.

Conversely,-the length varies inversely as the square of the discharge; thus for discharges in the ratio $1,2,4$, the lengths would be in the ratio $4^{2}, 2^{2}$, and 1^{2}, or 16,4 , and 1 , \&c.
(31.) When G and d are constant, the head is directly and simply as the length; thus for lengths in the ratio $1,2,3$, the heads would also be in the ratio $1,2,3, \& c$.
(32.) "Head for very Low Velocities." - Table 3 gives the greatest possible facility for the calculation of pipe questions, as may be seen by the examples we have given, and for all ordinary cases the results are correct; but for very small velocities with low heads, say under one foot, \&c., experiment has shown that the discharges are less than that Table would give, and for such cases Prony's more difficult and laborious rule seems to give the most correct results. The following rule is based on that of Prony:-

$$
\begin{aligned}
\text { Let } d & =\text { diameter of the pipe in inches } \\
\mathrm{H} & =\text { head of water in inches. } \\
\mathrm{L} & =\text { length of pipe in feet. } \\
\mathrm{G} & =\text { gallons per minute. }
\end{aligned}
$$

Then

$$
\left.\left(16 \cdot 353 \times \frac{H \times d}{L}+\cdot 00665\right)^{\frac{1}{2}}-\cdot 0816\right) \times d^{2} \times 2 \cdot 04=G .
$$

Thus, say we required the discharge by a 12 -inch pipe 3000 feet long with 36 inches head: then

$$
\left.\left(16 \cdot 353 \times \frac{36 \times 12}{3000}+\cdot 00665\right)^{\frac{1}{2}}-\cdot 0816\right) \times 144 \times 2 \cdot 04=
$$

$427 \cdot 4$ gallons.
We may compare this result with that by Table 3, or rather by the rule $\left(\frac{(3 d)^{5} \times H}{L}\right)^{\frac{1}{2}}=G$, given in (5), by which the discharge comes out 426 gallons, or practically the same as by Prony's rule. With a very small head, however, the two rules do not agree; thus, with only one inch head, this same pipe gives $54 \cdot 87$ gallons by Prony's rule, whereas the other rule gives 70.98 gallons, or 29 per cent. more. With a large head, on the contrary, Prony's rule gives a rather larger discharge than the other. The general comparison of the two rules may be shown by the case of a 10 -inch pipe, 1000 yards long, the calculated discharge of which, with different heads, is given by the following Table:-

(33.) When the head is the unknown quantity, and the rest of the particulars are given, the rule becomes:-

$$
\frac{\left.\left(\frac{\mathrm{G}}{2 \cdot 04 \times d^{2}}+\cdot 0816\right)^{2}-\cdot 00665\right) \times \frac{\mathrm{L}}{\bar{d}}}{16 \cdot 353}=\mathrm{H} .
$$

Let us take an extreme case, in order to illustrate more fully the special adaptation of Prony's formula to very low velocities.

Say we require the head for a 10 -inch pipe 4000 feet long, discharging only 20 gallons per minute : then

$$
\frac{\left.\left(\frac{20}{2 \cdot 04 \times 100}+\cdot 0816\right)^{2}-00665\right) \times \frac{4000}{10}}{16 \cdot 353}=\cdot 626 \text { inch head. }
$$

Now, by Table 3, the head comes out $\cdot 00001646 \times 1333=$ - 02194 foot, or $\cdot 263$ inch only; so that in this very extreme case Prony's rule gives $\frac{\cdot 626}{\cdot 263}=2 \cdot 38$ times the head by the rule in (5) or Table 3.
(34.) Table 29 has been calculated by the following modification of Prony's rule :-

$$
\frac{(\mathrm{V}+\cdot 0816)^{2}-\cdot 00665}{196 \cdot 24}=\frac{\mathrm{H} \times d}{\mathrm{~L}} ;
$$

In which $d=$ diameter of pipe in inches.
$\mathrm{V}=$ velocity of discharge in feet per second.
$\mathrm{H}=$ head of water in inches.
$\mathrm{L}=$ length of pipe in inches.
Table 29 has been calculated for small velocities only, because Table 3 gives results sufficiently correct for practical purposes, with higher velocities, and is more facile in application. We have added opposite each velocity in Table 29 the corresponding discharge of pipes, from 1 inch to 24 inches diameter, in order to abridge the labour as much as possible. For the use of this Table we have the following rules :-
(35.) 1st. To find the discharge, having $H, \mathrm{~L}$, and d given. Multiply the given head in inches by the diameter in inches, and divide by the length in inches, and find the nearest number thereto in Col.1. Then opposite that number, and under the given diameter will be found the discharge in gallons per minute Say, we take the case in (32) to find the discharge of a 12 -inch pipe 3000 feet or 36,000 inches long, with 36 inches head. Then $\frac{H \times d}{\mathrm{~L}}$ or $\frac{36 \times 12}{36000}=\cdot 012$, the nearest number to which in

Col. 1 is 01192, opposite to which, and under 12 inches diameter, is 427 gallons, the discharge sought.

2nd. To find the head, having G, L, and d given. In Table 29, under the given diameter, find the nearest number of gallons, and take from Col. 1 the number opposite to it, which number, multiplied by the length in inches, and divided by the diameter in inches, will give the required head in inches. Thus, taking the extreme case in (33) to find the head for a 10 -inch pipe 4000 feet long, with 20 gallons per minute:-The nearest discharge under 10 inches diameter is 20.45 gallons, opposite which in Col. 1 is $\cdot 0001341$, and from this we obtain $\frac{\cdot 0001341 \times 48000}{10}=$ - 643 inck head : the exact head for 20 gallons we calculated in (33) to be $\cdot 626$ inch.

It should be observed that Prony's formula does not include the head due to velocity of entry (12), which for short pipes becomes important. It has been omitted in the preceding illustrations, because with such long pipes as were given in our cases it is too small to affect the result sensibly : for instance, in the last case, the head for velocity with 20 gallons per minute and a 10 -inch pipe by the rule in (3) is $\left(\frac{20}{100 \times 13}\right)^{2}=\cdot 000237$ foot, or $\frac{1}{35}$ nd of an inch only.
(36.) "Square and Rectangular Pipes."-The case of square or rectangular pipes may be assimilated to that of round ones, and the head or discharge may then be calculated by the same rules and Tables that we have given for the latter. The velocity of discharge, whatever may be the form of the pipe or channel, is proportional to the hydraulic radius (57) or the sectional area, divided by the circumference or perimeter : in round pipes this is always equal to one-fourth of the diameter.

Say we have a rectangular channel $3 \mathrm{ft} . \times 1.5$ foot, Fig. 39 ; the area is 4.5 feet; the perimeter 9 feet, and the hydraulic radius $\frac{4 \cdot 5}{9}=\cdot 5$ foot, which is the same as that of a round pipe $\cdot 5 \times 4=2$ feet diameter. Then to find the head for friction
with such a channel, say 100 yards long, discharging 270 cubic feet per minute; we have a velocity of $\frac{270}{4 \cdot 5}=60$ feet per minute, or 1 foot per second, which by Table 29 is equal to 1178 gallons per minute with a 24 -inch pipe, and by Col. 1 of the same Table $\frac{\mathrm{H} \times d}{\mathrm{~L}}=\cdot 005928$, therefore $\mathrm{H}=\frac{\cdot 005928 \times \mathrm{L} \text {, }}{d}$ or in our case $\frac{\cdot 005928 \times(100 \times 36)}{24}=\cdot 889$ inch, the head required. We might have obtained the head approximately by Table 3, say for 1200 gallons $=\cdot 000744 \times(100 \times 12)=\cdot 8928$ inch.

We might also have calculated the head more directly by Table 30 :-Opposite • 5 the given hydraulic radius, the nearest velocity to that given, or 60 feet per minute, is 61 feet, which is under 15 inches fall per mile, or • 00852 inch per yard; hence for 100 yards the head is $\cdot 00852 \times 100=\cdot 852$ inch.

The head for velocity at entry must be added to that for friction, and may be found by T'able 15 : thiss, with a square-edged inlet, the head for a velocity of 1 foot per second is given by Col. C at $\frac{1}{4}$ th of an inch; the total head is therefore $\cdot 889+$ $\cdot 25=1 \cdot 139$ inch.

By the application of the same principles, the head, or discharge of a channel of any sectional form whatever may be determined.
(37.) "Effect of Corrosion or Rust in Pipes."-The rules and Tables for calculating the discharge of pipes are adapted only to clean and even surfaces, such as are commonly met with in new cast-iron pipes. But some soft waters contain a great deal of oxygen, which rapidly decomposes iron, forming rust, which is deposited, not in an even layer, but in nodules or carbuncles.

These retard the flow, not so much by the reduction of diameter as by the alteration of the character of the surface. A notable case of this kind occurred at Torquay, where a main about 14 miles long, composed of 14,267 yards of 10 -inch, 10,085 yards of 9 -inch, and 170 yards of 8 -inch pipe, delivered only 317 gallons per minute, with 465 feet head. We may calculate the
discharge by the method explained in (13):-Assuming 1000 gallons, we have by Table 3 :-

Friction of 10 -inch $=\cdot 04115 \times 14267=587 \cdot 1$ feet head

And from this, the discharge with the real head is $\frac{\sqrt{465} \times 1000}{\sqrt{1311 \cdot 3}}$ or $\frac{21 \cdot 564 \times 1000}{36 \cdot 21}=595$ gallons. But by Prony's rule (32) the discharge comes out 616 gallons. The experimental discharge was therefore only $\frac{317}{616}=\cdot 51$ or 51 per cent. of the theoretical, or in round numbers the discharge was that due to $\frac{1}{4}$ th of the head, so that $\frac{3}{4}$ ths of the head was lost in undue friction. An ingenious scraper, suggested by the late Mr. Appold, and worked by the pressure of the water, was passed through the entire length of the pipes; and subsequently an improved one by W. Froude, Esq., was used with remarkable results, the discharge being increased to 564 , and eventually, by repeated scraping, to 634 gallons, which is 18 gallons, or 3 per cent. more than the theoretical quantity. Errors of observation, or in the reputed sizes of the pipes, may account for the discrepancy.

Dr. Angus Smith's process, by which pipes are coated all over with a black enamel, seems to be an effective remedy against rusting; such pipes have been used with Torquay water for years without being affected. The process is very cheap, being only about $5 s$. per ton for medium pipes; it can be effectively applied only in the process of casting, while the pipes are new and hot. With such a smooth surface as this process produces, the discharging power must be increased in a higher ratio than the cost, so that such pipes must really be more economical than any other.

CHAPTER II.

on fountains, jets, \&c.
(38.) "Height of Jets with given Heads."-When water issues vertically from a nozzle, as at J in Fig. 5, it should theoretically attain the height of the head, and h should be equal to H ; but it has been found by experiment that the height of the jet is always less than the head, a loss arising from the resistance of the air. The difference, or h^{\prime}, is found to increase with the absolute height of the jet, and to diminish with an increase in the diameter. There are very few reliable experiments on this subject, and the laws indicated by those we have are very intricate. The best experiments we have are given in Table 7, and from them we find that h^{\prime} increases nearly in the ratio of the square of the head, so that if we draw to scale the successive heights found by experiment, as in Fig. 14, we obtain a curve which approximates to a parabola. Thus, for a $\frac{1}{2}$-inch jet, as in the Figure, with 160 feet head, the jet would have attained the height B , or 160 feet, if there had been no resistance from the air ; but it is found by experiment that it only reaches 80 feet as at D, therefore $h^{\prime}=80$ feet is lost. Again, with 80 feet head the jet should have reached $\mathbf{C}=80$ feet, but the experimental height is only 60 feet, and, in that case, $h^{\prime}=20$ feet. Thus with heads in the ratio of 1,2 , the loss is in the ratio $1^{2}, 2^{2}$, or 1 to 4 , being in fact 20 and 80 feet.
(39.) Experiment also shows, that the head being constant, h^{\prime} varies nearly in inverse ratio to the diameter of the jet; for instance, we have just seen that with 80 feet head on the $\frac{1}{2}$-inch jet, 20 feet head is lost. Then with a jet 1 inch diameter the loss would be about 10 feet, and the height attained 70 feet; but with a $\frac{1}{4}$-inch jet the loss would be about 40 feet, and the height attained 40 feet, \&c. Thus we have the elements for calculating approximately the loss of head for any particular case, not perfectly agreeing, perhaps, with the true law, but the best

Table 7.-Of Experiments on the Height of Jets with Differenm Heads.

Diam. in Inches.	$\begin{aligned} & \text { Head } \\ & \text { on the } \\ & \text { Jet in } \\ & \text { Feet. } \end{aligned}$	Height of Jet in Feet.		Error.	Loss of Height by Jet in Feet.		
		Experiment.	Calculated.		Experi- ment.	Calculated.	
$\begin{aligned} & 2 \frac{1}{2} \\ & 1 \frac{5}{8} \end{aligned}$	365	284	282	$\begin{array}{r} \text { feet. } \\ -2 \cdot 0 \end{array}$	81	$\begin{gathered} 83 \\ 3 \cdot 9 \end{gathered}$	
	64	61	$60 \cdot 1$	-0.9	3		Chatsworth. Witley Court.
	92	84	$83 \cdot 86$	-0.14	8	$8 \cdot 14$	Witey
,',	115	103	$102 \cdot 3$	$-0 \cdot 7$	12	$12 \cdot 7$	
$1{ }^{\prime}$	445	109	$136 \cdot 0$	$+27 \cdot 0$	336	309	Torquay.
$\frac{3}{4}$	46	43	$41 \cdot 2$	$-1 \cdot 8$	3	$4 \cdot 8$	Witley Court.
, ,	69	62	$59 \cdot 0$	$-3 \cdot 0$	7	$10 \cdot 0$, ,
, ,	92	77	$74 \cdot 4$	$-2 \cdot 6$	15	$17 \cdot 6$,
,',	115	93	$87 \cdot 5$	$-5 \cdot 5$	22	$27 \cdot 5$,
,',	141	98	$99 \cdot 6$	+1.6	43	$41 \cdot 4$,
	162	106	$107 \cdot 3$	$+1 \cdot 3$	56	$54 \cdot 7$	
${ }^{5}$	15	$14 \cdot 25$	$14 \cdot 44$	$+0 \cdot 19$	$0 \cdot 75$	${ }^{0} \cdot 56$	Weisbach.
, ,	30	$27 \cdot 81$	$27 \cdot 75$	-0.06	$2 \cdot 19$	$2 \cdot 25$, ,
,,	45	3942	39•94	+0.52	$5 \cdot 58$	$5 \cdot 06$,
,',	60	$48 \cdot 36$	$51 \cdot 00$	$+2 \cdot 64$	$11 \cdot 64$	$9 \cdot 00$, ,
$\frac{3}{8}$	15	$14 \cdot 04$	$14 \cdot 06$	$+0.02$	$0 \cdot 96$	0.94	,
8	30	$26 \cdot 44$	$26 \cdot 25$	-0.19	$3 \cdot 56$	$3 \cdot 75$, ,
,	45	$36 \cdot 18$	$36 \cdot 56$	$+0.38$	8.82 17.04	8.44 15.00	, ,
,'	60	$42 \cdot 96$	${ }^{45 \cdot 00}$	+2.04 +0.7	$17 \cdot 04$ 5	$15 \cdot 00$ $4 \cdot 3$	Witley Court.
, ,	32	27	$27 \cdot 7$	+0.7	5	$4 \cdot 3$	Witley Court.
,	46	36	$37 \cdot 2$	$+1 \cdot 2$	10	$8 \cdot 8$,
, ,	95	55	$57 \cdot 4$	$+2 \cdot 4$	40	$37 \cdot 6$, ,
,	118	63	$60 \cdot 0$	$-3 \cdot 0$	55	$58 \cdot 0$,
$\frac{3}{16}$	$28 \cdot 8$	19	$21 \cdot 9$	$+2 \cdot 9$ 0.0	$\begin{array}{r}9 \cdot 8 \\ \hline 8.0\end{array}$	$6 \cdot 9$ $34 \cdot 0$,
,,	64	30	$30 \cdot 0$	$0 \cdot 0$	$34 \cdot 0$	$34 \cdot 0$	',

approximation we can obtain : this is a subject on which more experimental information is very desirable. Table 8 gives the height of jets with different heads, and is calculated by the following rule:-

$$
h^{\prime}=\frac{\mathrm{H}^{2}}{d} \times \cdot 0125 ;
$$

In which $\mathrm{H}=$ the head on the jet in feet.
" $h^{\prime}=$ the difference between the height of head and height of jet.
" $d=$ diameter of jet in $\frac{1}{8}$ ths of an inch.

Table 8.-Of the Height of Jets with Different Heads.

$\begin{gathered} \text { Head } \\ \text { on } \\ \text { Jet } \\ \text { in } \\ \text { Feet. } \end{gathered}$	Diameter of Jet in Inches.										
	$\frac{1}{8}$	$\frac{1}{4}$	$\frac{3}{8}$	$\frac{1}{2}$	$\frac{5}{8}$	$\frac{3}{4}$	1	$1 \frac{1}{4}$	$1 \frac{1}{2}$	$1 \frac{3}{4}$	2
	Height of Jet in Feet.										
10	8.75	$9 \cdot 37$	$9 \cdot 6$	$9 \cdot 7$	9•75	$9 \cdot 8$	$9 \cdot 84$	$9 \cdot 875$	$9 \cdot 9$	$9 \cdot 91$	9•92
20	$15 \cdot 0$	$17 \cdot 5$	$18 \cdot 33$	$18 \cdot 75$	$19 \cdot 0$	$19 \cdot 2$	$19 \cdot 4$	$19 \cdot 5$	$19 \cdot 6$	$19 \cdot 6$	$19 \cdot 7$
30	$19 \cdot 0$	$24 \cdot 4$	$26 \cdot 25$	$27 \cdot 2$	$27 \cdot 75$	$28 \cdot 3$	$28 \cdot 6$	$29 \cdot 0$	$29 \cdot 1$	$29 \cdot 2$	$29 \cdot 3$
40	$20 \cdot 0$	$30 \cdot 0$	$33 \cdot 3$	$35 \cdot 0$	$36 \cdot 0$	$37 \cdot 0$	$37 \cdot 5$	$38 \cdot 0$	$38 \cdot 3$	$38 \cdot 6$	$38 \cdot 7$
50	..	$34 \cdot 4$	$39 \cdot 6$	$42 \cdot 2$	$44 \cdot 0$	$45 \cdot 0$	$46 \cdot 1$	$47 \cdot 0$	$47 \cdot 4$	$47 \cdot 8$	$48 \cdot 0$
60	..	$37 \cdot 5$	$45 \cdot 0$	$48 \cdot 7$	$51 \cdot 0$	$52 \cdot 0$	$54 \cdot 4$	$55 \cdot 0$	$56 \cdot 2$	$56 \cdot 6$	$57 \cdot 0$
70	..	$39 \cdot 0$	$50 \cdot 0$	$55 \cdot 0$	$58 \cdot 0$	$60 \cdot 0$	$62 \cdot 4$	$64 \cdot 0$	$65 \cdot 0$	$65 \cdot 6$	$66 \cdot 0$
80	..	$40 \cdot 0$	$53 \cdot 0$	$60^{\circ} 0$	$64 \cdot 0$	$67 \cdot 0$	$70 \cdot 0$	$72 \cdot 0$	$73 \cdot 3$	$74 \cdot 2$	$75 \cdot 0$
90	$56 \cdot 0$	$65 \cdot 0$	$70 \cdot 0$	$73 \cdot 0$	$77 \cdot 0$	$80 \cdot 0$	$81 \cdot 6$	$83 \cdot 0$	$84 \cdot 0$
100	$58 \cdot 0$	69	75	79	84	87	90	91	92
120	.	.	$60 \cdot 0$	75	84	90	97	102	105	107	109
140	79	91	99	109	116	120	123	125
160	80	96	106	120	128	133	137	140
180	99	112	129	139	141	151	155
200	100	116	137	150	158	166	169
220	\cdots	-	.	-	..	119	145	159	165	177	182
240		120	150	168	180	189	195
260	155	175	190	200	208
280	.	.	\cdots	\cdots		.	158	182	198	210	219
300	\cdots	.			160	187	206	220	230
350	.	..	\cdots	198	222	241	255
400	.	..	\cdots	.		. \cdot	.	200	233	257	275

(40.) It is a result of this rule, that each particular size of jet attains its maximum height with a certain head, and that if the head is increased beyond that point, the height of jet is not increased thereby, but is actually diminished. This result is anomalous: it may be that an excessive head breaks the issuing stream into spray and causes it to meet with more resistance from the air than a jet of solid water issuing with a moderate head. Experiments with excessive heads show an enormous loss: thus a jet 1 inch diameter with 445 feet head, reached a height of about 109 feet only, as measured by a theodolite. Our rule gives the loss $h^{\prime}=\frac{445^{2}}{8} \times \cdot 0125$, or $\frac{198025}{8} \times \cdot 0125$
$=309$ feet, and hence the height of jet is $445-309=136$ feet. The error of 27 feet is considerable, but perhaps not more than might be expected in such an extreme case.
(41.) "Discharge of Jets."-The quantity of water discharged will vary considerably with the form of the nozzle. The form is also a matter of importance, as affecting the solidity of the issuing stream, and thereby the height of the jet. Fig. 15 shows the best form of nozzle, and Table 9 gives the general proportions

Table 9.-Of the Proportions of Nozzles for Jets.

A.	B.	c.	D.
in.	in.	in.	in.
$\frac{1}{4}$	$\cdot 45$	- 6	$\cdot 3$
$\frac{3}{8}$	$\cdot 67$	$\cdot 9$	-45
$\frac{1}{2}$	$\cdot 9.0$	$1 \cdot 2$	$\cdot 6$
$\frac{5}{8}$	$1 \cdot 12$	$1 \cdot 5$	$\cdot 75$
$\frac{3}{4}$	1-35	$1 \cdot 8$	$\cdot 9$
1	$1 \cdot 80$	$2 \cdot 4$	$1 \cdot 2$
11	$2 \cdot 25$	$3 \cdot 0$	$1 \cdot 5$
$1 \frac{1}{2}$	$2 \cdot 70$	$3 \cdot 6$	$1 \cdot 8$
$1{ }^{\frac{3}{4}}$	$3 \cdot 15$	$4 \cdot 2$	$2 \cdot 1$
2	$3 \cdot 6$	$4 \cdot 8$	$2 \cdot 4$
$2 \frac{1}{4}$	$4 \cdot 0$	$5 \cdot 4$	$2 \cdot 7$
$2 \frac{1}{2}$	$4 \cdot 5$	$6 \cdot 0$	$3 \cdot 0$
$2{ }^{3}$	$4 \cdot 9$	$6 \cdot 6$	$3 \cdot 3$
3	$5 \cdot 4$	$7 \cdot 2$	$3 \cdot 6$

for different sizes. The lip at E projecting beyond the mouth is intended to protect the bore from indentation by accident. The discharge by well-made nozzles of this form will be about $\cdot 943$, the theoretical discharge being $1 \cdot 0$, and may be found direct by the following rule:-

$$
\mathrm{G}=\sqrt{\mathrm{H}} \times d^{2} \times \cdot 24 ;
$$

In which $\mathrm{H}=$ the head of water on the jet in feet.
$d=$ the diameter in $\frac{1}{8}$ ths of an inch.
$\mathrm{G}=$ gallons discharged per minute.
Table 10 has been calclated by this rule.
(42.) "Jets at the End of Long Mains."-When a jet is placed at the end of a pipe, or series of pipes, as is usually the case,
Table 10.-Of the Discharge of Jets with Different Heads.

calculation must be made of the loss of head by friction in such pipes, so as to obtain the actual head on the jet, for which alone the rules and Table apply. Say, for illustration, we take the case, shown by Fig. 16, of a jet 1 inch diameter, 70 feet high, at the end of a long main 6 inches, 5 inches, and 4 inches diameter, of the respective lengths given by the Figure, and that we have to calculate the head necessary. Table 8 shows that a jet 1 inch diameter, 70 feet high, requires 80 feet head; and Table 10 gives the discharge of the same jet, with 80 feet head, at 137 gallons. Then, by Table 3, we calculate the friction of the mains, and we have the following results :-

$$
\begin{aligned}
& \text { Feet. } \\
& \text { Head to play 1-inch jet } 70 \text { feet high = } 80 \cdot 00 \\
& \text { Friction 6-inch main, say } 140 \text { gallons }=\cdot 01037 \times 600=6.22 \\
& \begin{array}{llll}
" & 5 & , & =\cdot 0258 \times 300= \\
" & 4 & " & =\cdot 0788 \times 100=7 \\
& 7 \cdot 88
\end{array} \\
& \text { Total }=101 \cdot 84
\end{aligned}
$$

(43.) In other cases we may have the head and diameter of pipes and nozzle given, and have to determine the discharge. This case is illustrated by Fig. 17, and in dealing with it, we must follow the course indicated in (13). Say we assume the discharge at 300 gallons; Table 10 shows that a jet $1 \frac{1}{2}$ inch diameter requires about 75 feet head for that quantity. Then, by Table 3, we find the friction of the mains as follows:-

So that for our assumed discharge of 300 gallons we require only $121 \cdot 12$ feet, instead of 150 , the head at disposal. Then by the rule in (13) the true discharge with 150 feet head will be $\frac{300 \times \sqrt{150}}{\sqrt{121 \cdot 12}}=334$ gallons. In such cases as this, where the height of a jet is involved, the discharge assumed should be pretty near the true one.
(44.) In another case we might require to find the diameter of one of the main pipes, having all the rest given. Thus, say that we have to find the diameter of the pipe P, in Fig. 18. Table 8 gives 90 feet as the head for $1 \frac{1}{4}$ jet 80 feet high; and Table 10 gives 227 gallons as the discharge of the same jet with 90 feet head.

