
Think Python

Wikibooks.org

March 16, 2013

On the 28th of April 2012 the contents of the English as well as German Wikibooks and Wikipedia
projects were licensed under Creative Commons Attribution-ShareAlike 3.0 Unported license. An
URI to this license is given in the list of figures on page 255. If this document is a derived work
from the contents of one of these projects and the content was still licensed by the project under
this license at the time of derivation this document has to be licensed under the same, a similar or a
compatible license, as stated in section 4b of the license. The list of contributors is included in chapter
Contributors on page 253. The licenses GPL, LGPL and GFDL are included in chapter Licenses on
page 259, since this book and/or parts of it may or may not be licensed under one or more of these
licenses, and thus require inclusion of these licenses. The licenses of the figures are given in the list of
figures on page 255. This PDF was generated by the LATEX typesetting software. The LATEX source
code is included as an attachment (source.7z.txt) in this PDF file. To extract the source from the
PDF file, we recommend the use of http://www.pdflabs.com/tools/pdftk-the-pdf-toolkit/
utility or clicking the paper clip attachment symbol on the lower left of your PDF Viewer, selecting
Save Attachment. After extracting it from the PDF file you have to rename it to source.7z. To
uncompress the resulting archive we recommend the use of http://www.7-zip.org/. The LATEX
source itself was generated by a program written by Dirk Hünniger, which is freely available under
an open source license from http://de.wikibooks.org/wiki/Benutzer:Dirk_Huenniger/wb2pdf.
This distribution also contains a configured version of the pdflatex compiler with all necessary
packages and fonts needed to compile the LATEX source included in this PDF file.

http://www.pdflabs.com/tools/pdftk-the-pdf-toolkit/
http://www.7-zip.org/
http://de.wikibooks.org/wiki/Benutzer:Dirk_Huenniger/wb2pdf

Contents

1 Preface 3
1.1 Chapter 0: Preface . 3

2 The way of the program 9
2.1 References . 16

3 Variables, expressions and statements 17

4 Functions 27
4.1 Function calls . 27
4.2 Type conversion functions . 27
4.3 Math functions . 28
4.4 Composition . 29
4.5 Adding new functions . 29
4.6 Definitions and uses . 30
4.7 Flow of execution . 31
4.8 Parameters and arguments . 32
4.9 Variables and parameters are local . 33
4.10 Stack diagrams . 33
4.11 Fruitful functions and void functions . 35
4.12 Why functions? . 36
4.13 Debugging . 36
4.14 Glossary . 37
4.15 Exercises . 38

5 Conditional and recursion 49

6 Fruitful functions 59
6.1 Return values . 59
6.2 Incremental development . 60
6.3 Composition . 62
6.4 Boolean functions . 62
6.5 More recursion . 63
6.6 Leap of faith . 65
6.7 One more example . 65
6.8 Checking types . 66
6.9 Debugging . 67
6.10 Glossary . 68
6.11 Exercises . 68
6.12 Multiple assignment . 69

III

Contents

6.13 Updating variables . 69
6.14 The while statement . 70
6.15 break . 71
6.16 Square roots . 72
6.17 Algorithms . 73
6.18 Debugging . 74
6.19 Glossary . 74
6.20 Exercises . 74

7 Strings 77
7.1 A string is a sequence . 77
7.2 len . 77
7.3 Traversal with a for loop . 78
7.4 String slices . 79
7.5 Strings are immutable . 80
7.6 Searching . 80
7.7 Looping and counting . 81
7.8 string methods . 81
7.9 The in operator . 82
7.10 String comparison . 83
7.11 Debugging . 83
7.12 Glossary . 84
7.13 Exercises . 85
7.14 Notes . 86

8 Case study: word play 87
8.1 Reading word lists . 87
8.2 Exercises . 88
8.3 Search . 88
8.4 Looping with indices . 90
8.5 Debugging . 91
8.6 Glossary . 91
8.7 Exercises . 92
8.8 Notes . 93

9 Lists 95
9.1 A list is a sequence . 95
9.2 Lists are mutable . 95
9.3 Traversing a list . 96
9.4 List operations . 97
9.5 List slices . 97
9.6 List methods . 98
9.7 Map, filter and reduce . 98
9.8 Deleting elements . 99
9.9 Lists and strings . 100
9.10 Objects and values . 101
9.11 Aliasing . 102
9.12 List arguments . 102

IV

Contents

9.13 Debugging . 104
9.14 Glossary . 105
9.15 Exercises . 105

10 Dictionaries 109
10.1 Dictionary as a set of counters . 110
10.2 Looping and dictionaries . 112
10.3 Reverse lookup . 112
10.4 Dictionaries and lists . 113
10.5 Memos . 115
10.6 Global variables . 115
10.7 Long integers . 117
10.8 Debugging . 117
10.9 Glossary . 118
10.10 Exercise-8 . 118
10.11 Notes . 119

11 Tuples 121
11.1 Tuples are immutable . 121
11.2 Tuple assignment . 122
11.3 Tuples as return values . 123
11.4 Variable-length argument tuples . 123
11.5 Lists and tuples . 124
11.6 Dictionaries and tuples . 125
11.7 Comparing tuples . 126
11.8 Sequences of sequences . 127
11.9 Debugging . 128
11.10 Glossary . 129
11.11 Exercises . 129
11.12 Word frequency analysis . 131
11.13 Random numbers . 132
11.14 Word histogram . 133
11.15 Most common words . 134
11.16 Optional parameters . 134
11.17 Dictionary subtraction . 135
11.18 Random words . 136
11.19 Markov analysis . 137
11.20 Data structures . 138
11.21 Debugging . 139
11.22 Glossary . 140
11.23 Exercises . 141
11.24 Persistence . 141
11.25 Reading and writing . 141
11.26 Format operator . 142
11.27 Filenames and paths . 143
11.28 Catching exceptions . 144
11.29 Databases . 145
11.30 Pickling . 146

V

Contents

11.31 Pipes . 146
11.32 Writing modules . 147
11.33 Debugging . 148
11.34 Glossary . 149
11.35 Exercises . 149

12 Classes and objects 151
12.1 User-defined types . 151
12.2 Attributes . 152
12.3 Rectangles . 153
12.4 Instances as return values . 153
12.5 Objects are mutable . 154
12.6 Copying . 155
12.7 Debugging . 156
12.8 Glossary . 156
12.9 Exercises . 157

13 Classes and functions 159
13.1 Time . 159
13.2 Pure functions . 159
13.3 Modifiers . 161
13.4 Prototyping versus planning . 161
13.5 Debugging . 163
13.6 Glossary . 163
13.7 Exercises . 164

14 Classes and methods 165
14.1 Object-oriented features . 165
14.2 Printing objects . 166
14.3 Another example . 167
14.4 A more complicated example . 168
14.5 The init method . 168
14.6 The __str__method . 169
14.7 Operator overloading . 169
14.8 Type-based dispatch . 170
14.9 Polymorphism . 171
14.10 Debugging . 172
14.11 Glossary . 173
14.12 Exercises . 173
14.13 Further reading . 175

15 Inheritance 177
15.1 Card objects . 177
15.2 Class attributes . 178
15.3 Comparing cards . 179
15.4 Decks . 180
15.5 Printing the deck . 180
15.6 Add, remove, shuffle and sort . 181

VI

Contents

15.7 Inheritance . 182
15.8 Class diagrams . 183
15.9 Debugging . 184
15.10 Glossary . 185
15.11 Exercises . 185

16 Debugging 189
16.1 Syntax errors . 189
16.2 Runtime errors . 191
16.3 Semantic errors . 194

17 Answers 199
17.1 Chapter 1 . 199
17.2 Chapter 2 . 200
17.3 Chapter 3 . 202
17.4 Chapter 9 . 204
17.5 Chapter 10 . 204
17.6 Chapter 11 . 205
17.7 Chapter 12 . 205
17.8 Chapter 13 . 207
17.9 Chapter 14 . 208
17.10 Chapter 15 . 209
17.11 Chapter 16 . 210
17.12 Chapter 3.5 . 213
17.13 Index . 219

18 Contributors 253

List of Figures 255

19 Licenses 259
19.1 GNU GENERAL PUBLIC LICENSE . 259
19.2 GNU Free Documentation License . 260
19.3 GNU Lesser General Public License . 261

1

1 Preface

1.1 Chapter 0: Preface

1.1.1 The strange history of this book

(This section was written by Allen B. Downey12)

In January 1999, I was preparing to teach an introductory programming class in Java. I
had taught it three times and I was getting frustrated. The failure rate in the class was too
high and, even for students who succeeded, the overall level of achievement was too low.

One of the problems I saw was the books. They were too big, with too much unnecessary
detail about Java, and not enough high-level guidance about how to program. And they all
suffered from the "trapdoor effect": they would start out easy, proceed gradually, and then
somewhere around Chapter 5 the bottom would fall out. The students would get too much
new material, too fast, and I would spend the rest of the semester picking up the pieces.

Two weeks before the first day of class, I decided to write my own book.

My goals were:

• Keep it short. It is better for students to read 10 pages than read 50 pages.
• Be careful with vocabulary. I tried to minimize the jargon and define each term at first

use.
• Build gradually. To avoid trapdoors, I took the most difficult topics and split them into

a series of small steps.
• Focus on programming, not the programming language. I included the minimum useful

subset of Java and left out the rest.

I needed a title, so on a whim I chose How to Think Like a Computer Scientist.

My first version was rough, but it worked. Students did the reading, and they understood
enough that I could spend class time on the hard topics, the interesting topics and (most
important) letting the students practice.

I released the book under the GNU Free Documentation License, which allows users to copy,
modify, and distribute the book.

What happened next is the cool part. Jeff Elkner, a high school teacher in Virginia, adopted
my book and translated it into Python. He sent me a copy of his translation, and I had the
unusual experience of learning Python by reading my own book.

1
2 "The strange history of this book" ˆ{http://www.greenteapress.com/thinkpython/html/book001.

html} by Allen B. Downey

3

http://www.greenteapress.com/thinkpython/html/book001.html
http://www.greenteapress.com/thinkpython/html/book001.html

Preface

Jeff and I revised the book, incorporated a case study by Chris Meyers, and in 2001 we
released How to Think Like a Computer Scientist: Learning with Python, also under the
GNU Free Documentation License. As Green Tea Press, I published the book and started
selling hard copies through Amazon.com and college book stores. Other books from Green
Tea Press are available at greenteapress.com3.

In 2003, I started teaching at Olin College and I got to teach Python for the first time. The
contrast with Java was striking. Students struggled less, learned more, worked on more
interesting projects, and generally had a lot more fun.

Over the last five years I have continued to develop the book, correcting errors, improving
some of the examples and adding material, especially exercises. In 2008 I started work on a
major revision—at the same time, I was contacted by an editor at Cambridge University
Press who was interested in publishing the next edition. Good timing!

The result is this book, now with the less grandiose title Think Python. Some of the changes
are:

• I added a section about debugging at the end of each chapter. These sections present
general techniques for finding and avoiding bugs, and warnings about Python pitfalls.

• I removed the material in the last few chapters about the implementation of lists and
trees. I still love those topics, but I thought they were incongruent with the rest of the
book.

• I added more exercises, ranging from short tests of understanding to a few substantial
projects.

• I added a series of case studies—longer examples with exercises, solutions, and discussion.
Some of them are based on Swampy, a suite of Python programs I wrote for use in my
classes. Swampy, code examples, and some solutions are available from thinkpython.com4.

• I expanded the discussion of programming development plans and basic design patterns.
• The use of Python is more idiomatic. The book is still about programming, not Python,

but now I think the book gets more leverage from the language.

I hope you enjoy working with this book, and that it helps you learn to program and think,
at least a little bit, like a computer scientist.

Allen B. Downey

Needham MA

Allen Downey is an Associate Professor of Computer Science at the Franklin W. Olin College
of Engineering.

3 http://www.greenteapress.com/
4 http://www.thinkpython.com

4

http://www.greenteapress.com/
http://www.thinkpython.com

Chapter 0: Preface

1.1.2 Acknowledgements

First and most importantly, I thank Jeff Elkner, who translated my Java book into Python,
which got this project started and introduced me to what has turned out to be my favorite
language.

I also thank Chris Meyers, who contributed several sections to How to Think Like a Computer
Scientist.

And I thank the Free Software Foundation for developing the GNU Free Documentation
License, which helped make my collaboration with Jeff and Chris possible.

I also thank the editors at Lulu who worked on How to Think Like a Computer Scientist.

I thank all the students who worked with earlier versions of this book and all the contributors
(listed below) who sent in corrections and suggestions.

And I thank my wife, Lisa, for her work on this book, and Green Tea Press, and everything
else, too.

1.1.3 Contributor List

More than 100 sharp-eyed and thoughtful readers have sent in suggestions and corrections
over the past few years. Their contributions, and enthusiasm for this project, have been a
huge help.

If you have a suggestion or correction, please send email to feedback@thinkpython.com. If I
make a change based on your feedback, I will add you to the contributor list (unless you ask
to be omitted).

If you include at least part of the sentence the error appears in, that makes it easy for me to
search. Page and section numbers are fine, too, but not quite as easy to work with. Thanks!

• Lloyd Hugh Allen sent in a correction to Section 8.4.
• Yvon Boulianne sent in a correction of a semantic error in Chapter 5.
• Fred Bremmer submitted a correction in Section 2.1.
• Jonah Cohen wrote the Perl scripts to convert the LaTeX source for this book into

beautiful HTML.
• Michael Conlon sent in a grammar correction in Chapter 2 and an improvement in style

in Chapter 1, and he initiated discussion on the technical aspects of interpreters.
• Benoit Girard sent in a correction to a humorous mistake in Section 5.6.
• Courtney Gleason and Katherine Smith wrote horsebet.py, which was used as a case

study in an earlier version of the book. Their program can now be found on the website.
• Lee Harr submitted more corrections than we have room to list here, and indeed he

should be listed as one of the principal editors of the text.
• James Kaylin is a student using the text. He has submitted numerous corrections.
• David Kershaw fixed the broken catTwice function in Section 3.10.
• Eddie Lam has sent in numerous corrections to Chapters 1, 2, and 3. He also fixed

the Makefile so that it creates an index the first time it is run and helped us set up a
versioning scheme.

• Man-Yong Lee sent in a correction to the example code in Section 2.4.

5

Preface

• David Mayo pointed out that the word "unconsciously" in Chapter 1 needed to be changed
to "subconsciously".

• Chris McAloon sent in several corrections to Sections 3.9 and 3.10.
• Matthew J. Moelter has been a long-time contributor who sent in numerous corrections

and suggestions to the book.
• Simon Dicon Montford reported a missing function definition and several typos in Chapter

3. He also found errors in the increment

function in Chapter 13.

• John Ouzts corrected the definition of "return value" in Chapter 3.
• Kevin Parks sent in valuable comments and suggestions as to how to improve the

distribution of the book.
• David Pool sent in a typo in the glossary of Chapter 1, as well as kind words of

encouragement.
• Michael Schmitt sent in a correction to the chapter on files and exceptions.
• Robin Shaw pointed out an error in Section 13.1, where the printTime function was used

in an example without being defined.
• Paul Sleigh found an error in Chapter 7 and a bug in Jonah Cohen’s Perl script that

generates HTML from LaTeX.
• Craig T. Snydal is testing the text in a course at Drew University. He has contributed

several valuable suggestions and corrections.
• Ian Thomas and his students are using the text in a programming course. They are

the first ones to test the chapters in the latter half of the book, and they have made
numerous corrections and suggestions.

• Keith Verheyden sent in a correction in Chapter 3.
• Peter Winstanley let us know about a longstanding error in our Latin in Chapter 3.
• Chris Wrobel made corrections to the code in the chapter on file I/O and exceptions.
• Moshe Zadka has made invaluable contributions to this project. In addition to writing

the first draft of the chapter on Dictionaries, he

provided continual guidance in the early stages of the book.

• Christoph Zwerschke sent several corrections and pedagogic suggestions, and explained
the difference between gleich and selbe.

• James Mayer sent us a whole slew of spelling and typographical errors, including two in
the contributor list.

• Hayden McAfee caught a potentially confusing inconsistency between two examples.
• Angel Arnal is part of an international team of translators working on the Spanish version

of the text. He has also found several errors in the English version.
• Tauhidul Hoque and Lex Berezhny created the illustrations in Chapter 1 and improved

many of the other illustrations.
• Dr. Michele Alzetta caught an error in Chapter 8 and sent some interesting pedagogic

comments and suggestions about Fibonacci and Old Maid.
• Andy Mitchell caught a typo in Chapter 1 and a broken example in Chapter 2.
• Kalin Harvey suggested a clarification in Chapter 7 and caught some typos.
• Christopher P. Smith caught several typos and is helping us prepare to update the book

for Python 2.2.
• David Hutchins caught a typo in the Foreword.

6

Chapter 0: Preface

• Gregor Lingl is teaching Python at a high school in Vienna, Austria. He is working on a
German translation of the book, and he caught a couple of bad errors in Chapter 5.

• Julie Peters caught a typo in the Preface.
• Florin Oprina sent in an improvement in makeTime, a correction in printTime, and a

nice typo.
• D. J. Webre suggested a clarification in Chapter 3.
• Ken found a fistful of errors in Chapters 8, 9 and 11.
• Ivo Wever caught a typo in Chapter 5 and suggested a clarification in Chapter 3.
• Curtis Yanko suggested a clarification in Chapter 2.
• Ben Logan sent in a number of typos and problems with translating the book into HTML.
• Jason Armstrong saw the missing word in Chapter 2.
• Louis Cordier noticed a spot in Chapter 16 where the code didn't match the text.
• Brian Cain suggested several clarifications in Chapters 2 and 3.
• Rob Black sent in a passel of corrections, including some changes for Python 2.2.
• Jean-Philippe Rey at Ecole Centrale Paris sent a number of patches, including some

updates for Python 2.2 and other thoughtful improvements.
• Jason Mader at George Washington University made a number of useful suggestions and

corrections.
• Jan Gundtofte-Bruun reminded us that “a error” is an error.
• Abel David and Alexis Dinno reminded us that the plural of “matrix” is “matrices”, not

“matrixes”. This error was in the book for years, but two readers with the same initials
reported it on the same day. Weird.

• Charles Thayer encouraged us to get rid of the semi-colons we had put at the ends of
some statements and to clean up our use of “argument” and “parameter”.

• Roger Sperberg pointed out a twisted piece of logic in Chapter 3.
• Sam Bull pointed out a confusing paragraph in Chapter 2.
• Andrew Cheung pointed out two instances of “use before def.”
• C. Corey Capel spotted the missing word in the Third Theorem of Debugging and a typo

in Chapter 4.
• Alessandra helped clear up some Turtle confusion.
• Wim Champagne found a brain-o in a dictionary example.
• Douglas Wright pointed out a problem with floor division in arc.
• Jared Spindor found some jetsam at the end of a sentence.
• Lin Peiheng sent a number of very helpful suggestions.
• Ray Hagtvedt sent in two errors and a not-quite-error.
• Torsten Hübsch pointed out an inconsistency in Swampy.
• Inga Petuhhov corrected an example in Chapter 14.
• Arne Babenhauserheide sent several helpful corrections.
• Mark E. Casida is is good at spotting repeated words.
• Scott Tyler filled in a that was missing. And then sent in a heap of corrections.
• Gordon Shephard sent in several corrections, all in separate emails.
• Andrew Turner spotted an error in Chapter 8.
• Adam Hobart fixed a problem with floor division in arc.
• Daryl Hammond and Sarah Zimmerman pointed out that I served up math.pi too early.

And Zim spotted a typo.
• George Sass found a bug in a Debugging section.
• Brian Bingham suggested Exercise 11.9.

7

Preface

• Leah Engelbert-Fenton pointed out that I used tuple as a variable name, contrary to my
own advice. And then found a bunch of typos and a “use before def.”

• Joe Funke spotted a typo.
• Chao-chao Chen found an inconsistency in the Fibonacci example.
• Jeff Paine knows the difference between space and spam.
• Lubos Pintes sent in a typo.
• Gregg Lind and Abigail Heithoff suggested Exercise 14.6.
• Max Hailperin pointed out a change coming in Python 3.0. Max is one of the authors of

the extraordinary Concrete Abstractions, which you might want to read when you are
done with this book.

• Chotipat Pornavalai found an error in an error message.
• Stanislaw Antol sent a list of very helpful suggestions.
• Eric Pashman sent a number of corrections for Chapters 4–11.
• Miguel Azevedo found some typos.
• Jianhua Liu sent in a long list of corrections.
• Nick King found a missing word.
• Martin Zuther sent a long list of suggestions.
• Adam Zimmerman found an inconsistency in my instance of an “instance” and several

other errors.
• Ratnakar Tiwari suggested a footnote explaining degenerate triangles.
• Anurag Goel suggested another solution for is_abecedarian and sent some additional

corrections. And he knows how to spell Jane Austen.
• Kelli Kratzer spotted one of they typos.
• Mark Griffiths pointed out a confusing example in Chapter 3.
• Roydan Ongie found an error in my Newton’s method.

1.1.4 The further strange adventures of this book

In September of 2008, Whiteknight converted the HTML version of "Think Python" at
Green Tea Press5 to a Wikitext version at Wikibooks6. Now anyone can improve the text.

5 "Think Python" at Green Tea Press ˆ{http://thinkpython.com/}
6 Wikibooks: Think Python ˆ{http://en.wikibooks.org/wiki/Think_Python}

8

http://thinkpython.com/
http://en.wikibooks.org/wiki/Think_Python

2 The way of the program

The goal of this book is to teach you to think like a computer scientist. This way of
thinking combines some of the best features of mathematics, engineering, and natural science.
Like mathematicians, computer scientists use formal languages to denote ideas (specifically
computations). Like engineers, they design things, assembling components into systems
and evaluating tradeoffs among alternatives. Like scientists, they observe the behavior of
complex systems, form hypotheses, and test predictions.

The single most important skill for a computer scientist is problem solving. Problem
solving means the ability to formulate problems, think creatively about solutions, and express
a solution clearly and accurately. As it turns out, the process of learning to program is an
excellent opportunity to practice problem-solving skills. That’s why this chapter is called,
“The way of the program.”

On one level, you will be learning to program, a useful skill by itself. On another level, you
will use programming as a means to an end. As we go along, that end will become clearer.

2.0.5 The Python programming language

The programming language you will learn is Python. Python is an example of a high-level
language; other high-level languages you might have heard of are C, C++, Perl, and Java.

There are also low-level languages, sometimes referred to as “machine languages” or
“assembly languages.” Loosely speaking, computers can only execute programs written in
low-level languages. So programs written in a high-level language have to be processed
before they can run. This extra processing takes some time, which is a small disadvantage
of high-level languages.

The advantages are enormous. First, it is much easier to program in a high-level language.
Programs written in a high-level language take less time to write, they are shorter and easier
to read, and they are more likely to be correct. Second, high-level languages are portable,
meaning that they can run on different kinds of computers with few or no modifications.
Low-level programs can run on only one kind of computer and have to be rewritten to run
on another.

Due to these advantages, almost all programs are written in high-level languages. Low-level
languages are used only for a few specialized applications.

Two kinds of programs process high-level languages into low-level languages: interpreters
and compilers. An interpreter reads a high-level program and executes it, meaning that it
does what the program says. It processes the program a little at a time, alternately reading
lines and performing computations.

9

The way of the program

Figure 1

A compiler reads the program and translates it completely before the program starts running.
In this context, the high-level program is called the source code, and the translated
program is called the object code or the executable. Once a program is compiled, you
can execute it repeatedly without further translation.

Figure 2

Python is considered an interpreted language because Python programs are executed by
an interpreter. There are two ways to use the interpreter: interactive mode and script
mode. In interactive mode, you type Python programs and the interpreter prints the result:

>>> 1 + 1
2

The chevron, >>>, is the prompt the interpreter uses to indicate that it is ready. If you
type 1 + 1, the interpreter replies 2.

Alternatively, you can store code in a file and use the interpreter to execute the contents of
the file, which is called a script. By convention, Python scripts have names that end with
.py.

To execute the script, you have to tell the interpreter the name of the file. In a UNIX
command window, you would type python dinsdale.py. In other development environments,
the details of executing scripts are different. You can find instructions for your environment
at the Python Website python.org.

Working in interactive mode is convenient for testing small pieces of code because you can
type and execute them immediately. But for anything more than a few lines, you should
save your code as a script so you can modify and execute it in the future.

10

Chapter 0: Preface

2.0.6 What is a program?

A program is a sequence of instructions that specifies how to perform a computation.
The computation might be something mathematical, such as solving a system of equations
or finding the roots of a polynomial, but it can also be a symbolic computation, such as
searching and replacing text in a document or (strangely enough) compiling a program.

The details look different in different languages, but a few basic instructions appear in
just about every language: input: Get data from the keyboard, a file, or some other de-
vice.output: Display data on the screen or send data to a file or other device.math: Perform
basic mathematical operations like addition and multiplication.conditional execution:
Check for certain conditions and execute the appropriate sequence of statements.repetition:
Perform some action repeatedly, usually with some variation. Believe it or not, that’s pretty
much all there is to it. Every program you’ve ever used, no matter how complicated, is
made up of instructions that look pretty much like these. So you can think of programming
as the process of breaking a large, complex task into smaller and smaller subtasks until the
subtasks are simple enough to be performed with one of these basic instructions.

That may be a little vague, but we will come back to this topic when we talk about
algorithms.

2.0.7 What is debugging?

Programming is error-prone. For whimsical reasons, programming errors are called bugs
and the process of tracking them down is called debugging.

Three kinds of errors can occur in a program: syntax errors, runtime errors, and semantic
errors. It is useful to distinguish between them in order to track them down more quickly.

Syntax errors

Python can only execute a program if the syntax is correct; otherwise, the interpreter
displays an error message. Syntax refers to the structure of a program and the rules about
that structure. For example, parentheses have to come in matching pairs, so (1 + 2) is legal,
but 8) is a syntax error.

In English readers can tolerate most syntax errors, which is why we can read the poetry
of E. E. Cummings without spewing error messages. Python is not so forgiving. If there
is a single syntax error anywhere in your program, Python will display an error message
and quit, and you will not be able to run your program. During the first few weeks of your
programming career, you will probably spend a lot of time tracking down syntax errors. As
you gain experience, you will make fewer errors and find them faster.

Runtime errors

The second type of error is a runtime error, so called because the error does not appear until
after the program has started running. These errors are also called exceptions because
they usually indicate that something exceptional (and bad) has happened.

11

The way of the program

Runtime errors are rare in the simple programs you will see in the first few chapters, so it
might be a while before you encounter one.

Semantic errors

The third type of error is the semantic error. If there is a semantic error in your program,
it will run successfully in the sense that the computer will not generate any error messages,
but it will not do the right thing. It will do something else. Specifically, it will do what you
told it to do.

The problem is that the program you wrote is not the program you wanted to write. The
meaning of the program (its semantics) is wrong. Identifying semantic errors can be tricky
because it requires you to work backward by looking at the output of the program and
trying to figure out what it is doing.

Experimental debugging

One of the most important skills you will acquire is debugging. Although it can be
frustrating, debugging is one of the most intellectually rich, challenging, and interesting
parts of programming.

In some ways, debugging is like detective work. You are confronted with clues, and you have
to infer the processes and events that led to the results you see.

Debugging is also like an experimental science. Once you have an idea about what is
going wrong, you modify your program and try again. If your hypothesis was correct, then
you can predict the result of the modification, and you take a step closer to a working
program. If your hypothesis was wrong, you have to come up with a new one. As Sherlock
Holmes pointed out, “When you have eliminated the impossible, whatever remains, however
improbable, must be the truth.” (A. Conan Doyle, The Sign of Four)

For some people, programming and debugging are the same thing. That is, programming
is the process of gradually debugging a program until it does what you want. The idea is
that you should start with a program that does something and make small modifications,
debugging them as you go, so that you always have a working program.

For example, Linux is an operating system that contains thousands of lines of code, but
it started out as a simple program Linus Torvalds used to explore the Intel 80386 chip.
According to Larry Greenfield, “One of Linus’s earlier projects was a program that would
switch between printing AAAA and BBBB. This later evolved to Linux.” (The Linux Users’
Guide Beta Version 1).

Later chapters will make more suggestions about debugging and other programming practices.

2.0.8 Formal and natural languages

Natural languages are the languages people speak, such as English, Spanish, and French.
They were not designed by people (although people try to impose some order on them);
they evolved naturally.

12

Chapter 0: Preface

Formal languages are languages that are designed by people for specific applications. For
example, the notation that mathematicians use is a formal language that is particularly good
at denoting relationships among numbers and symbols. Chemists use a formal language to
represent the chemical structure of molecules. And most importantly:

Programming languages are formal languages that have been designed to ex-
press computations.

Formal languages tend to have strict rules about syntax. For example, 3 + 3 = 6 is a
syntactically correct mathematical statement, but 3 + = 3 $ 6 is not. H2O is a syntactically
correct chemical formula, but 2Zz is not.

Syntax rules come in two flavors, pertaining to tokens and structure. Tokens are the basic
elements of the language, such as words, numbers, and chemical elements. One of the
problems with 3 + = 3 $ 6 is that $ is not a legal token in mathematics (at least as far as I
know). Similarly, 2Zz is not legal because there is no element with the abbreviation Zz.

The second type of syntax error pertains to the structure of a statement; that is, the way the
tokens are arranged. The statement 3 + = 3 $ 6 is illegal because even though + and = are
legal tokens, you can’t have one right after the other. Similarly, in a chemical formula the
subscript comes after the element name, not before. Exercise 1 Write a well-structured
English sentence with invalid tokens in it. Then write another sentence with all valid tokens
but with invalid structure. When you read a sentence in English or a statement in a formal
language, you have to figure out what the structure of the sentence is (although in a natural
language you do this subconsciously). This process is called parsing.

For example, when you hear the sentence, “The penny dropped,” you understand that “the
penny” is the subject and “dropped” is the predicate. Once you have parsed a sentence, you
can figure out what it means, or the semantics of the sentence. Assuming that you know
what a penny is and what it means to drop, you will understand the general implication of
this sentence.

Although formal and natural languages have many features in common—tokens, structure,
syntax, and semantics—there are some differences:

ambiguity: Natural languages are full of ambiguity, which people deal with by using contex-
tual clues and other information. Formal languages are designed to be nearly or completely
unambiguous, which means that any statement has exactly one meaning, regardless of
context.redundancy: In order to make up for ambiguity and reduce misunderstandings,
natural languages employ lots of redundancy. As a result, they are often verbose. Formal
languages are less redundant and more concise.literalness: Natural languages are full of
idiom and metaphor. If I say, “The penny dropped,” there is probably no penny and nothing
dropping1. Formal languages mean exactly what they say. People who grow up speaking
a natural language—everyone—often have a hard time adjusting to formal languages. In
some ways, the difference between formal and natural language is like the difference between
poetry and prose, but more so:

Poetry: Words are used for their sounds as well as for their meaning, and the whole
poem together creates an effect or emotional response. Ambiguity is not only common but

1 This idiom means that someone realized something after a period of confusion.

13

The way of the program

often deliberate.Prose: The literal meaning of words is more important, and the structure
contributes more meaning. Prose is more amenable to analysis than poetry but still often
ambiguous.Programs: The meaning of a computer program is unambiguous and literal,
and can be understood entirely by analysis of the tokens and structure. Here are some
suggestions for reading programs (and other formal languages). First, remember that formal
languages are much more dense than natural languages, so it takes longer to read them.
Also, the structure is very important, so it is usually not a good idea to read from top to
bottom, left to right. Instead, learn to parse the program in your head, identifying the tokens
and interpreting the structure. Finally, the details matter. Small errors in spelling and
punctuation, which you can get away with in natural languages, can make a big difference
in a formal language.

2.0.9 The first program

Traditionally, the first program you write in a new language is called “Hello, World!” because
all it does is display the words, “Hello, World!” In Python, it looks like this:

print ‚Hello, World!‚

This is an example of a print statement2, which doesn’t actually print anything on paper.
It displays a value on the screen. In this case, the result is the words
Hello, World!

The quotation marks in the program mark the beginning and end of the text to be displayed;
they don’t appear in the result.

Some people judge the quality of a programming language by the simplicity of the “Hello,
World!” program. By this standard, Python does about as well as possible.

2.0.10 Debugging

It is a good idea to read this book in front of a computer so you can try out the examples
as you go. You can run most of the examples in interactive mode, but if you put the code
into a script, it is easier to try out variations.

Whenever you are experimenting with a new feature, you should try to make mistakes. For
example, in the “Hello, world!” program, what happens if you leave out one of the quotation
marks? What if you leave out both? What if you spell print wrong?

This kind of experiment helps you remember what you read; it also helps with debugging,
because you get to know what the error messages mean. It is better to make mistakes now
and on purpose than later and accidentally.

Programming, and especially debugging, sometimes brings out strong emotions. If you are
struggling with a difficult bug, you might feel angry, despondent or embarrassed.

2 In Python 3.0, print is a function, not a statement, so the syntax is print(’Hello, World!’). We will get
to functions soon!

14

Chapter 0: Preface

There is evidence that people naturally respond to computers as if they were people3. When
they work well, we think of them as teammates, and when they are obstinate or rude, we
respond to them the same way we respond to rude, obstinate people.

Preparing for these reactions might help you deal with them. One approach is to think of
the computer as an employee with certain strengths, like speed and precision, and particular
weaknesses, like lack of empathy and inability to grasp the big picture.

Your job is to be a good manager: find ways to take advantage of the strengths and mitigate
the weaknesses. And find ways to use your emotions to engage with the problem, without
letting your reactions interfere with your ability to work effectively.

Learning to debug can be frustrating, but it is a valuable skill that is useful for many
activities beyond programming. At the end of each chapter there is a debugging section,
like this one, with my thoughts about debugging. I hope they help!

2.0.11 Glossary

problem solving: The process of formulating a problem, finding a solution, and expressing
the solution. high-level language: A programming language like Python that is designed
to be easy for humans to read and write. low-level language: A programming language
that is designed to be easy for a computer to execute; also called “machine language” or
“assembly language.” portability: A property of a program that can run on more than one
kind of computer. interpret: To execute a program in a high-level language by translating
it one line at a time. compile: To translate a program written in a high-level language
into a low-level language all at once, in preparation for later execution. source code: A
program in a high-level language before being compiled. object code: The output of the
compiler after it translates the program. executable: Another name for object code that
is ready to be executed. prompt: Characters displayed by the interpreter to indicate that
it is ready to take input from the user. script: A program stored in a file (usually one
that will be interpreted). interactive mode: A way of using the Python interpreter by
typing commands and expressions at the prompt. script mode: A way of using the Python
interpreter to read and execute statements in a script. program: A set of instructions that
specifies a computation. algorithm: A general process for solving a category of problems.
bug: An error in a program. debugging: The process of finding and removing any of
the three kinds of programming errors. syntax: The structure of a program. syntax
error: An error in a program that makes it impossible to parse (and therefore impossible to
interpret). exception: An error that is detected while the program is running. semantics:
The meaning of a program. semantic error: An error in a program that makes it do
something other than what the programmer intended. natural language: Any one of the
languages that people speak that evolved naturally. formal language: Any one of the
languages that people have designed for specific purposes, such as representing mathematical
ideas or computer programs; all programming languages are formal languages. token: One
of the basic elements of the syntactic structure of a program, analogous to a word in a
natural language. parse: To examine a program and analyze the syntactic structure. print

3 See Reeves and Nass, The Media Equation: How People Treat Computers, Television, and New Media
Like Real People and Places.

15

The way of the program

statement: An instruction that causes the Python interpreter to display a value on the
screen.

2.0.12 Exercises

Exercise 2

Use a web browser to go to the Python website, http://python.org/. This page contains
information about Python and links to Python-related pages, and it gives you the ability to
search the Python documentation. For example, if you enter print in the search window,
the first link that appears is the documentation of the print statement. At this point, not
all of it will make sense to you, but it is good to know where it is.

Exercise 3

Start the Python interpreter and type 'help()' to start the online help utility. Or you can
type help('print') to get information about the 'print' statement. If this example doesn’t
work, you may need to install additional Python documentation or set an environment
variable; the details depend on your operating system and version of Python.

Exercise 4

Start the Python interpreter and use it as a calculator. Python’s syntax for math operations
is almost the same as standard mathematical notation. For example, the symbols '+', '-'
and '/' denote addition, subtraction and division, as you would expect. The symbol for
multiplication is '*'. If you run a 10 kilometer race in 43 minutes 30 seconds, what is your
average time per mile? What is your average speed in miles per hour? (Hint: there are 1.61
kilometers in a mile).

2.1 References

16

http://python.org/.

3 Variables, expressions and statements

3.0.1 Values and types

A value is one of the basic things a program works with, like a letter or a number. The
values we have seen so far are 1, 2, and 'Hello, World!'.

These values belong to different types: 2 is an integer, and 'Hello, World!' is a string,
so-called because it contains a “string” of letters. You (and the interpreter) can identify
strings because they are enclosed in quotation marks.

The print statement also works for integers.

>>> print 4
4

If you are not sure what type a value has, the interpreter can tell you.

>>> type(‚Hello, World!‚)
<type ‚str‚>
>>> type(17)
<type ‚int‚>

Not surprisingly, strings belong to the type str and integers belong to the type int. Less
obviously, numbers with a decimal point belong to a type called float, because these numbers
are represented in a format called floating-point.

>>> type(3.2)
<type ‚float‚>

What about values like '17' and '3.2'? They look like numbers, but they are in quotation
marks like strings.

>>> type(‚17‚)
<type ‚str‚>
>>> type(‚3.2‚)
<type ‚str‚>

They're strings.

When you type a large integer, you might be tempted to use commas between groups of
three digits, as in 1,000,000. This is not a legal integer in Python, but it is legal:

>>> print 1,000,000
1 0 0

Well, that’s not what we expected at all! Python interprets 1,000,000 as a comma-separated
sequence of integers, which it prints with spaces between.

17

Variables, expressions and statements

This is the first example we have seen of a semantic error: the code runs without producing
an error message, but it doesn't do the “right” thing.

3.0.2 Variables

One of the most powerful features of a programming language is the ability to manipulate
variables. A variable is a name that refers to a value.

An assignment statement creates new variables and gives them values:

>>> message = ‚And now for something completely different‚
>>> n = 17
>>> pi = 3.1415926535897931

This example makes three assignments. The first assigns a string to a new variable named
message; the second gives the integer 17 to n; the third assigns the (approximate) value of π
to pi.

A common way to represent variables on paper is to write the name with an arrow pointing
to the variable’s value. This kind of figure is called a state diagram because it shows what
state each of the variables is in (think of it as the variable’s state of mind). This diagram
shows the result of the previous example:

message → 'And now for something completely different'
n → 17
pi → 3.1415926535897931

To display the value of a variable, you can use a print statement:

>>> print n
17
>>> print pi
3.14159265359

The type of a variable is the type of the value it refers to.

>>> type(message)
<type ‚str‚>
>>> type(n)
<type ‚int‚>
>>> type(pi)
<type ‚float‚>

Exercise 1

If you type an integer with a leading zero, you might get a confusing error:

>>> zipcode = 02492
^

SyntaxError: invalid token

Other number seem to work, but the results are bizarre:

18

References

>>> zipcode = 02132
>>> print zipcode
1114

Can you figure out what is going on? Hint: print the values 01, 010, 0100 and 01000.

3.0.3 Variable names and keywords

Programmers generally choose names for their variables that are meaningful—they document
what the variable is used for.

Variable names can be arbitrarily long. They can contain both letters and numbers, but
they have to begin with a letter. It is legal to use uppercase letters, but it is a good idea to
begin variable names with a lowercase letter (you'll see why later).

The underscore character (_) can appear in a name. It is often used in names with multiple
words, such as my_name or airspeed_of_unladen_swallow.

If you give a variable an illegal name, you get a syntax error:
>>> 76trombones = 'big parade'
SyntaxError: invalid syntax
>>> more@ = 1000000
SyntaxError: invalid syntax
>>> class = 'Advanced Theoretical Zymurgy'
SyntaxError: invalid syntax

76trombones is illegal because it does not begin with a letter. more@ is illegal because it
contains an illegal character, @. But what's wrong with class?

It turns out that class is one of Python's keywords. The interpreter uses keywords to
recognize the structure of the program, and they cannot be used as variable names.

Python has 31 keywords:

and del from not while
as elif global or with
assert else if pass yield
break except import print
class exec in raise
continue finally is return
def for lambda try

You might want to keep this list handy. If the interpreter complains about one of your
variable names and you don't know why, see if it is on this list.

If you write your code in a text editor that understands Python, you may find that it makes
it easy for you to spot such keyword clashes by displaying keywords in a different color to
ordinary variables. This feature is called syntax highlighting, and most programmers find it
indispensable. This book uses syntax highlighting for its example code, so in the following
example:

19

Variables, expressions and statements

ok_variable = 42
yield = 42

you can see that yield has been recognized as a keyword and not as an ordinary variable,
since it is colored orange.

3.0.4 Statements

A statement is a unit of code that the Python interpreter can execute. We have seen two
kinds of statements: print and assignment.

When you type a statement in interactive mode, the interpreter executes it and displays the
result, if there is one.

A script usually contains a sequence of statements. If there is more than one statement, the
results appear one at a time as the statements execute.

For example, the script
print 1
x = 2
print x

produces the output
1
2

The assignment statement produces no output.

3.0.5 Operators and operands

Operators are special symbols that represent computations like addition and multiplication.
The values the operator is applied to are called operands.

The operators +, -, *, / and ** perform addition, subtraction, multiplication, division and
exponentiation, as in the following examples:
20+32 hour-1 hour*60+minute minute/60 5**2 (5+9)*(15-7)

In some other languages, ˆ is used for exponentiation, but in Python it is a bitwise operator
called XOR. I won’t cover bitwise operators in this book, but you can read about them at
wiki.python.org/moin/BitwiseOperators.

The division operator might not do what you expect:
>>> minute = 59
>>> minute/60
0

20

References

The value of minute is 59, and in conventional arithmetic 59 divided by 60 is 0.98333, not 0.
The reason for the discrepancy is that Python is performing floor division.1

When both of the operands are integers, the result is also an integer; floor division chops off
the fraction part, so in this example it rounds down to zero.

If either of the operands is a floating-point number, Python performs floating-point division,
and the result is a float:
>>> minute/60.0
0.98333333333333328

3.0.6 Expressions

An expression is a combination of values, variables, and operators. A value all by itself
is considered an expression, and so is a variable, so the following are all legal expressions
(assuming that the variable x has been assigned a value):
17
x
x + 17

If you type an expression in interactive mode, the interpreter evaluates it and displays the
result:
>>> 1 + 1
2

But in a script, an expression all by itself doesn’t do anything! This is a common source of
confusion for beginners.

Exercise 2

Type the following statements in the Python interpreter to see what they do:

5
x = 5
x + 1

Now put the same statements into a script and run it. What is the output? Modify the
script by transforming each expression into a print statement and then run it again.

3.0.7 Order of operations

When more than one operator appears in an expression, the order of evaluation depends
on the rules of precedence. For mathematical operators, Python follows mathematical
convention. The acronym PEMDAS is a useful way to remember the rules:

1 In Python 3.0, the result of this division is a float. The new operator // performs integer division.

21

Variables, expressions and statements

• Parentheses have the highest precedence and can be used to force an expression to
evaluate in the order you want. Since expressions in parentheses are evaluated first, 2 *
(3-1) is 4, and (1+1)**(5-2) is 8. You can also use parentheses to make an expression
easier to read, as in (minute * 100) / 60, even if it doesn't change the result.

• Exponentiation has the next highest precedence, so 2**1+1 is 3, not 4, and 3*1**3 is 3,
not 27.

• Multiplication and Division have the same precedence, which is higher than Addition
and Subtraction, which also have the same precedence. So 2*3-1 is 5, not 4, and 6+4/2
is 8, not 5.

• Operators with the same precedence are evaluated from left to right. So in the expression
degrees / 2 * pi, the division happens first and the result is multiplied by pi. To divide
by 2 π, you can reorder the operands or use parentheses.

3.0.8 String operations

In general, you cannot perform mathematical operations on strings, even if the strings look
like numbers, so the following are illegal:
'2'-'1' 'eggs'/'easy' 'third'*'a charm'

The + operator works with strings, but it might not do what you expect: it performs
concatenation, which means joining the strings by linking them end-to-end. For example:
first = 'throat'
second = 'warbler'
print first + second

The output of this program is throatwarbler.

The * operator also works on strings; it performs repetition. For example, ’Spam’*3 is
'SpamSpamSpam'. If one of the operands is a string, the other has to be an integer.

This use of + and * makes sense by analogy with addition and multiplication. Just as 4*3 is
equivalent to 4+4+4, we expect 'Spam'*3 to be the same as 'Spam'+'Spam'+'Spam', and it
is. On the other hand, there is a significant way in which string concatenation and repetition
are different from integer addition and multiplication. Can you think of a property that
addition has that string concatenation does not?

3.0.9 Comments

As programs get bigger and more complicated, they get more difficult to read. Formal
languages are dense, and it is often difficult to look at a piece of code and figure out what it
is doing, or why.

For this reason, it is a good idea to add notes to your programs to explain in natural language
what the program is doing. These notes are called comments, and they start with the #
symbol:

compute the percentage of the hour that has elapsed
percentage = (minute * 100) / 60

22

References

In this case, the comment appears on a line by itself. You can also put comments at the end
of a line:

percentage = (minute * 100) / 60 # percentage of an hour

Everything from the # to the end of the line is ignored—it has no effect on the program.

Comments are most useful when they document non-obvious features of the code. It is
reasonable to assume that the reader can figure out what the code does; it is much more
useful to explain why.

This comment is redundant with the code and useless:

v = 5 # assign 5 to v

This comment contains useful information that is not in the code:

v = 5 # velocity in meters/second.

Good variable names can reduce the need for comments, but long names can make complex
expressions hard to read, so there is a tradeoff.

3.0.10 Debugging

At this point the syntax error you are most likely to make is an illegal variable name, like
class and yield, which are keywords, or odd˜job and US$, which contain illegal characters.

If you put a space in a variable name, Python thinks it is two operands without an operator:
>>> bad name = 5
SyntaxError: invalid syntax

For syntax errors, the error messages don’t help much. The most common messages are
SyntaxError: invalid syntax and SyntaxError: invalid token, neither of which is very
informative.

The runtime error you are most likely to make is a “use before def;” that is, trying to use
a variable before you have assigned a value. This can happen if you spell a variable name
wrong:
>>> principal = 327.68
>>> interest = principle * rate
NameError: name 'principle' is not defined

Variables names are case sensitive, so LaTeX is not the same as latex.

At this point the most likely cause of a semantic error is the order of operations. For example,
to evaluate 1/2 π, you might be tempted to write
>>> 1.0 / 2.0 * pi

But the division happens first, so you would get π / 2, which is not the same thing! There
is no way for Python to know what you meant to write, so in this case you don’t get an
error message; you just get the wrong answer.

23

Variables, expressions and statements

3.0.11 Glossary

value: One of the basic units of data, like a number or string, that a program manipulates.
type: A category of values. The types we have seen so far are integers (type int), floating-
point numbers (type float), and strings (type str). integer: A type that represents whole
numbers. floating-point: A type that represents numbers with fractional parts. string:
A type that represents sequences of characters. variable: A name that refers to a value.
statement: A section of code that represents a command or action. So far, the statements
we have seen are assignments and print statements. assignment: A statement that assigns
a value to a variable. state diagram: A graphical representation of a set of variables and
the values they refer to. keyword: A reserved word that is used by the compiler to parse a
program; you cannot use keywords like if, def, and while as variable names. operator: A
special symbol that represents a simple computation like addition, multiplication, or string
concatenation. operand: One of the values on which an operator operates. floor division:
The operation that divides two numbers and chops off the fraction part. expression:
A combination of variables, operators, and values that represents a single result value.
evaluate: To simplify an expression by performing the operations in order to yield a single
value.rules of precedence: The set of rules governing the order in which expressions
involving multiple operators and operands are evaluated.

concatenate: To join two operands end-to-end. comment: Information in a program that
is meant for other programmers (or anyone reading the source code) and has no effect on
the execution of the program.

3.0.12 Exercises

Exercise 3

Assume that we execute the following assignment statements:

width = 17
height = 12.0
delimiter = ‚.‚

For each of the following expressions, write the value of the expression and the type (of the
value of the expression).

• 'width/2'

• 'width/2.0'

• 'height/3'

• '1 + 2 * 5'

• 'delimiter * 5'

Use the Python interpreter to check your answers.

24

References

Exercise 4

Practice using the Python interpreter as a calculator:

• The volume of a sphere with radius 'r' is '4/3' πππ r3.

What is the volume of a sphere with radius 5? Hint: 392.6 is wrong!

• Suppose the cover price of a book is $24.95, but bookstores get a

40% discount. Shipping costs $3 for the first copy and 75 cents for each additional copy.
What is the total wholesale cost for 60 copies?

• If I leave my house at 6:52 am and run 1 mile at an easy pace

(8:15 per mile), then 3 miles at tempo (7:12 per mile) and 1 mile at easy pace again, what
time do I get home for breakfast?

3.0.13 Notes

25

4 Functions

4.1 Function calls

In the context of programming, a function is a named sequence of statements that performs
a computation. When you define a function, you specify the name and the sequence of
statements. Later, you can "call" the function by name. We have already seen one example
of a function call:

>>> type(32)
<type ‚int‚>

The name of the function is type. The expression in parentheses is called the argument of
the function. The result, for this function, is the type of the argument.

It is common to say that a function "takes" an argument and "returns" a result. The result
is called the return value.

4.2 Type conversion functions

Python provides built-in functions that convert values from one type to another. The int
function takes any value and converts it to an integer, if it can, or complains otherwise:

>>> int(‚32‚)
32
>>> int(‚Hello‚)
ValueError: invalid literal for int(): Hello

int can convert floating-point values to integers, but it doesn't round off; it chops off the
fraction part:

>>> int(3.99999)
3
>>> int(-2.3)
-2

float converts integers and strings to floating-point numbers:

>>> float(32)
32.0
>>> float(‚3.14159‚)
3.14159

Finally, str converts its argument to a string:

27

Functions

>>> str(32)
‚32‚
>>> str(3.14159)
‚3.14159‚

4.3 Math functions

Python has a math module that provides most of the familiar mathematical functions. A
module is a file that contains a collection of related functions.

Before we can use the module, we have to import it:

>>> import math

This statement creates a module object named math. If you print the module object, you
get some information about it:

>>> print math

<module ‚math‚ from ‚/usr/lib/python2.5/lib-dynload/math.so‚>

The module object contains the functions and variables defined in the module. To access one
of the functions, you have to specify the name of the module and the name of the function,
separated by a dot (also known as a period). This format is called dot notation.

>>> ratio = signal_power / noise_power
>>> decibels = 10 * math.log10(ratio)

>>> radians = 0.7
>>> height = math.sin(radians)

The first example computes the logarithm base 10 of the signal-to-noise ratio. The math
module also provides a function called log that computes logarithms base e.

The second example finds the sine of radians. The name of the variable is a hint that sin
and the other trigonometric functions (cos, tan, etc.) take arguments in radians. To convert
from degrees to radians, divide by 360 and multiply by 2 π:

>>> degrees = 45

>>> radians = degrees / 360.0 * 2 * math.pi
>>> math.sin(radians)
0.707106781187

The expression math.pi gets the variable pi from the math module. The value of this variable
is an approximation of π, accurate to about 15 digits.

If you know your trigonometry, you can check the previous result by comparing it to the
square root of two divided by two:

28

Composition

>>> math.sqrt(2) / 2.0
0.707106781187

4.4 Composition

So far, we have looked at the elements of a program—variables, expressions, and state-
ments—in isolation, without talking about how to combine them.

One of the most useful features of programming languages is their ability to take small
building blocks and compose them. For example, the argument of a function can be any
kind of expression, including arithmetic operators:

x = math.sin(degrees / 360.0 * 2 * math.pi)

And even function calls:

x = math.exp(math.log(x+1))

Almost anywhere you can put a value, you can put an arbitrary expression, with one
exception: the left side of an assignment statement has to be a variable name. Any other
expression on the left side is a syntax error.

>>> minutes = hours * 60 # right
>>> hours * 60 = minutes # wrong!
SyntaxError: can‚t assign to operator

4.5 Adding new functions

So far, we have only been using the functions that come with Python, but it is also possible
to add new functions. A function definition specifies the name of a new function and the
sequence of statements that execute when the function is called.

Here is an example:

def print_lyrics():
print "I‚m a lumberjack, and I‚m okay."
print "I sleep all night and I work all day."

def is a keyword that indicates that this is a function definition. The name of the function
is print_lyrics. The rules for function names are the same as for variable names: letters,
numbers and some punctuation marks are legal, but the first character can't be a number.
You can't use a keyword as the name of a function, and you should avoid having a variable
and a function with the same name.

The empty parentheses after the name indicate that this function doesn't take any arguments.

The first line of the function definition is called the header; the rest is called the body.
The header has to end with a colon and the body has to be indented. By convention,

29

Functions

the indentation is always four spaces (see Section). The body can contain any number of
statements.

The strings in the print statements are enclosed in double quotes. Single quotes and double
quotes do the same thing; most people use single quotes except in cases like this where a
single quote (which is also an apostrophe) appears in the string.

If you type a function definition in interactive mode, the interpreter prints ellipses (...) to
let you know that the definition isn't complete:

>>> def print_lyrics():
... print "I‚m a lumberjack, and I‚m okay."
... print "I sleep all night and I work all day."
...

To end the function, you have to enter an empty line (this is not necessary in a script).

Defining a function creates a variable with the same name.

>>> print print_lyrics
<function print_lyrics at 0xb7e99e9c>
>>> print type(print_lyrics)
<type ‚function‚>

The value of print_lyrics is a function object, which has type 'function'.

The syntax for calling the new function is the same as for built-in functions:

>>> print_lyrics()
I‚m a lumberjack, and I‚m okay.
I sleep all night and I work all day.

Once you have defined a function, you can use it inside another function. For example, to
repeat the previous refrain, we could write a function called repeat_lyrics:

def repeat_lyrics():
print_lyrics()
print_lyrics()

And then call repeat_lyrics:

>>> repeat_lyrics()
I‚m a lumberjack, and I‚m okay.
I sleep all night and I work all day.
I‚m a lumberjack, and I‚m okay.
I sleep all night and I work all day.

But that's not really how the song goes.

4.6 Definitions and uses

Pulling together the code fragments from the previous section, the whole program looks like
this:

30

Flow of execution

def print_lyrics():
print "I‚m a lumberjack, and I‚m okay."
print "I sleep all night and I work all day."

def repeat_lyrics():
print_lyrics()
print_lyrics()

repeat_lyrics()

This program contains two function definitions: print_lyrics and repeat_lyrics. Func-
tion definitions get executed just like other statements, but the effect is to create function
objects. The statements inside the function do not get executed until the function is called,
and the function definition generates no output.

As you might expect, you have to create a function before you can execute it. In other
words, the function definition has to be executed before the first time it is called.

4.6.1 Exercise 1

Move the last line of this program to the top, so the function call appears before the
definitions. Run the program and see what error message you get.

4.6.2 Exercise 2

Move the function call back to the bottom and move the definition of print_lyrics after
the definition of repeat_lyrics. What happens when you run this program?

4.7 Flow of execution

In order to ensure that a function is defined before its first use, you have to know the order
in which statements are executed, which is called the flow of execution.

Execution always begins at the first statement of the program. Statements are executed one
at a time, in order from top to bottom.

Function definitions do not alter the flow of execution of the program, but remember that
statements inside the function are not executed until the function is called.

A function call is like a detour in the flow of execution. Instead of going to the next statement,
the flow jumps to the body of the function, executes all the statements there, and then
comes back to pick up where it left off.

That sounds simple enough, until you remember that one function can call another. While
in the middle of one function, the program might have to execute the statements in another
function. But while executing that new function, the program might have to execute yet
another function!

31

Functions

Fortunately, Python is good at keeping track of where it is, so each time a function completes,
the program picks up where it left off in the function that called it. When it gets to the end
of the program, it terminates.

What's the moral of this sordid tale? When you read a program, you don't always want to
read from top to bottom. Sometimes it makes more sense if you follow the flow of execution.

4.8 Parameters and arguments

Some of the built-in functions we have seen require arguments. For example, when you call
math.sin you pass a number as an argument. Some functions take more than one argument:
math.pow takes two, the base and the exponent.

Inside the function, the arguments are assigned to variables called parameters. Here is an
example of a user-defined function that takes an argument:

def print_twice(bruce):
print bruce
print bruce

This function assigns the argument to a parameter named bruce. When the function is
called, it prints the value of the parameter (whatever it is) twice.

This function works with any value that can be printed.

>>> print_twice(‚Spam‚)
Spam
Spam

>>> print_twice(17)
17
17
>>> print_twice(math.pi)
3.14159265359
3.14159265359

The same rules of composition that apply to built-in functions also apply to user-defined
functions, so we can use any kind of expression as an argument for print_twice:

>>> print_twice(‚Spam ‚*4)
Spam Spam Spam Spam
Spam Spam Spam Spam
>>> print_twice(math.cos(math.pi))
-1.0
-1.0

The argument is evaluated before the function is called, so in the examples the expressions
'Spam '*4 and math.cos(math.pi) are only evaluated once.

You can also use a variable as an argument:

>>> michael = ‚Eric, the half a bee.‚

32

Variables and parameters are local

>>> print_twice(michael)
Eric, the half a bee.
Eric, the half a bee.

The name of the variable we pass as an argument (michael) has nothing to do with the
name of the parameter (bruce). It doesn't matter what the value was called back home (in
the caller); here in print_twice, we call everybody bruce.

4.9 Variables and parameters are local

When you create a variable inside a function, it is local, which means that it only exists
inside the function. For example:

def cat_twice(part1, part2):
cat = part1 + part2
print_twice(cat)

This function takes two arguments, concatenates them, and prints the result twice. Here is
an example that uses it:

>>> line1 = ‚Bing tiddle ‚
>>> line2 = ‚tiddle bang.‚
>>> cat_twice(line1, line2)
Bing tiddle tiddle bang.
Bing tiddle tiddle bang.

When cat_twice terminates, the variable cat is destroyed. If we try to print it, we get an
exception:

>>> print cat
NameError: name ‚cat‚ is not defined

Parameters are also local. For example, outside print_twice, there is no such thing as
bruce.

4.10 Stack diagrams

To keep track of which variables can be used where, it is sometimes useful to draw a stack
diagram. Like state diagrams, stack diagrams show the value of each variable, but they
also show the function each variable belongs to.

Each function is represented by a frame. A frame is a box with the name of a function
beside it and the parameters and variables of the function inside it. The stack diagram for
the previous example looks like this:

33

Functions

../images/3.png

Figure 3

The frames are arranged in a stack that indicates which function called which, and so on.
In this example, print_twice

was called by cat_twice, and cat_twice was called by __main__, which is a special name
for the topmost frame. When you create a variable outside of any function, it belongs to
__main__.

Each parameter refers to the same value as its corresponding argument. So, part1 has the
same value as line1, part2 has the same value as line2, and bruce has the same value as cat.

If an error occurs during a function call, Python prints the name of the function, and the
name of the function that called it, and the name of the function that called that, all the
way back to __main__.

For example, if you try to access cat from within

34

Fruitful functions and void functions

print_twice, you get a NameError:

Traceback (innermost last):
File "test.py", line 13, in __main__
cat_twice(line1, line2)

File "test.py", line 5, in cat_twice
print_twice(cat)

File "test.py", line 9, in print_twice
print cat

NameError: name ‚cat‚ is not defined

This list of functions is called a traceback. It tells you what program file the error occurred
in, and what line, and what functions were executing at the time. It also shows the line of
code that caused the error.

The order of the functions in the traceback is the same as the order of the frames in the
stack diagram. The function that is currently running is at the bottom.

4.11 Fruitful functions and void functions

Some of the functions we are using, such as the math functions, yield results; for lack
of a better name, I call them fruitful functions. Other functions, like print_twice,
perform an action but don't return a value. They are called void functions.

When you call a fruitful function, you almost always want to do something with the result;
for example, you might assign it to a variable or use it as part of an expression:

x = math.cos(radians)
golden = (math.sqrt(5) + 1) / 2

When you call a function in interactive mode, Python displays the result:

>>> math.sqrt(5)
2.2360679774997898

But in a script, if you call a fruitful function all by itself, the return value is lost forever!

math.sqrt(5)

This script computes the square root of 5, but since it doesn't store or display the result, it
is not very useful.

Void functions might display something on the screen or have some other effect, but they
don't have a return value. If you try to assign the result to a variable, you get a special
value called None.

>>> result = print_twice(‚Bing‚)
Bing
Bing
>>> print result
None

35

Functions

The value None is not the same as the string 'None'. It is a special value that has its own
type:

>>> print type(None)
<type ‚NoneType‚>

The functions we have written so far are all void. We will start writing fruitful functions in
a few chapters.

4.12 Why functions?

It may not be clear why it is worth the trouble to divide a program into functions. There
are several reasons:

• Creating a new function gives you an opportunity to name a group of statements, which
makes your program easier to read and debug.

• Functions can make a program smaller by eliminating repetitive code. Later, if you make
a change, you only have to make it in one place.

• Dividing a long program into functions allows you to debug the parts one at a time and
then assemble them into a working whole.

• Well-designed functions are often useful for many programs. Once you write and debug
one, you can reuse it.

4.13 Debugging

If you are using a text editor to write your scripts, you might run into problems with spaces
and tabs. The best way to avoid these problems is to use spaces exclusively (no tabs). Most
text editors that know about Python do this by default, but some don't.

Tabs and spaces are usually invisible, which makes them hard to debug, so try to find an
editor that manages indentation for you.

Also, don't forget to save your program before you run it. Some development environments
do this automatically, but some don't. In that case the program you are looking at in the
text editor is not the same as the program you are running.

Debugging can take a long time if you keep running the same, incorrect, program over and
over!

Make sure that the code you are looking at is the code you are running. If you're not sure,
put something like print 'hello' at the beginning of the program and run it again. If you
don't see hello, you're not running the right program!

36

Glossary

4.14 Glossary

• function: A named sequence of statements that performs some

useful operation. Functions may or may not take arguments and may or may not produce a
result.

• function definition: A statement that creates a new function,

specifying its name, parameters, and the statements it executes.

• function object: A value created by a function definition.

The name of the function is a variable that refers to a function object.

• header: The first line of a function definition.
• body: The sequence of statements inside a function definition.
• parameter: A name used inside a function to refer to the value

passed as an argument.

• function call: A statement that executes a function. It

consists of the function name followed by an argument list.

• argument: A value provided to a function when the function is called.

This value is assigned to the corresponding parameter in the function.

• local variable: A variable defined inside a function. A local

variable can only be used inside its function.

• return value: The result of a function. If a function call

is used as an expression, the return value is the value of the expression.

• fruitful function: A function that returns a value.
• void function: A function that doesn't return a value.
• module: A file that contains a

collection of related functions and other definitions.

• import statement: A statement that reads a module file and creates

a module object.

• module object: A value created by an import statement

that provides access to the values defined in a module.

• dot notation: The syntax for calling a function in another

module by specifying the module name followed by a dot (period) and the function name.

• composition: Using an expression as part of a larger expression,

or a statement as part of a larger statement.

• flow of execution: The order in which statements are executed during

37

Functions

a program run.

• stack diagram: A graphical representation of a stack of functions,

their variables, and the values they refer to.

• frame: A box in a stack diagram that represents a function call.

It contains the local variables and parameters of the function.

• traceback: A list of the functions that are executing,

printed when an exception occurs.

4.15 Exercises

4.15.1 Exercise 3

Python provides a built-in function called len that returns the length of a string, so the value
of len('allen') is 5.

Write a function named right_justify that takes a string named s as a parameter and
prints the string with enough leading spaces so that the last letter of the string is in column
70 of the display.
''>>> right_justify('allen')

allen
''

4.15.2 Exercise 4

A function object is a value you can assign to a variable or pass as an argument. For example,
do_twice is a function that takes a function object as an argument and calls it twice:
''def do_twice(f):

f()
f()

''

Here’s an example that uses do_twice to call a function named print_spam twice.
''def print_spam():

print 'spam'

do_twice(print_spam)
''

1. Type this example into a script and test it.
2. Modify do_twice so that it takes two arguments, a function object and a value, and

calls the function twice, passing the value as an argument.
3. Write a more general version of print_spam, called print_twice, that takes a string

as a parameter and prints it twice.

38

Exercises

4. Use the modified version of do_twice to call print_twice twice, passing 'spam' as
an argument.

5. Define a new function called do_four that takes a function object and a value and
calls the function four times, passing the value as a parameter. There should be only
two statements in the body of this function, not four.

You can see my solution at thinkpython.com/code/do_four.py.

4.15.3 Exercise 5

This exercise' can be done using only the statements and other features we have learned so
far.

1. Write a function that draws a grid like the following:

''+ - - - - + - - - - +
+ - - - - + - - - - +
| | |
| | |
| | |
| | |
+ - - - - + - - - - +
''
</pre>

''Hint: to print more than one value on a line, you can print a
comma-separated sequence:'' <pre>''print '+', '-' '' </pre> ''If
the sequence ends with a comma, Python leaves the line unfinished, so
the value printed next appears on the same line.'' <pre>''print
'+', print '-' '' </pre> ''The output of these statements is
<code>'+ -'</code>.'' ''A print statement all by itself ends the
current line and goes to the next line.''
''Use the previous function to draw a similar grid with four rows
and four columns.''

''You can see my solution at thinkpython.com/code/grid.py.''

We will see exceptions to this rule
later.
Based on an exercise in Oualline, ''Practical C Programming, Third
Edition'', O’Reilly (1997)

= Case study: interface design =

4.15.4 TurtleWorld

To accompany this book, I have written a suite of modules called Swampy. One of these
modules is TurtleWorld, which provides a set of functions for drawing lines by steering
turtles around the screen.

You can download Swampy from thinkpython.com/swampy; follow the instructions there to
install Swampy on your system.

39

Functions

Move into the directory that contains TurtleWorld.py, create a file named polygon.py and
type in the following code:

from TurtleWorld import *

world = TurtleWorld()
bob = Turtle()
print bob

wait_for_user()

The first line is a variation of the import statement we saw before; instead of creating a
module object, it imports the functions from the module directly, so you can access them
without using dot notation.

The next lines create a TurtleWorld assigned to world and a Turtle assigned to bob. Printing
bob yields something like:

<TurtleWorld.Turtle instance at 0xb7bfbf4c>

This means that bob refers to an instance of a Turtle as defined in module TurtleWorld.
In this context, "instance" means a member of a set; this Turtle is one of the set of possible
Turtles.

wait_for_user tells TurtleWorld to wait for the user to do something, although in this case
there's not much for the user to do except close the window.

TurtleWorld provides several turtle-steering functions: fd and bk for forward and backward,
and lt and rt for left and right turns. Also, each Turtle is holding a pen, which is either
down or up; if the pen is down, the Turtle leaves a trail when it moves. The functions pu
and pd stand for “pen up” and “pen down.”

To draw a right angle, add these lines to the program (after creating bob and before calling
wait_for_user):

fd(bob, 100)
rt(bob)
fd(bob, 100)

The first line tells bob to take 100 steps forward. The second line tells him to turn right.

When you run this program, you should see bob move east and then south, leaving two line
segments behind.

Now modify the program to draw a square. Don’t turn the page until you've got it working!

4.15.5 Simple repetition

Chances are you wrote something like this (leaving out the code that creates TurtleWorld
and waits for the user):
fd(bob, 100)
lt(bob)

fd(bob, 100)
lt(bob)

40

Exercises

fd(bob, 100)
lt(bob)

fd(bob, 100)

We can do the same thing more concisely with a for statement. Add this example to
polygon.py and run it again:
for i in range(4):

print 'Hello!'

You should see something like this:
Hello!
Hello!
Hello!
Hello!

This is the simplest use of the for statement; we will see more later. But that should be
enough to let you rewrite your square-drawing program. Don’t turn the page until you do.

Here is a for statement that draws a square:
for i in range(4):

fd(bob, 100)
lt(bob)

The syntax of a for statement is similar to a function definition. It has a header that ends
with a colon and an indented body. The body can contain any number of statements.

A for statement is sometimes called a loop because the flow of execution runs through the
body and then loops back to the top. In this case, it runs the body four times.

This version is actually a little different from the previous square-drawing code because
it makes another left turn after drawing the last side of the square. The extra turn takes
a little more time, but it simplifies the code if we do the same thing every time through
the loop. This version also has the effect of leaving the turtle back in the starting position,
facing in the starting direction.

4.15.6 Exercises

The following is a series of exercises using TurtleWorld. They are meant to be fun, but they
have a point, too. While you are working on them, think about what the point is.

The following sections have solutions to the exercises, so don’t look until you have finished
(or at least tried).

• Write a function called square that takes a parameter

named t, which is a turtle. It should use the turtle to draw a square. Write a function call
that passes bob as an argument to square, and then run the program again.

• Add another parameter, named length, to square.

41

Functions

Modify the body so length of the sides is length, and then modify the function call to provide
a second argument. Run the program again. Test your program with a range of values for
length.

• The functions lt and rt make 90-degree turns by

default, but you can provide a second argument that specifies the number of degrees. For
example, lt(bob, 45) turns bob 45 degrees to the left. Make a copy of square and change
the name to polygon. Add another parameter named n and modify the body so it draws
an n-sided regular polygon. Hint: The angles of an n-sided regular polygon are 360.0 / n
degrees.

• Write a function called circle that takes a turtle, t,

and radius, r, as parameters and that draws an approximate circle by invoking polygon with
an appropriate length and number of sides. Test your function with a range of values of r.

Hint: figure out the circumference of the circle and make sure that length * n = circumference.

Another hint: if bob is too slow for you, you can speed him up by changing bob.delay, which
is the time between moves, in seconds. bob.delay = 0.01 ought to get him moving.

• Make a more general version of circle called arc

that takes an additional parameter angle, which determines what fraction of a circle to draw.
angle is in units of degrees, so when angle=360, arc should draw a complete circle.

4.15.7 Encapsulation

The first exercise asks you to put your square-drawing code into a function definition and
then call the function, passing the turtle as a parameter. Here is a solution:

def square(t):
for i in range(4):

fd(t, 100)
lt(t)

square(bob)

The innermost statements, fd and lt are indented twice to show that they are inside the for
loop, which is inside the function definition. The next line, square(bob), is flush with the
left margin, so that is the end of both the for loop and the function definition.

Inside the function, t refers to the same turtle bob refers to, so lt(t) has the same effect as
lt(bob). So why not call the parameter bob? The idea is that t can be any turtle, not just
bob, so you could create a second turtle and pass it as an argument to square:

ray = Turtle()
square(ray)

Wrapping a piece of code up in a function is called encapsulation. One of the benefits of
encapsulation is that it attaches a name to the code, which serves as a kind of documentation.
Another advantage is that if you re-use the code, it is more concise to call a function twice
than to copy and paste the body!

42

Exercises

4.15.8 Generalization

The next step is to add a length parameter to square. Here is a solution:
def square(t, length):

for i in range(4):
fd(t, length)
lt(t)

square(bob, 100)

Adding a parameter to a function is called generalization because it makes the function
more general: in the previous version, the square is always the same size; in this version it
can be any size.

The next step is also a generalization. Instead of drawing squares, polygon draws regular
polygons with any number of sides. Here is a solution:
def polygon(t, n, length):

angle = 360.0 / n
for i in range(n):

fd(t, length)
lt(t, angle)

polygon(bob, 7, 70)

This draws a 7-sided polygon with side length 70. If you have more than a few numeric
arguments, it is easy to forget what they are, or what order they should be in. It is legal,
and sometimes helpful, to include the names of the parameters in the argument list:
polygon(bob, n=7, length=70)

These are called keyword arguments because they include the parameter names as
“keywords” (not to be confused with Python keywords like while and def).

This syntax makes the program more readable. It is also a reminder about how arguments and
parameters work: when you call a function, the arguments are assigned to the parameters.

4.15.9 Interface design

The next step is to write circle, which takes a radius, r, as a parameter. Here is a simple
solution that uses polygon to draw a 50-sided polygon:
def circle(t, r):

circumference = 2 * math.pi * r
n = 50
length = circumference / n
polygon(t, n, length)

The first line computes the circumference of a circle with radius r using the formula 2 π

r. Since we use math.pi, we have to import math. By convention, import statements are
usually at the beginning of the script.

43

Functions

n is the number of line segments in our approximation of a circle, so length is the length
of each segment. Thus, polygon draws a 50-sides polygon that approximates a circle with
radius r.

One limitation of this solution is that n is a constant, which means that for very big circles,
the line segments are too long, and for small circles, we waste time drawing very small
segments. One solution would be to generalize the function by taking n as a parameter.
This would give the user (whoever calls circle) more control, but the interface would be less
clean.

The interface of a function is a summary of how it is used: what are the parameters? What
does the function do? And what is the return value? An interface is “clean” if it is “as
simple as possible, but not simpler. (Einstein)”

In this example, r belongs in the interface because it specifies the circle to be drawn. n is
less appropriate because it pertains to the details of how the circle should be rendered.

Rather than clutter up the interface, it is better to choose an appropriate value of n depending
on circumference:
def circle(t, r):

circumference = 2 * math.pi * r
n = int(circumference / 3) + 1
length = circumference / n
polygon(t, n, length)

Now the number of segments is (approximately) circumference/3, so the length of each
segment is (approximately) 3, which is small enough that the circles look good, but big
enough to be efficient, and appropriate for any size circle.

4.15.10 Refactoring

When I wrote circle, I was able to re-use polygon because a many-sided polygon is a good
approximation of a circle. But arc is not as cooperative; we can’t use polygon or circle to
draw an arc.

One alternative is to start with a copy of polygon and transform it into arc. The result
might look like this:
def arc(t, r, angle):

arc_length = r * math.radians(angle)
n = int(arc_length / 3) + 1
step_length = arc_length / n
step_angle = float(angle) / n

for i in range(n):
fd(t, step_length)
lt(t, step_angle)

The second half of this function looks like polygon, but we can’t re-use polygon without
changing the interface. We could generalize polygon to take an angle as a third argument,
but then polygon would no longer be an appropriate name! Instead, let’s call the more
general function polyline:

44

Exercises

def polyline(t, n, length, angle):
for i in range(n):

fd(t, length)
lt(t, angle)

Now we can rewrite polygon and arc to use polyline:
def polygon(t, n, length):

angle = 360.0 / n
polyline(t, n, length, angle)

def arc(t, r, angle):
arc_length = r * math.radians(angle)
n = int(arc_length / 3) + 1
step_length = arc_length / n
step_angle = float(angle) / n
polyline(t, n, step_length, step_angle)

Finally, we can rewrite circle to use arc:
def circle(t, r):

arc(t, r, 360)

This process—rearranging a program to improve function interfaces and facilitate code
re-use—is called refactoring. In this case, we noticed that there was similar code in arc
and polygon, so we “factored it out” into polyline.

If we had planned ahead, we might have written polyline first and avoided refactoring, but
often you don’t know enough at the beginning of a project to design all the interfaces. Once
you start coding, you understand the problem better. Sometimes refactoring is a sign that
you have learned something.

4.15.11 A development plan

A development plan is a process for writing programs. The process we used in this case
study is “encapsulation and generalization.” The steps of this process are:

• Start by writing a small program with no function definitions.

• Once you get the program working, encapsulate it in a function

and give it a name.

• Generalize the function by adding appropriate parameters.

• Repeat steps 1–3 until you have a set of working functions.

Copy and paste working code to avoid retyping (and re-debugging).

• Look for opportunities to improve the program by refactoring.

For example, if you have similar code in several places, consider factoring it into an
appropriately general function.

This process has some drawbacks—we will see alternatives later—but it can be useful if you
don’t know ahead of time how to divide the program into functions. This approach lets you
design as you go along.

45

Functions

4.15.12 docstring

A docstring is a string at the beginning of a function that explains the interface (“doc” is
short for “documentation”). Here is an example:
def polyline(t, length, n, angle):

"""Draw n line segments with the given length and
angle (in degrees) between them. t is a turtle.
"""
for i in range(n):

fd(t, length)
lt(t, angle)

This docstring is a triple-quoted string, also known as a multiline string because the triple
quotes allow the string to span more than one line.

It is terse, but it contains the essential information someone would need to use this function.
It explains concisely what the function does (without getting into the details of how it does
it). It explains what effect each parameter has on the behavior of the function and what
type each parameter should be (if it is not obvious).

Writing this kind of documentation is an important part of interface design. A well-designed
interface should be simple to explain; if you are having a hard time explaining one of your
functions, that might be a sign that the interface could be improved.

4.15.13 Debugging

An interface is like a contract between a function and a caller. The caller agrees to provide
certain parameters and the function agrees to do certain work.

For example, polyline requires four arguments. The first has to be a Turtle (or some other
object that works with fd and lt). The second has to be a number, and it should probably be
positive, although it turns out that the function works even if it isn’t. The third argument
should be an integer; range complains otherwise (depending on which version of Python you
are running). The fourth has to be a number, which is understood to be in degrees.

These requirements are called preconditions because they are supposed to be true be-
fore the function starts executing. Conversely, conditions at the end of the function are
postconditions. Postconditions include the intended effect of the function (like drawing
line segments) and any side effects (like moving the Turtle or making other changes in the
World).

Preconditions are the responsibility of the caller. If the caller violates a (properly docu-
mented!) precondition and the function doesn’t work correctly, the bug is in the caller, not
the function. However, for purposes of debugging it is often a good idea for functions to
check their preconditions rather than assume they are true. If every function checks its
preconditions before starting, then if something goes wrong, you will know which function
to blame.

46

Exercises

4.15.14 Glossary

instance: A member of a set. The TurtleWorld in this chapter is a member of the set of
TurtleWorlds. loop: A part of a program that can execute repeatedly. encapsulation: The
process of transforming a sequence of statements into a function definition. generalization:
The process of replacing something unnecessarily specific (like a number) with something
appropriately general (like a variable or parameter). keyword argument: An argument
that includes the name of the parameter as a “keyword.”

interface: A description of how to use a function, including the name and descriptions
of the arguments and return value. development plan: A process for writing programs.
docstring: A string that appears in a function definition to document the function’s
interface. precondition: A requirement that should be satisfied by the caller before a
function starts. postcondition: A requirement that should be satisfied by the function
before it ends.

4.15.15 Exercises

Exercise 1 Download the code in this chapter from
'thinkpython.com/code/polygon.py'.

• Write appropriate docstrings for 'polygon', 'arc' and

'circle'.

• Draw a stack diagram that shows the state of the program

while executing 'circle(bob, radius)'. You can do the arithmetic by hand or add 'print'
statements to the code.

• The version of 'arc' in Section '4.7' is not

very accurate because the linear approximation of the circle is always outside the true circle.
As a result, the turtle ends up a few units away from the correct destination. My solution
shows a way to reduce the effect of this error. Read the code and see if it makes sense to
you. If you draw a diagram, you might see how it works.

Exercise 2 Write an appropriately general set of functions that can draw flowers like this:
You can download a solution from 'thinkpython.com/code/flower.py'.

Exercise 3 Write an appropriately general set of functions that can draw shapes like this:
You can download a solution from 'thinkpython.com/code/pie.py'. Exercise 4 ' ' The
letters of the alphabet can be constructed from a moderate number of basic elements, like
vertical and horizontal lines and a few curves. Design a font that can be drawn with a
minimal number of basic elements and then write functions that draw letters of the alphabet.

You should write one function for each letter, with names draw_a, draw_b, etc., and put
your functions in a file named 'letters.py'. You can download a “turtle typewriter” from
'thinkpython.com/code/typewriter.py' to help you test your code.

You can download a solution from 'thinkpython.com/code/letters.py'.

47

5 Conditional and recursion

5.0.16 Modulus operator

The modulus operator works on integers and yields the remainder when the first operand
is divided by the second. In Python, the modulus operator is a percent sign (%). The syntax
is the same as for other operators:
>>> quotient = 7 / 3
>>> print quotient
2
>>> remainder = 7 % 3
>>> print remainder
1

So 7 divided by 3 is 2 with 1 left over.

The modulus operator turns out to be surprisingly useful. For example, you can check
whether one number is divisible by another—if x % y is zero, then x is divisible by y.

Also, you can extract the right-most digit or digits from a number. For example, x % 10
yields the right-most digit of x (in base 10). Similarly x % 100 yields the last two digits.

5.0.17 Boolean expressions

A boolean expression is an expression that is either true or false. The following examples
use the operator ==, which compares two operands and produces True if they are equal
and False otherwise:
>>> 5 == 5
True
>>> 5 == 6
False

True and False are special values that belong to the type bool; they are not strings:
>>> type(True)
<type 'bool'>
>>> type(False)
<type 'bool'>

The == operator is one of the comparison operators; the others are:
x != y # x is not equal to y
x > y # x is greater than y
x < y # x is less than y
x >= y # x is greater than or equal to y
x <= y # x is less than or equal to y

49

Conditional and recursion

Although these operations are probably familiar to you, the Python symbols are different
from the mathematical symbols. A common error is to use a single equal sign (=) instead
of a double equal sign (==). Remember that = is an assignment operator and == is a
comparison operator. There is no such thing as =< or =>.

5.0.18 Logical operators

There are three logical operators: and, or, and not. The semantics (meaning) of these
operators is similar to their meaning in English. For example, x > 0 and x < 10 is true only
if x is greater than 0 and less than 10.

n%2 == 0 or n%3 == 0 is true if either of the conditions is true, that is, if the number is
divisible by 2 or 3.

Finally, the not operator negates a boolean expression, so not (x > y) is true if x > y is
false, that is, if x is less than or equal to y.

Strictly speaking, the operands of the logical operators should be boolean expressions, but
Python is not very strict. Any nonzero number is interpreted as “true.”
>>> 17 and True
True

This flexibility can be useful, but there are some subtleties to it that might be confusing.
You might want to avoid it (unless you know what you are doing).

5.0.19 Conditional execution

In order to write useful programs, we almost always need the ability to check conditions and
change the behavior of the program accordingly. Conditional statements give us this
ability. The simplest form is the if statement:

if x > 0:
print ‚x is positive‚

The boolean expression after the if statement is called the condition. If it is true, then the
indented statement gets executed. If not, nothing happens.

if statements have the same structure as function definitions: a header followed by an
indented block. Statements like this are called compound statements.

There is no limit on the number of statements that can appear in the body, but there has to
be at least one. Occasionally, it is useful to have a body with no statements (usually as a
place keeper for code you haven't written yet). In that case, you can use the pass statement,
which does nothing.

if x < 0:
pass # need to handle negative values!

50

Exercises

5.0.20 Alternative execution

A second form of the if statement is alternative execution, in which there are two
possibilities and the condition determines which one gets executed. The syntax looks like
this:

if x%2 == 0:
print ‚x is even‚

else:
print ‚x is odd‚

If the remainder when x is divided by 2 is 0, then we know that x is even, and the program
displays a message to that effect. If the condition is false, the second set of statements is
executed. Since the condition must be true or false, exactly one of the alternatives will be
executed. The alternatives are called branches, because they are branches in the flow of
execution.

5.0.21 Chained conditionals

Sometimes there are more than two possibilities and we need more than two branches. One
way to express a computation like that is a chained conditional:
if x < y:

print 'x is less than y'
elif x > y:

print 'x is greater than y'
else:

print 'x and y are equal'

elif is an abbreviation of “else if.” Again, exactly one branch will be executed. There is no
limit on the number of elif statements. If there is an else clause, it has to be at the end, but
there doesn’t have to be one.
if choice == 'a':

draw_a()
elif choice == 'b':

draw_b()
elif choice == 'c':

draw_c()

Each condition is checked in order. If the first is false, the next is checked, and so on. If one
of them is true, the corresponding branch executes, and the statement ends. Even if more
than one condition is true, only the first true branch executes.

5.0.22 Nested conditionals

One conditional can also be nested within another. We could have written the trichotomy
example like this:
if x == y:

print 'x and y are equal'
else:

if x < y:
print 'x is less than y'

51

Conditional and recursion

else:
print 'x is greater than y'

The outer conditional contains two branches. The first branch contains a simple statement.
The second branch contains another if statement, which has two branches of its own.
Those two branches are both simple statements, although they could have been conditional
statements as well.

Although the indentation of the statements makes the structure apparent, nested condi-
tionals become difficult to read very quickly. In general, it is a good idea to avoid them
when you can.

Logical operators often provide a way to simplify nested conditional statements. For example,
we can rewrite the following code using a single conditional:
if 0 < x:

if x < 10:
print 'x is a positive single-digit number.'

The print statement is executed only if we make it past both conditionals, so we can get the
same effect with the and operator:
if 0 < x and x < 10:

print 'x is a positive single-digit number.'

5.0.23 Recursion

It is legal for one function to call another; it is also legal for a function to call itself. It may
not be obvious why that is a good thing, but it turns out to be one of the most magical
things a program can do. For example, look at the following function:
def countdown(n):

if n <= 0:
print 'Blastoff!'

else:
print n
countdown(n-1)

If n is 0 or negative, it outputs the word, “Blastoff!” Otherwise, it outputs n and then calls
a function named countdown—itself—passing n-1 as an argument.

What happens if we call this function like this?
>>> countdown(3)

The execution of countdown begins with n=3, and since n is greater than 0, it outputs the
value 3, and then calls itself...

The execution of countdown begins with n=2, and since n is greater than 0, it outputs the
value 2, and then calls itself... The execution of countdown begins with n=1, and since n is
greater than 0, it outputs the value 1, and then calls itself... The execution of countdown
begins with n=0, and since n is not greater than 0, it outputs the word, “Blastoff!” and then
returns.

52

Exercises

The countdown that got n=1 returns.

The countdown that got n=2 returns.

The countdown that got n=3 returns.

And then you’re back in __main__. So, the total output looks like this:
3
2
1
Blastoff!

A function that calls itself is recursive; the process is called recursion.

As another example, we can write a function that prints a string n times.
def print_n(s, n):

if n <= 0:
return

print s
print_n(s, n-1)

If n <= 0 the return statement exits the function. The flow of execution immediately returns
to the caller, and the remaining lines of the function are not executed.

The rest of the function is similar to countdown: if n is greater than 0, it displays s and
then calls itself to display s n−1 additional times. So the number of lines of output is 1 + (n
- 1), which adds up to n.

For simple examples like this, it is probably easier to use a for loop. But we will see examples
later that are hard to write with a for loop and easy to write with recursion, so it is good to
start early.

5.0.24 Stack diagrams for recursive functions

In Section 3.10, we used a stack diagram to represent the state of a program during a
function call. The same kind of diagram can help interpret a recursive function.

Every time a function gets called, Python creates a new function frame, which contains the
function’s local variables and parameters. For a recursive function, there might be more
than one frame on the stack at the same time.

This figure shows a stack diagram for countdown called with n = 3:

As usual, the top of the stack is the frame for __main__. It is empty because we did not
create any variables in __main__or pass any arguments to it.

The four countdown frames have different values for the parameter n. The bottom of the
stack, where n=0, is called the base case. It does not make a recursive call, so there are no
more frames.

Draw a stack diagram for print_n called with s = 'Hello' and n=2.

Write a function called do_n that takes a function object and a number, n as arguments,
and that calls the given function n times.

53

Conditional and recursion

5.0.25 Infinite recursion

If a recursion never reaches a base case, it goes on making recursive calls forever, and the
program never terminates. This is known as infinite recursion, and it is generally not a
good idea. Here is a minimal program with an infinite recursion:
def recurse():

recurse()

In most programming environments, a program with infinite recursion does not really run
forever. Python reports an error message when the maximum recursion depth is reached:
File "<stdin>", line 2, in recurse
File "<stdin>", line 2, in recurse
File "<stdin>", line 2, in recurse

.

.

.
File "<stdin>", line 2, in recurse

RuntimeError: Maximum recursion depth exceeded

This traceback is a little bigger than the one we saw in the previous chapter. When the
error occurs, there are 1000 recurse frames on the stack!

5.0.26 Keyboard input

The programs we have written so far are a bit rude in the sense that they accept no input
from the user. They just do the same thing every time.

Python provides a built-in function called raw_input that gets input from the keyboard1.
When this function is called, the program stops and waits for the user to type something.
When the user presses Return or Enter, the program resumes and raw_input returns what
the user typed as a string.
>>> input = raw_input()
What are you waiting for?
>>> print input
What are you waiting for?

Before getting input from the user, it is a good idea to print a prompt telling the user what
to input. raw_input can take a prompt as an argument:
>>> name = raw_input('What...is your name?\n')
What...is your name?
Arthur, King of the Britons!
>>> print name
Arthur, King of the Britons!

The sequence \n at the end of the prompt represents a newline, which is a special character
that causes a line break. That’s why the user’s input appears below the prompt.

If you expect the user to type an integer, you can try to convert the return value to int:

1 In Python 3.0, this function is named input

54

Exercises

>>> prompt = 'What...is the airspeed velocity of an unladen
swallow?\n'
>>> speed = raw_input(prompt)
What...is the airspeed velocity of an unladen swallow?
17
>>> int(speed)
17

But if the user types something other than a string of digits, you get an error:
>>> speed = raw_input(prompt)
What...is the airspeed velocity of an unladen swallow?
What do you mean, an African or a European swallow?
>>> int(speed)
ValueError: invalid literal for int()

We will see how to handle this kind of error later.

5.0.27 Debugging

The traceback Python displays when an error occurs contains a lot of information, but it
can be overwhelming, especially when there are many frames on the stack. The most useful
parts are usually:

• What kind of error it was, and

• Where it occurred.

Syntax errors are usually easy to find, but there are a few gotchas. Whitespace errors can
be tricky because spaces and tabs are invisible and we are used to ignoring them.
>>> x = 5
>>> y = 6
File "<stdin>", line 1
y = 6
ˆ

SyntaxError: invalid syntax

In this example, the problem is that the second line is indented by one space. But the error
message points to y, which is misleading. In general, error messages indicate where the
problem was discovered, but the actual error might be earlier in the code, sometimes on a
previous line.

The same is true of runtime errors. Suppose you are trying to compute a signal-to-noise
ratio in decibels. The formula is SNRdb = 10 log10 (Psignal / Pnoise). In Python, you
might write something like this:
import math
signal_power = 9
noise_power = 10
ratio = signal_power / noise_power
decibels = 10 * math.log10(ratio)
print decibels

But when you run it, you get an error message:
Traceback (most recent call last):

File "snr.py", line 5, in ?

55

Conditional and recursion

decibels = 10 * math.log10(ratio)
OverflowError: math range error

The error message indicates line 5, but there is nothing wrong with that line. To find the real
error, it might be useful to print the value of ratio, which turns out to be 0. The problem
is in line 4, because dividing two integers does floor division. The solution is to represent
signal power and noise power with floating-point values.

In general, error messages tell you where the problem was discovered, but that is often not
where it was caused.

5.0.28 Glossary

modulus operator: An operator, denoted with a percent sign (%), that works on integers
and yields the remainder when one number is divided by another.

boolean expression: An expression whose value is either True or False.

comparison operator: One of the operators that compares its operands: ==, !=, >, <,
>=, and <=.logical operator: One of the operators that combines boolean expressions:
and, or, and not.conditional statement: A statement that controls the flow of execution
depending on some condition.

condition: The boolean expression in a conditional statement that determines which branch
is executed. compound statement: A statement that consists of a header and a body.
The header ends with a colon (:). The body is indented relative to the header. body: The
sequence of statements within a compound statement. branch: One of the alternative
sequences of statements in a conditional statement. chained conditional: A conditional
statement with a series of alternative branches.

nested conditional: A conditional statement that appears in one of the branches of another
conditional statement.

recursion: The process of calling the function that is currently executing. base case: A
conditional branch in a recursive function that does not make a recursive call. infinite
recursion: A function that calls itself recursively without ever reaching the base case.
Eventually, an infinite recursion causes a runtime error.

5.0.29 Exercises

Exercise 1 Fermat’s Last Theorem says that there are no integers 'a', 'b', and 'c' such
that an + bn = cn

for any values of 'n' greater than 2.

• Write a function named check_fermatthat takes four

parameters—'a', 'b', 'c' and 'n'—and that checks to see if Fermat’s theorem holds. If 'n' is
greater than 2 and it turns out to be true that 'a''n'' + b''n'' = c''n'' ' ' the program
should print, “Holy smokes, Fermat was wrong!” Otherwise the program should print, “No,
that doesn’t work.”'

56

Exercises

• 'Write a function that prompts the user to input values

for a, b, c and n, converts them to integers, and uses ''check_fermat'' to check whether they
violate Fermat’s theorem.'

Exercise 2 If you are given three sticks, you may or may not be able to arrange them in
a triangle. For example, if one of the sticks is 12 inches long and the other two are one inch
long, it is clear that you will not be able to get the short sticks to meet in the middle. For
any three lengths, there is a simple test to see if it is possible to form a triangle: “If any of
the three lengths is greater than the sum of the other two, then you cannot form a triangle.
Otherwise, you can2.”

• Write a function named is_trianglethat takes three

integers as arguments, and that prints either “Yes” or “No,” depending on whether you can
or cannot form a triangle from sticks with the given lengths.

• Write a function that prompts the user to input three stick

lengths, converts them to integers, and uses is_triangle to check whether sticks with the
given lengths can form a triangle.

The following exercises use TurtleWorld from Chapter 4:

Exercise 3 Read the following function and see if you can figure out what it does. Then
run it (see the examples in Chapter '4').
''def draw(t, length, n):

if n == 0:
return

angle = 50
fd(t, length*n)
lt(t, angle)
draw(t, length, n-1)
rt(t, 2*angle)
draw(t, length, n-1)
lt(t, angle)
bk(t, length*n)

''

Exercise 4

The Koch curve is a fractal that looks something like this: To draw a Koch curve with length
'x', all you have to do is

• Draw a Koch curve with length 'x/3'.

• Turn left 60 degrees.

• Draw a Koch curve with length 'x/3'.

• Turn right 120 degrees.

• Draw a Koch curve with length 'x/3'.

• Turn left 60 degrees.

• Draw a Koch curve with length 'x/3'.

2 If the sum of two lengths equals the third, they form what is called a “degenerate” triangle.

57

Conditional and recursion

The only exception is if 'x' is less than 3. In that case, you can just draw a straight line
with length 'x'.

• Write a function called 'koch' that takes a turtle and

a length as parameters, and that uses the turtle to draw a Koch curve with the given length.

• Write a function called 'snowflake' that draws three

Koch curves to make the outline of a snowflake. You can see my solution at
'thinkpython.com/code/koch.py'.

• The Koch curve can be generalized in several ways. See

'wikipedia.org/wiki/Koch_snowflake' for examples and implement your favorite.

5.0.30 Notes

58

6 Fruitful functions

6.1 Return values

Some of the built-in functions we have used, such as the math functions, produce results.
Calling the function generates a value, which we usually assign to a variable or use as part
of an expression.

e = math.exp(1.0)
height = radius * math.sin(radians)

All of the functions we have written so far are void; they print something or move turtles
around, but their return value is None.

In this chapter, we are (finally) going to write fruitful functions. The first example is area,
which returns the area of a circle with the given radius:

def area(radius):
temp = math.pi * radius**2
return temp

We have seen the return statement before, but in a fruitful function the return statement
includes an expression. This statement means: “Return immediately from this function and
use the following expression as a return value.” The expression can be arbitrarily complicated,
so we could have written this function more concisely:

def area(radius):
return math.pi * radius**2

On the other hand, temporary variables like temp often make debugging easier.

Sometimes it is useful to have multiple return statements, one in each branch of a conditional:

def absolute_value(x):
if x < 0:

return -x
else:

return x

Since these return statements are in an alternative conditional, only one will be executed.

As soon as a return statement executes, the function terminates without executing any
subsequent statements. Code that appears after a return statement, or any other place the
flow of execution can never reach, is called dead code.

In a fruitful function, it is a good idea to ensure that every possible path through the
program hits a return statement. For example:

59

Fruitful functions

def absolute_value(x):
if x < 0:

return -x
if x > 0:

return x

This function is incorrect because if x happens to be 0, neither condition is true, and the
function ends without hitting a return statement. If the flow of execution gets to the end of
a function, the return value is None, which is not the absolute value of 0.

>>> print absolute_value(0)
None

By the way, Python provides a built-in function called abs that computes absolute values.

6.1.1 Exercise 1

Write a 'compare' function that returns '1' if 'x > y', '0' if 'x == y', and '-1' if 'x < y'.

6.2 Incremental development

As you write larger functions, you might find yourself spending more time debugging.

To deal with increasingly complex programs, you might want to try a process called incre-
mental development. The goal of incremental development is to avoid long debugging
sessions by adding and testing only a small amount of code at a time.

As an example, suppose you want to find the distance between two points, given by the
coordinates (x1, y1) and (x2, y2). By the Pythagorean theorem, the distance is:

distance =
√

(x2−x1)2 +(y2−y1)2

The first step is to consider what a distance function should look like in Python. In other
words, what are the inputs (parameters) and what is the output (return value)?

In this case, the inputs are two points, which you can represent using four numbers. The
return value is the distance, which is a floating-point value.

Already you can write an outline of the function:

def distance(x1, y1, x2, y2):
return 0.0

Obviously, this version doesn't compute distances; it always returns zero. But it is syn-
tactically correct, and it runs, which means that you can test it before you make it more
complicated.

To test the new function, call it with sample arguments:

>>> distance(1, 2, 4, 6)
0.0

60

Incremental development

I chose these values so that the horizontal distance is 3 and the vertical distance is 4; that
way, the result is 5 (the hypotenuse of a 3-4-5 triangle). When testing a function, it is useful
to know the right answer.

At this point we have confirmed that the function is syntactically correct, and we can start
adding code to the body. A reasonable next step is to find the differences x2 − x1 and y2 −
y1. The next version stores those values in temporary variables and prints them.

def distance(x1, y1, x2, y2):
dx = x2 - x1
dy = y2 - y1
print ‚dx is‚, dx
print ‚dy is‚, dy
return 0.0

If the function is working, it should display 'dx is 3' and ’dy is 4’. If so, we know that the
function is getting the right arguments and performing the first computation correctly. If
not, there are only a few lines to check.

Next we compute the sum of squares of dx and dy:

def distance(x1, y1, x2, y2):
dx = x2 - x1
dy = y2 - y1
dsquared = dx**2 + dy**2
print ‚dsquared is: ‚, dsquared
return 0.0

Again, you would run the program at this stage and check the output (which should be 25).
Finally, you can use math.sqrt to compute and return the result:

def distance(x1, y1, x2, y2):
dx = x2 - x1
dy = y2 - y1
dsquared = dx**2 + dy**2
result = math.sqrt(dsquared)
return result

If that works correctly, you are done. Otherwise, you might want to print the value of result
before the return statement.

The final version of the function doesn’t display anything when it runs; it only returns a
value. The print statements we wrote are useful for debugging, but once you get the function
working, you should remove them. Code like that is called scaffolding because it is helpful
for building the program but is not part of the final product.

When you start out, you should add only a line or two of code at a time. As you gain
more experience, you might find yourself writing and debugging bigger chunks. Either way,
incremental development can save you a lot of debugging time.

The key aspects of the process are:

• Start with a working program and make small incremental changes. At any point, if
there is an error, you should have a good idea where it is.

• Use temporary variables to hold intermediate values so you can display and check them.

61

Fruitful functions

• Once the program is working, you might want to remove some of the scaffolding or
consolidate multiple statements into compound expressions, but only if it does not make
the program difficult to read.

6.2.1 Exercise 2

Use incremental development to write a function called 'hypotenuse' that returns the
length of the hypotenuse of a right triangle given the lengths of the two legs as arguments.
Record each stage of the development process as you go.

6.3 Composition

As you should expect by now, you can call one function from within another. This ability is
called composition.

As an example, we’ll write a function that takes two points, the center of the circle and a
point on the perimeter, and computes the area of the circle.

Assume that the center point is stored in the variables xc and yc, and the perimeter point is
in xp and yp. The first step is to find the radius of the circle, which is the distance between
the two points. We just wrote a function, distance, that does that:

radius = distance(xc, yc, xp, yp)

The next step is to find the area of a circle with that radius; we just wrote that, too:

result = area(radius)

Encapsulating these steps in a function, we get:

def circle_area(xc, yc, xp, yp):
radius = distance(xc, yc, xp, yp)
result = area(radius)
return result

The temporary variables radius and result are useful for development and debugging, but
once the program is working, we can make it more concise by composing the function calls:

def circle_area(xc, yc, xp, yp):
return area(distance(xc, yc, xp, yp))

6.4 Boolean functions

Functions can return booleans, which is often convenient for hiding complicated tests inside
functions. For example:
def is_divisible(x, y):

if x % y == 0:
return True

else:

62

More recursion

return False

It is common to give boolean functions names that sound like yes/no questions; is_divisible
returns either True or False to indicate whether x is divisible by y.

Here is an example:
>>> is_divisible(6, 4)
False
>>> is_divisible(6, 3)
True

The result of the == operator is a boolean, so we can write the function more concisely by
returning it directly:
def is_divisible(x, y):

return x % y == 0

Boolean functions are often used in conditional statements:
if is_divisible(x, y):

print 'x is divisible by y'

It might be tempting to write something like:
if is_divisible(x, y) == True:

print 'x is divisible by y'

But the extra comparison is unnecessary. Exercise 3 Write a function is_between(x, y, z)
that returns 'True' if 'x ≤≤≤ y ≤≤≤ z' or 'False' otherwise.

6.5 More recursion

We have only covered a small subset of Python, but you might be interested to know that
this subset is a complete programming language, which means that anything that can be
computed can be expressed in this language. Any program ever written could be rewritten
using only the language features you have learned so far (actually, you would need a few
commands to control devices like the keyboard, mouse, disks, etc., but that’s all).

Proving that claim is a nontrivial exercise first accomplished by Alan Turing, one of the
first computer scientists (some would argue that he was a mathematician, but a lot of early
computer scientists started as mathematicians). Accordingly, it is known as the Turing
Thesis. For a more complete (and accurate) discussion of the Turing Thesis, I recommend
Michael Sipser’s book Introduction to the Theory of Computation.

To give you an idea of what you can do with the tools you have learned so far, we’ll evaluate
a few recursively defined mathematical functions. A recursive definition is similar to a
circular definition, in the sense that the definition contains a reference to the thing being
defined. A truly circular definition is not very useful: frabjuous: An adjective used to
describe something that is frabjuous.

63

Fruitful functions

If you saw that definition in the dictionary, you might be annoyed. On the other hand,
if you looked up the definition of the factorial function, denoted with the symbol !, you
might get something like this: <TD ALIGN=right NOWRAP> <TD ALIGN=center
NOWRAP> <TD ALIGN=left NOWRAP>0! = 1 <TD ALIGN=right NOWRAP> <TD
ALIGN=center NOWRAP> <TD ALIGN=left NOWRAP>n! = n (n−1)!

This definition says that the factorial of 0 is 1, and the factorial of any other value, n, is n
multiplied by the factorial of n−1.

So 3! is 3 times 2!, which is 2 times 1!, which is 1 times 0!. Putting it all together, 3! equals
3 times 2 times 1 times 1, which is 6.

If you can write a recursive definition of something, you can usually write a Python program
to evaluate it. The first step is to decide what the parameters should be. In this case it
should be clear that factorial takes an integer:
def factorial(n):

If the argument happens to be 0, all we have to do is return 1:
def factorial(n):

if n == 0:
return 1

Otherwise, and this is the interesting part, we have to make a recursive call to find the
factorial of n−1 and then multiply it by n:
def factorial(n):

if n == 0:
return 1

else:
recurse = factorial(n-1)
result = n * recurse
return result

The flow of execution for this program is similar to the flow of countdown in Section 5.8. If
we call factorial with the value 3:

Since 3 is not 0, we take the second branch and calculate the factorial of n-1...

Since 2 is not 0, we take the second branch and calculate the factorial of n-1... Since 1 is
not 0, we take the second branch and calculate the factorial of n-1... Since 0 is 0, we take
the first branch and return 1 without making any more recursive calls.

The return value (1) is multiplied by n, which is 1, and the result is returned.

The return value (1) is multiplied by n, which is 2, and the result is returned.

The return value (2) is multiplied by n, which is 3, and the result, 6, becomes the return
value of the function call that started the whole process.

Here is what the stack diagram looks like for this sequence of function calls:

The return values are shown being passed back up the stack. In each frame, the return value
is the value of result, which is the product of n and recurse.

64

Leap of faith

In the last frame, the local variables recurse and result do not exist, because the branch
that creates them does not execute.

6.6 Leap of faith

Following the flow of execution is one way to read programs, but it can quickly become
labyrinthine. An alternative is what I call the “leap of faith.” When you come to a function
call, instead of following the flow of execution, you assume that the function works correctly
and returns the right result.

In fact, you are already practicing this leap of faith when you use built-in functions. When
you call math.cos or math.exp, you don’t examine the bodies of those functions. You just
assume that they work because the people who wrote the built-in functions were good
programmers.

The same is true when you call one of your own functions. For example, in Section 6.4,
we wrote a function called is_divisible that determines whether one number is divisible by
another. Once we have convinced ourselves that this function is correct—by examining the
code and testing—we can use the function without looking at the body again.

The same is true of recursive programs. When you get to the recursive call, instead of
following the flow of execution, you should assume that the recursive call works (yields the
correct result) and then ask yourself, “Assuming that I can find the factorial of n−1, can I
compute the factorial of n?” In this case, it is clear that you can, by multiplying by n.

Of course, it's a bit strange to assume that the function works correctly when you haven't
finished writing it, but that's why it's called a leap of faith!

6.7 One more example

After factorial, the most common example of a recursively defined mathematical function
is fibonacci, which has the following definition1: <TD ALIGN=right NOWRAP> <TD
ALIGN=center NOWRAP> <TD ALIGN=left NOWRAP>fibonacci(0) = 0 <TD
ALIGN=right NOWRAP> <TD ALIGN=center NOWRAP> <TD ALIGN=left
NOWRAP>fibonacci(1) = 1 <TD ALIGN=right NOWRAP> <TD ALIGN=center
NOWRAP> <TD ALIGN=left NOWRAP>fibonacci(n) = fibonacci(n−1) + fibonacci(n−2);

Translated into Python, it looks like this:
def fibonacci (n):

if n == 0:
return 0

elif n == 1:
return 1

else:
return fibonacci(n-1) + fibonacci(n-2)

1 See wikipedia.org/wiki/Fibonacci_number.

65

Fruitful functions

If you try to follow the flow of execution here, even for fairly small values of n, your head
explodes. But according to the leap of faith, if you assume that the two recursive calls work
correctly, then it is clear that you get the right result by adding them together.

6.8 Checking types

What happens if we call factorial and give it 1.5 as an argument?
>>> factorial(1.5)
RuntimeError: Maximum recursion depth exceeded

It looks like an infinite recursion. But how can that be? There is a base case—when n ==
0. But if n is not an integer, we can miss the base case and recurse forever.

In the first recursive call, the value of n is 0.5. In the next, it is -0.5. From there, it gets
smaller (more negative), but it will never be 0.

We have two choices. We can try to generalize the factorial function to work with floating-
point numbers, or we can make factorial check the type of its argument. The first option is
called the gamma function2 and it’s a little beyond the scope of this book. So we’ll go for
the second.

We can use the built-in function isinstance to verify the type of the argument. While we’re
at it, we can also make sure the argument is positive:
def factorial (n):

if not isinstance(n, int):
print 'Factorial is only defined for integers.'
return None

elif n < 0:
print 'Factorial is only defined for positive integers.'
return None

elif n == 0:
return 1

else:
return n * factorial(n-1)

The first base case handles nonintegers; the second catches negative integers. In both cases,
the program prints an error message and returns None to indicate that something went
wrong:
>>> factorial('fred')
Factorial is only defined for integers.
None
>>> factorial(-2)
Factorial is only defined for positive integers.
None

If we get past both checks, then we know that n is a positive integer, and we can prove that
the recursion terminates.

2 See wikipedia.org/wiki/Gamma_function.

66

Debugging

This program demonstrates a pattern sometimes called a guardian. The first two condi-
tionals act as guardians, protecting the code that follows from values that might cause an
error. The guardians make it possible to prove the correctness of the code.

6.9 Debugging

Breaking a large program into smaller functions creates natural checkpoints for debugging.
If a function is not working, there are three possibilities to consider:

• There is something wrong with the arguments the function

is getting; a precondition is violated.

• There is something wrong with the function; a postcondition

is violated.

• There is something wrong with the return value or the

way it is being used.

To rule out the first possibility, you can add a print statement at the beginning of the
function and display the values of the parameters (and maybe their types). Or you can
write code that checks the preconditions explicitly.

If the parameters look good, add a print statement before each return statement that displays
the return value. If possible, check the result by hand. Consider calling the function with
values that make it easy to check the result (as in Section 6.2).

If the function seems to be working, look at the function call to make sure the return value
is being used correctly (or used at all!).

Adding print statements at the beginning and end of a function can help make the flow of
execution more visible. For example, here is a version of factorial with print statements:
def factorial(n):

space = ' ' * (4 * n)
print space, 'factorial', n
if n == 0:

print space, 'returning 1'
return 1

else:
recurse = factorial(n-1)
result = n * recurse
print space, 'returning', result
return result

space is a string of space characters that controls the indentation of the output. Here is the
result of factorial(5) :

factorial 5
factorial 4

factorial 3
factorial 2

factorial 1
factorial 0
returning 1

returning 1

67

Fruitful functions

returning 2
returning 6

returning 24
returning 120

If you are confused about the flow of execution, this kind of output can be helpful. It takes
some time to develop effective scaffolding, but a little bit of scaffolding can save a lot of
debugging.

6.10 Glossary

temporary variable: A variable used to store an intermediate value in a complex calcula-
tion.

dead code: Part of a program that can never be executed, often because it appears after
a return statement. None: A special value returned by functions that have no return
statement or a return statement without an argument.

incremental development: A program development plan intended to avoid debugging by
adding and testing only a small amount of code at a time. scaffolding: Code that is used
during program development but is not part of the final version. guardian: A programming
pattern that uses a conditional statement to check for and handle circumstances that might
cause an error.

6.11 Exercises

6.11.1 Exercise 4

Draw a stack diagram for the following program. What does the program print?
def b(z):

prod = a(z, z)
print z, prod
return prod

def a(x, y):
x = x + 1
return x * y

def c(x, y, z):
sum = x + y + z
pow = b(sum)**2
return pow

x = 1
y = x + 1
print c(x, y+3, x+y)

68

Multiple assignment

6.11.2 Exercise 5

The Ackermann function, 'A(m, n)' is defined34:

6.12 Multiple assignment

As you may have discovered, it is legal to make more than one assignment to the same
variable. A new assignment makes an existing variable refer to a new value (and stop
referring to the old value).

bruce = 5
print bruce,
bruce = 7
print bruce

The output of this program is 5 7, because the first time bruce is printed, its value is 5, and
the second time, its value is 7. The comma at the end of the first print statement suppresses
the newline, which is why both outputs appear on the same line.

Here is what multiple assignment looks like in a state diagram:

With multiple assignment it is especially important to distinguish between an assignment
operation and a statement of equality. Because Python uses the equal sign (=) for assignment,
it is tempting to interpret a statement like a = b as a statement of equality. It is not!

First, equality is a symmetric relation and assignment is not. For example, in mathematics,
if a = 7 then 7 = a. But in Python, the statement a = 7 is legal and 7 = a is not.

Furthermore, in mathematics, a statement of equality is either true or false, for all time. If
a = b now, then a will always equal b. In Python, an assignment statement can make two
variables equal, but they don’t have to stay that way:

a = 5
b = a # a and b are now equal
a = 3 # a and b are no longer equal

The third line changes the value of a but does not change the value of b, so they are no
longer equal.

Although multiple assignment is frequently helpful, you should use it with caution. If the
values of variables change frequently, it can make the code difficult to read and debug.

6.13 Updating variables

One of the most common forms of multiple assignment is an update, where the new value
of the variable depends on the old.

3 See
4 wikipedia.org/wiki/Ackermann_function

69

Fruitful functions

x = x+1

This means “get the current value of x, add one, and then update x with the new value.”

If you try to update a variable that doesn’t exist, you get an error, because Python evaluates
the right side before it assigns a value to x:
>>> x = x+1
NameError: name 'x' is not defined

Before you can update a variable, you have to initialize it, usually with a simple assignment:
>>> x = 0
>>> x = x+1

Updating a variable by adding 1 is called an increment; subtracting 1 is called a decrement.

6.14 The while statement

Computers are often used to automate repetitive tasks. Repeating identical or similar tasks
without making errors is something that computers do well and people do poorly.

We have seen two programs, countdown and print_n, that use recursion to perform repetition,
which is also called iteration. Because iteration is so common, Python provides several
language features to make it easier. One is the for statement we saw in Section 4.2. We’ll
get back to that later.

Another is the while statement. Here is a version of countdown that uses a while statement:
def countdown(n):

while n > 0:
print n
n = n-1

print 'Blastoff!'

You can almost read the while statement as if it were English. It means, “While n is greater
than 0, display the value of n and then reduce the value of n by 1. When you get to 0,
display the word Blastoff!”

More formally, here is the flow of execution for a while statement:

• Evaluate the condition, yielding True or False.
• If the condition is false, exit the while statement and continue execution at the next

statement.
• If the condition is true, execute the body and then go back to step 1.

This type of flow is called a loop because the third step loops back around to the top.

The body of the loop should change the value of one or more variables so that eventually
the condition becomes false and the loop terminates. Otherwise the loop will repeat forever,
which is called an infinite loop. An endless source of amusement for computer scientists is
the observation that the directions on shampoo, “Lather, rinse, repeat,” are an infinite loop.

70

break

In the case of countdown, we can prove that the loop terminates because we know that the
value of n is finite, and we can see that the value of n gets smaller each time through the
loop, so eventually we have to get to 0. In other cases, it is not so easy to tell:
def sequence(n):

while n != 1:
print n,
if n%2 == 0: # n is even

n = n/2
else: # n is odd

n = n*3+1

The condition for this loop is n != 1, so the loop will continue until n is 1, which makes the
condition false.

Each time through the loop, the program outputs the value of n and then checks whether it
is even or odd. If it is even, n is divided by 2. If it is odd, the value of n is replaced with
n*3+1. For example, if the argument passed to sequence is 3, the resulting sequence is 3, 10,
5, 16, 8, 4, 2, 1.

Since n sometimes increases and sometimes decreases, there is no obvious proof that n will
ever reach 1, or that the program terminates. For some particular values of n, we can prove
termination. For example, if the starting value is a power of two, then the value of n will be
even each time through the loop until it reaches 1. The previous example ends with such a
sequence, starting with 16.

The hard question is whether we can prove that this program terminates for all positive
values of n. So far1, no one has been able to prove it or disprove it! Exercise 1 Rewrite
the function print_n from Section '5.8' using iteration instead of recursion.

6.15 break

Sometimes you don’t know it’s time to end a loop until you get half way through the body.
In that case you can use the break statement to jump out of the loop.

For example, suppose you want to take input from the user until they type done. You could
write:
while True:

line = raw_input('> ')
if line == 'done':

break
print line

print 'Done!'

The loop condition is True, which is always true, so the loop runs until it hits the break
statement.

Each time through, it prompts the user with an angle bracket. If the user types done, the
break statement exits the loop. Otherwise the program echoes whatever the user types and
goes back to the top of the loop. Here’s a sample run:
> not done
not done

71

Fruitful functions

> done
Done!

This way of writing while loops is common because you can check the condition anywhere
in the loop (not just at the top) and you can express the stop condition affirmatively (“stop
when this happens”) rather than negatively (“keep going until that happens.”).

6.16 Square roots

Loops are often used in programs that compute numerical results by starting with an
approximate answer and iteratively improving it.

For example, one way of computing square roots is Newton’s method. Suppose that you
want to know the square root of a. If you start with almost any estimate, x, you can compute
a better estimate with the following formula: y = x + a/x

2

For example, if a is 4 and x is 3:
>>> a = 4.0
>>> x = 3.0
>>> y = (x + a/x) / 2
>>> print y
2.16666666667

Which is closer to the correct answer (√4 = 2). If we repeat the process with the new
estimate, it gets even closer:
>>> x = y
>>> y = (x + a/x) / 2
>>> print y
2.00641025641

After a few more updates, the estimate is almost exact:
>>> x = y
>>> y = (x + a/x) / 2
>>> print y
2.00001024003
>>> x = y
>>> y = (x + a/x) / 2
>>> print y
2.00000000003

In general we don’t know ahead of time how many steps it takes to get to the right answer,
but we know when we get there because the estimate stops changing:
>>> x = y
>>> y = (x + a/x) / 2
>>> print y
2.0
>>> x = y
>>> y = (x + a/x) / 2
>>> print y
2.0

72

Algorithms

When y == x, we can stop. Here is a loop that starts with an initial estimate, x, and
improves it until it stops changing:
while True:

print x
y = (x + a/x) / 2
if y == x:

break
x = y

For most values of a this works fine, but in general it is dangerous to test float equality.
Floating-point values are only approximately right: most rational numbers, like 1/3, and
irrational numbers, like √2, can’t be represented exactly with a float.

Rather than checking whether x and y are exactly equal, it is safer to use the built-in
function abs to compute the absolute value, or magnitude, of the difference between them:

if abs(y-x) < epsilon:
break

Where epsilon has a value like 0.0000001 that determines how close is close enough.
Exercise 2 ' Encapsulate this loop in a function called square_root that takes 'a' as
a parameter, chooses a reasonable value of 'x', and returns an estimate of the square root of
'a'.

6.17 Algorithms

Newton’s method is an example of an algorithm: it is a mechanical process for solving a
category of problems (in this case, computing square roots).

It is not easy to define an algorithm. It might help to start with something that is not an
algorithm. When you learned to multiply single-digit numbers, you probably memorized the
multiplication table. In effect, you memorized 100 specific solutions. That kind of knowledge
is not algorithmic.

But if you were “lazy,” you probably cheated by learning a few tricks. For example, to find
the product of n and 9, you can write n−1 as the first digit and 10−n as the second digit.
This trick is a general solution for multiplying any single-digit number by 9. That’s an
algorithm!

Similarly, the techniques you learned for addition with carrying, subtraction with borrowing,
and long division are all algorithms. One of the characteristics of algorithms is that they do
not require any intelligence to carry out. They are mechanical processes in which each step
follows from the last according to a simple set of rules.

In my opinion, it is embarrassing that humans spend so much time in school learning to
execute algorithms that, quite literally, require no intelligence.

On the other hand, the process of designing algorithms is interesting, intellectually challeng-
ing, and a central part of what we call programming.

Some of the things that people do naturally, without difficulty or conscious thought, are the
hardest to express algorithmically. Understanding natural language is a good example. We

73

Fruitful functions

all do it, but so far no one has been able to explain how we do it, at least not in the form of
an algorithm.

6.18 Debugging

As you start writing bigger programs, you might find yourself spending more time debugging.
More code means more chances to make an error and more place for bugs to hide.

One way to cut your debugging time is “debugging by bisection.” For example, if there are
100 lines in your program and you check them one at a time, it would take 100 steps.

Instead, try to break the problem in half. Look at the middle of the program, or near it, for
an intermediate value you can check. Add a print statement (or something else that has a
verifiable effect) and run the program.

If the mid-point check is incorrect, the problem must be in the first half of the program. If
it is correct, the problem is in the second half.

Every time you perform a check like this, you halve the number of lines you have to search.
After six steps (which is much less than 100), you would be down to one or two lines of code,
at least in theory.

In practice it is not always clear what the “middle of the program” is and not always possible
to check it. It doesn’t make sense to count lines and find the exact midpoint. Instead, think
about places in the program where there might be errors and places where it is easy to put
a check. Then choose a spot where you think the chances are about the same that the bug
is before or after the check.

6.19 Glossary

multiple assignment: Making more than one assignment to the same variable during the
execution of a program.

update: An assignment where the new value of the variable depends on the old. initialize:
An assignment that gives an initial value to a variable that will be updated.increment: An
update that increases the value of a variable (often by one). decrement: An update that
decreases the value of a variable. iteration: Repeated execution of a set of statements using
either a recursive function call or a loop. infinite loop: A loop in which the terminating
condition is never satisfied.

6.20 Exercises

6.20.1 Exercise 3

To test the square root algorithm in this chapter, you could compare it with 'math.sqrt'.
Write a function named test_square_root that prints a table like this:

74

Exercises

''1.0 1.0 1.0 0.0
2.0 1.41421356237 1.41421356237 2.22044604925e-16
3.0 1.73205080757 1.73205080757 0.0
4.0 2.0 2.0 0.0
5.0 2.2360679775 2.2360679775 0.0
6.0 2.44948974278 2.44948974278 0.0
7.0 2.64575131106 2.64575131106 0.0
8.0 2.82842712475 2.82842712475 4.4408920985e-16
9.0 3.0 3.0 0.0

''

The first column is a number, 'a'; the second column is the square root of 'a' computed
with the function from Exercise '7.2'; the third column is the square root computed by
'math.sqrt'; the fourth column is the absolute value of the difference between the two
estimates.

6.20.2 Exercise 4

The built-in function 'eval' takes a string and evaluates it using the Python interpreter. For
example:
''>>> eval('1 + 2 * 3')
7
>>> import math
>>> eval('math.sqrt(5)')
2.2360679774997898
>>> eval('type(math.pi)')
<type 'float'>
''

Write a function called eval_loopthat iteratively prompts the user, takes the resulting input
and evaluates it using 'eval', and prints the result.

It should continue until the user enters done, and then return the value of the last expression
it evaluated.

6.20.3 Exercise 5

The brilliant mathematician Srinivasa Ramanujan found an infinite series2 that can be used
to generate a numerical approximation of π:
1
π = 2

√
2

9801
∑∞
k=0

(4k)!(1103+26390k)
(k!)43964k

Write a function called estimate_pithat uses this formula to compute and return an estimate
of 'πππ'. It should use a 'while' loop to compute terms of the summation until the last term
is smaller than '1e-15' (which is Python notation for '10−−−15). You can check the result by
comparing it to 'math.pi'.

You can see my solution at 'thinkpython.com/code/pi.py'.

1See wikipedia.org/wiki/Collatz_conjecture. 2See wikipedia.org/wiki/Pi.

75

7 Strings

7.1 A string is a sequence

A string is a sequence of characters. You can access the characters one at a time with the
bracket operator:
>>> fruit = 'banana'
>>> letter = fruit[1]

The second statement selects character number 1 from fruit and assigns it to letter.

The expression in brackets is called an index. The index indicates which character in the
sequence you want (hence the name).

But you might not get what you expect:
>>> print letter
a

For most people, the first letter of 'banana' is b, not a. But for computer scientists, the
index is an offset from the beginning of the string, and the offset of the first letter is zero.
>>> letter = fruit[0]
>>> print letter
b

So b is the 0th letter (“zero-eth”) of 'banana', a is the 1th letter (“one-eth”), and n is the
2th (“two-eth”) letter.

You can use any expression, including variables and operators, as an index, but the value of
the index has to be an integer. Otherwise you get:
>>> letter = fruit[1.5]
TypeError: string indices must be integers

7.2 len

len is a built-in function that returns the number of characters in a string:
>>> fruit = 'banana'
>>> len(fruit)
6

To get the last letter of a string, you might be tempted to try something like this:

77

Strings

>>> length = len(fruit)
>>> last = fruit[length]
IndexError: string index out of range

The reason for the IndexError is that there is no letter in ’banana’ with the index 6. Since
we started counting at zero, the six letters are numbered 0 to 5. To get the last character,
you have to subtract 1 from length:
>>> last = fruit[length-1]
>>> print last
a

Alternatively, you can use negative indices, which count backward from the end of the string.
The expression fruit[-1] yields the last letter, fruit[-2] yields the second to last, and so on.

7.3 Traversal with a for loop

A lot of computations involve processing a string one character at a time. Often they start
at the beginning, select each character in turn, do something to it, and continue until the
end. This pattern of processing is called a traversal. One way to write a traversal is with a
while loop:
index = 0
while index < len(fruit):

letter = fruit[index]
print letter
index = index + 1

This loop traverses the string and displays each letter on a line by itself. The loop condition
is index < len(fruit), so when index is equal to the length of the string, the condition is false,
and the body of the loop is not executed. The last character accessed is the one with the
index len(fruit)-1, which is the last character in the string. Exercise 1 Write a function
that takes a string as an argument and displays the letters backward, one per line. Another
way to write a traversal is with a for loop:
for char in fruit:

print char

Each time through the loop, the next character in the string is assigned to the variable char.
The loop continues until no characters are left.

The following example shows how to use concatenation (string addition) and a for loop to
generate an abecedarian series (that is, in alphabetical order). In Robert McCloskey’s book
Make Way for Ducklings, the names of the ducklings are Jack, Kack, Lack, Mack, Nack,
Ouack, Pack, and Quack. This loop outputs these names in order:
prefixes = 'JKLMNOPQ'
suffix = 'ack'

for letter in prefixes:
print letter + suffix

The output is:

78

String slices

Jack
Kack
Lack
Mack
Nack
Oack
Pack
Qack

Of course, that’s not quite right because “Ouack” and “Quack” are misspelled.

7.3.1 Exercise 2

Modify the program to fix this error.

7.4 String slices

A segment of a string is called a slice. Selecting a slice is similar to selecting a character:
>>> s = 'Monty Python'
>>> print s[0:5]
Monty
>>> print s[6:13]
Python

The operator [n:m] returns the part of the string from the “n-eth” character to the “m-eth”
character, including the first but excluding the last. This behavior is counterintuitive, but
it might help to imagine the indices pointing between the characters, as in the following
diagram:

If you omit the first index (before the colon), the slice starts at the beginning of the string.
If you omit the second index, the slice goes to the end of the string:
>>> fruit = 'banana'
>>> fruit[:3]
'ban'
>>> fruit[3:]
'ana'

If the first index is greater than or equal to the second the result is an empty string,
represented by two quotation marks:
>>> fruit = 'banana'
>>> fruit[3:3]
''

An empty string contains no characters and has length 0, but other than that, it is the same
as any other string.

7.4.1 Exercise 3

Given that 'fruit' is a string, what does 'fruit[:]' mean?

79

Strings

7.5 Strings are immutable

It is tempting to use the [] operator on the left side of an assignment, with the intention of
changing a character in a string. For example:
>>> greeting = 'Hello, world!'
>>> greeting[0] = 'J'
TypeError: object does not support item assignment

The “object” in this case is the string and the “item” is the character you tried to assign.
For now, an object is the same thing as a value, but we will refine that definition later. An
item is one of the values in a sequence.

The reason for the error is that strings are immutable, which means you can’t change
an existing string. The best you can do is create a new string that is a variation on the
original:
>>> greeting = 'Hello, world!'
>>> new_greeting = 'J' + greeting[1:]
>>> print new_greeting
Jello, world!

This example concatenates a new first letter onto a slice of greeting. It has no effect on the
original string.

7.6 Searching

What does the following function do?
def find(word, letter):

index = 0
while index < len(word):

if word[index] == letter:
return index

index = index + 1
return -1

In a sense, find is the opposite of the [] operator. Instead of taking an index and extracting
the corresponding character, it takes a character and finds the index where that character
appears. If the character is not found, the function returns -1.

This is the first example we have seen of a return statement inside a loop. If word[index]
== letter, the function breaks out of the loop and returns immediately.

If the character doesn’t appear in the string, the program exits the loop normally and
returns -1.

This pattern of computation—traversing a sequence and returning when we find what we
are looking for—is a called a search.

80

Looping and counting

7.6.1 Exercise 4

Modify 'find' so that it has a third parameter, the index in 'word' where it should start
looking.

7.7 Looping and counting

The following program counts the number of times the letter a appears in a string:
word = 'banana'
count = 0
for letter in word:

if letter == 'a':
count = count + 1

print count

This program demonstrates another pattern of computation called a counter. The variable
count is initialized to 0 and then incremented each time an a is found. When the loop exits,
count contains the result—the total number of a’s. Exercise 5 Encapsulate this code in
a function named 'count', and generalize it so that it accepts the string and the letter as
arguments. Exercise 6 Rewrite this function so that instead of traversing the string, it
uses the three-parameter version of 'find' from the previous section.

7.8 string methods

A method is similar to a function—it takes arguments and returns a value—but the syntax
is different. For example, the method upper takes a string and returns a new string with all
uppercase letters:

Instead of the function syntax upper(word), it uses the method syntax word.upper().
>>> word = 'banana'
>>> new_word = word.upper()
>>> print new_word
BANANA

This form of dot notation specifies the name of the method, upper, and the name of the
string to apply the method to, word. The empty parentheses indicate that this method
takes no argument.

A method call is called an invocation; in this case, we would say that we are invoking
upper on the word.

As it turns out, there is a string method named find that is remarkably similar to the
function we wrote:
>>> word = 'banana'
>>> index = word.find('a')
>>> print index
1

In this example, we invoke find on word and pass the letter we are looking for as a parameter.

81

Strings

Actually, the find method is more general than our function; it can find substrings, not just
characters:
>>> word.find('na')
2

It can take as a second argument the index where it should start:
>>> word.find('na', 3)
4

And as a third argument the index where it should stop:
>>> name = 'bob'
>>> name.find('b', 1, 2)
-1

This search fails because b does not appear in the index range from 1 to 2 (not including
2). Exercise 7 ' There is a string method called 'count' that is similar to the function in
the previous exercise. Read the documentation of this method and write an invocation that
counts the number of 'a's in banana.

7.9 The in operator

The word in is a boolean operator that takes two strings and returns True if the first appears
as a substring in the second:
>>> 'a' in 'banana'
True
>>> 'seed' in 'banana'
False

For example, the following function prints all the letters from word1 that also appear in
word2:
def in_both(word1, word2):

for letter in word1:
if letter in word2:

print letter

With well-chosen variable names, Python sometimes reads like English. You could read this
loop, “for (each) letter in (the first) word, if (the) letter (appears) in (the second) word,
print (the) letter.”

Here’s what you get if you compare apples and oranges:
>>> in_both('apples', 'oranges')
a
e
s

82

String comparison

7.10 String comparison

The comparison operators work on strings. To see if two strings are equal:

if word == ‚banana‚:
print ‚All right, bananas.‚

Other comparison operations are useful for putting words in alphabetical order:

if word < ‚banana‚:
print ‚Your word,‚ + word + ‚, comes before banana.‚

elif word > ‚banana‚:
print ‚Your word,‚ + word + ‚, comes after banana.‚

else:
print ‚All right, bananas.‚

Python does not handle uppercase and lowercase letters the same way that people do. All
the uppercase letters come before all the lowercase letters, so:
Your word, Pineapple, comes before banana.

A common way to address this problem is to convert strings to a standard format, such as
all lowercase, before performing the comparison. Keep that in mind in case you have to
defend yourself against a man armed with a Pineapple.

7.11 Debugging

When you use indices to traverse the values in a sequence, it is tricky to get the beginning
and end of the traversal right. Here is a function that is supposed to compare two words
and return True if one of the words is the reverse of the other, but it contains two errors:
def is_reverse(word1, word2):

if len(word1) != len(word2):
return False

i = 0
j = len(word2)

while j > 0:
if word1[i] != word2[j]:

return False
i = i+1
j = j-1

return True

The first if statement checks whether the words are the same length. If not, we can return
False immediately and then, for the rest of the function, we can assume that the words are
the same length. This is an example of the guardian pattern in Section 6.8.

i and j are indices: i traverses word1 forward while j traverses word2 backward. If we find
two letters that don’t match, we can return False immediately. If we get through the whole
loop and all the letters match, we return True.

83

Strings

If we test this function with the words “pots” and “stop”, we expect the return value True,
but we get an IndexError:
>>> is_reverse('pots', 'stop')
...
File "reverse.py", line 15, in is_reverse
if word1[i] != word2[j]:

IndexError: string index out of range

For debugging this kind of error, my first move is to print the values of the indices immediately
before the line where the error appears.

while j > 0:
print i, j # print here

if word1[i] != word2[j]:
return False

i = i+1
j = j-1

Now when I run the program again, I get more information:
>>> is_reverse('pots', 'stop')
0 4
...
IndexError: string index out of range

The first time through the loop, the value of j is 4, which is out of range for the string 'pots'.
The index of the last character is 3, so the initial value for j should be len(word2)-1.

If I fix that error and run the program again, I get:
>>> is_reverse('pots', 'stop')
0 3
1 2
2 1
True

This time we get the right answer, but it looks like the loop only ran three times, which is
suspicious. To get a better idea of what is happening, it is useful to draw a state diagram.
During the first iteration, the frame for is_reverse looks like this:

I took a little license by arranging the variables in the frame and adding dotted lines to show
that the values of i and j indicate characters in word1 and word2. Exercise 8 ' Starting
with this diagram, execute the program on paper, changing the values of 'i' and 'j' during
each iteration. Find and fix the second error in this function.

7.12 Glossary

object: Something a variable can refer to. For now, you can use “object” and “value”
interchangeably. sequence: An ordered set; that is, a set of values where each value is
identified by an integer index. item: One of the values in a sequence. index: An integer
value used to select an item in a sequence, such as a character in a string. slice: A part of
a string specified by a range of indices. empty string: A string with no characters and
length 0, represented by two quotation marks. immutable: The property of a sequence

84

Exercises

whose items cannot be assigned. traverse: To iterate through the items in a sequence,
performing a similar operation on each. search: A pattern of traversal that stops when it
finds what it is looking for.

counter: A variable used to count something, usually initialized to zero and then incre-
mented. method: A function that is associated with an object and called using dot notation.
invocation: A statement that calls a method.

7.13 Exercises

7.13.1 Exercise 9

A string slice can take a third index that specifies the “step size;” that is, the number of
spaces between successive characters. A step size of 2 means every other character; 3 means
every third, etc.
''>>> fruit = 'banana'
>>> fruit[0:5:2]
'bnn'
''

A step size of -1 goes through the word backwards, so the slice [::-1] generates a reversed
string.

Use this idiom to write a one-line version of is_palindrome from Exercise '6.6'.

7.13.2 Exercise 10

Read the documentation of the string methods at 'docs.python.org/lib/string-
methods.html'. You might want to experiment with some of them to make sure you
understand how they work. 'strip' and 'replace' are particularly useful.

The documentation uses a syntax that might be confusing. For example, in find(sub[, start[,
end]]), the brackets indicate optional arguments. So 'sub' is required, but 'start' is optional,
and if you include 'start', then 'end' is optional.

7.13.3 Exercise 11

The following functions are all intended to check whether a string contains any lowercase
letters, but at least some of them are wrong. For each function, describe what the function
actually does.
''def any_lowercase1(s):

for c in s:
if c.islower():

return True
else:

return False

def any_lowercase2(s):
for c in s:

if 'c'.islower():

85

Strings

return 'True'
else:

return 'False'

def any_lowercase3(s):
for c in s:

flag = c.islower()
return flag

def any_lowercase4(s):
flag = False
for c in s:

flag = flag or c.islower()
return flag

def any_lowercase5(s):
for c in s:

if not c.islower():
return False

return True
''

7.13.4 Exercise 12

ROT13 is a weak form of encryption that involves “rotating” each letter in a word by 13
places1. To rotate a letter means to shift it through the alphabet, wrapping around to the
beginning if necessary, so ’A’ shifted by 3 is ’D’ and ’Z’ shifted by 1 is ’A’.

Write a function called rotate_word that takes a string and an integer as parameters, and
that returns a new string that contains the letters from the original string “rotated” by the
given amount.

For example, “cheer” rotated by 7 is “jolly” and “melon” rotated by -10 is “cubed”.

You might want to use the built-in functions 'ord', which converts a character to a numeric
code, and 'chr', which converts numeric codes to characters.

Potentially offensive jokes on the Internet are sometimes encoded in ROT13. If you are not
easily offended, find and decode some of them.

7.14 Notes

1 See wikipedia.org/wiki/ROT13

86

8 Case study: word play

8.1 Reading word lists

For the exercises in this chapter we need a list of English words. There are lots of word lists
available on the Web, but the one most suitable for our purpose is one of the word lists
collected and contributed to the public domain by Grady Ward as part of the Moby lexicon
project1. It is a list of 113,809 official crosswords; that is, words that are considered valid in
crossword puzzles and other word games. In the Moby collection, the filename is 113809of.fic;
I include a copy of this file, with the simpler name words.txt, along with Swampy.

This file is in plain text, so you can open it with a text editor, but you can also read it
from Python. (You may need to move the file from the swampy folder into the main python
folder) The built-in function open takes the name of the file as a parameter and returns a
file object you can use to read the file.
>>> fin = open('words.txt')
>>> print fin
<open file 'words.txt', mode 'r' at 0xb7f4b380>

fin is a common name for a file object used for input. Mode 'r' indicates that this file is
open for reading (as opposed to 'w' for writing).

The file object provides several methods for reading, including readline, which reads characters
from the file until it gets to a newline and returns the result as a string:
>>> fin.readline()
'aa\r\n'

The first word in this particular list is “aa,” which is a kind of lava. The sequence \r\n
represents two whitespace characters, a carriage return and a newline, that separate this
word from the next.

The file object keeps track of where it is in the file, so if you call readline again, you get the
next word:
>>> fin.readline()
'aah\r\n'

The next word is “aah,” which is a perfectly legitimate word, so stop looking at me like that.
Or, if it’s the whitespace that’s bothering you, we can get rid of it with the string method
strip:
>>> line = fin.readline()
>>> word = line.strip()

1 wikipedia.org/wiki/Moby_Project

87

Case study: word play

>>> print word
aahed

You can also use a file object as part of a for loop. This program reads words.txt and prints
each word, one per line:
fin = open('words.txt')
for line in fin:

word = line.strip()
print word

Exercise 1 Write a program that reads 'words.txt' and prints only the words with more
than 20 characters (not counting whitespace).

8.2 Exercises

There are solutions to these exercises in the next section. You should at least attempt each
one before you read the solutions. Exercise 2 In 1939 Ernest Vincent Wright published a
50,000 word novel called Gadsby that does not contain the letter “e.” Since “e” is the most
common letter in English, that’s not easy to do. In fact, it is difficult to construct a solitary
thought without using that most common symbol. It is slow going at first, but with caution
and hours of training you can gradually gain facility.

All right, I’ll stop now.

Write a function called has_no_ethat returns 'True' if the given word doesn’t have the
letter “e” in it.

Modify your program from the previous section to print only the words that have no “e” and
compute the percentage of the words in the list have no “e.”

Exercise 3 Write a function named 'avoids' that takes a word and a string of forbidden
letters, and that returns 'True' if the word doesn’t use any of the forbidden letters. Modify
your program to prompt the user to enter a string of forbidden letters and then print the
number of words that don’t contain any of them. Can you find a combination of 5 forbidden
letters that excludes the smallest number of words? Exercise 4 Write a function named
uses_only that takes a word and a string of letters, and that returns 'True' if the word
contains only letters in the list. Can you make a sentence using only the letters 'acefhlo'?
Other than “Hoe alfalfa?” Exercise 5 Write a function named uses_all that takes a word
and a string of required letters, and that returns 'True' if the word uses all the required
letters at least once. How many words are there that use all the vowels 'aeiou'? How about
'aeiouy'? Exercise 6 Write a function called is_abecedarian that returns 'True' if the
letters in a word appear in alphabetical order (double letters are ok). How many abecedarian
words are there?

8.3 Search

All of the exercises in the previous section have something in common; they can be solved
with the search pattern we saw in Section 8.6. The simplest example is:

88

Search

def has_no_e(word):
for letter in word:

if letter == 'e':
return False

return True

The for loop traverses the characters in word. If we find the letter “e”, we can immediately
return False; otherwise we have to go to the next letter. If we exit the loop normally, that
means we didn’t find an “e”, so we return True.

You can write this function more concisely using the in operator, but I started with this
version because it demonstrates the logic of the search pattern.

avoids is a more general version of has_no_e but it has the same structure:
def avoids(word, forbidden):

for letter in word:
if letter in forbidden:

return False
return True

We can return False as soon as we find a forbidden letter; if we get to the end of the loop,
we return True.

uses_only is similar except that the sense of the condition is reversed:
def uses_only(word, available):

for letter in word:
if letter not in available:

return False
return True

Instead of a list of forbidden words, we have a list of available words. If we find a letter in
word that is not in available, we can return False.

uses_all is similar except that we reverse the role of the word and the string of letters:
def uses_all(word, required):

for letter in required:
if letter not in word:

return False
return True

Instead of traversing the letters in word, the loop traverses the required letters. If any of
the required letters do not appear in the word, we can return False.

If you were really thinking like a computer scientist, you would have recognized that uses_all
was an instance of a previously-solved problem, and you would have written:
def uses_all(word, required):

return uses_only(required, word)

This is an example of a program development method called problem recognition, which
means that you recognize the problem you are working on as an instance of a
previously-solved problem, and apply a previously-developed solution.

89

Case study: word play

8.4 Looping with indices

I wrote the functions in the previous section with for loops because I only needed the
characters in the strings; I didn’t have to do anything with the indices.

For is_abecedarian we have to compare adjacent letters, which is a little tricky with a for
loop:
def is_abecedarian(word):

previous = word[0]
for c in word:

if c < previous:
return False

previous = c
return True

An alternative is to use recursion:
def is_abecedarian(word):

if len(word) <= 1:
return True

if word[0] > word[1]:
return False

return is_abecedarian(word[1:])

Another option is to use a while loop:
def is_abecedarian(word):

i = 0
while i < len(word)-1:

if word[i+1] < word[i]:
return False

i = i+1
return True

The loop starts at i=0 and ends when i=len(word)-1. Each time through the loop, it
compares the ith character (which you can think of as the current character) to the i+1th
character (which you can think of as the next).

If the next character is less than (alphabetically before) the current one, then we have
discovered a break in the abecedarian trend, and we return False.

If we get to the end of the loop without finding a fault, then the word passes the test. To
convince yourself that the loop ends correctly, consider an example like 'flossy'. The length
of the word is 6, so the last time the loop runs is when i is 4, which is the index of the
second-to-last character. On the last iteration, it compares the second-to-last character to
the last, which is what we want.

Here is a version of is_palindrome (see Exercise 6.6) that uses two indices; one starts at the
beginning and goes up; the other starts at the end and goes down.
def is_palindrome(word):

i = 0
j = len(word)-1

while i<j:
if word[i] != word[j]:

return False
i = i+1

90

Debugging

j = j-1

return True

Or, if you noticed that this is an instance of a previously-solved problem, you might have
written:
def is_palindrome(word):

return is_reverse(word, word)

Assuming you did Exercise 8.8.

8.5 Debugging

Testing programs is hard. The functions in this chapter are relatively easy to test because
you can check the results by hand. Even so, it is somewhere between difficult and impossible
to choose a set of words that test for all possible errors.

Taking has_no_e as an example, there are two obvious cases to check: words that have an
’e’ should return False; words that don’t should return True. You should have no trouble
coming up with one of each.

Within each case, there are some less obvious subcases. Among the words that have an “e,”
you should test words with an “e” at the beginning, the end, and somewhere in the middle.
You should test long words, short words, and very short words, like the empty string. The
empty string is an example of a special case, which is one of the non-obvious cases where
errors often lurk.

In addition to the test cases you generate, you can also test your program with a word list
like words.txt. By scanning the output, you might be able to catch errors, but be careful:
you might catch one kind of error (words that should not be included, but are) and not
another (words that should be included, but aren’t).

In general, testing can help you find bugs, but it is not easy to generate a good set of test
cases, and even if you do, you can’t be sure your program is correct.

According to a legendary computer scientist:

Program testing can be used to show the presence of bugs, but never to show their absence!
— Edsger W. Dijkstra

8.6 Glossary

file object: A value that represents an open file.

problem recognition: A way of solving a problem by expressing it as an instance of a
previously-solved problem. special case: A test case that is atypical or non-obvious (and
less likely to be handled correctly).

91

Case study: word play

8.7 Exercises

8.7.1 Exercise 7

This question is based on a Puzzler that was broadcast on the radio program Car Talk2:
Give me a word with three consecutive double letters. I'll give you a couple of words that
almost qualify, but don't. For example, the word committee, c-o-m-m-i-t-t-e-e. It would
be great except for the ‘i’ that sneaks in there. Or Mississippi: M-i-s-s-i-s-s-i-p-p-i. If you
could take out those i’s it would work. But there is a word that has three consecutive pairs
of letters and to the best of my knowledge this may be the only word. Of course there are
probably 500 more but I can only think of one. What is the word?

Write a program to find it. You can see my solution at
'thinkpython.com/code/cartalk.py'.

8.7.2 Exercise 8

Here’s another Car Talk Puzzler3: “I was driving on the highway the other day and I
happened to notice my odometer. Like most odometers, it shows six digits, in whole miles
only. So, if my car had 300,000 miles, for example, I’d see 3-0-0-0-0-0. “Now, what I saw
that day was very interesting. I noticed that the last 4 digits were palindromic; that is, they
read the same forward as backward. For example, 5-4-4-5 is a palindrome, so my odometer
could have read 3-1-5-4-4-5.

“One mile later, the last 5 numbers were palindromic. For example, it could have read
3-6-5-4-5-6. One mile after that, the middle 4 out of 6 numbers were palindromic. And you
ready for this? One mile later, all 6 were palindromic!

“The question is, what was on the odometer when I first looked?”

Write a Python program that tests all the six-digit numbers and prints any numbers that satisfy
these requirements. You can see my solution at 'thinkpython.com/code/cartalk.py'.

8.7.3 Exercise 9

Here’s another Car Talk Puzzler you can solve with a search4: “Recently I had a visit with
my mom and we realized that the two digits that make up my age when reversed resulted in
her age. For example, if she’s 73, I’m 37. We wondered how often this has happened over
the years but we got sidetracked with other topics and we never came up with an answer.
“When I got home I figured out that the digits of our ages have been reversible six times
so far. I also figured out that if we’re lucky it would happen again in a few years, and if
we’re really lucky it would happen one more time after that. In other words, it would have
happened 8 times over all. So the question is, how old am I now?”

2 www.cartalk.com/content/puzzler/transcripts/200725
3 www.cartalk.com/content/puzzler/transcripts/200803
4 www.cartalk.com/content/puzzler/transcripts/200813

92

Notes

Write a Python program that searches for solutions to this Puzzler. Hint: you might find the
string method 'zfill' useful.

You can see my solution at 'thinkpython.com/code/cartalk.py'.

8.8 Notes

93

9 Lists

9.1 A list is a sequence

Like a string, a list is a sequence of values. In a string, the values are characters; in a list,
they can be any type. The values in list are called elements or sometimes items.

There are several ways to create a new list; the simplest is to enclose the elements in square
brackets ([and]):
[10, 20, 30, 40]
['crunchy frog', 'ram bladder', 'lark vomit']

The first example is a list of four integers. The second is a list of three strings. The elements
of a list don’t have to be the same type. The following list contains a string, a float, an
integer, and (lo!) another list:
['spam', 2.0, 5, [10, 20]]

A list within another list is nested.

A list that contains no elements is called an empty list; you can create one with empty
brackets, [].

As you might expect, you can assign list values to variables:
>>> cheeses = ['Cheddar', 'Edam', 'Gouda']
>>> numbers = [17, 123]
>>> empty = []
>>> print cheeses, numbers, empty
['Cheddar', 'Edam', 'Gouda'] [17, 123] []

9.2 Lists are mutable

The syntax for accessing the elements of a list is the same as for accessing the characters
of a string—the bracket operator. The expression inside the brackets specifies the index.
Remember that the indices start at 0:
>>> print cheeses[0]
Cheddar

Unlike strings, lists are mutable. When the bracket operator appears on the left side of an
assignment, it identifies the element of the list that will be assigned.
>>> numbers = [17, 123]
>>> numbers[1] = 5

95

Lists

>>> print numbers
[17, 5]

The one-eth element of numbers, which used to be 123, is now 5.

You can think of a list as a relationship between indices and elements. This relationship
is called a mapping; each index “maps to” one of the elements. Here is a state diagram
showing cheeses, numbers and empty:

Lists are represented by boxes with the word “list” outside and the elements of the list
inside. cheeses refers to a list with three elements indexed 0, 1 and 2. numbers contains two
elements; the diagram shows that the value of the second element has been reassigned from
123 to 5. empty refers to a list with no elements.

List indices work the same way as string indices:

• Any integer expression can be used as an index.
• If you try to read or write an element that does not exist, you get an IndexError.
• If an index has a negative value, it counts backward from the end of the list.

The in operator also works on lists.
>>> cheeses = ['Cheddar', 'Edam', 'Gouda']
>>> 'Edam' in cheeses
True
>>> 'Brie' in cheeses
False

9.3 Traversing a list

The most common way to traverse the elements of a list is with a for loop. The syntax is
the same as for strings:
for cheese in cheeses:

print cheese

This works well if you only need to read the elements of the list. But if you want to write or
update the elements, you need the indices. A common way to do that is to combine the
functions range and len:
for i in range(len(numbers)):

numbers[i] = numbers[i] * 2

This loop traverses the list and updates each element. len returns the number of elements in
the list. range returns a list of indices from 0 to n−1, where n is the length of the list. Each
time through the loop i gets the index of the next element. The assignment statement in
the body uses i to read the old value of the element and to assign the new value.

A for loop over an empty list never executes the body:
for x in empty:

print 'This never happens.'

96

List operations

Although a list can contain another list, the nested list still counts as a single element. The
length of this list is four:
['spam', 1, ['Brie', 'Roquefort', 'Pol le Veq'], [1, 2, 3]]

9.4 List operations

The + operator concatenates lists:
>>> a = [1, 2, 3]
>>> b = [4, 5, 6]
>>> c = a + b
>>> print c
[1, 2, 3, 4, 5, 6]

Similarly, the * operator repeats a list a given number of times:
>>> [0] * 4
[0, 0, 0, 0]
>>> [1, 2, 3] * 3
[1, 2, 3, 1, 2, 3, 1, 2, 3]

The first example repeats [0] four times. The second example repeats the list [1, 2, 3] three
times.

9.5 List slices

The slice operator also works on lists:
>>> t = ['a', 'b', 'c', 'd', 'e', 'f']
>>> t[1:3]
['b', 'c']
>>> t[:4]
['a', 'b', 'c', 'd']
>>> t[3:]
['d', 'e', 'f']

If you omit the first index, the slice starts at the beginning. If you omit the second, the
slice goes to the end. So if you omit both, the slice is a copy of the whole list.
>>> t[:]
['a', 'b', 'c', 'd', 'e', 'f']

Since lists are mutable, it is often useful to make a copy before performing operations that
fold, spindle or mutilate lists.

A slice operator on the left side of an assignment can update multiple elements:
>>> t = ['a', 'b', 'c', 'd', 'e', 'f']
>>> t[1:3] = ['x', 'y']
>>> print t
['a', 'x', 'y', 'd', 'e', 'f']

97

Lists

9.6 List methods

Python provides methods that operate on lists. For example, append adds a new element to
the end of a list:
>>> t = ['a', 'b', 'c']
>>> t.append('d')
>>> print t
['a', 'b', 'c', 'd']

extend takes a list as an argument and appends all of the elements:
>>> t1 = ['a', 'b', 'c']
>>> t2 = ['d', 'e']
>>> t1.extend(t2)
>>> print t1
['a', 'b', 'c', 'd', 'e']

This example leaves t2 unmodified.

sort arranges the elements of the list from low to high:
>>> t = ['d', 'c', 'e', 'b', 'a']
>>> t.sort()
>>> print t
['a', 'b', 'c', 'd', 'e']

List methods are all void; they modify the list and return None. If you accidentally write t
= t.sort(), you will be disappointed with the result.

9.7 Map, filter and reduce

To add up all the numbers in a list, you can use a loop like this:
def add_all(t):

total = 0
for x in t:

total += x
return total

total is initialized to 0. Each time through the loop, x gets one element from the list. The
+= operator provides a short way to update a variable:

total += x

is equivalent to:
total = total + x

As the loop executes, total accumulates the sum of the elements; a variable used this way is
sometimes called an accumulator.

Adding up the elements of a list is such a common operation that Python provides it as a
built-in function, sum:

98

Deleting elements

>>> t = [1, 2, 3]
>>> sum(t)
6

An operation like this that combines a sequence of elements into a single value is sometimes
called reduce.

Sometimes you want to traverse one list while building another. For example, the following
function takes a list of strings and returns a new list that contains capitalized strings:
def capitalize_all(t):

res = []
for s in t:

res.append(s.capitalize())
return res

res is initialized with an empty list; each time through the loop, we append the next element.
So res is another kind of accumulator.

An operation like capitalize_all is sometimes called a map because it “maps” a function (in
this case the method capitalize) onto each of the elements in a sequence.

Another common operation is to select some of the elements from a list and return a sublist.
For example, the following function takes a list of strings and returns a list that contains
only the uppercase strings:
def only_upper(t):

res = []
for s in t:

if s.isupper():
res.append(s)

return res

isupper is a string method that returns True if the string contains only upper case letters.

An operation like only_upper is called a filter because it selects some of the elements and
filters out the others.

Most common list operations can be expressed as a combination of map, filter and reduce.
Because these operations are so common, Python provides language features to support
them, including the built-in function map and an operator called a “list comprehension.”

9.7.1 Exercise 1

Write a function that takes a list of numbers and returns the cumulative sum; that is, a new
list where the 'i'th element is the sum of the first 'i+1' elements from the original list. For
example, the cumulative sum of '[1, 2, 3]' is '[1, 3, 6]'.

9.8 Deleting elements

There are several ways to delete elements from a list. If you know the index of the element
you want, you can use pop:

99

Lists

>>> t = ['a', 'b', 'c']
>>> x = t.pop(1)
>>> print t
['a', 'c']
>>> print x
b

pop modifies the list and returns the element that was removed. If you don’t provide an
index, it deletes and returns the last element.

If you don’t need the removed value, you can use the del operator:
>>> t = ['a', 'b', 'c']
>>> del t[1]
>>> print t
['a', 'c']

If you know the element you want to remove (but not the index), you can use remove:
>>> t = ['a', 'b', 'c']
>>> t.remove('b')
>>> print t
['a', 'c']

The return value from remove is None.

To remove more than one element, you can use del with a slice index:
>>> t = ['a', 'b', 'c', 'd', 'e', 'f']
>>> del t[1:5]
>>> print t
['a', 'f']

As usual, the slice selects all the elements up to, but not including, the second index.

9.9 Lists and strings

A string is a sequence of characters and a list is a sequence of values, but a list of characters
is not the same as a string. To convert from a string to a list of characters, you can use list:
>>> s = 'spam'
>>> t = list(s)
>>> print t
['s', 'p', 'a', 'm']

Because list is the name of a built-in function, you should avoid using it as a variable name.
I also avoid l because it looks too much like 1. So that’s why I use t.

The list function breaks a string into individual letters. If you want to break a string into
words, you can use the split method:
>>> s = 'pining for the fjords'
>>> t = s.split()
>>> print t
['pining', 'for', 'the', 'fjords']

100

Objects and values

An optional argument called a delimiter specifies which characters to use as word boundaries.
The following example uses a hyphen as a delimiter:
>>> s = 'spam-spam-spam'
>>> delimiter = '-'
>>> s.split(delimiter)
['spam', 'spam', 'spam']

join is the inverse of split. It takes a list of strings and concatenates the elements. join is a
string method, so you have to invoke it on the delimiter and pass the list as a parameter:
>>> t = ['pining', 'for', 'the', 'fjords']
>>> delimiter = ' '
>>> delimiter.join(t)
'pining for the fjords'

In this case the delimiter is a space character, so join puts a space between words. To
concatenate strings without spaces, you can use the empty string, , as a delimiter.

9.10 Objects and values

If we execute these assignment statements:
a = 'banana'
b = 'banana'

We know that a and b both refer to a string, but we don’t know whether they refer to the
same string. There are two possible states:

In one case, a and b refer to two different objects that have the same value. In the second
case, they refer to the same object.

To check whether two variables refer to the same object, you can use the is operator.
>>> a = 'banana'
>>> b = 'banana'
>>> a is b
True

In this example, Python only created one string object, and both a and b refer to it.

But when you create two lists, you get two objects:
>>> a = [1, 2, 3]
>>> b = [1, 2, 3]
>>> a is b
False

So the state diagram looks like this:

In this case we would say that the two lists are equivalent, because they have the same
elements, but not identical, because they are not the same object. If two objects are
identical, they are also equivalent, but if they are equivalent, they are not necessarily
identical.

101

Lists

Until now, we have been using “object” and “value” interchangeably, but it is more precise
to say that an object has a value. If you execute a = [1,2,3], a refers to a list object whose
value is a particular sequence of elements. If another list has the same elements, we would
say it has the same value.

9.11 Aliasing

If a refers to an object and you assign b = a, then both variables refer to the same object:
>>> a = [1, 2, 3]
>>> b = a
>>> b is a
True

The state diagram looks like this:

The association of a variable with an object is called a reference. In this example, there
are two references to the same object.

An object with more than one reference has more than one name, so we say that the object
is aliased.

If the aliased object is mutable, changes made with one alias affect the other:
>>> b[0] = 17
>>> print a
[17, 2, 3]

Although this behavior can be useful, it is error-prone. In general, it is safer to avoid aliasing
when you are working with mutable objects.

For immutable objects like strings, aliasing is not as much of a problem. In this example:
a = 'banana'
b = 'banana'

It almost never makes a difference whether a and b refer to the same string or not.

9.12 List arguments

When you pass a list to a function, the function gets a reference to the list. If the function
modifies a list parameter, the caller sees the change. For example, delete_head removes the
first element from a list:
def delete_head(t):

del t[0]

Here’s how it is used:
>>> letters = ['a', 'b', 'c']
>>> delete_head(letters)
>>> print letters

102

List arguments

['b', 'c']

The parameter t and the variable letters are aliases for the same object. The stack diagram
looks like this:

Since the list is shared by two frames, I drew it between them.

It is important to distinguish between operations that modify lists and operations that
create new lists. For example, the append method modifies a list, but the + operator creates
a new list:
>>> t1 = [1, 2]
>>> t2 = t1.append(3)
>>> print t1
[1, 2, 3]
>>> print t2
None

>>> t3 = t1 + [3]
>>> print t3
[1, 2, 3]
>>> t2 is t3
False

This difference is important when you write functions that are supposed to modify lists. For
example, this function does not delete the head of a list:
def bad_delete_head(t):

t = t[1:] # WRONG!

The slice operator creates a new list and the assignment makes t refer to it, but none of
that has any effect on the list that was passed as an argument.

