THE NEWS OF ETEER 1827 BUREAU OF PUBIVARADS VOL. 2, NO. 2
 OECEMBER, 1926.

CONTENTS

Extracts from the President's Message 1
Nevis Lemter not Intended for General Distribution 2
Concrete Pavement Design 3
Refort of Sue-Committee on Design of the A.A.S.H. 0 10
Progress of Federal Highay Legislation 21
Status of Current Federal Aid Road Work 23
State Highway and Beicge Bond Status, 1925 24
Bureau Preparing an Exheit for the American Rofd Bulloers Association Convention- 25
Modulus of Rupture by Cantllever Beam Tests 26
Motor Truck Impact Tests Now in Progress 27
Numbered U.S. Highways map Adopted Novemeer 11, 1926 31

$$
\text { TTヨ.18 } 8
$$

EXTRACTS FROM THE PRESIDENT'S MESSAGE

Extraicts from the message of president Calvin C. Coolidge read to the second session of the Sixty-ninth Congress on Decemeer 7, 1926.
"Acting upon my recommendation, the Congress has ordered the Interstate Commerce Commission to investigate the freight-rate STRUCTURE, DIRECTING THAT SUCH CHANGES SHALL EE MADE IN FREIGHT RATES AS WILL PROMOTE FREEDOM OF MOVEMENT OF AGRICULTURAL PRODUCTS. RAILROAD CONSOLIDATION WHICH \mid AM ADVOCATING WOULO ALSO RESULT IN A SITUATION WHERE RATES COULD EE MADE MORE ADVANTAGEOUS FOR FARM PRODUCE, AS HAS RECENTLY EEEN DONE IN THE REVISION OF RATES ON FERTILIZERS IN THE SOUTH. ADOITIONAL EENEFIT WILL ACCRUE FROM THE DEVGLOPMENT OF OUR iNLAND WATERWAYS. THE MISSISSIPp! RIVER SYSTEM CARRIES A COMMERCE OF OVER 50,000,000 TONS AT A SAVING OF nearly $\$ 18,000,000$ annually. The Inlano Waterways Corporation OPERATES EOATS ON 2,500 MILES OF NAVIGABLE STREAMS, AND THROUGH ITS RELATION WITH 165 RAILROADS CARRIES FREIGHT INTO AND OUT OF 45 States in the Union. During the past six months it has handled OVER I,OOO,OOO EUSHELS OF GRAIN MONTHLY ANO EY ITS LOWER FREIGHT RATES HAS RA:SED THE PRICE OF SUCH GRA!N TO THE FARMER PROEAELY $2 \frac{1}{3}$ CENTS TO 3 CENTS A EUSHEL. THE HIGHWAY SYSTEM, ON WHICH THE Federal Government expends aeout \$85,000,000 a year, is of vital importance to the rural regions."

AMERICAN loeals.

"America is not and must not ee a country without ideals. THEY are useless If they are only visionagy; they are only valuable IF they are pract Ical. A nat Ion can not onell constantly on the MOUNTAIN TOPS. IT HAS TO EE REPLENISHED AND SUSTAINEO THROUGH THE CEASELESS TOIL OF THE LESS INSPIRING VALLEYS. BUT ITS FACE OUGHT ALWAYS TO EE TURNED UPWARD, ITS VISION OUGHT ALWAYS TO EE FIXED ON HIGH.

We need ideals that can ee followed in oally life, that can ee translated into terms of the home. We can not expect to be RELIEVED FROM TO:L, BUT WE DO EXPECT TO DIVEST IT OF OEGRADING CONOITIONS. WORK IS HONORAELE; IT IS ENTITLED TO AN HONORAELE recompense. We must strive mightily, eut having striven there is A DEFECT IN OUR POLITICAL AND SOCIAL SYSTEM IF WE ARE NOT IN general rewarded with success. To relieve the land of the burdens that came from the war, to release to the individual more of the

FRUITS OF HIS OWN INDUSTRY, TO INCREASE HIS EARNING CAPACITY AND DECREAEE H'S HOURS OF LAEOR, TO ENLARGE THE CIRCLE OF HIS VISION THROUGH GOOD ROADS AND EETTER TRANSPORTATION, TO PLACE QEFORE HIM THE OPPORTUNITY FOR EDUCATION BOTH IN SCIENCE AND IN ART, TO LEAVE him free to receive the inspiration of religion, all these are IDEALS WH:CH DELIVER H!M FROM THE SERVITUDE OF THE EODY AND EXALT HIM TC THE SERVICE OF THE SOUL. THROUGH THIS EMANCIPATION FROM THE THINGS THAT ARE MATERIAL, WE EROADEN OUR DOMINION OVER THE THINGS THAT ARE SPIRITUAL."

Calvin coolidge.

NEWS LETTER NOT INTENDED FOR GENERAL DISTRIBUTION

> (NOT fOR RELEASE)

Recently requests have deen made for coples of the News Letter ey organizations and individuals outside of the bureau. CORRESPONDENCE fROM THE FIELD offlces also INDICATES that cooles of the News letter are geing released to the state Highway departments as a source jf information for State highway periodicals. It was not intended that the News Letter should se distrieuted in THIS MANNER AND IT IS, THEREFORE, BELIEVED ADVISABLE TO RESTATE gr!efly just what purpose the news letter is designed to fulfill.