Then, $1 \frac{1}{4}$ jet 80 feet high, by Table 8 .. $90 \cdot 0$ feet head
Friction of 6 -inch main $=\cdot 028 \times 400 . . \frac{11 \cdot 2}{101 \cdot 2}$ "
We have therefore $115-101 \cdot 2=13 \cdot 8$ feet of head left for the friction of the pipe P, or $\frac{13 \cdot 8}{200}=\cdot 069$ foot per yard; which by Table 3 is equal to a 5 -inch pipe with say 230 gallons, and this is the required diameter of the pipe P .
(45.) "Path of Fountain Jets."-When the discharge takes place obliquely, or out of the perpendicular, the path of the jet is a parabola, and may be conveniently described by the method shown in Fig. 23, in which we have a jet discharging upward at an angle of 45°, and with a head of 14 feet, which by Table 11 will give a velocity of 30 feet per second, or 3 feet per tenth of a second. If we mark on the line S, E a series of points $\mathrm{A}, \mathrm{B}, \mathrm{C}$, $\& c ., 3$ feet apart, they would show the position of a particle of water at each tenth of a second if gravity did not act: but of course gravity does act simultaneously, and Table 12 gives the space fallen through each tenth of a second, which, being plotted, on the perpendiculars drawn through each of the points $\mathrm{A}, \mathrm{B}, \mathrm{C}$, \&c., will give the true position of the particle of water at each tenth of a second. Thus, in $\frac{3}{10}$ ths of a second it would have arrived at \mathbf{C}, if uninfluenced by gravity, but the Table shows that in that time a body falls 1 foot $5 \frac{1}{4}$ inches; therefore F is the true position at that moment, and so of the rest, as in the Figure, which gives the path for two seconds. The lower curve S, T in Fig. 23, shows the path of a jet with the same head and velocity projected downwards at the same angle of 45°. Fig. 19 gives the path for a horizontal projection, and also

Table 11.-Falling Bodies, giving the Space fallen through to acquire certain Velocities.

$\begin{aligned} & \text { Velocity } \\ & \text { in Feet } \\ & \text { per Second. } \end{aligned}$	Space.		Velocity in Feet per Second.	Space.		Velocity in Feet per Second.	Space.	
	ft .	ins.		ft.			ft.	
1	0		21	6		41	26	
2	0	$0 \frac{3}{4}$	22	7	6	42	27	5
3	0	$1 \frac{5}{8}$	23	8	3	43	28	9
4	0		24	9	0	44	30	1
5	0	$4 \frac{5}{8}$	25	9	9	45	31	5
6	0		26	10	6	46	32	10
7	0		27	11	4	47	34	4
8	1		28	12	3	48	36	10
9	1	31	29	13	0	49	37	4
10	1	$6 \frac{3}{4}$	30	14	0	50	38	11
11	1	102	31	14	11	52	42	0
12	2		32	15	11	54	45	4
13	2	$7 \frac{1}{2}$	33	16	11	56	50	0
14	3		34	18	0	58	52	0
15	3	6	35	19	0	60	56	0
16	4	0	36	20	1	62	59	8
17	4	6	37	21	5	64	63	8
18		0	38	22	6	66	67	8
19		7	39	23	9	68	72	0
20		3	40		11	70	76	0

Table 12.-Falling Bodies.

Time. Secouds.	Whole Space fallen.		Velocity acquired. Feet per Second.	Time. Seconds.	$\underset{\text { Whol }}{\text { fa }}$	Space n.	Velocity acquired. Feet per Second.
	ft.	ins.	ft.		ft.	ins.	ft.
$\frac{1}{10}$	0		$3 \cdot 2$	$1 \frac{1}{10}$	19	$4 \frac{3}{8}$	$35 \cdot 2$
$\frac{2}{10}$	0		$6 \cdot 4$	$1 \frac{2}{10}$	23	$0 \frac{1}{2}$	$38 \cdot 4$
$\frac{3}{10}$	1	$5 \frac{1}{4}$	$9 \cdot 6$	$1 \frac{3}{10}$	27	$0 \frac{1}{2}$	$41 \cdot 6$
$\frac{4}{10}$	2		$12 \cdot 8$	$1 \frac{4}{10}$	31	$4 \frac{3}{8}$	$44 \cdot 8$
$\frac{5}{10}$			$16 \cdot 0$	$1{ }^{\frac{1}{10}}$	36	0	$48 \cdot 0$
$\frac{8}{10}$	5		$19 \cdot 2$	$1 \frac{6}{10}$	41	0	$51 \cdot 2$
$\frac{7}{10}$		10	$22 \cdot 4$	$1 \frac{7}{10}$	46	25	$54 \cdot 4$
$\frac{8}{10}$	10	27	$25 \cdot 6$	$1 \frac{8}{10}$	51	1	$57 \cdot 6$
$\frac{9}{10}$		111	$28 \cdot 8$	19	57	$9 \frac{1}{8}$	$60 \cdot 8$
1		0	$32 \cdot 0$	2		0	$64 \cdot 0$

illustrates another method of drawing the parabolic curve, which consists in dividing the total space fallen through J, K into the same number of equal parts as the line H, J, and drawing radial lines from the point H, as shown. The path of the jet is through the intersections of the radial lines with the perpendiculars, as in the figure: the two methods give the same result precisely.
(46.) There are some general laws governing the parabolic paths of jets which it will be well to state explicitly. Let Fig. 20 be a jet playing obliquely from a nozzle at J, and striking the horizontal plane at G.

1st. If the line of direction of the pipe or axis of the jet be prolonged, it cuts the axis of the parabola at a point C, whose distance from the base is always double the height of the parabola, or CN is equal to twice DN. This gives a useful rule for finding the proper angle of the jet pipe when the path of the jet has been determined.

2 nd . If we find the focus of the parabola by the ordinary method, namely, by bisecting the radius of the base at A, drawing the line AD , and making AL perpendicular to AD , then the point L is the focus of the parabola and the distance NL is the extra head h necessary to play the jet horizontally, or the difference between the maximum height of the jet and the head upon it at J. Thus the total head H^{\prime} may be considered as divided into two portions, namely, H, which is equal to the height of the parabola $\mathrm{D} \mathbf{N}$, and h, which is equal to the distance of the focus of the parabola from the base.

3 rd . If, therefore, with the same head the jet were made to play vertically, it would (theoretically) attain the height of H^{\prime}, instead of H .

4th. In all cases, h bears a certain proportion to the height of the parabola (H), and to the length of its base B, and may be calculated from those particulars by the rule $h=\frac{\left(\frac{1}{4} \mathrm{~B}\right)^{2}}{\mathrm{H}}$; thus, to play a jet 32 feet horizontally (B), and 16 feet high (H), as in Fig. 21, we shall have $h=\frac{8^{2}}{16}=4$ feet, which, added to the
height of the jet path (16 feet), gives 20 feet for the total head on the jet.

5th. The horizontal distance from the nozzle at J to the point on the plane at G, where the jet strikes it, may be calculated when the total head H^{\prime} and the height of the parabola H are given ; for obviously $\mathrm{H}^{\prime}-\mathrm{H}=h$, and knowing h, we may find B by the rule $\sqrt{h \times \mathrm{H}} \times 4=$ B. Thus, in Fig. 21, we have $\mathrm{H}^{\prime}=20$, and $\mathrm{H}=16$; therefore, $h=20-16=4$, and then $\sqrt{4 \times 16} \times 4=32$ feet.

6th. When the jet issues horizontally, as in Fig. 25, its path is half a parabola, following the same laws as before, namely, $h=\mathrm{F}$, also $h=\frac{\left(\frac{1}{2} \mathrm{P}\right)^{2}}{\mathrm{H}}$, and $\sqrt{h \times \mathrm{H}} \times 2=\mathrm{P}, \& \mathrm{c}$.
(47.) In some cases, the two half parabolas are unequal, as in Fig. 24, where we have a jet 20 feet high at its maximum, delivering at $\mathrm{N}=15$ feet high, and 24 feet distant horizontally from the nozzle at J, and we require to find $h=$ the extra head, and to describe the path of the jet. Here we have first to find the position of the centre line dividing the semi-parabolas, and to do this we have $\frac{\mathrm{D} \times \sqrt{\mathrm{H}}}{\sqrt{\overline{\mathrm{H}}+\sqrt{\mathrm{H}^{\prime \prime}}}=R \text {, which }{ }^{\text {a }}}=$, in our case becomes $\frac{24 \times 4 \cdot 472}{4 \cdot 472+2 \cdot 236}=16$ feet. Then the focus of the two semi-parabolas may be found as before, and it will be found that F and F^{\prime} are equal. Thus, in our case $\mathrm{F}=\frac{\left(\frac{16}{2}\right)^{2}}{20}=$ $\frac{\left(\frac{8}{2}\right)^{2}}{5}=3 \cdot 2$ feet also. F being equal to h, we thus find h to be $3 \cdot 2$ feet, and the total head at J will therefore be $20+3 \cdot 2=23 \cdot 2$ feet $\left(\mathrm{H}^{\prime}\right)$. If we reverse the direction of the jet, placing the nozzle at N, instead of at J, then, with a head of $5+3 \cdot 2=8 \cdot 2$ feet, the path of the jet would be the same as before.
(48.) We have followed throughout the investigation of the paths of oblique jets, the theoretical law that the height of the jet is equal to the head, and we have done this to avoid complicating the matter unnecessarily; but obviously, we must apply to oblique jets the correction we found necessary for perpendicular ones. Thus, if we had a jet $\frac{1}{2}$-inch diameter, with 80 feet head, Table 8 shows that the height attained vertically would be only 60 feet, and if this jet played obliquely, its path should be calculated for the latter height, but the quantity of water expended, and the value of h must be calculated for 80 feet.

Oblique jets of great height and range, deviate considerably from the true parabolic path assigned by the rules; the curve becomes in such cases like A, D, E in Fig. 22, the true parabolic path being A, B, C. But for moderate heights and ranges, such as usually occur in practice, the deviation is not considerable.
(49.) "Ornamental Jets."-There are many kinds of ornamental jets which may be used with pleasing effect in very sheltered situations, especially in the interior of conservatories, \&c. One of these, called the "Convolvulus," from the form of its display, is shown in half-size section by Fig. 26. The pressure of a very small head of water (2 or 3 feet) raises the valve B, and allows a thin sheet of water to escape, forming a sheet jet of the form given in Fig. 27, and (with the size given by Fig. 26) about 3 feet diameter, with an expenditure of about 6 gallons per minute.

Fig. 28 is a half-size section of the "Dome" or "Globe" jet, which produces a display of the form shown by Fig. 29, with a head of about 2 feet, the globe being about 14 inches diameter, and the expenditure about 3 gallons per minute. With a greater head, say 3 or 4 feet, the display has the form of an umbrella about 21 inches diameter, expending about 4 gallons per minute.

The "Basket and Ball" jet is another pleasing variety; the basket is of fancy wire-work, large enough to catch the ball when it escapes from the jet of water, and formed so as to return it back to ins place. The ball is formed of light wood (lime-tree is the best), painted or gilded, and well varnished.

There should be a certain proportion between the size of the ball and the diameter of the jet. As an approximation we may give the following rule :-

$$
\sqrt[3]{d^{2} \times 1 \cdot 3}=\mathrm{D}
$$

In which $d=$ the diameter of the jet in $\frac{1}{8}$ ths of an inch. $\mathrm{D}=$ the diameter of the ball in inches.
Table 13 has been calculated by this rule; it gives the proportions up to 1 -inch jets, but the $\frac{3}{4}$-inch jet, with $3 \frac{1}{2}$-inch ball is usually the maximum size in practice.

Table 13.-For Ball Jets.

CHAPTER III.

ON CANALS, CULVERTS, AND WATER-COURSES.
(50.) "Open Water-courses."-The discharge of open watercourses may be found experimentally by observing the velocity of the current and measuring the cross sectional area of the stream. But to do this correctly we require the mean velocity throughout the section, which is not given by observation. The velocity varies, being a maximum at the surface and where the channel is deepest, which is usually near the centre of the width, diminishing from thence to the banks on either side, and to the bottom, where it is a minimum.

The best experiments we have, give the mean velocity
throughout the section at 84 per cent. of the maximum central surface velocity, which is usually the velocity observed, being easily obtained by a float on the surface of the stream (68). Table 14 gives the mean velocity corresponding to observed maximum velocities; thus, if a channel whose area is 24 square feet, has by observation a central surface velocity of 35 feet per minute, the mean velocity by the Table is $29 \cdot 4$ feet, and the discharge will be $29 \cdot 4 \times 24=705 \cdot 6$ cubic feet, or $705 \cdot 6 \times$ $6 \cdot 23=4396$ gallons per minute.
Table 14.-For Open Channels, Canals, and Rivers, giving the Mean Velocity throughout the Section, corresponding to observed Central Surface Velocities.

Surface Velocity.	$\begin{aligned} & \text { Mean } \\ & \text { Velocity. } \end{aligned}$	Surface Velocity.	$\begin{gathered} \text { Mean } \\ \text { Velocity. } \end{gathered}$	Surface Velocity.	$\begin{gathered} \text { Mean } \\ \text { Velocity. } \end{gathered}$	Surface Velocity.	$\begin{aligned} & \text { Mean } \\ & \text { Velocity. } \end{aligned}$
1	-84	26	21.84	51	$42 \cdot 84$	76	$63 \cdot 84$
2	$1 \cdot 68$	27	$22 \cdot 68$	52	$43 \cdot 68$	77	$64 \cdot 68$
3	$2 \cdot 52$	28	$23 \cdot 52$	53	$44 \cdot 52$	78	$65 \cdot 52$
4	$3 \cdot 36$	29	$24 \cdot 36$	54	$45 \cdot 36$	79	$66 \cdot 36$
5	$4 \cdot 2$	30	$25 \cdot 2$	55	$46 \cdot 20$	80	$67 \cdot 2$
6	$5 \cdot 04$	31	$26 \cdot 06$	56	47-04	81	$68 \cdot 04$
7	$5 \cdot 88$	32	$26 \cdot 88$	57	$47 \cdot 88$	82	$68 \cdot 88$
8	$6 \cdot 72$	33	$27 \cdot 72$	58	$48 \cdot 72$	83	$69 \cdot 72$
9	$7 \cdot 56$	34	$28 \cdot 56$	59	$49 \cdot 56$	84	$70 \cdot 56$
10	$8 \cdot 4$	35	$29 \cdot 4$	60	$50 \cdot 4$	85	$71 \cdot 40$
11	$9 \cdot 24$	36	$30 \cdot 24$	61	$51 \cdot 24$	86	$72 \cdot 24$
12	$10 \cdot 08$	37	$31 \cdot 08$	62	$52 \cdot 12$	87	$73 \cdot 08$
13	$10 \cdot 92$	38	31.92	63	$52 \cdot 92$	88	$73 \cdot 92$
14	$11 \cdot 76$	39	$32 \cdot 76$	64	$53 \cdot 76$	89	$74 \cdot 76$
15	$12 \cdot 60$	40	$33 \cdot 6$	65	$54 \cdot 6$	90	$75 \cdot 6$
16	$13 \cdot 44$	41	$34 \cdot 44$	66	$55 \cdot 44$	91	$76 \cdot 44$
17	$14 \cdot 28$	42	35.28	67	$56 \cdot 28$	92	$77 \cdot 28$
18	$15 \cdot 12$	43	$36 \cdot 12$	68	$57 \cdot 12$	93	$78 \cdot 12$
19	$15 \cdot 96$	44	36.96	69	$57 \cdot 96$	94	$78 \cdot 96$
20	$16 \cdot 8$	45	$37 \cdot 8$	70	$58 \cdot 8$	95	$79 \cdot 80$
21	17•64	46	$38 \cdot 64$	71.	$59 \cdot 68$	96	$80 \cdot 64$
22	$18 \cdot 48$	47	$39 \cdot 48$	72	$60 \cdot 48$	97	$81 \cdot 48$
23	$19 \cdot 32$	48	$40 \cdot 32$	73	61-32	98	$82 \cdot 32$
24	$20 \cdot 16$	49	$41 \cdot 16$	74	$62 \cdot 16$	99	$83 \cdot 16$
25	$21 \cdot 0$	50	$42 \cdot 0$	75	$63 \cdot 00$	100	$84 \cdot 00$

(51.) "Head due to Velocity in Open Channels."-When a stream leaves the still water of a lake or reservoir, as in Fig. 30,
at a given velocity, there will be a certain loss of head to generate that velocity, that is to say, the stream at F must be lower than the still water at E in order to create the velocity required at G. In a case like the Figure, the bottom of the channel at F being at the same level as the bottom of the reservoir at \mathbf{E}, and with a well-rounded entrance, the velocity would be $\cdot 96$ of that due to gravity, and the same co-efficient would apply to the waterway of a sluice-gate, like Fig. 31, if the gate is drawn up completely out of the water, and to the openings of a bridge with pointed piers, as at Fig. 32, the conditions being evidently similar in all the three cases. With similar conditions, but with square corners at the sides of the inlet opening, as in Fig. 34, the bottom of the channel being still at the same level as that of the reservoir, the velocity at G would be $\cdot 86$ of that due to gravity, or to the difference of level between \mathbf{E} and \mathbf{F}, and the same coefficient applies to the openings of a bridge with square piers as in Fig. 33.

With an opening in a sluice-gate of small thickness, as at Fig. 35, the head of water being above the lower edge of the gate, the velocity is only $\cdot 635$ of that due to gravity, a contraction (2) occurring on all the four sides of the aperture. If the gate be fully drawn up, the opening becomes a weir, as at Fig. 36, then contraction occurs on three sides only, and the co-efficient rises to $\cdot 667$. These co-efficients are given by Eytelwein, and Table 15 gives the velocities for different heads calculated by them.
(52.) "Head to overcome Friction of Channel."-When the channel is a long one, there is not only a loss of head due to the velocity, but also a further loss by friction against the sides and bottom. Where the channel is of equal cross-sectional area from end to end, the loss of head increases uniformly from end to end, and the surface of water has a certain slope or fall per yard, or per mile. Fig. 37 shows the section of a water-course in which the fall from the still water in the reservoir at A to the point B is due to the velocity at B, and this would be the same whatever the length of the channel; its amount varies with the form of the entrance as explained in (51). From B to

C there will be a regular slope when the area of the channel is uniform, and the fall CD is due to friction for the length $\mathbf{B C}$.

Table 15.-Of the Velocities in Feet per Second, due to given Heads.

$\begin{gathered} \text { Head } \\ \text { in } \\ \text { Inches. } \end{gathered}$	A. Coef. 1•0.	B. Coef. 96.	C. Coef. 86.	D. Coef. $\cdot 635$.	$\begin{aligned} & \text { Head } \\ & \text { in } \\ & \text { Inches. } \end{aligned}$	A. Coef. 1•0.	B. Coef. 96	C. Coef. $\cdot 36$	D. Coef. 635.
$\frac{1}{64}$	- 29	- 2784	- 2494	-18415	1	$2 \cdot 317$	$2 \cdot 2224$	1-9930	
$\frac{1}{32}$	$\cdot 41$	- 3936	- 3524	- 2603	$1 \frac{1}{4}$	$2 \cdot 590$	$2 \cdot 4864$	$2 \cdot 2270$	$1 \cdot 6446$
$\frac{1}{16}$	$\cdot 58$	-5568	-4988	-3683	$1 \frac{1}{2}$	$2 \cdot 837$	$2 \cdot 7235$	$2 \cdot 4398$	$1 \cdot 8015$
$\frac{1}{8}$	-82	-7872	-7052	-5207	$1 \frac{3}{4}$	3•065	$2 \cdot 9424$	$2 \cdot 6360$	1.9463
$\frac{3}{16}$	$1 \cdot 0$	-9600	-8600	-6350		3-276	3•145	2.8174	$2 \cdot 0803$
$\frac{1}{4}$	$1 \cdot 158$	$1 \cdot 1117$	-9959	-7353	$2 \frac{1}{4}$	$3 \cdot 475$	3•336	$2 \cdot 9885$	2:2066
$\frac{5}{16}$	$1 \cdot 295$	$1 \cdot 2432$	$1 \cdot 1140$	-8223	$2 \frac{1}{2}$	$3 \cdot 663$	3•516	$3 \cdot 1502$	$2 \cdot 3260$
${ }^{6}$	1.418	$1 \cdot 3613$	$1 \cdot 2195$	-9004	$2 \frac{3}{4}$	3•842	3•688	3-3041	$2 \cdot 4397$
$\frac{7}{16}$	$1 \cdot 532$	$1 \cdot 4707$	$1 \cdot 3175$	-9728	3	$4 \cdot 012$	$3 \cdot 851$	$3 \cdot 4503$	$2 \cdot 5476$
$\frac{1}{2}$	1.638	$1 \cdot 5725$	1-4087	1-0401	$3 \frac{1}{4}$	$4 \cdot 176$	$4 \cdot 009$	$3 \cdot 5914$	$2 \cdot 6517$
$\frac{9}{16}$	1.737	$1 \cdot 6675$	1.4938	1-1030	$3 \frac{1}{2}$	$4 \cdot 334$	4•161	3•7272	-7521
	$1 \cdot 831$	$1 \cdot 7577$	$1 \cdot 5747$	$1 \cdot 1627$	$3 \frac{3}{4}$	$4 \cdot 486$	4-306	$3 \cdot 8580$	$2 \cdot 8486$
$\frac{11}{16}$	$1 \cdot 921$	$1 \cdot 8442$	1-652	$1 \cdot 2198$	4	$4 \cdot 633$	$4 \cdot 448$	3.9844	$2 \cdot 9420$
3	$2 \cdot 006$	$1 \cdot 9258$	1.725	1-2738	$4 \frac{1}{2}$	$4 \cdot 914$	$4 \cdot 717$	$4 \cdot 2260$	$3 \cdot 1204$
$\frac{13}{16}$	$2 \cdot 088$	$2 \cdot 0045$	$1 \cdot 796$	$1 \cdot 3259$	5^{2}	$5 \cdot 180$	$4 \cdot 973$	$4 \cdot 455$	3•2893
	$2 \cdot 167$ 2.94	$2 \cdot 0803$	1.863	1-376	$5 \frac{1}{2}$	5.433	5.216	$4 \cdot 672$	$3 \cdot 450$
$\frac{1}{1} 5$	$2 \cdot 243$	$2 \cdot 1533$	1-929	1.424	$6{ }^{2}$	5•675	$5 \cdot 448$	$4 \cdot 881$	$3 \cdot 6036$

(53.) This fall may be calculated by the following rule:-

$$
\mathrm{F}=\frac{\left(\frac{\mathrm{C}}{\mathrm{~A}}\right)^{2} \times \mathrm{L} \times \mathrm{P}}{874520 \times \mathrm{A}}
$$

In which $L=$ length of the channel in yards.
$A=$ cross-sectional area of the stream in square feet.
$P=$ the perimeter, or wetted border in feet.
F = the fall, or difference of level at the two ends of the channel in inches.
$\mathrm{C}=$ cubic feet discharged per minute.
Thus, in the case shown by Fig. 38, A being $6 \times 2.5=15$ square feet, $\mathrm{P}=2 \cdot 5+6+2 \cdot 5=11$ feet, say that with such a channel 1760 yards, or one mile long, we require the fall to
discharge 1105 cubic feet per minute: then by the rule we
$\left(\frac{1105}{15}\right)^{2} \times 1760 \times 11$
have in our case $\frac{15) \times 15}{874520 \times 15}=8$ inches fall.
(54.) To this has to be added the head for the velocity at entry, or A B in Fig. 37. The mean velocity being $\frac{1105}{15}=$ $73 \cdot 66$ feet, the maximum (50) will be $\frac{73 \cdot 66}{\cdot 84}=87 \cdot 7$ feet per minute, or 1.46 foot per second, the head for which, with square corners, is given by Col. C of Table 15 at about $\frac{1}{2}$-inch. Then for a channel one mile long, the total head will be $8+\frac{1}{2}=8 \frac{1}{2}$ inches; for $\frac{1}{8}$ th of a mile, or 220 yards, $1+\frac{1}{2}=1 \frac{1}{2}$ inch, and for 110 yards, $\frac{1}{2}+\frac{1}{2}=1$ inch. In the last case the head for velocity is equal to the head for friction.
(55.) When the fall is given, and the discharge has to be calculated the rule becomes :-

$$
\mathbf{C}=\left(\frac{874520 \times \mathrm{F} \times \mathrm{A}}{\mathrm{~L} \times \mathbf{P}}\right)^{\frac{1}{2}} \times \mathrm{A}
$$

Thus, with the same channel as before, 1760 yards long, and a fall of 12 inches, the discharge would be $\left(\frac{874520 \times 12 \times 15}{1760 \times 11}\right)^{\frac{1}{2}}$ $\times 15=1353$ cubic feet per minute. We have omitted in this case to allow for the head due to velocity, and where the channel is a long one, the omission will not cause a serious error ; with short channels, however, it must not be neglected.
(56.) When, with a given total head, we have to calculate the discharge by a channel so short that the head for velocity has to be considered as well as that due to friction, the question does not admit of a direct solution, because we cannot tell beforehand in what proportions the head at disposal has to be divided between the two. The best course in that case is to assume a discharge, and calculate, as in (53) and (54), the head for friction and the head for velocity with that discharge. Then
applying the law (27) that the discharges are directly proportional to the square roots of the respective heads, we may obtain the true discharge with the given head. Thus say that with the channel (Fig. 38) 50 yards long, the total head at disposal was 2 inches, and that we have to calculate the discharge. Say we assume it at 1000 cubic feet; then the head for friction would be $\frac{\left(\frac{1000}{15}\right)^{2} \times 50 \times 11}{874520 \times 15}=\cdot 186$ inch.