An alternative is to write a function that creates and returns a new list. For example, tail
returns all but the first element of a list:
def tail(t):

return t[1:]

This function leaves the original list unmodified. Here’s how it is used:
>>> letters = ['a', 'b', 'c']
>>> rest = tail(letters)
>>> print rest
['b', 'c']

9.12.1 Exercise 2

Write a function called 'chop' that takes a list and modifies it, removing the first and last
elements, and returns 'None'.

Then write a function called 'middle' that takes a list and returns a new list that contains
all but the first and last elements.

103

Lists

9.13 Debugging

Careless use of lists (and other mutable objects) can lead to long hours of debugging. Here
are some common pitfalls and ways to avoid them:

• Don’t forget that most list methods modify the argument and

return None. This is the opposite of the string methods, which return a new string and
leave the original alone. If you are used to writing string code like this:
word = word.strip()

It is tempting to write list code like this:
t = t.sort() # WRONG!

Because sort returns None, the next operation you perform with t is likely to fail.

Before using list methods and operators, you should read the documentation carefully
and then test them in interactive mode. The methods and operators that lists share
with other sequences (like strings) are documented at docs.python.org/lib/typesseq.html.
The methods and operators that only apply to mutable sequences are documented at
docs.python.org/lib/typesseq-mutable.html.

• Pick an idiom and stick with it.

Part of the problem with lists is that there are too many ways to do things. For example, to
remove an element from a list, you can use pop, remove, del, or even a slice assignment.

To add an element, you can use the append method or the + operator. But don’t forget
that these are right:
t.append(x)
t = t + [x]

And these are wrong:
t.append([x]) # WRONG!
t = t.append(x) # WRONG!
t + [x] # WRONG!
t = t + x # WRONG!

Try out each of these examples in interactive mode to make sure you understand what they
do. Notice that only the last one causes a runtime error; the other three are legal, but they
do the wrong thing.

• Make copies to avoid aliasing.

If you want to use a method like sort that modifies the argument, but you need to keep the
original list as well, you can make a copy.
orig = t[:]
t.sort()

104

Glossary

In this example you could also use the built-in function sorted, which returns a new, sorted
list and leaves the original alone. But in that case you should avoid using sorted as a variable
name!

9.14 Glossary

list: A sequence of values. element: One of the values in a list (or other sequence), also
called items. index: An integer value that indicates an element in a list. nested list: A
list that is an element of another list. list traversal: The sequential accessing of each
element in a list. mapping: A relationship in which each element of one set corresponds
to an element of another set. For example, a list is a mapping from indices to elements.
accumulator: A variable used in a loop to add up or accumulate a result.

reduce: A processing pattern that traverses a sequence and accumulates the elements into
a single result.

map: A processing pattern that traverses a sequence and performs an operation on each
element.

filter: A processing pattern that traverses a list and selects the elements that satisfy some
criterion.

object: Something a variable can refer to. An object has a type and a value. equivalent:
Having the same value. identical: Being the same object (which implies equivalence).
reference: The association between a variable and its value. aliasing: A circumstance
where two variables refer to the same object. delimiter: A character or string used to
indicate where a string should be split.

9.15 Exercises

9.15.1 Exercise 3

Write a function called is_sorted that takes a list as a parameter and returns 'True' if the
list is sorted in ascending order and 'False' otherwise. You can assume (as a precondition)
that the elements of the list can be compared with the comparison operators '<', '>', etc.

For example, is_sorted([1,2,2])should return 'True' and is_sorted(['b','a']) should return
'False'.

9.15.2 Exercise 4

Two words are anagrams if you can rearrange the letters from one to spell the other. Write a
function called is_anagram that takes two strings and returns 'True' if they are anagrams.
Exercise 5 The (so-called) Birthday Paradox:

Write a function called has_duplicatesthat takes a list and returns 'True' if there is any
element that appears more than once. It should not modify the original list.

105

Lists

• If there are 23 students in your class, what are the chances

that two of you have the same birthday? You can estimate this probability by generating
random samples of 23 birthdays and checking for matches. Hint: you can generate random
birthdays with the 'randint' function in the 'random' module.

You can read about this problem at 'wikipedia.org/wiki/Birthday_paradox', and you
can see my solution at 'thinkpython.com/code/birthday.py'. Exercise 6

Write a function called remove_duplicatesthat takes a list and returns a new list with only
the unique elements from the original. Hint: they don’t have to be in the same order.

9.15.3 Exercise 7

Write a function that reads the file 'words.txt' and builds a list with one element per word.
Write two versions of this function, one using the 'append' method and the other using the
idiom 't = t + [x]'. Which one takes longer to run? Why?

You can see my solution at 'thinkpython.com/code/wordlist.py'.

9.15.4 Exercise 8

To check whether a word is in the word list, you could use the 'in' operator, but it would be
slow because it searches through the words in order.

Because the words are in alphabetical order, we can speed things up with a bisection search,
which is similar to what you do when you look a word up in the dictionary. You start in the
middle and check to see whether the word you are looking for comes before the word in the
middle of the list. If so, then you search the first half of the list the same way. Otherwise
you search the second half.

Either way, you cut the remaining search space in half. If the word list has 113,809 words, it
will take about 17 steps to find the word or conclude that it’s not there.

Write a function called 'bisect' that takes a sorted list and a target value and returns the
index of the value in the list, if it’s there, or 'None' if it’s not.

Or you could read the documentation of the 'bisect' module and use that!

9.15.5 Exercise 9

Two words are a “reverse pair” if each is the reverse of the other. Write a program that
finds all the reverse pairs in the word list.

9.15.6 Exercise 10

Two words “interlock” if taking alternating letters from each forms a new word1. For example,
“shoe” and “cold” interlock to form “schooled.”

106

Exercises

• Write a program that finds all pairs of words that interlock.

Hint: don’t enumerate all pairs!

• Can you find any words that are three-way interlocked; that is,

every third letter forms a word, starting from the first, second or third?

1This exercise is inspired by an example at puzzlers.org.

107

10 Dictionaries

A dictionary is like a list, but more general. In a list, the indices have to be integers; in a
dictionary they can be (almost) any type.

You can think of a dictionary as a mapping between a set of indices (which are called keys)
and a set of values. Each key maps to a value. The association of a key and a value is called
a key-value pair or sometimes an item.

As an example, we'll build a dictionary that maps from English to Spanish words, so the
keys and the values are all strings.

The function dict creates a new dictionary with no items. Because dict is the name of a
built-in function, you should avoid using it as a variable name.
>>> eng2sp = dict()
>>> print eng2sp
{}

The squiggly-brackets, {}, represent an empty dictionary. To add items to the dictionary,
you can use square brackets:
>>> eng2sp['one'] = 'uno'

This line creates an item that maps from the key ’one’ to the value 'uno'. If we print the
dictionary again, we see a key-value pair with a colon between the key and value:
>>> print eng2sp
{'one': 'uno'}

This output format is also an input format. For example, you can create a new dictionary
with three items:
>>> eng2sp = {'one': 'uno', 'two': 'dos', 'three': 'tres'}

But if you print eng2sp, you might be surprised:
>>> print eng2sp
{'one': 'uno', 'three': 'tres', 'two': 'dos'}

The order of the key-value pairs is not the same. In fact, if you type the same example on
your computer, you might get a different result. In general, the order of items in a dictionary
is unpredictable.

But that’s not a problem because the elements of a dictionary are never indexed with integer
indices. Instead, you use the keys to look up the corresponding values:

109

Dictionaries

>>> print eng2sp['two']
'dos'

The key ’two’ always maps to the value 'dos' so the order of the items doesn’t matter.

If the key isn’t in the dictionary, you get an exception:
>>> print eng2sp['four']
KeyError: 'four'

The len function works on dictionaries; it returns the number of key-value pairs:
>>> len(eng2sp)
3

The in operator works on dictionaries; it tells you whether something appears as a key in
the dictionary (appearing as a value is not good enough).
>>> 'one' in eng2sp
True
>>> 'uno' in eng2sp
False

To see whether something appears as a value in a dictionary, you can use the method values,
which returns the values as a list, and then use the in operator:
>>> vals = eng2sp.values()
>>> 'uno' in vals
True

The in operator uses different algorithms for lists and dictionaries. For lists, it uses a search
algorithm, as in Section 8.6. As the list gets longer, the search time gets longer in direct
proportion. For dictionaries, Python uses an algorithm called a hashtable that has a
remarkable property: the in operator takes about the same amount of time no matter how
many items there are in a dictionary. I won’t explain how that’s possible, but you can read
more about it at wikipedia.org/wiki/Hash_table.

10.0.7 Exercise 1

Write a function that reads the words in 'words.txt' and stores them as keys in a dictionary.
It doesn’t matter what the values are. Then you can use the 'in' operator as a fast way to
check whether a string is in the dictionary.

If you did Exercise '10.8', you can compare the speed of this implementation with the list
'in' operator and the bisection search.

10.1 Dictionary as a set of counters

Suppose you are given a string and you want to count how many times each letter appears.
There are several ways you could do it:

110

Dictionary as a set of counters

• You could create 26 variables, one for each letter of the alphabet. Then you could traverse
the string and, for each character, increment the corresponding counter, probably using a
chained conditional.

• You could create a list with 26 elements. Then you could convert each character to a
number (using the built-in function ord), use the number as an index into the list, and
increment the appropriate counter.

• You could create a dictionary with characters as keys and counters as the corresponding
values. The first time you see a character, you would add an item to the dictionary. After
that you would increment the value of an existing item.

Each of these options performs the same computation, but each of them implements that
computation in a different way.

An implementation is a way of performing a computation; some implementations are
better than others. For example, an advantage of the dictionary implementation is that we
don’t have to know ahead of time which letters appear in the string and we only have to
make room for the letters that do appear.

Here is what the code might look like:
def histogram(s):

d = dict()
for c in s:

if c not in d:
d[c] = 1

else:
d[c] += 1

return d

The name of the function is histogram, which is a statistical term for a set of counters (or
frequencies).

The first line of the function creates an empty dictionary. The for loop traverses the string.
Each time through the loop, if the character c is not in the dictionary, we create a new item
with key c and the initial value 1 (since we have seen this letter once). If c is already in the
dictionary we increment d[c].

Here’s how it works:
>>> h = histogram('brontosaurus')
>>> print h
{'a': 1, 'b': 1, 'o': 2, 'n': 1, 's': 2, 'r': 2, 'u': 2, 't': 1}

The histogram indicates that the letters ’a’ and 'b' appear once; 'o' appears twice, and so
on.

10.1.1 Exercise 2

Dictionaries have a method called 'get' that takes a key and a default value. If the key
appears in the dictionary, 'get' returns the corresponding value; otherwise it returns the
default value. For example:
''>>> h = histogram('a')
>>> print h
{'a': 1}

111

Dictionaries

>>> h.get('a', 0)
1
>>> h.get('b', 0)
0
''

Use 'get' to write 'histogram' more concisely. You should be able to eliminate the 'if'
statement.

10.2 Looping and dictionaries

If you use a dictionary in a for statement, it traverses the keys of the dictionary. For example,
print_hist prints each key and the corresponding value:
def print_hist(h):

for c in h:
print c, h[c]

Here’s what the output looks like:
>>> h = histogram('parrot')
>>> print_hist(h)
a 1
p 1
r 2
t 1
o 1

Again, the keys are in no particular order.

10.2.1 Exercise 3

Dictionaries have a method called 'keys' that returns the keys of the dictionary, in no
particular order, as a list.

Modify print_histto print the keys and their values in alphabetical order.

10.3 Reverse lookup

Given a dictionary d and a key k, it is easy to find the corresponding value v = d[k]. This
operation is called a lookup.

But what if you have v and you want to find k? You have two problems: first, there might
be more than one key that maps to the value v. Depending on the application, you might
be able to pick one, or you might have to make a list that contains all of them. Second,
there is no simple syntax to do a reverse lookup; you have to search.

Here is a function that takes a value and returns the first key that maps to that value:
def reverse_lookup(d, v):

for k in d:
if d[k] == v:

return k

112

Dictionaries and lists

raise ValueError

This function is yet another example of the search pattern, but it uses a feature we haven’t
seen before, raise. The raise statement causes an exception; in this case it causes a ValueError,
which generally indicates that there is something wrong with the value of a parameter.

If we get to the end of the loop, that means v doesn’t appear in the dictionary as a value,
so we raise an exception.

Here is an example of a successful reverse lookup:
>>> h = histogram('parrot')
>>> k = reverse_lookup(h, 2)
>>> print k
r

And an unsuccessful one:
>>> k = reverse_lookup(h, 3)
Traceback (most recent call last):

File "<stdin>", line 1, in ?
File "<stdin>", line 5, in reverse_lookup

ValueError

The result when you raise an exception is the same as when Python raises one: it prints a
traceback and an error message.

The raise statement takes a detailed error message as an optional argument. For example:
>>> raise ValueError, 'value does not appear in the dictionary'
Traceback (most recent call last):

File "<stdin>", line 1, in ?
ValueError: value does not appear in the dictionary

A reverse lookup is much slower than a forward lookup; if you have to do it often, or if
the dictionary gets big, the performance of your program will suffer. Exercise 4 Modify
reverse_lookup so that it builds and returns a list of all keys that map to 'v', or an empty
list if there are none.

10.4 Dictionaries and lists

Lists can appear as values in a dictionary. For example, if you were given a dictionary that
maps from letters to frequencies, you might want to invert it; that is, create a dictionary
that maps from frequencies to letters. Since there might be several letters with the same
frequency, each value in the inverted dictionary should be a list of letters.

Here is a function that inverts a dictionary:
def invert_dict(d):

inv = dict()
for key in d:

val = d[key]
if val not in inv:

inv[val] = [key]
else:

inv[val].append(key)

113

Dictionaries

return inv

Each time through the loop, key gets a key from d and val gets the corresponding value. If
val is not in inv, that means we haven’t seen it before, so we create a new item and initialize
it with a singleton (a list that contains a single element). Otherwise we have seen this
value before, so we append the corresponding key to the list.

Here is an example:
>>> hist = histogram('parrot')
>>> print hist
{'a': 1, 'p': 1, 'r': 2, 't': 1, 'o': 1}
>>> inv = invert_dict(hist)
>>> print inv
{1: ['a', 'p', 't', 'o'], 2: ['r']}

And here is a diagram showing hist and inv:

A dictionary is represented as a box with the type dict above it and the key-value pairs
inside. If the values are integers, floats or strings, I usually draw them inside the box, but I
usually draw lists outside the box, just to keep the diagram simple.

Lists can be values in a dictionary, as this example shows, but they cannot be keys. Here’s
what happens if you try:
>>> t = [1, 2, 3]
>>> d = dict()
>>> d[t] = 'oops'
Traceback (most recent call last):

File "<stdin>", line 1, in ?
TypeError: list objects are unhashable

I mentioned earlier that a dictionary is implemented using a hashtable and that means that
the keys have to be hashable.

A hash is a function that takes a value (of any kind) and returns an integer. Dictionaries
use these integers, called hash values, to store and look up key-value pairs.

This system works fine if the keys are immutable. But if the keys are mutable, like lists,
bad things happen. For example, when you create a key-value pair, Python hashes the key
and stores it in the corresponding location. If you modify the key and then hash it again, it
would go to a different location. In that case you might have two entries for the same key,
or you might not be able to find a key. Either way, the dictionary wouldn’t work correctly.

That’s why the keys have to be hashable, and why mutable types like lists aren’t. The
simplest way to get around this limitation is to use tuples, which we will see in the next
chapter.

Since dictionaries are mutable, they can’t be used as keys, but they can be used as values.

10.4.1 Exercise 5

Read the documentation of the dictionary method 'setdefault' and use it to write a more
concise version of invert_dict.

114

Memos

10.5 Memos

If you played with the fibonacci function from Section 6.7, you might have noticed that the
bigger the argument you provide, the longer the function takes to run. Furthermore, the
run time increases very quickly.

To understand why, consider this call graph for fibonacci with n=4:

A call graph shows a set of function frames, with lines connecting each frame to the frames
of the functions it calls. At the top of the graph, fibonacci with n=4 calls fibonacci with
n=3 and n=2. In turn, fibonacci with n=3 calls fibonacci with n=2 and n=1. And so on.

Count how many times fibonacci(0) and fibonacci(1) are called. This is an inefficient solution
to the problem, and it gets worse as the argument gets bigger.

One solution is to keep track of values that have already been computed by storing them in
a dictionary. A previously computed value that is stored for later use is called a memo1.
Here is an implementation of fibonacci using memos:
known = {0:0, 1:1}

def fibonacci(n):
if n in known:

return known[n]

res = fibonacci(n-1) + fibonacci(n-2)
known[n] = res
return res

known is a dictionary that keeps track of the Fibonacci numbers we already know. It starts
with two items: 0 maps to 0 and 1 maps to 1.

Whenever fibonacci is called, it checks known. If the result is already there, it can return
immediately. Otherwise it has to compute the new value, add it to the dictionary, and
return it.

10.5.1 Exercise 6

Run this version of 'fibonacci' and the original with a range of parameters and compare
their run times.

10.6 Global variables

In the previous example, known is created outside the function, so it belongs to the special
frame called __main__. Variables in __main__are sometimes called global because
they can be accessed from any function. Unlike local variables, which disappear when their
function ends, global variables persist from one function call to the next.

1 See wikipedia.org/wiki/Memoization

115

Dictionaries

It is common to use global variables for flags; that is, boolean variables that indicate (“flag”)
whether a condition is true. For example, some programs use a flag named verbose to control
the level of detail in the output:
verbose = True

def example1():
if verbose:

print 'Running example1'

If you try to reassign a global variable, you might be surprised. The following example is
supposed to keep track of whether the function has been called:
been_called = False

def example2():
been_called = True # WRONG

But if you run it you will see that the value of been_called doesn’t change. The problem
is that example2 creates a new local variable named been_called. The local variable goes
away when the function ends, and has no effect on the global variable.

To reassign a global variable inside a function you have to declare the global variable before
you use it:
been_called = False

def example2():
global been_called
been_called = True

The global statement tells the interpreter something like, “In this function, when I say
been_called, I mean the global variable; don’t create a local one.”

Here’s an example that tries to update a global variable:
count = 0

def example3():
count = count + 1 # WRONG

If you run it you get:
UnboundLocalError: local variable 'count' referenced before
assignment

Python assumes that count is local, which means that you are reading it before writing it.
The solution, again, is to declare count global.
def example3():

global count
count += 1

If the global value is mutable, you can modify it without declaring it:
known = {0:0, 1:1}

def example4():

116

Long integers

known[2] = 1

So you can add, remove and replace elements of a global list or dictionary, but if you want
to reassign the variable, you have to declare it:
def example5():

global known
known = dict()

10.7 Long integers

If you compute fibonacci(50), you get:
>>> fibonacci(50)
12586269025L

The L at the end indicates that the result is a long integer2, or type long.

Values with type int have a limited range; long integers can be arbitrarily big, but as they
get bigger they consume more space and time.

The mathematical operators work on long integers, and the functions in the math module,
too, so in general any code that works with int will also work with long.

Any time the result of a computation is too big to be represented with an integer, Python
converts the result as a long integer:
>>> 1000 * 1000
1000000
>>> 100000 * 100000
10000000000L

In the first case the result has type int; in the second case it is long.

10.7.1 Exercise 7

Exponentiation of large integers is the basis of common algorithms for public-key encryption.
Read the Wikipedia page on the RSA algorithm3 and write functions to encode and decode
messages.

10.8 Debugging

As you work with bigger datasets it can become unwieldy to debug by printing and checking
data by hand. Here are some suggestions for debugging large datasets: Scale down the
input: If possible, reduce the size of the dataset. For example if the program reads a text
file, start with just the first 10 lines, or with the smallest example you can find. You can

2 In Python 3.0, type long is gone; all integers, even really big ones, are type int.
3 wikipedia.org/wiki/RSA

117

Dictionaries

either edit the files themselves, or (better) modify the program so it reads only the first n
lines. If there is an error, you can reduce n to the smallest value that manifests the error,
and then increase it gradually as you find and correct errors. Check summaries and
types: Instead of printing and checking the entire dataset, consider printing summaries of
the data: for example, the number of items in a dictionary or the total of a list of numbers.
A common cause of runtime errors is a value that is not the right type. For debugging this
kind of error, it is often enough to print the type of a value. Write self-checks: Sometimes
you can write code to check for errors automatically. For example, if you are computing
the average of a list of numbers, you could check that the result is not greater than the
largest element in the list or less than the smallest. This is called a “sanity check” because
it detects results that are “insane.”

Another kind of check compares the results of two different computations to see if they are
consistent. This is called a “consistency check.” Pretty print the output: Formatting
debugging output can make it easier to spot an error. We saw an example in Section 6.9.
The pprint module provides a pprint function that displays built-in types in a more human-
readable format.

Again, time you spend building scaffolding can reduce the time you spend debugging.

10.9 Glossary

dictionary: A mapping from a set of keys to their corresponding values. key-value pair:
The representation of the mapping from a key to a value. item: Another name for a
key-value pair. key: An object that appears in a dictionary as the first part of a key-value
pair. value: An object that appears in a dictionary as the second part of a key-value
pair. This is more specific than our previous use of the word “value.” implementation: A
way of performing a computation. hashtable: The algorithm used to implement Python
dictionaries. hash function: A function used by a hashtable to compute the location for a
key. hashable: A type that has a hash function. Immutable types like integers, floats and
strings are hashable; mutable types like lists and dictionaries are not. lookup: A dictionary
operation that takes a key and finds the corresponding value. reverse lookup: A dictionary
operation that takes a value and finds one or more keys that map to it. singleton: A list
(or other sequence) with a single element. call graph: A diagram that shows every frame
created during the execution of a program, with an arrow from each caller to each callee.

histogram: A set of counters. memo: A computed value stored to avoid unnecessary future
computation. global variable: A variable defined outside a function. Global variables
can be accessed from any function. flag: A boolean variable used to indicate whether a
condition is true. declaration: A statement like global that tells the interpreter something
about a variable.

10.10 Exercise-8

Dictionaries have a method called 'keys' that returns the
keys of the dictionary, in

118

Notes

no particular order, as a list. Modify print_hist to print the keys and their values in
alphabetical order.

10.10.1 Exercise 9

Two words are “rotate pairs” if you can rotate one of them and get the other (see rotate_word
in Exercise '8.12').

Write a program that reads a wordlist and finds all the rotate pairs.

10.10.2 Exercise 10

Here’s another Puzzler from Car Talk4: This was sent in by a fellow named Dan O’Leary.
He came upon a common one-syllable, five-letter word recently that has the following unique
property. When you remove the first letter, the remaining letters form a homophone of the
original word, that is a word that sounds exactly the same. Replace the first letter, that is,
put it back and remove the second letter and the result is yet another homophone of the
original word. And the question is, what’s the word? Now I’m going to give you an example
that doesn’t work. Let’s look at the five-letter word, ‘wrack.’ W-R-A-C-K, you know like to
‘wrack with pain.’ If I remove the first letter, I am left with a four-letter word, ’R-A-C-K.’
As in, ‘Holy cow, did you see the rack on that buck! It must have been a nine-pointer!’ It’s
a perfect homophone. If you put the ‘w’ back, and remove the ‘r,’ instead, you’re left with
the word, ‘wack,’ which is a real word, it’s just not a homophone of the other two words.

But there is, however, at least one word that Dan and we know of, which will yield two
homophones if you remove either of the first two letters to make two, new four-letter words.
The question is, what’s the word?

'

You can use the dictionary from Exercise '11.1' to check whether a string is in the word list.

To check whether two words are homophones, you can use the CMU Pro-
nouncing Dictionary. You can download it from 'www.speech.cs.cmu.edu/cgi-
bin/cmudict' or from 'thinkpython.com/code/c06d' and you can also download
'thinkpython.com/code/pronounce.py', which provides a function named read_-
dictionary that reads the pronouncing dictionary and returns a Python dictionary that maps
from each word to a string that describes its primary pronunciation.

Write a program that lists all the words that solve the Puzzler. You can see my solution at
'thinkpython.com/code/homophone.py'.

10.11 Notes

4 www.cartalk.com/content/puzzler/transcripts/200717

119

11 Tuples

11.1 Tuples are immutable

A tuple is a sequence of values. The values can be any type, and they are indexed by integers,
so in that respect tuples are a lot like lists. The important difference is that tuples are
immutable.

Syntactically, a tuple is a comma-separated list of values:
>>> t = 'a', 'b', 'c', 'd', 'e'

Although it is not necessary, it is common to enclose tuples in parentheses:
>>> t = ('a', 'b', 'c', 'd', 'e')

To create a tuple with a single element, you have to include the final comma:
>>> t1 = ('a',)
>>> type(t1)
<type 'tuple'>

Without the comma, Python treats ('a') as a string in parentheses:
>>> t2 = ('a')
>>> type(t2)
<type 'str'>

Another way to create a tuple is the built-in function tuple. With no argument, it creates
an empty tuple:
>>> t = tuple()
>>> print t
()

If the argument is a sequence (string, list or tuple), the result is a tuple with the elements
of the sequence:
>>> t = tuple('lupins')
>>> print t
('l', 'u', 'p', 'i', 'n', 's')

Because tuple is the name of a built-in function, you should avoid using it as a variable
name.

Most list operators also work on tuples. The bracket operator indexes an element:
>>> t = ('a', 'b', 'c', 'd', 'e')
>>> print t[0]

121

Tuples

'a'

And the slice operator selects a range of elements.
>>> print t[1:3]
('b', 'c')

But if you try to modify one of the elements of the tuple, you get an error:
>>> t[0] = 'A'
TypeError: object doesn't support item assignment

You can’t modify the elements of a tuple, but you can replace one tuple with another:
>>> t = ('A',) + t[1:]
>>> print t
('A', 'b', 'c', 'd', 'e')

11.2 Tuple assignment

It is often useful to swap the values of two variables. With conventional assignments, you
have to use a temporary variable. For example, to swap a and b:
>>> temp = a
>>> a = b
>>> b = temp

This solution is cumbersome; tuple assignment is more elegant:
>>> a, b = b, a

The left side is a tuple of variables; the right side is a tuple of expressions. Each value is
assigned to its respective variable. All the expressions on the right side are evaluated before
any of the assignments.

The number of variables on the left and the number of values on the right have to be the
same:
>>> a, b = 1, 2, 3
ValueError: too many values to unpack

More generally, the right side can be any kind of sequence (string, list or tuple). For example,
to split an email address into a user name and a domain, you could write:
>>> addr = 'monty@python.org'
>>> uname, domain = addr.split('@')

The return value from split is a list with two elements; the first element is assigned to uname,
the second to domain.
>>> print uname
monty
>>> print domain
python.org

122

Tuples as return values

11.3 Tuples as return values

Strictly speaking, a function can only return one value, but if the value is a tuple, the effect
is the same as returning multiple values. For example, if you want to divide two integers
and compute the quotient and remainder, it is inefficient to compute x/y and then x%y. It
is better to compute them both at the same time.

The built-in function divmod takes two arguments and returns a tuple of two values, the
quotient and remainder. You can store the result as a tuple:
>>> t = divmod(7, 3)
>>> print t
(2, 1)

Or use tuple assignment to store the elements separately:
>>> quot, rem = divmod(7, 3)
>>> print quot
2
>>> print rem
1

Here is an example of a function that returns a tuple:
def min_max(t):

return min(t), max(t)

max and min are built-in functions that find the largest and smallest elements of a sequence.
min_max computes both and returns a tuple of two values.

11.4 Variable-length argument tuples

Functions can take a variable number of arguments. A parameter name that begins with *
gathers arguments into a tuple. For example, printall takes any number of arguments and
prints them:
def printall(*args):

print args

The gather parameter can have any name you like, but args is conventional. Here’s how the
function works:
>>> printall(1, 2.0, '3')
(1, 2.0, '3')

You can combine the gather operator with required and positional arguments:
def pointless(required, optional=0, *args):

print required, optional, args

Run this function with 1, 2, 3 and 4 or more arguments and make sure you understand what
it does.

123

Tuples

The complement of gather is scatter. If you have a sequence of values and you want to pass
it to a function as multiple arguments, you can use the * operator. For example, divmod
takes exactly two arguments; it doesn’t work with a tuple:
>>> t = (7, 3)
>>> divmod(t)
TypeError: divmod expected 2 arguments, got 1

But if you scatter the tuple, it works:
>>> divmod(*t)
(2, 1)

11.4.1 Exercise 1

Many of the built-in functions use variable-length argument tuples. For example, 'max' and
'min' can take any number of arguments:
''>>> max(1,2,3)
3
''

But 'sum' does not.
''>>> sum(1,2,3)
TypeError: sum expected at most 2 arguments, got 3
''

Write a function called 'sumall' that takes any number of arguments and returns their sum.

11.5 Lists and tuples

zip is a built-in function that takes two or more sequences and “zips” them into a list1 of
tuples where each tuple contains one element from each sequence.

This example zips a string and a list:
>>> s = 'abc'
>>> t = [0, 1, 2]
>>> zip(s, t)
[('a', 0), ('b', 1), ('c', 2)]

The result is a list of tuples where each tuple contains a character from the string and the
corresponding element from the list.

If the sequences are not the same length, the result has the length of the shorter one.
>>> zip('Anne', 'Elk')
[('A', 'E'), ('n', 'l'), ('n', 'k')]

You can use tuple assignment in a for loop to traverse a list of tuples:
t = [('a', 0), ('b', 1), ('c', 2)]
for letter, number in t:

print number, letter

124

Dictionaries and tuples

Each time through the loop, Python selects the next tuple in the list and assigns the elements
to letter and number. The output of this loop is:
0 a
1 b
2 c

If you combine zip, for and tuple assignment, you get a useful idiom for traversing two (or
more) sequences at the same time. For example, has_match takes two sequences, t1 and t2,
and returns True if there is an index i such that t1[i] == t2[i]:
def has_match(t1, t2):

for x, y in zip(t1, t2):
if x == y:

return True
return False

If you need to traverse the elements of a sequence and their indices, you can use the built-in
function enumerate:
for index, element in enumerate('abc'):

print index, element

The output of this loop is:
0 a
1 b
2 c

Again.

11.6 Dictionaries and tuples

Dictionaries have a method called items that returns a list of tuples, where each tuple is a
key-value pair2.
>>> d = {'a':0, 'b':1, 'c':2}
>>> t = d.items()
>>> print t
[('a', 0), ('c', 2), ('b', 1)]

As you should expect from a dictionary, the items are in no particular order.

Conversely, you can use a list of tuples to initialize a new dictionary:
>>> t = [('a', 0), ('c', 2), ('b', 1)]
>>> d = dict(t)
>>> print d
{'a': 0, 'c': 2, 'b': 1}

Combining dict with zip yields a concise way to create a dictionary:
>>> d = dict(zip('abc', range(3)))
>>> print d
{'a': 0, 'c': 2, 'b': 1}

125

Tuples

The dictionary method update also takes a list of tuples and adds them, as key-value pairs,
to an existing dictionary.

Combining items, tuple assignment and for, you get the idiom for traversing the keys and
values of a dictionary:
for key, val in d.items():

print val, key

The output of this loop is:
0 a
2 c
1 b

Again.

It is common to use tuples as keys in dictionaries (primarily because you can’t use lists).
For example, a telephone directory might map from last-name, first-name pairs to telephone
numbers. Assuming that we have defined last, first and number, we could write:
directory[last,first] = number

The expression in brackets is a tuple. We could use tuple assignment to traverse this
dictionary.
for last, first in directory:

print first, last, directory[last,first]

This loop traverses the keys in directory, which are tuples. It assigns the elements of each
tuple to last and first, then prints the name and corresponding telephone number.

There are two ways to represent tuples in a state diagram. The more detailed version shows
the indices and elements just as they appear in a list. For example, the tuple ('Cleese',
'John') would appear:

But in a larger diagram you might want to leave out the details. For example, a diagram of
the telephone directory might appear:

Here the tuples are shown using Python syntax as a graphical shorthand.

The telephone number in the diagram is the complaints line for the BBC, so please don’t
call it.

11.7 Comparing tuples

The comparison operators work with tuples and other sequences; Python starts by comparing
the first element from each sequence. If they are equal, it goes on to the next elements, and
so on, until it finds elements that differ. Subsequent elements are not considered (even if
they are really big).
>>> (0, 1, 2) < (0, 3, 4)
True
>>> (0, 1, 2000000) < (0, 3, 4)

126

Sequences of sequences

True

The sort function works the same way. It sorts primarily by first element, but in the case of
a tie, it sorts by second element, and so on.

This feature lends itself to a pattern called DSU for Decorate a sequence by building a
list of tuples with one or more sort keys preceding the elements from the sequence,Sort the
list of tuples, andUndecorate by extracting the sorted elements of the sequence.

For example, suppose you have a list of words and you want to sort them from longest to
shortest:
def sort_by_length(words):

t = []
for word in words:

t.append((len(word), word))

t.sort(reverse=True)

res = []
for length, word in t:

res.append(word)
return res

The first loop builds a list of tuples, where each tuple is a word preceded by its length.

sort compares the first element, length, first, and only considers the second element to break
ties. The keyword argument reverse=True tells sort to go in decreasing order.

The second loop traverses the list of tuples and builds a list of words in descending order of
length.

11.7.1 Exercise 2

In this example, ties are broken by comparing words, so words with the same length appear
in alphabetical order. For other applications you might want to break ties at random. Modify
this example so that words with the same length appear in random order. Hint: see the
'random' function in the 'random' module.

11.8 Sequences of sequences

I have focused on lists of tuples, but almost all of the examples in this chapter also work
with lists of lists, tuples of tuples, and tuples of lists. To avoid enumerating the possible
combinations, it is sometimes easier to talk about sequences of sequences.

In many contexts, the different kinds of sequences (strings, lists and tuples) can be used
interchangeably. So how and why do you choose one over the others?

To start with the obvious, strings are more limited than other sequences because the elements
have to be characters. They are also immutable. If you need the ability to change the
characters in a string (as opposed to creating a new string), you might want to use a list of
characters instead.

127

Tuples

Lists are more common than tuples, mostly because they are mutable. But there are a few
cases where you might prefer tuples:

• In some contexts, like a return statement, it is syntactically simpler to create a tuple
than a list. In other contexts, you might prefer a list.

• If you want to use a sequence as a dictionary key, you have to use an immutable type
like a tuple or string.

• If you are passing a sequence as an argument to a function, using tuples reduces the
potential for unexpected behavior due to aliasing.

Because tuples are immutable, they don’t provide methods like sort and reverse, which
modify existing lists. But Python provides the built-in functions sorted and reversed, which
take any sequence as a parameter and return a new list with the same elements in a different
order.

11.9 Debugging

Lists, dictionaries and tuples are known generically as data structures; in this chapter
we are starting to see compound data structures, like lists of tuples, and dictionaries
that contain tuples as keys and lists as values. Compound data structures are useful, but
they are prone to what I call shape errors; that is, errors caused when a data structure
has the wrong type, size or composition. For example, if you are expecting a list with one
integer and I give you a plain old integer (not in a list), it won’t work.

To help debug these kinds of errors, I have written a module called structshape that
provides a function, also called structshape, that takes any kind of data structure as an
argument and returns a string that summarizes its shape. You can download it from
thinkpython.com/code/structshape.py

Here’s the result for a simple list:
>>> from structshape import structshape
>>> t = [1,2,3]
>>> print structshape(t)
list of 3 int

A fancier program might write “list of 3 ints,” but it was easier not to deal with plurals.
Here’s a list of lists:
>>> t2 = [[1,2], [3,4], [5,6]]
>>> print structshape(t2)
list of 3 list of 2 int

If the elements of the list are not the same type, structshape groups them, in order, by
type:
>>> t3 = [1, 2, 3, 4.0, '5', '6', [7], [8], 9]
>>> print structshape(t3)
list of (3 int, float, 2 str, 2 list of int, int)

Here’s a list of tuples:

128

Glossary

>>> s = 'abc'
>>> lt = zip(t, s)
>>> print structshape(lt)
list of 3 tuple of (int, str)

And here’s a dictionary with 3 items that map integers to strings.
>>> d = dict(lt)
>>> print structshape(d)
dict of 3 int->str

If you are having trouble keeping track of your data structures, structshape can help.

11.10 Glossary

tuple: An immutable sequence of elements. tuple assignment: An assignment with a
sequence on the right side and a tuple of variables on the left. The right side is evaluated
and then its elements are assigned to the variables on the left.

gather: The operation of assembling a variable-length argument tuple. scatter: The
operation of treating a sequence as a list of arguments. DSU: Abbreviation of “decorate-
sort-undecorate,” a pattern that involves building a list of tuples, sorting, and extracting
part of the result. data structure: A collection of related values, often organized in lists,
dictionaries, tuples, etc. shape (of a data structure): A summary of the type, size and
composition of a data structure.

11.11 Exercises

11.11.1 Exercise 3

Write a function called most_frequent that takes a string and prints the letters in de-
creasing order of frequency. Find text samples from several different languages and see
how letter frequency varies between languages. Compare your results with the tables at
'wikipedia.org/wiki/Letter_frequencies'.

11.11.2 Exercise 4

More anagrams!

• Write a program

that reads a word list from a file (see Section '9.1') and prints all the sets of words that are
anagrams. Here is an example of what the output might look like:
''['deltas', 'desalt', 'lasted', 'salted', 'slated', 'staled']
['retainers', 'ternaries']
['generating', 'greatening']
['resmelts', 'smelters', 'termless']
''

129

Tuples

Hint: you might want to build a dictionary that maps from a set of letters to a list of words
that can be spelled with those letters. The question is, how can you represent the set of
letters in a way that can be used as a key?

• Modify the previous program so that it prints the largest set

of anagrams first, followed by the second largest set, and so on.

• In Scrabble a “bingo” is when you play all seven tiles in

your rack, along with a letter on the board, to form an eight-letter word. What set of 8
letters forms the most possible bingos? Hint: there are seven.

• 'Two words form a “metathesis pair” if you can transform one

into the other by swapping two letters''3''; for example, “converse” and “conserve.” Write
a program that finds all of the metathesis pairs in the dictionary. Hint: don’t test all
pairs of words, and don’t test all possible swaps.' 'You can download a solution from
thinkpython.com/code/anagram_sets.py.'

11.11.3 Exercise 5

Here’s another Car Talk Puzzler4: What is the longest English word, that remains a valid
English word, as you remove its letters one at a time? Now, letters can be removed from
either end, or the middle, but you can’t rearrange any of the letters. Every time you drop a
letter, you wind up with another English word. If you do that, you’re eventually going to
wind up with one letter and that too is going to be an English word—one that’s found in
the dictionary. I want to know what’s the longest word and how many letters does it have?

I’m going to give you a little modest example: Sprite. Ok? You start off with sprite, you
take a letter off, one from the interior of the word, take the r away, and we’re left with the
word spite, then we take the e off the end, we’re left with spit, we take the s off, we’re left
with pit, it, and I.

Write a program to find all words that can be reduced in this way, and then find the longest
one.

This exercise is a little more challenging than most, so here are some suggestions:

• You might want to write a function that takes a word and

computes a list of all the words that can be formed by removing one letter. These are the
“children” of the word.

• Recursively, a word is reducible if any of its children

are reducible. As a base case, you can consider the empty string reducible.

• The wordlist I provided, 'words.txt', doesn’t

contain single letter words. So you might want to add “I”, “a”, and the empty string.

• To improve the performance of your program, you might want

130

Word frequency analysis

to memoize the words that are known to be reducible.

You can see my solution at 'thinkpython.com/code/reducible.py'.

1In Python 3.0, zip returns an iterator of tuples, but for most purposes, an iterator behaves
like a list. 2This behavior is slightly different in Python 3.0. 3This exercise is inspired by an
example at puzzlers.org. 4 www.cartalk.com/content/puzzler/transcripts/200651

= Case study: data structure selection}}

11.12 Word frequency analysis

As usual, you should at least attempt the following exercises before you read my solutions.

11.12.1 Exercise 1

Write a program that reads a file, breaks each line into words, strips whitespace and
punctuation from the words, and converts them to lowercase.

Hint: The 'string' module provides strings named 'whitespace', which contains space, tab,
newline, etc., and 'punctuation' which contains the punctuation characters. Let’s see if
we can make Python swear:

>>> import string
>>> print string.punctuation
!"#$%&‚()*+,-./:;<=>?@[\]^_„{|}~

Also, you might consider using the string methods 'strip', 'replace' and 'translate'.

11.12.2 Exercise 2

Go to Project Gutenberg ('gutenberg.org') and download your favorite out-of-copyright
book in plain text format.

Modify your program from the previous exercise to read the book you downloaded, skip over
the header information at the beginning of the file, and process the rest of the words as
before.

Then modify the program to count the total number of words in the book, and the number of
times each word is used.

Print the number of different words used in the book. Compare different books by different
authors, written in different eras. Which author uses the most extensive vocabulary?

11.12.3 Exercise 3

Modify the program from the previous exercise to print the 20 most frequently-used words
in the book.

131

Tuples

11.12.4 Exercise 4

Modify the previous program to read a word list (see Section '9.1') and then print all the
words in the book that are not in the word list. How many of them are typos? How many of
them are common words that should be in the word list, and how many of them are really
obscure?

11.13 Random numbers

Given the same inputs, most computer programs generate the same outputs every time, so
they are said to be deterministic. Determinism is usually a good thing, since we expect
the same calculation to yield the same result. For some applications, though, we want the
computer to be unpredictable. Games are an obvious example, but there are more.

Making a program truly nondeterministic turns out to be not so easy, but there are ways
to make it at least seem nondeterministic. One of them is to use algorithms that generate
pseudorandom numbers. Pseudorandom numbers are not truly random because they are
generated by a deterministic computation, but just by looking at the numbers it is all but
impossible to distinguish them from random.

The random module provides functions that generate pseudorandom numbers (which I will
simply call “random” from here on).

The function random returns a random float between 0.0 and 1.0 (including 0.0 but not 1.0).
Each time you call random, you get the next number in a long series. To see a sample, run
this loop:
import random

for i in range(10):
x = random.random()
print x

The function randint takes parameters low and high and returns an integer between low and
high (including both).
>>> random.randint(5, 10)
5
>>> random.randint(5, 10)
9

To choose an element from a sequence at random, you can use choice:
>>> t = [1, 2, 3]
>>> random.choice(t)
2
>>> random.choice(t)
3

The random module also provides functions to generate random values from continuous
distributions including Gaussian, exponential, gamma, and a few more.

132

Word histogram

11.13.1 Exercise 5

Write a function named choose_from_histthat takes a histogram as defined in Section '11.1'
and returns a random value from the histogram, chosen with probability in proportion to
frequency. For example, for this histogram:
''>>> t = ['a', 'a', 'b']
>>> h = histogram(t)
>>> print h
{'a': 2, 'b': 1}
''

your function should '’a’' with probability '2/3' and b with probability '1/3'.

11.14 Word histogram

Here is a program that reads a file and builds a histogram of the words in the file:
import string

def process_file(filename):
h = dict()
fp = open(filename)
for line in fp:

process_line(line, h)
return h

def process_line(line, h):
line = line.replace('-', ' ')

for word in line.split():
word = word.strip(string.punctuation + string.whitespace)
word = word.lower()

h[word] = h.get(word, 0) + 1

hist = process_file('emma.txt')

This program reads emma.txt, which contains the text of Emma by Jane Austen.

process_file loops through the lines of the file, passing them one at a time to process_line.
The histogram h is being used as an accumulator.

process_line uses the string method replace to replace hyphens with spaces before using
split to break the line into a list of strings. It traverses the list of words and uses strip and
lower to remove punctuation and convert to lower case. (It is a shorthand to say that strings
are “converted;” remember that string are immutable, so methods like strip and lower return
new strings.)

Finally, process_line updates the histogram by creating a new item or incrementing an
existing one.

To count the total number of words in the file, we can add up the frequencies in the
histogram:
def total_words(h):

return sum(h.values())

133

Tuples

The number of different words is just the number of items in the dictionary:
def different_words(h):

return len(h)

Here is some code to print the results:
print 'Total number of words:', total_words(hist)
print 'Number of different words:', different_words(hist)

And the results:
Total number of words: 161073
Number of different words: 7212

11.15 Most common words

To find the most common words, we can apply the DSU pattern; most_common takes a
histogram and returns a list of word-frequency tuples, sorted in reverse order by frequency:
def most_common(h):

t = []
for key, value in h.items():

t.append((value, key))

t.sort(reverse=True)
return t

Here is a loop that prints the ten most common words:
t = most_common(hist)
print 'The most common words are:'
for freq, word in t[0:10]:

print word, '\t', freq

And here are the results from Emma:
The most common words are:
to 5242
the 5204
and 4897
of 4293
i 3191
a 3130
it 2529
her 2483
was 2400
she 2364

11.16 Optional parameters

We have seen built-in functions and methods that take a variable number of arguments. It
is possible to write user-defined functions with optional arguments, too. For example, here
is a function that prints the most common words in a histogram

134

Dictionary subtraction

def print_most_common(hist, num=10)
t = most_common(hist)
print 'The most common words are:'
for freq, word in t[0:num]:

print word, '\t', freq

The first parameter is required; the second is optional. The default value of num is 10.

If you only provide one argument:
print_most_common(hist)

num gets the default value. If you provide two arguments:
print_most_common(hist, 20)

num gets the value of the argument instead. In other words, the optional argument overrides
the default value.

If a function has both required and optional parameters, all the required parameters have to
come first, followed by the optional ones.

11.17 Dictionary subtraction

Finding the words from the book that are not in the word list from words.txt is a problem
you might recognize as set subtraction; that is, we want to find all the words from one set
(the words in the book) that are not in another set (the words in the list).

subtract takes dictionaries d1 and d2 and returns a new dictionary that contains all the keys
from d1 that are not in d2. Since we don’t really care about the values, we set them all to
None.
def subtract(d1, d2):

res = dict()
for key in d1:

if key not in d2:
res[key] = None

return res

To find the words in the book that are not in words.txt, we can use process_file to build a
histogram for words.txt, and then subtract:
words = process_file('words.txt')
diff = subtract(hist, words)

print "The words in the book that aren't in the word list are:"
for word in diff.keys():

print word,

Here are some of the results from Emma:
The words in the book that aren't in the word list are:
rencontre jane's blanche woodhouses disingenuousness
friend's venice apartment ...

135

Tuples

Some of these words are names and possessives. Others, like “rencontre,” are no longer in
common use. But a few are common words that should really be in the list!

11.17.1 Exercise 6

Python provides a data structure called 'set' that provides many common set operations.
Read the documentation at 'docs.python.org/lib/types-set.html' and write a program
that uses set subtraction to find words in the book that are not in the word list.

11.18 Random words

To choose a random word from the histogram, the simplest algorithm is to build a list with
multiple copies of each word, according to the observed frequency, and then choose from the
list:
def random_word(h):

t = []
for word, freq in h.items():

t.extend([word] * freq)

return random.choice(t)

The expression [word] * freq creates a list with freq copies of the string word. The extend
method is similar to append except that the argument is a sequence.

11.18.1 Exercise 7

This algorithm works, but it is not very efficient; each time you choose a random word, it
rebuilds the list, which is as big as the original book. An obvious improvement is to build
the list once and then make multiple selections, but the list is still big.

An alternative is:

• Use 'keys' to get a list of the words in the book.

• Build a list that contains the cumulative sum of the word

frequencies (see Exercise '10.1'). The last item in this list is the total number of words in
the book, 'n'.

• Choose a random number from 1 to 'n'. Use a bisection search

(See Exercise '10.8') to find the index where the random number would be inserted in the
cumulative sum.

• Use the index to find the corresponding word in the word list.

Write a program that uses this algorithm to choose a random word from the book.

136

Markov analysis

11.19 Markov analysis

If you choose words from the book at random, you can get a sense of the vocabulary, you
probably won’t get a sentence:
this the small regard harriet which knightley's it most things

A series of random words seldom makes sense because there is no relationship between
successive words. For example, in a real sentence you would expect an article like “the” to
be followed by an adjective or a noun, and probably not a verb or adverb.

One way to measure these kinds of relationships is Markov analysis, which characterizes, for
a given sequence of words, the probability of the word that comes next. For example, the
song Eric, the Half a Bee begins:

Half a bee, philosophically,

Must, ipso facto, half not be.

But half the bee has got to be

Vis a vis, its entity. D’you see?

But can a bee be said to be

Or not to be an entire bee

When half the bee is not a bee

Due to some ancient injury?

In this text, the phrase “half the” is always followed by the word “bee,” but the phrase “the
bee” might be followed by either “has” or “is”.

The result of Markov analysis is a mapping from each prefix (like “half the” and “the bee”)
to all possible suffixes (like “has” and “is”).

Given this mapping, you can generate a random text by starting with any prefix and choosing
at random from the possible suffixes. Next, you can combine the end of the prefix and the
new suffix to form the next prefix, and repeat.

For example, if you start with the prefix “Half a,” then the next word has to be “bee,”
because the prefix only appears once in the text. The next prefix is “a bee,” so the next
suffix might be “philosophically,” “be” or “due.”

In this example the length of the prefix is always two, but you can do Markov analysis with
any prefix length. The length of the prefix is called the “order” of the analysis.

137

Tuples

11.19.1 Exercise 8

Markov analysis:

• Write a program to read a text from a file and perform Markov analysis. The result should
be a dictionary that maps from prefixes to a collection of possible suffixes. The collection
might be a list, tuple, or dictionary; it is up to you to make an appropriate choice. You
can test your program with prefix length two, but you should write the program in a way
that makes it easy to try other lengths.

• Add a function to the previous program to generate random text based on the Markov
analysis. Here is an example from Emmawith prefix length 2:

He was very clever, be it sweetness or be angry, ashamed or only amused, at such a stroke.
She had never thought of Hannah till you were never meant for me?" "I cannot make speeches,
Emma:" he soon cut it all himself.

For this example, I left the punctuation attached to the words. The result is almost syntacti-
cally correct, but not quite. Semantically, it almost makes sense, but not quite.

• What happens if you increase the prefix length? Does the random text make more sense?
• Once your program is working, you might want to try a mash-up: if you analyze text from

two or more books, the random text you generate will blend the vocabulary and phrases
from the sources in interesting ways.

11.20 Data structures

Using Markov analysis to generate random text is fun, but there is also a point to this
exercise: data structure selection. In your solution to the previous exercises, you had to
choose:

• How to represent the prefixes.

• How to represent the collection of possible suffixes.

• How to represent the mapping from each prefix to the collection of possible suffixes.

Ok, the last one is the easy; the only mapping type we have seen is a dictionary, so it is the
natural choice.

For the prefixes, the most obvious options are string, list of strings, or tuple of strings. For
the suffixes, one option is a list; another is a histogram (dictionary).

How should you choose? The first step is to think about the operations you will need to
implement for each data structure. For the prefixes, we need to be able to remove words
from the beginning and add to the end. For example, if the current prefix is “Half a,” and
the next word is “bee,” you need to be able to form the next prefix, “a bee.”

Your first choice might be a list, since it is easy to add and remove elements, but we also
need to be able to use the prefixes as keys in a dictionary, so that rules out lists. With
tuples, you can’t append or remove, but you can use the addition operator to form a new
tuple:

138

Debugging

def shift(prefix, word):
return prefix[1:] + (word,)

shift takes a tuple of words, prefix, and a string, word, and forms a new tuple that has all
the words in prefix except the first, and word added to the end.

For the collection of suffixes, the operations we need to perform include adding a new suffix
(or increasing the frequency of an existing one), and choosing a random suffix.

Adding a new suffix is equally easy for the list implementation or the histogram. Choosing
a random element from a list is easy; choosing from a histogram is harder to do efficiently
(see Exercise 13.7).

So far we have been talking mostly about ease of implementation, but there are other factors
to consider in choosing data structures. One is run time. Sometimes there is a theoretical
reason to expect one data structure to be faster than other; for example, I mentioned that
the in operator is faster for dictionaries than for lists, at least when the number of elements
is large.

But often you don’t know ahead of time which implementation will be faster. One option is
to implement both of them and see which is better. This approach is called benchmarking.
A practical alternative is to choose the data structure that is easiest to implement, and then
see if it is fast enough for the intended application. If so, there is no need to go on. If not,
there are tools, like the profile module, that can identify the places in a program that take
the most time.

The other factor to consider is storage space. For example, using a histogram for the
collection of suffixes might take less space because you only have to store each word once, no
matter how many times it appears in the text. In some cases, saving space can also make
your program run faster, and in the extreme, your program might not run at all if you run
out of memory. But for many applications, space is a secondary consideration after run
time.

One final thought: in this discussion, I have implied that we should use one data structure
for both analysis and generation. But since these are separate phases, it would also be
possible to use one structure for analysis and then convert to another structure for generation.
This would be a net win if the time saved during generation exceeded the time spent in
conversion.

11.21 Debugging

When you are debugging a program, and especially if you are working on a hard bug,
there are four things to try: reading: Examine your code, read it back to yourself, and
check that it says what you meant to say.running: Experiment by making changes and
running different versions. Often if you display the right thing at the right place in the
program, the problem becomes obvious, but sometimes you have to spend some time to build
scaffolding.ruminating: Take some time to think! What kind of error is it: syntax, runtime,
semantic? What information can you get from the error messages, or from the output of
the program? What kind of error could cause the problem you’re seeing? What did you

139

Tuples

change last, before the problem appeared?retreating: At some point, the best thing to do
is back off, undoing recent changes, until you get back to a program that works and that
you understand. Then you can starting rebuilding. Beginning programmers sometimes get
stuck on one of these activities and forget the others. Each activity comes with its own
failure mode.

For example, reading your code might help if the problem is a typographical error, but not if
the problem is a conceptual misunderstanding. If you don’t understand what your program
does, you can read it 100 times and never see the error, because the error is in your head.

Running experiments can help, especially if you run small, simple tests. But if you run
experiments without thinking or reading your code, you might fall into a pattern I call
“random walk programming,” which is the process of making random changes until the
program does the right thing. Needless to say, random walk programming can take a long
time.

You have to take time to think. Debugging is like an experimental science. You should have
at least one hypothesis about what the problem is. If there are two or more possibilities, try
to think of a test that would eliminate one of them.

Taking a break helps with the thinking. So does talking. If you explain the problem to
someone else (or even yourself), you will sometimes find the answer before you finish asking
the question.

But even the best debugging techniques will fail if there are too many errors, or if the code
you are trying to fix is too big and complicated. Sometimes the best option is to retreat,
simplifying the program until you get to something that works and that you understand.

Beginning programmers are often reluctant to retreat because they can’t stand to delete a
line of code (even if it’s wrong). If it makes you feel better, copy your program into another
file before you start stripping it down. Then you can paste the pieces back in a little bit at
a time.

Finding a hard bug requires reading, running, ruminating, and sometimes retreating. If you
get stuck on one of these activities, try the others.

11.22 Glossary

deterministic: Pertaining to a program that does the same thing each time it runs, given
the same inputs. pseudorandom: Pertaining to a sequence of numbers that appear to be
random, but are generated by a deterministic program. default value: The value given
to an optional parameter if no argument is provided. override: To replace a default value
with an argument. benchmarking: The process of choosing between data structures by
implementing alternatives and testing them on a sample of the possible inputs.

140

Exercises

11.23 Exercises

11.23.1 Exercise 9

The “rank” of a word is its position in a list of words sorted by frequency: the most common
word has rank 1, the second most common has rank 2, etc.

Zipf’s law describes a relationship between the ranks and frequencies of words in natural
languages1. Specifically, it predicts that the frequency, 'f', of the word with rank 'r' is:
f = c r−s

where 's' and 'c' are parameters that depend on the language and the text. If you take the
logarithm of both sides of this equation, you get:

11.24 Persistence

Most of the programs we have seen so far are transient in the sense that they run for a short
time and produce some output, but when they end, their data disappears. If you run the
program again, it starts with a clean slate.

Other programs are persistent: they run for a long time (or all the time); they keep at
least some of their data in permanent storage (a hard drive, for example); and if they shut
down and restart, they pick up where they left off.

Examples of persistent programs are operating systems, which run pretty much whenever a
computer is on, and web servers, which run all the time, waiting for requests to come in on
the network.

One of the simplest ways for programs to maintain their data is by reading and writing
text files. We have already seen programs that read text files; in this chapters we will see
programs that write them.

An alternative is to store the state of the program in a database. In this chapter I will
present a simple database and a module, pickle, that makes it easy to store program data.

11.25 Reading and writing

A text file is a sequence of characters stored on a permanent medium like a hard drive, flash
memory, or CD-ROM. We saw how to open and read a file in Section 9.1.

To write a file, you have to open it with mode 'w' as a second parameter:
>>> fout = open('output.txt', 'w')
>>> print fout
<open file 'output.txt', mode 'w' at 0xb7eb2410>

If the file already exists, opening it in write mode clears out the old data and starts fresh,
so be careful! If the file doesn’t exist, a new one is created.

The write method puts data into the file.

141

Tuples

>>> line1 = "This here's the wattle,\n"
>>> fout.write(line1)

Again, the file object keeps track of where it is, so if you call write again, it adds the new
data to the end.
>>> line2 = "the emblem of our land.\n"
>>> fout.write(line2)

When you are done writing, you have to close the file.
>>> fout.close()

11.26 Format operator

The argument of write has to be a string, so if we want to put other values in a file, we have
to convert them to strings. The easiest way to do that is with str:
>>> x = 52
>>> f.write(str(x))

An alternative is to use the format operator, %. When applied to integers, % is the
modulus operator. But when the first operand is a string, % is the format operator.

The first operand is the format string, and the second operand is a tuple of expressions.
The result is a string that contains the values of the expressions, formatted according to the
format string.

As an example, the format sequence '%d' means that the first expression in the tuple
should be formatted as an integer (d stands for “decimal”):
>>> camels = 42
>>> '%d' % camels
'42'

The result is the string '42', which is not to be confused with the integer value 42.

A format sequence can appear anywhere in the format string, so you can embed a value in a
sentence:
>>> camels = 42
>>> 'I have spotted %d camels.' % camels
'I have spotted 42 camels.'

The format sequence '%g' formats the next element in the tuple as a floating-point number
(don’t ask why), and '%s' formats the next item as a string:
>>> 'In %d years I have spotted %g %s.' % (3, 0.1, 'camels')
'In 3 years I have spotted 0.1 camels.'

The number of elements in the tuple has to match the number of format sequences in the
string. Also, the types of the elements have to match the format sequences:

142

Filenames and paths

>>> '%d %d %d' % (1, 2)
TypeError: not enough arguments for format string
>>> '%d' % 'dollars'
TypeError: illegal argument type for built-in operation

In the first example, there aren’t enough elements; in the second, the element is the wrong
type.

The format operator is powerful but difficult to use. You can read more about it at
docs.python.org/lib/typesseq-strings.html.

11.27 Filenames and paths

Files are organized into directories (also called “folders”). Every running program has a
“current directory,” which is the default directory for most operations. For example, when
you open a file for reading, Python looks for it in the current directory.

The os module provides functions for working with files and directories (“os” stands for
“operating system”). os.getcwd returns the name of the current directory:
>>> import os
>>> cwd = os.getcwd()
>>> print cwd
/home/dinsdale

cwd stands for “current working directory.” The result in this example is /home/dinsdale,
which is the home directory of a user named dinsdale.

A string like cwd that identifies a file is called a path. A relative path starts from the
current directory; an absolute path starts from the topmost directory in the file system.

The paths we have seen so far are simple filenames, so they are relative to the current
directory. To find the absolute path to a file, you can use os.path.abspath:
>>> os.path.abspath('memo.txt')
'/home/dinsdale/memo.txt'

os.path.exists checks whether a file or directory exists:
>>> os.path.exists('memo.txt')
True

If it exists, os.path.isdir checks whether it’s a directory:
>>> os.path.isdir('memo.txt')
False
>>> os.path.isdir('music')
True

Similarly, os.path.isfile checks whether it’s a file.

os.listdir returns a list of the files (and other directories) in the given directory:
>>> os.listdir(cwd)
['music', 'photos', 'memo.txt']

143

Tuples

To demonstrate these functions, the following example “walks” through a directory, prints
the names of all the files, and calls itself recursively on all the directories.

def walk(dir):
for name in os.listdir(dir):

path = os.path.join(dir, name)

if os.path.isfile(path):
print path

else:
walk(path)

os.path.join takes a directory and a file name and joins them into a complete path.

11.27.1 Exercise 1

Modify 'walk' so that instead of printing the names of the files, it returns a list of names.
Exercise 2 The 'os' module provides a function called 'walk' that is similar to this one
but more versatile. Read the documentation and use it to print the names of the files in a
given directory and its subdirectories.

11.28 Catching exceptions

A lot of things can go wrong when you try to read and write files. If you try to open a file
that doesn’t exist, you get an IOError:
>>> fin = open('bad_file')
IOError: [Errno 2] No such file or directory: 'bad_file'

If you don’t have permission to access a file:
>>> fout = open('/etc/passwd', 'w')
IOError: [Errno 13] Permission denied: '/etc/passwd'

And if you try to open a directory for reading, you get
>>> fin = open('/home')
IOError: [Errno 21] Is a directory

To avoid these errors, you could use functions like os.path.exists and os.path.isfile, but it
would take a lot of time and code to check all the possibilities (if “Errno 21” is any indication,
there are at least 21 things that can go wrong).

It is better to go ahead and try, and deal with problems if they happen, which is exactly
what the try statement does. The syntax is similar to an if statement:
try:

fin = open('bad_file')
for line in fin:

print line
fin.close()

except:
print 'Something went wrong.'

144

Databases

Python starts by executing the try clause. If all goes well, it skips the except clause and
proceeds. If an exception occurs, it jumps out of the try clause and executes the except
clause.

Handling an exception with a try statement is called catching an exception. In this example,
the except clause prints an error message that is not very helpful. In general, catching an
exception gives you a chance to fix the problem, or try again, or at least end the program
gracefully.

11.29 Databases

A database is a file that is organized for storing data. Most databases are organized like a
dictionary in the sense that they map from keys to values. The biggest difference is that the
database is on disk (or other permanent storage), so it persists after the program ends.

The module anydbm provides an interface for creating and updating database files. As an
example, I’ll create a database that contains captions for image files.

Opening a database is similar to opening other files:
>>> import anydbm
>>> db = anydbm.open('captions.db', 'c')

The mode 'c' means that the database should be created if it doesn’t already exist. The
result is a database object that can be used (for most operations) like a dictionary. If you
create a new item, anydbm updates the database file.
>>> db['cleese.png'] = 'Photo of John Cleese.'

When you access one of the items, anydbm reads the file:
>>> print db['cleese.png']
Photo of John Cleese.

If you make another assignment to an existing key, anydbm replaces the old value:
>>> db['cleese.png'] = 'Photo of John Cleese doing a silly walk.'
>>> print db['cleese.png']
Photo of John Cleese doing a silly walk.

Many dictionary methods, like keys and items, also work with database objects. So does
iteration with a for statement.
for key in db:

print key

As with other files, you should close the database when you are done:
>>> db.close()

145

Tuples

11.30 Pickling

A limitation of anydbm is that the keys and values have to be strings. If you try to use any
other type, you get an error.

The pickle module can help. It translates almost any type of object into a string suitable for
storage in a database, and then translates strings back into objects.

pickle.dumps takes an object as a parameter and returns a string representation (dumps is
short for “dump string”):
>>> import pickle
>>> t = [1, 2, 3]
>>> pickle.dumps(t)
'(lp0\nI1\naI2\naI3\na.'

The format isn’t obvious to human readers; it is meant to be easy for pickle to interpret.
pickle.loads (“load string”) reconstitutes the object:
>>> t1 = [1, 2, 3]
>>> s = pickle.dumps(t1)
>>> t2 = pickle.loads(s)
>>> print t2
[1, 2, 3]

Although the new object has the same value as the old, it is not (in general) the same
object:
>>> t == t2
True
>>> t is t2
False

In other words, pickling and then unpickling has the same effect as copying the object.

You can use pickle to store non-strings in a database. In fact, this combination is so common
that it has been encapsulated in a module called shelve.

Exercise 3

If you did Exercise '12.4', modify your solution so that it creates a database that maps
from each word in the list to a list of words that use the same set of letters.

Write a different program that opens the database and prints the contents in a human-readable
format.

11.31 Pipes

Most operating systems provide a command-line interface, also known as a shell. Shells
usually provide commands to navigate the file system and launch applications. For example,
in Unix, you can change directories with cd, display the contents of a directory with ls, and
launch a web browser by typing (for example) firefox.

146

Writing modules

Any program that you can launch from the shell can also be launched from Python using a
pipe. A pipe is an object that represents a running process.

For example, the Unix command ls -l normally displays the contents of the current directory
(in long format). You can launch ls with os.popen:
>>> cmd = 'ls -l'
>>> fp = os.popen(cmd)

The argument is a string that contains a shell command. The return value is a file pointer
that behaves just like an open file. You can read the output from the ls process one line at
a time with readline or get the whole thing at once with read:
>>> res = fp.read()

When you are done, you close the pipe like a file:
>>> stat = fp.close()
>>> print stat
None

The return value is the final status of the ls process; None means that it ended normally
(with no errors).

A common use of pipes is to read a compressed file incrementally; that is, without uncom-
pressing the whole thing at once. The following function takes the name of a compressed
file as a parameter and returns a pipe that uses gzip to decompress the contents:
def open_gzip(filename):

cmd = 'gunzip -c ' + filename
fp = os.popen(cmd)
return fp

If you read lines from fp one at a time, you never have to store the uncompressed file in
memory or on disk.

11.32 Writing modules

Any file that contains Python code can be imported as a module. For example, suppose you
have a file named wc.py with the following code:
def linecount(filename):

count = 0
for line in open(filename):

count += 1
return count

print linecount('wc.py')

If you run this program, it reads itself and prints the number of lines in the file, which is 7.
You can also import it like this:
>>> import wc
7

147

Tuples

Now you have a module object wc:
>>> print wc
<module 'wc' from 'wc.py'>

That provides a function called linecount:
>>> wc.linecount('wc.py')
7

So that’s how you write modules in Python.

The only problem with this example is that when you import the module it executes the
test code at the bottom. Normally when you import a module, it defines new functions but
it doesn’t execute them.

Programs that will be imported as modules often use the following idiom:
if __name__ == '__main__':

print linecount('wc.py')

__name__is a built-in variable that is set when the program starts. If the program is
running as a script, __name__has the value __main__; in that case, the test code is
executed. Otherwise, if the module is being imported, the test code is skipped. Exercise 4

Type this example into a file named 'wc.py' and run it as a script. Then run the Python
interpreter and 'import wc'. What is the value of __name__ when the module is being
imported? Warning: If you import a module that has already been imported, Python does
nothing. It does not re-read the file, even if it has changed.

If you want to reload a module, you can use the built-in function 'reload', but it can be
tricky, so the safest thing to do is restart the interpreter and then import the module again.

11.33 Debugging

When you are reading and writing files, you might run into problems with whitespace. These
errors can be hard to debug because spaces, tabs and newlines are normally invisible:
>>> s = '1 2\t 3\n 4'
>>> print s
1 2 3
4

The built-in function repr can help. It takes any object as an argument and returns a string
representation of the object. For strings, it represents whitespace characters with backslash
sequences:
>>> print repr(s)
'1 2\t 3\n 4'

This can be helpful for debugging.

One other problem you might run into is that different systems use different characters to
indicate the end of a line. Some systems use a newline, represented \n. Others use a return

148

Glossary

character, represented \r. Some use both. If you move files between different systems, these
inconsistencies might cause problems.

For most systems, there are applications to convert from one format to another. You can
find them (and read more about this issue) at wikipedia.org/wiki/Newline. Or, of course,
you could write one yourself.

11.34 Glossary

persistent: Pertaining to a program that runs indefinitely and keeps at least some of its
data in permanent storage. format operator: An operator, %, that takes a format string
and a tuple and generates a string that includes the elements of the tuple formatted as
specified by the format string. format string: A string, used with the format operator,
that contains format sequences. format sequence: A sequence of characters in a format
string, like %d, that specifies how a value should be formatted. text file: A sequence of
characters stored in permanent storage like a hard drive. directory: A named collection of
files, also called a folder. path: A string that identifies a file. relative path: A path that
starts from the current directory. absolute path: A path that starts from the topmost
directory in the file system. catch: To prevent an exception from terminating a program
using the try and except statements. database: A file whose contents are organized like a
dictionary with keys that correspond to values.

11.35 Exercises

Exercise 5 The 'urllib' module provides methods for manipulating URLs and downloading
information from the web. The following example downloads and prints a secret message
from 'thinkpython.com':

import urllib

conn = urllib.urlopen(‚http://thinkpython.com/secret.html‚)
for line in conn.fp:

print line.strip()

Run this code and follow the instructions you see there.

Exercise 6

In a large collection of MP3 files, there may be more than one copy of the same song, stored
in different directories or with different file names. The goal of this exercise is to search for
these duplicates.

• Write a program that searches a directory and all of its

subdirectories, recursively, and returns a list of complete paths for all files with a given suffix
(like '.mp3'). Hint: 'os.path' provides several useful functions for manipulating file and
path names.

• To recognize duplicates, you can use a hash function that

149

Tuples

reads the file and generates a short summary of the contents. For example, MD5 (Message-
Digest algorithm 5) takes an arbitrarily-long “message” and returns a 128-bit “checksum.”
The probability is very small that two files with different contents will return the same
checksum. You can read about MD5 at 'wikipedia.org/wiki/Md5'. On a Unix system
you can use the program 'md5sum' and a pipe to compute checksums from Python.

Exercise 7 '

The Internet Movie Database (IMDb) is an online collection of information about movies.
Their database is available in plain text format, so it is reasonably easy to read from Python.
For this exercise, the files you need are 'actors.list.gz' and 'actresses.list.gz'; you can
download them from 'www.imdb.com/interfaces#plain'.

'

I have written a program that parses these files and splits them into actor names, movie
titles, etc. You can download it from 'thinkpython.com/code/imdb.py'.

If you run 'imdb.py' as a script, it reads 'actors.list.gz' and prints one actor-movie pair
per line. Or, if you 'import imdb' you can use the function process_file to, well,
process the file. The arguments are a filename, a function object and an optional number of
lines to process. Here is an example:
''import imdb

def print_info(actor, date, title, role):
print actor, date, title, role

imdb.process_file('actors.list.gz', print_info)
''

When you call process_file, it opens 'filename', reads the contents, and calls print_info once
for each line in the file. print_info takes an actor, date, movie title and role as arguments
and prints them.

• Write a program that reads 'actors.list.gz' and 'actresses.list.gz' and uses 'shelve'
to build a database

that maps from each actor to a list of his or her films.

• Two actors are “costars” if they have been in at least one

movie together. Process the database you built in the previous step and build a second
database that maps from each actor to a list of his or her costars.

• Write a program that can play the “Six Degrees of Kevin

Bacon,” which you can read about at 'wikipedia.org/wiki/Six_Degrees_of_Kevin_-
Bacon'. This problem is challenging because it requires you to find the shortest path in a
graph. You can read about shortest path algorithms at 'wikipedia.org/wiki/Shortest_-
path_problem'.

150

12 Classes and objects

12.1 User-defined types

We have used many of Python’s built-in types; now we are going to define a new type. As an
example, we will create a type called Point that represents a point in two-dimensional space.

In mathematical notation, points are often written in parentheses with a comma separating
the coordinates. For example, (0, 0) represents the origin, and (x, y) represents the point x
units to the right and y units up from the origin.

There are several ways we might represent points in Python:

• We could store the coordinates separately in two variables, x and y.
• We could store the coordinates as elements in a list or tuple.
• We could create a new type to represent points as objects.

Creating a new type is (a little) more complicated than the other options, but it has
advantages that will be apparent soon.

A user-defined type is also called a class. A class definition looks like this:
class Point(object):

"""represents a point in 2-D space"""

This header indicates that the new class is a Point, which is a kind of object, which is a
built-in type.

The body is a docstring that explains what the class is for. You can define variables and
functions inside a class definition, but we will get back to that later.

Defining a class named Point creates a class object.
>>> print Point
<class '__main__.Point'>

Because Point is defined at the top level, its “full name” is __main__.Point.

The class object is like a factory for creating objects. To create a Point, you call Point as if
it were a function.
>>> blank = Point()
>>> print blank
<__main__.Point instance at 0xb7e9d3ac>

The return value is a reference to a Point object, which we assign to blank. Creating a new
object is called instantiation, and the object is an instance of the class.

151

Classes and objects

When you print an instance, Python tells you what class it belongs to and where it is stored
in memory (the prefix 0x means that the following number is in hexadecimal).

12.2 Attributes

You can assign values to an instance using dot notation:
>>> blank.x = 3.0
>>> blank.y = 4.0

This syntax is similar to the syntax for selecting a variable from a module, such as math.pi
or string.whitespace. In this case, though, we are assigning values to named elements of an
object. These elements are called attributes.

As a noun, “AT-trib-ute” is pronounced with emphasis on the first syllable, as opposed to
“a-TRIB-ute,” which is a verb.

The following diagram shows the result of these assignments. A state diagram that shows
an object and its attributes is called an object diagram:

The variable blank refers to a Point object, which contains two attributes. Each attribute
refers to a floating-point number.

You can read the value of an attribute using the same syntax:
>>> print blank.y
4.0
>>> x = blank.x
>>> print x
3.0

The expression blank.x means, “Go to the object blank refers to and get the value of x.”
In this case, we assign that value to a variable named x. There is no conflict between the
variable x and the attribute x.

You can use dot notation as part of any expression. For example:
>>> print '(%g, %g)' % (blank.x, blank.y)
(3.0, 4.0)
>>> distance = math.sqrt(blank.x**2 + blank.y**2)
>>> print distance
5.0

You can pass an instance as an argument in the usual way. For example:
def print_point(p):

print '(%g, %g)' % (p.x, p.y)

print_point takes a point as an argument and displays it in mathematical notation. To
invoke it, you can pass blank as an argument:
>>> print_point(blank)
(3.0, 4.0)

Inside the function, p is an alias for blank, so if the function modifies p, blank changes.

152

Rectangles

12.2.1 Exercise 1

Write a function called 'distance' that it takes two Points as arguments and returns the
distance between them.

12.3 Rectangles

Sometimes it is obvious what the attributes of an object should be, but other times you have
to make decisions. For example, imagine you are designing a class to represent rectangles.
What attributes would you use to specify the location and size of a rectangle? You can
ignore angle; to keep things simple, assume that the rectangle is either vertical or horizontal.

There are at least two possibilities:

• You could specify one corner of the rectangle (or the center), the width, and the height.
• You could specify two opposing corners.

At this point it is hard to say whether either is better than the other, so we’ll implement
the first one, just as an example.

Here is the class definition:
class Rectangle(object):

"""represent a rectangle.
attributes: width, height, corner.

"""

The docstring lists the attributes: width and height are numbers; corner is a Point object
that specifies the lower-left corner.

To represent a rectangle, you have to instantiate a Rectangle object and assign values to the
attributes:
box = Rectangle()
box.width = 100.0
box.height = 200.0
box.corner = Point()
box.corner.x = 0.0
box.corner.y = 0.0

The expression box.corner.x means, “Go to the object box refers to and select the attribute
named corner; then go to that object and select the attribute named x.”

The figure shows the state of this object:

An object that is an attribute of another object is embedded.

12.4 Instances as return values

Functions can return instances. For example, find_center takes a Rectangle as an argument
and returns a Point that contains the coordinates of the center of the Rectangle:

153

Classes and objects

def find_center(box):
p = Point()
p.x = box.corner.x + box.width/2.0
p.y = box.corner.y + box.height/2.0
return p

Here is an example that passes box as an argument and assigns the resulting Point to center:
>>> center = find_center(box)
>>> print_point(center)
(50.0, 100.0)

12.5 Objects are mutable

You can change the state of an object by making an assignment to one of its attributes. For
example, to change the size of a rectangle without changing its position, you can modify the
values of width and height:
box.width = box.width + 50
box.height = box.width + 100

You can also write functions that modify objects. For example, grow_rectangle takes a
Rectangle object and two numbers, dwidth and dheight, and adds the numbers to the width
and height of the rectangle:
def grow_rectangle(rect, dwidth, dheight) :

rect.width += dwidth
rect.height += dheight

Here is an example that demonstrates the effect:
>>> print box.width
100.0
>>> print box.height
200.0
>>> grow_rectangle(box, 50, 100)
>>> print box.width
150.0
>>> print box.height
300.0

Inside the function, rect is an alias for box, so if the function modifies rect, box changes.

12.5.1 Exercise 2

Write a function named move_rectangle that takes a Rectangle and two numbers named
'dx' and 'dy'. It should change the location of the rectangle by adding 'dx' to the 'x'
coordinate of 'corner' and adding 'dy' to the 'y' coordinate of 'corner'.

154

Copying

12.6 Copying

Aliasing can make a program difficult to read because changes in one place might have
unexpected effects in another place. It is hard to keep track of all the variables that might
refer to a given object.

Copying an object is often an alternative to aliasing. The copy module contains a function
called copy that can duplicate any object:
>>> p1 = Point()
>>> p1.x = 3.0
>>> p1.y = 4.0

>>> import copy
>>> p2 = copy.copy(p1)

p1 and p2 contain the same data, but they are not the same Point.
>>> print_point(p1)
(3.0, 4.0)
>>> print_point(p2)
(3.0, 4.0)
>>> p1 is p2
False
>>> p1 == p2
False

The is operator indicates that p1 and p2 are not the same object, which is what we expected.
But you might have expected == to yield True because these points contain the same data.
In that case, you will be disappointed to learn that for instances, the default behavior of the
== operator is the same as the is operator; it checks object identity, not object equivalence.
This behavior can be changed—we’ll see how later.

If you use copy.copy to duplicate a Rectangle, you will find that it copies the Rectangle
object but not the embedded Point.
>>> box2 = copy.copy(box)
>>> box2 is box
False
>>> box2.corner is box.corner
True

Here is what the object diagram looks like:

This operation is called a shallow copy because it copies the object and any references it
contains, but not the embedded objects.

For most applications, this is not what you want. In this example, invoking grow_rectangle
on one of the Rectangles would not affect the other, but invoking move_rectangle on either
would affect both! This behavior is confusing and error-prone.

Fortunately, the copy module contains a method named deepcopy that copies not only the
object but also the objects it refers to, and the objects they refer to, and so on. You will not
be surprised to learn that this operation is called a deep copy.
>>> box3 = copy.deepcopy(box)
>>> box3 is box
False

155

Classes and objects

>>> box3.corner is box.corner
False

box3 and box are completely separate objects.

12.6.1 Exercise 3

Write a version of move_rectangle that creates and returns a new Rectangle instead of
modifying the old one.

12.7 Debugging

When you start working with objects, you are likely to encounter some new exceptions. If
you try to access an attribute that doesn’t exist, you get an AttributeError:
>>> p = Point()
>>> print p.z
AttributeError: Point instance has no attribute 'z'

If you are not sure what type an object is, you can ask:
>>> type(p)
<type '__main__.Point'>

If you are not sure whether an object has a particular attribute, you can use the built-in
function hasattr:
>>> hasattr(p, 'x')
True
>>> hasattr(p, 'z')
False

The first argument can be any object; the second argument is a string that contains the
name of the attribute.

12.8 Glossary

class: A user-defined type. A class definition creates a new class object. class object: An
object that contains information about a user-defined type. The class object can be used to
create instances of the type. instance: An object that belongs to a class. attribute: One
of the named values associated with an object.

embedded (object): An object that is stored as an attribute of another object.

shallow copy: To copy the contents of an object, including any references to embedded
objects; implemented by the copy function in the copy module. deep copy: To copy the
contents of an object as well as any embedded objects, and any objects embedded in them,
and so on; implemented by the deepcopy function in the copy module. object diagram: A
diagram that shows objects, their attributes, and the values of the attributes.

156

Exercises

12.9 Exercises

12.9.1 Exercise 4

World.py', which is part of Swampy (see Chapter '4'), contains a class definition for
a user-defined type called 'World'. If you run this code:
''from World import *
world = World()
wait_for_user()
''

A window should appear with a title bar and an empty square. In this exercise we will use
this window to draw Points, Rectangles and other shapes. Add the following lines before
wait_for_user and run the program again
''canvas = world.ca(width=500, height=500, background='white')
bbox = [[-150,-100], [150, 100]]
canvas.rectangle(bbox, outline='black', width=2, fill='green4')
''

You should see a green rectangle with a black outline. The first line creates a Canvas,
which appears in the window as a white square. The Canvas object provides methods like
'rectangle' for drawing various shapes.

bbox' is a list of lists that represents the “bounding box” of the rectangle. The first
pair of coordinates is the lower-left corner of the rectangle; the second pair is the upper-right
corner.

You can draw a circle like this:
''canvas.circle([-25,0], 70, outline=None, fill='red')
''

The first parameter is the coordinate pair for the center of the circle; the second parameter
is the radius.

If you add this line to the program, the result should resemble the national flag of Bangladesh
(see 'wikipedia.org/wiki/Gallery_of_sovereign-state_flags').

• Write a function called draw_rectanglethat takes a

Canvas and a Rectangle as arguments and draws a representation of the Rectangle on the
Canvas.

• Add an attribute named 'color' to your Rectangle objects and

modify draw_rectangle so that it uses the color attribute as the fill color.

• Write a function called draw_pointthat takes a

Canvas and a Point as arguments and draws a representation of the Point on the Canvas.

• Define a new class called Circle with appropriate attributes and

instantiate a few Circle objects. Write a function called draw_circle that draws circles on
the canvas.

157

Classes and objects

• Write a program that draws the national flag of of the Czech Republic1.

Hint: you can draw a polygon like this:
''points = [[-150,-100], [150, 100], [150, -100]]
canvas.polygon(points, fill='blue')
''

I have written a small program that lists the available colors; you can download it from
'thinkpython.com/code/color_list.py'.

1 http://en.wikipedia.org/wiki/File:Flag_of_the_Czech_Republic.svg

158

http://en.wikipedia.org/wiki/File:Flag_of_the_Czech_Republic.svg

13 Classes and functions

13.1 Time

As another example of a user-defined type, we'll define a class called Time that records the
time of day. The class definition looks like this:

class Time(object):
"""represents the time of day.

attributes: hour, minute, second"""

We can create a new Time object and assign attributes for hours, minutes, and seconds:

time = Time()
time.hour = 11
time.minute = 59
time.second = 30

The state diagram for the Time object looks like this:

13.1.1 Exercise 1

Write a function called print_time that takes a Time object and prints it in the form
hour:minute:second.

Hint: the format sequence %.2d prints an integer using at least two digits, including a
leading zero if necessary.

13.1.2 Exercise 2

Write a boolean function called is_after that takes two Time objects, t1 and t2, and
returns True if t1 follows t2 chronologically and False otherwise.

Challenge: don't use an if statement.

13.2 Pure functions

In the next few sections, we’ll write two functions that add time values. They demonstrate
two kinds of functions: pure functions and modifiers. They also demonstrate a development
plan I’ll call prototype and patch, which is a way of tackling a complex problem by
starting with a simple prototype and incrementally dealing with the complications.

Here is a simple prototype of add_time:

159

Classes and functions

def add_time(t1, t2):
sum = Time()
sum.hour = t1.hour + t2.hour
sum.minute = t1.minute + t2.minute
sum.second = t1.second + t2.second
return sum

The function creates a new Time object, initializes its attributes, and returns a reference
to the new object. This is called a pure function because it does not modify any of the
objects passed to it as arguments and it has no effect, like displaying a value or getting user
input, other than returning a value.

To test this function, I’ll create two Time objects: start contains the start time of a movie,
like Monty Python and the Holy Grail, and duration contains the run time of the movie,
which is one hour 35 minutes.

add_time figures out when the movie will be done.
>>> start = Time()
>>> start.hour = 9
>>> start.minute = 45
>>> start.second = 0

>>> duration = Time()
>>> duration.hour = 1
>>> duration.minute = 35
>>> duration.second = 0

>>> done = add_time(start, duration)
>>> print_time(done)
10:80:00

The result, 10:80:00 might not be what you were hoping for. The problem is that this
function does not deal with cases where the number of seconds or minutes adds up to more
than sixty. When that happens, we have to “carry” the extra seconds into the minute
column or the extra minutes into the hour column.

Here’s an improved version:
def add_time(t1, t2):

sum = Time()
sum.hour = t1.hour + t2.hour
sum.minute = t1.minute + t2.minute
sum.second = t1.second + t2.second

if sum.second >= 60:
sum.second -= 60
sum.minute += 1

if sum.minute >= 60:
sum.minute -= 60
sum.hour += 1

return sum

Although this function is correct, it is starting to get big. We will see a shorter alternative
later.

160

Modifiers

13.3 Modifiers

Sometimes it is useful for a function to modify the objects it gets as parameters. In that case,
the changes are visible to the caller. Functions that work this way are called modifiers.

increment, which adds a given number of seconds to a Time object, can be written naturally
as a modifier. Here is a rough draft:
def increment(time, seconds):

time.second += seconds

if time.second >= 60:
time.second -= 60
time.minute += 1

if time.minute >= 60:
time.minute -= 60
time.hour += 1

The first line performs the basic operation; the remainder deals with the special cases we
saw before.

Is this function correct? What happens if the parameter seconds is much greater than sixty?

In that case, it is not enough to carry once; we have to keep doing it until time.second is less
than sixty. One solution is to replace the if statements with while statements. That would
make the function correct, but not very efficient. Exercise 3 Write a correct version of
'increment' that doesn’t contain any loops. Anything that can be done with modifiers
can also be done with pure functions. In fact, some programming languages only allow
pure functions. There is some evidence that programs that use pure functions are faster to
develop and less error-prone than programs that use modifiers. But modifiers are convenient
at times, and functional programs tend to be less efficient.

In general, I recommend that you write pure functions whenever it is reasonable and resort
to modifiers only if there is a compelling advantage. This approach might be called a
functional programming style.

Exercise 4 Write a “pure” version of 'increment' that creates and returns a new Time
object rather than modifying the parameter.

13.4 Prototyping versus planning

The development plan I am demonstrating is called “prototype and patch.” For each function,
I wrote a prototype that performed the basic calculation and then tested it, patching errors
along the way.

This approach can be effective, especially if you don’t yet have a deep understanding of
the problem. But incremental corrections can generate code that is unnecessarily compli-
cated—since it deals with many special cases—and unreliable—since it is hard to know if
you have found all the errors.

An alternative is planned development, in which high-level insight into the problem can
make the programming much easier. In this case, the insight is that a Time object is really

161

Classes and functions

a three-digit number in base 60 (see wikipedia.org/wiki/Sexagesimal)! The second attribute
is the “ones column,” the minute attribute is the “sixties column,” and the hour attribute is
the “thirty-six hundreds column.”

When we wrote add_time and increment, we were effectively doing addition in base 60,
which is why we had to carry from one column to the next.

This observation suggests another approach to the whole problem—we can convert Time
objects to integers and take advantage of the fact that the computer knows how to do integer
arithmetic.

Here is a function that converts Times to integers:
def time_to_int(time):

minutes = time.hour * 60 + time.minute
seconds = minutes * 60 + time.second
return seconds

And here is the function that converts integers to Times (recall that divmod divides the
first argument by the second and returns the quotient and remainder as a tuple).
def int_to_time(seconds):

time = Time()
minutes, time.second = divmod(seconds, 60)
time.hour, time.minute = divmod(minutes, 60)
return time

You might have to think a bit, and run some tests, to convince yourself that these functions
are correct. One way to test them is to check that time_to_int(int_to_time(x)) == x for
many values of x. This is an example of a consistency check.

Once you are convinced they are correct, you can use them to rewrite add_time:
def add_time(t1, t2):

seconds = time_to_int(t1) + time_to_int(t2)
return int_to_time(seconds)

This version is shorter than the original, and easier to verify. Exercise 5 Rewrite 'incre-
ment' using time_to_int and int_to_time. In some ways, converting from base 60 to
base 10 and back is harder than just dealing with times. Base conversion is more abstract;
our intuition for dealing with time values is better.

But if we have the insight to treat times as base 60 numbers and make the investment of
writing the conversion functions (time_to_int and int_to_time), we get a program that is
shorter, easier to read and debug, and more reliable.

It is also easier to add features later. For example, imagine subtracting two Times to find
the duration between them. The naïve approach would be to implement subtraction with
borrowing. Using the conversion functions would be easier and more likely to be correct.

Ironically, sometimes making a problem harder (or more general) makes it easier (because
there are fewer special cases and fewer opportunities for error).

162

Debugging

13.5 Debugging

A Time object is well-formed if the values of minutes and seconds are between 0 and 60
(including 0 but not 60) and if hours is positive. hours and minutes should be integral values,
but we might allow seconds to have a fraction part.

These kind of requirements are called invariants because they should always be true. To
put it a different way, if they are not true, then something has gone wrong.

Writing code to check your invariants can help you detect errors and find their causes. For
example, you might have a function like valid_time that takes a Time object and returns
False if it violates an invariant:
def valid_time(time):

if time.hours < 0 or time.minutes < 0 or time.seconds < 0:
return False

if time.minutes >= 60 or time.seconds >= 60:
return False

return True

Then at the beginning of each function you could check the arguments to make sure they
are valid:
def add_time(t1, t2):

if not valid_time(t1) or not valid_time(t2):
raise ValueError, 'invalid Time object in add_time'

seconds = time_to_int(t1) + time_to_int(t2)
return int_to_time(seconds)

Or you could use an assert statement, which checks a given invariant and raises an exception
if it fails:
def add_time(t1, t2):

assert valid_time(t1) and valid_time(t2)
seconds = time_to_int(t1) + time_to_int(t2)
return int_to_time(seconds)

assert statements are useful because they distinguish code that deals with normal conditions
from code that checks for errors.

13.6 Glossary

prototype and patch: A development plan that involves writing a rough draft of a
program, testing, and correcting errors as they are found. planned development: A
development plan that involves high-level insight into the problem and more planning than
incremental development or prototype development. pure function: A function that does
not modify any of the objects it receives as arguments. Most pure functions are fruitful.
modifier: A function that changes one or more of the objects it receives as arguments.
Most modifiers are fruitless. functional programming style: A style of program design
in which the majority of functions are pure. invariant: A condition that should always be
true during the execution of a program.

163

Classes and functions

13.7 Exercises

13.7.1 Exercise 6

Write a function called mul_time that takes a Time object and a number and returns a
new Time object that contains the product of the original Time and the number. Then use
mul_timeto write a function that takes a Time object that represents the finishing time in a
race, and a number that represents the distance, and returns a Time object that represents
the average pace (time per mile).

13.7.2 Exercise 7

Write a class definition for a Date object that has attributes 'day', 'month' and 'year'.
Write a function called increment_date that takes a Date object, 'date' and an integer, 'n',
and returns a new Date object that represents the day 'n' days after 'date'. Hint: “Thirty
days hath September...” Challenge: does your function deal with leap years correctly? See
'wikipedia.org/wiki/Leap_year

13.7.3 Exercise 8

The 'datetime' module provides 'date' and 'time' objects that are similar to the Date and
Time objects in this chapter, but they provide a rich set of methods and operators. Read
the documentation at 'docs.python.org/lib/datetime-date.html'.

• Use the 'datetime' module to write a program that gets the current date and prints the
day of the week.

• Write a program that takes a birthday as input and prints the user’s age and the number
of days, hours, minutes and seconds until their next birthday.

164

14 Classes and methods

14.1 Object-oriented features

Python is an object-oriented programming language, which means that it provides
features that support object-oriented programming.

It is not easy to define object-oriented programming, but we have already seen some of its
characteristics:

• Programs are made up of object definitions and function

definitions, and most of the computation is expressed in terms of operations on objects.

• Each object definition corresponds to some object or concept

in the real world, and the functions that operate on that object correspond to the ways
real-world objects interact.

For example, the Time class defined in Chapter 16 corresponds to the way people record the
time of day, and the functions we defined correspond to the kinds of things people do with
times. Similarly, the Point and Rectangle classes correspond to the mathematical concepts
of a point and a rectangle.

So far, we have not taken advantage of the features Python provides to support object-
oriented programming. These features are not strictly necessary; most of them provide
alternative syntax for things we have already done. But in many cases, the alternative is
more concise and more accurately conveys the structure of the program.

For example, in the Time program, there is no obvious connection between the class definition
and the function definitions that follow. With some examination, it is apparent that every
function takes at least one Time object as an argument.

This observation is the motivation for methods; a method is a function that is associated
with a particular class. We have seen methods for strings, lists, dictionaries and tuples. In
this chapter, we will define methods for user-defined types.

Methods are semantically the same as functions, but there are two syntactic differences:

• Methods are defined inside a class definition in order to make the relationship between
the class and the method explicit.

• The syntax for invoking a method is different from the syntax for calling a function.

In the next few sections, we will take the functions from the previous two chapters and
transform them into methods. This transformation is purely mechanical; you can do it
simply by following a sequence of steps. If you are comfortable converting from one form to
another, you will be able to choose the best form for whatever you are doing.

165

Classes and methods

14.2 Printing objects

In Chapter 16, we defined a class named Time and in Exercise 16.1, you wrote a function
named print_time:
class Time(object):

"""represents the time of day.
attributes: hour, minute, second"""

def print_time(time):
print '%.2d:%.2d:%.2d' % (time.hour, time.minute, time.second)

To call this function, you have to pass a Time object as an argument:
>>> start = Time()
>>> start.hour = 9
>>> start.minute = 45
>>> start.second = 00
>>> print_time(start)
09:45:00

To make print_time a method, all we have to do is move the function definition inside the
class definition. Notice the change in indentation.
class Time(object):

def print_time(time):
print '%.2d:%.2d:%.2d' % (time.hour, time.minute,

time.second)

Now there are two ways to call print_time. The first (and less common) way is to use
function syntax:
>>> Time.print_time(start)
09:45:00

In this use of dot notation, Time is the name of the class, and print_time is the name of
the method. start is passed as a parameter.

The second (and more concise) way is to use method syntax:
>>> start.print_time()
09:45:00

In this use of dot notation, print_time is the name of the method (again), and start is
the object the method is invoked on, which is called the subject. Just as the subject of
a sentence is what the sentence is about, the subject of a method invocation is what the
method is about.

Inside the method, the subject is assigned to the first parameter, so in this case start is
assigned to time.

By convention, the first parameter of a method is called self, so it would be more common
to write print_time like this:
class Time(object):

def print_time(self):
print '%.2d:%.2d:%.2d' % (self.hour, self.minute,

166

Another example

self.second)

The reason for this convention is an implicit metaphor:

• The syntax for a function call, print_time(start),

suggests that the function is the active agent. It says something like, “Hey print_time!
Here’s an object for you to print.”

• In object-oriented programming, the objects are the active

agents. A method invocation like start.print_time() says “Hey start! Please print yourself.”

This change in perspective might be more polite, but it is not obvious that it is useful. In
the examples we have seen so far, it may not be. But sometimes shifting responsibility from
the functions onto the objects makes it possible to write more versatile functions, and makes
it easier to maintain and reuse code.

14.2.1 Exercise 1

Rewrite time_to_int (from Section '16.4') as a method. It is probably not appropriate to
rewrite int_to_time as a method; it’s not clear what object you would invoke it on!

14.3 Another example

Here’s a version of increment (from Section 16.3) rewritten as a method:
inside class Time:

def increment(self, seconds):
seconds += self.time_to_int()
return int_to_time(seconds)

This version assumes that time_to_int is written as a method, as in Exercise 17.1. Also,
note that it is a pure function, not a modifier.

Here’s how you would invoke increment:
>>> start.print_time()
09:45:00
>>> end = start.increment(1337)
>>> end.print_time()
10:07:17

The subject, start, gets assigned to the first parameter, self. The argument, 1337, gets
assigned to the second parameter, seconds.

This mechanism can be confusing, especially if you make an error. For example, if you
invoke increment with two arguments, you get:
>>> end = start.increment(1337, 460)
TypeError: increment() takes exactly 2 arguments (3 given)

167

Classes and methods

The error message is initially confusing, because there are only two arguments in parentheses.
But the subject is also considered an argument, so all together that’s three.

14.4 A more complicated example

is_after (from Exercise 16.2) is slightly more complicated because it takes two Time objects
as parameters. In this case it is conventional to name the first parameter self and the second
parameter other:
inside class Time:

def is_after(self, other):
return self.time_to_int() > other.time_to_int()

To use this method, you have to invoke it on one object and pass the other as an argument:
>>> end.is_after(start)
True

One nice thing about this syntax is that it almost reads like English: “end is after start?”

14.5 The init method

The init method (short for “initialization”) is a special method that gets invoked when an
object is instantiated. Its full name is __init__(two underscore characters, followed by init,
and then two more underscores). An init method for the Time class might look like this:
inside class Time:

def __init__(self, hour=0, minute=0, second=0):
self.hour = hour
self.minute = minute
self.second = second

It is common for the parameters of __init__to have the same names as the attributes. The
statement

self.hour = hour

stores the value of the parameter hour as an attribute of self.

The parameters are optional, so if you call Time with no arguments, you get the default
values.
>>> time = Time()
>>> time.print_time()
00:00:00

If you provide one argument, it overrides hour:
>>> time = Time (9)
>>> time.print_time()

168

The __str__method

09:00:00

If you provide two arguments, they override hour and minute.
>>> time = Time(9, 45)
>>> time.print_time()
09:45:00

And if you provide three arguments, they override all three default values.

14.5.1 Exercise 2

Write an init method for the 'Point' class that takes 'x' and 'y' as optional parameters and
assigns them to the corresponding attributes.

14.6 The __str__method

__str__is a special method, like __init__, that is supposed to return a string representation
of an object.

For example, here is a str method for Time objects:
inside class Time:

def __str__(self):
return '%.2d:%.2d:%.2d' % (self.hour, self.minute,

self.second)

When you print an object, Python invokes the str method:
>>> time = Time(9, 45)
>>> print time
09:45:00

When I write a new class, I almost always start by writing __init__, which makes it easier
to instantiate objects, and __str__, which is useful for debugging.

14.6.1 Exercise 3

Write a 'str' method for the 'Point' class. Create a Point object and print it.

14.7 Operator overloading

By defining other special methods, you can specify the behavior of operators on user-defined
types. For example, if you define a method named __add__for the Time class, you can
use the + operator on Time objects.

Here is what the definition might look like:

169

Classes and methods

inside class Time:

def __add__(self, other):
seconds = self.time_to_int() + other.time_to_int()
return int_to_time(seconds)

And here is how you could use it:
>>> start = Time(9, 45)
>>> duration = Time(1, 35)
>>> print start + duration
11:20:00

When you apply the + operator to Time objects, Python invokes __add__. When you
print the result, Python invokes __str__. So there is quite a lot happening behind the
scenes!

Changing the behavior of an operator so that it works with user-defined types is called
operator overloading. For every operator in Python there is a corresponding special
method, like __add__. For more details, see docs.python.org/ref/specialnames.html.

14.7.1 Exercise 4

Write an 'add' method for the Point class.

14.8 Type-based dispatch

In the previous section we added two Time objects, but you also might want to add an
integer to a Time object. The following is a version of __add__that checks the type of
other and invokes either add_time or increment:
inside class Time:

def __add__(self, other):
if isinstance(other, Time):

return self.add_time(other)
else:

return self.increment(other)

def add_time(self, other):
seconds = self.time_to_int() + other.time_to_int()
return int_to_time(seconds)

def increment(self, seconds):
seconds += self.time_to_int()
return int_to_time(seconds)

The built-in function isinstance takes a value and a class object, and returns True if the
value is an instance of the class.

If other is a Time object, __add__invokes add_time. Otherwise it assumes that the
parameter is a number and invokes increment. This operation is called a type-based
dispatch because it dispatches the computation to different methods based on the type of
the arguments.

170

Polymorphism

Here are examples that use the + operator with different types:
>>> start = Time(9, 45)
>>> duration = Time(1, 35)
>>> print start + duration
11:20:00
>>> print start + 1337
10:07:17

Unfortunately, this implementation of addition is not commutative. If the integer is the first
operand, you get
>>> print 1337 + start
TypeError: unsupported operand type(s) for +: 'int' and 'instance'

The problem is, instead of asking the Time object to add an integer, Python is asking an
integer to add a Time object, and it doesn’t know how to do that. But there is a clever
solution for this problem: the special method __radd__, which stands for “right-side add.”
This method is invoked when a Time object appears on the right side of the + operator.
Here’s the definition:
inside class Time:

def __radd__(self, other):
return self.__add__(other)

And here’s how it’s used:
>>> print 1337 + start
10:07:17

14.8.1 Exercise 5

Write an 'add' method for Points that works with either a Point object or a tuple:

• If the second operand is a Point, the method should return a new Point whose 'x' coordinate
is the sum of the 'x' coordinates of the operands, and likewise for the 'y' coordinates.

• If the second operand is a tuple, the method should add the first element of the tuple to
the 'x' coordinate and the second element to the 'y' coordinate, and return a new Point
with the result.

14.9 Polymorphism

Type-based dispatch is useful when it is necessary, but (fortunately) it is not always necessary.
Often you can avoid it by writing functions that work correctly for arguments with different
types.

Many of the functions we wrote for strings will actually work for any kind of sequence. For
example, in Section 11.1 we used histogram to count the number of times each letter appears
in a word.
def histogram(s):

d = dict()

171

Classes and methods

for c in s:
if c not in d:

d[c] = 1
else:

d[c] = d[c]+1
return d

This function also works for lists, tuples, and even dictionaries, as long as the elements of s
are hashable, so they can be used as keys in d.
>>> t = ['spam', 'egg', 'spam', 'spam', 'bacon', 'spam']
>>> histogram(t)
{'bacon': 1, 'egg': 1, 'spam': 4}

Functions that can work with several types are called polymorphic. Polymorphism can
facilitate code reuse. For example, the built-in function sum, which adds the elements of a
sequence, works as long as the elements of the sequence support addition.

Since Time objects provide an add method, they work with sum:
>>> t1 = Time(7, 43)
>>> t2 = Time(7, 41)
>>> t3 = Time(7, 37)
>>> total = sum([t1, t2, t3])
>>> print total
23:01:00

In general, if all of the operations inside a function work with a given type, then the function
works with that type.

The best kind of polymorphism is the unintentional kind, where you discover that a function
you already wrote can be applied to a type you never planned for.

14.10 Debugging

It is legal to add attributes to objects at any point in the execution of a program, but if you
are a stickler for type theory, it is a dubious practice to have objects of the same type with
different attribute sets. It is usually a good idea to initialize all of an objects attributes in
the init method.

If you are not sure whether an object has a particular attribute, you can use the built-in
function hasattr (see Section 15.7).

Another way to access the attributes of an object is through the special attribute __dict__,
which is a dictionary that maps attribute names (as strings) and values:
>>> p = Point(3, 4)
>>> print p.__dict__
{'y': 4, 'x': 3}

For purposes of debugging, you might find it useful to keep this function handy:
def print_attributes(obj):

for attr in obj.__dict__:
print attr, getattr(obj, attr)

172

Glossary

print_attributes traverses the items in the object’s dictionary and prints each attribute
name and its corresponding value.

The built-in function getattr takes an object and an attribute name (as a string) and returns
the attribute’s value.

14.11 Glossary

object-oriented language: A language that provides features, such as user-defined classes
and method syntax, that facilitate object-oriented programming. object-oriented pro-
gramming: A style of programming in which data and the operations that manipulate
it are organized into classes and methods. method: A function that is defined inside a
class definition and is invoked on instances of that class. subject: The object a method
is invoked on. operator overloading: Changing the behavior of an operator like + so it
works with a user-defined type.

type-based dispatch: A programming pattern that checks the type of an operand and
invokes different functions for different types. polymorphic: Pertaining to a function that
can work with more than one type.

14.12 Exercises

14.12.1 Exercise 6

This exercise is a cautionary tale about one of the most common, and difficult to find, errors
in Python.

• Write a definition for a class named 'Kangaroo' with the following

methods:

• An __init__method that initializes an attribute named pouch_contentsto an empty list.

• A method named put_in_pouchthat takes an object of any type and adds it to pouch_-
contents.

• A __str__method that returns a string representation of the Kangaroo object and the
contents of the pouch.

Test your code by creating two Kangaroo objects, assigning them to variables named kanga
and roo, and then adding roo to the contents of kanga’s pouch.'

• 'Download thinkpython.com/code/BadKangaroo.py. It contains

a solution to the previous problem with one big, nasty bug. Find and fix the bug.' 'If you
get stuck, you can download thinkpython.com/code/GoodKangaroo.py, which explains
the problem and demonstrates a solution.'

173

Classes and methods

14.12.2 Exercise 7

Visual is a Python module that provides 3-D graphics. It is not always included in a Python
installation, so you might have to install it from your software repository or, if it’s not there,
from 'vpython.org'.

The following example creates a 3-D space that is 256 units wide, long and high, and sets
the “center” to be the point '(128, 128, 128)'. Then it draws a blue sphere.
''from visual import *

scene.range = (256, 256, 256)
scene.center = (128, 128, 128)

color = (0.1, 0.1, 0.9) # mostly blue
sphere(pos=scene.center, radius=128, color=color)
''

color' is an RGB tuple; that is, the elements are Red-Green-Blue levels between
0.0 and 1.0 (see 'wikipedia.org/wiki/RGB_color_model').

If you run this code, you should see a window with a black background and a blue sphere. If
you drag the middle button up and down, you can zoom in and out. You can also rotate
the scene by dragging the right button, but with only one sphere in the world, it is hard to
tell the difference.

The following loop creates a cube of spheres:
''t = range(0, 256, 51)
for x in t:

for y in t:
for z in t:

pos = x, y, z
sphere(pos=pos, radius=10, color=color)

''

• Put this code in a script and make sure it works for

you.

• Modify the program so that each sphere in the cube

has the color that corresponds to its position in RGB space. Notice that the coordinates are
in the range 0–255, but the RGB tuples are in the range 0.0–1.0.

• Download 'thinkpython.com/code/color_list.py'

and use the function read_colors to generate a list of the available colors on your system,
their names and RGB values. For each named color draw a sphere in the position that
corresponds to its RGB values.

You can see my solution at 'thinkpython.com/code/color_space.py'.

174

Further reading

14.13 Further reading

• Wikipedia: VPython1

• Wikipedia: RGB color model2

1 http://en.wikipedia.org/wiki/%20VPython
2 http://en.wikipedia.org/wiki/%20RGB%20color%20model

175

http://en.wikipedia.org/wiki/%20VPython
http://en.wikipedia.org/wiki/%20RGB%20color%20model

15 Inheritance

In this chapter we will develop classes to represent playing cards, decks of cards, and poker
hands. If you don’t play poker, you can read about it at wikipedia.org/wiki/Poker1, but
you don't have to; I'll tell you what you need to know for the exercises.

If you are not familiar with Anglo-American playing cards, you can read about them at
wikipedia.org/wiki/Playing_cards2.

15.1 Card objects

There are fifty-two cards in a deck, each of which belongs to one of four suits and one of
thirteen ranks. The suits are Spades, Hearts, Diamonds, and Clubs (in descending order in
bridge). The ranks are Ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, and King. Depending on
the game that you are playing, an Ace may be higher than King or lower than 2.

If we want to define a new object to represent a playing card, it is obvious what the attributes
should be: rank and suit. It is not as obvious what type the attributes should be. One
possibility is to use strings containing words like 'Spade' for suits and 'Queen' for ranks.
One problem with this implementation is that it would not be easy to compare cards to see
which had a higher rank or suit.

An alternative is to use integers to encode the ranks and suits. In this context, “encode”
means that we are going to define a mapping between numbers and suits, or between numbers
and ranks. This kind of encoding is not meant to be a secret (that would be “encryption”).

For example, this table shows the suits and the corresponding integer codes:

Spades ↦ 3
Hearts ↦ 2
Diamonds ↦ 1
Clubs ↦ 0

This code makes it easy to compare cards; because higher suits map to higher numbers, we
can compare suits by comparing their codes.

The mapping for ranks is fairly obvious; each of the numerical ranks maps to the corresponding
integer, and for face cards:

Jack ↦ 11

1 http://en.wikipedia.org/wiki/Poker
2 http://en.wikipedia.org/wiki/Playing_cards

177

http://en.wikipedia.org/wiki/Poker
http://en.wikipedia.org/wiki/Playing_cards

Inheritance

Queen ↦ 12
King ↦ 13

I am using the ↦ symbol to make is clear that these mappings are not part of the Python
program. They are part of the program design, but they don’t appear explicitly in the code.

The class definition for Card looks like this:

class Card:
"""represents a standard playing card."""

def __init__(self, suit=0, rank=2):
self.suit = suit
self.rank = rank

As usual, the init method takes an optional parameter for each attribute. The default card
is the 2 of Clubs.

To create a Card, you call Card with the suit and rank of the card you want.

queen_of_diamonds = Card(1, 12)

15.2 Class attributes

In order to print Card objects in a way that people can easily read, we need a mapping from
the integer codes to the corresponding ranks and suits. A natural way to do that is with
lists of strings. We assign these lists to class attributes:

inside class Card:

suit_names = [‚Clubs‚, ‚Diamonds‚, ‚Hearts‚, ‚Spades‚]
rank_names = [None, ‚Ace‚, ‚2‚, ‚3‚, ‚4‚, ‚5‚, ‚6‚, ‚7‚,

‚8‚, ‚9‚, ‚10‚, ‚Jack‚, ‚Queen‚, ‚King‚]

def __str__(self):
return ‚%s of %s‚ % (Card.rank_names[self.rank],

Card.suit_names[self.suit])

Variables like suit_names and rank_names, which are defined inside a class but outside of
any method, are called class attributes because they are associated with the class object
Card.

This term distinguished them from variables like suit and rank, which are called instance
attributes because they are associated with a particular instance.

Both kinds of attribute are accessed using dot notation. For example, in __str__, self is a
Card object, and self.rank is its rank. Similarly, Card is a class object, and Card.rank_names
is a list of strings associated with the class.

Every card has its own suit and rank, but there is only one copy of suit_names and
rank_names.

178

Comparing cards

Putting it all together, the expression Card.rank_names[self.rank] means “use the attribute
rank from the object self as an index into the list rank_names from the class Card, and
select the appropriate string.”

The first element of rank_names is None because there is no card with rank zero. By
including None as a place-keeper, we get a mapping with the nice property that the index
2 maps to the string '2', and so on. To avoid this tweak, we could have used a dictionary
instead of a list.

With the methods we have so far, we can create and print cards:

>>> card1 = Card(2, 11)
>>> print card1
Jack of Hearts

Here is a diagram that shows the Card class object and one Card instance:

Card is a class object, so it has type type. card1 has type Card. (To save space, I didn’t
draw the contents of suit_names and rank_names).

15.3 Comparing cards

For built-in types, there are conditional operators (<, >, ==, etc.) that compare values
and determine when one is greater than, less than, or equal to another. For user-defined
types, we can override the behavior of the built-in operators by providing a method named
__cmp__.

__cmp__takes two parameters, self and other, and returns a positive number if the first
object is greater, a negative number if the second object is greater, and 0 if they are equal
to each other.

The correct ordering for cards is not obvious. For example, which is better, the 3 of Clubs
or the 2 of Diamonds? One has a higher rank, but the other has a higher suit. In order to
compare cards, you have to decide whether rank or suit is more important.

The answer might depend on what game you are playing, but to keep things simple, we’ll
make the arbitrary choice that suit is more important, so all of the Spades outrank all of
the Diamonds, and so on.

With that decided, we can write __cmp__:
inside class Card:

def __cmp__(self, other):
check the suits
if self.suit > other.suit: return 1
if self.suit < other.suit: return -1

suits are the same... check ranks
if self.rank > other.rank: return 1
if self.rank < other.rank: return -1

ranks are the same... it's a tie
return 0

179

Inheritance

You can write this more concisely using tuple comparison:
inside class Card:

def __cmp__(self, other):
t1 = self.suit, self.rank
t2 = other.suit, other.rank
return cmp(t1, t2)

The built-in function cmp has the same interface as the method __cmp__: it takes two
values and returns a positive number if the first is larger, a negative number of the second is
larger, and 0 if they are equal.

15.3.1 Exercise 1

Write a __cmp__ method for Time objects. Hint: you can use tuple comparison, but you
also might consider using integer subtraction.

15.4 Decks

Now that we have Cards, the next step is to define Decks. Since a deck is made up of cards,
it is natural for each Deck to contain a list of cards as an attribute.

The following is a class definition for Deck. The init method creates the attribute cards and
generates the standard set of fifty-two cards:
class Deck:

def __init__(self):
self.cards = []
for suit in range(4):

for rank in range(1, 14):
card = Card(suit, rank)
self.cards.append(card)

The easiest way to populate the deck is with a nested loop. The outer loop enumerates the
suits from 0 to 3. The inner loop enumerates the ranks from 1 to 13. Each iteration creates
a new Card with the current suit and rank, and appends it to self.cards.

15.5 Printing the deck

Here is a __str__method for Deck:
#inside class Deck:

def __str__(self):
res = [str(card) for card in self.cards]
return '\n'.join(res)

180

Add, remove, shuffle and sort

This method demonstrates an efficient way to accumulate a large string: building a list of
strings and then using join. The built-in function str invokes the __str__method on each
card and returns the string representation.

Since we invoke join on a newline character, the cards are separated by newlines. Here’s
what the result looks like:
>>> deck = Deck()
>>> print deck
Ace of Clubs
2 of Clubs
3 of Clubs
...
10 of Spades
Jack of Spades
Queen of Spades
King of Spades

Even though the result appears on 52 lines, it is one long string that contains newlines.

15.6 Add, remove, shuffle and sort

To deal cards, we would like a method that removes a card from the deck and returns it.
The list method pop provides a convenient way to do that:
#inside class Deck:

def pop_card(self):
return self.cards.pop()

Since pop removes the last card in the list, we are dealing from the bottom of the deck. In
real life bottom dealing is frowned upon1, but in this context it’s ok.

To add a card, we can use the list method append:
#inside class Deck:

def add_card(self, card):
self.cards.append(card)

A method like this that uses another function without doing much real work is sometimes
called a veneer. The metaphor comes from woodworking, where it is common to glue a
thin layer of good quality wood to the surface of a cheaper piece of wood.

In this case we are defining a “thin” method that expresses a list operation in terms that
are appropriate for decks.

As another example, we can write a Deck method named shuffle using the function shuffle
from the random module:
inside class Deck:

def shuffle(self):
random.shuffle(self.cards)

Don’t forget to import random.

181

Inheritance

15.6.1 Exercise 2

Write a Deck method named 'sort' that uses the list method 'sort' to sort the cards in a
'Deck'. 'sort' uses the __cmp__ method we defined to determine sort order.

15.7 Inheritance

The language feature most often associated with object-oriented programming is inheritance.
Inheritance is the ability to define a new class that is a modified version of an existing class.

It is called “inheritance” because the new class inherits the methods of the existing class.
Extending this metaphor, the existing class is called the parent and the new class is called
the child.

As an example, let’s say we want a class to represent a “hand,” that is, the set of cards held
by one player. A hand is similar to a deck: both are made up of a set of cards, and both
require operations like adding and removing cards.

A hand is also different from a deck; there are operations we want for hands that don’t make
sense for a deck. For example, in poker we might compare two hands to see which one wins.
In bridge, we might compute a score for a hand in order to make a bid.

This relationship between classes—similar, but different—lends itself to inheritance.

The definition of a child class is like other class definitions, but the name of the parent class
appears in parentheses:
class Hand(Deck):

"""represents a hand of playing cards"""

This definition indicates that Hand inherits from Deck; that means we can use methods like
pop_card and add_card for Hands as well as Decks.

Hand also inherits __init__from Deck, but it doesn’t really do what we want: instead of
populating the hand with 52 new cards, the init method for Hands should initialize cards
with an empty list.

If we provide an init method in the Hand class, it overrides the one in the Deck class:
inside class Hand:

def __init__(self, label=''):
self.cards = []
self.label = label

So when you create a Hand, Python invokes this init method:
>>> hand = Hand('new hand')
>>> print hand.cards
[]
>>> print hand.label
new hand

182

Class diagrams

But the other methods are inherited from Deck, so we can use pop_card and add_card to
deal a card:
>>> deck = Deck()
>>> card = deck.pop_card()
>>> hand.add_card(card)
>>> print hand
King of Spades

A natural next step is to encapsulate this code in a method called move_cards:
#inside class Deck:

def move_cards(self, hand, num):
for i in range(num):

hand.add_card(self.pop_card())

move_cards takes two arguments, a Hand object and the number of cards to deal. It modifies
both self and hand, and returns None.

In some games, cards are moved from one hand to another, or from a hand back to the deck.
You can use move_cards for any of these operations: self can be either a Deck or a Hand,
and hand, despite the name, can also be a Deck. Exercise 3 Write a Deck method called
deal_hands that takes two parameters, the number of hands and the number of cards per
hand, and that creates new Hand objects, deals the appropriate number of cards per hand,
and returns a list of Hand objects. Inheritance is a useful feature. Some programs that
would be repetitive without inheritance can be written more elegantly with it. Inheritance
can facilitate code reuse, since you can customize the behavior of parent classes without
having to modify them. In some cases, the inheritance structure reflects the natural structure
of the problem, which makes the program easier to understand.

On the other hand, inheritance can make programs difficult to read. When a method
is invoked, it is sometimes not clear where to find its definition. The relevant code may
be scattered among several modules. Also, many of the things that can be done using
inheritance can be done as well or better without it.

15.8 Class diagrams

So far we have seen stack diagrams, which show the state of a program, and object diagrams,
which show the attributes of an object and their values. These diagrams represent a snapshot
in the execution of a program, so they change as the program runs.

They are also highly detailed; for some purposes, too detailed. A class diagrams is a more
abstract representation of the structure of a program. Instead of showing individual objects,
it shows classes and the relationships between them.

There are several kinds of relationship between classes:

• Objects in one class might contain references to objects in another class. For example,
each Rectangle contains a reference to a Point, and each Deck contains references to
many Cards. This kind of relationship is called HAS-A, as in, “a Rectangle has a Point.”

183

Inheritance

• One class might inherit from another. This relationship is called IS-A, as in, “a Hand is
a kind of a Deck.”

• One class might depend on another in the sense that changes in one class would require
changes in the other.

A class diagram is a graphical representation of these relationships2. For example, this
diagram shows the relationships between Card, Deck and Hand.

The arrow with a hollow triangle head represents an IS-A relationship; in this case it indicates
that Hand inherits from Deck.

The standard arrow head represents a HAS-A relationship; in this case a Deck has references
to Card objects.

The star (*) near the arrow head is a multiplicity; it indicates how many Cards a Deck has.
A multiplicity can be a simple number, like 52, a range, like 5..7 or a star, which indicates
that a Deck can have any number of Cards.

A more detailed diagram might show that a Deck actually contains a list of Cards, but
built-in types like list and dict are usually not included in class diagrams.

15.8.1 Exercise 4

Read 'TurtleWorld.py', 'World.py' and 'Gui.py' and draw a class diagram that shows
the relationships among the classes defined there.

15.9 Debugging

Inheritance can make debugging a challenge because when you invoke a method on an object,
you might not know which method will be invoked.

Suppose you are writing a function that works with Hand objects. You would like it to work
with all kinds of Hands, like PokerHands, BridgeHands, etc. If you invoke a method like
shuffle, you might get the one defined in Deck, but if any of the subclasses override this
method, you’ll get that version instead.

Any time you are unsure about the flow of execution through your program, the simplest
solution is to add print statements at the beginning of the relevant methods. If Deck.shuffle
prints a message that says something like Running Deck.shuffle, then as the program runs it
traces the flow of execution.

As an alternative, you could use this function, which takes an object and a method name
(as a string) and returns the class that provides the definition of the method:
def find_defining_class(obj, meth_name):

for ty in type(obj).mro():
if meth_name in ty.__dict__:

return ty

Here’s an example:

184

Glossary

>>> hand = Hand()
>>> print find_defining_class(hand, 'shuffle')
<class 'Card.Deck'>

So the shuffle method for this Hand is the one in Deck.

find_defining_class uses the mro method to get the list of class objects (types) that will be
searched for methods. “MRO” stands for “method resolution order.”

Here’s a program design suggestion: whenever you override a method, the interface of the
new method should be the same as the old. It should take the same parameters, return the
same type, and obey the same preconditions and postconditions. If you obey this rule, you
will find that any function designed to work with an instance of a superclass, like a Deck,
will also work with instances of subclasses like a Hand or PokerHand.

If you violate this rule, your code will collapse like (sorry) a house of cards.

15.10 Glossary

encode: To represent one set of values using another set of values by constructing a
mapping between them. class attribute: An attribute associated with a class object. Class
attributes are defined inside a class definition but outside any method.

instance attribute: An attribute associated with an instance of a class.

veneer: A method or function that provides a different interface to another function without
doing much computation. inheritance: The ability to define a new class that is a modified
version of a previously defined class. parent class: The class from which a child class
inherits. child class: A new class created by inheriting from an existing class; also called a
“subclass.” IS-A relationship: The relationship between a child class and its parent class.
HAS-A relationship: The relationship between two classes where instances of one class
contain references to instances of the other. class diagram: A diagram that shows the
classes in a program and the relationships between them.

multiplicity: A notation in a class diagram that shows, for a HAS-A relationship, how
many references there are to instances of another class.

15.11 Exercises

15.11.1 Exercise 5

The following are the possible hands in poker, in increasing order of value (and decreasing
order of probability): pair:two cards with the same rank 'two pair:' two pairs of cards
with the same rank 'three of a kind:' three cards with the same rank 'straight:' five cards
with ranks in sequence (aces can be high or low, so 'Ace-2-3-4-5' is a straight and so is
'10-Jack-Queen-King-Ace', but 'Queen-King-Ace-2-3' is not.) 'flush:' five cards with
the same suit 'full house:' three cards with one rank, two cards with another 'four of a kind:'
four cards with the same rank 'straight flush:' five cards in sequence (as defined above) and

185

Inheritance

with the same suit The goal of these exercises is to estimate the probability of drawing
these various hands.

• Download the following files from 'thinkpython.com/code':Card.py: A complete ver-
sion of the 'Card', 'Deck' and 'Hand' classes in this chapter.'PokerHand.py': An
incomplete implementation of a class

that represents a poker hand, and some code that tests it.

• 'If you run PokerHand.py, it deals six 7-card poker hands

and checks to see if any of them contains a flush. Read this code carefully before you go on.'

• 'Add methods to PokerHand.pynamed ''has_pair'',

''has_twopair'', etc. that return True or False according to whether or not the hand meets
the relevant criteria. Your code should work correctly for “hands” that contain any number
of cards (although 5 and 7 are the most common sizes).'

• 'Write a method named classifythat figures out

the highest-value classification for a hand and sets the label attribute accordingly. For
example, a 7-card hand might contain a flush and a pair; it should be labeled “flush”.'

• 'When you are convinced that your classification methods are

working, the next step is to estimate the probabilities of the various hands. Write a function
in PokerHand.py that shuffles a deck of cards, divides it into hands, classifies the hands, and
counts the number of times various classifications appear.'

• 'Print a table of the classifications and their probabilities.

Run your program with larger and larger numbers of hands until the output values
converge to a reasonable degree of accuracy. Compare your results to the values at
wikipedia.org/wiki/Hand_rankings.'

15.11.2 Exercise 6

This exercise uses TurtleWorld from Chapter '4'. You will write code that makes Turtles play
tag. If you are not familiar with the rules of tag, see 'wikipedia.org/wiki/Tag_(game)'.

• Download 'thinkpython.com/code/Wobbler.py' and run it. You

should see a TurtleWorld with three Turtles. If you press the 'Run' button, the Turtles
wander at random.

• Read the code and make sure you understand how it works.

The 'Wobbler' class inherits from 'Turtle', which means that the 'Turtle' methods 'lt',
'rt', 'fd' and 'bk' work on Wobblers. The 'step' method gets invoked by TurtleWorld. It
invokes 'steer', which turns the Turtle in the desired direction, 'wobble', which makes a
random turn in proportion to the Turtle’s clumsiness, and 'move', which moves forward a
few pixels, depending on the Turtle’s speed.

• Create a file named 'Tagger.py'. Import everything from

186

Exercises

'Wobbler', then define a class named 'Tagger' that inherits from 'Wobbler'. Call make_-
world passing the 'Tagger' class object as an argument.

• Add a 'steer' method to 'Tagger' to override the one in

'Wobbler'. As a starting place, write a version that always points the Turtle toward the
origin. Hint: use the math function 'atan2' and the Turtle attributes 'x', 'y' and 'heading'.

• Modify 'steer' so that the Turtles stay in bounds.

For debugging, you might want to use the 'Step' button, which invokes 'step' once on each
Turtle.

• Modify 'steer' so that each Turtle points toward its nearest

neighbor. Hint: Turtles have an attribute, 'world', that is a reference to the TurtleWorld
they live in, and the TurtleWorld has an attribute, 'animals', that is a list of all Turtles in
the world.

• Modify 'steer' so the Turtles play tag. You can add methods

to 'Tagger' and you can override 'steer' and __init__, but you may not modify or override
'step', 'wobble' or 'move'. Also, 'steer' is allowed to change the heading of the Turtle
but not the position. Adjust the rules and your 'steer' method for good quality play; for
example, it should be possible for the slow Turtle to tag the faster Turtles eventually.

You can get my solution from 'thinkpython.com/code/Tagger.py'.

1See wikipedia.org/wiki/Bottom_dealing. 2The diagrams I am using here are similar to
UML (see wikipedia.org/wiki/Unified_Modeling_Language), with a few simplifications.

187

16 Debugging

Different kinds of errors can occur in a program, and it is useful to distinguish among them
in order to track them down more quickly:

• Syntax errors are produced by Python when it is translating the source code into byte
code. They usually indicate that there is something wrong with the syntax of the program.
Example: Omitting the colon at the end of a def statement yields the somewhat redundant
message SyntaxError: invalid syntax.

• Runtime errors are produced by the interpreter if something goes wrong while the
program is running. Most runtime error messages include information about where
the error occurred and what functions were executing. Example: An infinite recursion
eventually causes the runtime error “maximum recursion depth exceeded.”

• Semantic errors are problems with a program that runs without producing error messages
but doesn’t do the right thing. Example: An expression may not be evaluated in the
order you expect, yielding an incorrect result.

The first step in debugging is to figure out which kind of error you are dealing with. Although
the following sections are organized by error type, some techniques are applicable in more
than one situation.

16.1 Syntax errors

Syntax errors are usually easy to fix once you figure out what they are. Unfortunately, the
error messages are often not helpful. The most common messages are SyntaxError: invalid
syntax and SyntaxError: invalid token, neither of which is very informative.

On the other hand, the message does tell you where in the program the problem occurred.
Actually, it tells you where Python noticed a problem, which is not necessarily where the
error is. Sometimes the error is prior to the location of the error message, often on the
preceding line.

If you are building the program incrementally, you should have a good idea about where the
error is. It will be in the last line you added.

If you are copying code from a book, start by comparing your code to the book’s code very
carefully. Check every character. At the same time, remember that the book might be
wrong, so if you see something that looks like a syntax error, it might be.

Here are some ways to avoid the most common syntax errors:

• Make sure you are not using a Python keyword for a variable name.

• Check that you have a colon at the end of the header of every

189

Debugging

compound statement, including for, while, if, and def statements.

• Make sure that any strings in the code have matching

quotation marks.

• If you have multiline strings with triple quotes (single or double), make

sure you have terminated the string properly. An unterminated string may cause an invalid
token error at the end of your program, or it may treat the following part of the program as
a string until it comes to the next string. In the second case, it might not produce an error
message at all!

• An unclosed opening operator—(, {, or

[—makes Python continue with the next line as part of the current statement. Generally, an
error occurs almost immediately in the next line.

• Check for the classic = instead of == inside

a conditional.

• Check the indentation to make sure it lines up the way it

is supposed to. Python can handle space and tabs, but if you mix them it can cause problems.
The best way to avoid this problem is to use a text editor that knows about Python and
generates consistent indentation.

If nothing works, move on to the next section...

16.1.1 I keep making changes and it makes no difference.

If the interpreter says there is an error and you don’t see it, that might be because you and
the interpreter are not looking at the same code. Check your programming environment to
make sure that the program you are editing is the one Python is trying to run.

If you are not sure, try putting an obvious and deliberate syntax error at the beginning of
the program. Now run it again. If the interpreter doesn’t find the new error, you are not
running the new code.

There are a few likely culprits:

• You edited the file and forgot to save the changes before

running it again. Some programming environments do this for you, but some don’t.

• You changed the name of the file, but you are still running

the old name.

• Something in your development environment is configured

incorrectly.

• If you are writing a module and using import,

190

Runtime errors

make sure you don’t give your module the same name as one of the standard Python
modules.

• If you are using import to read a module, remember

that you have to restart the interpreter or use reload to read a modified file. If you import
the module again, it doesn’t do anything.

If you get stuck and you can’t figure out what is going on, one approach is to start again
with a new program like “Hello, World!,” and make sure you can get a known program to
run. Then gradually add the pieces of the original program to the new one.

16.2 Runtime errors

Once your program is syntactically correct, Python can compile it and at least start running
it. What could possibly go wrong?

16.2.1 My program does absolutely nothing.

This problem is most common when your file consists of functions and classes but does not
actually invoke anything to start execution. This may be intentional if you only plan to
import this module to supply classes and functions.

If it is not intentional, make sure that you are invoking a function to start execution, or
execute one from the interactive prompt. Also see the “Flow of Execution” section below.

16.2.2 My program hangs.

If a program stops and seems to be doing nothing, it is “hanging.” Often that means that it
is caught in an infinite loop or infinite recursion.

• If there is a particular loop that you suspect is the

problem, add a print statement immediately before the loop that says “entering the loop”
and another immediately after that says “exiting the loop.” Run the program. If you get
the first message and not the second, you’ve got an infinite loop. Go to the “Infinite Loop”
section below.

• Most of the time, an infinite recursion will cause the program

to run for a while and then produce a “RuntimeError: Maximum recursion depth exceeded”
error. If that happens, go to the “Infinite Recursion” section below. If you are not getting
this error but you suspect there is a problem with a recursive method or function, you can
still use the techniques in the “Infinite Recursion” section.

• If neither of those steps works, start testing other

loops and other recursive functions and methods.

• If that doesn’t work, then it is possible that

191

Debugging

you don’t understand the flow of execution in your program. Go to the “Flow of Execution”
section below.

Infinite Loop

If you think you have an infinite loop and you think you know what loop is causing the
problem, add a print statement at the end of the loop that prints the values of the variables
in the condition and the value of the condition.

For example:
while x > 0 and y < 0 :

do something to x
do something to y

print "x: ", x
print "y: ", y
print "condition: ", (x > 0 and y < 0)

Now when you run the program, you will see three lines of output for each time through the
loop. The last time through the loop, the condition should be false. If the loop keeps going,
you will be able to see the values of x and y, and you might figure out why they are not
being updated correctly.

Infinite Recursion

Most of the time, an infinite recursion will cause the program to run for a while and then
produce a Maximum recursion depth exceeded error.

If you suspect that a function or method is causing an infinite recursion, start by checking
to make sure that there is a base case. In other words, there should be some condition that
will cause the function or method to return without making a recursive invocation. If not,
then you need to rethink the algorithm and identify a base case.

If there is a base case but the program doesn’t seem to be reaching it, add a print statement
at the beginning of the function or method that prints the parameters. Now when you run
the program, you will see a few lines of output every time the function or method is invoked,
and you will see the parameters. If the parameters are not moving toward the base case,
you will get some ideas about why not.

Flow of Execution

If you are not sure how the flow of execution is moving through your program, add print
statements to the beginning of each function with a message like “entering function foo,”
where foo is the name of the function.

Now when you run the program, it will print a trace of each function as it is invoked.

192

Runtime errors

16.2.3 When I run the program I get an exception.

If something goes wrong during runtime, Python prints a message that includes the name of
the exception, the line of the program where the problem occurred, and a traceback.

The traceback identifies the function that is currently running, and then the function that
invoked it, and then the function that invoked that, and so on. In other words, it traces the
sequence of function invocations that got you to where you are. It also includes the line
number in your file where each of these calls occurs.

The first step is to examine the place in the program where the error occurred and see if
you can figure out what happened. These are some of the most common runtime errors:
NameError: You are trying to use a variable that doesn’t exist in the current environment.
Remember that local variables are local. You cannot refer to them from outside the function
where they are defined. TypeError: There are several possible causes:

• You are trying to use a value improperly. Example: indexing

a string, list, or tuple with something other than an integer.

• There is a mismatch between the items in a format string and

the items passed for conversion. This can happen if either the number of items does not
match or an invalid conversion is called for.

• You are passing the wrong number of arguments to a function or method.

For methods, look at the method definition and check that the first parameter is self. Then
look at the method invocation; make sure you are invoking the method on an object with
the right type and providing the other arguments correctly.

KeyError: You are trying to access an element of a dictionary using a key that the
dictionary does not contain.

AttributeError: You are trying to access an attribute or method that does not exist.
Check the spelling! You can use dir to list the attributes that do exist. If an AttributeError
indicates that an object has NoneType, that means that it is None. One common cause
is forgetting to return a value from a function; if you get to the end of a function without
hitting a return statement, it returns None. Another common cause is using the result from
a list method, like sort, that returns None.

IndexError: The index you are using to access a list, string, or tuple is greater than its
length minus one. Immediately before the site of the error, add a print statement to display
the value of the index and the length of the array. Is the array the right size? Is the index
the right value?

The Python debugger (pdb) is useful for tracking down Exceptions because it allows you to
examine the state of the program immediately before the error. You can read about pdb at
docs.python.org/lib/module-pdb.html.

193

Debugging

I added so many print statements I get inundated with output.

One of the problems with using print statements for debugging is that you can end up buried
in output. There are two ways to proceed: simplify the output or simplify the program.

To simplify the output, you can remove or comment out print statements that aren’t helping,
or combine them, or format the output so it is easier to understand.

To simplify the program, there are several things you can do. First, scale down the problem
the program is working on. For example, if you are searching a list, search a small list. If
the program takes input from the user, give it the simplest input that causes the problem.

Second, clean up the program. Remove dead code and reorganize the program to make it as
easy to read as possible. For example, if you suspect that the problem is in a deeply nested
part of the program, try rewriting that part with simpler structure. If you suspect a large
function, try splitting it into smaller functions and testing them separately.

Often the process of finding the minimal test case leads you to the bug. If you find that
a program works in one situation but not in another, that gives you a clue about what is
going on.

Similarly, rewriting a piece of code can help you find subtle bugs. If you make a change that
you think doesn’t affect the program, and it does, that can tip you off.

16.3 Semantic errors

In some ways, semantic errors are the hardest to debug, because the interpreter provides no
information about what is wrong. Only you know what the program is supposed to do.

The first step is to make a connection between the program text and the behavior you are
seeing. You need a hypothesis about what the program is actually doing. One of the things
that makes that hard is that computers run so fast.

You will often wish that you could slow the program down to human speed, and with some
debuggers you can. But the time it takes to insert a few well-placed print statements is
often short compared to setting up the debugger, inserting and removing breakpoints, and
“stepping” the program to where the error is occurring.

16.3.1 My program doesn’t work.

You should ask yourself these questions:

• Is there something the program was supposed to do but

which doesn’t seem to be happening? Find the section of the code that performs that
function and make sure it is executing when you think it should.

• Is something happening that shouldn’t? Find code in

your program that performs that function and see if it is executing when it shouldn’t.

• Is a section of code producing an effect that is not

194

Semantic errors

what you expected? Make sure that you understand the code in question, especially
if it involves invocations to functions or methods in other Python modules. Read the
documentation for the functions you invoke. Try them out by writing simple test cases and
checking the results.

In order to program, you need to have a mental model of how programs work. If you write
a program that doesn’t do what you expect, very often the problem is not in the program;
it’s in your mental model.

The best way to correct your mental model is to break the program into its components
(usually the functions and methods) and test each component independently. Once you find
the discrepancy between your model and reality, you can solve the problem.

Of course, you should be building and testing components as you develop the program. If
you encounter a problem, there should be only a small amount of new code that is not
known to be correct. A.3.2 I’ve got a big hairy expression and it doesn’t do what I expect.

Writing complex expressions is fine as long as they are readable, but they can be hard to
debug. It is often a good idea to break a complex expression into a series of assignments to
temporary variables.

For example:
self.hands[i].addCard(self.hands[self.findNeighbor(i)].popCard())

This can be rewritten as:
neighbor = self.findNeighbor(i)
pickedCard = self.hands[neighbor].popCard()
self.hands[i].addCard(pickedCard)

The explicit version is easier to read because the variable names provide additional docu-
mentation, and it is easier to debug because you can check the types of the intermediate
variables and display their values.

Another problem that can occur with big expressions is that the order of evaluation may not
be what you expect. For example, if you are translating the expression x/2 π into Python,
you might write:
y = x / 2 * math.pi

That is not correct because multiplication and division have the same precedence and are
evaluated from left to right. So this expression computes x π / 2.

A good way to debug expressions is to add parentheses to make the order of evaluation
explicit:
y = x / (2 * math.pi)

Whenever you are not sure of the order of evaluation, use parentheses. Not only will the
program be correct (in the sense of doing what you intended), it will also be more readable
for other people who haven’t memorized the rules of precedence. A.3.3 I’ve got a function
or method that doesn’t return what I expect.

195

Debugging

If you have a return statement with a complex expression, you don’t have a chance to print
the return value before returning. Again, you can use a temporary variable. For example,
instead of:
return self.hands[i].removeMatches()

you could write:
count = self.hands[i].removeMatches()
return count

Now you have the opportunity to display the value of count before returning.

16.3.2 I'm really, really stuck and I need help.

First, try getting away from the computer for a few minutes. Computers emit waves that
affect the brain, causing these symptoms:

• Frustration and rage.

• Superstitious beliefs (“the computer hates me”) and

magical thinking (“the program only works when I wear my hat backward”).

• Random walk programming (the attempt to program by writing

every possible program and choosing the one that does the right thing).

If you find yourself suffering from any of these symptoms, get up and go for a walk. When
you are calm, think about the program. What is it doing? What are some possible causes of
that behavior? When was the last time you had a working program, and what did you do
next?

Sometimes it just takes time to find a bug. I often find bugs when I am away from the
computer and let my mind wander. Some of the best places to find bugs are trains, showers,
and in bed, just before you fall asleep.

16.3.3 No, I really need help.

It happens. Even the best programmers occasionally get stuck. Sometimes you work on a
program so long that you can’t see the error. A fresh pair of eyes is just the thing.

Before you bring someone else in, make sure you are prepared. Your program should be as
simple as possible, and you should be working on the smallest input that causes the error.
You should have print statements in the appropriate places (and the output they produce
should be comprehensible). You should understand the problem well enough to describe it
concisely.

When you bring someone in to help, be sure to give them the information they need:

• If there is an error message, what is it

and what part of the program does it indicate?

196

Semantic errors

• What was the last thing you did before this error occurred?

What were the last lines of code that you wrote, or what is the new test case that fails?

• What have you tried so far, and what have you learned?

When you find the bug, take a second to think about what you could have done to find it
faster. Next time you see something similar, you will be able to find the bug more quickly.

Remember, the goal is not just to make the program work. The goal is to learn how to
make the program work.

197

17 Answers

17.1 Chapter 1

17.1.1 Exercise 1.4

If you run a 10 kilometer race in 43 minutes 30 seconds, what is your average time per mile?
What is your average speed in miles per hour? (Hint: there are 1.61 kilometers in a mile).

>>> 10/1.61 # Convert kilometers to miles
6.2111801242236018
>>> (43*60)+30 # Convert time to seconds
2610
>>> 2610/6.2111801242236018 # what is your average time (seconds) per
mile

420.21000000000004
>>> 420.21000000000004/60 # what is your average time (minutes) per
mile

7.0035000000000007
>>> 60/7.0035000000000007 # Miles per hour
8.5671449989291055

Comment: This is not valid, it ONLY works for 43min and 30 seconds to 10km's. Python
should have a way to do this the proper way.

In order to do this the proper way, a person must do something like this.

43*60 -> convert the minutes to seconds.

2580+30 -> add the seconds

2610/10 -> divide by distance

261/60 -> change seconds into minutes

4.35 -> is the answer, now you must

.35*60 -> multiply the number after the decimal with 60

199

Answers

21 seconds..

End result = 4.21 minutes per KM, this technique works for all distances and times.

17.2 Chapter 2

17.2.1 Exercise 2.1

If you type an integer with a leading zero, you might get a confusing error:
>>> zipcode = 02492

ˆ
SyntaxError: invalid token

Other number seem to work, but the results are bizarre:
>>> zipcode = 02132
>>> print zipcode
1114

So python is assuming you want to convert an octal number to a decimal number. In the
base 8 numbering system where valid numbers are 0, 1, 2, 3, 4, 5, 6 and 7.

Base 8: 00 01 02 03 04 05 06 07 10 11 12 13 14 15 16 17 20 21 22 23
24
Base 10: 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19
20

Every 8 numbers we increment the left hand columns. This means that the left most column
is the number of 'ones'. The one to the right of that is a tally of the number of 'eights', the
one next to that is a tally of a full column of 'eight' times the 'eight column' - 64. The one
next to that is 64*8 - 512 and so on. For more information read http://www4.ncsu.edu/
unity/lockers/users/f/felder/public/kenny/papers/bases.html Base Eight math1.

That is why zipcode = 02492 is invalid as the digit 9 is not a valid octal number. We can
do the conversion manually as follows:

>>> print 02132
1114
>>> (2*512)+(1*64)+(3*8)+(2*1)
1114
>>>

17.2.2 Exercise 2.4

The volume of a sphere with radius r is 4/3 π r3. What is the volume of a sphere with
radius 5?

1 http://en.wikibooks.org/wiki/%20Base%20Eight%20math

200

http://www4.ncsu.edu/unity/lockers/users/f/felder/public/kenny/papers/bases.html
http://www4.ncsu.edu/unity/lockers/users/f/felder/public/kenny/papers/bases.html
http://en.wikibooks.org/wiki/%20Base%20Eight%20math

Chapter 2

>>> pi = 3.1415926535897931
>>> r = 5
>>> 4/3*pi*r**3 # This is the wrong answer
392.69908169872411
>>> r = 5.0 # Radius can be a float here as well, but is not
necessary.

>>> 4.0/3.0*pi*r**3 # Using floats give the correct answer
523.59877559829886
>>>

Suppose the cover price of a book is $24.95, but bookstores get a 40% discount. Shipping
costs $3 for the first copy and 75 cents for each additional copy. What is the total wholesale
cost for 60 copies?

$24.95 Cost
$9.98 Discount per book
$14.97 Cost per book after discount
60 Total number of books

$898.20 Total cost not inc delivery

$3.00 First book delivery
59 Remaining books
$0.75 Delivery cost for extra books
$44.25 Total cost for extra books
$47.25 Total Delivery cost

$945.45 Total Bill

This answer is wrong because 40.0/100.0 return wrong value
0.40000000000000002 for more info see IEEE 754 (Standard for
Floating-Point Arithmetic)

>>> (24.95-24.95*40.0/100.0)*60+3+0.75*(60-1)
945.44999999999993
>>> 24.95*0.6*60+0.75*(60-1)+3
945.45

If I leave my house at 6:52 am and run 1 mile at an easy pace (8:15 per mile), then 3 miles at
tempo (7:12 per mile) and 1 mile at easy pace again, what time do I get home for breakfast?

Answer: 7:30 am

How I did it:

>>> start = (6*60+52)*60
>>> easy = (8*60+15)*2
>>> fast = (7*60+12)*3
>>> finish_hour = (start + easy + fast)/(60*60.0)
>>> finish_floored = (start + easy + fast)/(60*60) #int() function
can also be used to get integer value, but isn't taught yet.

>>> finish_minute = (finish_hour - finish_floored)*60
>>> print 'Finish time was %d:%d' % (finish_hour,finish_minute)
Finish time was 7:30
>>>

201

Answers

17.3 Chapter 3

17.3.1 Exercise 3.3

Python provides a built-in function called len that returns the length of a string, so the
value of len('allen') is 5. Write a function named right_justify that takes a string named s
as a parameter and prints the string with enough leading spaces so that the last letter of
the string is in column 70 of the display.

>>> def right_justify(s):
... print (' '*(70-len(s))+s)
...
>>> right_justify('allen')

allen
>>>

17.3.2 Exercise 3.4

You can see my solution at http://thinkpython.com/code/grid.py http://thinkpython.
com/code/grid.py2http://.

"""
Solution to Exercise X.X on page X of Think Python
Allen B. Downey

"""

here is a mostly-straightforward solution to the
two-by-two version of the grid.

def do_twice(f):
f()
f()

def do_four(f):
do_twice(f)
do_twice(f)

def print_beam():
print ‚+ - - - -‚,

def print_post():
print ‚| ‚,

def print_beams():
do_twice(print_beam)
print ‚+‚

def print_posts():
do_twice(print_post)
print ‚|‚

def print_row():
print_beams()
do_four(print_posts)

2 http://en.wikibooks.org/wiki/%20

202

http://thinkpython.com/code/grid.py
http://thinkpython.com/code/grid.py
http://thinkpython.com/code/grid.py
http://.
http://en.wikibooks.org/wiki/%20

Chapter 3

def print_grid():
do_twice(print_row)
print_beams()

print_grid()

here is a less-straightforward solution to the
four-by-four grid

def one_four_one(f, g, h):
f()
do_four(g)
h()

def print_plus():
print ‚+‚,

def print_dash():
print ‚-‚,

def print_bar():
print ‚|‚,

def print_space():
print ‚ ‚,

def print_end():
print

def nothing():
"do nothing"

def print1beam():
one_four_one(nothing, print_dash, print_plus)

def print1post():
one_four_one(nothing, print_space, print_bar)

def print4beams():
one_four_one(print_plus, print1beam, print_end)

def print4posts():
one_four_one(print_bar, print1post, print_end)

def print_row():
one_four_one(nothing, print4posts, print4beams)

def print_grid():
one_four_one(print4beams, print_row, nothing)

print_grid()

comment = """
After writing a draft of the 4x4 grid, I noticed that many of the
functions had the same structure: they would do something, do
something else four times, and then do something else once.

So I wrote one_four_one, which takes three functions as arguments; it
calls the first one once, then uses do_four to call the second one
four times, then calls the third.

Then I rewrote print1beam, print1post, print4beams, print4posts,
print_row and print_grid using one_four_one.

Programming is an exploratory process. Writing a draft of a program
often gives you insight into the problem, which might lead you to

203

Answers

rewrite the code to reflect the structure of the solution.

--- Allen
"""

print comment

17.4 Chapter 9

17.4.1 Exercise 9.1

fin = open(‚words.txt‚)
for line in fin:

word = line.strip()
if len(word) >= 20:

print (word)

17.5 Chapter 10

17.5.1 Exercise 10.1

Write a function that takes a list of numbers and returns the cumulative sum; that is, a new
list where the ith element is the sum of the first i+1 elements from the original list. For
example, the cumulative sum of [1, 2, 3] is [1, 3, 6].

def cumulative(a):
cumulative = []
sum = 0
for i in a:

sum += i
cumulative.append(sum)

return cumulative
a = [1, 2, 3]
print(cumulative(a))

17.5.2 Exercise 10.2

Write a function called chop that takes a list and modifies it, removing the first and last
elements, and returns None.

>>> def chop(x):
del x[:1]
del x[-1:]

Then write a function called middle that takes a list and returns a new list that contains all
but the first and last elements.

>>> def middle(x):

204

Chapter 11

res = []
i = 1
while i <= len(x)-2:

res.append(x[i])
i += 1

return res

This can also be done simply with a slice.