The News Letter is intended primarily to develop unity of PURPOSE AND CONCERTED ACTION IN ALL ERANCHES OF THE BUREAU ORGANI ZATION aND to disseminate informatidn within the bureau. It is AIMED TO ACCOMPLISH THESE OZJECTS ZY ARTICLES OR REPRINTS OF speeches which indicate the viewpoint of the Chief of the sureau, EY ANNOUNCEMENTS OF RESEARCH PROJECTS, EY DESCRIPTIONS OF THE MOST RECENT INNOVATIONS IN HIGHWAY CONSTRUCTION PRACTICES IN THE SEVERAL States, and ey tables and other data which indicate the general TREND OF H:GHWAY DEVELOPMENT. THE NATURE OF THE INFORMATION IS SUCh that the News Letter eecomes a bureau organ designed for the IMMEDIATE INFORMATION OF OUR OWN PERSONNEL.

The New letter contains material which is sultagle for GENERAL DISTRIEUTION AND ALSO INFORMATION FURNIEHED ONLY FOR THE memeers of the bureau. In the future those articles which are not to ee disseminated generally will ae marked "Not for release." The ealance of the material may se released at the discretion of THE DISTRICT ENGINEERS. IT IS DESIRED THAT RELEASES FROM THE TEXT Shall ee gIVEN out in the form of typewritten coples of the news LETTER INFORMAT!ON THE ORIGINAL MIMEOGRAPHED SHEETS OF THE PERIODICAL ARE NOT EXPECTED TO EE RELEASED. IF FOUND MORE PRACTICAELE, APPROVEC TAELES, CHARTS OR DIAGRAMS MAY EE SEPARATED FROM the News letter anc given out in their original form.

CONCRETE PAVEMENT DESIGN

Contriguted ey the Division of Design
(JEXT NOT FOR RELEASE)

FOR THE PURFOSE OF COMכARING AND STUDYING THE VARIOUS CEMENT CONORETE PAVEMENT CES: GNS SUEMITTED EY THE STATES FOR FEDERAL-AID ROAD WORK, A TAEULATED RECORD OF THE PRINC:PAL FEATURES, BASED ON 1926 PRACT!CE, HAS SEEN FREPARED EY THE DIVISION OF DESIGN.

Effort was made to eliminate, so far as possiele, such DESIGNS AS APPEARED TO RE UNUSUAL AND TO SELECT FOR STUDY THE DESIGN MOST REPRESENTATIVE OF THE USUAL PRACTICE IN EACH STATE. Certain States have developed standard designs which are apparently USED WITHOUT VARIATION, WHILE OTHER STATES VARY SUCH FEATURES aS DEPTH OF PAVEMENT, MIX, AMOUNT AND POSITION OF STEEL REINFORCEMENT, SPACING OF TRANSVERSE JOINTS AND EVEN THE SHAPE OF THE CROSS SECTION, TO FIT LOCAL CONDITIONS ON EACH PROJECT. IN FOUR STATES SO FEW PROJECTS INVOLVING CONCRETE PAVEMENTS HAVE EEEN RECEIVED THAT No general idea of their practice in designing could ee oetained.

IN ORDER TO PERMIT QUICK AND EASY COMPARISON OF THE DESIGNS SELECTED AS FAIRLY REPRESENTATIVE OF PRACTICE IN EACH STATE, THE DATA OETAINED IN THE STUDY HAVE EEEN COMPILED IN THE FORM OF TAELES, WH!CH ARE REPRODUCED HEREWITH. ACCOMPANYING THE TAELES IS A SERIES OF SKETCHES OF SOME OF THE UNIQUE AND INTERESTING FEATURES OF DESIGN fOUND in certain States.

A Casual examination of the taeles shows that the thlckenedEDGE SECTION HAS BEEN ADOPTED EY A GREAT MAJORITY OF THE STATES BUT THERE IS LITTLE UNIFORMITY IN THE METHOD OF DEVELOP!NG THE SECTION. Of the seven States using the uniform-thickness des!gn, it is Interesting to note that four are New England States, the others being New jersey, North Carolina and West V!rgin!a. the engineers in the New England States cla!m that the hard, rocky, soil condiT!ONS MAKE ! T VERY DIFF!CULT TO SHAPE THE SUBGRADE FOR THE THICKENEDedge section. These States also use gravel susease under thelr CONCRETE PAVEMENTS AND CONSIDERAELE REINFORCING STEEL WHICH, THEY CLAIM, ELIMINATES TO A GREAT EXTENT THE NECESSITY FOR A THICKENED edge. North Carolina uses the uniform section only in reinforced design. Marvland : s the only State which now uses a thin edge, THICKENED-CENTER DESIGN.