The mean velocity being $\frac{1000}{15}=66 \cdot 7$, the maximum will be $\frac{66 \cdot 7}{\cdot 84}=79 \cdot 3$ feet per minute, or $1 \cdot 32$ foot per second, the head for which by Col. C in Table 15 is about $\frac{7}{16}$ or $\cdot 437$ inch; the total head for 1000 cubic feet is, therefore, $\cdot 186+\cdot 437=$ - 623 inch : hence the discharge with 2 inches head would be $\frac{1000 \times \sqrt{2}}{\sqrt{\cdot 623}}$ or $\frac{1000 \times 1 \cdot 414}{\cdot 7893}=1791$ cubic feet per minute.

Checking this result by the rule in (53) \&c., we find that the head for friction is about $\cdot 6$ inch, and for velocity $1 \cdot 4$ inch. If in this case the head for velocity had been neglected, and the full head of 2 inches had been allowed for friction alone, the discharge would have come out $\left(\frac{874520 \times 2 \times 15}{50 \times 11}\right)^{\frac{1}{2}} \times 15=3276$ cubic feet, instead of 1791 , the true discharge. This will serve to show the importance of considering the head for velocity with short channels.
(57.) Table 30 has been calculated by the following modification of the rule :-

$$
\mathrm{V}=(\mathrm{F} \times \mathrm{R} \times 497)^{\frac{1}{2}}
$$

In which $V=$ mean velocity in feet per minute.
$\mathbf{F}=$ the fall in inches per mile.
$R=$ hydraulic radius, or area in square feet, divided by border in feet.

The use of this Table may be illustrated by the following examples:-Say we calculate by it the discharge of the channel (Fig. 38) with a fall of 12 inches per mile as in (55). The hydraulic radius in our case is $\frac{15}{11}=1 \cdot 363$ foot, the nearest radii to which in the Table we find to be $1 \cdot 3$ and $1 \cdot 4$, and the corresponding velocities under the fall of 12 inches per mile are $88 \cdot 1$ and $91 \cdot 4$ respectively ; interpolating between those numbers for our radius $1 \cdot 363$ we find the mean velocity to be about $90 \cdot 2$ feet, and the discharge $90 \cdot 2 \times 15=1353$ cubic feet per minute.

Again, to find the fall with the same channel 800 yards long for 1230 cubic feet per minute :-The mean velocity being $\frac{1230}{15}$
$=82$ feet per minute, we look between 1.3 and 1.4 radii in the Table for that velocity, and we find it to be under the fall of 10 inches per mile, or $\cdot 00568$ inch per yard; hence the fall in our case is about - $00568 \times 800=4.54$ inches for friction alone, or C D in Fig. 37.
(58.) Take another case, shown by Fig. 40, of an open cutting with sloping banks, and say that we require the discharge with a fall of 8 inches per mile. The area being $\frac{30+20}{2} \times 2.5=62.5$ square feet, and the border $5 \cdot 6+20+5 \cdot 6=31 \cdot 2$ feet, the hydraulic radius is $\frac{62 \cdot 5}{31 \cdot 2}=2$, which, by Table 30, with a fall of 8 inches per mile will have a velocity of $89 \cdot 2$ feet, and a discharge of $89 \cdot 2 \times 62 \cdot 5=5575$ cubic feet per minute.
(59.) "River Channels of irregular Cross-section."-The application of the rules to the discharge of a stream of the natural irregular form of section may be illustrated by Fig. 41. We found in (68) that the area was $27 \cdot 74$ square feet; taking say 2 feet in the compasses, and stepping along the border, we find it to measure about $24 \cdot 5$ feet, the hydraulic radius is, therefore, $\frac{27 \cdot 74}{24 \cdot 5}=1 \cdot 132$ foot. Then, with a fall of say 10 inches per
mile, Table 30 gives, opposite the radius of $1 \cdot 1$ (which is the nearest to the one we require), the mean velocity of $73 \cdot 9$ feet per minute; hence the discharge is $73 \cdot 9 \times 27 \cdot 74=2050$ cubic fee ${ }^{\frac{1}{3}}$ per minute. With a very short channel, allowance should b : made for velocity at entry, as explained in (56).

Table 30 may also be applied to the calculation of the dis charge, \&c., of common pipes running full, or to those of \approx square or other section, for an illustration of which see (36), also to culverts, \&c., partially filled, see (62).
(60.) "Openings of Bridges, \&c."-The head lost by a stream in passing through a bridge is principally that due to velocity alone, the length of the channel being in most cases so short as to have little influence on the discharge. The head for velocity may be calculated by Table 15: say we take the case (58) of the stream (Fig. 40) discharging 5575 cubic feet per minute, and passing through an opening at a bridge, say 8 feet wide and 3 feet deep. The area being $8 \times 3=24$ square feet, the velocity will be $\frac{5575}{24 \times 60}=3.87$ feet per second, which, with pointed piers (Fig. 32) will require by Col. B of Table 15, 3 inches head (A, B in Fig. 37). But, the stream approaches the bridge with a mean velocity of $89 \cdot 2$ feet, or a maximum (50) of $\frac{89 \cdot 2}{.84}$ $=106$ feet per minute, or $1 \cdot 77$ foot per second, the head due to which by the same Table is $\frac{5}{8} \mathrm{inch}$. The head at the bridge is, therefore, reduced to $3-\frac{5}{8}=2 \frac{3}{8}$ inches; with square piers (Fig. 33), the head by Col. C is 3_{4}^{3} inches, or at the bridge $3 \frac{3}{4}-\frac{5}{8}=3 \frac{1}{8}$ inches.
(61.) "Submerged Openings." -The velocity of discharge through a submerged opening A (Fig. 43) is governed by the difference of the level of water at the two sides of $i t$, or by H, and is not affected by the depth below the surface at which it is placed. Table 15 will give the velocity with small heads: thus an aperture 2 feet $\times 1.5$ foot $=3$ square feet area, and with H $=5$ inches, would, by Col. D of Table 15, discharge $3 \cdot 2893 \times 3$ $=9 \cdot 87$ cubic feet per second.
Table 16.-Of the Proportions and Discharging Power of Oval Culverts.

Total Height	Width at the Top.	Radius of the			$\frac{5}{6}$ ths full of Water; to the line A in Fig. 44.			$\frac{2}{3}$ rds full of Water; to the line B in Fig. 44.		
		Top.	Bottom.	Sides.	Depth of Water.	Area in Square Feet	Hydraulic Radius in Feet.	Depth of Water.	Area in Square Feet.	Hydraulic Radius in Feet
$\begin{array}{rr}\text { ft. } & \text { in. } \\ 2\end{array}$	$\begin{array}{cc}\text { ft. } & \mathrm{in} . \\ 1 & 4\end{array}$	$\begin{array}{cc} \mathrm{ft} & \mathrm{in} . \\ 0 & 8 \end{array}$	$\begin{array}{cc}\text { ft. } & \text { in. } \\ 0 & 4\end{array}$	$\begin{array}{rr}\text { ft. } \\ 2 & \text { in. } \\ 0\end{array}$	$\begin{gathered} \text { ft. } \\ 1 \end{gathered}$	1•732	-442	$\begin{array}{cc}\text { ft. } & \text { in. } \\ 1 & 4\end{array}$	1-303	-367
30	20	10	06	30	26	3.896	-663	20	$2 \cdot 932$	-550
40	28	14	08	40	34	$6 \cdot 928$	-884	28	5•213	$\cdot 733$
50	34	18	010	50	$4 \quad 2$	$10 \cdot 82$	1-105	34	8-145	-917
60	40	20	10	60	50	$15 \cdot 58$	1.326	40	$11 \cdot 73$	$1 \cdot 101$
70	48	24	12	70	510	$21 \cdot 22$	$1 \cdot 547$	48	15•96	$1 \cdot 283$
80	54	28	14	80	68	$27 \cdot 71$	1.768	54	$20 \cdot 85$	$1 \cdot 467$
$9 \quad 0$	60	30	16	$9 \quad 0$	76	$35 \cdot 07$	1.989	60	$26 \cdot 40$	1-647
100	68	34	18	$10 \quad 0$	84	$43 \cdot 30$	$2 \cdot 210$	68	$32 \cdot 60$	$1 \cdot 830$

(62.) " Discharge by Egg-shaped Culverts."-The discharge of culverts of the common oval or other forms may be calculated by the preceding rules, or by Table 30. The proportions of culverts are arbitrary. Fig. 44 shows a good form, and Table 16 gives the general sizes, areas, \&c., when filled to two different depths, so as to adapt the Table to the varying requirements of practice. Say we take the case of a 5 -feet culvert $\frac{5}{6}$ ths full of water or 4 feet 2 inches deep, with a fall of 10 inches per mile, then, by Table 16, the hydraulic radius is $1 \cdot 105$, and the area of waterway 10.82 feet ; by Table 30 we find that with $1 \cdot 1$ hydraulic radius, and a fall of 10 inches per mile, the mean velocity is $73 \cdot 9$ feet, and the discharge $73.9 \times 10 \cdot 82=800$ cubic feet per minute.
(63.) With very short culverts, allowance must be made for the velocity at entry by Table 15, \&c.; thus, in the case just given, if the culvert had been only 45 yards long, the fall due to friction alone would have been, by Table 30, equal to • 00568 $\times 45=\cdot 255$ or $\frac{1}{4}$ inch ; the mean velocity is $\frac{73 \cdot 9}{60}=1 \cdot 23$ and the maximum $\frac{1 \cdot 23}{\cdot 84}=1.46$ foot per second, the head due to which by Col. C of Table 15 is about $\frac{1}{2}$ inch. The total head is therefore, $\frac{1}{4}+\frac{1}{2}=\frac{3}{4}$ of an inch. To calculate with precision the discharge of short culverts, with a given fall, the method explained in (56) should be followed.
(64.) "Head for very Low Velocities."-In ordinary cases Table 30 gives results sufficiently correct for practical purposes with great facility, but with very small velocities experiment has shown that the head is considerably greater than that Table would give. In such cases the more laborious and refined formulæ of Prony, Saint Venant, and Eytelwein give more correct results. A comparison of these three rules with 96 experiments on the discharge of rivers shows that Eytelwein's rule agrees best with 38 experiments, Saint Venant's with 32, and Prony's with 26. The following is a modification of Eytelwein's rule:-

$$
\left.\mathbf{C}=\left(\frac{896400 \times \mathrm{F} \times \mathrm{A}}{\mathrm{~L} \times \mathrm{P}}+42.8\right)^{\frac{1}{2}}-6.534\right) \times \mathrm{A} ;
$$

In which $\mathrm{L}=$ length of the channel in yards.
„ $A=$ cross-sectional area of the stream in square feet.
" $\quad \mathrm{P}=$ the perimeter, or border of the channel in feet.
" $\quad \mathbf{F}=$ the fall, or difference of level at the two ends of the channel in inches.
$\mathbf{C}=$ cubic feet discharged per minute.
(65.) Thus, say that we require the discharge by the channel, Fig. 40,1 mile long, with a fall of 1 inch only, then $\mathrm{L}=1760, \mathrm{~A}=$ $62 \cdot 5, \mathrm{P}=31 \cdot 2$, as in (58), and $\mathrm{F}=1$, and the discharge will be $\left.\left(\frac{896400 \times 1 \times 62 \cdot 5}{1760 \times 31 \cdot 2}+42 \cdot 8\right)^{\frac{1}{2}}-6 \cdot 534\right) \times 62 \cdot 5=1629 \cdot 3$ cubic feet per minute. We may compare this result with that given by the rule in (55), by which the discharge comes out $\left(\frac{874520 \times 1 \times 62 \cdot 5}{1760 \times 31 \cdot 2}\right)^{\frac{1}{2}} \times 62 \cdot 5=1972$ cubic feet per minute $=$ $\frac{1972}{1629}=1 \cdot 21$, or 21 per cent. difference. But with an increased head, the difference becomes less, and is reduced practically to nothing with large heads, as shown by Table 17.

Table 17.-Of the Discharge of an Open Channel, Fig. 40, calculated by Different Rules.

$\begin{gathered} \text { Fall in } \\ \text { Inches } \\ \text { per Mile. } \end{gathered}$	Calculated Discharge.		Difference per Cent.	By Table 30.	
	By Rule in (64).	By Rule in (55).			
1	1629	1972	$21 \cdot 0$	$\begin{aligned} & \text { Velocity. } \\ & 31.5 \end{aligned}$	Area. Discharge. $62 \cdot 5=1969$
2	2444	2788	$14 \cdot 1$	$44 \cdot 6$	2788
3	3073	3416	$11 \cdot 1$	$54 \cdot 6$,, 3413
4	3556	3943	$10 \cdot 9$	$63 \cdot 0$,, 3938
5	4074	4409	$8 \cdot 2$	$70 \cdot 5$,, 4406
6	4499	4830	$7 \cdot 3$	$77 \cdot 2$,, 4825
8	5253	5577	$6 \cdot 2$	$89 \cdot 2$,, 5575
10	5918	6235	$5 \cdot 3$	$99 \cdot 7$	6231
12	6519	6834	$4 \cdot 9$	$109 \cdot 2$	6825
24	9380	9649	$3 \cdot 0$	$154 \cdot 4$,, 9650
36	11576	11831	$2 \cdot 2$	$189 \cdot 1$,, 11819

This shows that in all cases where extreme accuracy is desired, the rule in (64) should be used; but that where the fall exceeds 8 or 10 inches per mile, Table 30 gives results sufficiently correct for most practical purposes.
(66.) When the discharge is given, to determine the fall, the rule becomes

$$
\mathrm{F}=\frac{\left.\left(\frac{\mathrm{C}}{\mathrm{~A}}+6 \cdot 534\right)^{2}-42 \cdot 8\right) \times \mathrm{L} \times \mathrm{P}}{896400 \times \mathrm{A}}
$$

Thus the fall for friction with the same channel, Fig. 40, 2000 yards long to deliver 3000 cubic feet per minute would be $\frac{\left.\left(\frac{3000}{62 \cdot 5}+6 \cdot 534\right)^{2}-42 \cdot 8\right) \times 2000 \times 31 \cdot 2}{896400 \times 62 \cdot 5}=3 \cdot 26$, or $3 \frac{1}{4}$ inches.
Adding the head due to velocity at entry (51), the mean velocity is $\frac{3000}{62 \cdot 5}=48$, and the maximum $\frac{48}{\cdot 84}=57$ feet per minute, or - 95 foot per second, the head for which by Col. C of Table 15 is about $\frac{1}{4}$ inch; the total head is therefore $3 \frac{1}{4}+\frac{1}{4}=3 \frac{1}{2}$ inches.
(67.) Table 18 has been calculated by the following modification of Eytelwein's rule:-

$$
\frac{(\mathrm{V}+\cdot 1089)^{2}-\cdot 0118858}{8975}=\mathrm{R} . \mathrm{S} .
$$

In which V = the mean velocity over the whole area in feet per second.

$$
\begin{aligned}
& \mathrm{R}=\text { the hydraulic radius in feet, or } \frac{\text { area in square feet }}{\text { border in feet }} \\
& \mathrm{S}=\text { the slope, or } \frac{\text { fall in inches }}{\text { length in inches }} .
\end{aligned}
$$

By this Table approximately correct results may be obtained with less labour than by the rules.

1st. To find the Velocity.-Multiply the area of the channel in square feet by the fall in inches, and divide the product by the border in feet multiplied by the length of the channel in inches : find the nearest number thereto in Col. B of Table 18, and oppo-
site to that number in Col. A is the required velocity. Thus for the case in (65) we have $\frac{62 \cdot 5 \times 1}{31 \cdot 2 \times(1760 \times 36)}=\cdot 0000316$, the nearest number to which is $\cdot 00003043$ opposite $\cdot 425$ foot per second. By interpolation we may obtain a nearer approximation; for, as R.S varies nearly as V^{2}, we have $\left(\frac{\cdot 425^{2} \times \cdot 0000316}{\cdot 00003043}\right)^{\frac{1}{2}}$ or $\left(\frac{\cdot 180625 \times \cdot 316}{\cdot 3043}\right)^{\frac{1}{2}}=\cdot 4331$ foot per second, hence the discharge comes out $\cdot 4331 \times 60 \times 62 \cdot 5=$ 1624 cubic feet per minute, or practically the same as by the rule (65).

Table 18.-For the Discharge of Canals, Rivers, \&c., by Eytelwein's Rule.

Mean Velocity in Feet per Second.	R. S.	Mean Velocity in Feet per Second.	R. S.
- 025	-0000006734	- 6	-00005466
- 05	-000001489	-65	-00006284
- 075	-00000244	$\cdot 7$	-00007158
$\cdot 1$	-000003538	$\cdot 75$	-00008087
-125	-000004771	-8	-00009072
$\cdot 15$	-000006144	-85	-00010112
-175	-000007656	$\cdot 9$	-0001121
$\cdot 2$	-000009307	$\cdot 95$	-0001236
$\cdot 225$	-0000111	$1 \cdot 0$	$\cdot 0001357$
-25	-00001303	$1 \cdot 1$	-00016146
-275	-00001510	$1 \cdot 2$	-0001895
$\cdot 3$	-00001730	$1 \cdot 3$	-00021984
-325	-00001966	$1 \cdot 4$	-0002524
-35	-00002214	$1 \cdot 5$	-00028703
-375	-00002477	$1 \cdot 6$	-00032402
$\cdot 4$	-00002753	$1 \cdot 7$	-0003632
- 425	-00003043	$1 \cdot 8$	-0004047
-45	-000033484	$1 \cdot 9$	-000448
-475	-00003666	$2 \cdot 0$	-0004943
-5	-00003998	$2 \cdot 5$	-000757
- 55	-00004705	$3 \cdot 0$	-001075
A	B	A	B

2nd. To find the Fall.-Divide the given discharge by the given area, and by 60 , which will give the mean velocity in feet
per second; find the nearest number to that in Col. A, which, multiplied by the border in feet and by the length of the channel in inches, and divided by the area in square feet will give the fall in inches. Thus, for the case in (66) we have $\frac{3000}{62 \cdot 5}=$ 48 feet per minute, or $\frac{48}{60}=\cdot 8$ foot per second, the tabular number for which is $\cdot 00009072$; then

$$
\frac{\cdot 00009072 \times 31 \cdot 2 \times(2000 \times 36)}{62 \cdot 5}=3 \cdot 26 \text { inches fall, }
$$

as before.
68. "Case of a Mill-stream."-As an example of the practical application of the rules, we will take a case in which it is desired to utilize a stream of water for driving a corn-mill. Say we have a stream 1500 yards long, with a total fall of 6 ft .6 in . from the tail of the preceding mill. We have first to ascertain the quantity of water at disposal: selecting a spot where the current appears to be tolerably uniform for some 100 feet, and a season when the quantity is an average one according to local authorities, say we take it at a point 24 feet wide as in Fig. 41. We have then to obtain the area of the stream, and to do that, may divide the width into eight equal spaces of 3 feet each, as in the Figure, which may be done conveniently by stretching a tape across the stream: then we measure the depths midway between those divisions or at 1.5 foot, $4 \cdot 5,7 \cdot 5$ feet, \&c., \&c., using a measuring rod with a flat board about 7 or 8 inches square at the end of it, to prevent penetrating the soft bottom; and thus we obtain the series of measurements given in the figure, the mean of which we find to be $1 \cdot 156$ foot, the area is therefore $1 \cdot 156 \times 24=27 \cdot 74$ square feet. To find the velocity, two lines may be stretched across the stream near the surface, and say a "chain" or 66 feet apart, and a float being placed a few yards above the highest one, and in the centre of the width, or rather where the velocity is observed to be greatest, the exact time in passing from line to line is carefully noted. This float should be a small piece of thin wood, say only $\frac{1}{4}$-inch thick, so
as to be almost wholly immersed, and thus expose little surface to the action of the wind. Say that the float travels the 66 feet in 20 seconds, in one minute therefore it would be $\frac{66 \times 60}{20}=$ 198 feet. This being the maximum velocity, the mean (50) over the whole area would be $198 \times \cdot 84=166$ feet per minute, hence the discharge is $166 \times 27 \cdot 74=4600$ cubic feet per minute.
(69.) The total fall is 6 feet 6 inches ; allowing 6 inches for the fall of the stream itself, the net fall at the wheel will be 6 feet; a cubic foot of water weighing $62 \cdot 3 \mathrm{lbs}$.; the horsepower being 33,000 foot-pounds ; and allowing that a breastwheel yields 50 per cent., or $\cdot 5$ of the gross power of the water, we have $\frac{4600 \times 62 \cdot 3 \times 6 \times \cdot 5}{33000}=26$ horse-power. A pair of 4 -feet stones, grinding 4 bushels of corn per hour, requires about 4 horse-power, and a dressing-machine about 6 horse; if we allow four pairs of stones, we should require $16+6$ $=22$ horse-power, leaving 4 horse-power for the mill-gearing and small machines, \&c. The diameter of the water-wheel may be about 2.5 times the fall, say 15 feet, and the speed of its circumference being 4 feet per second, or 240 feet per minute, and the depth of the bucket 1.5 foot, the width of the wheel would be $\frac{4600}{240 \times 1.5}=12 \cdot 8$, say 13 feet. With other kinds of water-wheel the duty would be different : a good overshot wheel would give from 70 to 80 per cent., a breast-wheel from 45 to 60 , and an undershot, in which the water acts only by its impulse, from 27 to 30 per cent.
(70.) The channel must now be altered, so as to deliver 4600 cubic feet per minute, with a fall of 6 inches in 1500 yards, or $\frac{1760 \times 6}{1500}=7$ inches per mile. When altered to the form $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$, the area will be $\frac{24+12}{2} \times 3=54$ square feet, the mean velocity to discharge 4600 cubic feet will be $\frac{4600}{54}=85 \cdot 2$
feet per minute; the border is $6 \cdot 7+12+6 \cdot 7=25 \cdot 4$ feet, and the hydraulic radius $\frac{54}{25 \cdot 4}=2 \cdot 126$ feet. Then by Table 30 between 2 and $2 \cdot 2$ radii, the velocity $85 \cdot 2$ feet is found to be under the fall of 7 inches per mile, the fall we allowed. It should be observed that it is imperative that the slope shall be uniform from end to end, at least where the area of the channel is uniform.