>>> def middle(x):
return x[1:-1]

17.6 Chapter 11

17.6.1 Exercise 11.1

>>>englishdictionary = dict()
>>>fin = open(‚words.txt‚)
>>>line = fin.readline()
>>>word = line.strip()
>>>def engdicdefine():

index = 0
while index <= 1000:

englishdictionary[index] = word
i += 1

return englishdictionary

17.6.2 Exercise 11.2

def histogram(s):
d = dict()
for c in s:

d[c] = 1 + d.get(c, 0)
return d

17.6.3 Exercise 11.4

def reverse_lookup(d,v):
l = list()
for c in d:

if d[c] == v:
l.append(c)

return l

17.7 Chapter 12

17.7.1 Exercise 12.1

numbers = (1,2,3)
def sumall(numbers):

205

Answers

x = 0
for i in numbers:

x = x + i
print x

sumall(numbers)

or

def sumall(*t):
x = 0
for i in range(len(t)):

x += t[i]
return x

or

def sumall(*args):
t = list(args)
return sum(t)

17.7.2 Exercise 12.2

import random

def sort_by_length(words):
t = []
for word in words:

t.append((len(word),word))
t.sort(reverse=True)
res = []
for length, word in t:

res.append(word)
i=0
final = []
while i <= len(res)-2:

if len(res[i]) == len(res[i+1]):
y_list = [res[i], res[i+1]]
random.shuffle(y_list)
final = final + y_list
i += 2

else:
final.append(res[i])
i += 1

if i == len(res)-1:
final.append(res[i])

return final

or

from random import shuffle

def sort_by_length(words):
r = []
d = dict()
for word in words:

d.setdefault(len(word), []).append(word)
for key in sorted(d, reverse=True):

if len(d[key]) > 1:
shuffle(d[key])

r.extend(d[key])
return r

206

Chapter 13

17.7.3 Exercise 12.3

import string

def most_frequent(s):
d = dict()
inv = dict()
for char in s:

if char in string.ascii_letters:
letter = char.lower()
d[letter] = d.get(letter, 0) + 1

for letter, freq in d.items():
inv.setdefault(freq, []).append(letter)

for freq in sorted(inv, reverse=True):
print(‚{:.2%}:‚.format(freq/(sum(list(inv)*len(inv[freq])))),

‚, ‚.join(inv[freq]))

17.8 Chapter 13

17.8.1 Exercise 13.7

from string import punctuation, whitespace, digits
from random import randint
from bisect import bisect_left

def process_file(filename):
h = dict()
fp = open(filename)
for line in fp:

process_line(line, h)
return h

def process_line(line, h):
line = line.replace(‚-‚, ‚ ‚)
for word in line.split():

word = word.strip(punctuation + whitespace + digits)
word = word.lower()
if word != ‚‚:

h[word] = h.get(word, 0) + 1

hist = process_file(‚emma.txt‚)

def cum_sum(list_of_numbers):
cum_list = []
for i, elem in enumerate(list_of_numbers):

if i == 0:
cum_list.append(elem)

else:
cum_list.append(cum_list[i-1] + elem)

return cum_list

def random_word(h):
word_list = list(h.keys())
num_list = []
for word in word_list:

num_list.append(h[word])
cum_list = cum_sum(num_list)
i = randint(1, cum_list[-1])
pos = bisect_left(cum_list, i)

207

Answers

return word_list[pos]

print(random_word(hist))

17.9 Chapter 14

17.9.1 Exercise 14.3

import shelve

def dict_of_signatures_and_words(filename=‚words.txt‚):
d = dict()
for line in open(filename):

word = line.lower().strip()
signature = ‚‚.join(sorted(word))
d.setdefault(signature, []).append(word)

return d

def db_of_anagrams(filename=‚anagrams‚,
d=dict_of_signatures_and_words()):

db = shelve.open(filename)
for key, values in d.items():

if len(values)>1:
for index, value in enumerate(values):

db[value]=values[:index]+values[index+1:]
db.close()

def print_contents_of_db(filename=‚anagrams‚):
db = shelve.open(filename, flag=‚r‚)
for key in sorted(db):

print(key.rjust(12), ‚\t<==>\t‚, ‚, ‚.join(db[key]))
db.close()

db_of_anagrams()
print_contents_of_db()

17.9.2 Exercise 14.5

Replace urllib.request with urllib if you use Python 2.
I would love to see a more elegant solution for this exercise,
possibly by someone who understands html.

import urllib.request

def check(zip_code):
if zip_code == ‚done‚:

return break

if len(zip_code) != 5:
print(‚\nThe zip code must have five digits!‚)
return continue

def get_html(zip_code):
gibberish = urllib.request.urlopen(‚http://www.uszip.com/zip/‚ +

zip_code)
less_gib = gibberish.read().decode(‚utf-8‚)
return less_gib

def extract_truth(code, key, delimiter):

208

Chapter 15

pos = code.find(key) + len(key)
nearly_true = code[pos:pos+40]
truth = nearly_true.split(delimiter)[0]
return truth

while True:
zip_code = input(‚Please type a zip code (5 digits) or "done" if

want to stop:\n‚)

check(zip_code)

code = get_html(zip_code)

invalid_key = ‚(0 results)‚
if invalid_key in code:

print(‚\nNot a valid zip code.‚)
continue

name_key = ‚zip code of ‚
name_del = ‚<‚
name = extract_truth(code, name_key, name_del)

pop_key = ‚Population:</td><td>‚
pop_del = ‚ <‚
name = extract_truth(code, pop_key, pop_del)

if not 1 < len(pop) < 9:
pop = ‚not available‚

print(‚\n‚ + name)
print(‚Population:‚, pop, ‚\n‚)

17.10 Chapter 15

17.10.1 Exercise 15.1

import math

class Point(object):
"""represents a point in 2-D space"""

def distance(p1, p2):
distance = math.sqrt((p2.x - p1.x)**2 + (p2.y - p1.y)**2)
return distance

p1 = Point()
p2 = Point()

p1.x = 3
p1.y = 2
p2.x = 4
p2.y = 3

print(distance(p1, p2))

209

Answers

17.11 Chapter 16

17.11.1 Exercise 16.1

def print_time(t):
print ‚%.2d:%.2d:%.2d‚ % (t.hour, t.minute, t.second)

or

Solution for Python3
More on string formatting:
http://docs.python.org/py3k/library/string.html#formatspec

def print_time(t):
0 is a fill character, 2 defines the width
print(‚{}:{:02}:{:02}‚.format(t.hour, t.minute, t.second))

17.11.2 Exercise 16.2

def is_after(t1, t2):
return (t1.hour, t1.minute, t1.second) > (t2.hour, t2.minute,

t2.second)

17.11.3 Exercise 16.3

Comment not by the author: This will give a wrong result, if
(time.second + seconds % 60) > 60

def increment(time, seconds):

n = seconds/60
time.second += seconds - 60.0*n
time.minute += n

m = time.minute/60
time.minute -= m*60
time.hour += m

or

Solution for Python3
Replace ‚//‚ by ‚/‚ for Python2

def increment(time, seconds):
time.second += seconds
time.minute += time.second//60
time.hour += time.minute//60

time.second %= 60
time.minute %= 60
time.hour %= 24

210

Chapter 16

17.11.4 Exercise 16.4

Solution for Python3
Replace ‚//‚ by ‚/‚ for Python2

from copy import deepcopy

def increment(time, seconds):
r = deepcopy(time)

r.second += seconds
r.minute += r.second//60
r.hour += r.minute//60

r.second %= 60
r.minute %= 60
r.hour %= 24

return r

17.11.5 Exercise 16.5

class Time(object):
"""represents the time of day.

attributes: hour, minute, second"""

time = Time()
time.hour = 11
time.minute = 59
time.second = 30

def time_to_int(time):
minutes = time.hour * 60 + time.minute
seconds = minutes * 60 + time.second
return seconds

def int_to_time(seconds):
time = Time()
minutes, time.second = divmod(seconds, 60)
time.hour, time.minute = divmod(minutes, 60)
return time

def increment(time, addtime):
seconds = time_to_int(time)
return int_to_time(seconds + addtime)

def print_time (x):
print ‚The time is %.2d : %.2d : %.2d‚ % (x.hour, x.minute,

x.second)
print_time (time)

newtime = increment (time, 70)

print_time (newtime)

17.11.6 Exercise 16.6

def time_to_int(time):
minutes = time.hour * 60 + time.minute

211

Answers

seconds = minutes * 60 + time.second
return seconds

def int_to_time(seconds):
time = Time()
minutes, time.second = divmod(seconds, 60)
time.hour, time.minute = divmod(minutes, 60)
return time

def mul_time(time, factor):
seconds = time_to_int(time)
seconds *= factor
seconds = int(seconds)
return int_to_time(seconds)

def average_pace(time, distance):
return mul_time(time, 1/distance)

17.11.7 Exercise 16.7

Write a class definition for a Date object that has attributes day, month and year. Write
a function called increment_date that takes a Date object, date, and an integer, n, and
returns a new Date object that represents the day n days after date. Hint: “Thirty days
hath September...” Challenge: does your function deal with leap years correctly? See
wikipedia.org/wiki/Leap_year.

class Date(object):
"""represents a date.
attributes: day, month, year"""

def print_date(date):
German date format

print(‚{}.{}.{}‚.format(date.day, date.month, date.year))

def is_leap_year(year):
http://en.wikipedia.org/wiki/Leap_year#Algorithm

if year % 4 == 0:
if year % 100 == 0:

if year % 400 == 0:
return True

return False
return True

return False

def month_list(year):
if is_leap_year(year):

return [31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]
return [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]

def days_of_year(year):
if is_leap_year(year):

return 366
return 365

def date_to_int(date):
days = 0
for year in range(1, date.year):

days += days_of_year(year)

month_days = month_list(date.year)
for month in range(1, date.month):

212

Chapter 3.5

days += month_days[month - 1]

days += date.day - 1
return days

def int_to_date(days):
date = Date()

date.year = 1
next_days = 365
while days >= next_days:

date.year += 1
days -= next_days
next_days = days_of_year(date.year)

date.month = 1
next_days = 31
month_days = month_list(date.year)
while days >= next_days:

date.month += 1
days -= next_days
next_days = month_days[date.month - 1]

date.day = days + 1
return date

def increment_date(date, n):
days = date_to_int(date)
return int_to_date(days + n)

d1 = Date()
d1.day, d1.month, d1.year = 8, 3, 2012
print_date(d1)

d2 = increment_date(d1, 7)
print_date(d2)

17.11.8 Exercise 16.8

1. Use the datetime module to write a program that gets the current date and prints the
day of the week.

from datetime import date

def current_weekday():
i = date.today().weekday()
print([‚Monday‚, ‚Tuesday‚, ‚Wednesday‚, ‚Thursday‚, ‚Friday‚,

‚Saturday‚, ‚Sunday‚][i])

current_weekday()

17.12 Chapter 3.5

17.12.1 calculator

#recursion or recursive
print "\n INDEX\n""\n C=1 for addition\n""\n C=2 for
substraction\n""\n
C=3 for multiplication\n""\n C=4 for division\n""\n C=5 for to

213

Answers

find modulus\n""\n C=6 to find factorial\n"
C=input("Enter your choice here: ")
def add(x,y):

c=x+y
print x,"+",y,"=",c

def sub(x,y):
c=x-y
print x,"-",y,"=",c

def mul(x,y):
c=x*y
print x,"*",y,"=",c

def div(x,y):
c=x/y
print x,"/",y,"=",c

def mod(x,y):
c=x%y
print x,"%",y,"=",c

if C==6:
def f(n):

if n==1:
print n
return n

else:
print n,"*",
return n*f(n-1)

n=input("enter your no here: ")
print f(n)

if C==1:
a=input("Enter your first no here: ")
b=input("Enter your second no here: ")
add(a,b)

elif C==2:
a=input("Enter your first no here: ")
b=input("Enter your second no here: ")
sub(a,b)

elif C==3:
a=input("Enter your first no here: ")
b=input("Enter your second no here: ")
mul(a,b)

elif C==4:
a=input("Enter your first no here: ")
b=input("Enter your second no here: ")
div(a,b)

elif C==5:
a=input("Enter your first no here: ")
b=input("Enter your second no here: ")
mod(a,b)

17.12.2 palindrome

def first(word):
return word[0]

def last(word):
return word[-1]

def middle(word):
return word[1:-1]

def palindrome(word):
if first(word)==last(word):

word = middle(word)
n=len(word)
if n<2:

print "palindrome"
else:

return palindrome(word)

214

Chapter 3.5

else:
print "not palindrome"

word=raw_input("Enter the string:")
palindrome(word)

17.12.3 sum of all digits

def sum_of_n_numbers(number):
if(number==0):

return 0
else:

return number + sum_of_n_numbers(number-1)
num = raw_input("Enter a number:")
num=int(num)
sum = sum_of_n_numbers(num)
print sum
###another answer in case of while loops
def sum_of_Digits(number):

sum=0
while number>0:

digit=number%10
sum=sum+digit
number=number/10

return sum
num=raw_input("enter the number")
num=int(num)
sum_of_digits=sum_of_Digits(num)
print sum_of_digits

17.12.4 Exercise 18.5

class Card(object):

suit_names = [‚Clubs‚, ‚Diamonds‚, ‚Hearts‚, ‚Spades‚]
rank_names = [None, ‚Ace‚, ‚2‚, ‚3‚, ‚4‚, ‚5‚, ‚6‚, ‚7‚,

‚8‚, ‚9‚, ‚10‚, ‚Jack‚, ‚Queen‚, ‚King‚]

def __init__(self, suit = 0, rank = 2):
self.suit = suit
self.rank = rank

def __str__(self):
return ‚%s of %s‚ % (Card.rank_names[self.rank],

Card.suit_names[self.suit])

def __cmp__(self, other):
c1 = (self.suit, self.rank)
c2 = (other.suit, other.rank)
return cmp(c1, c2)

def is_valid(self):
return self.rank > 0

class Deck(object):

def __init__(self, label = ‚Deck‚):
self.label = label
self.cards = []
for i in range(4):

215

Answers

for k in range(1, 14):
card = Card(i, k)
self.cards.append(card)

def __str__(self):
res = []
for card in self.cards:

res.append(str(card))
print self.label
return ‚\n‚.join(res)

def deal_card(self):
return self.cards.pop(0)

def add_card(self, card):
self.cards.append(card)

def shuffle(self):
import random
random.shuffle(self.cards)

def sort(self):
self.cards.sort()

def move_cards(self, other, num):
for i in range(num):

other.add_card(self.deal_card())

def deal_hands(self, num_hands, num_cards):
if num_hands*num_cards > 52:

return ‚Not enough cards.‚

l = []

for i in range(1, num_hands + 1):
hand_i = Hand(‚Hand %d‚ % i)
self.move_cards(hand_i, num_cards)
l.append(hand_i)

return l

class Hand(Deck):

def __init__(self, label = ‚‚):
self.cards = []
self.label = label

18-6, 1-4:
class PokerHand(Hand):

def suit_hist(self):
self.suits = {}
for card in self.cards:

self.suits[card.suit] = self.suits.get(card.suit, 0) + 1
return self.suits

def rank_hist(self):
self.ranks = {}
for card in self.cards:

self.ranks[card.rank] = self.ranks.get(card.rank, 0) + 1
return self.ranks

def P(self):
self.rank_hist()
for val in self.ranks.values():

if val >= 2:
return True

216

Chapter 3.5

return False

def TP(self):
self.rank_hist()
count = 0
for val in self.ranks.values():

if val == 4:
return True

elif val >= 2 and val < 4:
count += 1

return count >= 2

def TOAK(self):
self.rank_hist()
for val in self.ranks.values():

if val >= 3:
return True

return False

def STRseq(self):
seq = []
l = STRlist()
self.rank_hist()
h = self.ranks.keys()
h.sort()
if len(h) < 5:

return []

Accounts for high Aces:
if 1 in h:

h.append(1)

for i in range(5, len(h)+1):
if h[i-5:i] in l:

seq.append(h[i-5:i])
return seq

def STR(self):
seq = self.STRseq()
return seq != []

def FL(self):
self.suit_hist()
for val in self.suits.values():

if val >= 5:
return True

return False

def FH(self):
d = self.rank_hist()
keys = d.keys()

for key in keys:
if d[key] >= 3:

keys.remove(key)
for key in keys:

if d[key] >= 2:
return True

return False

def FOAK(self):
self.rank_hist()
for val in self.ranks.values():

if val >= 4:
return True

return False

def SFL(self):

217

Answers

seq = self.STRseq()
if seq == []:

return False
for list in seq:

list_suits = []
for index in list:

for card in self.cards:
if card.rank == index:

list_suits.append(card.suit)
list_hist = histogram(list_suits)
for key in list_hist.keys():

if list_hist[key] >= 5:
return True

return False

def classify(self):
self.scores = []
hands = [‚Pair‚, ‚Two-Pair‚,
‚Three of a Kind‚, ‚Straight‚,
‚Flush‚, ‚Full House‚,
‚Four of a Kind‚, ‚Straight Flush‚]
if self.P():

self.scores.append(1)
if self.TP():

self.scores.append(2)
if self.TOAK():

self.scores.append(3)
if self.STR():

self.scores.append(4)
if self.FL():

self.scores.append(5)
if self.FH():

self.scores.append(6)
if self.FOAK():

self.scores.append(7)
if self.SFL():

self.scores.append(8)
if self.scores != []:

return hands[max(self.scores)-1]

def STRlist():
s = []
for i in range(0,9):

s.append(range(1,14)[i:i+5])
s.append([10,11,12,13,1])
return s

def histogram(l):
d = dict()
for k in range(len(l)):

d[l[k]] = 1 + d.get(l[k],0)
return d

18-6, 5:
def p(config = ‚‚, trials = 10000, n = 1):

"""Estimates probability that the
nth dealt hand will be config. A hand
consists of seven cards."""

successes = 0

for i in range(1, trials + 1):
deck = Deck(‚Deck %d‚ % i)
deck.shuffle()

box = Hand()
deck.move_cards(box, (n-1)*7)

218

Index

hand = PokerHand(‚Poker Hand %d‚ % i)
deck.move_cards(hand, 7)
if hand.classify() == config:

successes += 1

return 1.0*successes/trials

#Iterate until first desired config.:
if __name__ == ‚__main__‚:

c = 1

while True:
deck = Deck()
deck.shuffle()
hand = PokerHand(‚Poker Hand %d‚ % c)
deck.move_cards(hand, 5)
print hand
print hand.SFL()
if hand.SFL():

print hand.STRseq()
break

print ‚‚
c += 1

Code by Victor Alvarez

= Index =

17.13 Index

* Ackerman function, 6.11

*AttributeError, 15.7, A.2.3

*Austin, Jane, 13.3

*abecedarian, 8.3, 9.2

*abs function, 6.1

*absolute path, 14.4, 14.11

*access, 10.2

*accumulator, 10.14

* histogram, 13.3

*list, 10.7

*string, 18.5

*sum, 10.7

*add method, 17.7

*addition with carrying, 7.6

*algorithm, 1.2, 1.7, 7.6, 13.7

219

Answers

* Euclid, 6.11

*MD5, 14.12

*RSA, 11.7

*square root, 7.9

*aliasing, 10.10, 10.11, 10.14, 15.2, 15.6, 17.12

* copying to avoid, 10.13

*alphabet, 4.12

*alternative execution, 5.5

*ambiguity, 1.4

*anagram, 10.15

*anagram set, 12.11, 14.7

*and operator, 5.3

*anydbm module, 14.6

*append method, 10.6, 10.12, 10.15, 18.4, 18.6

*arc function, 4.3

*argument, 3.1, 3.5, 3.8, 3.8, 3.14, 10.12

* gather, 12.4

*keyword, 4.5, 4.11, 12.7, 19.2

*list, 10.12

*optional, 8.8, 10.9, 11.3

*variable-length tuple, 12.4

*argument scatter, 12.4

*arithmetic operator, 2.5

*assert statement, 16.5

*assignment, 2.11, 7.1, 10.1

* item, 8.5, 10.2, 12.1

*multiple, 7.8, 11.6

*tuple, 12.2, 12.3, 12.5, 12.10

*assignment statement, 2.2

*attribute

* __dict__, 17.10

*class, 18.2, 18.10

220

Index

*initializing, 17.10

*instance, 15.2, 15.8, 18.2, 18.10

*available colors, 15.9, 17.12

*Bacon, Kevin, 14.12

*Bangladesh, national flag, 15.9

*Button widget, 19.2

*base case, 5.9, 5.13

*benchmarking, 13.9, 13.11

*big, hairy expression, A.3.2

*binding, 19.8, 19.10

*bingo, 12.11

*birthday, 16.7

*birthday paradox, 10.15

*bisect module, 10.15

*bisection search, 10.15

*bisection, debugging by, 7.7

*bitwise operator, 2.5

*body, 3.5, 3.14, 5.13, 7.3

*bool type, 5.2

*boolean expression, 5.2, 5.13

*boolean function, 6.4, 16.1

*boolean operator, 8.9

*borrowing, subtraction with, 7.6, 16.4

*bound method, 19.6, 19.10

*bounding box, 15.9, 19.4, 19.10

*bracket

* squiggly, 11

*bracket operator, 8.1, 10.2, 12.1

*branch, 5.5, 5.13

*break statement, 7.4

*bug, 1.3, 1.3, 1.7

* worst, 17.12

221

Answers

*worst ever, 19.11

*Callable object, 19.7

*Canvas coordinate, 19.3, 19.8

*Canvas item, 19.3

*Canvas object, 15.9

*Canvas widget, 19.3

*Car Talk, 9.7, 9.7, 9.7, 11.10, 12.11

*Card class, 18.1

*Collatz conjecture, 7.3

*Czech Republic, national flag, 15.9

*calculator, 1.8, 2.12

*call graph, 11.5, 11.9

*callback, 19.2, 19.6, 19.7, 19.8, 19.9, 19.10

*card, playing, 18

*carrying, addition with, 7.6, 16.2, 16.4

*case-sensitivity, variable names, 2.10

*catch, 14.11

*chained conditional, 5.6, 5.13

*character, 8.1

*checksum, 14.12

*child class, 18.7, 18.10

*choice function, 13.2

*circle function, 4.3

*circular definition, 6.5

*class, 15.1, 15.8

* Card, 18.1

*Date, 16.7

*Deck, 18.4

*Hand, 18.7

*Kangaroo, 17.12

*Point, 15.1, 17.5

*parent, 18.7

222

Index

*Rectangle, 15.3

*SimpleTurtleWorld, 19.6

*Time, 16.1

*class attribute, 18.2, 18.10

*class definition, 15.1

*class diagram, 18.8, 18.10

*class object, 15.1, 15.8

*close method, 14.2, 14.6, 14.8

*cmp function, 18.3

*__cmp__method, 18.3

*colon, 3.5, A.1

*color list, 15.9, 17.12

*comment, 2.9, 2.11

*commutativity, 2.8, 17.8

*compare function, 6.1

*comparison

* string, 8.10

*tuple, 12.7, 18.3

*comparison operator, 5.2

*compile, 1.1, 1.7

*composition, 3.4, 3.8, 3.14, 6.3, 18.4

*compound statement, 5.4, 5.13

*compression

* file, 14.8

*concatenation, 2.8, 2.11, 3.9, 8.3, 8.5, 10.9

* list, 10.4, 10.12, 10.15

*condition, 5.4, 5.13, 7.3, A.2.2

*conditional, A.1

* chained, 5.6, 5.13

*nested, 5.7, 5.13

*conditional execution, 5.4

*conditional operator, 18.3

223

Answers

*conditional statement, 5.4, 5.13, 6.4

*config method, 19.3

*consistency check, 11.8, 16.4

*contributors, 0

*conversion

* type, 3.2

*coordinate

* Canvas, 19.3, 19.8

*pixel, 19.8

*coordinate sequence, 19.4

*copy

* deep, 15.6

*shallow, 15.6

*slice, 8.4, 10.5

*to avoid aliasing, 10.13

*copy module, 15.6

*copying objects, 15.6

*count method, 8.8

*counter, 8.7, 8.12, 11.1, 11.6

*counting and looping, 8.7

*crosswords, 9.1

*cummings, e. e., 1.3.1

*cumulative sum, 10.7

*Date class, 16.7

*Deck class, 18.4

*Dijkstra, Edsger, 9.5

*Doyle, Arthur Conan, 1.3.4

*DSU pattern, 12.7, 12.10, 13.4

*data structure, 12.9, 12.10, 13.9

*database, 14.6, 14.11, 14.12

*datetime module, 16.7

*dead code, 6.1, 6.10, A.2.4

224

Index

*debugger (pdb), A.2.3

*debugging, 1.3, 1.3, 1.6, 1.7, 2.10, 3.13, 4.10, 5.12, 6.9, 8.11, 9.5, 10.13, 11.8, 12.9, 13.10,
14.10, 15.7, 16.5, 17.10, 18.9, 19.9, A

* by bisection, 7.7

*emotional response, 1.6, A.3.4

*experimental, 1.3.4

*superstition, A.3.4

*deck, playing cards, 18.4

*declaration, 11.6, 11.9

*decorate-sort-undecorate pattern, 12.7

*decrement, 7.2, 7.8

*deep copy, 15.6, 15.8

*deepcopy function, 15.6

*def keyword, 3.5

*default value, 13.5, 13.11, 17.5

* avoiding mutable, 17.12

*definition

* circular, 6.5

*class, 15.1

*function, 3.5

*recursive, 12.11

*del operator, 10.8

*deletion, element of list, 10.8

*delimiter, 10.9, 10.14

*deterministic, 13.2, 13.11

*development plan, 4.11

* encapsulation and generalization, 4.8

*incremental, 6.2, A.1

*planned, 16.4

*problem recognition, 9.3, 9.4

*prototype and patch, 16.2, 16.4

*random walk programming, 13.10, A.3.4

225

Answers

*diagram

* call graph, 11.9

*class, 18.8, 18.10

*object, 15.2, 15.3, 15.6, 15.8, 16.1, 18.2

*stack, 3.10, 10.12

*state, 2.2, 7.1, 8.11, 10.2, 10.10, 10.11, 11.4, 12.6, 15.2, 15.3, 15.6, 16.1, 18.2

*__dict__attribute, 17.10

*dict function, 11

*dictionary, 11, 11, 11.9, 12.6, A.2.3

* initialize, 12.6

*invert, 11.4

*lookup, 11.3

*looping with, 11.2

*reverse lookup, 11.3

*subtraction, 13.6

*traversal, 12.6, 17.10

*dictionary methods

* anydbm module, 14.6

*directory, 14.4, 14.11

* walk, 14.4

*working, 14.4

*dispatch

* type-based, 17.9

*dispatch, type-based, 17.8

*divisibility, 5.1

*division

* floating-point, 2.5

*floor, 2.5, 5.12

*divmod, 12.3, 16.4

*docstring, 4.9, 4.11, 15.1

*documentation, 1.8

*dot notation, 3.3, 3.14, 8.8, 15.2, 17.2, 18.2

226

Index

*double letters, 9.7

*drag-and-drop, 19.8

*duplicate, 10.15, 10.15, 11.10, 14.12

*Einstein, Albert, 4.6

*Entry widget, 19.5

*Euclid’s algorithm, 6.11

*Event object, 19.8

*element, 10.1, 10.14

*element deletion, 10.8

*elif keyword, 5.6

*ellipses, 3.5

*else keyword, 5.5

*email address, 12.2

*embedded object, 15.3, 15.8, 17.12

* copying, 15.6

*emotional debugging, 1.6, A.3.4

*empty list, 10.1

*empty string, 8.12, 10.9

*encapsulation, 4.4, 4.11, 6.3, 7.5, 8.7, 18.7

*encode, 18.1, 18.10

*encrypt, 18.1

*encryption, 11.7

*end of line character, 14.10

*enumerate function, 12.5

*epsilon, 7.5

*equality and assignment, 7.1

*equivalence, 10.10

*equivalent, 10.14

*error

* compile-time, A

*runtime, 1.3.2, 2.10, 5.10, 5.12, A

*semantic, 1.3.3, 2.1, 2.10, 8.11, A, A.3

227

Answers

*shape, 12.9

*syntax, 1.3.1, 2.10, A

*error checking, 6.8

*error message, 1.3.1, 1.3.3, 1.6, 2.1, 2.10, A.1

*eval function, 7.9

*evaluate, 2.6

*event, 19.10

*event handler, 19.8

*event loop, 19.1, 19.10

*event string, 19.8

*event-driven programming, 19.2, 19.9, 19.10

*exception, 1.3.2, 1.7, 2.10, A, A.2.3

* AttributeError, 15.7, A.2.3

*IndexError, 8.2, 8.11, 10.2, A.2.3

*IOError, 14.5

*KeyError, 11, A.2.3

*NameError, 3.9, A.2.3

*OverflowError, 5.12

*RuntimeError, 5.10

*SyntaxError, 3.4

*TypeError, 8.1, 8.5, 11.4, 12.1, 12.4, 14.3, 17.3, A.2.3

*UnboundLocalError, 11.6

*ValueError, 5.11, 11.3, 12.2

*exception, catching, 14.5

*executable, 1.1, 1.7

*exercise, secret, 14.12

*exists function, 14.4

*experimental debugging, 1.3.4, 13.10

*expression, 2.5, 2.6, 2.11

* big and hairy, A.3.2

*boolean, 5.2, 5.13

*extend method, 10.6

228

Index

*False special value, 5.2

*Fermat’s Last Theorem, 5.14

*Frame widget, 19.6

*Free Documentation License, GNU, 0, 0

*factorial function, 6.5, 6.8

*fibonacci function, 6.7, 11.5

*file, 14

* compression, 14.8

*permission, 14.5

*reading and writing, 14.2

*file object, 9.1, 9.6

*filename, 14.4

*filter pattern, 10.7, 10.14

*find function, 8.6

*flag, 11.6, 11.9

*float function, 3.2

*float type, 2.1

*floating-point, 2.11, 7.5

*floating-point division, 2.5

*floor division, 2.5, 2.11, 5.12

*flow of execution, 3.7, 3.14, 6.7, 6.9, 7.3, 18.9, 19.9, A.2.2

*flower, 4.12

*folder, 14.4

*for loop, 4.2, 8.3, 10.3, 12.5

*formal language, 1.4, 1.7

*format operator, 14.3, 14.11, A.2.3

*format sequence, 14.3, 14.11

*format string, 14.3, 14.11

*frabjuous, 6.5

*frame, 3.10, 3.14, 5.9, 6.5, 11.5

*frequency, 11.1

* letter, 12.11

229

Answers

*word, 13.1, 13.12

*fruitful function, 3.11, 3.14

*frustration, A.3.4

*function, 3.5, 3.14, 17.1

* abs, 6.1

*ack, 6.11

*arc, 4.3

*choice, 13.2

*circle, 4.3

*cmp, 18.3

*compare, 6.1

*deepcopy, 15.6

*dict, 11

*enumerate, 12.5

*eval, 7.9

*exists, 14.4

*factorial, 6.5

*fibonacci, 6.7, 11.5

*find, 8.6

*float, 3.2

*getattr, 17.10

*getcwd, 14.4

*hasattr, 15.7, 17.10

*int, 3.2

*isinstance, 6.8, 17.8

*len, 3.15, 8.2, 11

*list, 10.9

*log, 3.3

*max, 12.3, 12.4

*min, 12.3, 12.4

*open, 9.1, 9.1, 14.2, 14.5, 14.6

*polygon, 4.3

230

Index

*popen, 14.8

*randint, 10.15, 13.2

*random, 12.7, 13.2

*raw_input, 5.11

*recursive, 5.8

*reload, 14.9, A.1.1

*repr, 14.10

*reversed, 12.8

*shuffle, 18.6

*sorted, 12.8

*sqrt, 3.3, 6.2

*str, 3.2

*sum, 12.4

*tuple, 12.1

*type, 15.7

*zip, 12.5

*function argument, 3.8

*function call, 3.1, 3.14

*function composition, 6.3

*function definition, 3.5, 3.6, 3.14, 3.14

*function frame, 3.10, 3.14, 5.9, 11.5

*function object, 3.5, 3.15

*function parameter, 3.8

*function syntax, 17.2

*function type

* modifier, 16.3

*pure, 16.2

*function, fruitful, 3.11

*function, math, 3.3

*function, reasons for, 3.12

*function, trigonometric, 3.3

*function, tuple as return value, 12.3

231

Answers

*function, void, 3.11

*functional programming style, 16.3, 16.6

*GCD (greatest common divisor), 6.11

*GNU Free Documentation License, 0, 0

*GUI, 19.1, 19.10

*Gui module, 19.1

*gamma function, 6.8

*gather, 12.4, 12.10

*generalization, 4.5, 4.11, 9.3, 16.4

*geometry manager, 19.6, 19.10

*get method, 11.1

*getattr function, 17.10

*getcwd function, 14.4

*global statement, 11.6

*global variable, 11.6, 11.9

* update, 11.6

*graphical user interface, 19.1

*greatest common divisor (GCD), 6.11

*grid, 3.15

*guardian pattern, 6.8, 6.10, 8.11

*gzip (Unix command), 14.8

*HAS-A relationship, 18.8, 18.10

*Hand class, 18.7

*Hello, World, 1.5

*Holmes, Sherlock, 1.3.4

*HTMLParser module, 19.11

*hanging, A.2.2

*hasattr function, 15.7, 17.10

*hash function, 11.4, 11.9

*hashable, 11.4, 11.9, 12.6

*hashtable, 11, 11.9

*header, 3.5, 3.14, A.1

232

Index

*help utility, 1.8

*hexadecimal, 15.1

*high-level language, 1.1, 1.7

*histogram, 11.1, 11.1, 11.9

* random choice, 13.2, 13.7

*word frequencies, 13.3

*homophone, 11.10

*hyperlink, 19.11

*hypotenuse, 6.2

*IMDb (Internet Movie Database), 14.12

*Image module, 19.11

*IndexError, 8.2, 8.11, 10.2, A.2.3

*Internet Movie Database (IMDb), 14.12

*IOError, 14.5

*IS-A relationship, 18.8, 18.10

*identical, 10.14

*identity, 10.10

*if statement, 5.4

*image viewer, 19.11

*immutability, 8.5, 8.5, 8.12, 10.11, 11.4, 12.1, 12.8

*implementation, 11.1, 11.9, 13.9

*import statement, 3.14, 4.1, 14.9

*in operator, 8.9, 9.3, 10.2, 11

*increment, 7.2, 7.8, 16.3, 17.3

*incremental development, 6.10, A.1

*indentation, 3.5, 17.2, A.1

*index, 8.1, 8.1, 8.11, 8.12, 10.2, 10.14, 11, A.2.3

* looping with, 9.4, 10.3

*negative, 8.2

*slice, 8.4, 10.5

*starting at zero, 8.1, 10.2

*infinite loop, 7.3, 7.8, 19.1, A.2.2, A.2.2

233

Answers

*infinite recursion, 5.10, 5.13, 6.8, A.2.2, A.2.2

*inheritance, 18.7, 18.10

*init method, 17.5, 17.10, 18.1, 18.4, 18.7

*initialization (before update), 7.2

*instance, 4.1, 4.11, 15.1, 15.8

* as argument, 15.2

*as return value, 15.4

*instance attribute, 15.2, 15.8, 18.2, 18.10

*instantiation, 15.1

*int function, 3.2

*int type, 2.1

*integer, 2.11

* long, 11.7

*interactive mode, 1.1, 1.7, 2.4, 3.11

*interface, 4.6, 4.10, 4.11, 18.9

*interlocking words, 10.15

*interpret, 1.1, 1.7

*invariant, 16.5, 16.6, 19.9

*invert dictionary, 11.4

*invocation, 8.8, 8.12

*is operator, 10.10, 15.6

*isinstance function, 6.8, 17.8

*item, 8.12, 10.1

* Canvas, 19.3, 19.10

*dictionary, 11.9

*item assignment, 8.5, 10.2, 12.1

*item update, 10.3

*items method, 12.6

*iteration, 7, 7.3, 7.8

*join method, 10.9, 18.5

*Kangaroo class, 17.12

*Kevin Bacon Game, 14.12

234

Index

*KeyError, 11, A.2.3

*Koch curve, 5.14

*key, 11, 11.9

*key-value pair, 11, 11.9, 12.6

*keyboard input, 5.11

*keys method, 11.2

*keyword, 2.3, 2.3, 2.11, A.1

* def, 3.5

*elif, 5.6

*else, 5.5

*keyword argument, 4.5, 4.11, 12.7, 19.2, 19.10

*Label widget, 19.2

*Linux, 1.3.4

*language

* formal, 1.4

*high-level, 1.1

*low-level, 1.1

*natural, 1.4

*programming, 1.1

*safe, 1.3.2

*Turing complete, 6.5

*leap of faith, 6.6

*len function, 3.15, 8.2, 11

*letter frequency, 12.11

*letter rotation, 8.13, 11.10

*lipogram, 9.2

*list, 10, 10.9, 10.14, 12.8

* as argument, 10.12

*comprehension, 10.7

*concatenation, 10.4, 10.12, 10.15

*copy, 10.5

*element, 10.2

235

Answers

*empty, 10.1

*function, 10.9

*index, 10.2

*membership, 10.2

*method, 10.6

*nested, 10.1, 10.3

*of objects, 18.4

*of tuples, 12.5

*operation, 10.4

*repetition, 10.4

*slice, 10.5

*traversal, 10.3, 10.14

*literalness, 1.4

*local variable, 3.9, 3.14

*log function, 3.3

*logarithm, 13.12

*logical operator, 5.2, 5.3

*long integer, 11.7

*lookup, 11.9

*lookup, dictionary, 11.3

*loop, 4.2, 4.11, 7.3, 12.5

* condition, A.2.2

*event, 19.1

*for, 4.2, 8.3, 10.3

*infinite, 7.3, 19.1, A.2.2

*nested, 18.4

*traversal, 8.3

*while, 7.3

*looping

* with dictionaries, 11.2

*with indices, 9.4

*with strings, 8.7

236

Index

*looping and counting, 8.7

*looping with indices, 10.3

*low-level language, 1.1, 1.7

*ls (Unix command), 14.8

*Markov analysis, 13.8

*McCloskey, Robert, 8.3

*MD5 algorithm, 14.12

*Menubutton widget, 19.7

*Monty Python and the Holy Grail, 16.2

*MP3, 14.12

*map pattern, 10.7, 10.14

*map to, 18.1

*mapping, 10.2, 10.14, 13.8

*mash-up, 13.8

*math function, 3.3

*max function, 12.3, 12.4

*membership

* bisection search, 10.15

*dictionary, 11

*list, 10.2

*set, 11

*memo, 11.5, 11.9

*mental model, A.3.1

*metaphor, method invocation, 17.2

*metathesis, 12.11

*method, 8.8, 8.12, 17.1, 17.11

* __cmp__, 18.3

*__str__, 17.6, 18.5

*add, 17.7

*append, 10.6, 10.12, 18.4, 18.6

*close, 14.2, 14.6, 14.8

*config, 19.3

237

Answers

*count, 8.8

*extend, 10.6

*get, 11.1

*init, 17.5, 18.1, 18.4, 18.7

*items, 12.6

*join, 10.9, 18.5

*keys, 11.2

*mro, 18.9

*pop, 10.8, 18.6

*radd, 17.8

*read, 14.8

*readline, 9.1, 14.8

*remove, 10.8

*replace, 13.1

*setdefault, 11.4

*sort, 10.6, 10.13, 12.7, 18.6

*split, 10.9, 12.2

*string, 8.13

*strip, 9.1, 13.1

*translate, 13.1

*update, 12.6

*values, 11

*void, 10.6

*method append, 10.15

*method resolution order, 18.9

*method syntax, 17.2

*method, bound, 19.6

*method, list, 10.6

*min function, 12.3, 12.4

*model, mental, A.3.1

*modifier, 16.3, 16.6

*module, 3.3, 3.14, 3.14

238

Index

* anydbm, 14.6

*bisect, 10.15

*copy, 15.6

*datetime, 16.7

*Gui, 19.1

*HTMLParser, 19.11

*Image, 19.11

*os, 14.4

*pickle, 14.1, 14.7

*pprint, 11.8

*profile, 13.9

*random, 10.15, 12.7, 13.2, 18.6

*reload, 14.9, A.1.1

*shelve, 14.7, 14.12

*string, 13.1

*structshape, 12.9

*urllib, 14.12, 19.11

*Visual, 17.12

*vpython, 17.12

*World, 15.9

*module object, 3.3, 14.9

*module, writing, 14.9

*modulus operator, 5.1, 5.13

*mro method, 18.9

*multiline string, 4.9, A.1

*multiple assignment, 7.1, 7.8, 11.6

*multiplicity (in class diagram), 18.8, 18.10

*mutability, 8.5, 10.2, 10.5, 10.11, 11.6, 12.1, 12.8, 15.5

*mutable object, as default value, 17.12

*NameError, 3.9, A.2.3

*Newton’s method, 7.5

*None special value, 3.11, 6.1, 6.10, 10.6, 10.8

239

Answers

*natural language, 1.4, 1.7

*negative index, 8.2

*nested conditional, 5.7, 5.13

*nested list, 10.1, 10.3, 10.14

*newline, 5.11, 7.1, 18.5

*not operator, 5.3

*number, random, 13.2

*OverflowError, 5.12

*object, 8.5, 8.12, 10.10, 10.10, 10.14, 15.1

* Callable, 19.7

*Canvas, 15.9

*class, 15.1

*copying, 15.6

*Event, 19.8

*embedded, 15.3, 15.8, 17.12

*file, 9.1, 9.6

*function, 3.5, 3.15

*module, 14.9

*mutable, 15.5

*printing, 17.2

*object code, 1.1, 1.7

*object diagram, 15.2, 15.3, 15.6, 15.8, 16.1, 18.2

*object-oriented language, 17.11

*object-oriented programming, 17.1, 17.11, 18.7

*octal, 2.2

*odometer, 9.7

*open function, 9.1, 9.1, 14.2, 14.5, 14.6

*operand, 2.5, 2.11

*operator, 2.11

* and, 5.3

*bitwise, 2.5

*boolean, 8.9

240

Index

*bracket, 8.1, 10.2, 12.1

*comparison, 5.2

*conditional, 18.3

*del, 10.8

*format, 14.3, 14.11, A.2.3

*in, 8.9, 9.3, 10.2, 11

*is, 10.10, 15.6

*logical, 5.2, 5.3

*modulus, 5.1, 5.13

*not, 5.3

*or, 5.3

*overloading, 17.11

*slice, 8.4, 8.13, 10.5, 10.12, 12.1

*string, 2.8

*update, 10.7

*operator overloading, 17.7, 18.3

*operator, arithmetic, 2.5

*option, 19.2, 19.10

*optional argument, 8.8, 10.9, 11.3

*optional parameter, 13.5, 17.5

*or operator, 5.3

*order of operations, 2.7, 2.10, A.3.2

*os module, 14.4

*other (parameter name), 17.4

*overloading, 17.11

*override, 13.5, 13.11, 17.5, 18.3, 18.7, 18.9

*PEMDAS, 2.7

*PIL (Python Imaging Library), 19.11

*Point class, 15.1, 17.5

*Project Gutenberg, 13.1

*Puzzler, 9.7, 9.7, 9.7, 11.10, 12.11

*Pythagorean theorem, 6.2

241

Answers

*Python 3.0, 1.5, 2.5, 5.11, 11.7, 12.5

*Python debugger (pdb), A.2.3

*Python Imaging Library (PIL), 19.11

*packing widgets, 19.6, 19.10

*palindrome, 6.11, 8.13, 9.4, 9.7, 9.7

*parameter, 3.8, 3.9, 3.14, 10.12

* gather, 12.4

*optional, 13.5, 17.5

*other, 17.4

*self, 17.2

*parent class, 18.7, 18.7, 18.10

*parentheses

* argument in, 3.1

*empty, 3.5, 8.8

*matching, 1.3.1

*overriding precedence, 2.7

*parameters in, 3.8, 3.9

*parent class in, 18.7

*tuples in, 12.1

*parse, 1.4, 1.7, 14.12

*pass statement, 5.4

*path, 14.4, 14.11

* absolute, 14.4

*relative, 14.4

*pattern

* DSU, 12.7, 13.4

*decorate-sort-undecorate, 12.7

*filter, 10.7, 10.14

*guardian, 6.8, 6.10, 8.11

*map, 10.7, 10.14

*reduce, 10.7, 10.14

*search, 8.6, 8.12, 9.3, 11.3

242

Index

*swap, 12.2

*pdb (Python debugger), A.2.3

*permission, file, 14.5

*persistence, 14.1, 14.11

*pi, 3.3, 7.9

*pickle module, 14.1, 14.7

*pickling, 14.7

*pie, 4.12

*pipe, 14.8, 14.12

*pixel coordinate, 19.8

*plain text, 9.1, 13.1, 14.12, 19.11

*planned development, 16.4, 16.6

*playing card, Anglo-American, 18

*poetry, 1.4

*point, mathematical, 15.1

*poker, 18, 18.11

*polygon function, 4.3

*polymorphism, 17.9, 17.11, 18.9

*pop method, 10.8, 18.6

*popen function, 14.8

*portability, 1.1, 1.7

*postcondition, 4.10, 6.9, 18.9

*pprint module, 11.8

*precedence, 2.11, A.3.2

*precondition, 4.10, 4.11, 4.11, 6.9, 10.15, 18.9

*prefix, 13.8

*pretty print, 11.8

*print statement, 1.5, 1.7, 17.6, A.2.4

*problem recognition, 9.3, 9.4, 9.6

*problem solving, 1, 1.7

*profile module, 13.9

*program, 1.2, 1.7

243

Answers

*program testing, 9.5

*programming language, 1.1

*prompt, 1.1, 1.7, 5.11

*prose, 1.4

*prototype and patch, 16.2, 16.4, 16.6

*pseudorandom, 13.2, 13.11

*pure function, 16.2, 16.6

*python.org, 1.8

*quotation mark, 1.5, 2.1, 2.1, 4.9, 8.4, A.1

*Ramanujan, Srinivasa, 7.9

*Rectangle class, 15.3

*RSA algorithm, 11.7

*RuntimeError, 5.10, 6.8

*radd method, 17.8

*radian, 3.3

*rage, A.3.4

*raise statement, 11.3, 16.5

*randint function, 10.15, 13.2

*random function, 12.7, 13.2

*random module, 10.15, 12.7, 13.2, 18.6

*random number, 13.2

*random text, 13.8

*random walk programming, 13.10, A.3.4

*rank, 18.1

*raw_input function, 5.11

*read method, 14.8

*readline method, 9.1, 14.8

*recursion, 5.8, 5.8, 5.13, 6.5, 6.6

* base case, 5.9

*infinite, 5.10, 6.8, A.2.2

*recursive definition, 6.5, 12.11

*reduce pattern, 10.7, 10.14

244

Index

*reducible word, 11.10, 12.11

*redundancy, 1.4

*refactoring, 4.7, 4.7

*reference, 10.11, 10.12, 10.14

* aliasing, 10.11

*relative path, 14.4, 14.11

*reload function, 14.9, A.1.1

*remove method, 10.8

*repetition, 4.2

* list, 10.4

*replace method, 13.1

*repr function, 14.10

*representation, 15.1, 15.3, 18.1

*return statement, 5.8, 6.1, A.3.3

*return value, 3.1, 3.14, 6.1, 15.4

* tuple, 12.3

*reverse lookup, dictionary, 11.3, 11.9

*reverse word pair, 10.15

*reversed function, 12.8

*rotation

* letters, 11.10

*rotation, letter, 8.13

*rules of precedence, 2.7, 2.11

*running pace, 1.8, 2.12, 16.7

*runtime error, 1.3.2, 2.10, 5.10, 5.12, A, A.2.3

*Scrabble, 12.11

*SimpleTurtleWorld class, 19.6

*SVG, 19.11

*Swampy, 4.1, 9.1, 15.9, 18.11, 19.1

*SyntaxError, 3.4

*safe language, 1.3.2

*sanity check, 11.8

245

Answers

*scaffolding, 6.2, 6.10, 11.8

*scatter, 12.4, 12.10

*script, 1.1, 1.7

*script mode, 1.1, 1.7, 2.4, 3.11

*search, 11.3

*search pattern, 8.6, 8.12, 9.3

*search, bisection, 10.15

*secret exercise, 14.12

*self (parameter name), 17.2

*semantic error, 1.3.3, 1.7, 2.1, 2.10, 8.11, A, A.3

*semantics, 1.3.3, 1.7, 17.1

*sequence, 8.1, 8.12, 10.1, 10.9, 12.1, 12.8

* coordinate, 19.4

*set, 13.6

* anagram, 12.11, 14.7

*set membership, 11

*setdefault method, 11.4

*sexagesimal, 16.4

*shallow copy, 15.6, 15.8

*shape, 12.10

*shape error, 12.9

*shell, 14.8

*shelve module, 14.7, 14.12

*shuffle function, 18.6

*sine function, 3.3

*singleton, 11.4, 11.9, 12.1

*slice, 8.12

* copy, 8.4, 10.5

*list, 10.5

*string, 8.4

*tuple, 12.1

*update, 10.5

246

Index

*slice operator, 8.4, 8.13, 10.5, 10.12, 12.1

*sort method, 10.6, 10.13, 12.7, 18.6

*sorted function, 12.8

*source code, 1.1, 1.7

*special case, 9.5, 9.6, 16.3

*special value

* False, 5.2

*None, 3.11, 6.1, 6.10, 10.6, 10.8

*True, 5.2

*split method, 10.9, 12.2

*sqrt, 6.2

*sqrt function, 3.3

*square root, 7.5

*squiggly bracket, 11

*stack diagram, 3.10, 3.10, 3.14, 4.12, 5.9, 6.5, 6.11, 10.12

*state diagram, 2.2, 2.11, 7.1, 8.11, 10.2, 10.10, 10.11, 11.4, 12.6, 15.2, 15.3, 15.6, 16.1, 18.2

*statement, 2.4, 2.11

* assert, 16.5

*assignment, 2.2, 7.1

*break, 7.4

*compound, 5.4

*conditional, 5.4, 5.13, 6.4

*for, 4.2, 8.3, 10.3

*global, 11.6

*if, 5.4

*import, 3.14, 4.1, 14.9

*pass, 5.4

*print, 1.5, 1.7, 17.6, A.2.4

*raise, 11.3, 16.5

*return, 5.8, 6.1, A.3.3

*try, 14.5

*while, 7.3

247

Answers

*step size, 8.13

*str function, 3.2

*__str__method, 17.6, 18.5

*string, 2.1, 2.11, 10.9, 12.8

* accumulator, 18.5

*comparison, 8.10

*empty, 10.9

*immutable, 8.5

*method, 8.8

*multiline, 4.9, A.1

*operation, 2.8

*slice, 8.4

*triple-quoted, 4.9

*string method, 8.13

*string module, 13.1

*string representation, 14.10, 17.6

*string type, 2.1

*strip method, 9.1, 13.1

*structshape module, 12.9

*structure, 1.4

*subclass, 18.7

*subject, 17.2, 17.11, 19.6

*subtraction

* dictionary, 13.6

*with borrowing, 7.6

*subtraction with borrowing, 16.4

*suffix, 13.8

*suit, 18.1

*sum function, 12.4

*superclass, 18.7

*superstitious debugging, A.3.4

*swap pattern, 12.2

248

Index

*syntax, 1.3.1, 1.3.1, 1.7, 17.1, A.1

*syntax error, 1.3.1, 1.7, 2.10, A

*Tagger, 18.11

*Text widget, 19.5

*Time class, 16.1

*Tkinter, 19.1

*True special value, 5.2

*Turing complete language, 6.5

*Turing Thesis, 6.5

*Turing, Alan, 6.5

*TurtleWorld, 4.1, 5.14, 18.11

*TypeError, 8.1, 8.5, 11.4, 12.1, 12.4, 14.3, 17.3, A.2.3

*temporary variable, 6.1, 6.10, A.3.2

*test case, minimal, A.2.4

*testing

* and absence of bugs, 9.5

*incremental development, 6.2

*interactive mode, 1.1

*is hard, 9.5

*knowing the answer, 6.2

*leap of faith, 6.6

*minimal test case, A.2.4

*text

* plain, 9.1, 13.1, 14.12, 19.11

*random, 13.8

*text file, 14.11

*token, 1.4, 1.7

*traceback, 3.10, 3.14, 5.10, 5.12, 11.3, A.2.3

*translate method, 13.1

*traversal, 8.3, 8.3, 8.6, 8.11, 8.12, 9.3, 9.3, 10.7, 10.14, 11.1, 11.2, 12.5, 12.5, 12.7, 13.3

* dictionary, 17.10

*list, 10.3

249

Answers

*traverse

* dictionary, 12.6

*triangle, 5.14

*trigonometric function, 3.3

*triple-quoted string, 4.9

*try statement, 14.5

*tuple, 12.1, 12.3, 12.8, 12.10

* as key in dictionary, 12.6, 13.9

*assignment, 12.2

*comparison, 12.7, 18.3

*in brackets, 12.6

*singleton, 12.1

*slice, 12.1

*tuple assignment, 12.3, 12.5, 12.10

*tuple function, 12.1

*turtle typewriter, 4.12

*type, 2.1, 2.1, 2.11

* bool, 5.2

*dict, 11

*file, 14

*float, 2.1

*int, 2.1

*list, 10

*long, 11.7

*set, 13.6

*str, 2.1

*tuple, 12.1

*user-defined, 15.1, 16.1

*type checking, 6.8

*type conversion, 3.2

*type function, 15.7

*type-based dispatch, 17.8, 17.9, 17.11

250

Index

*typewriter, turtle, 4.12

*typographical error, 13.10

*UML, 18.8

*UnboundLocalError, 11.6

*Unix command

* gzip, 14.8

*ls, 14.8

*URL, 14.12, 19.11

*underscore character, 2.3

*uniqueness, 10.15

*update, 7.2, 7.5, 7.8

* coordinate, 19.8

*database, 14.6

*global variable, 11.6

*histogram, 13.3

*item, 10.3

*slice, 10.5

*update method, 12.6

*update operator, 10.7

*urllib module, 14.12, 19.11

*use before def, 2.10, 3.6

*user-defined type, 15.1, 16.1

*ValueError, 5.11, 11.3, 12.2

*Visual module, 17.12

*value, 2.1, 2.11, 10.10, 10.10, 11.9

* default, 13.5

*tuple, 12.3

*values method, 11

*variable, 2.2, 2.11

* global, 11.6

*local, 3.9

*temporary, 6.1, 6.10, A.3.2

251

Answers

*updating, 7.2

*variable-length argument tuple, 12.4

*vector graphics, 19.11

*veneer, 18.6, 18.10

*void function, 3.11, 3.14

*void method, 10.6

*vpython module, 17.12

*World module, 15.9

*walk, directory, 14.4

*while loop, 7.3

*whitespace, 3.13, 5.12, 9.1, 14.10, A.1

*widget, 19.1, 19.10

* Button, 19.2

*Canvas, 19.3

*Entry, 19.5

*Frame, 19.6

*Label, 19.2

*Menubutton, 19.7

*Text, 19.5

*widget, packing, 19.6

*word count, 14.9

*word frequency, 13.1, 13.12

*word, reducible, 11.10, 12.11

*working directory, 14.4

*worst bug, 17.12

* ever, 19.11

*Zipf’s law, 13.12

*zero, index starting at, 8.1, 10.2

*zip function, 12.5

* use with dict, 12.6

252

18 Contributors

Edits User
39 33rogers1

1 Accelerometer2

5 Adrignola3

2 Borgesvive4

2 Bovineone5

3 DavidCary6

1 Everton1377

1 Fdfdffdfdf8
103 Fishpi9

1 Hakeem.gadi10

1 Hannes Röst11

1 Hires an editor12

2 Hjsb13

1 J36miles14

1 JamesCrook15

1 Jfireball6616

4 Jomegat17

16 Ken fallon18

1 Liberacy19

5 Magicbadger20

3 Mike.lifeguard21

1 http://en.wikibooks.org/w/index.php?title=User:33rogers
2 http://en.wikibooks.org/w/index.php?title=User:Accelerometer
3 http://en.wikibooks.org/w/index.php?title=User:Adrignola
4 http://en.wikibooks.org/w/index.php?title=User:Borgesvive
5 http://en.wikibooks.org/w/index.php?title=User:Bovineone
6 http://en.wikibooks.org/w/index.php?title=User:DavidCary
7 http://en.wikibooks.org/w/index.php?title=User:Everton137
8 http://en.wikibooks.org/w/index.php?title=User:Fdfdffdfdf
9 http://en.wikibooks.org/w/index.php?title=User:Fishpi
10 http://en.wikibooks.org/w/index.php?title=User:Hakeem.gadi
11 http://en.wikibooks.org/w/index.php?title=User:Hannes_R%C3%B6st
12 http://en.wikibooks.org/w/index.php?title=User:Hires_an_editor
13 http://en.wikibooks.org/w/index.php?title=User:Hjsb
14 http://en.wikibooks.org/w/index.php?title=User:J36miles
15 http://en.wikibooks.org/w/index.php?title=User:JamesCrook
16 http://en.wikibooks.org/w/index.php?title=User:Jfireball66
17 http://en.wikibooks.org/w/index.php?title=User:Jomegat
18 http://en.wikibooks.org/w/index.php?title=User:Ken_fallon
19 http://en.wikibooks.org/w/index.php?title=User:Liberacy
20 http://en.wikibooks.org/w/index.php?title=User:Magicbadger
21 http://en.wikibooks.org/w/index.php?title=User:Mike.lifeguard

253

http://en.wikibooks.org/w/index.php?title=User:33rogers
http://en.wikibooks.org/w/index.php?title=User:Accelerometer
http://en.wikibooks.org/w/index.php?title=User:Adrignola
http://en.wikibooks.org/w/index.php?title=User:Borgesvive
http://en.wikibooks.org/w/index.php?title=User:Bovineone
http://en.wikibooks.org/w/index.php?title=User:DavidCary
http://en.wikibooks.org/w/index.php?title=User:Everton137
http://en.wikibooks.org/w/index.php?title=User:Fdfdffdfdf
http://en.wikibooks.org/w/index.php?title=User:Fishpi
http://en.wikibooks.org/w/index.php?title=User:Hakeem.gadi
http://en.wikibooks.org/w/index.php?title=User:Hannes_R%C3%B6st
http://en.wikibooks.org/w/index.php?title=User:Hires_an_editor
http://en.wikibooks.org/w/index.php?title=User:Hjsb
http://en.wikibooks.org/w/index.php?title=User:J36miles
http://en.wikibooks.org/w/index.php?title=User:JamesCrook
http://en.wikibooks.org/w/index.php?title=User:Jfireball66
http://en.wikibooks.org/w/index.php?title=User:Jomegat
http://en.wikibooks.org/w/index.php?title=User:Ken_fallon
http://en.wikibooks.org/w/index.php?title=User:Liberacy
http://en.wikibooks.org/w/index.php?title=User:Magicbadger
http://en.wikibooks.org/w/index.php?title=User:Mike.lifeguard

Contributors

1 Panic2k422

1 Perey23

6 Recent Runes24

2 RichardMcMahon25

47 Whiteknight26

22 http://en.wikibooks.org/w/index.php?title=User:Panic2k4
23 http://en.wikibooks.org/w/index.php?title=User:Perey
24 http://en.wikibooks.org/w/index.php?title=User:Recent_Runes
25 http://en.wikibooks.org/w/index.php?title=User:RichardMcMahon
26 http://en.wikibooks.org/w/index.php?title=User:Whiteknight

254

http://en.wikibooks.org/w/index.php?title=User:Panic2k4
http://en.wikibooks.org/w/index.php?title=User:Perey
http://en.wikibooks.org/w/index.php?title=User:Recent_Runes
http://en.wikibooks.org/w/index.php?title=User:RichardMcMahon
http://en.wikibooks.org/w/index.php?title=User:Whiteknight

List of Figures

• GFDL: Gnu Free Documentation License. http://www.gnu.org/licenses/fdl.html

• cc-by-sa-3.0: Creative Commons Attribution ShareAlike 3.0 License. http://
creativecommons.org/licenses/by-sa/3.0/

• cc-by-sa-2.5: Creative Commons Attribution ShareAlike 2.5 License. http://
creativecommons.org/licenses/by-sa/2.5/

• cc-by-sa-2.0: Creative Commons Attribution ShareAlike 2.0 License. http://
creativecommons.org/licenses/by-sa/2.0/

• cc-by-sa-1.0: Creative Commons Attribution ShareAlike 1.0 License. http://
creativecommons.org/licenses/by-sa/1.0/

• cc-by-2.0: Creative Commons Attribution 2.0 License. http://creativecommons.
org/licenses/by/2.0/

• cc-by-2.0: Creative Commons Attribution 2.0 License. http://creativecommons.
org/licenses/by/2.0/deed.en

• cc-by-2.5: Creative Commons Attribution 2.5 License. http://creativecommons.
org/licenses/by/2.5/deed.en

• cc-by-3.0: Creative Commons Attribution 3.0 License. http://creativecommons.
org/licenses/by/3.0/deed.en

• GPL: GNU General Public License. http://www.gnu.org/licenses/gpl-2.0.txt

• LGPL: GNU Lesser General Public License. http://www.gnu.org/licenses/lgpl.
html

• PD: This image is in the public domain.

• ATTR: The copyright holder of this file allows anyone to use it for any purpose,
provided that the copyright holder is properly attributed. Redistribution, derivative
work, commercial use, and all other use is permitted.

• EURO: This is the common (reverse) face of a euro coin. The copyright on the design
of the common face of the euro coins belongs to the European Commission. Authorised
is reproduction in a format without relief (drawings, paintings, films) provided they
are not detrimental to the image of the euro.

• LFK: Lizenz Freie Kunst. http://artlibre.org/licence/lal/de

• CFR: Copyright free use.

255

http://www.gnu.org/licenses/fdl.html
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.0/
http://creativecommons.org/licenses/by-sa/2.0/
http://creativecommons.org/licenses/by-sa/1.0/
http://creativecommons.org/licenses/by-sa/1.0/
http://creativecommons.org/licenses/by/2.0/
http://creativecommons.org/licenses/by/2.0/
http://creativecommons.org/licenses/by/2.0/deed.en
http://creativecommons.org/licenses/by/2.0/deed.en
http://creativecommons.org/licenses/by/2.5/deed.en
http://creativecommons.org/licenses/by/2.5/deed.en
http://creativecommons.org/licenses/by/3.0/deed.en
http://creativecommons.org/licenses/by/3.0/deed.en
http://www.gnu.org/licenses/gpl-2.0.txt
http://www.gnu.org/licenses/lgpl.html
http://www.gnu.org/licenses/lgpl.html
http://artlibre.org/licence/lal/de

List of Figures

• EPL: Eclipse Public License. http://www.eclipse.org/org/documents/epl-v10.
php

Copies of the GPL, the LGPL as well as a GFDL are included in chapter Licenses27. Please
note that images in the public domain do not require attribution. You may click on the
image numbers in the following table to open the webpage of the images in your webbrower.

27 Chapter 19 on page 259

256

http://www.eclipse.org/org/documents/epl-v10.php
http://www.eclipse.org/org/documents/epl-v10.php

List of Figures

1 Fishpi28 PD
2 Fishpi29 PD
0 Loremus Ipsemus None

28 http://en.wikibooks.org/wiki/User%3AFishpi
29 http://en.wikibooks.org/wiki/User%3AFishpi

257

http://en.wikibooks.org/wiki/File:Interpreted%20Code%20Flow%20Diagram.svg
http://en.wikibooks.org/wiki/File:Compiled%20Code%20Flow%20Diagram.svg
http://en.wikibooks.org/wiki/File:book004.png
http://en.wikibooks.org/wiki/User%3AFishpi
http://en.wikibooks.org/wiki/User%3AFishpi

19 Licenses

19.1 GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007

Copyright © 2007 Free Software Foundation, Inc.
<http://fsf.org/>

Everyone is permitted to copy and distribute verba-
tim copies of this license document, but changing
it is not allowed. Preamble

The GNU General Public License is a free, copyleft
license for software and other kinds of works.

The licenses for most software and other practi-
cal works are designed to take away your freedom
to share and change the works. By contrast, the
GNU General Public License is intended to guaran-
tee your freedom to share and change all versions
of a program–to make sure it remains free software
for all its users. We, the Free Software Foundation,
use the GNU General Public License for most of our
software; it applies also to any other work released
this way by its authors. You can apply it to your
programs, too.

When we speak of free software, we are referring
to freedom, not price. Our General Public Li-
censes are designed to make sure that you have
the freedom to distribute copies of free software
(and charge for them if you wish), that you receive
source code or can get it if you want it, that you
can change the software or use pieces of it in new
free programs, and that you know you can do these
things.

To protect your rights, we need to prevent others
from denying you these rights or asking you to sur-
render the rights. Therefore, you have certain re-
sponsibilities if you distribute copies of the soft-
ware, or if you modify it: responsibilities to respect
the freedom of others.

For example, if you distribute copies of such a pro-
gram, whether gratis or for a fee, you must pass
on to the recipients the same freedoms that you re-
ceived. You must make sure that they, too, receive
or can get the source code. And you must show
them these terms so they know their rights.

Developers that use the GNU GPL protect your
rights with two steps: (1) assert copyright on the
software, and (2) offer you this License giving you
legal permission to copy, distribute and/or modify
it.

For the developers’ and authors’ protection, the
GPL clearly explains that there is no warranty for
this free software. For both users’ and authors’
sake, the GPL requires that modified versions be
marked as changed, so that their problems will not
be attributed erroneously to authors of previous
versions.

Some devices are designed to deny users access to
install or run modified versions of the software in-
side them, although the manufacturer can do so.
This is fundamentally incompatible with the aim
of protecting users’ freedom to change the software.
The systematic pattern of such abuse occurs in the
area of products for individuals to use, which is
precisely where it is most unacceptable. Therefore,
we have designed this version of the GPL to pro-
hibit the practice for those products. If such prob-
lems arise substantially in other domains, we stand
ready to extend this provision to those domains in
future versions of the GPL, as needed to protect
the freedom of users.

Finally, every program is threatened constantly by
software patents. States should not allow patents
to restrict development and use of software on
general-purpose computers, but in those that do,
we wish to avoid the special danger that patents
applied to a free program could make it effectively
proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-
free.

The precise terms and conditions for copying, dis-
tribution and modification follow. TERMS AND
CONDITIONS 0. Definitions.

“This License” refers to version 3 of the GNU Gen-
eral Public License.

“Copyright” also means copyright-like laws that ap-
ply to other kinds of works, such as semiconductor
masks.

“The Program” refers to any copyrightable work
licensed under this License. Each licensee is ad-
dressed as “you”. “Licensees” and “recipients” may
be individuals or organizations.

To “modify” a work means to copy from or adapt
all or part of the work in a fashion requiring copy-
right permission, other than the making of an exact
copy. The resulting work is called a “modified ver-
sion” of the earlier work or a work “based on” the
earlier work.

A “covered work” means either the unmodified Pro-
gram or a work based on the Program.

To “propagate” a work means to do anything with it
that, without permission, would make you directly
or secondarily liable for infringement under appli-
cable copyright law, except executing it on a com-
puter or modifying a private copy. Propagation in-
cludes copying, distribution (with or without mod-
ification), making available to the public, and in
some countries other activities as well.

To “convey” a work means any kind of propagation
that enables other parties to make or receive copies.
Mere interaction with a user through a computer

network, with no transfer of a copy, is not convey-
ing.

An interactive user interface displays “Appropriate
Legal Notices” to the extent that it includes a con-
venient and prominently visible feature that (1) dis-
plays an appropriate copyright notice, and (2) tells
the user that there is no warranty for the work (ex-
cept to the extent that warranties are provided),
that licensees may convey the work under this Li-
cense, and how to view a copy of this License. If
the interface presents a list of user commands or
options, such as a menu, a prominent item in the
list meets this criterion. 1. Source Code.

The “source code” for a work means the preferred
form of the work for making modifications to it.
“Object code” means any non-source form of a
work.

A “Standard Interface” means an interface that ei-
ther is an official standard defined by a recognized
standards body, or, in the case of interfaces spec-
ified for a particular programming language, one
that is widely used among developers working in
that language.

The “System Libraries” of an executable work in-
clude anything, other than the work as a whole,
that (a) is included in the normal form of packag-
ing a Major Component, but which is not part of
that Major Component, and (b) serves only to en-
able use of the work with that Major Component,
or to implement a Standard Interface for which an
implementation is available to the public in source
code form. A “Major Component”, in this context,
means a major essential component (kernel, window
system, and so on) of the specific operating system
(if any) on which the executable work runs, or a
compiler used to produce the work, or an object
code interpreter used to run it.

The “Corresponding Source” for a work in object
code form means all the source code needed to gen-
erate, install, and (for an executable work) run
the object code and to modify the work, including
scripts to control those activities. However, it does
not include the work’s System Libraries, or general-
purpose tools or generally available free programs
which are used unmodified in performing those ac-
tivities but which are not part of the work. For
example, Corresponding Source includes interface
definition files associated with source files for the
work, and the source code for shared libraries and
dynamically linked subprograms that the work is
specifically designed to require, such as by intimate
data communication or control flow between those
subprograms and other parts of the work.

The Corresponding Source need not include any-
thing that users can regenerate automatically from
other parts of the Corresponding Source.

The Corresponding Source for a work in source code
form is that same work. 2. Basic Permissions.

All rights granted under this License are granted
for the term of copyright on the Program, and are
irrevocable provided the stated conditions are met.
This License explicitly affirms your unlimited per-
mission to run the unmodified Program. The out-
put from running a covered work is covered by this
License only if the output, given its content, con-
stitutes a covered work. This License acknowledges
your rights of fair use or other equivalent, as pro-
vided by copyright law.

You may make, run and propagate covered works
that you do not convey, without conditions so long
as your license otherwise remains in force. You may
convey covered works to others for the sole purpose
of having them make modifications exclusively for
you, or provide you with facilities for running those
works, provided that you comply with the terms
of this License in conveying all material for which
you do not control copyright. Those thus making or
running the covered works for you must do so exclu-
sively on your behalf, under your direction and con-
trol, on terms that prohibit them from making any
copies of your copyrighted material outside their
relationship with you.

Conveying under any other circumstances is permit-
ted solely under the conditions stated below. Subli-
censing is not allowed; section 10 makes it unneces-
sary. 3. Protecting Users’ Legal Rights From Anti-
Circumvention Law.

No covered work shall be deemed part of an effec-
tive technological measure under any applicable law
fulfilling obligations under article 11 of the WIPO
copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumven-
tion of such measures.

When you convey a covered work, you waive any
legal power to forbid circumvention of technologi-
cal measures to the extent such circumvention is ef-
fected by exercising rights under this License with
respect to the covered work, and you disclaim any
intention to limit operation or modification of the
work as a means of enforcing, against the work’s
users, your or third parties’ legal rights to forbid
circumvention of technological measures. 4. Con-
veying Verbatim Copies.

You may convey verbatim copies of the Program’s
source code as you receive it, in any medium, pro-
vided that you conspicuously and appropriately
publish on each copy an appropriate copyright no-
tice; keep intact all notices stating that this License
and any non-permissive terms added in accord with
section 7 apply to the code; keep intact all notices
of the absence of any warranty; and give all recipi-
ents a copy of this License along with the Program.

You may charge any price or no price for each copy
that you convey, and you may offer support or war-
ranty protection for a fee. 5. Conveying Modified
Source Versions.

You may convey a work based on the Program, or
the modifications to produce it from the Program,
in the form of source code under the terms of sec-
tion 4, provided that you also meet all of these con-
ditions:

* a) The work must carry prominent notices stating
that you modified it, and giving a relevant date. *
b) The work must carry prominent notices stating
that it is released under this License and any con-
ditions added under section 7. This requirement
modifies the requirement in section 4 to “keep in-
tact all notices”. * c) You must license the entire
work, as a whole, under this License to anyone who
comes into possession of a copy. This License will
therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all
its parts, regardless of how they are packaged. This
License gives no permission to license the work in
any other way, but it does not invalidate such per-
mission if you have separately received it. * d) If
the work has interactive user interfaces, each must
display Appropriate Legal Notices; however, if the
Program has interactive interfaces that do not dis-
play Appropriate Legal Notices, your work need not
make them do so.

A compilation of a covered work with other sepa-
rate and independent works, which are not by their
nature extensions of the covered work, and which
are not combined with it such as to form a larger
program, in or on a volume of a storage or distri-
bution medium, is called an “aggregate” if the com-
pilation and its resulting copyright are not used to
limit the access or legal rights of the compilation’s
users beyond what the individual works permit. In-
clusion of a covered work in an aggregate does not
cause this License to apply to the other parts of the
aggregate. 6. Conveying Non-Source Forms.

You may convey a covered work in object code form
under the terms of sections 4 and 5, provided that
you also convey the machine-readable Correspond-
ing Source under the terms of this License, in one
of these ways:

* a) Convey the object code in, or embodied in,
a physical product (including a physical distribu-
tion medium), accompanied by the Corresponding
Source fixed on a durable physical medium custom-
arily used for software interchange. * b) Convey the
object code in, or embodied in, a physical product
(including a physical distribution medium), accom-
panied by a written offer, valid for at least three
years and valid for as long as you offer spare parts
or customer support for that product model, to
give anyone who possesses the object code either
(1) a copy of the Corresponding Source for all the
software in the product that is covered by this Li-
cense, on a durable physical medium customarily
used for software interchange, for a price no more
than your reasonable cost of physically performing
this conveying of source, or (2) access to copy the
Corresponding Source from a network server at no
charge. * c) Convey individual copies of the object
code with a copy of the written offer to provide
the Corresponding Source. This alternative is al-
lowed only occasionally and noncommercially, and
only if you received the object code with such an of-
fer, in accord with subsection 6b. * d) Convey the
object code by offering access from a designated
place (gratis or for a charge), and offer equivalent
access to the Corresponding Source in the same way
through the same place at no further charge. You
need not require recipients to copy the Correspond-
ing Source along with the object code. If the place
to copy the object code is a network server, the Cor-
responding Source may be on a different server (op-
erated by you or a third party) that supports equiv-
alent copying facilities, provided you maintain clear
directions next to the object code saying where to
find the Corresponding Source. Regardless of what
server hosts the Corresponding Source, you remain
obligated to ensure that it is available for as long
as needed to satisfy these requirements. * e) Con-
vey the object code using peer-to-peer transmission,
provided you inform other peers where the object
code and Corresponding Source of the work are be-
ing offered to the general public at no charge under
subsection 6d.

A separable portion of the object code, whose
source code is excluded from the Corresponding
Source as a System Library, need not be included
in conveying the object code work.

A “User Product” is either (1) a “consumer prod-
uct”, which means any tangible personal property
which is normally used for personal, family, or
household purposes, or (2) anything designed or
sold for incorporation into a dwelling. In deter-
mining whether a product is a consumer product,
doubtful cases shall be resolved in favor of cover-
age. For a particular product received by a par-
ticular user, “normally used” refers to a typical or
common use of that class of product, regardless of
the status of the particular user or of the way in
which the particular user actually uses, or expects
or is expected to use, the product. A product is a
consumer product regardless of whether the prod-
uct has substantial commercial, industrial or non-
consumer uses, unless such uses represent the only
significant mode of use of the product.

“Installation Information” for a User Product
means any methods, procedures, authorization
keys, or other information required to install and
execute modified versions of a covered work in that
User Product from a modified version of its Corre-
sponding Source. The information must suffice to
ensure that the continued functioning of the modi-
fied object code is in no case prevented or interfered
with solely because modification has been made.

If you convey an object code work under this sec-
tion in, or with, or specifically for use in, a User
Product, and the conveying occurs as part of a
transaction in which the right of possession and
use of the User Product is transferred to the re-
cipient in perpetuity or for a fixed term (regard-
less of how the transaction is characterized), the
Corresponding Source conveyed under this section
must be accompanied by the Installation Informa-
tion. But this requirement does not apply if neither
you nor any third party retains the ability to install
modified object code on the User Product (for ex-
ample, the work has been installed in ROM).

The requirement to provide Installation Informa-
tion does not include a requirement to continue to
provide support service, warranty, or updates for a
work that has been modified or installed by the re-
cipient, or for the User Product in which it has been
modified or installed. Access to a network may be
denied when the modification itself materially and
adversely affects the operation of the network or
violates the rules and protocols for communication
across the network.

Corresponding Source conveyed, and Installation
Information provided, in accord with this section
must be in a format that is publicly documented
(and with an implementation available to the public
in source code form), and must require no special
password or key for unpacking, reading or copying.
7. Additional Terms.

“Additional permissions” are terms that supplement
the terms of this License by making exceptions from
one or more of its conditions. Additional permis-
sions that are applicable to the entire Program
shall be treated as though they were included in
this License, to the extent that they are valid un-
der applicable law. If additional permissions apply
only to part of the Program, that part may be used
separately under those permissions, but the entire
Program remains governed by this License without
regard to the additional permissions.

When you convey a copy of a covered work, you may
at your option remove any additional permissions
from that copy, or from any part of it. (Additional
permissions may be written to require their own re-
moval in certain cases when you modify the work.)
You may place additional permissions on material,
added by you to a covered work, for which you have
or can give appropriate copyright permission.

Notwithstanding any other provision of this Li-
cense, for material you add to a covered work, you
may (if authorized by the copyright holders of that
material) supplement the terms of this License with
terms:

* a) Disclaiming warranty or limiting liability dif-
ferently from the terms of sections 15 and 16 of this
License; or * b) Requiring preservation of specified
reasonable legal notices or author attributions in
that material or in the Appropriate Legal Notices
displayed by works containing it; or * c) Prohibit-
ing misrepresentation of the origin of that material,
or requiring that modified versions of such material
be marked in reasonable ways as different from the
original version; or * d) Limiting the use for pub-
licity purposes of names of licensors or authors of
the material; or * e) Declining to grant rights under
trademark law for use of some trade names, trade-
marks, or service marks; or * f) Requiring indem-
nification of licensors and authors of that material
by anyone who conveys the material (or modified
versions of it) with contractual assumptions of lia-
bility to the recipient, for any liability that these
contractual assumptions directly impose on those
licensors and authors.

All other non-permissive additional terms are con-
sidered “further restrictions” within the meaning of
section 10. If the Program as you received it, or any
part of it, contains a notice stating that it is gov-
erned by this License along with a term that is a
further restriction, you may remove that term. If a
license document contains a further restriction but
permits relicensing or conveying under this License,
you may add to a covered work material governed
by the terms of that license document, provided
that the further restriction does not survive such
relicensing or conveying.

If you add terms to a covered work in accord with
this section, you must place, in the relevant source
files, a statement of the additional terms that ap-
ply to those files, or a notice indicating where to
find the applicable terms.

Additional terms, permissive or non-permissive,
may be stated in the form of a separately written
license, or stated as exceptions; the above require-
ments apply either way. 8. Termination.

You may not propagate or modify a covered work
except as expressly provided under this License.
Any attempt otherwise to propagate or modify it is
void, and will automatically terminate your rights
under this License (including any patent licenses
granted under the third paragraph of section 11).

However, if you cease all violation of this License,
then your license from a particular copyright holder
is reinstated (a) provisionally, unless and until the
copyright holder explicitly and finally terminates
your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some
reasonable means prior to 60 days after the cessa-
tion.

Moreover, your license from a particular copyright
holder is reinstated permanently if the copyright
holder notifies you of the violation by some reason-
able means, this is the first time you have received
notice of violation of this License (for any work)

259

Licenses

from that copyright holder, and you cure the vi-
olation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does
not terminate the licenses of parties who have re-
ceived copies or rights from you under this License.
If your rights have been terminated and not perma-
nently reinstated, you do not qualify to receive new
licenses for the same material under section 10. 9.
Acceptance Not Required for Having Copies.

You are not required to accept this License in or-
der to receive or run a copy of the Program. Ancil-
lary propagation of a covered work occurring solely
as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require accep-
tance. However, nothing other than this License
grants you permission to propagate or modify any
covered work. These actions infringe copyright if
you do not accept this License. Therefore, by mod-
ifying or propagating a covered work, you indicate
your acceptance of this License to do so. 10. Auto-
matic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient
automatically receives a license from the original
licensors, to run, modify and propagate that work,
subject to this License. You are not responsible
for enforcing compliance by third parties with this
License.

An “entity transaction” is a transaction transfer-
ring control of an organization, or substantially all
assets of one, or subdividing an organization, or
merging organizations. If propagation of a cov-
ered work results from an entity transaction, each
party to that transaction who receives a copy of the
work also receives whatever licenses to the work the
party’s predecessor in interest had or could give un-
der the previous paragraph, plus a right to posses-
sion of the Corresponding Source of the work from
the predecessor in interest, if the predecessor has it
or can get it with reasonable efforts.

You may not impose any further restrictions on the
exercise of the rights granted or affirmed under this
License. For example, you may not impose a license
fee, royalty, or other charge for exercise of rights
granted under this License, and you may not ini-
tiate litigation (including a cross-claim or counter-
claim in a lawsuit) alleging that any patent claim
is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
11. Patents.

A “contributor” is a copyright holder who autho-
rizes use under this License of the Program or a
work on which the Program is based. The work
thus licensed is called the contributor’s “contribu-
tor version”.

A contributor’s “essential patent claims” are all
patent claims owned or controlled by the contribu-
tor, whether already acquired or hereafter acquired,
that would be infringed by some manner, permit-
ted by this License, of making, using, or selling its
contributor version, but do not include claims that
would be infringed only as a consequence of further
modification of the contributor version. For pur-
poses of this definition, “control” includes the right
to grant patent sublicenses in a manner consistent
with the requirements of this License.

Each contributor grants you a non-exclusive, world-
wide, royalty-free patent license under the contrib-
utor’s essential patent claims, to make, use, sell, of-
fer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.

In the following three paragraphs, a “patent li-
cense” is any express agreement or commitment,
however denominated, not to enforce a patent (such
as an express permission to practice a patent or
covenant not to sue for patent infringement). To
“grant” such a patent license to a party means to
make such an agreement or commitment not to en-
force a patent against the party.

If you convey a covered work, knowingly relying
on a patent license, and the Corresponding Source
of the work is not available for anyone to copy,
free of charge and under the terms of this License,
through a publicly available network server or other
readily accessible means, then you must either (1)
cause the Corresponding Source to be so available,
or (2) arrange to deprive yourself of the benefit
of the patent license for this particular work, or
(3) arrange, in a manner consistent with the re-
quirements of this License, to extend the patent
license to downstream recipients. “Knowingly re-
lying” means you have actual knowledge that, but
for the patent license, your conveying the covered
work in a country, or your recipient’s use of the cov-
ered work in a country, would infringe one or more
identifiable patents in that country that you have
reason to believe are valid.

If, pursuant to or in connection with a single trans-
action or arrangement, you convey, or propagate
by procuring conveyance of, a covered work, and
grant a patent license to some of the parties re-
ceiving the covered work authorizing them to use,
propagate, modify or convey a specific copy of the
covered work, then the patent license you grant is
automatically extended to all recipients of the cov-
ered work and works based on it.

A patent license is “discriminatory” if it does not in-
clude within the scope of its coverage, prohibits the
exercise of, or is conditioned on the non-exercise
of one or more of the rights that are specifically
granted under this License. You may not convey a
covered work if you are a party to an arrangement
with a third party that is in the business of dis-
tributing software, under which you make payment
to the third party based on the extent of your ac-
tivity of conveying the work, and under which the
third party grants, to any of the parties who would
receive the covered work from you, a discrimina-
tory patent license (a) in connection with copies
of the covered work conveyed by you (or copies
made from those copies), or (b) primarily for and in
connection with specific products or compilations
that contain the covered work, unless you entered
into that arrangement, or that patent license was
granted, prior to 28 March 2007.

Nothing in this License shall be construed as ex-
cluding or limiting any implied license or other de-
fenses to infringement that may otherwise be avail-
able to you under applicable patent law. 12. No
Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court
order, agreement or otherwise) that contradict the
conditions of this License, they do not excuse you
from the conditions of this License. If you cannot
convey a covered work so as to satisfy simultane-
ously your obligations under this License and any
other pertinent obligations, then as a consequence
you may not convey it at all. For example, if you
agree to terms that obligate you to collect a roy-
alty for further conveying from those to whom you
convey the Program, the only way you could satisfy
both those terms and this License would be to re-
frain entirely from conveying the Program. 13. Use
with the GNU Affero General Public License.

Notwithstanding any other provision of this Li-
cense, you have permission to link or combine any
covered work with a work licensed under version
3 of the GNU Affero General Public License into
a single combined work, and to convey the result-
ing work. The terms of this License will continue
to apply to the part which is the covered work, but
the special requirements of the GNU Affero General
Public License, section 13, concerning interaction
through a network will apply to the combination
as such. 14. Revised Versions of this License.

The Free Software Foundation may publish revised
and/or new versions of the GNU General Public Li-
cense from time to time. Such new versions will be
similar in spirit to the present version, but may dif-
fer in detail to address new problems or concerns.

Each version is given a distinguishing version num-
ber. If the Program specifies that a certain num-
bered version of the GNU General Public License
“or any later version” applies to it, you have the
option of following the terms and conditions either
of that numbered version or of any later version
published by the Free Software Foundation. If the
Program does not specify a version number of the
GNU General Public License, you may choose any
version ever published by the Free Software Foun-
dation.

If the Program specifies that a proxy can decide
which future versions of the GNU General Public
License can be used, that proxy’s public statement
of acceptance of a version permanently authorizes
you to choose that version for the Program.

Later license versions may give you additional or
different permissions. However, no additional obli-
gations are imposed on any author or copyright
holder as a result of your choosing to follow a later
version. 15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PRO-
GRAM, TO THE EXTENT PERMITTED BY AP-
PLICABLE LAW. EXCEPT WHEN OTHERWISE
STATED IN WRITING THE COPYRIGHT HOLD-
ERS AND/OR OTHER PARTIES PROVIDE THE
PROGRAM “AS IS” WITHOUT WARRANTY OF
ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IM-
PLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE.
THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE PROGRAM IS WITH
YOU. SHOULD THE PROGRAM PROVE DEFEC-
TIVE, YOU ASSUME THE COST OF ALL NECES-
SARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLI-
CABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY
OTHER PARTY WHO MODIFIES AND/OR CON-
VEYS THE PROGRAM AS PERMITTED ABOVE,
BE LIABLE TO YOU FOR DAMAGES, IN-
CLUDING ANY GENERAL, SPECIAL, INCIDEN-
TAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE
THE PROGRAM (INCLUDING BUT NOT LIM-
ITED TO LOSS OF DATA OR DATA BEING REN-
DERED INACCURATE OR LOSSES SUSTAINED
BY YOU OR THIRD PARTIES OR A FAILURE
OF THE PROGRAM TO OPERATE WITH ANY
OTHER PROGRAMS), EVEN IF SUCH HOLDER
OR OTHER PARTY HAS BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES. 17. In-
terpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of lia-
bility provided above cannot be given local legal ef-

fect according to their terms, reviewing courts shall
apply local law that most closely approximates an
absolute waiver of all civil liability in connection
with the Program, unless a warranty or assumption
of liability accompanies a copy of the Program in
return for a fee.

END OF TERMS AND CONDITIONS How to Ap-
ply These Terms to Your New Programs

If you develop a new program, and you want it to
be of the greatest possible use to the public, the
best way to achieve this is to make it free software
which everyone can redistribute and change under
these terms.

To do so, attach the following notices to the pro-
gram. It is safest to attach them to the start of
each source file to most effectively state the exclu-
sion of warranty; and each file should have at least
the “copyright” line and a pointer to where the full
notice is found.

<one line to give the program’s name and a brief
idea of what it does.> Copyright (C) <year>
<name of author>

This program is free software: you can redistribute
it and/or modify it under the terms of the GNU
General Public License as published by the Free
Software Foundation, either version 3 of the Li-
cense, or (at your option) any later version.

This program is distributed in the hope that
it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PAR-
TICULAR PURPOSE. See the GNU General Public
License for more details.

You should have received a copy of the GNU Gen-
eral Public License along with this program. If not,
see <http://www.gnu.org/licenses/>.

Also add information on how to contact you by elec-
tronic and paper mail.

If the program does terminal interaction, make it
output a short notice like this when it starts in an
interactive mode:

<program> Copyright (C) <year> <name of au-
thor> This program comes with ABSOLUTELY
NO WARRANTY; for details type ‘show w’. This is
free software, and you are welcome to redistribute it
under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’
should show the appropriate parts of the General
Public License. Of course, your program’s com-
mands might be different; for a GUI interface, you
would use an “about box”.

You should also get your employer (if you work
as a programmer) or school, if any, to sign a
“copyright disclaimer” for the program, if nec-
essary. For more information on this, and
how to apply and follow the GNU GPL, see
<http://www.gnu.org/licenses/>.

The GNU General Public License does not permit
incorporating your program into proprietary pro-
grams. If your program is a subroutine library, you
may consider it more useful to permit linking pro-
prietary applications with the library. If this is
what you want to do, use the GNU Lesser General
Public License instead of this License. But first,
please read <http://www.gnu.org/philosophy/why-
not-lgpl.html>.

19.2 GNU Free Documentation License
Version 1.3, 3 November 2008

Copyright © 2000, 2001, 2002, 2007, 2008 Free Soft-
ware Foundation, Inc. <http://fsf.org/>

Everyone is permitted to copy and distribute verba-
tim copies of this license document, but changing
it is not allowed. 0. PREAMBLE

The purpose of this License is to make a manual,
textbook, or other functional and useful document
"free" in the sense of freedom: to assure everyone
the effective freedom to copy and redistribute it,
with or without modifying it, either commercially
or noncommercially. Secondarily, this License pre-
serves for the author and publisher a way to get
credit for their work, while not being considered
responsible for modifications made by others.

This License is a kind of "copyleft", which means
that derivative works of the document must them-
selves be free in the same sense. It complements
the GNU General Public License, which is a copy-
left license designed for free software.

We have designed this License in order to use it
for manuals for free software, because free software
needs free documentation: a free program should
come with manuals providing the same freedoms
that the software does. But this License is not lim-
ited to software manuals; it can be used for any tex-
tual work, regardless of subject matter or whether
it is published as a printed book. We recommend
this License principally for works whose purpose is
instruction or reference. 1. APPLICABILITY AND
DEFINITIONS

This License applies to any manual or other work,
in any medium, that contains a notice placed by the
copyright holder saying it can be distributed under
the terms of this License. Such a notice grants a
world-wide, royalty-free license, unlimited in dura-
tion, to use that work under the conditions stated
herein. The "Document", below, refers to any such
manual or work. Any member of the public is a li-
censee, and is addressed as "you". You accept the
license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A "Modified Version" of the Document means any
work containing the Document or a portion of it, ei-
ther copied verbatim, or with modifications and/or
translated into another language.

A "Secondary Section" is a named appendix or a
front-matter section of the Document that deals ex-
clusively with the relationship of the publishers or

authors of the Document to the Document’s overall
subject (or to related matters) and contains noth-
ing that could fall directly within that overall sub-
ject. (Thus, if the Document is in part a textbook
of mathematics, a Secondary Section may not ex-
plain any mathematics.) The relationship could be
a matter of historical connection with the subject
or with related matters, or of legal, commercial,
philosophical, ethical or political position regard-
ing them.

The "Invariant Sections" are certain Secondary Sec-
tions whose titles are designated, as being those of
Invariant Sections, in the notice that says that the
Document is released under this License. If a sec-
tion does not fit the above definition of Secondary
then it is not allowed to be designated as Invariant.
The Document may contain zero Invariant Sections.
If the Document does not identify any Invariant
Sections then there are none.

The "Cover Texts" are certain short passages of text
that are listed, as Front-Cover Texts or Back-Cover
Texts, in the notice that says that the Document is
released under this License. A Front-Cover Text
may be at most 5 words, and a Back-Cover Text
may be at most 25 words.

A "Transparent" copy of the Document means a
machine-readable copy, represented in a format
whose specification is available to the general pub-
lic, that is suitable for revising the document
straightforwardly with generic text editors or (for
images composed of pixels) generic paint programs
or (for drawings) some widely available drawing ed-
itor, and that is suitable for input to text format-
ters or for automatic translation to a variety of for-
mats suitable for input to text formatters. A copy
made in an otherwise Transparent file format whose
markup, or absence of markup, has been arranged
to thwart or discourage subsequent modification by
readers is not Transparent. An image format is not
Transparent if used for any substantial amount of
text. A copy that is not "Transparent" is called
"Opaque".

Examples of suitable formats for Transparent
copies include plain ASCII without markup, Tex-
info input format, LaTeX input format, SGML or
XML using a publicly available DTD, and standard-
conforming simple HTML, PostScript or PDF de-
signed for human modification. Examples of trans-
parent image formats include PNG, XCF and JPG.
Opaque formats include proprietary formats that
can be read and edited only by proprietary word
processors, SGML or XML for which the DTD
and/or processing tools are not generally available,
and the machine-generated HTML, PostScript or

PDF produced by some word processors for output
purposes only.

The "Title Page" means, for a printed book, the
title page itself, plus such following pages as are
needed to hold, legibly, the material this License
requires to appear in the title page. For works in
formats which do not have any title page as such,
"Title Page" means the text near the most promi-
nent appearance of the work’s title, preceding the
beginning of the body of the text.

The "publisher" means any person or entity that
distributes copies of the Document to the public.

A section "Entitled XYZ" means a named subunit
of the Document whose title either is precisely XYZ
or contains XYZ in parentheses following text that
translates XYZ in another language. (Here XYZ
stands for a specific section name mentioned below,
such as "Acknowledgements", "Dedications", "En-
dorsements", or "History".) To "Preserve the Title"
of such a section when you modify the Document
means that it remains a section "Entitled XYZ" ac-
cording to this definition.

The Document may include Warranty Disclaimers
next to the notice which states that this License
applies to the Document. These Warranty Dis-
claimers are considered to be included by reference
in this License, but only as regards disclaiming war-
ranties: any other implication that these Warranty
Disclaimers may have is void and has no effect on
the meaning of this License. 2. VERBATIM COPY-
ING

You may copy and distribute the Document in any
medium, either commercially or noncommercially,
provided that this License, the copyright notices,
and the license notice saying this License applies to
the Document are reproduced in all copies, and that
you add no other conditions whatsoever to those
of this License. You may not use technical mea-
sures to obstruct or control the reading or further
copying of the copies you make or distribute. How-
ever, you may accept compensation in exchange for
copies. If you distribute a large enough number of
copies you must also follow the conditions in sec-
tion 3.

You may also lend copies, under the same condi-
tions stated above, and you may publicly display
copies. 3. COPYING IN QUANTITY

If you publish printed copies (or copies in media
that commonly have printed covers) of the Doc-
ument, numbering more than 100, and the Doc-
ument’s license notice requires Cover Texts, you

must enclose the copies in covers that carry, clearly
and legibly, all these Cover Texts: Front-Cover
Texts on the front cover, and Back-Cover Texts
on the back cover. Both covers must also clearly
and legibly identify you as the publisher of these
copies. The front cover must present the full title
with all words of the title equally prominent and
visible. You may add other material on the covers
in addition. Copying with changes limited to the
covers, as long as they preserve the title of the Doc-
ument and satisfy these conditions, can be treated
as verbatim copying in other respects.

If the required texts for either cover are too volu-
minous to fit legibly, you should put the first ones
listed (as many as fit reasonably) on the actual
cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the
Document numbering more than 100, you must ei-
ther include a machine-readable Transparent copy
along with each Opaque copy, or state in or with
each Opaque copy a computer-network location
from which the general network-using public has
access to download using public-standard network
protocols a complete Transparent copy of the Doc-
ument, free of added material. If you use the lat-
ter option, you must take reasonably prudent steps,
when you begin distribution of Opaque copies in
quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until
at least one year after the last time you distribute
an Opaque copy (directly or through your agents or
retailers) of that edition to the public.

It is requested, but not required, that you con-
tact the authors of the Document well before redis-
tributing any large number of copies, to give them
a chance to provide you with an updated version of
the Document. 4. MODIFICATIONS

You may copy and distribute a Modified Version of
the Document under the conditions of sections 2
and 3 above, provided that you release the Modi-
fied Version under precisely this License, with the
Modified Version filling the role of the Document,
thus licensing distribution and modification of the
Modified Version to whoever possesses a copy of it.
In addition, you must do these things in the Modi-
fied Version:

* A. Use in the Title Page (and on the covers, if
any) a title distinct from that of the Document,
and from those of previous versions (which should,
if there were any, be listed in the History section
of the Document). You may use the same title as
a previous version if the original publisher of that
version gives permission. * B. List on the Title

260

GNU Lesser General Public License

Page, as authors, one or more persons or entities
responsible for authorship of the modifications in
the Modified Version, together with at least five of
the principal authors of the Document (all of its
principal authors, if it has fewer than five), unless
they release you from this requirement. * C. State
on the Title page the name of the publisher of the
Modified Version, as the publisher. * D. Preserve
all the copyright notices of the Document. * E. Add
an appropriate copyright notice for your modifica-
tions adjacent to the other copyright notices. * F.
Include, immediately after the copyright notices, a
license notice giving the public permission to use
the Modified Version under the terms of this Li-
cense, in the form shown in the Addendum below. *
G. Preserve in that license notice the full lists of In-
variant Sections and required Cover Texts given in
the Document’s license notice. * H. Include an unal-
tered copy of this License. * I. Preserve the section
Entitled "History", Preserve its Title, and add to it
an item stating at least the title, year, new authors,
and publisher of the Modified Version as given on
the Title Page. If there is no section Entitled "His-
tory" in the Document, create one stating the title,
year, authors, and publisher of the Document as
given on its Title Page, then add an item describ-
ing the Modified Version as stated in the previous
sentence. * J. Preserve the network location, if any,
given in the Document for public access to a Trans-
parent copy of the Document, and likewise the net-
work locations given in the Document for previous
versions it was based on. These may be placed in
the "History" section. You may omit a network lo-
cation for a work that was published at least four
years before the Document itself, or if the original
publisher of the version it refers to gives permission.
* K. For any section Entitled "Acknowledgements"
or "Dedications", Preserve the Title of the section,
and preserve in the section all the substance and
tone of each of the contributor acknowledgements
and/or dedications given therein. * L. Preserve all
the Invariant Sections of the Document, unaltered
in their text and in their titles. Section numbers or
the equivalent are not considered part of the section
titles. * M. Delete any section Entitled "Endorse-
ments". Such a section may not be included in the
Modified Version. * N. Do not retitle any existing
section to be Entitled "Endorsements" or to conflict
in title with any Invariant Section. * O. Preserve
any Warranty Disclaimers.

If the Modified Version includes new front-matter
sections or appendices that qualify as Secondary
Sections and contain no material copied from the
Document, you may at your option designate some
or all of these sections as invariant. To do this, add
their titles to the list of Invariant Sections in the
Modified Version’s license notice. These titles must
be distinct from any other section titles.

You may add a section Entitled "Endorsements",
provided it contains nothing but endorsements of
your Modified Version by various parties—for ex-
ample, statements of peer review or that the text
has been approved by an organization as the au-
thoritative definition of a standard.

You may add a passage of up to five words as a
Front-Cover Text, and a passage of up to 25 words
as a Back-Cover Text, to the end of the list of Cover
Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may
be added by (or through arrangements made by)
any one entity. If the Document already includes
a cover text for the same cover, previously added
by you or by arrangement made by the same entity
you are acting on behalf of, you may not add an-

other; but you may replace the old one, on explicit
permission from the previous publisher that added
the old one.

The author(s) and publisher(s) of the Document do
not by this License give permission to use their
names for publicity for or to assert or imply en-
dorsement of any Modified Version. 5. COMBIN-
ING DOCUMENTS

You may combine the Document with other docu-
ments released under this License, under the terms
defined in section 4 above for modified versions,
provided that you include in the combination all
of the Invariant Sections of all of the original doc-
uments, unmodified, and list them all as Invariant
Sections of your combined work in its license no-
tice, and that you preserve all their Warranty Dis-
claimers.

The combined work need only contain one copy of
this License, and multiple identical Invariant Sec-
tions may be replaced with a single copy. If there
are multiple Invariant Sections with the same name
but different contents, make the title of each such
section unique by adding at the end of it, in paren-
theses, the name of the original author or publisher
of that section if known, or else a unique number.
Make the same adjustment to the section titles in
the list of Invariant Sections in the license notice
of the combined work.

In the combination, you must combine any sections
Entitled "History" in the various original docu-
ments, forming one section Entitled "History"; like-
wise combine any sections Entitled "Acknowledge-
ments", and any sections Entitled "Dedications".
You must delete all sections Entitled "Endorse-
ments". 6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Docu-
ment and other documents released under this Li-
cense, and replace the individual copies of this Li-
cense in the various documents with a single copy
that is included in the collection, provided that you
follow the rules of this License for verbatim copying
of each of the documents in all other respects.

You may extract a single document from such a col-
lection, and distribute it individually under this Li-
cense, provided you insert a copy of this License
into the extracted document, and follow this Li-
cense in all other respects regarding verbatim copy-
ing of that document. 7. AGGREGATION WITH
INDEPENDENT WORKS

A compilation of the Document or its derivatives
with other separate and independent documents or
works, in or on a volume of a storage or distribution
medium, is called an "aggregate" if the copyright re-
sulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what
the individual works permit. When the Document
is included in an aggregate, this License does not
apply to the other works in the aggregate which are
not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is appli-
cable to these copies of the Document, then if the
Document is less than one half of the entire aggre-
gate, the Document’s Cover Texts may be placed
on covers that bracket the Document within the
aggregate, or the electronic equivalent of covers
if the Document is in electronic form. Otherwise
they must appear on printed covers that bracket
the whole aggregate. 8. TRANSLATION

Translation is considered a kind of modification, so
you may distribute translations of the Document
under the terms of section 4. Replacing Invariant
Sections with translations requires special permis-
sion from their copyright holders, but you may in-
clude translations of some or all Invariant Sections
in addition to the original versions of these Invari-
ant Sections. You may include a translation of this
License, and all the license notices in the Document,
and any Warranty Disclaimers, provided that you
also include the original English version of this Li-
cense and the original versions of those notices and
disclaimers. In case of a disagreement between the
translation and the original version of this License
or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled "Acknowl-
edgements", "Dedications", or "History", the re-
quirement (section 4) to Preserve its Title (section
1) will typically require changing the actual title.
9. TERMINATION

You may not copy, modify, sublicense, or distribute
the Document except as expressly provided under
this License. Any attempt otherwise to copy, mod-
ify, sublicense, or distribute it is void, and will
automatically terminate your rights under this Li-
cense.

However, if you cease all violation of this License,
then your license from a particular copyright holder
is reinstated (a) provisionally, unless and until the
copyright holder explicitly and finally terminates
your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some
reasonable means prior to 60 days after the cessa-
tion.

Moreover, your license from a particular copyright
holder is reinstated permanently if the copyright
holder notifies you of the violation by some reason-
able means, this is the first time you have received
notice of violation of this License (for any work)
from that copyright holder, and you cure the vi-
olation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does
not terminate the licenses of parties who have re-
ceived copies or rights from you under this License.
If your rights have been terminated and not perma-
nently reinstated, receipt of a copy of some or all
of the same material does not give you any rights
to use it. 10. FUTURE REVISIONS OF THIS LI-
CENSE

The Free Software Foundation may publish new, re-
vised versions of the GNU Free Documentation Li-
cense from time to time. Such new versions will be
similar in spirit to the present version, but may dif-
fer in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguish-
ing version number. If the Document specifies that
a particular numbered version of this License "or
any later version" applies to it, you have the op-
tion of following the terms and conditions either of
that specified version or of any later version that
has been published (not as a draft) by the Free Soft-
ware Foundation. If the Document does not specify
a version number of this License, you may choose
any version ever published (not as a draft) by the
Free Software Foundation. If the Document speci-
fies that a proxy can decide which future versions of

this License can be used, that proxy’s public state-
ment of acceptance of a version permanently autho-
rizes you to choose that version for the Document.
11. RELICENSING

"Massive Multiauthor Collaboration Site" (or
"MMC Site") means any World Wide Web server
that publishes copyrightable works and also pro-
vides prominent facilities for anybody to edit those
works. A public wiki that anybody can edit is
an example of such a server. A "Massive Multiau-
thor Collaboration" (or "MMC") contained in the
site means any set of copyrightable works thus pub-
lished on the MMC site.

"CC-BY-SA" means the Creative Commons
Attribution-Share Alike 3.0 license published by
Creative Commons Corporation, a not-for-profit
corporation with a principal place of business in
San Francisco, California, as well as future copyleft
versions of that license published by that same
organization.

"Incorporate" means to publish or republish a Doc-
ument, in whole or in part, as part of another Doc-
ument.

An MMC is "eligible for relicensing" if it is licensed
under this License, and if all works that were first
published under this License somewhere other than
this MMC, and subsequently incorporated in whole
or in part into the MMC, (1) had no cover texts or
invariant sections, and (2) were thus incorporated
prior to November 1, 2008.

The operator of an MMC Site may republish an
MMC contained in the site under CC-BY-SA on the
same site at any time before August 1, 2009, pro-
vided the MMC is eligible for relicensing. ADDEN-
DUM: How to use this License for your documents

To use this License in a document you have written,
include a copy of the License in the document and
put the following copyright and license notices just
after the title page:

Copyright (C) YEAR YOUR NAME. Permission is
granted to copy, distribute and/or modify this doc-
ument under the terms of the GNU Free Documen-
tation License, Version 1.3 or any later version pub-
lished by the Free Software Foundation; with no
Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts. A copy of the license is included
in the section entitled "GNU Free Documentation
License".

If you have Invariant Sections, Front-Cover Texts
and Back-Cover Texts, replace the "with . . .
Texts." line with this:

with the Invariant Sections being LIST THEIR TI-
TLES, with the Front-Cover Texts being LIST, and
with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts,
or some other combination of the three, merge
those two alternatives to suit the situation.

If your document contains nontrivial examples of
program code, we recommend releasing these exam-
ples in parallel under your choice of free software
license, such as the GNU General Public License,
to permit their use in free software.

19.3 GNU Lesser General Public License
GNU LESSER GENERAL PUBLIC LICENSE

Version 3, 29 June 2007

Copyright © 2007 Free Software Foundation, Inc.
<http://fsf.org/>

Everyone is permitted to copy and distribute verba-
tim copies of this license document, but changing
it is not allowed.

This version of the GNU Lesser General Public Li-
cense incorporates the terms and conditions of ver-
sion 3 of the GNU General Public License, supple-
mented by the additional permissions listed below.
0. Additional Definitions.

As used herein, “this License” refers to version 3
of the GNU Lesser General Public License, and the
“GNU GPL” refers to version 3 of the GNU General
Public License.

“The Library” refers to a covered work governed by
this License, other than an Application or a Com-
bined Work as defined below.

An “Application” is any work that makes use of an
interface provided by the Library, but which is not
otherwise based on the Library. Defining a subclass
of a class defined by the Library is deemed a mode
of using an interface provided by the Library.

A “Combined Work” is a work produced by com-
bining or linking an Application with the Library.
The particular version of the Library with which
the Combined Work was made is also called the
“Linked Version”.

The “Minimal Corresponding Source” for a Com-
bined Work means the Corresponding Source for
the Combined Work, excluding any source code for
portions of the Combined Work that, considered in
isolation, are based on the Application, and not on
the Linked Version.

The “Corresponding Application Code” for a Com-
bined Work means the object code and/or source
code for the Application, including any data and
utility programs needed for reproducing the Com-
bined Work from the Application, but excluding the
System Libraries of the Combined Work. 1. Excep-
tion to Section 3 of the GNU GPL.

You may convey a covered work under sections 3
and 4 of this License without being bound by sec-
tion 3 of the GNU GPL. 2. Conveying Modified
Versions.

If you modify a copy of the Library, and, in your
modifications, a facility refers to a function or data
to be supplied by an Application that uses the fa-
cility (other than as an argument passed when the
facility is invoked), then you may convey a copy of
the modified version:

* a) under this License, provided that you make a
good faith effort to ensure that, in the event an Ap-
plication does not supply the function or data, the
facility still operates, and performs whatever part
of its purpose remains meaningful, or * b) under
the GNU GPL, with none of the additional permis-
sions of this License applicable to that copy.

3. Object Code Incorporating Material from Li-
brary Header Files.

The object code form of an Application may incor-
porate material from a header file that is part of
the Library. You may convey such object code un-
der terms of your choice, provided that, if the in-
corporated material is not limited to numerical pa-
rameters, data structure layouts and accessors, or
small macros, inline functions and templates (ten
or fewer lines in length), you do both of the follow-
ing:

* a) Give prominent notice with each copy of the
object code that the Library is used in it and that
the Library and its use are covered by this License.
* b) Accompany the object code with a copy of the
GNU GPL and this license document.

4. Combined Works.

You may convey a Combined Work under terms of
your choice that, taken together, effectively do not
restrict modification of the portions of the Library
contained in the Combined Work and reverse en-
gineering for debugging such modifications, if you
also do each of the following:

* a) Give prominent notice with each copy of the
Combined Work that the Library is used in it and
that the Library and its use are covered by this Li-
cense. * b) Accompany the Combined Work with a
copy of the GNU GPL and this license document. *
c) For a Combined Work that displays copyright no-
tices during execution, include the copyright notice
for the Library among these notices, as well as a ref-
erence directing the user to the copies of the GNU
GPL and this license document. * d) Do one of the
following: o 0) Convey the Minimal Corresponding
Source under the terms of this License, and the Cor-
responding Application Code in a form suitable for,
and under terms that permit, the user to recombine
or relink the Application with a modified version
of the Linked Version to produce a modified Com-
bined Work, in the manner specified by section 6 of
the GNU GPL for conveying Corresponding Source.
o 1) Use a suitable shared library mechanism for
linking with the Library. A suitable mechanism
is one that (a) uses at run time a copy of the Li-
brary already present on the user’s computer sys-
tem, and (b) will operate properly with a modified
version of the Library that is interface-compatible
with the Linked Version. * e) Provide Installation
Information, but only if you would otherwise be re-
quired to provide such information under section 6
of the GNU GPL, and only to the extent that such
information is necessary to install and execute a
modified version of the Combined Work produced
by recombining or relinking the Application with
a modified version of the Linked Version. (If you
use option 4d0, the Installation Information must
accompany the Minimal Corresponding Source and
Corresponding Application Code. If you use option
4d1, you must provide the Installation Information
in the manner specified by section 6 of the GNU
GPL for conveying Corresponding Source.)

5. Combined Libraries.

You may place library facilities that are a work
based on the Library side by side in a single library
together with other library facilities that are not
Applications and are not covered by this License,
and convey such a combined library under terms of
your choice, if you do both of the following:

* a) Accompany the combined library with a copy
of the same work based on the Library, uncombined
with any other library facilities, conveyed under
the terms of this License. * b) Give prominent no-
tice with the combined library that part of it is a
work based on the Library, and explaining where
to find the accompanying uncombined form of the
same work.

6. Revised Versions of the GNU Lesser General
Public License.

The Free Software Foundation may publish revised
and/or new versions of the GNU Lesser General
Public License from time to time. Such new ver-
sions will be similar in spirit to the present version,
but may differ in detail to address new problems or
concerns.

Each version is given a distinguishing version num-
ber. If the Library as you received it specifies that
a certain numbered version of the GNU Lesser Gen-
eral Public License “or any later version” applies to
it, you have the option of following the terms and
conditions either of that published version or of any
later version published by the Free Software Foun-
dation. If the Library as you received it does not
specify a version number of the GNU Lesser Gen-
eral Public License, you may choose any version of
the GNU Lesser General Public License ever pub-
lished by the Free Software Foundation.

If the Library as you received it specifies that a
proxy can decide whether future versions of the
GNU Lesser General Public License shall apply,
that proxy’s public statement of acceptance of
any version is permanent authorization for you to
choose that version for the Library.

261

	1 Preface
	1.1 Chapter 0: Preface

	2 The way of the program
	2.1 References

	3 Variables, expressions and statements
	4 Functions
	4.1 Function calls
	4.2 Type conversion functions
	4.3 Math functions
	4.4 Composition
	4.5 Adding new functions
	4.6 Definitions and uses
	4.7 Flow of execution
	4.8 Parameters and arguments
	4.9 Variables and parameters are local
	4.10 Stack diagrams
	4.11 Fruitful functions and void functions
	4.12 Why functions?
	4.13 Debugging
	4.14 Glossary
	4.15 Exercises

	5 Conditional and recursion
	6 Fruitful functions
	6.1 Return values
	6.2 Incremental development
	6.3 Composition
	6.4 Boolean functions
	6.5 More recursion
	6.6 Leap of faith
	6.7 One more example
	6.8 Checking types
	6.9 Debugging
	6.10 Glossary
	6.11 Exercises
	6.12 Multiple assignment
	6.13 Updating variables
	6.14 The while statement
	6.15 break
	6.16 Square roots
	6.17 Algorithms
	6.18 Debugging
	6.19 Glossary
	6.20 Exercises

	7 Strings
	7.1 A string is a sequence
	7.2 len
	7.3 Traversal with a for loop
	7.4 String slices
	7.5 Strings are immutable
	7.6 Searching
	7.7 Looping and counting
	7.8 string methods
	7.9 The in operator
	7.10 String comparison
	7.11 Debugging
	7.12 Glossary
	7.13 Exercises
	7.14 Notes

	8 Case study: word play
	8.1 Reading word lists
	8.2 Exercises
	8.3 Search
	8.4 Looping with indices
	8.5 Debugging
	8.6 Glossary
	8.7 Exercises
	8.8 Notes

	9 Lists
	9.1 A list is a sequence
	9.2 Lists are mutable
	9.3 Traversing a list
	9.4 List operations
	9.5 List slices
	9.6 List methods
	9.7 Map, filter and reduce
	9.8 Deleting elements
	9.9 Lists and strings
	9.10 Objects and values
	9.11 Aliasing
	9.12 List arguments
	9.13 Debugging
	9.14 Glossary
	9.15 Exercises

	10 Dictionaries
	10.1 Dictionary as a set of counters
	10.2 Looping and dictionaries
	10.3 Reverse lookup
	10.4 Dictionaries and lists
	10.5 Memos
	10.6 Global variables
	10.7 Long integers
	10.8 Debugging
	10.9 Glossary
	10.10 Exercise-8
	10.11 Notes

	11 Tuples
	11.1 Tuples are immutable
	11.2 Tuple assignment
	11.3 Tuples as return values
	11.4 Variable-length argument tuples
	11.5 Lists and tuples
	11.6 Dictionaries and tuples
	11.7 Comparing tuples
	11.8 Sequences of sequences
	11.9 Debugging
	11.10 Glossary
	11.11 Exercises
	11.12 Word frequency analysis
	11.13 Random numbers
	11.14 Word histogram
	11.15 Most common words
	11.16 Optional parameters
	11.17 Dictionary subtraction
	11.18 Random words
	11.19 Markov analysis
	11.20 Data structures
	11.21 Debugging
	11.22 Glossary
	11.23 Exercises
	11.24 Persistence
	11.25 Reading and writing
	11.26 Format operator
	11.27 Filenames and paths
	11.28 Catching exceptions
	11.29 Databases
	11.30 Pickling
	11.31 Pipes
	11.32 Writing modules
	11.33 Debugging
	11.34 Glossary
	11.35 Exercises

	12 Classes and objects
	12.1 User-defined types
	12.2 Attributes
	12.3 Rectangles
	12.4 Instances as return values
	12.5 Objects are mutable
	12.6 Copying
	12.7 Debugging
	12.8 Glossary
	12.9 Exercises

	13 Classes and functions
	13.1 Time
	13.2 Pure functions
	13.3 Modifiers
	13.4 Prototyping versus planning
	13.5 Debugging
	13.6 Glossary
	13.7 Exercises

	14 Classes and methods
	14.1 Object-oriented features
	14.2 Printing objects
	14.3 Another example
	14.4 A more complicated example
	14.5 The init method
	14.6 The __str__ method
	14.7 Operator overloading
	14.8 Type-based dispatch
	14.9 Polymorphism
	14.10 Debugging
	14.11 Glossary
	14.12 Exercises
	14.13 Further reading

	15 Inheritance
	15.1 Card objects
	15.2 Class attributes
	15.3 Comparing cards
	15.4 Decks
	15.5 Printing the deck
	15.6 Add, remove, shuffle and sort
	15.7 Inheritance
	15.8 Class diagrams
	15.9 Debugging
	15.10 Glossary
	15.11 Exercises

	16 Debugging
	16.1 Syntax errors
	16.2 Runtime errors
	16.3 Semantic errors

	17 Answers
	17.1 Chapter 1
	17.2 Chapter 2
	17.3 Chapter 3
	17.4 Chapter 9
	17.5 Chapter 10
	17.6 Chapter 11
	17.7 Chapter 12
	17.8 Chapter 13
	17.9 Chapter 14
	17.10 Chapter 15
	17.11 Chapter 16
	17.12 Chapter 3.5
	17.13 Index

	18 Contributors
	List of Figures
	19 Licenses
	19.1 GNU GENERAL PUBLIC LICENSE
	19.2 GNU Free Documentation License
	19.3 GNU Lesser General Public License

main/logfile

LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source

images/1.png

images/2.png

images/1.svg

 			 			 			 			 			 			 			 			 		 			 			 			 			 			 		 		 		 		 		 		 		 		 		 		 		 		 	 		 		 		 		 		 	 		 		 		 		 		 	 	 	 	 	 	 	 				 				 		 	 		 			 		 				 Output
	
	
 Source Code
	
	
 Interpreter

images/2.svg

	
	
 Source code
	
	
 Compiler Object code Executor 			 			 			 			 			 			 			 			 		 			 			 			 			 			 		 		 		 		 		 		 		 		 		 		 		 		 	 		 		 		 		 		 	 		 		 		 		 		 	 	 	 	 	 	 	 				 				 		 	 		 			 		 				 Output

main/md-frame-0.mdf

%%==%%
%%= Ausgabe der Box nach Vorgabe der Ausgaberoutine=%%
%%==%%
%% Styledatei fuer das Paket mdframed erstellt durch
%% Marco Daniel und Elke Schubert
%%
%% This package may be distributed under the terms of the LaTeX Project
%% Public License, as described in lppl.txt in the base LaTeX distribution.
%% Either version 1.0 or, at your option, any later version.

%%$Id: md-frame-0.mdf 105 2010-12-22 16:50:44Z marco $
%%$Rev: 105 $
%%$Author: marco $
%%$Date: 2010-12-22 17:50:44 +0100 (Mi, 22. Dez 2010) $

\def\mdversion{v0.6a}
\def\mdframedOpackagename{md-frame-0}
\def\md@frameOdate@svn$#1: #2 #3 #4-#5-#6 #7 #8${#4/#5/#6\space }

\ProvidesFile{md-frame-3.mdf}[\md@frameOdate@svn$Id: md-frame-0.mdf 105 2010-12-22 16:50:44Z marco $ \mdversion: \mdframedOpackagename]

\let\md@textwidth\textwidth

%%=single=%%
\def\md@frame@background@single{%
 \rlap{\color{\mdf@backgroundcolor}%
 \setlength{\mdfboundingboxheight}{\ht\@tempboxa+\dp\@tempboxa}%
 \addtolength{\mdfboundingboxheight}{%
 \mdf@innertopmargin@length%
 +\mdf@innerbottommargin@length%
 }%
 \rule[-\mdf@innerbottommargin@length]%
 {\wd\@tempboxa%
 +\mdf@innerleftmargin@length%
 +\mdf@innerrightmargin@length%
 }{\mdfboundingboxheight}%
 }%
}%
%
\def\md@frame@leftandbottomandtopline@single{%
 \setlength{\mdfboundingboxheight}{\ht\@tempboxa+\dp\@tempboxa}%
 \addtolength{\mdfboundingboxheight}{%
 \mdf@innertopmargin@length%
 +\mdf@innerbottommargin@length%
 +\mdf@middlelinewidth@length%
 +\mdf@middlelinewidth@length%
 }%
 \rlap{\color{\mdf@middlelinecolor}%
 \ifbool{mdf@leftline}%
 {\rule[-\mdf@innerbottommargin@length]%
 {\mdf@middlelinewidth}{\mdfboundingboxheight-2\mdf@middlelinewidth@length}%
 }{}%
 }%
 \rlap{\color{\mdf@middlelinecolor}%
 \ifmdf@bottomline%
 \ifboolexpr{ bool {mdf@leftline} and bool {mdf@rightline} }%
 {%\hspace*{\mdf@middlelinewidth@length}%
 \rule[-\mdf@innerbottommargin@length-\mdf@middlelinewidth@length]%
 {\wd\@tempboxa%
 +\mdf@innerleftmargin@length%
 +\mdf@innerrightmargin@length%
 +\mdf@middlelinewidth@length%
 +\mdf@middlelinewidth@length%
 }{\mdf@linewidth}%
 }{}%
 \ifboolexpr{ bool {mdf@leftline} and not(bool {mdf@rightline}) }%
 {%\hspace*{\mdf@middlelinewidth@length}%
 \rule[-\mdf@innerbottommargin@length-\mdf@middlelinewidth@length]%
 {\wd\@tempboxa%
 +\mdf@innerleftmargin@length%
 +\mdf@innerrightmargin@length%
 +\mdf@middlelinewidth@length%
 % +\mdf@middlelinewidth@length%
 }{\mdf@linewidth}%
 }{}%
 \ifboolexpr{ not(bool {mdf@leftline}) and bool {mdf@rightline} }%
 {%\hspace*{\mdf@middlelinewidth@length}%
 \rule[-\mdf@innerbottommargin@length-\mdf@middlelinewidth@length]%
 {\wd\@tempboxa%
 +\mdf@innerleftmargin@length%
 +\mdf@innerrightmargin@length%
 +\mdf@middlelinewidth@length%
 % +\mdf@middlelinewidth@length%
 }{\mdf@linewidth}%
 }{}%
 \ifboolexpr{ not(bool {mdf@leftline}) and not(bool {mdf@rightline}) }%
 {%\hspace*{\mdf@middlelinewidth@length}%
 \rule[-\mdf@innerbottommargin@length-\mdf@middlelinewidth@length]%
 {\wd\@tempboxa%
 +\mdf@innerleftmargin@length%
 +\mdf@innerrightmargin@length%
 % +\mdf@middlelinewidth@length%
 % +\mdf@middlelinewidth@length%
 }{\mdf@linewidth}%
 }{}%
 \fi%
 }%
 \rlap{\color{\mdf@middlelinecolor}%
 \ifmdf@topline%
 \ifboolexpr{ bool {mdf@leftline} and bool {mdf@rightline} }%
 {%\hspace*{\mdf@middlelinewidth@length}%
 \rule[%
 \mdf@innertopmargin@length
 +\ht\@tempboxa+\dp\@tempboxa]%
 {\wd\@tempboxa%
 +\mdf@innerleftmargin@length%
 +\mdf@innerrightmargin@length%
 +\mdf@middlelinewidth@length%
 +\mdf@middlelinewidth@length%
 }{\mdf@linewidth}%
 }{}%
 \ifboolexpr{ bool {mdf@leftline} and not(bool {mdf@rightline}) }%
 {%\hspace*{\mdf@middlelinewidth@length}%
 \rule[%
 \mdf@innertopmargin@length
 +\ht\@tempboxa+\dp\@tempboxa]%
 {\wd\@tempboxa%
 +\mdf@innerleftmargin@length%
 +\mdf@innerrightmargin@length%
% +\mdf@middlelinewidth@length%
 +\mdf@middlelinewidth@length%
 }{\mdf@linewidth}%
 }{}%
 \ifboolexpr{ not(bool {mdf@leftline}) and bool {mdf@rightline} }%
 {%\hspace*{\mdf@middlelinewidth@length}%
 \rule[%
 \mdf@innertopmargin@length
 +\ht\@tempboxa+\dp\@tempboxa]%
 {\wd\@tempboxa%
 +\mdf@innerleftmargin@length%
 +\mdf@innerrightmargin@length%
% +\mdf@middlelinewidth@length%
 +\mdf@middlelinewidth@length%
 }{\mdf@linewidth}%
 }{}%
 \ifboolexpr{ not(bool {mdf@leftline}) and not(bool {mdf@rightline}) }%
 {%\hspace*{\mdf@middlelinewidth@length}%
 \rule[%
 \mdf@innertopmargin@length
 +\ht\@tempboxa+\dp\@tempboxa]%
 {\wd\@tempboxa%
 +\mdf@innerleftmargin@length%
 +\mdf@innerrightmargin@length%
% +\mdf@middlelinewidth@length%
% +\mdf@middlelinewidth@length%
 }{\mdf@linewidth}%
 }{}%
 \fi%
 }%
}%

\def\md@frame@rightline@single{%
 \llap{\color{\mdf@middlelinecolor}
 \ifmdf@rightline%
 \rule[-\mdf@innerbottommargin@length]%
 {\mdf@linewidth}%
 {\mdfboundingboxheight-2\mdf@middlelinewidth@length}%
 \fi%
 }%
}%

\def\md@putbox@single{%%%%% Ausgabe der ungesplitteten Gesamtbox
 \ifvoid\@tempboxa
 \else
 \leftline{%
 \null\hspace*{\mdf@leftmargin@length}%
 \md@frame@leftandbottomandtopline@single%
 \ifbool{mdf@leftline}%
 {\hspace*{\mdf@middlelinewidth@length}}{}%
 \md@frame@background@single%
 \hspace*{\mdf@innerleftmargin@length}%
 {\box\@tempboxa}%
 \hspace*{\mdf@innerrightmargin@length}%
 \hspace*{\mdf@middlelinewidth@length}%
 \md@frame@rightline@single%
 }%
 \fi
}

%%=first=%%

\def\md@frame@background@first{%
 \setlength{\mdfboundingboxheight}{\ht\tw@+\dp\tw@}%
 \addtolength{\mdfboundingboxheight}{%
 \mdf@innertopmargin@length%
 +\mdf@splitbottomskip@length%
 }%
 \rlap{\color{\mdf@backgroundcolor}%
 \rule[-\dp\tw@-\mdf@splitbottomskip@length]%
 {\wd\tw@+\mdf@innerleftmargin@length+\mdf@innerrightmargin@length}%
 {\mdfboundingboxheight}%
 }%
}%

\def\md@frame@topandleftline@first{%
 \setlength{\mdfboundingboxheight}{\ht\tw@+\dp\tw@}%
 \addtolength{\mdfboundingboxheight}{%
 1\mdf@innertopmargin@length%
 +1\mdf@middlelinewidth@length%
 +\mdf@splitbottomskip@length%
 }%
 \rlap{\color{\mdf@middlelinecolor}
 \ifbool{mdf@leftline}%
 {%
 \rule[-\dp\tw@-\mdf@splitbottomskip@length]%
 {\mdf@middlelinewidth@length}%
 {\mdfboundingboxheight-\mdf@middlelinewidth@length}%
 }{}%
 }%
 \rlap{\color{\mdf@middlelinecolor}%
 \ifmdf@topline
 \ifboolexpr{ bool {mdf@leftline} and bool {mdf@rightline}}%
 {\rule[\mdfboundingboxheight-\mdf@middlelinewidth@length-\dp\tw@-\mdf@splitbottomskip@length]%
 {\wd\tw@%
 +\mdf@innerleftmargin@length%
 +\mdf@innerrightmargin@length%
 +\mdf@middlelinewidth@length%
 +\mdf@middlelinewidth@length%
 }{\mdf@linewidth@length}%
 }{}%
 \ifboolexpr{ bool {mdf@leftline} and not(bool {mdf@rightline}) }%
 {\rule[\mdfboundingboxheight-\mdf@middlelinewidth@length-\dp\tw@-\mdf@splitbottomskip@length]%
 {\wd\tw@%
 +\mdf@innerleftmargin@length%
 +\mdf@innerrightmargin@length%
 +\mdf@middlelinewidth@length%
% +\mdf@middlelinewidth@length%
 }{\mdf@linewidth@length}%
 }{}%
 \ifboolexpr{ not (bool {mdf@leftline}) and bool {mdf@rightline} }%
 {%\hspace*{\mdf@middlelinewidth@length}%
 \rule[\mdfboundingboxheight-\mdf@middlelinewidth@length-\dp\tw@-\mdf@splitbottomskip@length]%
 {\wd\tw@%
 +\mdf@innerleftmargin@length%
 +\mdf@innerrightmargin@length%
 +\mdf@middlelinewidth@length%
% +\mdf@middlelinewidth@length%
 }{\mdf@linewidth@length}%
 }{}%
 \ifboolexpr{ not (bool {mdf@leftline}) and not(bool {mdf@rightline}) }%
 {%\hspace*{\mdf@middlelinewidth@length}%
 \rule[\mdfboundingboxheight-\mdf@middlelinewidth@length-\dp\tw@-\mdf@splitbottomskip@length]%
 {\wd\tw@%
 +\mdf@innerleftmargin@length%
 +\mdf@innerrightmargin@length%
% +\mdf@middlelinewidth@length%
% +\mdf@middlelinewidth@length%
 }{\mdf@linewidth@length}%
 }{}%
 \fi%
 \ifmdf@rightline
 \ifmdf@topline\else%
 \deflength\@tempskipb{\wd\tw@%
 +\mdf@innerleftmargin@length%
 +\mdf@innerrightmargin@length%
 +2\mdf@middlelinewidth@length%
 }%
 \hspace*{\@tempskipb}%
 \fi%
 \llap{\color{\mdf@middlelinecolor}%
 \rule[-\dp\tw@-\mdf@splitbottomskip@length]{\mdf@middlelinewidth@length}%
 {\mdfboundingboxheight-\mdf@middlelinewidth@length}%
 }%
 \fi%
 }%
}%

\def\md@putbox@first{%%%% Ausgabe der Teilbox 1
 \leftline{%
 \null\hspace*{\mdf@leftmargin@length}%
 \md@frame@topandleftline@first%
 \ifbool{mdf@leftline}%
 {\hspace*{\mdf@middlelinewidth@length}}{}%
 \md@frame@background@first%
 \hspace*{\mdf@innerleftmargin@length}%
 {\box\tw@}%
 }%
}

%%=second=%%

\def\md@frame@background@second{%
 \setlength{\mdfboundingboxheight}{\ht\@tempboxa+\dp\@tempboxa}%
 \addtolength{\mdfboundingboxheight}{%
 +\mdf@innerbottommargin@length%
 }%
 \rlap{\color{\mdf@backgroundcolor}%
 \rule[\dp\@tempboxa-\mdf@innerbottommargin@length]%
 {\wd\@tempboxa+\mdf@innerleftmargin@length%
 +\mdf@innerrightmargin@length}%
 {\mdfboundingboxheight}%
 }%
}%

\def\md@frame@lines@second{%
 \setlength{\mdfboundingboxheight}{\ht\@tempboxa+\dp\@tempboxa}%
 \addtolength{\mdfboundingboxheight}{%
 +\mdf@innerbottommargin@length%
 +\mdf@middlelinewidth@length%
 }%
 \rlap{\color{\mdf@middlelinecolor}%
 \ifbool{mdf@leftline}%
 {\rule[\dp\@tempboxa-\mdf@innerbottommargin@length]%
 {\mdf@middlelinewidth@length}%
 {\mdfboundingboxheight-\mdf@middlelinewidth@length}%
 }{}%
 }%
 \rlap{\color{\mdf@middlelinecolor}%
 \ifbool{mdf@bottomline}%
 {%
 \ifboolexpr{ bool {mdf@leftline} and bool {mdf@rightline} }%
 {\rule[\dp\@tempboxa-\mdf@innerbottommargin@length-\mdf@middlelinewidth@length]%
 {\wd\@tempboxa+\mdf@innerleftmargin@length%
 +\mdf@innerrightmargin@length+2\mdf@middlelinewidth@length}%
 {\mdf@middlelinewidth@length}%
 }{}%
 \ifboolexpr{ not (bool {mdf@leftline}) and not(bool {mdf@rightline}) }%
 {%
 \rule[\dp\@tempboxa-\mdf@innerbottommargin@length-\mdf@middlelinewidth@length]%
 {\wd\@tempboxa+\mdf@innerleftmargin@length%
 +\mdf@innerrightmargin@length}%
 {\mdf@middlelinewidth@length}%
 }{}%
 \ifboolexpr{ bool {mdf@leftline} and not(bool {mdf@rightline}) }%
 {%
 \rule[\dp\@tempboxa-\mdf@innerbottommargin@length-\mdf@middlelinewidth@length]%
 {\wd\@tempboxa+\mdf@innerleftmargin@length%
 +\mdf@innerrightmargin@length+\mdf@middlelinewidth@length}%
 {\mdf@middlelinewidth@length}%
 }{}%
 \ifboolexpr{ not(bool {mdf@leftline}) and bool {mdf@rightline} }%
 {%
 \rule[\dp\@tempboxa-\mdf@innerbottommargin@length-\mdf@middlelinewidth@length]%
 {\wd\@tempboxa+\mdf@innerleftmargin@length%
 +\mdf@innerrightmargin@length+\mdf@middlelinewidth@length}%
 {\mdf@middlelinewidth@length}%
 }{}%
 }{}%
 \llap{\color{\mdf@middlelinecolor}%
 \ifbool{mdf@rightline}%
 {\rule[\dp\@tempboxa-\mdf@innerbottommargin@length]%
 {\mdf@middlelinewidth@length}%
 {\mdfboundingboxheight-\mdf@middlelinewidth@length}%
 \ifbool{mdf@bottomline}{}%
 {\deflength\@tempskipb{\wd\@tempboxa%
 +\mdf@innerleftmargin@length%
 +\mdf@innerrightmargin@length%
 +2\mdf@middlelinewidth@length%
 }%
 \hspace*{-\@tempskipb}%
 }%
 }{}%
 }%
 }%
}%

\def\md@putbox@second{%%%%% Ausgabe der mittleren Teilbox
 \ifvoid\@tempboxa%
 \else
 \leftline{%
 \null\hspace*{\mdf@leftmargin@length}%
 \md@frame@lines@second%
 \ifbool{mdf@leftline}%
 {\hspace*{\mdf@middlelinewidth@length}}{}%
 \md@frame@background@second%
 \hspace*{\mdf@innerleftmargin@length}%
 {\box\@tempboxa}%
 }%
 \fi%
}%

%%=middle=%%

\def\md@frame@background@middle{%
 \setlength{\mdfboundingboxheight}{\ht\tw@+\dp\tw@}%
 \addtolength{\mdfboundingboxheight}{%
 \mdf@splitbottomskip@length%
 }%
 \rlap{\color{\mdf@backgroundcolor}%
 \rule[-\dp\tw@-\mdf@splitbottomskip@length]%
 {\wd\tw@+\mdf@innerleftmargin@length+\mdf@innerrightmargin@length}%
 {\mdfboundingboxheight}%
 }%
}%

\def\md@frame@lines@middle{%
 \setlength{\mdfboundingboxheight}{\ht\tw@+\dp\tw@}%
 \addtolength{\mdfboundingboxheight}{%
 \mdf@splitbottomskip@length%
 }%
 \rlap{\color{\mdf@middlelinecolor}%
 \ifbool{mdf@leftline}%
 {%
 \rule[-\dp\tw@-\mdf@splitbottomskip@length]{\mdf@middlelinewidth@length}{\mdfboundingboxheight}%
 }{}%
 \ifbool{mdf@rightline}%
 {%
 \deflength{\mdfpositionx}{\wd\tw@%
 +\mdf@innerleftmargin@length%
 +\mdf@innerrightmargin@length%
 +\mdf@middlelinewidth@length%
 }%
 \hspace*{\mdfpositionx}%
 \llap{\color{\mdf@middlelinecolor}%
 \rule[-\dp\tw@-\mdf@splitbottomskip@length]{\mdf@middlelinewidth@length}{\mdfboundingboxheight}%
 \ifbool{mdf@leftline}{}{}%
 }%
 }{}%
 }%
}%

\def\md@putbox@middle{%%%% Ausgabe der Teilbox 1
 \leftline{%
 \null\hspace*{\mdf@leftmargin@length}%
 \md@frame@lines@middle%
 \ifbool{mdf@leftline}%
 {\hspace*{\mdf@middlelinewidth@length}}{}%
 \md@frame@background@middle%
 \hspace*{\mdf@innerleftmargin@length}%
 {\box\tw@}%
 }%
}

main/md-frame-1.mdf

%%==%%
%%= Ausgabe der Box nach Vorgabe der Ausgaberoutine=%%
%%==%%
%% Styledatei fuer das Paket mdframed erstellt durch
%% Marco Daniel und Elke Schubert
%%
%% This package may be distributed under the terms of the LaTeX Project
%% Public License, as described in lppl.txt in the base LaTeX distribution.
%% Either version 1.0 or, at your option, any later version.

%%$Id: md-frame-1.mdf 105 2010-12-22 16:50:44Z marco $
%%$Rev: 105 $
%%$Author: marco $
%%$Date: 2010-12-22 17:50:44 +0100 (Mi, 22. Dez 2010) $

\def\mdversion{v0.6a}
\def\mdframedIpackagename{md-frame-1}
\def\md@frameIdate@svn$#1: #2 #3 #4-#5-#6 #7 #8${#4/#5/#6\space }

\ProvidesFile{md-frame-1.mdf}[\md@frameIdate@svn$Id: md-frame-1.mdf 105 2010-12-22 16:50:44Z marco $ \mdversion: \mdframedIpackagename]

%%Allgemeine Einstellungen fuer tikz

\def\md@tikz@settings{%
 %wenn das Innere der Doppellinie 0pt breit ist,
 %muss Grenze zwischen innerer und aeusserer Linie
 %einer Farbe zugeordnet werden
 \ifdimequal{\mdf@middlelinewidth@length}{\z@}%
 {\ifdimequal{\mdf@innerlinewidth@length}{\z@}%
 {\ifdimequal{\mdf@outerlinewidth@length}{\z@}%
 {\let\mdf@middlelinecolor\mdf@backgroundcolor}%
 {\let\mdf@middlelinecolor\mdf@outerlinecolor}%
 }%
 {\let\mdf@middlelinecolor\mdf@innerlinecolor}%
 }{}%
 \ifdimequal{\mdf@innerlinewidth@length}{\z@}%
 {\ifdimequal{\mdf@outerlinewidth@length}{\z@}%
 {\ifdimequal{\mdf@middlelinewidth@length}{\z@}%
 {}%
 {\let\mdf@middlelinecolor\mdf@linecolor}%
 }%
 {}%
 }{}%
 \tikzset{mdftext/.style={inner sep=0pt,outer sep=0pt}}%
 \tikzset{mdfcorners/.style={rounded corners=\mdf@roundcorner@length}}%
 \tikzset{mdfbackground/.style={fill=\mdf@backgroundcolor}}%
 \ifdimgreater{\mdf@outerlinewidth@length}{\z@}%
 {\tikzset{mdfborderA/.style={%
 draw=\mdf@outerlinecolor,%
 line width=2\mdf@outerlinewidth@length+\mdf@middlelinewidth@length%
 }%
 }%
 }%
 {\tikzset{mdfborderA/.style={}}}%
 \ifdimgreater{\mdf@innerlinewidth@length}{\z@}%
 {\tikzset{mdfborderI/.style={%
 draw=\mdf@innerlinecolor,%
 line width=2\mdf@innerlinewidth@length+\mdf@middlelinewidth@length%
 }%
 }%
 }%
 {\tikzset{mdfborderI/.style={}}}%
 \tikzset{mdfmiddle/.style={draw=\mdf@middlelinecolor,line width=\mdf@middlelinewidth@length}}%
}%

\def\md@putbox@single{%
 \leftline{\null\hspace*{\mdf@leftmargin@length}%%
 \md@tikz@settings%
 \setlength\mdfboxwidth{\wd\@tempboxa}%
 \setlength\mdfboxheight{\ht\@tempboxa+\dp\@tempboxa}%
 \begin{tikzpicture}
	 \coordinate(O)at(0,0);
 \pgfmathsetlengthmacro\x{\mdfboxwidth+\mdf@innerrightmargin@length%
 +\mdf@innerleftmargin@length+%
 2\mdf@innerlinewidth@length+\mdf@middlelinewidth@length}
 \pgfmathsetlengthmacro\xp{\mdf@innerleftmargin@length+%
 1*\mdf@innerlinewidth@length+0.5*\mdf@middlelinewidth@length}
 \pgfmathsetlengthmacro\y{\mdfboxheight+\mdf@innertopmargin@length%
 +\mdf@innerbottommargin@length%
 +2*\mdf@innerlinewidth@length+\mdf@middlelinewidth@length}
 \pgfmathsetlengthmacro\yp{\mdf@innerbottommargin@length%
 +1*\mdf@innerlinewidth@length+0.5*\mdf@middlelinewidth@length}
 \coordinate(P)at(\x,\y);
 \begin{scope}
		 \clip[preaction=mdfborderA]%
 [postaction={mdfbackground,mdfborderI}]%
 [mdfcorners](O)--(O|-P)--(P)--(P|-O)--cycle;
	 \end{scope}
 \path[mdfmiddle,mdfcorners](O)--(O|-P)--(P)--(P|-O)--cycle;
 \node[mdftext,anchor=south west]at(\xp,\yp){\box\@tempboxa};
 \end{tikzpicture}%
 }%
}%

\def\md@putbox@first{%
 \leftline{\null\hspace*{\mdf@leftmargin@length}%%
 \md@tikz@settings%
 \setlength\mdfboxwidth{\wd\tw@}%
 \setlength\mdfboxheight{\ht\tw@+\dp\tw@}%
 \ifdimequal{\pagegoal}{\maxdimen}{\enlargethispage{\baselineskip}}{}%
 \begin{tikzpicture}
	 \coordinate(O) at (0,0);
 \pgfmathsetlengthmacro\x{\mdfboxwidth+\mdf@innerrightmargin@length%
 +\mdf@innerleftmargin@length+%
 2*\mdf@innerlinewidth@length+1*\mdf@middlelinewidth@length}
 \pgfmathsetlengthmacro\xp{\mdf@innerleftmargin@length+%
 1*\mdf@innerlinewidth@length+0.5*\mdf@middlelinewidth@length}
 \pgfmathsetlengthmacro\y{-\mdfboxheight-\mdf@innertopmargin@length%
 -1*\mdf@innerlinewidth@length-0.5*\mdf@middlelinewidth@length+0.0cm}
 \pgfmathsetlengthmacro\yp{-\mdf@innertopmargin@length%
 -1*\mdf@innerlinewidth@length-0.5*\mdf@middlelinewidth@length%
 -0.5\mdfboxheight}
 \coordinate(P)at(\x,\y);
 \clip(-\mdf@outerlinewidth@length-0.5*\mdf@middlelinewidth@length,%
 \mdf@outerlinewidth@length+0.5*\mdf@middlelinewidth@length)%
 rectangle(\x+\mdf@outerlinewidth@length+0.5*\mdf@middlelinewidth@length,\y);
 \begin{scope}
 \clip[preaction=mdfborderA]%
 [postaction={mdfbackground,mdfborderI}]%
 [mdfcorners](O|-P)--(O)--(P|-O)--(P);
 \end{scope}
 \path[mdfmiddle,mdfcorners,](O|-P)--(O)--(P|-O)--(P);
 \node[mdftext,anchor=west,inner sep=0pt,outer sep=0pt]at(\xp,\yp){\box\tw@};
% \draw[fill] (0,0) circle (.1cm);
% \draw[fill,yellow] (\x,\y) circle (.1cm);
% \draw[fill,orange] (\xp,\yp) circle (.05cm);
 \end{tikzpicture}%
 }%
}%

\def\md@putbox@middle{%
 \leftline{\null\hspace*{\mdf@leftmargin@length}%%
 \md@tikz@settings%
 \setlength\mdfboxwidth{\wd\tw@}%
 \setlength\mdfboxheight{\ht\tw@}%
 \setlength{\mdf@ymargin@length}{0.4\baselineskip}%
 \begin{tikzpicture}
	 \coordinate(O)at(0,0);
 \pgfmathsetlengthmacro\x{\mdfboxwidth+\mdf@innerrightmargin@length%
 +\mdf@innerleftmargin@length+%
 2*\mdf@innerlinewidth@length+1*\mdf@middlelinewidth@length}
 \pgfmathsetlengthmacro\xp{\mdf@innerleftmargin@length+%
 1*\mdf@innerlinewidth@length+0.5*\mdf@middlelinewidth@length}
 \pgfmathsetlengthmacro\y{\mdfboxheight}
 \pgfmathsetlengthmacro\yp{0cm}
 \coordinate(P)at(\x,\y);
 \clip(-\mdf@outerlinewidth@length-0.5*\mdf@middlelinewidth@length,0)%
 rectangle(\x+\mdf@outerlinewidth@length+0.5*\mdf@middlelinewidth@length,\y);
 \begin{scope}
 	\path[mdfborderA](O)--(O|-P)(P)--(P|-O);
 \clip[postaction=mdfbackground](O)--(O|-P)--(P)--(P|-O);
 \path[mdfborderI](O)--(O|-P)(P)--(P|-O);
 \end{scope}
 \path[mdfmiddle](O)--(O|-P)(P)--(P|-O);
 \node[mdftext,anchor=south west]at(\xp,\yp){\box\tw@};
 \end{tikzpicture}%
 }
}

\def\md@putbox@second{%
 \leftline{\null\hspace*{\mdf@leftmargin@length}%%
 \md@tikz@settings%
 \setlength\mdfboxwidth{\wd\@tempboxa}%
 \setlength\mdfboxheight{\ht\@tempboxa}%
 \begin{tikzpicture}
 \coordinate(O)at(0,0);
 \pgfmathsetlengthmacro\x{\mdfboxwidth+\mdf@innerrightmargin@length%
 +\mdf@innerleftmargin@length+%
 2*\mdf@innerlinewidth@length+1*\mdf@middlelinewidth@length}
 \pgfmathsetlengthmacro\xp{\mdf@innerleftmargin@length+%
 1*\mdf@innerlinewidth@length+0.5*\mdf@middlelinewidth@length}
 \pgfmathsetlengthmacro\y{\mdfboxheight%
 +\mdf@innerbottommargin@length%
 +1*\mdf@innerlinewidth@length+0.5*\mdf@middlelinewidth@length}
 \pgfmathsetlengthmacro\yp{\mdf@innerbottommargin@length%
 +1*\mdf@innerlinewidth@length+0.5*\mdf@middlelinewidth@length}
 \coordinate(P)at(\x,\y);
 \clip(-\mdf@outerlinewidth@length-0.5*\mdf@middlelinewidth@length,%
 -\mdf@outerlinewidth@length-0.5*\mdf@middlelinewidth@length)%
 rectangle(\x+\mdf@outerlinewidth@length+0.5*\mdf@middlelinewidth@length,\y);
 \begin{scope}
 \clip[preaction=mdfborderA]%
 [postaction={mdfbackground,mdfborderI}]%
 [mdfcorners](P-|O)--(O)--(O-|P)--(P);
 \end{scope}
 \path[mdfmiddle,mdfcorners](P-|O)--(O)--(O-|P)--(P);
 \node[mdftext,anchor=south west] at (\xp,\yp){\box\@tempboxa};
 \end{tikzpicture}%
 }
}

main/md-frame-3.mdf

%%==%%
%%= Ausgabe der Box nach Vorgabe der Ausgaberoutine=%%
%%==%%
%% Styledatei fuer das Paket mdframed erstellt durch
%% Marco Daniel

%% This package may be distributed under the terms of the LaTeX Project
%% Public License, as described in lppl.txt in the base LaTeX distribution.
%% Either version 1.0 or, at your option, any later version.