THE TAELES SHOW A SURPRISING LACK OF UNIFORMITY IN THE AMOUNT OF CROWN USED IN. THE VARIOUS STATES FOR CONCRETE PAVEMENTS. THE AMOUNT OF CROWN ON ALL TYPES OF PAVEMENT HAS EEEN MATERIALLY

UNITED ST

	Longituainal joint		Transvarse joint				20:0215		Spec in foutures
stato	${ }_{\text {TyP }}$	(ouke or	${ }_{\text {ryp }}$	Spacing	width	${ }^{\text {pillar }}$	Longitudinal jointo	Tranavarsa doints	
				cot	Inchas				
Oregon	Deforimad hintal plato	18	2xquantion	25	1/4	*reparad bituninous		None	
Ponnsylvenis	do	14	do	Deas inad	1/2	do		do	
Bhode Islund	Plasin butt Joint		do	100	1/2	do		Light - 2 Ft . bj $1 / 2$-inch didur, smoth, one	
South Ciroilna	not requirod		do	40	1/4 to 1/2	do	ft. c.to c.	yone ${ }^{\text {and }}$ Proo	
South Dasota	-	-	-	-	-	-	-	-	-
Tarnosoos	Daforrod motal plata	${ }^{18}$	Exq ans $10 n$	30	3/4	Propurad or gourcd bit.	4 ft . by $2 / 4-1 \mathrm{Lrch} \mathrm{duman} .5 \mathrm{st}$. c.to	. ${ }_{\text {une }}$	
Toxas	do	18	do	60 to 200	1/4 to $1 / 2$	do	4 ft. by $1 / 2$-inch uisu..	Six -4 ft . or 5 ft . by $1 / 2$ or $5 / 4-\mathrm{mech} \mathrm{d}$	
Utah	do	18	do	40	1/4 to $1 / 2$	do	4 ft . bji $1 / 2$-inch s_{4} uare.	None simoth, ore and free	renexe and eroove construction joint
Vorwont	Poured bitualinous filler	Pusnt cost	do	4.52/3	1/2	do		Sigit - 2 it. by $3 / 4$-1nch diam, onooth.	
virginia	Not reaurai		Cons truettor	Hiecessury			s-1/3 ft. c.to c.	None ono end ireu	
Wiashn nton	Pourad bit untnous fller	1/4	Expansion	60	1/4 to $1 / 2$	Pourod istuntinous		do	See sketch of contraction joint
west Virginn	Doformed metal plate	16	Cons truct	Nocos saty				do	
Wis consin	do	18	axyansion	31-1/2	1/2	sroparad bit tuminous	ft. bf $1 / 2$-inch diam., deeoriod.	sour - 4 ft . by $5 / 8$ - ilich diamin one and Preo	
Hyoun ${ }_{\text {ne }}$	-	-	-	-	-	-	fte c.to c. -	-	-

SPECIAL FEATURES OF CONCRETE PAVEMENT DESIGNS FOR 1926

REDUCED IN THE PAST TEN YEARS. THE PUBLIC DEMAND FOR SMOOTHRIDING FOADS AND ZETTER APPRECIAT!ON $3 Y$ ENGINEERS OF THE IMPORTANCE OF IMPACT STRESSES HAS LED TO THE ADOPTION OF RIG!D REQUIREMENTS IN FIN!SHING CONCRETE PAVEMENTS TO SECURE A HIGH DE AREE OF TRUENESS, AND THIS CARE :N FIN:SHING HAS PERMiTTED A PRDUCTION IN AMOUNT OF CROWN SO THAT IT iS NOW FEASIELE TO CONSTRUCT 2O-FOOT PAVEMENTS WITH ONLY ONE INCH OF CROWN.

The greatest variation aetween designs appears to be in THE USE OF TRANSVERSE EXPANSION JOINTS, SOME STATES USING THEM AT 3O-FOOT INTERVALS AND SOME STATES OMITTING THEM ENTIRELY. IT WILL こE NOTED THAT THIRTY-THREE STATES USE SOME KIND OF EXPANSION JOINT AND THAT THE MAJOR!TY OF THEM APPEAR TO FAVOR A SLAO LENGTH OF FROM 40 TO 60 FEET. FURTHER RESEARCH AND OESERVATION OF PAVEMENTS alieady zuilt is necessary to determine which of the practices is MORE NEARLY CORRECT.

DIFFERENCES IN LOCAL CONDITIONS NO DOUET JUSTIFY CERTAIN DIFFERENCES IN DESIGN OF CCNCRETE DAVEMENTS ミUT IT IS EELIEVED THAT GENERAL AGEEEMENT WILL EVENTUALLY BE REACHEO IN MANY MAJOR features. Mr. Surman of Illinois, in his talk at pinehurst, CRITICISEC the BUREAU FOR ADPROVING ANY EUT THE THICKENED-EDGE DESIGN, EUT ENG:NEEPS FROM OTHER STATES CRITICISE US FOR APOROVING the Illinois desian which has no expans!on joint. We do not Qelieve that any one State hae deve. of jo the ultimate design for CONCRETE PAVEMENTS ANE, S!NCE IT IS VOT FOSS:SLE TO REACH AN AGREEMENT AS TO WIHT GUNST:TUTES A CORREOT DESIGN, WE FEEL THAT IT WOULD aE UNWIEE AN: ARZitrary fCR THE BUREAU TO INS:ST AT THIS TIME THAT all States conform to a standafid des:gn.