CHAPTER IV.

ON WEIRS, OVERFLOW-PIPES, \&C.
(71.) "Weirs."-Fig. 36 shows a weir arranged for the purpose of gauging experimentally the quantity of water passing down the stream. A is a plate of thin iron with a notch cut out of it wide enough by estimation to carry off the water with a moderate depth of overfall; this is screwed to a thick plank B, to obtain the requisite stiffness for the plate, and the whole is fixed in the stream as shown. C is a stake with a flat and level top, which is driven into the bed of the stream to such a depth that its top is exactly level with the lip of the weir, and the depth of water flowing over is measured by a common rule held on its summit. The proper distance of the stake from the weir depends on the quantity of water to be dealt with; in small weirs it may be from 1 to 2 feet, in very large ones 20 to 25 feet; the object is to place it far enough away to avoid the curvature of surface which the water suffers as it approaches the weir, as shown by the Figure. There is some uncertainty in measuring by a rule in the manner indicated, arising from the capillary attraction causing the water to adhere to the rule and to rise above its true height. A more correct method is to use Francis's hook-gauge, a rough modification of which is shown by Fig. 36. The stake J is, in this case, driven to such a depth that its top is at a height convenient to the eye, say 30 inches above the level of the lip of the weir; then a rough hook-gauge D , formed of
wood about 1 inch thick, is cut in the form shown, the end E being flat and level, and the length E F made exactly equal to GH or 30 inches. The hook-gauge is held against the stake, and carefully adjusted, by the hook at \mathbf{E} being first immersed, and then raised until it just coincides with the surface of the water; the depth of overflow is then given by the distance from the top of the stake to the ton of the gauge at F , measured by a rule, \&c.
(72.) With a thin plate, and depths thus measured from still water, we have the following rules:-

$$
\begin{aligned}
\mathrm{G} & =d \times \sqrt{d} \times l \times 2 \cdot 67 \\
l & =\frac{\mathrm{G}}{d \times \sqrt{d} \times 2 \cdot 67} \\
d & =\left(\sqrt[3]{\frac{\mathrm{G}}{l \times 2 \cdot 67}}\right)^{2}
\end{aligned}
$$

In which $G=$ gallons discharged per minute.
" $d=$ depth of overflow in inches.
" $\quad l=$ length of weir in inches.
Thus, with 2 inches overflow, a weir 72 inches long discharges $2 \times 1 \cdot 4142 \times 72 \times 2 \cdot 67=543 \cdot 7$ gallons per minute; again, to diacharge 694 gallons per minute, with 3 inches overflow, we should require a length of $\frac{694}{3 \times 1 \cdot 732 \times 2 \cdot 67}=50$ inches ; and again, to find the depth of overflow to carry 1282 gallons, with a length of 60 inches, we have $\frac{1282}{60 \times 2 \cdot 67}=8$, then $\sqrt[3]{8}=2$, and $2^{2}=4$ inches, the depth required. Table 19 has been calculated by these rules, and its use may be illustrated by the examples just given; thus with 2 inches overflow the Table gives $7 \cdot 552$ gallons per inch, and a weir 72 inches wide will discharge $7 \cdot 552 \times 72=543 \cdot 7$ gallons; a weir with 3 inches overflow discharges $13 \cdot 87$ gallons per inch of width, and for 694 gallons we require a length of $\frac{694}{13 \cdot 87}=50$ inches; a weir 60 inches
long discharging 1282 gallons is equal to $\frac{1282}{60}=21 \cdot 36$ gallons per inch wide, which by the Table is due to 4 inches overflow, \&c.
Table 19.-Of the Discharge of Water over Weirs, 1 inch wide, in Gallons per Minute.

Depth.	Gallons.								
inch. $\frac{1}{4}$$\frac{3}{8}$$\frac{1}{2}$$\frac{5}{8}$$\frac{3}{4}$	- 3338	inch.	$29 \cdot 85$	inch.	$179 \cdot 0$	inch.	1001	inch.	2242
		5		162		52		89	
	-6132	$5 \frac{1}{8}$	$30 \cdot 97$	17	$187 \cdot 1$	53	1030	90	2280
	-944	$5 \frac{1}{4}$	$32 \cdot 12$	171 ${ }^{2}$	$195 \cdot 5$	54	1060	91	2318
	$1 \cdot 329$	$5 \frac{3}{8}$	$33 \cdot 26$	$18{ }^{2}$	$203 \cdot 9$	55	1089	92	2356
	$1 \cdot 734$	$5 \frac{1}{2}$	$34 \cdot 44$	19	$221 \cdot 1$	56	1119	93	2395
$\frac{7}{8}$	$2 \cdot 185$	$5 \frac{5}{8}$	35•62	20	$238 \cdot 8$	57	1149	94	2433
1	$2 \cdot 670$	$5 \frac{3}{\frac{3}{4}}$	36.85	21	$256 \cdot 9$	58	1179	95	2472
$1 \frac{1}{8}$	$3 \cdot 185$	$5 \frac{7}{8}$	$38 \cdot 02$	22	$275 \cdot 5$	59	1210	96	2512
$1 \frac{1}{4}$	$3 \cdot 818$	6	$39 \cdot 24$	23	$294 \cdot 4$	60	1241	97	2551
$1 \frac{3}{8}$	$4 \cdot 305$	$6 \frac{1}{4}$	$41 \cdot 72$	24	$313 \cdot 9$	61	1272	98	2590
$1 \frac{1}{2}$	$4 \cdot 905$	$6 \frac{1}{2}$	$44 \cdot 25$	25	$333 \cdot 8$	62	1304	99	2630
$1 \frac{5}{8}$	5.531	$6{ }^{\frac{2}{4}}$	$46 \cdot 82$	26	$354 \cdot 0$	63	1335	100	2670
$1 \frac{3}{4}$	$6 \cdot 167$	7	$49 \cdot 45$	27	$374 \cdot 6$	64	1367	101	2711
$1 \frac{7}{8}$	$6 \cdot 855$	$7 \frac{1}{4}$	$52 \cdot 12$	28	$395 \cdot 6$	65	1399	102	2751
2	$7 \cdot 552$	$7 \frac{1}{2}$	54.84	29	$417 \cdot 0$	66	1432	103	2791
$2 \frac{1}{8}$	8. 271	$7 \frac{3}{4}$	$57 \cdot 61$	30	$438 \cdot 7$	67	1464	104	2825
$2 \frac{1}{4}$	$9 \cdot 011$	8	$60 \cdot 41$	31	$460 \cdot 8$	68	1497	105	2873
$2 \frac{3}{8}$	$9 \cdot 773$	$8 \frac{1}{4}$	$62 \cdot 54$	32	$483 \cdot 3$	69	1531	106	2914
$2 \frac{1}{2}$	$10 \cdot 55$	$8 \frac{1}{2}$	$66 \cdot 17$	33	$506 \cdot 1$	70	1564	107	2955
$2 \frac{5}{8}$	$11 \cdot 36$	$8 \frac{3}{4}$	$69 \cdot 11$	34	$529 \cdot 3$	71	1597	108	2997
$2 \frac{3}{4}$	$12 \cdot 18$	9	$72 \cdot 09$	35	$552 \cdot 8$	72	1631	109	3039
$2 \frac{7}{8}$	$13 \cdot 02$	$9 \frac{1}{4}$	$75 \cdot 12$	36	$576 \cdot 7$	73	1665	110	3080
3	$13 \cdot 87$	$9 \frac{1}{2}$	$78 \cdot 18$	37	$600 \cdot 9$	74	1700	111	3122
$3 \frac{1}{8}$	$14 \cdot 75$	$9 \frac{3}{4}$	$81 \cdot 29$	38	$625 \cdot 4$	75	1734	112	3165
$3 \frac{1}{4}$	$15 \cdot 64$	10	$84 \cdot 43$	39	$650 \cdot 4$	76	1769	113	3207
33	16.55	101 $\frac{1}{2}$	$90 \cdot 84$	40	$675 \cdot 5$	77	1804	114	3250
$3 \frac{1}{2}$	$17 \cdot 48$	11^{2}	$97 \cdot 41$	41	$700 \cdot 9$	78	1839	115	3293
$3 \frac{5}{8}$	$18 \cdot 42$	$11 \frac{1}{2}$	$104 \cdot 1$	42	$726 \cdot 7$	79	1875	116	3336
$3 \frac{3}{4}$	$19 \cdot 39$	12	$111 \cdot 0$	43	$752 \cdot 9$	80	1910	117	3379
$3 \frac{7}{8}$	$20 \cdot 37$	122	$118 \cdot 0$	44	$779 \cdot 3$	81	1946	118	3422
4	$21 \cdot 36$	13	$125 \cdot 1$	45	$806 \cdot 0$	82	1983	119	3466
$4 \frac{1}{8}$	$22 \cdot 37$	132 ${ }^{1}$	$132 \cdot 5$	46	$832 \cdot 8$	83	2019	120	3510
$4 \frac{1}{4}$	$23 \cdot 39$	14	$139 \cdot 8$	47	$860 \cdot 3$	84	2056	121	3553
$4 \frac{3}{8}$	$24 \cdot 38$	14, $\frac{1}{2}$	$147 \cdot 4$	48	$887 \cdot 9$	85	2093	122	3598
$4 \frac{1}{2}$	$25 \cdot 49$	15	$155 \cdot 1$	49	$915 \cdot 8$	86	2130	123	3642
$4 \frac{5}{8}$	$26 \cdot 56$	$15 \frac{1}{2}$	$163 \cdot 0$	50	944.0	87	2162	124	3687
$4 \frac{3}{4}$	$27 \cdot 64$	16	$170 \cdot 9$	51	$972 \cdot 4$	88	2204	125	3731
$4 \frac{7}{8}$	$28 \cdot 74$								

(73.) "Effect of Thicleness of Crest."-When the lip of the weir has a considerable thickness, which is frequently a practical necessity, the discharge will be less than with a thin plate, a loss arising from friction. Mr. Blackwell's experiments, made on a large scale, and with depths of overfall ranging from 1 inch to 14 inches, give us the following coefficients, by which Table 19 may be adapted to the forms commonly met with in practice :-

	Ratio of Discharge.
Thin plate, weir 10 feet long	1.000
Plank, 2 inches thick, square edged, weirs $3,6,10$ feet long	- 845
Crest, 3 feet thick, level at the top, ", ", sloped top, slope $1 "$ in $12 \not{\text { to } 1 \text { in } 180 ~}$	$\cdot 712$

Thus, say we have a river-weir 30 feet wide, with $6 \frac{1}{2}$ inches overfall, the crest having a slope of 1 in 12, then the discharge will be $44 \cdot 25 \times 360 \times \cdot 76=12,107$ gallons per minute, or $\frac{12107}{6 \cdot 23}=1943$ cubic feet.
(74.) Table 19 may be applied to rectangular apertures like Fig. 35, for the discharge in such a case is the difference between two weirs, A, B, C, D, and A, E, F, D; say the head to the top of the aperture (A, B) is $16 \frac{1}{2}$ inches, and to the bottom (A, E) 22 inches, and that the width (E, F) is 20 inches. Then, by Table 19, 22 inches $=275 \cdot 5$ gallons per inch, and $16 \frac{1}{2}$ inches $=$ $179 \cdot 0$ gallons ; the difference is, therefore, $275 \cdot 5-179 \cdot 0=96 \cdot 5$, and the discharge $96.5 \times 20=1930$ gallons; but as contraction occurs on four sides in this case, see (51), the real discharge would be $1930 \times \cdot 635 \div \cdot 667=1837$ gallons per minute. The coefficients in (73) do not apply to apertures with large heads.

Similarly we may determine the discharge of round apertures, or approximately of any regular figures, which will not differ materially from that of a circumscribing rectangular opening, reduction being made for the true area of the figure whose discharge is required. Thus, say we require the discharge of a
circular aperture 12 inches diameter, the head measured from the upper edge of the orifice being 14 inches, therefore, 26 inches above the lower edge. Here we have $354 \cdot 0-139 \cdot 8=214 \cdot 2$ gallons per inch wide, and if the aperture were rectangular it would discharge $214 \cdot 2 \times 12=2570 \cdot 4$ gallons; but being circular its area is $\cdot 7854$, that of a circumscribing rectangle being $1 \cdot 0$, and the true discharge is $2570 \cdot 4 \times 7854 \times \cdot 635 \div \cdot 667$ $=1922$ gallons per minute.
(75.) "Effect of Velocity of Approach to Weirs, \&c."-We have so far supposed that the head has been measured from still water, or that the channel was of very large area in proportion to the discharging orifices. When the channel is of small area, the water will have a sensible velocity as it approaches the aperture, which will increase the discharge, and correction must be made for it by adding to the measured head, that due to the observed velocity of approach. Table 15 gives the head due to a range of velocities such as are likely to be met with in ordinary practice; thus, in the case of a weir 60 inches wide, with $3 \frac{5}{8}$ inches overfall, the discharge $=18 \cdot 42 \times 60=1105 \cdot 2$ gallons, but if the velocity of approach had been 66 feet per minute or $1 \cdot 1$ foot per second, we find the head due to that velocity in Col. $B=\frac{1}{4}$ inch, and the head on the weir becomes $3 \frac{5}{8}+\frac{1}{4}=3 \frac{7}{8}$, and the discharge $20 \cdot 37 \times 60=1222$ gallons. More strictly, it is the difference between two weirs with the respective overfalls of $\frac{1}{4}$ inch and $3 \frac{7}{8}$, or $(20 \cdot 37-\cdot 3338) \times 60=1202$ gallons, instead of $1105 \cdot 2$ gallons, as we found it for still water.
(76.) "Correction for Short Weirs."-The rules in (72) assume that the discharge of a weir is simply proportional to its length. This is not strictly correct; in ordinary cases where the weir is narrower than the channel, the issuing stream suffers contraction at the two ends, by which its length is virtually reduced, and as this contraction is about the same with all lengths its effect is proportionally greater with short weirs than with long ones. The experiments of Francis show that the effect of contraction at both ends is to reduce the effective length 0.2 inch for each inch in depth of overfall, or 1 inch with 5 inches deep, 2 inches with 10 inches deep, \&c. With 5 inches overfall, and weirs
Table 20.-The Dischiarge of Overflow Pipes for Tanks, \&c.

$5,10,20,50$, and 100 inches long, Table 19 gives 149, 298, 597, 1492, and 2985 gallons per minute; but deducting one inch from all those lengths, they are reduced to $4,9,19,49$, and 99 inches, and the discharges become $119,268,567,1462$, and 2955 gallons. Francis gives a rule for weirs with thin plates, of which the following is a modification :-

$$
\mathrm{G}=2 \cdot 4953 \times(l-0 \cdot 1 n d) \times d^{\frac{3}{2}}
$$

In which $n=$ the number of end contractions (usually two), and the rest as in (72). Where the weir is the full width of the channel, $n=0$. By this rule, with the real lengths given above, the discharges come out 112, 251, 530, 1367, and 2762 gallons, which are rather less than with the reduced lengths by Table 19.
(77.) "Overflow-pipes to Tanks, \&c."-The rules and Table for weirs apply also with approximate correctness to an overflowpipe to a tank, as in Fig. 46, which may be considered as a circular weir whose length is equal to the circumference of the trumpet-mouth. The following rules will give the same result more directly:-

$$
\begin{aligned}
\mathrm{G} & =\mathrm{D} \times \sqrt{\mathrm{D}} \times d \times 8 \cdot 4 \\
d & =\frac{\mathrm{G}}{8 \cdot 4 \times \mathrm{D} \times \sqrt{\mathrm{D}}} \\
\mathrm{D} & =\left(\sqrt[3]{\frac{\mathrm{G}}{8 \cdot 4 \times d}}\right)^{2}
\end{aligned}
$$

In which $d=$ the diameter of the trumpet-mouth in inches, $\mathbf{D}=$ depth of water over the lip (measured from still-water) in inches, and G = gallons discharged per minute: Table 20 has been calculated by this rule. The size of the discharge-pipe A must be determined by the ordinary rules; with short pipes the discharge is governed principally by the head due to velocity, which is given by Table 1 rather than Table 2 for a pipe of this form. For tanks 3 feet deep, and with a discharge-pipe of that length, Table 21 gives the maximum discharge. Say we had to provide for 400 gallons per minute :-Table 21 shows that

4 inches is the smallest size of pipe admissible, and allowing $2 \frac{1}{2}$ inches for overflow, Table 20 gives 12 inches for the least diameter of trumpet-mouth. We must allow some margin for contingencies, and in such a case, the lip of the trumpet-mouth should not be less than 3 inches below the top of the tank, and thus 3 inches is practically lost in the useful depth of the tank.

> Table 21.-Of the Maximum Discharge of Vertical Pipes 3 Feet long.

	Diameter of Pipe in Inches.	Maxmum Dis- charge in Gallons per Minute.	Dlameter of Pipe in Inches.
1	19	Maximum Dis- charge in Gallons per Minute.	
1	45	$3 \frac{1}{2}$	303
$1 \frac{1}{2}$	88	5	400
2	145	6	630
$2 \frac{1}{2}$	220	7	920
3		1300	

(78.) Fig. 47 shows a simple contrivance of the late Mr . Appold, by which this loss may be avoided, and the water-level not allowed to rise more than about $\frac{1}{8}$ th of an inch above the lip of the trumpet-mouth, even when the descending pipe is discharging full-bore. B is a dished cover of sheet copper, \&c., supported on four brackets C, C, cast on the pipe, so that its lip at D is at the same level as the lip of the trumpet-mouth. When the water rises to that level, it does not immediately flow over when the lip is dry, but rises perhaps $\frac{1}{10}$ th of an inch above it, and then, suddenly overflowing, creates a partial vacuum under the cover, causing the water to rise there above the level of the water in the tank and filling the pipe full-bore. The air under the cover is swallowed up by the rush of the water, and the maximum quantity which the pipe can carry is delivered. This continues till, the water being drawn down below the lip of the cover at D , air enters, and the action suddenly ceases, to be again repeated should the water rise. As the action depends on the suction of the down-pipe, which will not be perfect if the bore is not well filled, it is exnedient not to make that pipe much larger than
necessary. It is usual to construct the pipe so as to serve as a wash-out valve, the joint at the bottom being turned and bored to fit water-tight.
(79.) "Overflows to Fountains."-In ornamental fountains with shallow basins it is important that the water-level should fluctuate as little as possible; hence the form of overflow-pipe just described is specially applicable to such cases. It is generally desirable that the pipe should be concealed, which may be done by fixing it in a small supplementary cistern by the side of the fountain basin, with a large passage between them. For small fountains with say 100 gallons per minute, an inverted overflowpipe may be used, as in Fig. 42; a short pipe A, which serves also as a waste-pipe to empty the basin when necessary by the cock B, carries the overflow trumpet-mouth C. Say we have 100 gallons; then with a 6 -inch pipe at A, the head for velocity at entry would be about 1 inch, and with a 12 -inch trumpet-mouth the head for overflow, by Table 20, is also 1 inch, so that the water-line would fluctuate 2 inches. The cock B may be of smaller size, say 3 inches, the end of the pipe being reduced to suit it. With care, such an arrangement might be used for a very large quantity, by adjusting the cock so as to carry rather less than the supply, leaving the trumpet-mouth to carry off the surplus and regulate the level.
(80.) "Common Overflow-pipe."-When an overflow takes the form of a short pipe inserted in the side of a cistern, as in Fig. 45, and the water to be carried off is just sufficient to fill the pipe, the discharge will be given approximately by the following rule :-

$$
\mathrm{G}=d^{2 \cdot 5} \times 3 \cdot 2 ;
$$

In which $G=$ gallons discharged per minute.
" $d=$ diameter in inches.
Table 22, which has been calculated by this rule, may also be useful for another purpose. It sometimes happens that the only datum which an engineer obtains as a basis for rough estimates is, that a spring or stream delivers "about as much as a pipe of a certain size would carry." This, of course, is very indefinite, but in most cases it means the amount which a pipe would dis-
charge without extra pressure, as in Fig. 45 and Table 22 : thus an 8-inch pipe just filled delivers about 580 gallons per minute : -the pipe in (37) was observed to be nearly filled with the issuing stream when discharging 564 gallons.

Table 22.-Of the Discharge of Outlet-pipes, Fig. 45.

Diameter. Inches.	Gallons per Minute.	Diameter. Inches.	Gallons per Minute.	Diameter. Inches.	Gallons per Minute.
1	$3 \cdot 2$	5	179	13	1950
$1 \frac{1}{2}$	$8 \cdot 8$	6	283	14	2346
2	$18 \cdot 1$	7	415	15	2788
$2 \frac{1}{2}$	$31 \cdot 6$	8	580	16	3277
3	$50 \cdot 0$	9	778	17	3814
$3 \frac{1}{2}$	$73 \cdot 3$	10	1012	18	4400
4	$112 \cdot 4$	11	1284	19	5037
$4 \frac{1}{2}$	$138 \cdot 0$	12	1600	20	5725

CHAPTER V.

on the strength of water-pipes - rainfall, \&C., \&c.
(81.) "Strength of Thick Pipes."-The strength of pipes to resist an internal pressure is not simply proportional to the thickness of metal. The material stretches or extends under a tensile strain, and the result of extension is, that the inside metal is more strained than that of the outside, and that thick pipes are weaker in proportion to their thickness than thin ones. Barlow has given the following rules:-

$$
\begin{aligned}
& T=\frac{R \times P}{S-P} \\
& P=\frac{S \times T}{R+T} \\
& S=\frac{(R+T) \times P}{T} ;
\end{aligned}
$$

In which $\mathrm{S}=$ the cohesive strength of the metal per square inch.
" $\mathrm{P}=$ the internal pressure per square inch, in the same terms as S .
" $\quad \mathrm{R}=$ the radius of the inside of the pipe in inches.
" $\mathrm{T}=$ the thickness of metal in inches.
For cast-iron S may be taken at $7 \cdot 142$ tons, or $16,000 \mathrm{lbs}$. per square inch, and with that strength we obtain the bursting pressure given by Table 23, which shows that with a 10 -inch pipe a thickness of 10 inches gives only four times the strength due to a thickness of 1 inch.

Table 23.-Of the Strength of a 10 -inch Cast-iron Pipe to Resist Internal Pressure, in Tons per Square Inch.