%%$Id: md-frame-3.mdf 105 2010-12-22 16:50:44Z marco $
%%$Rev: 105 $
%%$Author: marco $
%%$Date: 2010-12-22 17:50:44 +0100 (Mi, 22. Dez 2010) $

%%Allgemeine Einstellungen fuer pstricks
%%Hier nur einfacher Rahmen mit Einstellungen

\def\mdversion{v0.6a}
\def\mdframedIIIpackagename{md-frame-3}
\def\md@frameIIIdate@svn$#1: #2 #3 #4-#5-#6 #7 #8${#4/#5/#6\space }

\ProvidesFile{md-frame-3.mdf}[\md@frameIIIdate@svn$Id: md-frame-3.mdf 105 2010-12-22 16:50:44Z marco $ \mdversion: \mdframedIIIpackagename]

\def\md@ptlength@to@pscode#1{\pst@number{#1} \pst@number\psxunit div}
\let\ptTps\md@ptlength@to@pscode\relax

\def\md@putbox@single{%
 \leftline{\null\hspace*{\mdf@leftmargin@length}%%
 \setlength\mdfboxwidth{\wd\@tempboxa}%
 \setlength\mdfboxheight{\ht\@tempboxa+\dp\@tempboxa}%
 \setlength{\mdfboundingboxheight}{%
 \mdfboxheight%
 +\mdf@innertopmargin@length%
 +\mdf@innerbottommargin@length%
% +\mdf@middlelinewidth@length%
% +\mdf@middlelinewidth@length%
 }%
 \ifbool{mdf@topline}{\addtolength{\mdfboundingboxheight}{\mdf@middlelinewidth@length}}{}%
 \ifbool{mdf@bottomline}{\addtolength{\mdfboundingboxheight}{\mdf@middlelinewidth@length}}{}%
 \setlength{\mdfboundingboxwidth}{%
 \mdfboxwidth%
 +\mdf@innerleftmargin@length%
 +\mdf@innerrightmargin@length%
% +\mdf@middlelinewidth@length%
% +\mdf@middlelinewidth@length%
 }%
 \ifbool{mdf@leftline}{\addtolength{\mdfboundingboxwidth}{\mdf@middlelinewidth@length}}{}%
 \ifbool{mdf@rightline}{\addtolength{\mdfboundingboxwidth}{\mdf@middlelinewidth@length}}{}%
 \psset{linearc=\mdf@roundcorner@length,cornersize=absolute,}%
 \expandafter\psset\expandafter{\mdf@psset@local}%
 \psset{unit=1truecm}%
 \begin{pspicture}(0,0)(\mdfboundingboxwidth,\mdfboundingboxheight)
 \ifboolexpr{ bool {mdf@topline} and bool {mdf@bottomline}
 and bool {mdf@leftline} and bool {mdf@rightline}
 }%
 {\psframe[linecolor=\mdf@backgroundcolor,fillstyle=solid,%
 fillcolor=\mdf@backgroundcolor,linestyle=solid,
 linewidth=\mdf@middlelinewidth@length]%
 (\mdf@middlelinewidth@length,\mdf@middlelinewidth@length)%
 (! \ptTps{\mdfboundingboxwidth}
 \ptTps{\mdf@middlelinewidth@length} neg add %X-Koord
 \ptTps{\mdfboundingboxheight}
 \ptTps{\mdf@middlelinewidth@length} neg add %Y-Koord
)
 \psframe[linewidth=\mdf@middlelinewidth@length,
 linecolor=\mdf@linecolor,
 cornersize=absolute,
 fillstyle=none,]%
 (0,0)(\mdfboundingboxwidth,\mdfboundingboxheight)%
 \rput(! \ptTps{\mdf@middlelinewidth@length}
 \ptTps{\mdf@innerleftmargin@length}
 \ptTps{\mdfboxwidth} 0.5 mul add add %X-Koord
 \ptTps{\mdf@middlelinewidth@length}
 \ptTps{\mdf@innerbottommargin@length}
 \ptTps{\mdfboxheight} 0.5 mul add add %Y-Koord
){\box\@tempboxa}
 }{}%
 \ifboolexpr{ bool {mdf@topline} and bool {mdf@bottomline}
 and not (bool {mdf@leftline}) and bool {mdf@rightline}
 }%
 {\psframe[linecolor=\mdf@backgroundcolor,fillstyle=solid,%
 fillcolor=\mdf@backgroundcolor,linestyle=solid,
 linewidth=\mdf@middlelinewidth@length]%
 (0,\mdf@middlelinewidth@length)%
 (! \ptTps{\mdfboundingboxwidth}
 \ptTps{\mdf@middlelinewidth@length} neg add %X-Koord
 \ptTps{\mdfboundingboxheight}
 \ptTps{\mdf@middlelinewidth@length} neg add %Y-Koord
)
 \psline[linewidth=\mdf@middlelinewidth,
 linecolor=\mdf@linecolor,fillstyle=none,]%
 (! 0 %X-Koord
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul %Y-Koord
)%
 (! \ptTps{\mdfboundingboxwidth}
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %X-Koord
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul %Y-Koord
)%
 (! \ptTps{\mdfboundingboxwidth}
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %X-Koord
 \ptTps{\mdfboundingboxheight}
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %Y-Koord
)%
 (! 0 %X-Koord
 \ptTps{\mdfboundingboxheight}
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %Y-Koord
)%
 \rput(!\ptTps{\mdf@innerleftmargin@length}
 \ptTps{\mdfboxwidth} 0.5 mul add %X-Koord
 \ptTps{\mdf@middlelinewidth@length}
 \ptTps{\mdf@innerbottommargin@length}
 \ptTps{\mdfboxheight} 0.5 mul add add %Y-Koord
){\box\@tempboxa}
 }{}%
 \ifboolexpr{ bool {mdf@topline} and bool {mdf@bottomline}
 and bool {mdf@leftline} and not(bool {mdf@rightline})
 }%
 {\psframe[linecolor=\mdf@backgroundcolor,fillstyle=solid,%
 fillcolor=\mdf@backgroundcolor,linestyle=solid,
 linewidth=\mdf@middlelinewidth@length]%
 (\mdf@middlelinewidth@length,\mdf@middlelinewidth@length)%
 (! \ptTps{\mdfboundingboxwidth} %X-Koord
 \ptTps{\mdfboundingboxheight}
 \ptTps{\mdf@middlelinewidth@length} neg add %Y-Koord
)
 \psline[linewidth=\mdf@middlelinewidth,
 linecolor=\mdf@linecolor,fillstyle=none,]%
 (! \ptTps{\mdfboundingboxwidth} %X-Koord
 \ptTps{\mdfboundingboxheight}
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %Y-Koord
)%
 (! \ptTps{\mdf@middlelinewidth@length} 0.5 mul %X-Koord
 \ptTps{\mdfboundingboxheight}
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %Y-Koord
)%
 (! \ptTps{\mdf@middlelinewidth@length} 0.5 mul %X-Koord
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul %Y-Koord
)%
 (! \ptTps{\mdfboundingboxwidth} %X-Koord
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul %Y-Koord
)%
 \rput(! \ptTps{\mdf@middlelinewidth@length}
 \ptTps{\mdf@innerleftmargin@length}
 \ptTps{\mdfboxwidth} 0.5 mul add add %X-Koord
 \ptTps{\mdf@middlelinewidth@length}
 \ptTps{\mdf@innerbottommargin@length}
 \ptTps{\mdfboxheight} 0.5 mul add add %Y-Koord
){\box\@tempboxa}
 }{}%
 \ifboolexpr{ not(bool {mdf@topline}) and bool {mdf@bottomline}
 and bool {mdf@leftline} and bool {mdf@rightline}
 }%
 {\psframe[linecolor=\mdf@backgroundcolor,fillstyle=solid,%
 fillcolor=\mdf@backgroundcolor,linestyle=solid,
 linewidth=\mdf@middlelinewidth@length]%
 (\mdf@middlelinewidth@length,\mdf@middlelinewidth@length)%
 (! \ptTps{\mdfboundingboxwidth}
 \ptTps{\mdf@middlelinewidth@length} neg add %X-Koord
 \ptTps{\mdfboundingboxheight} %Y-Koord
)
 \psline[linewidth=\mdf@middlelinewidth,
 linecolor=\mdf@linecolor,fillstyle=none,]%
 (! \ptTps{\mdf@middlelinewidth@length} 0.5 mul %X-Koord
 \ptTps{\mdfboundingboxheight} %Y-Koord
)%
 (! \ptTps{\mdf@middlelinewidth@length} 0.5 mul %X-Koord
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul %Y-Koord
)%
 (! \ptTps{\mdfboundingboxwidth}
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %X-Koord
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul %Y-Koord
)%
 (! \ptTps{\mdfboundingboxwidth}
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %X-Koord
 \ptTps{\mdfboundingboxheight} %Y-Koord
)%
 \rput(! \ptTps{\mdf@middlelinewidth@length}
 \ptTps{\mdf@innerleftmargin@length}
 \ptTps{\mdfboxwidth} 0.5 mul add add %X-Koord
 \ptTps{\mdf@middlelinewidth@length}
 \ptTps{\mdf@innerbottommargin@length}
 \ptTps{\mdfboxheight} 0.5 mul add add %Y-Koord
){\box\@tempboxa}
 }{}%
 \ifboolexpr{ bool {mdf@topline} and not (bool {mdf@bottomline})
 and bool {mdf@leftline} and bool {mdf@rightline}
 }%
 {\psframe[linecolor=\mdf@backgroundcolor,fillstyle=solid,%
 fillcolor=\mdf@backgroundcolor,linestyle=solid,
 linewidth=\mdf@middlelinewidth@length]%
 (\mdf@middlelinewidth@length,0)%
 (! \ptTps{\mdfboundingboxwidth}
 \ptTps{\mdf@middlelinewidth@length} neg add %X-Koord
 \ptTps{\mdfboundingboxheight}
 \ptTps{\mdf@middlelinewidth@length} neg add %Y-Koord
)
 \psline[linewidth=\mdf@middlelinewidth,
 linecolor=\mdf@linecolor,fillstyle=none,]%
 (! \ptTps{\mdf@middlelinewidth@length} 0.5 mul %X-Koord
 0 %Y-Koord
)%
 (! \ptTps{\mdf@middlelinewidth@length} 0.5 mul %X-Koord
 \ptTps{\mdfboundingboxheight}
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %Y-Koord
)%
 (! \ptTps{\mdfboundingboxwidth}
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %X-Koord
 \ptTps{\mdfboundingboxheight}
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %Y-Koord
)%
 (! \ptTps{\mdfboundingboxwidth}
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %X-Koord
 0 %Y-Koord
)%
 \rput(! \ptTps{\mdf@middlelinewidth@length}
 \ptTps{\mdf@innerleftmargin@length}
 \ptTps{\mdfboxwidth} 0.5 mul add add %X-Koord
 \ptTps{\mdf@innerbottommargin@length}
 \ptTps{\mdfboxheight} 0.5 mul add %Y-Koord
){\box\@tempboxa}
 }{}%
 \ifboolexpr{ not(bool {mdf@topline}) and not (bool {mdf@bottomline})
 and bool {mdf@leftline} and bool {mdf@rightline}
 }%
 {\psframe[linecolor=\mdf@backgroundcolor,fillstyle=solid,%
 fillcolor=\mdf@backgroundcolor,linestyle=solid,
 linewidth=\mdf@middlelinewidth@length]%
 (\mdf@middlelinewidth@length,0)%
 (! \ptTps{\mdfboundingboxwidth}
 \ptTps{\mdf@middlelinewidth@length} neg add %X-Koord
 \ptTps{\mdfboundingboxheight} %Y-Koord
)
 \psline[linewidth=\mdf@middlelinewidth,
 linecolor=\mdf@linecolor,fillstyle=none,]%
 (! \ptTps{\mdf@middlelinewidth@length} 0.5 mul %X-Koord
 0 %Y-Koord
)%
 (! \ptTps{\mdf@middlelinewidth@length} 0.5 mul %X-Koord
 \ptTps{\mdfboundingboxheight}
)%
 \psline[linewidth=\mdf@middlelinewidth,
 linecolor=\mdf@linecolor,fillstyle=none,]%
 (! \ptTps{\mdfboundingboxwidth}
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %X-Koord
 \ptTps{\mdfboundingboxheight} %Y-Koord
)%
 (! \ptTps{\mdfboundingboxwidth}
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %X-Koord
 0 %Y-Koord
)%
 \rput(! \ptTps{\mdf@middlelinewidth@length}
 \ptTps{\mdf@innerleftmargin@length}
 \ptTps{\mdfboxwidth} 0.5 mul add add %X-Koord
 \ptTps{\mdf@innerbottommargin@length}
 \ptTps{\mdfboxheight} 0.5 mul add %Y-Koord
){\box\@tempboxa}
 }{}%
 \ifboolexpr{ bool {mdf@topline} and bool {mdf@bottomline}
 and not (bool {mdf@leftline}) and not(bool {mdf@rightline})
 }%
 {\psframe[linecolor=\mdf@backgroundcolor,fillstyle=solid,%
 fillcolor=\mdf@backgroundcolor,linestyle=solid,
 linewidth=\mdf@middlelinewidth@length]%
 (0,\mdf@middlelinewidth@length)%
 (! \ptTps{\mdfboundingboxwidth} %X-Koord
 \ptTps{\mdfboundingboxheight}
 \ptTps{\mdf@middlelinewidth@length} neg add %Y-Koord
)
 \psline[linewidth=\mdf@middlelinewidth,
 linecolor=\mdf@linecolor,fillstyle=none,]%
 (! 0 %X-Koord
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul %Y-Koord
)%
 (! \ptTps{\mdfboundingboxwidth} %X-Koord
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul %Y-Koord
)%
 \psline[linewidth=\mdf@middlelinewidth,
 linecolor=\mdf@linecolor,fillstyle=none,]%
 (! \ptTps{\mdfboundingboxwidth} %X-Koord
 \ptTps{\mdfboundingboxheight}
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %Y-Koord
)%
 (! 0 %X-Koord
 \ptTps{\mdfboundingboxheight}
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %Y-Koord
)%
 \rput(!\ptTps{\mdf@innerleftmargin@length}
 \ptTps{\mdfboxwidth} 0.5 mul add %X-Koord
 \ptTps{\mdf@middlelinewidth@length}
 \ptTps{\mdf@innerbottommargin@length}
 \ptTps{\mdfboxheight} 0.5 mul add add %Y-Koord
){\box\@tempboxa}
 }{}%
 \ifboolexpr{ not(bool {mdf@topline}) and not (bool {mdf@bottomline})
 and bool {mdf@leftline} and not(bool {mdf@rightline})
 }%
 {\psframe[linecolor=\mdf@backgroundcolor,fillstyle=solid,%
 fillcolor=\mdf@backgroundcolor,linestyle=solid,
 linewidth=\mdf@middlelinewidth@length]%
 (\mdf@middlelinewidth@length,0)%
 (! \ptTps{\mdfboundingboxwidth} %X-Koord
 \ptTps{\mdfboundingboxheight} %Y-Koord
)
 \psline[linewidth=\mdf@middlelinewidth,
 linecolor=\mdf@linecolor,fillstyle=none,]%
 (! \ptTps{\mdf@middlelinewidth@length} 0.5 mul %X-Koord
 0 %Y-Koord
)%
 (! \ptTps{\mdf@middlelinewidth@length} 0.5 mul %X-Koord
 \ptTps{\mdfboundingboxheight}
)%
 \rput(! \ptTps{\mdf@middlelinewidth@length}
 \ptTps{\mdf@innerleftmargin@length}
 \ptTps{\mdfboxwidth} 0.5 mul add add %X-Koord
 \ptTps{\mdf@innerbottommargin@length}
 \ptTps{\mdfboxheight} 0.5 mul add %Y-Koord
){\box\@tempboxa}
 }{}%
 \ifboolexpr{ not(bool {mdf@topline}) and not (bool {mdf@bottomline})
 and not(bool {mdf@leftline}) and bool {mdf@rightline}
 }%
 {\psframe[linecolor=\mdf@backgroundcolor,fillstyle=solid,%
 fillcolor=\mdf@backgroundcolor,linestyle=solid,
 linewidth=\mdf@middlelinewidth@length]%
 (!0 0)%
 (! \ptTps{\mdfboundingboxwidth}
 \ptTps{\mdf@middlelinewidth@length} neg add %X-Koord
 \ptTps{\mdfboundingboxheight} %Y-Koord
)
 \psline[linewidth=\mdf@middlelinewidth,
 linecolor=\mdf@linecolor,fillstyle=none,]%
 (! \ptTps{\mdfboundingboxwidth}
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %X-Koord
 \ptTps{\mdfboundingboxheight} %Y-Koord
)%
 (! \ptTps{\mdfboundingboxwidth}
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %X-Koord
 0 %Y-Koord
)%
 \rput(! \ptTps{\mdf@innerleftmargin@length}
 \ptTps{\mdfboxwidth} 0.5 mul add %X-Koord
 \ptTps{\mdf@innerbottommargin@length}
 \ptTps{\mdfboxheight} 0.5 mul add %Y-Koord
){\box\@tempboxa}
 }{}%
 \ifboolexpr{ not(bool {mdf@topline}) and bool {mdf@bottomline}
 and not (bool {mdf@leftline}) and not(bool {mdf@rightline})
 }%
 {\psframe[linecolor=\mdf@backgroundcolor,fillstyle=solid,%
 fillcolor=\mdf@backgroundcolor,linestyle=solid,
 linewidth=\mdf@middlelinewidth@length]%
 (0,\mdf@middlelinewidth@length)%
 (! \ptTps{\mdfboundingboxwidth} %X-Koord
 \ptTps{\mdfboundingboxheight} %Y-Koord
)
 \psline[linewidth=\mdf@middlelinewidth,
 linecolor=\mdf@linecolor,fillstyle=none,]%
 (! 0 %X-Koord
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul %Y-Koord
)%
 (! \ptTps{\mdfboundingboxwidth} %X-Koord
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul %Y-Koord
)%
 \rput(!\ptTps{\mdf@innerleftmargin@length}
 \ptTps{\mdfboxwidth} 0.5 mul add %X-Koord
 \ptTps{\mdf@middlelinewidth@length}
 \ptTps{\mdf@innerbottommargin@length}
 \ptTps{\mdfboxheight} 0.5 mul add add %Y-Koord
){\box\@tempboxa}
 }{}%
 \ifboolexpr{ bool {mdf@topline} and not (bool {mdf@bottomline})
 and not (bool {mdf@leftline}) and not(bool {mdf@rightline})
 }%
 {\psframe[linecolor=\mdf@backgroundcolor,fillstyle=solid,%
 fillcolor=\mdf@backgroundcolor,linestyle=solid,
 linewidth=\mdf@middlelinewidth@length]%
 (0,0)%
 (! \ptTps{\mdfboundingboxwidth} %X-Koord
 \ptTps{\mdfboundingboxheight}
 \ptTps{\mdf@middlelinewidth@length} neg add %Y-Koord
)
 \psline[linewidth=\mdf@middlelinewidth,
 linecolor=\mdf@linecolor,fillstyle=none,]%
 (! \ptTps{\mdfboundingboxwidth} %X-Koord
 \ptTps{\mdfboundingboxheight}
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %Y-Koord
)%
 (! 0 %X-Koord
 \ptTps{\mdfboundingboxheight}
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %Y-Koord
)%
 \rput(!\ptTps{\mdf@innerleftmargin@length}
 \ptTps{\mdfboxwidth} 0.5 mul add %X-Koord
 \ptTps{\mdf@innerbottommargin@length}
 \ptTps{\mdfboxheight} 0.5 mul add %Y-Koord
){\box\@tempboxa}
 }{}% \psgrid
 \end{pspicture}%
 }%
}

\def\md@putbox@first{%
 \leftline{\null\hspace*{\mdf@leftmargin@length}%%
 \setlength\mdfboxwidth{\wd\tw@}%
 \setlength\mdfboxheight{\ht\tw@+\dp\tw@}%
 \setlength{\mdfboundingboxheight}{%
 +\mdfboxheight%
 +\mdf@innertopmargin@length%
 +\mdf@splitbottomskip@length%
 }%
 \ifbool{mdf@topline}{\addtolength{\mdfboundingboxheight}{\mdf@middlelinewidth@length}}{}%
 \setlength{\mdfboundingboxwidth}{%
 +\mdf@innerleftmargin@length%
 +\mdfboxwidth
 +\mdf@innerrightmargin@length%
 }%
 \ifbool{mdf@leftline}{\addtolength{\mdfboundingboxwidth}{\mdf@middlelinewidth@length}}{}%
 \ifbool{mdf@rightline}{\addtolength{\mdfboundingboxwidth}{\mdf@middlelinewidth@length}}{}%
 \psset{linearc=\mdf@roundcorner@length}%
 \expandafter\psset\expandafter{\mdf@psset@local}%
 \psset{unit=1truecm}%
 \ifdimgreater{\mdfboundingboxheight}{\vsize}
 {\begin{pspicture}(0,0)(\mdfboundingboxwidth,\vsize)}
 {\begin{pspicture}(0,0)(\mdfboundingboxwidth,\mdfboundingboxheight)}
 \ifboolexpr{ bool {mdf@topline} and bool {mdf@rightline}
 and bool {mdf@leftline}
 }%
 {\psframe[linecolor=\mdf@backgroundcolor,fillstyle=solid,%
 fillcolor=\mdf@backgroundcolor,linestyle=solid,
 linewidth=\mdf@middlelinewidth@length]%
 (\mdf@middlelinewidth@length,0)%
 (! \ptTps{\mdfboundingboxwidth}
 \ptTps{\mdf@middlelinewidth@length} neg add %X-Koord
 \ptTps{\mdfboundingboxheight}
 \ptTps{\mdf@middlelinewidth@length} neg add %Y-Koord
)
 \psline[linewidth=\mdf@middlelinewidth,
 linecolor=\mdf@linecolor,fillstyle=none,]%
 (! \ptTps{\mdf@middlelinewidth@length} 0.5 mul %X-Koord
 0 %Y-Koord
)%
 (! \ptTps{\mdf@middlelinewidth@length} 0.5 mul %X-Koord
 \ptTps{\mdfboundingboxheight}
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %Y-Koord
)%
 (! \ptTps{\mdfboundingboxwidth}
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %X-Koord
 \ptTps{\mdfboundingboxheight}
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %Y-Koord
)%
 (! \ptTps{\mdfboundingboxwidth}
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %X-Koord
 0 %Y-Koord
)%
 \rput(! \ptTps{\mdf@middlelinewidth@length}
 \ptTps{\mdf@innerleftmargin@length}
 \ptTps{\mdfboxwidth} 0.5 mul add add %X-Koord
 \ptTps{\mdf@splitbottomskip@length}
 \ptTps{\mdfboxheight} 0.5 mul add %Y-Koord
){\box\tw@}
 }{}%
 \ifboolexpr{ not(bool {mdf@topline}) and bool {mdf@rightline}
 and bool {mdf@leftline}
 }%
 {\psframe[linecolor=\mdf@backgroundcolor,fillstyle=solid,%
 fillcolor=\mdf@backgroundcolor,linestyle=solid,
 linewidth=\mdf@middlelinewidth@length]%
 (\mdf@middlelinewidth@length,0)%
 (! \ptTps{\mdfboundingboxwidth}
 \ptTps{\mdf@middlelinewidth@length} neg add %X-Koord
 \ptTps{\mdfboundingboxheight} %Y-Koord
)
 \psline[linewidth=\mdf@middlelinewidth,
 linecolor=\mdf@linecolor,fillstyle=none,]%
 (! \ptTps{\mdf@middlelinewidth@length} 0.5 mul %X-Koord
 0 %Y-Koord
)%
 (! \ptTps{\mdf@middlelinewidth@length} 0.5 mul %X-Koord
 \ptTps{\mdfboundingboxheight} %Y-Koord
)%
 \psline[linewidth=\mdf@middlelinewidth,
 linecolor=\mdf@linecolor,fillstyle=none,]%
 (! \ptTps{\mdfboundingboxwidth}
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %X-Koord
 \ptTps{\mdfboundingboxheight} %Y-Koord
)%
 (! \ptTps{\mdfboundingboxwidth}
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %X-Koord
 0 %Y-Koord
)%
 \rput(! \ptTps{\mdf@middlelinewidth@length}
 \ptTps{\mdf@innerleftmargin@length}
 \ptTps{\mdfboxwidth} 0.5 mul add add %X-Koord
 \ptTps{\mdf@splitbottomskip@length}
 \ptTps{\mdfboxheight} 0.5 mul add %Y-Koord
){\box\tw@}
 }{}%
 \ifboolexpr{ not(bool {mdf@topline}) and not(bool {mdf@rightline})
 and bool {mdf@leftline}
 }%
 {\psframe[linecolor=\mdf@backgroundcolor,fillstyle=solid,%
 fillcolor=\mdf@backgroundcolor,linestyle=solid,
 linewidth=\mdf@middlelinewidth@length]%
 (\mdf@middlelinewidth@length,0)%
 (! \ptTps{\mdfboundingboxwidth} %X-Koord
 \ptTps{\mdfboundingboxheight} %Y-Koord
)
 \psline[linewidth=\mdf@middlelinewidth,
 linecolor=\mdf@linecolor,fillstyle=none,]%
 (! \ptTps{\mdf@middlelinewidth@length} 0.5 mul %X-Koord
 0 %Y-Koord
)%
 (! \ptTps{\mdf@middlelinewidth@length} 0.5 mul %X-Koord
 \ptTps{\mdfboundingboxheight} %Y-Koord
)%
 \rput(! \ptTps{\mdf@middlelinewidth@length}
 \ptTps{\mdf@innerleftmargin@length}
 \ptTps{\mdfboxwidth} 0.5 mul add add %X-Koord
 \ptTps{\mdf@splitbottomskip@length}
 \ptTps{\mdfboxheight} 0.5 mul add %Y-Koord
){\box\tw@}
 }{}%
 \ifboolexpr{ not(bool {mdf@topline}) and bool {mdf@rightline}
 and not(bool {mdf@leftline})
 }%
 {\psframe[linecolor=\mdf@backgroundcolor,fillstyle=solid,%
 fillcolor=\mdf@backgroundcolor,linestyle=solid,
 linewidth=\mdf@middlelinewidth@length]%
 (0,0)%
 (! \ptTps{\mdfboundingboxwidth}
 \ptTps{\mdf@middlelinewidth@length} neg add %X-Koord
 \ptTps{\mdfboundingboxheight} %Y-Koord
)
 \psline[linewidth=\mdf@middlelinewidth,
 linecolor=\mdf@linecolor,fillstyle=none,]%
 (! \ptTps{\mdfboundingboxwidth}
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %X-Koord
 \ptTps{\mdfboundingboxheight} %Y-Koord
)%
 (! \ptTps{\mdfboundingboxwidth}
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %X-Koord
 0 %Y-Koord
)%
 \rput(!\ptTps{\mdf@innerleftmargin@length}
 \ptTps{\mdfboxwidth} 0.5 mul add %X-Koord
 \ptTps{\mdf@splitbottomskip@length}
 \ptTps{\mdfboxheight} 0.5 mul add %Y-Koord
){\box\tw@}
 }{}%
 \ifboolexpr{ bool {mdf@topline} and not(bool {mdf@rightline})
 and not(bool {mdf@leftline})
 }%
 {\psframe[linecolor=\mdf@backgroundcolor,fillstyle=solid,%
 fillcolor=\mdf@backgroundcolor,linestyle=solid,
 linewidth=\mdf@middlelinewidth@length]%
 (0,0)%
 (! \ptTps{\mdfboundingboxwidth} %X-Koord
 \ptTps{\mdfboundingboxheight}
 \ptTps{\mdf@middlelinewidth@length} neg add %Y-Koord
)
 \psline[linewidth=\mdf@middlelinewidth,
 linecolor=\mdf@linecolor,fillstyle=none,]%
 (! 0 %X-Koord
 \ptTps{\mdfboundingboxheight}
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %Y-Koord
)%
 (! \ptTps{\mdfboundingboxwidth} %X-Koord
 \ptTps{\mdfboundingboxheight}
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %Y-Koord
)%
 \rput(! \ptTps{\mdf@innerleftmargin@length}
 \ptTps{\mdfboxwidth} 0.5 mul add %X-Koord
 \ptTps{\mdf@splitbottomskip@length}
 \ptTps{\mdfboxheight} 0.5 mul add %Y-Koord
){\box\tw@}
 }{}%
 \ifboolexpr{ not(bool {mdf@topline}) and not(bool {mdf@rightline})
 and not(bool {mdf@leftline})
 }%
 {\psframe[linecolor=\mdf@backgroundcolor,fillstyle=solid,%
 fillcolor=\mdf@backgroundcolor,linestyle=solid,
 linewidth=\mdf@middlelinewidth@length]%
 (0,0)%
 (! \ptTps{\mdfboundingboxwidth} %X-Koord
 \ptTps{\mdfboundingboxheight} %Y-Koord
)
 \rput(! \ptTps{\mdf@innerleftmargin@length}
 \ptTps{\mdfboxwidth} 0.5 mul add %X-Koord
 \ptTps{\mdf@splitbottomskip@length}
 \ptTps{\mdfboxheight} 0.5 mul add %Y-Koord
){\box\tw@}
 }{}%
 \end{pspicture}%
 }%
}

\def\md@putbox@middle{%
 \leftline{\null\hspace*{\mdf@leftmargin@length}%%
 \setlength\mdfboxwidth{\wd\tw@}%
 \setlength\mdfboxheight{\ht\tw@+\dp\tw@}%
 \setlength{\mdfboundingboxheight}{%
 +\mdfboxheight%
 +\mdf@splitbottomskip@length%
 }%
 \setlength{\mdfboundingboxwidth}{%
 +\mdf@innerleftmargin@length%
 +\mdfboxwidth%
 +\mdf@innerrightmargin@length%
 }%
 \ifbool{mdf@leftline}{\addtolength{\mdfboundingboxwidth}{\mdf@middlelinewidth@length}}{}%
 \ifbool{mdf@rightline}{\addtolength{\mdfboundingboxwidth}{\mdf@middlelinewidth@length}}{}%
 \expandafter\psset\expandafter{\mdf@psset@local}%
 \psset{linearc=\mdf@roundcorner@length}%
 \psset{unit=1truecm}%
 \ifdimgreater{\mdfboundingboxheight}{\vsize}
 {\begin{pspicture}(0,0)(\mdfboundingboxwidth,\vsize)}
 {\begin{pspicture}(0,0)(\mdfboundingboxwidth,\mdfboundingboxheight)}
 \ifboolexpr{ bool {mdf@rightline} and bool {mdf@leftline}
 }%
 {\psframe[linecolor=\mdf@backgroundcolor,fillstyle=solid,%
 fillcolor=\mdf@backgroundcolor,linestyle=solid,
 linewidth=\mdf@middlelinewidth@length]%
 (\mdf@middlelinewidth@length,0)%
 (! \ptTps{\mdfboundingboxwidth}
 \ptTps{\mdf@middlelinewidth@length} neg add %X-Koord
 \ptTps{\mdfboundingboxheight} %Y-Koord
)
 \psline[linewidth=\mdf@middlelinewidth,
 linecolor=\mdf@linecolor,fillstyle=none,]%
 (! \ptTps{\mdf@middlelinewidth@length} 0.5 mul %X-Koord
 0 %Y-Koord
)%
 (! \ptTps{\mdf@middlelinewidth@length} 0.5 mul %X-Koord
 \ptTps{\mdfboundingboxheight} %Y-Koord
)%
 \psline[linewidth=\mdf@middlelinewidth,
 linecolor=\mdf@linecolor,fillstyle=none,]%
 (! \ptTps{\mdfboundingboxwidth}
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %X-Koord
 0 %Y-Koord
)%
 (! \ptTps{\mdfboundingboxwidth}
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %X-Koord
 \ptTps{\mdfboundingboxheight} %Y-Koord
)%
 \rput(! \ptTps{\mdf@middlelinewidth@length}
 \ptTps{\mdf@innerleftmargin@length}
 \ptTps{\mdfboxwidth} 0.5 mul add add %X-Koord
 \ptTps{\mdf@splitbottomskip@length}
 \ptTps{\mdfboxheight} 0.5 mul add %Y-Koord
){\box\tw@}
 }{}%
 \ifboolexpr{ bool {mdf@rightline} and not(bool {mdf@leftline})
 }%
 {\psframe[linecolor=\mdf@backgroundcolor,fillstyle=solid,%
 fillcolor=\mdf@backgroundcolor,linestyle=solid,
 linewidth=\mdf@middlelinewidth@length]%
 (0,0)%
 (! \ptTps{\mdfboundingboxwidth}
 \ptTps{\mdf@middlelinewidth@length} neg add %X-Koord
 \ptTps{\mdfboundingboxheight} %Y-Koord
)
 \psline[linewidth=\mdf@middlelinewidth,
 linecolor=\mdf@linecolor,fillstyle=none,]%
 (! \ptTps{\mdfboundingboxwidth}
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %X-Koord
 0 %Y-Koord
)%
 (! \ptTps{\mdfboundingboxwidth}
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %X-Koord
 \ptTps{\mdfboundingboxheight} %Y-Koord
)%
 \rput(! \ptTps{\mdf@innerleftmargin@length}
 \ptTps{\mdfboxwidth} 0.5 mul add %X-Koord
 \ptTps{\mdf@splitbottomskip@length}
 \ptTps{\mdfboxheight} 0.5 mul add %Y-Koord
){\box\tw@}
 }{}%
 \ifboolexpr{ not(bool {mdf@rightline}) and bool {mdf@leftline}
 }%
 {\psframe[linecolor=\mdf@backgroundcolor,fillstyle=solid,%
 fillcolor=\mdf@backgroundcolor,linestyle=solid,
 linewidth=\mdf@middlelinewidth@length]%
 (\mdf@middlelinewidth@length,0)%
 (! \ptTps{\mdfboundingboxwidth} %X-Koord
 \ptTps{\mdfboundingboxheight} %Y-Koord
)
 \psline[linewidth=\mdf@middlelinewidth,
 linecolor=\mdf@linecolor,fillstyle=none,]%
 (! \ptTps{\mdf@middlelinewidth@length} 0.5 mul %X-Koord
 0 %Y-Koord
)%
 (! \ptTps{\mdf@middlelinewidth@length} 0.5 mul %X-Koord
 \ptTps{\mdfboundingboxheight} %Y-Koord
)%
 \rput(! \ptTps{\mdf@middlelinewidth@length}
 \ptTps{\mdf@innerleftmargin@length}
 \ptTps{\mdfboxwidth} 0.5 mul add add %X-Koord
 \ptTps{\mdf@splitbottomskip@length}
 \ptTps{\mdfboxheight} 0.5 mul add %Y-Koord
){\box\tw@}
 }{}%
 \ifboolexpr{(
 not(bool {mdf@rightline}) and not(bool {mdf@leftline})
 and bool {mdf@topline} and not(bool {mdf@bottomline})
)
 or
 (
 not(bool {mdf@rightline}) and not(bool {mdf@leftline})
 and not (bool {mdf@topline}) and not(bool {mdf@bottomline})
)
 or
 (
 not(bool {mdf@rightline}) and not(bool {mdf@leftline})
 and not (bool {mdf@topline}) and bool {mdf@bottomline}
)
 or
 (
 not(bool {mdf@rightline}) and not(bool {mdf@leftline})
 and bool {mdf@topline} and bool {mdf@bottomline}
)
 }%
 {\psframe[linecolor=\mdf@backgroundcolor,fillstyle=solid,%
 fillcolor=\mdf@backgroundcolor,linestyle=solid,
 linewidth=\mdf@middlelinewidth@length]%
 (0,0)%
 (! \ptTps{\mdfboundingboxwidth} %X-Koord
 \ptTps{\mdfboundingboxheight} %Y-Koord
)
 \rput(! \ptTps{\mdf@innerleftmargin@length}
 \ptTps{\mdfboxwidth} 0.5 mul add %X-Koord
 \ptTps{\mdf@splitbottomskip@length}
 \ptTps{\mdfboxheight} 0.5 mul add %Y-Koord
){\box\tw@}
 }{}%
 \end{pspicture}%
 }%
}

\def\md@putbox@second{
 \leftline{\null\hspace*{\mdf@leftmargin@length}%%
 \setlength\mdfboxwidth{\wd\@tempboxa}%
 \setlength\mdfboxheight{\ht\@tempboxa+\dp\@tempboxa}%
 \setlength{\mdfboundingboxheight}{%
 +\mdfboxheight%
 +\mdf@innerbottommargin@length%
 }%
 \ifbool{mdf@bottomline}{\addtolength{\mdfboundingboxheight}{\mdf@middlelinewidth@length}}{}%
 \setlength{\mdfboundingboxwidth}{%
 +\mdf@innerleftmargin@length%
 +\mdfboxwidth
 +\mdf@innerrightmargin@length%
 }%
 \ifbool{mdf@leftline}{\addtolength{\mdfboundingboxwidth}{\mdf@middlelinewidth@length}}{}%
 \ifbool{mdf@rightline}{\addtolength{\mdfboundingboxwidth}{\mdf@middlelinewidth@length}}{}%
 \expandafter\psset\expandafter{\mdf@psset@local}
 \psset{linearc=\mdf@roundcorner@length}%
 \psset{unit=1truecm}%
 \begin{pspicture}(0,0)(\mdfboundingboxwidth,\mdfboundingboxheight)
 \ifboolexpr{ bool {mdf@bottomline} and bool {mdf@rightline}
 and bool {mdf@leftline}
 }%
 {\psframe[linecolor=\mdf@backgroundcolor,fillstyle=solid,%
 fillcolor=\mdf@backgroundcolor,linestyle=solid,
 linewidth=\mdf@middlelinewidth@length]%
 (\mdf@middlelinewidth@length,\mdf@middlelinewidth@length)%
 (! \ptTps{\mdfboundingboxwidth}
 \ptTps{\mdf@middlelinewidth@length} neg add %X-Koord
 \ptTps{\mdfboundingboxheight} %Y-Koord
)
 \psline[linewidth=\mdf@middlelinewidth,
 linecolor=\mdf@linecolor,fillstyle=none,]%
 (! \ptTps{\mdf@middlelinewidth@length} 0.5 mul %X-Koord
 \ptTps{\mdfboundingboxheight} %Y-Koord
)%
 (! \ptTps{\mdf@middlelinewidth@length} 0.5 mul %X-Koord
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul %Y-Koord
)%
 (! \ptTps{\mdfboundingboxwidth}
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %X-Koord
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul %Y-Koord
)%
 (! \ptTps{\mdfboundingboxwidth}
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %X-Koord
 \ptTps{\mdfboundingboxheight} %Y-Koord
)%
 \rput(! \ptTps{\mdf@middlelinewidth@length}
 \ptTps{\mdf@innerleftmargin@length}
 \ptTps{\mdfboxwidth} 0.5 mul add add %X-Koord
 \ptTps{\mdf@middlelinewidth@length}
 \ptTps{\mdf@innerbottommargin@length}
 \ptTps{\mdfboxheight} 0.5 mul add add %Y-Koord
){\box\@tempboxa}
 }{}%
 \ifboolexpr{ not(bool {mdf@bottomline}) and bool {mdf@rightline}
 and bool {mdf@leftline}
 }%
 {\psframe[linecolor=\mdf@backgroundcolor,fillstyle=solid,%
 fillcolor=\mdf@backgroundcolor,linestyle=solid,
 linewidth=\mdf@middlelinewidth@length]%
 (\mdf@middlelinewidth@length,0)%
 (! \ptTps{\mdfboundingboxwidth}
 \ptTps{\mdf@middlelinewidth@length} neg add %X-Koord
 \ptTps{\mdfboundingboxheight} %Y-Koord
)
 \psline[linewidth=\mdf@middlelinewidth,
 linecolor=\mdf@linecolor,fillstyle=none,]%
 (! \ptTps{\mdf@middlelinewidth@length} 0.5 mul %X-Koord
 \ptTps{\mdfboundingboxheight} %Y-Koord
)%
 (! \ptTps{\mdf@middlelinewidth@length} 0.5 mul %X-Koord
 0 %Y-Koord
)%
 \psline[linewidth=\mdf@middlelinewidth,
 linecolor=\mdf@linecolor,fillstyle=none,]%
 (! \ptTps{\mdfboundingboxwidth}
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %X-Koord
 0 %Y-Koord
)%
 (! \ptTps{\mdfboundingboxwidth}
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %X-Koord
 \ptTps{\mdfboundingboxheight} %Y-Koord
)%
 \rput(! \ptTps{\mdf@middlelinewidth@length}
 \ptTps{\mdf@innerleftmargin@length}
 \ptTps{\mdfboxwidth} 0.5 mul add add %X-Koord
 \ptTps{\mdf@innerbottommargin@length}
 \ptTps{\mdfboxheight} 0.5 mul add %Y-Koord
){\box\@tempboxa}
 }{}%
 \ifboolexpr{ not(bool {mdf@bottomline}) and not(bool {mdf@rightline})
 and bool {mdf@leftline}
 }%
 {\psframe[linecolor=\mdf@backgroundcolor,fillstyle=solid,%
 fillcolor=\mdf@backgroundcolor,linestyle=solid,
 linewidth=\mdf@middlelinewidth@length]%
 (\mdf@middlelinewidth@length,0)%
 (! \ptTps{\mdfboundingboxwidth} %X-Koord
 \ptTps{\mdfboundingboxheight} %Y-Koord
)
 \psline[linewidth=\mdf@middlelinewidth,
 linecolor=\mdf@linecolor,fillstyle=none,]%
 (! \ptTps{\mdf@middlelinewidth@length} 0.5 mul %X-Koord
 \ptTps{\mdfboundingboxheight} %Y-Koord
)%
 (! \ptTps{\mdf@middlelinewidth@length} 0.5 mul %X-Koord
 0 %Y-Koord
)%
 \rput(! \ptTps{\mdf@middlelinewidth@length}
 \ptTps{\mdf@innerleftmargin@length}
 \ptTps{\mdfboxwidth} 0.5 mul add add %X-Koord
 \ptTps{\mdf@innerbottommargin@length}
 \ptTps{\mdfboxheight} 0.5 mul add %Y-Koord
){\box\@tempboxa}
 }{}%
 \ifboolexpr{ not(bool {mdf@bottomline}) and bool {mdf@rightline}
 and not(bool {mdf@leftline})
 }%
 {\psframe[linecolor=\mdf@backgroundcolor,fillstyle=solid,%
 fillcolor=\mdf@backgroundcolor,linestyle=solid,
 linewidth=\mdf@middlelinewidth@length]%
 (0,0)%
 (! \ptTps{\mdfboundingboxwidth}
 \ptTps{\mdf@middlelinewidth@length} neg add %X-Koord
 \ptTps{\mdfboundingboxheight} %Y-Koord
)
 \psline[linewidth=\mdf@middlelinewidth,
 linecolor=\mdf@linecolor,fillstyle=none,]%
 (! \ptTps{\mdfboundingboxwidth}
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %X-Koord
 0 %Y-Koord
)%
 (! \ptTps{\mdfboundingboxwidth}
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %X-Koord
 \ptTps{\mdfboundingboxheight} %Y-Koord
)%
 \rput(! \ptTps{\mdf@innerleftmargin@length}
 \ptTps{\mdfboxwidth} 0.5 mul add %X-Koord
 \ptTps{\mdf@innerbottommargin@length}
 \ptTps{\mdfboxheight} 0.5 mul add %Y-Koord
){\box\@tempboxa}
 }{}%
 \ifboolexpr{ bool {mdf@bottomline} and not(bool {mdf@rightline})
 and not(bool {mdf@leftline})
 }%
 {\psframe[linecolor=\mdf@backgroundcolor,fillstyle=solid,%
 fillcolor=\mdf@backgroundcolor,linestyle=solid,
 linewidth=\mdf@middlelinewidth@length]%
 (0,\mdf@middlelinewidth@length)%
 (! \ptTps{\mdfboundingboxwidth} %X-Koord
 \ptTps{\mdfboundingboxheight} %Y-Koord
)
 \psline[linewidth=\mdf@middlelinewidth,
 linecolor=\mdf@linecolor,fillstyle=none,]%
 (! 0 %X-Koord
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul %Y-Koord
)%
 (! \ptTps{\mdfboundingboxwidth} %X-Koord
 \ptTps{\mdf@middlelinewidth@length} 0.5 mul %Y-Koord
)%
 \rput(! \ptTps{\mdf@innerleftmargin@length}
 \ptTps{\mdfboxwidth} 0.5 mul add %X-Koord
 \ptTps{\mdf@middlelinewidth@length}
 \ptTps{\mdf@innerbottommargin@length}
 \ptTps{\mdfboxheight} 0.5 mul add add %Y-Koord
){\box\@tempboxa}
 }{}%
 \ifboolexpr{ not(bool {mdf@bottomline}) and not(bool {mdf@rightline})
 and not(bool {mdf@leftline})
 }%
 {\psframe[linecolor=\mdf@backgroundcolor,fillstyle=solid,%
 fillcolor=\mdf@backgroundcolor,linestyle=solid,
 linewidth=\mdf@middlelinewidth@length]%
 (0,0)%
 (! \ptTps{\mdfboundingboxwidth} %X-Koord
 \ptTps{\mdfboundingboxheight} %Y-Koord
)
 \rput(! \ptTps{\mdf@innerleftmargin@length}
 \ptTps{\mdfboxwidth} 0.5 mul add %X-Koord
 \ptTps{\mdf@innerbottommargin@length}
 \ptTps{\mdfboxheight} 0.5 mul add %Y-Koord
){\box\@tempboxa}
 }{}%
 \end{pspicture}%
 }%
}

\endinput
%eof
%eof
%eof
%eof
%eof

main/utf8plain.def

%%
%% This is file `utf8.def',
%% generated with the docstrip utility.
%%
%% The original source files were:
%%
%% utf8ienc.dtx (with options: `utf8')
%%
%% This is a generated file.
%%
%% Copyright 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
%% The LaTeX3 Project and any individual authors listed elsewhere
%% in this file.
%%
%% This file was generated from file(s) of the LaTeX base system.
%% --
%%
%% It may be distributed and/or modified under the
%% conditions of the LaTeX Project Public License, either version 1.3c
%% of this license or (at your option) any later version.
%% The latest version of this license is in
%% http://www.latex-project.org/lppl.txt
%% and version 1.3c or later is part of all distributions of LaTeX
%% version 2005/12/01 or later.
%%
%% This file has the LPPL maintenance status "maintained".
%%
%% This file may only be distributed together with a copy of the LaTeX
%% base system. You may however distribute the LaTeX base system without
%% such generated files.
%%
%% The list of all files belonging to the LaTeX base distribution is
%% given in the file `manifest.txt'. See also `legal.txt' for additional
%% information.
%%
%% The list of derived (unpacked) files belonging to the distribution
%% and covered by LPPL is defined by the unpacking scripts (with
%% extension .ins) which are part of the distribution.
\ProvidesFile{utf8.def}
 [2008/04/05 v1.1m UTF-8 support for inputenc]
\makeatletter
\catcode`\ \saved@space@catcode
\def\UTFviii@two@octets#1#2{\expandafter
 \UTFviii@defined\csname u8:#1\string#2\endcsname}
\def\UTFviii@three@octets#1#2#3{\expandafter
 \UTFviii@defined\csname u8:#1\string#2\string#3\endcsname}
\def\UTFviii@four@octets#1#2#3#4{\expandafter
 \UTFviii@defined\csname u8:#1\string#2\string#3\string#4\endcsname}
\def\UTFviii@defined#1{%
 \ifx#1\relax
 \PackageError{inputenc}{Unicode\space char\space \string#1\space
 not\space set\space up\space
 for\space use\space with\space LaTeX}\@eha
 \else\expandafter
 #1%
 \fi
}
\begingroup
\catcode`\~13
\catcode`\"12
\def\UTFviii@loop{%
 \uccode`\~\count@
 \uppercase\expandafter{\UTFviii@tmp}%
 \advance\count@\@ne
 \ifnum\count@<\@tempcnta
 \expandafter\UTFviii@loop
 \fi}
 \count@"C2
 \@tempcnta"E0
 \def\UTFviii@tmp{\xdef~{\noexpand\UTFviii@two@octets\string~}}
\UTFviii@loop
 \count@"E0
 \@tempcnta"F0
 \def\UTFviii@tmp{\xdef~{\noexpand\UTFviii@three@octets\string~}}
\UTFviii@loop
 \count@"F0
 \@tempcnta"F4
 \def\UTFviii@tmp{\xdef~{\noexpand\UTFviii@four@octets\string~}}
\UTFviii@loop
\endgroup
\@inpenc@test
\ifx\@begindocumenthook\@undefined
 \makeatother
 \endinput \fi
\begingroup
\catcode`\"=12
\catcode`\<=12
\catcode`\.=12
\catcode`\,=12
\catcode`\;=12
\catcode`\!=12
\catcode`\~=13
\gdef\DeclareUnicodeCharacter#1#2{%
 \count@"#1\relax
 \wlog{ \space\space defining Unicode char U+#1 (decimal \the\count@)}%
 \begingroup
 \parse@XML@charref
 \def\UTFviii@two@octets##1##2{\csname u8:##1\string##2\endcsname}%
 \def\UTFviii@three@octets##1##2##3{\csname u8:##1%
 \string##2\string##3\endcsname}%
 \def\UTFviii@four@octets##1##2##3##4{\csname u8:##1%
 \string##2\string##3\string##4\endcsname}%
 \expandafter\expandafter\expandafter
 \expandafter\expandafter\expandafter
 \expandafter
 \gdef\UTFviii@tmp{\IeC{#2}}%
 \endgroup
}
\gdef\parse@XML@charref{%
 \ifnum\count@<"A0\relax
 \PackageError{inputenc}{Cannot\space define\space Unicode\space
 char\space value\space <\space 00A0}\@eha
 \else\ifnum\count@<"800\relax
 \parse@UTFviii@a,%
 \parse@UTFviii@b C\UTFviii@two@octets.,%
 \else\ifnum\count@<"10000\relax
 \parse@UTFviii@a;%
 \parse@UTFviii@a,%
 \parse@UTFviii@b E\UTFviii@three@octets.{,;}%
 \else
 \parse@UTFviii@a;%
 \parse@UTFviii@a,%
 \parse@UTFviii@a!%
 \parse@UTFviii@b F\UTFviii@four@octets.{!,;}%
 \fi
 \fi
 \fi
}
\gdef\parse@UTFviii@a#1{%
 \@tempcnta\count@
 \divide\count@ 64
 \@tempcntb\count@
 \multiply\count@ 64
 \advance\@tempcnta-\count@
 \advance\@tempcnta 128
 \uccode`#1\@tempcnta
 \count@\@tempcntb}
\gdef\parse@UTFviii@b#1#2#3#4{%
 \advance\count@ "#10\relax
 \uccode`#3\count@
 \uppercase{\gdef\UTFviii@tmp{#2#3#4}}}
\endgroup
\@onlypreamble\DeclareUnicodeCharacter
\@onlypreamble\parse@XML@charref
\@onlypreamble\parse@UTFviii@a
\@onlypreamble\parse@UTFviii@b
\begingroup
 \def\cdp@elt#1#2#3#4{%
 \wlog{Now handling font encoding #1 ...}%
 \lowercase{%
 \InputIfFileExists{utf8plain.dfu}}%
 {\wlog{... processing UTF-8 mapping file for font %
 encoding #1}%
 \catcode`\ 9\relax}%
 {\wlog{... no UTF-8 mapping file for font encoding #1}}%
 }
 \cdp@list
\endgroup
\def\DeclareFontEncoding@#1#2#3{%
 \expandafter
 \ifx\csname T@#1\endcsname\relax
 \def\cdp@elt{\noexpand\cdp@elt}%
 \xdef\cdp@list{\cdp@list\cdp@elt{#1}%
 {\default@family}{\default@series}%
 {\default@shape}}%
 \expandafter\let\csname#1-cmd\endcsname\@changed@cmd
 \begingroup
 \wlog{Now handling font encoding #1 ...}%
 \lowercase{%
 \InputIfFileExists{utf8plainenc.dfu}}%
 {\wlog{... processing UTF-8 mapping file for font %
 encoding #1}}%
 {\wlog{... no UTF-8 mapping file for font encoding #1}}%
 \endgroup
 \else
 \@font@info{Redeclaring font encoding #1}%
 \fi
 \global\@namedef{T@#1}{#2}%
 \global\@namedef{M@#1}{\default@M#3}%
 \xdef\LastDeclaredEncoding{#1}%
 }
\DeclareUnicodeCharacter{00A9}{\textcopyright}
\DeclareUnicodeCharacter{00AA}{\textordfeminine}
\DeclareUnicodeCharacter{00AE}{\textregistered}
\DeclareUnicodeCharacter{00BA}{\textordmasculine}
\DeclareUnicodeCharacter{02C6}{\textasciicircum}
\DeclareUnicodeCharacter{02DC}{\textasciitilde}
\DeclareUnicodeCharacter{200C}{\textcompwordmark}
\DeclareUnicodeCharacter{2026}{\textellipsis}
\DeclareUnicodeCharacter{2122}{\texttrademark}
\DeclareUnicodeCharacter{2423}{\textvisiblespace}

\endinput
%%
%% End of file `utf8.def'.

main/main.txt

39.53748pt

�

headers/babel.tex

\usepackage[english]{babel}
\newcommand{\mychapterbabel}{Chapter}
\newcommand{\mypagebabel}{on page}
\newcommand{\myfigurebabel}{Figure}
\newcommand{\mylangbabel}{english}

headers/commands.tex

% Syntax Highlightling

%\DefineShortVerb[commandchars=\\\{\}]{\|}
\DefineVerbatimEnvironment{Highlighting}{Verbatim}{commandchars=\\\{\}}
% Add ',fontsize=\small' for more characters per line
\newenvironment{Shaded}{\begin{scriptsize}}{\end{scriptsize}}
\newcommand{\KeywordTok}[1]{\textbf{{#1}}}
\newcommand{\DataTypeTok}[1]{\underline{{#1}}}
\newcommand{\DecValTok}[1]{{#1}}
\newcommand{\BaseNTok}[1]{{#1}}
\newcommand{\FloatTok}[1]{{#1}}
\newcommand{\CharTok}[1]{{#1}}
\newcommand{\StringTok}[1]{{#1}}
\newcommand{\CommentTok}[1]{\textit{{#1}}}
\newcommand{\OtherTok}[1]{{#1}}
\newcommand{\AlertTok}[1]{\textbf{{#1}}}
\newcommand{\FunctionTok}[1]{{#1}}
\newcommand{\RegionMarkerTok}[1]{{#1}}
\newcommand{\ErrorTok}[1]{\textbf{{#1}}}
\newcommand{\NormalTok}[1]{{#1}}
\newcommand{\myfigurewithoutcaption}[1]{{\bfseries \myfigurebabel{ }#1}}
\newcommand{\myfigurewithcaption}[2]{{\bfseries \myfigurebabel{ }#1{\quad}}#2}

% Definition der Fussnoten
% ------------------------
%\KOMAoptions{footnotes=multiple}

\DeclareTextSymbol{\textlongs}{TS1}{115}

\deffootnote[2.2em]{2.2em}{0em}{\makebox[2.2em][l]{\thefootnotemark}}

\newcommand{\badchar}[1]
{\textbf{?}}

\newcommand{\myplainurl}[1]
{{\ttfamily \url{#1}}}

\newcommand{\myfnhref}[2]
{{#2} \^{}{\{\ttfamily \url{#1}\}} }

\newcommand{\mymchref}[2]
{}

\newcommand{\mytabhref}[2]
{{#2}\protect\footnote{\ttfamily \url{#1} }}
%{\textsc{#2}}

\newcommand{\myfnlref}[2]
{{#2} \^{}\{\mychapterbabel \ref{#1} \mypagebabel {$\text{}$} \pageref{#1}\}}

\newlength{\fnwidth}
\setlength{\fnwidth}{\linewidth}
\addtolength{\fnwidth}{-10mm}

\newcommand{\myhref}[2]
{{#2}\protect\footnote{ \begin{minipage}{\fnwidth} \ttfamily \url{#1} \end{minipage}}}

\newcommand{\mylref}[2]
{{#2}\protect\footnote{\mychapterbabel {$\text{}$} \ref{#1} \mypagebabel {$\text{}$} \pageref{#1}}}

\newcommand{\myfnsref}[2]
{\text{#2} \^{}\{\text{#1} \}}

\newcommand{\mysref}[2]
{\text{#2}\protect\footnote{#1}}

\newcommand{\TickYes}{\checkmark}

% Kompatibilität, damit myfootnote nichts ins Leere läuft
\newcommand{\myfootnote}[1]
%{\footnote{\quad{}#1}}
{\footnote{#1}}

% Auflistungen
% ------------
% Standardvorschlag für itemize
%\newenvironment{myitemize}{\begin{itemize}}{\end{itemize}}
%\newenvironment{myenumerate}{\begin{enumerate}}{\end{enumerate}}
\newenvironment{myquote}{\begin{itemize}[{}]}{\end{itemize}}
\newenvironment{myblockquote}{\begin{itemize}[{\quad}]}{\end{itemize}}

\newenvironment{mydescription}{

\begin{inparablank}}{\end{inparablank}}
% Alternativen ohne Einrückung
\newenvironment{myitemize}{\begin{compactitem}[\textbullet]}{\end{compactitem}}
\newenvironment{myenumerate}{\begin{compactenum}}{\end{compactenum}}

% einige weitere Festlegungen
% ---------------------------
% \breakslash is used for URLs to allow linebreaking
\newcommand{\mybreakslash}{\discretionary{/}{}{/}}

\newlength{\mylength}
\newlength{\myhight}
\newlength{\myshadingheight}
\newcommand{\myoverline}[1]
{\settowidth{\mylength}{#1} \settoheight{\myhight}{#1}
\makebox[-3pt][l]{#1}
\rule[\myhight+1pt]{\mylength}{0.15mm}}

% Teile von Büchern
\newcommand{\mypart}[1]
%{\part{#1}}
{\addtocontents{toc}{\protect\vspace{7.5mm} \textbf{\Large {#1}}}}

% minitoc vorbereiten, aber standardmäßig unterdrücken
\newcommand{\myminitoc}{}

% Haupttitel
% ----------
%\newcommand{\mymaintitle}[1]
%{\definecolor{shadecolor}{gray}{0.9}\begin{shaded}
%\begin{center}
%\Huge \bfseries
%#1
%\end{center}
%\end{shaded}}

%\newcommand{\mysubtitle}[1]
%{\begin{center}
%\LARGE \bfseries
%#1
%\end{center}}

\newcommand{\mysubtitle}[1]{\subtitle{#1}}
\newcommand{\mymaintitle}[1]{\title{#1}}
\newcommand{\myauthor}[1]{\author{#1}}

% Metadaten
% ---------
\newcommand{\fetchurlcaption}[0]
{\mysref{In den Metadaten erläutert unter: {\itshape Adresse der elektronischen Ressource zur Abholung (O)}.}{URL zur Abholung}}

\newcommand{\bookcaption}[0]
{\mysref{In den Metadaten erläutert unter: {\itshape Adresse der elektronischen Ressource (O)}.}{Buch (Hauptseite)}}

\newcommand{\functionalgroupcaption}[0]
{\mysref{In den Metadaten erläutert unter: {\itshape Angaben zum Inhalt: DDC-Sachgruppe der Deutschen Nationalbibliografie oder Warengruppen-Systematik des Deutschen Buchhandels (O)}.}{Sachgruppe(n)} }

\newcommand{\futhertopicscaption}[0]
{\mysref{In den Metadaten erläutert unter: {\itshape Angaben zum Inhalt: weitere Klassifikationen / Thesauri (F)}.}{Weitere Themen}}

\newcommand{\mainauthorscaption}[0]
{Hauptautor(en)}

\newcommand{\projecttexniciancaption}[0]
{Betreuer}

\newcommand{\organizationscaptions}[0]
{\mysref{In den Metadaten erläutert unter: {\itshape Beteiligte Organisationen (F)}.}{Organisation(en)}}

\newcommand{\datecaption}[0]
{Erscheinungsdatum}

\newcommand{\issuecaption}[0]
{Ausgabebezeichnung}

\newcommand{\standardcodecaption}[0]
{Standardnummer }

\newcommand{\maintitlecaption}[0]
{Haupttitel}

\newcommand{\publishercaption}[0]
{\mysref{In den Metadaten erläutert unter: {\itshape Verlag / Verlegende Stelle (O)}.}{Verlegende Stelle} }

\newcommand{\publishercitycaption}[0]
{Verlagsort}

\newcommand{\shelfcaption}[0]
{Wikibooks-Regal}

\newcommand{\sizecaption}[0]
{Umfang}

\newcommand{\Alpha}{\mathrm{A}}
\newcommand{\Beta}{\mathrm{B}}
\newcommand{\Epsilon}{\mathrm{E}}
\newcommand{\Zeta}{\mathrm{Z}}
\newcommand{\Eta}{\mathrm{H}}
\newcommand{\Iota}{\mathrm{I}}
\newcommand{\Kappa}{\mathrm{K}}
\newcommand{\Mu}{\mathrm{M}}
\newcommand{\Nu}{\mathrm{N}}
\newcommand{\Rho}{\mathrm{P}}
\newcommand{\Tau}{\mathrm{T}}
\newcommand{\Chi}{\mathrm{X}}

headers/defaultcolors.tex

\definecolor{AliceBlue}{rgb}{0.941176470588,0.972549019608,1.0}
\definecolor{aliceblue}{rgb}{0.941176470588,0.972549019608,1.0}
\definecolor{AntiqueWhite}{rgb}{0.980392156863,0.921568627451,0.843137254902}
\definecolor{antiquewhite}{rgb}{0.980392156863,0.921568627451,0.843137254902}
\definecolor{Aqua}{rgb}{0.0,1.0,1.0}
\definecolor{aqua}{rgb}{0.0,1.0,1.0}
\definecolor{Aquamarine}{rgb}{0.498039215686,1.0,0.83137254902}
\definecolor{aquamarine}{rgb}{0.498039215686,1.0,0.83137254902}
\definecolor{Azure}{rgb}{0.941176470588,1.0,1.0}
\definecolor{azure}{rgb}{0.941176470588,1.0,1.0}
\definecolor{Beige}{rgb}{0.960784313725,0.960784313725,0.862745098039}
\definecolor{beige}{rgb}{0.960784313725,0.960784313725,0.862745098039}
\definecolor{Bisque}{rgb}{1.0,0.894117647059,0.76862745098}
\definecolor{bisque}{rgb}{1.0,0.894117647059,0.76862745098}
\definecolor{Black}{rgb}{0.0,0.0,0.0}
\definecolor{black}{rgb}{0.0,0.0,0.0}
\definecolor{BlanchedAlmond}{rgb}{1.0,0.921568627451,0.803921568627}
\definecolor{blanchedalmond}{rgb}{1.0,0.921568627451,0.803921568627}
\definecolor{Blue}{rgb}{0.0,0.0,1.0}
%\definecolor{blue}{rgb}{0.0,0.0,1.0}
\definecolor{BlueViolet}{rgb}{0.541176470588,0.16862745098,0.886274509804}
\definecolor{blueviolet}{rgb}{0.541176470588,0.16862745098,0.886274509804}
\definecolor{Brown}{rgb}{0.647058823529,0.164705882353,0.164705882353}
\definecolor{brown}{rgb}{0.647058823529,0.164705882353,0.164705882353}
\definecolor{BurlyWood}{rgb}{0.870588235294,0.721568627451,0.529411764706}
\definecolor{burlywood}{rgb}{0.870588235294,0.721568627451,0.529411764706}
\definecolor{CadetBlue}{rgb}{0.372549019608,0.619607843137,0.627450980392}
\definecolor{cadetblue}{rgb}{0.372549019608,0.619607843137,0.627450980392}
\definecolor{Chartreuse}{rgb}{0.498039215686,1.0,0.0}
\definecolor{chartreuse}{rgb}{0.498039215686,1.0,0.0}
\definecolor{Chocolate}{rgb}{0.823529411765,0.411764705882,0.117647058824}
\definecolor{chocolate}{rgb}{0.823529411765,0.411764705882,0.117647058824}
\definecolor{Coral}{rgb}{1.0,0.498039215686,0.313725490196}
\definecolor{coral}{rgb}{1.0,0.498039215686,0.313725490196}
\definecolor{CornflowerBlue}{rgb}{0.392156862745,0.58431372549,0.929411764706}
\definecolor{cornflowerblue}{rgb}{0.392156862745,0.58431372549,0.929411764706}
\definecolor{Cornsilk}{rgb}{1.0,0.972549019608,0.862745098039}
\definecolor{cornsilk}{rgb}{1.0,0.972549019608,0.862745098039}
\definecolor{Crimson}{rgb}{0.862745098039,0.078431372549,0.235294117647}
\definecolor{crimson}{rgb}{0.862745098039,0.078431372549,0.235294117647}
\definecolor{Cyan}{rgb}{0.0,1.0,1.0}
%\definecolor{cyan}{rgb}{0.0,1.0,1.0}
\definecolor{DarkBlue}{rgb}{0.0,0.0,0.545098039216}
\definecolor{darkblue}{rgb}{0.0,0.0,0.545098039216}
\definecolor{DarkCyan}{rgb}{0.0,0.545098039216,0.545098039216}
\definecolor{darkcyan}{rgb}{0.0,0.545098039216,0.545098039216}
\definecolor{DarkGoldenRod}{rgb}{0.721568627451,0.525490196078,0.043137254902}
\definecolor{darkgoldenrod}{rgb}{0.721568627451,0.525490196078,0.043137254902}
\definecolor{DarkGray}{rgb}{0.662745098039,0.662745098039,0.662745098039}
\definecolor{darkgray}{rgb}{0.662745098039,0.662745098039,0.662745098039}
\definecolor{DarkGreen}{rgb}{0.0,0.392156862745,0.0}
\definecolor{darkgreen}{rgb}{0.0,0.392156862745,0.0}
\definecolor{DarkKhaki}{rgb}{0.741176470588,0.717647058824,0.419607843137}
\definecolor{darkkhaki}{rgb}{0.741176470588,0.717647058824,0.419607843137}
\definecolor{DarkMagenta}{rgb}{0.545098039216,0.0,0.545098039216}
\definecolor{darkmagenta}{rgb}{0.545098039216,0.0,0.545098039216}
\definecolor{DarkOliveGreen}{rgb}{0.333333333333,0.419607843137,0.18431372549}
\definecolor{darkolivegreen}{rgb}{0.333333333333,0.419607843137,0.18431372549}
\definecolor{Darkorange}{rgb}{1.0,0.549019607843,0.0}
\definecolor{darkorange}{rgb}{1.0,0.549019607843,0.0}
\definecolor{DarkOrchid}{rgb}{0.6,0.196078431373,0.8}
\definecolor{darkorchid}{rgb}{0.6,0.196078431373,0.8}
\definecolor{DarkRed}{rgb}{0.545098039216,0.0,0.0}
\definecolor{darkred}{rgb}{0.545098039216,0.0,0.0}
\definecolor{DarkSalmon}{rgb}{0.913725490196,0.588235294118,0.478431372549}
\definecolor{darksalmon}{rgb}{0.913725490196,0.588235294118,0.478431372549}
\definecolor{DarkSeaGreen}{rgb}{0.560784313725,0.737254901961,0.560784313725}
\definecolor{darkseagreen}{rgb}{0.560784313725,0.737254901961,0.560784313725}
\definecolor{DarkSlateBlue}{rgb}{0.282352941176,0.239215686275,0.545098039216}
\definecolor{darkslateblue}{rgb}{0.282352941176,0.239215686275,0.545098039216}
\definecolor{DarkSlateGray}{rgb}{0.18431372549,0.309803921569,0.309803921569}
\definecolor{darkslategray}{rgb}{0.18431372549,0.309803921569,0.309803921569}
\definecolor{DarkTurquoise}{rgb}{0.0,0.807843137255,0.819607843137}
\definecolor{darkturquoise}{rgb}{0.0,0.807843137255,0.819607843137}
\definecolor{DarkViolet}{rgb}{0.580392156863,0.0,0.827450980392}
\definecolor{darkviolet}{rgb}{0.580392156863,0.0,0.827450980392}
\definecolor{DeepPink}{rgb}{1.0,0.078431372549,0.576470588235}
\definecolor{deeppink}{rgb}{1.0,0.078431372549,0.576470588235}
\definecolor{DeepSkyBlue}{rgb}{0.0,0.749019607843,1.0}
\definecolor{deepskyblue}{rgb}{0.0,0.749019607843,1.0}
\definecolor{DimGray}{rgb}{0.411764705882,0.411764705882,0.411764705882}
\definecolor{dimgray}{rgb}{0.411764705882,0.411764705882,0.411764705882}
\definecolor{DodgerBlue}{rgb}{0.117647058824,0.564705882353,1.0}
\definecolor{dodgerblue}{rgb}{0.117647058824,0.564705882353,1.0}
\definecolor{FireBrick}{rgb}{0.698039215686,0.133333333333,0.133333333333}
\definecolor{firebrick}{rgb}{0.698039215686,0.133333333333,0.133333333333}
\definecolor{FloralWhite}{rgb}{1.0,0.980392156863,0.941176470588}
\definecolor{floralwhite}{rgb}{1.0,0.980392156863,0.941176470588}
\definecolor{ForestGreen}{rgb}{0.133333333333,0.545098039216,0.133333333333}
\definecolor{forestgreen}{rgb}{0.133333333333,0.545098039216,0.133333333333}
\definecolor{Fuchsia}{rgb}{1.0,0.0,1.0}
\definecolor{fuchsia}{rgb}{1.0,0.0,1.0}
\definecolor{Gainsboro}{rgb}{0.862745098039,0.862745098039,0.862745098039}
\definecolor{gainsboro}{rgb}{0.862745098039,0.862745098039,0.862745098039}
\definecolor{GhostWhite}{rgb}{0.972549019608,0.972549019608,1.0}
\definecolor{ghostwhite}{rgb}{0.972549019608,0.972549019608,1.0}
\definecolor{Gold}{rgb}{1.0,0.843137254902,0.0}
\definecolor{gold}{rgb}{1.0,0.843137254902,0.0}
\definecolor{GoldenRod}{rgb}{0.854901960784,0.647058823529,0.125490196078}
\definecolor{goldenrod}{rgb}{0.854901960784,0.647058823529,0.125490196078}
\definecolor{Gray}{rgb}{0.501960784314,0.501960784314,0.501960784314}
\definecolor{gray}{rgb}{0.501960784314,0.501960784314,0.501960784314}
\definecolor{Green}{rgb}{0.0,0.501960784314,0.0}
%\definecolor{green}{rgb}{0.0,0.501960784314,0.0}
\definecolor{GreenYellow}{rgb}{0.678431372549,1.0,0.18431372549}
\definecolor{greenyellow}{rgb}{0.678431372549,1.0,0.18431372549}
\definecolor{HoneyDew}{rgb}{0.941176470588,1.0,0.941176470588}
\definecolor{honeydew}{rgb}{0.941176470588,1.0,0.941176470588}
\definecolor{HotPink}{rgb}{1.0,0.411764705882,0.705882352941}
\definecolor{hotpink}{rgb}{1.0,0.411764705882,0.705882352941}
\definecolor{IndianRed}{rgb}{0.803921568627,0.360784313725,0.360784313725}
\definecolor{indianred}{rgb}{0.803921568627,0.360784313725,0.360784313725}
\definecolor{Indigo}{rgb}{0.294117647059,0.0,0.509803921569}
\definecolor{indigo}{rgb}{0.294117647059,0.0,0.509803921569}
\definecolor{Ivory}{rgb}{1.0,1.0,0.941176470588}
\definecolor{ivory}{rgb}{1.0,1.0,0.941176470588}
\definecolor{Khaki}{rgb}{0.941176470588,0.901960784314,0.549019607843}
\definecolor{khaki}{rgb}{0.941176470588,0.901960784314,0.549019607843}
\definecolor{Lavender}{rgb}{0.901960784314,0.901960784314,0.980392156863}
\definecolor{lavender}{rgb}{0.901960784314,0.901960784314,0.980392156863}
\definecolor{LavenderBlush}{rgb}{1.0,0.941176470588,0.960784313725}
\definecolor{lavenderblush}{rgb}{1.0,0.941176470588,0.960784313725}
\definecolor{LawnGreen}{rgb}{0.486274509804,0.988235294118,0.0}
\definecolor{lawngreen}{rgb}{0.486274509804,0.988235294118,0.0}
\definecolor{LemonChiffon}{rgb}{1.0,0.980392156863,0.803921568627}
\definecolor{lemonchiffon}{rgb}{1.0,0.980392156863,0.803921568627}
\definecolor{LightBlue}{rgb}{0.678431372549,0.847058823529,0.901960784314}
\definecolor{lightblue}{rgb}{0.678431372549,0.847058823529,0.901960784314}
\definecolor{LightCoral}{rgb}{0.941176470588,0.501960784314,0.501960784314}
\definecolor{lightcoral}{rgb}{0.941176470588,0.501960784314,0.501960784314}
\definecolor{LightCyan}{rgb}{0.878431372549,1.0,1.0}
\definecolor{lightcyan}{rgb}{0.878431372549,1.0,1.0}
\definecolor{LightGoldenRodYellow}{rgb}{0.980392156863,0.980392156863,0.823529411765}
\definecolor{lightgoldenrodyellow}{rgb}{0.980392156863,0.980392156863,0.823529411765}
\definecolor{LightGrey}{rgb}{0.827450980392,0.827450980392,0.827450980392}
\definecolor{lightgrey}{rgb}{0.827450980392,0.827450980392,0.827450980392}
\definecolor{LightGreen}{rgb}{0.564705882353,0.933333333333,0.564705882353}
\definecolor{lightgreen}{rgb}{0.564705882353,0.933333333333,0.564705882353}
\definecolor{LightPink}{rgb}{1.0,0.713725490196,0.756862745098}
\definecolor{lightpink}{rgb}{1.0,0.713725490196,0.756862745098}
\definecolor{LightSalmon}{rgb}{1.0,0.627450980392,0.478431372549}
\definecolor{lightsalmon}{rgb}{1.0,0.627450980392,0.478431372549}
\definecolor{LightSeaGreen}{rgb}{0.125490196078,0.698039215686,0.666666666667}
\definecolor{lightseagreen}{rgb}{0.125490196078,0.698039215686,0.666666666667}
\definecolor{LightSkyBlue}{rgb}{0.529411764706,0.807843137255,0.980392156863}
\definecolor{lightskyblue}{rgb}{0.529411764706,0.807843137255,0.980392156863}
\definecolor{LightSlateGray}{rgb}{0.466666666667,0.533333333333,0.6}
\definecolor{lightslategray}{rgb}{0.466666666667,0.533333333333,0.6}
\definecolor{LightSteelBlue}{rgb}{0.690196078431,0.76862745098,0.870588235294}
\definecolor{lightsteelblue}{rgb}{0.690196078431,0.76862745098,0.870588235294}
\definecolor{LightYellow}{rgb}{1.0,1.0,0.878431372549}
\definecolor{lightyellow}{rgb}{1.0,1.0,0.878431372549}
\definecolor{Lime}{rgb}{0.0,1.0,0.0}
\definecolor{lime}{rgb}{0.0,1.0,0.0}
\definecolor{LimeGreen}{rgb}{0.196078431373,0.803921568627,0.196078431373}
\definecolor{limegreen}{rgb}{0.196078431373,0.803921568627,0.196078431373}
\definecolor{Linen}{rgb}{0.980392156863,0.941176470588,0.901960784314}
\definecolor{linen}{rgb}{0.980392156863,0.941176470588,0.901960784314}
\definecolor{Magenta}{rgb}{1.0,0.0,1.0}
%\definecolor{magenta}{rgb}{1.0,0.0,1.0}
\definecolor{Maroon}{rgb}{0.501960784314,0.0,0.0}
\definecolor{maroon}{rgb}{0.501960784314,0.0,0.0}
\definecolor{MediumAquaMarine}{rgb}{0.4,0.803921568627,0.666666666667}
\definecolor{mediumaquamarine}{rgb}{0.4,0.803921568627,0.666666666667}
\definecolor{MediumBlue}{rgb}{0.0,0.0,0.803921568627}
\definecolor{mediumblue}{rgb}{0.0,0.0,0.803921568627}
\definecolor{MediumOrchid}{rgb}{0.729411764706,0.333333333333,0.827450980392}
\definecolor{mediumorchid}{rgb}{0.729411764706,0.333333333333,0.827450980392}
\definecolor{MediumPurple}{rgb}{0.576470588235,0.439215686275,0.847058823529}
\definecolor{mediumpurple}{rgb}{0.576470588235,0.439215686275,0.847058823529}
\definecolor{MediumSeaGreen}{rgb}{0.235294117647,0.701960784314,0.443137254902}
\definecolor{mediumseagreen}{rgb}{0.235294117647,0.701960784314,0.443137254902}
\definecolor{MediumSlateBlue}{rgb}{0.482352941176,0.407843137255,0.933333333333}
\definecolor{mediumslateblue}{rgb}{0.482352941176,0.407843137255,0.933333333333}
\definecolor{MediumSpringGreen}{rgb}{0.0,0.980392156863,0.603921568627}
\definecolor{mediumspringgreen}{rgb}{0.0,0.980392156863,0.603921568627}
\definecolor{MediumTurquoise}{rgb}{0.282352941176,0.819607843137,0.8}
\definecolor{mediumturquoise}{rgb}{0.282352941176,0.819607843137,0.8}
\definecolor{MediumVioletRed}{rgb}{0.780392156863,0.0823529411765,0.521568627451}
\definecolor{mediumvioletred}{rgb}{0.780392156863,0.0823529411765,0.521568627451}
\definecolor{MidnightBlue}{rgb}{0.0980392156863,0.0980392156863,0.439215686275}
\definecolor{midnightblue}{rgb}{0.0980392156863,0.0980392156863,0.439215686275}
\definecolor{MintCream}{rgb}{0.960784313725,1.0,0.980392156863}
\definecolor{mintcream}{rgb}{0.960784313725,1.0,0.980392156863}
\definecolor{MistyRose}{rgb}{1.0,0.894117647059,0.882352941176}
\definecolor{mistyrose}{rgb}{1.0,0.894117647059,0.882352941176}
\definecolor{Moccasin}{rgb}{1.0,0.894117647059,0.709803921569}
\definecolor{moccasin}{rgb}{1.0,0.894117647059,0.709803921569}
\definecolor{NavajoWhite}{rgb}{1.0,0.870588235294,0.678431372549}
\definecolor{navajowhite}{rgb}{1.0,0.870588235294,0.678431372549}
\definecolor{Navy}{rgb}{0.0,0.0,0.501960784314}
\definecolor{navy}{rgb}{0.0,0.0,0.501960784314}
\definecolor{OldLace}{rgb}{0.992156862745,0.960784313725,0.901960784314}
\definecolor{oldlace}{rgb}{0.992156862745,0.960784313725,0.901960784314}
\definecolor{Olive}{rgb}{0.501960784314,0.501960784314,0.0}
\definecolor{olive}{rgb}{0.501960784314,0.501960784314,0.0}
\definecolor{OliveDrab}{rgb}{0.419607843137,0.556862745098,0.137254901961}
\definecolor{olivedrab}{rgb}{0.419607843137,0.556862745098,0.137254901961}
\definecolor{Orange}{rgb}{1.0,0.647058823529,0.0}
\definecolor{orange}{rgb}{1.0,0.647058823529,0.0}
\definecolor{OrangeRed}{rgb}{1.0,0.270588235294,0.0}
\definecolor{orangered}{rgb}{1.0,0.270588235294,0.0}
\definecolor{Orchid}{rgb}{0.854901960784,0.439215686275,0.839215686275}
\definecolor{orchid}{rgb}{0.854901960784,0.439215686275,0.839215686275}
\definecolor{PaleGoldenRod}{rgb}{0.933333333333,0.909803921569,0.666666666667}
\definecolor{palegoldenrod}{rgb}{0.933333333333,0.909803921569,0.666666666667}
\definecolor{PaleGreen}{rgb}{0.596078431373,0.98431372549,0.596078431373}
\definecolor{palegreen}{rgb}{0.596078431373,0.98431372549,0.596078431373}
\definecolor{PaleTurquoise}{rgb}{0.686274509804,0.933333333333,0.933333333333}
\definecolor{paleturquoise}{rgb}{0.686274509804,0.933333333333,0.933333333333}
\definecolor{PaleVioletRed}{rgb}{0.847058823529,0.439215686275,0.576470588235}
\definecolor{palevioletred}{rgb}{0.847058823529,0.439215686275,0.576470588235}
\definecolor{PapayaWhip}{rgb}{1.0,0.937254901961,0.835294117647}
\definecolor{papayawhip}{rgb}{1.0,0.937254901961,0.835294117647}
\definecolor{PeachPuff}{rgb}{1.0,0.854901960784,0.725490196078}
\definecolor{peachpuff}{rgb}{1.0,0.854901960784,0.725490196078}
\definecolor{Peru}{rgb}{0.803921568627,0.521568627451,0.247058823529}
\definecolor{peru}{rgb}{0.803921568627,0.521568627451,0.247058823529}
\definecolor{Pink}{rgb}{1.0,0.752941176471,0.796078431373}
\definecolor{pink}{rgb}{1.0,0.752941176471,0.796078431373}
\definecolor{Plum}{rgb}{0.866666666667,0.627450980392,0.866666666667}
\definecolor{plum}{rgb}{0.866666666667,0.627450980392,0.866666666667}
\definecolor{PowderBlue}{rgb}{0.690196078431,0.878431372549,0.901960784314}
\definecolor{powderblue}{rgb}{0.690196078431,0.878431372549,0.901960784314}
\definecolor{Purple}{rgb}{0.501960784314,0.0,0.501960784314}
\definecolor{purple}{rgb}{0.501960784314,0.0,0.501960784314}
\definecolor{Red}{rgb}{1.0,0.0,0.0}
%\definecolor{red}{rgb}{1.0,0.0,0.0}
\definecolor{RosyBrown}{rgb}{0.737254901961,0.560784313725,0.560784313725}
\definecolor{rosybrown}{rgb}{0.737254901961,0.560784313725,0.560784313725}
\definecolor{RoyalBlue}{rgb}{0.254901960784,0.411764705882,0.882352941176}
\definecolor{royalblue}{rgb}{0.254901960784,0.411764705882,0.882352941176}
\definecolor{SaddleBrown}{rgb}{0.545098039216,0.270588235294,0.0745098039216}
\definecolor{saddlebrown}{rgb}{0.545098039216,0.270588235294,0.0745098039216}
\definecolor{Salmon}{rgb}{0.980392156863,0.501960784314,0.447058823529}
\definecolor{salmon}{rgb}{0.980392156863,0.501960784314,0.447058823529}
\definecolor{SandyBrown}{rgb}{0.956862745098,0.643137254902,0.376470588235}
\definecolor{sandybrown}{rgb}{0.956862745098,0.643137254902,0.376470588235}
\definecolor{SeaGreen}{rgb}{0.180392156863,0.545098039216,0.341176470588}
\definecolor{seagreen}{rgb}{0.180392156863,0.545098039216,0.341176470588}
\definecolor{SeaShell}{rgb}{1.0,0.960784313725,0.933333333333}
\definecolor{seashell}{rgb}{1.0,0.960784313725,0.933333333333}
\definecolor{Sienna}{rgb}{0.627450980392,0.321568627451,0.176470588235}
\definecolor{sienna}{rgb}{0.627450980392,0.321568627451,0.176470588235}
\definecolor{Silver}{rgb}{0.752941176471,0.752941176471,0.752941176471}
\definecolor{silver}{rgb}{0.752941176471,0.752941176471,0.752941176471}
\definecolor{SkyBlue}{rgb}{0.529411764706,0.807843137255,0.921568627451}
\definecolor{skyblue}{rgb}{0.529411764706,0.807843137255,0.921568627451}
\definecolor{SlateBlue}{rgb}{0.41568627451,0.352941176471,0.803921568627}
\definecolor{slateblue}{rgb}{0.41568627451,0.352941176471,0.803921568627}
\definecolor{SlateGray}{rgb}{0.439215686275,0.501960784314,0.564705882353}
\definecolor{slategray}{rgb}{0.439215686275,0.501960784314,0.564705882353}
\definecolor{Snow}{rgb}{1.0,0.980392156863,0.980392156863}
\definecolor{snow}{rgb}{1.0,0.980392156863,0.980392156863}
\definecolor{SpringGreen}{rgb}{0.0,1.0,0.498039215686}
\definecolor{springgreen}{rgb}{0.0,1.0,0.498039215686}
\definecolor{SteelBlue}{rgb}{0.274509803922,0.509803921569,0.705882352941}
\definecolor{steelblue}{rgb}{0.274509803922,0.509803921569,0.705882352941}
\definecolor{Tan}{rgb}{0.823529411765,0.705882352941,0.549019607843}
\definecolor{tan}{rgb}{0.823529411765,0.705882352941,0.549019607843}
\definecolor{Teal}{rgb}{0.0,0.501960784314,0.501960784314}
\definecolor{teal}{rgb}{0.0,0.501960784314,0.501960784314}
\definecolor{Thistle}{rgb}{0.847058823529,0.749019607843,0.847058823529}
\definecolor{thistle}{rgb}{0.847058823529,0.749019607843,0.847058823529}
\definecolor{Tomato}{rgb}{1.0,0.388235294118,0.278431372549}
\definecolor{tomato}{rgb}{1.0,0.388235294118,0.278431372549}
\definecolor{Turquoise}{rgb}{0.250980392157,0.878431372549,0.81568627451}
\definecolor{turquoise}{rgb}{0.250980392157,0.878431372549,0.81568627451}
\definecolor{Violet}{rgb}{0.933333333333,0.509803921569,0.933333333333}
\definecolor{violet}{rgb}{0.933333333333,0.509803921569,0.933333333333}
\definecolor{Wheat}{rgb}{0.960784313725,0.870588235294,0.701960784314}
\definecolor{wheat}{rgb}{0.960784313725,0.870588235294,0.701960784314}
\definecolor{White}{rgb}{1.0,1.0,1.0}
%\definecolor{white}{rgb}{1.0,1.0,1.0}
\definecolor{WhiteSmoke}{rgb}{0.960784313725,0.960784313725,0.960784313725}
\definecolor{whitesmoke}{rgb}{0.960784313725,0.960784313725,0.960784313725}
\definecolor{Yellow}{rgb}{1.0,1.0,0.0}
%\definecolor{yellow}{rgb}{1.0,1.0,0.0}
\definecolor{YellowGreen}{rgb}{0.603921568627,0.803921568627,0.196078431373}
\definecolor{yellowgreen}{rgb}{0.603921568627,0.803921568627,0.196078431373}

\definecolor{shadecolor}{gray}{0.9}
\definecolor{mydarkgreen}{rgb}{0.0,0.5625,0.0}

headers/formattings.tex

% PDF-Links vorbereiten
\hypersetup{%a5paper,
	linkcolor=black, % Für Links in der gleichen Seite
	urlcolor=black, % Für Links auf URLs
	breaklinks=true, % Links dürfen umgebrochen werden
	colorlinks=false,
	citebordercolor=0 0 0, % Farbe für \cite
	filebordercolor=0 0 0,
	linkbordercolor=0 0 0,
	menubordercolor=0 0 0,
	urlbordercolor=0 0 0,
	pdfhighlight=/I,
	pdfborder=0 0 0, % keine Box um die Links!
	bookmarksopen=true,
	bookmarksnumbered=true,
	frenchlinks=false
}

% nicht zu viele Silbentrennungen
\sloppy

% Waisen, Hurenkinder
\clubpenalty = 10000
\widowpenalty = 10000
\displaywidowpenalty = 10000

% verschiedene Einstellungen
\addtolength{\skip\footins}{2ex} % Länge zwischen Fußnotenbereich und Text

headers/hyphenation.tex

\hyphenation{NASA}
\hyphenation{Unter-schenkel-vorder-innen-seite}
\hyphenation{Unter-schenkel-vorder-au\ss en-seite}
\hyphenation{Auge}
\hyphenation{ohne}
\hyphenation{eine}
\hyphenation{come}
\hyphenation{zero}
\hyphenation{also}
\hyphenation{five}
\hyphenation{many}
\hyphenation{copy}
\hyphenation{year}
\hyphenation{same}
\hyphenation{make}
\hyphenation{time}
\hyphenation{made}
\hyphenation{glei-che}
\hyphenation{Zucker-wasser}
\hyphenation{Makro-phagen-stimulation}
\hyphenation{Revo-lution}
\hyphenation{Reich}
\hyphenation{Gebiet}
\hyphenation{ethnische}
\hyphenation{Sow-jet-uni-on}
\hyphenation{NATO}
\hyphenation{Amts-sprache}
\hyphenation{Amts-sprachen}
\hyphenation{Otto}
\hyphenation{Ab-sorptions-ko-effizient}
\hyphenation{Reich}
\hyphenation{Trier}
\hyphenation{Butter-worth}
\hyphenation{Rausch-unter-dr\"uckung}

headers/imageheader.tex

\begin{small}
Auf den folgenden Seiten stehen für alle Bilder die Quellen, Autoren und Lizenzen. Das Verzeichnis wurde erstellt mit Hilfe der \myhref{http://de.wikipedia.org/wiki/MediaWiki}{Wikimedia-Software} und an Layout und Gliederung dieses Buches angepasst.

Zu den Lizenzen gibt es hier weitere Informationen:

\begin{itemize}
\item GNU Free Documentation License (GFDL). Text dieser Lizenz: \newline{}\url{http://www.gnu.org/licenses/old-licenses/gpl-1.0.txt}

\item GNU General Public License Version 2 (GPL). Text dieser Lizenz: \newline{}\url{http://www.gnu.org/licenses/gpl-2.0.txt}

\item Creative Commons Attribution ShareAlike 1.0 License (cc-by-sa-1.0). Text dieser Lizenz: \newline{}\url{http://creativecommons.org/licenses/by-sa/1.0/}

\item Creative Commons Attribution ShareAlike 2.0 License (cc-by-sa-2.0). Damit werden auch die Versionen f\"ur andere Sprachen bezeichnet. Text der englischen Version: \newline{}\url{http://creativecommons.org/licenses/by-sa/2.0/}

\item Creative Commons Attribution ShareAlike 2.5 License (cc-by-sa-2.5). Text dieser Lizenz:\newline{}\url{http://creativecommons.org/licenses/by-sa/2.5/}

\item Creative Commons Attribution ShareAlike 3.0 License (cc-by-sa-3.0). Text dieser Lizenz:\newline{}\url{http://creativecommons.org/licenses/by-sa/3.0/}

\item Creative Commons Attribution 2.0 License (cc-by-2.0). Damit werden auch die Versionen f\"ur andere Sprachen bezeichnet. Text der englischen Version:\newline{}\url{http://creativecommons.org/licenses/by/2.0/}

\item Creative Commons Attribution 2.5 License (cc-by-2.5). Text dieser Lizenz:\newline{}\url{http://creativecommons.org/licenses/by/2.5/deed.en}

\item Creative Commons Attribution 3.0 License (cc-by-3.0). Text dieser Lizenz:\newline{}\url{http://creativecommons.org/licenses/by/2.5/deed.en}

\item Public Domain (PD): This image is in the public domain. Dieses Bild ist gemeinfrei.

\item ATTR: The copyright holder of this file allows anyone to use it for any purpose, provided that the copyright holder is properly attributed. Redistribution, derivative work, commercial use, and all other use is permitted.

\item EURO: This is the common (reverse) face of a euro coin. The copyright on the design of the common face of the euro coins belongs to the European Commission. Authorised is reproduction in a format without relief (drawings, paintings, films) provided they are not detrimental to the image of the euro.
\end{itemize}

Den an weiteren Einzelheiten interessierten Leser verweisen wir auf die Onlineversion dieses Buches und die Beschreibungsseiten der Dateien.

\end{small}

\pagebreak

headers/license.tex

\chapter{Zu diesem Buch}
\section{Hinweise zu den Lizenzen}
\label{Lizenzhinweise}

Dieses Werk ist entstanden bei \myhref{http://de.wikibooks.org/wiki/Einf\%C3\%BChrung_in_SQL}{Wikibooks}, einer Online-Bibliothek im Internet mit Lehr-, Sach- und Fachbüchern. Jeder kann und darf diese Bücher frei nutzen und bearbeiten. Alle Inhalte stehen unter den Lizenzen „Creative Commons Attribution/Share-Alike“ (CC-BY-SA 3.0) und GNU-Lizenz für freie Dokumentation (GFDL).

Das Konvertierungsprogramm \myhref{http://de.wikibooks.org/wiki/Benutzer:Dirk_Huenniger/wb2pdf}{wb2pdf} steht unter GNU General Public License (GPL).

Das Textsatzprogramm \myhref{http://de.wikipedia.org/wiki/LaTeX} {\LaTeX{}} steht unter der LaTeX Project Public License (LPPL).

Hinweise zur Nutzung und für Zitate sind zu finden unter:
\begin{itemize}
\item Originalversion der Lizenz CC-BY-SA 3.0 \newline \url{http://creativecommons.org/licenses/by-sa/3.0}
\item Deutsche Version der Lizenz mit Ergänzungen \newline{} \url{http://creativecommons.org/licenses/by-sa/3.0/deed.de}
\item Originalversion der Lizenz GFDL \newline{} \url{http://www.gnu.org/copyleft/fdl.html}
\item Originalversion der Lizenz GPL \newline{} \url{http://www.gnu.org/licenses/gpl-3.0.html}
\item Version der LaTeX PPL \newline{} \url{http://www.opensource.org/licenses/lppl}
\item Nutzungsbedingungen der Wikimedia Foundation (deutsch) \newline{} \url{http://wikimediafoundation.org/wiki/Nutzungsbedingungen}
\item Zitieren aus Wikibooks \newline{} \url{http://de.wikibooks.org/wiki/Hilfe:Zitieren#Zitieren_aus_Wikibooks}
\end{itemize}

main/main.tex

\RequirePackage{hyphsubst}
\documentclass[fontsize=11pt,paper=A4,BCOR=12mm,DIV=13,open=any,listof=totoc]{scrbook}
\input{../headers/paper}
\input{../headers/packages1}
\input{../headers/babel}
\input{../headers/svg}
\input{../headers/packages2}
\input{../headers/defaultcolors}
\input{../headers/hyphenation}
\input{../headers/commands}
\usepackage{type1ec}
\usepackage{CJKutf8}
\usepackage[overlap, CJK]{ruby}
\usepackage{CJKulem}
\input{../headers/title}
\input{../headers/options}
\input{../headers/formattings}
\input{../headers/unicodes}
\input{../headers/templates}
\input{../headers/templates-dirk}
\input{../headers/templates-chemie}
\usepackage{lmodern}
\begin{document}
\begin{CJK}{UTF8}{megafont}
\usetocstyle{standard}
\raggedbottom
\thispagestyle{empty}
\pagestyle{empty}
%\include{coverfrontpage}

%\cleardoublepage
\pagenumbering{Roman}
\maketitle
\pagestyle{scrheadings}

\setcounter{tocdepth}{\mytocdepth}
\tableofcontents

%\cleardoublepage
\pagenumbering{arabic}

%\include{kap-vorwort}

\label{0}
\LaTeXNullTemplate{}
\chapter{Preface}

\myminitoc
\label{1}

\label{2}
\LaTeXNullTemplate{}
\section{Chapter 0: Preface}
\label{3}
\subsection{The strange history of this book}
\label{4}

{\itshape (This section was written by Allen B. Downey\myfootnote{}}\myfootnote{
\myfnhref{http://www.greenteapress.com/thinkpython/html/book001.html}{ \symbol{34}The strange history of this book\symbol{34}}
by Allen B. Downey
}){\itshape }

In January 1999, I was preparing to teach an introductory programming class in Java. I had taught it three times and I was getting frustrated. The failure rate in the class was too high and, even for students who succeeded, the overall level of achievement was too low.

One of the problems I saw was the books. They were too big, with too much unnecessary detail about Java, and not enough high-{}level guidance about how to program. And they all suffered from the \symbol{34}trapdoor effect\symbol{34}: they would start out easy, proceed gradually, and then somewhere around Chapter 5 the bottom would fall out. The students would get too much new material, too fast, and I would spend the rest of the semester picking up the pieces.

Two weeks before the first day of class, I decided to write my own book.

My goals were:

\begin{myitemize}
\item{} Keep it short. It is better for students to read 10 pages than read 50 pages.
\item{} Be careful with vocabulary. I tried to minimize the jargon and define each term at first use.
\item{} Build gradually. To avoid trapdoors, I took the most difficult topics and split them into a series of small steps.
\item{} Focus on programming, not the programming language. I included the minimum useful subset of Java and left out the rest.
\end{myitemize}

I needed a title, so on a whim I chose {\itshape How to Think Like a Computer Scientist}.

My first version was rough, but it worked. Students did the reading, and they understood enough that I could spend class time on the hard topics, the interesting topics and (most important) letting the students practice.

I released the book under the GNU Free Documentation License, which allows users to copy, modify, and distribute the book.

What happened next is the cool part. Jeff Elkner, a high school teacher in Virginia, adopted my book and translated it into Python. He sent me a copy of his translation, and I had the unusual experience of learning Python by reading my own book.

Jeff and I revised the book, incorporated a case study by Chris Meyers, and in 2001 we released {\itshape How to Think Like a Computer Scientist: Learning with Python}, also under the GNU Free Documentation License. As Green Tea Press, I published the book and started selling hard copies through Amazon.com and college book stores. Other books from Green Tea Press are available at \myhref{http://www.greenteapress.com/}{ greenteapress.com}.

In 2003, I started teaching at Olin College and I got to teach Python for the first time. The contrast with Java was striking.
Students struggled less, learned more, worked on more interesting projects, and generally had a lot more fun.

Over the last five years I have continued to develop the book, correcting errors, improving some of the examples and adding material, especially exercises. In 2008 I started work on a major revision—at the same time, I was contacted by an editor at Cambridge University Press who was interested in publishing the next edition. Good timing!

The result is this book, now with the less grandiose title {\itshape Think Python}. Some of the changes are:

\begin{myitemize}
\item{} I added a section about debugging at the end of each chapter. These sections present general techniques for finding and avoiding bugs, and warnings about Python pitfalls.
\item{} I removed the material in the last few chapters about the implementation of lists and trees. I still love those topics, but I thought they were incongruent with the rest of the book.
\item{} I added more exercises, ranging from short tests of understanding to a few substantial projects.
\item{} I added a series of case studies—longer examples with exercises, solutions, and discussion. Some of them are based on Swampy, a suite of Python programs I wrote for use in my classes. Swampy, code examples, and some solutions are available from \myhref{http://www.thinkpython.com}{ thinkpython.com}.
\item{} I expanded the discussion of programming development plans and basic design patterns.
\item{} The use of Python is more idiomatic. The book is still about programming, not Python, but now I think the book gets more leverage from the language.
\end{myitemize}

I hope you enjoy working with this book, and that it helps you learn to program and think, at least a little bit, like
a computer scientist.

Allen B. Downey \newline{}

Needham MA \newline{}

Allen Downey is an Associate Professor of Computer Science at the Franklin W. Olin College of Engineering.
\subsection{Acknowledgements}
\label{5}

First and most importantly, I thank Jeff Elkner, who
translated my Java book into Python, which got this project
started and introduced me to what has turned out to be my
favorite language.

I also thank Chris Meyers, who contributed several sections
to {\itshape How to Think Like a Computer Scientist}.

And I thank the Free Software Foundation for developing
the GNU Free Documentation License, which helped make
my collaboration with Jeff and Chris possible.

I also thank the editors at Lulu who worked on
{\itshape How to Think Like a Computer Scientist}.

I thank all the students who worked with earlier
versions of this book and all the contributors (listed
below) who sent in corrections and suggestions.

And I thank my wife, Lisa, for her work on this book, and Green
Tea Press, and everything else, too.\subsection{Contributor List}
\label{6}

More than 100 sharp-{}eyed and thoughtful readers have sent in
suggestions and corrections over the past few years. Their
contributions, and enthusiasm for this project, have been a
huge help.

If you have a suggestion or correction, please send email to
feedback@thinkpython.com. If I make a change based on your
feedback, I will add you to the contributor list
(unless you ask to be omitted).

If you include at least part of the sentence the
error appears in, that makes it easy for me to search. Page and
section numbers are fine, too, but not quite as easy to work with.
Thanks!

\begin{myitemize}
\item{} Lloyd Hugh Allen sent in a correction to Section 8.4.
\item{} Yvon Boulianne sent in a correction of a semantic error in Chapter 5.
\item{} Fred Bremmer submitted a correction in Section 2.1.
\item{} Jonah Cohen wrote the Perl scripts to convert the LaTeX source for this book into beautiful HTML.
\item{} Michael Conlon sent in a grammar correction in Chapter 2 and an improvement in style in Chapter 1, and he initiated discussion on the technical aspects of interpreters.
\item{} Benoit Girard sent in a correction to a humorous mistake in Section 5.6.
\item{} Courtney Gleason and Katherine Smith wrote horsebet.py, which was used as a case study in an earlier version of the book. Their program can now be found on the website.
\item{} Lee Harr submitted more corrections than we have room to list here, and indeed he should be listed as one of the principal editors of the text.
\item{} James Kaylin is a student using the text. He has submitted numerous corrections.
\item{} David Kershaw fixed the broken catTwice function in Section 3.10.
\item{} Eddie Lam has sent in numerous corrections to Chapters 1, 2, and 3. He also fixed the Makefile so that it creates an index the first time it is run and helped us set up a versioning scheme.
\item{} Man-{}Yong Lee sent in a correction to the example code in Section 2.4.
\item{} David Mayo pointed out that the word \symbol{34}unconsciously\symbol{34} in Chapter 1 needed to be changed to \symbol{34}subconsciously\symbol{34}.
\item{} Chris McAloon sent in several corrections to Sections 3.9 and 3.10.
\item{} Matthew J. Moelter has been a long-{}time contributor who sent in numerous corrections and suggestions to the book.
\item{} Simon Dicon Montford reported a missing function definition and several typos in Chapter 3. He also found errors in the increment
\end{myitemize}

function in Chapter 13.
\begin{myitemize}
\item{} John Ouzts corrected the definition of \symbol{34}return value\symbol{34} in Chapter 3.
\item{} Kevin Parks sent in valuable comments and suggestions as to how to improve the distribution of the book.
\item{} David Pool sent in a typo in the glossary of Chapter 1, as well as kind words of encouragement.
\item{} Michael Schmitt sent in a correction to the chapter on files and exceptions.
\item{} Robin Shaw pointed out an error in Section 13.1, where the {\ttfamily printTime} function was used in an example without being defined.
\item{} Paul Sleigh found an error in Chapter 7 and a bug in Jonah Cohen’s Perl script that generates HTML from LaTeX.
\item{} Craig T. Snydal is testing the text in a course at Drew University. He has contributed several valuable suggestions and corrections.
\item{} Ian Thomas and his students are using the text in a programming course. They are the first ones to test the chapters in the latter half of the book, and they have made numerous corrections and suggestions.
\item{} Keith Verheyden sent in a correction in Chapter 3.
\item{} Peter Winstanley let us know about a longstanding error in our Latin in Chapter 3.
\item{} Chris Wrobel made corrections to the code in the chapter on file I/O and exceptions.
\item{} Moshe Zadka has made invaluable contributions to this project. In addition to writing the first draft of the chapter on Dictionaries, he
\end{myitemize}

provided continual guidance in the early stages of the book.
\begin{myitemize}
\item{} Christoph Zwerschke sent several corrections and pedagogic suggestions, and explained the difference between {\itshape gleich} and {\itshape selbe}.
\item{} James Mayer sent us a whole slew of spelling and typographical errors, including two in the contributor list.
\item{} Hayden McAfee caught a potentially confusing inconsistency between two examples.
\item{} Angel Arnal is part of an international team of translators working on the Spanish version of the text. He has also found several errors in the English version.
\item{} Tauhidul Hoque and Lex Berezhny created the illustrations in Chapter 1 and improved many of the other illustrations.
\item{} Dr. Michele Alzetta caught an error in Chapter 8 and sent some interesting pedagogic comments and suggestions about Fibonacci and Old Maid.
\item{} Andy Mitchell caught a typo in Chapter 1 and a broken example in Chapter 2.
\item{} Kalin Harvey suggested a clarification in Chapter 7 and caught some typos.
\item{} Christopher P. Smith caught several typos and is helping us prepare to update the book for Python 2.2.
\item{} David Hutchins caught a typo in the Foreword.
\item{} Gregor Lingl is teaching Python at a high school in Vienna, Austria. He is working on a German translation of the book, and he caught a couple of bad errors in Chapter 5.
\item{} Julie Peters caught a typo in the Preface.
\item{} Florin Oprina sent in an improvement in makeTime, a correction in printTime, and a nice typo.
\item{} D. J. Webre suggested a clarification in Chapter 3.
\item{} Ken found a fistful of errors in Chapters 8, 9 and 11.
\item{} Ivo Wever caught a typo in Chapter 5 and suggested a clarification in Chapter 3.
\item{} Curtis Yanko suggested a clarification in Chapter 2.
\item{} Ben Logan sent in a number of typos and problems with translating the book into HTML.
\item{} Jason Armstrong saw the missing word in Chapter 2.
\item{} Louis Cordier noticed a spot in Chapter 16 where the code didn\textquotesingle{}t match the text.
\item{} Brian Cain suggested several clarifications in Chapters 2 and 3.
\item{} Rob Black sent in a passel of corrections, including some changes for Python 2.2.
\item{} Jean-{}Philippe Rey at Ecole Centrale Paris sent a number of patches, including some updates for Python 2.2 and other thoughtful improvements.
\item{} Jason Mader at George Washington University made a number of useful suggestions and corrections.
\item{} Jan Gundtofte-{}Bruun reminded us that “a error” is an error.
\item{} Abel David and Alexis Dinno reminded us that the plural of “matrix” is “matrices”, not “matrixes”. This error was in the book for years, but two readers with the same initials reported it on the same day. Weird.
\item{} Charles Thayer encouraged us to get rid of the semi-{}colons we had put at the ends of some statements and to clean up our use of “argument” and “parameter”.
\item{} Roger Sperberg pointed out a twisted piece of logic in Chapter 3.
\item{} Sam Bull pointed out a confusing paragraph in Chapter 2.
\item{} Andrew Cheung pointed out two instances of “use before def.”
\item{} C. Corey Capel spotted the missing word in the Third Theorem of Debugging and a typo in Chapter 4.
\item{} Alessandra helped clear up some Turtle confusion.
\item{} Wim Champagne found a brain-{}o in a dictionary example.
\item{} Douglas Wright pointed out a problem with floor division in arc.
\item{} Jared Spindor found some jetsam at the end of a sentence.
\item{} Lin Peiheng sent a number of very helpful suggestions.
\item{} Ray Hagtvedt sent in two errors and a not-{}quite-{}error.
\item{} Torsten Hübsch pointed out an inconsistency in Swampy.
\item{} Inga Petuhhov corrected an example in Chapter 14.
\item{} Arne Babenhauserheide sent several helpful corrections.
\item{} Mark E. Casida is is good at spotting repeated words.
\item{} Scott Tyler filled in a that was missing. And then sent in a heap of corrections.
\item{} Gordon Shephard sent in several corrections, all in separate emails.
\item{} Andrew Turner spotted an error in Chapter 8.
\item{} Adam Hobart fixed a problem with floor division in arc.
\item{} Daryl Hammond and Sarah Zimmerman pointed out that I served up math.pi too early. And Zim spotted a typo.
\item{} George Sass found a bug in a Debugging section.
\item{} Brian Bingham suggested Exercise 11.9.
\item{} Leah Engelbert-{}Fenton pointed out that I used tuple as a variable name, contrary to my own advice. And then found a bunch of typos and a “use before def.”
\item{} Joe Funke spotted a typo.
\item{} Chao-{}chao Chen found an inconsistency in the Fibonacci example.
\item{} Jeff Paine knows the difference between space and spam.
\item{} Lubos Pintes sent in a typo.
\item{} Gregg Lind and Abigail Heithoff suggested Exercise 14.6.
\item{} Max Hailperin pointed out a change coming in Python 3.0. Max is one of the authors of the extraordinary {\itshape Concrete Abstractions}, which you might want to read when you are done with this book.
\item{} Chotipat Pornavalai found an error in an error message.
\item{} Stanislaw Antol sent a list of very helpful suggestions.
\item{} Eric Pashman sent a number of corrections for Chapters 4–11.
\item{} Miguel Azevedo found some typos.
\item{} Jianhua Liu sent in a long list of corrections.
\item{} Nick King found a missing word.
\item{} Martin Zuther sent a long list of suggestions.
\item{} Adam Zimmerman found an inconsistency in my instance of an “instance” and several other errors.
\item{} Ratnakar Tiwari suggested a footnote explaining degenerate triangles.
\item{} Anurag Goel suggested another solution for is_abecedarian and sent some additional corrections. And he knows how to spell Jane Austen.
\item{} Kelli Kratzer spotted one of they typos.
\item{} Mark Griffiths pointed out a confusing example in Chapter 3.
\item{} Roydan Ongie found an error in my Newton’s method.
\end{myitemize}

\subsection{The further strange adventures of this book}
\label{7}

In September of 2008, Whiteknight converted the HTML version of \symbol{34}Think Python\symbol{34} at Green Tea Press\myfootnote{
\myfnhref{http://thinkpython.com/}{ \symbol{34}Think Python\symbol{34} at Green Tea Press}
}
to a Wikitext version at Wikibooks\myfootnote{
\myfnhref{http://en.wikibooks.org/wiki/Think_Python}{ Wikibooks: Think Python}
}.
Now anyone can improve the text.

\chapter{The way of the program}

\myminitoc
\label{8}

\label{9}
The goal of this book is to teach you to think like a
computer scientist. This way of thinking combines some of the best features
of mathematics, engineering, and natural science. Like mathematicians,
computer scientists use formal languages to denote ideas (specifically
computations). Like engineers, they design things, assembling components
into systems and evaluating tradeoffs among alternatives. Like scientists,
they observe the behavior of complex systems, form hypotheses, and test
predictions.

The single most important skill for a computer scientist is {\bfseries problem solving}. Problem solving means the ability to formulate
problems, think creatively about solutions, and express a solution clearly
and accurately. As it turns out, the process of learning to program is an
excellent opportunity to practice problem-{}solving skills. That’s why
this chapter is called, “The way of the program.”

On one level, you will be learning to program, a useful
skill by itself. On another level, you will use programming as a means to
an end. As we go along, that end will become clearer.
\subsection{The Python programming language}
\label{10}
The programming language you will learn is Python. Python is
an example of a {\bfseries high-{}level language}; other high-{}level languages
you might have heard of are C, C++, Perl, and Java.

There are also {\bfseries low-{}level languages}, sometimes referred to as “machine
languages” or “assembly languages.” Loosely speaking, computers
can only execute programs written in low-{}level languages. So
programs written in a high-{}level language have to be processed before
they can run. This extra processing takes some time, which is a small
disadvantage of high-{}level languages.

The advantages are enormous. First, it is much easier to program
in a high-{}level language. Programs written in a high-{}level language
take less time to write, they are shorter and easier to read, and they
are more likely to be correct. Second, high-{}level languages are {\bfseries portable}, meaning that they can run on different kinds of computers
with few or no modifications. Low-{}level programs can run on only one
kind of computer and have to be rewritten to run on another.

Due to these advantages, almost all programs are written in high-{}level
languages. Low-{}level languages are used only for a few specialized
applications.

Two kinds of programs process high-{}level languages
into low-{}level languages: {\bfseries interpreters} and {\bfseries compilers}.
An interpreter reads a high-{}level program and executes it, meaning that it
does what the program says. It processes the program a little at a time,
alternately reading lines and performing computations.

\begin{minipage}{1.0\linewidth}
\begin{center}
\includegraphics[width=1.0\linewidth,height=6.5in,keepaspectratio]{../images/1.\SVGExtension}
\end{center}
\raggedright{}\myfigurewithoutcaption{1}
\end{minipage}\vspace{0.75cm}

A compiler reads the program and translates it completely before the
program starts running. In this context, the high-{}level program is
called the {\bfseries source code}, and the translated program is called the
{\bfseries object code} or the {\bfseries executable}. Once a program is
compiled, you can execute it repeatedly without further translation.

\begin{minipage}{1.0\linewidth}
\begin{center}
\includegraphics[width=1.0\linewidth,height=6.5in,keepaspectratio]{../images/2.\SVGExtension}
\end{center}
\raggedright{}\myfigurewithoutcaption{2}
\end{minipage}\vspace{0.75cm}

Python is considered an interpreted language because Python programs
are executed by an interpreter. There are two ways to use the
interpreter: {\bfseries interactive mode} and {\bfseries script mode}. In
interactive mode, you type Python programs and the interpreter prints
the result:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{>>>\ensuremath{\text{ }}}\DecValTok{1}\ensuremath{\text{ }}\NormalTok{+\ensuremath{\text{ }}}\DecValTok{1}\newline
\DecValTok{2}\newline
\end{Highlighting}
\end{Shaded}

The chevron, {\ttfamily {\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}}}, is the
{\bfseries prompt} the interpreter uses to indicate that it is ready. If
you type 1 + 1, the interpreter replies 2.

Alternatively, you can store code in a file and use the interpreter to
execute the contents of the file, which is called a {\bfseries script}. By
convention, Python scripts have names that end with .py.

To execute the script, you have to tell the interpreter the name of
the file. In a UNIX command window, you would type python
dinsdale.py. In other development environments, the details of
executing scripts are different. You can find instructions for
your environment at the Python Website python.org.

Working in interactive mode is convenient for testing small pieces of
code because you can type and execute them immediately. But for
anything more than a few lines, you should save your code
as a script so you can modify and execute it in the future.
\subsection{What is a program?}
\label{11}
A {\bfseries program} is a sequence of instructions that specifies how to
perform a computation. The computation might be something
mathematical, such as solving a system of equations or finding the
roots of a polynomial, but it can also be a symbolic computation, such
as searching and replacing text in a document or (strangely enough)
compiling a program.

The details look different in different languages, but a few basic
instructions appear in just about every language:
{\bfseries input:} Get data from the keyboard, a file, or some
other device.{\bfseries output:} Display data on the screen or send data to a
file or other device.{\bfseries math:} Perform basic mathematical operations like addition and
multiplication.{\bfseries conditional execution:} Check for certain conditions and
execute the appropriate sequence of statements.{\bfseries repetition:} Perform some action repeatedly, usually with
some variation.
Believe it or not, that’s pretty much all there is to it. Every
program you’ve ever used, no matter how complicated, is made up of
instructions that look pretty much like these. So you can think of
programming as the process of breaking a large, complex task
into smaller and smaller subtasks until the subtasks are
simple enough to be performed with one of these basic instructions.

That may be a little vague, but we will come back to this topic
when we talk about {\bfseries algorithms}.
\subsection{What is debugging?}
\label{12}
Programming is error-{}prone. For whimsical reasons, programming errors
are called {\bfseries bugs} and the process of tracking them down is called
{\bfseries debugging}.

Three kinds of errors can occur in a program: syntax errors, runtime
errors, and semantic errors. It is useful
to distinguish between them in order to track them down more quickly.
\subsubsection{Syntax errors}
\label{13}
Python can only execute a program if the syntax is
correct; otherwise, the interpreter displays an error message.
{\bfseries Syntax} refers to the structure of a program and the rules about
that structure.
For example, parentheses have to come in matching pairs, so
(1 + 2) is legal, but 8) is a {\bfseries syntax error}.

In English readers can tolerate most syntax errors, which is why we
can read the poetry of E. E. Cummings without spewing error messages.
Python is not so forgiving. If there is a single syntax error
anywhere in your program, Python will display an error message and quit,
and you will not be able to run your program. During the first few
weeks of your programming career, you will probably spend a lot of
time tracking down syntax errors. As you gain experience, you will
make fewer errors and find them faster.
\subsubsection{Runtime errors}
\label{14}
The second type of error is a runtime error, so called because the
error does not appear until after the program has started running.
These errors are also called {\bfseries exceptions} because they usually
indicate that something exceptional (and bad) has happened.

Runtime errors are rare in the simple programs you will see in the
first few chapters, so it might be a while before you encounter one.
\subsubsection{Semantic errors}
\label{15}
The third type of error is the {\bfseries semantic error}. If there is a
semantic error in your program, it will run successfully in the sense
that the computer will not generate any error messages, but it will
not do the right thing. It will do something else. Specifically, it
will do what you told it to do.

The problem is that the program you wrote is not the program you
wanted to write. The meaning of the program (its semantics) is wrong.
Identifying semantic errors can be tricky because it requires you to work
backward by looking at the output of the program and trying to figure
out what it is doing.
\subsubsection{Experimental debugging}
\label{16}
One of the most important skills you will acquire is debugging.
Although it can be frustrating, debugging is one of the most
intellectually rich, challenging, and interesting parts of
programming.

In some ways, debugging is like detective work. You are confronted
with clues, and you have to infer the processes and events that led
to the results you see.

Debugging is also like an experimental science. Once you have an idea
about what is going wrong, you modify your program and try again. If
your hypothesis was correct, then you can predict the result of the
modification, and you take a step closer to a working program. If
your hypothesis was wrong, you have to come up with a new one. As
Sherlock Holmes pointed out, “When you have eliminated the
impossible, whatever remains, however improbable, must be the truth.”
(A. Conan Doyle, {\itshape The Sign of Four})

For some people, programming and debugging are the same thing. That
is, programming is the process of gradually debugging a program until
it does what you want. The idea is that you should start with a
program that does {\itshape something} and make small modifications,
debugging them as you go, so that you always have a working program.

For example, Linux is an operating system that contains thousands of
lines of code, but it started out as a simple program Linus Torvalds
used to explore the Intel 80386 chip. According to Larry Greenfield,
“One of Linus’s earlier projects was a program that would switch
between printing AAAA and BBBB. This later evolved to Linux.”
({\itshape The Linux Users’ Guide} Beta Version 1).

Later chapters will make more suggestions about debugging and other
programming practices.
\subsection{Formal and natural languages}
\label{17}
{\bfseries Natural languages} are the languages people speak, such as English, Spanish, and French. They were not designed by people (although people try to impose some order on them); they evolved naturally.

{\bfseries Formal languages} are languages that are designed by people for
specific applications. For example, the notation that mathematicians
use is a formal language that is particularly good at denoting
relationships among numbers and symbols. Chemists use a formal
language to represent the chemical structure of molecules. And
most importantly:

{\bfseries Programming languages are formal languages that have been designed to express computations.}

Formal languages tend to have strict rules about syntax. For example,
3 + 3 = 6 is a syntactically correct mathematical statement, but
3 + = 3 \${} 6 is not. H2O is a syntactically correct
chemical formula, but 2Zz is not.

Syntax rules come in two flavors, pertaining to {\bfseries tokens} and
structure. Tokens are the basic elements of the language, such as
words, numbers, and chemical elements. One of the problems with 3 +
= 3 \${} 6 is that \${} is not a legal token in mathematics
(at least as far as I know). Similarly, 2Zz is not legal because
there is no element with the abbreviation Zz.

The second type of syntax error pertains to the structure of a
statement; that is, the way the tokens are arranged. The statement 3
+ = 3 \${} 6 is illegal because even though + and = are
legal tokens, you can’t have one right after the other. Similarly,
in a chemical formula the subscript comes after the element name, not
before.
{\bfseries Exercise 1} {\itshape }
Write a well-{}structured English
sentence with invalid tokens in it. Then write another sentence
with all valid tokens but with invalid structure.
{\itshape }{\itshape }
When you read a sentence in English or a statement in a formal
language, you have to figure out what the structure of the sentence is
(although in a natural language you do this subconsciously). This
process is called {\bfseries parsing}.

For example, when you hear the sentence, “The penny dropped,” you
understand that “the penny” is the subject and “dropped” is the
predicate. Once you have parsed a sentence, you can figure out what it
means, or the semantics of the sentence. Assuming that you know
what a penny is and what it means to drop, you will understand the
general implication of this sentence.

Although formal and natural languages have many features in
common—tokens, structure, syntax, and semantics—there are some
differences:

{\bfseries ambiguity:} Natural languages are full of ambiguity, which
people deal with by using contextual clues and other information.
Formal languages are designed to be nearly or completely unambiguous,
which means that any statement has exactly one meaning,
regardless of context.{\bfseries redundancy:} In order to make up for ambiguity and reduce
misunderstandings, natural languages employ lots of
redundancy. As a result, they are often verbose. Formal languages
are less redundant and more concise.{\bfseries literalness:} Natural languages are full of idiom and metaphor.
If I say, “The penny dropped,” there is probably no penny and
nothing dropping\myfootnote{This idiom means that someone realized something
after a period of confusion.}. Formal languages
mean exactly what they say.
People who grow up speaking a natural language—everyone—often have a
hard time adjusting to formal languages. In some ways, the difference
between formal and natural language is like the difference between
poetry and prose, but more so:

{\bfseries Poetry:} Words are used for their sounds as well as for
their meaning, and the whole poem together creates an effect or
emotional response. Ambiguity is not only common but often
deliberate.{\bfseries Prose:} The literal meaning of words is more important,
and the structure contributes more meaning. Prose is more amenable to
analysis than poetry but still often ambiguous.{\bfseries Programs:} The meaning of a computer program is unambiguous
and literal, and can be understood entirely by analysis of the
tokens and structure.
Here are some suggestions for reading programs (and other formal
languages). First, remember that formal languages are much more dense
than natural languages, so it takes longer to read them. Also, the
structure is very important, so it is usually not a good idea to read
from top to bottom, left to right. Instead, learn to parse the
program in your head, identifying the tokens and interpreting the
structure. Finally, the details matter. Small errors in
spelling and punctuation, which you can get away
with in natural languages, can make a big difference in a formal
language.
\subsection{The first program}
\label{18}
Traditionally, the first program you write in a new language
is called “Hello, World!” because all it does is display the
words, “Hello, World!” In Python, it looks like this:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{print}\ensuremath{\text{ }}\StringTok{{\char13}Hello,\ensuremath{\text{ }}World!{\char13}}\newline
\end{Highlighting}
\end{Shaded}

This is an example of a {\bfseries print statement}\myfootnote{In Python 3.0,
print is a function, not a statement, so the syntax is print(’Hello, World!’). We will get to functions soon!}, which
doesn’t actually print anything on paper. It displays a value on the
screen. In this case, the result is the words

\TemplatePreformat{Hello, {}World! \newline{}
}
The quotation marks in the program mark the beginning and end
of the text to be displayed; they don’t appear in the result.

Some people judge the quality of a programming language by the
simplicity of the “Hello, World!” program. By this standard, Python
does about as well as possible.
\subsection{Debugging}
\label{19}
It is a good idea to read this book in front of a computer so you can
try out the examples as you go. You can run most of the examples in
interactive mode, but if you put the code into a script, it is easier
to try out variations.

Whenever you are experimenting with a new feature, you should try
to make mistakes. For example, in the “Hello, world!” program,
what happens if you leave out one of the quotation marks? What
if you leave out both? What if you spell print wrong?

This kind of experiment helps you remember what you read; it also helps
with debugging, because you get to know what the error messages mean.
It is better to make mistakes now and on purpose than later
and accidentally.

Programming, and especially debugging, sometimes brings out strong
emotions. If you are struggling with a difficult bug, you might
feel angry, despondent or embarrassed.

There is evidence that people naturally respond to computers as if
they were people\myfootnote{See Reeves and Nass, The Media
Equation: How People Treat Computers, Television, and New Media
Like Real People and Places.}. When they work well, we think
of them as teammates, and when they are obstinate or rude, we
respond to them the same way we respond to rude,
obstinate people.

Preparing for these reactions might help you deal with them.
One approach is to think of the computer as an employee with
certain strengths, like speed and precision, and
particular weaknesses, like lack of empathy and inability
to grasp the big picture.

Your job is to be a good manager: find ways to take advantage
of the strengths and mitigate the weaknesses. And find ways
to use your emotions to engage with the problem,
without letting your reactions interfere with your ability
to work effectively.

Learning to debug can be frustrating, but it is a valuable skill
that is useful for many activities beyond programming. At the
end of each chapter there is a debugging section, like this one,
with my thoughts about debugging. I hope they help!
\subsection{Glossary}
\label{20}
{\bfseries problem solving:} The process of formulating a problem, finding
a solution, and expressing the solution.
{\bfseries high-{}level language:} A programming language like Python that
is designed to be easy for humans to read and write.
{\bfseries low-{}level language:} A programming language that is designed
to be easy for a computer to execute; also called “machine language” or
“assembly language.”
{\bfseries portability:} A property of a program that can run on more
than one kind of computer.
{\bfseries interpret:} To execute a program in a high-{}level language
by translating it one line at a time.
{\bfseries compile:} To translate a program written in a high-{}level language
into a low-{}level language all at once, in preparation for later
execution.
{\bfseries source code:} A program in a high-{}level language before
being compiled.
{\bfseries object code:} The output of the compiler after it translates
the program.
{\bfseries executable:} Another name for object code that is ready
to be executed.
{\bfseries prompt:} Characters displayed by the interpreter to indicate
that it is ready to take input from the user.
{\bfseries script:} A program stored in a file (usually one that will be
interpreted).
{\bfseries interactive mode:} A way of using the Python interpreter by
typing commands and expressions at the prompt.
{\bfseries script mode:} A way of using the Python interpreter to read
and execute statements in a script.
{\bfseries program:} A set of instructions that specifies a computation.
{\bfseries algorithm:} A general process for solving a category of
problems.
{\bfseries bug:} An error in a program.
{\bfseries debugging:} The process of finding and removing any of the
three kinds of programming errors.
{\bfseries syntax:} The structure of a program.
{\bfseries syntax error:} An error in a program that makes it impossible
to parse (and therefore impossible to interpret).
{\bfseries exception:} An error that is detected while the program is running.
{\bfseries semantics:} The meaning of a program.
{\bfseries semantic error:} An error in a program that makes it do something
other than what the programmer intended.
{\bfseries natural language:} Any one of the languages that people speak that
evolved naturally.
{\bfseries formal language:} Any one of the languages that people have designed
for specific purposes, such as representing mathematical ideas or
computer programs; all programming languages are formal languages.
{\bfseries token:} One of the basic elements of the syntactic structure of
a program, analogous to a word in a natural language.
{\bfseries parse:} To examine a program and analyze the syntactic structure.
{\bfseries print statement:} An instruction that causes the Python
interpreter to display a value on the screen.

\subsection{Exercises}
\label{21}
\subsubsection{Exercise 2}
\label{22}
Use a web browser to go to the Python website, \myplainurl{http://python.org/.}
This page contains information about Python and links
to Python-{}related pages, and it gives you the ability to search
the Python documentation.
For example, if you enter print in the search window, the
first link that appears is the documentation of the print
statement. At this point, not all of it will make sense to you,
but it is good to know where it is.
\subsubsection{Exercise 3}
\label{23}
Start the Python interpreter and type {\bfseries \textquotesingle{}help()}\textquotesingle{} to start the online
help utility. Or you can type {\itshape }help(\textquotesingle{}print\textquotesingle{}){\itshape }{\itshape } to get information
about the {\bfseries \textquotesingle{}print}\textquotesingle{} statement.{\itshape }
{\itshape If this example doesn’t work, you}
may need to install additional Python documentation or set an
environment variable; the details depend on your operating system and
version of Python.
\subsubsection{Exercise 4}
\label{24}
Start the Python interpreter and use it as a calculator.
Python’s syntax for math operations is almost the same as
standard mathematical notation. For example, the symbols
{\bfseries \textquotesingle{}+}\textquotesingle{}, {\bfseries \textquotesingle{}-{}}\textquotesingle{} and {\bfseries \textquotesingle{}/}\textquotesingle{} denote addition, subtraction
and division, as you would expect. The symbol for
multiplication is {\bfseries \textquotesingle{}*}\textquotesingle{}.{\itshape }
{\itshape If you run a 10 kilometer race in 43 minutes 30 seconds, what is your}
average time per mile? What is your average speed in miles per hour?
(Hint: there are 1.61 kilometers in a mile).{\itshape }
\section{References}
\label{25}

\LaTeXNullTemplate{}
\chapter{Variables, expressions and statements}

\myminitoc
\label{26}

\label{27}
\LaTeXNullTemplate{}
\subsection{Values and types}
\label{28}
A {\bfseries value} is one of the basic things a program works with, like a letter or a number. The values we have seen so far are 1, 2, and \textquotesingle{}Hello, World!\textquotesingle{}.

These values belong to different {\bfseries types}:
2 is an integer, and \textquotesingle{}Hello, World!\textquotesingle{} is a {\bfseries string},
so-{}called because it contains a “string” of letters.
You (and the interpreter) can identify
strings because they are enclosed in quotation marks.

The print statement also works for integers.

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{>>>\ensuremath{\text{ }}}\KeywordTok{print}\ensuremath{\text{ }}\DecValTok{4}\newline
\DecValTok{4}\newline
\end{Highlighting}
\end{Shaded}

If you are not sure what type a value has, the interpreter can tell you.

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{>>>\ensuremath{\text{ }}}\DataTypeTok{type}\NormalTok{(}\StringTok{{\char13}Hello,\ensuremath{\text{ }}World!{\char13}}\NormalTok{)}\newline
\NormalTok{<}\DataTypeTok{type}\ensuremath{\text{ }}\StringTok{{\char13}str{\char13}}\NormalTok{>}\newline
\NormalTok{>>>\ensuremath{\text{ }}}\DataTypeTok{type}\NormalTok{(}\DecValTok{17}\NormalTok{)}\newline
\NormalTok{<}\DataTypeTok{type}\ensuremath{\text{ }}\StringTok{{\char13}int{\char13}}\NormalTok{>}\newline
\end{Highlighting}
\end{Shaded}

Not surprisingly, strings belong to the type str and
integers belong to the type int. Less obviously, numbers
with a decimal point belong to a type called float,
because these numbers are represented in a
format called {\bfseries floating-{}point}.

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{>>>\ensuremath{\text{ }}}\DataTypeTok{type}\NormalTok{(}\FloatTok{3.2}\NormalTok{)}\newline
\NormalTok{<}\DataTypeTok{type}\ensuremath{\text{ }}\StringTok{{\char13}float{\char13}}\NormalTok{>}\newline
\end{Highlighting}
\end{Shaded}

What about values like \textquotesingle{}17\textquotesingle{} and \textquotesingle{}3.2\textquotesingle{}?
They look like numbers, but they are in quotation marks like
strings.

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{>>>\ensuremath{\text{ }}}\DataTypeTok{type}\NormalTok{(}\StringTok{{\char13}17{\char13}}\NormalTok{)}\newline
\NormalTok{<}\DataTypeTok{type}\ensuremath{\text{ }}\StringTok{{\char13}str{\char13}}\NormalTok{>}\newline
\NormalTok{>>>\ensuremath{\text{ }}}\DataTypeTok{type}\NormalTok{(}\StringTok{{\char13}3.2{\char13}}\NormalTok{)}\newline
\NormalTok{<}\DataTypeTok{type}\ensuremath{\text{ }}\StringTok{{\char13}str{\char13}}\NormalTok{>}\newline
\end{Highlighting}
\end{Shaded}

They\textquotesingle{}re strings.

When you type a large integer, you might be tempted to use commas
between groups of three digits, as in 1,000,000. This is not a
legal integer in Python, but it is legal:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{>>>\ensuremath{\text{ }}}\KeywordTok{print}\ensuremath{\text{ }}\DecValTok{1}\NormalTok{,}\DecValTok{000}\NormalTok{,}\DecValTok{000}\newline
\DecValTok{1}\ensuremath{\text{ }}\DecValTok{0}\ensuremath{\text{ }}\DecValTok{0}\newline
\end{Highlighting}
\end{Shaded}

Well, that’s not what we expected at all! Python interprets 1,000,000 as a comma-{}separated sequence of integers, which it
prints with spaces between.

This is the first example we have seen of a semantic error: the code
runs without producing an error message, but it doesn\textquotesingle{}t do the
“right” thing.
\subsection{Variables}
\label{29}
One of the most powerful features of a programming language is the
ability to manipulate {\bfseries variables}. A variable is a name that
refers to a value.

An {\bfseries assignment statement} creates new variables and gives
them values:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{>>>\ensuremath{\text{ }}message\ensuremath{\text{ }}=\ensuremath{\text{ }}}\StringTok{{\char13}And\ensuremath{\text{ }}now\ensuremath{\text{ }}for\ensuremath{\text{ }}something\ensuremath{\text{ }}completely\ensuremath{\text{ }}different{\char13}}\newline
\NormalTok{>>>\ensuremath{\text{ }}n\ensuremath{\text{ }}=\ensuremath{\text{ }}}\DecValTok{17}\newline
\NormalTok{>>>\ensuremath{\text{ }}pi\ensuremath{\text{ }}=\ensuremath{\text{ }}}\FloatTok{3.1415926535897931}\newline
\end{Highlighting}
\end{Shaded}

This example makes three assignments. The first assigns a string
to a new variable named message;
the second gives the integer 17 to n; the third
assigns the (approximate) value of π to pi.

A common way to represent variables on paper is to write the name with
an arrow pointing to the variable’s value. This kind of figure is
called a {\bfseries state diagram} because it shows what state each of the
variables is in (think of it as the variable’s state of mind).
This diagram shows the result of the previous example:

\begin{longtable}{>{\RaggedRight}p{0.13297\linewidth}>{\RaggedRight}p{0.05932\linewidth}>{\RaggedRight}p{0.68717\linewidth}}
\hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily message}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\rightarrow}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily \textquotesingle{}And now for something completely different\textquotesingle{}}\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily n}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\rightarrow}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily 17}\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily pi}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\rightarrow}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily 3.1415926535897931}
\end{longtable}

To display the value of a variable, you can use a print statement:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{>>>\ensuremath{\text{ }}}\KeywordTok{print}\ensuremath{\text{ }}\NormalTok{n}\newline
\DecValTok{17}\newline
\NormalTok{>>>\ensuremath{\text{ }}}\KeywordTok{print}\ensuremath{\text{ }}\NormalTok{pi}\newline
\FloatTok{3.14159265359}\newline
\end{Highlighting}
\end{Shaded}

The type of a variable is the type of the value it refers to.

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{>>>\ensuremath{\text{ }}}\DataTypeTok{type}\NormalTok{(message)}\newline
\NormalTok{<}\DataTypeTok{type}\ensuremath{\text{ }}\StringTok{{\char13}str{\char13}}\NormalTok{>}\newline
\NormalTok{>>>\ensuremath{\text{ }}}\DataTypeTok{type}\NormalTok{(n)}\newline
\NormalTok{<}\DataTypeTok{type}\ensuremath{\text{ }}\StringTok{{\char13}int{\char13}}\NormalTok{>}\newline
\NormalTok{>>>\ensuremath{\text{ }}}\DataTypeTok{type}\NormalTok{(pi)}\newline
\NormalTok{<}\DataTypeTok{type}\ensuremath{\text{ }}\StringTok{{\char13}float{\char13}}\NormalTok{>}\newline
\end{Highlighting}
\end{Shaded}

\subsubsection{Exercise 1}
\label{30}
If you type an integer with a leading zero, you might get
a confusing error:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{>>>\ensuremath{\text{ }}zipcode\ensuremath{\text{ }}=\ensuremath{\text{ }}}\DecValTok{02492}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{^}\newline
\OtherTok{SyntaxError}\NormalTok{:\ensuremath{\text{ }}invalid\ensuremath{\text{ }}token}\newline
\end{Highlighting}
\end{Shaded}

Other number seem to work, but the results are bizarre:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{>>>\ensuremath{\text{ }}zipcode\ensuremath{\text{ }}=\ensuremath{\text{ }}}\DecValTok{02132}\newline
\NormalTok{>>>\ensuremath{\text{ }}}\KeywordTok{print}\ensuremath{\text{ }}\NormalTok{zipcode}\newline
\DecValTok{1114}\newline
\end{Highlighting}
\end{Shaded}

Can you figure out what is going on? Hint: print the values {\ttfamily 01}, {\ttfamily 010}, {\ttfamily 0100} and {\ttfamily 01000}.
\subsection{Variable names and keywords}
\label{31}
Programmers generally choose names for their variables that are meaningful—they document what the variable is used for.

Variable names can be arbitrarily long. They can contain both letters and numbers, but they have to begin with a letter. It is legal to use uppercase letters, but it is a good idea to begin variable names with a lowercase letter (you\textquotesingle{}ll see why later).

The underscore character (_) can appear in a name. It is often used in names with multiple words, such as my_name or airspeed_of_unladen_swallow.

If you give a variable an illegal name, you get a syntax error:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}76trombones {}= {}\textquotesingle{}big {}parade\textquotesingle{} \newline{}
SyntaxError: {}invalid {}syntax \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}more@ {}= {}1000000 \newline{}
SyntaxError: {}invalid {}syntax \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}class {}= {}\textquotesingle{}Advanced {}Theoretical {}Zymurgy\textquotesingle{} \newline{}
SyntaxError: {}invalid {}syntax \newline{}
}
76trombones is illegal because it does not begin with a letter.
more@ is illegal because it contains an illegal character, @. But what\textquotesingle{}s wrong with class?

It turns out that class is one of Python\textquotesingle{}s {\bfseries keywords}. The
interpreter uses keywords to recognize the structure of the program,
and they cannot be used as variable names.

Python has 31 keywords:

\begin{longtable}{>{\RaggedRight}p{0.19071\linewidth}>{\RaggedRight}p{0.17141\linewidth}>{\RaggedRight}p{0.15210\linewidth}>{\RaggedRight}p{0.15210\linewidth}>{\RaggedRight}p{0.13279\linewidth}}
\hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily and}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily del}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily from}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily not}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily while}\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily as}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily elif}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily global}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily or}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily with}\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily assert}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily else}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily if}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily pass}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily yield}\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily break}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily except}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily import}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily print}&\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily class}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily exec}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily in}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily raise} &\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily continue}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily finally}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily is}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily return} &\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily def}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily for}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily lambda}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily try}&
\end{longtable}

You might want to keep this list handy. If the interpreter complains
about one of your variable names and you don\textquotesingle{}t know why, see if it
is on this list.

If you write your code in a text editor that understands Python, you may find that it makes it easy for you to spot such keyword clashes by displaying keywords in a different color to ordinary variables. This feature is called {\itshape syntax highlighting}, and most programmers find it indispensable. This book uses syntax highlighting for its example code, so in the following example:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{ok_variable\ensuremath{\text{ }}=\ensuremath{\text{ }}}\DecValTok{42}\newline
\KeywordTok{yield}\ensuremath{\text{ }}\NormalTok{=\ensuremath{\text{ }}}\DecValTok{42}\newline
\end{Highlighting}
\end{Shaded}

you can see that {\ttfamily yield} has been recognized as a keyword and not as an ordinary variable, since it is colored orange.
\subsection{Statements}
\label{32}
A statement is a unit of code that the Python interpreter can
execute. We have seen two kinds of statements: print
and assignment.

When you type a statement in interactive mode, the interpreter
executes it and displays the result, if there is one.

A script usually contains a sequence of statements. If there
is more than one statement, the results appear one at a time
as the statements execute.

For example, the script
\TemplatePreformat{print {}1 \newline{}
x {}= {}2 \newline{}
print {}x \newline{}
}
produces the output
\TemplatePreformat{1 \newline{}
2 \newline{}
}
The assignment statement produces no output.
\subsection{Operators and operands}
\label{33}
{\bfseries Operators} are special symbols that represent computations like
addition and multiplication. The values the operator is applied to
are called {\bfseries operands}.

The operators +, -{}, *, / and **
perform addition, subtraction, multiplication, division and
exponentiation, as in the following examples:
\TemplatePreformat{20+32 {} {} {}hour-{}1 {} {} {}hour*60+minute {} {} {}minute/60 {} {} {}5**2 {} {} {}(5+9)*(15-{}7) \newline{}
}
In some other languages, \^{} is used for exponentiation, but
in Python it is a bitwise operator called XOR. I won’t cover
bitwise operators in this book, but you can read about
them at wiki.python.org/moin/BitwiseOperators.

The division operator might not do what you expect:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}minute {}= {}59 \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}minute/60 \newline{}
0 \newline{}
}
The value of minute is 59, and in conventional arithmetic 59
divided by 60 is 0.98333, not 0. The reason for the discrepancy is
that Python is performing {\bfseries floor division}.\myfootnote{In Python 3.0,
the result of this division is a float. The new operator
// performs integer division.}

When both of the operands are integers, the result is also an
integer; floor division chops off the fraction
part, so in this example it rounds down to zero.

If either of the operands is a floating-{}point number, Python performs
floating-{}point division, and the result is a float:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}minute/60.0 \newline{}
0.98333333333333328 \newline{}
}
\subsection{Expressions}
\label{34}
An {\bfseries expression} is a combination of values, variables, and operators.
A value all by itself is considered an expression, and so is
a variable, so the following are all legal expressions
(assuming that the variable x has been assigned a value):

\TemplatePreformat{17 \newline{}
x \newline{}
x {}+ {}17 \newline{}
}
If you type an expression in interactive mode, the interpreter
{\bfseries evaluates} it and displays the result:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}1 {}+ {}1 \newline{}
2 \newline{}
}
But in a script, an expression all by itself doesn’t
do anything! This is a common
source of confusion for beginners.
\subsubsection{Exercise 2}
\label{35}
Type the following statements in the Python interpreter to see what they do:

\begin{Shaded}
\begin{Highlighting}[]

\DecValTok{5}\newline
\NormalTok{x\ensuremath{\text{ }}=\ensuremath{\text{ }}}\DecValTok{5}\newline
\NormalTok{x\ensuremath{\text{ }}+\ensuremath{\text{ }}}\DecValTok{1}\newline
\end{Highlighting}
\end{Shaded}

Now put the same statements into a script and run it. What is the output? Modify the script by transforming each expression into a print statement and then run it again.
\subsection{Order of operations}
\label{36}
When more than one operator appears in an expression, the order of
evaluation depends on the {\bfseries rules of precedence}. For
mathematical operators, Python follows mathematical convention.
The acronym {\bfseries PEMDAS} is a useful way to
remember the rules:

\begin{myitemize}
\item{} {\bfseries P}arentheses have the highest precedence and can be used to force an expression to evaluate in the order you want. Since expressions in parentheses are evaluated first, 2 * (3-{}1) is 4, and (1+1)**(5-{}2) is 8. You can also use parentheses to make an expression easier to read, as in (minute * 100) / 60, even if it doesn\textquotesingle{}t change the result.
\item{} {\bfseries E}xponentiation has the next highest precedence, so 2**1+1 is 3, not 4, and 3*1**3 is 3, not 27.
\item{} {\bfseries M}ultiplication and {\bfseries D}ivision have the same precedence, which is higher than {\bfseries A}ddition and {\bfseries S}ubtraction, which also have the same precedence. So 2*3-{}1 is 5, not 4, and 6+4/2 is 8, not 5.
\item{} Operators with the same precedence are evaluated from left to right. So in the expression degrees / 2 * pi, the division happens first and the result is multiplied by pi. To divide by 2 π, you can reorder the operands or use parentheses.
\end{myitemize}

\subsection{String operations}
\label{37}
In general, you cannot perform mathematical operations on strings, even
if the strings look like numbers, so the following are illegal:
\TemplatePreformat{\textquotesingle{}2\textquotesingle{}-{}\textquotesingle{}1\textquotesingle{} {} {} {} {}\textquotesingle{}eggs\textquotesingle{}/\textquotesingle{}easy\textquotesingle{} {} {} {} {}\textquotesingle{}third\textquotesingle{}*\textquotesingle{}a {}charm\textquotesingle{} \newline{}
}
The + operator works with strings, but it
might not do what you expect: it performs
{\bfseries concatenation}, which means joining the strings by
linking them end-{}to-{}end. For example:

\TemplatePreformat{first {}= {}\textquotesingle{}throat\textquotesingle{} \newline{}
second {}= {}\textquotesingle{}warbler\textquotesingle{} \newline{}
print {}first {}+ {}second \newline{}
}
The output of this program is throatwarbler.

The * operator also works on strings; it performs repetition.
For example, ’Spam’*3 is \textquotesingle{}SpamSpamSpam\textquotesingle{}. If one of the operands
is a string, the other has to be an integer.

This use of + and * makes sense by
analogy with addition and multiplication. Just as 4*3 is
equivalent to 4+4+4, we expect \textquotesingle{}Spam\textquotesingle{}*3 to be the same as
\textquotesingle{}Spam\textquotesingle{}+\textquotesingle{}Spam\textquotesingle{}+\textquotesingle{}Spam\textquotesingle{}, and it is. On the other hand, there is a
significant way in which string concatenation and repetition are
different from integer addition and multiplication.
Can you think of a property that addition has
that string concatenation does not?
\subsection{Comments}
\label{38}
As programs get bigger and more complicated, they get more difficult
to read. Formal languages are dense, and it is often difficult to
look at a piece of code and figure out what it is doing, or why.

For this reason, it is a good idea to add notes to your programs to explain
in natural language what the program is doing. These notes are called
{\bfseries comments}, and they start with the \# symbol:

\begin{Shaded}
\begin{Highlighting}[]

\CommentTok{#\ensuremath{\text{ }}compute\ensuremath{\text{ }}the\ensuremath{\text{ }}percentage\ensuremath{\text{ }}of\ensuremath{\text{ }}the\ensuremath{\text{ }}hour\ensuremath{\text{ }}that\ensuremath{\text{ }}has\ensuremath{\text{ }}elapsed}\newline
\NormalTok{percentage\ensuremath{\text{ }}=\ensuremath{\text{ }}(minute\ensuremath{\text{ }}*\ensuremath{\text{ }}}\DecValTok{100}\NormalTok{)\ensuremath{\text{ }}/\ensuremath{\text{ }}}\DecValTok{60}\newline
\end{Highlighting}
\end{Shaded}

In this case, the comment appears on a line by itself. You can also put comments at the end of a line:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{percentage\ensuremath{\text{ }}=\ensuremath{\text{ }}(minute\ensuremath{\text{ }}*\ensuremath{\text{ }}}\DecValTok{100}\NormalTok{)\ensuremath{\text{ }}/\ensuremath{\text{ }}}\DecValTok{60}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\CommentTok{#\ensuremath{\text{ }}percentage\ensuremath{\text{ }}of\ensuremath{\text{ }}an\ensuremath{\text{ }}hour}\newline
\end{Highlighting}
\end{Shaded}

Everything from the {\ttfamily \#} to the end of the line is ignored—it
has no effect on the program.

Comments are most useful when they document non-{}obvious features of
the code. It is reasonable to assume that the reader can figure out
{\itshape what} the code does; it is much more useful to explain {\itshape why}.

This comment is redundant with the code and useless:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{v\ensuremath{\text{ }}=\ensuremath{\text{ }}}\DecValTok{5}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\CommentTok{#\ensuremath{\text{ }}assign\ensuremath{\text{ }}5\ensuremath{\text{ }}to\ensuremath{\text{ }}v}\newline
\end{Highlighting}
\end{Shaded}

This comment contains useful information that is not in the code:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{v\ensuremath{\text{ }}=\ensuremath{\text{ }}}\DecValTok{5}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\CommentTok{#\ensuremath{\text{ }}velocity\ensuremath{\text{ }}in\ensuremath{\text{ }}meters/second.}\newline
\end{Highlighting}
\end{Shaded}

Good variable names can reduce the need for comments, but long names can make complex expressions hard to read, so there is a tradeoff.
\subsection{Debugging}
\label{39}
At this point the syntax error you are most likely to make is
an illegal variable name, like class and yield, which
are keywords, or odd\~{}job and US\${}, which contain
illegal characters.

If you put a space in a variable name, Python thinks it is two
operands without an operator:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}bad {}name {}= {}5 \newline{}
SyntaxError: {}invalid {}syntax \newline{}
}
For syntax errors, the error messages don’t help much.
The most common messages are SyntaxError: invalid syntax and
SyntaxError: invalid token, neither of which is very informative.

The runtime error you are most likely to make is a “use before
def;” that is, trying to use a variable before you have assigned
a value. This can happen if you spell a variable name wrong:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}principal {}= {}327.68 \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}interest {}= {}principle {}* {}rate \newline{}
NameError: {}name {}\textquotesingle{}principle\textquotesingle{} {}is {}not {}defined \newline{}
}
Variables names are case sensitive, so LaTeX is not the
same as latex.

At this point the most likely cause of a semantic error is
the order of operations. For example, to evaluate 1/2 π,
you might be tempted to write
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}1.0 {}/ {}2.0 {}* {}pi \newline{}
}
But the division happens first, so you would get π / 2, which
is not the same thing! There is no way for Python
to know what you meant to write, so in this case you don’t
get an error message; you just get the wrong answer.
\subsection{Glossary}
\label{40}

{\bfseries value:} One of the basic units of data, like a number or string,
that a program manipulates.
{\bfseries type:} A category of values. The types we have seen so far
are integers (type int), floating-{}point numbers (type float), and strings (type str).
{\bfseries integer:} A type that represents whole numbers.
{\bfseries floating-{}point:} A type that represents numbers with fractional
parts.
{\bfseries string:} A type that represents sequences of characters.
{\bfseries variable:} A name that refers to a value.
{\bfseries statement:} A section of code that represents a command or action. So
far, the statements we have seen are assignments and print statements.
{\bfseries assignment:} A statement that assigns a value to a variable.
{\bfseries state diagram:} A graphical representation of a set of variables and the
values they refer to.
{\bfseries keyword:} A reserved word that is used by the compiler to parse a
program; you cannot use keywords like if, def, and while as
variable names.
{\bfseries operator:} A special symbol that represents a simple computation like
addition, multiplication, or string concatenation.
{\bfseries operand:} One of the values on which an operator operates.
{\bfseries floor division:} The operation that divides two numbers and chops off
the fraction part.
{\bfseries expression:} A combination of variables, operators, and values that
represents a single result value.
{\bfseries evaluate:} To simplify an expression by performing the operations
in order to yield a single value.{\bfseries rules of precedence:} The set of rules governing the order in which
expressions involving multiple operators and operands are evaluated.

{\bfseries concatenate:} To join two operands end-{}to-{}end.
{\bfseries comment:} Information in a program that is meant for other
programmers (or anyone reading the source code) and has no effect on the
execution of the program.

\subsection{Exercises}
\label{41}\subsubsection{Exercise 3}
\label{42}
Assume that we execute the following assignment statements:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{width\ensuremath{\text{ }}=\ensuremath{\text{ }}}\DecValTok{17}\newline
\NormalTok{height\ensuremath{\text{ }}=\ensuremath{\text{ }}}\FloatTok{12.0}\newline
\NormalTok{delimiter\ensuremath{\text{ }}=\ensuremath{\text{ }}}\StringTok{{\char13}.{\char13}}\newline
\end{Highlighting}
\end{Shaded}

For each of the following expressions, write the value of the expression and the type (of the value of the expression).

\begin{myitemize}
\item{} {\bfseries \textquotesingle{}width/2}\textquotesingle{}
\end{myitemize}

\begin{myitemize}
\item{} {\bfseries \textquotesingle{}width/2.0}\textquotesingle{}
\end{myitemize}

\begin{myitemize}
\item{} {\bfseries \textquotesingle{}height/3}\textquotesingle{}
\end{myitemize}

\begin{myitemize}
\item{} {\bfseries \textquotesingle{}1 + 2 * 5}\textquotesingle{}
\end{myitemize}

\begin{myitemize}
\item{} {\bfseries \textquotesingle{}delimiter * 5}\textquotesingle{}
\end{myitemize}

Use the Python interpreter to check your answers.
\subsubsection{Exercise 4}
\label{43}
Practice using the Python interpreter as a calculator:

\begin{myitemize}
\item{} {\itshape The volume of a sphere with radius {\bfseries \textquotesingle{}r}\textquotesingle{} is {\bfseries \textquotesingle{}4/3}\textquotesingle{} π r}{\itshape 3}{\itshape .}
\end{myitemize}

What is the volume of a sphere with radius 5? Hint: 392.6 is wrong!{\itshape }

\begin{myitemize}
\item{} {\itshape Suppose the cover price of a book is \${}24.95, but bookstores get a}
\end{myitemize}

40\% discount. Shipping costs \${}3 for the first copy and 75 cents
for each additional copy. What is the total wholesale cost for
60 copies?{\itshape }

\begin{myitemize}
\item{} {\itshape If I leave my house at 6:52 am and run 1 mile at an easy pace}
\end{myitemize}

(8:15 per mile), then 3 miles at tempo (7:12 per mile) and 1 mile at
easy pace again, what time do I get home for breakfast?{\itshape }
\subsection{Notes}
\label{44}
\LaTeXNullTemplate{}
\chapter{Functions}

\myminitoc
\label{45}

\label{46}
\LaTeXNullTemplate{}\section{Function calls}
\label{47}

In the context of programming, a {\bfseries function} is a named sequence of
statements that performs a computation. When you define a function,
you specify the name and the sequence of statements. Later, you can
\symbol{34}call\symbol{34} the function by name.
We have already seen one example of a {\bfseries function call}:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{>>>\ensuremath{\text{ }}}\DataTypeTok{type}\NormalTok{(}\DecValTok{32}\NormalTok{)}\newline
\NormalTok{<}\DataTypeTok{type}\ensuremath{\text{ }}\StringTok{{\char13}int{\char13}}\NormalTok{>}\newline
\ensuremath{\text{ }}\newline
\end{Highlighting}
\end{Shaded}

The name of the function is type. The expression in parentheses
is called the {\bfseries argument} of the function. The result, for this
function, is the type of the argument.

It is common to say that a function \symbol{34}takes\symbol{34} an argument and \symbol{34}returns\symbol{34} a result. The result is called the {\bfseries return value}.
\section{Type conversion functions}
\label{48}
Python provides built-{}in functions that convert values
from one type to another. The int function takes any value and
converts it to an integer, if it can, or complains otherwise:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{>>>\ensuremath{\text{ }}}\DataTypeTok{int}\NormalTok{(}\StringTok{{\char13}32{\char13}}\NormalTok{)}\newline
\DecValTok{32}\newline
\NormalTok{>>>\ensuremath{\text{ }}}\DataTypeTok{int}\NormalTok{(}\StringTok{{\char13}Hello{\char13}}\NormalTok{)}\newline
\OtherTok{ValueError}\NormalTok{:\ensuremath{\text{ }}invalid\ensuremath{\text{ }}literal\ensuremath{\text{ }}}\KeywordTok{for}\ensuremath{\text{ }}\DataTypeTok{int}\NormalTok{():\ensuremath{\text{ }}Hello}\newline
\end{Highlighting}
\end{Shaded}

int can convert floating-{}point values to integers, but it
doesn\textquotesingle{}t round off; it chops off the fraction part:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{>>>\ensuremath{\text{ }}}\DataTypeTok{int}\NormalTok{(}\FloatTok{3.99999}\NormalTok{)}\newline
\DecValTok{3}\newline
\NormalTok{>>>\ensuremath{\text{ }}}\DataTypeTok{int}\NormalTok{(-}\FloatTok{2.3}\NormalTok{)}\newline
\NormalTok{-}\DecValTok{2}\newline
\end{Highlighting}
\end{Shaded}

float converts integers and strings to floating-{}point
numbers:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{>>>\ensuremath{\text{ }}}\DataTypeTok{float}\NormalTok{(}\DecValTok{32}\NormalTok{)}\newline
\FloatTok{32.0}\newline
\NormalTok{>>>\ensuremath{\text{ }}}\DataTypeTok{float}\NormalTok{(}\StringTok{{\char13}3.14159{\char13}}\NormalTok{)}\newline
\FloatTok{3.14159}\newline
\end{Highlighting}
\end{Shaded}

Finally, str converts its argument to a string:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{>>>\ensuremath{\text{ }}}\DataTypeTok{str}\NormalTok{(}\DecValTok{32}\NormalTok{)}\newline
\StringTok{{\char13}32{\char13}}\newline
\NormalTok{>>>\ensuremath{\text{ }}}\DataTypeTok{str}\NormalTok{(}\FloatTok{3.14159}\NormalTok{)}\newline
\StringTok{{\char13}3.14159{\char13}}\newline
\ensuremath{\text{ }}\newline
\end{Highlighting}
\end{Shaded}

\section{Math functions}
\label{49}

Python has a math module that provides most of the familiar
mathematical functions. A {\bfseries module} is a file that contains a
collection of related functions.

Before we can use the module, we have to import it:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{>>>\ensuremath{\text{ }}}\CharTok{import}\ensuremath{\text{ }}\NormalTok{math}\newline
\ensuremath{\text{ }}\newline
\end{Highlighting}
\end{Shaded}

This statement creates a {\bfseries module object} named math. If
you print the module object, you get some information about it:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{>>>\ensuremath{\text{ }}}\KeywordTok{print}\ensuremath{\text{ }}\NormalTok{math}\newline
\ensuremath{\text{ }}\newline
\NormalTok{<module\ensuremath{\text{ }}}\StringTok{{\char13}math{\char13}}\ensuremath{\text{ }}\CharTok{from}\ensuremath{\text{ }}\StringTok{{\char13}/usr/lib/python2.5/lib-dynload/math.so{\char13}}\NormalTok{>}\newline
\ensuremath{\text{ }}\newline
\end{Highlighting}
\end{Shaded}

The module object contains the functions and variables defined in the
module. To access one of the functions, you have to specify the name
of the module and the name of the function, separated by a dot (also
known as a period). This format is called {\bfseries dot notation}.

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{>>>\ensuremath{\text{ }}ratio\ensuremath{\text{ }}=\ensuremath{\text{ }}signal_power\ensuremath{\text{ }}/\ensuremath{\text{ }}noise_power}\newline
\NormalTok{>>>\ensuremath{\text{ }}decibels\ensuremath{\text{ }}=\ensuremath{\text{ }}}\DecValTok{10}\ensuremath{\text{ }}\NormalTok{*\ensuremath{\text{ }}math.log10(ratio)}\newline
\ensuremath{\text{ }}\newline
\NormalTok{>>>\ensuremath{\text{ }}radians\ensuremath{\text{ }}=\ensuremath{\text{ }}}\FloatTok{0.7}\newline
\NormalTok{>>>\ensuremath{\text{ }}height\ensuremath{\text{ }}=\ensuremath{\text{ }}math.sin(radians)}\newline
\ensuremath{\text{ }}\newline
\end{Highlighting}
\end{Shaded}

The first example computes the logarithm base 10 of the
signal-{}to-{}noise ratio. The math module also provides a
function called log that computes logarithms base e.

The second example finds the sine of radians. The name of the
variable is a hint that sin and the other trigonometric
functions (cos, tan, etc.) take arguments in radians. To
convert from degrees to radians, divide by 360 and multiply by 2
π:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{>>>\ensuremath{\text{ }}degrees\ensuremath{\text{ }}=\ensuremath{\text{ }}}\DecValTok{45}\newline
\ensuremath{\text{ }}\newline
\NormalTok{>>>\ensuremath{\text{ }}radians\ensuremath{\text{ }}=\ensuremath{\text{ }}degrees\ensuremath{\text{ }}/\ensuremath{\text{ }}}\FloatTok{360.0}\ensuremath{\text{ }}\NormalTok{*\ensuremath{\text{ }}}\DecValTok{2}\ensuremath{\text{ }}\NormalTok{*\ensuremath{\text{ }}math.pi}\newline
\NormalTok{>>>\ensuremath{\text{ }}math.sin(radians)}\newline
\FloatTok{0.707106781187}\newline
\ensuremath{\text{ }}\newline
\end{Highlighting}
\end{Shaded}

The expression math.pi gets the variable pi from the math
module. The value of this variable is an approximation
of π, accurate to about 15 digits.

If you know
your trigonometry, you can check the previous result by comparing it to
the square root of two divided by two:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{>>>\ensuremath{\text{ }}math.sqrt(}\DecValTok{2}\NormalTok{)\ensuremath{\text{ }}/\ensuremath{\text{ }}}\FloatTok{2.0}\newline
\FloatTok{0.707106781187}\newline
\ensuremath{\text{ }}\newline
\end{Highlighting}
\end{Shaded}

\section{Composition}
\label{50}
So far, we have looked at the elements of a program—variables,
expressions, and statements—in isolation, without talking about how to
combine them.

One of the most useful features of programming languages is their
ability to take small building blocks and {\bfseries compose} them. For
example, the argument of a function can be any kind of expression,
including arithmetic operators:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{x\ensuremath{\text{ }}=\ensuremath{\text{ }}math.sin(degrees\ensuremath{\text{ }}/\ensuremath{\text{ }}}\FloatTok{360.0}\ensuremath{\text{ }}\NormalTok{*\ensuremath{\text{ }}}\DecValTok{2}\ensuremath{\text{ }}\NormalTok{*\ensuremath{\text{ }}math.pi)}\newline
\ensuremath{\text{ }}\newline
\end{Highlighting}
\end{Shaded}

And even function calls:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{x\ensuremath{\text{ }}=\ensuremath{\text{ }}math.exp(math.log(x}\DecValTok{+1}\NormalTok{))}\newline
\ensuremath{\text{ }}\newline
\end{Highlighting}
\end{Shaded}

Almost anywhere you can put a value, you can put an arbitrary
expression, with one exception: the left side of an assignment
statement has to be a variable name. Any other expression on the left
side is a syntax error.

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{>>>\ensuremath{\text{ }}minutes\ensuremath{\text{ }}=\ensuremath{\text{ }}hours\ensuremath{\text{ }}*\ensuremath{\text{ }}}\DecValTok{60}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\CommentTok{#\ensuremath{\text{ }}right}\newline
\NormalTok{>>>\ensuremath{\text{ }}hours\ensuremath{\text{ }}*\ensuremath{\text{ }}}\DecValTok{60}\ensuremath{\text{ }}\NormalTok{=\ensuremath{\text{ }}minutes\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\CommentTok{#\ensuremath{\text{ }}wrong!}\newline
\OtherTok{SyntaxError}\NormalTok{:\ensuremath{\text{ }}can}\StringTok{{\char13}t\ensuremath{\text{ }}assign\ensuremath{\text{ }}to\ensuremath{\text{ }}operator}\newline
\end{Highlighting}
\end{Shaded}

\section{Adding new functions}
\label{51}
So far, we have only been using the functions that come with Python,
but it is also possible to add new functions.
A {\bfseries function definition} specifies the name of a new function and
the sequence of statements that execute when the function is called.

Here is an example:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{print_lyrics():}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{print}\ensuremath{\text{ }}\StringTok{"I{\char13}m\ensuremath{\text{ }}a\ensuremath{\text{ }}lumberjack,\ensuremath{\text{ }}and\ensuremath{\text{ }}I{\char13}m\ensuremath{\text{ }}okay."}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{print}\ensuremath{\text{ }}\StringTok{"I\ensuremath{\text{ }}sleep\ensuremath{\text{ }}all\ensuremath{\text{ }}night\ensuremath{\text{ }}and\ensuremath{\text{ }}I\ensuremath{\text{ }}work\ensuremath{\text{ }}all\ensuremath{\text{ }}day."}\newline
\end{Highlighting}
\end{Shaded}

def is a keyword that indicates that this is a function
definition. The name of the function is {\ttfamily print_lyrics}. The
rules for function names are the same as for variable names: letters,
numbers and some punctuation marks are legal, but the first character
can\textquotesingle{}t be a number. You can\textquotesingle{}t use a keyword as the name of a function,
and you should avoid having a variable and a function with the same
name.

The empty parentheses after the name indicate that this function
doesn\textquotesingle{}t take any arguments.

The first line of the function definition is called the {\bfseries header};
the rest is called the {\bfseries body}. The header has to end with a colon
and the body has to be indented. By convention, the indentation is
always four spaces (see Section). The body can contain
any number of statements.

The strings in the print statements are enclosed in double
quotes. Single quotes and double quotes do the same thing;
most people use single quotes except in cases like this where
a single quote (which is also an apostrophe) appears in the string.

If you type a function definition in interactive mode, the interpreter
prints ellipses ({\itshape ...}) to let you know that the definition
isn\textquotesingle{}t complete:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{>>>\ensuremath{\text{ }}}\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{print_lyrics():}\newline
\NormalTok{...\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\KeywordTok{print}\ensuremath{\text{ }}\StringTok{"I{\char13}m\ensuremath{\text{ }}a\ensuremath{\text{ }}lumberjack,\ensuremath{\text{ }}and\ensuremath{\text{ }}I{\char13}m\ensuremath{\text{ }}okay."}\newline
\NormalTok{...\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\KeywordTok{print}\ensuremath{\text{ }}\StringTok{"I\ensuremath{\text{ }}sleep\ensuremath{\text{ }}all\ensuremath{\text{ }}night\ensuremath{\text{ }}and\ensuremath{\text{ }}I\ensuremath{\text{ }}work\ensuremath{\text{ }}all\ensuremath{\text{ }}day."}\newline
\NormalTok{...}\newline
\end{Highlighting}
\end{Shaded}

To end the function, you have to enter an empty line (this is
not necessary in a script).

Defining a function creates a variable with the same name.

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{>>>\ensuremath{\text{ }}}\KeywordTok{print}\ensuremath{\text{ }}\NormalTok{print_lyrics}\newline
\NormalTok{<function\ensuremath{\text{ }}print_lyrics\ensuremath{\text{ }}at\ensuremath{\text{ }}}\BaseNTok{0xb7e99e9c}\NormalTok{>}\newline
\NormalTok{>>>\ensuremath{\text{ }}}\KeywordTok{print}\ensuremath{\text{ }}\DataTypeTok{type}\NormalTok{(print_lyrics)}\newline
\NormalTok{<}\DataTypeTok{type}\ensuremath{\text{ }}\StringTok{{\char13}function{\char13}}\NormalTok{>}\newline
\end{Highlighting}
\end{Shaded}

The value of {\ttfamily print_lyrics} is a {\bfseries function object}, which
has type {\ttfamily \textquotesingle{}function\textquotesingle{}}.

The syntax for calling the new function is the same as
for built-{}in functions:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{>>>\ensuremath{\text{ }}print_lyrics()}\newline
\NormalTok{I}\StringTok{{\char13}m\ensuremath{\text{ }}a\ensuremath{\text{ }}lumberjack,\ensuremath{\text{ }}and\ensuremath{\text{ }}I{\char13}}\NormalTok{m\ensuremath{\text{ }}okay.}\newline
\NormalTok{I\ensuremath{\text{ }}sleep\ensuremath{\text{ }}}\DataTypeTok{all}\ensuremath{\text{ }}\NormalTok{night\ensuremath{\text{ }}and\ensuremath{\text{ }}I\ensuremath{\text{ }}work\ensuremath{\text{ }}}\DataTypeTok{all}\ensuremath{\text{ }}\NormalTok{day.}\newline
\ensuremath{\text{ }}\newline
\end{Highlighting}
\end{Shaded}

Once you have defined a function, you can use it inside another
function. For example, to repeat the previous refrain, we could write
a function called {\ttfamily repeat_lyrics}:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{repeat_lyrics():}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{print_lyrics()}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{print_lyrics()}\newline
\ensuremath{\text{ }}\newline
\end{Highlighting}
\end{Shaded}

And then call {\ttfamily repeat_lyrics}:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{>>>\ensuremath{\text{ }}repeat_lyrics()}\newline
\NormalTok{I}\StringTok{{\char13}m\ensuremath{\text{ }}a\ensuremath{\text{ }}lumberjack,\ensuremath{\text{ }}and\ensuremath{\text{ }}I{\char13}}\NormalTok{m\ensuremath{\text{ }}okay.}\newline
\NormalTok{I\ensuremath{\text{ }}sleep\ensuremath{\text{ }}}\DataTypeTok{all}\ensuremath{\text{ }}\NormalTok{night\ensuremath{\text{ }}and\ensuremath{\text{ }}I\ensuremath{\text{ }}work\ensuremath{\text{ }}}\DataTypeTok{all}\ensuremath{\text{ }}\NormalTok{day.}\newline
\NormalTok{I}\StringTok{{\char13}m\ensuremath{\text{ }}a\ensuremath{\text{ }}lumberjack,\ensuremath{\text{ }}and\ensuremath{\text{ }}I{\char13}}\NormalTok{m\ensuremath{\text{ }}okay.}\newline
\NormalTok{I\ensuremath{\text{ }}sleep\ensuremath{\text{ }}}\DataTypeTok{all}\ensuremath{\text{ }}\NormalTok{night\ensuremath{\text{ }}and\ensuremath{\text{ }}I\ensuremath{\text{ }}work\ensuremath{\text{ }}}\DataTypeTok{all}\ensuremath{\text{ }}\NormalTok{day.}\newline
\ensuremath{\text{ }}\newline
\end{Highlighting}
\end{Shaded}

But that\textquotesingle{}s not really how the song goes.

\section{Definitions and uses}
\label{52}

Pulling together the code fragments from the previous section, the
whole program looks like this:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{print_lyrics():}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{print}\ensuremath{\text{ }}\StringTok{"I{\char13}m\ensuremath{\text{ }}a\ensuremath{\text{ }}lumberjack,\ensuremath{\text{ }}and\ensuremath{\text{ }}I{\char13}m\ensuremath{\text{ }}okay."}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{print}\ensuremath{\text{ }}\StringTok{"I\ensuremath{\text{ }}sleep\ensuremath{\text{ }}all\ensuremath{\text{ }}night\ensuremath{\text{ }}and\ensuremath{\text{ }}I\ensuremath{\text{ }}work\ensuremath{\text{ }}all\ensuremath{\text{ }}day."}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{repeat_lyrics():}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{print_lyrics()}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{print_lyrics()}\newline
\ensuremath{\text{ }}\newline
\NormalTok{repeat_lyrics()}\newline
\ensuremath{\text{ }}\newline
\end{Highlighting}
\end{Shaded}

This program contains two function definitions: {\ttfamily print_lyrics} and
{\ttfamily repeat_lyrics}. Function definitions get executed just like other
statements, but the effect is to create function objects. The statements
inside the function do not get executed until the function is called, and
the function definition generates no output.

As you might expect, you have to create a function before you can
execute it. In other words, the function definition has to be
executed before the first time it is called.
\subsection{Exercise 1}
\label{53}
Move the last line of this program
to the top, so the function call appears before the definitions. Run
the program and see what error
message you get.
\subsection{Exercise 2}
\label{54}
Move the function call back to the bottom
and move the definition of {\ttfamily print_lyrics} after the definition of
{\ttfamily repeat_lyrics}. What happens when you run this program?
\section{Flow of execution}
\label{55}
In order to ensure that a function is defined before its first use,
you have to know the order in which statements are executed, which is
called the {\bfseries flow of execution}.

Execution always begins at the first statement of the program.
Statements are executed one at a time, in order from top to bottom.

Function definitions do not alter the flow of execution of the
program, but remember that statements inside the function are not
executed until the function is called.

A function call is like a detour in the flow of execution. Instead of
going to the next statement, the flow jumps to the body of
the function, executes all the statements there, and then comes back
to pick up where it left off.

That sounds simple enough, until you remember that one function can
call another. While in the middle of one function, the program might
have to execute the statements in another function. But while
executing that new function, the program might have to execute yet
another function!

Fortunately, Python is good at keeping track of where it is, so each
time a function completes, the program picks up where it left off in
the function that called it. When it gets to the end of the program,
it terminates.

What\textquotesingle{}s the moral of this sordid tale? When you read a program, you
don\textquotesingle{}t always want to read from top to bottom. Sometimes it makes
more sense if you follow the flow of execution.

\section{Parameters and arguments}
\label{56}

Some of the built-{}in functions we have seen require arguments. For
example, when you call math.sin you pass a number
as an argument. Some functions take more than one argument:
math.pow takes two, the base and the exponent.

Inside the function, the arguments are assigned to
variables called {\bfseries parameters}. Here is an example of a
user-{}defined function that takes an argument:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{print_twice(bruce):}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{print}\ensuremath{\text{ }}\NormalTok{bruce}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{print}\ensuremath{\text{ }}\NormalTok{bruce}\newline
\ensuremath{\text{ }}\newline
\end{Highlighting}
\end{Shaded}

This function assigns the argument to a parameter
named bruce. When the function is called, it prints the value of
the parameter (whatever it is) twice.

This function works with any value that can be printed.

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{>>>\ensuremath{\text{ }}print_twice(}\StringTok{{\char13}Spam{\char13}}\NormalTok{)}\newline
\NormalTok{Spam}\newline
\NormalTok{Spam}\newline
\ensuremath{\text{ }}\newline
\NormalTok{>>>\ensuremath{\text{ }}print_twice(}\DecValTok{17}\NormalTok{)}\newline
\DecValTok{17}\newline
\DecValTok{17}\newline
\NormalTok{>>>\ensuremath{\text{ }}print_twice(math.pi)}\newline
\FloatTok{3.14159265359}\newline
\FloatTok{3.14159265359}\newline
\ensuremath{\text{ }}\newline
\end{Highlighting}
\end{Shaded}

The same rules of composition that apply to built-{}in functions also
apply to user-{}defined functions, so we can use any kind of expression
as an argument for {\ttfamily print_twice}:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{>>>\ensuremath{\text{ }}print_twice(}\StringTok{{\char13}Spam\ensuremath{\text{ }}{\char13}}\NormalTok{*}\DecValTok{4}\NormalTok{)}\newline
\NormalTok{Spam\ensuremath{\text{ }}Spam\ensuremath{\text{ }}Spam\ensuremath{\text{ }}Spam}\newline
\NormalTok{Spam\ensuremath{\text{ }}Spam\ensuremath{\text{ }}Spam\ensuremath{\text{ }}Spam}\newline
\NormalTok{>>>\ensuremath{\text{ }}print_twice(math.cos(math.pi))}\newline
\NormalTok{-}\FloatTok{1.0}\newline
\NormalTok{-}\FloatTok{1.0}\newline
\ensuremath{\text{ }}\newline
\end{Highlighting}
\end{Shaded}

The argument is evaluated before the function is called, so
in the examples the expressions {\ttfamily \textquotesingle{}Spam \textquotesingle{}*4} and
math.cos(math.pi) are only evaluated once.

You can also use a variable as an argument:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{>>>\ensuremath{\text{ }}michael\ensuremath{\text{ }}=\ensuremath{\text{ }}}\StringTok{{\char13}Eric,\ensuremath{\text{ }}the\ensuremath{\text{ }}half\ensuremath{\text{ }}a\ensuremath{\text{ }}bee.{\char13}}\newline
\ensuremath{\text{ }}\newline
\NormalTok{>>>\ensuremath{\text{ }}print_twice(michael)}\newline
\NormalTok{Eric,\ensuremath{\text{ }}the\ensuremath{\text{ }}half\ensuremath{\text{ }}a\ensuremath{\text{ }}bee.}\newline
\NormalTok{Eric,\ensuremath{\text{ }}the\ensuremath{\text{ }}half\ensuremath{\text{ }}a\ensuremath{\text{ }}bee.}\newline
\ensuremath{\text{ }}\newline
\end{Highlighting}
\end{Shaded}

The name of the variable we pass as an argument (michael) has
nothing to do with the name of the parameter (bruce). It
doesn\textquotesingle{}t matter what the value was called back home (in the caller);
here in {\ttfamily print_twice}, we call everybody bruce.

\section{Variables and parameters are local}
\label{57}

When you create a variable inside a function, it is {\bfseries local},
which means that it only
exists inside the function. For example:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{cat_twice(part1,\ensuremath{\text{ }}part2):}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{cat\ensuremath{\text{ }}=\ensuremath{\text{ }}part1\ensuremath{\text{ }}+\ensuremath{\text{ }}part2}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{print_twice(cat)}\newline
\ensuremath{\text{ }}\newline
\ensuremath{\text{ }}\newline
\end{Highlighting}
\end{Shaded}

This function takes two arguments, concatenates them, and prints
the result twice. Here is an example that uses it:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{>>>\ensuremath{\text{ }}line1\ensuremath{\text{ }}=\ensuremath{\text{ }}}\StringTok{{\char13}Bing\ensuremath{\text{ }}tiddle\ensuremath{\text{ }}{\char13}}\newline
\NormalTok{>>>\ensuremath{\text{ }}line2\ensuremath{\text{ }}=\ensuremath{\text{ }}}\StringTok{{\char13}tiddle\ensuremath{\text{ }}bang.{\char13}}\newline
\NormalTok{>>>\ensuremath{\text{ }}cat_twice(line1,\ensuremath{\text{ }}line2)}\newline
\NormalTok{Bing\ensuremath{\text{ }}tiddle\ensuremath{\text{ }}tiddle\ensuremath{\text{ }}bang.}\newline
\NormalTok{Bing\ensuremath{\text{ }}tiddle\ensuremath{\text{ }}tiddle\ensuremath{\text{ }}bang.}\newline
\ensuremath{\text{ }}\newline
\end{Highlighting}
\end{Shaded}

When {\ttfamily cat_twice} terminates, the variable cat
is destroyed. If we try to print it, we get an exception:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{>>>\ensuremath{\text{ }}}\KeywordTok{print}\ensuremath{\text{ }}\NormalTok{cat}\newline
\OtherTok{NameError}\NormalTok{:\ensuremath{\text{ }}name\ensuremath{\text{ }}}\StringTok{{\char13}cat{\char13}}\ensuremath{\text{ }}\NormalTok{is\ensuremath{\text{ }}not\ensuremath{\text{ }}defined}\newline
\ensuremath{\text{ }}\newline
\ensuremath{\text{ }}\newline
\end{Highlighting}
\end{Shaded}

Parameters are also local.
For example, outside {\ttfamily print_twice}, there is no
such thing as bruce.

\section{Stack diagrams}
\label{58}

To keep track of which variables can be used where, it is sometimes
useful to draw a {\bfseries stack diagram}. Like state diagrams, stack
diagrams show the value of each variable, but they also show the
function each variable belongs to.

Each function is represented by a {\bfseries frame}. A frame is a box
with the name of a function
beside it and the parameters and variables of the function inside it.
The stack diagram for the
previous example looks like this:

\begin{minipage}{1.0\linewidth}
\begin{center}
\includegraphics[width=1.0\linewidth,height=6.5in,keepaspectratio]{../images/3.png}
\end{center}
\raggedright{}\myfigurewithoutcaption{3}
\end{minipage}\vspace{0.75cm}

The frames are arranged in a stack that indicates which function
called which, and so on. In this example, {\ttfamily print_twice}

was called by {\ttfamily cat_twice}, and {\ttfamily cat_twice} was called by
{\ttfamily __main__}, which is a special name for the topmost frame. When
you create a variable outside of any function, it belongs to
{\ttfamily __main__}.

Each parameter refers to the same value as its corresponding
argument. So, part1 has the same value as
line1, part2 has the same value as line2,
and bruce has the same value as cat.

If an error occurs during a function call, Python prints the
name of the function, and the name of the function that called
it, and the name of the function that called {\itshape that}, all the
way back to {\ttfamily __main__}.

For example, if you try to access cat from within

{\ttfamily print_twice}, you get a NameError:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{Traceback\ensuremath{\text{ }}(innermost\ensuremath{\text{ }}last):}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{File\ensuremath{\text{ }}}\StringTok{"test.py"}\NormalTok{,\ensuremath{\text{ }}line\ensuremath{\text{ }}}\DecValTok{13}\NormalTok{,\ensuremath{\text{ }}in\ensuremath{\text{ }}__main__}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{cat_twice(line1,\ensuremath{\text{ }}line2)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{File\ensuremath{\text{ }}}\StringTok{"test.py"}\NormalTok{,\ensuremath{\text{ }}line\ensuremath{\text{ }}}\DecValTok{5}\NormalTok{,\ensuremath{\text{ }}in\ensuremath{\text{ }}cat_twice}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{print_twice(cat)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{File\ensuremath{\text{ }}}\StringTok{"test.py"}\NormalTok{,\ensuremath{\text{ }}line\ensuremath{\text{ }}}\DecValTok{9}\NormalTok{,\ensuremath{\text{ }}in\ensuremath{\text{ }}print_twice}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{print}\ensuremath{\text{ }}\NormalTok{cat}\newline
\OtherTok{NameError}\NormalTok{:\ensuremath{\text{ }}name\ensuremath{\text{ }}}\StringTok{{\char13}cat{\char13}}\ensuremath{\text{ }}\NormalTok{is\ensuremath{\text{ }}not\ensuremath{\text{ }}defined}\newline
\ensuremath{\text{ }}\newline
\end{Highlighting}
\end{Shaded}

This list of functions is called a {\bfseries traceback}. It tells you what
program file the error occurred in, and what line, and what functions
were executing at the time. It also shows the line of code that
caused the error.