REPORT OF SUB-COMMITTEE ON DESIGN OF THE A.A.S.H.O.

The report of the sub-committee on design of the american Association of State highway Officials, which was received at the Pinehurst, North Carolina, meeting of the Association on NOVEMEER 8, 1926, CONTAINS MUCH INTERESTING AND INSTRUCTIVE DATA: THE SUB-COMMITtEE had at its disposal the information segured dURING the year friom the several States in response to its QUESTIONNA:RES RELATIVE TO GUARD RAILS, AND AMOUNTS OF WIDENING ON CURVES, SUPERELEVATION, AND CROWN FOR PAVEMENTS. THE SUB-COMMITTEE ADOPTED THE REPORT AND SUEMITTED IT TO THE COMMITTEE ON Standards of the association, which will consider the repört at THE EARLIEST CONVENIENT OPPORTUNITY. THE REPORT WAS SUEMITTED BY the chalrman of the sub-committee, Mr. C. H. Moorefield, State highway engineer of South Carolina.

THE REPORT INCEUDED THE FOLLOWING RECOMMENDATIONS:

Guard Rails

1. - That the wooden type of guard rail, if used, ee limited IN HEIGHT SO THAT THE CENTER OF THE TOP BOARD SHALL NOT BE ABOVE the center of the hue; and that wooden rails be not less than 3 INCHES EY 10 INCHES IN CROSS SECTION.
2. - That cable guard rail consist of two $3 / 4-1 \mathrm{nch}$ cables; the lower cable to be not less than 15 Inches nor more than 18 INCHES above the ground, and the upper cable not less than 28 nor MORE THAN 33 INCHES ABOVE THE GROUND.
3. - That the woven-wire type of guard rail when used be 2 FEET IN W! DTH AND PLACED WITH THE TOP APPROXIMATELY 36 INCHES ABOVE THE GROUND.
4. - That guard-rail posts be spaced not exceeding 10 feet APART AND PREFERABLY NOT EXCEEDING 8 FEET. THAT THE MINIMUM SPACE FROM THE INSIDE EDGE OF THE RAIL TO THE EDGE OF THE SHOHIDER OF THE ROAD BE 2 feEt, aND that the minimum distance from the samf. POINT ON THE RAIL TO THE CENTER OF THE ROAD BE 12 FEET.

Widening on Curves

1. - That the formula, proposed ry J. T. Voshell of the BUREAU, EE FOLLOWED IN DETERMINING THE ADDITIONAL WIDTH TO EE USED ON CURVES; AND THAT ALL CURVES WITH A RADIUS OF 1,000 FEET OR LESS be WIDENED.

FORMULA: $W=2\left(R-\sqrt{R^{2}-L^{2}}\right)+\frac{35}{\sqrt{R}}$
Wi = Widening in feet
R = RAdIUS of curve in feet
$L=$ Wheel base of vehicles in feet (20 feet recommended)
$2\left(R-\sqrt{R^{2}-L^{2}}\right)=$ ADDITIONAL WIDTH REQUIRED EY TWO CARS.
Superelevation

1. - That all curves with a radius of less than 6,000 feet ee superelevated.
2. - That maximum superelevations approximate I inch per FOOT OF WIDTH; and that a VELOCITY OF 35 MILES PER hOUR be USED in the formula for determining the superelevation.

FORMULA: $E=.067 \frac{V^{2}}{R}$
$E=$ Superelevation in feet per foot of width
$V=$ VELOCITY IN MILES PER HOUR
R = Radius of curve in feet
3. - That full superelevation be used between the point of curvature and the point of tangency of the curve with suitable easement distances.

Guard Rail
A marked change in the type of guard rails used in the various States has taken place during the past four years. Many of the States have dropped the wooden style and adopted the cable or woven wire. A number of other States are giving the casle and WOVEN-WIRE types a trial. PIpe railing which was used occasionally in 1922 has fallen completely into disuse. A new comeination conSISting of a bottom wooden rail and a top cable is now being used to some extent ey Ohlo and New Jersey.

The dimensions of the guard rails and their location vary considerably in the several States. The minimum distance from the edge of the pavement to the guard rail varies from 1 to 9 feet. the average distance is now 43 inches. the average height of the HIGH-TYPE-WOODEN GUARD RAIL IS 39 INCHES AT THE PRESENT TIME; OF the low-type-wooden guard rall, 23 inches; of the cable style, $31 \frac{1}{\square}$ inches; and of the woven-wire design, 36 inches. The cure GUARD IN COMEINATION WITH GUARD RAIL IS USED BY A FEW STATES ON bridges or at extremely hazardous points.

Of the 46 States reporting in 1926, 3 reported serious accidents which were attrieuted to the high-type-wooden guard RAIL; I TAEULATED SUCH aN accident for the low-wooden rail styief; While no acc:dents were marked against the cable and woven-wire designs.

A summary of the guard rail information is shown in table 1. The detalled data for the individual States as shown in the report of the sub-committee are given in Taele 2.

Widening on Curves
The methods and amount of widening on curves now used show a wide divergence in the several States, although pract:cally every State widens pavements on curves to some extent. taele 3 gives the replies taken from the 1926 quest!onnaire.