Thickness in inches	1	2	3	4	5
Pressure by Barlow's rule ..	1-19	$2 \cdot 04$	$2 \cdot 68$	$3 \cdot 17$	3.5:
Pressure by exact calculation	1-226	$2 \cdot 161$	$2 \cdot 896$	$3 \cdot 485$	3.972
Thickness in inches	6	7	8	9	10
Pressure by Barlow's rule ..	3•90	$4 \cdot 17$	$4 \cdot 40$	$4 \cdot 59$	$4 \cdot 76$
Pressure by exact calculation	$4 \cdot 337$	$4 \cdot 722$	5-019	5-275	$5 \cdot 5$

Barlow's rule supposes that the extensions are simply proportional to the strain, which is not quite correct; by taking the true extensions we obtain the second series of bursting pressures given in the Table by a calculation which need not be here elaborated.
(82.) "Strength of Thin Pipes."-Barlow's rule is quite inapplicable to comparatively thin pipes, such as are commonly used for water and gas; there are other and practical considerations which that rule does not contemplate. With thin pipes and moderate pressures, we have to consider not only the thickness necessary to bear the pressure, but also that required to bear the traffic along the roads in which they are commonly laid. Again, although great care is taken to keep the core central, it is seldom perfectly so; a pipe intended to be $\frac{1}{2}$-inch thick is frequently
Table 24．－Of the Thickness and Weight of Cast－Tron Socket－pipe to bear safely different Pressures

$\begin{aligned} & \stackrel{\rightharpoonup}{\otimes} \\ & \stackrel{\pi}{0} \\ & \stackrel{0}{0} \end{aligned}$		ザひープN NーTーN NO HR	00000 mnNoo 수륵N	サー～～ Nलった M
		風		$\begin{aligned} & 8.8 .9 \\ & \dot{-} \dot{-1} \dot{\sim} \end{aligned}$
$\begin{aligned} & \stackrel{\dot{\otimes}}{\stackrel{\pi}{0}} \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$				$\sigma \underset{\sim}{\infty} 0$ Nलパ
		당둥ํํํ	N	¢ip $\dot{\sim} \dot{\sim}$
$$				
		Fin	ఢ̣	$\begin{aligned} & \underset{\sim}{\underset{\sim}{4}} \underset{\sim}{4} \\ & \underset{\sim}{4} \end{aligned}$
$\begin{aligned} & \text { థせ } \\ & \stackrel{y y}{*} \\ & \stackrel{\rightharpoonup}{\mathrm{o}} \end{aligned}$				NNO $\infty \sim 0$ 욱요
	荡		上¢¢ ¢ ¢ ¢ ¢	$\stackrel{\infty}{\infty} \stackrel{\rightharpoonup}{-i}$
		$\begin{aligned} & 20 \infty \text { ON } \\ & \infty-\infty-\infty \\ & \sim \infty \infty \infty \infty \end{aligned}$		
	浐	¢\％¢ ¢ ¢		¢¢\％
			$\begin{aligned} & \text { बNOOF } \\ & \text { NHTHO } \\ & \text { ONNOF } \end{aligned}$	$\begin{aligned} & \circ \underset{\sim}{O} 0 \\ & \text { NON } \\ & \underset{\sim}{\infty} \underset{\sim}{\infty} \end{aligned}$
	节			4 98
	． 100000 4． 00000	00000 ののののの	00000 のののの๐	000 ののの
		2005∞		स）

$\frac{3}{8}$ ths at one side and $\frac{5}{8}$ ths at the other, and of course the least thickness governs the strength of the pipe. And again, there are in most cases shocks arising from the closing of cocks, \&c., against which it is necessary to provide adequate strength. In thin pipes, therefore, the determination of the thickness becomes a practical question, and we must obtain an empirical rule from experience. The rule may take the following form :-

$$
t=\left(\frac{\sqrt{\mathrm{D}}}{10}+\cdot 15\right)+\left(\frac{\mathrm{H} \times \mathrm{D}}{25000}\right) ;
$$

In which $\mathrm{D}=$ the diameter of the pipe in inches.

$$
\begin{aligned}
\mathrm{H} & =\text { the safe head of water, in feet. } \\
t & =\text { the thickness of metal in inches. }
\end{aligned}
$$

Table 24 has been calculated by this rule, and we have also given the approximate weights, from gas-pipes in which the pressure is practically nothing, up to 1000 feet of water. Engineers usually specify the weight of their pipes rather than the thickness, leaving the founder to fix that for himself, which long practice enables him to do with considerable precision. Of course absolute correctness cannot be attained, and should not be expected; a margin should be allowed, say one pound to the inch, either way; so that, for instance, a 10 -inch pipe for 100 feet head, specified to weigh 4 cwt .2 qrs. 10 lbs., as per Table 24, should not be rejected if its real weight is between 4 cwt. 2 qrs. 0 lbs. and 4 cwt. 2 qrs. 20 lbs., \&c. Founders consider this to be a fair allowance for variation in weight.
(83.) "Proportions of Socket-pipes."-The joints of waterpipes are usually made by sockets and spigots run with melted lead; and this is the best mode. Such pipes are easy to cast, and consequently cheap, the joints are more easily made than with flanges, and they admit a considerable departure from the strictly straight line which is sometimes very convenient. But to allow for this the sockets must be made of larger diameter than is necessary where the line is straight, and for this reason, perhaps, sockets are frequently made larger than they should be for making a good joint. For ordinary cases $\frac{1}{4}$ inch in thickness or $\frac{1}{2}$ inch in diameter will suffice for pipes of 3 inches diameter
and under ; say $\frac{5}{16}$ from 3 to 10 inches; and $\frac{3}{8}$ for larger sizes. Table 25 gives the general proportions for socket-joints, weight of

Table 25.-Of the Proportions of Joints, \&c., for Cast-iron Socket-pipes.

Diameter of Pipe in Inches.	Depth of Socket.	Lead-joint.			Laying per yard. Prime Cost.
		Thickness.	Depth.	Weight in lbs.	
	inches.				s. ${ }^{\text {d }}$.
112	3	$\frac{1}{4}$	$1 \frac{1}{2}$	$1 \cdot 2$	011
2	3	$\frac{1}{4}$	$1 \frac{1}{2}$	$1 \cdot 4$	10
$2 \frac{1}{2}$	$3 \frac{1}{4}$	$\frac{1}{4}$	$1 \frac{1}{2}$	$1 \cdot 6$	11
3	$3 \frac{1}{2}$	$\frac{1}{4}$	$1 \frac{3}{4}$	$2 \cdot 3$	12
4	4	$\frac{5}{16}$	2	$4 \cdot 0$	13
5	4	$\frac{5}{16}$	2	$5 \cdot 0$	15
6	$4 \frac{1}{4}$	$\frac{5}{18}$	$2 \frac{1}{4}$	$6 \cdot 5$	17
7	$4 \frac{1}{4}$	$\frac{5}{16}$	$2 \frac{1}{4}$	$7 \cdot 7$	110
8	$4 \frac{1}{4}$		$2 \frac{1}{4}$	$8 \cdot 2$	21
9	$4 \frac{1}{2}$	$\frac{5}{16}$	$2 \frac{1}{2}$	$10 \cdot 4$	26
10	$4 \frac{1}{2}$	$\frac{5}{16}$	$2 \frac{1}{2}$	11.5	34
12	$4 \frac{1}{2}$	$\frac{3}{8}$	$2 \frac{3}{4}$	$18 \cdot 0$	46

lead, \&c.: we have also added the average cost of laying pipes, including excarating the ground and making good the same; this will vary of course with the nature of the ground and the cost of labour in different localities.

In Table 26 we have given the weights of socket-pipes and connections by Bailey, Pegg, and Co., of Bankside, Southwark : by reference to Table 24 it will be seen that these pipes are of a weight and strength suitable for about 150 feet head in the larger sizes, and 250 feet in the smaller ones.
(84.) "Proportions of Flange-pipes."-Flange-pipes are not very often used for water, for reasons already given ; but they are convenient for temporary purposes, where the joints have to be frequently broken. Table 27 gives the best proportions for the flanges, bolts, \&c., which will be found to differ considerably from those adopted by many makers. The flanges of cast-iron pipes are frequently made excessively large in diameter and very light in metal. India-rubber rings form the most convenient kind of joint for flange-pipes.

WEIGHT OF STOCK PIPES, BENDS, ETC.
Table 26.-Of the Weight, \&c., of Ordinary (Stock) Socket-pipes, Bends, Connections, \&c.

Diameter of Pipe.	Diameter of Socket.	Length without Socket.	Pipe.	$\begin{array}{\|c} \text { Quarter Bends } \\ 90^{\circ} . \end{array}$	$\begin{aligned} & \text { Eighth Bends } \\ & 45^{\circ} \text {. } \end{aligned}$	Branches. Fig. 48.	Fig. 49. Outlets or Tees.	Double Collars.	Caps.
inches.	inches.	ft. in.	cwt. qrs. lbs.	cwt. qrs.lbs.	cwt. qrs. lbs.				
$1 \frac{1}{2}$	$2 \frac{5}{8}$	60	$0 \begin{array}{lll}0 & 1 & 8\end{array}$	$0 \quad 015$	$0 \quad 013$	$\begin{array}{llll}0 & 1 & 12\end{array}$	015	$0 \quad 011$	0 0 0
2	31	60	020	$\begin{array}{llll}0 & 1 & 1\end{array}$	$0 \quad 023$	$\begin{array}{lll}0 & 1\end{array}$	$\begin{array}{llll}0 & 115\end{array}$	$\begin{array}{lll}0 & 0 & 16\end{array}$	$\begin{array}{lll}0 & 0 & 8\end{array}$
$2 \frac{1}{2}$	$3 \frac{1}{2}$	60	$\begin{array}{lll}0 & 2 & 7\end{array}$	0 116	$0 \quad 025$	$0 \quad 224$	020	$0 \quad 024$	$\begin{array}{lll}0 & 0 & 9\end{array}$
3	419	90	100	$\begin{array}{llll}0 & 111\end{array}$	0116	$\begin{array}{llll}0 & 3 & 2\end{array}$	$0 \quad 224$	$0 \quad 026$	$0 \quad 013$
4	$5 \frac{1}{4}$	90	120	025	0125	$\begin{array}{lll}1 & 0 & 16\end{array}$	$0 \quad 321$	0110	$0 \quad 023$
5	$6 \frac{1}{4}$	90	200	16	$\begin{array}{llll}0 & 316\end{array}$	1121	1024	$\begin{array}{lll}0 & 112\end{array}$	010
6	$7 \frac{1}{2}$	$9 \quad 0$	220	$1 \begin{array}{ll}1 & 124\end{array}$	1186	1221	1221	020	$\begin{array}{lll}0 & 1 & 7\end{array}$
7	$8 \frac{1}{2}$	90	$\begin{array}{lll}3 & 0 & 6\end{array}$	130	134	210	2021	$0 \quad 222$	0121
8	95	$9 \quad 0$	$\begin{array}{lll}3 & 2 & 7\end{array}$	230	200	230	$2 \quad 214$	0320	$0 \quad 28$
9	$10 \frac{3}{4}$	90	$\begin{array}{lll}4 & 0 & 7\end{array}$	$\begin{array}{lll}3 & 0 & 7\end{array}$	220	310	320	0321	$0 \quad 221$
10	117 ${ }_{8}$	90	430	$\begin{array}{lll}3 & 1 & 14\end{array}$	230	$4 \quad 120$	$\begin{array}{lll}4 & 0 & 7\end{array}$	1003	0311
12	137	90	$\begin{array}{lll}6 & 0 & 7\end{array}$	$\begin{array}{ll}3 & 314\end{array}$	$\begin{array}{lll}3 & 1 & 14\end{array}$	520	510	110	1121

Table 27.-Of the Proportions of Cast-iron Flange-pipes.

Diameter of Pipe.	Diameter of Flange.	Thickness of	No. of Bolts.	Diameter of	Diameter of Circle of Bolts.
inches.	inches.	inches.		inches.	inches.
${ }^{1} \frac{1}{2}$	${ }_{5}^{4 \frac{1}{2}}$	$\frac{1}{2}$	3	$\frac{3}{8}$	${ }^{3 \frac{1}{4}}$
$\stackrel{2}{21}$	${ }_{6}{ }^{\frac{1}{4}}$	$\overline{2}_{\frac{5}{8}}$	4	${ }^{\frac{7}{16}}$	${ }_{4}^{3 \frac{3}{1}}$
$3^{2 \frac{1}{2}}$	${ }_{6 \frac{1}{2}}^{6}$	${ }^{\frac{5}{8}}$	4	$\frac{1}{2}^{\frac{7}{18}}$	${ }_{5}^{4 \frac{1}{2}}$
4	8	$\frac{5}{8}$	4	$\frac{9}{18}$	61
5	$9 \frac{1}{4}$	$\frac{3}{4}{ }^{\text {8 }}$	4	${ }^{10} \frac{9}{16}$	$7{ }^{\frac{1}{2}}$
${ }^{6}$	$10 \frac{1}{2}$	${ }^{3}$	${ }_{6}$	$\frac{9}{16}$	$8{ }^{\frac{3}{4}}$
7	12	$\frac{3}{4}$	6	$\frac{5}{8}$	10
8	131 ${ }^{\frac{1}{4}}$	$\frac{7}{8}$	6		111 ${ }^{\frac{1}{4}}$
10	$14 \frac{1}{2}$	$1^{\frac{7}{8}}$	${ }_{6}$	$\frac{5}{8}$	$12 \frac{1}{4}$
10	16^{2}	$1^{\text {b }}$	${ }_{6}$		$13 \frac{1}{2}$
12	1831	1	6	${ }^{3}$	$16{ }^{2}$

(85.) "Strength of Lead Pipes."-The strength of lead pipe may be calculated by Barlow's rule (81), taking the cohesive strength of drawn lead at 2745 lbs . per square inch, as determined by direct experiment. Lead pipes are made of various weights to suit the varying requirements of practice; taking medium weights, and deducing the thickness therefrom, we obtain the following Table, in which the safe working pressure is taken at $\frac{1}{10}$ th of the bursting strain :-

Diameter of pipe $\quad . \quad$ -				1	,	$1 \frac{1}{2}$	$1 \frac{3}{4}$	2
Weight of pipe, lbs. per foot ..		47	$1 \cdot 87$	$2 \cdot 80$	$4 \cdot 33$	$6 \cdot{ }^{2}$	$6 \cdot 75$	$\varepsilon 0$
Safe pressure, feet of water	232	183	174	151	152	140	122	116

(86.) "Power of Horses, \&c., in raising Water."-The power of men, horses, \&c., in raising water varies with the duration of the labour. The following Table gives the number of gallons raised 1 foot high per minute, with common deep-well pumps, and the mean velocity in feet per minute.

Velocity.	Hours per Day.	4.	5.	6.	8.	10.
176	Horse, walking in a circle	1653	1480	1350	1169	1040
180	Pony, or mule, ditto	1102	986	898	780	697
120	Bullock, ditto	1470	1314	1200	1040	930
157	Ass, ditto	457	410	374	323	290
220	Man, with winch pump ..	249	222	203	176	157
147	Ditto, Contractor's pump	205	183	167	145	130

A good high-pressure steam-engine should raise 3300 gallons 1 foot high per minute per nominal horse-power; the friction of the pumps being compensated by the excess of the indicated power over the nominal.
(87). "Rainfall."-The depth of rain in this country varies very much with the locality; the east coast is the driest, the annual rainfall being in Northumberland about 28.67 inches, diminishing thence gradually to 23 in Norfolk and to $19 \cdot 8$ in Essex, which 1s the minimum. Thence southward and westward it gradually increases to $25 \cdot 6$ in Kent, 30.64 in Sussex, $38 \cdot 75$ in Dorset, $48 \cdot 3$ in Devon, and $50 \cdot 6$ in Cornwall. The midland districts have a medium fall: Middlesex $24 \cdot 1$, Leicester $26 \cdot 0$, Hereford $29 \cdot 27$, Cheshire $31 \cdot 3$, \&c., \&c.
"Heavy Rains."-For town drainage and other purposes, we require to know the maximum fall of rain during storms. We find that in

1	5	15	30	45	60	120	180 minutes

the maximum fall of rain may be
$\begin{array}{llllllll}0.2 & 0.75 & 1.0 & 1.8 & 2 \cdot 5 & 3 \cdot 25 & 3 \cdot 6 & 4 \text { inches, }\end{array}$ which is at the rate per hour of
$\begin{array}{llllllll}12 & 9 & 4 & 3 \cdot 6 & 3 \cdot 3 & 3 \cdot 25 & 1 \cdot 8 & 1 \cdot 33 \text { inches. }\end{array}$
"Rain-water Tanks."-Where it is desired to utilize as much as possible of the rain falling on a building, the minimum size of tank becomes an important but complicated question. Taking a place with 24 inches annual rainfall, we have evidently an allowance for a regular consumption of 2 inches per month. But there may be a drought in which for one month no rain falls, and the tank must have 2 inches in store to supply the deficiency. There may also be a wet month with 6 inches of rain, and as only 2 inches is consumed, 4 inches must be stored. The tank must therefore hold $2+4=6$ inches, or $\frac{1}{4}$ th of the annual rainfall. Again, for two months we require 4 inches, but the rainfall varies from $1 \frac{1}{2}$ to $7 \frac{1}{2}$ inches, and the tank must hold $\left(4-1 \frac{1}{2}\right)+\left(7 \frac{1}{2}-4\right)=6$ inches, as before. For three months we require 6 inches, but the rainfall varying from $2 \cdot 4$ to $8 \cdot 7$ inches, the tank should hold $(6-2 \cdot 4)+(8 \cdot 7-6)=$
$6 \cdot 3$ inches. From all this we find that a rain-water tank should hold at least $\frac{1}{4}$ th of the annual rainfall. Thus, with 24 inches, or 2 feet per year, a building 1830 square feet in area, collects $1830 \times 2=3660$ cubic feet, allowing a consumption of 10 cubic feet, or $62 \cdot 3$ gallons per day, and the tank should hold $3660 \div$ $4=915$ cubic feet.
(88.) "Weight and Pressure of Water."-A gallon of water at 62° weighs 10 lbs. , and contains $277 \cdot 274$ cubic inches, or $\cdot 16046$ cubic foot: hence a cubic foot weighs $62 \cdot 321 \mathrm{lbs}$., and contains $6 \cdot 2321$, or nearly $6 \frac{1}{4}$ gallons. Table 28 gives the pressure in pounds per square inch due to given columns of water and mercury.
Table 28.-Of Equivalent Pressures in Pounds per Square Inch, Feet of Water, and Inches of Mercory, at a Temperature of 62° Fahr.

Pounds per Square Inch	Feet of Water.	Inches of Mercury.	Pounds per Square Inch.	Feet of Water.	Inches of Mercury.
1 -	$2 \cdot 311$	$2 \cdot 046$	$2 \cdot 5962$	6.	5•31198
$2 \cdot$	$4 \cdot 622$	$4 \cdot 092$	3-0289	$7 \cdot$	6•19731
$3 \cdot$	$6 \cdot 933$	6.138	3•4616	8.	7-08264
4 .	$9 \cdot 244$	8-184	3-8942	$9 \cdot$	$7 \cdot 96797$
$5 \cdot$	$11 \cdot 555$	$10 \cdot 230$	-48875	1-12952	1.
6	$13 \cdot 866$	$12 \cdot 276$	-97750	$2 \cdot 25904$	$2 \cdot$
$7 \cdot$	$16 \cdot 177$	$14 \cdot 322$	$1 \cdot 46625$	3-38856	$3 \cdot$
$8 \cdot$	$18 \cdot 488$	$16 \cdot 368$	$1 \cdot 95500$	$4 \cdot 51808$	4 -
$9 \cdot$	$20 \cdot 800$	18.414	$2 \cdot 44375$	5•64760	5
4327	1.	- 88533	$2 \cdot 93250$	6.77712	$6 \cdot$
-8654	2.	1-77066	3•42125	7-90664	$7 \cdot$
$1 \cdot 2981$	$3 \cdot$	$2 \cdot 65599$	$3 \cdot 91000$	$9 \cdot 03616$	$8 \cdot$
1-7308	4 -	3•54132	$4 \cdot 39875$	$10 \cdot 16568$	9 ${ }^{\text {- }}$
$2 \cdot 1635$	5.	$4 \cdot 42665$			

Example. - Required the Pressure per Square Inch, and Equivalent Column of Mercury for a Head of 247 feet of Water.

Feet of Water.		Pounds per Square Inch.		Inches of Mercury.
200	=	$86 \cdot 54$	or	177-066
40	$=$	17-308	"	35-413
7	=	3.029	"	6-197
247	=	106.877	"	$218 \cdot 676$

[^0]\begin{tabular}{|c|}
\hline \multirow{3}{*}{\(\frac{\mathrm{H} \times \mathrm{d}}{\bar{L}}\)} \& \multirow{3}{*}{} \& \multicolumn{21}{|c|}{diameter of the pire in inchirs.} \\
\hline \& \& 1 \& \({ }^{1 \frac{1}{8}}\) \& 2 \& \({ }^{2 \frac{1}{3}}\) \& 3 \& \({ }^{3 \frac{1}{3}}\) \& \& 5 \& 6 \& 7 \& \({ }^{8}\) \& \& 10 \& 12 \& 14 \& 15 \& 16 \& 18 \& 20 \& 21 \& 24 \\
\hline \& \& \multicolumn{21}{|c|}{gailons discraramd pre minote.} \\
\hline -00002402 \& .025 \& . 0511 \& . 1150 \& \(\cdot 2045\) \& 31 \& \({ }^{4602}\) \& . 6260 \& -8180 \& 1.278 \& 1.841 \& \(2 \cdot 504\) \& \& \& \(5 \cdot 113\) \& 7.362 \& 10.02 \& \& 13.09 \& \({ }^{16 \cdot 56}\) \& \(20 \cdot 45\) \& \(22 \cdot 53\) \& \\
\hline -00005437 \& :05 \& 153 \& \(\stackrel{-2301}{2350}\) \& \({ }^{-6091}\) \& \({ }_{\text {- }}^{\text {- } 6388}\) \& - 1.9204 \& (1.252 \& (1-436 \& 2.586 \({ }_{\text {c }}^{2}\) \& \& \({ }_{\text {c }}^{5.008}\) \& \({ }_{9}^{6 \cdot 544}\) \& c.c. \begin{tabular}{c}
8.284 \\
12.43 \\
\hline
\end{tabular} \& cin \begin{tabular}{c}
10.23 \\
\(15 \cdot 34\) \\
\hline
\end{tabular} \& \({ }_{22}^{14.72}\) \& \(\xrightarrow{20 \cdot 03}\) \& \begin{tabular}{l}
\(23 \cdot 00\) \\
34 \\
34 \\
\hline 50
\end{tabular} \& \({ }_{39}^{26 \cdot 18}\) \& 33.12
49.68 \& \({ }^{40 \cdot 91}\) \& . 61 \& \(58 \cdot 90\)
88.95
8 \\
\hline \(\xrightarrow{-00001348}\) \& -100 \& - 20554 \& \({ }_{\text {- }}^{\text {- } 5750}\) \& - \& \& cis \& \& \(\underset{\substack{3.273 \\ 4.090}}{\substack{\text { a }}}\) \& - \begin{tabular}{c}
5. 1.13 \\
6.390 \\
\hline
\end{tabular} \& (103 \& \& \& \({ }^{126} 12.57\) \& \& \(\xrightarrow{29.45}\) \& \& 46.02
57.50 \& \begin{tabular}{l}
52.36 \\
65.45 \\
\hline
\end{tabular} \& 49.28
86.28
8.80 \& \& cold

112.7 \&

\hline -0001836 \& \& \& . 5750 \& \& 1 \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline $\stackrel{.0002394}{-003016}$ \& ${ }^{15}$ \& ${ }_{-3578}^{3067}$ \& -8900 \& ${ }_{1}^{1.297}$ \& ${ }_{2}^{1 \cdot 2937}$ \& ${ }_{\text {2 }}^{2} \mathrm{~F} \cdot 721$ \& \& ${ }_{5}^{4.9728}$ \& 7.688 \& ${ }_{\text {12:88 }}^{11.05}$ \& ${ }_{\text {17\% }}^{15}$ \& \& \& ${ }_{3}^{30} 3.67$ \& ${ }_{\text {4 }}^{41.17}$ \& ${ }_{70}^{60 \cdot 11}$ \& ${ }_{80}^{69 \cdot 50}$ \& ${ }_{91}^{78.54}$ \& \& ${ }_{112}^{122 \cdot 7}$ \& ${ }_{1}^{135.7}$ \& ${ }_{206}^{176} \cdot 7$

\hline -0003720 \& :25 \& ${ }_{-4090}$ \& $\xrightarrow{\text { 9204 }}$ \& 1. 1 1.836 \& ${ }_{\text {2 }}^{2}$ \& \& $\underset{5}{5.008}$ \& - ${ }_{\text {c }}^{6.546}$ \& cosiole \& \& 20.03 \& ${ }_{\text {cke }}^{26} 5$ \& cis \& ${ }_{40}^{30} 40.91$ \& ${ }_{\text {cke }}^{58.90}$ \& \& 992.04 \& $\xrightarrow{104.7}$ \& \& \& ${ }_{\text {180.3 }}^{1300}$ \& ${ }_{235 \cdot 6}^{20.6}$