The order of the functions in the traceback is the same as the
order of the frames in the stack diagram. The function that is
currently running is at the bottom.

\section{Fruitful functions and void functions}
\label{59}

Some of the functions we are using, such as the math functions, yield
results; for lack of a better name, I call them {\bfseries fruitful}
functions{\bfseries . Other functions, like {\ttfamily print_twice}, perform an}
action but don\textquotesingle{}t return a value. They are called {\bfseries void}
functions{\bfseries .}

When you call a fruitful function, you almost always
want to do something with the result; for example, you might
assign it to a variable or use it as part of an expression:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{x\ensuremath{\text{ }}=\ensuremath{\text{ }}math.cos(radians)}\newline
\NormalTok{golden\ensuremath{\text{ }}=\ensuremath{\text{ }}(math.sqrt(}\DecValTok{5}\NormalTok{)\ensuremath{\text{ }}+\ensuremath{\text{ }}}\DecValTok{1}\NormalTok{)\ensuremath{\text{ }}/\ensuremath{\text{ }}}\DecValTok{2}\newline
\ensuremath{\text{ }}\newline
\ensuremath{\text{ }}\newline
\end{Highlighting}
\end{Shaded}

When you call a function in interactive mode, Python displays
the result:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{>>>\ensuremath{\text{ }}math.sqrt(}\DecValTok{5}\NormalTok{)}\newline
\FloatTok{2.2360679774997898}\newline
\ensuremath{\text{ }}\newline
\end{Highlighting}
\end{Shaded}

But in a script, if you call a fruitful function all by itself,
the return value is lost forever!

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{math.sqrt(}\DecValTok{5}\NormalTok{)}\newline
\ensuremath{\text{ }}\newline
\end{Highlighting}
\end{Shaded}

This script computes the square root of 5, but since it doesn\textquotesingle{}t store
or display the result, it is not very useful.

Void functions might display something on the screen or have some
other effect, but they don\textquotesingle{}t have a return value. If you try to
assign the result to a variable, you get a special value called
None.

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{>>>\ensuremath{\text{ }}result\ensuremath{\text{ }}=\ensuremath{\text{ }}print_twice(}\StringTok{{\char13}Bing{\char13}}\NormalTok{)}\newline
\NormalTok{Bing}\newline
\NormalTok{Bing}\newline
\NormalTok{>>>\ensuremath{\text{ }}}\KeywordTok{print}\ensuremath{\text{ }}\NormalTok{result}\newline
\OtherTok{None}\newline
\ensuremath{\text{ }}\newline
\ensuremath{\text{ }}\newline
\end{Highlighting}
\end{Shaded}

The value None is not the same as the string {\ttfamily \textquotesingle{}None\textquotesingle{}}.
It is a special value that has its own type:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{>>>\ensuremath{\text{ }}}\KeywordTok{print}\ensuremath{\text{ }}\DataTypeTok{type}\NormalTok{(}\OtherTok{None}\NormalTok{)}\newline
\NormalTok{<}\DataTypeTok{type}\ensuremath{\text{ }}\StringTok{{\char13}NoneType{\char13}}\NormalTok{>}\newline
\ensuremath{\text{ }}\newline
\end{Highlighting}
\end{Shaded}

The functions we have written so far are all void. We will start
writing fruitful functions in a few chapters.

\section{Why functions?}
\label{60}
It may not be clear why it is worth the trouble to divide
a program into functions. There are several reasons:

\begin{myitemize}
\item{} Creating a new function gives you an opportunity to name a group of statements, which makes your program easier to read and debug.
\item{} Functions can make a program smaller by eliminating repetitive code. Later, if you make a change, you only have to make it in one place.
\item{} Dividing a long program into functions allows you to debug the parts one at a time and then assemble them into a working whole.
\item{} Well-{}designed functions are often useful for many programs. Once you write and debug one, you can reuse it.
\end{myitemize}

\section{Debugging}
\label{61}
If you are using a text editor to write your scripts, you might
run into problems with spaces and tabs. The best way to avoid
these problems is to use spaces exclusively (no tabs). Most text
editors that know about Python do this by default, but some
don\textquotesingle{}t.

Tabs and spaces are usually invisible, which makes them
hard to debug, so try to find an editor that manages indentation
for you.

Also, don\textquotesingle{}t forget to save your program before you run it. Some
development environments do this automatically, but some don\textquotesingle{}t.
In that case the program you are looking at in the text editor
is not the same as the program you are running.

Debugging can take a long time if you keep running the same,
incorrect, program over and over!

Make sure that the code you are looking at is the code you are running.
If you\textquotesingle{}re not sure, put something like {\ttfamily print \textquotesingle{}hello\textquotesingle{}} at the
beginning of the program and run it again. If you don\textquotesingle{}t see
{\ttfamily hello}, you\textquotesingle{}re not running the right program!

\section{Glossary}
\label{62}
\begin{myitemize}
\item{} {\bfseries function:} A named sequence of statements that performs some
\end{myitemize}

useful operation. Functions may or may not take arguments and may or
may not produce a result.
\begin{myitemize}
\item{} {\bfseries function definition:} A statement that creates a new function,
\end{myitemize}

specifying its name, parameters, and the statements it executes.
\begin{myitemize}
\item{} {\bfseries function object:} A value created by a function definition.
\end{myitemize}

The name of the function is a variable that refers to a function
object.
\begin{myitemize}
\item{} {\bfseries header:} The first line of a function definition.
\item{} {\bfseries body:} The sequence of statements inside a function definition.
\item{} {\bfseries parameter:} A name used inside a function to refer to the value
\end{myitemize}

passed as an argument.
\begin{myitemize}
\item{} {\bfseries function call:} A statement that executes a function. It
\end{myitemize}

consists of the function name followed by an argument list.
\begin{myitemize}
\item{} {\bfseries argument:} A value provided to a function when the function is called.
\end{myitemize}

This value is assigned to the corresponding parameter in the function.
\begin{myitemize}
\item{} {\bfseries local variable:} A variable defined inside a function. A local
\end{myitemize}

variable can only be used inside its function.
\begin{myitemize}
\item{} {\bfseries return value:} The result of a function. If a function call
\end{myitemize}

is used as an expression, the return value is the value of
the expression.
\begin{myitemize}
\item{} {\bfseries fruitful function:} A function that returns a value.
\item{} {\bfseries void function:} A function that doesn\textquotesingle{}t return a value.
\item{} {\bfseries module:} A file that contains a
\end{myitemize}

collection of related functions and other definitions.
\begin{myitemize}
\item{} {\bfseries import statement:} A statement that reads a module file and creates
\end{myitemize}

a module object.
\begin{myitemize}
\item{} {\bfseries module object:} A value created by an import statement
\end{myitemize}

that provides access to the values defined in a module.
\begin{myitemize}
\item{} {\bfseries dot notation:} The syntax for calling a function in another
\end{myitemize}

module by specifying the module name followed by a dot (period) and
the function name.
\begin{myitemize}
\item{} {\bfseries composition:} Using an expression as part of a larger expression,
\end{myitemize}

or a statement as part of a larger statement.
\begin{myitemize}
\item{} {\bfseries flow of execution:} The order in which statements are executed during
\end{myitemize}

a program run.
\begin{myitemize}
\item{} {\bfseries stack diagram:} A graphical representation of a stack of functions,
\end{myitemize}

their variables, and the values they refer to.
\begin{myitemize}
\item{} {\bfseries frame:} A box in a stack diagram that represents a function call.
\end{myitemize}

It contains the local variables and parameters of the function.
\begin{myitemize}
\item{} {\bfseries traceback:} A list of the functions that are executing,
\end{myitemize}

printed when an exception occurs.
\section{Exercises}
\label{63}\subsection{Exercise 3}
\label{64}
{\itshape Python provides a built-{}in function called len that}
returns the length of a string, so the value of {\ttfamily len(\textquotesingle{}allen\textquotesingle{})} is 5.{\itshape }

{\itshape Write a function named {\ttfamily right_justify} that takes a string}
named s as a parameter and prints the string with enough
leading spaces so that the last letter of the string is in column 70
of the display.{\itshape }

\TemplatePreformat{\textquotesingle{}\textquotesingle{}{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}right_justify(\textquotesingle{}allen\textquotesingle{}) \newline{}
 {} \newline{}
 {}allen \newline{}
\textquotesingle{}\textquotesingle{} \newline{}
}
\subsection{Exercise 4}
\label{65}
{\itshape A function object is a value you can assign to a variable}
or pass as an argument. For example, {\ttfamily do_twice} is a function
that takes a function object as an argument and calls it twice:{\itshape }

\TemplatePreformat{\textquotesingle{}\textquotesingle{}def {}do_twice(f): \newline{}
 {} {} {} {}f() \newline{}
 {} {} {} {}f() \newline{}
\textquotesingle{}\textquotesingle{} \newline{}
}

{\itshape Here’s an example that uses {\ttfamily do_twice} to call a function}
named {\ttfamily print_spam} twice.{\itshape }

\TemplatePreformat{\textquotesingle{}\textquotesingle{}def {}print_spam(): \newline{}
 {} {} {} {}print {}\textquotesingle{}spam\textquotesingle{} \newline{}
 {} \newline{}
do_twice(print_spam) \newline{}
\textquotesingle{}\textquotesingle{} \newline{}
}

\begin{myenumerate}
\item{} {\itshape Type this example into a script and test it.}
\item{} {\itshape Modify {\ttfamily do_twice} so that it takes two arguments, a function object and a value, and calls the function twice, passing the value as an argument.}
\item{} {\itshape Write a more general version of {\ttfamily print_spam}, called {\ttfamily print_twice}, that takes a string as a parameter and prints it twice.}
\item{} {\itshape Use the modified version of {\ttfamily do_twice} to call {\ttfamily print_twice} twice, passing {\ttfamily \textquotesingle{}spam\textquotesingle{}} as an argument.}
\item{} {\itshape Define a new function called {\ttfamily do_four} that takes a function object and a value and calls the function four times, passing the value as a parameter. There should be only two statements in the body of this function, not four.}
\end{myenumerate}

{\itshape You can see my solution at thinkpython.com/code/do_four.py.}
\subsection{Exercise 5}
\label{66}
This exercise{\bfseries \textquotesingle{} can be}
done using only the statements and other features we have learned so
far. {\itshape }
\begin{myenumerate}
\item{} {\itshape Write a function that draws a grid like the following:}
\end{myenumerate}

{\itshape \TemplatePreformat{ \newline{}
\textquotesingle{}\textquotesingle{}+ {}-{} {}-{} {}-{} {}-{} {}+ {}-{} {}-{} {}-{} {}-{} {}+ \newline{}
| {} {} {} {} {} {} {} {} {}| {} {} {} {} {} {} {} {} {}| \newline{}
| {} {} {} {} {} {} {} {} {}| {} {} {} {} {} {} {} {} {}| \newline{}
| {} {} {} {} {} {} {} {} {}| {} {} {} {} {} {} {} {} {}| \newline{}
| {} {} {} {} {} {} {} {} {}| {} {} {} {} {} {} {} {} {}| \newline{}
+ {}-{} {}-{} {}-{} {}-{} {}+ {}-{} {}-{} {}-{} {}-{} {}+ \newline{}
| {} {} {} {} {} {} {} {} {}| {} {} {} {} {} {} {} {} {}| \newline{}
| {} {} {} {} {} {} {} {} {}| {} {} {} {} {} {} {} {} {}| \newline{}
| {} {} {} {} {} {} {} {} {}| {} {} {} {} {} {} {} {} {}| \newline{}
| {} {} {} {} {} {} {} {} {}| {} {} {} {} {} {} {} {} {}| \newline{}
+ {}-{} {}-{} {}-{} {}-{} {}+ {}-{} {}-{} {}-{} {}-{} {}+ \newline{}
\textquotesingle{}\textquotesingle{} \newline{}
<{}/pre>{} \newline{}
 {} \newline{}
\textquotesingle{}\textquotesingle{}Hint: {}to {}print {}more {}than {}one {}value {}on {}a {}line, {}you {}can {}print {}a \newline{}
 {}comma-{}separated {}sequence:\textquotesingle{}\textquotesingle{} {} {} {}<{}pre>{}\textquotesingle{}\textquotesingle{}print {}\textquotesingle{}+\textquotesingle{}, {}\textquotesingle{}-{}\textquotesingle{} {}\textquotesingle{}\textquotesingle{} {}<{}/pre>{} {} {}\textquotesingle{}\textquotesingle{}If \newline{}
 {}the {}sequence {}ends {}with {}a {}comma, {}Python {}leaves {}the {}line {}unfinished, {}so \newline{}
 {}the {}value {}printed {}next {}appears {}on {}the {}same {}line.\textquotesingle{}\textquotesingle{} {} {} {}<{}pre>{}\textquotesingle{}\textquotesingle{}print \newline{}
 {}\textquotesingle{}+\textquotesingle{}, {}print {}\textquotesingle{}-{}\textquotesingle{} {}\textquotesingle{}\textquotesingle{} {}<{}/pre>{} {} {}\textquotesingle{}\textquotesingle{}The {}output {}of {}these {}statements {}is \newline{}
 {}<{}code>{}\textquotesingle{}+ {}-{}\textquotesingle{}<{}/code>{}.\textquotesingle{}\textquotesingle{} {} {} {}\textquotesingle{}\textquotesingle{}A {}print {}statement {}all {}by {}itself {}ends {}the \newline{}
 {}current {}line {}and {}goes {}to {}the {}next {}line.\textquotesingle{}\textquotesingle{} \newline{}
\# {}\textquotesingle{}\textquotesingle{}Use {}the {}previous {}function {}to {}draw {}a {}similar {}grid {}with {}four {}rows \newline{}
 {}and {}four {}columns.\textquotesingle{}\textquotesingle{} \newline{}
 {} \newline{}
\textquotesingle{}\textquotesingle{}You {}can {}see {}my {}solution {}at {}thinkpython.com/code/grid.py.\textquotesingle{}\textquotesingle{} \newline{}
 {} \newline{}
We {}will {}see {}exceptions {}to {}this {}rule \newline{}
later. \newline{}
Based {}on {}an {}exercise {}in {}Oualline, {}\textquotesingle{}\textquotesingle{}Practical {}C {}Programming, {}Third \newline{}
 {}Edition\textquotesingle{}\textquotesingle{}, {}O’Reilly {}(1997) \newline{}
 {} \newline{}
= {}Case {}study: {}interface {}design {}= \newline{}
 {} \newline{}
}}

\label{67}
\LaTeXNullTemplate{}
\subsection{TurtleWorld}
\label{68}
To accompany this book, I have written a suite of modules called Swampy. One of these modules is TurtleWorld, which provides a set of functions for drawing lines by steering turtles around the screen.

You can download Swampy from thinkpython.com/swampy; follow the instructions there to install Swampy on your system.

Move into the directory that contains TurtleWorld.py, create a file named polygon.py and type in the following code:

\begin{Shaded}
\begin{Highlighting}[]

\CharTok{from}\ensuremath{\text{ }}\NormalTok{TurtleWorld\ensuremath{\text{ }}}\CharTok{import}\ensuremath{\text{ }}\NormalTok{*}\newline
\ensuremath{\text{ }}\newline
\NormalTok{world\ensuremath{\text{ }}=\ensuremath{\text{ }}TurtleWorld()}\newline
\NormalTok{bob\ensuremath{\text{ }}=\ensuremath{\text{ }}Turtle()}\newline
\KeywordTok{print}\ensuremath{\text{ }}\NormalTok{bob}\newline
\ensuremath{\text{ }}\newline
\NormalTok{wait_for_user()}\newline
\end{Highlighting}
\end{Shaded}

The first line is a variation of the import statement we saw before;
instead of creating a module object, it imports the functions
from the module directly, so you can access them without using dot
notation.

The next lines create a TurtleWorld assigned to world and
a Turtle assigned to bob. Printing bob yields something
like:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{<TurtleWorld.Turtle\ensuremath{\text{ }}instance\ensuremath{\text{ }}at\ensuremath{\text{ }}}\BaseNTok{0xb7bfbf4c}\NormalTok{>}\newline
\end{Highlighting}
\end{Shaded}

This means that bob refers to an {\bfseries instance} of a Turtle as defined in module TurtleWorld. In this context, \symbol{34}instance\symbol{34} means a member of a set; this Turtle is one of the set of possible Turtles.

wait_for_user tells TurtleWorld to wait for the user
to do something, although in this case there\textquotesingle{}s not much for
the user to do except close the window.

TurtleWorld provides several
turtle-{}steering functions: fd and bk for
forward and backward, and lt and rt for left and
right turns. Also, each Turtle is holding a pen, which is
either down or up; if the pen is down, the Turtle leaves
a trail when it moves. The functions pu and pd
stand for “pen up” and “pen down.”

To draw a right angle, add these lines to the program
(after creating bob and before calling wait_for_user):

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{fd(bob,\ensuremath{\text{ }}}\DecValTok{100}\NormalTok{)}\newline
\NormalTok{rt(bob)}\newline
\NormalTok{fd(bob,\ensuremath{\text{ }}}\DecValTok{100}\NormalTok{)}\newline
\end{Highlighting}
\end{Shaded}

The first line tells bob to take 100 steps
forward. The second line tells him to turn right.

When you run this program, you should see bob move east and then
south, leaving two line segments behind.

Now modify the program to draw a square. Don’t turn the page until
you\textquotesingle{}ve got it working!
\subsection{Simple repetition}
\label{69}
Chances are you wrote something like this (leaving out the code
that creates TurtleWorld and waits for the user):
\TemplatePreformat{fd(bob, {}100) \newline{}
lt(bob) \newline{}
 {} \newline{}
fd(bob, {}100) \newline{}
lt(bob) \newline{}
 {} \newline{}
fd(bob, {}100) \newline{}
lt(bob) \newline{}
 {} \newline{}
fd(bob, {}100) \newline{}
}
We can do the same thing more concisely with a for statement.
Add this example to polygon.py and run it again:

\TemplatePreformat{for {}i {}in {}range(4): \newline{}
 {} {} {} {}print {}\textquotesingle{}Hello!\textquotesingle{} \newline{}
}
You should see something like this:
\TemplatePreformat{Hello! \newline{}
Hello! \newline{}
Hello! \newline{}
Hello! \newline{}
}
This is the simplest use of the for statement; we will see
more later. But that should be enough to let you rewrite your
square-{}drawing program. Don’t turn the page until you do.

Here is a for statement that draws a square:
\TemplatePreformat{for {}i {}in {}range(4): \newline{}
 {} {} {} {}fd(bob, {}100) \newline{}
 {} {} {} {}lt(bob) \newline{}
}
The syntax of a for statement is similar to a function
definition. It has a header that ends with a colon and an indented
body. The body can contain any number of statements.

A for statement is sometimes called a {\bfseries loop} because
the flow of execution runs through the body and then loops back
to the top. In this case, it runs the body four times.

This version is actually a little different from the previous
square-{}drawing code because it makes another left turn after
drawing the last side of the square. The extra turn takes a little
more time, but it simplifies the code if we do the same thing
every time through the loop. This version also has the effect
of leaving the turtle back in the starting position, facing in
the starting direction.
\subsection{Exercises}
\label{70}
The following is a series of exercises using TurtleWorld. They
are meant to be fun, but they have a point, too. While you are
working on them, think about what the point is.

The following sections have solutions to the exercises, so
don’t look until you have finished (or at least tried).

\begin{myitemize}
\item{} Write a function called square that takes a parameter
\end{myitemize}

named t, which is a turtle. It should use the turtle to draw
a square.
Write a function call that passes bob as an argument to
square, and then run the program again.

\begin{myitemize}
\item{} Add another parameter, named length, to square.
\end{myitemize}

Modify the body so length of the sides is length, and then
modify the function call to provide a second argument. Run the
program again. Test your program with a range of values for length.

\begin{myitemize}
\item{} The functions lt and rt make 90-{}degree turns by
\end{myitemize}

default, but you can provide a second argument that specifies the
number of degrees. For example, lt(bob, 45) turns bob 45
degrees to the left.
Make a copy of square and change the name to polygon. Add
another parameter named n and modify the body so it draws an
n-{}sided regular polygon. Hint: The angles of an n-{}sided regular
polygon are 360.0 / n degrees.

\begin{myitemize}
\item{} Write a function called circle that takes a turtle, t,
\end{myitemize}

and radius, r, as parameters and that draws an approximate circle
by invoking polygon with an appropriate length and number of
sides. Test your function with a range of values of r.

Hint: figure out the circumference of the circle and make sure that
length * n = circumference.

Another hint: if bob is too slow for you, you can speed
him up by changing bob.delay, which is the time between moves,
in seconds. bob.delay = 0.01 ought to get him moving.

\begin{myitemize}
\item{} Make a more general version of circle called arc
\end{myitemize}

that takes an additional parameter angle, which determines
what fraction of a circle to draw. angle is in units of
degrees, so when angle=360, arc should draw a complete
circle.
\subsection{Encapsulation}
\label{71}
The first exercise asks you to put your square-{}drawing code
into a function definition and then call the function, passing
the turtle as a parameter. Here is a solution:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{square(t):}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{for}\ensuremath{\text{ }}\NormalTok{i\ensuremath{\text{ }}in\ensuremath{\text{ }}}\DataTypeTok{range}\NormalTok{(}\DecValTok{4}\NormalTok{):}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{fd(t,\ensuremath{\text{ }}}\DecValTok{100}\NormalTok{)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{lt(t)}\newline
\ensuremath{\text{ }}\newline
\NormalTok{square(bob)}\newline
\end{Highlighting}
\end{Shaded}

The innermost statements, fd and lt are
indented twice to show that they are inside the for loop,
which is inside the function definition. The next line,
square(bob), is flush with the left margin, so that is the
end of both the for loop and the function definition.

Inside the function, t refers to the same turtle bob
refers to, so lt(t) has the same effect as lt(bob).
So why not call the parameter bob? The idea is that t
can be any turtle, not just bob, so you could create
a second turtle and pass it as an argument to square:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{ray\ensuremath{\text{ }}=\ensuremath{\text{ }}Turtle()}\newline
\NormalTok{square(ray)}\newline
\end{Highlighting}
\end{Shaded}

Wrapping a piece of code up in a function is called {\bfseries encapsulation}. One of the benefits of encapsulation is that it
attaches a name to the code, which serves as a kind of documentation.
Another advantage is that if you re-{}use the code, it is more concise
to call a function twice than to copy and paste the body!
\subsection{Generalization}
\label{72}

The next step is to add a length parameter to square.
Here is a solution:
\TemplatePreformat{def {}square(t, {}length): \newline{}
 {} {} {} {}for {}i {}in {}range(4): \newline{}
 {} {} {} {} {} {} {} {}fd(t, {}length) \newline{}
 {} {} {} {} {} {} {} {}lt(t) \newline{}
 {} \newline{}
square(bob, {}100) \newline{}
}
Adding a parameter to a function is called {\bfseries generalization}
because it makes the function more general: in the previous
version, the square is always the same size; in this version
it can be any size.

The next step is also a generalization. Instead of drawing
squares, polygon draws regular polygons with any number of
sides. Here is a solution:
\TemplatePreformat{def {}polygon(t, {}n, {}length): \newline{}
 {} {} {} {}angle {}= {}360.0 {}/ {}n \newline{}
 {} {} {} {}for {}i {}in {}range(n): \newline{}
 {} {} {} {} {} {} {} {}fd(t, {}length) \newline{}
 {} {} {} {} {} {} {} {}lt(t, {}angle) \newline{}
 {} \newline{}
polygon(bob, {}7, {}70) \newline{}
}
This draws a 7-{}sided polygon with side length 70. If you have
more than a few numeric arguments, it is easy to forget what they
are, or what order they should be in. It is legal, and sometimes
helpful, to include the names of the parameters in the argument
list:
\TemplatePreformat{polygon(bob, {}n=7, {}length=70) \newline{}
}
These are called {\bfseries keyword arguments} because they include
the parameter names as “keywords” (not to be confused with
Python keywords like while and def).

This syntax makes the program more readable. It is also a reminder
about how arguments and parameters work: when you call a function, the
arguments are assigned to the parameters.
\subsection{Interface design}
\label{73}
The next step is to write circle, which takes a radius,
r, as a parameter. Here is a simple solution that uses
polygon to draw a 50-{}sided polygon:
\TemplatePreformat{def {}circle(t, {}r): \newline{}
 {} {} {} {}circumference {}= {}2 {}* {}math.pi {}* {}r \newline{}
 {} {} {} {}n {}= {}50 \newline{}
 {} {} {} {}length {}= {}circumference {}/ {}n \newline{}
 {} {} {} {}polygon(t, {}n, {}length) \newline{}
}
The first line computes the circumference of a circle with radius
r using the formula 2 π r. Since we use math.pi, we
have to import math. By convention, import statements
are usually at the beginning of the script.

n is the number of line segments in our approximation of a circle,
so length is the length of each segment. Thus, polygon
draws a 50-{}sides polygon that approximates a circle with radius r.

One limitation of this solution is that n is a constant, which
means that for very big circles, the line segments are too long, and
for small circles, we waste time drawing very small segments. One
solution would be to generalize the function by taking n as
a parameter. This would give the user (whoever calls circle)
more control, but the interface would be less clean.

The {\bfseries interface} of a function is a summary of how it is used: what
are the parameters? What does the function do? And what is the return
value? An interface is “clean” if it is “as simple as
possible, but not simpler. (Einstein)”

In this example, r belongs in the interface because it
specifies the circle to be drawn. n is less appropriate
because it pertains to the details of {\itshape how} the circle should
be rendered.

Rather than clutter up the interface, it is better
to choose an appropriate value of n
depending on circumference:
\TemplatePreformat{def {}circle(t, {}r): \newline{}
 {} {} {} {}circumference {}= {}2 {}* {}math.pi {}* {}r \newline{}
 {} {} {} {}n {}= {}int(circumference {}/ {}3) {}+ {}1 \newline{}
 {} {} {} {}length {}= {}circumference {}/ {}n \newline{}
 {} {} {} {}polygon(t, {}n, {}length) \newline{}
}
Now the number of segments is (approximately) circumference/3,
so the length of each segment is (approximately) 3, which is small
enough that the circles look good, but big enough to be efficient,
and appropriate for any size circle.
\subsection{Refactoring}
\label{74}
When I wrote circle, I was able to re-{}use polygon
because a many-{}sided polygon is a good approximation of a circle.
But arc is not as cooperative; we can’t use polygon
or circle to draw an arc.

One alternative is to start with a copy
of polygon and transform it into arc. The result
might look like this:
\TemplatePreformat{def {}arc(t, {}r, {}angle): \newline{}
 {} {} {} {}arc_length {}= {}r {}* {}math.radians(angle) \newline{}
 {} {} {} {}n {}= {}int(arc_length {}/ {}3) {}+ {}1 \newline{}
 {} {} {} {}step_length {}= {}arc_length {}/ {}n \newline{}
 {} {} {} {}step_angle {}= {}float(angle) {}/ {}n \newline{}
 {} {} {} {} \newline{}
 {} {} {} {}for {}i {}in {}range(n): \newline{}
 {} {} {} {} {} {} {} {}fd(t, {}step_length) \newline{}
 {} {} {} {} {} {} {} {}lt(t, {}step_angle) \newline{}
}
The second half of this function looks like polygon, but we
can’t re-{}use polygon without changing the interface. We could
generalize polygon to take an angle as a third argument,
but then polygon would no longer be an appropriate name!
Instead, let’s call the more general function polyline:
\TemplatePreformat{def {}polyline(t, {}n, {}length, {}angle): \newline{}
 {} {} {} {}for {}i {}in {}range(n): \newline{}
 {} {} {} {} {} {} {} {}fd(t, {}length) \newline{}
 {} {} {} {} {} {} {} {}lt(t, {}angle) \newline{}
}
Now we can rewrite polygon and arc to use polyline:
\TemplatePreformat{def {}polygon(t, {}n, {}length): \newline{}
 {} {} {} {}angle {}= {}360.0 {}/ {}n \newline{}
 {} {} {} {}polyline(t, {}n, {}length, {}angle) \newline{}
 {} \newline{}
def {}arc(t, {}r, {}angle): \newline{}
 {} {} {} {}arc_length {}= {}r {}* {}math.radians(angle) \newline{}
 {} {} {} {}n {}= {}int(arc_length {}/ {}3) {}+ {}1 \newline{}
 {} {} {} {}step_length {}= {}arc_length {}/ {}n \newline{}
 {} {} {} {}step_angle {}= {}float(angle) {}/ {}n \newline{}
 {} {} {} {}polyline(t, {}n, {}step_length, {}step_angle) \newline{}
}
Finally, we can rewrite circle to use arc:
\TemplatePreformat{def {}circle(t, {}r): \newline{}
 {} {} {} {}arc(t, {}r, {}360) \newline{}
}
This process—rearranging a program to improve function
interfaces and facilitate code re-{}use—is called {\bfseries refactoring}.
In this case, we noticed that there was similar code in arc and
polygon, so we “factored it out” into polyline.

If we had planned ahead, we might have written polyline first
and avoided refactoring, but often you don’t know enough at the
beginning of a project to design all the interfaces. Once you start
coding, you understand the problem better. Sometimes refactoring is a
sign that you have learned something.
\subsection{A development plan}
\label{75}
A {\bfseries development plan} is a process for writing programs.
The process we used
in this case study is “encapsulation and
generalization.” The steps of this process are:

\begin{myitemize}
\item{} Start by writing a small program with no function definitions.
\end{myitemize}

\begin{myitemize}
\item{} Once you get the program working, encapsulate it in a function
\end{myitemize}

and give it a name.

\begin{myitemize}
\item{} Generalize the function by adding appropriate parameters.
\end{myitemize}

\begin{myitemize}
\item{} Repeat steps 1–3 until you have a set of working functions.
\end{myitemize}

Copy and paste working code to avoid retyping (and re-{}debugging).

\begin{myitemize}
\item{} Look for opportunities to improve the program by refactoring.
\end{myitemize}

For example, if you have similar code in several places, consider
factoring it into an appropriately general function.

This process has some drawbacks—we will see alternatives later—but
it can be useful if you don’t know ahead of time how to divide the
program into functions. This approach lets you design as you go
along.
\subsection{docstring}
\label{76}
A {\bfseries docstring} is a string at the beginning of a function that
explains the interface (“doc” is short for “documentation”). Here
is an example:
\TemplatePreformat{def {}polyline(t, {}length, {}n, {}angle): \newline{}
 {} {} {} {}\symbol{34}\symbol{34}\symbol{34}Draw {}n {}line {}segments {}with {}the {}given {}length {}and \newline{}
 {} {} {} {}angle {}(in {}degrees) {}between {}them. {} {}t {}is {}a {}turtle. \newline{}
 {} {} {} {}\symbol{34}\symbol{34}\symbol{34} {} {} {} {} \newline{}
 {} {} {} {}for {}i {}in {}range(n): \newline{}
 {} {} {} {} {} {} {} {}fd(t, {}length) \newline{}
 {} {} {} {} {} {} {} {}lt(t, {}angle) \newline{}
}
This docstring is a triple-{}quoted string, also known
as a multiline string because the triple quotes allow the string
to span more than one line.

It is terse, but it contains the essential information
someone would need to use this function. It explains concisely what
the function does (without getting into the details of how it does
it). It explains what effect each parameter has on the behavior of
the function and what type each parameter should be (if it is not
obvious).

Writing this kind of documentation is an important part of interface
design. A well-{}designed interface should be simple to explain;
if you are having a hard time explaining one of your functions,
that might be a sign that the interface could be improved.
\subsection{Debugging}
\label{77}
An interface is like a contract between a function and a caller.
The caller agrees to provide certain parameters and the function
agrees to do certain work.

For example, polyline requires four arguments. The first
has to be a Turtle (or some other object that works with fd
and lt). The second has to be a number, and it should
probably be positive, although it turns out that the function
works even if it isn’t. The third argument should be an integer;
range complains otherwise (depending on which version
of Python you are running). The fourth has to be a number,
which is understood to be in degrees.

These requirements are called {\bfseries preconditions} because they
are supposed to be true before the function starts executing.
Conversely, conditions at the end of the function are
{\bfseries postconditions}. Postconditions include the intended
effect of the function (like drawing line segments) and any
side effects (like moving the Turtle or making other changes
in the World).

Preconditions are the responsibility of the caller. If the caller
violates a (properly documented!) precondition and the function
doesn’t work correctly, the bug is in the caller, not the function.
However, for purposes of debugging it is often a good idea for
functions to check their preconditions rather than assume they are
true. If every function checks its preconditions before starting,
then if something goes wrong, you will know which function to blame.
\subsection{Glossary}
\label{78}
{\bfseries instance:} A member of a set. The TurtleWorld in this
chapter is a member of the set of TurtleWorlds.
{\bfseries loop:} A part of a program that can execute repeatedly.
{\bfseries encapsulation:} The process of transforming a sequence of
statements into a function definition.
{\bfseries generalization:} The process of replacing something
unnecessarily specific (like a number) with something appropriately
general (like a variable or parameter).
{\bfseries keyword argument:} An argument that includes the name of
the parameter as a “keyword.”

{\bfseries interface:} A description of how to use a function, including
the name and descriptions of the arguments and return value.
{\bfseries development plan:} A process for writing programs.
{\bfseries docstring:} A string that appears in a function definition
to document the function’s interface.
{\bfseries precondition:} A requirement that should be satisfied by
the caller before a function starts.
{\bfseries postcondition:} A requirement that should be satisfied by
the function before it ends.

\subsection{Exercises}
\label{79}
{\bfseries Exercise 1}
{\itshape Download the code in this chapter from}
{\bfseries \textquotesingle{}thinkpython.com/code/polygon.py}\textquotesingle{}.{\itshape }

\begin{myitemize}
\item{} {\itshape Write appropriate docstrings for {\bfseries \textquotesingle{}polygon}\textquotesingle{}, {\bfseries \textquotesingle{}arc}\textquotesingle{} and}
\end{myitemize}

{\bfseries \textquotesingle{}circle}\textquotesingle{}.{\itshape }

\begin{myitemize}
\item{} {\itshape Draw a stack diagram that shows the state of the program}
\end{myitemize}

while executing {\bfseries \textquotesingle{}circle(bob, radius)}\textquotesingle{}. You can do the
arithmetic by hand or add {\bfseries \textquotesingle{}print}\textquotesingle{} statements to the code.{\itshape }

\begin{myitemize}
\item{} {\itshape The version of {\bfseries \textquotesingle{}arc}\textquotesingle{} in Section {\bfseries \textquotesingle{}4.7}\textquotesingle{} is not}
\end{myitemize}

very accurate because the linear approximation of the
circle is always outside the true circle. As a result,
the turtle ends up a few units away from the correct
destination. My solution shows a way to reduce
the effect of this error. Read the code and see if it makes
sense to you. If you draw a diagram, you might see how it works.{\itshape }

{\bfseries Exercise 2} {\itshape }
{\itshape }
{\itshape Write an appropriately general set of functions that}
can draw flowers like this:{\itshape }
{\itshape }
{\itshape You can download a solution from {\bfseries \textquotesingle{}thinkpython.com/code/flower.py}\textquotesingle{}.}

{\bfseries Exercise 3} {\itshape }
{\itshape }
{\itshape Write an appropriately general set of functions that}
can draw shapes like this:{\itshape }
{\itshape }
{\itshape You can download a solution from {\bfseries \textquotesingle{}thinkpython.com/code/pie.py}\textquotesingle{}.}
{\bfseries Exercise 4} {\itshape }
{\bfseries \textquotesingle{}}
{\bfseries \textquotesingle{}}
{\itshape }
{\itshape The letters of the alphabet can be constructed from a moderate}
number of basic elements, like vertical and horizontal lines
and a few curves. Design a font that can be drawn with a
minimal number of basic elements and then write functions
that draw letters of the alphabet.{\itshape }

{\itshape You should write one function for each letter, with names}
{\itshape }draw_a{\itshape }{\itshape }, {\itshape }draw_b{\itshape }{\itshape }, etc., and put your functions
in a file named {\bfseries \textquotesingle{}letters.py}\textquotesingle{}. You can download a
“turtle typewriter” from {\bfseries \textquotesingle{}thinkpython.com/code/typewriter.py}\textquotesingle{}
to help you test your code.{\itshape }

{\itshape You can download a solution from {\bfseries \textquotesingle{}thinkpython.com/code/letters.py}\textquotesingle{}.}
\chapter{Conditional and recursion}

\myminitoc
\label{80}

\label{81}
\LaTeXNullTemplate{}
\subsection{Modulus operator}
\label{82}
The {\bfseries modulus operator} works on integers and yields the remainder
when the first operand is divided by the second. In Python, the
modulus operator is a percent sign (\%). The syntax is the same
as for other operators:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}quotient {}= {}7 {}/ {}3 \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}quotient \newline{}
2 \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}remainder {}= {}7 {}\% {}3 \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}remainder \newline{}
1 \newline{}
}
So 7 divided by 3 is 2 with 1 left over.

The modulus operator turns out to be surprisingly useful. For
example, you can check whether one number is divisible by another—if
x \% y is zero, then x is divisible by y.

Also, you can extract the right-{}most digit
or digits from a number. For example, x \% 10 yields the
right-{}most digit of x (in base 10). Similarly x \% 100
yields the last two digits.
\subsection{Boolean expressions}
\label{83}
A {\bfseries boolean expression} is an expression that is either true
or false. The following examples use the
operator ==, which compares two operands and produces
True if they are equal and False otherwise:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}5 {}== {}5 \newline{}
True \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}5 {}== {}6 \newline{}
False \newline{}
}
True and False are special
values that belong to the type bool; they are not strings:

\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}type(True) \newline{}
{\mbox{$<$}}type {}\textquotesingle{}bool\textquotesingle{}{\mbox{$>$}} \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}type(False) \newline{}
{\mbox{$<$}}type {}\textquotesingle{}bool\textquotesingle{}{\mbox{$>$}} \newline{}
}
The == operator is one of the {\bfseries comparison operators}; the
others are:
\TemplatePreformat{ {} {} {} {} {} {}x {}!= {}y {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}\# {}x {}is {}not {}equal {}to {}y \newline{}
 {} {} {} {} {} {}x {}{\mbox{$>$}} {}y {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}\# {}x {}is {}greater {}than {}y \newline{}
 {} {} {} {} {} {}x {}{\mbox{$<$}} {}y {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}\# {}x {}is {}less {}than {}y \newline{}
 {} {} {} {} {} {}x {}{\mbox{$>$}}= {}y {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}\# {}x {}is {}greater {}than {}or {}equal {}to {}y \newline{}
 {} {} {} {} {} {}x {}{\mbox{$<$}}= {}y {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}\# {}x {}is {}less {}than {}or {}equal {}to {}y \newline{}
}
Although these operations are probably familiar to you, the Python
symbols are different from the mathematical symbols. A common error
is to use a single equal sign (=) instead of a double equal sign
(==). Remember that = is an assignment operator and
== is a comparison operator. There is no such thing as
={\mbox{$<$}} or ={\mbox{$>$}}.
\subsection{Logical operators}
\label{84}
There are three {\bfseries logical operators}: and, or, and not. The semantics (meaning) of these operators is
similar to their meaning in English. For example,
x {\mbox{$>$}} 0 and x {\mbox{$<$}} 10 is true only if x is greater than 0
{\itshape and} less than 10.

n\%2 == 0 or n\%3 == 0 is true if {\itshape either} of the conditions
is true, that is, if the number is divisible by 2 {\itshape or} 3.

Finally, the not operator negates a boolean
expression, so not (x {\mbox{$>$}} y) is true if x {\mbox{$>$}} y is false,
that is, if x is less than or equal to y.

Strictly speaking, the operands of the logical operators should be
boolean expressions, but Python is not very strict.
Any nonzero number is interpreted as “true.”
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}17 {}and {}True \newline{}
True \newline{}
}
This flexibility can be useful, but there are some subtleties to
it that might be confusing. You might want to avoid it (unless
you know what you are doing).
\subsection{Conditional execution}
\label{85}
In order to write useful programs, we almost always need the ability
to check conditions and change the behavior of the program
accordingly. {\bfseries Conditional statements} give us this ability. The
simplest form is the if statement:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{if}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}>\ensuremath{\text{ }}}\DecValTok{0}\NormalTok{:}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{print}\ensuremath{\text{ }}\StringTok{{\char13}x\ensuremath{\text{ }}is\ensuremath{\text{ }}positive{\char13}}\newline
\end{Highlighting}
\end{Shaded}

The boolean expression after the if statement is
called the {\bfseries condition}. If it is true, then the indented
statement gets executed. If not, nothing happens.

if statements have the same structure as function definitions:
a header followed by an indented block. Statements like this are
called {\bfseries compound statements}.

There is no limit on the number of statements that can appear in
the body, but there has to be at least one.
Occasionally, it is useful to have a body with no statements (usually
as a place keeper for code you haven\textquotesingle{}t written yet). In that
case, you can use the pass statement, which does nothing.

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{if}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}<\ensuremath{\text{ }}}\DecValTok{0}\NormalTok{:}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{pass}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\CommentTok{#\ensuremath{\text{ }}need\ensuremath{\text{ }}to\ensuremath{\text{ }}handle\ensuremath{\text{ }}negative\ensuremath{\text{ }}values!}\newline
\end{Highlighting}
\end{Shaded}

\subsection{Alternative execution}
\label{86}
A second form of the if statement is {\bfseries alternative execution},
in which there are two possibilities and the condition determines
which one gets executed. The syntax looks like this:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{if}\ensuremath{\text{ }}\NormalTok{x\%}\DecValTok{2}\ensuremath{\text{ }}\NormalTok{==\ensuremath{\text{ }}}\DecValTok{0}\NormalTok{:}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{print}\ensuremath{\text{ }}\StringTok{{\char13}x\ensuremath{\text{ }}is\ensuremath{\text{ }}even{\char13}}\newline
\KeywordTok{else}\NormalTok{:}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{print}\ensuremath{\text{ }}\StringTok{{\char13}x\ensuremath{\text{ }}is\ensuremath{\text{ }}odd{\char13}}\newline
\end{Highlighting}
\end{Shaded}

If the remainder when x is divided by 2 is 0, then we
know that x is even, and the program displays a message to that
effect. If the condition is false, the second set of statements is
executed. Since the condition must be true or false, exactly one of
the alternatives will be executed. The alternatives are called
{\bfseries branches}, because they are branches in the flow of execution.
\subsection{Chained conditionals}
\label{87}
Sometimes there are more than two possibilities and we need more than
two branches. One way to express a computation like that is a {\bfseries chained conditional}:
\TemplatePreformat{if {}x {}{\mbox{$<$}} {}y: \newline{}
 {} {} {} {}print {}\textquotesingle{}x {}is {}less {}than {}y\textquotesingle{} \newline{}
elif {}x {}{\mbox{$>$}} {}y: \newline{}
 {} {} {} {}print {}\textquotesingle{}x {}is {}greater {}than {}y\textquotesingle{} \newline{}
else: \newline{}
 {} {} {} {}print {}\textquotesingle{}x {}and {}y {}are {}equal\textquotesingle{} \newline{}
}
elif is an abbreviation of “else if.” Again, exactly one
branch will be executed. There is no limit on the number of elif statements. If there is an else clause, it has to be
at the end, but there doesn’t have to be one.

\TemplatePreformat{if {}choice {}== {}\textquotesingle{}a\textquotesingle{}: \newline{}
 {} {} {} {}draw_a() \newline{}
elif {}choice {}== {}\textquotesingle{}b\textquotesingle{}: \newline{}
 {} {} {} {}draw_b() \newline{}
elif {}choice {}== {}\textquotesingle{}c\textquotesingle{}: \newline{}
 {} {} {} {}draw_c() \newline{}
}
Each condition is checked in order. If the first is false,
the next is checked, and so on. If one of them is
true, the corresponding branch executes, and the statement
ends. Even if more than one condition is true, only the
first true branch executes.
\subsection{Nested conditionals}
\label{88}
One conditional can also be nested within another. We could have
written the trichotomy example like this:
\TemplatePreformat{if {}x {}== {}y: \newline{}
 {} {} {} {}print {}\textquotesingle{}x {}and {}y {}are {}equal\textquotesingle{} \newline{}
else: \newline{}
 {} {} {} {}if {}x {}{\mbox{$<$}} {}y: \newline{}
 {} {} {} {} {} {} {} {}print {}\textquotesingle{}x {}is {}less {}than {}y\textquotesingle{} \newline{}
 {} {} {} {}else: \newline{}
 {} {} {} {} {} {} {} {}print {}\textquotesingle{}x {}is {}greater {}than {}y\textquotesingle{} \newline{}
}
The outer conditional contains two branches. The
first branch contains a simple statement. The second branch
contains another if statement, which has two branches of its
own. Those two branches are both simple statements,
although they could have been conditional statements as well.

Although the indentation of the statements makes the structure
apparent, {\bfseries nested conditionals} become difficult to read very
quickly. In general, it is a good idea to avoid them when you can.

Logical operators often provide a way to simplify nested conditional
statements. For example, we can rewrite the following code using a
single conditional:
\TemplatePreformat{if {}0 {}{\mbox{$<$}} {}x: \newline{}
 {} {} {} {}if {}x {}{\mbox{$<$}} {}10: \newline{}
 {} {} {} {} {} {} {} {}print {}\textquotesingle{}x {}is {}a {}positive {}single-{}digit {}number.\textquotesingle{} \newline{}
}
The print statement is executed only if we make it past both
conditionals, so we can get the same effect with the and operator:
\TemplatePreformat{if {}0 {}{\mbox{$<$}} {}x {}and {}x {}{\mbox{$<$}} {}10: \newline{}
 {} {} {} {}print {}\textquotesingle{}x {}is {}a {}positive {}single-{}digit {}number.\textquotesingle{} \newline{}
}
\subsection{Recursion}
\label{89}
It is legal for one function to call another;
it is also legal for a function to call itself. It may not be obvious
why that is a good thing, but it turns out to be one of the most
magical things a program can do.
For example, look at the following function:
\TemplatePreformat{def {}countdown(n): \newline{}
 {} {} {} {}if {}n {}{\mbox{$<$}}= {}0: \newline{}
 {} {} {} {} {} {} {} {}print {}\textquotesingle{}Blastoff!\textquotesingle{} \newline{}
 {} {} {} {}else: \newline{}
 {} {} {} {} {} {} {} {}print {}n \newline{}
 {} {} {} {} {} {} {} {}countdown(n-{}1) \newline{}
}
If n is 0 or negative, it outputs the word, “Blastoff!”
Otherwise, it outputs n and then calls a function named countdown—itself—passing n-{}1 as an argument.

What happens if we call this function like this?
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}countdown(3) \newline{}
}
The execution of countdown begins with n=3, and since
n is greater than 0, it outputs the value 3, and then calls itself...

The execution of countdown begins with n=2, and since
n is greater than 0, it outputs the value 2, and then calls itself...
The execution of countdown begins with n=1, and since
n is greater than 0, it outputs the value 1, and then calls itself...
The execution of countdown begins with n=0, and since n is not greater than 0, it outputs the word, “Blastoff!” and then
returns.

The countdown that got n=1 returns.

The countdown that got n=2 returns.

The countdown that got n=3 returns.

And then you’re back in __main__. So, the
total output looks like this:
\TemplatePreformat{3 \newline{}
2 \newline{}
1 \newline{}
Blastoff! \newline{}
}
A function that calls itself is {\bfseries recursive}; the process is
called {\bfseries recursion}.

As another example, we can write a function that prints a
string n times.
\TemplatePreformat{def {}print_n(s, {}n): \newline{}
 {} {} {} {}if {}n {}{\mbox{$<$}}= {}0: \newline{}
 {} {} {} {} {} {} {} {}return \newline{}
 {} {} {} {}print {}s \newline{}
 {} {} {} {}print_n(s, {}n-{}1) \newline{}
}
If n {\mbox{$<$}}= 0 the return statement exits the function. The
flow of execution immediately returns to the caller, and the remaining
lines of the function are not executed.

The rest of the function is similar to countdown: if n is
greater than 0, it displays s and then calls itself to display
s n−1 additional times. So the number of lines of output
is 1 + (n -{} 1), which adds up to
n.

For simple examples like this, it is probably easier to use a for loop. But we will see examples later that are hard to write
with a for loop and easy to write with recursion, so it is
good to start early.
\subsection{Stack diagrams for recursive functions}
\label{90}
In Section 3.10, we used a stack diagram to represent
the state of a program during a function call. The same kind of
diagram can help interpret a recursive function.

Every time a function gets called, Python creates a new function
frame, which contains the function’s local variables and parameters.
For a recursive function, there might be more than one frame on the
stack at the same time.

This figure shows a stack diagram for countdown called with
n = 3:

As usual, the top of the stack is the frame for __main__.
It is empty because we did not create any variables in
__main__ or pass any arguments to it.

The four countdown frames have different values for the
parameter n. The bottom of the stack, where n=0, is
called the {\bfseries base case}. It does not make a recursive call, so
there are no more frames.

Draw a stack diagram for print_n called with
s = \textquotesingle{}Hello\textquotesingle{} and n=2.

Write a function called do_n that takes a function
object and a number, n as arguments, and that calls
the given function n times.

\subsection{Infinite recursion}
\label{91}
If a recursion never reaches a base case, it goes on making
recursive calls forever, and the program never terminates. This is
known as {\bfseries infinite recursion}, and it is generally not
a good idea. Here is a minimal program with an infinite recursion:
\TemplatePreformat{def {}recurse(): \newline{}
 {} {} {} {}recurse() \newline{}
}
In most programming environments, a program with infinite recursion
does not really run forever. Python reports an error
message when the maximum recursion depth is reached:

\TemplatePreformat{ {} {}File {}\symbol{34}{\mbox{$<$}}stdin{\mbox{$>$}}\symbol{34}, {}line {}2, {}in {}recurse \newline{}
 {} {}File {}\symbol{34}{\mbox{$<$}}stdin{\mbox{$>$}}\symbol{34}, {}line {}2, {}in {}recurse \newline{}
 {} {}File {}\symbol{34}{\mbox{$<$}}stdin{\mbox{$>$}}\symbol{34}, {}line {}2, {}in {}recurse \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}. {} {} {} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}. \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}. \newline{}
 {} {}File {}\symbol{34}{\mbox{$<$}}stdin{\mbox{$>$}}\symbol{34}, {}line {}2, {}in {}recurse \newline{}
RuntimeError: {}Maximum {}recursion {}depth {}exceeded \newline{}
}
This traceback is a little bigger than the one we saw in the
previous chapter. When the error occurs, there are 1000
recurse frames on the stack!
\subsection{Keyboard input}
\label{92}
The programs we have written so far are a bit rude in the sense that
they accept no input from the user. They just do the same thing every
time.

Python provides a built-{}in function called raw_input that gets
input from the keyboard\myfootnote{In Python 3.0, this function is named input}. When this function is called, the program stops and
waits for the user to type something. When the user presses Return or Enter, the program resumes and raw_input
returns what the user typed as a string.

\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}input {}= {}raw_input() \newline{}
What {}are {}you {}waiting {}for? \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}input \newline{}
What {}are {}you {}waiting {}for? \newline{}
}
Before getting input from the user, it is a good idea to print a
prompt telling the user what to input. raw_input can take a
prompt as an argument:

\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}name {}= {}raw_input(\textquotesingle{}What...is {}your {}name?\textbackslash{}n\textquotesingle{}) \newline{}
What...is {}your {}name? \newline{}
Arthur, {}King {}of {}the {}Britons! \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}name \newline{}
Arthur, {}King {}of {}the {}Britons! \newline{}
}
The sequence \textbackslash{}n at the end of the prompt represents a {\bfseries newline},
which is a special character that causes a line break.
That’s why the user’s input appears below the prompt.

If you expect the user to type an integer, you can try to convert
the return value to int:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}prompt {}= {}\textquotesingle{}What...is {}the {}airspeed {}velocity {}of {}an {}unladen \newline{}
 {}swallow?\textbackslash{}n\textquotesingle{} \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}speed {}= {}raw_input(prompt) \newline{}
What...is {}the {}airspeed {}velocity {}of {}an {}unladen {}swallow? \newline{}
17 \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}int(speed) \newline{}
17 \newline{}
}
But if the user types something other than a string of digits,
you get an error:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}speed {}= {}raw_input(prompt) \newline{}
What...is {}the {}airspeed {}velocity {}of {}an {}unladen {}swallow? \newline{}
What {}do {}you {}mean, {}an {}African {}or {}a {}European {}swallow? \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}int(speed) \newline{}
ValueError: {}invalid {}literal {}for {}int() \newline{}
}
We will see how to handle this kind of error later.
\subsection{Debugging}
\label{93}
The traceback Python displays when an error occurs contains
a lot of information, but it can be overwhelming, especially
when there are many frames on the stack. The most
useful parts are usually:

\begin{myitemize}
\item{} What kind of error it was, and
\end{myitemize}

\begin{myitemize}
\item{} Where it occurred.
\end{myitemize}

Syntax errors are usually easy to find, but there are a few
gotchas. Whitespace errors can be tricky because spaces and
tabs are invisible and we are used to ignoring them.

\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}x {}= {}5 \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {} {}y {}= {}6 \newline{}
 {} {}File {}\symbol{34}{\mbox{$<$}}stdin{\mbox{$>$}}\symbol{34}, {}line {}1 \newline{}
 {} {} {} {}y {}= {}6 \newline{}
 {} {} {} {}\^{} \newline{}
SyntaxError: {}invalid {}syntax \newline{}
}
In this example, the problem is that the second line is indented by
one space. But the error message points to y, which is
misleading. In general, error messages indicate where the problem was
discovered, but the actual error might be earlier in the code,
sometimes on a previous line.

The same is true of runtime errors. Suppose you are trying
to compute a signal-{}to-{}noise ratio in decibels. The formula
is SNRdb = 10 log10 (Psignal / Pnoise). In Python,
you might write something like this:
\TemplatePreformat{import {}math \newline{}
signal_power {}= {}9 \newline{}
noise_power {}= {}10 \newline{}
ratio {}= {}signal_power {}/ {}noise_power \newline{}
decibels {}= {}10 {}* {}math.log10(ratio) \newline{}
print {}decibels \newline{}
}
But when you run it, you get an error message:

\TemplatePreformat{Traceback {}(most {}recent {}call {}last): \newline{}
 {} {}File {}\symbol{34}snr.py\symbol{34}, {}line {}5, {}in {}? \newline{}
 {} {} {} {}decibels {}= {}10 {}* {}math.log10(ratio) \newline{}
OverflowError: {}math {}range {}error \newline{}
}
The error message indicates line 5, but there is nothing
wrong with that line. To find the real error, it might be
useful to print the value of ratio, which turns out to
be 0. The problem is in line 4, because dividing two integers
does floor division. The solution is to represent signal power
and noise power with floating-{}point values.

In general, error messages tell you where the problem was discovered,
but that is often not where it was caused.
\subsection{Glossary}
\label{94}
{\bfseries modulus operator:} An operator, denoted with a percent sign
(\%), that works on integers and yields the remainder when one
number is divided by another.

{\bfseries boolean expression:} An expression whose value is either
True or False.

{\bfseries comparison operator:} One of the operators that compares
its operands: ==, !=, {\mbox{$>$}}, {\mbox{$<$}}, {\mbox{$>$}}=, and {\mbox{$<$}}=.{\bfseries logical operator:} One of the operators that combines boolean
expressions: and, or, and not.{\bfseries conditional statement:} A statement that controls the flow of
execution depending on some condition.

{\bfseries condition:} The boolean expression in a conditional statement
that determines which branch is executed.
{\bfseries compound statement:} A statement that consists of a header
and a body. The header ends with a colon (:). The body is indented
relative to the header.
{\bfseries body:} The sequence of statements within a compound statement.
{\bfseries branch:} One of the alternative sequences of statements in
a conditional statement.
{\bfseries chained conditional:} A conditional statement with a series
of alternative branches.

{\bfseries nested conditional:} A conditional statement that appears
in one of the branches of another conditional statement.

{\bfseries recursion:} The process of calling the function that is
currently executing.
{\bfseries base case:} A conditional branch in a
recursive function that does not make a recursive call.
{\bfseries infinite recursion:} A function that calls itself recursively
without ever reaching the base case. Eventually, an infinite recursion
causes a runtime error.

\subsection{Exercises}
\label{95}

{\bfseries Exercise 1} {\itshape }
{\itshape }
{\itshape Fermat’s Last Theorem says that there are no integers}
{\bfseries \textquotesingle{}a}\textquotesingle{}, {\bfseries \textquotesingle{}b}\textquotesingle{}, and {\bfseries \textquotesingle{}c}\textquotesingle{} such that{\itshape }
{\itshape a}{\itshape n}{\itshape + b}{\itshape n}{\itshape = c}{\itshape n}{\itshape }

{\itshape }
for any values of {\bfseries \textquotesingle{}n}\textquotesingle{} greater than 2.{\itshape }

\begin{myitemize}
\item{} {\itshape Write a function named }{\itshape check_fermat}{\itshape that takes four}
\end{myitemize}

parameters—{\bfseries \textquotesingle{}a}\textquotesingle{}, {\bfseries \textquotesingle{}b}\textquotesingle{}, {\bfseries \textquotesingle{}c}\textquotesingle{} and {\bfseries \textquotesingle{}n}\textquotesingle{}—and
that checks to see if Fermat’s theorem holds. If
{\bfseries \textquotesingle{}n}\textquotesingle{} is greater than 2 and it turns out to be true that {\itshape {\bfseries \textquotesingle{}a}\textquotesingle{}{\bfseries \textquotesingle{}n}\textquotesingle{}{\bfseries \textquotesingle{} + b}\textquotesingle{}{\bfseries \textquotesingle{}n}\textquotesingle{}{\bfseries \textquotesingle{} = c}\textquotesingle{}{\bfseries \textquotesingle{}n}\textquotesingle{}{\bfseries \textquotesingle{} }\textquotesingle{}
}
{\bfseries \textquotesingle{}}
the program should print, “Holy smokes, Fermat was wrong!”
Otherwise the program should print, “No, that doesn’t work.”{\bfseries \textquotesingle{}}

\begin{myitemize}
\item{} {\bfseries \textquotesingle{}Write a function that prompts the user to input values}
\end{myitemize}

for {\bfseries }{\itshape a{\bfseries }}, {\bfseries }{\itshape b{\bfseries }}, {\bfseries }{\itshape c{\bfseries }} and {\bfseries }{\itshape n{\bfseries }}, converts them to
integers, and uses {\bfseries \textquotesingle{}}\textquotesingle{}check_fermat{\bfseries \textquotesingle{}}{\bfseries }\textquotesingle{} to check whether they
violate Fermat’s theorem.{\bfseries \textquotesingle{}}

{\bfseries Exercise 2} {\itshape }
{\itshape }
{\itshape If you are given three sticks, you may or may not be able to arrange}
them in a triangle. For example, if one of the sticks is 12 inches
long and the other two are one inch long, it is clear that you will
not be able to get the short sticks to meet in the middle. For any
three lengths, there is a simple test to see if it is possible to form
a triangle:{\itshape }
{\itshape }
“If any of the three lengths is greater than the sum of the other
two, then you cannot form a triangle. Otherwise, you
can\myfootnote{If the sum of two lengths equals the third, they form
what is called a “degenerate” triangle.}.”
{\itshape }{\itshape }

\begin{myitemize}
\item{} {\itshape Write a function named }{\itshape is_triangle}{\itshape that takes three}
\end{myitemize}

integers as arguments, and that prints either “Yes” or “No,” depending
on whether you can or cannot form a triangle from sticks with the
given lengths.{\itshape }

\begin{myitemize}
\item{} {\itshape Write a function that prompts the user to input three stick}
\end{myitemize}

lengths, converts them to integers, and uses {\itshape }is_triangle{\itshape }{\itshape } to
check whether sticks with the given lengths can form a triangle.{\itshape }

The following exercises use TurtleWorld from Chapter 4:

{\bfseries Exercise 3}
{\itshape Read the following function and see if you can figure out}
what it does. Then run it (see the examples in Chapter {\bfseries \textquotesingle{}4}\textquotesingle{}).{\itshape }
\TemplatePreformat{\textquotesingle{}\textquotesingle{}def {}draw(t, {}length, {}n): \newline{}
 {} {} {} {}if {}n {}== {}0: \newline{}
 {} {} {} {} {} {} {} {}return \newline{}
 {} {} {} {}angle {}= {}50 \newline{}
 {} {} {} {}fd(t, {}length*n) \newline{}
 {} {} {} {}lt(t, {}angle) \newline{}
 {} {} {} {}draw(t, {}length, {}n-{}1) \newline{}
 {} {} {} {}rt(t, {}2*angle) \newline{}
 {} {} {} {}draw(t, {}length, {}n-{}1) \newline{}
 {} {} {} {}lt(t, {}angle) \newline{}
 {} {} {} {}bk(t, {}length*n) \newline{}
\textquotesingle{}\textquotesingle{}}{\bfseries Exercise 4}

{\itshape The Koch curve is a fractal that looks something like}
this:{\itshape }
{\itshape }
{\itshape To draw a Koch curve with length {\bfseries \textquotesingle{}x}\textquotesingle{}, all you have to do is}

\begin{myitemize}
\item{} {\itshape Draw a Koch curve with length {\bfseries \textquotesingle{}x/3}\textquotesingle{}.}
\end{myitemize}

\begin{myitemize}
\item{} {\itshape Turn left 60 degrees.}
\end{myitemize}

\begin{myitemize}
\item{} {\itshape Draw a Koch curve with length {\bfseries \textquotesingle{}x/3}\textquotesingle{}.}
\end{myitemize}

\begin{myitemize}
\item{} {\itshape Turn right 120 degrees.}
\end{myitemize}

\begin{myitemize}
\item{} {\itshape Draw a Koch curve with length {\bfseries \textquotesingle{}x/3}\textquotesingle{}.}
\end{myitemize}

\begin{myitemize}
\item{} {\itshape Turn left 60 degrees.}
\end{myitemize}

\begin{myitemize}
\item{} {\itshape Draw a Koch curve with length {\bfseries \textquotesingle{}x/3}\textquotesingle{}.}
\end{myitemize}

{\itshape The only exception is if {\bfseries \textquotesingle{}x}\textquotesingle{} is less than 3. In that case,}
you can just draw a straight line with length {\bfseries \textquotesingle{}x}\textquotesingle{}.{\itshape }

\begin{myitemize}
\item{} {\itshape Write a function called {\bfseries \textquotesingle{}koch}\textquotesingle{} that takes a turtle and}
\end{myitemize}

a length as parameters, and that uses the turtle to draw a Koch
curve with the given length.{\itshape }

\begin{myitemize}
\item{} {\itshape Write a function called {\bfseries \textquotesingle{}snowflake}\textquotesingle{} that draws three}
\end{myitemize}

Koch curves to make the outline of a snowflake.{\itshape }
{\itshape You can see my solution at {\bfseries \textquotesingle{}thinkpython.com/code/koch.py}\textquotesingle{}.}

\begin{myitemize}
\item{} {\itshape The Koch curve can be generalized in several ways. See}
\end{myitemize}

{\bfseries \textquotesingle{}wikipedia.org/wiki/Koch_snowflake}\textquotesingle{} for examples and
implement your favorite.{\itshape }
\subsection{Notes}
\label{96}
\LaTeXNullTemplate{}
\chapter{Fruitful functions}

\myminitoc
\label{97}

\label{98}
\LaTeXNullTemplate{}
\section{Return values}
\label{99}
Some of the built-{}in functions we have used, such as the math
functions, produce results. Calling the function generates a
value, which we usually assign to a variable or use as part of an
expression.

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{e\ensuremath{\text{ }}=\ensuremath{\text{ }}math.exp(}\FloatTok{1.0}\NormalTok{)}\newline
\NormalTok{height\ensuremath{\text{ }}=\ensuremath{\text{ }}radius\ensuremath{\text{ }}*\ensuremath{\text{ }}math.sin(radians)}\newline
\end{Highlighting}
\end{Shaded}

All of the functions we have written so far are void; they print
something or move turtles around, but their return value is None.

In this chapter, we are (finally) going to write fruitful functions.
The first example is area, which returns the area of a circle
with the given radius:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{area(radius):}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{temp\ensuremath{\text{ }}=\ensuremath{\text{ }}math.pi\ensuremath{\text{ }}*\ensuremath{\text{ }}radius**}\DecValTok{2}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{return}\ensuremath{\text{ }}\NormalTok{temp}\newline
\end{Highlighting}
\end{Shaded}

We have seen the return statement before, but in a fruitful
function the return statement includes
an expression. This statement means: “Return immediately from
this function and use the following expression as a return value.”
The expression can be arbitrarily complicated, so we could
have written this function more concisely:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{area(radius):}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{return}\ensuremath{\text{ }}\NormalTok{math.pi\ensuremath{\text{ }}*\ensuremath{\text{ }}radius**}\DecValTok{2}\newline
\end{Highlighting}
\end{Shaded}

On the other hand, {\bfseries temporary variables} like temp often make
debugging easier.

Sometimes it is useful to have multiple return statements, one in each
branch of a conditional:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{absolute_value(x):}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{if}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}<\ensuremath{\text{ }}}\DecValTok{0}\NormalTok{:}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{return}\ensuremath{\text{ }}\NormalTok{-x}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{else}\NormalTok{:}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{return}\ensuremath{\text{ }}\NormalTok{x}\newline
\end{Highlighting}
\end{Shaded}

Since these return statements are in an alternative conditional,
only one will be executed.

As soon as a return statement executes, the function
terminates without executing any subsequent statements.
Code that appears after a return statement, or any other place
the flow of execution can never reach, is called {\bfseries dead code}.

In a fruitful function, it is a good idea to ensure
that every possible path through the program hits a
return statement. For example:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{absolute_value(x):}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{if}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}<\ensuremath{\text{ }}}\DecValTok{0}\NormalTok{:}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{return}\ensuremath{\text{ }}\NormalTok{-x}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{if}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}>\ensuremath{\text{ }}}\DecValTok{0}\NormalTok{:}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{return}\ensuremath{\text{ }}\NormalTok{x}\newline
\end{Highlighting}
\end{Shaded}

This function is incorrect because if x happens to be 0,
neither condition is true, and the function ends without hitting a
return statement. If the flow of execution gets to the end
of a function, the return value is None, which is not
the absolute value of 0.

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{>>>\ensuremath{\text{ }}}\KeywordTok{print}\ensuremath{\text{ }}\NormalTok{absolute_value(}\DecValTok{0}\NormalTok{)}\newline
\OtherTok{None}\newline
\end{Highlighting}
\end{Shaded}

By the way, Python provides a built-{}in function called
abs that computes absolute values.
\subsection{Exercise 1}
\label{100}
{\itshape Write a {\bfseries \textquotesingle{}compare}\textquotesingle{} function}
that returns {\bfseries \textquotesingle{}1}\textquotesingle{} if {\bfseries \textquotesingle{}x {\mbox{$>$}} y}\textquotesingle{},
{\bfseries \textquotesingle{}0}\textquotesingle{} if {\bfseries \textquotesingle{}x == y}\textquotesingle{}, and {\bfseries \textquotesingle{}-{}1}\textquotesingle{} if {\bfseries \textquotesingle{}x {\mbox{$<$}} y}\textquotesingle{}.
\section{Incremental development}
\label{101}
As you write larger functions, you might find yourself
spending more time debugging.

To deal with increasingly complex programs,
you might want to try a process called
{\bfseries incremental development}. The goal of incremental development
is to avoid long debugging sessions by adding and testing only
a small amount of code at a time.

As an example, suppose you want to find the distance between two
points, given by the coordinates (x1, y1) and (x2, y2).
By the Pythagorean theorem, the distance is:

{$ \text{distance} = \sqrt{ (x_2 - x_1)^2 + (y_2 - y_1)^2} $}

The first step is to consider what a distance function should
look like in Python. In other words, what are the inputs (parameters)
and what is the output (return value)?

In this case, the inputs are two points, which you can represent
using four numbers. The return value is the distance, which is
a floating-{}point value.

Already you can write an outline of the function:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{distance(x1,\ensuremath{\text{ }}y1,\ensuremath{\text{ }}x2,\ensuremath{\text{ }}y2):}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{return}\ensuremath{\text{ }}\FloatTok{0.0}\newline
\end{Highlighting}
\end{Shaded}

Obviously, this version doesn\textquotesingle{}t compute distances; it always returns
zero. But it is syntactically correct, and it runs, which means that
you can test it before you make it more complicated.

To test the new function, call it with sample arguments:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{>>>\ensuremath{\text{ }}distance(}\DecValTok{1}\NormalTok{,\ensuremath{\text{ }}}\DecValTok{2}\NormalTok{,\ensuremath{\text{ }}}\DecValTok{4}\NormalTok{,\ensuremath{\text{ }}}\DecValTok{6}\NormalTok{)}\newline
\FloatTok{0.0}\newline
\end{Highlighting}
\end{Shaded}

I chose these values so that the horizontal distance is 3 and the
vertical distance is 4; that way, the result is 5
(the hypotenuse of a 3-{}4-{}5 triangle). When testing a function, it is
useful to know the right answer.

At this point we have confirmed that the function is syntactically
correct, and we can start adding code to the body.
A reasonable next step is to find the differences
x2 − x1 and y2 − y1. The next version stores those values in
temporary variables and prints them.

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{distance(x1,\ensuremath{\text{ }}y1,\ensuremath{\text{ }}x2,\ensuremath{\text{ }}y2):}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{dx\ensuremath{\text{ }}=\ensuremath{\text{ }}x2\ensuremath{\text{ }}-\ensuremath{\text{ }}x1}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{dy\ensuremath{\text{ }}=\ensuremath{\text{ }}y2\ensuremath{\text{ }}-\ensuremath{\text{ }}y1}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{print}\ensuremath{\text{ }}\StringTok{{\char13}dx\ensuremath{\text{ }}is{\char13}}\NormalTok{,\ensuremath{\text{ }}dx}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{print}\ensuremath{\text{ }}\StringTok{{\char13}dy\ensuremath{\text{ }}is{\char13}}\NormalTok{,\ensuremath{\text{ }}dy}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{return}\ensuremath{\text{ }}\FloatTok{0.0}\newline
\end{Highlighting}
\end{Shaded}

If the function is working, it should display \textquotesingle{}dx is 3\textquotesingle{} and ’dy is 4’. If so, we know that the function is getting the right
arguments and performing the first computation correctly. If not,
there are only a few lines to check.

Next we compute the sum of squares of dx and dy:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{distance(x1,\ensuremath{\text{ }}y1,\ensuremath{\text{ }}x2,\ensuremath{\text{ }}y2):}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{dx\ensuremath{\text{ }}=\ensuremath{\text{ }}x2\ensuremath{\text{ }}-\ensuremath{\text{ }}x1}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{dy\ensuremath{\text{ }}=\ensuremath{\text{ }}y2\ensuremath{\text{ }}-\ensuremath{\text{ }}y1}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{dsquared\ensuremath{\text{ }}=\ensuremath{\text{ }}dx**}\DecValTok{2}\ensuremath{\text{ }}\NormalTok{+\ensuremath{\text{ }}dy**}\DecValTok{2}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{print}\ensuremath{\text{ }}\StringTok{{\char13}dsquared\ensuremath{\text{ }}is:\ensuremath{\text{ }}{\char13}}\NormalTok{,\ensuremath{\text{ }}dsquared}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{return}\ensuremath{\text{ }}\FloatTok{0.0}\newline
\end{Highlighting}
\end{Shaded}

Again, you would run the program at this stage and check the output
(which should be 25).
Finally, you can use math.sqrt to compute and return the result:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{distance(x1,\ensuremath{\text{ }}y1,\ensuremath{\text{ }}x2,\ensuremath{\text{ }}y2):}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{dx\ensuremath{\text{ }}=\ensuremath{\text{ }}x2\ensuremath{\text{ }}-\ensuremath{\text{ }}x1}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{dy\ensuremath{\text{ }}=\ensuremath{\text{ }}y2\ensuremath{\text{ }}-\ensuremath{\text{ }}y1}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{dsquared\ensuremath{\text{ }}=\ensuremath{\text{ }}dx**}\DecValTok{2}\ensuremath{\text{ }}\NormalTok{+\ensuremath{\text{ }}dy**}\DecValTok{2}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{result\ensuremath{\text{ }}=\ensuremath{\text{ }}math.sqrt(dsquared)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{return}\ensuremath{\text{ }}\NormalTok{result}\newline
\end{Highlighting}
\end{Shaded}

If that works correctly, you are done. Otherwise, you might
want to print the value of result before the return
statement.

The final version of the function doesn’t display anything when it
runs; it only returns a value. The print statements we wrote
are useful for debugging, but once you get the function working, you
should remove them. Code like that is called {\bfseries scaffolding}
because it is helpful for building the program but is not part of the
final product.

When you start out, you should add only a line or two of code at a
time. As you gain more experience, you might find yourself writing
and debugging bigger chunks. Either way, incremental development
can save you a lot of debugging time.

The key aspects of the process are:

\begin{myitemize}
\item{} Start with a working program and make small incremental changes. At any point, if there is an error, you should have a good idea where it is.
\item{} Use temporary variables to hold intermediate values so you can display and check them.
\item{} Once the program is working, you might want to remove some of the scaffolding or consolidate multiple statements into compound expressions, but only if it does not make the program difficult to read.
\end{myitemize}

\subsection{Exercise 2}
\label{102}
{\itshape Use incremental development to write a function}
called {\bfseries \textquotesingle{}hypotenuse}\textquotesingle{} that returns the length of the hypotenuse of a
right triangle given the lengths of the two legs as arguments.
Record each stage of the development process as you go.
{\itshape }
\section{Composition}
\label{103}
As you should expect by now, you can call one function from
within another. This ability is called {\bfseries composition}.

As an example, we’ll write a function that takes two points,
the center of the circle and a point on the perimeter, and computes
the area of the circle.

Assume that the center point is stored in the variables xc and
yc, and the perimeter point is in xp and yp. The
first step is to find the radius of the circle, which is the distance
between the two points. We just wrote a function, distance, that does that:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{radius\ensuremath{\text{ }}=\ensuremath{\text{ }}distance(xc,\ensuremath{\text{ }}yc,\ensuremath{\text{ }}xp,\ensuremath{\text{ }}yp)}\newline
\end{Highlighting}
\end{Shaded}

The next step is to find the area of a circle with that radius;
we just wrote that, too:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{result\ensuremath{\text{ }}=\ensuremath{\text{ }}area(radius)}\newline
\end{Highlighting}
\end{Shaded}

Encapsulating these steps in a function, we get:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{circle_area(xc,\ensuremath{\text{ }}yc,\ensuremath{\text{ }}xp,\ensuremath{\text{ }}yp):}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{radius\ensuremath{\text{ }}=\ensuremath{\text{ }}distance(xc,\ensuremath{\text{ }}yc,\ensuremath{\text{ }}xp,\ensuremath{\text{ }}yp)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{result\ensuremath{\text{ }}=\ensuremath{\text{ }}area(radius)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{return}\ensuremath{\text{ }}\NormalTok{result}\newline
\end{Highlighting}
\end{Shaded}

The temporary variables radius and result are useful for
development and debugging, but once the program is working, we can
make it more concise by composing the function calls:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{circle_area(xc,\ensuremath{\text{ }}yc,\ensuremath{\text{ }}xp,\ensuremath{\text{ }}yp):}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{return}\ensuremath{\text{ }}\NormalTok{area(distance(xc,\ensuremath{\text{ }}yc,\ensuremath{\text{ }}xp,\ensuremath{\text{ }}yp))}\newline
\end{Highlighting}
\end{Shaded}

\section{Boolean functions}
\label{104}
Functions can return booleans, which is often convenient for hiding
complicated tests inside functions. For example:
\TemplatePreformat{def {}is_divisible(x, {}y): \newline{}
 {} {} {} {}if {}x {}\% {}y {}== {}0: \newline{}
 {} {} {} {} {} {} {} {}return {}True \newline{}
 {} {} {} {}else: \newline{}
 {} {} {} {} {} {} {} {}return {}False \newline{}
}
It is common to give boolean functions names that sound like yes/no
questions; is_divisible returns either True or False
to indicate whether x is divisible by y.

Here is an example:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {} {} {}is_divisible(6, {}4) \newline{}
False \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {} {} {}is_divisible(6, {}3) \newline{}
True \newline{}
}
The result of the == operator is a boolean, so we can write the
function more concisely by returning it directly:
\TemplatePreformat{def {}is_divisible(x, {}y): \newline{}
 {} {} {} {}return {}x {}\% {}y {}== {}0 \newline{}
}
Boolean functions are often used in conditional statements:

\TemplatePreformat{if {}is_divisible(x, {}y): \newline{}
 {} {} {} {}print {}\textquotesingle{}x {}is {}divisible {}by {}y\textquotesingle{} \newline{}
}
It might be tempting to write something like:
\TemplatePreformat{if {}is_divisible(x, {}y) {}== {}True: \newline{}
 {} {} {} {}print {}\textquotesingle{}x {}is {}divisible {}by {}y\textquotesingle{} \newline{}
}
But the extra comparison is unnecessary.
{\bfseries Exercise 3} {\itshape }
Write a function {\itshape }is_between(x, y, z){\itshape }{\itshape } that
returns {\bfseries \textquotesingle{}True}\textquotesingle{} if {\bfseries \textquotesingle{}x ≤ y ≤ z}\textquotesingle{} or {\bfseries \textquotesingle{}False}\textquotesingle{} otherwise.
{\itshape }{\itshape }
\section{More recursion}
\label{105}
We have only covered a small subset of Python, but you might
be interested to know that this subset is a {\itshape complete}
programming language, which means that anything that can be
computed can be expressed in this language. Any program ever written
could be rewritten using only the language features you have learned
so far (actually, you would need a few commands to control devices
like the keyboard, mouse, disks, etc., but that’s all).

Proving that claim is a nontrivial exercise first accomplished by Alan
Turing, one of the first computer scientists (some would argue that he
was a mathematician, but a lot of early computer scientists started as
mathematicians). Accordingly, it is known as the Turing Thesis.
For a more complete (and accurate) discussion of the Turing Thesis,
I recommend Michael Sipser’s book {\itshape Introduction to the}
Theory of Computation{\itshape .}

To give you an idea of what you can do with the tools you have learned
so far, we’ll evaluate a few recursively defined mathematical
functions. A recursive definition is similar to a circular
definition, in the sense that the definition contains a reference to
the thing being defined. A truly circular definition is not very
useful:
{\bfseries frabjuous:} An adjective used to describe something that is frabjuous.

If you saw that definition in the dictionary, you might be annoyed. On
the other hand, if you looked up the definition of the factorial
function, denoted with the symbol !, you might get something like
this:
<{}TD ALIGN=right NOWRAP>{}{\mbox{$~$}}<{}TD ALIGN=center NOWRAP>{}{\mbox{$~$}}<{}TD ALIGN=left NOWRAP>{}0! = 1
<{}TD ALIGN=right NOWRAP>{}{\mbox{$~$}}<{}TD ALIGN=center NOWRAP>{}{\mbox{$~$}}<{}TD ALIGN=left NOWRAP>{}n! = n (n−1)!

This definition says that the factorial of 0 is 1, and the factorial
of any other value, n, is n multiplied by the factorial of n−1.

So 3! is 3 times 2!, which is 2 times 1!, which is 1 times
0!. Putting it all together, 3! equals 3 times 2 times 1 times 1,
which is 6.

If you can write a recursive definition of something, you can usually
write a Python program to evaluate it. The first step is to decide
what the parameters should be. In this case it should be clear
that factorial takes an integer:
\TemplatePreformat{def {}factorial(n): \newline{}
}
If the argument happens to be 0, all we have to do is return 1:
\TemplatePreformat{def {}factorial(n): \newline{}
 {} {} {} {}if {}n {}== {}0: \newline{}
 {} {} {} {} {} {} {} {}return {}1 \newline{}
}
Otherwise, and this is the interesting part, we have to make a
recursive call to find the factorial of n−1 and then multiply it by
n:
\TemplatePreformat{def {}factorial(n): \newline{}
 {} {} {} {}if {}n {}== {}0: \newline{}
 {} {} {} {} {} {} {} {}return {}1 \newline{}
 {} {} {} {}else: \newline{}
 {} {} {} {} {} {} {} {}recurse {}= {}factorial(n-{}1) \newline{}
 {} {} {} {} {} {} {} {}result {}= {}n {}* {}recurse \newline{}
 {} {} {} {} {} {} {} {}return {}result \newline{}
}
The flow of execution for this program is similar to the flow of countdown in Section 5.8. If we call factorial
with the value 3:

Since 3 is not 0, we take the second branch and calculate the factorial
of n-{}1...

Since 2 is not 0, we take the second branch and calculate the factorial of
n-{}1...
Since 1 is not 0, we take the second branch and calculate the factorial
of n-{}1...
Since 0 {\itshape is} 0, we take the first branch and return 1
without making any more recursive calls.

The return value (1) is multiplied by n, which is 1, and the
result is returned.

The return value (1) is multiplied by n, which is 2, and the
result is returned.

The return value (2) is multiplied by n, which is 3, and the result, 6,
becomes the return value of the function call that started the whole
process.

Here is what the stack diagram looks like for this sequence of function
calls:

The return values are shown being passed back up the stack. In each
frame, the return value is the value of result, which is the
product of n and recurse.

In the last frame, the local
variables recurse and result do not exist, because
the branch that creates them does not execute.
\section{Leap of faith}
\label{106}
Following the flow of execution is one way to read programs, but
it can quickly become labyrinthine. An
alternative is what I call the “leap of faith.” When you come to a
function call, instead of following the flow of execution, you {\itshape assume} that the function works correctly and returns the right
result.

In fact, you are already practicing this leap of faith when you use
built-{}in functions. When you call math.cos or math.exp,
you don’t examine the bodies of those functions. You just
assume that they work because the people who wrote the built-{}in
functions were good programmers.

The same is true when you call one of your own functions. For
example, in Section 6.4, we wrote a function called
is_divisible that determines whether one number is divisible by
another. Once we have convinced ourselves that this function is
correct—by examining the code and testing—we can use the function
without looking at the body again.

The same is true of recursive programs. When you get to the recursive
call, instead of following the flow of execution, you should assume
that the recursive call works (yields the correct result) and then ask
yourself, “Assuming that I can find the factorial of n−1, can I
compute the factorial of n?” In this case, it is clear that you
can, by multiplying by n.

Of course, it\textquotesingle{}s a bit strange to assume that the function works
correctly when you haven\textquotesingle{}t finished writing it, but that\textquotesingle{}s why
it\textquotesingle{}s called a leap of faith!
\section{One more example}
\label{107}
After factorial, the most common example of a recursively
defined mathematical function is fibonacci, which has the
following definition\myfootnote{See
wikipedia.org/wiki/Fibonacci_number.}:
<{}TD ALIGN=right NOWRAP>{}{\mbox{$~$}}<{}TD ALIGN=center NOWRAP>{}{\mbox{$~$}}<{}TD ALIGN=left NOWRAP>{}fibonacci(0) = 0
<{}TD ALIGN=right NOWRAP>{}{\mbox{$~$}}<{}TD ALIGN=center NOWRAP>{}{\mbox{$~$}}<{}TD ALIGN=left NOWRAP>{}fibonacci(1) = 1
<{}TD ALIGN=right NOWRAP>{}{\mbox{$~$}}<{}TD ALIGN=center NOWRAP>{}{\mbox{$~$}}<{}TD ALIGN=left NOWRAP>{}fibonacci(n) = fibonacci(n−1) + fibonacci(n−2);

Translated into Python, it looks like this:
\TemplatePreformat{def {}fibonacci {}(n): \newline{}
 {} {} {} {}if {}n {}== {}0: \newline{}
 {} {} {} {} {} {} {} {}return {}0 \newline{}
 {} {} {} {}elif {} {}n {}== {}1: \newline{}
 {} {} {} {} {} {} {} {}return {}1 \newline{}
 {} {} {} {}else: \newline{}
 {} {} {} {} {} {} {} {}return {}fibonacci(n-{}1) {}+ {}fibonacci(n-{}2) \newline{}
}
If you try to follow the flow of execution here, even for fairly
small values of n, your head explodes. But according to the
leap of faith, if you assume that the two recursive calls
work correctly, then it is clear that you get
the right result by adding them together.
\section{Checking types}
\label{108}
What happens if we call factorial and give it 1.5 as an argument?

\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}factorial(1.5) \newline{}
RuntimeError: {}Maximum {}recursion {}depth {}exceeded \newline{}
}
It looks like an infinite recursion. But how can that be? There is a
base case—when n == 0. But if n is not an integer,
we can {\itshape miss} the base case and recurse forever.

In the first recursive call, the value of n is 0.5.
In the next, it is -{}0.5. From there, it gets smaller
(more negative), but it will never be 0.

We have two choices. We can try to generalize the factorial
function to work with floating-{}point numbers, or we can make factorial check the type of its argument. The first option is
called the gamma function\myfootnote{See
wikipedia.org/wiki/Gamma_function.} and it’s a
little beyond the scope of this book. So we’ll go for the second.

We can use the built-{}in function isinstance to verify the type
of the argument. While we’re at it, we can also make sure the
argument is positive:

\TemplatePreformat{def {}factorial {}(n): \newline{}
 {} {} {} {}if {}not {}isinstance(n, {}int): \newline{}
 {} {} {} {} {} {} {} {}print {}\textquotesingle{}Factorial {}is {}only {}defined {}for {}integers.\textquotesingle{} \newline{}
 {} {} {} {} {} {} {} {}return {}None \newline{}
 {} {} {} {}elif {}n {}{\mbox{$<$}} {}0: \newline{}
 {} {} {} {} {} {} {} {}print {}\textquotesingle{}Factorial {}is {}only {}defined {}for {}positive {}integers.\textquotesingle{} \newline{}
 {} {} {} {} {} {} {} {}return {}None \newline{}
 {} {} {} {}elif {}n {}== {}0: \newline{}
 {} {} {} {} {} {} {} {}return {}1 \newline{}
 {} {} {} {}else: \newline{}
 {} {} {} {} {} {} {} {}return {}n {}* {}factorial(n-{}1) \newline{}
}
The first base case handles nonintegers; the
second catches negative integers. In both cases, the program prints
an error message and returns None to indicate that something
went wrong:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}factorial(\textquotesingle{}fred\textquotesingle{}) \newline{}
Factorial {}is {}only {}defined {}for {}integers. \newline{}
None \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}factorial(-{}2) \newline{}
Factorial {}is {}only {}defined {}for {}positive {}integers. \newline{}
None \newline{}
}
If we get past both checks, then we know that n is a positive
integer, and we can prove that the recursion terminates.

This program demonstrates a pattern sometimes called a {\bfseries guardian}.
The first two conditionals act as guardians, protecting the code that
follows from values that might cause an error. The guardians make it
possible to prove the correctness of the code.
\section{Debugging}
\label{109}
Breaking a large program into smaller functions creates natural
checkpoints for debugging. If a function is not working, there are
three possibilities to consider:

\begin{myitemize}
\item{} There is something wrong with the arguments the function
\end{myitemize}

is getting; a precondition is violated.

\begin{myitemize}
\item{} There is something wrong with the function; a postcondition
\end{myitemize}

is violated.

\begin{myitemize}
\item{} There is something wrong with the return value or the
\end{myitemize}

way it is being used.

To rule out the first possibility, you can add a print statement
at the beginning of the function and display the values of the
parameters (and maybe their types). Or you can write code
that checks the preconditions explicitly.

If the parameters look good, add a print statement before each
return statement that displays the return value. If
possible, check the result by hand. Consider calling the
function with values that make it easy to check the result
(as in Section 6.2).

If the function seems to be working, look at the function call
to make sure the return value is being used correctly (or used
at all!).

Adding print statements at the beginning and end of a function
can help make the flow of execution more visible.
For example, here is a version of factorial with
print statements:
\TemplatePreformat{def {}factorial(n): \newline{}
 {} {} {} {}space {}= {}\textquotesingle{} {}\textquotesingle{} {}* {}(4 {}* {}n) \newline{}
 {} {} {} {}print {}space, {}\textquotesingle{}factorial\textquotesingle{}, {}n \newline{}
 {} {} {} {}if {}n {}== {}0: \newline{}
 {} {} {} {} {} {} {} {}print {}space, {}\textquotesingle{}returning {}1\textquotesingle{} \newline{}
 {} {} {} {} {} {} {} {}return {}1 \newline{}
 {} {} {} {}else: \newline{}
 {} {} {} {} {} {} {} {}recurse {}= {}factorial(n-{}1) \newline{}
 {} {} {} {} {} {} {} {}result {}= {}n {}* {}recurse \newline{}
 {} {} {} {} {} {} {} {}print {}space, {}\textquotesingle{}returning\textquotesingle{}, {}result \newline{}
 {} {} {} {} {} {} {} {}return {}result \newline{}
}
space is a string of space characters that controls the
indentation of the output. Here is the result of factorial(5) :
\TemplatePreformat{ {}factorial {}5 \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}factorial {}4 \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {}factorial {}3 \newline{}
 {} {} {} {} {} {} {} {} {}factorial {}2 \newline{}
 {} {} {} {} {}factorial {}1 \newline{}
 {}factorial {}0 \newline{}
 {}returning {}1 \newline{}
 {} {} {} {} {}returning {}1 \newline{}
 {} {} {} {} {} {} {} {} {}returning {}2 \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {}returning {}6 \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}returning {}24 \newline{}
 {}returning {}120 \newline{}
}
If you are confused about the flow of execution, this kind of
output can be helpful. It takes some time to develop effective
scaffolding, but a little bit of scaffolding can save a lot of debugging.
\section{Glossary}
\label{110}
{\bfseries temporary variable:} A variable used to store an intermediate value in
a complex calculation.

{\bfseries dead code:} Part of a program that can never be executed, often because
it appears after a return statement.
{\bfseries None}{\bfseries :} A special value returned by functions that
have no return statement or a return statement without an argument.

{\bfseries incremental development:} A program development plan intended to
avoid debugging by adding and testing only
a small amount of code at a time.
{\bfseries scaffolding:} Code that is used during program development but is
not part of the final version.
{\bfseries guardian:} A programming pattern that uses a conditional
statement to check for and handle circumstances that
might cause an error.

\section{Exercises}
\label{111}\subsection{Exercise 4}
\label{112}
{\itshape Draw a stack diagram for the following program. What does the program print?}
\TemplatePreformat{def {}b(z): \newline{}
 {} {} {} {}prod {}= {}a(z, {}z) \newline{}
 {} {} {} {}print {}z, {}prod \newline{}
 {} {} {} {}return {}prod \newline{}
 {} \newline{}
def {}a(x, {}y): \newline{}
 {} {} {} {}x {}= {}x {}+ {}1 \newline{}
 {} {} {} {}return {}x {}* {}y \newline{}
 {} \newline{}
def {}c(x, {}y, {}z): \newline{}
 {} {} {} {}sum {}= {}x {}+ {}y {}+ {}z \newline{}
 {} {} {} {}pow {}= {}b(sum)**2 \newline{}
 {} {} {} {}return {}pow \newline{}
 {} \newline{}
x {}= {}1 \newline{}
y {}= {}x {}+ {}1 \newline{}
print {}c(x, {}y+3, {}x+y) \newline{}
}
\subsection{Exercise 5}
\label{113}
{\itshape The Ackermann function, {\bfseries \textquotesingle{}A(m, n)}\textquotesingle{} is defined\myfootnote{See}}\myfootnote{
wikipedia.org/wiki/Ackermann_function}:{\itshape }

\label{119}
\LaTeXNullTemplate{}
\section{Multiple assignment}
\label{120}
As you may have discovered, it is legal to
make more than one assignment to the same variable. A
new assignment makes an existing variable refer to a new
value (and stop referring to the old value).

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{bruce\ensuremath{\text{ }}=\ensuremath{\text{ }}}\DecValTok{5}\newline
\KeywordTok{print}\ensuremath{\text{ }}\NormalTok{bruce,}\newline
\NormalTok{bruce\ensuremath{\text{ }}=\ensuremath{\text{ }}}\DecValTok{7}\newline
\KeywordTok{print}\ensuremath{\text{ }}\NormalTok{bruce}\newline
\end{Highlighting}
\end{Shaded}

The output of this program is 5 7, because the first time bruce is printed, its value is 5, and the second time, its value is 7. The comma at the end of the first print statement suppresses the newline, which is why both outputs appear on the same line.

Here is what {\bfseries multiple assignment} looks like in a state diagram:

With multiple assignment it is especially important to distinguish
between an assignment operation and a statement of equality. Because
Python uses the equal sign (=) for assignment, it is tempting to
interpret a statement like a = b as a statement of equality. It
is not!

First, equality is a symmetric relation and assignment is not. For
example, in mathematics, if a = 7 then 7 = a. But in Python, the
statement a = 7 is legal and 7 = a is not.

Furthermore, in mathematics, a statement of equality is either true or
false, for all time. If a = b now, then a will always equal b.
In Python, an assignment statement can make two variables equal, but
they don’t have to stay that way:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{a\ensuremath{\text{ }}=\ensuremath{\text{ }}}\DecValTok{5}\newline
\NormalTok{b\ensuremath{\text{ }}=\ensuremath{\text{ }}a\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\CommentTok{#\ensuremath{\text{ }}a\ensuremath{\text{ }}and\ensuremath{\text{ }}b\ensuremath{\text{ }}are\ensuremath{\text{ }}now\ensuremath{\text{ }}equal}\newline
\NormalTok{a\ensuremath{\text{ }}=\ensuremath{\text{ }}}\DecValTok{3}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\CommentTok{#\ensuremath{\text{ }}a\ensuremath{\text{ }}and\ensuremath{\text{ }}b\ensuremath{\text{ }}are\ensuremath{\text{ }}no\ensuremath{\text{ }}longer\ensuremath{\text{ }}equal}\newline
\end{Highlighting}
\end{Shaded}

The third line changes the value of a but does not change the
value of b, so they are no longer equal.

Although multiple assignment is frequently helpful, you should use it
with caution. If the values of variables change frequently, it can
make the code difficult to read and debug.
\section{Updating variables}
\label{121}
One of the most common forms of multiple assignment is an {\bfseries update},
where the new value of the variable depends on the old.
\TemplatePreformat{x {}= {}x+1 \newline{}
}
This means “get the current value of x, add one, and then
update x with the new value.”

If you try to update a variable that doesn’t exist, you get an
error, because Python evaluates the right side before it assigns
a value to x:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}x {}= {}x+1 \newline{}
NameError: {}name {}\textquotesingle{}x\textquotesingle{} {}is {}not {}defined \newline{}
}
Before you can update a variable, you have to {\bfseries initialize}
it, usually with a simple assignment:

\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}x {}= {}0 \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}x {}= {}x+1 \newline{}
}
Updating a variable by adding 1 is called an {\bfseries increment};
subtracting 1 is called a {\bfseries decrement}.
\section{The while statement}
\label{122}
Computers are often used to automate repetitive tasks. Repeating
identical or similar tasks without making errors is something that
computers do well and people do poorly.

We have seen two programs, countdown and print_n, that
use recursion to perform repetition, which is also called {\bfseries iteration}. Because iteration is so common, Python provides several
language features to make it easier. One is the for statement
we saw in Section 4.2. We’ll get back to that later.

Another is the while statement. Here is a version of countdown that uses a while statement:
\TemplatePreformat{def {}countdown(n): \newline{}
 {} {} {} {}while {}n {}{\mbox{$>$}} {}0: \newline{}
 {} {} {} {} {} {} {} {}print {}n \newline{}
 {} {} {} {} {} {} {} {}n {}= {}n-{}1 \newline{}
 {} {} {} {}print {}\textquotesingle{}Blastoff!\textquotesingle{} \newline{}
}
You can almost read the while statement as if it were English.
It means, “While n is greater than 0,
display the value of n and then reduce the value of
n by 1. When you get to 0, display the word Blastoff!”

More formally, here is the flow of execution for a while statement:

\begin{myitemize}
\item{} Evaluate the condition, yielding True or False.
\item{} If the condition is false, exit the while statement and continue execution at the next statement.
\item{} If the condition is true, execute the body and then go back to step 1.
\end{myitemize}

This type of flow is called a {\bfseries loop} because the third step
loops back around to the top.

The body of the loop should change the value of one or more variables
so that eventually the condition becomes false and the loop
terminates. Otherwise the loop will repeat forever, which is called
an {\bfseries infinite loop}. An endless source of amusement for computer
scientists is the observation that the directions on shampoo,
“Lather, rinse, repeat,” are an infinite loop.

In the case of countdown, we can prove that the loop
terminates because we know that the value of n is finite, and we
can see that the value of n gets smaller each time through the
loop, so eventually we have to get to 0. In other
cases, it is not so easy to tell:
\TemplatePreformat{def {}sequence(n): \newline{}
 {} {} {} {}while {}n {}!= {}1: \newline{}
 {} {} {} {} {} {} {} {}print {}n, \newline{}
 {} {} {} {} {} {} {} {}if {}n\%2 {}== {}0: {} {} {} {} {} {} {} {}\# {}n {}is {}even \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}n {}= {}n/2 \newline{}
 {} {} {} {} {} {} {} {}else: {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}\# {}n {}is {}odd \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}n {}= {}n*3+1 \newline{}
}
The condition for this loop is n != 1, so the loop will continue
until n is 1, which makes the condition false.

Each time through the loop, the program outputs the value of n
and then checks whether it is even or odd. If it is even, n is
divided by 2. If it is odd, the value of n is replaced with
n*3+1. For example, if the argument passed
to sequence is 3, the resulting sequence is 3, 10, 5, 16, 8, 4, 2, 1.

Since n sometimes increases and sometimes decreases, there is no
obvious proof that n will ever reach 1, or that the program
terminates. For some particular values of n, we can prove
termination. For example, if the starting value is a power of two,
then the value of n will be even each time through the loop
until it reaches 1. The previous example ends with such a sequence,
starting with 16.

The hard question is whether we can prove that this program terminates
for {\itshape all positive values} of n. So far1, no one has
been able to prove it {\itshape or} disprove it!
{\bfseries Exercise 1} {\itshape }
Rewrite the function {\itshape }print_n{\itshape }{\itshape } from
Section {\bfseries \textquotesingle{}5.8}\textquotesingle{} using iteration instead of recursion.
{\itshape }{\itshape }
\section{break}
\label{123}
Sometimes you don’t know it’s time to end a loop until you get half
way through the body. In that case you can use the break
statement to jump out of the loop.

For example, suppose you want to take input from the user until they
type done. You could write:
\TemplatePreformat{while {}True: \newline{}
 {} {} {} {}line {}= {}raw_input(\textquotesingle{}{\mbox{$>$}} {}\textquotesingle{}) \newline{}
 {} {} {} {}if {}line {}== {}\textquotesingle{}done\textquotesingle{}: \newline{}
 {} {} {} {} {} {} {} {}break \newline{}
 {} {} {} {}print {}line \newline{}
 {} \newline{}
print {}\textquotesingle{}Done!\textquotesingle{} \newline{}
}
The loop condition is True, which is always true, so the
loop runs until it hits the break statement.

Each time through, it prompts the user with an angle bracket.
If the user types done, the break statement exits
the loop. Otherwise the program echoes whatever the user types
and goes back to the top of the loop. Here’s a sample run:
\TemplatePreformat{{\mbox{$>$}} {}not {}done \newline{}
not {}done \newline{}
{\mbox{$>$}} {}done \newline{}
Done! \newline{}
}
This way of writing while loops is common because you
can check the condition anywhere in the loop (not just at the
top) and you can express the stop condition affirmatively
(“stop when this happens”) rather than negatively (“keep going
until that happens.”).
\section{Square roots}
\label{124}
Loops are often used in programs that compute
numerical results by starting with an approximate answer and
iteratively improving it.

For example, one way of computing square roots is Newton’s method.
Suppose that you want to know the square root of a. If you start
with almost any estimate, x, you can compute a better
estimate with the following formula:
y = x + a/x

2

For example, if a is 4 and x is 3:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}a {}= {}4.0 \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}x {}= {}3.0 \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}y {}= {}(x {}+ {}a/x) {}/ {}2 \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}y \newline{}
2.16666666667 \newline{}
}
Which is closer to the correct answer (√4 = 2). If we
repeat the process with the new estimate, it gets even closer:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}x {}= {}y \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}y {}= {}(x {}+ {}a/x) {}/ {}2 \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}y \newline{}
2.00641025641 \newline{}
}
After a few more updates, the estimate is almost exact:

\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}x {}= {}y \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}y {}= {}(x {}+ {}a/x) {}/ {}2 \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}y \newline{}
2.00001024003 \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}x {}= {}y \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}y {}= {}(x {}+ {}a/x) {}/ {}2 \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}y \newline{}
2.00000000003 \newline{}
}
In general we don’t know ahead of time how many steps it takes
to get to the right answer, but we know when we get there
because the estimate
stops changing:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}x {}= {}y \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}y {}= {}(x {}+ {}a/x) {}/ {}2 \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}y \newline{}
2.0 \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}x {}= {}y \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}y {}= {}(x {}+ {}a/x) {}/ {}2 \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}y \newline{}
2.0 \newline{}
}
When y == x, we can stop. Here is a loop that starts
with an initial estimate, x, and improves it until it
stops changing:
\TemplatePreformat{while {}True: \newline{}
 {} {} {} {}print {}x \newline{}
 {} {} {} {}y {}= {}(x {}+ {}a/x) {}/ {}2 \newline{}
 {} {} {} {}if {}y {}== {}x: \newline{}
 {} {} {} {} {} {} {} {}break \newline{}
 {} {} {} {}x {}= {}y \newline{}
}
For most values of a this works fine, but in general it is
dangerous to test float equality.
Floating-{}point values are only approximately right:
most rational numbers, like 1/3, and irrational numbers, like
√2, can’t be represented exactly with a float.

Rather than checking whether x and y are exactly equal, it
is safer to use the built-{}in function abs to compute the
absolute value, or magnitude, of the difference between them:
\TemplatePreformat{ {} {} {} {}if {}abs(y-{}x) {}{\mbox{$<$}} {}epsilon: \newline{}
 {} {} {} {} {} {} {} {}break \newline{}
}
Where epsilon has a value like 0.0000001 that
determines how close is close enough.
{\bfseries Exercise 2} {\itshape }
{\bfseries \textquotesingle{}}
{\itshape }
{\itshape Encapsulate this loop in a function called }{\itshape square_root}{\itshape }
that takes {\bfseries \textquotesingle{}a}\textquotesingle{} as a parameter, chooses a reasonable
value of {\bfseries \textquotesingle{}x}\textquotesingle{}, and returns an estimate of the square root
of {\bfseries \textquotesingle{}a}\textquotesingle{}.
{\itshape }

\section{Algorithms}
\label{125}
Newton’s method is an example of an {\bfseries algorithm}: it is a
mechanical process for solving a category of problems (in this
case, computing square roots).

It is not easy to define an algorithm. It might help to start
with something that is not an algorithm. When you learned
to multiply single-{}digit numbers, you probably memorized the
multiplication table. In effect, you memorized 100 specific solutions.
That kind of knowledge is not algorithmic.

But if you were “lazy,” you probably cheated by learning a few
tricks. For example, to find the product of n and 9, you can
write n−1 as the first digit and 10−n as the second
digit. This trick is a general solution for multiplying any
single-{}digit number by 9. That’s an algorithm!

Similarly, the techniques you learned for addition with carrying,
subtraction with borrowing, and long division are all algorithms. One
of the characteristics of algorithms is that they do not require any
intelligence to carry out. They are mechanical processes in which
each step follows from the last according to a simple set of rules.

In my opinion, it is embarrassing that humans spend so much time in
school learning to execute algorithms that, quite literally, require
no intelligence.

On the other hand, the process of designing algorithms is interesting,
intellectually challenging, and a central part of what we call
programming.

Some of the things that people do naturally, without difficulty or
conscious thought, are the hardest to express algorithmically.
Understanding natural language is a good example. We all do it, but
so far no one has been able to explain {\itshape how} we do it, at least
not in the form of an algorithm.
\section{Debugging}
\label{126}
As you start writing bigger programs, you might find yourself
spending more time debugging. More code means more chances to
make an error and more place for bugs to hide.

One way to cut your debugging time is “debugging by bisection.”
For example, if there are 100 lines in your program and you
check them one at a time, it would take 100 steps.

Instead, try to break the problem in half. Look at the middle
of the program, or near it, for an intermediate value you
can check. Add a print statement (or something else
that has a verifiable effect) and run the program.

If the mid-{}point check is incorrect, the problem must be in the
first half of the program. If it is correct, the problem is
in the second half.

Every time you perform a check like this, you halve the number
of lines you have to search. After six steps (which is much
less than 100), you would be down to one or two lines of code,
at least in theory.

In practice it is not always clear what
the “middle of the program” is and not always possible to
check it. It doesn’t make sense to count lines and find the
exact midpoint. Instead, think about places
in the program where there might be errors and places where it
is easy to put a check. Then choose a spot where you
think the chances are about the same that the bug is before
or after the check.
\section{Glossary}
\label{127}

{\bfseries multiple assignment:} Making more than one assignment to the same
variable during the execution of a program.

{\bfseries update:} An assignment where the new value of the variable
depends on the old.
{\bfseries initialize:} An assignment that gives an initial value to
a variable that will be updated.{\bfseries increment:} An update that increases the value of a variable
(often by one).
{\bfseries decrement:} An update that decreases the value of a variable.
{\bfseries iteration:} Repeated execution of a set of statements using
either a recursive function call or a loop.
{\bfseries infinite loop:} A loop in which the terminating condition is
never satisfied.

\section{Exercises}
\label{128}\subsection{Exercise 3}
\label{129}

{\itshape To test the square root algorithm in this chapter, you could compare}
it with {\bfseries \textquotesingle{}math.sqrt}\textquotesingle{}. Write a function named {\itshape }test_square_root{\itshape }{\itshape }
that prints a table like this:{\itshape }
\TemplatePreformat{\textquotesingle{}\textquotesingle{}1.0 {}1.0 {} {} {} {} {} {} {} {} {} {} {}1.0 {} {} {} {} {} {} {} {} {} {} {}0.0 \newline{}
2.0 {}1.41421356237 {}1.41421356237 {}2.22044604925e-{}16 \newline{}
3.0 {}1.73205080757 {}1.73205080757 {}0.0 \newline{}
4.0 {}2.0 {} {} {} {} {} {} {} {} {} {} {}2.0 {} {} {} {} {} {} {} {} {} {} {}0.0 \newline{}
5.0 {}2.2360679775 {} {}2.2360679775 {} {}0.0 \newline{}
6.0 {}2.44948974278 {}2.44948974278 {}0.0 \newline{}
7.0 {}2.64575131106 {}2.64575131106 {}0.0 \newline{}
8.0 {}2.82842712475 {}2.82842712475 {}4.4408920985e-{}16 \newline{}
9.0 {}3.0 {} {} {} {} {} {} {} {} {} {} {}3.0 {} {} {} {} {} {} {} {} {} {} {}0.0 \newline{}
 {} \newline{}
\textquotesingle{}\textquotesingle{}}
{\itshape The first column is a number, {\bfseries \textquotesingle{}a}\textquotesingle{}; the second column is}
the square root of {\bfseries \textquotesingle{}a}\textquotesingle{} computed with the function from
Exercise {\bfseries \textquotesingle{}7.2}\textquotesingle{}; the third column is the square root computed
by {\bfseries \textquotesingle{}math.sqrt}\textquotesingle{}; the fourth column is the absolute value
of the difference between the two estimates.
\subsection{Exercise 4}
\label{130}
{\itshape The built-{}in function {\bfseries \textquotesingle{}eval}\textquotesingle{} takes a string and evaluates}
it using the Python interpreter. For example:{\itshape }
\TemplatePreformat{\textquotesingle{}\textquotesingle{}{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}eval(\textquotesingle{}1 {}+ {}2 {}* {}3\textquotesingle{}) \newline{}
7 \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}import {}math \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}eval(\textquotesingle{}math.sqrt(5)\textquotesingle{}) \newline{}
2.2360679774997898 \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}eval(\textquotesingle{}type(math.pi)\textquotesingle{}) \newline{}
{\mbox{$<$}}type {}\textquotesingle{}float\textquotesingle{}{\mbox{$>$}} \newline{}
\textquotesingle{}\textquotesingle{}}
{\itshape Write a function called }{\itshape eval_loop}{\itshape that iteratively}
prompts the user, takes the resulting input and evaluates
it using {\bfseries \textquotesingle{}eval}\textquotesingle{}, and prints the result.{\itshape }

{\itshape It should continue until the user enters }{\bfseries done}{\itshape , and then}
return the value of the last expression it evaluated.{\itshape }
\subsection{Exercise 5}
\label{131}

{\itshape The brilliant mathematician Srinivasa Ramanujan found an}
infinite series{\itshape }2{\itshape }{\itshape }
that can be used to generate a numerical
approximation of {π}:{\itshape }

{$ \frac{1}{\pi} = \frac{2 \sqrt{2}} {9801} \sum_{k=0}^{\infty} \frac{ (4k)! (1103 + 26390k)}{(k!)^4 396^{4k}} $}

{\itshape Write a function called }{\itshape estimate_pi}{\itshape that uses this formula}
to compute and return an estimate of {\bfseries \textquotesingle{}π}\textquotesingle{}. It should use a {\bfseries \textquotesingle{}while}\textquotesingle{}
loop to compute terms of the summation until the last term is
smaller than {\bfseries \textquotesingle{}1e-{}15}\textquotesingle{} (which is Python notation for {\bfseries \textquotesingle{}10{\itshape }−15{\itshape }{\itshape }).}
You can check the result by comparing it to {\bfseries \textquotesingle{}math.pi}\textquotesingle{}.{\itshape }

{\itshape You can see my solution at {\bfseries \textquotesingle{}thinkpython.com/code/pi.py}\textquotesingle{}.}
{\itshape }

1See
wikipedia.org/wiki/Collatz_conjecture.
2See wikipedia.org/wiki/Pi.

\chapter{Strings}

\myminitoc
\label{132}

\label{133}
\LaTeXNullTemplate{}
\section{A string is a sequence}
\label{134}
A string is a {\bfseries sequence} of characters.
You can access the characters one at a time with the
bracket operator:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}fruit {}= {}\textquotesingle{}banana\textquotesingle{} \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}letter {}= {}fruit{[}1{]} \newline{}
}
The second statement selects character number 1 from fruit and assigns it to letter.

The expression in brackets is called an {\bfseries index}.
The index indicates which character in the sequence you
want (hence the name).

But you might not get what you expect:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}letter \newline{}
a \newline{}
}
For most people, the first letter of \textquotesingle{}banana\textquotesingle{} is b, not
a. But for computer scientists, the index is an offset from the
beginning of the string, and the offset of the first letter is zero.
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}letter {}= {}fruit{[}0{]} \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}letter \newline{}
b \newline{}
}
So b is the 0th letter (“zero-{}eth”) of \textquotesingle{}banana\textquotesingle{}, a
is the 1th letter (“one-{}eth”), and n is the 2th (“two-{}eth”)
letter.

You can use any expression, including variables and operators, as an
index, but the value of the index has to be an integer. Otherwise you
get:

\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}letter {}= {}fruit{[}1.5{]} \newline{}
TypeError: {}string {}indices {}must {}be {}integers \newline{}
}
\section{len}
\label{135}
len is a built-{}in function that returns the number of characters
in a string:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}fruit {}= {}\textquotesingle{}banana\textquotesingle{} \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}len(fruit) \newline{}
6 \newline{}
}
To get the last letter of a string, you might be tempted to try something
like this:

\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}length {}= {}len(fruit) \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}last {}= {}fruit{[}length{]} \newline{}
IndexError: {}string {}index {}out {}of {}range \newline{}
}
The reason for the IndexError is that there is no letter in ’banana’ with the index 6. Since we started counting at zero, the
six letters are numbered 0 to 5. To get the last character, you have
to subtract 1 from length:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}last {}= {}fruit{[}length-{}1{]} \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}last \newline{}
a \newline{}
}
Alternatively, you can use negative indices, which count backward from
the end of the string. The expression fruit{[}-{}1{]} yields the last
letter, fruit{[}-{}2{]} yields the second to last, and so on.
\section{Traversal with a for loop}
\label{136}
A lot of computations involve processing a string one character at a
time. Often they start at the beginning, select each character in
turn, do something to it, and continue until the end. This pattern of
processing is called a {\bfseries traversal}. One way to write a traversal
is with a while loop:
\TemplatePreformat{index {}= {}0 \newline{}
while {}index {}{\mbox{$<$}} {}len(fruit): \newline{}
 {} {} {} {}letter {}= {}fruit{[}index{]} \newline{}
 {} {} {} {}print {}letter \newline{}
 {} {} {} {}index {}= {}index {}+ {}1 \newline{}
}
This loop traverses the string and displays each letter on a line by
itself. The loop condition is index {\mbox{$<$}} len(fruit), so
when index is equal to the length of the string, the
condition is false, and the body of the loop is not executed. The
last character accessed is the one with the index len(fruit)-{}1,
which is the last character in the string.
{\bfseries Exercise 1} {\itshape }
Write a function that takes a string as an argument
and displays the letters backward, one per line.
{\itshape }{\itshape }
Another way to write a traversal is with a for loop:
\TemplatePreformat{for {}char {}in {}fruit: \newline{}
 {} {} {} {}print {}char \newline{}
}
Each time through the loop, the next character in the string is assigned
to the variable char. The loop continues until no characters are
left.

The following example shows how to use concatenation (string addition)
and a for loop to generate an abecedarian series (that is, in
alphabetical order). In Robert McCloskey’s book {\itshape Make}
Way for Ducklings{\itshape , the names of the ducklings are Jack, Kack, Lack,}
Mack, Nack, Ouack, Pack, and Quack. This loop outputs these names in
order:
\TemplatePreformat{prefixes {}= {}\textquotesingle{}JKLMNOPQ\textquotesingle{} \newline{}
suffix {}= {}\textquotesingle{}ack\textquotesingle{} \newline{}
 {} \newline{}
for {}letter {}in {}prefixes: \newline{}
 {} {} {} {}print {}letter {}+ {}suffix \newline{}
}
The output is:
\TemplatePreformat{Jack \newline{}
Kack \newline{}
Lack \newline{}
Mack \newline{}
Nack \newline{}
Oack \newline{}
Pack \newline{}
Qack \newline{}
}
Of course, that’s not quite right because “Ouack” and
“Quack” are misspelled.
\subsection{Exercise 2}
\label{137}
Modify the program to fix this error.
\section{String slices}
\label{138}
A segment of a string is called a {\bfseries slice}. Selecting a slice is
similar to selecting a character:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}s {}= {}\textquotesingle{}Monty {}Python\textquotesingle{} \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}s{[}0:5{]} \newline{}
Monty \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}s{[}6:13{]} \newline{}
Python \newline{}
}
The operator {[}n:m{]} returns the part of the string from the
“n-{}eth” character to the “m-{}eth” character, including the first but
excluding the last. This behavior is counterintuitive, but it might
help to imagine the indices pointing {\itshape between} the
characters, as in the following diagram:

If you omit the first index (before the colon), the slice starts at
the beginning of the string. If you omit the second index, the slice
goes to the end of the string:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}fruit {}= {}\textquotesingle{}banana\textquotesingle{} \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}fruit{[}:3{]} \newline{}
\textquotesingle{}ban\textquotesingle{} \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}fruit{[}3:{]} \newline{}
\textquotesingle{}ana\textquotesingle{} \newline{}
}
If the first index is greater than or equal to the second the result
is an {\bfseries empty string}, represented by two quotation marks:

\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}fruit {}= {}\textquotesingle{}banana\textquotesingle{} \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}fruit{[}3:3{]} \newline{}
\textquotesingle{}\textquotesingle{} \newline{}
}
An empty string contains no characters and has length 0, but other
than that, it is the same as any other string.
\subsection{Exercise 3}
\label{139}
Given that {\bfseries \textquotesingle{}fruit}\textquotesingle{} is a string, what does
{\bfseries \textquotesingle{}fruit{[}:{]}}\textquotesingle{} mean?{\itshape }
\section{Strings are immutable}
\label{140}
It is tempting to use the {[}{]} operator on the left side of an
assignment, with the intention of changing a character in a string.
For example:

\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}greeting {}= {}\textquotesingle{}Hello, {}world!\textquotesingle{} \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}greeting{[}0{]} {}= {}\textquotesingle{}J\textquotesingle{} \newline{}
TypeError: {}object {}does {}not {}support {}item {}assignment \newline{}
}
The “object” in this case is the string and the “item” is
the character you tried to assign. For now, an {\bfseries object} is
the same thing as a value, but we will refine that definition
later. An {\bfseries item} is one of the values in a sequence.

The reason for the error is that
strings are {\bfseries immutable}, which means you can’t change an
existing string. The best you can do is create a new string
that is a variation on the original:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}greeting {}= {}\textquotesingle{}Hello, {}world!\textquotesingle{} \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}new_greeting {}= {}\textquotesingle{}J\textquotesingle{} {}+ {}greeting{[}1:{]} \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}new_greeting \newline{}
Jello, {}world! \newline{}
}
This example concatenates a new first letter onto
a slice of greeting. It has no effect on
the original string.
\section{Searching}
\label{141}
What does the following function do?

\TemplatePreformat{def {}find(word, {}letter): \newline{}
 {} {} {} {}index {}= {}0 \newline{}
 {} {} {} {}while {}index {}{\mbox{$<$}} {}len(word): \newline{}
 {} {} {} {} {} {} {} {}if {}word{[}index{]} {}== {}letter: \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}return {}index \newline{}
 {} {} {} {} {} {} {} {}index {}= {}index {}+ {}1 \newline{}
 {} {} {} {}return {}-{}1 \newline{}
}
In a sense, find is the opposite of the {[}{]} operator.
Instead of taking an index and extracting the corresponding character,
it takes a character and finds the index where that character
appears. If the character is not found, the function returns -{}1.

This is the first example we have seen of a return statement
inside a loop. If word{[}index{]} == letter, the function breaks
out of the loop and returns immediately.

If the character doesn’t appear in the string, the program
exits the loop normally and returns -{}1.

This pattern of computation—traversing a sequence and returning
when we find what we are looking for—is a called a {\bfseries search}.
\subsection{Exercise 4}
\label{142}
Modify {\bfseries \textquotesingle{}find}\textquotesingle{} so that it has a
third parameter, the index in {\bfseries \textquotesingle{}word}\textquotesingle{} where it should start
looking.
\section{Looping and counting}
\label{143}
The following program counts the number of times the letter a
appears in a string:
\TemplatePreformat{word {}= {}\textquotesingle{}banana\textquotesingle{} \newline{}
count {}= {}0 \newline{}
for {}letter {}in {}word: \newline{}
 {} {} {} {}if {}letter {}== {}\textquotesingle{}a\textquotesingle{}: \newline{}
 {} {} {} {} {} {} {} {}count {}= {}count {}+ {}1 \newline{}
print {}count \newline{}
}
This program demonstrates another pattern of computation called a {\bfseries counter}. The variable count is initialized to 0 and then
incremented each time an a is found.
When the loop exits, count
contains the result—the total number of a’s.
{\bfseries Exercise 5} {\itshape }
{\itshape }
{\itshape Encapsulate this code in a function named {\bfseries \textquotesingle{}count}\textquotesingle{}, and generalize it so that it accepts the string and the}
letter as arguments.
{\itshape }
{\bfseries Exercise 6} {\itshape }
Rewrite this function so that instead of
traversing the string, it uses the three-{}parameter version of {\bfseries \textquotesingle{}find}\textquotesingle{} from the previous section.
{\itshape }{\itshape }
\section{string methods}
\label{144}
A {\bfseries method} is similar to a function—it takes arguments and
returns a value—but the syntax is different. For example, the
method upper takes a string and returns a new string with
all uppercase letters:

Instead of the function syntax upper(word), it uses
the method syntax word.upper().

\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}word {}= {}\textquotesingle{}banana\textquotesingle{} \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}new_word {}= {}word.upper() \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}new_word \newline{}
BANANA \newline{}
}
This form of dot notation specifies the name of the method, upper, and the name of the string to apply the method to, word. The empty parentheses indicate that this method takes no
argument.

A method call is called an {\bfseries invocation}; in this case, we would
say that we are invoking upper on the word.

As it turns out, there is a string method named find that
is remarkably similar to the function we wrote:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}word {}= {}\textquotesingle{}banana\textquotesingle{} \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}index {}= {}word.find(\textquotesingle{}a\textquotesingle{}) \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}index \newline{}
1 \newline{}
}
In this example, we invoke find on word and pass
the letter we are looking for as a parameter.

Actually, the find method is more general than our function;
it can find substrings, not just characters:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}word.find(\textquotesingle{}na\textquotesingle{}) \newline{}
2 \newline{}
}
It can take as a second argument the index where it should start:

\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}word.find(\textquotesingle{}na\textquotesingle{}, {}3) \newline{}
4 \newline{}
}
And as a third argument the index where it should stop:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}name {}= {}\textquotesingle{}bob\textquotesingle{} \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}name.find(\textquotesingle{}b\textquotesingle{}, {}1, {}2) \newline{}
-{}1 \newline{}
}
This search fails because b does not
appear in the index range from 1 to 2 (not including 2).
{\bfseries Exercise 7} {\itshape }
{\bfseries \textquotesingle{}}
{\itshape }
{\itshape There is a string method called {\bfseries \textquotesingle{}count}\textquotesingle{} that is similar}
to the function in the previous exercise. Read the documentation
of this method
and write an invocation that counts the number of {\bfseries \textquotesingle{}a}\textquotesingle{}s
in {\itshape {\bfseries banana}}.
{\itshape }

\section{The in operator}
\label{145}
The word in is a boolean operator that takes two strings and
returns True if the first appears as a substring in the second:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}\textquotesingle{}a\textquotesingle{} {}in {}\textquotesingle{}banana\textquotesingle{} \newline{}
True \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}\textquotesingle{}seed\textquotesingle{} {}in {}\textquotesingle{}banana\textquotesingle{} \newline{}
False \newline{}
}
For example, the following function prints all the
letters from word1 that also appear in word2:
\TemplatePreformat{def {}in_both(word1, {}word2): \newline{}
 {} {} {} {}for {}letter {}in {}word1: \newline{}
 {} {} {} {} {} {} {} {}if {}letter {}in {}word2: \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}print {}letter \newline{}
}
With well-{}chosen variable names,
Python sometimes reads like English. You could read
this loop, “for (each) letter in (the first) word, if (the) letter
(appears) in (the second) word, print (the) letter.”

Here’s what you get if you compare apples and oranges:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}in_both(\textquotesingle{}apples\textquotesingle{}, {}\textquotesingle{}oranges\textquotesingle{}) \newline{}
a \newline{}
e \newline{}
s \newline{}
}
\section{String comparison}
\label{146}
The comparison operators work on strings. To see if two strings are equal:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{if}\ensuremath{\text{ }}\NormalTok{word\ensuremath{\text{ }}==\ensuremath{\text{ }}}\StringTok{{\char13}banana{\char13}}\NormalTok{:}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{print}\ensuremath{\text{ }}\ensuremath{\text{ }}\StringTok{{\char13}All\ensuremath{\text{ }}right,\ensuremath{\text{ }}bananas.{\char13}}\newline
\end{Highlighting}
\end{Shaded}

Other comparison operations are useful for putting words in alphabetical
order:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{if}\ensuremath{\text{ }}\NormalTok{word\ensuremath{\text{ }}<\ensuremath{\text{ }}}\StringTok{{\char13}banana{\char13}}\NormalTok{:}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{print}\ensuremath{\text{ }}\StringTok{{\char13}Your\ensuremath{\text{ }}word,{\char13}}\ensuremath{\text{ }}\NormalTok{+\ensuremath{\text{ }}word\ensuremath{\text{ }}+\ensuremath{\text{ }}}\StringTok{{\char13},\ensuremath{\text{ }}comes\ensuremath{\text{ }}before\ensuremath{\text{ }}banana.{\char13}}\newline
\KeywordTok{elif}\ensuremath{\text{ }}\NormalTok{word\ensuremath{\text{ }}>\ensuremath{\text{ }}}\StringTok{{\char13}banana{\char13}}\NormalTok{:}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{print}\ensuremath{\text{ }}\StringTok{{\char13}Your\ensuremath{\text{ }}word,{\char13}}\ensuremath{\text{ }}\NormalTok{+\ensuremath{\text{ }}word\ensuremath{\text{ }}+\ensuremath{\text{ }}}\StringTok{{\char13},\ensuremath{\text{ }}comes\ensuremath{\text{ }}after\ensuremath{\text{ }}banana.{\char13}}\newline
\KeywordTok{else}\NormalTok{:}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{print}\ensuremath{\text{ }}\StringTok{{\char13}All\ensuremath{\text{ }}right,\ensuremath{\text{ }}bananas.{\char13}}\newline
\end{Highlighting}
\end{Shaded}

Python does not handle uppercase and lowercase letters the same way
that people do. All the uppercase letters come before all the
lowercase letters, so:

\TemplatePreformat{Your {}word, {}Pineapple, {}comes {}before {}banana. \newline{}
}

A common way to address this problem is to convert strings to a
standard format, such as all lowercase, before performing the
comparison. Keep that in mind in case you have to defend yourself
against a man armed with a Pineapple.
\section{Debugging}
\label{147}
When you use indices to traverse the values in a sequence,
it is tricky to get the beginning and end of the traversal
right. Here is a function that is supposed to compare two
words and return True if one of the words is the reverse
of the other, but it contains two errors:
\TemplatePreformat{def {}is_reverse(word1, {}word2): \newline{}
 {} {} {} {}if {}len(word1) {}!= {}len(word2): \newline{}
 {} {} {} {} {} {} {} {}return {}False \newline{}
 {} {} {} {} \newline{}
 {} {} {} {}i {}= {}0 \newline{}
 {} {} {} {}j {}= {}len(word2) \newline{}
 {} \newline{}
 {} {} {} {}while {}j {}{\mbox{$>$}} {}0: \newline{}
 {} {} {} {} {} {} {} {}if {}word1{[}i{]} {}!= {}word2{[}j{]}: \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}return {}False \newline{}
 {} {} {} {} {} {} {} {}i {}= {}i+1 \newline{}
 {} {} {} {} {} {} {} {}j {}= {}j-{}1 \newline{}
 {} \newline{}
 {} {} {} {}return {}True \newline{}
}
The first if statement checks whether the words are the
same length. If not, we can return False immediately
and then, for the rest of the function, we can assume that the words
are the same length. This is an example of the guardian pattern
in Section 6.8.

i and j are indices: i traverses word1
forward while j traverses word2 backward. If we find
two letters that don’t match, we can return False immediately.
If we get through the whole loop and all the letters match, we
return True.

If we test this function with the words “pots” and “stop”, we
expect the return value True, but we get an IndexError:

\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}is_reverse(\textquotesingle{}pots\textquotesingle{}, {}\textquotesingle{}stop\textquotesingle{}) \newline{}
... \newline{}
 {} {}File {}\symbol{34}reverse.py\symbol{34}, {}line {}15, {}in {}is_reverse \newline{}
 {} {} {} {}if {}word1{[}i{]} {}!= {}word2{[}j{]}: \newline{}
IndexError: {}string {}index {}out {}of {}range \newline{}
}
For debugging this kind of error, my first move is to
print the values of the indices immediately before the line
where the error appears.
\TemplatePreformat{ {} {} {} {}while {}j {}{\mbox{$>$}} {}0: \newline{}
 {} {} {} {} {} {} {} {}print {}i, {}j {} {} {} {} {} {} {} {}\# {}print {}here \newline{}
 {} {} {} {} {} {} {} {} \newline{}
 {} {} {} {} {} {} {} {}if {}word1{[}i{]} {}!= {}word2{[}j{]}: \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}return {}False \newline{}
 {} {} {} {} {} {} {} {}i {}= {}i+1 \newline{}
 {} {} {} {} {} {} {} {}j {}= {}j-{}1 \newline{}
}
Now when I run the program again, I get more information:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}is_reverse(\textquotesingle{}pots\textquotesingle{}, {}\textquotesingle{}stop\textquotesingle{}) \newline{}
0 {}4 \newline{}
... \newline{}
IndexError: {}string {}index {}out {}of {}range \newline{}
}
The first time through the loop, the value of j is 4,
which is out of range for the string \textquotesingle{}pots\textquotesingle{}.
The index of the last character is 3, so the
initial value for j should be len(word2)-{}1.

If I fix that error and run the program again, I get:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}is_reverse(\textquotesingle{}pots\textquotesingle{}, {}\textquotesingle{}stop\textquotesingle{}) \newline{}
0 {}3 \newline{}
1 {}2 \newline{}
2 {}1 \newline{}
True \newline{}
}
This time we get the right answer, but it looks like the loop only ran
three times, which is suspicious. To get a better idea of what is
happening, it is useful to draw a state diagram. During the first
iteration, the frame for is_reverse looks like this:

I took a little license by arranging the variables in the frame
and adding dotted lines to show that the values of i and
j indicate characters in word1 and word2.
{\bfseries Exercise 8} {\itshape }
{\bfseries \textquotesingle{}}
Starting with this diagram, execute the program on paper, changing the
values of {\bfseries \textquotesingle{}i}\textquotesingle{} and {\bfseries \textquotesingle{}j}\textquotesingle{} during each iteration. Find and fix the
second error in this function.
{\itshape }{\itshape }
\section{Glossary}
\label{148}

{\bfseries object:} Something a variable can refer to. For now,
you can use “object” and “value” interchangeably.
{\bfseries sequence:} An ordered set; that is, a set of
values where each value is identified by an integer index.
{\bfseries item:} One of the values in a sequence.
{\bfseries index:} An integer value used to select an item in
a sequence, such as a character in a string.
{\bfseries slice:} A part of a string specified by a range of indices.
{\bfseries empty string:} A string with no characters and length 0, represented
by two quotation marks.
{\bfseries immutable:} The property of a sequence whose items cannot
be assigned.
{\bfseries traverse:} To iterate through the items in a sequence,
performing a similar operation on each.
{\bfseries search:} A pattern of traversal that stops
when it finds what it is looking for.

{\bfseries counter:} A variable used to count something, usually initialized
to zero and then incremented.
{\bfseries method:} A function that is associated with an object and called
using dot notation.
{\bfseries invocation:} A statement that calls a method.

\section{Exercises}
\label{149}
\subsection{Exercise 9}
\label{150}
A string slice can take a third index that specifies the “step
size;” that is, the number of spaces between successive characters.
A step size of 2 means every other character; 3 means every third,
etc.
\TemplatePreformat{\textquotesingle{}\textquotesingle{}{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}fruit {}= {}\textquotesingle{}banana\textquotesingle{} \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}fruit{[}0:5:2{]} \newline{}
\textquotesingle{}bnn\textquotesingle{} \newline{}
\textquotesingle{}\textquotesingle{}}
{\itshape A step size of -{}1 goes through the word backwards, so}
the slice {\itshape }{[}::-{}1{]}{\itshape }{\itshape } generates a reversed string.{\itshape }

{\itshape Use this idiom to write a one-{}line version of }{\itshape is_palindrome}{\itshape }
from Exercise {\bfseries \textquotesingle{}6.6}\textquotesingle{}.
\subsection{Exercise 10}
\label{151}
Read the documentation of the string methods at
{\bfseries \textquotesingle{}docs.python.org/lib/string-{}methods.html}\textquotesingle{}. You
might want to experiment with some of them to make sure
you understand how they work. {\bfseries \textquotesingle{}strip}\textquotesingle{} and
{\bfseries \textquotesingle{}replace}\textquotesingle{} are particularly useful.{\itshape }

{\itshape The documentation uses a syntax that might be confusing.}
For example, in {\itshape }find(sub{[}, start{[}, end{]}{]}){\itshape }{\itshape }, the brackets
indicate optional arguments. So {\bfseries \textquotesingle{}sub}\textquotesingle{} is required, but
{\bfseries \textquotesingle{}start}\textquotesingle{} is optional, and if you include {\bfseries \textquotesingle{}start}\textquotesingle{},
then {\bfseries \textquotesingle{}end}\textquotesingle{} is optional.
\subsection{Exercise 11}
\label{152}
The following functions are all {\itshape intended} to check whether a
string contains any lowercase letters, but at least some of them are
wrong. For each function, describe what the function actually does.{\itshape \TemplatePreformat{\textquotesingle{}\textquotesingle{}def {}any_lowercase1(s): \newline{}
 {} {} {} {}for {}c {}in {}s: \newline{}
 {} {} {} {} {} {} {} {}if {}c.islower(): \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}return {}True \newline{}
 {} {} {} {} {} {} {} {}else: \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}return {}False \newline{}
 {} \newline{}
def {}any_lowercase2(s): \newline{}
 {} {} {} {}for {}c {}in {}s: \newline{}
 {} {} {} {} {} {} {} {}if {}\textquotesingle{}c\textquotesingle{}.islower(): \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}return {}\textquotesingle{}True\textquotesingle{} \newline{}
 {} {} {} {} {} {} {} {}else: \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}return {}\textquotesingle{}False\textquotesingle{} \newline{}
 {} \newline{}
def {}any_lowercase3(s): \newline{}
 {} {} {} {}for {}c {}in {}s: \newline{}
 {} {} {} {} {} {} {} {}flag {}= {}c.islower() \newline{}
 {} {} {} {}return {}flag \newline{}
 {} \newline{}
def {}any_lowercase4(s): \newline{}
 {} {} {} {}flag {}= {}False \newline{}
 {} {} {} {}for {}c {}in {}s: \newline{}
 {} {} {} {} {} {} {} {}flag {}= {}flag {}or {}c.islower() \newline{}
 {} {} {} {}return {}flag \newline{}
 {} \newline{}
def {}any_lowercase5(s): \newline{}
 {} {} {} {}for {}c {}in {}s: \newline{}
 {} {} {} {} {} {} {} {}if {}not {}c.islower(): \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}return {}False \newline{}
 {} {} {} {}return {}True \newline{}
\textquotesingle{}\textquotesingle{}}}
\subsection{Exercise 12}
\label{153}
ROT13 is a weak form of encryption that involves “rotating” each
letter in a word by 13 places\myfootnote{See wikipedia.org/wiki/ROT13}. To rotate a letter means
to shift it through the alphabet, wrapping around to the beginning if
necessary, so ’A’ shifted by 3 is ’D’ and ’Z’ shifted by 1 is ’A’.{\itshape }

{\itshape Write a function called }{\itshape rotate_word}{\itshape }
that takes a string and an integer as parameters, and that returns
a new string that contains the letters from the original string
“rotated” by the given amount. {\itshape }

{\itshape For example, “cheer” rotated by 7 is “jolly” and “melon” rotated}
by -{}10 is “cubed”. {\itshape }

{\itshape You might want to use the built-{}in functions {\bfseries \textquotesingle{}}}{\itshape {\bfseries ord}\textquotesingle{}, which converts}
a character to a numeric code, and {\bfseries \textquotesingle{}chr}\textquotesingle{}, which converts numeric
codes to characters.{\itshape }

{\itshape Potentially offensive jokes on the Internet are sometimes encoded}
in ROT13. If you are not easily offended, find and decode some
of them.
\section{Notes}
\label{154}
\LaTeXNullTemplate{}
\chapter{Case study: word play}

\myminitoc
\label{155}

\label{156}
\LaTeXNullTemplate{}
\section{Reading word lists}
\label{157}
For the exercises in this chapter we need a list of English words.
There are lots of word lists available on the Web, but the one most
suitable for our purpose is one of the word lists collected and
contributed to the public domain by Grady Ward as part of the Moby
lexicon project\myfootnote{wikipedia.org/wiki/Moby_Project}. It
is a list of 113,809 official crosswords; that is, words that are
considered valid in crossword puzzles and other word games. In the
Moby collection, the filename is 113809of.fic; I include a copy
of this file, with the simpler name words.txt, along with
Swampy.

This file is in plain text, so you can open it with a text
editor, but you can also read it from Python. (You may need to move the file from the swampy folder into the main python folder) The built-{}in
function open takes the name of the file as a parameter
and returns a {\bfseries file object} you can use to read the file.

\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}fin {}= {}open(\textquotesingle{}words.txt\textquotesingle{}) \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}fin \newline{}
{\mbox{$<$}}open {}file {}\textquotesingle{}words.txt\textquotesingle{}, {}mode {}\textquotesingle{}r\textquotesingle{} {}at {}0xb7f4b380{\mbox{$>$}} \newline{}
}
fin is a common name for a file object used for
input. Mode \textquotesingle{}r\textquotesingle{} indicates that this file is open for
reading (as opposed to \textquotesingle{}w\textquotesingle{} for writing).

The file object provides several methods for reading, including
readline, which reads characters from the file
until it gets to a newline and returns the result as a
string:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}fin.readline() \newline{}
\textquotesingle{}aa\textbackslash{}r\textbackslash{}n\textquotesingle{} \newline{}
}
The first word in this particular list is “aa,” which is a kind of
lava. The sequence \textbackslash{}r\textbackslash{}n represents two whitespace characters,
a carriage return and a newline, that separate this word from the
next.

The file object keeps track of where it is in the file, so
if you call readline again, you get the next word:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}fin.readline() \newline{}
\textquotesingle{}aah\textbackslash{}r\textbackslash{}n\textquotesingle{} \newline{}
}
The next word is “aah,” which is a perfectly legitimate
word, so stop looking at me like that.
Or, if it’s the whitespace that’s bothering you,
we can get rid of it with the string method strip:

\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}line {}= {}fin.readline() \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}word {}= {}line.strip() \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}word \newline{}
aahed \newline{}
}
You can also use a file object as part of a for loop.
This program reads words.txt and prints each word, one
per line:

\TemplatePreformat{fin {}= {}open(\textquotesingle{}words.txt\textquotesingle{}) \newline{}
for {}line {}in {}fin: \newline{}
 {} {} {} {}word {}= {}line.strip() \newline{}
 {} {} {} {}print {}word \newline{}
}{\bfseries Exercise 1} {\itshape }
Write a program that reads {\bfseries \textquotesingle{}words.txt}\textquotesingle{} and prints only the
words with more than 20 characters (not counting whitespace).{\itshape }

\section{Exercises}
\label{158}

There are solutions to these exercises in the next section.
You should at least attempt each one before you read the solutions.
{\bfseries Exercise 2} {\itshape }
In 1939 Ernest Vincent Wright published a 50,000 word novel called
{\itshape Gadsby} that does not contain the letter “e.” Since “e” is
the most common letter in English, that’s not easy to do.{\itshape }
{\itshape In fact, it is difficult to construct a solitary thought without using}
that most common symbol. It is slow going at first, but with caution
and hours of training you can gradually gain facility.{\itshape }

{\itshape All right, I’ll stop now.}

{\itshape Write a function called }{\itshape has_no_e}{\itshape that returns {\bfseries \textquotesingle{}True}\textquotesingle{} if}
the given word doesn’t have the letter “e” in it.{\itshape }

{\itshape Modify your program from the previous section to print only the words}
that have no “e” and compute the percentage of the words in the list
have no “e.”{\itshape }

{\bfseries Exercise 3} {\itshape }
Write a function named {\bfseries \textquotesingle{}avoids}\textquotesingle{}
that takes a word and a string of forbidden letters, and
that returns {\bfseries \textquotesingle{}True}\textquotesingle{} if the word doesn’t use any of the forbidden
letters.{\itshape }
{\itshape Modify your program to prompt the user to enter a string}
of forbidden letters and then print the number of words that
don’t contain any of them.
Can you find a combination of 5 forbidden letters that
excludes the smallest number of words?
{\itshape }
{\bfseries Exercise 4} {\itshape }
Write a function named {\itshape }uses_only{\itshape }{\itshape } that takes a word and a
string of letters, and that returns {\bfseries \textquotesingle{}True}\textquotesingle{} if the word contains
only letters in the list. Can you make a sentence using only the
letters {\bfseries \textquotesingle{}acefhlo}\textquotesingle{}? Other than “Hoe alfalfa?”
{\itshape }{\itshape {\bfseries Exercise 5} }
Write a function named {\itshape }uses_all{\itshape }{\itshape } that takes a word and a
string of required letters, and that returns {\bfseries \textquotesingle{}True}\textquotesingle{} if the word
uses all the required letters at least once. How many words are there
that use all the vowels {\bfseries \textquotesingle{}aeiou}\textquotesingle{}? How about {\bfseries \textquotesingle{}aeiouy}\textquotesingle{}?
{\itshape }{\itshape {\bfseries Exercise 6} }
Write a function called {\itshape }is_abecedarian{\itshape }{\itshape } that returns
{\bfseries \textquotesingle{}True}\textquotesingle{} if the letters in a word appear in alphabetical order
(double letters are ok).
How many abecedarian words are there?
{\itshape }{\itshape }
\section{Search}
\label{159}
All of the exercises in the previous section have something
in common; they can be solved with the search pattern we saw
in Section 8.6. The simplest example is:
\TemplatePreformat{def {}has_no_e(word): \newline{}
 {} {} {} {}for {}letter {}in {}word: \newline{}
 {} {} {} {} {} {} {} {}if {}letter {}== {}\textquotesingle{}e\textquotesingle{}: \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}return {}False \newline{}
 {} {} {} {}return {}True \newline{}
}
The for loop traverses the characters in word. If we find
the letter “e”, we can immediately return False; otherwise we
have to go to the next letter. If we exit the loop normally, that
means we didn’t find an “e”, so we return True.

You can write this function more concisely using the in
operator, but I started with this version because it
demonstrates the logic of the search pattern.

avoids is a more general version of has_no_e but it
has the same structure:
\TemplatePreformat{def {}avoids(word, {}forbidden): \newline{}
 {} {} {} {}for {}letter {}in {}word: \newline{}
 {} {} {} {} {} {} {} {}if {}letter {}in {}forbidden: \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}return {}False \newline{}
 {} {} {} {}return {}True \newline{}
}
We can return False as soon as we find a forbidden letter;
if we get to the end of the loop, we return True.

uses_only is similar except that the sense of the condition
is reversed:
\TemplatePreformat{def {}uses_only(word, {}available): \newline{}
 {} {} {} {}for {}letter {}in {}word: {} \newline{}
 {} {} {} {} {} {} {} {}if {}letter {}not {}in {}available: \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}return {}False \newline{}
 {} {} {} {}return {}True \newline{}
}
Instead of a list of forbidden words, we have a list of available
words. If we find a letter in word that is not in
available, we can return False.

uses_all is similar except that we reverse the role
of the word and the string of letters:
\TemplatePreformat{def {}uses_all(word, {}required): \newline{}
 {} {} {} {}for {}letter {}in {}required: {} \newline{}
 {} {} {} {} {} {} {} {}if {}letter {}not {}in {}word: \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}return {}False \newline{}
 {} {} {} {}return {}True \newline{}
}
Instead of traversing the letters in word, the loop
traverses the required letters. If any of the required letters
do not appear in the word, we can return False.

If you were really thinking like a computer scientist, you would
have recognized that uses_all was an instance of a
previously-{}solved problem, and you would have written:
\TemplatePreformat{def {}uses_all(word, {}required): \newline{}
 {} {} {} {}return {}uses_only(required, {}word) \newline{}
}
This is an example of a program development method called {\bfseries problem}
recognition{\bfseries , which means that you recognize the problem you are}
working on as an instance of a previously-{}solved problem, and apply a
previously-{}developed solution.
\section{Looping with indices}
\label{160}
I wrote the functions in the previous section with for
loops because I only needed the characters in the strings; I didn’t
have to do anything with the indices.

For is_abecedarian we have to compare adjacent letters,
which is a little tricky with a for loop:
\TemplatePreformat{def {}is_abecedarian(word): \newline{}
 {} {} {} {}previous {}= {}word{[}0{]} \newline{}
 {} {} {} {}for {}c {}in {}word: \newline{}
 {} {} {} {} {} {} {} {}if {}c {}{\mbox{$<$}} {}previous: \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}return {}False \newline{}
 {} {} {} {} {} {} {} {}previous {}= {}c \newline{}
 {} {} {} {}return {}True \newline{}
}
An alternative is to
use recursion:
\TemplatePreformat{def {}is_abecedarian(word): \newline{}
 {} {} {} {}if {}len(word) {}{\mbox{$<$}}= {}1: \newline{}
 {} {} {} {} {} {} {} {}return {}True \newline{}
 {} {} {} {}if {}word{[}0{]} {}{\mbox{$>$}} {}word{[}1{]}: \newline{}
 {} {} {} {} {} {} {} {}return {}False \newline{}
 {} {} {} {}return {}is_abecedarian(word{[}1:{]}) \newline{}
}
Another option is to use a while loop:
\TemplatePreformat{def {}is_abecedarian(word): \newline{}
 {} {} {} {}i {}= {}0 \newline{}
 {} {} {} {}while {}i {}{\mbox{$<$}} {}len(word)-{}1: \newline{}
 {} {} {} {} {} {} {} {}if {}word{[}i+1{]} {}{\mbox{$<$}} {}word{[}i{]}: \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}return {}False \newline{}
 {} {} {} {} {} {} {} {}i {}= {}i+1 \newline{}
 {} {} {} {}return {}True \newline{}
}
The loop starts at i=0 and ends when i=len(word)-{}1. Each
time through the loop, it compares the ith character (which you can
think of as the current character) to the i+1th character (which you
can think of as the next).

If the next character is less than (alphabetically before) the current
one, then we have discovered a break in the abecedarian trend, and
we return False.

If we get to the end of the loop without finding a fault, then the
word passes the test. To convince yourself that the loop ends
correctly, consider an example like \textquotesingle{}flossy\textquotesingle{}. The
length of the word is 6, so
the last time the loop runs is when i is 4, which is the
index of the second-{}to-{}last character. On the last iteration,
it compares the second-{}to-{}last character to the last, which is
what we want.

Here is a version of is_palindrome (see
Exercise 6.6) that uses two indices; one starts at the
beginning and goes up; the other starts at the end and goes down.
\TemplatePreformat{def {}is_palindrome(word): \newline{}
 {} {} {} {}i {}= {}0 \newline{}
 {} {} {} {}j {}= {}len(word)-{}1 \newline{}
 {} \newline{}
 {} {} {} {}while {}i{\mbox{$<$}}j: \newline{}
 {} {} {} {} {} {} {} {}if {}word{[}i{]} {}!= {}word{[}j{]}: \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}return {}False \newline{}
 {} {} {} {} {} {} {} {}i {}= {}i+1 \newline{}
 {} {} {} {} {} {} {} {}j {}= {}j-{}1 \newline{}
 {} \newline{}
 {} {} {} {}return {}True \newline{}
}
Or, if you noticed that this is an instance of a previously-{}solved
problem, you might have written:
\TemplatePreformat{def {}is_palindrome(word): \newline{}
 {} {} {} {}return {}is_reverse(word, {}word) \newline{}
}

Assuming you did Exercise 8.8.
\section{Debugging}
\label{161}
Testing programs is hard. The functions in this chapter are
relatively easy to test because you can check the results by hand.
Even so, it is somewhere between difficult and impossible to choose a
set of words that test for all possible errors.

Taking has_no_e as an example, there are two obvious
cases to check: words that have an ’e’ should return False;
words that don’t should return True. You should have no
trouble coming up with one of each.

Within each case, there are some less obvious subcases. Among the
words that have an “e,” you should test words with an “e” at the
beginning, the end, and somewhere in the middle. You should test long
words, short words, and very short words, like the empty string. The
empty string is an example of a {\bfseries special case}, which is one of
the non-{}obvious cases where errors often lurk.

In addition to the test cases you generate, you can also test
your program with a word list like words.txt. By scanning
the output, you might be able to catch errors, but be careful:
you might catch one kind of error (words that should not be
included, but are) and not another (words that should be included,
but aren’t).

In general, testing can help you find bugs, but it is not easy to
generate a good set of test cases, and even if you do, you can’t
be sure your program is correct.

According to a legendary computer scientist:

Program testing can be used to show the presence of bugs, but never to
show their absence!
— Edsger W. Dijkstra

\section{Glossary}
\label{162}

{\bfseries file object:} A value that represents an open file.

{\bfseries problem recognition:} A way of solving a problem by
expressing it as an instance of a previously-{}solved problem.
{\bfseries special case:} A test case that is atypical or non-{}obvious
(and less likely to be handled correctly).

\section{Exercises}
\label{163}
\subsection{Exercise 7}
\label{164}
This question is based on a Puzzler that was broadcast on the radio
program {\itshape Car Talk\myfootnote{www.cartalk.com/content/puzzler/transcripts/200725}}:{\itshape }
Give me a word with three consecutive double letters. I\textquotesingle{}ll give you a
couple of words that almost qualify, but don\textquotesingle{}t. For example, the word
committee, c-{}o-{}m-{}m-{}i-{}t-{}t-{}e-{}e. It would be great except for the ‘i’ that
sneaks in there. Or Mississippi: M-{}i-{}s-{}s-{}i-{}s-{}s-{}i-{}p-{}p-{}i. If you could
take out those i’s it would work. But there is a word that has three
consecutive pairs of letters and to the best of my knowledge this may
be the only word. Of course there are probably 500 more but I can only
think of one. What is the word?

{\itshape Write a program to find it. You can see my solution at}
{\bfseries \textquotesingle{}}{\bfseries thinkpython.com/code/cartalk.py}\textquotesingle{}.{\itshape }
\subsection{Exercise 8}
\label{165}
Here’s another {\itshape Car Talk Puzzler}\myfootnote{www.cartalk.com/content/puzzler/transcripts/200803}{\itshape :}
{\itshape }
“I was driving on the highway the other day and I happened to
notice my odometer. Like most odometers, it shows six digits,
in whole miles only. So, if my car had 300,000
miles, for example, I’d see 3-{}0-{}0-{}0-{}0-{}0.{\itshape }
{\itshape “Now, what I saw that day was very interesting. I noticed that the}
last 4 digits were palindromic; that is, they read the same forward as
backward. For example, 5-{}4-{}4-{}5 is a palindrome, so my odometer
could have read 3-{}1-{}5-{}4-{}4-{}5.{\itshape }

{\itshape “One mile later, the last 5 numbers were palindromic. For example, it}
could have read 3-{}6-{}5-{}4-{}5-{}6. One mile after that, the middle 4 out of
6 numbers were palindromic. And you ready for this? One mile later,
all 6 were palindromic!{\itshape }

{\itshape “The question is, what was on the odometer when I first looked?”}
{\itshape }

{\itshape Write a Python program that tests all the six-{}digit numbers and prints}
any numbers that satisfy these requirements. You can see my solution
at {\bfseries \textquotesingle{}thinkpython.com/code/cartalk.py}\textquotesingle{}.{\itshape }
\subsection{Exercise 9}
\label{166}
Here’s another {\itshape Car Talk} Puzzler you can solve with a
search{\itshape \myfootnote{www.cartalk.com/content/puzzler/transcripts/200813}}:
{\itshape }
“Recently I had a visit with my mom and we realized that
the two digits that make up my age when reversed resulted in her
age. For example, if she’s 73, I’m 37. We wondered how often this has
happened over the years but we got sidetracked with other topics and
we never came up with an answer.{\itshape }
{\itshape “When I got home I figured out that the digits of our ages have been}
reversible six times so far. I also figured out that if we’re lucky it
would happen again in a few years, and if we’re really lucky it would
happen one more time after that. In other words, it would have
happened 8 times over all. So the question is, how old am I now?”{\itshape }

{\itshape Write a Python program that searches for solutions to this Puzzler.}
Hint: you might find the string method {\bfseries \textquotesingle{}zfill}\textquotesingle{} useful.{\itshape }

{\itshape You can see my solution at {\bfseries \textquotesingle{}thinkpython.com/code/cartalk.py}\textquotesingle{}.}
\section{Notes}
\label{167}
\LaTeXNullTemplate{}
\chapter{Lists}

\myminitoc
\label{168}

\label{169}
\LaTeXNullTemplate{}
\section{A list is a sequence}
\label{170}
Like a string, a {\bfseries list} is a sequence of values. In a string, the
values are characters; in a list, they can be any type. The values in
list are called {\bfseries elements} or sometimes {\bfseries items}.

There are several ways to create a new list; the simplest is to
enclose the elements in square brackets ({[} and {]}):
\TemplatePreformat{{[}10, {}20, {}30, {}40{]} \newline{}
{[}\textquotesingle{}crunchy {}frog\textquotesingle{}, {}\textquotesingle{}ram {}bladder\textquotesingle{}, {}\textquotesingle{}lark {}vomit\textquotesingle{}{]} \newline{}
}
The first example is a list of four integers. The second is a list of
three strings. The elements of a list don’t have to be the same type.
The following list contains a string, a float, an integer, and
(lo!) another list:
\TemplatePreformat{{[}\textquotesingle{}spam\textquotesingle{}, {}2.0, {}5, {}{[}10, {}20{]}{]} \newline{}
}
A list within another list is {\bfseries nested}.

A list that contains no elements is
called an empty list; you can create one with empty
brackets, {[}{]}.

As you might expect, you can assign list values to variables:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}cheeses {}= {}{[}\textquotesingle{}Cheddar\textquotesingle{}, {}\textquotesingle{}Edam\textquotesingle{}, {}\textquotesingle{}Gouda\textquotesingle{}{]} \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}numbers {}= {}{[}17, {}123{]} \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}empty {}= {}{[}{]} \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}cheeses, {}numbers, {}empty \newline{}
{[}\textquotesingle{}Cheddar\textquotesingle{}, {}\textquotesingle{}Edam\textquotesingle{}, {}\textquotesingle{}Gouda\textquotesingle{}{]} {}{[}17, {}123{]} {}{[}{]} \newline{}
}
\section{Lists are mutable}
\label{171}
The syntax for accessing the elements of a list is the same as for
accessing the characters of a string—the bracket operator. The
expression inside the brackets specifies the index. Remember that the
indices start at 0:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}cheeses{[}0{]} \newline{}
Cheddar \newline{}
}
Unlike strings, lists are mutable. When the bracket operator appears
on the left side of an assignment, it identifies the element of the
list that will be assigned.

\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}numbers {}= {}{[}17, {}123{]} \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}numbers{[}1{]} {}= {}5 \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}numbers \newline{}
{[}17, {}5{]} \newline{}
}
The one-{}eth element of numbers, which
used to be 123, is now 5.

You can think of a list as a relationship between indices and
elements. This relationship is called a {\bfseries mapping}; each index
“maps to” one of the elements. Here is a state diagram showing cheeses, numbers and empty:

Lists are represented by boxes with the word “list” outside
and the elements of the list inside. cheeses refers to
a list with three elements indexed 0, 1 and 2.
numbers contains two elements; the diagram shows that the
value of the second element has been reassigned from 123 to 5.
empty refers to a list with no elements.

List indices work the same way as string indices:

\begin{myitemize}
\item{} Any integer expression can be used as an index.
\item{} If you try to read or write an element that does not exist, you get an IndexError.
\item{} If an index has a negative value, it counts backward from the end of the list.
\end{myitemize}

The in operator also works on lists.
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}cheeses {}= {}{[}\textquotesingle{}Cheddar\textquotesingle{}, {}\textquotesingle{}Edam\textquotesingle{}, {}\textquotesingle{}Gouda\textquotesingle{}{]} \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}\textquotesingle{}Edam\textquotesingle{} {}in {}cheeses \newline{}
True \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}\textquotesingle{}Brie\textquotesingle{} {}in {}cheeses \newline{}
False \newline{}
}
\section{Traversing a list}
\label{172}
The most common way to traverse the elements of a list is
with a for loop. The syntax is the same as for strings:
\TemplatePreformat{for {}cheese {}in {}cheeses: \newline{}
 {} {} {} {}print {}cheese \newline{}
}
This works well if you only need to read the elements of the
list. But if you want to write or update the elements, you
need the indices. A common way to do that is to combine
the functions range and len:

\TemplatePreformat{for {}i {}in {}range(len(numbers)): \newline{}
 {} {} {} {}numbers{[}i{]} {}= {}numbers{[}i{]} {}* {}2 \newline{}
}
This loop traverses the list and updates each element. len
returns the number of elements in the list. range returns
a list of indices from 0 to n−1, where n is the length of
the list. Each time through the loop i gets the index
of the next element. The assignment statement in the body uses
i to read the old value of the element and to assign the
new value.

A for loop over an empty list never executes the body:
\TemplatePreformat{for {}x {}in {}empty: \newline{}
 {} {} {} {}print {}\textquotesingle{}This {}never {}happens.\textquotesingle{} \newline{}
}

Although a list can contain another list, the nested
list still counts as a single element. The length of this list is
four:

\TemplatePreformat{{[}\textquotesingle{}spam\textquotesingle{}, {}1, {}{[}\textquotesingle{}Brie\textquotesingle{}, {}\textquotesingle{}Roquefort\textquotesingle{}, {}\textquotesingle{}Pol {}le {}Veq\textquotesingle{}{]}, {}{[}1, {}2, {}3{]}{]} \newline{}
}
\section{List operations}
\label{173}
The + operator concatenates lists:

\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}a {}= {}{[}1, {}2, {}3{]} \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}b {}= {}{[}4, {}5, {}6{]} \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}c {}= {}a {}+ {}b \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}c \newline{}
{[}1, {}2, {}3, {}4, {}5, {}6{]} \newline{}
}
Similarly, the * operator repeats a list a given number of times:

\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}{[}0{]} {}* {}4 \newline{}
{[}0, {}0, {}0, {}0{]} \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}{[}1, {}2, {}3{]} {}* {}3 \newline{}
{[}1, {}2, {}3, {}1, {}2, {}3, {}1, {}2, {}3{]} \newline{}
}
The first example repeats {[}0{]} four times. The second example
repeats the list {[}1, 2, 3{]} three times.
\section{List slices}
\label{174}
The slice operator also works on lists:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}t {}= {}{[}\textquotesingle{}a\textquotesingle{}, {}\textquotesingle{}b\textquotesingle{}, {}\textquotesingle{}c\textquotesingle{}, {}\textquotesingle{}d\textquotesingle{}, {}\textquotesingle{}e\textquotesingle{}, {}\textquotesingle{}f\textquotesingle{}{]} \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}t{[}1:3{]} \newline{}
{[}\textquotesingle{}b\textquotesingle{}, {}\textquotesingle{}c\textquotesingle{}{]} \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}t{[}:4{]} \newline{}
{[}\textquotesingle{}a\textquotesingle{}, {}\textquotesingle{}b\textquotesingle{}, {}\textquotesingle{}c\textquotesingle{}, {}\textquotesingle{}d\textquotesingle{}{]} \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}t{[}3:{]} \newline{}
{[}\textquotesingle{}d\textquotesingle{}, {}\textquotesingle{}e\textquotesingle{}, {}\textquotesingle{}f\textquotesingle{}{]} \newline{}
}
If you omit the first index, the slice starts at the beginning.
If you omit the second, the slice goes to the end. So if you
omit both, the slice is a copy of the whole list.