It has been a difficult matter to condense the replies into a reasonaele space and for this reason it has been found desirable to omit a number of interesting computations and graphs. table 3 gives the amount of widening used on definite degrees of curvature. In a few States, however, the amount of widening varies with the size of the central angle as well as with the degree of curve. Most States widen their pavements on the inside of the curve, although some widen on the inside, outside, or both, depending upon LOCAL CONOITIONS.

It may ee sald in general that the average amount of widening has eeen increased since 1922. The decrease of the previous MAXIMUM HAS TENDED TOWARD A GREATER UNIFORMITY IN GENERAL PRACTICE. Figure \mid illustrates approximately the average amount of widening used ey the States reporting in 1926. Curves are also shown which REPRESENT A FEW FORMULAS WHICH HAVE BEEN SUGGESTED FOR DETERMINING the proper amount of widening.

Superelevation on Curves
The amount of superelevation on curves depends upon several FACTORS SUCH AS THE RADIUS OF CURVATURE, LENGTH OF CURVE, LENGTH availaele for transition, width of pavement, speed of vehicles, grade of road, and type of surfacing. As in the matter of widening, there is a large variation in the practice of the various States.

Taele 1. - Summary of guard-rail questionnaire for 1326

Table 4. - Detailea data compiled frun the curve-superelevation questionnitire for 1926

Taele 4 gives the answers to the 1926 questionnalre as tabulated by the sue-committee. Supérelevation is now used on 1degree curves ey at least 9 States, Many States, however, do not superelevate curves with a rad!us of more than 1,500 feet. The average maximum superelevat:on is 1.02 inches per fout of width, although there are several States us:ng a maximum of 1.5 inghes per foot of width. Due to the wide variations in the prevalling formulas, it was found most convenjent to tabulate the superelevaTION FOR DEF!NITE DEGREES OF CURVATURE. A BR:EF SUMMARY OF THE table shows the average superelevat:on for a 5-degree curve to se 0.513 INCH PER FOOT OF W: DTH; FOR A 10 degeree curve, 0.791 inch ; for a 15 -degrfe curie, 0.915 inch ; for a 20-degree curve, 0.98 inch ; for a 30-degree curve, 1.01 inches; and for a 40-degree curve, 1.02 inches. tihe superelevation eegins at an average distance of 34 feet from the point of curvature and reaches an average of 73 per cent of the full value at the point of curvature. there is a great difference in the methocs of transition. Many States use the full SUPERELEVATION AT THE POINT OF CURVATURE AND pOINT OF TANGENCY WITH an easement of 100 to 150 feet. Other States use only 50 per cent of the full superelevation at the point of curvature with an easeMENT DISTANCE EXTENDING FROM 50 TO 75 FEET EOTH WAYS FROM THIS POINT.

Compensation of Grades for Curvature

OnLy 8 States reported any compensation for grades on curves. in most cases the amount of compensation, where used, is determined ey the length and radius of the curve and such local restrictions as sight, distance and cost. Tasle 5 shows the results of the 1926 questionnalre as averaged by the sue-committee.

Cal!forn:a compensates for all grades of 6 per cent or more. TENNESSEE MAKES A REDUCTION IN GRADE OF I PER CENT FOR EACH 50-root reduct:on in radius below 200 feet. Oregon limits the grade to 4 per cent on curves of over 28 degrees.

Pavement Crowns
The crowns for all types of hard-surface roads are about the SAME FOR A G!VEN WIDTH ACCORDING TO THE ANSWERS RECEIVED FROM THE 1926 questionnalre as eriefed in Taele 5. A few States still use a greater crown for eituminous roads than for the cement concrete TYPE.

A. comparison of the 1926 tagulation with those made in 1922 and 1924 shows a elight tendency to reduce the height of crown. In 1922 the average crown of an 18 -foot concrete road was 1.88 inches; in 1324, 1.77 inches; and in 1926, 1.753 inches. The aVERage crown of a 20-foot pavement in 1326 is 1.89 inches, and that of a 24 -foot pavement is 2.482 inches.

PROGRESS OF FEDERAL HIGHWAY LEGISLATION

Provides for an amendment to existing federalaid road legislation preventing the use of the United States shield for any purpose other than as a marker for United Stateg highways.
H. R. 14565 - Introduced in the house on december 8, 1926, ey Scott Leavitt of Montana and referred to the Committee on Roads.

Provides that the wording of the federal Highway act of lezi ee revised so as to rekid that "Before any projects are approved in any State, such State through its State highway department, shall select or designate a system of highways not to exceed 7 per centum of the total highway mileage of such State as shown ey the records of the state highway department on Decemeer 31, 1926."
H. R. 14828 - Introduced in the House on decemeer 10, 1926, ey S. S. Arentz of Nevada, and referred to the Committee on Roads.

FIrst, provides for an amendment to Existing Federal-aid road legislation preventing the use of the United States shield for any purpose other than as a marker for United States highways.