\hline -00052866 \& ${ }_{22}^{25}$ \& ${ }^{-14601}$ \& ${ }_{1}^{1.15035}$ \& (\& ${ }_{\text {2 }}^{2 \cdot 876}$ \& ${ }_{\text {4. }}^{4.62}$ \& ¢ ${ }_{6}^{5 \cdot 660}$ \& 8.180 \& ${ }_{12} 178$ \& ${ }_{18}^{16} 4$ \& ${ }_{25}^{22.54}$ \& ${ }_{3}^{29} 3 \cdot 74$ \& ${ }_{41}^{37} 4$ \& ${ }_{51}^{46} \cdot 13$ \& -66:26 \& ${ }_{100 \cdot 2}^{90}$ \& ${ }_{115}^{103}$ \& 1130-9 \& ${ }_{165}^{149}$ \& ${ }_{204}^{184}$ \& ${ }_{225}^{202 \cdot 8}$ \& ${ }_{294}^{265 \cdot 1}$

\hline -0006740 \& ${ }^{275}$ \& ${ }^{\text {- } 6624}$ \& - 1.265 \& ${ }_{\text {2 }}^{2.250}$ \& \& - $5 \cdot 062$ \& ${ }_{7}^{6} 7.886$ \& - $\begin{gathered}\text { 9.000 } \\ 9.819\end{gathered}$ \& ${ }_{\text {14, }}^{15} 106$ \& ${ }_{20}^{20.25}$ \& ${ }_{\text {27 }}^{27.54}$ \& coisk \& ${ }^{45} 4.56$ \& ${ }_{6}^{56} 6.25$ \& 808088 \& ${ }_{\text {l10.2 }}^{110 \cdot 2}$ \& $126 \cdot 5$
138.1
10 \& ${ }_{\text {144.0 }}^{15}$ \& ${ }_{\text {l }}^{188} 1$ \& ${ }_{295}^{225 \cdot 0}$ \& ${ }_{277}^{24.9}$ \& 323.9
35.9

\hline -0008087 \& $\stackrel{\text { - }}{\text { :25 }}$ \& -66135 \& (1.4961 \& ${ }^{2}$ \& \& $\stackrel{\text { coser }}{ }$ \& \% ${ }_{\text {7.512 }}$ \& cors 10.64 \& \& ${ }^{22} \times 2 \cdot 93$ \& $\xrightarrow{30} 3$ \& \& \& \& - \& ${ }_{180}^{120 \cdot 2}$ \& ${ }_{149}^{138 \cdot}$ \& ${ }_{\text {coser }}^{137} 1$ \& ${ }_{215}^{198}$ \& ${ }^{2455 \cdot 9}$ \& ${ }_{293}^{270 \cdot 4}$ \&

\hline -00091954 \& $\stackrel{\text { - }}{\text { : }} 3$ \& . 77659 \& ${ }_{\text {l }}^{1.611} 1$ \& $\xrightarrow{2}$| 2.864 |
| :--- |
| 3.068 | \& ${ }_{\substack{4.474 \\ 4.794}}^{\text {ded }}$ \& - ${ }_{\text {c }}^{6 \cdot 943}$ \& \& $\xrightarrow{11-46}$ \& ${ }_{19}^{17.17}$ \& ${ }_{27}^{25.77}$ \& 35.06

37.56 \& ${ }_{49}^{45} 4.81$ \& ${ }_{6}^{57}{ }_{6}^{57} 198$ \& ${ }_{76}^{71 \cdot 59}$ \& 1103
110.4
1 \& - \& 161.1

$172 \cdot 6$ \& | 183 |
| :--- |
| $196 \cdot 4$ | \& ${ }_{248}^{231 \cdot 8}$ \& ${ }_{306}^{236} \mathbf{8}$ \& ${ }_{3}^{315.5}$ \& ${ }^{412} \cdot 7$

\hline -0011480 \& 4 \& -8180 \& $1 \cdot 841$ \& 3.273 \& 5.113 \& $7 \cdot 363$ \& 10.02 \& ${ }^{13.09}$ \& 20.45 \& $29 \cdot 45$ \& 40.06 \& 52.36 \& $66 \cdot 27$ \& 81.81 \& 117.8 \& ${ }^{160 \cdot 2}$ \& 184.1 \& $209 \cdot 4$ \& 264.9 \& 327.2 \& ${ }^{360 \cdot 6}$ \& ${ }_{471 \cdot 2}$

\hline \& 425 \& 8691 \& 1-955 \& \& 5.433 \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& ${ }_{500.6}^{471 \cdot 2}$

\hline 002 \& ${ }^{4} 45$ \& 9202 \& 2.071 \& \& ${ }_{5} 5.757$ \& 8.284 \& ${ }_{11}^{11.27}$ \& ${ }_{14}^{14.73}$ \& ${ }^{23} \times 20$ \& \& 45.07 \& ${ }_{558}^{550}$ \& 74:55 \& ${ }_{92} .031$ \& 132.5 \& ${ }^{180 \cdot 3}$ \& ${ }^{207} \cdot 1$ \& ${ }^{235} \cdot 6$ \& ${ }^{298} \cdot 0$ \& ${ }_{368 \text {-2 }}$ \& ${ }_{405}^{205}$ \& ${ }_{530} 51$

\hline -001545 \& ${ }_{\text {: }}^{5}$ \& ${ }^{-9713}$ \& - ${ }_{2}^{2 \cdot 361}$ \& (3.886 \& ${ }_{6}^{6 \cdot 9977}$ \& - \& ${ }_{12}^{11} 8$ \& ${ }_{16.37}^{15.55}$ \& ${ }_{2}^{24} 5 \cdot 57$ \& ¢ ${ }_{34}^{34} 8.97$ \& 47.58
50 \& 62.17
$65 \cdot 45$ \& \& \& ${ }_{177}^{139}$ \& ${ }_{200}^{190 \cdot 3}$ \& ${ }_{230}^{218 \cdot 6}$ \& ${ }_{261.8}^{248}$ \& ${ }_{311.1}^{314}$ \& ${ }_{\text {coser }}^{388} \times$ \& ${ }_{4}^{428 \cdot 7}$ \& 5599.5

\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& 162.0 \& $220 \cdot 3$ \& 253.0 \& \& \& \& \&

\hline -00233 \& -65 \& 1.227 \& ${ }_{2}^{2.761}$ \& ${ }^{4.909}$ \& 7.760 \& ${ }_{11}^{11.04}$ \& - 15.02 \& 19.64 \& 30.68 \& ${ }_{4}^{44} 4.18$ \& cor 60 \& ${ }^{78.54}$ \& ${ }^{99} 9.40$ \& 122.7 \& 1776
178
189 \& 240.4 \& ${ }_{29}^{276 \cdot 1}$ \& ${ }^{3144}$ 2 2 \& 397.4 \& ${ }^{490 \cdot 9}$ \& 540:8 \& 706.8

\hline $\stackrel{0}{003693}$ \& ${ }^{6} 7$ \& ${ }_{1}^{1.431}$ \& ${ }^{2}$ \& ${ }_{5}^{5} 5$ \& - \& 12.98 \& ${ }^{16.58}$ \& ${ }^{22} 2.91$ \& ${ }^{335}$ \& ${ }_{51}^{4754}$ \& ${ }^{60.11}$ \& \& 107.0 \& 134.2 \& ${ }_{206}^{19}$ \& ${ }_{280}^{20.5}$ \& ${ }_{322}^{295}$ \& ${ }^{3665}$ \& ${ }_{\text {cke }}^{463} 6$ \& ${ }_{5}^{5372}$ \& ${ }^{5351} \mathrm{l}$ \&

\hline .003490 \& 75 \& 1.533 \& 3.450 \& 6.136 \& 9.588 \& 13.81 \& 18.78 \& $24 \cdot 54$ \& $38 \cdot 34$ \& 55.23 \& $75 \cdot 12$ \& $98 \cdot 16$ \& 124*3 \& $153 \cdot 4$ \& $220 \cdot 9$ \& $300 \cdot 5$ \& $345 \cdot 0$ \& $392 \cdot 7$ \& 496.8 \& ${ }^{613 \cdot 6}$ \& ${ }^{676} 0$ \& $883 \cdot 5$

\hline -003936 \& :85 \& - 1 1.636 \& \& ${ }_{6}^{6.544}$ \& $10 \cdot 23$

10.86 \& -14.73 \& ${ }_{2}^{20 \cdot 03}$| $2 \cdot 29$ |
| :--- | \& ${ }_{27}^{26 \cdot 18}$ \& ${ }^{40} 43 \cdot 90$ \& ${ }_{66}^{58} 8.90$ \& 80.13

85.14 \& ${ }_{104}^{104} 1$ \& ${ }_{10}^{132} \cdot 5$ \& ${ }_{173}^{163}$ \& ${ }_{250}^{235}$ \& ${ }_{3}^{320 \cdot 5}$ \& :2 \& ${ }_{445 \cdot 1}^{418}$ \& 529.8
563 \& ${ }_{6}^{654} 5$ \& ${ }_{7666}^{721}$ \& ${ }_{1091}^{942}$

\hline -004s888 \& -80 \& 1.841 \& ${ }_{4} 1142$ \& ${ }_{\text {7 }}^{\text {7.363 }}$ \& 11.51 \& ${ }^{16} 5$ \& ${ }_{22}^{22.53}$ \& ${ }_{29}^{29.46}$ \& \& ${ }_{66}^{627}$ \& ${ }_{90}{ }^{80.14}$ \& 1178 \& ${ }_{149}^{149} 1$ \& 1884.2
184 \& ${ }^{265 \%}$ \& ${ }_{360.6}^{30.6}$ \& ${ }_{414.2}^{396}$ \& ${ }^{471} 5$ \& ${ }_{5}^{503} 1$ \& ${ }_{7}{ }_{7} 6.4$ \& ${ }_{811.3}^{761.2}$ \& 1001

\hline $\stackrel{.005928}{-0.0648}$ \& ${ }_{1}^{1.05}$ \& 2.045 \& ${ }_{\text {4. }}^{4.682}$ \& ${ }_{8}^{8 \cdot 1591}$ \& 12-72 \& ${ }_{19}^{18 \cdot 31}$ \& ${ }_{26}^{25.29}$ \& ${ }_{34}^{32} \cdot 737$ \& | 51.13 |
| :--- |
| 53 |
| 69 | \& $\underset{7731}{73}$ \& ${ }_{105}^{100 \cdot 2}$ \& ${ }_{137}^{13 \cdot 9}$ \& ${ }_{174}^{165}$ \& ${ }_{214}^{204} 7$ \& ${ }_{309}^{294}$ \& ${ }_{420}^{40 \cdot 6}$ \& ${ }^{460.0} 4$ \& \& ${ }_{\text {cher }}^{662 \cdot 3}$ \& ${ }_{\text {818.1 }}^{818}$ \& ${ }_{946 \text { - }}^{901}$ \& ${ }_{1237}^{1178}$

\hline \& \& $2 \cdot 2$ \& 5. \& $9 \cdot 000$ \& 14 \& 20 \& ${ }_{27}^{27.54}$ \& 36-00 \& 56.24 \& 80.99 \& 110 \& 4.0 \& ${ }_{182}^{182}$ \& ${ }^{224 \cdot 9}$ \& 324.0 \& $40 \cdot 6$

80 \& 506.0 \& 576.0 \& $728 \cdot 5$ \& ${ }^{900} 0$ \& ${ }^{991}$. \& ${ }_{1}^{1296}$

\hline $\stackrel{.007691}{\text {-003388 }}$ \& ${ }_{1.2}^{1.15}$ \& - \& ${ }^{5 \cdot 522}$ \& ${ }_{9}^{9 \cdot 8189}$ \& ${ }_{\text {14.70 }}^{15}$ \& ${ }_{22 \cdot}^{22 \cdot 15}$ \& cose \& \& \& \& ${ }_{120 \cdot 2}^{115 \cdot 2}$ \& ${ }_{1}^{150 \cdot 5}$ \& $1990 \cdot 5$
198 \& ${ }^{2355 \cdot 2}$ \& ${ }_{353 \cdot 4}^{338}$ \& ${ }_{\substack{460 \cdot 7 \\ 480.7}}^{4}$ \& ${ }_{5}^{529.2}$ \& ${ }_{628 \cdot 3}^{602}$ \& ${ }_{794.8}^{761.6}$ \& ${ }_{981}^{940} 9$ \& ${ }_{1082}^{1037}$ \& ${ }_{1114}^{1355}$

\hline -009 \& ${ }_{1}^{1.25}$ \& ${ }_{2}^{2.566}$ \& ${ }_{5}^{5 \cdot 773}$ \& \& 15.98 \& ${ }^{23.01}$ \& cole | 31.30 |
| :--- |
| 3.55 | \& +40.91 \& \& ${ }_{9}^{92} \cdot 704$ \& ${ }^{125} 5$ \& | 163.6 |
| :--- |
| 180.2 | \& ${ }_{207.1}^{207}$ \& ${ }^{2555}$ \& - 368.1 \& \& ${ }_{5}^{575 \cdot 2}$ \& ${ }_{\text {coser }}^{654} 4$ \& ${ }^{827.9}$ \& ${ }_{1023}$ \& 1127 \& 1472

\hline -009694 \& 1:3 \& $2 \cdot 658$ \& $5 \cdot 983$ \& 10.64 \& 16.62 \& $23 \cdot 93$ \& ${ }^{32} 55$ \& $42 \cdot 55$ \& 66.47 \& ${ }^{95} 72$ \& $130 \cdot 2$ \& 170.2 \& $215 \cdot 4$ \& $265 \cdot 9$ \& $382 \cdot 8$ \& $420 \cdot 8$ \& 598.2 \& 680.7 \& 861.0 \& 1064 \& 1172 \& 1531

\hline $\stackrel{001040}{-0115}$ \& ${ }_{1}^{1.45}$ \& ${ }_{\text {2 }}^{2 \cdot 761}$ \& ${ }_{6}^{6 \cdot 213}$ \& ${ }_{11}^{11 \cdot 04}$ \& ${ }_{17}^{17 \cdot 96}$ \& ${ }_{25}^{24 \cdot 85}$ \& ${ }_{\text {33 }}^{35} 8.80$ \& \& ${ }_{71}^{69.02}$ \& ${ }_{\text {cose }}^{99} 10.10$ \& ${ }_{105}^{135}$ \& ${ }_{183}^{176}$ \& ${ }_{231}^{223} \cdot 6$ \& ${ }_{286}^{276} \cdot 1$ \& ${ }_{412}^{397}{ }^{\text {a }}$ \& 540.8
560.9
5 \& ${ }_{64+3}^{621} 3$ \& ${ }_{733.0}^{706}$ \& ${ }_{927}^{894} \cdot 1$ \& ${ }_{1114}^{1104}$ \& ${ }_{1262}^{1217}$ \& 1590
1649

\hline ${ }_{\text {coind }}^{01192}$ \& ${ }_{1}^{1.5}$ \& \[
\left\lvert\, $$
\begin{aligned}
& \frac{2}{2.965} \\
& 3.067
\end{aligned}
$$\right.

\] \& $\stackrel{c}{6 \cdot 673} \begin{gathered}6.900 \\ 0\end{gathered}$ \& $\substack{11 \cdot 89 \\ 12.87 \\ 1.27}$ \& | 18.53 |
| :--- |
| 19.18 | \& ${ }_{27}^{26 \cdot 69}$ \& $\underset{\substack{36 \cdot 31 \\ 37 \\ \hline 56}}{ }$ \& 47.46

49 \& 74.14
$76 \cdot 68$ \& ${ }_{1}^{106.8}$ \& ${ }_{150}^{145}$ \& 189.8
1969 \& ${ }_{248 \cdot 5}^{240 \cdot 2}$ \& ${ }_{\text {306:8 }}^{296}$ \& ${ }_{441}^{427.0}$ \& $380 \cdot 9$
6010 \& ${ }^{667 \cdot 3}{ }_{69}{ }^{6}$ \& ${ }_{785}^{759}$ \& ${ }_{9}^{960 \cdot 3}$ \& ${ }_{11286}^{1186}$ \& - \& 1708
1767

\hline \&

\hline
\end{tabular}

Table 30．－Of the Veloctitis of Discharge in Open Canals，Rivers，\＆oo，with Diffrkent Heads．

	1	2	3	4		6	7	8	9	10	｜ 11	12	15	18	2	3	4	5	6.	7	8	9	10	12	15	20	25	${ }^{3}$	40	5	
	－00058	A	－00．7	－0027	．00284	－00341	－0038	00454	4－00511	－11－06588	5088－00625	．00682	$2 \cdot$－08s 2	52－01023	－01364	－ 20245		7 7 ［03409	${ }^{2} 9$	－0473	－05454	．0613	．0888	08182	1023	1364	${ }^{1704}$	2045	${ }_{2727}$	349	Reide
	${ }^{7}$	${ }_{14.1}^{14}$	17.3		22	${ }^{2}$	${ }_{\text {c }}^{18} 8$	${ }_{28 \cdot 9}^{19}$	${ }_{29}^{29.9}$	${ }^{31}$																					
$\stackrel{-2}{4}$		city	cin	coty	${ }_{31}$	cistiot	${ }^{37}$／	${ }_{39} 9$	42：3	${ }^{3}$	$6{ }^{66}$	48：8	${ }^{54} 4$	［59：8	8				120			${ }_{\substack{127 \\ 124}}^{\substack{103}}$		$\begin{aligned} & 120 \\ & \substack{196 \\ 169} \\ & \hline 10 \end{aligned}$		$\underset{\substack{1189 \\ 218}}{\text { 218 }}$	$\underset{241}{\substack{173 \\ 24 \\ 24 \\ \hline}}$	$\underset{\substack{189 \\ 285 \\ 285}}{\substack{18 \\ \hline}}$		cos	：
	cis		${ }_{27}^{24.4}$		${ }_{35} 5$		${ }_{4}^{41.7} 4$			（1）				（1）			${ }_{66}^{6} 1107$	122	120				$\substack{\begin{subarray}{c}{124 \\ 178 \\ 189} }} \\{1} \end{subarray}$								${ }^{\text {－}}$
$\begin{aligned} & : 6 \\ & : 8 \\ & 8 \end{aligned}$	civis	$\begin{aligned} & 24: 4 \\ & \substack{28: 4 \\ 28.2} \end{aligned}$	${ }_{32}^{29.9}$			42．3． 45 45 5	cisy					cis．			（1）		（10 ${ }^{6}$	$\begin{aligned} & 1848 \\ & \left.\begin{array}{l} 1845 \\ \hline 185 \end{array}\right) \end{aligned}$	$\begin{gathered} 178 \\ \hline 189 \\ \hline 189 \\ \hline 199 \end{gathered}$	$\begin{gathered} 188 \\ 1878 \\ 1880 \\ 180 \end{gathered}$					$\begin{aligned} & 230 \\ & 2020 \\ & 206 \end{aligned}$	$\begin{gathered} 268 \\ \substack{209} \\ 3090 \end{gathered}$			$\begin{gathered} 378 \\ \substack{378 \\ \hline 364 \\ \hline 6.6} \end{gathered}$		
1．9	${ }_{22}^{22 \cdot 1}$	${ }^{20} 519$	${ }_{\substack{38 \\ 38 \\ 88}}$	${ }_{4}^{42} 4$	${ }^{47}$	cisk		－99.8 630	${ }_{5}^{8}$		${ }^{9} 9$	${ }_{77}^{73}$	（81.9 $86 \cdot 4$ 8.4	－9 ${ }^{\text {P }}$	（ex		${ }^{146}$	${ }_{\text {lif }}^{178}$	179	194	207	220		${ }^{255}$	${ }_{\text {cose }}^{288}$		${ }_{\substack{366 \\ 386}}$	${ }_{\substack{401 \\ 403}}$	${ }_{\text {cki }}^{488}$	${ }_{\substack{518 \\ 564}}$	－9
1	${ }_{\text {a }}^{23}$			46：8	－ 5	57．${ }_{5}^{5}$		${ }_{\text {c }}^{69.1}$	${ }_{1}^{1} 8$	${ }_{5}^{1}$		¢1．0	（ 90.6	${ }_{5}^{6}$［99．2	${ }^{2} 818$	140：3	${ }^{3} 118$	cisi	$\xrightarrow{198}$		${ }_{\substack{299 \\ 299}}$	${ }_{\substack{245 \\ 24}}^{24}$		${ }_{\text {cose }}^{280}$	${ }_{\substack{314 \\ 328}}^{\substack{\text { a }}}$		${ }_{405}^{423}$	${ }^{44}$	${ }_{\substack{512 \\ 535}}$		${ }_{1}^{1.1}$
（1．2			4.	cois	cisis	${ }^{6}$		${ }_{77 \text { 7．}}^{7 \times 1}$	${ }_{8} 78.1$	3			90：4．	${ }_{1}^{4} 1071$	${ }_{9}^{8}$		${ }^{3} 1188$		216									cois			＋1．3
1.5	${ }^{27}$	${ }^{38 \cdot 6}$												21996			195	218				${ }^{293}$									re
$\begin{aligned} & 1.6 \\ & 1: 8 \\ & 1: 8 \end{aligned}$		${ }_{\substack{39.9 \\ 42.3}}^{\substack{\text { a }}}$		cois	cos $\begin{gathered}65.7 \\ 6 \% 9\end{gathered}$	${ }_{71}{ }^{69} 12$	${ }_{76} 7$		（\％）				（1125 ${ }^{1125}$			，	${ }_{4}{ }_{4}^{401}$					${ }_{\text {coin }}^{\substack{393 \\ 302}}$			$\begin{array}{\|l\|l\|} \hline 378 \\ \hline 3010 \\ \hline 001 \end{array}$				$\begin{aligned} & 618 \\ & \hline 689 \\ & 6.505 \end{aligned}$	${ }^{772}$	re
$\begin{aligned} & 1.8 \\ & 2: 9 \\ & 2: 9 \end{aligned}$	cosk		coly	$\underset{\substack{61.5 \\ 630}}{\substack{1}}$	\％${ }_{\text {c }}^{68}$	${ }_{7}^{757.2}$	$\xrightarrow{81}{ }_{8}^{8}$	${ }_{89}^{86.9}$	${ }^{\text {a }}$ 92921．6	－${ }_{6}^{\text {2 }}$	${ }_{7}^{2} 1010$	（106：4	（ 1129	${ }_{1}^{1} 1180$	${ }_{7}^{4}{ }_{7}^{450 \cdot 5}$		${ }_{1}{ }^{218}$	${ }_{24}^{238}$	$\underset{\substack{267 \\ 268}}{2}$	${ }_{288}^{288}$	${ }_{\substack{301 \\ 309}}$	${ }_{\substack{319 \\ 328}}^{\substack{\text { a }}}$		${ }_{3}^{339}$	${ }_{4123}^{423}$		532	${ }^{83}$	${ }_{690}^{672}$	${ }_{772}^{737}$	${ }_{\text {l }}^{1.9}$
2．2．	${ }_{3}^{34}+5$		57．85	${ }^{66 \cdot 1}$		stion		${ }^{93} 97.7$	5	$\stackrel{-2}{1076}$	\％${ }_{2}^{6}$	114：5	（ 1238	${ }^{0} 180$	${ }^{3}$	${ }_{\text {l }}^{\text {ar }}$	${ }^{4}{ }^{229}$	${ }_{\text {2 }}^{256}$	${ }_{\text {203 }}^{298}$		$\underbrace{\substack{\text { and }}}_{\substack{324 \\ 385}}$	$\underbrace{\substack{57}}_{\substack{34 \\ 357}}$			${ }_{463}^{448}$		${ }_{\text {cos }}^{573}$	${ }_{\substack{688 \\ 655}}^{\substack{58}}$	${ }_{\substack{724 \\ 756}}^{75}$	sit	${ }_{2}^{2 \cdot 2}$
	cis			， 717.9	80	88.1	cosp	，	（	：	为 ${ }^{6}$	coile			（tay		${ }_{7}^{6}{ }^{\text {cha }}$	${ }_{299}^{299}$	$\underbrace{\substack{\text { and }}}_{\substack{317 \\ 328 \\ 328}}$	$\underbrace{\substack{329 \\ 354}}_{\text {ciel }}$	${ }_{\substack{365 \\ 378}}$	$\underbrace{\substack{\text { al }}}_{\substack{34 \\ \text { and } \\ \text { ald }}}$	（							cis	（e．
	－ 3.6	cose	6.9	79．8	${ }_{\text {cose }}^{89}$	977．7	109\％	111－8	8	${ }_{6}^{6}$	． $132 \cdot$		cist		${ }_{4}^{2}{ }_{4}^{195}$	${ }_{2939}^{295}$	${ }^{3} \mathbf{3} \times 276$		$\underset{\substack{338 \\ 349}}{\substack{\text { a }}}$	${ }_{\substack{365 \\ 377}}$	（393	${ }_{\substack{414 \\ 427}}^{\text {42，}}$	55	${ }_{4}^{478}$	${ }_{\substack{385 \\ 551}}^{5}$		${ }_{712}^{691}$	${ }_{780}^{736}$	$\substack{874 \\ 900}_{\substack{\text { a }}}$	${ }_{\substack{9707 \\ 1907}}$	3－2
仿：		${ }^{\text {ci }}$ ci	75.3	Sti．6	${ }_{97} 9$	${ }^{103 \cdot 6}$	1115	${ }^{1192: 6} 1$	${ }^{6} 11969$	－9 ${ }^{1383} 18.8$	${ }_{4}^{8}$	${ }^{160 \cdot 5}$	166：3	${ }_{8}^{8} 178$	5 ${ }_{4}^{20727}$	${ }^{203}$	${ }_{7}^{8}{ }^{293}$	${ }_{338}^{338}$	9	$\underbrace{\substack{\text { che }}}_{\substack{388 \\ 385}}$	${ }_{\text {ctid }}^{414}$	${ }_{\substack{440 \\ 452}}^{4}$		${ }_{\substack{508 \\ 502}}^{50}$				${ }_{\substack{\text { gi3 } \\ 824}}^{1}$		${ }_{1063}^{1065}$	${ }_{8}^{6}$
${ }_{4} 9$	${ }_{4} 4.6$	${ }_{65} 6$	77.2	88.2		109.1	1177	${ }^{126} 1$	1138	7114.0	－ $147 \mathrm{~T} \cdot \mathrm{y}$	154．5	${ }^{172 \cdot 7}$	${ }^{1} 118.1$	$1{ }^{218 \cdot 2}$	${ }^{26575}$	30	$3{ }^{35}$	${ }^{338}$											1091	${ }^{4} 0$
	ciel		cis $\begin{gathered}8.0 \\ 88.6 \\ 88.1\end{gathered}$			${ }_{\text {112 }}^{11}$	${ }_{\text {l }}^{123}$ 13t	${ }_{\text {cose }}^{\substack{182 \\ 183 \\ 18.8}}$	Still	－5		116	边 11859	${ }_{8}^{1} \frac{1}{295}$	${ }_{7}^{4}$		${ }_{2}^{5}$	${ }_{3}^{378}$	${ }_{414}^{39}$			${ }_{\substack{\text { ciso } \\ 508}}^{\text {a }}$								${ }^{11196}$	（1）
5：6		${ }_{7}^{77 \%}$		${ }^{1020} 5$	118：0		${ }^{139}$	${ }^{1959} 1$		：3 ${ }_{8}^{3} 1$	${ }_{7}^{8} 18181$	${ }_{1}^{1889} 18$	${ }^{2011}$	${ }_{5}{ }^{233}$	${ }_{7}^{8}{ }_{7}^{235 \cdot 6}$		${ }_{6}{ }^{365}$	${ }_{\text {429 }}^{109}$	${ }_{4} 6$		${ }_{\substack{517 \\ 585}}^{50}$	${ }_{\substack{567 \\ 567}}^{58}$		${ }^{635}$	${ }_{738}^{778}$			${ }_{\text {loser }}^{1001}$	${ }^{1156}$	${ }_{\substack{1392 \\ 1398}}^{\text {19，}}$	\％${ }_{\text {\％}}^{6}$
\％ 7 \％ 0	${ }_{\text {cis }}^{59} \mathbf{6}$	83：			（131．9	，if：	$\xrightarrow{156: 0}$	（16：8		－ 9	\％ 5		（ 2 2e8：－2	St		（ex		（ty	cis		$\underbrace{\text { cis }}_{\substack{577 \\ 6 \\ 685}}$	$\underbrace{65}_{\substack{611 \\ 655}}$			$\underbrace{\substack{\text { a }}}_{\substack{791 \\ 896 \\ 896}}$		（1019	${ }_{\text {che }}^{1119} 1$			（i．0
9．0．	66.9	${ }_{94}^{99}$		， 131.0	${ }^{155} 7$	${ }^{120} 5$	186.5	199．4	221.	229．9		${ }^{244}$	273．	2030		42， 2	${ }_{488}$	5		6s	${ }_{691}$	${ }_{7}$	${ }_{72}$	${ }_{846}$	${ }_{946}$		${ }^{\text {120］}}$		1504		10.0