\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}t{[}:{]} \newline{}
{[}\textquotesingle{}a\textquotesingle{}, {}\textquotesingle{}b\textquotesingle{}, {}\textquotesingle{}c\textquotesingle{}, {}\textquotesingle{}d\textquotesingle{}, {}\textquotesingle{}e\textquotesingle{}, {}\textquotesingle{}f\textquotesingle{}{]} \newline{}
}
Since lists are mutable, it is often useful to make a copy
before performing operations that fold, spindle or mutilate
lists.

A slice operator on the left side of an assignment
can update multiple elements:

\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}t {}= {}{[}\textquotesingle{}a\textquotesingle{}, {}\textquotesingle{}b\textquotesingle{}, {}\textquotesingle{}c\textquotesingle{}, {}\textquotesingle{}d\textquotesingle{}, {}\textquotesingle{}e\textquotesingle{}, {}\textquotesingle{}f\textquotesingle{}{]} \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}t{[}1:3{]} {}= {}{[}\textquotesingle{}x\textquotesingle{}, {}\textquotesingle{}y\textquotesingle{}{]} \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}t \newline{}
{[}\textquotesingle{}a\textquotesingle{}, {}\textquotesingle{}x\textquotesingle{}, {}\textquotesingle{}y\textquotesingle{}, {}\textquotesingle{}d\textquotesingle{}, {}\textquotesingle{}e\textquotesingle{}, {}\textquotesingle{}f\textquotesingle{}{]} \newline{}
}
\section{List methods}
\label{175}
Python provides methods that operate on lists. For example,
append adds a new element to the end of a list:

\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}t {}= {}{[}\textquotesingle{}a\textquotesingle{}, {}\textquotesingle{}b\textquotesingle{}, {}\textquotesingle{}c\textquotesingle{}{]} \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}t.append(\textquotesingle{}d\textquotesingle{}) \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}t \newline{}
{[}\textquotesingle{}a\textquotesingle{}, {}\textquotesingle{}b\textquotesingle{}, {}\textquotesingle{}c\textquotesingle{}, {}\textquotesingle{}d\textquotesingle{}{]} \newline{}
}
extend takes a list as an argument and appends all of
the elements:

\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}t1 {}= {}{[}\textquotesingle{}a\textquotesingle{}, {}\textquotesingle{}b\textquotesingle{}, {}\textquotesingle{}c\textquotesingle{}{]} \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}t2 {}= {}{[}\textquotesingle{}d\textquotesingle{}, {}\textquotesingle{}e\textquotesingle{}{]} \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}t1.extend(t2) \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}t1 \newline{}
{[}\textquotesingle{}a\textquotesingle{}, {}\textquotesingle{}b\textquotesingle{}, {}\textquotesingle{}c\textquotesingle{}, {}\textquotesingle{}d\textquotesingle{}, {}\textquotesingle{}e\textquotesingle{}{]} \newline{}
}
This example leaves t2 unmodified.

sort arranges the elements of the list from low to high:

\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}t {}= {}{[}\textquotesingle{}d\textquotesingle{}, {}\textquotesingle{}c\textquotesingle{}, {}\textquotesingle{}e\textquotesingle{}, {}\textquotesingle{}b\textquotesingle{}, {}\textquotesingle{}a\textquotesingle{}{]} \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}t.sort() \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}t \newline{}
{[}\textquotesingle{}a\textquotesingle{}, {}\textquotesingle{}b\textquotesingle{}, {}\textquotesingle{}c\textquotesingle{}, {}\textquotesingle{}d\textquotesingle{}, {}\textquotesingle{}e\textquotesingle{}{]} \newline{}
}
List methods are all void; they modify the list and return None.
If you accidentally write t = t.sort(), you will be disappointed
with the result.
\section{Map, filter and reduce}
\label{176}
To add up all the numbers in a list, you can use a loop like this:
\TemplatePreformat{def {}add_all(t): \newline{}
 {} {} {} {}total {}= {}0 \newline{}
 {} {} {} {}for {}x {}in {}t: \newline{}
 {} {} {} {} {} {} {} {}total {}+= {}x \newline{}
 {} {} {} {}return {}total \newline{}
}
total is initialized to 0. Each time through the loop,
x gets one element from the list. The += operator
provides a short way to update a variable:

\TemplatePreformat{ {} {} {} {}total {}+= {}x \newline{}
}
is equivalent to:
\TemplatePreformat{ {} {} {} {}total {}= {}total {}+ {}x \newline{}
}
As the loop executes, total accumulates the sum of the
elements; a variable used this way is sometimes called an
{\bfseries accumulator}.

Adding up the elements of a list is such a common operation
that Python provides it as a built-{}in function, sum:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}t {}= {}{[}1, {}2, {}3{]} \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}sum(t) \newline{}
6 \newline{}
}
An operation like this that combines a sequence of elements into
a single value is sometimes called {\bfseries reduce}.

Sometimes you want to traverse one list while building
another. For example, the following function takes a list of strings
and returns a new list that contains capitalized strings:
\TemplatePreformat{def {}capitalize_all(t): \newline{}
 {} {} {} {}res {}= {}{[}{]} \newline{}
 {} {} {} {}for {}s {}in {}t: \newline{}
 {} {} {} {} {} {} {} {}res.append(s.capitalize()) \newline{}
 {} {} {} {}return {}res \newline{}
}
res is initialized with an empty list; each time through
the loop, we append the next element. So res is another
kind of accumulator.

An operation like capitalize_all is sometimes called a {\bfseries map} because it “maps” a function (in this case the method capitalize) onto each of the elements in a sequence.

Another common operation is to select some of the elements from
a list and return a sublist. For example, the following
function takes a list of strings and returns a list that contains
only the uppercase strings:
\TemplatePreformat{def {}only_upper(t): \newline{}
 {} {} {} {}res {}= {}{[}{]} \newline{}
 {} {} {} {}for {}s {}in {}t: \newline{}
 {} {} {} {} {} {} {} {}if {}s.isupper(): \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}res.append(s) \newline{}
 {} {} {} {}return {}res \newline{}
}
isupper is a string method that returns True if
the string contains only upper case letters.

An operation like only_upper is called a {\bfseries filter} because
it selects some of the elements and filters out the others.

Most common list operations can be expressed as a combination
of map, filter and reduce. Because these operations are
so common, Python provides language features to support them,
including the built-{}in function map and an operator
called a “list comprehension.”
\subsection{Exercise 1}
\label{177}
{\itshape Write a function that takes a list of numbers and returns the}
cumulative sum; that is, a new list where the {\bfseries \textquotesingle{}i}\textquotesingle{}th element
is the sum of the first {\bfseries \textquotesingle{}i+1}\textquotesingle{} elements from the original list.
For example, the cumulative sum of {\bfseries \textquotesingle{}{[}1, 2, 3{]}}\textquotesingle{} is
{\bfseries \textquotesingle{}{[}1, 3, 6{]}}\textquotesingle{}.
\section{Deleting elements}
\label{178}
There are several ways to delete elements from a list. If you
know the index of the element you want, you can use
pop:

\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}t {}= {}{[}\textquotesingle{}a\textquotesingle{}, {}\textquotesingle{}b\textquotesingle{}, {}\textquotesingle{}c\textquotesingle{}{]} \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}x {}= {}t.pop(1) \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}t \newline{}
{[}\textquotesingle{}a\textquotesingle{}, {}\textquotesingle{}c\textquotesingle{}{]} \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}x \newline{}
b \newline{}
}
pop modifies the list and returns the element that was removed.
If you don’t provide an index, it deletes and returns the
last element.

If you don’t need the removed value, you can use the del
operator:

\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}t {}= {}{[}\textquotesingle{}a\textquotesingle{}, {}\textquotesingle{}b\textquotesingle{}, {}\textquotesingle{}c\textquotesingle{}{]} \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}del {}t{[}1{]} \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}t \newline{}
{[}\textquotesingle{}a\textquotesingle{}, {}\textquotesingle{}c\textquotesingle{}{]} \newline{}
}
If you know the element you want to remove (but not the index), you
can use remove:

\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}t {}= {}{[}\textquotesingle{}a\textquotesingle{}, {}\textquotesingle{}b\textquotesingle{}, {}\textquotesingle{}c\textquotesingle{}{]} \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}t.remove(\textquotesingle{}b\textquotesingle{}) \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}t \newline{}
{[}\textquotesingle{}a\textquotesingle{}, {}\textquotesingle{}c\textquotesingle{}{]} \newline{}
}
The return value from remove is None.

To remove more than one element, you can use del with
a slice index:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}t {}= {}{[}\textquotesingle{}a\textquotesingle{}, {}\textquotesingle{}b\textquotesingle{}, {}\textquotesingle{}c\textquotesingle{}, {}\textquotesingle{}d\textquotesingle{}, {}\textquotesingle{}e\textquotesingle{}, {}\textquotesingle{}f\textquotesingle{}{]} \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}del {}t{[}1:5{]} \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}t \newline{}
{[}\textquotesingle{}a\textquotesingle{}, {}\textquotesingle{}f\textquotesingle{}{]} \newline{}
}
As usual, the slice selects all the elements up to, but not
including, the second index.
\section{Lists and strings}
\label{179}
A string is a sequence of characters and a list is a sequence
of values, but a list of characters is not the same as a
string. To convert from a string to a list of characters,
you can use list:

\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}s {}= {}\textquotesingle{}spam\textquotesingle{} \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}t {}= {}list(s) \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}t \newline{}
{[}\textquotesingle{}s\textquotesingle{}, {}\textquotesingle{}p\textquotesingle{}, {}\textquotesingle{}a\textquotesingle{}, {}\textquotesingle{}m\textquotesingle{}{]} \newline{}
}

Because list is the name of a built-{}in function, you should
avoid using it as a variable name. I also avoid l because
it looks too much like 1. So that’s why I use t.

The list function breaks a string into individual letters. If
you want to break a string into words, you can use the split
method:

\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}s {}= {}\textquotesingle{}pining {}for {}the {}fjords\textquotesingle{} \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}t {}= {}s.split() \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}t \newline{}
{[}\textquotesingle{}pining\textquotesingle{}, {}\textquotesingle{}for\textquotesingle{}, {}\textquotesingle{}the\textquotesingle{}, {}\textquotesingle{}fjords\textquotesingle{}{]} \newline{}
}

An optional argument called a {\bfseries delimiter} specifies which
characters to use as word boundaries. The following example uses a hyphen as a delimiter:

\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}s {}= {}\textquotesingle{}spam-{}spam-{}spam\textquotesingle{} \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}delimiter {}= {}\textquotesingle{}-{}\textquotesingle{} \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}s.split(delimiter) \newline{}
{[}\textquotesingle{}spam\textquotesingle{}, {}\textquotesingle{}spam\textquotesingle{}, {}\textquotesingle{}spam\textquotesingle{}{]} \newline{}
}
join is the inverse of split. It
takes a list of strings and
concatenates the elements. join is a string method,
so you have to invoke it on the delimiter and pass the
list as a parameter:

\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}t {}= {}{[}\textquotesingle{}pining\textquotesingle{}, {}\textquotesingle{}for\textquotesingle{}, {}\textquotesingle{}the\textquotesingle{}, {}\textquotesingle{}fjords\textquotesingle{}{]} \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}delimiter {}= {}\textquotesingle{} {}\textquotesingle{} \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}delimiter.join(t) \newline{}
\textquotesingle{}pining {}for {}the {}fjords\textquotesingle{} \newline{}
}
In this case the delimiter is a space character, so
join puts a space between words. To concatenate
strings without spaces, you can use the empty string,
{\itshape }{\itshape , as a delimiter. }
\section{Objects and values}
\label{180}
If we execute these assignment statements:
\TemplatePreformat{a {}= {}\textquotesingle{}banana\textquotesingle{} \newline{}
b {}= {}\textquotesingle{}banana\textquotesingle{} \newline{}
}
We know that a and b both refer to a
string, but we don’t
know whether they refer to the {\itshape same} string.
There are two possible states:

In one case, a and b refer to two different objects that
have the same value. In the second case, they refer to the same
object.

To check whether two variables refer to the same object, you can
use the is operator.
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}a {}= {}\textquotesingle{}banana\textquotesingle{} \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}b {}= {}\textquotesingle{}banana\textquotesingle{} \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}a {}is {}b \newline{}
True \newline{}
}
In this example, Python only created one string object,
and both a and b refer to it.

But when you create two lists, you get two objects:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}a {}= {}{[}1, {}2, {}3{]} \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}b {}= {}{[}1, {}2, {}3{]} \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}a {}is {}b \newline{}
False \newline{}
}
So the state diagram looks like this:

In this case we would say that the two lists are {\bfseries equivalent},
because they have the same elements, but not {\bfseries identical}, because
they are not the same object. If two objects are identical, they are
also equivalent, but if they are equivalent, they are not necessarily
identical.

Until now, we have been using “object” and “value”
interchangeably, but it is more precise to say that an object has a
value. If you execute a = {[}1,2,3{]}, a refers to a list
object whose value is a particular sequence of elements. If another
list has the same elements, we would say it has the same value.
\section{Aliasing}
\label{181}
If a refers to an object and you assign b = a,
then both variables refer to the same object:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}a {}= {}{[}1, {}2, {}3{]} \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}b {}= {}a \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}b {}is {}a \newline{}
True \newline{}
}
The state diagram looks like this:

The association of a variable with an object is called a {\bfseries reference}. In this example, there are two references to the same
object.

An object with more than one reference has more
than one name, so we say that the object is {\bfseries aliased}.

If the aliased object is mutable,
changes made with one alias affect
the other:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}b{[}0{]} {}= {}17 \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}a \newline{}
{[}17, {}2, {}3{]} \newline{}
}
Although this behavior can be useful, it is error-{}prone. In general,
it is safer to avoid aliasing when you are working with mutable
objects.

For immutable objects like strings, aliasing is not as much of a
problem. In this example:
\TemplatePreformat{a {}= {}\textquotesingle{}banana\textquotesingle{} \newline{}
b {}= {}\textquotesingle{}banana\textquotesingle{} \newline{}
}
It almost never makes a difference whether a and b refer
to the same string or not.
\section{List arguments}
\label{182}
When you pass a list to a function, the function gets a reference
to the list.
If the function modifies a list parameter, the caller sees the change.
For example, delete_head removes the first element from a list:
\TemplatePreformat{def {}delete_head(t): \newline{}
 {} {} {} {}del {}t{[}0{]} \newline{}
}
Here’s how it is used:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}letters {}= {}{[}\textquotesingle{}a\textquotesingle{}, {}\textquotesingle{}b\textquotesingle{}, {}\textquotesingle{}c\textquotesingle{}{]} \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}delete_head(letters) \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}letters \newline{}
{[}\textquotesingle{}b\textquotesingle{}, {}\textquotesingle{}c\textquotesingle{}{]} \newline{}
}
The parameter t and the variable letters are
aliases for the same object. The stack diagram looks like
this:

Since the list is shared by two frames, I drew
it between them.

It is important to distinguish between operations that
modify lists and operations that create new lists. For
example, the append method modifies a list, but the
+ operator creates a new list:

\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}t1 {}= {}{[}1, {}2{]} \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}t2 {}= {}t1.append(3) \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}t1 \newline{}
{[}1, {}2, {}3{]} \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}t2 \newline{}
None \newline{}
 {} \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}t3 {}= {}t1 {}+ {}{[}3{]} \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}t3 \newline{}
{[}1, {}2, {}3{]} \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}t2 {}is {}t3 \newline{}
False \newline{}
}
This difference is important when you write functions that
are supposed to modify lists. For example, this function
{\itshape does not} delete the head of a list:
\TemplatePreformat{def {}bad_delete_head(t): \newline{}
 {} {} {} {}t {}= {}t{[}1:{]} {} {} {} {} {} {} {} {} {} {} {} {} {} {}\# {}WRONG! \newline{}
}
The slice operator creates a new list and the assignment
makes t refer to it, but none of that has any effect
on the list that was passed as an argument.

An alternative is to write a function that creates and
returns a new list. For
example, tail returns all but the first
element of a list:
\TemplatePreformat{def {}tail(t): \newline{}
 {} {} {} {}return {}t{[}1:{]} \newline{}
}
This function leaves the original list unmodified.
Here’s how it is used:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}letters {}= {}{[}\textquotesingle{}a\textquotesingle{}, {}\textquotesingle{}b\textquotesingle{}, {}\textquotesingle{}c\textquotesingle{}{]} \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}rest {}= {}tail(letters) \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}rest \newline{}
{[}\textquotesingle{}b\textquotesingle{}, {}\textquotesingle{}c\textquotesingle{}{]} \newline{}
}
\subsection{Exercise 2}
\label{183}
Write a function called {\bfseries \textquotesingle{}chop}\textquotesingle{} that takes a list and modifies
it, removing the first and last elements, and returns {\bfseries \textquotesingle{}None}\textquotesingle{}.

Then write a function called {\bfseries \textquotesingle{}middle}\textquotesingle{} that takes a list and
returns a new list that contains all but the first and last
elements.
\section{Debugging}
\label{184}
Careless use of lists (and other mutable objects) can lead to long hours of debugging. Here are some common pitfalls and ways to avoid them:

\begin{myitemize}
\item{} Don’t forget that most list methods modify the argument and
\end{myitemize}

return None. This is the opposite of the string methods,
which return a new string and leave the original alone.
If you are used to writing string code like this:
\TemplatePreformat{word {}= {}word.strip() \newline{}
}
It is tempting to write list code like this:
\TemplatePreformat{t {}= {}t.sort() {} {} {} {} {} {} {} {} {} {} {}\# {}WRONG! \newline{}
}

Because sort returns None, the
next operation you perform with t is likely to fail.

Before using list methods and operators, you should read the
documentation carefully and then test them in interactive mode. The
methods and operators that lists share with other sequences (like
strings) are documented at
docs.python.org/lib/typesseq.html. The
methods and operators that only apply to mutable sequences
are documented at docs.python.org/lib/typesseq-{}mutable.html.

\begin{myitemize}
\item{} Pick an idiom and stick with it.
\end{myitemize}

Part of the problem with lists is that there are too many
ways to do things. For example, to remove an element from
a list, you can use pop, remove, del,
or even a slice assignment.

To add an element, you can use the append method or
the + operator. But don’t forget that these are right:
\TemplatePreformat{t.append(x) \newline{}
t {}= {}t {}+ {}{[}x{]} \newline{}
}
And these are wrong:
\TemplatePreformat{t.append({[}x{]}) {} {} {} {} {} {} {} {} {} {}\# {}WRONG! \newline{}
t {}= {}t.append(x) {} {} {} {} {} {} {} {}\# {}WRONG! \newline{}
t {}+ {}{[}x{]} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}\# {}WRONG! \newline{}
t {}= {}t {}+ {}x {} {} {} {} {} {} {} {} {} {} {} {} {} {}\# {}WRONG! \newline{}
}
Try out each of these examples in interactive mode to make sure
you understand what they do. Notice that only the last
one causes a runtime error; the other three are legal, but they
do the wrong thing.

\begin{myitemize}
\item{} Make copies to avoid aliasing.
\end{myitemize}

If you want to use a method like sort that modifies
the argument, but you need to keep the original list as
well, you can make a copy.
\TemplatePreformat{orig {}= {}t{[}:{]} \newline{}
t.sort() \newline{}
}
In this example you could also use the built-{}in function sorted,
which returns a new, sorted list and leaves the original alone.
But in that case you should avoid using sorted as a variable
name!
\section{Glossary}
\label{185}
{\bfseries list:} A sequence of values.
{\bfseries element:} One of the values in a list (or other sequence),
also called items.
{\bfseries index:} An integer value that indicates an element in a list.
{\bfseries nested list:} A list that is an element of another list.
{\bfseries list traversal:} The sequential accessing of each element in a list.
{\bfseries mapping:} A relationship in which each element of one set
corresponds to an element of another set. For example, a list is
a mapping from indices to elements.
{\bfseries accumulator:} A variable used in a loop to add up or
accumulate a result.

{\bfseries reduce:} A processing pattern that traverses a sequence
and accumulates the elements into a single result.

{\bfseries map:} A processing pattern that traverses a sequence and
performs an operation on each element.

{\bfseries filter:} A processing pattern that traverses a list and
selects the elements that satisfy some criterion.

{\bfseries object:} Something a variable can refer to. An object
has a type and a value.
{\bfseries equivalent:} Having the same value.
{\bfseries identical:} Being the same object (which implies equivalence).
{\bfseries reference:} The association between a variable and its value.
{\bfseries aliasing:} A circumstance where two variables refer to the same
object.
{\bfseries delimiter:} A character or string used to indicate where a
string should be split.

\section{Exercises}
\label{186}\subsection{Exercise 3}
\label{187}
Write a function called {\itshape }is_sorted{\itshape }{\itshape } that takes a list as a
parameter and returns {\bfseries \textquotesingle{}True}\textquotesingle{} if the list is sorted in ascending
order and {\bfseries \textquotesingle{}False}\textquotesingle{} otherwise. You can assume (as a precondition)
that the elements of the list can be compared with the comparison
operators {\bfseries \textquotesingle{}{\mbox{$<$}}}\textquotesingle{}, {\bfseries \textquotesingle{}{\mbox{$>$}}}\textquotesingle{}, etc.{\itshape }

{\itshape For example, }{\itshape is_sorted({[}1,2,2{]})}{\itshape should return {\bfseries \textquotesingle{}True}\textquotesingle{}}
and {\itshape }is_sorted({[}\textquotesingle{}b\textquotesingle{},\textquotesingle{}a\textquotesingle{}{]}){\itshape }{\itshape } should return {\bfseries \textquotesingle{}False}\textquotesingle{}.
\subsection{Exercise 4}
\label{188}
{\itshape Two words are anagrams if you can rearrange the letters from one}
to spell the other. Write a function called {\itshape }is_anagram{\itshape }{\itshape }
that takes two strings and returns {\bfseries \textquotesingle{}True}\textquotesingle{} if they are anagrams.
{\itshape }
{\bfseries Exercise 5} {\itshape }
{\itshape }
{\itshape The (so-{}called) Birthday Paradox:}

{\itshape }
{\itshape }
{\itshape Write a function called }{\itshape has_duplicates}{\itshape that takes}
a list and returns {\bfseries \textquotesingle{}True}\textquotesingle{} if there is any element that
appears more than once. It should not modify the original
list.{\itshape }

\begin{myitemize}
\item{} {\itshape If there are 23 students in your class, what are the chances}
\end{myitemize}

that two of you have the same birthday? You can estimate this
probability by generating random samples of 23 birthdays
and checking for matches. Hint: you can generate random birthdays
with the {\bfseries \textquotesingle{}randint}\textquotesingle{} function in the {\bfseries \textquotesingle{}random}\textquotesingle{} module.{\itshape }

{\itshape You can read about this problem at}
{\bfseries \textquotesingle{}wikipedia.org/wiki/Birthday_paradox}\textquotesingle{}, and you can see my solution
at {\bfseries \textquotesingle{}thinkpython.com/code/birthday.py}\textquotesingle{}.{\itshape }
{\bfseries Exercise 6}

{\itshape Write a function called }{\itshape remove_duplicates}{\itshape that takes}
a list and returns a new list with only the unique elements from
the original. Hint: they don’t have to be in the same order.
\subsection{Exercise 7}
\label{189}
{\itshape Write a function that reads the file {\bfseries \textquotesingle{}words.txt}\textquotesingle{} and builds}
a list with one element per word. Write two versions of
this function, one using the {\bfseries \textquotesingle{}append}\textquotesingle{} method and the
other using the idiom {\bfseries \textquotesingle{}t = t + {[}x{]}}\textquotesingle{}. Which one takes
longer to run? Why?{\itshape }

{\itshape You can see my solution at {\bfseries \textquotesingle{}thinkpython.com/code/wordlist.py}\textquotesingle{}.}
\subsection{Exercise 8}
\label{190}
{\itshape To check whether a word is in the word list, you could use}
the {\bfseries \textquotesingle{}in}\textquotesingle{} operator, but it would be slow because it searches
through the words in order.{\itshape }

{\itshape Because the words are in alphabetical order, we can speed things up}
with a bisection search, which is similar to what you do when you look
a word up in the dictionary. You start in the middle and check to see
whether the word you are looking for comes before the word in the
middle of the list. If so, then you search the first half of the list
the same way. Otherwise you search the second half.{\itshape }

{\itshape Either way, you cut the remaining search space in half. If the}
word list has 113,809 words, it will take about 17 steps to
find the word or conclude that it’s not there.{\itshape }

{\itshape Write a function called {\bfseries \textquotesingle{}bisect}\textquotesingle{} that takes a sorted list}
and a target value and returns the index of the value
in the list, if it’s there, or {\bfseries \textquotesingle{}None}\textquotesingle{} if it’s not.{\itshape }

{\itshape Or you could read the documentation of the {\bfseries \textquotesingle{}bisect}\textquotesingle{} module}
and use that!
{\itshape }
\subsection{Exercise 9}
\label{191}
Two words are a “reverse pair” if each is the reverse of the
other. Write a program that finds all the reverse pairs in the
word list.
\subsection{Exercise 10}
\label{192}
{\itshape Two words “interlock” if taking alternating letters from each forms}
a new word{\itshape }1{\itshape }{\itshape }. For example, “shoe” and “cold”
interlock to form “schooled.”{\itshape }

\begin{myitemize}
\item{} {\itshape Write a program that finds all pairs of words that interlock.}
\end{myitemize}

Hint: don’t enumerate all pairs!{\itshape }

\begin{myitemize}
\item{} {\itshape Can you find any words that are three-{}way interlocked; that is,}
\end{myitemize}

every third letter forms a word, starting from the first, second or
third?{\itshape }

1This exercise is inspired by an example at
puzzlers.org.

\chapter{Dictionaries}

\myminitoc
\label{193}

\label{194}
\LaTeXNullTemplate{}

A {\bfseries dictionary} is like a list, but more general. In a list,
the indices have to be integers; in a dictionary they can
be (almost) any type.

You can think of a dictionary as a mapping between a set of indices
(which are called {\bfseries keys}) and a set of values. Each key maps to a
value. The association of a key and a value is called a {\bfseries key-{}value pair} or sometimes an {\bfseries item}.

As an example, we\textquotesingle{}ll build a dictionary that maps from English
to Spanish words, so the keys and the values are all strings.

The function dict creates a new dictionary with no items.
Because dict is the name of a built-{}in function, you
should avoid using it as a variable name.

\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}eng2sp {}= {}dict() \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}eng2sp \newline{}
\{\} \newline{}
}
The squiggly-{}brackets, \{\}, represent an empty dictionary.
To add items to the dictionary, you can use square brackets:

\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}eng2sp{[}\textquotesingle{}one\textquotesingle{}{]} {}= {}\textquotesingle{}uno\textquotesingle{} \newline{}
}

This line creates an item that maps from the key
’one’ to the value \textquotesingle{}uno\textquotesingle{}. If we print the
dictionary again, we see a key-{}value pair with a colon
between the key and value:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}eng2sp \newline{}
\{\textquotesingle{}one\textquotesingle{}: {}\textquotesingle{}uno\textquotesingle{}\} \newline{}
}
This output format is also an input format. For example,
you can create a new dictionary with three items:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}eng2sp {}= {}\{\textquotesingle{}one\textquotesingle{}: {}\textquotesingle{}uno\textquotesingle{}, {}\textquotesingle{}two\textquotesingle{}: {}\textquotesingle{}dos\textquotesingle{}, {}\textquotesingle{}three\textquotesingle{}: {}\textquotesingle{}tres\textquotesingle{}\} \newline{}
}
But if you print eng2sp, you might be surprised:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}eng2sp \newline{}
\{\textquotesingle{}one\textquotesingle{}: {}\textquotesingle{}uno\textquotesingle{}, {}\textquotesingle{}three\textquotesingle{}: {}\textquotesingle{}tres\textquotesingle{}, {}\textquotesingle{}two\textquotesingle{}: {}\textquotesingle{}dos\textquotesingle{}\} \newline{}
}
The order of the key-{}value pairs is not the same. In fact, if
you type the same example on your computer, you might get a
different result. In general, the order of items in
a dictionary is unpredictable.

But that’s not a problem because
the elements of a dictionary are never indexed with integer indices.
Instead, you use the keys to look up the corresponding values:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}eng2sp{[}\textquotesingle{}two\textquotesingle{}{]} \newline{}
\textquotesingle{}dos\textquotesingle{} \newline{}
}
The key ’two’ always maps to the value \textquotesingle{}dos\textquotesingle{} so the order
of the items doesn’t matter.

If the key isn’t in the dictionary, you get an exception:

\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}eng2sp{[}\textquotesingle{}four\textquotesingle{}{]} \newline{}
KeyError: {}\textquotesingle{}four\textquotesingle{} \newline{}
}
The len function works on dictionaries; it returns the
number of key-{}value pairs:

\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}len(eng2sp) \newline{}
3 \newline{}
}
The in operator works on dictionaries; it tells you whether
something appears as a {\itshape key} in the dictionary (appearing
as a value is not good enough).

\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}\textquotesingle{}one\textquotesingle{} {}in {}eng2sp \newline{}
True \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}\textquotesingle{}uno\textquotesingle{} {}in {}eng2sp \newline{}
False \newline{}
}
To see whether something appears as a value in a dictionary, you
can use the method values, which returns the values as
a list, and then use the in operator:

\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}vals {}= {}eng2sp.values() \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}\textquotesingle{}uno\textquotesingle{} {}in {}vals \newline{}
True \newline{}
}
The in operator uses different algorithms for lists and
dictionaries. For lists, it uses a search algorithm, as in
Section 8.6. As the list gets longer, the search time gets
longer in direct proportion. For dictionaries, Python uses an
algorithm called a {\bfseries hashtable} that has a remarkable property: the
in operator takes about the same amount of time no matter how
many items there are in a dictionary. I won’t explain how that’s
possible, but you can read more about it at
wikipedia.org/wiki/Hash_table.
\subsection{Exercise 1}
\label{195}
{\itshape Write a function that reads the words in {\bfseries \textquotesingle{}words.txt}\textquotesingle{} and}
stores them as keys in a dictionary. It doesn’t matter what the
values are. Then you can use the {\bfseries \textquotesingle{}in}\textquotesingle{} operator
as a fast way to check whether a string is in
the dictionary.{\itshape }

{\itshape If you did Exercise {\bfseries \textquotesingle{}10.8}\textquotesingle{}, you can compare the speed}
of this implementation with the list {\bfseries \textquotesingle{}in}\textquotesingle{} operator and the
bisection search.{\itshape }

\section{Dictionary as a set of counters}
\label{196}
Suppose you are given a string and you want to count how many
times each letter appears. There are several ways you could do it:

\begin{myitemize}
\item{} You could create 26 variables, one for each letter of the alphabet. Then you could traverse the string and, for each character, increment the corresponding counter, probably using a chained conditional.
\item{} You could create a list with 26 elements. Then you could convert each character to a number (using the built-{}in function ord), use the number as an index into the list, and increment the appropriate counter.
\item{} You could create a dictionary with characters as keys and counters as the corresponding values. The first time you see a character, you would add an item to the dictionary. After that you would increment the value of an existing item.
\end{myitemize}

Each of these options performs the same computation, but each
of them implements that computation in a different way.

An {\bfseries implementation} is a way of performing a computation;
some implementations are better than others. For example,
an advantage of the dictionary implementation is that we don’t
have to know ahead of time which letters appear in the string
and we only have to make room for the letters that do appear.

Here is what the code might look like:
\TemplatePreformat{def {}histogram(s): \newline{}
 {} {} {} {}d {}= {}dict() \newline{}
 {} {} {} {}for {}c {}in {}s: \newline{}
 {} {} {} {} {} {} {} {}if {}c {}not {}in {}d: \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}d{[}c{]} {}= {}1 \newline{}
 {} {} {} {} {} {} {} {}else: \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}d{[}c{]} {}+= {}1 \newline{}
 {} {} {} {}return {}d \newline{}
}
The name of the function is {\bfseries histogram}, which is a statistical
term for a set of counters (or frequencies).

The first line of the
function creates an empty dictionary. The for loop traverses
the string. Each time through the loop, if the character c is
not in the dictionary, we create a new item with key c and the
initial value 1 (since we have seen this letter once). If c is
already in the dictionary we increment d{[}c{]}.

Here’s how it works:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}h {}= {}histogram(\textquotesingle{}brontosaurus\textquotesingle{}) \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}h \newline{}
\{\textquotesingle{}a\textquotesingle{}: {}1, {}\textquotesingle{}b\textquotesingle{}: {}1, {}\textquotesingle{}o\textquotesingle{}: {}2, {}\textquotesingle{}n\textquotesingle{}: {}1, {}\textquotesingle{}s\textquotesingle{}: {}2, {}\textquotesingle{}r\textquotesingle{}: {}2, {}\textquotesingle{}u\textquotesingle{}: {}2, {}\textquotesingle{}t\textquotesingle{}: {}1\} \newline{}
}
The histogram indicates that the letters ’a’ and \textquotesingle{}b\textquotesingle{}
appear once; \textquotesingle{}o\textquotesingle{} appears twice, and so on.
\subsection{Exercise 2}
\label{197}
{\itshape Dictionaries have a method called {\bfseries \textquotesingle{}get}\textquotesingle{} that takes a key}
and a default value. If the key appears in the dictionary,
{\bfseries \textquotesingle{}get}\textquotesingle{} returns the corresponding value; otherwise it returns
the default value. For example:{\itshape }
\TemplatePreformat{\textquotesingle{}\textquotesingle{}{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}h {}= {}histogram(\textquotesingle{}a\textquotesingle{}) \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}h \newline{}
\{\textquotesingle{}a\textquotesingle{}: {}1\} \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}h.get(\textquotesingle{}a\textquotesingle{}, {}0) \newline{}
1 \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}h.get(\textquotesingle{}b\textquotesingle{}, {}0) \newline{}
0 \newline{}
\textquotesingle{}\textquotesingle{}}
{\itshape Use {\bfseries \textquotesingle{}get}\textquotesingle{} to write {\bfseries \textquotesingle{}histogram}\textquotesingle{} more concisely. You}
should be able to eliminate the {\bfseries \textquotesingle{}if}\textquotesingle{} statement.
{\itshape }

\section{Looping and dictionaries}
\label{198}
If you use a dictionary in a for statement, it traverses
the keys of the dictionary. For example, print_hist
prints each key and the corresponding value:
\TemplatePreformat{def {}print_hist(h): \newline{}
 {} {} {} {}for {}c {}in {}h: \newline{}
 {} {} {} {} {} {} {} {}print {}c, {}h{[}c{]} \newline{}
}
Here’s what the output looks like:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}h {}= {}histogram(\textquotesingle{}parrot\textquotesingle{}) \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print_hist(h) \newline{}
a {}1 \newline{}
p {}1 \newline{}
r {}2 \newline{}
t {}1 \newline{}
o {}1 \newline{}
}
Again, the keys are in no particular order.
\subsection{Exercise 3}
\label{199}
{\itshape Dictionaries have a method called {\bfseries \textquotesingle{}keys}\textquotesingle{} that returns}
the keys of the dictionary, in no particular order, as a list.{\itshape }

{\itshape Modify }{\itshape print_hist}{\itshape to print the keys and their values}
in alphabetical order.
\section{Reverse lookup}
\label{200}
Given a dictionary d and a key k, it is easy to
find the corresponding value v = d{[}k{]}. This operation
is called a {\bfseries lookup}.

But what if you have v and you want to find k?
You have two problems: first, there might be more than one
key that maps to the value v. Depending on the application,
you might be able to pick one, or you might have to make
a list that contains all of them. Second, there is no
simple syntax to do a {\bfseries reverse lookup}; you have to search.

Here is a function that takes a value and returns the first
key that maps to that value:
\TemplatePreformat{def {}reverse_lookup(d, {}v): \newline{}
 {} {} {} {}for {}k {}in {}d: \newline{}
 {} {} {} {} {} {} {} {}if {}d{[}k{]} {}== {}v: \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}return {}k \newline{}
 {} {} {} {}raise {}ValueError \newline{}
}
This function is yet another example of the search pattern, but it
uses a feature we haven’t seen before, raise. The raise
statement causes an exception; in this case it causes a ValueError, which generally indicates that there is something wrong
with the value of a parameter.

If we get to the end of the loop, that means v
doesn’t appear in the dictionary as a value, so we raise an
exception.

Here is an example of a successful reverse lookup:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}h {}= {}histogram(\textquotesingle{}parrot\textquotesingle{}) \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}k {}= {}reverse_lookup(h, {}2) \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}k \newline{}
r \newline{}
}
And an unsuccessful one:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}k {}= {}reverse_lookup(h, {}3) \newline{}
Traceback {}(most {}recent {}call {}last): \newline{}
 {} {}File {}\symbol{34}{\mbox{$<$}}stdin{\mbox{$>$}}\symbol{34}, {}line {}1, {}in {}? \newline{}
 {} {}File {}\symbol{34}{\mbox{$<$}}stdin{\mbox{$>$}}\symbol{34}, {}line {}5, {}in {}reverse_lookup \newline{}
ValueError \newline{}
}
The result when you raise an exception is the same as when
Python raises one: it prints a traceback and an error message.

The raise statement takes a detailed error message as an
optional argument. For example:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}raise {}ValueError, {}\textquotesingle{}value {}does {}not {}appear {}in {}the {}dictionary\textquotesingle{} \newline{}
Traceback {}(most {}recent {}call {}last): \newline{}
 {} {}File {}\symbol{34}{\mbox{$<$}}stdin{\mbox{$>$}}\symbol{34}, {}line {}1, {}in {}? \newline{}
ValueError: {}value {}does {}not {}appear {}in {}the {}dictionary \newline{}
}
A reverse lookup is much slower than a forward lookup; if you
have to do it often, or if the dictionary gets big, the performance
of your program will suffer.
{\bfseries Exercise 4} {\itshape }
Modify {\itshape }reverse_lookup{\itshape }{\itshape } so that it builds and returns a list
of {\itshape all} keys that map to {\bfseries \textquotesingle{}v}\textquotesingle{}, or an empty list if there
are none.
{\itshape }{\itshape }
\section{Dictionaries and lists}
\label{201}
Lists can appear as values in a dictionary. For example, if you
were given a dictionary that maps from letters to frequencies, you
might want to invert it; that is, create a dictionary that maps
from frequencies to letters. Since there might be several letters
with the same frequency, each value in the inverted dictionary
should be a list of letters.

Here is a function that inverts a dictionary:
\TemplatePreformat{def {}invert_dict(d): \newline{}
 {} {} {} {}inv {}= {}dict() \newline{}
 {} {} {} {}for {}key {}in {}d: \newline{}
 {} {} {} {} {} {} {} {}val {}= {}d{[}key{]} \newline{}
 {} {} {} {} {} {} {} {}if {}val {}not {}in {}inv: \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}inv{[}val{]} {}= {}{[}key{]} \newline{}
 {} {} {} {} {} {} {} {}else: \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}inv{[}val{]}.append(key) \newline{}
 {} {} {} {}return {}inv \newline{}
}
Each time through the loop, key gets a key from d and
val gets the corresponding value. If val is not in inv,
that means we haven’t seen it before, so we create a new item and
initialize it with a {\bfseries singleton} (a list that contains a
single element). Otherwise we have seen this value before, so we
append the corresponding key to the list.

Here is an example:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}hist {}= {}histogram(\textquotesingle{}parrot\textquotesingle{}) \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}hist \newline{}
\{\textquotesingle{}a\textquotesingle{}: {}1, {}\textquotesingle{}p\textquotesingle{}: {}1, {}\textquotesingle{}r\textquotesingle{}: {}2, {}\textquotesingle{}t\textquotesingle{}: {}1, {}\textquotesingle{}o\textquotesingle{}: {}1\} \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}inv {}= {}invert_dict(hist) \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}inv \newline{}
\{1: {}{[}\textquotesingle{}a\textquotesingle{}, {}\textquotesingle{}p\textquotesingle{}, {}\textquotesingle{}t\textquotesingle{}, {}\textquotesingle{}o\textquotesingle{}{]}, {}2: {}{[}\textquotesingle{}r\textquotesingle{}{]}\} \newline{}
}
And here is a diagram showing hist and inv:

A dictionary is represented as a box with the type dict above it
and the key-{}value pairs inside. If the values are integers, floats or
strings, I usually draw them inside the box, but I usually draw lists
outside the box, just to keep the diagram simple.

Lists can be values in a dictionary, as this example shows, but they
cannot be keys. Here’s what happens if you try:

\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}t {}= {}{[}1, {}2, {}3{]} \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}d {}= {}dict() \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}d{[}t{]} {}= {}\textquotesingle{}oops\textquotesingle{} \newline{}
Traceback {}(most {}recent {}call {}last): \newline{}
 {} {}File {}\symbol{34}{\mbox{$<$}}stdin{\mbox{$>$}}\symbol{34}, {}line {}1, {}in {}? \newline{}
TypeError: {}list {}objects {}are {}unhashable \newline{}
}
I mentioned earlier that a dictionary is implemented using
a hashtable and that means that the keys have to be {\bfseries hashable}.

A {\bfseries hash} is a function that takes a value (of any kind)
and returns an integer. Dictionaries use these integers,
called hash values, to store and look up key-{}value pairs.

This system works fine if the keys are immutable. But if the
keys are mutable, like lists, bad things happen. For example,
when you create a key-{}value pair, Python hashes the key and
stores it in the corresponding location. If you modify the
key and then hash it again, it would go to a different location.
In that case you might have two entries for the same key,
or you might not be able to find a key. Either way, the
dictionary wouldn’t work correctly.

That’s why the keys have to be hashable, and why mutable types like
lists aren’t. The simplest way to get around this limitation is to
use tuples, which we will see in the next chapter.

Since dictionaries are mutable, they can’t be used as keys,
but they {\itshape can} be used as values.
\subsection{Exercise 5}
\label{202}
Read the documentation of the dictionary method {\bfseries \textquotesingle{}setdefault}\textquotesingle{}
and use it to write a more concise version of {\itshape }invert_dict{\itshape }{\itshape }.{\itshape }
\section{Memos}
\label{203}
If you played with the fibonacci function from
Section 6.7, you might have noticed that the bigger
the argument you provide, the longer the function takes to run.
Furthermore, the run time increases very quickly.

To understand why, consider this {\bfseries call graph} for
fibonacci with n=4:

A call graph shows a set of function frames, with lines connecting each
frame to the frames of the functions it calls. At the top of the
graph, fibonacci with n=4 calls fibonacci with n=3 and n=2. In turn, fibonacci with n=3 calls
fibonacci with n=2 and n=1. And so on.

Count how many times fibonacci(0) and fibonacci(1) are
called. This is an inefficient solution to the problem, and it gets
worse as the argument gets bigger.

One solution is to keep track of values that have already been
computed by storing them in a dictionary. A previously computed value
that is stored for later use is called a {\bfseries memo}\myfootnote{See
wikipedia.org/wiki/Memoization}. Here is an
implementation of fibonacci using memos:
\TemplatePreformat{known {}= {}\{0:0, {}1:1\} \newline{}
 {} \newline{}
def {}fibonacci(n): \newline{}
 {} {} {} {}if {}n {}in {}known: \newline{}
 {} {} {} {} {} {} {} {}return {}known{[}n{]} \newline{}
 {} \newline{}
 {} {} {} {}res {}= {}fibonacci(n-{}1) {}+ {}fibonacci(n-{}2) \newline{}
 {} {} {} {}known{[}n{]} {}= {}res \newline{}
 {} {} {} {}return {}res \newline{}
}
known is a dictionary that keeps track of the Fibonacci
numbers we already know. It starts with
two items: 0 maps to 0 and 1 maps to 1.

Whenever fibonacci is called, it checks known.
If the result is already there, it can return
immediately. Otherwise it has to
compute the new value, add it to the dictionary, and return it.
\subsection{Exercise 6}
\label{204}
Run this version of {\bfseries \textquotesingle{}fibonacci}\textquotesingle{} and the original with
a range of parameters and compare their run times.
\section{Global variables}
\label{205}
In the previous example, known is created outside the function,
so it belongs to the special frame called __main__.
Variables in __main__ are sometimes called {\bfseries global}
because they can be accessed from any function. Unlike local
variables, which disappear when their function ends, global variables
persist from one function call to the next.

It is common to use global variables for {\bfseries flags}; that is,
boolean variables that indicate (“flag”) whether a condition
is true. For example, some programs use
a flag named verbose to control the level of detail in the
output:
\TemplatePreformat{verbose {}= {}True \newline{}
 {} \newline{}
def {}example1(): \newline{}
 {} {} {} {}if {}verbose: \newline{}
 {} {} {} {} {} {} {} {}print {}\textquotesingle{}Running {}example1\textquotesingle{} \newline{}
}
If you try to reassign a global variable, you might be surprised.
The following example is supposed to keep track of whether the
function has been called:

\TemplatePreformat{been_called {}= {}False \newline{}
 {} \newline{}
def {}example2(): \newline{}
 {} {} {} {}been_called {}= {}True {} {} {} {} {} {} {} {} {}\# {}WRONG \newline{}
}
But if you run it you will see that the value of been_called
doesn’t change. The problem is that example2 creates a new local
variable named been_called. The local variable goes away when
the function ends, and has no effect on the global variable.

To reassign a global variable inside a function you have to
{\bfseries declare} the global variable before you use it:
\TemplatePreformat{been_called {}= {}False \newline{}
 {} \newline{}
def {}example2(): \newline{}
 {} {} {} {}global {}been_called {} \newline{}
 {} {} {} {}been_called {}= {}True \newline{}
}
The global statement tells the interpreter
something like, “In this function, when I say been_called, I
mean the global variable; don’t create a local one.”

Here’s an example that tries to update a global variable:
\TemplatePreformat{count {}= {}0 \newline{}
 {} \newline{}
def {}example3(): \newline{}
 {} {} {} {}count {}= {}count {}+ {}1 {} {} {} {} {} {} {} {} {} {}\# {}WRONG \newline{}
}
If you run it you get:

\TemplatePreformat{UnboundLocalError: {}local {}variable {}\textquotesingle{}count\textquotesingle{} {}referenced {}before \newline{}
 {}assignment \newline{}
}
Python assumes that count is local, which means
that you are reading it before writing it. The solution, again,
is to declare count global.

\TemplatePreformat{def {}example3(): \newline{}
 {} {} {} {}global {}count \newline{}
 {} {} {} {}count {}+= {}1 \newline{}
}
If the global value is mutable, you can modify it without
declaring it:

\TemplatePreformat{known {}= {}\{0:0, {}1:1\} \newline{}
 {} \newline{}
def {}example4(): \newline{}
 {} {} {} {}known{[}2{]} {}= {}1 \newline{}
}
So you can add, remove and replace elements of a global list or
dictionary, but if you want to reassign the variable, you
have to declare it:
\TemplatePreformat{def {}example5(): \newline{}
 {} {} {} {}global {}known \newline{}
 {} {} {} {}known {}= {}dict() \newline{}
}
\section{Long integers}
\label{206}
If you compute fibonacci(50), you get:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}fibonacci(50) \newline{}
12586269025L \newline{}
}
The L at the end indicates that the result is a long
integer\myfootnote{In Python 3.0, type long is gone; all integers,
even really big ones, are type int.}, or type long.

Values with type int have a limited range;
long integers can be arbitrarily big, but as they get bigger
they consume more space and time.

The mathematical operators work on long integers, and the functions
in the math module, too, so in general any code that
works with int will also work with long.

Any time the result of a computation is too big to be represented with
an integer, Python converts the result as a long integer:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}1000 {}* {}1000 \newline{}
1000000 \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}100000 {}* {}100000 \newline{}
10000000000L \newline{}
}
In the first case the result has type int; in the
second case it is long.
\subsection{Exercise 7}
\label{207}
{\itshape Exponentiation of large integers is the basis of common}
algorithms for public-{}key encryption. Read the Wikipedia
page on the RSA algorithm\myfootnote{wikipedia.org/wiki/RSA
}
and write functions to encode and decode messages.{\itshape }
\section{Debugging}
\label{208}
As you work with bigger datasets it can become unwieldy to
debug by printing and checking data by hand. Here are some
suggestions for debugging large datasets:
{\bfseries Scale down the input:} If possible, reduce the size of the
dataset. For example if the program reads a text file, start with
just the first 10 lines, or with the smallest example you can find.
You can either edit the files themselves, or (better) modify the
program so it reads only the first n lines.
If there is an error, you can reduce n to the smallest
value that manifests the error, and then increase it gradually
as you find and correct errors.
{\bfseries Check summaries and types:} Instead of printing and checking the
entire dataset, consider printing summaries of the data: for example,
the number of items in a dictionary or the total of a list of numbers.
A common cause of runtime errors is a value that is not the right
type. For debugging this kind of error, it is often enough to print
the type of a value.
{\bfseries Write self-{}checks:} Sometimes you can write code to check
for errors automatically. For example, if you are computing the
average of a list of numbers, you could check that the result is
not greater than the largest element in the list or less than
the smallest. This is called a “sanity check” because it detects
results that are “insane.”

Another kind of check compares the results of two different
computations to see if they are consistent. This is called a
“consistency check.”
{\bfseries Pretty print the output:} Formatting debugging output
can make it easier to spot an error. We saw an example in
Section 6.9. The pprint module provides
a pprint function that displays built-{}in types in
a more human-{}readable format.

Again, time you spend building scaffolding can reduce
the time you spend debugging.
\section{Glossary}
\label{209}
{\bfseries dictionary:} A mapping from a set of keys to their
corresponding values.
{\bfseries key-{}value pair:} The representation of the mapping from
a key to a value.
{\bfseries item:} Another name for a key-{}value pair.
{\bfseries key:} An object that appears in a dictionary as the
first part of a key-{}value pair.
{\bfseries value:} An object that appears in a dictionary as the
second part of a key-{}value pair. This is more specific than
our previous use of the word “value.”
{\bfseries implementation:} A way of performing a computation.
{\bfseries hashtable:} The algorithm used to implement Python
dictionaries.
{\bfseries hash function:} A function used by a hashtable to compute the
location for a key.
{\bfseries hashable:} A type that has a hash function. Immutable
types like integers,
floats and strings are hashable; mutable types like lists and
dictionaries are not.
{\bfseries lookup:} A dictionary operation that takes a key and finds
the corresponding value.
{\bfseries reverse lookup:} A dictionary operation that takes a value and finds
one or more keys that map to it.
{\bfseries singleton:} A list (or other sequence) with a single element.
{\bfseries call graph:} A diagram that shows every frame created during
the execution of a program, with an arrow from each caller to
each callee.

{\bfseries histogram:} A set of counters.
{\bfseries memo:} A computed value stored to avoid unnecessary future
computation.
{\bfseries global variable:} A variable defined outside a function. Global
variables can be accessed from any function.
{\bfseries flag:} A boolean variable used to indicate whether a condition
is true.
{\bfseries declaration:} A statement like global that tells the
interpreter something about a variable.

\section{Exercise-{}8}
\label{210}\\

\TemplateSpaceIndent{ {} {} {} {} {} {} {} {} {}Dictionaries {}have {}a {}method {}called {}\textquotesingle{}keys\textquotesingle{} {}that {}returns {}the \newline{}
 {}keys {}of {}the {}dictionary, {}in}

no particular order, as a list.
Modify print_hist to print the keys and their values in alphabetical order.
\subsection{Exercise 9}
\label{211}
{\itshape Two words are “rotate pairs” if you can rotate one of them}
and get the other (see {\itshape }rotate_word{\itshape }{\itshape } in Exercise {\bfseries \textquotesingle{}8.12}\textquotesingle{}).{\itshape }

{\itshape Write a program that reads a wordlist and finds all the rotate}
pairs.
\subsection{Exercise 10}
\label{212}
{\itshape Here’s another Puzzler from }Car
Talk\myfootnote{www.cartalk.com/content/puzzler/transcripts/200717}{\itshape :}
{\itshape }
This was sent in by a fellow named Dan O’Leary. He came upon a common
one-{}syllable, five-{}letter word recently that has the following unique
property. When you remove the first letter, the remaining letters form
a homophone of the original word, that is a word that sounds exactly
the same. Replace the first letter, that is, put it back and remove
the second letter and the result is yet another homophone of the
original word. And the question is, what’s the word?{\itshape }
{\itshape Now I’m going to give you an example that doesn’t work. Let’s look at}
the five-{}letter word, ‘wrack.’ W-{}R-{}A-{}C-{}K, you know like to ‘wrack with
pain.’ If I remove the first letter, I am left with a four-{}letter
word, ’R-{}A-{}C-{}K.’ As in, ‘Holy cow, did you see the rack on that buck!
It must have been a nine-{}pointer!’ It’s a perfect homophone. If you
put the ‘w’ back, and remove the ‘r,’ instead, you’re left with the
word, ‘wack,’ which is a real word, it’s just not a homophone of the
other two words.{\itshape }

{\itshape But there is, however, at least one word that Dan and we know of,}
which will yield two homophones if you remove either of the first two
letters to make two, new four-{}letter words. The question is, what’s
the word?
{\itshape }

{\itshape }
{\bfseries \textquotesingle{}}
{\itshape }

{\itshape You can use the dictionary from Exercise {\bfseries \textquotesingle{}11.1}\textquotesingle{} to check}
whether a string is in the word list.{\itshape }

{\itshape To check whether two words are homophones, you can use the CMU}
Pronouncing Dictionary. You can download it from
{\bfseries \textquotesingle{}www.speech.cs.cmu.edu/cgi-{}bin/cmudict}\textquotesingle{} or from
{\bfseries \textquotesingle{}thinkpython.com/code/c06d}\textquotesingle{} and you can also download
{\bfseries \textquotesingle{}thinkpython.com/code/pronounce.py}\textquotesingle{}, which provides a function
named {\itshape }read_dictionary{\itshape }{\itshape } that reads the pronouncing dictionary and
returns a Python dictionary that maps from each word to a string that
describes its primary pronunciation.{\itshape }

{\itshape Write a program that lists all the words that solve the Puzzler.}
You can see my solution at {\bfseries \textquotesingle{}thinkpython.com/code/homophone.py}\textquotesingle{}.{\itshape }
\section{Notes}
\label{213}
\LaTeXNullTemplate{}
\chapter{Tuples}

\myminitoc
\label{214}

\label{215}
\LaTeXNullTemplate{}
\section{Tuples are immutable}
\label{216}
A tuple is a sequence of values. The values can be any type, and
they are indexed by integers, so in that respect tuples are a lot
like lists. The important difference is that tuples are immutable.

Syntactically, a tuple is a comma-{}separated list of values:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}t {}= {}\textquotesingle{}a\textquotesingle{}, {}\textquotesingle{}b\textquotesingle{}, {}\textquotesingle{}c\textquotesingle{}, {}\textquotesingle{}d\textquotesingle{}, {}\textquotesingle{}e\textquotesingle{} \newline{}
}
Although it is not necessary, it is common to enclose tuples in
parentheses:

\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}t {}= {}(\textquotesingle{}a\textquotesingle{}, {}\textquotesingle{}b\textquotesingle{}, {}\textquotesingle{}c\textquotesingle{}, {}\textquotesingle{}d\textquotesingle{}, {}\textquotesingle{}e\textquotesingle{}) \newline{}
}
To create a tuple with a single element, you have to include the final
comma:

\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}t1 {}= {}(\textquotesingle{}a\textquotesingle{},) \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}type(t1) \newline{}
{\mbox{$<$}}type {}\textquotesingle{}tuple\textquotesingle{}{\mbox{$>$}} \newline{}
}
Without the comma, Python treats (\textquotesingle{}a\textquotesingle{}) as a string in
parentheses:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}t2 {}= {}(\textquotesingle{}a\textquotesingle{}) \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}type(t2) \newline{}
{\mbox{$<$}}type {}\textquotesingle{}str\textquotesingle{}{\mbox{$>$}} \newline{}
}
Another way to create a tuple is the built-{}in function tuple.
With no argument, it creates an empty tuple:

\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}t {}= {}tuple() \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}t \newline{}
() \newline{}
}
If the argument is a sequence (string, list or tuple), the result
is a tuple with the elements of the sequence:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}t {}= {}tuple(\textquotesingle{}lupins\textquotesingle{}) \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}t \newline{}
(\textquotesingle{}l\textquotesingle{}, {}\textquotesingle{}u\textquotesingle{}, {}\textquotesingle{}p\textquotesingle{}, {}\textquotesingle{}i\textquotesingle{}, {}\textquotesingle{}n\textquotesingle{}, {}\textquotesingle{}s\textquotesingle{}) \newline{}
}
Because tuple is the name of a built-{}in function, you should
avoid using it as a variable name.

Most list operators also work on tuples. The bracket operator
indexes an element:

\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}t {}= {}(\textquotesingle{}a\textquotesingle{}, {}\textquotesingle{}b\textquotesingle{}, {}\textquotesingle{}c\textquotesingle{}, {}\textquotesingle{}d\textquotesingle{}, {}\textquotesingle{}e\textquotesingle{}) \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}t{[}0{]} \newline{}
\textquotesingle{}a\textquotesingle{} \newline{}
}
And the slice operator selects a range of elements.

\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}t{[}1:3{]} \newline{}
(\textquotesingle{}b\textquotesingle{}, {}\textquotesingle{}c\textquotesingle{}) \newline{}
}
But if you try to modify one of the elements of the tuple, you get
an error:

\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}t{[}0{]} {}= {}\textquotesingle{}A\textquotesingle{} \newline{}
TypeError: {}object {}doesn\textquotesingle{}t {}support {}item {}assignment \newline{}
}
You can’t modify the elements of a tuple, but you can replace
one tuple with another:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}t {}= {}(\textquotesingle{}A\textquotesingle{},) {}+ {}t{[}1:{]} \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}t \newline{}
(\textquotesingle{}A\textquotesingle{}, {}\textquotesingle{}b\textquotesingle{}, {}\textquotesingle{}c\textquotesingle{}, {}\textquotesingle{}d\textquotesingle{}, {}\textquotesingle{}e\textquotesingle{}) \newline{}
}
\section{Tuple assignment}
\label{217}
It is often useful to swap the values of two variables.
With conventional assignments, you have to use a temporary
variable. For example, to swap a and b:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}temp {}= {}a \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}a {}= {}b \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}b {}= {}temp \newline{}
}
This solution is cumbersome; {\bfseries tuple assignment} is more elegant:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}a, {}b {}= {}b, {}a \newline{}
}
The left side is a tuple of variables; the right side is a tuple of
expressions. Each value is assigned to its respective variable.
All the expressions on the right side are evaluated before any
of the assignments.

The number of variables on the left and the number of
values on the right have to be the same:

\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}a, {}b {}= {}1, {}2, {}3 \newline{}
ValueError: {}too {}many {}values {}to {}unpack \newline{}
}
More generally, the right side can be any kind of sequence
(string, list or tuple). For example, to split an email address
into a user name and a domain, you could write:

\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}addr {}= {}\textquotesingle{}monty@python.org\textquotesingle{} \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}uname, {}domain {}= {}addr.split(\textquotesingle{}@\textquotesingle{}) \newline{}
}
The return value from split is a list with two elements;
the first element is assigned to uname, the second to
domain.
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}uname \newline{}
monty \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}domain \newline{}
python.org \newline{}
}
\section{Tuples as return values}
\label{218}
Strictly speaking, a function can only return one value, but
if the value is a tuple, the effect is the same as returning
multiple values. For example, if you want to divide two integers
and compute the quotient and remainder, it is inefficient to
compute x/y and then x\%y. It is better to compute
them both at the same time.

The built-{}in function divmod takes two arguments and
returns a tuple of two values, the quotient and remainder.
You can store the result as a tuple:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}t {}= {}divmod(7, {}3) \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}t \newline{}
(2, {}1) \newline{}
}
Or use tuple assignment to store the elements separately:

\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}quot, {}rem {}= {}divmod(7, {}3) \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}quot \newline{}
2 \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}rem \newline{}
1 \newline{}
}
Here is an example of a function that returns a tuple:
\TemplatePreformat{def {}min_max(t): \newline{}
 {} {} {} {}return {}min(t), {}max(t) \newline{}
}
max and min are built-{}in functions that find
the largest and smallest elements of a sequence. min_max
computes both and returns a tuple of two values.
\section{Variable-{}length argument tuples}
\label{219}
Functions can take a variable number of arguments. A parameter
name that begins with * {\bfseries gathers} arguments into
a tuple. For example, printall
takes any number of arguments and prints them:
\TemplatePreformat{def {}printall(*args): \newline{}
 {} {} {} {}print {}args \newline{}
}
The gather parameter can have any name you like, but args is
conventional. Here’s how the function works:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}printall(1, {}2.0, {}\textquotesingle{}3\textquotesingle{}) \newline{}
(1, {}2.0, {}\textquotesingle{}3\textquotesingle{}) \newline{}
}
You can combine the gather operator with required and positional
arguments:
\TemplatePreformat{def {}pointless(required, {}optional=0, {}*args): \newline{}
 {} {} {} {}print {}required, {}optional, {}args \newline{}
}
Run this function with 1, 2, 3 and 4 or more arguments and
make sure you understand what it does.

The complement of gather is {\bfseries scatter}. If you have a
sequence of values and you want to pass it to a function
as multiple arguments, you can use the * operator.
For example, divmod takes exactly two arguments; it
doesn’t work with a tuple:

\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}t {}= {}(7, {}3) \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}divmod(t) \newline{}
TypeError: {}divmod {}expected {}2 {}arguments, {}got {}1 \newline{}
}
But if you scatter the tuple, it works:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}divmod(*t) \newline{}
(2, {}1) \newline{}
}
\subsection{Exercise 1}
\label{220}
Many of the built-{}in functions use
variable-{}length argument tuples. For example, {\bfseries \textquotesingle{}max}\textquotesingle{}
and {\bfseries \textquotesingle{}min}\textquotesingle{} can take any number of arguments:{\itshape }

\TemplatePreformat{\textquotesingle{}\textquotesingle{}{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}max(1,2,3) \newline{}
3 \newline{}
\textquotesingle{}\textquotesingle{}}
{\itshape But {\bfseries \textquotesingle{}sum}\textquotesingle{} does not.}

{\itshape }
{\itshape }
\TemplatePreformat{\textquotesingle{}\textquotesingle{}{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}sum(1,2,3) \newline{}
TypeError: {}sum {}expected {}at {}most {}2 {}arguments, {}got {}3 \newline{}
\textquotesingle{}\textquotesingle{}}
{\itshape Write a function called {\bfseries \textquotesingle{}sumall}\textquotesingle{} that takes any number}
of arguments and returns their sum.{\itshape }
\section{Lists and tuples}
\label{221}
zip is a built-{}in function that takes two or more sequences and
“zips” them into a list1 of tuples where each tuple contains one element from each
sequence.

This example zips a string and a list:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}s {}= {}\textquotesingle{}abc\textquotesingle{} \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}t {}= {}{[}0, {}1, {}2{]} \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}zip(s, {}t) \newline{}
{[}(\textquotesingle{}a\textquotesingle{}, {}0), {}(\textquotesingle{}b\textquotesingle{}, {}1), {}(\textquotesingle{}c\textquotesingle{}, {}2){]} \newline{}
}
The result is a list of tuples where each tuple contains
a character from the string and the corresponding element from
the list.

If the sequences are not the same length, the result has the
length of the shorter one.
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}zip(\textquotesingle{}Anne\textquotesingle{}, {}\textquotesingle{}Elk\textquotesingle{}) \newline{}
{[}(\textquotesingle{}A\textquotesingle{}, {}\textquotesingle{}E\textquotesingle{}), {}(\textquotesingle{}n\textquotesingle{}, {}\textquotesingle{}l\textquotesingle{}), {}(\textquotesingle{}n\textquotesingle{}, {}\textquotesingle{}k\textquotesingle{}){]} \newline{}
}
You can use tuple assignment in a for loop to traverse a list of
tuples:

\TemplatePreformat{t {}= {}{[}(\textquotesingle{}a\textquotesingle{}, {}0), {}(\textquotesingle{}b\textquotesingle{}, {}1), {}(\textquotesingle{}c\textquotesingle{}, {}2){]} \newline{}
for {}letter, {}number {}in {}t: \newline{}
 {} {} {} {}print {}number, {}letter \newline{}
}
Each time through the loop, Python selects the next tuple in
the list and assigns the elements to letter and
number. The output of this loop is:

\TemplatePreformat{0 {}a \newline{}
1 {}b \newline{}
2 {}c \newline{}
}
If you combine zip, for and tuple assignment, you get a
useful idiom for traversing two (or more) sequences at the same
time. For example, has_match takes two sequences, t1 and
t2, and returns True if there is an index i
such that t1{[}i{]} == t2{[}i{]}:

\TemplatePreformat{def {}has_match(t1, {}t2): \newline{}
 {} {} {} {}for {}x, {}y {}in {}zip(t1, {}t2): \newline{}
 {} {} {} {} {} {} {} {}if {}x {}== {}y: \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}return {}True \newline{}
 {} {} {} {}return {}False \newline{}
}
If you need to traverse the elements of a sequence and their
indices, you can use the built-{}in function enumerate:

\TemplatePreformat{for {}index, {}element {}in {}enumerate(\textquotesingle{}abc\textquotesingle{}): \newline{}
 {} {} {} {}print {}index, {}element \newline{}
}
The output of this loop is:
\TemplatePreformat{0 {}a \newline{}
1 {}b \newline{}
2 {}c \newline{}
}
Again.
\section{Dictionaries and tuples}
\label{222}
Dictionaries have a method called items that returns a list of
tuples, where each tuple is a key-{}value pair2.
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}d {}= {}\{\textquotesingle{}a\textquotesingle{}:0, {}\textquotesingle{}b\textquotesingle{}:1, {}\textquotesingle{}c\textquotesingle{}:2\} \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}t {}= {}d.items() \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}t \newline{}
{[}(\textquotesingle{}a\textquotesingle{}, {}0), {}(\textquotesingle{}c\textquotesingle{}, {}2), {}(\textquotesingle{}b\textquotesingle{}, {}1){]} \newline{}
}
As you should expect from a dictionary, the items are in no
particular order.

Conversely, you can use a list of tuples to initialize
a new dictionary:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}t {}= {}{[}(\textquotesingle{}a\textquotesingle{}, {}0), {}(\textquotesingle{}c\textquotesingle{}, {}2), {}(\textquotesingle{}b\textquotesingle{}, {}1){]} \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}d {}= {}dict(t) \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}d \newline{}
\{\textquotesingle{}a\textquotesingle{}: {}0, {}\textquotesingle{}c\textquotesingle{}: {}2, {}\textquotesingle{}b\textquotesingle{}: {}1\} \newline{}
}
Combining dict with zip yields a concise way
to create a dictionary:

\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}d {}= {}dict(zip(\textquotesingle{}abc\textquotesingle{}, {}range(3))) \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}d \newline{}
\{\textquotesingle{}a\textquotesingle{}: {}0, {}\textquotesingle{}c\textquotesingle{}: {}2, {}\textquotesingle{}b\textquotesingle{}: {}1\} \newline{}
}
The dictionary method update also takes a list of tuples
and adds them, as key-{}value pairs, to an existing dictionary.

Combining items, tuple assignment and for, you
get the idiom for traversing the keys and values of a dictionary:
\TemplatePreformat{for {}key, {}val {}in {}d.items(): \newline{}
 {} {} {} {}print {}val, {}key \newline{}
}
The output of this loop is:
\TemplatePreformat{0 {}a \newline{}
2 {}c \newline{}
1 {}b \newline{}
}
Again.

It is common to use tuples as keys in dictionaries (primarily because
you can’t use lists). For example, a telephone directory might map
from last-{}name, first-{}name pairs to telephone numbers. Assuming
that we have defined last, first and number, we
could write:
\TemplatePreformat{directory{[}last,first{]} {}= {}number \newline{}
}
The expression in brackets is a tuple. We could use tuple
assignment to traverse this dictionary.

\TemplatePreformat{for {}last, {}first {}in {}directory: \newline{}
 {} {} {} {}print {}first, {}last, {}directory{[}last,first{]} \newline{}
}
This loop traverses the keys in directory, which are tuples. It
assigns the elements of each tuple to last and first, then
prints the name and corresponding telephone number.

There are two ways to represent tuples in a state diagram. The more
detailed version shows the indices and elements just as they appear in
a list. For example, the tuple (\textquotesingle{}Cleese\textquotesingle{}, \textquotesingle{}John\textquotesingle{}) would appear:

But in a larger diagram you might want to leave out the
details. For example, a diagram of the telephone directory might
appear:

Here the tuples are shown using Python syntax as a graphical
shorthand.

The telephone number in the diagram is the complaints line for the
BBC, so please don’t call it.
\section{Comparing tuples}
\label{223}
The comparison operators work with tuples and other sequences;
Python starts by comparing the first element from each
sequence. If they are equal, it goes on to the next elements,
and so on, until it finds elements that differ. Subsequent
elements are not considered (even if they are really big).
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}(0, {}1, {}2) {}{\mbox{$<$}} {}(0, {}3, {}4) \newline{}
True \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}(0, {}1, {}2000000) {}{\mbox{$<$}} {}(0, {}3, {}4) \newline{}
True \newline{}
}
The sort function works the same way. It sorts
primarily by first element, but in the case of a tie, it sorts
by second element, and so on.

This feature lends itself to a pattern called {\bfseries DSU} for
{\bfseries Decorate} a sequence by building a list of tuples
with one or more sort keys preceding the elements from the sequence,{\bfseries Sort} the list of tuples, and{\bfseries Undecorate} by extracting the sorted elements of the sequence.

For example, suppose you have a list of words and you want to
sort them from longest to shortest:
\TemplatePreformat{def {}sort_by_length(words): \newline{}
 {} {} {} {}t {}= {}{[}{]} \newline{}
 {} {} {} {}for {}word {}in {}words: \newline{}
 {} {} {} {} {} {} {}t.append((len(word), {}word)) \newline{}
 {} \newline{}
 {} {} {} {}t.sort(reverse=True) \newline{}
 {} \newline{}
 {} {} {} {}res {}= {}{[}{]} \newline{}
 {} {} {} {}for {}length, {}word {}in {}t: \newline{}
 {} {} {} {} {} {} {} {}res.append(word) \newline{}
 {} {} {} {}return {}res \newline{}
}
The first loop builds a list of tuples, where each
tuple is a word preceded by its length.

sort compares the first element, length, first, and
only considers the second element to break ties. The keyword argument
reverse=True tells sort to go in decreasing order.

The second loop traverses the list of tuples and builds a list of
words in descending order of length.
\subsection{Exercise 2}
\label{224}
In this example, ties are broken by comparing words, so words
with the same length appear in alphabetical order. For other
applications you might want to break ties at random. Modify
this example so that words with the same length appear in
random order. Hint: see the {\bfseries \textquotesingle{}random}\textquotesingle{} function in the
{\bfseries \textquotesingle{}random}\textquotesingle{} module.{\itshape }
\section{Sequences of sequences}
\label{225}
I have focused on lists of tuples, but almost all of the examples in
this chapter also work with lists of lists, tuples of tuples, and
tuples of lists. To avoid enumerating the possible combinations, it
is sometimes easier to talk about sequences of sequences.

In many contexts, the different kinds of sequences (strings, lists and
tuples) can be used interchangeably. So how and why do you choose one
over the others?

To start with the obvious, strings are more limited than other
sequences because the elements have to be characters. They are
also immutable. If you need the ability to change the characters
in a string (as opposed to creating a new string), you might
want to use a list of characters instead.

Lists are more common than tuples, mostly because they are mutable.
But there are a few cases where you might prefer tuples:

\begin{myitemize}
\item{} In some contexts, like a return statement, it is syntactically simpler to create a tuple than a list. In other contexts, you might prefer a list.
\item{} If you want to use a sequence as a dictionary key, you have to use an immutable type like a tuple or string.
\item{} If you are passing a sequence as an argument to a function, using tuples reduces the potential for unexpected behavior due to aliasing.
\end{myitemize}

Because tuples are immutable, they don’t provide methods
like sort and reverse, which modify existing lists.
But Python provides the built-{}in functions sorted
and reversed, which take any sequence as a parameter
and return a new list with the same elements in a different
order.
\section{Debugging}
\label{226}
Lists, dictionaries and tuples are known generically as {\bfseries data}
structures{\bfseries ; in this chapter we are starting to see compound data}
structures, like lists of tuples, and dictionaries that contain tuples
as keys and lists as values. Compound data structures are useful, but
they are prone to what I call {\bfseries shape errors}; that is, errors
caused when a data structure has the wrong type, size or composition.
For example, if you are expecting a list with one integer and I
give you a plain old integer (not in a list), it won’t work.

To help debug these kinds of errors, I have written a module
called structshape that provides a function, also called
structshape, that takes any kind of data structure as
an argument and returns a string that summarizes its shape.
You can download it from thinkpython.com/code/structshape.py

Here’s the result for a simple list:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}from {}structshape {}import {}structshape \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}t {}= {}{[}1,2,3{]} \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}structshape(t) \newline{}
list {}of {}3 {}int \newline{}
}
A fancier program might write “list of 3 int{\itshape s},” but it
was easier not to deal with plurals. Here’s a list of lists:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}t2 {}= {}{[}{[}1,2{]}, {}{[}3,4{]}, {}{[}5,6{]}{]} \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}structshape(t2) \newline{}
list {}of {}3 {}list {}of {}2 {}int \newline{}
}
If the elements of the list are not the same type,
structshape groups them, in order, by type:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}t3 {}= {}{[}1, {}2, {}3, {}4.0, {}\textquotesingle{}5\textquotesingle{}, {}\textquotesingle{}6\textquotesingle{}, {}{[}7{]}, {}{[}8{]}, {}9{]} \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}structshape(t3) \newline{}
list {}of {}(3 {}int, {}float, {}2 {}str, {}2 {}list {}of {}int, {}int) \newline{}
}
Here’s a list of tuples:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}s {}= {}\textquotesingle{}abc\textquotesingle{} \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}lt {}= {}zip(t, {}s) \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}structshape(lt) \newline{}
list {}of {}3 {}tuple {}of {}(int, {}str) \newline{}
}
And here’s a dictionary with 3 items that map integers to strings.
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}d {}= {}dict(lt) {} \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}structshape(d) \newline{}
dict {}of {}3 {}int-{}{\mbox{$>$}}str \newline{}
}
If you are having trouble keeping track of your data structures,
structshape can help.
\section{Glossary}
\label{227}
{\bfseries tuple:} An immutable sequence of elements.
{\bfseries tuple assignment:} An assignment with a sequence on the
right side and a tuple of variables on the left. The right
side is evaluated and then its elements are assigned to the
variables on the left.

{\bfseries gather:} The operation of assembling a variable-{}length
argument tuple.
{\bfseries scatter:} The operation of treating a sequence as a list of
arguments.
{\bfseries DSU:} Abbreviation of “decorate-{}sort-{}undecorate,” a
pattern that involves building a list of tuples, sorting, and
extracting part of the result.
{\bfseries data structure:} A collection of related values, often
organized in lists, dictionaries, tuples, etc.
{\bfseries shape (of a data structure):} A summary of the type,
size and composition of a data structure.

\section{Exercises}
\label{228}
\subsection{Exercise 3}
\label{229}
Write a function called {\itshape }most_frequent{\itshape }{\itshape } that takes a string and
prints the letters in decreasing order of frequency. Find text
samples from several different languages and see how letter frequency
varies between languages. Compare your results with the tables at
{\bfseries \textquotesingle{}wikipedia.org/wiki/Letter_frequencies}\textquotesingle{}.{\itshape }
\subsection{Exercise 4}
\label{230}
{\itshape More anagrams!}

\begin{myitemize}
\item{} {\itshape Write a program}
\end{myitemize}

that reads a word list from a file (see Section {\bfseries \textquotesingle{}9.1}\textquotesingle{}) and
prints all the sets of words that are anagrams.{\itshape }
{\itshape Here is an example of what the output might look like:}
\TemplatePreformat{\textquotesingle{}\textquotesingle{}{[}\textquotesingle{}deltas\textquotesingle{}, {}\textquotesingle{}desalt\textquotesingle{}, {}\textquotesingle{}lasted\textquotesingle{}, {}\textquotesingle{}salted\textquotesingle{}, {}\textquotesingle{}slated\textquotesingle{}, {}\textquotesingle{}staled\textquotesingle{}{]} \newline{}
{[}\textquotesingle{}retainers\textquotesingle{}, {}\textquotesingle{}ternaries\textquotesingle{}{]} \newline{}
{[}\textquotesingle{}generating\textquotesingle{}, {}\textquotesingle{}greatening\textquotesingle{}{]} \newline{}
{[}\textquotesingle{}resmelts\textquotesingle{}, {}\textquotesingle{}smelters\textquotesingle{}, {}\textquotesingle{}termless\textquotesingle{}{]} \newline{}
\textquotesingle{}\textquotesingle{}}
{\itshape Hint: you might want to build a dictionary that maps from a}
set of letters to a list of words that can be spelled with those
letters. The question is, how can you represent the set of
letters in a way that can be used as a key?{\itshape }

\begin{myitemize}
\item{} {\itshape Modify the previous program so that it prints the largest set}
\end{myitemize}

of anagrams first, followed by the second largest set, and so on.{\itshape }
{\itshape }
{\itshape }

\begin{myitemize}
\item{} {\itshape In Scrabble a “bingo” is when you play all seven tiles in}
\end{myitemize}

your rack, along with a letter on the board, to form an eight-{}letter
word. What set of 8 letters forms the most possible bingos?
Hint: there are seven.{\itshape }

\begin{myitemize}
\item{} {\bfseries \textquotesingle{}Two words form a “metathesis pair” if you can transform one}
\end{myitemize}

into the other by swapping two letters{\bfseries \textquotesingle{}}\textquotesingle{}3{\bfseries \textquotesingle{}}{\bfseries }\textquotesingle{}; for example,
“converse” and “conserve.” Write a program that finds all of
the metathesis pairs in the dictionary. Hint: don’t test all pairs
of words, and don’t test all possible swaps.{\bfseries \textquotesingle{}}
{\bfseries \textquotesingle{}You can download a solution from }{\bfseries {\itshape thinkpython.com/code/anagram_sets.py}}{\itshape {\bfseries }}{\bfseries .}\textquotesingle{}
\subsection{Exercise 5}
\label{231}
{\itshape Here’s another Car Talk Puzzler}{\itshape 4}{\itshape :}
{\itshape }
What is the longest English word, that remains a valid English word,
as you remove its letters one at a time?{\itshape }
{\itshape Now, letters can be removed from either end, or the middle, but you}
can’t rearrange any of the letters. Every time you drop a letter, you
wind up with another English word. If you do that, you’re eventually
going to wind up with one letter and that too is going to be an
English word—one that’s found in the dictionary. I want to know
what’s the longest word and how many letters does it
have?{\itshape }

{\itshape I’m going to give you a little modest example: Sprite. Ok? You start}
off with sprite, you take a letter off, one from the interior of the
word, take the r away, and we’re left with the word spite, then we
take the e off the end, we’re left with spit, we take the s off, we’re
left with pit, it, and I.
{\itshape }

{\itshape }
{\itshape }

{\itshape Write a program to find all words that can be reduced in this way,}
and then find the longest one.{\itshape }

{\itshape This exercise is a little more challenging than most, so here are}
some suggestions:{\itshape }

\begin{myitemize}
\item{} {\itshape You might want to write a function that takes a word and}
\end{myitemize}

computes a list of all the words that can be formed by removing one
letter. These are the “children” of the word.{\itshape }
{\itshape }
{\itshape }

\begin{myitemize}
\item{} {\itshape Recursively, a word is reducible if any of its children}
\end{myitemize}

are reducible. As a base case, you can consider the empty
string reducible.{\itshape }

\begin{myitemize}
\item{} {\itshape The wordlist I provided, {\bfseries \textquotesingle{}words.txt}\textquotesingle{}, doesn’t}
\end{myitemize}

contain single letter words. So you might want to add
“I”, “a”, and the empty string.{\itshape }

\begin{myitemize}
\item{} {\itshape To improve the performance of your program, you might want}
\end{myitemize}

to memoize the words that are known to be reducible.{\itshape }

{\itshape You can see my solution at {\bfseries \textquotesingle{}thinkpython.com/code/reducible.py}\textquotesingle{}.}

1In Python 3.0, zip returns an
iterator of tuples, but for most purposes, an iterator behaves like
a list.
2This behavior is
slightly different in Python 3.0.
3This exercise is
inspired by an example at puzzlers.org.
4
www.cartalk.com/content/puzzler/transcripts/200651

= Case study: data structure selection\}\}

\label{232}
\LaTeXNullTemplate{}
\section{Word frequency analysis}
\label{233}
As usual, you should at least attempt the following exercises
before you read my solutions.
\subsection{Exercise 1}
\label{234}
Write a program that reads a file, breaks each line into
words, strips whitespace and punctuation from the words, and
converts them to lowercase.

{\itshape Hint: The {\bfseries \textquotesingle{}string}\textquotesingle{} module provides strings named {\bfseries \textquotesingle{}whitespace}\textquotesingle{},}
which contains space, tab, newline, etc., and {\bfseries \textquotesingle{}punctuation}\textquotesingle{} which contains the punctuation characters. Let’s see
if we can make Python swear:{\itshape }

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{>>>\ensuremath{\text{ }}}\CharTok{import}\ensuremath{\text{ }}\NormalTok{string}\newline
\NormalTok{>>>\ensuremath{\text{ }}}\KeywordTok{print}\ensuremath{\text{ }}\NormalTok{string.punctuation}\newline
\NormalTok{!}\StringTok{"#\$\%\&{\char13}()*+,-./:;<=>?@[\textbackslash{}]^_{\char18}\{\textbar{}\}~}\newline
\end{Highlighting}
\end{Shaded}

{\itshape Also, you might consider using the string methods {\bfseries \textquotesingle{}strip}\textquotesingle{},}
{\bfseries \textquotesingle{}replace}\textquotesingle{} and {\bfseries \textquotesingle{}translate}\textquotesingle{}.{\itshape }
\subsection{Exercise 2}
\label{235}
{\itshape Go to Project Gutenberg ({\bfseries \textquotesingle{}gutenberg.org}\textquotesingle{}) and download }
your favorite out-{}of-{}copyright book in plain text format.{\itshape }

{\itshape Modify your program from the previous exercise to read the book}
you downloaded, skip over the header information at the beginning
of the file, and process the rest of the words as before.{\itshape }

{\itshape Then modify the program to count the total number of words in}
the book, and the number of times each word is used.{\itshape }

{\itshape Print the number of different words used in the book. Compare}
different books by different authors, written in different eras.
Which author uses the most extensive vocabulary?
{\itshape }
\subsection{Exercise 3}
\label{236}
Modify the program from the previous exercise to print the
20 most frequently-{}used words in the book.
\subsection{Exercise 4}
\label{237}
Modify the previous program to read a word list (see
Section {\bfseries \textquotesingle{}9.1}\textquotesingle{}) and then print all the words in the book that
are not in the word list. How many of them are typos? How many of
them are common words that {\itshape should} be in the word list, and how
many of them are really obscure?
\section{Random numbers}
\label{238}
Given the same inputs, most computer programs generate the same
outputs every time, so they are said to be {\bfseries deterministic}.
Determinism is usually a good thing, since we expect the same
calculation to yield the same result. For some applications, though,
we want the computer to be unpredictable. Games are an obvious
example, but there are more.

Making a program truly nondeterministic turns out to be not so easy,
but there are ways to make it at least seem nondeterministic. One of
them is to use algorithms that generate {\bfseries pseudorandom} numbers.
Pseudorandom numbers are not truly random because they are generated
by a deterministic computation, but just by looking at the numbers it
is all but impossible to distinguish them from random.

The random module provides functions that generate
pseudorandom numbers (which I will simply call “random” from
here on).

The function random returns a random float
between 0.0 and 1.0 (including 0.0 but not 1.0). Each time you
call random, you get the next number in a long series. To see a
sample, run this loop:
\TemplatePreformat{import {}random \newline{}
 {} \newline{}
for {}i {}in {}range(10): \newline{}
 {} {} {} {}x {}= {}random.random() \newline{}
 {} {} {} {}print {}x \newline{}
}
The function randint takes parameters low and
high and returns an integer between low and
high (including both).

\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}random.randint(5, {}10) \newline{}
5 \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}random.randint(5, {}10) \newline{}
9 \newline{}
}
To choose an element from a sequence at random, you can use
choice:

\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}t {}= {}{[}1, {}2, {}3{]} \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}random.choice(t) \newline{}
2 \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}random.choice(t) \newline{}
3 \newline{}
}
The random module also provides functions to generate
random values from continuous distributions including
Gaussian, exponential, gamma, and a few more.
\subsection{Exercise 5}
\label{239}
{\itshape Write a function named }{\itshape choose_from_hist}{\itshape that takes}
a histogram as defined in Section {\bfseries \textquotesingle{}11.1}\textquotesingle{} and returns a
random value from the histogram, chosen with probability
in proportion to frequency. For example, for this histogram:{\itshape }
\TemplatePreformat{\textquotesingle{}\textquotesingle{}{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}t {}= {}{[}\textquotesingle{}a\textquotesingle{}, {}\textquotesingle{}a\textquotesingle{}, {}\textquotesingle{}b\textquotesingle{}{]} \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}h {}= {}histogram(t) \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}h \newline{}
\{\textquotesingle{}a\textquotesingle{}: {}2, {}\textquotesingle{}b\textquotesingle{}: {}1\} \newline{}
\textquotesingle{}\textquotesingle{}}
{\itshape your function should {\bfseries \textquotesingle{}’a’}\textquotesingle{} with probability {\bfseries \textquotesingle{}2/3}\textquotesingle{} and }{\bfseries b}{\itshape }
with probability {\bfseries \textquotesingle{}1/3}\textquotesingle{}.
\section{Word histogram}
\label{240}
Here is a program that reads a file and builds a histogram of the
words in the file:

\TemplatePreformat{import {}string \newline{}
 {} \newline{}
def {}process_file(filename): \newline{}
 {} {} {} {}h {}= {}dict() \newline{}
 {} {} {} {}fp {}= {}open(filename) \newline{}
 {} {} {} {}for {}line {}in {}fp: \newline{}
 {} {} {} {} {} {} {} {}process_line(line, {}h) \newline{}
 {} {} {} {}return {}h \newline{}
 {} \newline{}
def {}process_line(line, {}h): \newline{}
 {} {} {} {}line {}= {}line.replace(\textquotesingle{}-{}\textquotesingle{}, {}\textquotesingle{} {}\textquotesingle{}) \newline{}
 {} {} {} {} \newline{}
 {} {} {} {}for {}word {}in {}line.split(): \newline{}
 {} {} {} {} {} {} {} {}word {}= {}word.strip(string.punctuation {}+ {}string.whitespace) \newline{}
 {} {} {} {} {} {} {} {}word {}= {}word.lower() \newline{}
 {} \newline{}
 {} {} {} {} {} {} {} {}h{[}word{]} {}= {}h.get(word, {}0) {}+ {}1 \newline{}
 {} \newline{}
hist {}= {}process_file(\textquotesingle{}emma.txt\textquotesingle{}) \newline{}
}
This program reads emma.txt, which contains the text of {\itshape Emma} by Jane Austen.

process_file loops through the lines of the file,
passing them one at a time to process_line. The histogram
h is being used as an accumulator.

process_line uses the string method replace to replace
hyphens with spaces before using split to break the line into a
list of strings. It traverses the list of words and uses strip
and lower to remove punctuation and convert to lower case. (It
is a shorthand to say that strings are “converted;” remember that
string are immutable, so methods like strip and lower
return new strings.)

Finally, process_line updates the histogram by creating a new
item or incrementing an existing one.

To count the total number of words in the file, we can add up
the frequencies in the histogram:
\TemplatePreformat{def {}total_words(h): \newline{}
 {} {} {} {}return {}sum(h.values()) \newline{}
}
The number of different words is just the number of items in
the dictionary:
\TemplatePreformat{def {}different_words(h): \newline{}
 {} {} {} {}return {}len(h) \newline{}
}
Here is some code to print the results:
\TemplatePreformat{print {}\textquotesingle{}Total {}number {}of {}words:\textquotesingle{}, {}total_words(hist) \newline{}
print {}\textquotesingle{}Number {}of {}different {}words:\textquotesingle{}, {}different_words(hist) \newline{}
}
And the results:
\TemplatePreformat{Total {}number {}of {}words: {}161073 \newline{}
Number {}of {}different {}words: {}7212 \newline{}
}
\section{Most common words}
\label{241}
To find the most common words, we can apply the DSU pattern;
most_common takes a histogram and returns a list of
word-{}frequency tuples, sorted in reverse order by frequency:
\TemplatePreformat{def {}most_common(h): \newline{}
 {} {} {} {}t {}= {}{[}{]} \newline{}
 {} {} {} {}for {}key, {}value {}in {}h.items(): \newline{}
 {} {} {} {} {} {} {} {}t.append((value, {}key)) \newline{}
 {} \newline{}
 {} {} {} {}t.sort(reverse=True) \newline{}
 {} {} {} {}return {}t \newline{}
}
Here is a loop that prints the ten most common words:
\TemplatePreformat{t {}= {}most_common(hist) \newline{}
print {}\textquotesingle{}The {}most {}common {}words {}are:\textquotesingle{} \newline{}
for {}freq, {}word {}in {}t{[}0:10{]}: \newline{}
 {} {} {} {}print {}word, {}\textquotesingle{}\textbackslash{}t\textquotesingle{}, {}freq \newline{}
}
And here are the results from {\itshape Emma}:
\TemplatePreformat{The {}most {}common {}words {}are: \newline{}
to {} {} {} {} {} {}5242 \newline{}
the {} {} {} {} {}5204 \newline{}
and {} {} {} {} {}4897 \newline{}
of {} {} {} {} {} {}4293 \newline{}
i {} {} {} {} {} {} {}3191 \newline{}
a {} {} {} {} {} {} {}3130 \newline{}
it {} {} {} {} {} {}2529 \newline{}
her {} {} {} {} {}2483 \newline{}
was {} {} {} {} {}2400 \newline{}
she {} {} {} {} {}2364 \newline{}
}
\section{Optional parameters}
\label{242}
We have seen built-{}in functions and methods that take a variable
number of arguments. It is possible to write user-{}defined functions
with optional arguments, too. For example, here is a function that
prints the most common words in a histogram
\TemplatePreformat{def {}print_most_common(hist, {}num=10) \newline{}
 {} {} {} {}t {}= {}most_common(hist) \newline{}
 {} {} {} {}print {}\textquotesingle{}The {}most {}common {}words {}are:\textquotesingle{} \newline{}
 {} {} {} {}for {}freq, {}word {}in {}t{[}0:num{]}: \newline{}
 {} {} {} {} {} {} {} {}print {}word, {}\textquotesingle{}\textbackslash{}t\textquotesingle{}, {}freq \newline{}
}
The first parameter is required; the second is optional.
The {\bfseries default value} of num is 10.

If you only provide one argument:
\TemplatePreformat{print_most_common(hist) \newline{}
}
num gets the default value. If you provide two arguments:
\TemplatePreformat{print_most_common(hist, {}20) \newline{}
}
num gets the value of the argument instead. In other
words, the optional argument {\bfseries overrides} the default value.

If a function has both required and optional parameters, all
the required parameters have to come first, followed by the
optional ones.
\section{Dictionary subtraction}
\label{243}
Finding the words from the book that are not in the word list
from words.txt is a problem you might recognize as set
subtraction; that is, we want to find all the words from one
set (the words in the book) that are not in another set (the
words in the list).

subtract takes dictionaries d1 and d2 and returns a
new dictionary that contains all the keys from d1 that are not
in d2. Since we don’t really care about the values, we
set them all to None.
\TemplatePreformat{def {}subtract(d1, {}d2): \newline{}
 {} {} {} {}res {}= {}dict() \newline{}
 {} {} {} {}for {}key {}in {}d1: \newline{}
 {} {} {} {} {} {} {} {}if {}key {}not {}in {}d2: \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}res{[}key{]} {}= {}None \newline{}
 {} {} {} {}return {}res \newline{}
}
To find the words in the book that are not in words.txt,
we can use process_file to build a histogram for
words.txt, and then subtract:
\TemplatePreformat{words {}= {}process_file(\textquotesingle{}words.txt\textquotesingle{}) \newline{}
diff {}= {}subtract(hist, {}words) \newline{}
 {} \newline{}
print {}\symbol{34}The {}words {}in {}the {}book {}that {}aren\textquotesingle{}t {}in {}the {}word {}list {}are:\symbol{34} \newline{}
for {}word {}in {}diff.keys(): \newline{}
 {} {} {} {}print {}word, \newline{}
}
Here are some of the results from {\itshape Emma}:
\TemplatePreformat{The {}words {}in {}the {}book {}that {}aren\textquotesingle{}t {}in {}the {}word {}list {}are: \newline{}
 {}rencontre {}jane\textquotesingle{}s {}blanche {}woodhouses {}disingenuousness {} \newline{}
friend\textquotesingle{}s {}venice {}apartment {}... \newline{}
}
Some of these words are names and possessives. Others, like
“rencontre,” are no longer in common use. But a few are common
words that should really be in the list!
\subsection{Exercise 6}
\label{244}
{\itshape Python provides a data structure called {\bfseries \textquotesingle{}set}\textquotesingle{} that provides many}
common set operations. Read the documentation at
{\bfseries \textquotesingle{}docs.python.org/lib/types-{}set.html}\textquotesingle{} and write a program
that uses set subtraction to find words in the book that are not in
the word list.
\section{Random words}
\label{245}
To choose a random word from the histogram, the simplest algorithm
is to build a list with multiple copies of each word, according
to the observed frequency, and then choose from the list:
\TemplatePreformat{def {}random_word(h): \newline{}
 {} {} {} {}t {}= {}{[}{]} \newline{}
 {} {} {} {}for {}word, {}freq {}in {}h.items(): \newline{}
 {} {} {} {} {} {} {} {}t.extend({[}word{]} {}* {}freq) \newline{}
 {} \newline{}
 {} {} {} {}return {}random.choice(t) \newline{}
}
The expression {[}word{]} * freq creates a list with freq
copies of the string word. The extend
method is similar to append except that the argument is
a sequence.
\subsection{Exercise 7}
\label{246}
{\itshape This algorithm works, but it is not very efficient; each time you}
choose a random word, it rebuilds the list, which is as big as
the original book. An obvious improvement is to build the list
once and then make multiple selections, but the list is still big.{\itshape }

{\itshape An alternative is:}

\begin{myitemize}
\item{} {\itshape Use {\bfseries \textquotesingle{}keys}\textquotesingle{} to get a list of the words in the book.}
\end{myitemize}

\begin{myitemize}
\item{} {\itshape Build a list that contains the cumulative sum of the word}
\end{myitemize}

frequencies (see Exercise {\bfseries \textquotesingle{}10.1}\textquotesingle{}). The last item
in this list is the total number of words in the book, {\bfseries \textquotesingle{}n}\textquotesingle{}.{\itshape }

\begin{myitemize}
\item{} {\itshape Choose a random number from 1 to {\bfseries \textquotesingle{}n}\textquotesingle{}. Use a bisection search}
\end{myitemize}

(See Exercise {\bfseries \textquotesingle{}10.8}\textquotesingle{}) to find the index where the random
number would be inserted in the cumulative sum.{\itshape }

\begin{myitemize}
\item{} {\itshape Use the index to find the corresponding word in the word list.}
\end{myitemize}

{\itshape Write a program that uses this algorithm to choose a random}
word from the book.
\section{Markov analysis}
\label{247}
If you choose words from the book at random, you can get a
sense of the vocabulary, you probably won’t get a sentence:
\TemplatePreformat{this {}the {}small {}regard {}harriet {}which {}knightley\textquotesingle{}s {}it {}most {}things \newline{}
}
A series of random words seldom makes sense because there
is no relationship between successive words. For example, in
a real sentence you would expect an article like “the” to
be followed by an adjective or a noun, and probably not a verb
or adverb.

One way to measure these kinds of relationships is Markov
analysis, which characterizes, for a given sequence of words,
the probability of the word that comes next. For example,
the song {\itshape Eric, the Half a Bee} begins:

Half a bee, philosophically, \newline{}

Must, ipso facto, half not be. \newline{}

But half the bee has got to be \newline{}

Vis a vis, its entity. D’you see? \newline{}

But can a bee be said to be \newline{}

Or not to be an entire bee \newline{}

When half the bee is not a bee \newline{}

Due to some ancient injury? \newline{}

In this text,
the phrase “half the” is always followed by the word “bee,”
but the phrase “the bee” might be followed by either
“has” or “is”.

The result of Markov analysis is a mapping from each prefix
(like “half the” and “the bee”) to all possible suffixes
(like “has” and “is”).

Given this mapping, you can generate a random text by
starting with any prefix and choosing at random from the
possible suffixes. Next, you can combine the end of the
prefix and the new suffix to form the next prefix, and repeat.

For example, if you start with the prefix “Half a,” then the
next word has to be “bee,” because the prefix only appears
once in the text. The next prefix is “a bee,” so the
next suffix might be “philosophically,” “be” or “due.”

In this example the length of the prefix is always two, but
you can do Markov analysis with any prefix length. The length
of the prefix is called the “order” of the analysis.
\subsection{Exercise 8}
\label{248}
Markov analysis:{\itshape }

\begin{myitemize}
\item{} {\itshape Write a program to read a text from a file and perform Markov analysis. The result should be a dictionary that maps from prefixes to a collection of possible suffixes. The collection might be a list, tuple, or dictionary; it is up to you to make an appropriate choice. You can test your program with prefix length two, but you should write the program in a way that makes it easy to try other lengths.}
\item{} {\itshape Add a function to the previous program to generate random text based on the Markov analysis. Here is an example from }Emma{\itshape with prefix length 2:}
\end{myitemize}

He was very clever, be it sweetness or be angry, ashamed or only
amused, at such a stroke. She had never thought of Hannah till you
were never meant for me?\symbol{34} \symbol{34}I cannot make speeches, Emma:\symbol{34} he soon cut
it all himself.

{\itshape For this example, I left the punctuation attached to the words. The result is almost syntactically correct, but not quite. Semantically, it almost makes sense, but not quite.}
\begin{myitemize}
\item{} {\itshape What happens if you increase the prefix length? Does the random text make more sense?}
\item{} {\itshape Once your program is working, you might want to try a mash-{}up: if you analyze text from two or more books, the random text you generate will blend the vocabulary and phrases from the sources in interesting ways.}
\end{myitemize}

\section{Data structures}
\label{249}
Using Markov analysis to generate random text is fun, but there is
also a point to this exercise: data structure selection. In your
solution to the previous exercises, you had to choose:

\begin{myitemize}
\item{} How to represent the prefixes.
\end{myitemize}

\begin{myitemize}
\item{} How to represent the collection of possible suffixes.
\end{myitemize}

\begin{myitemize}
\item{} How to represent the mapping from each prefix to the collection of possible suffixes.
\end{myitemize}

Ok, the last one is the easy; the only mapping type we have
seen is a dictionary, so it is the natural choice.

For the prefixes, the most obvious options are string,
list of strings, or tuple of strings. For the suffixes,
one option is a list; another is a histogram (dictionary).

How should you choose? The first step is to think about
the operations you will need to implement for each data structure.
For the prefixes, we need to be able to remove words from
the beginning and add to the end. For example, if the current
prefix is “Half a,” and the next word is “bee,” you need
to be able to form the next prefix, “a bee.”

Your first choice might be a list, since it is easy to add
and remove elements, but we also need to be able to use the
prefixes as keys in a dictionary, so that rules out lists.
With tuples, you can’t append or remove, but you can use
the addition operator to form a new tuple:
\TemplatePreformat{def {}shift(prefix, {}word): \newline{}
 {} {} {} {}return {}prefix{[}1:{]} {}+ {}(word,) \newline{}
}
shift takes a tuple of words, prefix, and a string,
word, and forms a new tuple that has all the words
in prefix except the first, and word added to
the end.

For the collection of suffixes, the operations we need to
perform include adding a new suffix (or increasing the frequency
of an existing one), and choosing a random suffix.

Adding a new suffix is equally easy for the list implementation
or the histogram. Choosing a random element from a list
is easy; choosing from a histogram is harder to do
efficiently (see Exercise 13.7).

So far we have been talking mostly about ease of implementation,
but there are other factors to consider in choosing data structures.
One is run time. Sometimes there is a theoretical reason to expect
one data structure to be faster than other; for example, I mentioned
that the in operator is faster for dictionaries than for lists,
at least when the number of elements is large.

But often you don’t know ahead of time which implementation will
be faster. One option is to implement both of them and see which
is better. This approach is called {\bfseries benchmarking}. A practical
alternative is to choose the data structure that is
easiest to implement, and then see if it is fast enough for the
intended application. If so, there is no need to go on. If not,
there are tools, like the profile module, that can identify
the places in a program that take the most time.

The other factor to consider is storage space. For example, using a
histogram for the collection of suffixes might take less space because
you only have to store each word once, no matter how many times it
appears in the text. In some cases, saving space can also make your
program run faster, and in the extreme, your program might not run at
all if you run out of memory. But for many applications, space is a
secondary consideration after run time.

One final thought: in this discussion, I have implied that
we should use one data structure for both analysis and generation. But
since these are separate phases, it would also be possible to use one
structure for analysis and then convert to another structure for
generation. This would be a net win if the time saved during
generation exceeded the time spent in conversion.
\section{Debugging}
\label{250}
When you are debugging a program, and especially if you are
working on a hard bug, there are four things to try:
{\bfseries reading:} Examine your code, read it back to yourself, and
check that it says what you meant to say.{\bfseries running:} Experiment by making changes and running different
versions. Often if you display the right thing at the right place
in the program, the problem becomes obvious, but sometimes you have to
spend some time to build scaffolding.{\bfseries ruminating:} Take some time to think! What kind of error
is it: syntax, runtime, semantic? What information can you get from
the error messages, or from the output of the program? What kind of
error could cause the problem you’re seeing? What did you change
last, before the problem appeared?{\bfseries retreating:} At some point, the best thing to do is back
off, undoing recent changes, until you get back to a program that
works and that you understand. Then you can starting rebuilding.
Beginning programmers sometimes get stuck on one of these activities
and forget the others. Each activity comes with its own failure
mode.

For example, reading your code might help if the problem is a
typographical error, but not if the problem is a conceptual
misunderstanding. If you don’t understand what your program does, you
can read it 100 times and never see the error, because the error is in
your head.

Running experiments can help, especially if you run small, simple
tests. But if you run experiments without thinking or reading your
code, you might fall into a pattern I call “random walk programming,”
which is the process of making random changes until the program
does the right thing. Needless to say, random walk programming
can take a long time.

You have to take time to think. Debugging is like an
experimental science. You should have at least one hypothesis about
what the problem is. If there are two or more possibilities, try to
think of a test that would eliminate one of them.

Taking a break helps with the thinking. So does talking.
If you explain the problem to someone else (or even yourself), you
will sometimes find the answer before you finish asking the question.

But even the best debugging techniques will fail if there are too many
errors, or if the code you are trying to fix is too big and
complicated. Sometimes the best option is to retreat, simplifying the
program until you get to something that works and that you
understand.

Beginning programmers are often reluctant to retreat because
they can’t stand to delete a line of code (even if it’s wrong).
If it makes you feel better, copy your program into another file
before you start stripping it down. Then you can paste the pieces
back in a little bit at a time.

Finding a hard bug requires reading, running, ruminating, and
sometimes retreating. If you get stuck on one of these activities,
try the others.
\section{Glossary}
\label{251}
{\bfseries deterministic:} Pertaining to a program that does the same
thing each time it runs, given the same inputs.
{\bfseries pseudorandom:} Pertaining to a sequence of numbers that appear
to be random, but are generated by a deterministic program.
{\bfseries default value:} The value given to an optional parameter if no
argument is provided.
{\bfseries override:} To replace a default value with an argument.
{\bfseries benchmarking:} The process of choosing between data structures
by implementing alternatives and testing them on a sample of the
possible inputs.

\section{Exercises}
\label{252}
\subsection{Exercise 9}
\label{253}
{\itshape The “rank” of a word is its position in a list of words}
sorted by frequency: the most common word has rank 1, the
second most common has rank 2, etc.{\itshape }

{\itshape Zipf’s law describes a relationship between the ranks and frequencies}
of words in natural languages{\itshape }1{\itshape }{\itshape }. Specifically, it
predicts that the frequency, {\bfseries \textquotesingle{}f}\textquotesingle{}, of the word with rank {\bfseries \textquotesingle{}r}\textquotesingle{} is:{\itshape }
{\itshape f = c r}{\itshape −s}{\itshape }

{\itshape }
where {\bfseries \textquotesingle{}s}\textquotesingle{} and {\bfseries \textquotesingle{}c}\textquotesingle{} are parameters that depend on the language and the
text. If you take the logarithm of both sides of this equation, you
get:{\itshape }

\label{256}
\LaTeXNullTemplate{}
\section{Persistence}
\label{257}

Most of the programs we have seen so far are transient in the
sense that they run for a short time and produce some output,
but when they end, their data disappears. If you run the program
again, it starts with a clean slate.

Other programs are {\bfseries persistent}: they run for a long time
(or all the time); they keep at least some of their data
in permanent storage (a hard drive, for example); and
if they shut down and restart, they pick up where they left off.

Examples of persistent programs are operating systems, which
run pretty much whenever a computer is on, and web servers,
which run all the time, waiting for requests to come in on
the network.

One of the simplest ways for programs to maintain their data
is by reading and writing text files. We have already seen
programs that read text files; in this chapters we will see programs
that write them.

An alternative is to store the state of the program in a database.
In this chapter I will present a simple database and a module,
pickle, that makes it easy to store program data.
\section{Reading and writing}
\label{258}
A text file is a sequence of characters stored on a permanent
medium like a hard drive, flash memory, or CD-{}ROM. We saw how
to open and read a file in Section 9.1.

To write a file, you have to open it with mode
\textquotesingle{}w\textquotesingle{} as a second parameter:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}fout {}= {}open(\textquotesingle{}output.txt\textquotesingle{}, {}\textquotesingle{}w\textquotesingle{}) \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}fout \newline{}
{\mbox{$<$}}open {}file {}\textquotesingle{}output.txt\textquotesingle{}, {}mode {}\textquotesingle{}w\textquotesingle{} {}at {}0xb7eb2410{\mbox{$>$}} \newline{}
}
If the file already exists, opening it in write mode clears out
the old data and starts fresh, so be careful!
If the file doesn’t exist, a new one is created.

The write method puts data into the file.
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}line1 {}= {}\symbol{34}This {}here\textquotesingle{}s {}the {}wattle,\textbackslash{}n\symbol{34} \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}fout.write(line1) \newline{}
}
Again, the file object keeps track of where it is, so if
you call write again, it adds the new data to the end.
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}line2 {}= {}\symbol{34}the {}emblem {}of {}our {}land.\textbackslash{}n\symbol{34} \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}fout.write(line2) \newline{}
}
When you are done writing, you have to close the file.
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}fout.close() \newline{}
}
\section{Format operator}
\label{259}
The argument of write has to be a string, so if we want
to put other values in a file, we have to convert them to
strings. The easiest way to do that is with str:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}x {}= {}52 \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}f.write(str(x)) \newline{}
}
An alternative is to use the {\bfseries format operator}, \%. When
applied to integers, \% is the modulus operator. But
when the first operand is a string, \% is the format operator.

The first operand is the {\bfseries format string}, and the second operand
is a tuple of expressions. The result is a string that contains
the values of the expressions, formatted according to the format
string.

As an example, the {\bfseries format sequence} \textquotesingle{}\%d\textquotesingle{} means that
the first expression in the tuple should be formatted as an
integer (d stands for “decimal”):
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}camels {}= {}42 \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}\textquotesingle{}\%d\textquotesingle{} {}\% {}camels \newline{}
\textquotesingle{}42\textquotesingle{} \newline{}
}
The result is the string \textquotesingle{}42\textquotesingle{}, which is not to be confused
with the integer value 42.

A format sequence can appear anywhere in the format string,
so you can embed a value in a sentence:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}camels {}= {}42 \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}\textquotesingle{}I {}have {}spotted {}\%d {}camels.\textquotesingle{} {}\% {}camels \newline{}
\textquotesingle{}I {}have {}spotted {}42 {}camels.\textquotesingle{} \newline{}
}
The format sequence \textquotesingle{}\%g\textquotesingle{} formats the next element in the tuple
as a floating-{}point number (don’t ask why), and \textquotesingle{}\%s\textquotesingle{} formats
the next item as a string:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}\textquotesingle{}In {}\%d {}years {}I {}have {}spotted {}\%g {}\%s.\textquotesingle{} {}\% {}(3, {}0.1, {}\textquotesingle{}camels\textquotesingle{}) \newline{}
\textquotesingle{}In {}3 {}years {}I {}have {}spotted {}0.1 {}camels.\textquotesingle{} \newline{}
}
The number of elements in the tuple has to match the number
of format sequences in the string. Also, the types of the
elements have to match the format sequences:

\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}\textquotesingle{}\%d {}\%d {}\%d\textquotesingle{} {}\% {}(1, {}2) \newline{}
TypeError: {}not {}enough {}arguments {}for {}format {}string \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}\textquotesingle{}\%d\textquotesingle{} {}\% {}\textquotesingle{}dollars\textquotesingle{} \newline{}
TypeError: {}illegal {}argument {}type {}for {}built-{}in {}operation \newline{}
}
In the first example, there aren’t enough elements; in the
second, the element is the wrong type.

The format operator is powerful but difficult to use. You can
read more about it at docs.python.org/lib/typesseq-{}strings.html.\section{Filenames and paths}
\label{260}
Files are organized into {\bfseries directories} (also called “folders”).
Every running program has a “current directory,” which is the
default directory for most operations.
For example, when you open a file for reading, Python looks for it in the
current directory.

The os module provides functions for working with files and
directories (“os” stands for “operating system”). os.getcwd
returns the name of the current directory:

\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}import {}os \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}cwd {}= {}os.getcwd() \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}cwd \newline{}
/home/dinsdale \newline{}
}
cwd stands for “current working directory.” The result in
this example is /home/dinsdale, which is the home directory of a
user named dinsdale.

A string like cwd that identifies a file is called a {\bfseries path}.
A {\bfseries relative path} starts from the current directory;
an {\bfseries absolute path} starts from the topmost directory in the
file system.

The paths we have seen so far are simple filenames, so they are
relative to the current directory. To find the absolute path to
a file, you can use os.path.abspath:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}os.path.abspath(\textquotesingle{}memo.txt\textquotesingle{}) \newline{}
\textquotesingle{}/home/dinsdale/memo.txt\textquotesingle{} \newline{}
}
os.path.exists checks
whether a file or directory exists:

\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}os.path.exists(\textquotesingle{}memo.txt\textquotesingle{}) \newline{}
True \newline{}
}
If it exists, os.path.isdir checks whether it’s a directory:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}os.path.isdir(\textquotesingle{}memo.txt\textquotesingle{}) \newline{}
False \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}os.path.isdir(\textquotesingle{}music\textquotesingle{}) \newline{}
True \newline{}
}
Similarly, os.path.isfile checks whether it’s a file.

os.listdir returns a list of the files (and other directories)
in the given directory:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}os.listdir(cwd) \newline{}
{[}\textquotesingle{}music\textquotesingle{}, {}\textquotesingle{}photos\textquotesingle{}, {}\textquotesingle{}memo.txt\textquotesingle{}{]} \newline{}
}
To demonstrate these functions, the following example
“walks” through a directory, prints
the names of all the files, and calls itself recursively on
all the directories.

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{walk(}\DataTypeTok{dir}\NormalTok{):}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{for}\ensuremath{\text{ }}\NormalTok{name\ensuremath{\text{ }}in\ensuremath{\text{ }}os.listdir(}\DataTypeTok{dir}\NormalTok{):}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{path\ensuremath{\text{ }}=\ensuremath{\text{ }}os.path.join(}\DataTypeTok{dir}\NormalTok{,\ensuremath{\text{ }}name)}\newline
\ensuremath{\text{ }}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{if}\ensuremath{\text{ }}\NormalTok{os.path.isfile(path):}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{print}\ensuremath{\text{ }}\NormalTok{path}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{else}\NormalTok{:}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{walk(path)}\newline
\end{Highlighting}
\end{Shaded}

os.path.join takes a directory and a file name and joins
them into a complete path.
\subsection{Exercise 1}
\label{261}
Modify {\bfseries \textquotesingle{}walk}\textquotesingle{} so that instead of printing the names of
the files, it returns a list of names.
{\itshape {\bfseries Exercise 2} }
The {\bfseries \textquotesingle{}os}\textquotesingle{} module provides a function called {\bfseries \textquotesingle{}walk}\textquotesingle{}
that is similar to this one but more versatile. Read
the documentation and use it to print the names of the
files in a given directory and its subdirectories.
\section{Catching exceptions}
\label{262}
A lot of things can go wrong when you try to read and write
files. If you try to open a file that doesn’t exist, you get an
IOError:

\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}fin {}= {}open(\textquotesingle{}bad_file\textquotesingle{}) \newline{}
IOError: {}{[}Errno {}2{]} {}No {}such {}file {}or {}directory: {}\textquotesingle{}bad_file\textquotesingle{} \newline{}
}
If you don’t have permission to access a file:

\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}fout {}= {}open(\textquotesingle{}/etc/passwd\textquotesingle{}, {}\textquotesingle{}w\textquotesingle{}) \newline{}
IOError: {}{[}Errno {}13{]} {}Permission {}denied: {}\textquotesingle{}/etc/passwd\textquotesingle{} \newline{}
}
And if you try to open a directory for reading, you get
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}fin {}= {}open(\textquotesingle{}/home\textquotesingle{}) \newline{}
IOError: {}{[}Errno {}21{]} {}Is {}a {}directory \newline{}
}
To avoid these errors, you could use functions like os.path.exists
and os.path.isfile, but it would take a lot of time and code
to check all the possibilities (if “Errno 21” is any
indication, there are at least 21 things that can go wrong).

It is better to go ahead and try, and deal with problems if they
happen, which is exactly what the try statement does. The
syntax is similar to an if statement:
\TemplatePreformat{try: {} {} {} {} \newline{}
 {} {} {} {}fin {}= {}open(\textquotesingle{}bad_file\textquotesingle{}) \newline{}
 {} {} {} {}for {}line {}in {}fin: \newline{}
 {} {} {} {} {} {} {} {}print {}line \newline{}
 {} {} {} {}fin.close() \newline{}
except: \newline{}
 {} {} {} {}print {}\textquotesingle{}Something {}went {}wrong.\textquotesingle{} \newline{}
}
Python starts by executing the try clause. If all goes
well, it skips the except clause and proceeds. If an
exception occurs, it jumps out of the try clause and
executes the except clause.

Handling an exception with a try statement is called {\bfseries catching} an exception. In this example, the except clause
prints an error message that is not very helpful. In general,
catching an exception gives you a chance to fix the problem, or try
again, or at least end the program gracefully.
\section{Databases}
\label{263}
A {\bfseries database} is a file that is organized for storing data.
Most databases are organized like a dictionary in the sense
that they map from keys to values. The biggest difference
is that the database is on disk (or other permanent storage),
so it persists after the program ends.

The module anydbm provides an interface for creating
and updating database files. As an example, I’ll create a database
that contains captions for image files.

Opening a database is similar
to opening other files:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}import {}anydbm \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}db {}= {}anydbm.open(\textquotesingle{}captions.db\textquotesingle{}, {}\textquotesingle{}c\textquotesingle{}) \newline{}
}
The mode \textquotesingle{}c\textquotesingle{} means that the database should be created if
it doesn’t already exist. The result is a database object
that can be used (for most operations) like a dictionary.
If you create a new item, anydbm updates the database file.

\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}db{[}\textquotesingle{}cleese.png\textquotesingle{}{]} {}= {}\textquotesingle{}Photo {}of {}John {}Cleese.\textquotesingle{} \newline{}
}
When you access one of the items, anydbm reads the file:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}db{[}\textquotesingle{}cleese.png\textquotesingle{}{]} \newline{}
Photo {}of {}John {}Cleese. \newline{}
}
If you make another assignment to an existing key, anydbm replaces
the old value:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}db{[}\textquotesingle{}cleese.png\textquotesingle{}{]} {}= {}\textquotesingle{}Photo {}of {}John {}Cleese {}doing {}a {}silly {}walk.\textquotesingle{} \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}db{[}\textquotesingle{}cleese.png\textquotesingle{}{]} \newline{}
Photo {}of {}John {}Cleese {}doing {}a {}silly {}walk. \newline{}
}
Many dictionary methods, like keys and items, also
work with database objects. So does iteration with a for
statement.

\TemplatePreformat{for {}key {}in {}db: \newline{}
 {} {} {} {} {}print {}key \newline{}
}
As with other files, you should close the database when you are
done:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}db.close() \newline{}
}
\section{Pickling}
\label{264}
A limitation of anydbm is that the keys and values have
to be strings. If you try to use any other type, you get an
error.

The pickle module can help. It translates
almost any type of object into a string suitable for storage in a
database, and then translates strings back into objects.

pickle.dumps takes an object as a parameter and returns
a string representation (dumps is short for “dump string”):
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}import {}pickle \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}t {}= {}{[}1, {}2, {}3{]} \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}pickle.dumps(t) \newline{}
\textquotesingle{}(lp0\textbackslash{}nI1\textbackslash{}naI2\textbackslash{}naI3\textbackslash{}na.\textquotesingle{} \newline{}
}
The format isn’t obvious to human readers; it is meant to be
easy for pickle to interpret. pickle.loads
(“load string”) reconstitutes the object:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}t1 {}= {}{[}1, {}2, {}3{]} \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}s {}= {}pickle.dumps(t1) \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}t2 {}= {}pickle.loads(s) \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}t2 \newline{}
{[}1, {}2, {}3{]} \newline{}
}
Although the new object has the same value as the old, it is
not (in general) the same object:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}t {}== {}t2 \newline{}
True \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}t {}is {}t2 \newline{}
False \newline{}
}
In other words, pickling and then unpickling has the same effect
as copying the object.

You can use pickle to store non-{}strings in a database.
In fact, this combination is so common that it has been
encapsulated in a module called shelve.

{\bfseries Exercise 3}
{\itshape }
{\itshape }

{\itshape If you did Exercise {\bfseries \textquotesingle{}12.4}\textquotesingle{}, modify your solution so that}
it creates a database that maps from each word in the list to
a list of words that use the same set of letters.{\itshape }

{\itshape Write a different program that opens the database and prints}
the contents in a human-{}readable format.
{\itshape }

\section{Pipes}
\label{265}
Most operating systems provide a command-{}line interface,
also known as a {\bfseries shell}. Shells usually provide commands
to navigate the file system and launch applications. For
example, in Unix, you can change directories with cd,
display the contents of a directory with ls, and launch
a web browser by typing (for example) firefox.

Any program that you can launch from the shell can also be
launched from Python using a {\bfseries pipe}. A pipe is an object
that represents a running process.

For example, the Unix command ls -{}l normally displays the
contents of the current directory (in long format). You can
launch ls with os.popen:

\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}cmd {}= {}\textquotesingle{}ls {}-{}l\textquotesingle{} \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}fp {}= {}os.popen(cmd) \newline{}
}
The argument is a string that contains a shell command. The
return value is a file pointer that behaves just like an open
file. You can read the output from the ls process one
line at a time with readline or get the whole thing at
once with read:

\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}res {}= {}fp.read() \newline{}
}
When you are done, you close the pipe like a file:

\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}stat {}= {}fp.close() \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}stat \newline{}
None \newline{}
}
The return value is the final status of the ls process;
None means that it ended normally (with no errors).

A common use of pipes is to read a compressed file incrementally;
that is, without uncompressing the whole thing at once. The
following function takes the name of a compressed file as a
parameter and returns a pipe that uses gzip to decompress
the contents:
\TemplatePreformat{def {}open_gzip(filename): \newline{}
 {} {} {} {}cmd {}= {}\textquotesingle{}gunzip {}-{}c {}\textquotesingle{} {}+ {}filename \newline{}
 {} {} {} {}fp {}= {}os.popen(cmd) \newline{}
 {} {} {} {}return {}fp \newline{}
}
If you read lines from fp one at a time, you never have
to store the uncompressed file in memory or on disk.
\section{Writing modules}
\label{266}
Any file that contains Python code can be imported as a module.
For example, suppose you have a file named wc.py with the following
code:
\TemplatePreformat{def {}linecount(filename): \newline{}
 {} {} {} {}count {}= {}0 \newline{}
 {} {} {} {}for {}line {}in {}open(filename): \newline{}
 {} {} {} {} {} {} {} {}count {}+= {}1 \newline{}
 {} {} {} {}return {}count \newline{}
 {} \newline{}
print {}linecount(\textquotesingle{}wc.py\textquotesingle{}) \newline{}
}
If you run this program, it reads itself and prints the number
of lines in the file, which is 7.
You can also import it like this:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}import {}wc \newline{}
7 \newline{}
}
Now you have a module object wc:

\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}wc \newline{}
{\mbox{$<$}}module {}\textquotesingle{}wc\textquotesingle{} {}from {}\textquotesingle{}wc.py\textquotesingle{}{\mbox{$>$}} \newline{}
}
That provides a function called linecount:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}wc.linecount(\textquotesingle{}wc.py\textquotesingle{}) \newline{}
7 \newline{}
}
So that’s how you write modules in Python.

The only problem with this example is that when you import
the module it executes the test code at the bottom. Normally
when you import a module, it defines new functions but it
doesn’t execute them.

Programs that will be imported as modules often
use the following idiom:
\TemplatePreformat{if {}__name__ {}== {}\textquotesingle{}__main__\textquotesingle{}: \newline{}
 {} {} {} {}print {}linecount(\textquotesingle{}wc.py\textquotesingle{}) \newline{}
}
__name__ is a built-{}in variable that is set when the
program starts. If the program is running as a script,
__name__ has the value __main__; in that
case, the test code is executed. Otherwise,
if the module is being imported, the test code is skipped.
{\bfseries Exercise 4} {\itshape }
Type this example into a file named {\bfseries \textquotesingle{}wc.py}\textquotesingle{} and run
it as a script. Then run the Python interpreter and
{\bfseries \textquotesingle{}import wc}\textquotesingle{}. What is the value of {\itshape }__name__{\itshape }{\itshape }
when the module is being imported?{\itshape }
{\itshape Warning: If you import a module that has already been imported,}
Python does nothing. It does not re-{}read the file, even if it has
changed.{\itshape }

{\itshape If you want to reload a module, you can use the built-{}in function }
{\bfseries \textquotesingle{}reload}\textquotesingle{}, but it can be tricky, so the safest thing to do is
restart the interpreter and then import the module again.
{\itshape }

\section{Debugging}
\label{267}
When you are reading and writing files, you might run into problems
with whitespace. These errors can be hard to debug because spaces,
tabs and newlines are normally invisible:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}s {}= {}\textquotesingle{}1 {}2\textbackslash{}t {}3\textbackslash{}n {}4\textquotesingle{} \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}s \newline{}
1 {}2 {} {}3 \newline{}
 {}4 \newline{}
}

The built-{}in function repr can help. It takes any object as an
argument and returns a string representation of the object. For
strings, it represents whitespace
characters with backslash sequences:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}repr(s) \newline{}
\textquotesingle{}1 {}2\textbackslash{}t {}3\textbackslash{}n {}4\textquotesingle{} \newline{}
}
This can be helpful for debugging.

One other problem you might run into is that different systems
use different characters to indicate the end of a line. Some
systems use a newline, represented \textbackslash{}n. Others use
a return character, represented \textbackslash{}r. Some use both.
If you move files between different systems, these inconsistencies
might cause problems.

For most systems, there are applications to convert from one
format to another. You can find them (and read more about this
issue) at wikipedia.org/wiki/Newline. Or, of course, you
could write one yourself.
\section{Glossary}
\label{268}
{\bfseries persistent:} Pertaining to a program that runs indefinitely
and keeps at least some of its data in permanent storage.
{\bfseries format operator:} An operator, \%, that takes a format
string and a tuple and generates a string that includes
the elements of the tuple formatted as specified by the format string.
{\bfseries format string:} A string, used with the format operator, that
contains format sequences.
{\bfseries format sequence:} A sequence of characters in a format string,
like \%d, that specifies how a value should be formatted.
{\bfseries text file:} A sequence of characters stored in permanent
storage like a hard drive.
{\bfseries directory:} A named collection of files, also called a folder.
{\bfseries path:} A string that identifies a file.
{\bfseries relative path:} A path that starts from the current directory.
{\bfseries absolute path:} A path that starts from the topmost directory
in the file system.
{\bfseries catch:} To prevent an exception from terminating
a program using the try
and except statements.
{\bfseries database:} A file whose contents are organized like a dictionary
with keys that correspond to values.

\section{Exercises}
\label{269}
{\bfseries Exercise 5} {\itshape }
{\itshape The {\bfseries \textquotesingle{}urllib}\textquotesingle{} module provides methods for manipulating URLs}
and downloading information from the web. The following example
downloads and prints a secret message from {\bfseries \textquotesingle{}thinkpython.com}\textquotesingle{}:{\itshape }

\begin{Shaded}
\begin{Highlighting}[]

\CharTok{import}\ensuremath{\text{ }}\NormalTok{urllib}\newline
\ensuremath{\text{ }}\newline
\NormalTok{conn\ensuremath{\text{ }}=\ensuremath{\text{ }}urllib.urlopen(}\StringTok{{\char13}http://thinkpython.com/secret.html{\char13}}\NormalTok{)}\newline
\KeywordTok{for}\ensuremath{\text{ }}\NormalTok{line\ensuremath{\text{ }}in\ensuremath{\text{ }}conn.fp:}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{print}\ensuremath{\text{ }}\NormalTok{line.strip()}\newline
\end{Highlighting}
\end{Shaded}

{\itshape Run this code and follow the instructions you see there.}

{\itshape }
{\itshape }
{\bfseries Exercise 6} {\itshape }
{\itshape }

{\itshape In a large collection of MP3 files, there may be more than one}
copy of the same song, stored in different directories or with
different file names. The goal of this exercise is to search for
these duplicates.{\itshape }

\begin{myitemize}
\item{} {\itshape Write a program that searches a directory and all of its}
\end{myitemize}

subdirectories, recursively, and returns a list of complete paths
for all files with a given suffix (like {\bfseries \textquotesingle{}.mp3}\textquotesingle{}).
Hint: {\bfseries \textquotesingle{}os.path}\textquotesingle{} provides several useful functions for
manipulating file and path names.{\itshape }

\begin{myitemize}
\item{} {\itshape To recognize duplicates, you can use a hash function that}
\end{myitemize}

reads the file and generates a short summary
of the contents. For example,
MD5 (Message-{}Digest algorithm 5) takes an arbitrarily-{}long
“message” and returns a 128-{}bit “checksum.” The probability
is very small that two files with different contents will
return the same checksum.{\itshape }
{\itshape You can read about MD5 at {\bfseries \textquotesingle{}wikipedia.org/wiki/Md5}\textquotesingle{}. On}
a Unix system you can use the program {\bfseries \textquotesingle{}md5sum}\textquotesingle{} and a pipe to
compute checksums from Python.{\itshape }

{\bfseries Exercise 7}
{\itshape }
{\bfseries \textquotesingle{}}
{\itshape }

{\itshape The Internet Movie Database (IMDb) is an online collection of}
information about movies. Their database is available
in plain text format, so it is reasonably easy to read from
Python. For this exercise, the files you need
are {\bfseries \textquotesingle{}actors.list.gz}\textquotesingle{} and {\bfseries \textquotesingle{}actresses.list.gz}\textquotesingle{}; you
can download them from {\bfseries \textquotesingle{}www.imdb.com/interfaces\#plain}\textquotesingle{}.{\itshape }

{\itshape }
{\bfseries \textquotesingle{}}
{\itshape }

{\itshape I have written a program that parses these files and}
splits them into actor names, movie titles, etc. You can
download it from {\bfseries \textquotesingle{}thinkpython.com/code/imdb.py}\textquotesingle{}.{\itshape }

{\itshape If you run {\bfseries \textquotesingle{}imdb.py}\textquotesingle{} as a script, it reads {\bfseries \textquotesingle{}actors.list.gz}\textquotesingle{}}
and prints one actor-{}movie pair per line. Or, if you {\bfseries \textquotesingle{}import}
imdb{\bfseries \textquotesingle{} you can use the function {\itshape }process_file{\itshape }{\itshape } to, well,}
process the file. The arguments are a filename, a function
object and an optional number of lines to process. Here is
an example:{\itshape }
\TemplatePreformat{\textquotesingle{}\textquotesingle{}import {}imdb \newline{}
 {} \newline{}
def {}print_info(actor, {}date, {}title, {}role): \newline{}
 {} {} {} {}print {}actor, {}date, {}title, {}role \newline{}
 {} \newline{}
imdb.process_file(\textquotesingle{}actors.list.gz\textquotesingle{}, {}print_info) \newline{}
\textquotesingle{}\textquotesingle{}}
{\itshape When you call }{\itshape process_file}{\itshape , it opens {\bfseries \textquotesingle{}filename}\textquotesingle{}, reads the}
contents, and calls {\itshape }print_info{\itshape }{\itshape } once for each line in the file.
{\itshape }print_info{\itshape }{\itshape } takes an actor, date, movie title and role as
arguments and prints them.{\itshape }

\begin{myitemize}
\item{} {\itshape Write a program that reads {\bfseries \textquotesingle{}actors.list.gz}\textquotesingle{} and {\bfseries \textquotesingle{}actresses.list.gz}\textquotesingle{} and uses {\bfseries \textquotesingle{}shelve}\textquotesingle{} to build a database}
\end{myitemize}

that maps from each actor to a list of his or her films.{\itshape }
{\itshape }
{\itshape }

\begin{myitemize}
\item{} {\itshape Two actors are “costars” if they have been in at least one}
\end{myitemize}

movie together. Process the database you built in the previous step
and build a second database that maps from each actor to a list of
his or her costars.{\itshape }
{\itshape }
{\itshape }

\begin{myitemize}
\item{} {\itshape Write a program that can play the “Six Degrees of Kevin}
\end{myitemize}

Bacon,” which you can read about at
{\bfseries \textquotesingle{}wikipedia.org/wiki/Six_Degrees_of_Kevin_Bacon}\textquotesingle{}. This
problem is challenging because it requires you to find the shortest
path in a graph. You can read about shortest path algorithms
at {\bfseries \textquotesingle{}wikipedia.org/wiki/Shortest_path_problem}\textquotesingle{}.{\itshape }

\chapter{Classes and objects}

\myminitoc
\label{270}

\label{271}
\LaTeXNullTemplate{}
\section{User-{}defined types}
\label{272}
We have used many of Python’s built-{}in types; now we are going
to define a new type. As an example, we will create a type
called Point that represents a point in two-{}dimensional
space.

In mathematical notation, points are often written in
parentheses with a comma separating the coordinates. For example,
(0, 0) represents the origin, and (x, y) represents the
point x units to the right and y units up from the origin.

There are several ways we might represent points in Python:

\begin{myitemize}
\item{} We could store the coordinates separately in two variables, x and y.
\item{} We could store the coordinates as elements in a list or tuple.
\item{} We could create a new type to represent points as objects.
\end{myitemize}

Creating a new type
is (a little) more complicated than the other options, but
it has advantages that will be apparent soon.

A user-{}defined type is also called a {\bfseries class}.
A class definition looks like this:

\TemplatePreformat{class {}Point(object): \newline{}
 {} {} {} {}\symbol{34}\symbol{34}\symbol{34}represents {}a {}point {}in {}2-{}D {}space\symbol{34}\symbol{34}\symbol{34} \newline{}
}
This header indicates that the new class is a Point,
which is a kind of object, which is a built-{}in
type.

The body is a docstring that explains what the class is for.
You can define variables and functions inside a class definition,
but we will get back to that later.

Defining a class named Point creates a class object.
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}Point \newline{}
{\mbox{$<$}}class {}\textquotesingle{}__main__.Point\textquotesingle{}{\mbox{$>$}} \newline{}
}
Because Point is defined at the top level, its “full
name” is __main__.Point.

The class object is like a factory for creating objects. To create a
Point, you call Point as if it were a function.
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}blank {}= {}Point() \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}blank \newline{}
{\mbox{$<$}}__main__.Point {}instance {}at {}0xb7e9d3ac{\mbox{$>$}} \newline{}
}
The return value is a reference to a Point object, which we
assign to blank.
Creating a new object is called
{\bfseries instantiation}, and the object is an {\bfseries instance} of
the class.

When you print an instance, Python tells you what class it
belongs to and where it is stored in memory (the prefix
0x means that the following number is in hexadecimal).
\section{Attributes}
\label{273}
You can assign values to an instance using dot notation:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}blank.x {}= {}3.0 \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}blank.y {}= {}4.0 \newline{}
}
This syntax is similar to the syntax for selecting a variable from a
module, such as math.pi or string.whitespace. In this case,
though, we are assigning values to named elements of an object.
These elements are called {\bfseries attributes}.

As a noun, “AT-{}trib-{}ute” is pronounced with emphasis on the first
syllable, as opposed to “a-{}TRIB-{}ute,” which is a verb.

The following diagram shows the result of these assignments.
A state diagram that shows an object and its attributes is
called an {\bfseries object diagram}:

The variable blank refers to a Point object, which
contains two attributes. Each attribute refers to a
floating-{}point number.

You can read the value of an attribute using the same syntax:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}blank.y \newline{}
4.0 \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}x {}= {}blank.x \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}x \newline{}
3.0 \newline{}
}
The expression blank.x means, “Go to the object blank
refers to and get the value of x.” In this case, we assign that
value to a variable named x. There is no conflict between
the variable x and the attribute x.

You can use dot notation as part of any expression. For example:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}\textquotesingle{}(\%g, {}\%g)\textquotesingle{} {}\% {}(blank.x, {}blank.y) \newline{}
(3.0, {}4.0) \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}distance {}= {}math.sqrt(blank.x**2 {}+ {}blank.y**2) \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}distance \newline{}
5.0 \newline{}
}
You can pass an instance as an argument in the usual way.
For example:

\TemplatePreformat{def {}print_point(p): \newline{}
 {} {} {} {}print {}\textquotesingle{}(\%g, {}\%g)\textquotesingle{} {}\% {}(p.x, {}p.y) \newline{}
}
print_point takes a point as an argument and displays it in
mathematical notation. To invoke it, you can pass blank as
an argument:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print_point(blank) \newline{}
(3.0, {}4.0) \newline{}
}
Inside the function, p is an alias for blank, so if
the function modifies p, blank changes.
\subsection{Exercise 1}
\label{274}
Write a function called {\bfseries \textquotesingle{}distance}\textquotesingle{} that it takes two Points
as arguments and returns the distance between them.
\section{Rectangles}
\label{275}
Sometimes it is obvious what the attributes of an object should be,
but other times you have to make decisions. For example, imagine you
are designing a class to represent rectangles. What attributes would
you use to specify the location and size of a rectangle? You can
ignore angle; to keep things simple, assume that the rectangle is
either vertical or horizontal.

There are at least two possibilities:

\begin{myitemize}
\item{} You could specify one corner of the rectangle (or the center), the width, and the height.
\item{} You could specify two opposing corners.
\end{myitemize}

At this point it is hard to say whether either is better than
the other, so we’ll implement the first one, just as an example.

Here is the class definition:
\TemplatePreformat{class {}Rectangle(object): \newline{}
 {} {} {} {}\symbol{34}\symbol{34}\symbol{34}represent {}a {}rectangle. {} \newline{}
 {} {} {} {} {} {} {}attributes: {}width, {}height, {}corner. \newline{}
 {} {} {} {}\symbol{34}\symbol{34}\symbol{34} \newline{}
}
The docstring lists the attributes: width and
height are numbers; corner is a Point object that
specifies the lower-{}left corner.

To represent a rectangle, you have to instantiate a Rectangle
object and assign values to the attributes:
\TemplatePreformat{box {}= {}Rectangle() \newline{}
box.width {}= {}100.0 \newline{}
box.height {}= {}200.0 \newline{}
box.corner {}= {}Point() \newline{}
box.corner.x {}= {}0.0 \newline{}
box.corner.y {}= {}0.0 \newline{}
}
The expression box.corner.x means,
“Go to the object box refers to and select the attribute named
corner; then go to that object and select the attribute named
x.”

The figure shows the state of this object:

An object that is an attribute of another object is {\bfseries embedded}.
\section{Instances as return values}
\label{276}
Functions can return instances. For example, find_center
takes a Rectangle as an argument and returns a Point
that contains the coordinates of the center of the Rectangle:
\TemplatePreformat{def {}find_center(box): \newline{}
 {} {} {} {}p {}= {}Point() \newline{}
 {} {} {} {}p.x {}= {}box.corner.x {}+ {}box.width/2.0 \newline{}
 {} {} {} {}p.y {}= {}box.corner.y {}+ {}box.height/2.0 \newline{}
 {} {} {} {}return {}p \newline{}
}
Here is an example that passes box as an argument and assigns
the resulting Point to center:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}center {}= {}find_center(box) \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print_point(center) \newline{}
(50.0, {}100.0) \newline{}
}
\section{Objects are mutable}
\label{277}
You can change the state of an object by making an assignment to one of
its attributes. For example, to change the size of a rectangle
without changing its position, you can modify the values of width and height:
\TemplatePreformat{box.width {}= {}box.width {}+ {}50 \newline{}
box.height {}= {}box.width {}+ {}100 \newline{}
}
You can also write functions that modify objects. For example,
grow_rectangle takes a Rectangle object and two numbers,
dwidth and dheight, and adds the numbers to the
width and height of the rectangle:
\TemplatePreformat{def {}grow_rectangle(rect, {}dwidth, {}dheight) {}: \newline{}
 {} {} {} {}rect.width {}+= {}dwidth \newline{}
 {} {} {} {}rect.height {}+= {}dheight \newline{}
}
Here is an example that demonstrates the effect:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}box.width \newline{}
100.0 \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}box.height \newline{}
200.0 \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}grow_rectangle(box, {}50, {}100) \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}box.width \newline{}
150.0 \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}box.height \newline{}
300.0 \newline{}
}
Inside the function, rect is an
alias for box, so if the function modifies rect,
box changes.
\subsection{Exercise 2}
\label{278}
Write a function named {\itshape }move_rectangle{\itshape }{\itshape } that takes
a Rectangle and two numbers named {\bfseries \textquotesingle{}dx}\textquotesingle{} and {\bfseries \textquotesingle{}dy}\textquotesingle{}. It
should change the location of the rectangle by adding {\bfseries \textquotesingle{}dx}\textquotesingle{}
to the {\bfseries \textquotesingle{}x}\textquotesingle{} coordinate of {\bfseries \textquotesingle{}corner}\textquotesingle{} and adding {\bfseries \textquotesingle{}dy}\textquotesingle{}
to the {\bfseries \textquotesingle{}y}\textquotesingle{} coordinate of {\bfseries \textquotesingle{}corner}\textquotesingle{}.
\section{Copying}
\label{279}
Aliasing can make a program difficult to read because changes
in one place might have unexpected effects in another place.
It is hard to keep track of all the variables that might refer
to a given object.

Copying an object is often an alternative to aliasing.
The copy module contains a function called copy that
can duplicate any object:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}p1 {}= {}Point() \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}p1.x {}= {}3.0 \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}p1.y {}= {}4.0 \newline{}
 {} \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}import {}copy \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}p2 {}= {}copy.copy(p1) \newline{}
}
p1 and p2 contain the same data, but they are
not the same Point.
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print_point(p1) \newline{}
(3.0, {}4.0) \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print_point(p2) \newline{}
(3.0, {}4.0) \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}p1 {}is {}p2 \newline{}
False \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}p1 {}== {}p2 \newline{}
False \newline{}
}
The is operator indicates that p1 and p2 are not the
same object, which is what we expected. But you might have expected
== to yield True because these points contain the same
data. In that case, you will be disappointed to learn that for
instances, the default behavior of the == operator is the same
as the is operator; it checks object identity, not object
equivalence. This behavior can be changed—we’ll see how later.

If you use copy.copy to duplicate a Rectangle, you will find
that it copies the Rectangle object but not the embedded Point.

\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}box2 {}= {}copy.copy(box) \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}box2 {}is {}box \newline{}
False \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}box2.corner {}is {}box.corner \newline{}
True \newline{}
}
Here is what the object diagram looks like:

This operation is called a {\bfseries shallow copy} because it copies the
object and any references it contains, but not the embedded objects.

For most applications, this is not what you want. In this example,
invoking grow_rectangle on one of the Rectangles would not
affect the other, but invoking move_rectangle on either would
affect both! This behavior is confusing and error-{}prone.

Fortunately, the copy module contains a method named deepcopy that copies not only the object but also
the objects it refers to, and the objects {\itshape they} refer to,
and so on.
You will not be surprised to learn that this operation is
called a {\bfseries deep copy}.

\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}box3 {}= {}copy.deepcopy(box) \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}box3 {}is {}box \newline{}
False \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}box3.corner {}is {}box.corner \newline{}
False \newline{}
}
box3 and box are completely separate objects.
\subsection{Exercise 3}
\label{280}
Write a version of {\itshape }move_rectangle{\itshape }{\itshape } that creates and
returns a new Rectangle instead of modifying the old one.
\section{Debugging}
\label{281}
When you start working with objects, you are likely to encounter
some new exceptions. If you try to access an attribute
that doesn’t exist, you get an AttributeError:

\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}p {}= {}Point() \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}p.z \newline{}
AttributeError: {}Point {}instance {}has {}no {}attribute {}\textquotesingle{}z\textquotesingle{} \newline{}
}
If you are not sure what type an object is, you can ask:

\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}type(p) \newline{}
{\mbox{$<$}}type {}\textquotesingle{}__main__.Point\textquotesingle{}{\mbox{$>$}} \newline{}
}
If you are not sure whether an object has a particular attribute,
you can use the built-{}in function hasattr:

\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}hasattr(p, {}\textquotesingle{}x\textquotesingle{}) \newline{}
True \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}hasattr(p, {}\textquotesingle{}z\textquotesingle{}) \newline{}
False \newline{}
}

The first argument can be any object; the second argument is a {\itshape string} that contains the name of the attribute.
\section{Glossary}
\label{282}
{\bfseries class:} A user-{}defined type. A class definition creates a new
class object.
{\bfseries class object:} An object that contains information about a
user-{}defined type. The class object can be used to create instances
of the type.
{\bfseries instance:} An object that belongs to a class.
{\bfseries attribute:} One of the named values associated with an object.

{\bfseries embedded (object):} An object that is stored as an attribute
of another object.

{\bfseries shallow copy:} To copy the contents of an object, including
any references to embedded objects;
implemented by the copy function in the copy module.
{\bfseries deep copy:} To copy the contents of an object as well as any
embedded objects, and any objects embedded in them, and so on;
implemented by the deepcopy function in the copy module.
{\bfseries object diagram:} A diagram that shows objects, their
attributes, and the values of the attributes.

\section{Exercises}
\label{283}\subsection{Exercise 4}
\label{284}
{\itshape World.py{\bfseries \textquotesingle{}, which is part of Swampy (see Chapter }\textquotesingle{}4{\bfseries \textquotesingle{}),}}
contains a class definition for a user-{}defined type called
{\bfseries \textquotesingle{}World}\textquotesingle{}. If you run this code:{\itshape }
\TemplatePreformat{\textquotesingle{}\textquotesingle{}from {}World {}import {}* \newline{}
world {}= {}World() \newline{}
wait_for_user() \newline{}
\textquotesingle{}\textquotesingle{}}
{\itshape A window should appear with a title bar and an empty square.}
In this exercise we will use this window to draw Points,
Rectangles and other shapes.
Add the following lines before
{\itshape }wait_for_user{\itshape }{\itshape } and run the program again{\itshape }

\TemplatePreformat{\textquotesingle{}\textquotesingle{}canvas {}= {}world.ca(width=500, {}height=500, {}background=\textquotesingle{}white\textquotesingle{}) \newline{}
bbox {}= {}{[}{[}-{}150,-{}100{]}, {}{[}150, {}100{]}{]} \newline{}
canvas.rectangle(bbox, {}outline=\textquotesingle{}black\textquotesingle{}, {}width=2, {}fill=\textquotesingle{}green4\textquotesingle{}) \newline{}
\textquotesingle{}\textquotesingle{}}
{\itshape You should see a green rectangle with a black outline.}
The first line creates a Canvas, which appears in the window
as a white square. The Canvas object provides methods like
{\bfseries \textquotesingle{}rectangle}\textquotesingle{} for drawing various shapes.{\itshape }

{\itshape bbox{\bfseries \textquotesingle{} is a list of lists that represents the “bounding box”}}
of the rectangle. The first pair of coordinates is the lower-{}left
corner of the rectangle; the second pair is the upper-{}right corner.{\itshape }

{\itshape You can draw a circle like this:}
\TemplatePreformat{\textquotesingle{}\textquotesingle{}canvas.circle({[}-{}25,0{]}, {}70, {}outline=None, {}fill=\textquotesingle{}red\textquotesingle{}) \newline{}
\textquotesingle{}\textquotesingle{}}

{\itshape The first parameter is the coordinate pair for the center of the}
circle; the second parameter is the radius.{\itshape }

{\itshape If you add this line to the program, }
the result should resemble the national flag of Bangladesh
(see {\bfseries \textquotesingle{}wikipedia.org/wiki/Gallery_of_sovereign-{}state_flags}\textquotesingle{}).{\itshape }

\begin{myitemize}
\item{} {\itshape Write a function called }{\itshape draw_rectangle}{\itshape that takes a}
\end{myitemize}

Canvas and a Rectangle as arguments and draws a
representation of the Rectangle on the Canvas.{\itshape }

\begin{myitemize}
\item{} {\itshape Add an attribute named {\bfseries \textquotesingle{}color}\textquotesingle{} to your Rectangle objects and}
\end{myitemize}

modify {\itshape }draw_rectangle{\itshape }{\itshape } so that it uses the color attribute as
the fill color.{\itshape }

\begin{myitemize}
\item{} {\itshape Write a function called }{\itshape draw_point}{\itshape that takes a}
\end{myitemize}

Canvas and a Point as arguments and draws a
representation of the Point on the Canvas.{\itshape }

\begin{myitemize}
\item{} {\itshape Define a new class called Circle with appropriate attributes and}
\end{myitemize}

instantiate a few Circle objects. Write a function called
{\itshape }draw_circle{\itshape }{\itshape } that draws circles on the canvas.{\itshape }

\begin{myitemize}
\item{} {\itshape Write a program that draws the \myhref{http://en.wikipedia.org/wiki/File:Flag_of_the_Czech_Republic.svg}{ national flag of of the Czech Republic}.}
\end{myitemize}

Hint: you can draw a polygon like this:{\itshape \TemplatePreformat{\textquotesingle{}\textquotesingle{}points {}= {}{[}{[}-{}150,-{}100{]}, {}{[}150, {}100{]}, {}{[}150, {}-{}100{]}{]} \newline{}
canvas.polygon(points, {}fill=\textquotesingle{}blue\textquotesingle{}) \newline{}
\textquotesingle{}\textquotesingle{}}}

{\itshape I have written a small program that lists the available colors;}
you can download it from {\bfseries \textquotesingle{}thinkpython.com/code/color_list.py}\textquotesingle{}.{\itshape }
\chapter{Classes and functions}

\myminitoc
\label{285}

\label{286}
\LaTeXNullTemplate{}
\section{Time}
\label{287}

As another example of a user-{}defined type, we\textquotesingle{}ll define a class called
Time that records the time of day. The class definition looks
like this:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{class}\ensuremath{\text{ }}\NormalTok{Time(}\DataTypeTok{object}\NormalTok{):}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\CommentTok{"""represents\ensuremath{\text{ }}the\ensuremath{\text{ }}time\ensuremath{\text{ }}of\ensuremath{\text{ }}day.}\newline
\CommentTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}attributes:\ensuremath{\text{ }}hour,\ensuremath{\text{ }}minute,\ensuremath{\text{ }}second"""}\newline
\end{Highlighting}
\end{Shaded}

We can create a new Time object and assign
attributes for hours, minutes, and seconds:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{time\ensuremath{\text{ }}=\ensuremath{\text{ }}Time()}\newline
\NormalTok{time.hour\ensuremath{\text{ }}=\ensuremath{\text{ }}}\DecValTok{11}\newline
\NormalTok{time.minute\ensuremath{\text{ }}=\ensuremath{\text{ }}}\DecValTok{59}\newline
\NormalTok{time.second\ensuremath{\text{ }}=\ensuremath{\text{ }}}\DecValTok{30}\newline
\end{Highlighting}
\end{Shaded}

The state diagram for the Time object looks like this:

\subsection{Exercise 1}
\label{288}

Write a function called {\ttfamily print_time} that takes a
Time object and prints it in the form {\ttfamily hour:minute:second}.

Hint: the format sequence {\ttfamily \%.2d} prints an integer using
at least two digits, including a leading zero if necessary.
\subsection{Exercise 2}
\label{289}

Write a boolean function called {\ttfamily is_after} that
takes two Time objects, {\ttfamily t1} and {\ttfamily t2}, and
returns {\ttfamily True} if {\ttfamily t1} follows {\ttfamily t2}
chronologically and {\ttfamily False} otherwise.

Challenge: don\textquotesingle{}t use an {\ttfamily if} statement.
\section{Pure functions}
\label{290}

In the next few sections, we’ll write two functions that add time
values. They demonstrate two kinds of functions: pure functions and
modifiers. They also demonstrate a development plan I’ll call {\bfseries prototype and patch}, which is a way of tackling a complex problem
by starting with a simple prototype and incrementally dealing with the
complications.

Here is a simple prototype of add_time:
\TemplatePreformat{def {}add_time(t1, {}t2): \newline{}
 {} {} {} {}sum {}= {}Time() \newline{}
 {} {} {} {}sum.hour {}= {}t1.hour {}+ {}t2.hour \newline{}
 {} {} {} {}sum.minute {}= {}t1.minute {}+ {}t2.minute \newline{}
 {} {} {} {}sum.second {}= {}t1.second {}+ {}t2.second \newline{}
 {} {} {} {}return {}sum \newline{}
}
The function creates a new Time object, initializes its
attributes, and returns a reference to the new object. This is called
a {\bfseries pure function} because it does not modify any of the objects
passed to it as arguments and it has no effect,
like displaying a value or getting user input,
other than returning a value.

To test this function, I’ll create two Time objects: start
contains the start time of a movie, like {\itshape Monty Python and the}
Holy Grail{\itshape , and duration contains the run time of the movie,}
which is one hour 35 minutes.

add_time figures out when the movie will be done.
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}start {}= {}Time() \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}start.hour {}= {}9 \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}start.minute {}= {}45 \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}start.second {}= {} {}0 \newline{}
 {} \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}duration {}= {}Time() \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}duration.hour {}= {}1 \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}duration.minute {}= {}35 \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}duration.second {}= {}0 \newline{}
 {} \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}done {}= {}add_time(start, {}duration) \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print_time(done) \newline{}
10:80:00 \newline{}
}
The result, 10:80:00 might not be what you were hoping
for. The problem is that this function does not deal with cases where the
number of seconds or minutes adds up to more than sixty. When that
happens, we have to “carry” the extra seconds into the minute column
or the extra minutes into the hour column.

Here’s an improved version:
\TemplatePreformat{def {}add_time(t1, {}t2): \newline{}
 {} {} {} {}sum {}= {}Time() \newline{}
 {} {} {} {}sum.hour {}= {}t1.hour {}+ {}t2.hour \newline{}
 {} {} {} {}sum.minute {}= {}t1.minute {}+ {}t2.minute \newline{}
 {} {} {} {}sum.second {}= {}t1.second {}+ {}t2.second \newline{}
 {} \newline{}
 {} {} {} {}if {}sum.second {}{\mbox{$>$}}= {}60: \newline{}
 {} {} {} {} {} {} {} {}sum.second {}-{}= {}60 \newline{}
 {} {} {} {} {} {} {} {}sum.minute {}+= {}1 \newline{}
 {} \newline{}
 {} {} {} {}if {}sum.minute {}{\mbox{$>$}}= {}60: \newline{}
 {} {} {} {} {} {} {} {}sum.minute {}-{}= {}60 \newline{}
 {} {} {} {} {} {} {} {}sum.hour {}+= {}1 \newline{}
 {} \newline{}
 {} {} {} {}return {}sum \newline{}
}
Although this function is correct, it is starting to get big.
We will see a shorter alternative later.
\section{Modifiers}
\label{291}
Sometimes it is useful for a function to modify the objects it gets as
parameters. In that case, the changes are visible to the caller.
Functions that work this way are called {\bfseries modifiers}.

increment, which adds a given number of seconds to a Time
object, can be written naturally as a
modifier. Here is a rough draft:
\TemplatePreformat{def {}increment(time, {}seconds): \newline{}
 {} {} {} {}time.second {}+= {}seconds \newline{}
 {} \newline{}
 {} {} {} {}if {}time.second {}{\mbox{$>$}}= {}60: \newline{}
 {} {} {} {} {} {} {} {}time.second {}-{}= {}60 \newline{}
 {} {} {} {} {} {} {} {}time.minute {}+= {}1 \newline{}
 {} \newline{}
 {} {} {} {}if {}time.minute {}{\mbox{$>$}}= {}60: \newline{}
 {} {} {} {} {} {} {} {}time.minute {}-{}= {}60 \newline{}
 {} {} {} {} {} {} {} {}time.hour {}+= {}1 \newline{}
}
The first line performs the basic operation; the remainder deals
with the special cases we saw before.

Is this function correct? What happens if the parameter seconds
is much greater than sixty?

In that case, it is not enough to carry
once; we have to keep doing it until time.second is less than sixty.
One solution is to replace the if statements with while
statements. That would make the function correct, but not
very efficient.
{\bfseries Exercise 3} {\itshape }
Write a correct version of {\bfseries \textquotesingle{}increment}\textquotesingle{} that
doesn’t contain any loops.
{\itshape }{\itshape }
Anything that can be done with modifiers can also be done with pure
functions. In fact, some programming languages only allow pure
functions. There is some evidence that programs that use pure
functions are faster to develop and less error-{}prone than programs
that use modifiers. But modifiers are convenient at times,
and functional programs tend to be less efficient.

In general, I recommend that you write pure functions whenever it is
reasonable and resort to modifiers only if there is a compelling
advantage. This approach might be called a {\bfseries functional}
programming style{\bfseries .}

{\bfseries Exercise 4} {\itshape }
Write a “pure” version of {\bfseries \textquotesingle{}increment}\textquotesingle{} that creates and returns
a new Time object rather than modifying the parameter.
\section{Prototyping versus planning}
\label{292}
The development plan I am demonstrating is called “prototype and
patch.” For each function, I wrote a prototype that performed the
basic calculation and then tested it, patching errors along the
way.

This approach can be effective, especially if you don’t yet have a
deep understanding of the problem. But incremental corrections can
generate code that is unnecessarily complicated—since it deals with
many special cases—and unreliable—since it is hard to know if you
have found all the errors.

An alternative is {\bfseries planned development}, in which high-{}level
insight into the problem can make the programming much easier. In
this case, the insight is that a Time object is really a three-{}digit
number in base 60 (see wikipedia.org/wiki/Sexagesimal)! The
second attribute is the “ones column,” the minute
attribute is the “sixties column,” and the hour attribute is
the “thirty-{}six hundreds column.”

When we wrote add_time and increment, we were effectively
doing addition in base 60, which is why we had to carry from one
column to the next.

This observation suggests another approach to the whole problem—we
can convert Time objects to integers and take advantage of the fact
that the computer knows how to do integer arithmetic.

Here is a function that converts Times to integers:
\TemplatePreformat{def {}time_to_int(time): \newline{}
 {} {} {} {}minutes {}= {}time.hour {}* {}60 {}+ {}time.minute \newline{}
 {} {} {} {}seconds {}= {}minutes {}* {}60 {}+ {}time.second \newline{}
 {} {} {} {}return {}seconds \newline{}
}
And here is the function that converts integers to Times
(recall that divmod divides the first argument by the second
and returns the quotient and remainder as a tuple).

\TemplatePreformat{def {}int_to_time(seconds): \newline{}
 {} {} {} {}time {}= {}Time() \newline{}
 {} {} {} {}minutes, {}time.second {}= {}divmod(seconds, {}60) \newline{}
 {} {} {} {}time.hour, {}time.minute {}= {}divmod(minutes, {}60) \newline{}
 {} {} {} {}return {}time \newline{}
}
You might have to think a bit, and run some tests, to convince
yourself that these functions are correct. One way to test them is to
check that time_to_int(int_to_time(x)) == x for many values of
x. This is an example of a consistency check.

Once you are convinced they are correct, you can use them to
rewrite add_time:
\TemplatePreformat{def {}add_time(t1, {}t2): \newline{}
 {} {} {} {}seconds {}= {}time_to_int(t1) {}+ {}time_to_int(t2) \newline{}
 {} {} {} {}return {}int_to_time(seconds) \newline{}
}
This version is shorter than the original, and easier to verify.
{\bfseries Exercise 5} {\itshape }
Rewrite {\bfseries \textquotesingle{}increment}\textquotesingle{} using {\itshape }time_to_int{\itshape }{\itshape } and {\itshape }int_to_time{\itshape }{\itshape }.
{\itshape }{\itshape }
In some ways, converting from base 60 to base 10 and back is harder
than just dealing with times. Base conversion is more abstract; our
intuition for dealing with time values is better.

But if we have the insight to treat times as base 60 numbers and make
the investment of writing the conversion functions (time_to_int
and int_to_time), we get a program that is shorter, easier to
read and debug, and more reliable.

It is also easier to add features later. For example, imagine
subtracting two Times to find the duration between them. The
naïve approach would be to implement subtraction with borrowing.
Using the conversion functions would be easier and more likely to be
correct.

Ironically, sometimes making a problem harder (or more general) makes it
easier (because there are fewer special cases and fewer opportunities
for error).
\section{Debugging}
\label{293}
A Time object is well-{}formed if the values of minutes and seconds are between 0 and 60 (including 0 but not 60) and if
hours is positive. hours and minutes should be
integral values, but we might allow seconds to have a
fraction part.

These kind of requirements are called {\bfseries invariants} because
they should always be true. To put it a different way, if they
are not true, then something has gone wrong.