Second, provides that the paragraph of the Federal highway act of 1921 be repealed, which frohibits the use of more than 60 per cent of the Federal ald allotted to any State on the primary OR ! NTERSTATE HIGHWAYS UNTIL PROVISION HAS EEEN made for the improveiment of the entire system.
H. R. 1429 - Introduced in the house on decemeer 11, 1926, ey W. F. Stevenson of South Carolina and referred to the Committee on Roads.

```
Provides that 20 per cent of the federal.ald road funds allotted to South carolina ee used for THE REPA:R AND MAINTENANCE OF POST ROADG WHICH ARE NOT MA!N OR INTERSTATE H:GHINAYS.
```

H. R. 15008 - The agricultural appropriation eill. introduced in the house on decemaer 13, 1326, ey W. W. Magee OF NEW YORK.

PROV:DES FOR AN APPRCPRIATION FOR FOREST ROADS and trails of $\$ 6,500,000$. OF THIS amount \$275,000 IS A PART OF THE AUTHORIZATION FOR THE FISCAL YEAR 1ق28, AND THE EALANCE $!S$ fROM THE AUTHORIZATION FOR the fiscal year l 927.

Provides for an appropr:ation for federal-aid ROADS OF $\$ 71,000,000$. OF THIS AMCUNT $\$ 23,800,000$ IS THE REMAINDER OF THE $\$ 75,000,000$ AJTHORIZED FOR the f:SCal year ending juine 30, 1926 and the galance is from the authorization for the fiscal year 1327.
S. 4602 - Introduced in the Senate on decemeer 7, 1326, Ey T. L. Oddie of Nevada and referred to the Committee on post Offices ane post roads.

CONTA!NS PROVISIONS IDENTICAL WITH THOSE IN H. R. 14828.
S. 4675 - Introduced in the Senate on Decemeer 9, 1926, By C. du pont of Delaware and referred to the Committee on post Offices and post Roads.

PROVIDES FOR THE CONSTRUCTION OF A POST ROAD AND MILITARY HIGHWAY FROM A POINT ON OR NEAR THE Atlantic coast to a point on or near the pacific COAST.

					\%
5w w	-	-	mase	\%oumb	
=-	momomomem	-9"***	-	- $=$ -	- =avem
-	\%-mom		-		
-				-	-
\%..	amem	$\pm \pm=$	asa		
	\%ome	-			-
\cdots				- - - -	$=$
\cdots	-mem 0 -m			- - - mom	-
$\cdots{ }^{-1}$	\cdots			\cdots	
\cdots	Mamem				\%om
(in	-				-9\%
\pm	${ }^{\text {amamem }}$	-			-
	mome				
\cdots	\cdots		\%		- =
	momex momem				
	-				

BUREAU PREPARING AN EXHIBIT FOR THE AMERIOAN ROAD BUILDERS ASSOCIATION CONVENTION

Abstract

THE BUREAU iS PREPARING AN EDUCAT:ONAL EXHIEIT FOR DISPLAY at the coming convention of the american road builders association WHICH is TO EE HEID iN GH:CfigO FROM JANUARY 10 TO 14, 1927. THE MAIN DISPLAY OF THE BUREAU WILL OCCUPY A FLOOR SPACE OF APPROXIMATELY 2,500 SQUARE FEET AND WILL EE LOCATED IN THE EALL ROOM OF the Coliseum on South Wabash avenue. Another smaller exhibit, WH:CH WILL CUNSIST CF THREE STANDARD EXHIE!T EOOTHS, WILL BE LOcated in the foyer uf the palamer house - the offic:al convention HEADQUARTERS.

THE MAIN EXHIE:T PRESENT: A VIEW OF THE RESULTS OF EXPERIENCE AND RESEARCH IN H!GHWAY CONSTRUCTION, ACCUMULATED IN RECENT YEARS, ON WHICH THE NEW SCIENCE OF HIGHWAY ENG:NEERING IS FOUNDED.

Entering the exhieit the visitor finds himself in the office OF THE HIGHWAY COMMISS!ON OF the State OF UTOPia, typlfying the I DEAL HIGHWAY CONSTRUCTION AGENCY, THE OPERATIONS OF WHICH HAVE PRODUCED A SYSTEM OF UTOPIAN H:GHWAYS EVERY MILE OF WHICH IS IMPROVED TO THE COMPLETE SATISFACTICN OF EVERY TAXPAYER.

THE COMM:SSION'S OPERAT!ONS ARE CONDUCTED SOLELY ON THE BASIS OF RATIONAL PRINCIPLES DEVELOPED OUT OF THE EXPER!ENCE OF THE PAST AND IN HARMONY W!TH THE CONCLUSIONS OF RESEARCH, UNINFLUENCED EY CONS:DERATIONS OF POLITICS AND EXPEDIENCY.

AFTER A FURTHER EXPLANATION OF THE HAPPY SOLUTION OF THE HIGHWAY PROELEM IN UTOP:A THE V!SITOR WILL PASS INTO A LARGE ROOM ARCUND THE WALLS OF WHICH ARE ARRANGED IN HORSESHOE FORM NINE EXHIEIT EOOTHS. THESE EOOTHS ILLUSTRATE THE SUCCESSIVE STEPS taken ey the Utopian State highinay commission to locate, eulld, MA!NTAIN aND OPERATE A SUCCESSFUL SYSTEM OF STATE HIGHWAYS. THE booths are ent Itled: Traffic Surveys, Highway financing, Subgrade Surveys, Grading Economy, Stage Construction, Construction Certalnty, pavement planning, Efficient Concrete Mixing, and Traffic SERVICE.