Fig. 1.

Fig. 4.

E\&FN Spon 48 Charms Cross, London

Fis. 9.

Fis. 10 .

1.1 g. 11 .

SECTION.

E \& F.N.Spon, 48, Chaming Gross, Londor.

Fig. 16.

Fig. 17.

Fig. 18.

Fig. 19.

E\&F N Spon 48, Charing Gross. London.
F. \& F.N.Spon, 48, Charireg Cross. London.

E. 8 I N Spon 48, Charmg Gross Loudon.

F\&F N Sipon Af Cheathe frosestoniluth

Fis. 37.

Fig. 38.

Fig.39.

Fis. 4.1.

Fig. 42.

E. \&F N Spon 46 Chaming Gooss Londor.

BOOKS RELATING

TO

APPLIED SCIENCE,

PU'BLISHED BY

E. \& F. N. SPON,

LONDON: 46, CHARING CROSS.

NEW YORK: 446, BROOME STREET.

Algebra Self-Taught. By W. P. Higgs, M.A., D.Sc., LL.D., Assoc. Inst. C.E., Author of 'A Handbook of the Differential Calculus,' etc. Crown 8vo, cloth, $2 s .6 d$.

Contents :

Symbols and the Signs of Operation-The Equation and the Unknown QuantityPositive and Negative Quantities-Multiplication-Involution-Exponents-Negative Expo-nents-Roots, and the Use of Exponents as Logarithms-Logarithms-Tables of Logarithms and Proportionate Parts - Transformation of System of Logarithms - Common Uses of Common Logarithms-Compound Multiplication and the Binominal Theorem-Division, Fractions and Ratio-Continued Proportion-The Series and the Summation of the SeriesLimit of Series-Square and Cube Roots-Equations-List of Formulæ, etc.

Progressive Lessons in Applied Science. By Ediwárd Sang, F.R.S.E. Crown 8vo, cloth, each Part, 3 s.
Part i. Geometry on Paper-Part 2. Solidity, Weight, and Pressure-Part 3. Trigonometry, Vision, and Surveying Instruments.

On Designing Belt Gearing. By E. J. Cowling Welch, Mem. Inst. Mech. Engineers, Author of 'Designing Valve

 Gearing.' Fcap. 8vo, sewed, $6 d$.
Arbitrations: a Text-book for Surveyors in Tabu-

 lated Form. By Banister Fletcher, F.R.I.B.A., Author of 'Model Houses,' etc. Crown 8vo, cloth, 5 s.
Contents :

What matters may be submitted to Arbitration-Of the Submission-Of RevocationWho may Arbitrate-Powers of the Arbitrators-Of Joint Arbitrators and Umpires-Of Evidence-Of the Award-Of Costs and Charges-Advice to Plaintiffs and DefendantsAppendix of Forms.

A Handbook of Formule, Tables, and Memioranda, for Architectural Surveyors and others engaged in Building. By J. T. HURST, C.E. Twelfth edition. Royal 32 mo , roan, 5 .

Containing :

Formulæ and Tables for the Strength of Materials, Roofs, Water Supply, Drainage, Gas, and other matters useful to Architects and Builders-Information connected with Sanitary Engineering-Memoranda on the several Trades used in Building, including a Description of Materials and Analyses for Prices of Builders' Work-The Practice of Builders' Measure-ment-Mensuration and the Division of Land-Tables of the Weights of Iron and other Building Materials-Constants of Labour-Valuation of Property-Summary of the Practice in Dilapidations-Scale of Professional Charges for Architects and Surveyors-Tables of English and French Weights and Measures.
"It is no disparagement to the many excellent publications we refer to, to say that in our opinion this little pocket-book of Hurst's is the very best of them all, without any exception. It would be useless to attempt a recapitulation of the contents, for it appears to contain almost everything that anyone connected with building could require, and, best of all, made up in a compact form for carrying in the pocket, measuring only 5 in. by 3 in., and about ${ }_{3}$ in. thick, in a limp cover. We congratulate the author on the success of his laborious and practically compiled little book, which has received unqualified and deserved praise from every professional person to whom we have shown it." -The Dublin Builder.

A Treatise on the Use of Belting for the Trans-

 mission of Power; with numerous Illustrations of approved and actual methods of arranging Main Driving and Quarter-Twist Belts, and of Belt Fastenings. Examples and Rules in great number for Exhibiting and Calculating the Size and Driving Power of Belts. Plain, Particular, and Practical Directions for the Treatment, Care, and Management of Belts. Descriptions of many varieties of Beltings, together with chapters on the Transmission of Power by Ropes; by Iron and Wood Frictional Gearing; on the Strength of Belting Leather ; and on the Experimental Investigations of Morin, Briggs, and others for determining the Friction of Belts under different Tensions, which are presented clearly and fully, with the Text and Tables unabridged. By John H. Cooper, M.E. I vol., demy 8 vo , cloth, 15 s.
Narrow Gauge Railways. By C. E. Spooner, C.E., F.G.S. With plates. Second edition, 8vo, cloth, I 5 s.

Researches on the Action of the Blast Furnace. By Charres Schinz. Translated from the German by W. H. Maw and Moritz Miiller. Plates, crown 8vo, cloth, 8s. $6 d$.

Spons' Builders' Pocket-Book of Prices and Memoranda. Edited by W. Young, Architect. Royal 32mo, roan, 4 s .6 d .; or cloth, red edges, $3^{\text {s. } 6 \pi}$. Published annually. Seventh edition in the press.

Long-Span Railway Bridges, comprising Investigations of the Comparative Theoretical and Practical Advantages of the various adopted or proposed Type Systems of Construction, with numerous Formulæ and Tables giving the weight of Iron or Steel required in Bridges from 300 feet to the limiting Spans; to which are added similar Investigations and Tables relating to Short-span Railway Bridges. Second and revised edition. By B. Baker, Assoc. Inst. C.E. Plates, crown 8vo, cloth, 5 s.

The Builder's Clerk: a Guide to the Management of a Builder's Business. By Thomas Bales. Fcap. 8vo, cloth, is. $6 d$.

The Cabinet Maker: being a Collection of the most approved Designs in the Mediæval, Louis-Seize, and Old-English styles, for the use of Cabinet Makers, Carvers, etc. By R. Charles. 96 plates, folio, half-bound, 2 Is.

The Elementary Principles of Carpentry. By Thomas Tredgold. Revised from the original edition, and partly re-written, by John Thomas Hurst. Contained in 517 pages of letterpress, and illustrated with 48 plates and 150 wood engravings. Second edition, crown 8 vo , cloth, 18 s .

Section I. On the Equality and Distribution of Forces-Section II. Resistance of Timber - Section III. Construction of Floors - Section IV. Construction of Roofs-Section V. Construction of Domes and Cupolas - Section VI. Construction of PartitionsSection VII. Scaffolds, Staging, and Gantries-Section VIII. Construction of Centres for Bridges-Section IX. Coffer-dams, Shoring, and Strutting-Section X. Wooden Bridges and Viaducts-Section XI. Joints, Straps, and other Fastenings-Section XII. Timber.

Engineering Notes. By Frank Robertson, Fellow

 Roy. Astron. Soc., late first Lieut. R.E., and Civil Engineer Public Works Department in India. 8vo, cloth, I2s. $6 d$.[^1]
A Practical Treatise on Casting and Founding,

 including descriptions of the modern machinery employed in the art. By N. E. Spretson, Engineer. With 82 plates drawn to scale, $4 \mathbf{I} 2 \mathrm{pp}$. Demy 8vo, cloth, $18 s$.
A Pocket-Book for Chemists, Chemical Manufacturers,

 Metallurgists, Dyers, Distillers, Brewers, Sugar Refiners, Photographers, Students, etc., etc. By Thomas Bayley, Assoc. R.C. Sc. Ireland; Analytical and Consulting Chemist, Demonstrator of Practical Chemistry, Analysis, and Assaying, in the Mining School, Bristol. Royal 32mo, roan, gilt edges, $5 s$.
Synopsis of Contents :

Atomic Weights and Factors-Useful Data-Chemical Calculations-Rules for Indirect Analysis - Weights and Measures - Thermometers and Barometers - Chemical Physics Boiling Points, etc.-Solubility of Substances-Methods of Obtaining Specific Gravity-Conversion of Hydrometers-Strength of Solutions by Specific Gravity-Analysis-Gas AnalysisWater Analysis-Qualitative Analysis and Reactions-Volumetric Analysis-ManipulationMineralogy - Assaying - Alcohol - Beer - Sugar - Miscellaneous Technological matter relating to Potash, Soda, Sulphuric Acid, Chlorine, Tar Products, Petroleum, Milk, Tallow, Photography, Prices, Wages, etc., etc.

A Practical Treatise on Coal Mining. By George

 G. André, F.G.S., Assoc. Inst. C.E., Member of the Society of Engineers. With 82 lithographic plates. 2 vols., royal 4to, cloth, 3 l. I2s.Contents:
I. Practical Geology-II. Coal, its Mode of Occurrence, Composition, and Varieties-III. Searching for Coal-IV. Shaft-sinking-V. Driving of Levels, or Narrow Work-VI. Systems of Working-VII. Getting the Coal-VIII. Haulage-IX. Winding-X. Drainage-XI. Ventilation-XII. Incidental Operations-XIII. Surface Work-XIV. Management and Accounts-XV. Characteristics of the Coal Fields of Great Britain and America.

The Electric Transmission of Power, its Present Position and Advantages. By Paget Higgs, LL.D., D.Sc., Telford Prizeman, and Associate Member of the Institution of Civil Engineers. With numerous illustrations. Crown 8vo, cloth, 3 s.

Contents :

Dynamo-electric Machines-The Gramme Machine-The Brush Machine-The WallaceFarmer and Siemens Machines-Efficiency of Dynamo-electric Machines-Practicability of the Transmission of Power by Electricity-Efficiency of Coupled Machines-Comparative Efficiency of Various Machines-Other Theoretical Considerations-Conclusions.

The Clerk of Works: a Vade-Mecum for all engaged in the Superintendence of Building Operations. By G. G. Hoskins, F.R.I.B.A. Fcap. 8vo, closh, is. $6 d$.

Coffee Planting in Southern India and Ceylon. By E. C. P. Hull. Crown 8vo, cloth, 9s.

Spons' Information for Colonial Engineers. Edited by J. T. Hurst. Demy 8vo, sewed.

No. I, Ceylon. By Abraham Deane, C.E. 2s. 6d.

Contents:
Introductory Remarks - Natural Productions - Architecture and Engineering - Topography, Trade, and Natural History-Principal Stations-Weights and Measures, etc., etc.

No. 2. Southern Africa, including the Cape Colony, Natal, and the Dutch Republics. By Henry Hall, F.R.G.S., F.R.C.I. With Map. 3s. $6 d$.

Contents:

General Description of South Africa-Physical Geography with reference to Engineering Operations-Notes, on Labour and Material in Cape Colony-Geological Notes on Rock Formation in South Africa-Engineering Instruments for Use in South Africa-Principal Public Works in Cape Colony : Railways, Mountain Roads and Passes, Harbour Works, Bridges, Gas Works, Irrigation and Water Supply, Lighthouses, Drainage and Sanitary Engineering, Public Buildings, Mines-Table of Woods in South Africa-Animals used for Draught Purposes-Statistical Notes-Table of Distances-Rates of Carriage, etc.

No. 3. India. By F. C. Danvers, Assoc. Inst. C.E. With Map. 4s. 6 d . Contents:
Physical Geography of India-Building Materials-Roads-Railways-Bridges-Irrigation - River Works - Harbours - Lighthouse Buildings - Native Labour - The Principal Trees of India-Money-Weights and Measures-Glossary of Indian Terms, etc.

Tropical Agriculture; or, the Culture, Preparation,

 Commerce, and Consumption of the Principal Products of the Vegetable Kingdom, as furnishing Food, Clothing, Medicine, etc., and in their relation to the Arts and Manufactures; forming a practical treatise and Handbook of Reference for the Colonist, Manufacturer, Merchant, and Consumer, on the Cultivation, Preparation for Shipment, and Commercial Value, etc., of the various Substances obtained from Trees and Plants entering into the Husbandry of Tropical and Sub-Tropical Regions. By P. L. Simmonds. Second edition, revised and improved, in one thick vol. 8vo, cloth, Il. I s.
Steel, its History, Manufacture, and Uses. By J. S. Jeans, Secretary of the Iron and Steel Institute. Numerous engravings, 8vo, cloth. Nearly ready.

Section I., History of Steel: Chap. I. History of Steel-2. Early History in England -3. Progress of Invention-4. History of Bessemer Process-5. Siemens-Martin Process6. Other Steel-making Processes-7. Steel in America-8. Germany-9. France-10. Austria -II. Russia-12. Sweden-13. Other Countries. Section II., Manufacture of Steel: Chap. 14. Cementation and other Methods-15. Manufacture by Bessemer Process-16. Siemens-Martin Process-17. Other Methods. Section III., Chemical and Physical Properties of STEEL: Chap. I8. Phosphorus in Steel-r9. The Use of Manganese-20. Spiegeleisen-21. Sulphur in Steel-22. Silicon in Steel-23. Tensile Strength of Steel-24. Mechanical Tests of Steel-25. Analysis of Steel. Section IV., Uses of STEEL: Chap. 26. Application of Steel to Railway Purposes-27. To Shipbuilding-28. To Bridge Building29. To General Purposes-30. Guns and Armour Plates-35. Other Purposes.

Compensations: a Text-book for Surveyors, in Tabulated Form. By Banister Fletcher. Crown 8vo, cloth, 5 s.

 Contents:The Varieties of Damage for which Claims may arise-Various Classes of PropertyPoints to be observed in Surveys-Notices to Treat-Nature of Damage for which Claims can and cannot be sustained-What Property can be compulsorily taken-When Entry on Property can and cannot be compulsorily made-Of Goodwill and Stock-and of the various Legal Methods of Settlement of Disputed Claims-together with Full and Explicit Instructions on the Methods of Valuing and of Making Claims ; with Comments on Cases arising under the Metropolis Local Management and Metropolitan Buildings Acts; the whole given in a Practical and Comprehensive Form, supplemented by a copious Appendix, containing many Useful Forms and Precedents, and also Tables for the Valuation of Freeholds, Leaseholds, Reversions, and Life-Interests.

Dilapidations: a Text-book for Architects and Sur-

 veyors, in Tabulated Form. By Banister Fletcher, Fellow Royal Inst. Brit. Arch. (Author of 'Model Houses'). Showing who are liable for Dilapidations, and the extent of the liability of Lessors, Lessees, Tenants at will, Tenants by elegit, Statute, Merchant, or Staple Tenants in fee simple, Tenants in tail, Tenants for life, Tenants for years without impeachment of Waste, Mortgagor, Mortgagee in possession, Yearly Tenants, Tenants in common, and joint Tenants, Rights of coparceners ; also what are dilapidations and waste, and further fully instructs the surveyor how to take and value them, to which is added the duties of surveyors, with a table of legal cases, embracing the most recent, and illustrated throughout by examples drawn from the author's experience, and latest legal decisions. Crown 8 vo , cloth, 5 s.
Spons' Dictionary of Engineering, Civil, Mechanical, Military, and Naval; with technical terms in French, German, Italian,

 and Spanish, 3100 pp ., and nearly 8000 engravings, in super-royal 8 vo , in 8 divisions, $5 l$. 8s. Complete in 3 vols., cloth, $5 l .5 s$. Bound in a superior manner, half-morocco, top edge gilt, 3 vols., $6 l$. 12 s .See page 16.
A Treatise on the Origin, Progress, Prevention, and Cure of Dry Rot in Timber; with Remarks on the Means of Preserving Wood from Destruction by Sea-Worms, Beetles, Ants, etc. By Thomas Allen Britton, late Surveyor to the Metropolitan Board of Works, etc., etc. Plates, crown 8vo, cloth, $75.6 d$.

A General Table for facilitating the Calculation of

 Earthworks for Railzways, Canals, etc.; with a Table of Proportional Parts. By Francis Bashforth, M.A., Fellow of St. John's College, Cambridge. In 8 vo , cloth, with mahogany slide, 4 s .[^2]A Handbook of Electrical Testing. By H. R. Kempe, Assoc. of the Society of Telegraph Engineers. With Illustra. tions. Fcap. 8vo, cloth, 5 s.

Electricity; its Theory, Sources, and Applications.
By John T. Sprague, Member of the Society of Telegraph Engineers. With 91 woodcuts and 30 valuabie Tables. Crown 8vo, cloth, $8 s$.

Electricity and the Electric Telegraph. By George B. Prescott. With 564 woodcut illustrations, 8vo, cloth, 18 s.

Electro-Telegraphy. By Frederick
Telegraph Engineer, a Book for Beginners. Fcap. 8vo, cloth, is. $6 d$.
Engineering Papers. By Graham Smith. 8vo, cloth, 5 . Contents:
Mortar: " Miller Prize" Paper-Practical Ironwork: "Miller Prize" Paper-Retaining Walls: Paper read at the Edinburgh and Leith Engineers' Society. With Addenda and Discussions to each.

Spons' Engineers' and Contractors' Illustrated Book of Prices of Machines, Tools, Ironwork, and Contractors' Material. Royal 8 vo , cloth, 7 s .6 d . Third edition nearly ready.

The Gas Consumer's Handy Book. By William Richards, C.E. 18 mo , sewed, 6 d .

> A Practical Treatise on Natural and Artificial Concrete, its Varieties and Constructive Adaptations. By Henry Reid, Author of the 'Science and Art of the Manufacture of Portland Cement.' With numerous woodcuts and plates, 8vo, cloth, 15 s.

The Gas Analyst's Manual. By F. W. Hartley, Assoc. Inst. C.E., etc. With numerous illustrations. Crown 8vo, cloth, 6 s.

The French-Polisher's Manual. By a FrenchPolisher; containing Timber Staining, Washing, Matching, Improving, Painting, Imitations, Directions for Staining, Sizing, Embodying, Smoothing, Spirit Varnishing, French-Polishing, Directions for Repolishing. Third edition, royal 32 mo , sewed, $6 d$.

A Pocket-Book of Useful Formulce and Memoranda

 for Civil and Mechanical Engineers. By Guilford L. Molesworth, Mem. Inst. C. E., Consulting Engineer to the Government of India for State Railways. Nineteenth edition, with a valuable contribution on Telegraphs by R. S. Brough and Dr. Paget Higgs. 32mo, roan, $6 s$. Ditto, interleaved with ruled Paper for Office use, $9 s$. Ditto, printed on India paper, $6 s$.
Synopsis of Contents:

Surveying, Levelling, etc.-Strength and Weight of Materials-Earthwork, Brickwork, Masonry, Arches, etc.-Struts, Columns, Beams, and Trusses-Flooring, Roofing, and Roof Trusses-Girders, Bridges, etc.-Railways and Roads-Hydraulic Formulæ-Canals, Sewers, Waterworks, Docks-Irrigation and Breakwaters-Gas, Ventilation, and Warming-Heat, Light, Colour, and Sound-Gravity: Centres, Forces, and Powers-Millwork, Teeth of Wheels, Shafting, etc.-Workshop Recipes-Sundry Machinery-Animal Power-Steam and the Steam Engine-Water-power, Water-wheels, Turbines, etc.-Wind and WindmillsSteam Navigation, Ship Building, Tonnage, etc.-Gunnery, Projectiles, etc.-Weights, Measures, and Money-Trigonometry, Conic Sections, and Curves-Telegraphy-Mensura-tion-Tables of Areas and Circumference, and Arcs of Circles-Logarithms, Square and Cube Roots, Powers-Reciprocals, etc.-Useful Numbers-Differential and Integral Calcu-lus-Algebraic Signs-Telegraphic Construction and Formulæ.
" Most of our readers are already acquainted with Molesworth's Pocket-book, and not a few, we imagine, are indebted to it for valuable information, or for refreshers of the memory. The book has been re-arranged, the supplemental formulæ and tables added since the first issue having now been incorporated with the body of the book in their proper positions, the whole making a handy size for the pocket. Every care has been taken to ensure correctness, both clerically and typographically, and the book is an indispensable vade-mecum for the mechanic and the professional man."-English Mechanic.