Writing code to check your invariants can help you detect errors
and find their causes. For example, you might have a function
like valid_time that takes a Time object and returns
False if it violates an invariant:
\TemplatePreformat{def {}valid_time(time): \newline{}
 {} {} {} {}if {}time.hours {}{\mbox{$<$}} {}0 {}or {}time.minutes {}{\mbox{$<$}} {}0 {}or {}time.seconds {}{\mbox{$<$}} {}0: \newline{}
 {} {} {} {} {} {} {} {}return {}False \newline{}
 {} {} {} {}if {}time.minutes {}{\mbox{$>$}}= {}60 {}or {}time.seconds {}{\mbox{$>$}}= {}60: \newline{}
 {} {} {} {} {} {} {} {}return {}False \newline{}
 {} {} {} {}return {}True \newline{}
}
Then at the beginning of each function you could check the
arguments to make sure they are valid:

\TemplatePreformat{def {}add_time(t1, {}t2): \newline{}
 {} {} {} {}if {}not {}valid_time(t1) {}or {}not {}valid_time(t2): \newline{}
 {} {} {} {} {} {} {} {}raise {}ValueError, {}\textquotesingle{}invalid {}Time {}object {}in {}add_time\textquotesingle{} \newline{}
 {} {} {} {}seconds {}= {}time_to_int(t1) {}+ {}time_to_int(t2) \newline{}
 {} {} {} {}return {}int_to_time(seconds) \newline{}
}
Or you could use an assert statement, which checks a given invariant
and raises an exception if it fails:

\TemplatePreformat{def {}add_time(t1, {}t2): \newline{}
 {} {} {} {}assert {}valid_time(t1) {}and {}valid_time(t2) \newline{}
 {} {} {} {}seconds {}= {}time_to_int(t1) {}+ {}time_to_int(t2) \newline{}
 {} {} {} {}return {}int_to_time(seconds) \newline{}
}
assert statements are useful because they distinguish
code that deals with normal conditions from code
that checks for errors.\section{Glossary}
\label{294}

{\bfseries prototype and patch:} A development plan that involves
writing a rough draft of a program, testing, and correcting errors as
they are found.
{\bfseries planned development:} A development plan that involves
high-{}level insight into the problem and more planning than incremental
development or prototype development.
{\bfseries pure function:} A function that does not modify any of the objects it
receives as arguments. Most pure functions are fruitful.
{\bfseries modifier:} A function that changes one or more of the objects it
receives as arguments. Most modifiers are fruitless.
{\bfseries functional programming style:} A style of program design in which the
majority of functions are pure.
{\bfseries invariant:} A condition that should always be true during the
execution of a program.

\section{Exercises}
\label{295}\subsection{Exercise 6}
\label{296}
Write a function called {\itshape }mul_time{\itshape }{\itshape } that takes a Time object
and a number and returns a new Time object that contains
the product of the original Time and the number.{\itshape }
{\itshape Then use }{\itshape mul_time}{\itshape to write a function that takes a Time}
object that represents the finishing time in a race, and a number
that represents the distance, and returns a Time object that represents
the average pace (time per mile).{\itshape }
\subsection{Exercise 7}
\label{297}
{\itshape Write a class definition for a Date object that has attributes {\bfseries \textquotesingle{}day}\textquotesingle{}, {\bfseries \textquotesingle{}month}\textquotesingle{} and {\bfseries \textquotesingle{}year}\textquotesingle{}. Write a function called}
{\itshape }increment_date{\itshape }{\itshape } that takes a Date object, {\bfseries \textquotesingle{}date}\textquotesingle{} and an
integer, {\bfseries \textquotesingle{}n}\textquotesingle{}, and returns a new Date object that
represents the day {\bfseries \textquotesingle{}n}\textquotesingle{} days after {\bfseries \textquotesingle{}date}\textquotesingle{}. Hint:
“Thirty days hath September...” Challenge: does your function
deal with leap years correctly? See {\bfseries \textquotesingle{}wikipedia.org/wiki/Leap_year{\itshape }}
\subsection{Exercise 8}
\label{298}
{\itshape The {\bfseries \textquotesingle{}datetime}\textquotesingle{} module provides {\bfseries \textquotesingle{}date}\textquotesingle{} and {\bfseries \textquotesingle{}time}\textquotesingle{} objects}
that are similar to the Date and Time objects in this chapter, but
they provide a rich set of methods and operators. Read the
documentation at {\bfseries \textquotesingle{}docs.python.org/lib/datetime-{}date.html}\textquotesingle{}.{\itshape }

\begin{myitemize}
\item{} {\itshape Use the {\bfseries \textquotesingle{}datetime}\textquotesingle{} module to write a program that gets the current date and prints the day of the week.}
\item{} {\itshape Write a program that takes a birthday as input and prints the user’s age and the number of days, hours, minutes and seconds until their next birthday.}
\end{myitemize}

\chapter{Classes and methods}

\myminitoc
\label{299}

\label{300}
\LaTeXNullTemplate{}
\section{Object-{}oriented features}
\label{301}

Python is an {\bfseries object-{}oriented programming language}, which means
that it provides features that support object-{}oriented
programming.

It is not easy to define object-{}oriented programming, but we have
already seen some of its characteristics:

\begin{myitemize}
\item{} Programs are made up of object definitions and function
\end{myitemize}

definitions, and most of the computation is expressed in terms
of operations on objects.

\begin{myitemize}
\item{} Each object definition corresponds to some object or concept
\end{myitemize}

in the real world, and the functions that operate on that object
correspond to the ways real-{}world objects interact.

For example, the Time class defined in Chapter 16
corresponds to the way people record the time of day, and the
functions we defined correspond to the kinds of things people do with
times. Similarly, the Point and Rectangle classes
correspond to the mathematical concepts of a point and a rectangle.

So far, we have not taken advantage of the features Python provides to
support object-{}oriented programming. These
features are not strictly necessary; most of them provide
alternative syntax for things we have already done. But in many cases,
the alternative is more concise and more accurately conveys the
structure of the program.

For example, in the Time program, there is no obvious
connection between the class definition and the function definitions
that follow. With some examination, it is apparent that every function
takes at least one Time object as an argument.

This observation is the motivation for {\bfseries methods}; a method is
a function that is associated with a particular class.
We have seen methods for strings, lists, dictionaries and tuples.
In this chapter, we will define methods for user-{}defined types.

Methods are semantically the same as functions, but there are
two syntactic differences:

\begin{myitemize}
\item{} Methods are defined inside a class definition in order to make the relationship between the class and the method explicit.
\item{} The syntax for invoking a method is different from the syntax for calling a function.
\end{myitemize}

In the next few sections, we will take the functions from the previous
two chapters and transform them into methods. This transformation is
purely mechanical; you can do it simply by following a sequence of
steps. If you are comfortable converting from one form to another,
you will be able to choose the best form for whatever you are doing.
\section{Printing objects}
\label{302}
In Chapter 16, we defined a class named
Time and in Exercise 16.1, you
wrote a function named print_time:
\TemplatePreformat{class {}Time(object): \newline{}
 {} {} {} {}\symbol{34}\symbol{34}\symbol{34}represents {}the {}time {}of {}day. \newline{}
 {} {} {} {} {} {} {}attributes: {}hour, {}minute, {}second\symbol{34}\symbol{34}\symbol{34} \newline{}
 {} \newline{}
def {}print_time(time): \newline{}
 {} {} {} {}print {}\textquotesingle{}\%.2d:\%.2d:\%.2d\textquotesingle{} {}\% {}(time.hour, {}time.minute, {}time.second) \newline{}
}
To call this function, you have to pass a Time object as an
argument:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}start {}= {}Time() \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}start.hour {}= {}9 \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}start.minute {}= {}45 \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}start.second {}= {}00 \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print_time(start) \newline{}
09:45:00 \newline{}
}
To make print_time a method, all we have to do is
move the function definition inside the class definition. Notice
the change in indentation.

\TemplatePreformat{class {}Time(object): \newline{}
 {} {} {} {}def {}print_time(time): \newline{}
 {} {} {} {} {} {} {} {}print {}\textquotesingle{}\%.2d:\%.2d:\%.2d\textquotesingle{} {}\% {}(time.hour, {}time.minute, \newline{}
 {}time.second) \newline{}
}
Now there are two ways to call print_time. The first
(and less common) way is to use function syntax:

\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}Time.print_time(start) \newline{}
09:45:00 \newline{}
}
In this use of dot notation, Time is the name of the class,
and print_time is the name of the method. start is
passed as a parameter.

The second (and more concise) way is to use method syntax:

\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}start.print_time() \newline{}
09:45:00 \newline{}
}
In this use of dot notation, print_time is the name of the
method (again), and start is the object the method is
invoked on, which is called the {\bfseries subject}. Just as the
subject of a sentence is what the sentence is about, the subject
of a method invocation is what the method is about.

Inside the method, the subject is assigned to the first
parameter, so in this case start is assigned
to time.

By convention, the first parameter of a method is
called self, so it would be more common to write
print_time like this:
\TemplatePreformat{class {}Time(object): \newline{}
 {} {} {} {}def {}print_time(self): \newline{}
 {} {} {} {} {} {} {} {}print {}\textquotesingle{}\%.2d:\%.2d:\%.2d\textquotesingle{} {}\% {}(self.hour, {}self.minute, \newline{}
 {}self.second) \newline{}
}
The reason for this convention is an implicit metaphor:

\begin{myitemize}
\item{} The syntax for a function call, print_time(start),
\end{myitemize}

suggests that the function is the active agent. It says something
like, “Hey print_time! Here’s an object for you to print.”

\begin{myitemize}
\item{} In object-{}oriented programming, the objects are the active
\end{myitemize}

agents. A method invocation like start.print_time() says
“Hey start! Please print yourself.”

This change in perspective might be more polite, but it is not obvious
that it is useful. In the examples we have seen so far, it may not
be. But sometimes shifting responsibility from the functions onto the
objects makes it possible to write more versatile functions, and makes
it easier to maintain and reuse code.
\subsection{Exercise 1}
\label{303}
Rewrite {\itshape }time_to_int{\itshape }{\itshape }
(from Section {\bfseries \textquotesingle{}16.4}\textquotesingle{}) as a method. It is probably not
appropriate to rewrite {\itshape }int_to_time{\itshape }{\itshape } as a method; it’s not
clear what object you would invoke it on!
\section{Another example}
\label{304}
Here’s a version of increment (from Section 16.3)
rewritten as a method:
\TemplatePreformat{\# {}inside {}class {}Time: \newline{}
 {} \newline{}
 {} {} {} {}def {}increment(self, {}seconds): \newline{}
 {} {} {} {} {} {} {} {}seconds {}+= {}self.time_to_int() \newline{}
 {} {} {} {} {} {} {} {}return {}int_to_time(seconds) \newline{}
}
This version assumes that time_to_int is written
as a method, as in Exercise 17.1. Also, note that
it is a pure function, not a modifier.

Here’s how you would invoke increment:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}start.print_time() \newline{}
09:45:00 \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}end {}= {}start.increment(1337) \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}end.print_time() \newline{}
10:07:17 \newline{}
}
The subject, start, gets assigned to the first parameter,
self. The argument, 1337, gets assigned to the
second parameter, seconds.

This mechanism can be confusing, especially if you make an error.
For example, if you invoke increment with two arguments, you
get:

\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}end {}= {}start.increment(1337, {}460) \newline{}
TypeError: {}increment() {}takes {}exactly {}2 {}arguments {}(3 {}given) \newline{}
}
The error message is initially confusing, because there are
only two arguments in parentheses. But the subject is also
considered an argument, so all together that’s three.
\section{A more complicated example}
\label{305}
is_after (from Exercise 16.2) is slightly more complicated
because it takes two Time objects as parameters. In this case it is
conventional to name the first parameter self and the second
parameter other:

\TemplatePreformat{\# {}inside {}class {}Time: \newline{}
 {} \newline{}
 {} {} {} {}def {}is_after(self, {}other): \newline{}
 {} {} {} {} {} {} {} {}return {}self.time_to_int() {}{\mbox{$>$}} {}other.time_to_int() \newline{}
}
To use this method, you have to invoke it on one object and pass
the other as an argument:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}end.is_after(start) \newline{}
True \newline{}
}
One nice thing about this syntax is that it almost reads
like English: “end is after start?”
\section{The init method}
\label{306}
The init method (short for “initialization”) is
a special method that gets invoked when an object is instantiated.
Its full name is __init__ (two underscore characters,
followed by init, and then two more underscores). An
init method for the Time class might look like this:
\TemplatePreformat{\# {}inside {}class {}Time: \newline{}
 {} \newline{}
 {} {} {} {}def {}__init__(self, {}hour=0, {}minute=0, {}second=0): \newline{}
 {} {} {} {} {} {} {} {}self.hour {}= {}hour \newline{}
 {} {} {} {} {} {} {} {}self.minute {}= {}minute \newline{}
 {} {} {} {} {} {} {} {}self.second {}= {}second \newline{}
}
It is common for the parameters of __init__
to have the same names as the attributes. The statement
\TemplatePreformat{ {} {} {} {} {} {} {} {}self.hour {}= {}hour \newline{}
}
stores the value of the parameter hour as an attribute
of self.

The parameters are optional, so if you call Time with
no arguments, you get the default values.
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}time {}= {}Time() \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}time.print_time() \newline{}
00:00:00 \newline{}
}
If you provide one argument, it overrides hour:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}time {}= {}Time {}(9) \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}time.print_time() \newline{}
09:00:00 \newline{}
}
If you provide two arguments, they override hour and
minute.
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}time {}= {}Time(9, {}45) \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}time.print_time() \newline{}
09:45:00 \newline{}
}
And if you provide three arguments, they override all three
default values.
\subsection{Exercise 2}
\label{307}
{\itshape Write an init method for the {\bfseries \textquotesingle{}Point}\textquotesingle{} class that takes}
{\bfseries \textquotesingle{}x}\textquotesingle{} and {\bfseries \textquotesingle{}y}\textquotesingle{} as optional parameters and assigns
them to the corresponding attributes.{\itshape }
\section{The __str__ method}
\label{308}
__str__ is a special method, like __init__,
that is supposed to return a string representation of an object.

For example, here is a str method for Time objects:
\TemplatePreformat{\# {}inside {}class {}Time: \newline{}
 {} \newline{}
 {} {} {} {}def {}__str__(self): \newline{}
 {} {} {} {} {} {} {} {}return {}\textquotesingle{}\%.2d:\%.2d:\%.2d\textquotesingle{} {}\% {}(self.hour, {}self.minute, \newline{}
 {}self.second) \newline{}
}
When you print an object, Python invokes the str method:

\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}time {}= {}Time(9, {}45) \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}time \newline{}
09:45:00 \newline{}
}
When I write a new class, I almost always start by writing
__init__, which makes it easier to instantiate objects, and
__str__, which is useful for debugging.
\subsection{Exercise 3}
\label{309}
Write a {\bfseries \textquotesingle{}str}\textquotesingle{} method for the {\bfseries \textquotesingle{}Point}\textquotesingle{} class. Create
a Point object and print it.
\section{Operator overloading}
\label{310}
By defining other special methods, you can specify the behavior
of operators on user-{}defined types. For example, if you define
a method named __add__ for the Time class, you can use the
+ operator on Time objects.

Here is what the definition might look like:

\TemplatePreformat{\# {}inside {}class {}Time: \newline{}
 {} \newline{}
 {} {} {} {}def {}__add__(self, {}other): \newline{}
 {} {} {} {} {} {} {} {}seconds {}= {}self.time_to_int() {}+ {}other.time_to_int() \newline{}
 {} {} {} {} {} {} {} {}return {}int_to_time(seconds) \newline{}
}
And here is how you could use it:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}start {}= {}Time(9, {}45) \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}duration {}= {}Time(1, {}35) \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}start {}+ {}duration \newline{}
11:20:00 \newline{}
}
When you apply the + operator to Time objects, Python invokes
__add__. When you print the result, Python invokes
__str__. So there is quite a lot happening behind the scenes!

Changing the behavior of an operator so that it works with
user-{}defined types is called {\bfseries operator overloading}. For every
operator in Python there is a corresponding special method, like
__add__. For more details, see
docs.python.org/ref/specialnames.html.
\subsection{Exercise 4}
\label{311}
Write an {\bfseries \textquotesingle{}add}\textquotesingle{} method for the Point class.
\section{Type-{}based dispatch}
\label{312}
In the previous section we added two Time objects, but you
also might want to add an integer to a Time object. The
following is a version of __add__
that checks the type of other and invokes either
add_time or increment:
\TemplatePreformat{\# {}inside {}class {}Time: \newline{}
 {} \newline{}
 {} {} {} {}def {}__add__(self, {}other): \newline{}
 {} {} {} {} {} {} {} {}if {}isinstance(other, {}Time): \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}return {}self.add_time(other) \newline{}
 {} {} {} {} {} {} {} {}else: \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}return {}self.increment(other) \newline{}
 {} \newline{}
 {} {} {} {}def {}add_time(self, {}other): \newline{}
 {} {} {} {} {} {} {} {}seconds {}= {}self.time_to_int() {}+ {}other.time_to_int() \newline{}
 {} {} {} {} {} {} {} {}return {}int_to_time(seconds) \newline{}
 {} \newline{}
 {} {} {} {}def {}increment(self, {}seconds): \newline{}
 {} {} {} {} {} {} {} {}seconds {}+= {}self.time_to_int() \newline{}
 {} {} {} {} {} {} {} {}return {}int_to_time(seconds) \newline{}
}
The built-{}in function isinstance takes a value and a
class object, and returns True if the value is an instance
of the class.

If other is a Time object, __add__ invokes
add_time. Otherwise it assumes that the parameter
is a number and invokes increment. This operation is
called a {\bfseries type-{}based dispatch} because it dispatches the
computation to different methods based on the type of the
arguments.

Here are examples that use the + operator with different
types:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}start {}= {}Time(9, {}45) \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}duration {}= {}Time(1, {}35) \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}start {}+ {}duration \newline{}
11:20:00 \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}start {}+ {}1337 \newline{}
10:07:17 \newline{}
}
Unfortunately, this implementation of addition is not commutative.
If the integer is the first operand, you get

\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}1337 {}+ {}start \newline{}
TypeError: {}unsupported {}operand {}type(s) {}for {}+: {}\textquotesingle{}int\textquotesingle{} {}and {}\textquotesingle{}instance\textquotesingle{} \newline{}
}
The problem is, instead of asking the Time object to add an integer,
Python is asking an integer to add a Time object, and it doesn’t know
how to do that. But there is a clever solution for this problem: the
special method __radd__, which stands for “right-{}side add.”
This method is invoked when a Time object appears on the right side of
the + operator. Here’s the definition:

\TemplatePreformat{\# {}inside {}class {}Time: \newline{}
 {} \newline{}
 {} {} {} {}def {}__radd__(self, {}other): \newline{}
 {} {} {} {} {} {} {} {}return {}self.__add__(other) \newline{}
}
And here’s how it’s used:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}1337 {}+ {}start \newline{}
10:07:17 \newline{}
}
\subsection{Exercise 5}
\label{313}
Write an {\bfseries \textquotesingle{}add}\textquotesingle{} method for Points that works with either a
Point object or a tuple: {\itshape }

\begin{myitemize}
\item{} {\itshape If the second operand is a Point, the method should return a new Point whose {\bfseries \textquotesingle{}x}\textquotesingle{} coordinate is the sum of the {\bfseries \textquotesingle{}x}\textquotesingle{} coordinates of the operands, and likewise for the {\bfseries \textquotesingle{}y}\textquotesingle{} coordinates.}
\item{} {\itshape If the second operand is a tuple, the method should add the first element of the tuple to the {\bfseries \textquotesingle{}x}\textquotesingle{} coordinate and the second element to the {\bfseries \textquotesingle{}y}\textquotesingle{} coordinate, and return a new Point with the result. }
\end{myitemize}

\section{Polymorphism}
\label{314}
Type-{}based dispatch is useful when it is necessary, but (fortunately)
it is not always necessary. Often you can avoid it by writing functions
that work correctly for arguments with different types.

Many of the functions we wrote for strings will actually
work for any kind of sequence.
For example, in Section 11.1
we used histogram to count the number of times each letter
appears in a word.
\TemplatePreformat{def {}histogram(s): \newline{}
 {} {} {} {}d {}= {}dict() \newline{}
 {} {} {} {}for {}c {}in {}s: \newline{}
 {} {} {} {} {} {} {} {}if {}c {}not {}in {}d: \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}d{[}c{]} {}= {}1 \newline{}
 {} {} {} {} {} {} {} {}else: \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}d{[}c{]} {}= {}d{[}c{]}+1 \newline{}
 {} {} {} {}return {}d \newline{}
}
This function also works for lists, tuples, and even dictionaries,
as long as the elements of s are hashable, so they can be used
as keys in d.
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}t {}= {}{[}\textquotesingle{}spam\textquotesingle{}, {}\textquotesingle{}egg\textquotesingle{}, {}\textquotesingle{}spam\textquotesingle{}, {}\textquotesingle{}spam\textquotesingle{}, {}\textquotesingle{}bacon\textquotesingle{}, {}\textquotesingle{}spam\textquotesingle{}{]} \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}histogram(t) \newline{}
\{\textquotesingle{}bacon\textquotesingle{}: {}1, {}\textquotesingle{}egg\textquotesingle{}: {}1, {}\textquotesingle{}spam\textquotesingle{}: {}4\} \newline{}
}
Functions that can work with several types are called {\bfseries polymorphic}.
Polymorphism can facilitate code reuse. For example, the built-{}in
function sum, which adds the elements of a sequence, works
as long as the elements of the sequence support addition.

Since Time objects provide an add method, they work
with sum:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}t1 {}= {}Time(7, {}43) \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}t2 {}= {}Time(7, {}41) \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}t3 {}= {}Time(7, {}37) \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}total {}= {}sum({[}t1, {}t2, {}t3{]}) \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}total \newline{}
23:01:00 \newline{}
}
In general, if all of the operations inside a function
work with a given type, then the function works with that type.

The best kind of polymorphism is the unintentional kind, where
you discover that a function you already wrote can be
applied to a type you never planned for.
\section{Debugging}
\label{315}
It is legal to add attributes to objects at any point in the execution
of a program, but if you are a stickler for type theory, it is a
dubious practice to have objects of the same type with different
attribute sets. It is usually a good idea to
initialize all of an objects attributes in the init method.

If you are not sure whether an object has a particular attribute, you
can use the built-{}in function hasattr (see Section 15.7).

Another way to access the attributes of an object is through the
special attribute __dict__, which is a dictionary that maps
attribute names (as strings) and values:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}p {}= {}Point(3, {}4) \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}p.__dict__ \newline{}
\{\textquotesingle{}y\textquotesingle{}: {}4, {}\textquotesingle{}x\textquotesingle{}: {}3\} \newline{}
}
For purposes of debugging, you might find it useful to keep this
function handy:
\TemplatePreformat{def {}print_attributes(obj): \newline{}
 {} {} {} {}for {}attr {}in {}obj.__dict__: \newline{}
 {} {} {} {} {} {} {} {}print {}attr, {}getattr(obj, {}attr) \newline{}
}
print_attributes traverses the items in the object’s dictionary
and prints each attribute name and its corresponding value.

The built-{}in function getattr takes an object and an attribute
name (as a string) and returns the attribute’s value.
\section{Glossary}
\label{316}

{\bfseries object-{}oriented language:} A language that provides features,
such as user-{}defined classes and method syntax, that facilitate
object-{}oriented programming.
{\bfseries object-{}oriented programming:} A style of programming in which
data and the operations that manipulate it are organized into classes
and methods.
{\bfseries method:} A function that is defined inside a class definition and
is invoked on instances of that class.
{\bfseries subject:} The object a method is invoked on.
{\bfseries operator overloading:} Changing the behavior of an operator like
+ so it works with a user-{}defined type.

{\bfseries type-{}based dispatch:} A programming pattern that checks the type
of an operand and invokes different functions for different types.
{\bfseries polymorphic:} Pertaining to a function that can work with more
than one type.

\section{Exercises}
\label{317}
\subsection{Exercise 6}
\label{318}
{\itshape This exercise is a cautionary tale about one of the most}
common, and difficult to find, errors in Python.{\itshape }

\begin{myitemize}
\item{} {\itshape Write a definition for a class named {\bfseries \textquotesingle{}Kangaroo}\textquotesingle{} with the following}
\end{myitemize}

methods:{\itshape }

\begin{myitemize}
\item{} {\itshape An }{\itshape __init__}{\itshape method that initializes an attribute named }{\itshape pouch_contents}{\itshape to an empty list.}
\end{myitemize}

\begin{myitemize}
\item{} {\itshape A method named }{\itshape put_in_pouch}{\itshape that takes an object of any type and adds it to }{\itshape pouch_contents}{\itshape .}
\end{myitemize}

\begin{myitemize}
\item{} {\itshape A }{\itshape __str__}{\itshape method that returns a string representation of the Kangaroo object and the contents of the pouch.}
\end{myitemize}

Test your code
by creating two {\bfseries }{\itshape Kangaroo{\bfseries }} objects, assigning them to variables
named {\bfseries }{\itshape kanga{\bfseries }} and {\bfseries }{\itshape roo{\bfseries }}, and then adding {\bfseries }{\itshape roo{\bfseries }} to the
contents of {\bfseries }{\itshape kanga{\bfseries }}’s pouch.{\bfseries \textquotesingle{}}

\begin{myitemize}
\item{} {\bfseries \textquotesingle{}Download }{\bfseries {\itshape thinkpython.com/code/BadKangaroo.py}}{\itshape {\bfseries }}{\bfseries . It contains}
\end{myitemize}

a solution to the previous problem with one big, nasty bug.
Find and fix the bug.{\bfseries \textquotesingle{}}
{\bfseries \textquotesingle{}If you get stuck, you can download}
{\bfseries }{\itshape thinkpython.com/code/GoodKangaroo.py{\bfseries }}, which explains the
problem and demonstrates a solution.{\bfseries \textquotesingle{}}
\subsection{Exercise 7}
\label{319}
{\itshape Visual is a Python module that provides 3-{}D graphics. It is}
not always included in a Python installation, so you might have
to install it from your software repository or, if it’s not there,
from {\bfseries \textquotesingle{}vpython.org}\textquotesingle{}.{\itshape }

{\itshape The following example creates a 3-{}D space that is 256 units}
wide, long and high, and sets the “center” to be the
point {\bfseries \textquotesingle{}(128, 128, 128)}\textquotesingle{}. Then it draws a blue sphere.{\itshape }
\TemplatePreformat{\textquotesingle{}\textquotesingle{}from {}visual {}import {}* \newline{}
 {} \newline{}
scene.range {}= {}(256, {}256, {}256) \newline{}
scene.center {}= {}(128, {}128, {}128) \newline{}
 {} \newline{}
color {}= {}(0.1, {}0.1, {}0.9) {} {} {} {} {} {} {} {} {} {}\# {}mostly {}blue \newline{}
sphere(pos=scene.center, {}radius=128, {}color=color) \newline{}
\textquotesingle{}\textquotesingle{}}
{\itshape color{\bfseries \textquotesingle{} is an RGB tuple; that is, the elements are Red-{}Green-{}Blue}}
levels between 0.0 and 1.0 (see
{\bfseries \textquotesingle{}wikipedia.org/wiki/RGB_color_model}\textquotesingle{}).{\itshape }

{\itshape If you run this code, you should see a window with a black}
background and a blue sphere. If you drag the middle button
up and down, you can zoom in and out. You can also rotate
the scene by dragging the right button, but with only one
sphere in the world, it is hard to tell the difference.{\itshape }

{\itshape The following loop creates a cube of spheres:}
\TemplatePreformat{\textquotesingle{}\textquotesingle{}t {}= {}range(0, {}256, {}51) \newline{}
for {}x {}in {}t: \newline{}
 {} {} {} {}for {}y {}in {}t: \newline{}
 {} {} {} {} {} {} {} {}for {}z {}in {}t: \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}pos {}= {}x, {}y, {}z \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}sphere(pos=pos, {}radius=10, {}color=color) \newline{}
\textquotesingle{}\textquotesingle{}}

\begin{myitemize}
\item{} {\itshape Put this code in a script and make sure it works for}
\end{myitemize}

you.{\itshape }

\begin{myitemize}
\item{} {\itshape Modify the program so that each sphere in the cube}
\end{myitemize}

has the color that corresponds to its position in RGB space.
Notice that the coordinates are in the range 0–255, but
the RGB tuples are in the range 0.0–1.0.{\itshape }
{\itshape }
{\itshape }

\begin{myitemize}
\item{} {\itshape Download {\bfseries \textquotesingle{}thinkpython.com/code/color_list.py}\textquotesingle{}}
\end{myitemize}

and use the function {\itshape }read_colors{\itshape }{\itshape } to generate a list
of the available colors on your system, their names and
RGB values. For each named color draw a sphere in the
position that corresponds to its RGB values.{\itshape }

{\itshape You can see my solution at {\bfseries \textquotesingle{}thinkpython.com/code/color_space.py}\textquotesingle{}.}
\section{Further reading}
\label{320}

\begin{myitemize}
\item{} \myhref{http://en.wikipedia.org/wiki/\%20VPython}{Wikipedia: VPython}
\item{} \myhref{http://en.wikipedia.org/wiki/\%20RGB\%20color\%20model}{Wikipedia: RGB color model}
\end{myitemize}

\chapter{Inheritance}

\myminitoc
\label{321}

\label{322}
\LaTeXNullTemplate{}

In this chapter we will develop classes to represent playing cards,
decks of cards, and poker hands. If you don’t play poker, you can
read about it at \myhref{http://en.wikipedia.org/wiki/Poker}{ wikipedia.org/wiki/Poker}, but you don\textquotesingle{}t have
to; I\textquotesingle{}ll tell you what you need to know for the exercises.

If you are not familiar with Anglo-{}American playing cards,
you can read about them at \myhref{http://en.wikipedia.org/wiki/Playing_cards}{ wikipedia.org/wiki/Playing_cards}.
\section{Card objects}
\label{323}
There are fifty-{}two cards in a deck, each of which belongs to one of
four suits and one of thirteen ranks. The suits are Spades, Hearts,
Diamonds, and Clubs (in descending order in bridge). The ranks are
Ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, and King. Depending on
the game that you are playing, an Ace may be higher than King
or lower than 2.

If we want to define a new object to represent a playing card, it is
obvious what the attributes should be: rank and
suit. It is not as obvious what type the attributes
should be. One possibility is to use strings containing words like
\textquotesingle{}Spade\textquotesingle{} for suits and \textquotesingle{}Queen\textquotesingle{} for ranks. One problem with
this implementation is that it would not be easy to compare cards to
see which had a higher rank or suit.

An alternative is to use integers to {\bfseries encode} the ranks and suits.
In this context, “encode” means that we are going to define a mapping
between numbers and suits, or between numbers and ranks. This
kind of encoding is not meant to be a secret (that
would be “encryption”).

For example, this table shows the suits and the corresponding integer
codes:
\begin{longtable}{>{\RaggedRight}p{0.51298\linewidth}>{\RaggedRight}p{0.20719\linewidth}>{\RaggedRight}p{0.15930\linewidth}}
\hspace*{0pt}\ignorespaces{}\hspace*{0pt}Spades &\hspace*{0pt}\ignorespaces{}\hspace*{0pt}↦ &\hspace*{0pt}\ignorespaces{}\hspace*{0pt}3\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt}Hearts&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}↦&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}2\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt}Diamonds&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}↦&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}1\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt}Clubs&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}↦&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}0
\end{longtable}

This code makes it easy to compare cards; because higher suits map to
higher numbers, we can compare suits by comparing their codes.

The mapping for ranks is fairly obvious; each of the numerical ranks
maps to the corresponding integer, and for face cards:
\begin{longtable}{>{\RaggedRight}p{0.41188\linewidth}>{\RaggedRight}p{0.23319\linewidth}>{\RaggedRight}p{0.23440\linewidth}}
\hspace*{0pt}\ignorespaces{}\hspace*{0pt}Jack&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}↦&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}11\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt}Queen&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}↦&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}12\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt}King&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}↦&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}13
\end{longtable}

I am using the ↦ symbol to make is clear that these mappings
are not part of the Python program. They are part of the program
design, but they don’t appear explicitly in the code.

The class definition for Card looks like this:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{class}\ensuremath{\text{ }}\NormalTok{Card:}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\CommentTok{"""represents\ensuremath{\text{ }}a\ensuremath{\text{ }}standard\ensuremath{\text{ }}playing\ensuremath{\text{ }}card."""}\newline
\ensuremath{\text{ }}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{def}\ensuremath{\text{ }}\OtherTok{__init__}\NormalTok{(}\OtherTok{self}\NormalTok{,\ensuremath{\text{ }}suit=}\DecValTok{0}\NormalTok{,\ensuremath{\text{ }}rank=}\DecValTok{2}\NormalTok{):}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\OtherTok{self}\NormalTok{.suit\ensuremath{\text{ }}=\ensuremath{\text{ }}suit}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\OtherTok{self}\NormalTok{.rank\ensuremath{\text{ }}=\ensuremath{\text{ }}rank}\newline
\end{Highlighting}
\end{Shaded}

As usual, the init method takes an optional
parameter for each attribute. The default card is
the 2 of Clubs.

To create a Card, you call Card with the
suit and rank of the card you want.

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{queen_of_diamonds\ensuremath{\text{ }}=\ensuremath{\text{ }}Card(}\DecValTok{1}\NormalTok{,\ensuremath{\text{ }}}\DecValTok{12}\NormalTok{)}\newline
\end{Highlighting}
\end{Shaded}

\section{Class attributes}
\label{324}
In order to print Card objects in a way that people can easily
read, we need a mapping from the integer codes to the corresponding
ranks and suits. A natural way to
do that is with lists of strings. We assign these lists to {\bfseries class}
attributes{\bfseries :}

\begin{Shaded}
\begin{Highlighting}[]

\CommentTok{#\ensuremath{\text{ }}inside\ensuremath{\text{ }}class\ensuremath{\text{ }}Card:}\newline
\ensuremath{\text{ }}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{suit_names\ensuremath{\text{ }}=\ensuremath{\text{ }}[}\StringTok{{\char13}Clubs{\char13}}\NormalTok{,\ensuremath{\text{ }}}\StringTok{{\char13}Diamonds{\char13}}\NormalTok{,\ensuremath{\text{ }}}\StringTok{{\char13}Hearts{\char13}}\NormalTok{,\ensuremath{\text{ }}}\StringTok{{\char13}Spades{\char13}}\NormalTok{]}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{rank_names\ensuremath{\text{ }}=\ensuremath{\text{ }}[}\OtherTok{None}\NormalTok{,\ensuremath{\text{ }}}\StringTok{{\char13}Ace{\char13}}\NormalTok{,\ensuremath{\text{ }}}\StringTok{{\char13}2{\char13}}\NormalTok{,\ensuremath{\text{ }}}\StringTok{{\char13}3{\char13}}\NormalTok{,\ensuremath{\text{ }}}\StringTok{{\char13}4{\char13}}\NormalTok{,\ensuremath{\text{ }}}\StringTok{{\char13}5{\char13}}\NormalTok{,\ensuremath{\text{ }}}\StringTok{{\char13}6{\char13}}\NormalTok{,\ensuremath{\text{ }}}\StringTok{{\char13}7{\char13}}\NormalTok{,\ensuremath{\text{ }}}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\StringTok{{\char13}8{\char13}}\NormalTok{,\ensuremath{\text{ }}}\StringTok{{\char13}9{\char13}}\NormalTok{,\ensuremath{\text{ }}}\StringTok{{\char13}10{\char13}}\NormalTok{,\ensuremath{\text{ }}}\StringTok{{\char13}Jack{\char13}}\NormalTok{,\ensuremath{\text{ }}}\StringTok{{\char13}Queen{\char13}}\NormalTok{,\ensuremath{\text{ }}}\StringTok{{\char13}King{\char13}}\NormalTok{]}\newline
\ensuremath{\text{ }}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{def}\ensuremath{\text{ }}\OtherTok{__str__}\NormalTok{(}\OtherTok{self}\NormalTok{):}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{return}\ensuremath{\text{ }}\StringTok{{\char13}}\OtherTok{\%s}\StringTok{\ensuremath{\text{ }}of\ensuremath{\text{ }}}\OtherTok{\%s}\StringTok{{\char13}}\ensuremath{\text{ }}\NormalTok{\%\ensuremath{\text{ }}(Card.rank_names[}\OtherTok{self}\NormalTok{.rank],}\newline
\ensuremath{\text{ }}\NormalTok{Card.suit_names[}\OtherTok{self}\NormalTok{.suit])}\newline
\end{Highlighting}
\end{Shaded}

Variables like suit_names and rank_names, which are
defined inside a class but outside of any method, are called
class attributes because they are associated with the class object
Card.

This term distinguished them from variables like suit and rank, which are called {\bfseries instance attributes} because they are
associated with a particular instance.

Both kinds of attribute are accessed using dot notation. For
example, in __str__, self is a Card object,
and self.rank is its rank. Similarly, Card
is a class object, and Card.rank_names is a
list of strings associated with the class.

Every card has its own suit and rank, but there
is only one copy of suit_names and rank_names.

Putting it all together, the expression
Card.rank_names{[}self.rank{]} means “use the attribute rank
from the object self as an index into the list rank_names
from the class Card, and select the appropriate string.”

The first element of rank_names is None because there
is no card with rank zero. By including None as a place-{}keeper,
we get a mapping with the nice property that the index 2 maps to the
string \textquotesingle{}2\textquotesingle{}, and so on. To avoid this tweak, we could have
used a dictionary instead of a list.

With the methods we have so far, we can create and print cards:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{>>>\ensuremath{\text{ }}card1\ensuremath{\text{ }}=\ensuremath{\text{ }}Card(}\DecValTok{2}\NormalTok{,\ensuremath{\text{ }}}\DecValTok{11}\NormalTok{)}\newline
\NormalTok{>>>\ensuremath{\text{ }}}\KeywordTok{print}\ensuremath{\text{ }}\NormalTok{card1}\newline
\NormalTok{Jack\ensuremath{\text{ }}of\ensuremath{\text{ }}Hearts}\newline
\end{Highlighting}
\end{Shaded}

Here is a diagram that shows the Card class object
and one Card instance:

Card is a class object, so it has type type. card1 has type Card. (To save space, I didn’t draw the
contents of suit_names and rank_names).
\section{Comparing cards}
\label{325}
For built-{}in types, there are conditional operators
({\mbox{$<$}}, {\mbox{$>$}}, ==, etc.)
that compare
values and determine when one is greater than, less than, or equal to
another. For user-{}defined types, we can override the behavior of
the built-{}in operators by providing a method named
__cmp__.

__cmp__ takes two parameters, self and other,
and returns a positive number if the first object is greater, a
negative number if the second object is greater, and 0 if they are
equal to each other.

The correct ordering for cards is not obvious.
For example, which
is better, the 3 of Clubs or the 2 of Diamonds? One has a higher
rank, but the other has a higher suit. In order to compare
cards, you have to decide whether rank or suit is more important.

The answer might depend on what game you are playing, but to keep
things simple, we’ll make the arbitrary choice that suit is more
important, so all of the Spades outrank all of the Diamonds,
and so on.

With that decided, we can write __cmp__:
\TemplatePreformat{\# {}inside {}class {}Card: \newline{}
 {} \newline{}
 {} {} {} {}def {}__cmp__(self, {}other): \newline{}
 {} {} {} {} {} {} {} {}\# {}check {}the {}suits \newline{}
 {} {} {} {} {} {} {} {}if {}self.suit {}{\mbox{$>$}} {}other.suit: {}return {}1 \newline{}
 {} {} {} {} {} {} {} {}if {}self.suit {}{\mbox{$<$}} {}other.suit: {}return {}-{}1 \newline{}
 {} \newline{}
 {} {} {} {} {} {} {} {}\# {}suits {}are {}the {}same... {}check {}ranks \newline{}
 {} {} {} {} {} {} {} {}if {}self.rank {}{\mbox{$>$}} {}other.rank: {}return {}1 \newline{}
 {} {} {} {} {} {} {} {}if {}self.rank {}{\mbox{$<$}} {}other.rank: {}return {}-{}1 \newline{}
 {} \newline{}
 {} {} {} {} {} {} {} {}\# {}ranks {}are {}the {}same... {}it\textquotesingle{}s {}a {}tie \newline{}
 {} {} {} {} {} {} {} {}return {}0 {} {} {} {} \newline{}
}
You can write this more concisely using tuple comparison:

\TemplatePreformat{\# {}inside {}class {}Card: \newline{}
 {} \newline{}
 {} {} {} {}def {}__cmp__(self, {}other): \newline{}
 {} {} {} {} {} {} {} {}t1 {}= {}self.suit, {}self.rank \newline{}
 {} {} {} {} {} {} {} {}t2 {}= {}other.suit, {}other.rank \newline{}
 {} {} {} {} {} {} {} {}return {}cmp(t1, {}t2) \newline{}
}
The built-{}in function cmp has the same interface as
the method __cmp__: it takes two values and returns
a positive number if the first is larger, a negative number
of the second is larger, and 0 if they are equal.
\subsection{Exercise 1}
\label{326}
Write a {\itshape }__cmp__{\itshape }{\itshape } method for Time objects. Hint: you
can use tuple comparison, but you also might consider using
integer subtraction.{\itshape }
\section{Decks}
\label{327}
Now that we have Cards, the next step is to define Decks. Since a
deck is made up of cards, it is natural for each Deck to contain a
list of cards as an attribute.

The following is a class definition for Deck. The
init method creates the attribute cards and generates
the standard set of fifty-{}two cards:

\TemplatePreformat{class {}Deck: \newline{}
 {} \newline{}
 {} {} {} {}def {}__init__(self): \newline{}
 {} {} {} {} {} {} {} {}self.cards {}= {}{[}{]} \newline{}
 {} {} {} {} {} {} {} {}for {}suit {}in {}range(4): \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}for {}rank {}in {}range(1, {}14): \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}card {}= {}Card(suit, {}rank) \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}self.cards.append(card) \newline{}
}
The easiest way to populate the deck is with a nested loop. The outer
loop enumerates the suits from 0 to 3. The inner loop enumerates the
ranks from 1 to 13. Each iteration
creates a new Card with the current suit and rank,
and appends it to self.cards.
\section{Printing the deck}
\label{328}
Here is a __str__ method for Deck:
\TemplatePreformat{\#inside {}class {}Deck: \newline{}
 {} \newline{}
 {} {} {} {}def {}__str__(self): \newline{}
 {} {} {} {} {} {} {} {}res {}= {}{[}str(card) {}for {}card {}in {}self.cards{]} \newline{}
 {} {} {} {} {} {} {} {}return {}\textquotesingle{}\textbackslash{}n\textquotesingle{}.join(res) \newline{}
}
This method demonstrates an efficient way to accumulate a large
string: building a list of strings and then using join.
The built-{}in function str invokes the __str__
method on each card and returns the string representation.

Since we invoke join on a newline character, the cards
are separated by newlines. Here’s what the result looks like:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}deck {}= {}Deck() \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}deck \newline{}
Ace {}of {}Clubs \newline{}
2 {}of {}Clubs \newline{}
3 {}of {}Clubs \newline{}
... \newline{}
10 {}of {}Spades \newline{}
Jack {}of {}Spades \newline{}
Queen {}of {}Spades \newline{}
King {}of {}Spades \newline{}
}
Even though the result appears on 52 lines, it is
one long string that contains newlines.
\section{Add, remove, shuffle and sort}
\label{329}
To deal cards, we would like a method that
removes a card from the deck and returns it.
The list method pop provides a convenient way to do that:

\TemplatePreformat{\#inside {}class {}Deck: \newline{}
 {} \newline{}
 {} {} {} {}def {}pop_card(self): \newline{}
 {} {} {} {} {} {} {} {}return {}self.cards.pop() \newline{}
}
Since pop removes the {\itshape last} card in the list, we are
dealing from the bottom of the deck. In real life bottom dealing is
frowned upon1,
but in this context it’s ok.

To add a card, we can use the list method append:
\TemplatePreformat{\#inside {}class {}Deck: \newline{}
 {} \newline{}
 {} {} {} {}def {}add_card(self, {}card): \newline{}
 {} {} {} {} {} {} {} {}self.cards.append(card) \newline{}
}
A method like this that uses another function without doing
much real work is sometimes called a {\bfseries veneer}. The metaphor
comes from woodworking, where it is common to glue a thin
layer of good quality wood to the surface of a cheaper piece of
wood.

In this case we are defining a “thin” method that expresses
a list operation in terms that are appropriate for decks.

As another example, we can write a Deck method named shuffle
using the function shuffle from the random module:

\TemplatePreformat{\# {}inside {}class {}Deck: \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} \newline{}
 {} {} {} {}def {}shuffle(self): \newline{}
 {} {} {} {} {} {} {} {}random.shuffle(self.cards) \newline{}
}
Don’t forget to import random.
\subsection{Exercise 2}
\label{330}
{\itshape Write a Deck method named {\bfseries \textquotesingle{}sort}\textquotesingle{} that uses the list method}
{\bfseries \textquotesingle{}sort}\textquotesingle{} to sort the cards in a {\bfseries \textquotesingle{}Deck}\textquotesingle{}. {\bfseries \textquotesingle{}sort}\textquotesingle{} uses
the {\itshape }__cmp__{\itshape }{\itshape } method we defined to determine sort order.{\itshape }
\section{Inheritance}
\label{331}
The language feature most often associated with object-{}oriented
programming is {\bfseries inheritance}. Inheritance is the ability to
define a new class that is a modified version of an existing
class.

It is called “inheritance” because the new class inherits the
methods of the existing class. Extending this metaphor, the existing
class is called the {\bfseries parent} and the new class is
called the {\bfseries child}.

As an example, let’s say we want a class to represent a “hand,”
that is, the set of cards held by one player. A hand is similar to a
deck: both are made up of a set of cards, and both require operations
like adding and removing cards.

A hand is also different from a deck; there are operations we want for
hands that don’t make sense for a deck. For example, in poker we
might compare two hands to see which one wins. In bridge, we might
compute a score for a hand in order to make a bid.

This relationship between classes—similar, but different—lends
itself to inheritance.

The definition of a child class is like other class definitions,
but the name of the parent class appears in parentheses:

\TemplatePreformat{class {}Hand(Deck): \newline{}
 {} {} {} {}\symbol{34}\symbol{34}\symbol{34}represents {}a {}hand {}of {}playing {}cards\symbol{34}\symbol{34}\symbol{34} \newline{}
}
This definition indicates that Hand inherits from Deck;
that means we can use methods like pop_card and add_card
for Hands as well as Decks.

Hand also inherits __init__ from Deck, but
it doesn’t really do what we want: instead of populating the hand
with 52 new cards, the init method for Hands should initialize
cards with an empty list.

If we provide an init method in the Hand class, it overrides the
one in the Deck class:
\TemplatePreformat{\# {}inside {}class {}Hand: \newline{}
 {} \newline{}
 {} {} {} {}def {}__init__(self, {}label=\textquotesingle{}\textquotesingle{}): \newline{}
 {} {} {} {} {} {} {} {}self.cards {}= {}{[}{]} \newline{}
 {} {} {} {} {} {} {} {}self.label {}= {}label \newline{}
}
So when you create a Hand, Python invokes this init method:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}hand {}= {}Hand(\textquotesingle{}new {}hand\textquotesingle{}) \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}hand.cards \newline{}
{[}{]} \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}hand.label \newline{}
new {}hand \newline{}
}
But the other methods are inherited from Deck, so we can use
pop_card and add_card to deal a card:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}deck {}= {}Deck() \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}card {}= {}deck.pop_card() \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}hand.add_card(card) \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}hand \newline{}
King {}of {}Spades \newline{}
}
A natural next step is to encapsulate this code in a method
called move_cards:

\TemplatePreformat{\#inside {}class {}Deck: \newline{}
 {} \newline{}
 {} {} {} {}def {}move_cards(self, {}hand, {}num): \newline{}
 {} {} {} {} {} {} {} {}for {}i {}in {}range(num): \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}hand.add_card(self.pop_card()) \newline{}
}
move_cards takes two arguments, a Hand object and the number of
cards to deal. It modifies both self and hand, and
returns None.

In some games, cards are moved from one hand to another,
or from a hand back to the deck. You can use move_cards
for any of these operations: self can be either a Deck
or a Hand, and hand, despite the name, can also be a Deck.
{\bfseries Exercise 3} {\itshape }
Write a Deck method called {\itshape }deal_hands{\itshape }{\itshape } that takes two
parameters, the number of hands and the number of cards per
hand, and that creates new Hand objects, deals the appropriate
number of cards per hand, and returns a list of Hand objects.
{\itshape }{\itshape }
Inheritance is a useful feature. Some programs that would be
repetitive without inheritance can be written more elegantly
with it. Inheritance can facilitate code reuse, since you can
customize the behavior of parent classes without having to modify
them. In some cases, the inheritance structure reflects the natural
structure of the problem, which makes the program easier to
understand.

On the other hand, inheritance can make programs difficult to read.
When a method is invoked, it is sometimes not clear where to find its
definition. The relevant code may be scattered among several modules.
Also, many of the things that can be done using inheritance can be
done as well or better without it.
\section{Class diagrams}
\label{332}

So far we have seen stack diagrams, which show the state of
a program, and object diagrams, which show the attributes
of an object and their values. These diagrams represent a snapshot
in the execution of a program, so they change as the program
runs.

They are also highly detailed; for some purposes, too
detailed. A class diagrams is a more abstract representation
of the structure of a program. Instead of showing individual
objects, it shows classes and the relationships between them.

There are several kinds of relationship between classes:

\begin{myitemize}
\item{} Objects in one class might contain references to objects in another class. For example, each Rectangle contains a reference to a Point, and each Deck contains references to many Cards. This kind of relationship is called {\bfseries HAS-{}A}, as in, “a Rectangle has a Point.”
\item{} One class might inherit from another. This relationship is called {\bfseries IS-{}A}, as in, “a Hand is a kind of a Deck.”
\item{} One class might depend on another in the sense that changes in one class would require changes in the other.
\end{myitemize}

A {\bfseries class diagram} is a graphical representation of these
relationships2. For example, this diagram shows the
relationships between Card, Deck and Hand.

The arrow with a hollow triangle head represents an IS-{}A
relationship; in this case it indicates that Hand inherits
from Deck.

The standard arrow head represents a HAS-{}A
relationship; in this case a Deck has references to Card
objects.

The star (*) near the arrow head is a
{\bfseries multiplicity}; it indicates how many Cards a Deck has.
A multiplicity can be a simple number, like 52, a range,
like 5..7 or a star, which indicates that a Deck can
have any number of Cards.

A more detailed diagram might show that a Deck actually
contains a {\itshape list} of Cards, but built-{}in types
like list and dict are usually not included in class diagrams.
\subsection{Exercise 4}
\label{333}
Read {\bfseries \textquotesingle{}TurtleWorld.py}\textquotesingle{}, {\bfseries \textquotesingle{}World.py}\textquotesingle{} and {\bfseries \textquotesingle{}Gui.py}\textquotesingle{}
and draw a class diagram that shows the relationships among
the classes defined there.
\section{Debugging}
\label{334}
Inheritance can make debugging a challenge because when you
invoke a method on an object, you might not know which method
will be invoked.

Suppose you are writing a function that works with Hand objects.
You would like it to work with all kinds of Hands, like
PokerHands, BridgeHands, etc. If you invoke a method like
shuffle, you might get the one defined in Deck,
but if any of the subclasses override this method, you’ll
get that version instead.

Any time you are unsure about the flow of execution through your
program, the simplest solution is to add print statements at the
beginning of the relevant methods. If Deck.shuffle prints a
message that says something like Running Deck.shuffle, then as
the program runs it traces the flow of execution.

As an alternative, you could use this function, which takes an
object and a method name (as a string) and returns the class that
provides the definition of the method:
\TemplatePreformat{def {}find_defining_class(obj, {}meth_name): \newline{}
 {} {} {} {}for {}ty {}in {}type(obj).mro(): \newline{}
 {} {} {} {} {} {} {} {}if {}meth_name {}in {}ty.__dict__: \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {}return {}ty \newline{}
}
Here’s an example:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}hand {}= {}Hand() \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}find_defining_class(hand, {}\textquotesingle{}shuffle\textquotesingle{}) \newline{}
{\mbox{$<$}}class {}\textquotesingle{}Card.Deck\textquotesingle{}{\mbox{$>$}} \newline{}
}
So the shuffle method for this Hand is the one in Deck.

find_defining_class uses the mro method to get the list
of class objects (types) that will be searched for methods. “MRO”
stands for “method resolution order.”

Here’s a program design suggestion: whenever you override a method,
the interface of the new method should be the same as the old. It
should take the same parameters, return the same type, and obey the
same preconditions and postconditions. If you obey this rule, you
will find that any function designed to work with an instance of a
superclass, like a Deck, will also work with instances of subclasses
like a Hand or PokerHand.

If you violate this rule, your code will collapse like (sorry)
a house of cards.
\section{Glossary}
\label{335}

{\bfseries encode:} To represent one set of values using another
set of values by constructing a mapping between them.
{\bfseries class attribute:} An attribute associated with a class
object. Class attributes are defined inside
a class definition but outside any method.

{\bfseries instance attribute:} An attribute associated with an
instance of a class.

{\bfseries veneer:} A method or function that provides a different
interface to another function without doing much computation.
{\bfseries inheritance:} The ability to define a new class that is a
modified version of a previously defined class.
{\bfseries parent class:} The class from which a child class inherits.
{\bfseries child class:} A new class created by inheriting from an
existing class; also called a “subclass.”
{\bfseries IS-{}A relationship:} The relationship between a child class
and its parent class.
{\bfseries HAS-{}A relationship:} The relationship between two classes
where instances of one class contain references to instances of
the other.
{\bfseries class diagram:} A diagram that shows the classes in a program
and the relationships between them.

{\bfseries multiplicity:} A notation in a class diagram that shows, for
a HAS-{}A relationship, how many references there are to instances
of another class.
\section{Exercises}
\label{336}
\subsection{Exercise 5}
\label{337}
{\itshape The following are the possible hands in poker, in increasing order}
of value (and decreasing order of probability):{\itshape }
{\bfseries {\itshape pair:}}{\itshape }{\itshape two cards with the same rank}
{\itshape }{\itshape {\bfseries }\textquotesingle{}two pair:{\bfseries }\textquotesingle{}} two pairs of cards with the same rank
{\itshape }{\itshape {\bfseries }\textquotesingle{}three of a kind:{\bfseries }\textquotesingle{}} three cards with the same rank
{\itshape }{\itshape {\bfseries }\textquotesingle{}straight:{\bfseries }\textquotesingle{}} five cards with ranks in sequence (aces can
be high or low, so {\bfseries \textquotesingle{}Ace-{}2-{}3-{}4-{}5}\textquotesingle{} is a straight and so is {\bfseries \textquotesingle{}10-{}Jack-{}Queen-{}King-{}Ace}\textquotesingle{}, but {\bfseries \textquotesingle{}Queen-{}King-{}Ace-{}2-{}3}\textquotesingle{} is not.)
{\itshape }{\itshape {\bfseries }\textquotesingle{}flush:{\bfseries }\textquotesingle{}} five cards with the same suit
{\itshape }{\itshape {\bfseries }\textquotesingle{}full house:{\bfseries }\textquotesingle{}} three cards with one rank, two cards with another
{\itshape }{\itshape {\bfseries }\textquotesingle{}four of a kind:{\bfseries }\textquotesingle{}} four cards with the same rank
{\itshape }{\itshape {\bfseries }\textquotesingle{}straight flush:{\bfseries }\textquotesingle{}} five cards in sequence (as defined above) and
with the same suit
{\itshape }{\itshape }{\itshape }
{\itshape }
The goal of these exercises is to estimate
the probability of drawing these various hands.{\itshape }

\begin{myitemize}
\item{} {\itshape Download the following files from {\bfseries \textquotesingle{}thinkpython.com/code}\textquotesingle{}:}{\bfseries {\itshape Card.py}}{\itshape }{\itshape : A complete version of the {\bfseries \textquotesingle{}Card}\textquotesingle{}, {\bfseries \textquotesingle{}Deck}\textquotesingle{} and {\bfseries \textquotesingle{}Hand}\textquotesingle{} classes in this chapter.}{\bfseries }\textquotesingle{}PokerHand.py{\bfseries }\textquotesingle{}{\itshape : An incomplete implementation of a class}
\end{myitemize}

that represents a poker hand, and some code that tests it.{\itshape }{\itshape }{\itshape }

\begin{myitemize}
\item{} {\bfseries \textquotesingle{}If you run }{\bfseries {\itshape PokerHand.py}}{\itshape {\bfseries }}{\bfseries , it deals six 7-{}card poker hands}
\end{myitemize}

and checks to see if any of them contains a flush. Read this
code carefully before you go on.{\bfseries \textquotesingle{}}

\begin{myitemize}
\item{} {\bfseries \textquotesingle{}Add methods to }{\bfseries {\itshape PokerHand.py}}{\itshape {\bfseries }}{\bfseries named }\textquotesingle{}{\bfseries \textquotesingle{}has_pair}\textquotesingle{}{\bfseries \textquotesingle{},}
\end{myitemize}

{\bfseries \textquotesingle{}}\textquotesingle{}has_twopair{\bfseries \textquotesingle{}}{\bfseries }\textquotesingle{}, etc. that return True or False according to
whether or not the hand meets the relevant criteria. Your code should
work correctly for “hands” that contain any number of cards
(although 5 and 7 are the most common sizes).{\bfseries \textquotesingle{}}

\begin{myitemize}
\item{} {\bfseries \textquotesingle{}Write a method named }{\bfseries {\itshape classify}}{\itshape {\bfseries }}{\bfseries that figures out}
\end{myitemize}

the highest-{}value classification for a hand and sets the
{\bfseries }{\itshape label{\bfseries }} attribute accordingly. For example, a 7-{}card hand
might contain a flush and a pair; it should be labeled “flush”.{\bfseries \textquotesingle{}}

\begin{myitemize}
\item{} {\bfseries \textquotesingle{}When you are convinced that your classification methods are}
\end{myitemize}

working, the next step is to estimate the probabilities of the various
hands. Write a function in {\bfseries }{\itshape PokerHand.py{\bfseries }} that shuffles a deck of
cards, divides it into hands, classifies the hands, and counts the
number of times various classifications appear.{\bfseries \textquotesingle{}}

\begin{myitemize}
\item{} {\bfseries \textquotesingle{}Print a table of the classifications and their probabilities.}
\end{myitemize}

Run your program with larger and larger numbers of hands until the
output values converge to a reasonable degree of accuracy. Compare
your results to the values at {\bfseries }{\itshape wikipedia.org/wiki/Hand_rankings{\bfseries }}.{\bfseries \textquotesingle{}}
\subsection{Exercise 6}
\label{338}
{\itshape This exercise uses TurtleWorld from Chapter {\bfseries \textquotesingle{}4}\textquotesingle{}.}
You will write code that makes Turtles play tag. If you
are not familiar with the rules of tag, see
{\bfseries \textquotesingle{}wikipedia.org/wiki/Tag_(game)}\textquotesingle{}.{\itshape }

\begin{myitemize}
\item{} {\itshape Download {\bfseries \textquotesingle{}thinkpython.com/code/Wobbler.py}\textquotesingle{} and run it. You}
\end{myitemize}

should see a TurtleWorld with three Turtles. If you press the
{\bfseries \textquotesingle{}Run}\textquotesingle{} button, the Turtles wander at random.{\itshape }

\begin{myitemize}
\item{} {\itshape Read the code and make sure you understand how it works.}
\end{myitemize}

The {\bfseries \textquotesingle{}Wobbler}\textquotesingle{} class inherits from {\bfseries \textquotesingle{}Turtle}\textquotesingle{}, which means
that the {\bfseries \textquotesingle{}Turtle}\textquotesingle{} methods {\bfseries \textquotesingle{}lt}\textquotesingle{}, {\bfseries \textquotesingle{}rt}\textquotesingle{}, {\bfseries \textquotesingle{}fd}\textquotesingle{}
and {\bfseries \textquotesingle{}bk}\textquotesingle{} work on Wobblers.{\itshape }
{\itshape The {\bfseries \textquotesingle{}step}\textquotesingle{} method gets invoked by TurtleWorld. It invokes }
{\bfseries \textquotesingle{}steer}\textquotesingle{}, which turns the Turtle in the desired direction,
{\bfseries \textquotesingle{}wobble}\textquotesingle{}, which makes a random turn in proportion to the Turtle’s
clumsiness, and {\bfseries \textquotesingle{}move}\textquotesingle{}, which moves forward a few pixels,
depending on the Turtle’s speed.{\itshape }

\begin{myitemize}
\item{} {\itshape Create a file named {\bfseries \textquotesingle{}Tagger.py}\textquotesingle{}. Import everything from}
\end{myitemize}

{\bfseries \textquotesingle{}Wobbler}\textquotesingle{}, then define a class named {\bfseries \textquotesingle{}Tagger}\textquotesingle{} that inherits
from {\bfseries \textquotesingle{}Wobbler}\textquotesingle{}. Call {\itshape }make_world{\itshape }{\itshape } passing the {\bfseries \textquotesingle{}Tagger}\textquotesingle{} class object as an argument.{\itshape }

\begin{myitemize}
\item{} {\itshape Add a {\bfseries \textquotesingle{}steer}\textquotesingle{} method to {\bfseries \textquotesingle{}Tagger}\textquotesingle{} to override the one in}
\end{myitemize}

{\bfseries \textquotesingle{}Wobbler}\textquotesingle{}. As a starting place, write a version that always
points the Turtle toward the origin. Hint: use the math function
{\bfseries \textquotesingle{}atan2}\textquotesingle{} and the Turtle attributes {\bfseries \textquotesingle{}x}\textquotesingle{}, {\bfseries \textquotesingle{}y}\textquotesingle{} and
{\bfseries \textquotesingle{}heading}\textquotesingle{}.{\itshape }

\begin{myitemize}
\item{} {\itshape Modify {\bfseries \textquotesingle{}steer}\textquotesingle{} so that the Turtles stay in bounds.}
\end{myitemize}

For debugging, you might want to use the {\bfseries \textquotesingle{}Step}\textquotesingle{} button,
which invokes {\bfseries \textquotesingle{}step}\textquotesingle{} once on each Turtle.{\itshape }

\begin{myitemize}
\item{} {\itshape Modify {\bfseries \textquotesingle{}steer}\textquotesingle{} so that each Turtle points toward its nearest}
\end{myitemize}

neighbor. Hint: Turtles have an attribute, {\bfseries \textquotesingle{}world}\textquotesingle{}, that is a
reference to the TurtleWorld they live in, and the TurtleWorld has
an attribute, {\bfseries \textquotesingle{}animals}\textquotesingle{}, that is a list of all Turtles in the
world.{\itshape }

\begin{myitemize}
\item{} {\itshape Modify {\bfseries \textquotesingle{}steer}\textquotesingle{} so the Turtles play tag. You can add methods}
\end{myitemize}

to {\bfseries \textquotesingle{}Tagger}\textquotesingle{} and you can override {\bfseries \textquotesingle{}steer}\textquotesingle{} and
{\itshape }__init__{\itshape }{\itshape }, but you may not modify or override {\bfseries \textquotesingle{}step}\textquotesingle{}, {\bfseries \textquotesingle{}wobble}\textquotesingle{} or {\bfseries \textquotesingle{}move}\textquotesingle{}. Also, {\bfseries \textquotesingle{}steer}\textquotesingle{} is allowed to change the
heading of the Turtle but not the position.{\itshape }
{\itshape Adjust the rules and your {\bfseries \textquotesingle{}steer}\textquotesingle{} method for good quality play;}
for example, it should be possible for the slow Turtle to tag the
faster Turtles eventually.{\itshape }

{\itshape You can get my solution from {\bfseries \textquotesingle{}thinkpython.com/code/Tagger.py}\textquotesingle{}.}
{\itshape }

1See wikipedia.org/wiki/Bottom_dealing.
2The diagrams I am using here are similar to UML
(see wikipedia.org/wiki/Unified_Modeling_Language), with a few
simplifications.

\chapter{Debugging}

\myminitoc
\label{339}

\label{340}
\LaTeXNullTemplate{}

Different kinds of errors can occur
in a program, and it is useful to distinguish among them
in order to track them down more quickly:

\begin{myitemize}
\item{} Syntax errors are produced by Python when it is translating the source code into byte code. They usually indicate that there is something wrong with the syntax of the program. Example: Omitting the colon at the end of a def statement yields the somewhat redundant message SyntaxError: invalid syntax.
\item{} Runtime errors are produced by the interpreter if something goes wrong while the program is running. Most runtime error messages include information about where the error occurred and what functions were executing. Example: An infinite recursion eventually causes the runtime error “maximum recursion depth exceeded.”
\item{} Semantic errors are problems with a program that runs without producing error messages but doesn’t do the right thing. Example: An expression may not be evaluated in the order you expect, yielding an incorrect result.
\end{myitemize}

The first step in debugging is to figure out which kind of
error you are dealing with. Although the following sections are
organized by error type, some techniques are
applicable in more than one situation.
\section{Syntax errors}
\label{341}
Syntax errors are usually easy to fix once you figure out what they
are. Unfortunately, the error messages are often not helpful.
The most common messages are SyntaxError: invalid syntax and
SyntaxError: invalid token, neither of which is very informative.

On the other hand, the message does tell you where in the program the
problem occurred. Actually, it tells you where Python
noticed a problem, which is not necessarily where the error
is. Sometimes the error is prior to the location of the error
message, often on the preceding line.

If you are building the program incrementally, you should have
a good idea about where the error is. It will be in the last
line you added.

If you are copying code from a book, start by comparing
your code to the book’s code very carefully. Check every character.
At the same time, remember that the book might be wrong, so
if you see something that looks like a syntax error, it might be.

Here are some ways to avoid the most common syntax errors:

\begin{myitemize}
\item{} Make sure you are not using a Python keyword for a variable name.
\end{myitemize}

\begin{myitemize}
\item{} Check that you have a colon at the end of the header of every
\end{myitemize}

compound statement, including for, while,
if, and def statements.

\begin{myitemize}
\item{} Make sure that any strings in the code have matching
\end{myitemize}

quotation marks.

\begin{myitemize}
\item{} If you have multiline strings with triple quotes (single or double), make
\end{myitemize}

sure you have terminated the string properly. An unterminated string
may cause an invalid token error at the end of your program,
or it may treat the following part of the program as a string until it
comes to the next string. In the second case, it might not produce an error
message at all!

\begin{myitemize}
\item{} An unclosed opening operator—(, \{, or
\end{myitemize}

{[}—makes Python continue with the next line as part of the
current statement. Generally, an error occurs almost immediately in
the next line.

\begin{myitemize}
\item{} Check for the classic = instead of == inside
\end{myitemize}

a conditional.

\begin{myitemize}
\item{} Check the indentation to make sure it lines up the way it
\end{myitemize}

is supposed to. Python can handle space and tabs, but if you mix
them it can cause problems. The best way to avoid this problem
is to use a text editor that knows about Python and generates
consistent indentation.

If nothing works, move on to the next section...
\subsection{I keep making changes and it makes no difference.}
\label{342}

If the interpreter says there is an error and you don’t see it, that
might be because you and the interpreter are not looking at the same
code. Check your programming environment to make sure that the
program you are editing is the one Python is trying to run.

If you are not sure, try putting an obvious and deliberate syntax
error at the beginning of the program. Now run it again. If the
interpreter doesn’t find the new error, you are not running the
new code.

There are a few likely culprits:

\begin{myitemize}
\item{} You edited the file and forgot to save the changes before
\end{myitemize}

running it again. Some programming environments do this
for you, but some don’t.

\begin{myitemize}
\item{} You changed the name of the file, but you are still running
\end{myitemize}

the old name.

\begin{myitemize}
\item{} Something in your development environment is configured
\end{myitemize}

incorrectly.

\begin{myitemize}
\item{} If you are writing a module and using import,
\end{myitemize}

make sure you don’t give your module the same name as one
of the standard Python modules.

\begin{myitemize}
\item{} If you are using import to read a module, remember
\end{myitemize}

that you have to restart the interpreter or use reload
to read a modified file. If you import the module again, it
doesn’t do anything.

If you get stuck and you can’t figure out what is going on, one
approach is to start again with a new program like “Hello, World!,”
and make sure you can get a known program to run. Then gradually add
the pieces of the original program to the new one.\section{Runtime errors}
\label{343}

Once your program is syntactically correct,
Python can compile it and at least start running it. What could
possibly go wrong?\subsection{My program does absolutely nothing.}
\label{344}

This problem is most common when your file consists of functions and
classes but does not actually invoke anything to start execution.
This may be intentional if you only plan to import this module to
supply classes and functions.

If it is not intentional, make sure that you
are invoking a function to start execution, or execute one from
the interactive prompt. Also see the “Flow of Execution” section
below.\subsection{My program hangs.}
\label{345}
If a program stops and seems to be doing nothing, it is “hanging.”
Often that means that it is caught in an infinite loop or infinite
recursion.

\begin{myitemize}
\item{} If there is a particular loop that you suspect is the
\end{myitemize}

problem, add a print statement immediately before the loop that says
“entering the loop” and another immediately after that says
“exiting the loop.”
Run the program. If you get the first message and not the second,
you’ve got an infinite loop. Go to the “Infinite Loop” section
below.

\begin{myitemize}
\item{} Most of the time, an infinite recursion will cause the program
\end{myitemize}

to run for a while and then produce a “RuntimeError: Maximum
recursion depth exceeded” error. If that happens, go to the
“Infinite Recursion” section below.
If you are not getting this error but you suspect there is a problem
with a recursive method or function, you can still use the techniques
in the “Infinite Recursion” section.

\begin{myitemize}
\item{} If neither of those steps works, start testing other
\end{myitemize}

loops and other recursive functions and methods.

\begin{myitemize}
\item{} If that doesn’t work, then it is possible that
\end{myitemize}

you don’t understand the flow of execution in your program.
Go to the “Flow of Execution” section below.
\subsubsection{Infinite Loop}
\label{346}
If you think you have an infinite loop and you think you know
what loop is causing the problem, add a print statement at
the end of the loop that prints the values of the variables in
the condition and the value of the condition.

For example:
\TemplatePreformat{while {}x {}{\mbox{$>$}} {}0 {}and {}y {}{\mbox{$<$}} {}0 {}: \newline{}
 {} {} {} {}\# {}do {}something {}to {}x \newline{}
 {} {} {} {}\# {}do {}something {}to {}y \newline{}
 {} \newline{}
 {} {} {} {}print {} {}\symbol{34}x: {}\symbol{34}, {}x \newline{}
 {} {} {} {}print {} {}\symbol{34}y: {}\symbol{34}, {}y \newline{}
 {} {} {} {}print {} {}\symbol{34}condition: {}\symbol{34}, {}(x {}{\mbox{$>$}} {}0 {}and {}y {}{\mbox{$<$}} {}0) \newline{}
}
Now when you run the program, you will see three lines of output
for each time through the loop. The last time through the
loop, the condition should be false. If the loop keeps
going, you will be able to see the values of x and y,
and you might figure out why they are not being updated correctly.\subsubsection{Infinite Recursion}
\label{347}
Most of the time, an infinite recursion will cause the program to run
for a while and then produce a Maximum recursion depth exceeded
error.

If you suspect that a function or method is causing an infinite
recursion, start by checking to make sure that there is a base case.
In other words, there should be some condition that will cause the
function or method to return without making a recursive invocation.
If not, then you need to rethink the algorithm and identify a base
case.

If there is a base case but the program doesn’t seem to be reaching
it, add a print statement at the beginning of the function or method
that prints the parameters. Now when you run the program, you will see
a few lines of output every time the function or method is invoked,
and you will see the parameters. If the parameters are not moving
toward the base case, you will get some ideas about why not.
\subsubsection{Flow of Execution}
\label{348}
If you are not sure how the flow of execution is moving through
your program, add print statements to the beginning of each
function with a message like “entering function foo,” where
foo is the name of the function.

Now when you run the program, it will print a trace of each
function as it is invoked.\subsection{When I run the program I get an exception.}
\label{349}
If something goes wrong during runtime, Python
prints a message that includes the name of the
exception, the line of the program where the problem occurred,
and a traceback.

The traceback identifies the function that is currently running,
and then the function that invoked it, and then the function that
invoked {\itshape that}, and so on. In other words, it traces the
sequence of function invocations that got you to where you are. It
also includes the line number in your file where each of these
calls occurs.

The first step is to examine the place in the program where
the error occurred and see if you can figure out what happened.
These are some of the most common runtime errors:
{\bfseries NameError:} You are trying to use a variable that doesn’t
exist in the current environment.
Remember that local variables are local. You
cannot refer to them from outside the function where they are defined.
{\bfseries TypeError:} There are several possible causes:

\begin{myitemize}
\item{} You are trying to use a value improperly. Example: indexing
\end{myitemize}

a string, list, or tuple with something other than an integer.

\begin{myitemize}
\item{} There is a mismatch between the items in a format string and
\end{myitemize}

the items passed for conversion. This can happen if either the number
of items does not match or an invalid conversion is called for.

\begin{myitemize}
\item{} You are passing the wrong number of arguments to a function or method.
\end{myitemize}

For methods, look at the method definition and
check that the first parameter is self. Then look at the
method invocation; make sure you are invoking the method on an
object with the right type and providing the other arguments
correctly.

{\bfseries KeyError:} You are trying to access an element of a dictionary
using a key that the dictionary does not contain.

{\bfseries AttributeError:} You are trying to access an attribute or method
that does not exist. Check the spelling! You can use
dir to list the attributes that do exist.
If an AttributeError indicates that an object has NoneType,
that means that it is None. One common cause is forgetting
to return a value from a function; if you get to the end of
a function without hitting a return statement, it returns
None. Another common cause is using the result from
a list method, like sort, that returns None.

{\bfseries IndexError:} The index you are using
to access a list, string, or tuple is greater than
its length minus one. Immediately before the site of the error,
add a print statement to display
the value of the index and the length of the array.
Is the array the right size? Is the index the right value?

The Python debugger (pdb) is useful for tracking down
Exceptions because it allows you to examine the state of the
program immediately before the error. You can read
about pdb at docs.python.org/lib/module-{}pdb.html.\subsubsection{I added so many print statements I get inundated with output.}
\label{350}

One of the problems with using print statements for debugging
is that you can end up buried in output. There are two ways
to proceed: simplify the output or simplify the program.

To simplify the output, you can remove or comment out print
statements that aren’t helping, or combine them, or format
the output so it is easier to understand.

To simplify the program, there are several things you can do. First,
scale down the problem the program is working on. For example, if you
are searching a list, search a {\itshape small} list. If the program takes
input from the user, give it the simplest input that causes the
problem.

Second, clean up the program. Remove dead code and reorganize the
program to make it as easy to read as possible. For example, if you
suspect that the problem is in a deeply nested part of the program,
try rewriting that part with simpler structure. If you suspect a
large function, try splitting it into smaller functions and testing them
separately.

Often the process of finding the minimal test case leads you to the
bug. If you find that a program works in one situation but not in
another, that gives you a clue about what is going on.

Similarly, rewriting a piece of code can help you find subtle
bugs. If you make a change that you think doesn’t affect the
program, and it does, that can tip you off.\section{Semantic errors}
\label{351}
In some ways, semantic errors are the hardest to debug,
because the interpreter provides no information
about what is wrong. Only you know what the program is supposed to
do.

The first step is to make a connection between the program
text and the behavior you are seeing. You need a hypothesis
about what the program is actually doing. One of the things
that makes that hard is that computers run so fast.

You will often wish that you could slow the program down to human
speed, and with some debuggers you can. But the time it takes to
insert a few well-{}placed print statements is often short compared to
setting up the debugger, inserting and removing breakpoints, and
“stepping” the program to where the error is occurring.\subsection{My program doesn’t work.}
\label{352}

You should ask yourself these questions:

\begin{myitemize}
\item{} Is there something the program was supposed to do but
\end{myitemize}

which doesn’t seem to be happening? Find the section of the code
that performs that function and make sure it is executing when
you think it should.

\begin{myitemize}
\item{} Is something happening that shouldn’t? Find code in
\end{myitemize}

your program that performs that function and see if it is
executing when it shouldn’t.

\begin{myitemize}
\item{} Is a section of code producing an effect that is not
\end{myitemize}

what you expected? Make sure that you understand the code in
question, especially if it involves invocations to functions or methods in
other Python modules. Read the documentation for the functions you invoke.
Try them out by writing simple test cases and checking the results.

In order to program, you need to have a mental model of how
programs work. If you write a program that doesn’t do what you expect,
very often the problem is not in the program; it’s in your mental
model.

The best way to correct your mental model is to break the program
into its components (usually the functions and methods) and test
each component independently. Once you find the discrepancy
between your model and reality, you can solve the problem.

Of course, you should be building and testing components as you
develop the program. If you encounter a problem,
there should be only a small amount of new code
that is not known to be correct.
A.3.2 I’ve got a big hairy expression and it doesn’t
do what I expect.

Writing complex expressions is fine as long as they are readable,
but they can be hard to debug. It is often a good idea to
break a complex expression into a series of assignments to
temporary variables.

For example:
\TemplatePreformat{self.hands{[}i{]}.addCard(self.hands{[}self.findNeighbor(i){]}.popCard()) \newline{}
}
This can be rewritten as:
\TemplatePreformat{neighbor {}= {}self.findNeighbor(i) \newline{}
pickedCard {}= {}self.hands{[}neighbor{]}.popCard() \newline{}
self.hands{[}i{]}.addCard(pickedCard) \newline{}
}
The explicit version is easier to read because the variable
names provide additional documentation, and it is easier to debug
because you can check the types of the intermediate variables
and display their values.

Another problem that can occur with big expressions is
that the order of evaluation may not be what you expect.
For example, if you are translating the expression
x/2 π into Python, you might write:
\TemplatePreformat{y {}= {}x {}/ {}2 {}* {}math.pi \newline{}
}
That is not correct because multiplication and division have
the same precedence and are evaluated from left to right.
So this expression computes x π / 2.

A good way to debug expressions is to add parentheses to make
the order of evaluation explicit:
\TemplatePreformat{ {}y {}= {}x {}/ {}(2 {}* {}math.pi) \newline{}
}
Whenever you are not sure of the order of evaluation, use
parentheses. Not only will the program be correct (in the sense
of doing what you intended), it will also be more readable for
other people who haven’t memorized the rules of precedence.
A.3.3 I’ve got a function or method that doesn’t return what I
expect.

If you have a return statement with a complex expression,
you don’t have a chance to print the return value before
returning. Again, you can use a temporary variable. For
example, instead of:
\TemplatePreformat{return {}self.hands{[}i{]}.removeMatches() \newline{}
}
you could write:
\TemplatePreformat{count {}= {}self.hands{[}i{]}.removeMatches() \newline{}
return {}count \newline{}
}
Now you have the opportunity to display the value of
count before returning.\subsection{I\textquotesingle{}m really, really stuck and I need help.}
\label{353}

First, try getting away from the computer for a few minutes.
Computers emit waves that affect the brain, causing these
symptoms:

\begin{myitemize}
\item{} Frustration and rage.
\end{myitemize}

\begin{myitemize}
\item{} Superstitious beliefs (“the computer hates me”) and
\end{myitemize}

magical thinking (“the program only works when I wear my
hat backward”).

\begin{myitemize}
\item{} Random walk programming (the attempt to program by writing
\end{myitemize}

every possible program and choosing the one that does the right
thing).

If you find yourself suffering from any of these symptoms, get
up and go for a walk. When you are calm, think about the program.
What is it doing? What are some possible causes of that
behavior? When was the last time you had a working program,
and what did you do next?

Sometimes it just takes time to find a bug. I often find bugs
when I am away from the computer and let my mind wander. Some
of the best places to find bugs are trains, showers, and in bed,
just before you fall asleep.\subsection{No, I really need help.}
\label{354}

It happens. Even the best programmers occasionally get stuck.
Sometimes you work on a program so long that you can’t see the
error. A fresh pair of eyes is just the thing.

Before you bring someone else in, make sure you are prepared.
Your program should be as simple
as possible, and you should be working on the smallest input
that causes the error. You should have print statements in the
appropriate places (and the output they produce should be
comprehensible). You should understand the problem well enough
to describe it concisely.

When you bring someone in to help, be sure to give
them the information they need:

\begin{myitemize}
\item{} If there is an error message, what is it
\end{myitemize}

and what part of the program does it indicate?

\begin{myitemize}
\item{} What was the last thing you did before this error occurred?
\end{myitemize}

What were the last lines of code that you wrote, or what is
the new test case that fails?

\begin{myitemize}
\item{} What have you tried so far, and what have you learned?
\end{myitemize}

When you find the bug, take a second to think about what you
could have done to find it faster. Next time you see something
similar, you will be able to find the bug more quickly.

Remember, the goal is not just to make the program
work. The goal is to learn how to make the program work.
\chapter{Answers}

\myminitoc
\label{355}

\label{356}
\LaTeXNullTemplate{}
\section{Chapter 1}
\label{357}
\subsection{Exercise 1.4}
\label{358}
If you run a 10 kilometer race in 43 minutes 30 seconds, what is your average time per mile? What is your average speed in miles per hour? (Hint: there are 1.61 kilometers in a mile).

\TemplatePreformat{ \newline{}
>{}>{}>{} {}10/1.61 {}\# {}Convert {}kilometers {}to {}miles \newline{}
6.2111801242236018 \newline{}
>{}>{}>{} {}(43*60)+30 {}\# {}Convert {}time {}to {}seconds \newline{}
2610 \newline{}
>{}>{}>{} {}2610/6.2111801242236018 {}\# {}what {}is {}your {}average {}time {}(seconds) {}per \newline{}
 {}mile \newline{}
420.21000000000004 \newline{}
>{}>{}>{} {}420.21000000000004/60 {}\# {}what {}is {}your {}average {}time {}(minutes) {}per \newline{}
 {}mile \newline{}
7.0035000000000007 \newline{}
>{}>{}>{} {}60/7.0035000000000007 {}\# {}Miles {}per {}hour \newline{}
8.5671449989291055 \newline{}
}

Comment:
This is not valid, it {\bfseries ONLY} works for 43min and 30 seconds to 10km\textquotesingle{}s.
Python should have a way to do this the proper way. \newline{}

In order to do this the proper way, a person must do something like this. \newline{}

43*60 -{}>{} convert the minutes to seconds. \newline{}

2580+30 -{}>{} add the seconds \newline{}

2610/10 -{}>{} divide by distance \newline{}

261/60 -{}>{} change seconds into minutes \newline{}

4.35 -{}>{} is the answer, now you must \newline{}

.35*60 -{}>{} multiply the number after the decimal with 60 \newline{}

21 seconds.. \newline{}

End result = 4.21 minutes per KM, this technique works for all distances and times.
\section{Chapter 2}
\label{359}
\subsection{Exercise 2.1}
\label{360}
If you type an integer with a leading zero, you might get a confusing error:

\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}zipcode {}= {}02492 \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}\^{} \newline{}
SyntaxError: {}invalid {}token \newline{}
}
Other number seem to work, but the results are bizarre:
\TemplatePreformat{{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}zipcode {}= {}02132 \newline{}
{\mbox{$>$}}{\mbox{$>$}}{\mbox{$>$}} {}print {}zipcode \newline{}
1114 \newline{}
}

So python is assuming you want to convert an octal number to a decimal number. In the base 8 numbering system where valid numbers are {\bfseries 0, 1, 2, 3, 4, 5, 6 and 7}.
\TemplatePreformat{ \newline{}
Base {} {}8: {}00 {}01 {}02 {}03 {}04 {}05 {}06 {}07 {}10 {}11 {}12 {}13 {}14 {}15 {}16 {}17 {}20 {}21 {}22 {}23 \newline{}
 {}24 \newline{}
Base {}10: {}00 {}01 {}02 {}03 {}04 {}05 {}06 {}07 {}08 {}09 {}10 {}11 {}12 {}13 {}14 {}15 {}16 {}17 {}18 {}19 \newline{}
 {}20 \newline{}
}
Every 8 numbers we increment the left hand columns. This means that the left most column is the number of \textquotesingle{}ones\textquotesingle{}. The one to the right of that is a tally of the number of \textquotesingle{}eights\textquotesingle{}, the one next to that is a tally of a full column of \textquotesingle{}eight\textquotesingle{} times the \textquotesingle{}eight column\textquotesingle{} -{} 64. The one next to that is 64*8 -{} 512 and so on.
For more information read \myhref{http://en.wikibooks.org/wiki/\%20Base\%20Eight\%20math}{\myplainurl{http://www4.ncsu.edu/unity/lockers/users/f/felder/public/kenny/papers/bases.html} Base Eight math}.

That is why {\bfseries zipcode = 02492} is invalid as the digit 9 is not a valid octal number. We can do the conversion manually as follows:

\TemplatePreformat{ \newline{}
>{}>{}>{} {}print {}02132 \newline{}
1114 \newline{}
>{}>{}>{} {}(2*512)+(1*64)+(3*8)+(2*1) \newline{}
1114 \newline{}
>{}>{}>{} {} \newline{}
}
\subsection{Exercise 2.4}
\label{361}

The volume of a sphere with radius {\bfseries r} is {\itshape 4/3} π {\itshape r}{\itshape 3}{\itshape .}
What is the volume of a sphere with radius 5?

\TemplatePreformat{ \newline{}
>{}>{}>{} {}pi {}= {}3.1415926535897931 \newline{}
>{}>{}>{} {}r {}= {}5 \newline{}
>{}>{}>{} {}4/3*pi*r**3 {}\# {}This {}is {}the {}wrong {}answer \newline{}
392.69908169872411 \newline{}
>{}>{}>{} {}r {}= {}5.0 {}\# {}Radius {}can {}be {}a {}float {}here {}as {}well, {}but {}is {}not \newline{}
 {}_necessary_. \newline{}
>{}>{}>{} {}4.0/3.0*pi*r**3 {}\# {}Using {}floats {}give {}the {}correct {}answer \newline{}
523.59877559829886 \newline{}
>{}>{}>{} {} \newline{}
}

Suppose the cover price of a book is \${}24.95, but bookstores get a 40\% discount. Shipping costs \${}3 for the first copy and 75 cents for each additional copy. What is the total wholesale cost for 60 copies?{\itshape }

\TemplatePreformat{ \newline{}
 {}\${}24.95$\text{ }${}$\text{ }${}Cost$\text{ }$\newline{}
 {} {}\${}9.98$\text{ }${}$\text{ }${}Discount$\text{ }${}per$\text{ }${}book$\text{ }$\newline{}
 {}\${}14.97$\text{ }${}$\text{ }${}Cost$\text{ }${}per$\text{ }${}book$\text{ }${}after$\text{ }${}discount$\text{ }$\newline{}
 {} {}60 {} {} {} {} {}Total {}number {}of {}books \newline{}
\${}898.20$\text{ }${}$\text{ }${}Total$\text{ }${}cost$\text{ }${}not$\text{ }${}inc$\text{ }${}delivery$\text{ }$\newline{}
 {} \newline{}
 {} {}\${}3.00$\text{ }${}$\text{ }${}First$\text{ }${}book$\text{ }${}delivery$\text{ }$\newline{}
 {} {}59 {} {} {} {} {}Remaining {}books \newline{}
 {} {}\${}0.75$\text{ }${}$\text{ }${}Delivery$\text{ }${}cost$\text{ }${}for$\text{ }${}extra$\text{ }${}books$\text{ }$\newline{}
 {}\${}44.25$\text{ }${}$\text{ }${}Total$\text{ }${}cost$\text{ }${}for$\text{ }${}extra$\text{ }${}books$\text{ }$\newline{}
 {}\${}47.25$\text{ }${}$\text{ }${}Total$\text{ }${}Delivery$\text{ }${}cost$\text{ }$\newline{}
${\text{ }}${}${\text{ }}${}${\text{ }}${}${\text{ }}${} \newline{}
\${}945.45${\text{ }}${}${\text{ }}${}${\text{ }}${}${\text{ }}${}$\text{ }${}Total$\text{ }${}Bill$\text{ }$\newline{}
 {} \newline{}
This {}answer {}is {}wrong {}because {}40.0/100.0 {}return {}wrong {}value \newline{}
 {}0.40000000000000002 {}for {}more {}info {}see {}IEEE {}754 {}(Standard {}for \newline{}
 {}Floating-{}Point {}Arithmetic) \newline{}
>{}>{}>{} {}(24.95-{}24.95*40.0/100.0)*60+3+0.75*(60-{}1) \newline{}
945.44999999999993 \newline{}
>{}>{}>{} {}24.95*0.6*60+0.75*(60-{}1)+3 \newline{}
945.45 \newline{}
}

If I leave my house at 6:52 am and run 1 mile at an easy pace (8:15 per mile), then 3 miles at tempo (7:12 per mile) and 1 mile at easy pace again, what time do I get home for breakfast?

Answer: {\bfseries 7:30 am}

How I did it:
\TemplatePreformat{ \newline{}
>{}>{}>{} {}start {}= {}(6*60+52)*60 \newline{}
>{}>{}>{} {}easy {}= {}(8*60+15)*2 \newline{}
>{}>{}>{} {}fast {}= {}(7*60+12)*3 \newline{}
>{}>{}>{} {}finish_hour {}= {}(start {}+ {}easy {}+ {}fast)/(60*60.0) \newline{}
>{}>{}>{} {}finish_floored {}= {}(start {}+ {}easy {}+ {}fast)/(60*60) {} {}\#int() {}function \newline{}
 {}can {}also {}be {}used {}to {}get {}integer {}value, {}but {}isn\textquotesingle{}t {}taught {}yet. \newline{}
>{}>{}>{} {}finish_minute {} {}= {}(finish_hour {}-{} {}finish_floored)*60 \newline{}
>{}>{}>{} {}print {}\textquotesingle{}Finish {}time {}was {}\%d:\%d\textquotesingle{} {}\% {}(finish_hour,finish_minute) \newline{}
Finish {}time {}was {}7:30 \newline{}
>{}>{}>{} {} \newline{}
}
\section{Chapter 3}
\label{362}
\subsection{Exercise 3.3}
\label{363}
Python provides a built-{}in function called {\itshape len} that returns the length of a string, so the value of len(\textquotesingle{}allen\textquotesingle{}) is 5. Write a function named right_justify that takes a string named {\itshape s} as a parameter and prints the string with enough leading spaces so that the last letter of the string is in column 70 of the display.

\TemplatePreformat{ \newline{}
>{}>{}>{} {}def {}right_justify(s): \newline{}
... {} {} {} {} {}print {}(\textquotesingle{} {}\textquotesingle{}*(70-{}len(s))+s) \newline{}
... {} \newline{}
>{}>{}>{} {}right_justify(\textquotesingle{}allen\textquotesingle{}) \newline{}
 {} \newline{}
 {}allen \newline{}
>{}>{}>{} {} \newline{}
}
\subsection{Exercise 3.4}
\label{364}
You can see my solution at \myhref{http://en.wikibooks.org/wiki/\%20}{\myplainurl{http://thinkpython.com/code/grid.py} \myplainurl{http://thinkpython.com/code/grid.py}}\myplainurl{http://.}

\begin{Shaded}
\begin{Highlighting}[]

\CommentTok{"""}\newline
\CommentTok{Solution\ensuremath{\text{ }}to\ensuremath{\text{ }}Exercise\ensuremath{\text{ }}X.X\ensuremath{\text{ }}on\ensuremath{\text{ }}page\ensuremath{\text{ }}X\ensuremath{\text{ }}of\ensuremath{\text{ }}Think\ensuremath{\text{ }}Python}\newline
\CommentTok{Allen\ensuremath{\text{ }}B.\ensuremath{\text{ }}Downey}\newline
\CommentTok{\ensuremath{\text{ }}}\newline
\CommentTok{"""}\newline
\ensuremath{\text{ }}\newline
\CommentTok{#\ensuremath{\text{ }}here\ensuremath{\text{ }}is\ensuremath{\text{ }}a\ensuremath{\text{ }}mostly-straightforward\ensuremath{\text{ }}solution\ensuremath{\text{ }}to\ensuremath{\text{ }}the}\newline
\CommentTok{#\ensuremath{\text{ }}two-by-two\ensuremath{\text{ }}version\ensuremath{\text{ }}of\ensuremath{\text{ }}the\ensuremath{\text{ }}grid.}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{do_twice(f):}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{f()}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{f()}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{do_four(f):}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{do_twice(f)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{do_twice(f)}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{print_beam():}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{print}\ensuremath{\text{ }}\StringTok{{\char13}+\ensuremath{\text{ }}-\ensuremath{\text{ }}-\ensuremath{\text{ }}-\ensuremath{\text{ }}-{\char13}}\NormalTok{,}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{print_post():}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{print}\ensuremath{\text{ }}\StringTok{{\char13}\textbar{}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}{\char13}}\NormalTok{,}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{print_beams():}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{do_twice(print_beam)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{print}\ensuremath{\text{ }}\StringTok{{\char13}+{\char13}}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{print_posts():}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{do_twice(print_post)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{print}\ensuremath{\text{ }}\StringTok{{\char13}\textbar{}{\char13}}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{print_row():}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{print_beams()}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{do_four(print_posts)}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{print_grid():}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{do_twice(print_row)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{print_beams()}\newline
\ensuremath{\text{ }}\newline
\NormalTok{print_grid()}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\newline
\ensuremath{\text{ }}\newline
\CommentTok{#\ensuremath{\text{ }}here\ensuremath{\text{ }}is\ensuremath{\text{ }}a\ensuremath{\text{ }}less-straightforward\ensuremath{\text{ }}solution\ensuremath{\text{ }}to\ensuremath{\text{ }}the}\newline
\CommentTok{#\ensuremath{\text{ }}four-by-four\ensuremath{\text{ }}grid}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{one_four_one(f,\ensuremath{\text{ }}g,\ensuremath{\text{ }}h):}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{f()}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{do_four(g)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{h()}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{print_plus():}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{print}\ensuremath{\text{ }}\StringTok{{\char13}+{\char13}}\NormalTok{,}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{print_dash():}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{print}\ensuremath{\text{ }}\StringTok{{\char13}-{\char13}}\NormalTok{,}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{print_bar():}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{print}\ensuremath{\text{ }}\StringTok{{\char13}\textbar{}{\char13}}\NormalTok{,}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{print_space():}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{print}\ensuremath{\text{ }}\StringTok{{\char13}\ensuremath{\text{ }}{\char13}}\NormalTok{,}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{print_end():}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{print}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{nothing():}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\StringTok{"do\ensuremath{\text{ }}nothing"}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{print1beam():}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{one_four_one(nothing,\ensuremath{\text{ }}print_dash,\ensuremath{\text{ }}print_plus)}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{print1post():}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{one_four_one(nothing,\ensuremath{\text{ }}print_space,\ensuremath{\text{ }}print_bar)}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{print4beams():}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{one_four_one(print_plus,\ensuremath{\text{ }}print1beam,\ensuremath{\text{ }}print_end)}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{print4posts():}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{one_four_one(print_bar,\ensuremath{\text{ }}print1post,\ensuremath{\text{ }}print_end)}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{print_row():}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{one_four_one(nothing,\ensuremath{\text{ }}print4posts,\ensuremath{\text{ }}print4beams)}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{print_grid():}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{one_four_one(print4beams,\ensuremath{\text{ }}print_row,\ensuremath{\text{ }}nothing)}\newline
\ensuremath{\text{ }}\newline
\NormalTok{print_grid()}\newline
\ensuremath{\text{ }}\newline
\NormalTok{comment\ensuremath{\text{ }}=\ensuremath{\text{ }}}\StringTok{"""}\newline
\StringTok{After\ensuremath{\text{ }}writing\ensuremath{\text{ }}a\ensuremath{\text{ }}draft\ensuremath{\text{ }}of\ensuremath{\text{ }}the\ensuremath{\text{ }}4x4\ensuremath{\text{ }}grid,\ensuremath{\text{ }}I\ensuremath{\text{ }}noticed\ensuremath{\text{ }}that\ensuremath{\text{ }}many\ensuremath{\text{ }}of\ensuremath{\text{ }}the}\newline
\StringTok{functions\ensuremath{\text{ }}had\ensuremath{\text{ }}the\ensuremath{\text{ }}same\ensuremath{\text{ }}structure:\ensuremath{\text{ }}they\ensuremath{\text{ }}would\ensuremath{\text{ }}do\ensuremath{\text{ }}something,\ensuremath{\text{ }}do}\newline
\StringTok{something\ensuremath{\text{ }}else\ensuremath{\text{ }}four\ensuremath{\text{ }}times,\ensuremath{\text{ }}and\ensuremath{\text{ }}then\ensuremath{\text{ }}do\ensuremath{\text{ }}something\ensuremath{\text{ }}else\ensuremath{\text{ }}once.}\newline
\StringTok{\ensuremath{\text{ }}}\newline
\StringTok{So\ensuremath{\text{ }}I\ensuremath{\text{ }}wrote\ensuremath{\text{ }}one_four_one,\ensuremath{\text{ }}which\ensuremath{\text{ }}takes\ensuremath{\text{ }}three\ensuremath{\text{ }}functions\ensuremath{\text{ }}as\ensuremath{\text{ }}arguments;\ensuremath{\text{ }}it}\newline
\StringTok{calls\ensuremath{\text{ }}the\ensuremath{\text{ }}first\ensuremath{\text{ }}one\ensuremath{\text{ }}once,\ensuremath{\text{ }}then\ensuremath{\text{ }}uses\ensuremath{\text{ }}do_four\ensuremath{\text{ }}to\ensuremath{\text{ }}call\ensuremath{\text{ }}the\ensuremath{\text{ }}second\ensuremath{\text{ }}one}\newline
\StringTok{four\ensuremath{\text{ }}times,\ensuremath{\text{ }}then\ensuremath{\text{ }}calls\ensuremath{\text{ }}the\ensuremath{\text{ }}third.}\newline
\StringTok{\ensuremath{\text{ }}}\newline
\StringTok{Then\ensuremath{\text{ }}I\ensuremath{\text{ }}rewrote\ensuremath{\text{ }}print1beam,\ensuremath{\text{ }}print1post,\ensuremath{\text{ }}print4beams,\ensuremath{\text{ }}print4posts,}\newline
\StringTok{print_row\ensuremath{\text{ }}and\ensuremath{\text{ }}print_grid\ensuremath{\text{ }}using\ensuremath{\text{ }}one_four_one.}\newline
\StringTok{\ensuremath{\text{ }}}\newline
\StringTok{Programming\ensuremath{\text{ }}is\ensuremath{\text{ }}an\ensuremath{\text{ }}exploratory\ensuremath{\text{ }}process.\ensuremath{\text{ }}\ensuremath{\text{ }}Writing\ensuremath{\text{ }}a\ensuremath{\text{ }}draft\ensuremath{\text{ }}of\ensuremath{\text{ }}a\ensuremath{\text{ }}program}\newline
\StringTok{often\ensuremath{\text{ }}gives\ensuremath{\text{ }}you\ensuremath{\text{ }}insight\ensuremath{\text{ }}into\ensuremath{\text{ }}the\ensuremath{\text{ }}problem,\ensuremath{\text{ }}which\ensuremath{\text{ }}might\ensuremath{\text{ }}lead\ensuremath{\text{ }}you\ensuremath{\text{ }}to}\newline
\StringTok{rewrite\ensuremath{\text{ }}the\ensuremath{\text{ }}code\ensuremath{\text{ }}to\ensuremath{\text{ }}reflect\ensuremath{\text{ }}the\ensuremath{\text{ }}structure\ensuremath{\text{ }}of\ensuremath{\text{ }}the\ensuremath{\text{ }}solution.}\newline
\StringTok{\ensuremath{\text{ }}}\newline
\StringTok{---\ensuremath{\text{ }}Allen}\newline
\StringTok{"""}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{print}\ensuremath{\text{ }}\NormalTok{comment}\newline
\end{Highlighting}
\end{Shaded}
\section{Chapter 9}
\label{365}\subsection{Exercise 9.1}
\label{366}

\begin{Shaded}
\begin{Highlighting}[]

\ensuremath{\text{ }}\newline
\NormalTok{fin\ensuremath{\text{ }}=\ensuremath{\text{ }}}\DataTypeTok{open}\NormalTok{(}\StringTok{{\char13}words.txt{\char13}}\NormalTok{)}\newline
\KeywordTok{for}\ensuremath{\text{ }}\NormalTok{line\ensuremath{\text{ }}in\ensuremath{\text{ }}fin:}\newline
	\NormalTok{word\ensuremath{\text{ }}=\ensuremath{\text{ }}line.strip()}\newline
	\KeywordTok{if}\ensuremath{\text{ }}\DataTypeTok{len}\NormalTok{(word)\ensuremath{\text{ }}>=\ensuremath{\text{ }}}\DecValTok{20}\NormalTok{:}\newline
		\KeywordTok{print}\ensuremath{\text{ }}\NormalTok{(word)}\newline
\end{Highlighting}
\end{Shaded}
\section{Chapter 10}
\label{367}
\subsection{Exercise 10.1}
\label{368}
Write a function that takes a list of numbers and returns the cumulative sum; that is, a new list where the ith element is the sum of the first i+1 elements from the original list. For example, the cumulative sum of {[}1, 2, 3{]} is {[}1, 3, 6{]}.

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{cumulative(a):}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{cumulative\ensuremath{\text{ }}=\ensuremath{\text{ }}[]}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{sum}\ensuremath{\text{ }}\NormalTok{=\ensuremath{\text{ }}}\DecValTok{0}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{for}\ensuremath{\text{ }}\NormalTok{i\ensuremath{\text{ }}in\ensuremath{\text{ }}a:}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{sum}\ensuremath{\text{ }}\NormalTok{+=\ensuremath{\text{ }}i}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{cumulative.append(}\DataTypeTok{sum}\NormalTok{)}\newline
\ensuremath{\text{ }}\newline
\ensuremath{\text{ }}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{return}\ensuremath{\text{ }}\NormalTok{cumulative}\newline
\NormalTok{a\ensuremath{\text{ }}=\ensuremath{\text{ }}[}\DecValTok{1}\NormalTok{,\ensuremath{\text{ }}}\DecValTok{2}\NormalTok{,\ensuremath{\text{ }}}\DecValTok{3}\NormalTok{]}\newline
\KeywordTok{print}\NormalTok{(cumulative(a))}\newline
\end{Highlighting}
\end{Shaded}

\subsection{Exercise 10.2}
\label{369}
Write a function called chop that takes a list and modifies it, removing the first and last elements, and returns None.

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{>>>\ensuremath{\text{ }}}\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{chop(x):}\newline
	\KeywordTok{del}\ensuremath{\text{ }}\NormalTok{x[:}\DecValTok{1}\NormalTok{]}\newline
	\KeywordTok{del}\ensuremath{\text{ }}\NormalTok{x[-}\DecValTok{1}\NormalTok{:]}\newline
\end{Highlighting}
\end{Shaded}

Then write a function called middle that takes a list and returns a new list that contains all but the first and last elements.

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{>>>\ensuremath{\text{ }}}\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{middle(x):}\newline
	\NormalTok{res\ensuremath{\text{ }}=\ensuremath{\text{ }}[]}\newline
	\NormalTok{i\ensuremath{\text{ }}=\ensuremath{\text{ }}}\DecValTok{1}\newline
	\KeywordTok{while}\ensuremath{\text{ }}\NormalTok{i\ensuremath{\text{ }}<=\ensuremath{\text{ }}}\DataTypeTok{len}\NormalTok{(x)-}\DecValTok{2}\NormalTok{:}\newline
		\NormalTok{res.append(x[i])}\newline
		\NormalTok{i\ensuremath{\text{ }}+=\ensuremath{\text{ }}}\DecValTok{1}\newline
	\KeywordTok{return}\ensuremath{\text{ }}\NormalTok{res}\newline
\end{Highlighting}
\end{Shaded}

This can also be done simply with a slice.

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{>>>\ensuremath{\text{ }}}\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{middle(x):}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{return}\ensuremath{\text{ }}\NormalTok{x[}\DecValTok{1}\NormalTok{:-}\DecValTok{1}\NormalTok{]}\newline
\end{Highlighting}
\end{Shaded}

\section{Chapter 11}
\label{370}
\subsection{Exercise 11.1}
\label{371}

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{>>>englishdictionary\ensuremath{\text{ }}=\ensuremath{\text{ }}}\DataTypeTok{dict}\NormalTok{()}\newline
\NormalTok{>>>fin\ensuremath{\text{ }}=\ensuremath{\text{ }}}\DataTypeTok{open}\NormalTok{(}\StringTok{{\char13}words.txt{\char13}}\NormalTok{)}\newline
\NormalTok{>>>line\ensuremath{\text{ }}=\ensuremath{\text{ }}fin.readline()}\newline
\NormalTok{>>>word\ensuremath{\text{ }}=\ensuremath{\text{ }}line.strip()}\newline
\NormalTok{>>>}\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{engdicdefine():}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{index\ensuremath{\text{ }}=\ensuremath{\text{ }}}\DecValTok{0}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{while}\ensuremath{\text{ }}\NormalTok{index\ensuremath{\text{ }}<=\ensuremath{\text{ }}}\DecValTok{1000}\NormalTok{:}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{englishdictionary[index]\ensuremath{\text{ }}=\ensuremath{\text{ }}word}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{i\ensuremath{\text{ }}+=\ensuremath{\text{ }}}\DecValTok{1}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{return}\ensuremath{\text{ }}\NormalTok{englishdictionary}\newline
\end{Highlighting}
\end{Shaded}

\subsection{Exercise 11.2}
\label{372}

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{histogram(s):}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{d\ensuremath{\text{ }}=\ensuremath{\text{ }}}\DataTypeTok{dict}\NormalTok{()}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{for}\ensuremath{\text{ }}\NormalTok{c\ensuremath{\text{ }}in\ensuremath{\text{ }}s:}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{d[c]\ensuremath{\text{ }}=\ensuremath{\text{ }}}\DecValTok{1}\ensuremath{\text{ }}\NormalTok{+\ensuremath{\text{ }}d.get(c,\ensuremath{\text{ }}}\DecValTok{0}\NormalTok{)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{return}\ensuremath{\text{ }}\NormalTok{d}\newline
\end{Highlighting}
\end{Shaded}

\subsection{Exercise 11.4}
\label{373}

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{reverse_lookup(d,v):}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{l\ensuremath{\text{ }}=\ensuremath{\text{ }}}\DataTypeTok{list}\NormalTok{()}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{for}\ensuremath{\text{ }}\NormalTok{c\ensuremath{\text{ }}in\ensuremath{\text{ }}d:}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{if}\ensuremath{\text{ }}\NormalTok{d[c]\ensuremath{\text{ }}==\ensuremath{\text{ }}v:}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{l.append(c)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{return}\ensuremath{\text{ }}\NormalTok{l}\newline
\end{Highlighting}
\end{Shaded}

\section{Chapter 12}
\label{374}
\subsection{Exercise 12.1}
\label{375}

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{numbers\ensuremath{\text{ }}=\ensuremath{\text{ }}(}\DecValTok{1}\NormalTok{,}\DecValTok{2}\NormalTok{,}\DecValTok{3}\NormalTok{)}\newline
\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{sumall(numbers):}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}=\ensuremath{\text{ }}}\DecValTok{0}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{for}\ensuremath{\text{ }}\NormalTok{i\ensuremath{\text{ }}in\ensuremath{\text{ }}numbers:}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}=\ensuremath{\text{ }}x\ensuremath{\text{ }}+\ensuremath{\text{ }}i}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{print}\ensuremath{\text{ }}\NormalTok{x}\newline
\NormalTok{sumall(numbers)}\newline
\end{Highlighting}
\end{Shaded}

or

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{sumall(*t):}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}=\ensuremath{\text{ }}}\DecValTok{0}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{for}\ensuremath{\text{ }}\NormalTok{i\ensuremath{\text{ }}in\ensuremath{\text{ }}}\DataTypeTok{range}\NormalTok{(}\DataTypeTok{len}\NormalTok{(t)):}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}+=\ensuremath{\text{ }}t[i]}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{return}\ensuremath{\text{ }}\NormalTok{x}\newline
\end{Highlighting}
\end{Shaded}

or

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{sumall(*args):}\newline
	\NormalTok{t\ensuremath{\text{ }}=\ensuremath{\text{ }}}\DataTypeTok{list}\NormalTok{(args)}\newline
	\KeywordTok{return}\ensuremath{\text{ }}\DataTypeTok{sum}\NormalTok{(t)}\newline
\end{Highlighting}
\end{Shaded}

\subsection{Exercise 12.2}
\label{376}

\begin{Shaded}
\begin{Highlighting}[]

\CharTok{import}\ensuremath{\text{ }}\NormalTok{random}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{sort_by_length(words):}\newline
	\NormalTok{t\ensuremath{\text{ }}=\ensuremath{\text{ }}[]}\newline
	\KeywordTok{for}\ensuremath{\text{ }}\NormalTok{word\ensuremath{\text{ }}in\ensuremath{\text{ }}words:}\newline
		\NormalTok{t.append((}\DataTypeTok{len}\NormalTok{(word),word))}\newline
	\NormalTok{t.sort(reverse=}\OtherTok{True}\NormalTok{)}\newline
	\NormalTok{res\ensuremath{\text{ }}=\ensuremath{\text{ }}[]}\newline
	\KeywordTok{for}\ensuremath{\text{ }}\NormalTok{length,\ensuremath{\text{ }}word\ensuremath{\text{ }}in\ensuremath{\text{ }}t:}\newline
		\NormalTok{res.append(word)}\newline
	\NormalTok{i=}\DecValTok{0}\newline
	\NormalTok{final\ensuremath{\text{ }}=\ensuremath{\text{ }}[]}\newline
	\KeywordTok{while}\ensuremath{\text{ }}\NormalTok{i\ensuremath{\text{ }}<=\ensuremath{\text{ }}}\DataTypeTok{len}\NormalTok{(res)-}\DecValTok{2}\NormalTok{:}\newline
		\KeywordTok{if}\ensuremath{\text{ }}\DataTypeTok{len}\NormalTok{(res[i])\ensuremath{\text{ }}==\ensuremath{\text{ }}}\DataTypeTok{len}\NormalTok{(res[i}\DecValTok{+1}\NormalTok{]):}\newline
			\NormalTok{y_list\ensuremath{\text{ }}=\ensuremath{\text{ }}[res[i],\ensuremath{\text{ }}res[i}\DecValTok{+1}\NormalTok{]]}\newline
			\NormalTok{random.shuffle(y_list)}\newline
			\NormalTok{final\ensuremath{\text{ }}=\ensuremath{\text{ }}final\ensuremath{\text{ }}+\ensuremath{\text{ }}y_list}\newline
			\NormalTok{i\ensuremath{\text{ }}+=\ensuremath{\text{ }}}\DecValTok{2}\newline
		\KeywordTok{else}\NormalTok{:}\newline
			\NormalTok{final.append(res[i])}\newline
			\NormalTok{i\ensuremath{\text{ }}+=\ensuremath{\text{ }}}\DecValTok{1}\newline
	\KeywordTok{if}\ensuremath{\text{ }}\NormalTok{i\ensuremath{\text{ }}==\ensuremath{\text{ }}}\DataTypeTok{len}\NormalTok{(res)-}\DecValTok{1}\NormalTok{:}\newline
		\NormalTok{final.append(res[i])}\newline
	\KeywordTok{return}\ensuremath{\text{ }}\NormalTok{final}\newline
\end{Highlighting}
\end{Shaded}

or

\begin{Shaded}
\begin{Highlighting}[]

\CharTok{from}\ensuremath{\text{ }}\NormalTok{random\ensuremath{\text{ }}}\CharTok{import}\ensuremath{\text{ }}\NormalTok{shuffle}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{sort_by_length(words):}\newline
	\NormalTok{r\ensuremath{\text{ }}=\ensuremath{\text{ }}[]}\newline
	\NormalTok{d\ensuremath{\text{ }}=\ensuremath{\text{ }}}\DataTypeTok{dict}\NormalTok{()}\newline
	\KeywordTok{for}\ensuremath{\text{ }}\NormalTok{word\ensuremath{\text{ }}in\ensuremath{\text{ }}words:}\newline
		\NormalTok{d.setdefault(}\DataTypeTok{len}\NormalTok{(word),\ensuremath{\text{ }}[]).append(word)}\newline
	\KeywordTok{for}\ensuremath{\text{ }}\NormalTok{key\ensuremath{\text{ }}in\ensuremath{\text{ }}}\DataTypeTok{sorted}\NormalTok{(d,\ensuremath{\text{ }}reverse=}\OtherTok{True}\NormalTok{):}\newline
		\KeywordTok{if}\ensuremath{\text{ }}\DataTypeTok{len}\NormalTok{(d[key])\ensuremath{\text{ }}>\ensuremath{\text{ }}}\DecValTok{1}\NormalTok{:}\newline
			\NormalTok{shuffle(d[key])}\newline
		\NormalTok{r.extend(d[key])}\newline
	\KeywordTok{return}\ensuremath{\text{ }}\NormalTok{r}\newline
\end{Highlighting}
\end{Shaded}

\subsection{Exercise 12.3}
\label{377}

\begin{Shaded}
\begin{Highlighting}[]

\CharTok{import}\ensuremath{\text{ }}\NormalTok{string}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{most_frequent(s):}\newline
	\NormalTok{d\ensuremath{\text{ }}=\ensuremath{\text{ }}}\DataTypeTok{dict}\NormalTok{()}\newline
	\NormalTok{inv\ensuremath{\text{ }}=\ensuremath{\text{ }}}\DataTypeTok{dict}\NormalTok{()}\newline
	\KeywordTok{for}\ensuremath{\text{ }}\NormalTok{char\ensuremath{\text{ }}in\ensuremath{\text{ }}s:}\newline
		\KeywordTok{if}\ensuremath{\text{ }}\NormalTok{char\ensuremath{\text{ }}in\ensuremath{\text{ }}string.ascii_letters:}\newline
			\NormalTok{letter\ensuremath{\text{ }}=\ensuremath{\text{ }}char.lower()		}\newline
			\NormalTok{d[letter]\ensuremath{\text{ }}=\ensuremath{\text{ }}d.get(letter,\ensuremath{\text{ }}}\DecValTok{0}\NormalTok{)\ensuremath{\text{ }}+\ensuremath{\text{ }}}\DecValTok{1}\newline
			\newline
	\KeywordTok{for}\ensuremath{\text{ }}\NormalTok{letter,\ensuremath{\text{ }}freq\ensuremath{\text{ }}in\ensuremath{\text{ }}d.items():}\newline
		\NormalTok{inv.setdefault(freq,\ensuremath{\text{ }}[]).append(letter)}\newline
		\newline
	\KeywordTok{for}\ensuremath{\text{ }}\NormalTok{freq\ensuremath{\text{ }}in\ensuremath{\text{ }}}\DataTypeTok{sorted}\NormalTok{(inv,\ensuremath{\text{ }}reverse=}\OtherTok{True}\NormalTok{):}\newline
		\KeywordTok{print}\NormalTok{(}\StringTok{{\char13}\{:.2\%\}:{\char13}}\NormalTok{.}\DataTypeTok{format}\NormalTok{(freq/(}\DataTypeTok{sum}\NormalTok{(}\DataTypeTok{list}\NormalTok{(inv)*}\DataTypeTok{len}\NormalTok{(inv[freq])))),}\newline
\ensuremath{\text{ }}\StringTok{{\char13},\ensuremath{\text{ }}{\char13}}\NormalTok{.join(inv[freq]))}\newline
\end{Highlighting}
\end{Shaded}

\section{Chapter 13}
\label{378}
\subsection{Exercise 13.7}
\label{379}

\begin{Shaded}
\begin{Highlighting}[]

\CharTok{from}\ensuremath{\text{ }}\NormalTok{string\ensuremath{\text{ }}}\CharTok{import}\ensuremath{\text{ }}\NormalTok{punctuation,\ensuremath{\text{ }}whitespace,\ensuremath{\text{ }}digits}\newline
\CharTok{from}\ensuremath{\text{ }}\NormalTok{random\ensuremath{\text{ }}}\CharTok{import}\ensuremath{\text{ }}\NormalTok{randint}\newline
\CharTok{from}\ensuremath{\text{ }}\NormalTok{bisect\ensuremath{\text{ }}}\CharTok{import}\ensuremath{\text{ }}\NormalTok{bisect_left}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{process_file(filename):}\newline
	\NormalTok{h\ensuremath{\text{ }}=\ensuremath{\text{ }}}\DataTypeTok{dict}\NormalTok{()}\newline
	\NormalTok{fp\ensuremath{\text{ }}=\ensuremath{\text{ }}}\DataTypeTok{open}\NormalTok{(filename)}\newline
	\KeywordTok{for}\ensuremath{\text{ }}\NormalTok{line\ensuremath{\text{ }}in\ensuremath{\text{ }}fp:}\newline
		\NormalTok{process_line(line,\ensuremath{\text{ }}h)}\newline
	\KeywordTok{return}\ensuremath{\text{ }}\NormalTok{h}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{process_line(line,\ensuremath{\text{ }}h):}\newline
	\NormalTok{line\ensuremath{\text{ }}=\ensuremath{\text{ }}line.replace(}\StringTok{{\char13}-{\char13}}\NormalTok{,\ensuremath{\text{ }}}\StringTok{{\char13}\ensuremath{\text{ }}{\char13}}\NormalTok{)}\newline
	\KeywordTok{for}\ensuremath{\text{ }}\NormalTok{word\ensuremath{\text{ }}in\ensuremath{\text{ }}line.split():}\newline
		\NormalTok{word\ensuremath{\text{ }}=\ensuremath{\text{ }}word.strip(punctuation\ensuremath{\text{ }}+\ensuremath{\text{ }}whitespace\ensuremath{\text{ }}+\ensuremath{\text{ }}digits)}\newline
		\NormalTok{word\ensuremath{\text{ }}=\ensuremath{\text{ }}word.lower()}\newline
		\KeywordTok{if}\ensuremath{\text{ }}\NormalTok{word\ensuremath{\text{ }}!=\ensuremath{\text{ }}}\StringTok{{\char13}{\char13}}\NormalTok{:}\newline
			\NormalTok{h[word]\ensuremath{\text{ }}=\ensuremath{\text{ }}h.get(word,\ensuremath{\text{ }}}\DecValTok{0}\NormalTok{)\ensuremath{\text{ }}+\ensuremath{\text{ }}}\DecValTok{1}\newline
\ensuremath{\text{ }}\newline
\NormalTok{hist\ensuremath{\text{ }}=\ensuremath{\text{ }}process_file(}\StringTok{{\char13}emma.txt{\char13}}\NormalTok{)}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{cum_sum(list_of_numbers):}\newline
	\NormalTok{cum_list\ensuremath{\text{ }}=\ensuremath{\text{ }}[]}\newline
	\KeywordTok{for}\ensuremath{\text{ }}\NormalTok{i,\ensuremath{\text{ }}elem\ensuremath{\text{ }}in\ensuremath{\text{ }}}\DataTypeTok{enumerate}\NormalTok{(list_of_numbers):}\newline
		\KeywordTok{if}\ensuremath{\text{ }}\NormalTok{i\ensuremath{\text{ }}==\ensuremath{\text{ }}}\DecValTok{0}\NormalTok{:}\newline
			\NormalTok{cum_list.append(elem)}\newline
		\KeywordTok{else}\NormalTok{:}\newline
			\NormalTok{cum_list.append(cum_list[i}\DecValTok{-1}\NormalTok{]\ensuremath{\text{ }}+\ensuremath{\text{ }}elem)}\newline
	\KeywordTok{return}\ensuremath{\text{ }}\NormalTok{cum_list}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{random_word(h):}\newline
	\NormalTok{word_list\ensuremath{\text{ }}=\ensuremath{\text{ }}}\DataTypeTok{list}\NormalTok{(h.keys())}\newline
	\NormalTok{num_list\ensuremath{\text{ }}=\ensuremath{\text{ }}[]}\newline
	\KeywordTok{for}\ensuremath{\text{ }}\NormalTok{word\ensuremath{\text{ }}in\ensuremath{\text{ }}word_list:}\newline
		\NormalTok{num_list.append(h[word])}\newline
	\NormalTok{cum_list\ensuremath{\text{ }}=\ensuremath{\text{ }}cum_sum(num_list)}\newline
	\NormalTok{i\ensuremath{\text{ }}=\ensuremath{\text{ }}randint(}\DecValTok{1}\NormalTok{,\ensuremath{\text{ }}cum_list[-}\DecValTok{1}\NormalTok{])}\newline
	\NormalTok{pos\ensuremath{\text{ }}=\ensuremath{\text{ }}bisect_left(cum_list,\ensuremath{\text{ }}i)}\newline
	\KeywordTok{return}\ensuremath{\text{ }}\NormalTok{word_list[pos]}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{print}\NormalTok{(random_word(hist))}\newline
\end{Highlighting}
\end{Shaded}
\section{Chapter 14}
\label{380}
\subsection{Exercise 14.3}
\label{381}

\begin{Shaded}
\begin{Highlighting}[]

\CharTok{import}\ensuremath{\text{ }}\NormalTok{shelve}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{dict_of_signatures_and_words(filename=}\StringTok{{\char13}words.txt{\char13}}\NormalTok{):}\newline
	\NormalTok{d\ensuremath{\text{ }}=\ensuremath{\text{ }}}\DataTypeTok{dict}\NormalTok{()}\newline
	\KeywordTok{for}\ensuremath{\text{ }}\NormalTok{line\ensuremath{\text{ }}in\ensuremath{\text{ }}}\DataTypeTok{open}\NormalTok{(filename):}\newline
		\NormalTok{word\ensuremath{\text{ }}=\ensuremath{\text{ }}line.lower().strip()}\newline
		\NormalTok{signature\ensuremath{\text{ }}=\ensuremath{\text{ }}}\StringTok{{\char13}{\char13}}\NormalTok{.join(}\DataTypeTok{sorted}\NormalTok{(word))}\newline
		\NormalTok{d.setdefault(signature,\ensuremath{\text{ }}[]).append(word)}\newline
	\KeywordTok{return}\ensuremath{\text{ }}\NormalTok{d}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{db_of_anagrams(filename=}\StringTok{{\char13}anagrams{\char13}}\NormalTok{,}\newline
\ensuremath{\text{ }}\NormalTok{d=dict_of_signatures_and_words()):}\newline
	\NormalTok{db\ensuremath{\text{ }}=\ensuremath{\text{ }}shelve.}\DataTypeTok{open}\NormalTok{(filename)}\newline
	\KeywordTok{for}\ensuremath{\text{ }}\NormalTok{key,\ensuremath{\text{ }}values\ensuremath{\text{ }}in\ensuremath{\text{ }}d.items():}\newline
		\KeywordTok{if}\ensuremath{\text{ }}\DataTypeTok{len}\NormalTok{(values)>}\DecValTok{1}\NormalTok{:}\newline
			\KeywordTok{for}\ensuremath{\text{ }}\NormalTok{index,\ensuremath{\text{ }}value\ensuremath{\text{ }}in\ensuremath{\text{ }}}\DataTypeTok{enumerate}\NormalTok{(values):}\newline
				\NormalTok{db[value]=values[:index]+values[index}\DecValTok{+1}\NormalTok{:]}\newline
	\NormalTok{db.close()}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{print_contents_of_db(filename=}\StringTok{{\char13}anagrams{\char13}}\NormalTok{):}\newline
	\NormalTok{db\ensuremath{\text{ }}=\ensuremath{\text{ }}shelve.}\DataTypeTok{open}\NormalTok{(filename,\ensuremath{\text{ }}flag=}\StringTok{{\char13}r{\char13}}\NormalTok{)}\newline
	\KeywordTok{for}\ensuremath{\text{ }}\NormalTok{key\ensuremath{\text{ }}in\ensuremath{\text{ }}}\DataTypeTok{sorted}\NormalTok{(db):}\newline
		\KeywordTok{print}\NormalTok{(key.rjust(}\DecValTok{12}\NormalTok{),\ensuremath{\text{ }}}\StringTok{{\char13}}\CharTok{\textbackslash{}t}\StringTok{<==>}\CharTok{\textbackslash{}t}\StringTok{{\char13}}\NormalTok{,\ensuremath{\text{ }}}\StringTok{{\char13},\ensuremath{\text{ }}{\char13}}\NormalTok{.join(db[key]))}\newline
	\NormalTok{db.close()}\newline
\ensuremath{\text{ }}\newline
\NormalTok{db_of_anagrams()}\newline
\NormalTok{print_contents_of_db()}\newline
\end{Highlighting}
\end{Shaded}

\subsection{Exercise 14.5}
\label{382}

\begin{Shaded}
\begin{Highlighting}[]

\CommentTok{#\ensuremath{\text{ }}Replace\ensuremath{\text{ }}urllib.request\ensuremath{\text{ }}with\ensuremath{\text{ }}urllib\ensuremath{\text{ }}if\ensuremath{\text{ }}you\ensuremath{\text{ }}use\ensuremath{\text{ }}Python\ensuremath{\text{ }}2.}\newline
\CommentTok{#\ensuremath{\text{ }}I\ensuremath{\text{ }}would\ensuremath{\text{ }}love\ensuremath{\text{ }}to\ensuremath{\text{ }}see\ensuremath{\text{ }}a\ensuremath{\text{ }}more\ensuremath{\text{ }}elegant\ensuremath{\text{ }}solution\ensuremath{\text{ }}for\ensuremath{\text{ }}this\ensuremath{\text{ }}exercise,}\newline
\ensuremath{\text{ }}\NormalTok{possibly\ensuremath{\text{ }}by\ensuremath{\text{ }}someone\ensuremath{\text{ }}who\ensuremath{\text{ }}understands\ensuremath{\text{ }}html.}\newline
\ensuremath{\text{ }}\newline
\CharTok{import}\ensuremath{\text{ }}\NormalTok{urllib.request}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{check(zip_code):}\newline
	\KeywordTok{if}\ensuremath{\text{ }}\NormalTok{zip_code\ensuremath{\text{ }}==\ensuremath{\text{ }}}\StringTok{{\char13}done{\char13}}\NormalTok{:}\newline
		\KeywordTok{return}\ensuremath{\text{ }}\KeywordTok{break}\newline
		\newline
	\KeywordTok{if}\ensuremath{\text{ }}\DataTypeTok{len}\NormalTok{(zip_code)\ensuremath{\text{ }}!=\ensuremath{\text{ }}}\DecValTok{5}\NormalTok{:}\newline
		\KeywordTok{print}\NormalTok{(}\StringTok{{\char13}}\CharTok{\textbackslash{}n}\StringTok{The\ensuremath{\text{ }}zip\ensuremath{\text{ }}code\ensuremath{\text{ }}must\ensuremath{\text{ }}have\ensuremath{\text{ }}five\ensuremath{\text{ }}digits!{\char13}}\NormalTok{)}\newline
		\KeywordTok{return}\ensuremath{\text{ }}\KeywordTok{continue}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{get_html(zip_code):}\newline
	\NormalTok{gibberish\ensuremath{\text{ }}=\ensuremath{\text{ }}urllib.request.urlopen(}\StringTok{{\char13}http://www.uszip.com/zip/{\char13}}\ensuremath{\text{ }}\NormalTok{+}\newline
\ensuremath{\text{ }}\NormalTok{zip_code)}\newline
	\NormalTok{less_gib\ensuremath{\text{ }}=\ensuremath{\text{ }}gibberish.read().decode(}\StringTok{{\char13}utf-8{\char13}}\NormalTok{)}\newline
	\KeywordTok{return}\ensuremath{\text{ }}\NormalTok{less_gib}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{extract_truth(code,\ensuremath{\text{ }}key,\ensuremath{\text{ }}delimiter):}\newline
	\NormalTok{pos\ensuremath{\text{ }}=\ensuremath{\text{ }}code.find(key)\ensuremath{\text{ }}+\ensuremath{\text{ }}}\DataTypeTok{len}\NormalTok{(key)}\newline
	\NormalTok{nearly_true\ensuremath{\text{ }}=\ensuremath{\text{ }}code[pos:pos}\DecValTok{+40}\NormalTok{]}\newline
	\NormalTok{truth\ensuremath{\text{ }}=\ensuremath{\text{ }}nearly_true.split(delimiter)[}\DecValTok{0}\NormalTok{]}\newline
	\KeywordTok{return}\ensuremath{\text{ }}\NormalTok{truth}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{while}\ensuremath{\text{ }}\OtherTok{True}\NormalTok{:}\newline
	\NormalTok{zip_code\ensuremath{\text{ }}=\ensuremath{\text{ }}}\DataTypeTok{input}\NormalTok{(}\StringTok{{\char13}Please\ensuremath{\text{ }}type\ensuremath{\text{ }}a\ensuremath{\text{ }}zip\ensuremath{\text{ }}code\ensuremath{\text{ }}(5\ensuremath{\text{ }}digits)\ensuremath{\text{ }}or\ensuremath{\text{ }}"done"\ensuremath{\text{ }}if}\newline
\StringTok{\ensuremath{\text{ }}want\ensuremath{\text{ }}to\ensuremath{\text{ }}stop:}\CharTok{\textbackslash{}n}\StringTok{{\char13}}\NormalTok{)}\newline
	\newline
	\NormalTok{check(zip_code)}\newline
	\newline
	\NormalTok{code\ensuremath{\text{ }}=\ensuremath{\text{ }}get_html(zip_code)}\newline
	\newline
	\NormalTok{invalid_key\ensuremath{\text{ }}=\ensuremath{\text{ }}}\StringTok{{\char13}(0\ensuremath{\text{ }}results){\char13}}\newline
	\KeywordTok{if}\ensuremath{\text{ }}\NormalTok{invalid_key\ensuremath{\text{ }}in\ensuremath{\text{ }}code:}\newline
		\KeywordTok{print}\NormalTok{(}\StringTok{{\char13}}\CharTok{\textbackslash{}n}\StringTok{Not\ensuremath{\text{ }}a\ensuremath{\text{ }}valid\ensuremath{\text{ }}zip\ensuremath{\text{ }}code.{\char13}}\NormalTok{)}\newline
		\KeywordTok{continue}\newline
	\newline
	\NormalTok{name_key\ensuremath{\text{ }}=\ensuremath{\text{ }}}\StringTok{{\char13}zip\ensuremath{\text{ }}code\ensuremath{\text{ }}of\ensuremath{\text{ }}{\char13}}\newline
	\NormalTok{name_del\ensuremath{\text{ }}=\ensuremath{\text{ }}}\StringTok{{\char13}<{\char13}}\newline
	\NormalTok{name\ensuremath{\text{ }}=\ensuremath{\text{ }}extract_truth(code,\ensuremath{\text{ }}name_key,\ensuremath{\text{ }}name_del)}\newline
	\newline
	\NormalTok{pop_key\ensuremath{\text{ }}=\ensuremath{\text{ }}}\StringTok{{\char13}Population:</td><td>{\char13}}\newline
	\NormalTok{pop_del\ensuremath{\text{ }}=\ensuremath{\text{ }}}\StringTok{{\char13}\ensuremath{\text{ }}<{\char13}}\newline
	\NormalTok{name\ensuremath{\text{ }}=\ensuremath{\text{ }}extract_truth(code,\ensuremath{\text{ }}pop_key,\ensuremath{\text{ }}pop_del)}\newline
	\newline
	\KeywordTok{if}\ensuremath{\text{ }}\NormalTok{not\ensuremath{\text{ }}}\DecValTok{1}\ensuremath{\text{ }}\NormalTok{<\ensuremath{\text{ }}}\DataTypeTok{len}\NormalTok{(pop)\ensuremath{\text{ }}<\ensuremath{\text{ }}}\DecValTok{9}\NormalTok{:}\newline
		\NormalTok{pop\ensuremath{\text{ }}=\ensuremath{\text{ }}}\StringTok{{\char13}not\ensuremath{\text{ }}available{\char13}}\newline
\ensuremath{\text{ }}\newline
	\KeywordTok{print}\NormalTok{(}\StringTok{{\char13}}\CharTok{\textbackslash{}n}\StringTok{{\char13}}\ensuremath{\text{ }}\NormalTok{+\ensuremath{\text{ }}name)}\newline
	\KeywordTok{print}\NormalTok{(}\StringTok{{\char13}Population:{\char13}}\NormalTok{,\ensuremath{\text{ }}pop,\ensuremath{\text{ }}}\StringTok{{\char13}}\CharTok{\textbackslash{}n}\StringTok{{\char13}}\NormalTok{)}\newline
\end{Highlighting}
\end{Shaded}

\section{Chapter 15}
\label{383}
\subsection{Exercise 15.1}
\label{384}

\begin{Shaded}
\begin{Highlighting}[]

\CharTok{import}\ensuremath{\text{ }}\NormalTok{math}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{class}\ensuremath{\text{ }}\NormalTok{Point(}\DataTypeTok{object}\NormalTok{):}\newline
	\CommentTok{"""represents\ensuremath{\text{ }}a\ensuremath{\text{ }}point\ensuremath{\text{ }}in\ensuremath{\text{ }}2-D\ensuremath{\text{ }}space"""}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{distance(p1,\ensuremath{\text{ }}p2):}\newline
	\NormalTok{distance\ensuremath{\text{ }}=\ensuremath{\text{ }}math.sqrt((p2.x\ensuremath{\text{ }}-\ensuremath{\text{ }}p1.x)**}\DecValTok{2}\ensuremath{\text{ }}\NormalTok{+\ensuremath{\text{ }}(p2.y\ensuremath{\text{ }}-\ensuremath{\text{ }}p1.y)**}\DecValTok{2}\NormalTok{)}\newline
	\KeywordTok{return}\ensuremath{\text{ }}\NormalTok{distance}\newline
\ensuremath{\text{ }}\newline
\NormalTok{p1\ensuremath{\text{ }}=\ensuremath{\text{ }}Point()}\newline
\NormalTok{p2\ensuremath{\text{ }}=\ensuremath{\text{ }}Point()}\newline
\ensuremath{\text{ }}\newline
\NormalTok{p1.x\ensuremath{\text{ }}=\ensuremath{\text{ }}}\DecValTok{3}\newline
\NormalTok{p1.y\ensuremath{\text{ }}=\ensuremath{\text{ }}}\DecValTok{2}\newline
\NormalTok{p2.x\ensuremath{\text{ }}=\ensuremath{\text{ }}}\DecValTok{4}\newline
\NormalTok{p2.y\ensuremath{\text{ }}=\ensuremath{\text{ }}}\DecValTok{3}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{print}\NormalTok{(distance(p1,\ensuremath{\text{ }}p2))}\newline
\end{Highlighting}
\end{Shaded}

\section{Chapter 16}
\label{385}
\subsection{Exercise 16.1}
\label{386}

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{print_time(t):}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{print}\ensuremath{\text{ }}\StringTok{{\char13}}\OtherTok{\%.2d}\StringTok{:}\OtherTok{\%.2d}\StringTok{:}\OtherTok{\%.2d}\StringTok{{\char13}}\ensuremath{\text{ }}\NormalTok{\%\ensuremath{\text{ }}(t.hour,\ensuremath{\text{ }}t.minute,\ensuremath{\text{ }}t.second)}\newline
\end{Highlighting}
\end{Shaded}

or

\begin{Shaded}
\begin{Highlighting}[]

\CommentTok{#\ensuremath{\text{ }}Solution\ensuremath{\text{ }}for\ensuremath{\text{ }}Python3}\newline
\CommentTok{#\ensuremath{\text{ }}More\ensuremath{\text{ }}on\ensuremath{\text{ }}string\ensuremath{\text{ }}formatting:}\newline
\ensuremath{\text{ }}\NormalTok{http://docs.python.org/py3k/library/string.html}\CommentTok{#formatspec}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{print_time(t):}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\CommentTok{#\ensuremath{\text{ }}0\ensuremath{\text{ }}is\ensuremath{\text{ }}a\ensuremath{\text{ }}fill\ensuremath{\text{ }}character,\ensuremath{\text{ }}2\ensuremath{\text{ }}defines\ensuremath{\text{ }}the\ensuremath{\text{ }}width}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{print}\NormalTok{(}\StringTok{{\char13}\{\}:\{:02\}:\{:02\}{\char13}}\NormalTok{.}\DataTypeTok{format}\NormalTok{(t.hour,\ensuremath{\text{ }}t.minute,\ensuremath{\text{ }}t.second))}\newline
\end{Highlighting}
\end{Shaded}

\subsection{Exercise 16.2}
\label{387}

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{is_after(t1,\ensuremath{\text{ }}t2):}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{return}\ensuremath{\text{ }}\NormalTok{(t1.hour,\ensuremath{\text{ }}t1.minute,\ensuremath{\text{ }}t1.second)\ensuremath{\text{ }}>\ensuremath{\text{ }}(t2.hour,\ensuremath{\text{ }}t2.minute,}\newline
\ensuremath{\text{ }}\NormalTok{t2.second)}\newline
\end{Highlighting}
\end{Shaded}

\subsection{Exercise 16.3}
\label{388}

\begin{Shaded}
\begin{Highlighting}[]

\CommentTok{#\ensuremath{\text{ }}Comment\ensuremath{\text{ }}not\ensuremath{\text{ }}by\ensuremath{\text{ }}the\ensuremath{\text{ }}author:\ensuremath{\text{ }}This\ensuremath{\text{ }}will\ensuremath{\text{ }}give\ensuremath{\text{ }}a\ensuremath{\text{ }}wrong\ensuremath{\text{ }}result,\ensuremath{\text{ }}if}\newline
\ensuremath{\text{ }}\NormalTok{(time.second\ensuremath{\text{ }}+\ensuremath{\text{ }}seconds\ensuremath{\text{ }}\%\ensuremath{\text{ }}}\DecValTok{60}\NormalTok{)\ensuremath{\text{ }}>\ensuremath{\text{ }}}\DecValTok{60}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{increment(time,\ensuremath{\text{ }}seconds):}\newline
\ensuremath{\text{ }}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{n\ensuremath{\text{ }}=\ensuremath{\text{ }}seconds/}\DecValTok{60}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{time.second\ensuremath{\text{ }}+=\ensuremath{\text{ }}seconds\ensuremath{\text{ }}-\ensuremath{\text{ }}}\FloatTok{60.0}\NormalTok{*n}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{time.minute\ensuremath{\text{ }}+=\ensuremath{\text{ }}n}\newline
\ensuremath{\text{ }}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}=\ensuremath{\text{ }}time.minute/}\DecValTok{60}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{time.minute\ensuremath{\text{ }}-=\ensuremath{\text{ }}m*}\DecValTok{60}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{time.hour\ensuremath{\text{ }}+=\ensuremath{\text{ }}m}\newline
\end{Highlighting}
\end{Shaded}

or

\begin{Shaded}
\begin{Highlighting}[]

\CommentTok{#\ensuremath{\text{ }}Solution\ensuremath{\text{ }}for\ensuremath{\text{ }}Python3}\newline
\CommentTok{#\ensuremath{\text{ }}Replace\ensuremath{\text{ }}{\char13}//{\char13}\ensuremath{\text{ }}by\ensuremath{\text{ }}{\char13}/{\char13}\ensuremath{\text{ }}for\ensuremath{\text{ }}Python2}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{increment(time,\ensuremath{\text{ }}seconds):}\newline
	\NormalTok{time.second\ensuremath{\text{ }}+=\ensuremath{\text{ }}seconds}\newline
	\NormalTok{time.minute\ensuremath{\text{ }}+=\ensuremath{\text{ }}time.second//}\DecValTok{60}\newline
	\NormalTok{time.hour\ensuremath{\text{ }}+=\ensuremath{\text{ }}time.minute//}\DecValTok{60}\newline
	\newline
	\NormalTok{time.second\ensuremath{\text{ }}\%=\ensuremath{\text{ }}}\DecValTok{60}\newline
	\NormalTok{time.minute\ensuremath{\text{ }}\%=\ensuremath{\text{ }}}\DecValTok{60}\newline
	\NormalTok{time.hour\ensuremath{\text{ }}\%=\ensuremath{\text{ }}}\DecValTok{24}\newline
\end{Highlighting}
\end{Shaded}

\subsection{Exercise 16.4}
\label{389}

\begin{Shaded}
\begin{Highlighting}[]

\CommentTok{#\ensuremath{\text{ }}Solution\ensuremath{\text{ }}for\ensuremath{\text{ }}Python3}\newline
\CommentTok{#\ensuremath{\text{ }}Replace\ensuremath{\text{ }}{\char13}//{\char13}\ensuremath{\text{ }}by\ensuremath{\text{ }}{\char13}/{\char13}\ensuremath{\text{ }}for\ensuremath{\text{ }}Python2}\newline
\ensuremath{\text{ }}\newline
\CharTok{from}\ensuremath{\text{ }}\NormalTok{copy\ensuremath{\text{ }}}\CharTok{import}\ensuremath{\text{ }}\NormalTok{deepcopy}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{increment(time,\ensuremath{\text{ }}seconds):}\newline
	\NormalTok{r\ensuremath{\text{ }}=\ensuremath{\text{ }}deepcopy(time)}\newline
	\newline
	\NormalTok{r.second\ensuremath{\text{ }}+=\ensuremath{\text{ }}seconds}\newline
	\NormalTok{r.minute\ensuremath{\text{ }}+=\ensuremath{\text{ }}r.second//}\DecValTok{60}\newline
	\NormalTok{r.hour\ensuremath{\text{ }}+=\ensuremath{\text{ }}r.minute//}\DecValTok{60}\newline
	\newline
	\NormalTok{r.second\ensuremath{\text{ }}\%=\ensuremath{\text{ }}}\DecValTok{60}\newline
	\NormalTok{r.minute\ensuremath{\text{ }}\%=\ensuremath{\text{ }}}\DecValTok{60}\newline
	\NormalTok{r.hour\ensuremath{\text{ }}\%=\ensuremath{\text{ }}}\DecValTok{24}\newline
\ensuremath{\text{ }}\newline
	\KeywordTok{return}\ensuremath{\text{ }}\NormalTok{r}\newline
\end{Highlighting}
\end{Shaded}

\subsection{Exercise 16.5}
\label{390}

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{class}\ensuremath{\text{ }}\NormalTok{Time(}\DataTypeTok{object}\NormalTok{):}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\CommentTok{"""represents\ensuremath{\text{ }}the\ensuremath{\text{ }}time\ensuremath{\text{ }}of\ensuremath{\text{ }}day.}\newline
\CommentTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}attributes:\ensuremath{\text{ }}hour,\ensuremath{\text{ }}minute,\ensuremath{\text{ }}second"""}\newline
\ensuremath{\text{ }}\newline
\NormalTok{time\ensuremath{\text{ }}=\ensuremath{\text{ }}Time()}\newline
\NormalTok{time.hour\ensuremath{\text{ }}=\ensuremath{\text{ }}}\DecValTok{11}\newline
\NormalTok{time.minute\ensuremath{\text{ }}=\ensuremath{\text{ }}}\DecValTok{59}\newline
\NormalTok{time.second\ensuremath{\text{ }}=\ensuremath{\text{ }}}\DecValTok{30}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{time_to_int(time):}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{minutes\ensuremath{\text{ }}=\ensuremath{\text{ }}time.hour\ensuremath{\text{ }}*\ensuremath{\text{ }}}\DecValTok{60}\ensuremath{\text{ }}\NormalTok{+\ensuremath{\text{ }}time.minute}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{seconds\ensuremath{\text{ }}=\ensuremath{\text{ }}minutes\ensuremath{\text{ }}*\ensuremath{\text{ }}}\DecValTok{60}\ensuremath{\text{ }}\NormalTok{+\ensuremath{\text{ }}time.second}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{return}\ensuremath{\text{ }}\NormalTok{seconds}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{int_to_time(seconds):}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{time\ensuremath{\text{ }}=\ensuremath{\text{ }}Time()}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{minutes,\ensuremath{\text{ }}time.second\ensuremath{\text{ }}=\ensuremath{\text{ }}}\DataTypeTok{divmod}\NormalTok{(seconds,\ensuremath{\text{ }}}\DecValTok{60}\NormalTok{)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{time.hour,\ensuremath{\text{ }}time.minute\ensuremath{\text{ }}=\ensuremath{\text{ }}}\DataTypeTok{divmod}\NormalTok{(minutes,\ensuremath{\text{ }}}\DecValTok{60}\NormalTok{)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{return}\ensuremath{\text{ }}\NormalTok{time}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{increment(time,\ensuremath{\text{ }}addtime):}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{seconds\ensuremath{\text{ }}=\ensuremath{\text{ }}time_to_int(time)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{return}\ensuremath{\text{ }}\NormalTok{int_to_time(seconds\ensuremath{\text{ }}+\ensuremath{\text{ }}addtime)}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{print_time\ensuremath{\text{ }}(x):}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{print}\ensuremath{\text{ }}\StringTok{{\char13}The\ensuremath{\text{ }}time\ensuremath{\text{ }}is\ensuremath{\text{ }}}\OtherTok{\%.2d}\StringTok{\ensuremath{\text{ }}:\ensuremath{\text{ }}}\OtherTok{\%.2d}\StringTok{\ensuremath{\text{ }}:\ensuremath{\text{ }}}\OtherTok{\%.2d}\StringTok{{\char13}}\ensuremath{\text{ }}\NormalTok{\%\ensuremath{\text{ }}(x.hour,\ensuremath{\text{ }}x.minute,}\newline
\ensuremath{\text{ }}\NormalTok{x.second)}\newline
\NormalTok{print_time\ensuremath{\text{ }}(time)}\newline
\ensuremath{\text{ }}\newline
\NormalTok{newtime\ensuremath{\text{ }}=\ensuremath{\text{ }}increment\ensuremath{\text{ }}(time,\ensuremath{\text{ }}}\DecValTok{70}\NormalTok{)}\newline
\ensuremath{\text{ }}\newline
\NormalTok{print_time\ensuremath{\text{ }}(newtime)}\newline
\ensuremath{\text{ }}\newline
\end{Highlighting}
\end{Shaded}

\subsection{Exercise 16.6}
\label{391}

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{time_to_int(time):}\newline
	\NormalTok{minutes\ensuremath{\text{ }}=\ensuremath{\text{ }}time.hour\ensuremath{\text{ }}*\ensuremath{\text{ }}}\DecValTok{60}\ensuremath{\text{ }}\NormalTok{+\ensuremath{\text{ }}time.minute}\newline
	\NormalTok{seconds\ensuremath{\text{ }}=\ensuremath{\text{ }}minutes\ensuremath{\text{ }}*\ensuremath{\text{ }}}\DecValTok{60}\ensuremath{\text{ }}\NormalTok{+\ensuremath{\text{ }}time.second}\newline
	\KeywordTok{return}\ensuremath{\text{ }}\NormalTok{seconds}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{int_to_time(seconds):}\newline
	\NormalTok{time\ensuremath{\text{ }}=\ensuremath{\text{ }}Time()}\newline
	\NormalTok{minutes,\ensuremath{\text{ }}time.second\ensuremath{\text{ }}=\ensuremath{\text{ }}}\DataTypeTok{divmod}\NormalTok{(seconds,\ensuremath{\text{ }}}\DecValTok{60}\NormalTok{)}\newline
	\NormalTok{time.hour,\ensuremath{\text{ }}time.minute\ensuremath{\text{ }}=\ensuremath{\text{ }}}\DataTypeTok{divmod}\NormalTok{(minutes,\ensuremath{\text{ }}}\DecValTok{60}\NormalTok{)}\newline
	\KeywordTok{return}\ensuremath{\text{ }}\NormalTok{time}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{mul_time(time,\ensuremath{\text{ }}factor):}\newline
	\NormalTok{seconds\ensuremath{\text{ }}=\ensuremath{\text{ }}time_to_int(time)}\newline
	\NormalTok{seconds\ensuremath{\text{ }}*=\ensuremath{\text{ }}factor}\newline
	\NormalTok{seconds\ensuremath{\text{ }}=\ensuremath{\text{ }}}\DataTypeTok{int}\NormalTok{(seconds)}\newline
	\KeywordTok{return}\ensuremath{\text{ }}\NormalTok{int_to_time(seconds)}\newline
	\newline
\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{average_pace(time,\ensuremath{\text{ }}distance):}\newline
	\KeywordTok{return}\ensuremath{\text{ }}\NormalTok{mul_time(time,\ensuremath{\text{ }}}\DecValTok{1}\NormalTok{/distance)}\newline
\end{Highlighting}
\end{Shaded}

\subsection{Exercise 16.7}
\label{392}
Write a class definition for a Date object that has attributes {\itshape day}, {\itshape month} and {\itshape year}. Write a function called {\itshape increment_date} that takes a Date object, {\itshape date}, and an integer, {\itshape n}, and returns a new Date object that represents the day {\itshape n} days after {\itshape date}. Hint: “Thirty days hath September...” Challenge: does your function deal with leap years correctly? See {\itshape wikipedia.org/wiki/Leap_year}.