FROM The maln room in whl ch the eooths are located the VISITOR PASSES INTO A DISCUSSION ROOM ON THE WALLS OF WHICH ARE HUNG EROMIDE ENLARGEMENTS OF THE SEVERAL EOOTHS. THERE, AN attendant will ee present to answer any questIons that may have OCCURRED TO THE VISITOR AND TO PRESENT HIM WITH AN ILLUSTRATED

SOOKLET DESCRIE'NG THE SUBJECT MATTER OF THE ENTIRE EXHIEIT. OOPIES OF THIS ZOOKLET W:LL EE FURNISHED TO D:STRICT ENGINEERS UPON REQUEST.

The smaller extiait in the foyer of the Palmer house will cons!st c f three standard booths titled: the federal-aid highilay System Of The United States, Taxation Without Representation, and Roads from Savagery to Civilization.

nodulus of rupture by cant Ilever beam tests

Contrieuted ey the division of Tests

A SIMPLE DEVICE FOR TESTING CANTILEVER BEAMS IN ORDER TO DETERMINE THE MODULUS OF RUPTURE HAS GIVEN A GREAT IMPETUS DURING THE PAST VEAR TO THE FiELD TEST:NG OF CONCRETE. THERE IS NO DOUET OF FHE SAV!iNg IN TIME AND EQU!PMENT MADE POSSIbLE BY THE USE OF CANTILEVER-EE!M OPEC:MENS EOTH IN THE FIELD AND IN THE GAEORATORV. EU゙ THE EFFECT UPON THE TEST RESULTS OF THE NUMEROUS AND NOVEL METHODS OF GRIPPING THE SFEC IMEN AND APPLYING THE LOAD IS PRACTICALLY LUNKNOWN.

With the idea of suəplyine information relative to this TEST, AN OUTLINE COVER:NG A VAR!ETY OF METHODS HAS EEEN DRAWN UP EY THE DIVISION OF TESTS. IN ACCORDANCE WITH THIS PROGRAM, SPECIMENS ARE TO EE COMPARED AS TO STRENGTH AND UNIFORMITY. FIVE OR MORE SPECIMENS VILL EE TEETED EY EACH METHOD. IT IS EXPECTED tíhat falrly close comparis suns ivay ee made as to the sultaeility of THE SEVERAL METHODS SINCE UNUSUAL PRECAUTIONS ARE EEING TAKEN TO INSURE A UNIFORM QUAL!TY IN THE CONCRETE EEAMS.

IT PRESENT A NUMEER OF THE SPECIMENS HAVE EEEN MADE UP AND SOME OF THEM HAVE EEEN TESTED. THE DATA SECURED UP TO THIS TIME ARE NOT SUFFIC!ENT TO G:VE AN IND:CATION OF THE PROEAELE OUTCOME OF THE CUMDLETED TESTS. A: THE ETUDY PROGRESSES ADDITIONAL METHODS UNDOUETEDLY W:LL EE SUGGESTED AND INCLUDED IN THE INVESTIGATION.

MOTOR TRUCK IMPACT TESTS NOW IN PROGRESS

Contrisuted ey James A. Buchanan of the Division of Tests.

Abstract

A SPECIAL SERIES OF FIELD MOTOR-TRUCK IMPACT TESTS, NOW being carried on ey the division of tests, is expected to ee compLETED WITHIN A FEW MONTHS. T'HE OEJECTIVES OF THESE TESTS WERE DETERMINED FROM A STUDY OF THE DATA SECURED DURING THE ORIGINAL PROGRAM WHICH HAS EEEN COMPLETED. THE PRESENT WORK ALSO IS IN cooperation with the soc!ety of automot!ve Engineers and the Ruseer Association of America.

Based upon the findings of the original program, it is beLIEVEO THAT MOTOR TRUCK IMPACT REACT IOVS ARE DEPENDENT ON FOUR MAJOR variaeles, namely; road roughness, tire equipment, wheel load and vehicle speed. it is not eelieved that the effect of one variable Should ee considered w:thout due regard for the other three. from the original program it was possiele to plot lines of equal impact REACTION FOR ONE ROAD COND:TION, FOUR TIRE TYPES, AND VARIOUS COMEINAT:ONS OF LOAD AND SPEED. THE RESULT WAS A SERIES OF ISODYNAMIC CURVES FROM WHICH COULD EE READ THE MAXIMUM TOTAL VERTICAL REACTIONS IN THOUSANDS OF POUNDS THAT MIGHT EE REASONAELY EXPECTED TO OCCUR on that part icular road for any comeinat!on of wheel load and truck speed. The data were segregated ey tire types such as pneumatlc, NEW CUSH!ON, NEW SOLID, AND WORN-OUT SOL!D EQUIPMENT; AND THE CURVES REPRESENTED A RANGE OF WHEEL LOADS FROM 0 to 20,000 pOUNDS and speed from 0 to 30 miles an hour. The tests were made on the ARLINGTON TEST ROAD WH!CH HAD beEn ROUGHENED EY ARTIFICIAL OESTRUCTIONS.