Spons' Tables and Memoranda for Engineers;

 selected and arranged by J. T. Hurst, C.E., Author of 'Architectural Surveyors' Handbook,' 'Hurst's Tredgold's Carpentry,' etc. 64mo, roan, gitt edges, third edition, revised and improved, is. Or in cloth case, Is. 6 d.This work is printed in a pearl type, and is so small, measuring only $2 \frac{1}{2}$ in. by $1 \frac{3}{2} \frac{\mathrm{in}}{2}$. by \ddagger in. thick, that it may be easily carried in the waistcoat pocket.
"It is certainly an extremely rare thing for a reviewer to be called upon to notice a volume measuring but $2 \frac{1}{\frac{1}{2}}$ in. by $1 \frac{3}{4}$ in., yet these dimensions faithfully represent the size of the handy little book before us. The volume-which contains 118 printed pages, besides a few blank pages for memoranda-is, in fact, a true pocket-book, adapted for being carried in the waistcoat pocket, and containing a far greater amount and variety of information than most people would imagine could be compressed into so small a space. . . The little volume has been compiled with considerable care and judgment, and we can cordially recommend it to our readers as a useful little pocket companion."-Engineering.

Analysis, Technical Valuation, Purification and Use of Coal Gas. By the Rev. W. R. Bowditch, M.A. With wood engravings, 8 vo , cloth, I 2 s .6 d .
 Condensation of Gas-Purification of Gas-Light-Measuring-Place of Testing GasTest Candles-The Standard for Measuring Gas-light-Test Burners-Testing Gas for Sulphur-Testing Gas for Ammonia-Condensation by Bromine-Gravimetric Method of taking Specific Gravity of Gas-Carburetting or Naphthalizing Gas-Acetylene-Explosions of Gas-Gnawing of Gaspipes by Rats-Pressure as related to Public Lighting, etc.

A Practical Treatise on the Manufacture and Distri-

 bution of Coal Gas. By William Richards. Demy 4to, with numerous wood engravings and large plates, cloth; 28s.
Synopsis of Contents:

Introduction - History of Gas Lighting - Chemistry of Gas Manufacture, by Lewis Thompson, Esq., M.R.C.S.-Coal, with Analyses, by J. Paterson, Lewis Thompson, and G. R. Hislop, Esqrs--Retorts, Iron and Clay-Retort Setting-Hydraulic Main-Con-densers-Exhausters - Washers and Scrubbers - Purifiers - Purification - History of Gas Holder - Tanks, Brick and Stone, Composite, Concrete, Cast-iron, Compound Annular Wrought-iron-Specifications-Gas Holders - Station Meter - Governor-Distribution-Mains-Gas Mathematics, or Formulæ for the Distribution of Gas, by Lewis Thompson, Esq-Services-Consumers' Meters-Regulators-Burners-Fittings-Photometer-Carburization of Gas-Air Gas and Water Gas-Composition of Coal Gas, by Lewis Thompson, Esq.Analyses of Gas-Influence of Atmospheric Pressure and Temperature on Gas-Residual Products-Appendix-Description of Retort Settings, Buildings, etc., etc.

Practical Geometry and Engineering Drawing; a

 Course of Descriptive Geometry adapted to the Requirements of the Engineering Draughtsman, including the determination of cast shadows and Isometric Projection, each chapter being followed by numerous examples; to which are added rules for Shading Shade-lining, etc., together with practical instructions as to the Lining, Colouring, Printing, and general treatment of Engineering Drawings, with a chapter on drawing Instruments. By George S. Clarke, Lieut. R.E., Instructor in Mechanical Drawing, Royal Indian Engineering College, Cooper's Hill. 20 plates, 4to, cloth, 15 s.The Elements of Graphic Statics. By Professor Karl Von Ott, translated from the German by G. S. Clarke, Lieut. R.E., Instructor in Mechanical Drawing, Royal Indian Engineering College, Cooper's Hill. Crown 8vo, cloth, 5 s.

A Practical Treatise on Heat, as applied to the Useful Arts; for the Use of Engineers, Architects, etc. By Thomas Box. Second edition, revised and enlarged, crowi 8 vo , cloth, $\mathrm{I} 2 s .6 \mathrm{~d}$.

The New Formula for Mean Velocity of Discharge

 of Rivers and Canals. By W. R. Kutter, translated from articles in the 'Cultur-Ingenieur.' By Lowis D'A. Jackson, Assoc. Inst. C.E. 8 vo , cloth, I2s. 6 d .
Hydraulics of Great Rivers; ,being Observations and

 Survees on the Largest Rivers of the World. By J. J. Revy. Imp. 4to, cloth, with eight large plates and charts, 2l. 2s.Practical Hydraulics; a Series of Rules and Tables for the use of Engineers, etc., etc. By Thomas Box. Fifth edition, numerous plates, post 8vo, cloth, 5 s.

The Indicator Diagram Practically Considered. By N. P. Burgh,' ${ }^{\text {Engineer. Numerous illustrations, fifth edition. Crown }}$ 8 vo , cloth, $6 s .6 d$.

Abstract

"This volume possesses one feature which renders it almost unique ; this feature is the mode in which it is illustrated. It is not difficult to take a diagram if the instrument is once set, and the setting with stationary engines is occasionally easy enough, but circumstances continually arise under which the young engineer is completely at a loss as to how to obtain a diagram. All uncertainty will be removed by referring to the book under consideration: here we have drawings of the arrangements to be adopted under every conceivable circumstance, drawings, we may add, illustrating the practice of the best engineers of the day."Engineer.

Link-Motion and Expansion Gear Practically Considered. By N. P. Burgh, Engineer. Illustrated with 90 plates and 229

 wood engravingss, small 4to, half-morocco, 2l. 2 s .
The Mechanician and Constructor for Engineers, comprising Forging, Planing, Lining, Slotting, Shaping, Turning, Screw Cutting, etc. By Cameron Knight. Containing 96 plates, 1147 illustrations, and 397 pages of letterpress, 4to, half-morocco, 2l. $125.6 d$.

The Essential Elements of Practical Mechanics;

 based on the Principle of Work, designed for Engineering Students. By Oliver Byrne, formerly Professor of Mathematics, College for Civil Engineers. Third edition, illustrated by numerous wood engravings, post 8 vo , cloth, 7 s .6 d .
Contents:

Chap. I. How Work is Measured by a Unit, both with and without reference to a Unit of Time-Chap. 2. The Work of Living Agents, the Influence of Friction, and introduces one of the most beautiful Laws of Motion-Chap. 3. The principles expounded in the first and second chapters are applied to the Motion of Bodies-Chap. 4. The Transmission of Work by simple Machines-Chap. 5. Useful Propositions and Rules.

The Practical Millwright's and Engineer's Ready

 Reckoner; or Tables for finding the diameter and power of cog-wheels, diameter, weight; and power of shafts, diameter and strength of bolts, etc. By Thomas Dixon. Fourth edition, i2mo, cloth, 3 s.
Contents:

Diameter and Power of Wheels-Diameter, Weight, and Power of Shafts-Multipliers for Steam used Expansively-Diameters and Strength of Bolts-Size and Weight of Hexagonal Nuts-Speed of Governors for Steam Engines-Contents of Pumps-Working Barrels-Circumferences and Areas of Circles-Weight of Boiler Plates-French and English Weights and Measures, etc.

[^3]
A Practical Treatise on Mill-gearing, Wheels, Shafts,

 Riggers, etc.; for the use of Engineers. By Thomas Box. Crown 8vo, cloth, second edition, 7s. $6 d$.Mining Machinery: a Descriptive Treatise on the Machinery, Tools, and other Appliances used in Mining. By G. G. André, F.G.S., Assoc. Inst. C.E., Mem. of the Society of Engineers. Royal 4to, uniform with the Author's Treatise on Coal Mining, containing 182 plates, accurately drawn to scale, with descriptive text, in 2 vols., cloth, $3 l$. 25 .

Contents :

Machinery for Prospecting, Excavating, Hauling, and Hoisting-Ventilation-PumpingTreatment of Mineral Products, including Gold and Silver, Copper, Tin, and Lead, Iron, Coal, Sulphur, China Clay, Brick Earth, etc.

The Pattern Maker's Assistant; embracing Lathe

 Work, Branch Work, Core Work, Sweep Work, and Practical Gear Construction, the Preparation and Use of Tools, together with a large collection of Useful and Valuable Tables. By Joshua Rose, M.E. With 250 illustrations. Crown 8vo, cloth, 10s. $6 d$.The Science and Art of the Manufacture of Portland Cement, with observations on some of its constructive applications, with numerous illustrations. By Henry Reid, C.E., Author of 'A Practical Treatise on Concrete,' etc., etc. 8vo, cloth, $18 s$.

The Draughtsman's Handbook of Plan and Map Drawing; including instructions for the preparation of Engineering, Architectural, and Mechanical Drawings. With numerous illustrations in the text, and 33 plates (15 printed in colours). By G. G. André, F.G.S., Asisoc. Inst. C.E. $4^{\text {to, }}$ cloth, 15 s.

Contents:

The Drawing Office and its Furnishings-Geometrical Problems-Lines, Dots, and their Combinations-Colours, Shading, Lettering, Bordering, and North Points-Scales-Plotting -Civil Engineers' and Surveyors' Plans-Map Drawing-Mechanical and Architectural Drawing-Copying and Reducing Trigonometrical Formulæ, etc., etc.

The Railway Builder: a Handbook for Estimating the Probable Cost of American Railway Construction and Equipment. By Wilitam J. Nicolls, Civil Engineer. Illustrated, full bound, pocketbook form, 7 s . $6 d$.

Rock Blasting: a Practical Treatise on the means employed in Blasting Rocks for Industrial Purposes. By G. G. André, F.G.S., Assoc. Inst. C.E. With 56 illustrations and 12 plates, 8vo, cloth, Ios. $6 d$.

Surcharged and different Forms of Retaining Walls. By J. S. Tate. Cuts, 8vo, sewed, 2 s.

A Treatise on Ropemaking as practised in public and private Rope-yards, with a Description of the Manufacture, Rules, Tables of Weights, etc., adapted to the Trade, Shipping, Mining, Railways, Builders, etc. By R. Chapman, formerly foreman to Messrs. Huddart and Co., Limehouse, and late Master Ropemaker to H.M. Dockyard, Deptford. Second edition, $\mathbf{I} 2 \mathrm{mo}$, cloth, $3 s$.

Sanitary Engineering; a Series of Lectures given before the School of Ensineering, Chatham. Division I. Air.-Division II. Water.-Division III. The Dwelling.-Division IV. The Town and Village.-Division V. The Disposal of Sewage. Copiously illustrated. By J. Bailey Denton, C.E., F.G.S., Honorary Member of the Agricultural Societies of Norway, Sweden, and Hanover, and Author of the 'Farm Homesteads of England,' 'Village Sanitary Economy,' 'Storage of Water,' 'Sewage Farming,' etc. Royal 8vo, cloth, 25 s.

Sanitary Engineering: a Guide to the Construction of Works of Sewerage and House Drainage, with Tables for facilitating the calculations of the Engineer. By Baldwin Latham, C.E., M. Inst. C.E., F.G.S., F.M.S., Past-President of the Society of Engineers. Second edition, with mumerous plates and woodcuts, 8vo, cloth, Il. IOs.

A Practical Treatise on Modern Screw-Propulsion. By N. P. Burgh, Engineer. Illustrated with' 52 large plates and 103 woodcuts, 4to, half-morocco, $2 l .2 s$.

Screw Cutting Tables for Engineers and Machinists, giving the values of the different trains of Wheels required to produce Screws of any pitch, calculated by Lord Lindsay, M.P., F.R.S., F.R.A.S., etc. Royal 8vo, cloth, oblong, $2 s$.

Screw Cutting Tables, for the use of Mechanical Engineers, showing the proper arrangement of Wheels for cutting the Threads of Screws of any required pitch, with a Table for making the Universal Gas-pipe Threads and Taps. By W. A. Martin, Engineer. Second edition, royal 8vo, oblong, cloth, Is.

Treatise on Valve-Gears, with special consideration of the Link-Motions of Locomotive Engines. By Dr. Gustav Zeuner. Third edition, revised and enlarged, translated from the German, with the special permission of the author, by MORITZ Müller. Plates, 8vo, cloth, I2s. 6 d .

Cleaning and Scouring : a Manual for Dyers, Laundresses, and for Domestic Use. By S. Christopher. I8mo, sewed, $6 d$.

A Treatise on a Practical Method of Designing Slide-

 Valve Gears by Simple Geometrical Construction, based upon the principles enunciated in Euclid's Elements, and comprising the various forms of Plain Slide-Valve and Expansion Gearing ; together with Stephenson's, Gooch's, and Allan's Link-Motions, as applied either to reversing or to variable expansion combinations. By Edward J. Cowling Welch, Memb. Inst. Mechanical Engineers. Crown 8vo, cloth. 6s.
The Slide Valve practically considered. By N. P.

 Burgh, Engineer. Ninth edition, with 88 illustrations, crown 8vo, cloth, 5 .
A Pocket-Book for Boiler Makers and Steam Users,

 comprising a variety of useful information for Employer and Workman, Government Inspectors, Board of Trade Surveyors, Engineers in charge of Works and Slips, Foremen of Manufactories, and the general Steamusing Public. By Maurice John Sexton. Royal 32mo, roan, gilt edges, 5 .
Modern Compound Engines ; being a Supplement to Modern Marine Engineering. By N. P. Burgh, Mem. Inst. Mech. Eng. Numerous large plates of working drawings, 4to, cloth, $18 s$.

The following Firms have contributed Working Drawings of their best and most modern examples of Engines fitted in the Royal and Mercantile Navies: Messrs. Maudslay, Rennie, Watt, Dudgeon, Humphreys, Ravenhill, Jackson, Perkins, Napier, Elder, Laird, Day, Allibon.

A Practical Treatise on the Steam Engine, containing Plans and Arrangements of Details for Fixed Steam Engines, with Essays on the Principles involved in Design and Construction. By Arthur Rigg, Engineer, Member of the Society of Engineers and of the Royal Institution of Great Britain. Demy 4to, copiously illustrated with woodcuts and 96 plates, in one Volume, half-bound morocco, $2 l .2 \mathrm{~s}$.

This work is not, in any sense, an elementary treatise, or history of the steam engine, but is intended to describe examples of Fixed Steam Engines without entering into the wide domain of locomotive or marine practice. To this end illustrations will be given of the most recent arrangements of Horizontal, Vertical, Beam, Pumping, Winding, Portable, Semiportable, Corliss, Allen, Compound, and other similar Engines, by the most eminent Firms in Great Britain and America. The laws relating to the action and precautions to be observed in the construction of the various details, such as Cylinders, Pistons, Piston-rods, Connectingrods, Cross-heads, Motion-blocks, Eccentrics, Simple, Expansion, Balanced, and Equilibrium Slide-valves, and Valve-gearing will be minutely dealt with. In this connection will be found articles upon the Velocity of Reciprocating Parts and the Mode of Applying the Indicator, Heat and Expansion of Steam Governors, and the like. It is the writer's desire to draw illustrations from every possible source, and give only those rules that present practice deems correct.

Practical Treatise on Steam. Boilers and Boiler

Making. By N. P. Burgh, Mem. Inst. Mec. Eng. Illustrated by 1163 wood engravings and 50 large folding plates of working drawings, royal 4to, half-morocco, 3 l. 13s. 6 d .

Barlow's Tables of Squares, Cubes, Square Roots,

 Cube Roots, Reciprocals of all Integer Numbers up to 10,000 . Post 8vo, cloth, $6 s$.
Camus (M.) Treatise on the Teeth of Wheels, demon-

 strating the best forms which can be given to them for the purposes of Machinery, such as Mill-work and Clock-work, and the art of finding their numbers, translated from the French. Third edition, carefully revised and enlarged, with details of the present practice of Millwrights, Engine Makers, and other Machinists. By Isaac Hawkins. Illustrated by 18 plates, 8vo, cloth, 5 s.
The Chemistry of Sulphuric Acid Manufacture. By

 Henry Arthur Smith. Cuts, crown 8ro, cloth, 4s. 6d.Ground Plan of Kilns for Burning Sulphur Ores-Section of Pyrites Furnace-On the Presence of Arsenic-Methods for Removal of Arsenic-An Experimental Examination of the Circumstances which determine the Action of the Gases in the Lead Chamber-On the Distribution of Gases in the Lead Chamber-On the Temperature at which Nitric Acid acts upon Sulphurous Acid-On the Distribution of Heat in the Lead Chamber-An Inquiry into the Best Form of Leaden Chamber, etc.
A Practical Treatise on the Science of Land and Engineering Surveying, Levelling, Estimating Quantities, etc., with a general description of the several Instruments required for Surveying, Levelling, Plotting, etc. By H. S. Merrett. 41 fine plates with Illustrations and Tables, royal 8vo, cloth, third edition, $\mathrm{I} 2 \mathrm{~s} .6 d$.

Principal Contents :

Part I. Introduction and the Principles of Geometry. Part 2. Land Surveying; comprising General Observations-The Chain-Offsets Surveying by the Chain only-Surveying Hilly Ground-To Survey an Estate or Parish by the Chain only-Surveying with the Theodolite-Mining and Town Surveying-Railroad Surveying-Mapping-Division and Laying out of Land-Observations on Enclosures-Plane Trigonometry. Part 3. LevellingSimple and Compound Levelling-The Level Book-Parliamentary Plan and SectionLevelling with a Theodolite-Gradients-Wooden Curves-To Lay out a Railway CurveSetting out Widths. Part 4. Calculating Quantities generally for Estimates-Cuttings and Embankments-Tunnels-Brickwork-Ironwork-Timber Measuring. Part 5. Description and Use of Instruments in Surveying and Plotting-The Improved Dumpy Level-Troughton's Level-The Prismatic Compass - Proportional Compass - Box Sextant-Vernier - Panta-graph-Merrett's Improved Quadrànt-Improved Computation Scale-The Diagonal ScaleStraight Edge and Sector. Part 6. Logarithms of Numbers - Logarithmic Sines and Co-Sines, Tangents and Co-Tangents-Natural Sines and Co-Sines-Tables for Earthwork, for Setting out Curves, and for various Calculations, etc., etc., etc.

[^4]
A Pocket-Book of Practical Rules for the Proportions of Modern Engines and Boilers for Land and Marine purposes. By N. P. Burgh. Sixth edition, revised, with Appendix, royal 32 mo , roan, 4 s .6 d .
 Details of High-Pressure Engine, Beam Engine, Condensing, Marine Screw Engines, Oscillating Engines, Valves, etc., Land and Marine Boilers, Proportions of Engines produced by the Rules, Proportions of Boilers, etc.

Table of Logarithms of the Natural Numbers, from I to i08,000. By Charles Babbage, Esq., M.A. Stereotyped edition,

 royal 8 vo , cloth, 7 s .6 d .To ensure the correctness of these Tables of Logarithms, they were compared with Callett's, Vega's, Hutton's, Briggs', Gardiner's, and Taylor's Tables of Logarithms, and carefully read by nine different readers; and further, to remove any possibility of an error remaining, the stereotyped sheets were hung up in the Hall at Cambridge University, and a reward offered to anyone who could find an inaccuracy. So correct are these Tables, that since their first issue in 1827 no error has been discovered.

The Steam Engine considered as a Heat Engine: a

 Treatise on the Theory of the Steam Engine, illustrated by Diagrams, Tables, and Examples from Practice. By Jas. H. Cotterill, M.A., Professor of Applied Mechanics in the Royal Naval College. 8vo, cloth, $12 s .6 d$.
The Practice of Hand Turning in Wood, Ivory, Shell, etc., with Instructions for Turning such Work in Metal as may be required

 in the Practice of Turning in Wood, Ivory, etc., also an Appendix on Ornamental Turning. By Francis Campin. Second edition, with wood engravings, crown 8vo, cloth, $6 s$. (a book for beginners).
Contents :

On Lathes-Turning Tool-Turning Wood-Drilling-Screw Cutting-Miscellaneous Apparatus and Processes-Turning Particular Forms-Staining-Polishing-Spinning Metals -Materials-Ornamental Turning, etc.

Health and Comfort in House Building, or Ventilation with Warm Air by Self-Acting Suction Power, with Review of the

 mode of Calculating the Draught in Hot-Air Flues, and with some actual Experiments. By J. Drysdale, M.D., and J. W. Hayward, M.D. Second edition, with Supplement, demy 8vo, with plates, cloth, 7s. 6d.; the Supplement separate, $6 d$.
Treatise on Watchwork, Past and Present. By the

 Rev. H. L. Nelthropp, M.A., F.SA. Numerous illustrations, crown 8vo, cloth, $6 s .6 d$.
Contents:

Definitions of Words and Terms used in Watchwork-Tools-Time-Historical Sum-mary-On Calculations of the Numbers for Wheels and Pinions; their Proportional Sizes, Trains, etc.-Of Dial Wheels, or Motion Work-Length of Time of Going without Winding up-The Verge-The Horizontal-The Duplex-The Lever-The Chronometer-Repeating Watches-Keyless Watches-The Pendulum, or Spiral Spring-Compensation-Jewelling of Pivot Holes-Clerkenwell-Fallacies of the Trade-Incapacity of Workmen-How to Choose and Use a Watch, etc.

Now in Course of Publication.
To be completed in about 30 Monthly Parts, each Part containing 64 pp ., with numerous illustrations, super-royal 8 vo , price $2 s$. ; or in 5 Divisions, cloth, price $\mathrm{I}_{3} s .6 \mathrm{~d}$. each.

DIVISION I. NOW READY.
SPONS' ENCYCLOPÆDIA
OF THE

INDUSTRIAL ARTS, MANUFACTURES, aND COMMERCIAL PRODUCTS.

Edited by GEO. G. André, F.G.S., Assoc. Inst. C.E.

Now in Course of Publication.

To be completed in about 18 Monthly Parts, each Part containing 64 pp ., with mumerous illustrations, super-royal 8vo, price $2 s$. ; or in 3 Divisions, cloth, price 13 s. $6 d$. each.

DIVISION I. NOW READY.

A SUPPLEMENT

то

SPONS' DICTIONARY OF ENGINEERING, Edited by ERNEST SPON, Memb. Soc. Engineers.

London: E. \& F. N. SPON, 46, Charing Cross. New York: 446, Broome Street.

[^0]: LONDOM: PRINTED by w. CLowes and sons, stamford street and charing crobs.

[^1]: The object of this work is to supply an exhaustive digest of all that is known on each subject, so far as is necessary and sufficient for an Engineer in practice, especially in India.

[^2]: "This little volume should become the handbook of every person whose duties require even occasional calculations of this nature: were it only that it is more extensively applicable than any other in existence, we could cordially recommend it to our readers; but when they learn that the use of it involves only half the labour of all other Tables constituted for the same purposes, we offer the strongest of all recommendations-that founded on the value of time."Mechanic's Magazine.

[^3]: The Principles of Mechanics and their Application to Prime Movers, Naval Architecture, Iron Bridges, Water Supply, etc. By W. J. Millar, C.E., Secretary to the Institution of Engineers and Shipbuilders, Scotland. Crown 8vo, cloth, 4 s .6 d .

[^4]: Laying and Repairing Electric Telegraph Cables. By Capt. V. Hoskicer, Royal Danish Engineers. Crown 8vo, cloth, 3s. $6 d$.