With ït:s preliminary isogram as a sasis, a program of tests W!as formulated, the field work of hitich is expected to ee completed WITHIN A FEW MONTHE. A NUMEER OF HIGHWAY SECTIONS HAVE EEEN SElected as refresentative in type and roughness. These sections WERE MARKED OFF in one-twentieth mile lengths and points were SPOTtED on the pavement with traffic white to guide the trucks over the test sect:ons. the road sect!ons were calierated carefully at varyine speeds ey means of the "roughometer" descrieed in the Septemeer, 1926, numeer of puelic roads. The roughness limits were approximately 100 and 800 units at a speed of 30 miles an hour.

Tire equipment was selected to represent the four types used in the preliminary investigation, namely; pneumatic, new cushion, new sol id, and worn-out solid. The average deflections of the four types under a static load of 10,000 pounds were approximately $2.5 \mathrm{inches}, 1.0 \mathrm{inch}, 0.7 \mathrm{iNCH}$, and 0.2 inch respectively. The

TIRES WERE MOUNTED PERMANENTIY ON EXTRA WHEELS IN ORDER THAT TIRE CHANGES MIGHT GE MADE FGAF!DLV AND CONVENIENTLY EY SUESTITUTING WHEELS.

AT THE EEGINNING OF THE TESTS, THE REAR-WHEEL LOADS WERE STANDARDIZEU AT 2,500, 5,000, 7,500 AND 10,000 POUNDS. TWO TRUCKS WERE USED, A 2-TUN T ZUCK FOR THE 2,500 AND 5, 000 POUND LOADS AND A 5-TON TRUCK FOR THE OTHER LOADS. THE LIGHT LOAD OF EAOH TRUCK WAS accurately measured on platform scales and securely fastened in pOSIT!ON. THEN THE HEAV!ER LOAD WAS EUILT UP ON EACH TRUCK EY ADDING 1OO-POUND LEAD OR IRON WE: GHTS. THE POSiTIONS OF THESE EXTRA WEIGHTS WERE MARKED ON THE TRUCKS SO THAT THE WHEEL LOADS M!GHT SE DUNL!CATED READ:LY.

THE TRUCKS WERE OPERATED AT SPEEDS VARYING EY SMALL INCREMENTS FROM THE MINIMUM UP TO THE MAXIMUM SPEED OETAINAELE. THE AVERAGE SPEED OF EACH RUN WAS COMPUTED FROM STOP-WATCH OESERVATIONS ANE THE KINDWN I.ENGTH OF THE TEST SECTION. VARIATIONS IN SPEED WERE OESERVED FFOM SPEEDOMETERS MOUNTED ON THE TRUCKS. RUNS VARYING FROM THE AVERAGE SOEED EY MORE THAN $1 / 2$ MILE PER HOUR AS REGistered in the sfeedometer were discarded.

A FIELD TEST PROGRAM OF THIS CHARACTER MADE NECESSARY A MOEILE ORGAN: ZAT: ON AND EQUIPMENT. TO PROVIDE FOR THIS, A FIELD OFFICE AND TWO i IoAding and storage platforms were euilt on a íFOOT, THREE-TON-TRA!LER CHASSIS. ON A 2-TON TRUCK CHASSIS, A SPECIAL PLATFOPIM EODY WAS CONSTRUCTED WITH A SWINGING CHAIN HOIST placed ar irie forrvard eivd. in addition to hauling the traller, THIS SERVICE TRUOK: WAS USED TO CARRY THE SPARE WHEELS, GASOLINE, and general equipment necessary for, the tests.

THE 2‥TON AND 5-TON TEST TRUOKS WERE EQUIPPED WITH THE COILSPR:NG ACCELEROIVETERS DEVELUPED EY THE BJREAU, WHICH WERE MOUNTED SO AS TO FOLLOW THE VERTiCML MUTION OF THF RIGHT REAR WHEELS. IN FIGURE 1 \because he four pieces of riclling stock just descrieed are shown PARKED ON A VACANT LOT NEAIR ONE GZOUP OF THE TEST SECTIONS. THE TiNO MOTORCYCLES VERE USED EY LOCAL TRAFFIC OFFICERS.

Mun:C!Pal author!ties in the district of Columeia and in ALEXANDRIA, VIRGINIA, WERE INTEFESTED COOPERATORS IN THE TESTS MAOE WITHIN THEIR JURISDICTION. TRAFFIC OFFICERS WERE ASSIGNED TO ASSIST IN THE WORK ANJ THEY WERE EXTREMELY VALUAELE IN MAKING IT POSSIELE TO CONDUCT THE TESTS ON THE STREETS WITH SAFETY. NO-PARKING SIGNS WERE PLACED TEMPORARILY AT SEVERAL POINTS TO FACILITATE THE TESTS.

[^0]
[^0]: FIGJRE 1. - THE EQUIPMENT USEO IN THE SPECIAL IMPACT TESTS OF THE BUAEAU. ON THE LEFT ARE THE
 D offlce an officers.