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{class}\ensuremath{\text{ }}\NormalTok{Date(}\DataTypeTok{object}\NormalTok{):}\newline
	\CommentTok{"""represents\ensuremath{\text{ }}a\ensuremath{\text{ }}date.}\newline
\CommentTok{	attributes:\ensuremath{\text{ }}day,\ensuremath{\text{ }}month,\ensuremath{\text{ }}year"""}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{print_date(date):}\newline
	\CommentTok{#\ensuremath{\text{ }}German\ensuremath{\text{ }}date\ensuremath{\text{ }}format}\newline
\ensuremath{\text{ }}\newline
	\KeywordTok{print}\NormalTok{(}\StringTok{{\char13}\{\}.\{\}.\{\}{\char13}}\NormalTok{.}\DataTypeTok{format}\NormalTok{(date.day,\ensuremath{\text{ }}date.month,\ensuremath{\text{ }}date.year))}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{is_leap_year(year):}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\CommentTok{#\ensuremath{\text{ }}http://en.wikipedia.org/wiki/Leap_year#Algorithm}\newline
\ensuremath{\text{ }}\newline
	\KeywordTok{if}\ensuremath{\text{ }}\NormalTok{year\ensuremath{\text{ }}\%\ensuremath{\text{ }}}\DecValTok{4}\ensuremath{\text{ }}\NormalTok{==\ensuremath{\text{ }}}\DecValTok{0}\NormalTok{:}\newline
		\KeywordTok{if}\ensuremath{\text{ }}\NormalTok{year\ensuremath{\text{ }}\%\ensuremath{\text{ }}}\DecValTok{100}\ensuremath{\text{ }}\NormalTok{==\ensuremath{\text{ }}}\DecValTok{0}\NormalTok{:}\newline
			\KeywordTok{if}\ensuremath{\text{ }}\NormalTok{year\ensuremath{\text{ }}\%\ensuremath{\text{ }}}\DecValTok{400}\ensuremath{\text{ }}\NormalTok{==\ensuremath{\text{ }}}\DecValTok{0}\NormalTok{:}\newline
				\KeywordTok{return}\ensuremath{\text{ }}\OtherTok{True}\newline
			\KeywordTok{return}\ensuremath{\text{ }}\OtherTok{False}\newline
		\KeywordTok{return}\ensuremath{\text{ }}\OtherTok{True}\newline
	\KeywordTok{return}\ensuremath{\text{ }}\OtherTok{False}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{month_list(year):}\newline
	\KeywordTok{if}\ensuremath{\text{ }}\NormalTok{is_leap_year(year):}\newline
		\KeywordTok{return}\ensuremath{\text{ }}\NormalTok{[}\DecValTok{31}\NormalTok{,\ensuremath{\text{ }}}\DecValTok{29}\NormalTok{,\ensuremath{\text{ }}}\DecValTok{31}\NormalTok{,\ensuremath{\text{ }}}\DecValTok{30}\NormalTok{,\ensuremath{\text{ }}}\DecValTok{31}\NormalTok{,\ensuremath{\text{ }}}\DecValTok{30}\NormalTok{,\ensuremath{\text{ }}}\DecValTok{31}\NormalTok{,\ensuremath{\text{ }}}\DecValTok{31}\NormalTok{,\ensuremath{\text{ }}}\DecValTok{30}\NormalTok{,\ensuremath{\text{ }}}\DecValTok{31}\NormalTok{,\ensuremath{\text{ }}}\DecValTok{30}\NormalTok{,\ensuremath{\text{ }}}\DecValTok{31}\NormalTok{]}\newline
	\KeywordTok{return}\ensuremath{\text{ }}\NormalTok{[}\DecValTok{31}\NormalTok{,\ensuremath{\text{ }}}\DecValTok{28}\NormalTok{,\ensuremath{\text{ }}}\DecValTok{31}\NormalTok{,\ensuremath{\text{ }}}\DecValTok{30}\NormalTok{,\ensuremath{\text{ }}}\DecValTok{31}\NormalTok{,\ensuremath{\text{ }}}\DecValTok{30}\NormalTok{,\ensuremath{\text{ }}}\DecValTok{31}\NormalTok{,\ensuremath{\text{ }}}\DecValTok{31}\NormalTok{,\ensuremath{\text{ }}}\DecValTok{30}\NormalTok{,\ensuremath{\text{ }}}\DecValTok{31}\NormalTok{,\ensuremath{\text{ }}}\DecValTok{30}\NormalTok{,\ensuremath{\text{ }}}\DecValTok{31}\NormalTok{]}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{days_of_year(year):}\newline
	\KeywordTok{if}\ensuremath{\text{ }}\NormalTok{is_leap_year(year):}\newline
		\KeywordTok{return}\ensuremath{\text{ }}\DecValTok{366}\newline
	\KeywordTok{return}\ensuremath{\text{ }}\DecValTok{365}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{date_to_int(date):}\newline
	\NormalTok{days\ensuremath{\text{ }}=\ensuremath{\text{ }}}\DecValTok{0}\newline
	\KeywordTok{for}\ensuremath{\text{ }}\NormalTok{year\ensuremath{\text{ }}in\ensuremath{\text{ }}}\DataTypeTok{range}\NormalTok{(}\DecValTok{1}\NormalTok{,\ensuremath{\text{ }}date.year):}\newline
		\NormalTok{days\ensuremath{\text{ }}+=\ensuremath{\text{ }}days_of_year(year)}\newline
	\newline
	\NormalTok{month_days\ensuremath{\text{ }}=\ensuremath{\text{ }}month_list(date.year)}\newline
	\KeywordTok{for}\ensuremath{\text{ }}\NormalTok{month\ensuremath{\text{ }}in\ensuremath{\text{ }}}\DataTypeTok{range}\NormalTok{(}\DecValTok{1}\NormalTok{,\ensuremath{\text{ }}date.month):}\newline
		\NormalTok{days\ensuremath{\text{ }}+=\ensuremath{\text{ }}month_days[month\ensuremath{\text{ }}-\ensuremath{\text{ }}}\DecValTok{1}\NormalTok{]}\newline
	\newline
	\NormalTok{days\ensuremath{\text{ }}+=\ensuremath{\text{ }}date.day\ensuremath{\text{ }}-\ensuremath{\text{ }}}\DecValTok{1}\newline
	\KeywordTok{return}\ensuremath{\text{ }}\NormalTok{days}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{int_to_date(days):}\newline
	\NormalTok{date\ensuremath{\text{ }}=\ensuremath{\text{ }}Date()}\newline
	\newline
	\NormalTok{date.year\ensuremath{\text{ }}=\ensuremath{\text{ }}}\DecValTok{1}\newline
	\NormalTok{next_days\ensuremath{\text{ }}=\ensuremath{\text{ }}}\DecValTok{365}\newline
	\KeywordTok{while}\ensuremath{\text{ }}\NormalTok{days\ensuremath{\text{ }}>=\ensuremath{\text{ }}next_days:}\newline
		\NormalTok{date.year\ensuremath{\text{ }}+=\ensuremath{\text{ }}}\DecValTok{1}\newline
		\NormalTok{days\ensuremath{\text{ }}-=\ensuremath{\text{ }}next_days}\newline
		\NormalTok{next_days\ensuremath{\text{ }}=\ensuremath{\text{ }}days_of_year(date.year)}\newline
		\newline
	\NormalTok{date.month\ensuremath{\text{ }}=\ensuremath{\text{ }}}\DecValTok{1}\newline
	\NormalTok{next_days\ensuremath{\text{ }}=\ensuremath{\text{ }}}\DecValTok{31}\newline
	\NormalTok{month_days\ensuremath{\text{ }}=\ensuremath{\text{ }}month_list(date.year)}\newline
	\KeywordTok{while}\ensuremath{\text{ }}\NormalTok{days\ensuremath{\text{ }}>=\ensuremath{\text{ }}next_days:}\newline
		\NormalTok{date.month\ensuremath{\text{ }}+=\ensuremath{\text{ }}}\DecValTok{1}\newline
		\NormalTok{days\ensuremath{\text{ }}-=\ensuremath{\text{ }}next_days}\newline
		\NormalTok{next_days\ensuremath{\text{ }}=\ensuremath{\text{ }}month_days[date.month\ensuremath{\text{ }}-\ensuremath{\text{ }}}\DecValTok{1}\NormalTok{]}\newline
	\newline
	\NormalTok{date.day\ensuremath{\text{ }}=\ensuremath{\text{ }}days\ensuremath{\text{ }}+\ensuremath{\text{ }}}\DecValTok{1}\newline
	\KeywordTok{return}\ensuremath{\text{ }}\NormalTok{date}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{increment_date(date,\ensuremath{\text{ }}n):}\newline
	\NormalTok{days\ensuremath{\text{ }}=\ensuremath{\text{ }}date_to_int(date)}\newline
	\KeywordTok{return}\ensuremath{\text{ }}\NormalTok{int_to_date(days\ensuremath{\text{ }}+\ensuremath{\text{ }}n)}\newline
\ensuremath{\text{ }}\newline
\NormalTok{d1\ensuremath{\text{ }}=\ensuremath{\text{ }}Date()}\newline
\NormalTok{d1.day,\ensuremath{\text{ }}d1.month,\ensuremath{\text{ }}d1.year\ensuremath{\text{ }}=\ensuremath{\text{ }}}\DecValTok{8}\NormalTok{,\ensuremath{\text{ }}}\DecValTok{3}\NormalTok{,\ensuremath{\text{ }}}\DecValTok{2012}\newline
\NormalTok{print_date(d1)}\newline
\ensuremath{\text{ }}\newline
\NormalTok{d2\ensuremath{\text{ }}=\ensuremath{\text{ }}increment_date(d1,\ensuremath{\text{ }}}\DecValTok{7}\NormalTok{)}\newline
\NormalTok{print_date(d2)}\newline
\end{Highlighting}
\end{Shaded}

\subsection{Exercise 16.8}
\label{393}
1. Use the {\itshape datetime} module to write a program that gets the current date and prints the day of the week.

\begin{Shaded}
\begin{Highlighting}[]

\CharTok{from}\ensuremath{\text{ }}\NormalTok{datetime\ensuremath{\text{ }}}\CharTok{import}\ensuremath{\text{ }}\NormalTok{date}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{current_weekday():}\newline
	\NormalTok{i\ensuremath{\text{ }}=\ensuremath{\text{ }}date.today().weekday()}\newline
	\KeywordTok{print}\NormalTok{([}\StringTok{{\char13}Monday{\char13}}\NormalTok{,\ensuremath{\text{ }}}\StringTok{{\char13}Tuesday{\char13}}\NormalTok{,\ensuremath{\text{ }}}\StringTok{{\char13}Wednesday{\char13}}\NormalTok{,\ensuremath{\text{ }}}\StringTok{{\char13}Thursday{\char13}}\NormalTok{,\ensuremath{\text{ }}}\StringTok{{\char13}Friday{\char13}}\NormalTok{,}\newline
\ensuremath{\text{ }}\StringTok{{\char13}Saturday{\char13}}\NormalTok{,\ensuremath{\text{ }}}\StringTok{{\char13}Sunday{\char13}}\NormalTok{][i])}\newline
\ensuremath{\text{ }}\newline
\NormalTok{current_weekday()}\newline
\end{Highlighting}
\end{Shaded}

\section{Chapter 3.5}
\label{394}
\subsection{calculator}
\label{395}

\begin{Shaded}
\begin{Highlighting}[]

\CommentTok{#recursion\ensuremath{\text{ }}or\ensuremath{\text{ }}recursive}\newline
\KeywordTok{print}\ensuremath{\text{ }}\StringTok{"}\CharTok{\textbackslash{}n}\StringTok{	INDEX}\CharTok{\textbackslash{}n}\StringTok{""}\CharTok{\textbackslash{}n}\StringTok{	C=1\ensuremath{\text{ }}for\ensuremath{\text{ }}addition}\CharTok{\textbackslash{}n}\StringTok{""}\CharTok{\textbackslash{}n}\StringTok{	C=2\ensuremath{\text{ }}for}\newline
\StringTok{\ensuremath{\text{ }}substraction}\CharTok{\textbackslash{}n}\StringTok{""}\CharTok{\textbackslash{}n}\StringTok{	}\newline
\StringTok{C=3\ensuremath{\text{ }}for\ensuremath{\text{ }}multiplication}\CharTok{\textbackslash{}n}\StringTok{""}\CharTok{\textbackslash{}n}\StringTok{	C=4\ensuremath{\text{ }}for\ensuremath{\text{ }}division}\CharTok{\textbackslash{}n}\StringTok{""}\CharTok{\textbackslash{}n}\StringTok{	C=5\ensuremath{\text{ }}for\ensuremath{\text{ }}to}\newline
\StringTok{\ensuremath{\text{ }}find\ensuremath{\text{ }}modulus}\CharTok{\textbackslash{}n}\StringTok{""}\CharTok{\textbackslash{}n}\StringTok{	C=6\ensuremath{\text{ }}to\ensuremath{\text{ }}find\ensuremath{\text{ }}factorial}\CharTok{\textbackslash{}n}\StringTok{"}\newline
\NormalTok{C=}\DataTypeTok{input}\NormalTok{(}\StringTok{"Enter\ensuremath{\text{ }}your\ensuremath{\text{ }}choice\ensuremath{\text{ }}here:\ensuremath{\text{ }}"}\NormalTok{)}\newline
\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{add(x,y):}\newline
	\NormalTok{c=x+y}\newline
	\KeywordTok{print}\ensuremath{\text{ }}\NormalTok{x,}\StringTok{"+"}\NormalTok{,y,}\StringTok{"="}\NormalTok{,c}\newline
\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{sub(x,y):}\newline
	\NormalTok{c=x-y}\newline
	\KeywordTok{print}\ensuremath{\text{ }}\NormalTok{x,}\StringTok{"-"}\NormalTok{,y,}\StringTok{"="}\NormalTok{,c}\newline
\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{mul(x,y):}\newline
	\NormalTok{c=x*y}\newline
	\KeywordTok{print}\ensuremath{\text{ }}\NormalTok{x,}\StringTok{"*"}\NormalTok{,y,}\StringTok{"="}\NormalTok{,c}\newline
\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{div(x,y):}\newline
	\NormalTok{c=x/y}\newline
	\KeywordTok{print}\ensuremath{\text{ }}\NormalTok{x,}\StringTok{"/"}\NormalTok{,y,}\StringTok{"="}\NormalTok{,c}\newline
\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{mod(x,y):}\newline
	\NormalTok{c=x\%y}\newline
	\KeywordTok{print}\ensuremath{\text{ }}\NormalTok{x,}\StringTok{"\%"}\NormalTok{,y,}\StringTok{"="}\NormalTok{,c}\newline
\KeywordTok{if}\ensuremath{\text{ }}\NormalTok{C==}\DecValTok{6}\NormalTok{:}\newline
	\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{f(n):}\newline
		\KeywordTok{if}\ensuremath{\text{ }}\NormalTok{n==}\DecValTok{1}\NormalTok{:}\newline
			\KeywordTok{print}\ensuremath{\text{ }}\NormalTok{n}\newline
			\KeywordTok{return}\ensuremath{\text{ }}\NormalTok{n}\newline
		\KeywordTok{else}\NormalTok{:}\newline
			\KeywordTok{print}\ensuremath{\text{ }}\NormalTok{n,}\StringTok{"*"}\NormalTok{,}\newline
			\KeywordTok{return}\ensuremath{\text{ }}\NormalTok{n*f(n}\DecValTok{-1}\NormalTok{)}\newline
	\NormalTok{n=}\DataTypeTok{input}\NormalTok{(}\StringTok{"enter\ensuremath{\text{ }}your\ensuremath{\text{ }}no\ensuremath{\text{ }}here:\ensuremath{\text{ }}"}\NormalTok{)}\newline
	\KeywordTok{print}\ensuremath{\text{ }}\NormalTok{f(n)}\newline
\KeywordTok{if}\ensuremath{\text{ }}\NormalTok{C==}\DecValTok{1}\NormalTok{:}\newline
	\NormalTok{a=}\DataTypeTok{input}\NormalTok{(}\StringTok{"Enter\ensuremath{\text{ }}your\ensuremath{\text{ }}first\ensuremath{\text{ }}no\ensuremath{\text{ }}here:\ensuremath{\text{ }}"}\NormalTok{)}\newline
	\NormalTok{b=}\DataTypeTok{input}\NormalTok{(}\StringTok{"Enter\ensuremath{\text{ }}your\ensuremath{\text{ }}second\ensuremath{\text{ }}no\ensuremath{\text{ }}here:\ensuremath{\text{ }}"}\NormalTok{)}\newline
	\NormalTok{add(a,b)}\newline
\KeywordTok{elif}\ensuremath{\text{ }}\NormalTok{C==}\DecValTok{2}\NormalTok{:}\newline
	\NormalTok{a=}\DataTypeTok{input}\NormalTok{(}\StringTok{"Enter\ensuremath{\text{ }}your\ensuremath{\text{ }}first\ensuremath{\text{ }}no\ensuremath{\text{ }}here:\ensuremath{\text{ }}"}\NormalTok{)}\newline
	\NormalTok{b=}\DataTypeTok{input}\NormalTok{(}\StringTok{"Enter\ensuremath{\text{ }}your\ensuremath{\text{ }}second\ensuremath{\text{ }}no\ensuremath{\text{ }}here:\ensuremath{\text{ }}"}\NormalTok{)}\newline
	\NormalTok{sub(a,b)}\newline
\KeywordTok{elif}\ensuremath{\text{ }}\NormalTok{C==}\DecValTok{3}\NormalTok{:}\newline
	\NormalTok{a=}\DataTypeTok{input}\NormalTok{(}\StringTok{"Enter\ensuremath{\text{ }}your\ensuremath{\text{ }}first\ensuremath{\text{ }}no\ensuremath{\text{ }}here:\ensuremath{\text{ }}"}\NormalTok{)}\newline
	\NormalTok{b=}\DataTypeTok{input}\NormalTok{(}\StringTok{"Enter\ensuremath{\text{ }}your\ensuremath{\text{ }}second\ensuremath{\text{ }}no\ensuremath{\text{ }}here:\ensuremath{\text{ }}"}\NormalTok{)}\newline
	\NormalTok{mul(a,b)}\newline
\KeywordTok{elif}\ensuremath{\text{ }}\NormalTok{C==}\DecValTok{4}\NormalTok{:}\newline
	\NormalTok{a=}\DataTypeTok{input}\NormalTok{(}\StringTok{"Enter\ensuremath{\text{ }}your\ensuremath{\text{ }}first\ensuremath{\text{ }}no\ensuremath{\text{ }}here:\ensuremath{\text{ }}"}\NormalTok{)}\newline
	\NormalTok{b=}\DataTypeTok{input}\NormalTok{(}\StringTok{"Enter\ensuremath{\text{ }}your\ensuremath{\text{ }}second\ensuremath{\text{ }}no\ensuremath{\text{ }}here:\ensuremath{\text{ }}"}\NormalTok{)	}\newline
	\NormalTok{div(a,b)}\newline
\KeywordTok{elif}\ensuremath{\text{ }}\NormalTok{C==}\DecValTok{5}\NormalTok{:}\newline
	\NormalTok{a=}\DataTypeTok{input}\NormalTok{(}\StringTok{"Enter\ensuremath{\text{ }}your\ensuremath{\text{ }}first\ensuremath{\text{ }}no\ensuremath{\text{ }}here:\ensuremath{\text{ }}"}\NormalTok{)}\newline
	\NormalTok{b=}\DataTypeTok{input}\NormalTok{(}\StringTok{"Enter\ensuremath{\text{ }}your\ensuremath{\text{ }}second\ensuremath{\text{ }}no\ensuremath{\text{ }}here:\ensuremath{\text{ }}"}\NormalTok{)}\newline
	\NormalTok{mod(a,b)}\newline
\end{Highlighting}
\end{Shaded}

\subsection{palindrome}
\label{396}

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{first(word):}\newline
	\KeywordTok{return}\ensuremath{\text{ }}\NormalTok{word[}\DecValTok{0}\NormalTok{]}\newline
\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{last(word):}\newline
	\KeywordTok{return}\ensuremath{\text{ }}\NormalTok{word[-}\DecValTok{1}\NormalTok{]}\newline
\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{middle(word):}\newline
	\KeywordTok{return}\ensuremath{\text{ }}\NormalTok{word[}\DecValTok{1}\NormalTok{:-}\DecValTok{1}\NormalTok{]}\newline
\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{palindrome(word):}\newline
	\KeywordTok{if}\ensuremath{\text{ }}\NormalTok{first(word)==last(word):}\newline
		\NormalTok{word\ensuremath{\text{ }}=\ensuremath{\text{ }}middle(word)}\newline
		\NormalTok{n=}\DataTypeTok{len}\NormalTok{(word)}\newline
		\KeywordTok{if}\ensuremath{\text{ }}\NormalTok{n<}\DecValTok{2}\NormalTok{:}\newline
			\KeywordTok{print}\ensuremath{\text{ }}\StringTok{"palindrome"}\newline
		\KeywordTok{else}\NormalTok{:		}\newline
			\KeywordTok{return}\ensuremath{\text{ }}\NormalTok{palindrome(word)}\newline
	\KeywordTok{else}\NormalTok{:}\newline
		\KeywordTok{print}\ensuremath{\text{ }}\StringTok{"not\ensuremath{\text{ }}palindrome"}\newline
\ensuremath{\text{ }}\newline
\ensuremath{\text{ }}\newline
\NormalTok{word=}\DataTypeTok{raw_input}\NormalTok{(}\StringTok{"Enter\ensuremath{\text{ }}the\ensuremath{\text{ }}\ensuremath{\text{ }}string:"}\NormalTok{)}\newline
\NormalTok{palindrome(word)}\newline
\end{Highlighting}
\end{Shaded}

\subsection{sum of all digits}
\label{397}

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{sum_of_n_numbers(number):}\newline
	\KeywordTok{if}\NormalTok{(number==}\DecValTok{0}\NormalTok{):}\newline
		\KeywordTok{return}\ensuremath{\text{ }}\DecValTok{0}\newline
	\KeywordTok{else}\NormalTok{:}\newline
		\KeywordTok{return}\ensuremath{\text{ }}\NormalTok{number\ensuremath{\text{ }}+\ensuremath{\text{ }}sum_of_n_numbers(number}\DecValTok{-1}\NormalTok{)}\newline
\NormalTok{num\ensuremath{\text{ }}=\ensuremath{\text{ }}}\DataTypeTok{raw_input}\NormalTok{(}\StringTok{"Enter\ensuremath{\text{ }}a\ensuremath{\text{ }}number:"}\NormalTok{)}\newline
\NormalTok{num=}\DataTypeTok{int}\NormalTok{(num)}\newline
\DataTypeTok{sum}\ensuremath{\text{ }}\NormalTok{=\ensuremath{\text{ }}sum_of_n_numbers(num)}\newline
\KeywordTok{print}\ensuremath{\text{ }}\DataTypeTok{sum}\newline
\CommentTok{###another\ensuremath{\text{ }}answer\ensuremath{\text{ }}in\ensuremath{\text{ }}case\ensuremath{\text{ }}of\ensuremath{\text{ }}while\ensuremath{\text{ }}loops}\newline
\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{sum_of_Digits(number):}\newline
	\DataTypeTok{sum}\NormalTok{=}\DecValTok{0}\newline
	\KeywordTok{while}\ensuremath{\text{ }}\NormalTok{number>}\DecValTok{0}\NormalTok{:}\newline
		\NormalTok{digit=number\%}\DecValTok{10}\newline
		\DataTypeTok{sum}\NormalTok{=}\DataTypeTok{sum}\NormalTok{+digit}\newline
		\NormalTok{number=number/}\DecValTok{10}\newline
	\KeywordTok{return}\ensuremath{\text{ }}\DataTypeTok{sum}\newline
\NormalTok{num=}\DataTypeTok{raw_input}\NormalTok{(}\StringTok{"enter\ensuremath{\text{ }}the\ensuremath{\text{ }}number"}\NormalTok{)}\newline
\NormalTok{num=}\DataTypeTok{int}\NormalTok{(num)}\newline
\NormalTok{sum_of_digits=sum_of_Digits(num)}\newline
\KeywordTok{print}\ensuremath{\text{ }}\NormalTok{sum_of_digits\ensuremath{\text{ }}}\newline
\end{Highlighting}
\end{Shaded}

\subsection{Exercise 18.5}
\label{398}

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{class}\ensuremath{\text{ }}\NormalTok{Card(}\DataTypeTok{object}\NormalTok{):}\newline
	\newline
	\NormalTok{suit_names\ensuremath{\text{ }}=\ensuremath{\text{ }}[}\StringTok{{\char13}Clubs{\char13}}\NormalTok{,\ensuremath{\text{ }}}\StringTok{{\char13}Diamonds{\char13}}\NormalTok{,\ensuremath{\text{ }}}\StringTok{{\char13}Hearts{\char13}}\NormalTok{,\ensuremath{\text{ }}}\StringTok{{\char13}Spades{\char13}}\NormalTok{]}\newline
	\NormalTok{rank_names\ensuremath{\text{ }}=\ensuremath{\text{ }}[}\OtherTok{None}\NormalTok{,\ensuremath{\text{ }}}\StringTok{{\char13}Ace{\char13}}\NormalTok{,\ensuremath{\text{ }}}\StringTok{{\char13}2{\char13}}\NormalTok{,\ensuremath{\text{ }}}\StringTok{{\char13}3{\char13}}\NormalTok{,\ensuremath{\text{ }}}\StringTok{{\char13}4{\char13}}\NormalTok{,\ensuremath{\text{ }}}\StringTok{{\char13}5{\char13}}\NormalTok{,\ensuremath{\text{ }}}\StringTok{{\char13}6{\char13}}\NormalTok{,\ensuremath{\text{ }}}\StringTok{{\char13}7{\char13}}\NormalTok{,\ensuremath{\text{ }}}\newline
					\StringTok{{\char13}8{\char13}}\NormalTok{,\ensuremath{\text{ }}}\StringTok{{\char13}9{\char13}}\NormalTok{,\ensuremath{\text{ }}}\StringTok{{\char13}10{\char13}}\NormalTok{,\ensuremath{\text{ }}}\StringTok{{\char13}Jack{\char13}}\NormalTok{,\ensuremath{\text{ }}}\StringTok{{\char13}Queen{\char13}}\NormalTok{,\ensuremath{\text{ }}}\StringTok{{\char13}King{\char13}}\NormalTok{]}\newline
			\newline
	\KeywordTok{def}\ensuremath{\text{ }}\OtherTok{__init__}\NormalTok{(}\OtherTok{self}\NormalTok{,\ensuremath{\text{ }}suit\ensuremath{\text{ }}=\ensuremath{\text{ }}}\DecValTok{0}\NormalTok{,\ensuremath{\text{ }}rank\ensuremath{\text{ }}=\ensuremath{\text{ }}}\DecValTok{2}\NormalTok{):}\newline
		\OtherTok{self}\NormalTok{.suit\ensuremath{\text{ }}=\ensuremath{\text{ }}suit}\newline
		\OtherTok{self}\NormalTok{.rank\ensuremath{\text{ }}=\ensuremath{\text{ }}rank}\newline
	\newline
	\KeywordTok{def}\ensuremath{\text{ }}\OtherTok{__str__}\NormalTok{(}\OtherTok{self}\NormalTok{):}\newline
		\KeywordTok{return}\ensuremath{\text{ }}\StringTok{{\char13}}\OtherTok{\%s}\StringTok{\ensuremath{\text{ }}of\ensuremath{\text{ }}}\OtherTok{\%s}\StringTok{{\char13}}\ensuremath{\text{ }}\NormalTok{\%\ensuremath{\text{ }}(Card.rank_names[}\OtherTok{self}\NormalTok{.rank],\ensuremath{\text{ }}}\newline
							\NormalTok{Card.suit_names[}\OtherTok{self}\NormalTok{.suit])}\newline
							\newline
	\KeywordTok{def}\ensuremath{\text{ }}\OtherTok{__cmp__}\NormalTok{(}\OtherTok{self}\NormalTok{,\ensuremath{\text{ }}other):}\newline
		\NormalTok{c1\ensuremath{\text{ }}=\ensuremath{\text{ }}(}\OtherTok{self}\NormalTok{.suit,\ensuremath{\text{ }}}\OtherTok{self}\NormalTok{.rank)}\newline
		\NormalTok{c2\ensuremath{\text{ }}=\ensuremath{\text{ }}(other.suit,\ensuremath{\text{ }}other.rank)}\newline
		\KeywordTok{return}\ensuremath{\text{ }}\DataTypeTok{cmp}\NormalTok{(c1,\ensuremath{\text{ }}c2)}\newline
		\newline
	\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{is_valid(}\OtherTok{self}\NormalTok{):}\newline
		\KeywordTok{return}\ensuremath{\text{ }}\OtherTok{self}\NormalTok{.rank\ensuremath{\text{ }}>\ensuremath{\text{ }}}\DecValTok{0}\newline
		\newline
\KeywordTok{class}\ensuremath{\text{ }}\NormalTok{Deck(}\DataTypeTok{object}\NormalTok{):}\newline
	\newline
	\KeywordTok{def}\ensuremath{\text{ }}\OtherTok{__init__}\NormalTok{(}\OtherTok{self}\NormalTok{,\ensuremath{\text{ }}label\ensuremath{\text{ }}=\ensuremath{\text{ }}}\StringTok{{\char13}Deck{\char13}}\NormalTok{):}\newline
		\OtherTok{self}\NormalTok{.label\ensuremath{\text{ }}=\ensuremath{\text{ }}label}\newline
		\OtherTok{self}\NormalTok{.cards\ensuremath{\text{ }}=\ensuremath{\text{ }}[]}\newline
		\KeywordTok{for}\ensuremath{\text{ }}\NormalTok{i\ensuremath{\text{ }}in\ensuremath{\text{ }}}\DataTypeTok{range}\NormalTok{(}\DecValTok{4}\NormalTok{):}\newline
			\KeywordTok{for}\ensuremath{\text{ }}\NormalTok{k\ensuremath{\text{ }}in\ensuremath{\text{ }}}\DataTypeTok{range}\NormalTok{(}\DecValTok{1}\NormalTok{,\ensuremath{\text{ }}}\DecValTok{14}\NormalTok{):}\newline
				\NormalTok{card\ensuremath{\text{ }}=\ensuremath{\text{ }}Card(i,\ensuremath{\text{ }}k)}\newline
				\OtherTok{self}\NormalTok{.cards.append(card)}\newline
				\newline
	\KeywordTok{def}\ensuremath{\text{ }}\OtherTok{__str__}\NormalTok{(}\OtherTok{self}\NormalTok{):}\newline
		\NormalTok{res\ensuremath{\text{ }}=\ensuremath{\text{ }}[]}\newline
		\KeywordTok{for}\ensuremath{\text{ }}\NormalTok{card\ensuremath{\text{ }}in\ensuremath{\text{ }}}\OtherTok{self}\NormalTok{.cards:}\newline
			\NormalTok{res.append(}\DataTypeTok{str}\NormalTok{(card))}\newline
		\KeywordTok{print}\ensuremath{\text{ }}\OtherTok{self}\NormalTok{.label}\newline
		\KeywordTok{return}\ensuremath{\text{ }}\StringTok{{\char13}}\CharTok{\textbackslash{}n}\StringTok{{\char13}}\NormalTok{.join(res)}\newline
		\newline
		\newline
	\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{deal_card(}\OtherTok{self}\NormalTok{):}\newline
		\KeywordTok{return}\ensuremath{\text{ }}\OtherTok{self}\NormalTok{.cards.pop(}\DecValTok{0}\NormalTok{)}\newline
		\newline
	\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{add_card(}\OtherTok{self}\NormalTok{,\ensuremath{\text{ }}card):}\newline
		\OtherTok{self}\NormalTok{.cards.append(card)}\newline
	\newline
	\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{shuffle(}\OtherTok{self}\NormalTok{):}\newline
		\CharTok{import}\ensuremath{\text{ }}\NormalTok{random}\newline
		\NormalTok{random.shuffle(}\OtherTok{self}\NormalTok{.cards)}\newline
		\newline
	\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{sort(}\OtherTok{self}\NormalTok{):}\newline
		\OtherTok{self}\NormalTok{.cards.sort()}\newline
		\newline
	\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{move_cards(}\OtherTok{self}\NormalTok{,\ensuremath{\text{ }}other,\ensuremath{\text{ }}num):}\newline
		\KeywordTok{for}\ensuremath{\text{ }}\NormalTok{i\ensuremath{\text{ }}in\ensuremath{\text{ }}}\DataTypeTok{range}\NormalTok{(num):}\newline
			\NormalTok{other.add_card(}\OtherTok{self}\NormalTok{.deal_card())}\newline
	\newline
	\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{deal_hands(}\OtherTok{self}\NormalTok{,\ensuremath{\text{ }}num_hands,\ensuremath{\text{ }}num_cards):}\newline
		\KeywordTok{if}\ensuremath{\text{ }}\NormalTok{num_hands*num_cards\ensuremath{\text{ }}>\ensuremath{\text{ }}}\DecValTok{52}\NormalTok{:}\newline
			\KeywordTok{return}\ensuremath{\text{ }}\StringTok{{\char13}Not\ensuremath{\text{ }}enough\ensuremath{\text{ }}cards.{\char13}}\newline
		\newline
		\NormalTok{l\ensuremath{\text{ }}=\ensuremath{\text{ }}[]}\newline
		\newline
		\KeywordTok{for}\ensuremath{\text{ }}\NormalTok{i\ensuremath{\text{ }}in\ensuremath{\text{ }}}\DataTypeTok{range}\NormalTok{(}\DecValTok{1}\NormalTok{,\ensuremath{\text{ }}num_hands\ensuremath{\text{ }}+\ensuremath{\text{ }}}\DecValTok{1}\NormalTok{):}\newline
			\NormalTok{hand_i\ensuremath{\text{ }}=\ensuremath{\text{ }}Hand(}\StringTok{{\char13}Hand\ensuremath{\text{ }}}\OtherTok{\%d}\StringTok{{\char13}}\ensuremath{\text{ }}\NormalTok{\%\ensuremath{\text{ }}i)}\newline
			\OtherTok{self}\NormalTok{.move_cards(hand_i,\ensuremath{\text{ }}num_cards)}\newline
			\NormalTok{l.append(hand_i)}\newline
		\newline
		\KeywordTok{return}\ensuremath{\text{ }}\NormalTok{l}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{class}\ensuremath{\text{ }}\NormalTok{Hand(Deck):}\newline
	\newline
	\KeywordTok{def}\ensuremath{\text{ }}\OtherTok{__init__}\NormalTok{(}\OtherTok{self}\NormalTok{,\ensuremath{\text{ }}label\ensuremath{\text{ }}=\ensuremath{\text{ }}}\StringTok{{\char13}{\char13}}\NormalTok{):}\newline
		\OtherTok{self}\NormalTok{.cards\ensuremath{\text{ }}=\ensuremath{\text{ }}[]}\newline
		\OtherTok{self}\NormalTok{.label\ensuremath{\text{ }}=\ensuremath{\text{ }}label}\newline
\ensuremath{\text{ }}\newline
\CommentTok{#\ensuremath{\text{ }}18-6,\ensuremath{\text{ }}1-4:}\newline
\KeywordTok{class}\ensuremath{\text{ }}\NormalTok{PokerHand(Hand):}\newline
	\newline
	\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{suit_hist(}\OtherTok{self}\NormalTok{):}\newline
		\OtherTok{self}\NormalTok{.suits\ensuremath{\text{ }}=\ensuremath{\text{ }}\{\}}\newline
		\KeywordTok{for}\ensuremath{\text{ }}\NormalTok{card\ensuremath{\text{ }}in\ensuremath{\text{ }}}\OtherTok{self}\NormalTok{.cards:}\newline
			\OtherTok{self}\NormalTok{.suits[card.suit]\ensuremath{\text{ }}=\ensuremath{\text{ }}}\OtherTok{self}\NormalTok{.suits.get(card.suit,\ensuremath{\text{ }}}\DecValTok{0}\NormalTok{)\ensuremath{\text{ }}+\ensuremath{\text{ }}}\DecValTok{1}\newline
		\KeywordTok{return}\ensuremath{\text{ }}\OtherTok{self}\NormalTok{.suits}\newline
		\newline
	\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{rank_hist(}\OtherTok{self}\NormalTok{):}\newline
		\OtherTok{self}\NormalTok{.ranks\ensuremath{\text{ }}=\ensuremath{\text{ }}\{\}}\newline
		\KeywordTok{for}\ensuremath{\text{ }}\NormalTok{card\ensuremath{\text{ }}in\ensuremath{\text{ }}}\OtherTok{self}\NormalTok{.cards:}\newline
			\OtherTok{self}\NormalTok{.ranks[card.rank]\ensuremath{\text{ }}=\ensuremath{\text{ }}}\OtherTok{self}\NormalTok{.ranks.get(card.rank,\ensuremath{\text{ }}}\DecValTok{0}\NormalTok{)\ensuremath{\text{ }}+\ensuremath{\text{ }}}\DecValTok{1}\newline
		\KeywordTok{return}\ensuremath{\text{ }}\OtherTok{self}\NormalTok{.ranks}\newline
	\newline
	\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{P(}\OtherTok{self}\NormalTok{):}\newline
		\OtherTok{self}\NormalTok{.rank_hist()}\newline
		\KeywordTok{for}\ensuremath{\text{ }}\NormalTok{val\ensuremath{\text{ }}in\ensuremath{\text{ }}}\OtherTok{self}\NormalTok{.ranks.values():}\newline
			\KeywordTok{if}\ensuremath{\text{ }}\NormalTok{val\ensuremath{\text{ }}>=\ensuremath{\text{ }}}\DecValTok{2}\NormalTok{:}\newline
				\KeywordTok{return}\ensuremath{\text{ }}\OtherTok{True}\newline
		\KeywordTok{return}\ensuremath{\text{ }}\OtherTok{False}\newline
	\newline
	\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{TP(}\OtherTok{self}\NormalTok{):}\newline
		\OtherTok{self}\NormalTok{.rank_hist()}\newline
		\NormalTok{count\ensuremath{\text{ }}=\ensuremath{\text{ }}}\DecValTok{0}\newline
		\KeywordTok{for}\ensuremath{\text{ }}\NormalTok{val\ensuremath{\text{ }}in\ensuremath{\text{ }}}\OtherTok{self}\NormalTok{.ranks.values():}\newline
			\KeywordTok{if}\ensuremath{\text{ }}\NormalTok{val\ensuremath{\text{ }}==\ensuremath{\text{ }}}\DecValTok{4}\NormalTok{:}\newline
				\KeywordTok{return}\ensuremath{\text{ }}\OtherTok{True}\newline
			\KeywordTok{elif}\ensuremath{\text{ }}\NormalTok{val\ensuremath{\text{ }}>=\ensuremath{\text{ }}}\DecValTok{2}\ensuremath{\text{ }}\NormalTok{and\ensuremath{\text{ }}val\ensuremath{\text{ }}<\ensuremath{\text{ }}}\DecValTok{4}\NormalTok{:}\newline
				\NormalTok{count\ensuremath{\text{ }}+=\ensuremath{\text{ }}}\DecValTok{1}\newline
		\KeywordTok{return}\ensuremath{\text{ }}\NormalTok{count\ensuremath{\text{ }}>=\ensuremath{\text{ }}}\DecValTok{2}\newline
		\newline
	\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{TOAK(}\OtherTok{self}\NormalTok{):}\newline
		\OtherTok{self}\NormalTok{.rank_hist()}\newline
		\KeywordTok{for}\ensuremath{\text{ }}\NormalTok{val\ensuremath{\text{ }}in\ensuremath{\text{ }}}\OtherTok{self}\NormalTok{.ranks.values():}\newline
			\KeywordTok{if}\ensuremath{\text{ }}\NormalTok{val\ensuremath{\text{ }}>=\ensuremath{\text{ }}}\DecValTok{3}\NormalTok{:}\newline
				\KeywordTok{return}\ensuremath{\text{ }}\OtherTok{True}\newline
		\KeywordTok{return}\ensuremath{\text{ }}\OtherTok{False}\newline
	\newline
	\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{STRseq(}\OtherTok{self}\NormalTok{):}\newline
		\NormalTok{seq\ensuremath{\text{ }}=\ensuremath{\text{ }}[]}\newline
		\NormalTok{l\ensuremath{\text{ }}=\ensuremath{\text{ }}STRlist()}\newline
		\OtherTok{self}\NormalTok{.rank_hist()}\newline
		\NormalTok{h\ensuremath{\text{ }}=\ensuremath{\text{ }}}\OtherTok{self}\NormalTok{.ranks.keys()}\newline
		\NormalTok{h.sort()}\newline
		\KeywordTok{if}\ensuremath{\text{ }}\DataTypeTok{len}\NormalTok{(h)\ensuremath{\text{ }}<\ensuremath{\text{ }}}\DecValTok{5}\NormalTok{:}\newline
			\KeywordTok{return}\ensuremath{\text{ }}\NormalTok{[]}\newline
		\newline
		\CommentTok{#\ensuremath{\text{ }}Accounts\ensuremath{\text{ }}for\ensuremath{\text{ }}high\ensuremath{\text{ }}Aces:}\newline
		\KeywordTok{if}\ensuremath{\text{ }}\DecValTok{1}\ensuremath{\text{ }}\NormalTok{in\ensuremath{\text{ }}h:}\newline
			\NormalTok{h.append(}\DecValTok{1}\NormalTok{)}\newline
		\newline
		\KeywordTok{for}\ensuremath{\text{ }}\NormalTok{i\ensuremath{\text{ }}in\ensuremath{\text{ }}}\DataTypeTok{range}\NormalTok{(}\DecValTok{5}\NormalTok{,\ensuremath{\text{ }}}\DataTypeTok{len}\NormalTok{(h)+}\DecValTok{1}\NormalTok{):}\newline
			\KeywordTok{if}\ensuremath{\text{ }}\NormalTok{h[i}\DecValTok{-5}\NormalTok{:i]\ensuremath{\text{ }}in\ensuremath{\text{ }}l:}\newline
				\NormalTok{seq.append(h[i}\DecValTok{-5}\NormalTok{:i])}\newline
		\KeywordTok{return}\ensuremath{\text{ }}\NormalTok{seq}\newline
	\newline
	\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{STR(}\OtherTok{self}\NormalTok{):}\newline
		\NormalTok{seq\ensuremath{\text{ }}=\ensuremath{\text{ }}}\OtherTok{self}\NormalTok{.STRseq()}\newline
		\KeywordTok{return}\ensuremath{\text{ }}\NormalTok{seq\ensuremath{\text{ }}!=\ensuremath{\text{ }}[]}\newline
\ensuremath{\text{ }}\newline
	\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{FL(}\OtherTok{self}\NormalTok{):}\newline
		\OtherTok{self}\NormalTok{.suit_hist()}\newline
		\KeywordTok{for}\ensuremath{\text{ }}\NormalTok{val\ensuremath{\text{ }}in\ensuremath{\text{ }}}\OtherTok{self}\NormalTok{.suits.values():}\newline
			\KeywordTok{if}\ensuremath{\text{ }}\NormalTok{val\ensuremath{\text{ }}>=\ensuremath{\text{ }}}\DecValTok{5}\NormalTok{:}\newline
				\KeywordTok{return}\ensuremath{\text{ }}\OtherTok{True}\newline
		\KeywordTok{return}\ensuremath{\text{ }}\OtherTok{False}\newline
\ensuremath{\text{ }}\newline
	\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{FH(}\OtherTok{self}\NormalTok{):}\newline
		\NormalTok{d\ensuremath{\text{ }}=\ensuremath{\text{ }}}\OtherTok{self}\NormalTok{.rank_hist()}\newline
		\NormalTok{keys\ensuremath{\text{ }}=\ensuremath{\text{ }}d.keys()}\newline
		\newline
		\KeywordTok{for}\ensuremath{\text{ }}\NormalTok{key\ensuremath{\text{ }}in\ensuremath{\text{ }}keys:}\newline
			\KeywordTok{if}\ensuremath{\text{ }}\NormalTok{d[key]\ensuremath{\text{ }}>=\ensuremath{\text{ }}}\DecValTok{3}\NormalTok{:}\newline
				\NormalTok{keys.remove(key)}\newline
				\KeywordTok{for}\ensuremath{\text{ }}\NormalTok{key\ensuremath{\text{ }}in\ensuremath{\text{ }}keys:}\newline
					\KeywordTok{if}\ensuremath{\text{ }}\NormalTok{d[key]\ensuremath{\text{ }}>=\ensuremath{\text{ }}}\DecValTok{2}\NormalTok{:}\newline
						\KeywordTok{return}\ensuremath{\text{ }}\OtherTok{True}\newline
		\KeywordTok{return}\ensuremath{\text{ }}\OtherTok{False}\newline
		\newline
	\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{FOAK(}\OtherTok{self}\NormalTok{):}\newline
		\OtherTok{self}\NormalTok{.rank_hist()}\newline
		\KeywordTok{for}\ensuremath{\text{ }}\NormalTok{val\ensuremath{\text{ }}in\ensuremath{\text{ }}}\OtherTok{self}\NormalTok{.ranks.values():}\newline
			\KeywordTok{if}\ensuremath{\text{ }}\NormalTok{val\ensuremath{\text{ }}>=\ensuremath{\text{ }}}\DecValTok{4}\NormalTok{:}\newline
				\KeywordTok{return}\ensuremath{\text{ }}\OtherTok{True}\newline
		\KeywordTok{return}\ensuremath{\text{ }}\OtherTok{False}\newline
		\newline
	\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{SFL(}\OtherTok{self}\NormalTok{):}\newline
		\NormalTok{seq\ensuremath{\text{ }}=\ensuremath{\text{ }}}\OtherTok{self}\NormalTok{.STRseq()}\newline
		\KeywordTok{if}\ensuremath{\text{ }}\NormalTok{seq\ensuremath{\text{ }}==\ensuremath{\text{ }}[]:}\newline
			\KeywordTok{return}\ensuremath{\text{ }}\OtherTok{False}\newline
		\KeywordTok{for}\ensuremath{\text{ }}\DataTypeTok{list}\ensuremath{\text{ }}\NormalTok{in\ensuremath{\text{ }}seq:}\newline
			\NormalTok{list_suits\ensuremath{\text{ }}=\ensuremath{\text{ }}[]}\newline
			\KeywordTok{for}\ensuremath{\text{ }}\NormalTok{index\ensuremath{\text{ }}in\ensuremath{\text{ }}}\DataTypeTok{list}\NormalTok{:}\newline
				\KeywordTok{for}\ensuremath{\text{ }}\NormalTok{card\ensuremath{\text{ }}in\ensuremath{\text{ }}}\OtherTok{self}\NormalTok{.cards:}\newline
					\KeywordTok{if}\ensuremath{\text{ }}\NormalTok{card.rank\ensuremath{\text{ }}==\ensuremath{\text{ }}index:}\newline
						\NormalTok{list_suits.append(card.suit)}\newline
			\NormalTok{list_hist\ensuremath{\text{ }}=\ensuremath{\text{ }}histogram(list_suits)}\newline
			\KeywordTok{for}\ensuremath{\text{ }}\NormalTok{key\ensuremath{\text{ }}in\ensuremath{\text{ }}list_hist.keys():}\newline
				\KeywordTok{if}\ensuremath{\text{ }}\NormalTok{list_hist[key]\ensuremath{\text{ }}>=\ensuremath{\text{ }}}\DecValTok{5}\NormalTok{:}\newline
					\KeywordTok{return}\ensuremath{\text{ }}\OtherTok{True}\newline
		\KeywordTok{return}\ensuremath{\text{ }}\OtherTok{False}\newline
				\newline
	\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{classify(}\OtherTok{self}\NormalTok{):}\newline
		\OtherTok{self}\NormalTok{.scores\ensuremath{\text{ }}=\ensuremath{\text{ }}[]}\newline
		\NormalTok{hands\ensuremath{\text{ }}=\ensuremath{\text{ }}[}\StringTok{{\char13}Pair{\char13}}\NormalTok{,\ensuremath{\text{ }}}\StringTok{{\char13}Two-Pair{\char13}}\NormalTok{,}\newline
		\StringTok{{\char13}Three\ensuremath{\text{ }}of\ensuremath{\text{ }}a\ensuremath{\text{ }}Kind{\char13}}\NormalTok{,\ensuremath{\text{ }}}\StringTok{{\char13}Straight{\char13}}\NormalTok{,}\newline
		\StringTok{{\char13}Flush{\char13}}\NormalTok{,\ensuremath{\text{ }}}\StringTok{{\char13}Full\ensuremath{\text{ }}House{\char13}}\NormalTok{,}\newline
		\StringTok{{\char13}Four\ensuremath{\text{ }}of\ensuremath{\text{ }}a\ensuremath{\text{ }}Kind{\char13}}\NormalTok{,\ensuremath{\text{ }}}\StringTok{{\char13}Straight\ensuremath{\text{ }}Flush{\char13}}\NormalTok{]}\newline
		\KeywordTok{if}\ensuremath{\text{ }}\OtherTok{self}\NormalTok{.P():}\newline
			\OtherTok{self}\NormalTok{.scores.append(}\DecValTok{1}\NormalTok{)}\newline
		\KeywordTok{if}\ensuremath{\text{ }}\OtherTok{self}\NormalTok{.TP():}\newline
			\OtherTok{self}\NormalTok{.scores.append(}\DecValTok{2}\NormalTok{)}\newline
		\KeywordTok{if}\ensuremath{\text{ }}\OtherTok{self}\NormalTok{.TOAK():}\newline
			\OtherTok{self}\NormalTok{.scores.append(}\DecValTok{3}\NormalTok{)}\newline
		\KeywordTok{if}\ensuremath{\text{ }}\OtherTok{self}\NormalTok{.STR():}\newline
			\OtherTok{self}\NormalTok{.scores.append(}\DecValTok{4}\NormalTok{)}\newline
		\KeywordTok{if}\ensuremath{\text{ }}\OtherTok{self}\NormalTok{.FL():}\newline
			\OtherTok{self}\NormalTok{.scores.append(}\DecValTok{5}\NormalTok{)}\newline
		\KeywordTok{if}\ensuremath{\text{ }}\OtherTok{self}\NormalTok{.FH():}\newline
			\OtherTok{self}\NormalTok{.scores.append(}\DecValTok{6}\NormalTok{)}\newline
		\KeywordTok{if}\ensuremath{\text{ }}\OtherTok{self}\NormalTok{.FOAK():}\newline
			\OtherTok{self}\NormalTok{.scores.append(}\DecValTok{7}\NormalTok{)}\newline
		\KeywordTok{if}\ensuremath{\text{ }}\OtherTok{self}\NormalTok{.SFL():}\newline
			\OtherTok{self}\NormalTok{.scores.append(}\DecValTok{8}\NormalTok{)}\newline
		\KeywordTok{if}\ensuremath{\text{ }}\OtherTok{self}\NormalTok{.scores\ensuremath{\text{ }}!=\ensuremath{\text{ }}[]:}\newline
			\KeywordTok{return}\ensuremath{\text{ }}\NormalTok{hands[}\DataTypeTok{max}\NormalTok{(}\OtherTok{self}\NormalTok{.scores)-}\DecValTok{1}\NormalTok{]}\newline
	\newline
\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{STRlist():}\newline
	\NormalTok{s\ensuremath{\text{ }}=\ensuremath{\text{ }}[]}\newline
	\KeywordTok{for}\ensuremath{\text{ }}\NormalTok{i\ensuremath{\text{ }}in\ensuremath{\text{ }}}\DataTypeTok{range}\NormalTok{(}\DecValTok{0}\NormalTok{,}\DecValTok{9}\NormalTok{):}\newline
		\NormalTok{s.append(}\DataTypeTok{range}\NormalTok{(}\DecValTok{1}\NormalTok{,}\DecValTok{14}\NormalTok{)[i:i}\DecValTok{+5}\NormalTok{])}\newline
	\NormalTok{s.append([}\DecValTok{10}\NormalTok{,}\DecValTok{11}\NormalTok{,}\DecValTok{12}\NormalTok{,}\DecValTok{13}\NormalTok{,}\DecValTok{1}\NormalTok{])	}\newline
	\KeywordTok{return}\ensuremath{\text{ }}\NormalTok{s}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{histogram(l):}\newline
	\NormalTok{d\ensuremath{\text{ }}=\ensuremath{\text{ }}}\DataTypeTok{dict}\NormalTok{()}\newline
	\KeywordTok{for}\ensuremath{\text{ }}\NormalTok{k\ensuremath{\text{ }}in\ensuremath{\text{ }}}\DataTypeTok{range}\NormalTok{(}\DataTypeTok{len}\NormalTok{(l)):}\newline
		\NormalTok{d[l[k]]\ensuremath{\text{ }}=\ensuremath{\text{ }}}\DecValTok{1}\ensuremath{\text{ }}\NormalTok{+\ensuremath{\text{ }}d.get(l[k],}\DecValTok{0}\NormalTok{)}\newline
	\KeywordTok{return}\ensuremath{\text{ }}\NormalTok{d}\newline
\ensuremath{\text{ }}\newline
\CommentTok{#\ensuremath{\text{ }}18-6,\ensuremath{\text{ }}5:}\newline
\KeywordTok{def}\ensuremath{\text{ }}\NormalTok{p(config\ensuremath{\text{ }}=\ensuremath{\text{ }}}\StringTok{{\char13}{\char13}}\NormalTok{,\ensuremath{\text{ }}trials\ensuremath{\text{ }}=\ensuremath{\text{ }}}\DecValTok{10000}\NormalTok{,\ensuremath{\text{ }}n\ensuremath{\text{ }}=\ensuremath{\text{ }}}\DecValTok{1}\NormalTok{):}\newline
	\CommentTok{"""Estimates\ensuremath{\text{ }}probability\ensuremath{\text{ }}that\ensuremath{\text{ }}the}\newline
\CommentTok{	nth\ensuremath{\text{ }}dealt\ensuremath{\text{ }}hand\ensuremath{\text{ }}will\ensuremath{\text{ }}be\ensuremath{\text{ }}config.\ensuremath{\text{ }}A\ensuremath{\text{ }}hand}\newline
\CommentTok{	consists\ensuremath{\text{ }}of\ensuremath{\text{ }}seven\ensuremath{\text{ }}cards."""}\newline
	\newline
	\NormalTok{successes\ensuremath{\text{ }}=\ensuremath{\text{ }}}\DecValTok{0}\newline
	\newline
	\KeywordTok{for}\ensuremath{\text{ }}\NormalTok{i\ensuremath{\text{ }}in\ensuremath{\text{ }}}\DataTypeTok{range}\NormalTok{(}\DecValTok{1}\NormalTok{,\ensuremath{\text{ }}trials\ensuremath{\text{ }}+\ensuremath{\text{ }}}\DecValTok{1}\NormalTok{):}\newline
		\NormalTok{deck\ensuremath{\text{ }}=\ensuremath{\text{ }}Deck(}\StringTok{{\char13}Deck\ensuremath{\text{ }}}\OtherTok{\%d}\StringTok{{\char13}}\ensuremath{\text{ }}\NormalTok{\%\ensuremath{\text{ }}i)}\newline
		\NormalTok{deck.shuffle()}\newline
		\newline
		\NormalTok{box\ensuremath{\text{ }}=\ensuremath{\text{ }}Hand()}\newline
		\NormalTok{deck.move_cards(box,\ensuremath{\text{ }}(n}\DecValTok{-1}\NormalTok{)*}\DecValTok{7}\NormalTok{)}\newline
		\newline
		\NormalTok{hand\ensuremath{\text{ }}=\ensuremath{\text{ }}PokerHand(}\StringTok{{\char13}Poker\ensuremath{\text{ }}Hand\ensuremath{\text{ }}}\OtherTok{\%d}\StringTok{{\char13}}\ensuremath{\text{ }}\NormalTok{\%\ensuremath{\text{ }}i)}\newline
		\NormalTok{deck.move_cards(hand,\ensuremath{\text{ }}}\DecValTok{7}\NormalTok{)}\newline
		\KeywordTok{if}\ensuremath{\text{ }}\NormalTok{hand.classify()\ensuremath{\text{ }}==\ensuremath{\text{ }}config:}\newline
			\NormalTok{successes\ensuremath{\text{ }}+=\ensuremath{\text{ }}}\DecValTok{1}\newline
	\newline
	\KeywordTok{return}\ensuremath{\text{ }}\FloatTok{1.0}\NormalTok{*successes/trials}\newline
\ensuremath{\text{ }}\newline
\CommentTok{#Iterate\ensuremath{\text{ }}until\ensuremath{\text{ }}first\ensuremath{\text{ }}desired\ensuremath{\text{ }}config.:}\newline
\KeywordTok{if}\ensuremath{\text{ }}\DataTypeTok{__name__}\ensuremath{\text{ }}\NormalTok{==\ensuremath{\text{ }}}\StringTok{{\char13}__main__{\char13}}\NormalTok{:}\newline
	\newline
	\NormalTok{c\ensuremath{\text{ }}=\ensuremath{\text{ }}}\DecValTok{1}\newline
	\newline
	\KeywordTok{while}\ensuremath{\text{ }}\OtherTok{True}\NormalTok{:}\newline
		\NormalTok{deck\ensuremath{\text{ }}=\ensuremath{\text{ }}Deck()}\newline
		\NormalTok{deck.shuffle()}\newline
		\NormalTok{hand\ensuremath{\text{ }}=\ensuremath{\text{ }}PokerHand(}\StringTok{{\char13}Poker\ensuremath{\text{ }}Hand\ensuremath{\text{ }}}\OtherTok{\%d}\StringTok{{\char13}}\ensuremath{\text{ }}\NormalTok{\%\ensuremath{\text{ }}c)}\newline
		\NormalTok{deck.move_cards(hand,\ensuremath{\text{ }}}\DecValTok{5}\NormalTok{)}\newline
		\KeywordTok{print}\ensuremath{\text{ }}\NormalTok{hand}\newline
		\KeywordTok{print}\ensuremath{\text{ }}\NormalTok{hand.SFL()}\newline
		\KeywordTok{if}\ensuremath{\text{ }}\NormalTok{hand.SFL():}\newline
			\KeywordTok{print}\ensuremath{\text{ }}\NormalTok{hand.STRseq()}\newline
			\KeywordTok{break}\newline
		\KeywordTok{print}\ensuremath{\text{ }}\StringTok{{\char13}{\char13}}\newline
		\NormalTok{c\ensuremath{\text{ }}+=\ensuremath{\text{ }}}\DecValTok{1}\newline
\ensuremath{\text{ }}\newline
\NormalTok{Code\ensuremath{\text{ }}by\ensuremath{\text{ }}Victor\ensuremath{\text{ }}Alvarez}\newline
\ensuremath{\text{ }}\newline
\NormalTok{=\ensuremath{\text{ }}Index\ensuremath{\text{ }}=}\newline
\ensuremath{\text{ }}\newline
\end{Highlighting}
\end{Shaded}

\label{399}
\LaTeXNullTemplate{}
\section{Index}
\label{400}

*
Ackerman function, 6.11

*AttributeError, 15.7, A.2.3

*Austin, Jane, 13.3

*abecedarian, 8.3, 9.2

*abs function, 6.1

*absolute path, 14.4, 14.11

*access, 10.2

*accumulator, 10.14

*
histogram, 13.3

*list, 10.7

*string, 18.5

*sum, 10.7

*add method, 17.7

*addition with carrying, 7.6

*algorithm, 1.2, 1.7, 7.6, 13.7

*
Euclid, 6.11

*MD5, 14.12

*RSA, 11.7

*square root, 7.9

*aliasing, 10.10, 10.11, 10.14, 15.2, 15.6, 17.12

*
copying to avoid, 10.13

*alphabet, 4.12

*alternative execution, 5.5

*ambiguity, 1.4

*anagram, 10.15

*anagram set, 12.11, 14.7

*and operator, 5.3

*anydbm module, 14.6

*append method, 10.6, 10.12, 10.15, 18.4, 18.6

*arc function, 4.3

*argument, 3.1, 3.5, 3.8, 3.8, 3.14, 10.12

*
gather, 12.4

*keyword, 4.5, 4.11, 12.7, 19.2

*list, 10.12

*optional, 8.8, 10.9, 11.3

*variable-{}length tuple, 12.4

*argument scatter, 12.4

*arithmetic operator, 2.5

*assert statement, 16.5

*assignment, 2.11, 7.1, 10.1

*
item, 8.5, 10.2, 12.1

*multiple, 7.8, 11.6

*tuple, 12.2, 12.3, 12.5, 12.10

*assignment statement, 2.2

*attribute

*
__dict__, 17.10

*class, 18.2, 18.10

*initializing, 17.10

*instance, 15.2, 15.8, 18.2, 18.10

*available colors, 15.9, 17.12

*Bacon, Kevin, 14.12

*Bangladesh, national flag, 15.9

*Button widget, 19.2

*base case, 5.9, 5.13

*benchmarking, 13.9, 13.11

*big, hairy expression, A.3.2

*binding, 19.8, 19.10

*bingo, 12.11

*birthday, 16.7

*birthday paradox, 10.15

*bisect module, 10.15

*bisection search, 10.15

*bisection, debugging by, 7.7

*bitwise operator, 2.5

*body, 3.5, 3.14, 5.13, 7.3

*bool type, 5.2

*boolean expression, 5.2, 5.13

*boolean function, 6.4, 16.1

*boolean operator, 8.9

*borrowing, subtraction with, 7.6, 16.4

*bound method, 19.6, 19.10

*bounding box, 15.9, 19.4, 19.10

*bracket

*
squiggly, 11

*bracket operator, 8.1, 10.2, 12.1

*branch, 5.5, 5.13

*break statement, 7.4

*bug, 1.3, 1.3, 1.7

*
worst, 17.12

*worst ever, 19.11

*Callable object, 19.7

*Canvas coordinate, 19.3, 19.8

*Canvas item, 19.3

*Canvas object, 15.9

*Canvas widget, 19.3

*Car Talk, 9.7, 9.7, 9.7, 11.10, 12.11

*Card class, 18.1

*Collatz conjecture, 7.3

*Czech Republic, national flag, 15.9

*calculator, 1.8, 2.12

*call graph, 11.5, 11.9

*callback, 19.2, 19.6, 19.7, 19.8, 19.9, 19.10

*card, playing, 18

*carrying, addition with, 7.6, 16.2, 16.4

*case-{}sensitivity, variable names, 2.10

*catch, 14.11

*chained conditional, 5.6, 5.13

*character, 8.1

*checksum, 14.12

*child class, 18.7, 18.10

*choice function, 13.2

*circle function, 4.3

*circular definition, 6.5

*class, 15.1, 15.8

*
Card, 18.1

*Date, 16.7

*Deck, 18.4

*Hand, 18.7

*Kangaroo, 17.12

*Point, 15.1, 17.5

*parent, 18.7

*Rectangle, 15.3

*SimpleTurtleWorld, 19.6

*Time, 16.1

*class attribute, 18.2, 18.10

*class definition, 15.1

*class diagram, 18.8, 18.10

*class object, 15.1, 15.8

*close method, 14.2, 14.6, 14.8

*cmp function, 18.3

*__cmp__ method, 18.3

*colon, 3.5, A.1

*color list, 15.9, 17.12

*comment, 2.9, 2.11

*commutativity, 2.8, 17.8

*compare function, 6.1

*comparison

*
string, 8.10

*tuple, 12.7, 18.3

*comparison operator, 5.2

*compile, 1.1, 1.7

*composition, 3.4, 3.8, 3.14, 6.3, 18.4

*compound statement, 5.4, 5.13

*compression

*
file, 14.8

*concatenation, 2.8, 2.11, 3.9, 8.3, 8.5, 10.9

*
list, 10.4, 10.12, 10.15

*condition, 5.4, 5.13, 7.3, A.2.2

*conditional, A.1

*
chained, 5.6, 5.13

*nested, 5.7, 5.13

*conditional execution, 5.4

*conditional operator, 18.3

*conditional statement, 5.4, 5.13, 6.4

*config method, 19.3

*consistency check, 11.8, 16.4

*contributors, 0

*conversion

*
type, 3.2

*coordinate

*
Canvas, 19.3, 19.8

*pixel, 19.8

*coordinate sequence, 19.4

*copy

*
deep, 15.6

*shallow, 15.6

*slice, 8.4, 10.5

*to avoid aliasing, 10.13

*copy module, 15.6

*copying objects, 15.6

*count method, 8.8

*counter, 8.7, 8.12, 11.1, 11.6

*counting and looping, 8.7

*crosswords, 9.1

*cummings, e. e., 1.3.1

*cumulative sum, 10.7

*Date class, 16.7

*Deck class, 18.4

*Dijkstra, Edsger, 9.5

*Doyle, Arthur Conan, 1.3.4

*DSU pattern, 12.7, 12.10, 13.4

*data structure, 12.9, 12.10, 13.9

*database, 14.6, 14.11, 14.12

*datetime module, 16.7

*dead code, 6.1, 6.10, A.2.4

*debugger (pdb), A.2.3

*debugging, 1.3, 1.3, 1.6, 1.7, 2.10, 3.13, 4.10, 5.12, 6.9, 8.11, 9.5, 10.13, 11.8, 12.9, 13.10, 14.10, 15.7, 16.5, 17.10, 18.9, 19.9, A

*
by bisection, 7.7

*emotional response, 1.6, A.3.4

*experimental, 1.3.4

*superstition, A.3.4

*deck, playing cards, 18.4

*declaration, 11.6, 11.9

*decorate-{}sort-{}undecorate pattern, 12.7

*decrement, 7.2, 7.8

*deep copy, 15.6, 15.8

*deepcopy function, 15.6

*def keyword, 3.5

*default value, 13.5, 13.11, 17.5

*
avoiding mutable, 17.12

*definition

*
circular, 6.5

*class, 15.1

*function, 3.5

*recursive, 12.11

*del operator, 10.8

*deletion, element of list, 10.8

*delimiter, 10.9, 10.14

*deterministic, 13.2, 13.11

*development plan, 4.11

*
encapsulation and generalization, 4.8

*incremental, 6.2, A.1

*planned, 16.4

*problem recognition, 9.3, 9.4

*prototype and patch, 16.2, 16.4

*random walk programming, 13.10, A.3.4

*diagram

*
call graph, 11.9

*class, 18.8, 18.10

*object, 15.2, 15.3, 15.6, 15.8, 16.1, 18.2

*stack, 3.10, 10.12

*state, 2.2, 7.1, 8.11, 10.2, 10.10, 10.11, 11.4, 12.6, 15.2, 15.3, 15.6, 16.1, 18.2

*__dict__ attribute, 17.10

*dict function, 11

*dictionary, 11, 11, 11.9, 12.6, A.2.3

*
initialize, 12.6

*invert, 11.4

*lookup, 11.3

*looping with, 11.2

*reverse lookup, 11.3

*subtraction, 13.6

*traversal, 12.6, 17.10

*dictionary methods

*
anydbm module, 14.6

*directory, 14.4, 14.11

*
walk, 14.4

*working, 14.4

*dispatch

*
type-{}based, 17.9

*dispatch, type-{}based, 17.8

*divisibility, 5.1

*division

*
floating-{}point, 2.5

*floor, 2.5, 5.12

*divmod, 12.3, 16.4

*docstring, 4.9, 4.11, 15.1

*documentation, 1.8

*dot notation, 3.3, 3.14, 8.8, 15.2, 17.2, 18.2

*double letters, 9.7

*drag-{}and-{}drop, 19.8

*duplicate, 10.15, 10.15, 11.10, 14.12

*Einstein, Albert, 4.6

*Entry widget, 19.5

*Euclid’s algorithm, 6.11

*Event object, 19.8

*element, 10.1, 10.14

*element deletion, 10.8

*elif keyword, 5.6

*ellipses, 3.5

*else keyword, 5.5

*email address, 12.2

*embedded object, 15.3, 15.8, 17.12

*
copying, 15.6

*emotional debugging, 1.6, A.3.4

*empty list, 10.1

*empty string, 8.12, 10.9

*encapsulation, 4.4, 4.11, 6.3, 7.5, 8.7, 18.7

*encode, 18.1, 18.10

*encrypt, 18.1

*encryption, 11.7

*end of line character, 14.10

*enumerate function, 12.5

*epsilon, 7.5

*equality and assignment, 7.1

*equivalence, 10.10

*equivalent, 10.14

*error

*
compile-{}time, A

*runtime, 1.3.2, 2.10, 5.10, 5.12, A

*semantic, 1.3.3, 2.1, 2.10, 8.11, A, A.3

*shape, 12.9

*syntax, 1.3.1, 2.10, A

*error checking, 6.8

*error message, 1.3.1, 1.3.3, 1.6, 2.1, 2.10, A.1

*eval function, 7.9

*evaluate, 2.6

*event, 19.10

*event handler, 19.8

*event loop, 19.1, 19.10

*event string, 19.8

*event-{}driven programming, 19.2, 19.9, 19.10

*exception, 1.3.2, 1.7, 2.10, A, A.2.3

*
AttributeError, 15.7, A.2.3

*IndexError, 8.2, 8.11, 10.2, A.2.3

*IOError, 14.5

*KeyError, 11, A.2.3

*NameError, 3.9, A.2.3

*OverflowError, 5.12

*RuntimeError, 5.10

*SyntaxError, 3.4

*TypeError, 8.1, 8.5, 11.4, 12.1, 12.4, 14.3, 17.3, A.2.3

*UnboundLocalError, 11.6

*ValueError, 5.11, 11.3, 12.2

*exception, catching, 14.5

*executable, 1.1, 1.7

*exercise, secret, 14.12

*exists function, 14.4

*experimental debugging, 1.3.4, 13.10

*expression, 2.5, 2.6, 2.11

*
big and hairy, A.3.2

*boolean, 5.2, 5.13

*extend method, 10.6

*False special value, 5.2

*Fermat’s Last Theorem, 5.14

*Frame widget, 19.6

*Free Documentation License, GNU, 0, 0

*factorial function, 6.5, 6.8

*fibonacci function, 6.7, 11.5

*file, 14

*
compression, 14.8

*permission, 14.5

*reading and writing, 14.2

*file object, 9.1, 9.6

*filename, 14.4

*filter pattern, 10.7, 10.14

*find function, 8.6

*flag, 11.6, 11.9

*float function, 3.2

*float type, 2.1

*floating-{}point, 2.11, 7.5

*floating-{}point division, 2.5

*floor division, 2.5, 2.11, 5.12

*flow of execution, 3.7, 3.14, 6.7, 6.9, 7.3, 18.9, 19.9, A.2.2

*flower, 4.12

*folder, 14.4

*for loop, 4.2, 8.3, 10.3, 12.5

*formal language, 1.4, 1.7

*format operator, 14.3, 14.11, A.2.3

*format sequence, 14.3, 14.11

*format string, 14.3, 14.11

*frabjuous, 6.5

*frame, 3.10, 3.14, 5.9, 6.5, 11.5

*frequency, 11.1

*
letter, 12.11

*word, 13.1, 13.12

*fruitful function, 3.11, 3.14

*frustration, A.3.4

*function, 3.5, 3.14, 17.1

*
abs, 6.1

*ack, 6.11

*arc, 4.3

*choice, 13.2

*circle, 4.3

*cmp, 18.3

*compare, 6.1

*deepcopy, 15.6

*dict, 11

*enumerate, 12.5

*eval, 7.9

*exists, 14.4

*factorial, 6.5

*fibonacci, 6.7, 11.5

*find, 8.6

*float, 3.2

*getattr, 17.10

*getcwd, 14.4

*hasattr, 15.7, 17.10

*int, 3.2

*isinstance, 6.8, 17.8

*len, 3.15, 8.2, 11

*list, 10.9

*log, 3.3

*max, 12.3, 12.4

*min, 12.3, 12.4

*open, 9.1, 9.1, 14.2, 14.5, 14.6

*polygon, 4.3

*popen, 14.8

*randint, 10.15, 13.2

*random, 12.7, 13.2

*raw_input, 5.11

*recursive, 5.8

*reload, 14.9, A.1.1

*repr, 14.10

*reversed, 12.8

*shuffle, 18.6

*sorted, 12.8

*sqrt, 3.3, 6.2

*str, 3.2

*sum, 12.4

*tuple, 12.1

*type, 15.7

*zip, 12.5

*function argument, 3.8

*function call, 3.1, 3.14

*function composition, 6.3

*function definition, 3.5, 3.6, 3.14, 3.14

*function frame, 3.10, 3.14, 5.9, 11.5

*function object, 3.5, 3.15

*function parameter, 3.8

*function syntax, 17.2

*function type

*
modifier, 16.3

*pure, 16.2

*function, fruitful, 3.11

*function, math, 3.3

*function, reasons for, 3.12

*function, trigonometric, 3.3

*function, tuple as return value, 12.3

*function, void, 3.11

*functional programming style, 16.3, 16.6

*GCD (greatest common divisor), 6.11

*GNU Free Documentation License, 0, 0

*GUI, 19.1, 19.10

*Gui module, 19.1

*gamma function, 6.8

*gather, 12.4, 12.10

*generalization, 4.5, 4.11, 9.3, 16.4

*geometry manager, 19.6, 19.10

*get method, 11.1

*getattr function, 17.10

*getcwd function, 14.4

*global statement, 11.6

*global variable, 11.6, 11.9

*
update, 11.6

*graphical user interface, 19.1

*greatest common divisor (GCD), 6.11

*grid, 3.15

*guardian pattern, 6.8, 6.10, 8.11

*gzip (Unix command), 14.8

*HAS-{}A relationship, 18.8, 18.10

*Hand class, 18.7

*Hello, World, 1.5

*Holmes, Sherlock, 1.3.4

*HTMLParser module, 19.11

*hanging, A.2.2

*hasattr function, 15.7, 17.10

*hash function, 11.4, 11.9

*hashable, 11.4, 11.9, 12.6

*hashtable, 11, 11.9

*header, 3.5, 3.14, A.1

*help utility, 1.8

*hexadecimal, 15.1

*high-{}level language, 1.1, 1.7

*histogram, 11.1, 11.1, 11.9

*
random choice, 13.2, 13.7

*word frequencies, 13.3

*homophone, 11.10

*hyperlink, 19.11

*hypotenuse, 6.2

*IMDb (Internet Movie Database), 14.12

*Image module, 19.11

*IndexError, 8.2, 8.11, 10.2, A.2.3

*Internet Movie Database (IMDb), 14.12

*IOError, 14.5

*IS-{}A relationship, 18.8, 18.10

*identical, 10.14

*identity, 10.10

*if statement, 5.4

*image viewer, 19.11

*immutability, 8.5, 8.5, 8.12, 10.11, 11.4, 12.1, 12.8

*implementation, 11.1, 11.9, 13.9

*import statement, 3.14, 4.1, 14.9

*in operator, 8.9, 9.3, 10.2, 11

*increment, 7.2, 7.8, 16.3, 17.3

*incremental development, 6.10, A.1

*indentation, 3.5, 17.2, A.1

*index, 8.1, 8.1, 8.11, 8.12, 10.2, 10.14, 11, A.2.3

*
looping with, 9.4, 10.3

*negative, 8.2

*slice, 8.4, 10.5

*starting at zero, 8.1, 10.2

*infinite loop, 7.3, 7.8, 19.1, A.2.2, A.2.2

*infinite recursion, 5.10, 5.13, 6.8, A.2.2, A.2.2

*inheritance, 18.7, 18.10

*init method, 17.5, 17.10, 18.1, 18.4, 18.7

*initialization (before update), 7.2

*instance, 4.1, 4.11, 15.1, 15.8

*
as argument, 15.2

*as return value, 15.4

*instance attribute, 15.2, 15.8, 18.2, 18.10

*instantiation, 15.1

*int function, 3.2

*int type, 2.1

*integer, 2.11

*
long, 11.7

*interactive mode, 1.1, 1.7, 2.4, 3.11

*interface, 4.6, 4.10, 4.11, 18.9

*interlocking words, 10.15

*interpret, 1.1, 1.7

*invariant, 16.5, 16.6, 19.9

*invert dictionary, 11.4

*invocation, 8.8, 8.12

*is operator, 10.10, 15.6

*isinstance function, 6.8, 17.8

*item, 8.12, 10.1

*
Canvas, 19.3, 19.10

*dictionary, 11.9

*item assignment, 8.5, 10.2, 12.1

*item update, 10.3

*items method, 12.6

*iteration, 7, 7.3, 7.8

*join method, 10.9, 18.5

*Kangaroo class, 17.12

*Kevin Bacon Game, 14.12

*KeyError, 11, A.2.3

*Koch curve, 5.14

*key, 11, 11.9

*key-{}value pair, 11, 11.9, 12.6

*keyboard input, 5.11

*keys method, 11.2

*keyword, 2.3, 2.3, 2.11, A.1

*
def, 3.5

*elif, 5.6

*else, 5.5

*keyword argument, 4.5, 4.11, 12.7, 19.2, 19.10

*Label widget, 19.2

*Linux, 1.3.4

*language

*
formal, 1.4

*high-{}level, 1.1

*low-{}level, 1.1

*natural, 1.4

*programming, 1.1

*safe, 1.3.2

*Turing complete, 6.5

*leap of faith, 6.6

*len function, 3.15, 8.2, 11

*letter frequency, 12.11

*letter rotation, 8.13, 11.10

*lipogram, 9.2

*list, 10, 10.9, 10.14, 12.8

*
as argument, 10.12

*comprehension, 10.7

*concatenation, 10.4, 10.12, 10.15

*copy, 10.5

*element, 10.2

*empty, 10.1

*function, 10.9

*index, 10.2

*membership, 10.2

*method, 10.6

*nested, 10.1, 10.3

*of objects, 18.4

*of tuples, 12.5

*operation, 10.4

*repetition, 10.4

*slice, 10.5

*traversal, 10.3, 10.14

*literalness, 1.4

*local variable, 3.9, 3.14

*log function, 3.3

*logarithm, 13.12

*logical operator, 5.2, 5.3

*long integer, 11.7

*lookup, 11.9

*lookup, dictionary, 11.3

*loop, 4.2, 4.11, 7.3, 12.5

*
condition, A.2.2

*event, 19.1

*for, 4.2, 8.3, 10.3

*infinite, 7.3, 19.1, A.2.2

*nested, 18.4

*traversal, 8.3

*while, 7.3

*looping

*
with dictionaries, 11.2

*with indices, 9.4

*with strings, 8.7

*looping and counting, 8.7

*looping with indices, 10.3

*low-{}level language, 1.1, 1.7

*ls (Unix command), 14.8

*Markov analysis, 13.8

*McCloskey, Robert, 8.3

*MD5 algorithm, 14.12

*Menubutton widget, 19.7

*Monty Python and the Holy Grail, 16.2

*MP3, 14.12

*map pattern, 10.7, 10.14

*map to, 18.1

*mapping, 10.2, 10.14, 13.8

*mash-{}up, 13.8

*math function, 3.3

*max function, 12.3, 12.4

*membership

*
bisection search, 10.15

*dictionary, 11

*list, 10.2

*set, 11

*memo, 11.5, 11.9

*mental model, A.3.1

*metaphor, method invocation, 17.2

*metathesis, 12.11

*method, 8.8, 8.12, 17.1, 17.11

*
__cmp__, 18.3

*__str__, 17.6, 18.5

*add, 17.7

*append, 10.6, 10.12, 18.4, 18.6

*close, 14.2, 14.6, 14.8

*config, 19.3

*count, 8.8

*extend, 10.6

*get, 11.1

*init, 17.5, 18.1, 18.4, 18.7

*items, 12.6

*join, 10.9, 18.5

*keys, 11.2

*mro, 18.9

*pop, 10.8, 18.6

*radd, 17.8

*read, 14.8

*readline, 9.1, 14.8

*remove, 10.8

*replace, 13.1

*setdefault, 11.4

*sort, 10.6, 10.13, 12.7, 18.6

*split, 10.9, 12.2

*string, 8.13

*strip, 9.1, 13.1

*translate, 13.1

*update, 12.6

*values, 11

*void, 10.6

*method append, 10.15

*method resolution order, 18.9

*method syntax, 17.2

*method, bound, 19.6

*method, list, 10.6

*min function, 12.3, 12.4

*model, mental, A.3.1

*modifier, 16.3, 16.6

*module, 3.3, 3.14, 3.14

*
anydbm, 14.6

*bisect, 10.15

*copy, 15.6

*datetime, 16.7

*Gui, 19.1

*HTMLParser, 19.11

*Image, 19.11

*os, 14.4

*pickle, 14.1, 14.7

*pprint, 11.8

*profile, 13.9

*random, 10.15, 12.7, 13.2, 18.6

*reload, 14.9, A.1.1

*shelve, 14.7, 14.12

*string, 13.1

*structshape, 12.9

*urllib, 14.12, 19.11

*Visual, 17.12

*vpython, 17.12

*World, 15.9

*module object, 3.3, 14.9

*module, writing, 14.9

*modulus operator, 5.1, 5.13

*mro method, 18.9

*multiline string, 4.9, A.1

*multiple assignment, 7.1, 7.8, 11.6

*multiplicity (in class diagram), 18.8, 18.10

*mutability, 8.5, 10.2, 10.5, 10.11, 11.6, 12.1, 12.8, 15.5

*mutable object, as default value, 17.12

*NameError, 3.9, A.2.3

*Newton’s method, 7.5

*None special value, 3.11, 6.1, 6.10, 10.6, 10.8

*natural language, 1.4, 1.7

*negative index, 8.2

*nested conditional, 5.7, 5.13

*nested list, 10.1, 10.3, 10.14

*newline, 5.11, 7.1, 18.5

*not operator, 5.3

*number, random, 13.2

*OverflowError, 5.12

*object, 8.5, 8.12, 10.10, 10.10, 10.14, 15.1

*
Callable, 19.7

*Canvas, 15.9

*class, 15.1

*copying, 15.6

*Event, 19.8

*embedded, 15.3, 15.8, 17.12

*file, 9.1, 9.6

*function, 3.5, 3.15

*module, 14.9

*mutable, 15.5

*printing, 17.2

*object code, 1.1, 1.7

*object diagram, 15.2, 15.3, 15.6, 15.8, 16.1, 18.2

*object-{}oriented language, 17.11

*object-{}oriented programming, 17.1, 17.11, 18.7

*octal, 2.2

*odometer, 9.7

*open function, 9.1, 9.1, 14.2, 14.5, 14.6

*operand, 2.5, 2.11

*operator, 2.11

*
and, 5.3

*bitwise, 2.5

*boolean, 8.9

*bracket, 8.1, 10.2, 12.1

*comparison, 5.2

*conditional, 18.3

*del, 10.8

*format, 14.3, 14.11, A.2.3

*in, 8.9, 9.3, 10.2, 11

*is, 10.10, 15.6

*logical, 5.2, 5.3

*modulus, 5.1, 5.13

*not, 5.3

*or, 5.3

*overloading, 17.11

*slice, 8.4, 8.13, 10.5, 10.12, 12.1

*string, 2.8

*update, 10.7

*operator overloading, 17.7, 18.3

*operator, arithmetic, 2.5

*option, 19.2, 19.10

*optional argument, 8.8, 10.9, 11.3

*optional parameter, 13.5, 17.5

*or operator, 5.3

*order of operations, 2.7, 2.10, A.3.2

*os module, 14.4

*other (parameter name), 17.4

*overloading, 17.11

*override, 13.5, 13.11, 17.5, 18.3, 18.7, 18.9

*PEMDAS, 2.7

*PIL (Python Imaging Library), 19.11

*Point class, 15.1, 17.5

*Project Gutenberg, 13.1

*Puzzler, 9.7, 9.7, 9.7, 11.10, 12.11

*Pythagorean theorem, 6.2

*Python 3.0, 1.5, 2.5, 5.11, 11.7, 12.5

*Python debugger (pdb), A.2.3

*Python Imaging Library (PIL), 19.11

*packing widgets, 19.6, 19.10

*palindrome, 6.11, 8.13, 9.4, 9.7, 9.7

*parameter, 3.8, 3.9, 3.14, 10.12

*
gather, 12.4

*optional, 13.5, 17.5

*other, 17.4

*self, 17.2

*parent class, 18.7, 18.7, 18.10

*parentheses

*
argument in, 3.1

*empty, 3.5, 8.8

*matching, 1.3.1

*overriding precedence, 2.7

*parameters in, 3.8, 3.9

*parent class in, 18.7

*tuples in, 12.1

*parse, 1.4, 1.7, 14.12

*pass statement, 5.4

*path, 14.4, 14.11

*
absolute, 14.4

*relative, 14.4

*pattern

*
DSU, 12.7, 13.4

*decorate-{}sort-{}undecorate, 12.7

*filter, 10.7, 10.14

*guardian, 6.8, 6.10, 8.11

*map, 10.7, 10.14

*reduce, 10.7, 10.14

*search, 8.6, 8.12, 9.3, 11.3

*swap, 12.2

*pdb (Python debugger), A.2.3

*permission, file, 14.5

*persistence, 14.1, 14.11

*pi, 3.3, 7.9

*pickle module, 14.1, 14.7

*pickling, 14.7

*pie, 4.12

*pipe, 14.8, 14.12

*pixel coordinate, 19.8

*plain text, 9.1, 13.1, 14.12, 19.11

*planned development, 16.4, 16.6

*playing card, Anglo-{}American, 18

*poetry, 1.4

*point, mathematical, 15.1

*poker, 18, 18.11

*polygon function, 4.3

*polymorphism, 17.9, 17.11, 18.9

*pop method, 10.8, 18.6

*popen function, 14.8

*portability, 1.1, 1.7

*postcondition, 4.10, 6.9, 18.9

*pprint module, 11.8

*precedence, 2.11, A.3.2

*precondition, 4.10, 4.11, 4.11, 6.9, 10.15, 18.9

*prefix, 13.8

*pretty print, 11.8

*print statement, 1.5, 1.7, 17.6, A.2.4

*problem recognition, 9.3, 9.4, 9.6

*problem solving, 1, 1.7

*profile module, 13.9

*program, 1.2, 1.7

*program testing, 9.5

*programming language, 1.1

*prompt, 1.1, 1.7, 5.11

*prose, 1.4

*prototype and patch, 16.2, 16.4, 16.6

*pseudorandom, 13.2, 13.11

*pure function, 16.2, 16.6

*python.org, 1.8

*quotation mark, 1.5, 2.1, 2.1, 4.9, 8.4, A.1

*Ramanujan, Srinivasa, 7.9

*Rectangle class, 15.3

*RSA algorithm, 11.7

*RuntimeError, 5.10, 6.8

*radd method, 17.8

*radian, 3.3

*rage, A.3.4

*raise statement, 11.3, 16.5

*randint function, 10.15, 13.2

*random function, 12.7, 13.2

*random module, 10.15, 12.7, 13.2, 18.6

*random number, 13.2

*random text, 13.8

*random walk programming, 13.10, A.3.4

*rank, 18.1

*raw_input function, 5.11

*read method, 14.8

*readline method, 9.1, 14.8

*recursion, 5.8, 5.8, 5.13, 6.5, 6.6

*
base case, 5.9

*infinite, 5.10, 6.8, A.2.2

*recursive definition, 6.5, 12.11

*reduce pattern, 10.7, 10.14

*reducible word, 11.10, 12.11

*redundancy, 1.4

*refactoring, 4.7, 4.7

*reference, 10.11, 10.12, 10.14

*
aliasing, 10.11

*relative path, 14.4, 14.11

*reload function, 14.9, A.1.1

*remove method, 10.8

*repetition, 4.2

*
list, 10.4

*replace method, 13.1

*repr function, 14.10

*representation, 15.1, 15.3, 18.1

*return statement, 5.8, 6.1, A.3.3

*return value, 3.1, 3.14, 6.1, 15.4

*
tuple, 12.3

*reverse lookup, dictionary, 11.3, 11.9

*reverse word pair, 10.15

*reversed function, 12.8

*rotation

*
letters, 11.10

*rotation, letter, 8.13

*rules of precedence, 2.7, 2.11

*running pace, 1.8, 2.12, 16.7

*runtime error, 1.3.2, 2.10, 5.10, 5.12, A, A.2.3

*Scrabble, 12.11

*SimpleTurtleWorld class, 19.6

*SVG, 19.11

*Swampy, 4.1, 9.1, 15.9, 18.11, 19.1

*SyntaxError, 3.4

*safe language, 1.3.2

*sanity check, 11.8

*scaffolding, 6.2, 6.10, 11.8

*scatter, 12.4, 12.10

*script, 1.1, 1.7

*script mode, 1.1, 1.7, 2.4, 3.11

*search, 11.3

*search pattern, 8.6, 8.12, 9.3

*search, bisection, 10.15

*secret exercise, 14.12

*self (parameter name), 17.2

*semantic error, 1.3.3, 1.7, 2.1, 2.10, 8.11, A, A.3

*semantics, 1.3.3, 1.7, 17.1

*sequence, 8.1, 8.12, 10.1, 10.9, 12.1, 12.8

*
coordinate, 19.4

*set, 13.6

*
anagram, 12.11, 14.7

*set membership, 11

*setdefault method, 11.4

*sexagesimal, 16.4

*shallow copy, 15.6, 15.8

*shape, 12.10

*shape error, 12.9

*shell, 14.8

*shelve module, 14.7, 14.12

*shuffle function, 18.6

*sine function, 3.3

*singleton, 11.4, 11.9, 12.1

*slice, 8.12

*
copy, 8.4, 10.5

*list, 10.5

*string, 8.4

*tuple, 12.1

*update, 10.5

*slice operator, 8.4, 8.13, 10.5, 10.12, 12.1

*sort method, 10.6, 10.13, 12.7, 18.6

*sorted function, 12.8

*source code, 1.1, 1.7

*special case, 9.5, 9.6, 16.3

*special value

*
False, 5.2

*None, 3.11, 6.1, 6.10, 10.6, 10.8

*True, 5.2

*split method, 10.9, 12.2

*sqrt, 6.2

*sqrt function, 3.3

*square root, 7.5

*squiggly bracket, 11

*stack diagram, 3.10, 3.10, 3.14, 4.12, 5.9, 6.5, 6.11, 10.12

*state diagram, 2.2, 2.11, 7.1, 8.11, 10.2, 10.10, 10.11, 11.4, 12.6, 15.2, 15.3, 15.6, 16.1, 18.2

*statement, 2.4, 2.11

*
assert, 16.5

*assignment, 2.2, 7.1

*break, 7.4

*compound, 5.4

*conditional, 5.4, 5.13, 6.4

*for, 4.2, 8.3, 10.3

*global, 11.6

*if, 5.4

*import, 3.14, 4.1, 14.9

*pass, 5.4

*print, 1.5, 1.7, 17.6, A.2.4

*raise, 11.3, 16.5

*return, 5.8, 6.1, A.3.3

*try, 14.5

*while, 7.3

*step size, 8.13

*str function, 3.2

*__str__ method, 17.6, 18.5

*string, 2.1, 2.11, 10.9, 12.8

*
accumulator, 18.5

*comparison, 8.10

*empty, 10.9

*immutable, 8.5

*method, 8.8

*multiline, 4.9, A.1

*operation, 2.8

*slice, 8.4

*triple-{}quoted, 4.9

*string method, 8.13

*string module, 13.1

*string representation, 14.10, 17.6

*string type, 2.1

*strip method, 9.1, 13.1

*structshape module, 12.9

*structure, 1.4

*subclass, 18.7

*subject, 17.2, 17.11, 19.6

*subtraction

*
dictionary, 13.6

*with borrowing, 7.6

*subtraction with borrowing, 16.4

*suffix, 13.8

*suit, 18.1

*sum function, 12.4

*superclass, 18.7

*superstitious debugging, A.3.4

*swap pattern, 12.2

*syntax, 1.3.1, 1.3.1, 1.7, 17.1, A.1

*syntax error, 1.3.1, 1.7, 2.10, A

*Tagger, 18.11

*Text widget, 19.5

*Time class, 16.1

*Tkinter, 19.1

*True special value, 5.2

*Turing complete language, 6.5

*Turing Thesis, 6.5

*Turing, Alan, 6.5

*TurtleWorld, 4.1, 5.14, 18.11

*TypeError, 8.1, 8.5, 11.4, 12.1, 12.4, 14.3, 17.3, A.2.3

*temporary variable, 6.1, 6.10, A.3.2

*test case, minimal, A.2.4

*testing

*
and absence of bugs, 9.5

*incremental development, 6.2

*interactive mode, 1.1

*is hard, 9.5

*knowing the answer, 6.2

*leap of faith, 6.6

*minimal test case, A.2.4

*text

*
plain, 9.1, 13.1, 14.12, 19.11

*random, 13.8

*text file, 14.11

*token, 1.4, 1.7

*traceback, 3.10, 3.14, 5.10, 5.12, 11.3, A.2.3

*translate method, 13.1

*traversal, 8.3, 8.3, 8.6, 8.11, 8.12, 9.3, 9.3, 10.7, 10.14, 11.1, 11.2, 12.5, 12.5, 12.7, 13.3

*
dictionary, 17.10

*list, 10.3

*traverse

*
dictionary, 12.6

*triangle, 5.14

*trigonometric function, 3.3

*triple-{}quoted string, 4.9

*try statement, 14.5

*tuple, 12.1, 12.3, 12.8, 12.10

*
as key in dictionary, 12.6, 13.9

*assignment, 12.2

*comparison, 12.7, 18.3

*in brackets, 12.6

*singleton, 12.1

*slice, 12.1

*tuple assignment, 12.3, 12.5, 12.10

*tuple function, 12.1

*turtle typewriter, 4.12

*type, 2.1, 2.1, 2.11

*
bool, 5.2

*dict, 11

*file, 14

*float, 2.1

*int, 2.1

*list, 10

*long, 11.7

*set, 13.6

*str, 2.1

*tuple, 12.1

*user-{}defined, 15.1, 16.1

*type checking, 6.8

*type conversion, 3.2

*type function, 15.7

*type-{}based dispatch, 17.8, 17.9, 17.11

*typewriter, turtle, 4.12

*typographical error, 13.10

*UML, 18.8

*UnboundLocalError, 11.6

*Unix command

*
gzip, 14.8

*ls, 14.8

*URL, 14.12, 19.11

*underscore character, 2.3

*uniqueness, 10.15

*update, 7.2, 7.5, 7.8

*
coordinate, 19.8

*database, 14.6

*global variable, 11.6

*histogram, 13.3

*item, 10.3

*slice, 10.5

*update method, 12.6

*update operator, 10.7

*urllib module, 14.12, 19.11

*use before def, 2.10, 3.6

*user-{}defined type, 15.1, 16.1

*ValueError, 5.11, 11.3, 12.2

*Visual module, 17.12

*value, 2.1, 2.11, 10.10, 10.10, 11.9

*
default, 13.5

*tuple, 12.3

*values method, 11

*variable, 2.2, 2.11

*
global, 11.6

*local, 3.9

*temporary, 6.1, 6.10, A.3.2

*updating, 7.2

*variable-{}length argument tuple, 12.4

*vector graphics, 19.11

*veneer, 18.6, 18.10

*void function, 3.11, 3.14

*void method, 10.6

*vpython module, 17.12

*World module, 15.9

*walk, directory, 14.4

*while loop, 7.3

*whitespace, 3.13, 5.12, 9.1, 14.10, A.1

*widget, 19.1, 19.10

*
Button, 19.2

*Canvas, 19.3

*Entry, 19.5

*Frame, 19.6

*Label, 19.2

*Menubutton, 19.7

*Text, 19.5

*widget, packing, 19.6

*word count, 14.9

*word frequency, 13.1, 13.12

*word, reducible, 11.10, 12.11

*working directory, 14.4

*worst bug, 17.12

*
ever, 19.11

*Zipf’s law, 13.12

*zero, index starting at, 8.1, 10.2

*zip function, 12.5

*
use with dict, 12.6

\chapter{Contributors}
\label{Contributors}
\begin{longtable}{rp{0.6\linewidth}}
\textbf{Edits}&\textbf{User}\\
39& \myhref{http://en.wikibooks.org/w/index.php?title=User:33rogers}{33rogers}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Accelerometer}{Accelerometer}\\
5& \myhref{http://en.wikibooks.org/w/index.php?title=User:Adrignola}{Adrignola}\\
2& \myhref{http://en.wikibooks.org/w/index.php?title=User:Borgesvive}{Borgesvive}\\
2& \myhref{http://en.wikibooks.org/w/index.php?title=User:Bovineone}{Bovineone}\\
3& \myhref{http://en.wikibooks.org/w/index.php?title=User:DavidCary}{DavidCary}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Everton137}{Everton137}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Fdfdffdfdf}{Fdfdffdfdf}\\
103& \myhref{http://en.wikibooks.org/w/index.php?title=User:Fishpi}{Fishpi}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Hakeem.gadi}{Hakeem.gadi}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Hannes_R\%C3\%B6st}{Hannes Röst}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Hires_an_editor}{Hires an editor}\\
2& \myhref{http://en.wikibooks.org/w/index.php?title=User:Hjsb}{Hjsb}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:J36miles}{J36miles}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:JamesCrook}{JamesCrook}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Jfireball66}{Jfireball66}\\
4& \myhref{http://en.wikibooks.org/w/index.php?title=User:Jomegat}{Jomegat}\\
16& \myhref{http://en.wikibooks.org/w/index.php?title=User:Ken_fallon}{Ken fallon}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Liberacy}{Liberacy}\\
5& \myhref{http://en.wikibooks.org/w/index.php?title=User:Magicbadger}{Magicbadger}\\
3& \myhref{http://en.wikibooks.org/w/index.php?title=User:Mike.lifeguard}{Mike.lifeguard}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Panic2k4}{Panic2k4}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Perey}{Perey}\\
6& \myhref{http://en.wikibooks.org/w/index.php?title=User:Recent_Runes}{Recent Runes}\\
2& \myhref{http://en.wikibooks.org/w/index.php?title=User:RichardMcMahon}{RichardMcMahon}\\
47& \myhref{http://en.wikibooks.org/w/index.php?title=User:Whiteknight}{Whiteknight}\\
\end{longtable}
\pagebreak
\listoffigures
\label{ListOfFigures}
\begin{itemize}
\item GFDL: Gnu Free Documentation License. \url{http://www.gnu.org/licenses/fdl.html}
\item cc-by-sa-3.0: Creative Commons Attribution ShareAlike 3.0 License. \url{http://creativecommons.org/licenses/by-sa/3.0/}
\item cc-by-sa-2.5: Creative Commons Attribution ShareAlike 2.5 License. \url{http://creativecommons.org/licenses/by-sa/2.5/}
\item cc-by-sa-2.0: Creative Commons Attribution ShareAlike 2.0 License. \url{http://creativecommons.org/licenses/by-sa/2.0/}
\item cc-by-sa-1.0: Creative Commons Attribution ShareAlike 1.0 License. \url{http://creativecommons.org/licenses/by-sa/1.0/}
\item cc-by-2.0: Creative Commons Attribution 2.0 License. \url{http://creativecommons.org/licenses/by/2.0/}
\item cc-by-2.0: Creative Commons Attribution 2.0 License. \url{http://creativecommons.org/licenses/by/2.0/deed.en}
\item cc-by-2.5: Creative Commons Attribution 2.5 License. \url{http://creativecommons.org/licenses/by/2.5/deed.en}
\item cc-by-3.0: Creative Commons Attribution 3.0 License. \url{http://creativecommons.org/licenses/by/3.0/deed.en}
\item GPL: GNU General Public License. \url{http://www.gnu.org/licenses/gpl-2.0.txt}
\item LGPL: GNU Lesser General Public License. \url{http://www.gnu.org/licenses/lgpl.html}
 \item PD: This image is in the public domain.
\item ATTR: The copyright holder of this file allows anyone to use it for any purpose, provided that the copyright holder is properly attributed. Redistribution, derivative work, commercial use, and all other use is permitted.
\item EURO: This is the common (reverse) face of a euro coin. The copyright on the design of the common face of the euro coins belongs to the European Commission. Authorised is reproduction in a format without relief (drawings, paintings, films) provided they are not detrimental to the image of the euro.
\item LFK: Lizenz Freie Kunst. \url{http://artlibre.org/licence/lal/de}
\item CFR: Copyright free use.
\item EPL: Eclipse Public License. \url{http://www.eclipse.org/org/documents/epl-v10.php}
\end{itemize}
Copies of the GPL, the LGPL as well as a GFDL are included in chapter \mylref{Licenses}{Licenses}. Please note that images in the public domain do not require attribution. You may click on the image numbers in the following table to open the webpage of the images in your webbrower.
\pagebreak
\small
\begin{longtable}{|p{0.05\textwidth}|p{0.6\textwidth}|p{0.15\textwidth}|}
\hline
\href{http://en.wikibooks.org/wiki/File:Interpreted\%20Code\%20Flow\%20Diagram.svg}{1}&

\myhref{http://en.wikibooks.org/wiki/User\%3AFishpi}{Fishpi}
 & PD\\ \hline
\href{http://en.wikibooks.org/wiki/File:Compiled\%20Code\%20Flow\%20Diagram.svg}{2}&

\myhref{http://en.wikibooks.org/wiki/User\%3AFishpi}{Fishpi}
 & PD\\ \hline
\href{http://en.wikibooks.org/wiki/File:book004.png}{0}&

Loremus Ipsemus
 & None\\ \hline

\end{longtable}
\pagebreak\KOMAoptions{fontsize=9pt,DIV=90,BCOR=0pt}
\pagebreak
\chapter{Licenses}
\label{Licenses}
{\tiny
\section {GNU GENERAL PUBLIC LICENSE}
\begin{multicols}{4}

Version 3, 29 June 2007

Copyright © 2007 Free Software Foundation, Inc. <http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.
Preamble

The GNU General Public License is a free, copyleft license for software and other kinds of works.

The licenses for most software and other practical works are designed to take away your freedom to share and change the works. By contrast, the GNU General Public License is intended to guarantee your freedom to share and change all versions of a program--to make sure it remains free software for all its users. We, the Free Software Foundation, use the GNU General Public License for most of our software; it applies also to any other work released this way by its authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for them if you wish), that you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free programs, and that you know you can do these things.

To protect your rights, we need to prevent others from denying you these rights or asking you to surrender the rights. Therefore, you have certain responsibilities if you distribute copies of the software, or if you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must pass on to the recipients the same freedoms that you received. You must make sure that they, too, receive or can get the source code. And you must show them these terms so they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright on the software, and (2) offer you this License giving you legal permission to copy, distribute and/or modify it.

For the developers' and authors' protection, the GPL clearly explains that there is no warranty for this free software. For both users' and authors' sake, the GPL requires that modified versions be marked as changed, so that their problems will not be attributed erroneously to authors of previous versions.

Some devices are designed to deny users access to install or run modified versions of the software inside them, although the manufacturer can do so. This is fundamentally incompatible with the aim of protecting users' freedom to change the software. The systematic pattern of such abuse occurs in the area of products for individuals to use, which is precisely where it is most unacceptable. Therefore, we have designed this version of the GPL to prohibit the practice for those products. If such problems arise substantially in other domains, we stand ready to extend this provision to those domains in future versions of the GPL, as needed to protect the freedom of users.

Finally, every program is threatened constantly by software patents. States should not allow patents to restrict development and use of software on general-purpose computers, but in those that do, we wish to avoid the special danger that patents applied to a free program could make it effectively proprietary. To prevent this, the GPL assures that patents cannot be used to render the program non-free.

The precise terms and conditions for copying, distribution and modification follow.
TERMS AND CONDITIONS
0. Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of works, such as semiconductor masks.

“The Program” refers to any copyrightable work licensed under this License. Each licensee is addressed as “you”. “Licensees” and “recipients” may be individuals or organizations.

To “modify” a work means to copy from or adapt all or part of the work in a fashion requiring copyright permission, other than the making of an exact copy. The resulting work is called a “modified version” of the earlier work or a work “based on” the earlier work.

A “covered work” means either the unmodified Program or a work based on the Program.

To “propagate” a work means to do anything with it that, without permission, would make you directly or secondarily liable for infringement under applicable copyright law, except executing it on a computer or modifying a private copy. Propagation includes copying, distribution (with or without modification), making available to the public, and in some countries other activities as well.

To “convey” a work means any kind of propagation that enables other parties to make or receive copies. Mere interaction with a user through a computer network, with no transfer of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to the extent that it includes a convenient and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells the user that there is no warranty for the work (except to the extent that warranties are provided), that licensees may convey the work under this License, and how to view a copy of this License. If the interface presents a list of user commands or options, such as a menu, a prominent item in the list meets this criterion.
1. Source Code.

The “source code” for a work means the preferred form of the work for making modifications to it. “Object code” means any non-source form of a work.

A “Standard Interface” means an interface that either is an official standard defined by a recognized standards body, or, in the case of interfaces specified for a particular programming language, one that is widely used among developers working in that language.

The “System Libraries” of an executable work include anything, other than the work as a whole, that (a) is included in the normal form of packaging a Major Component, but which is not part of that Major Component, and (b) serves only to enable use of the work with that Major Component, or to implement a Standard Interface for which an implementation is available to the public in source code form. A “Major Component”, in this context, means a major essential component (kernel, window system, and so on) of the specific operating system (if any) on which the executable work runs, or a compiler used to produce the work, or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all the source code needed to generate, install, and (for an executable work) run the object code and to modify the work, including scripts to control those activities. However, it does not include the work's System Libraries, or general-purpose tools or generally available free programs which are used unmodified in performing those activities but which are not part of the work. For example, Corresponding Source includes interface definition files associated with source files for the work, and the source code for shared libraries and dynamically linked subprograms that the work is specifically designed to require, such as by intimate data communication or control flow between those subprograms and other parts of the work.

The Corresponding Source need not include anything that users can regenerate automatically from other parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.
2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the Program, and are irrevocable provided the stated conditions are met. This License explicitly affirms your unlimited permission to run the unmodified Program. The output from running a covered work is covered by this License only if the output, given its content, constitutes a covered work. This License acknowledges your rights of fair use or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not convey, without conditions so long as your license otherwise remains in force. You may convey covered works to others for the sole purpose of having them make modifications exclusively for you, or provide you with facilities for running those works, provided that you comply with the terms of this License in conveying all material for which you do not control copyright. Those thus making or running the covered works for you must do so exclusively on your behalf, under your direction and control, on terms that prohibit them from making any copies of your copyrighted material outside their relationship with you.

Conveying under any other circumstances is permitted solely under the conditions stated below. Sublicensing is not allowed; section 10 makes it unnecessary.
3. Protecting Users' Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure under any applicable law fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or similar laws prohibiting or restricting circumvention of such measures.

When you convey a covered work, you waive any legal power to forbid circumvention of technological measures to the extent such circumvention is effected by exercising rights under this License with respect to the covered work, and you disclaim any intention to limit operation or modification of the work as a means of enforcing, against the work's users, your or third parties' legal rights to forbid circumvention of technological measures.
4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program's source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice; keep intact all notices stating that this License and any non-permissive terms added in accord with section 7 apply to the code; keep intact all notices of the absence of any warranty; and give all recipients a copy of this License along with the Program.

You may charge any price or no price for each copy that you convey, and you may offer support or warranty protection for a fee.
5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to produce it from the Program, in the form of source code under the terms of section 4, provided that you also meet all of these conditions:

 * a) The work must carry prominent notices stating that you modified it, and giving a relevant date.
 * b) The work must carry prominent notices stating that it is released under this License and any conditions added under section 7. This requirement modifies the requirement in section 4 to “keep intact all notices”.
 * c) You must license the entire work, as a whole, under this License to anyone who comes into possession of a copy. This License will therefore apply, along with any applicable section 7 additional terms, to the whole of the work, and all its parts, regardless of how they are packaged. This License gives no permission to license the work in any other way, but it does not invalidate such permission if you have separately received it.
 * d) If the work has interactive user interfaces, each must display Appropriate Legal Notices; however, if the Program has interactive interfaces that do not display Appropriate Legal Notices, your work need not make them do so.

A compilation of a covered work with other separate and independent works, which are not by their nature extensions of the covered work, and which are not combined with it such as to form a larger program, in or on a volume of a storage or distribution medium, is called an “aggregate” if the compilation and its resulting copyright are not used to limit the access or legal rights of the compilation's users beyond what the individual works permit. Inclusion of a covered work in an aggregate does not cause this License to apply to the other parts of the aggregate.
6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sections 4 and 5, provided that you also convey the machine-readable Corresponding Source under the terms of this License, in one of these ways:

 * a) Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by the Corresponding Source fixed on a durable physical medium customarily used for software interchange.
 * b) Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by a written offer, valid for at least three years and valid for as long as you offer spare parts or customer support for that product model, to give anyone who possesses the object code either (1) a copy of the Corresponding Source for all the software in the product that is covered by this License, on a durable physical medium customarily used for software interchange, for a price no more than your reasonable cost of physically performing this conveying of source, or (2) access to copy the Corresponding Source from a network server at no charge.
 * c) Convey individual copies of the object code with a copy of the written offer to provide the Corresponding Source. This alternative is allowed only occasionally and noncommercially, and only if you received the object code with such an offer, in accord with subsection 6b.
 * d) Convey the object code by offering access from a designated place (gratis or for a charge), and offer equivalent access to the Corresponding Source in the same way through the same place at no further charge. You need not require recipients to copy the Corresponding Source along with the object code. If the place to copy the object code is a network server, the Corresponding Source may be on a different server (operated by you or a third party) that supports equivalent copying facilities, provided you maintain clear directions next to the object code saying where to find the Corresponding Source. Regardless of what server hosts the Corresponding Source, you remain obligated to ensure that it is available for as long as needed to satisfy these requirements.
 * e) Convey the object code using peer-to-peer transmission, provided you inform other peers where the object code and Corresponding Source of the work are being offered to the general public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Corresponding Source as a System Library, need not be included in conveying the object code work.

A “User Product” is either (1) a “consumer product”, which means any tangible personal property which is normally used for personal, family, or household purposes, or (2) anything designed or sold for incorporation into a dwelling. In determining whether a product is a consumer product, doubtful cases shall be resolved in favor of coverage. For a particular product received by a particular user, “normally used” refers to a typical or common use of that class of product, regardless of the status of the particular user or of the way in which the particular user actually uses, or expects or is expected to use, the product. A product is a consumer product regardless of whether the product has substantial commercial, industrial or non-consumer uses, unless such uses represent the only significant mode of use of the product.

“Installation Information” for a User Product means any methods, procedures, authorization keys, or other information required to install and execute modified versions of a covered work in that User Product from a modified version of its Corresponding Source. The information must suffice to ensure that the continued functioning of the modified object code is in no case prevented or interfered with solely because modification has been made.

If you convey an object code work under this section in, or with, or specifically for use in, a User Product, and the conveying occurs as part of a transaction in which the right of possession and use of the User Product is transferred to the recipient in perpetuity or for a fixed term (regardless of how the transaction is characterized), the Corresponding Source conveyed under this section must be accompanied by the Installation Information. But this requirement does not apply if neither you nor any third party retains the ability to install modified object code on the User Product (for example, the work has been installed in ROM).

The requirement to provide Installation Information does not include a requirement to continue to provide support service, warranty, or updates for a work that has been modified or installed by the recipient, or for the User Product in which it has been modified or installed. Access to a network may be denied when the modification itself materially and adversely affects the operation of the network or violates the rules and protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided, in accord with this section must be in a format that is publicly documented (and with an implementation available to the public in source code form), and must require no special password or key for unpacking, reading or copying.
7. Additional Terms.

“Additional permissions” are terms that supplement the terms of this License by making exceptions from one or more of its conditions. Additional permissions that are applicable to the entire Program shall be treated as though they were included in this License, to the extent that they are valid under applicable law. If additional permissions apply only to part of the Program, that part may be used separately under those permissions, but the entire Program remains governed by this License without regard to the additional permissions.

When you convey a copy of a covered work, you may at your option remove any additional permissions from that copy, or from any part of it. (Additional permissions may be written to require their own removal in certain cases when you modify the work.) You may place additional permissions on material, added by you to a covered work, for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add to a covered work, you may (if authorized by the copyright holders of that material) supplement the terms of this License with terms:

 * a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this License; or
 * b) Requiring preservation of specified reasonable legal notices or author attributions in that material or in the Appropriate Legal Notices displayed by works containing it; or
 * c) Prohibiting misrepresentation of the origin of that material, or requiring that modified versions of such material be marked in reasonable ways as different from the original version; or
 * d) Limiting the use for publicity purposes of names of licensors or authors of the material; or
 * e) Declining to grant rights under trademark law for use of some trade names, trademarks, or service marks; or
 * f) Requiring indemnification of licensors and authors of that material by anyone who conveys the material (or modified versions of it) with contractual assumptions of liability to the recipient, for any liability that these contractual assumptions directly impose on those licensors and authors.

All other non-permissive additional terms are considered “further restrictions” within the meaning of section 10. If the Program as you received it, or any part of it, contains a notice stating that it is governed by this License along with a term that is a further restriction, you may remove that term. If a license document contains a further restriction but permits relicensing or conveying under this License, you may add to a covered work material governed by the terms of that license document, provided that the further restriction does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the relevant source files, a statement of the additional terms that apply to those files, or a notice indicating where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form of a separately written license, or stated as exceptions; the above requirements apply either way.
8. Termination.

You may not propagate or modify a covered work except as expressly provided under this License. Any attempt otherwise to propagate or modify it is void, and will automatically terminate your rights under this License (including any patent licenses granted under the third paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you of the violation by some reasonable means, this is the first time you have received notice of violation of this License (for any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who have received copies or rights from you under this License. If your rights have been terminated and not permanently reinstated, you do not qualify to receive new licenses for the same material under section 10.
9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of the Program. Ancillary propagation of a covered work occurring solely as a consequence of using peer-to-peer transmission to receive a copy likewise does not require acceptance. However, nothing other than this License grants you permission to propagate or modify any covered work. These actions infringe copyright if you do not accept this License. Therefore, by modifying or propagating a covered work, you indicate your acceptance of this License to do so.
10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a license from the original licensors, to run, modify and propagate that work, subject to this License. You are not responsible for enforcing compliance by third parties with this License.

An “entity transaction” is a transaction transferring control of an organization, or substantially all assets of one, or subdividing an organization, or merging organizations. If propagation of a covered work results from an entity transaction, each party to that transaction who receives a copy of the work also receives whatever licenses to the work the party's predecessor in interest had or could give under the previous paragraph, plus a right to possession of the Corresponding Source of the work from the predecessor in interest, if the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or affirmed under this License. For example, you may not impose a license fee, royalty, or other charge for exercise of rights granted under this License, and you may not initiate litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent claim is infringed by making, using, selling, offering for sale, or importing the Program or any portion of it.
11. Patents.

A “contributor” is a copyright holder who authorizes use under this License of the Program or a work on which the Program is based. The work thus licensed is called the contributor's “contributor version”.

A contributor's “essential patent claims” are all patent claims owned or controlled by the contributor, whether already acquired or hereafter acquired, that would be infringed by some manner, permitted by this License, of making, using, or selling its contributor version, but do not include claims that would be infringed only as a consequence of further modification of the contributor version. For purposes of this definition, “control” includes the right to grant patent sublicenses in a manner consistent with the requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contributor's essential patent claims, to make, use, sell, offer for sale, import and otherwise run, modify and propagate the contents of its contributor version.

In the following three paragraphs, a “patent license” is any express agreement or commitment, however denominated, not to enforce a patent (such as an express permission to practice a patent or covenant not to sue for patent infringement). To “grant” such a patent license to a party means to make such an agreement or commitment not to enforce a patent against the party.

If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of the work is not available for anyone to copy, free of charge and under the terms of this License, through a publicly available network server or other readily accessible means, then you must either (1) cause the Corresponding Source to be so available, or (2) arrange to deprive yourself of the benefit of the patent license for this particular work, or (3) arrange, in a manner consistent with the requirements of this License, to extend the patent license to downstream recipients. “Knowingly relying” means you have actual knowledge that, but for the patent license, your conveying the covered work in a country, or your recipient's use of the covered work in a country, would infringe one or more identifiable patents in that country that you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey, or propagate by procuring conveyance of, a covered work, and grant a patent license to some of the parties receiving the covered work authorizing them to use, propagate, modify or convey a specific copy of the covered work, then the patent license you grant is automatically extended to all recipients of the covered work and works based on it.

A patent license is “discriminatory” if it does not include within the scope of its coverage, prohibits the exercise of, or is conditioned on the non-exercise of one or more of the rights that are specifically granted under this License. You may not convey a covered work if you are a party to an arrangement with a third party that is in the business of distributing software, under which you make payment to the third party based on the extent of your activity of conveying the work, and under which the third party grants, to any of the parties who would receive the covered work from you, a discriminatory patent license (a) in connection with copies of the covered work conveyed by you (or copies made from those copies), or (b) primarily for and in connection with specific products or compilations that contain the covered work, unless you entered into that arrangement, or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license or other defenses to infringement that may otherwise be available to you under applicable patent law.
12. No Surrender of Others' Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot convey a covered work so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not convey it at all. For example, if you agree to terms that obligate you to collect a royalty for further conveying from those to whom you convey the Program, the only way you could satisfy both those terms and this License would be to refrain entirely from conveying the Program.
13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have permission to link or combine any covered work with a work licensed under version 3 of the GNU Affero General Public License into a single combined work, and to convey the resulting work. The terms of this License will continue to apply to the part which is the covered work, but the special requirements of the GNU Affero General Public License, section 13, concerning interaction through a network will apply to the combination as such.
14. Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of the GNU General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies that a certain numbered version of the GNU General Public License “or any later version” applies to it, you have the option of following the terms and conditions either of that numbered version or of any later version published by the Free Software Foundation. If the Program does not specify a version number of the GNU General Public License, you may choose any version ever published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU General Public License can be used, that proxy's public statement of acceptance of a version permanently authorizes you to choose that version for the Program.

Later license versions may give you additional or different permissions. However, no additional obligations are imposed on any author or copyright holder as a result of your choosing to follow a later version.
15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be given local legal effect according to their terms, reviewing courts shall apply local law that most closely approximates an absolute waiver of all civil liability in connection with the Program, unless a warranty or assumption of liability accompanies a copy of the Program in return for a fee.

END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to achieve this is to make it free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to most effectively state the exclusion of warranty; and each file should have at least the “copyright” line and a pointer to where the full notice is found.

 <one line to give the program's name and a brief idea of what it does.>
 Copyright (C) <year> <name of author>

 This program is free software: you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License
 along with this program. If not, see <http://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short notice like this when it starts in an interactive mode:

 <program> Copyright (C) <year> <name of author>
 This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
 This is free software, and you are welcome to redistribute it
 under certain conditions; type `show c' for details.

The hypothetical commands `show w' and `show c' should show the appropriate parts of the General Public License. Of course, your program's commands might be different; for a GUI interface, you would use an “about box”.

You should also get your employer (if you work as a programmer) or school, if any, to sign a “copyright disclaimer” for the program, if necessary. For more information on this, and how to apply and follow the GNU GPL, see <http://www.gnu.org/licenses/>.

The GNU General Public License does not permit incorporating your program into proprietary programs. If your program is a subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If this is what you want to do, use the GNU Lesser General Public License instead of this License. But first, please read <http://www.gnu.org/philosophy/why-not-lgpl.html>.
\end{multicols}

\section{GNU Free Documentation License}
\begin{multicols}{4}

Version 1.3, 3 November 2008

Copyright © 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc. <http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.
0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful document "free" in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it, either commercially or noncommercially. Secondarily, this License preserves for the author and publisher a way to get credit for their work, while not being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves be free in the same sense. It complements the GNU General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software needs free documentation: a free program should come with manuals providing the same freedoms that the software does. But this License is not limited to software manuals; it can be used for any textual work, regardless of subject matter or whether it is published as a printed book. We recommend this License principally for works whose purpose is instruction or reference.
1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder saying it can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The "Document", below, refers to any such manual or work. Any member of the public is a licensee, and is addressed as "you". You accept the license if you copy, modify or distribute the work in a way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclusively with the relationship of the publishers or authors of the Document to the Document's overall subject (or to related matters) and contains nothing that could fall directly within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.) The relationship could be a matter of historical connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in the notice that says that the Document is released under this License. If a section does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The Document may contain zero Invariant Sections. If the Document does not identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, that is suitable for revising the document straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor, and that is suitable for input to text formatters or for automatic translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent file format whose markup, or absence of markup, has been arranged to thwart or discourage subsequent modification by readers is not Transparent. An image format is not Transparent if used for any substantial amount of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML, PostScript or PDF designed for human modification. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not generally available, and the machine-generated HTML, PostScript or PDF produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the material this License requires to appear in the title page. For works in formats which do not have any title page as such, "Title Page" means the text near the most prominent appearance of the work's title, preceding the beginning of the body of the text.

The "publisher" means any person or entity that distributes copies of the Document to the public.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands for a specific section name mentioned below, such as "Acknowledgements", "Dedications", "Endorsements", or "History".) To "Preserve the Title" of such a section when you modify the Document means that it remains a section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to the Document. These Warranty Disclaimers are considered to be included by reference in this License, but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may have is void and has no effect on the meaning of this License.
2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this License, the copyright notices, and the license notice saying this License applies to the Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this License. You may not use technical measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.
3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering more than 100, and the Document's license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The front cover must present the full title with all words of the title equally prominent and visible. You may add other material on the covers in addition. Copying with changes limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a computer-network location from which the general network-using public has access to download using public-standard network protocols a complete Transparent copy of the Document, free of added material. If you use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated location until at least one year after the last time you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of copies, to give them a chance to provide you with an updated version of the Document.
4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you release the Modified Version under precisely this License, with the Modified Version filling the role of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

 * A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous versions (which should, if there were any, be listed in the History section of the Document). You may use the same title as a previous version if the original publisher of that version gives permission.
 * B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in the Modified Version, together with at least five of the principal authors of the Document (all of its principal authors, if it has fewer than five), unless they release you from this requirement.
 * C. State on the Title page the name of the publisher of the Modified Version, as the publisher.
 * D. Preserve all the copyright notices of the Document.
 * E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.
 * F. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version under the terms of this License, in the form shown in the Addendum below.
 * G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document's license notice.
 * H. Include an unaltered copy of this License.
 * I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no section Entitled "History" in the Document, create one stating the title, year, authors, and publisher of the Document as given on its Title Page, then add an item describing the Modified Version as stated in the previous sentence.
 * J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for previous versions it was based on. These may be placed in the "History" section. You may omit a network location for a work that was published at least four years before the Document itself, or if the original publisher of the version it refers to gives permission.
 * K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the section, and preserve in the section all the substance and tone of each of the contributor acknowledgements and/or dedications given therein.
 * L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the equivalent are not considered part of the section titles.
 * M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified Version.
 * N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with any Invariant Section.
 * O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no material copied from the Document, you may at your option designate some or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version's license notice. These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your Modified Version by various parties—for example, statements of peer review or that the text has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already includes a cover text for the same cover, previously added by you or by arrangement made by the same entity you are acting on behalf of, you may not add another; but you may replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to assert or imply endorsement of any Modified Version.
5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined in section 4 above for modified versions, provided that you include in the combination all of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of the original author or publisher of that section if known, or else a unique number. Make the same adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original documents, forming one section Entitled "History"; likewise combine any sections Entitled "Acknowledgements", and any sections Entitled "Dedications". You must delete all sections Entitled "Endorsements".
6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License, and replace the individual copies of this License in the various documents with a single copy that is included in the collection, provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License, provided you insert a copy of this License into the extracted document, and follow this License in all other respects regarding verbatim copying of that document.
7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume of a storage or distribution medium, is called an "aggregate" if the copyright resulting from the compilation is not used to limit the legal rights of the compilation's users beyond what the individual works permit. When the Document is included in an aggregate, this License does not apply to the other works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less than one half of the entire aggregate, the Document's Cover Texts may be placed on covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the Document is in electronic form. Otherwise they must appear on printed covers that bracket the whole aggregate.
8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of section 4. Replacing Invariant Sections with translations requires special permission from their copyright holders, but you may include translations of some or all Invariant Sections in addition to the original versions of these Invariant Sections. You may include a translation of this License, and all the license notices in the Document, and any Warranty Disclaimers, provided that you also include the original English version of this License and the original versions of those notices and disclaimers. In case of a disagreement between the translation and the original version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual title.
9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided under this License. Any attempt otherwise to copy, modify, sublicense, or distribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you of the violation by some reasonable means, this is the first time you have received notice of violation of this License (for any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who have received copies or rights from you under this License. If your rights have been terminated and not permanently reinstated, receipt of a copy of some or all of the same material does not give you any rights to use it.
10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License "or any later version" applies to it, you have the option of following the terms and conditions either of that specified version or of any later version that has been published (not as a draft) by the Free Software Foundation. If the Document does not specify a version number of this License, you may choose any version ever published (not as a draft) by the Free Software Foundation. If the Document specifies that a proxy can decide which future versions of this License can be used, that proxy's public statement of acceptance of a version permanently authorizes you to choose that version for the Document.
11. RELICENSING

"Massive Multiauthor Collaboration Site" (or "MMC Site") means any World Wide Web server that publishes copyrightable works and also provides prominent facilities for anybody to edit those works. A public wiki that anybody can edit is an example of such a server. A "Massive Multiauthor Collaboration" (or "MMC") contained in the site means any set of copyrightable works thus published on the MMC site.

"CC-BY-SA" means the Creative Commons Attribution-Share Alike 3.0 license published by Creative Commons Corporation, a not-for-profit corporation with a principal place of business in San Francisco, California, as well as future copyleft versions of that license published by that same organization.

"Incorporate" means to publish or republish a Document, in whole or in part, as part of another Document.

An MMC is "eligible for relicensing" if it is licensed under this License, and if all works that were first published under this License somewhere other than this MMC, and subsequently incorporated in whole or in part into the MMC, (1) had no cover texts or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is eligible for relicensing.
ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document and put the following copyright and license notices just after the title page:

 Copyright (C) YEAR YOUR NAME.
 Permission is granted to copy, distribute and/or modify this document
 under the terms of the GNU Free Documentation License, Version 1.3
 or any later version published by the Free Software Foundation;
 with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
 A copy of the license is included in the section entitled "GNU
 Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the "with … Texts." line with this:

 with the Invariant Sections being LIST THEIR TITLES, with the
 Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these examples in parallel under your choice of free software license, such as the GNU General Public License, to permit their use in free software.
\end{multicols}

\section{GNU Lesser General Public License}
\begin{multicols}{4}

GNU LESSER GENERAL PUBLIC LICENSE

Version 3, 29 June 2007

Copyright © 2007 Free Software Foundation, Inc. <http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

This version of the GNU Lesser General Public License incorporates the terms and conditions of version 3 of the GNU General Public License, supplemented by the additional permissions listed below.
0. Additional Definitions.

As used herein, “this License” refers to version 3 of the GNU Lesser General Public License, and the “GNU GPL” refers to version 3 of the GNU General Public License.

“The Library” refers to a covered work governed by this License, other than an Application or a Combined Work as defined below.

An “Application” is any work that makes use of an interface provided by the Library, but which is not otherwise based on the Library. Defining a subclass of a class defined by the Library is deemed a mode of using an interface provided by the Library.

A “Combined Work” is a work produced by combining or linking an Application with the Library. The particular version of the Library with which the Combined Work was made is also called the “Linked Version”.

The “Minimal Corresponding Source” for a Combined Work means the Corresponding Source for the Combined Work, excluding any source code for portions of the Combined Work that, considered in isolation, are based on the Application, and not on the Linked Version.

The “Corresponding Application Code” for a Combined Work means the object code and/or source code for the Application, including any data and utility programs needed for reproducing the Combined Work from the Application, but excluding the System Libraries of the Combined Work.
1. Exception to Section 3 of the GNU GPL.

You may convey a covered work under sections 3 and 4 of this License without being bound by section 3 of the GNU GPL.
2. Conveying Modified Versions.

If you modify a copy of the Library, and, in your modifications, a facility refers to a function or data to be supplied by an Application that uses the facility (other than as an argument passed when the facility is invoked), then you may convey a copy of the modified version:

 * a) under this License, provided that you make a good faith effort to ensure that, in the event an Application does not supply the function or data, the facility still operates, and performs whatever part of its purpose remains meaningful, or
 * b) under the GNU GPL, with none of the additional permissions of this License applicable to that copy.

3. Object Code Incorporating Material from Library Header Files.

The object code form of an Application may incorporate material from a header file that is part of the Library. You may convey such object code under terms of your choice, provided that, if the incorporated material is not limited to numerical parameters, data structure layouts and accessors, or small macros, inline functions and templates (ten or fewer lines in length), you do both of the following:

 * a) Give prominent notice with each copy of the object code that the Library is used in it and that the Library and its use are covered by this License.
 * b) Accompany the object code with a copy of the GNU GPL and this license document.

4. Combined Works.

You may convey a Combined Work under terms of your choice that, taken together, effectively do not restrict modification of the portions of the Library contained in the Combined Work and reverse engineering for debugging such modifications, if you also do each of the following:

 * a) Give prominent notice with each copy of the Combined Work that the Library is used in it and that the Library and its use are covered by this License.
 * b) Accompany the Combined Work with a copy of the GNU GPL and this license document.
 * c) For a Combined Work that displays copyright notices during execution, include the copyright notice for the Library among these notices, as well as a reference directing the user to the copies of the GNU GPL and this license document.
 * d) Do one of the following:
 o 0) Convey the Minimal Corresponding Source under the terms of this License, and the Corresponding Application Code in a form suitable for, and under terms that permit, the user to recombine or relink the Application with a modified version of the Linked Version to produce a modified Combined Work, in the manner specified by section 6 of the GNU GPL for conveying Corresponding Source.
 o 1) Use a suitable shared library mechanism for linking with the Library. A suitable mechanism is one that (a) uses at run time a copy of the Library already present on the user's computer system, and (b) will operate properly with a modified version of the Library that is interface-compatible with the Linked Version.
 * e) Provide Installation Information, but only if you would otherwise be required to provide such information under section 6 of the GNU GPL, and only to the extent that such information is necessary to install and execute a modified version of the Combined Work produced by recombining or relinking the Application with a modified version of the Linked Version. (If you use option 4d0, the Installation Information must accompany the Minimal Corresponding Source and Corresponding Application Code. If you use option 4d1, you must provide the Installation Information in the manner specified by section 6 of the GNU GPL for conveying Corresponding Source.)

5. Combined Libraries.

You may place library facilities that are a work based on the Library side by side in a single library together with other library facilities that are not Applications and are not covered by this License, and convey such a combined library under terms of your choice, if you do both of the following:

 * a) Accompany the combined library with a copy of the same work based on the Library, uncombined with any other library facilities, conveyed under the terms of this License.
 * b) Give prominent notice with the combined library that part of it is a work based on the Library, and explaining where to find the accompanying uncombined form of the same work.

6. Revised Versions of the GNU Lesser General Public License.

The Free Software Foundation may publish revised and/or new versions of the GNU Lesser General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library as you received it specifies that a certain numbered version of the GNU Lesser General Public License “or any later version” applies to it, you have the option of following the terms and conditions either of that published version or of any later version published by the Free Software Foundation. If the Library as you received it does not specify a version number of the GNU Lesser General Public License, you may choose any version of the GNU Lesser General Public License ever published by the Free Software Foundation.

If the Library as you received it specifies that a proxy can decide whether future versions of the GNU Lesser General Public License shall apply, that proxy's public statement of acceptance of any version is permanent authorization for you to choose that version for the Library.
\end{multicols}
}
\pagebreak
\end{CJK}
\end{document}

headers/options.tex

% Festlegungen für minitoc
% \renewcommand{\myminitoc}{\minitoc}
% \renewcommand{\mtctitle}{Überblick}
% \setcounter{minitocdepth}{1}
% \dominitoc % diese Zeile aktiviert das Erstellen der minitocs, sie muss vor \tableofcontents kommen

% Seitenformat
% ------------
%\KOMAoption{paper}{A5} % zulässig: letter, legal, executive; A-, B-, C-, D-Reihen
\KOMAoption{open}{right}			% zulässig: right (jedes Kapitel beginnt rechts), left, any
\KOMAoption{numbers}{auto}
% Satzspiegel jetzt neu berechnen, damit er bei Kopf- und Fußzeilen beachtet wird
\KOMAoptions{DIV=13}

% Kopf- und Fusszeilen
% --------------------
% Breite und Trennlinie
%\setheadwidth[-6mm]{textwithmarginpar}
%\setheadsepline[textwithmarginpar]{0.4pt}
\setheadwidth{text}
\setheadsepline[text]{0.4pt}

% Variante 1: Kopf: links Kapitel, rechts Abschnitt (ohne Nummer); Fuß: außen die Seitenzahl
\ohead{\headmark}
\renewcommand{\chaptermark}[1]{\markleft{#1}{}}
\renewcommand{\sectionmark}[1]{\markright{#1}{}}
\ofoot[\pagemark]{\pagemark}

% Variante 2: Kopf außen die Seitenzahl, Fuß nichts
%\ohead{\pagemark}
%\ofoot{}

% Standardschriften
% -----------------
%\KOMAoption{fontsize}{18pt}
\addtokomafont{disposition}{\rmfamily}
\addtokomafont{title}{\rmfamily}
\setkomafont{pageheadfoot}{\normalfont\rmfamily\mdseries}

% vertikaler Ausgleich
% --------------------
% nein -> \raggedbottom
% ja -> \flushbottom aber ungeeignet bei Fußnoten
%\raggedbottom
\flushbottom

% Tiefe des Inhaltsverzeichnisses bestimmen
% ---
% -1 nur \part{}
% 0 bis \chapter{}
% 1 bis \section{}
% 2 bis \subsection{} usw.
\newcommand{\mytocdepth}{1}

% mypart - Teile des Buches und Inhaltsverzeichnis
% --
% Standard: nur im Inhaltsverzeichnis, zusätzlicher Eintrag ohne Seitenzahl
% Variante: nur im Inhaltsverzeichnis, zusätzlicher Eintrag mit Seitenzahl
%\renewcommand{\mypart}[1]{\addcontentsline{toc}{part}{#1}}
% Variante: mit eigener Seite vor dem ersten Kapitel, mit Eintrag und Seitenzahl im Inhaltsverzeichnis
\renewcommand{\mypart}[1]{\part{#1}}

% maketitle
% ---
% Bestandteile des Innentitels
%\title{Einführung in SQL}
%\author{Jürgen Thomas}
%\subtitle{Datenbanken bearbeiten}
\date{}
% Bestandteile von Impressum und CR
% Bestandteile von Impressum und CR

\uppertitleback{
%Detaillierte Daten zu dieser Publikation sind bei Wikibooks zu erhalten:\newline{} \url{http://de.wikibooks.org/}
%Diese Publikation ist bei der Deutschen Nationalbibliothek registriert. Detaillierte Daten sind im Internet zu erhalten: \newline{}\url{https://portal.d-nb.de/opac.htm?method=showSearchForm#top}
%Diese Publikation ist bei der Deutschen Nationalbibliothek registriert. Detaillierte Daten sind im Internet unter der Katalog-Nr. 1008575860 zu erhalten: \newline{}\url{http://d-nb.info/1008575860}

%Namen von Programmen und Produkten sowie sonstige Angaben sind häufig geschützt. Da es auch freie Bezeichnungen gibt, wird das Symbol \textregistered{} nicht verwendet.

%Erstellt am
\today{}
}

\lowertitleback{
{\footnotesize
On the 28th of April 2012 the contents of the English as well as German Wikibooks and Wikipedia projects were licensed under Creative Commons Attribution-ShareAlike 3.0 Unported license. An URI to this license is given in the list of figures on page \pageref{ListOfFigures}. If this document is a derived work from the contents of one of these projects and the content was still licensed by the project under this license at the time of derivation this document has to be licensed under the same, a similar or a compatible license, as stated in section 4b of the license. The list of contributors is included in chapter Contributors on page \pageref{Contributors}. The licenses GPL, LGPL and GFDL are included in chapter Licenses on page \pageref{Licenses}, since this book and/or parts of it may or may not be licensed under one or more of these licenses, and thus require inclusion of these licenses. The licenses of the figures are given in the list of figures on page \pageref{ListOfFigures}. This PDF was generated by the \LaTeX{} typesetting software. The \LaTeX{} source code is included as an attachment ({\tt source.7z.txt}) in this PDF file. To extract the source from the PDF file, we recommend the use of \url{http://www.pdflabs.com/tools/pdftk-the-pdf-toolkit/} utility or clicking the paper clip attachment symbol on the lower left of your PDF Viewer, selecting {\tt Save Attachment}. After extracting it from the PDF file you have to rename it to {\tt source.7z}. To uncompress the resulting archive we recommend the use of \url{http://www.7-zip.org/}. The \LaTeX{} source itself was generated by a program written by Dirk Hünniger, which is freely available under an open source license from \url{http://de.wikibooks.org/wiki/Benutzer:Dirk_Huenniger/wb2pdf}. This distribution also contains a configured version of the {\tt pdflatex
} compiler with all necessary packages and fonts needed to compile the \LaTeX{} source included in this PDF file.
}}

\renewcommand{\mysubtitle}[1]{}
\renewcommand{\mymaintitle}[1]{}
\renewcommand{\myauthor}[1]{}

\newenvironment{myshaded}{%
 \def\FrameCommand{ \hskip-2pt \fboxsep=\FrameSep \colorbox{shadecolor}}%
 \MakeFramed {\advance\hsize-\width \FrameRestore}}%
 {\endMakeFramed}

headers/packages1.tex

% Standard für Formatierung
%\usepackage[utf8]{inputenc} % use \usepackage[utf8]{inputenc} for tex4ht
\usepackage[usenames]{color}
\usepackage{textcomp}
\usepackage{alltt}
\usepackage{syntax}
\usepackage{parskip}
\usepackage[normalem]{ulem}
\usepackage[pdftex,unicode=true]{hyperref}
\usepackage{tocstyle}
\usepackage[defblank]{paralist}
\usepackage{trace}
\usepackage{bigstrut}
% Minitoc
%\usepackage{minitoc}

% Keystroke
\usepackage{keystroke}
\usepackage{supertabular}

\usepackage{wrapfig}
\newcommand{\bigs}{\bigstrut{}}

headers/packages2.tex

% für Zeichensätze

%replacemnt for pslatex
\usepackage{mathptmx}
\usepackage[scaled=.92]{helvet}
\usepackage{courier}

\usepackage[T1]{fontenc} % disable this line for tex4ht

% für Tabellen
\usepackage{multirow}
\usepackage{multicol}
\usepackage{array,ragged2e}
\usepackage{longtable}

% für Kopf- und Fußzeilen, Fußnoten
\usepackage{scrpage2}
\usepackage{footnote}

% für Rahmen
\usepackage{verbatim}
\usepackage{framed}
\usepackage{mdframed}
\usepackage{listings}
\usepackage{lineno}

% für Symbole
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{amsfonts}

\usepackage{pifont}
\usepackage{marvosym}
\let\Cross\undefined
\usepackage{fourier-orns} % disable this line for tex4ht % für weitere Logos, z.B. \danger

% für Grafik-Einbindung
\usepackage[pdftex]{graphicx}
\usepackage{wasysym}
\let\Square\undefined

% unklare Verwendung
\usepackage{bbm}
\usepackage{skull}

%arabtex
\usepackage[T1]{tipa} % disable this line for tex4ht

\usepackage{fancyvrb}
\usepackage{bbding}
\usepackage{textcomp}
\usepackage[table]{xcolor}
\usepackage{microtype}
\usepackage{lscape}
\usepackage{amsthm}
\usepackage{tocstyle}

headers/paper.tex

\KOMAoption{paper}{A4}

headers/svg.tex

\newcommand{\SVGExtension}{png}

headers/templates-chemie.tex

\newcommand{\TemplateEnergieerhaltung}[1]{
\begin{longtable}{|>{\RaggedRight}p{\linewidth}|} \hline
{\bfseries Gesetz von der Erhaltung der Energie}\\ \hline
{\bfseries Albert Einstein (14.3. 1879 - 18.4.1955)}: Umwandlung von Energie in Masse und von Masse in Energie ist möglich.\\
$E = m \cdot c^2$ (c = Lichtgeschwindigkeit = 300.000 km/s)\\ \hline
{\bfseries
Bei einer chemischen Reaktion ist die Summe aus Masse und Energie der Ausgangsstoffe gleich der Summe aus Masse und Energie der Endstoffe.
}\\\hline
Wird Energie frei, tritt ein unwägbar kleiner Massenverlust auf. Wird Energie investiert, tritt Massenzunahme auf. Dieses kann allerdings mit herkömmlichen Waagen nicht gemessen werden. \\ \hline
\end{longtable}
}

\newcommand{\TemplatePeriodensystem}[1]{
Hier sollte das Periodensystem stehen. Ein solches wird sehr wahrscheinlich von Orlando Camargo Rodriguez frei zur Verfügung gestellt werden. Dateiname: tabela_periodica.tex ist bereits online. Lizenz aber noch nicht genau genug definiert.
}

\newcommand{\TemplateMassenerhaltung}[1]{
\begin{longtable}{|>{\RaggedRight}p{\linewidth}|} \hline
{\bfseries Gesetz von der Erhaltung der Masse}\\ \hline
{\bfseries Antoine Lavoisier (1743 - 1794)}: Rien ne se perd, rien ne se crée\\
Die Gesamtmasse ändert sich bei chemischen Reaktionen (im Rahmen der Messgenauigkeiten) nicht.\\ \hline
Masse der Ausgangsstoffe=Masse der Produkte \\ \hline
\end{longtable}
}

\newcommand{\TemplateDaltonsAtomhyposthese}[1]{
\begin{longtable}{|>{\RaggedRight}p{\linewidth}|} \hline
\begin{enumerate}
\item Materie besteht aus extrem kleinen, bei Reaktion ungeteilt bleibenden Teilchen, den Atomen.
\item Die Masse der Atome eines bestimmten Elements sind gleich (alle Atome eines Elements sind gleich). Die Atome verschiedener Elemente unterscheiden sich in ihren Eigenschaften (zum Beispiel in Größe, Masse, usw.).
\item Es existieren so viele Atomsorten wie Elemente.
\item Bei chemischen Reaktionen werden Atome in neuer Kombination vereinigt oder voneinander getrennt.
\item Eine bestimmte Verbindung wird von den Atomen der betreffenden Elemente in einem bestimmten, einfachen Zahlenverhältnis gebildet.
\end{enumerate}
\\ \hline
\end{longtable}
}

\newcommand{\TemplateUnveraenderlicheMassenverhaeltnisse}[1]{
\begin{longtable}{|>{\RaggedRight}p{\linewidth}|} \hline
{\bfseries Gesetz der unveränderlichen Massenverhältnisse}\\ \hline
Louis Proust (1799) \\ \hline
Bei chemischen Reaktionen, also Vereinigung beziehungsweise Zersetzung, reagieren die Reinstoffe immer in einem von der Natur vorgegebenen festen Verhältnis miteinander.
\\ \hline
\end{longtable}
}

headers/templates-dirk.tex

\newenvironment{TemplateCodeInside}[6]
{
\def\leftbox{#5}
\def\rightbox{}
\def\framecolor{shadecolor}
\ifstr{#4}{e}{ \def\framecolor{red}
 \def\rightbox{Falsch} } {}
\ifstr{#4}{v}{ \def\framecolor{mydarkgreen}
 \def\rightbox{Richtig} } {}

\begin{scriptsize}
\begin{mdframed} [
backgroundcolor=shadecolor, linewidth=0pt,
skipabove=#2, skipbelow=#3,
innertopmargin=0.5ex, innerbottommargin=0]
\ttfamily

\ifstr{\leftbox} {} {
 % Ausgabe nur, wenn rechte Box Inhalt hat, dann links mit Standardtext
 \ifstr{\rightbox}{}{}
 { \fbox{Quelltext} \hfill \textbf{\color{\framecolor} \fcolorbox{black}{white}{\rightbox} }
 }
} {
\fbox{\leftbox}
% und bei Bedarf zusätzlich rechts die zweite Box
 \ifstr{\rightbox}{}{}
 { \hfill \textbf{\color{\framecolor} \fcolorbox{black}{white}{\rightbox} }
 }
}

\begin{flushleft}
} % Ende der begin-Anweisungen, es folgen die end-Anweisungen
{\end{flushleft}\end{mdframed}\end{scriptsize} }

\newcommand{\TemplateCode}[9]
% **
{

\ifstr{#1}{}{~}{
\minisec{\normalfont \scriptsize \centering \textbf{\textit{#1}} \medskip } }

\begin{scriptsize}

% Code-Abschnitt mit #4
\begin{TemplateCodeInside} {} {0pt} {0pt} {#3} {#5} {}
#6
\end{TemplateCodeInside}

% Ausgabetext mit #4
#4

% #2 Fußzeile ausgeben, sofern vorgesehen
\ifstr{#2} {} {} { \centering \textit{#2} \medskip \\ }

\end{scriptsize}
}

headers/templates-juetho.tex

\newcommand{\wbtempcolora}{white}
\newcommand{\wbtempcolorb}{white}
\newcommand{\wbtempcolorc}{white}
\newcommand{\wbtemptexta}{}
\newcommand{\wbtemptextb}{}
\newcommand{\wbtemptextc}{}
\newlength{\wbtemplengtha}
\setlength{\wbtemplengtha}{0pt}
\newlength{\wbtemplengthb}
\setlength{\wbtemplengthb}{0pt}
\newlength{\wbtemplengthc}
\setlength{\wbtemplengthc}{0pt}
\newlength{\wbtemplengthd}
\setlength{\wbtemplengthd}{0pt}
\newlength{\wbtemplengthe}
\setlength{\wbtemplengthe}{0pt}
\newcount\wbtempcounta
\wbtempcounta=0
\newcount\wbtempcountb
\wbtempcountb=0
\newcount\wbtempcountc
\wbtempcountc=0

\newenvironment{TemplateCodeInside}[6]
% no more parameters
% **
% Template Code Inside
% Darstellung eines Code-Teils oder der Code-Ausgabe
% wird für folgende Wiki-Vorlagen benutzt:
% Vorlage:Syntax
% <source>...</source>
% Regal:Programmierung: Vorlage:CodeIntern
% außerdem mehrfache Verwendung durch das Makro "Template Code"
%
% #1 leer Anzeige als Code: grauer Hintergrund, ohne Rahmen
% sonst Anzeige als Ausgabe: weißer Hintergrund, mit Rahmen
% #2 Abstand vor dem Rahmen
% 0pt als Standardwert
% \baselineskip nur dann, wenn es der erste Teil innerhalb der Umgebung ist
% und keine Kopfzeile vorgesehen ist
% #3 Abstand nach dem Rahmen
% 0pt als Standardwert
% \baselineskip nur dann, wenn es der letzte Teil innerhalb der Umgebung ist
% und keine Fußzeile vorgesehen ist
% #4 spezieller Hinweis, verwendet für die Zusatzbox rechts
% leer als Standardwert
% e steht für error, also Zusatz 'Falsch' in rot
% v steht für valid, also Zusatz 'Richtig' in grün (genauer: jeder beliebige andere Inhalt)
% #5 spezieller Text für die Zusatzbox links
% leer als Standardwert
% spezieller Hinweis: Wenn dieser Text leer ist, aber 'e' oder 'v' vorgesehen ist,
% dann wird 'Quelltext' eingetragen
% #6 Zeilennummerierung *** funktioniert noch nicht, wird vorerst ignoriert ***
% leer als Standardwert -> ausschalten
% true als Spezialwert -> einschalten
% **
% auch wenn die Variablen am Anfang dieser Datei nur lokal überschrieben werden,
% muss zwischen den Variablen von TemplateCode und TemplateCodeInside unterschieden werden.
% In TemplateCode werden die folgenden Variablen benutzt:
% \wbtemplengthb für skipabove
% \wbtemplengthc für skipbelow
% \wbtempcounta als Zwischenspeicher
% \wbtemptexta als Ausgabetext, der automatisch erzeugt wird
%
% In TemplateCodeInside werden die folgenden Variablen benutzt:
% \wbtemplengtha für framelinewidth
% \wbtemplengthd für innertopmargin
% \wbtempcolorb für die Schriftfarbe der rechten Box
% **
{
% Argumente für Hintergrund und Rahmen definieren
% \wbtemplengtha für framelinewidth
\definecolor{framebackground}{gray}{0.9}
% Argumente mit Inhalt versehen
% #1 - Standard leer: als Code anzeigen
% mit Inhalt: als Ausgabe anzeigen
\ifstr{#1}{}{\setlength{\wbtemplengtha}{0pt}}
{ \definecolor{framebackground}{rgb}{1.0,1.0,1.0}
\setlength{\wbtemplengtha}{1pt} }

% 2./3.Parameter in Variable übernehmen
% es gelingt mir nicht, unten #2 und #3 direkt zuzuweisen
%\setlength{\wbtemplengthb}{#2}
%\setlength{\wbtemplengthc}{#3}

% 4./5.Parameter in Variable übernehmen
% der Box für den rechten Rahmen wird der richtige Text und die richtige Farbe zugewiesen
% Standard: grün, 'Richtig'
% im Fall 'e': rot, 'Falsch'
\renewcommand{\wbtempcolorb}{mydarkgreen}
\renewcommand{\wbtemptextb}{Richtig}
\ifstr{#4} {e} { \renewcommand{\wbtempcolorb}{red} \renewcommand{\wbtemptextb}{Falsch} } {}

% Festlegen des oberen inneren Rands:
% Standard als normaler Zeilenabstand
% wenn es keine obere Box gibt, dann genügt der Standardabstand
\setlength{\wbtemplengthd}{0pt}
\ifstr{#4}{}{}{\setlength{\wbtemplengthd}{\baselineskip}}
\ifstr{#5}{}{}{\setlength{\wbtemplengthd}{\baselineskip}}

% Aufruf von mdframed mit den festgelegten Parametern
\begin{scriptsize}
%\begin{mdframed} [backgroundcolor=framebackground,
%linewidth=\wbtemplengtha, %skipabove=\wbtemplengthb, skipbelow=\wbtemplengthc,
%splittopskip=5\baselineskip, splitbottomskip=5\baselineskip,
%skipabove=#2, skipbelow=#3,
%innertopmargin=\wbtemplengthd, innerbottommargin=1ex]
\begin{shaded}
\ttfamily
% Anzeige der kleinen Boxen nur dann, wenn eine davon nicht leer ist
\ifstr{#5}{}
% wenn die rechte Box vorgesehen ist und die linke nicht, kommt links der Standardtext
{ \ifstr{#4}{}{}
 {\fbox{Quelltext} \hfill \textbf{\color{\wbtempcolorb} \fcolorbox{black}{white}{\wbtemptextb}} }
}
% andernfalls kommt links auf jeden Fall die vorgesehene Box
{ \fbox{#5}
% und bei Bedarf zusätzlich rechts die zweite Box
 \ifstr{#4}{}{}{\hfill \textbf{\color{\wbtempcolorb} \fcolorbox{black}{white}{\wbtemptextb}}}
}

%\ifstr{#6}{true}{\linenumbers[1]}{}
%\begin{lstlisting}
\begin{flushleft}
} % Ende der begin-Anweisungen, es folgen die end-Anweisungen
{\end{flushleft}
%\end{lstlisting}
%\end{mdframed}
\end{shaded}
\end{scriptsize}}

\newcommand{\TemplateCode}[9]
% no more parameters
% **
% Template Code
% Darstellung von Code (einzeln oder mehrfach, Kopf- und Fußzeile,
% mit oder ohne Ausgabe)
% wird für folgende Wiki-Vorlagen benutzt:
% Regal:Programmierung: Vorlage:Code
% Regal:Programmierung: Vorlage:NETCode
% Regal:Programmierung: Vorlage:MultiCode
%
% #1 Inhalt der Kopfzeile
% kann auch leer sein
% #2 Inhalt der Fußzeile
% kann auch leer sein
% #3 spezieller Hinweis, verwendet für die Zusatzbox rechts
% leer als Standardwert
% e steht für error, also Zusatz 'Falsch' in rot
% v steht für valid, also Zusatz 'Richtig' in grün (genauer: jeder beliebige andere Inhalt)
% #4 spezieller Text für die Zusatzbox links
% leer als Standardwert
% spezieller Hinweis: Wenn dieser Text leer ist, aber 'e' oder 'v' vorgesehen ist,
% dann wird 'Quelltext' eingetragen
% spezieller Hinweis: Wenn der Text #6 vorgesehen ist und außerdem mindestens
% einer der Texte #7/#8/#9, dann muss sinnvollerweise der Parameter #4
% für den Text #6 verwendet werden
% #5 Inhalt für den Ausgabe-Teil
% kann auch leer sein
% #6 Inhalt für den Quelltext 1
% kann auch leer sein
% bei NETCode und MultiCode der Text für C++
% bei DualCode der Text für lang1
% #7 Inhalt für den Quelltext 2
% kann auch leer sein
% bei NETCode und MultiCode der Text für C#
% bei DualCode der Text für lang2
% #8 Inhalt für den Quelltext 3
% kann auch leer sein
% bei NETCode und MultiCode der Text für VB.NET
% #9 Inhalt für den Quelltext 4
% kann auch leer sein
% bei MultiCode der Text für Delphi Prism
% **
% Hier werden die folgenden Variablen von wiki-templates.tex benutzt;
% diese dürfen in TemplateCodeInside nicht benutzt werden, weil sie unter Umständen
% überschrieben werden könnten.
% \wbtemplengthb für skipabove
% \wbtemplengthc für skipbelow
% \wbtempcounta als Zwischenspeicher
% \wbtemptexta als Ausgabetext, der automatisch erzeugt wird
%
% **
{
% Die Umgebung Template Code Inside setzt die Schriftgröße ebenfalls fest,
% dies soll aber auch für Kopf- und Fußzeile gelten.
\begin{scriptsize}

% #1 Kopfzeile ausgeben, sofern vorgesehen
% wenn sie nicht vorgesehen ist, muss der obere Abstand definiert werden
% \wbtemplengthb für skipabove
\ifstr{#1}{}
{ \setlength{\wbtemplengthb}{\baselineskip} }
{ \minisec{\normalfont \scriptsize \centering \textbf{#1} \\[-0.5\baselineskip]}
 \setlength{\wbtemplengthb}{0pt} }

% #2 unterer Abstand ist standardmäßig 0 pt, aber beim letzten Abschnitt
% ohne Fußzeile ist der Abstand festzusetzen
\setlength{\wbtemplengthc}{0pt}
% \wbtemplengthc für skipbelow
% \wbtempcounta als temp-Variable verwenden, welcher Abschnitt der letzte ist
\wbtempcounta=0
% prüfe zunächst, bei welcher Ausgabe der "Abstand nachher" auf \baselineskip gesetzt werden muss;
% in allen anderen Fällen bleibt es beim Standardwert 0pt
% * nur erforderlich, wenn keine Fußzeile vorgesehen ist
% * wenn Ausgabe #4 vorgesehen ist, dann dort
% * wenn Quellcode #9 vorgesehen ist, dann dort
% * wenn Quellcode #8 vorgesehen ist, dann dort
% * wenn Quellcode #7 vorgesehen ist, dann dort
% * wenn Quellcode #6 vorgesehen ist, dann dort
% das einfachste Verfahren ist, dies vorwärts zu prüfen
\ifstr{#2}{}{}{
 \ifstr{#6}{}{}{\wbtempcounta=6 }
 \ifstr{#7}{}{}{\wbtempcounta=7 }
 \ifstr{#8}{}{}{\wbtempcounta=8 }
 \ifstr{#9}{}{}{\wbtempcounta=9 }
 \ifstr{#4}{}{}{\wbtempcounta=10 }
}

% nach der ersten Ausgabe wird der "Abstand vorher" immer auf 0 gesetzt
% Quelltext 1 mit #6
\ifstr{#6}{}{}{
 % Abstand dahinter anpassen, sofern bei diesem Abstand vorgemerkt
 \ifnum\wbtempcounta=6 \setlength{\wbtemplengthc}{\baselineskip}
 \else \setlength{\wbtemplengthc}{0pt} \fi
 \begin{TemplateCodeInside} {} {\wbtemplengthb} {\wbtemplengthc} {#3} {#5} {}
#6
 \end{TemplateCodeInside}
 \setlength{\wbtemplengthb}{0pt}
}

% in gleicher Weise werden die weiteren Teile ausgegeben, bei #7 #8 #9 gibt es Standardtexte
% Quelltext 2 mit #7
\ifstr{#7}{}{}{
 % Abstand dahinter anpassen, sofern bei diesem Abstand vorgemerkt
 \ifnum\wbtempcounta=7 \setlength{\wbtemplengthc}{\baselineskip}
 \else \setlength{\wbtemplengthc}{0pt} \fi
 \ifstr{#5}{}{\renewcommand{\wbtemptexta}{}}{\renewcommand{\wbtemptexta}{C\#-Quelltext}}
 \begin{TemplateCodeInside} {} {\wbtemplengthb} {\wbtemplengthc} {#3} {\wbtemptexta} {}
#7
 \end{TemplateCodeInside}
 \setlength{\wbtemplengthb}{0pt}
}

% Quelltext 3 mit #8
\ifstr{#8}{}{}{
 % Abstand dahinter anpassen, sofern bei diesem Abstand vorgemerkt
 \ifnum\wbtempcounta=8 \setlength{\wbtemplengthc}{\baselineskip}
 \else \setlength{\wbtemplengthc}{0pt} \fi
 \ifstr{#5}{}{\renewcommand{\wbtemptexta}{}}{\renewcommand{\wbtemptexta}{VB.NET-Quelltext}}
 \begin{TemplateCodeInside} {} {\wbtemplengthb} {\wbtemplengthc} {#3} {\wbtemptexta} {}
#8
 \end{TemplateCodeInside}
 \setlength{\wbtemplengthb}{0pt}
}

% Quelltext 4 mit #9
\ifstr{#9}{}{}{
 % Abstand dahinter anpassen, sofern bei diesem Abstand vorgemerkt
 \ifnum\wbtempcounta=9 \setlength{\wbtemplengthc}{\baselineskip}
 \else \setlength{\wbtemplengthc}{0pt} \fi
 \ifstr{#5}{}{\renewcommand{\wbtemptexta}{}}{\renewcommand{\wbtemptexta}{C\#-Quelltext}}
 \begin{TemplateCodeInside} {} {\wbtemplengthb} {\wbtemplengthc} {#3} {\wbtemptexta} {}
#9
 \end{TemplateCodeInside}
 \setlength{\wbtemplengthb}{0pt}
}

% Ausgabetext mit #4
\ifstr{#4}{}{}{
 % Abstand dahinter anpassen, sofern bei diesem Abstand vorgemerkt
 \ifnum\wbtempcounta=10 \setlength{\wbtemplengthc}{\baselineskip}
 \else \setlength{\wbtemplengthc}{0pt} \fi
 \ifstr{#5}{}{\renewcommand{\wbtemptexta}{}}{\renewcommand{\wbtemptexta}{Ausgabe}}
 \begin{TemplateCodeInside} {x} {\wbtemplengthb} {\wbtemplengthc} {} {\wbtemptexta} {}
#4
 \end{TemplateCodeInside}
 \setlength{\wbtemplengthb}{0pt}
}

% #2 Fußzeile ausgeben, sofern vorgesehen
% wenn sie nicht vorgesehen ist, muss der obere Abstand definiert werden
\ifstr{#2}{}{}
{ \centering \textbf{#2} \medskip \\ }

\end{scriptsize}
}

\begin{comment}
\newcommand{\TemplatePreformat}[1]
{\begin{TemplateCodeInside}{x}{\baselineskip}{\baselineskip}{}{}{}
#1
\end{TemplateCodeInside}
}

\newcommand{\TemplateSpaceIndent}[1]
{\begin{TemplateCodeInside}{x}{\baselineskip}{\baselineskip}{}{}{}
#1
\end{TemplateCodeInside}
}
\end{comment}

\newcommand{\ubung}{\ding{228} \textbf{Aufgabe:}~}

headers/templates.tex

\newcommand{\wbtempcolora}{white}
\newcommand{\wbtempcolorb}{white}
\newcommand{\wbtempcolorc}{white}
\newcommand{\wbtemptexta}{}
\newcommand{\wbtemptextb}{}
\newcommand{\wbtemptextc}{}
\newlength{\wbtemplengtha}
\setlength{\wbtemplengtha}{0pt}
\newlength{\wbtemplengthb}
\setlength{\wbtemplengthb}{0pt}
\newlength{\wbtemplengthc}
\setlength{\wbtemplengthc}{0pt}
\newlength{\wbtemplengthd}
\setlength{\wbtemplengthd}{0pt}
\newlength{\wbtemplengthe}
\setlength{\wbtemplengthe}{0pt}
\newcount\wbtempcounta
\wbtempcounta=0
\newcount\wbtempcountb
\wbtempcountb=0
\newcount\wbtempcountc
\wbtempcountc=0

\newcommand{\CPPAuthorsTemplate}[4]{
\LaTeXZeroBoxTemplate{
The following people are authors to this book:

#3

You can verify who has contributed to this book by examining the history logs at Wikibooks (http://en.wikibooks.org/).

Acknowledgment is given for using some contents from other works like #1, as from the authors #2.

The above authors release their work under the following license:

This work is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license. In short: you are free to share and to make derivatives of this work under the conditions that you appropriately attribute it, and that you only distribute it under the same, similar or a compatible license. Any of the above conditions can be waived if you get permission from the copyright holder.
Unless otherwise noted, #4 used in this book have their own copyright, may use different licenses than the one used here, and were not created by the above authors. The authors, contributors, and licenses used should be acknowledged separately.}
}

\newcommand{\tlTemplate}[1]{{\{\{{\ttfamily #1}\}\}}}

\newcommand{\matrixdimTemplate}[1]{
\definecolor{shadecolor}{gray}{0.9}
\begin{myshaded}
{\bfseries Matrix Dimensions: }\\
A: $p \times p$ \\
B: $p \times q$\\
C: $r \times p$\\
D: $r \times q$\\
\end{myshaded}
}

\newcommand{\matlabTemplate}[1]{
\definecolor{shadecolor}{gray}{0.9}
\begin{myshaded}
This operation can be performed using this MATLAB command:
{\ttfamily #1}
\end{myshaded}}

\newcommand{\PrintUnitPage}[3]{\pagebreak
\begin{flushleft}
{\bfseries \Large #1}
\end{flushleft}

\begin{longtable}{>{\RaggedRight}p{0.5\linewidth}>{\RaggedRight}p{0.5\linewidth}}
& #2
\end{longtable}}

\newcommand{\LaTeXCodeTipTemplate}[3]{

\definecolor{shadecolor}{gray}{0.9}
\begin{myshaded}
#1 \\
#2 \\
#3
\end{myshaded}
}

\newcommand{\DisassemblySyntax}[1]{

\definecolor{shadecolor}{gray}{0.9}
\begin{myshaded}
This code example uses #1 Syntax
\end{myshaded}}

\newcommand{\LaTeXDeutschTemplate}[1]{ {\bfseries deutsch:} #1 }

\newcommand{\LaTeXNullTemplate}[1]{}
\newcommand{\LatexSymbol}[1]{\LaTeX}

\newcommand{\LaTeXDoubleBoxTemplate}[2]{

\begin{minipage}{\linewidth}\definecolor{shadecolor}{gray}{0.9}\begin{myshaded}{\bfseries #1} \\
#2
\end{myshaded}
\end{minipage}

}

\newcommand{\LaTeXSimpleBoxTemplate}[2]{
{\bfseries #1} \\
#2
}

\newcommand{\SolutionBoxTemplate}[2]{
#2
}

\newcommand{\LaTeXDoubleBoxOpenTemplate}[2]{

\definecolor{shadecolor}{gray}{0.9}\begin{myshaded}{\bfseries #1} \\
#2
\end{myshaded}

}

\newcommand{\LaTeXLatinExcerciseTemplate}[3]{

\definecolor{shadecolor}{gray}{0.9}\begin{myshaded}{\bfseries Excercise: #1} \\
#2 \\
{\bfseries Solution}
#3
\end{myshaded}

}

\newcommand{\LaTeXShadedColorBoxTemplate}[2]{
{\linewidth}#1\begin{myshaded}
#2
\end{myshaded}
}

\newcommand{\PGP}[1]{PGP:#1}

\newcommand{\ADAFile}[1]{\LaTeXZeroBoxTemplate{File: #1}}
\newcommand{\ADASample}[1]{\LaTeXZeroBoxTemplate{This code sample is also available in #1}}

\newcommand{\LaTeXZeroBoxTemplate}[1]{
\begin{minipage}{\linewidth}\definecolor{shadecolor}{gray}{0.9}\begin{myshaded}
#1
\end{myshaded}
\end{minipage}
}

\newcommand{\LaTeXZeroBoxOpenTemplate}[1]{
\definecolor{shadecolor}{gray}{0.9}\begin{myshaded}
#1
\end{myshaded}
}

\newcommand{\PDFLink}[1]{
\textbf{PDF} #1
}

\newcommand{\SonnensystemFakten}[3]{
#1 \\
\definecolor{shadecolor}{gray}{0.9}\begin{myshaded}{\bfseries #2} \\
#3 \\
\end{myshaded}
}

\newcommand{\VorlageReferenzenEintrag}[3]{
\begin{longtable}{p{0.2\linewidth}p{0.8\linewidth}}

{[\bfseries #1]} & {\itshape #2} #3 \\
\end{longtable}

}

\newcommand{\MBOX}[2]{\definecolor{shadecolor}{gray}{0.9}
\begin{myshaded}
\begin{longtable}{p{0.2\linewidth}p{0.7\linewidth}}
#1 & #2 \\
\end{longtable}
\end{myshaded}}

\newcommand{\LaTeXIdentityTemplate}[1]{#1
}

\newcommand{\TychoBrahe}[1]{Tycho Brahe}

\newcommand{\LaTeXPlainBoxTemplate}[1]{
\begin{minipage}{\linewidth}\definecolor{shadecolor}{gray}{0.9}\begin{myshaded}
#1
\end{myshaded}
\end{minipage}
}

\newcommand{\Hinweis}[1]{
\begin{TemplateInfo}{{\Huge \textcircled{\LARGE !}}}{Hinweis}
#1
\end{TemplateInfo}}

\newcommand{\LaTexInfoTemplateOne}[1]{
\begin{TemplateInfo}{\Info}{Information}
#1
\end{TemplateInfo}}

\newcommand{\EqnTemplate}[1]{
\begin{flushright}
\textbf{[#1]}
\end{flushright}}

\newcommand{\RefTemplate}[1]{[#1]}

\newcommand{\LaTeXGCCTakeTemplate}[1]{
\LaTeXDoubleBoxTemplate{Take home:}{#1}
}

\newcommand{\LaTeXEditorNote}[1]{\LaTeXDoubleBoxTemplate{Editor's note}{#1}}

\newcommand{\BNPForVersion}[1]{
\LaTeXInfoTemplateOne{Applicable Blender version: #1}
}

\newcommand{\LaTeXInfoTemplateOne}[1]{
\begin{TemplateInfo}{\Info}{Information}
#1
\end{TemplateInfo}
}

\newcommand{\LaTexHelpFulHintTemplate}[1]{
\LaTeXDoubleBoxTemplate{Helpful Hint:}{#1}
}

\newcommand{\MyLaTeXTemplate}[3]{
\LaTeXDoubleBoxTemplate{MyLaTeXTemplate1:}{#1 \\ #2 \\ #3}
}

\newcommand{\TemplatePreformat}[1]{
\par
\begin{scriptsize}
%\setlength{\baselineskip}{0.9\baselineskip}
\ttfamily
#1
\par
\end{scriptsize}
}

\newcommand{\TemplateSpaceIndent}[1]{
\begin{scriptsize}
\begin{framed}
\ttfamily
#1
\end{framed}
\end{scriptsize}
}

\newcommand{\GenericColorBox}[2]
{
\newline
\begin{tabular}[t]{p{0.6cm}p{4cm}}
#1\\
\end{tabular}
}

\newcommand{\legendNamedColorBox}[2]
{
 \GenericColorBox{
 \parbox[t]{0.5\linewidth}{
 \textsuperscript{
 \fcolorbox{black}{#1}{
 \Huge{\,\,}
 }
 }
 }
 }{
 #2
 }
}

\newcommand{\legendColorBox}[2]
{
 \GenericColorBox{
 \definecolor{tempColor}{rgb}{#1}
 \parbox[t]{0.5\linewidth}{
 \textsuperscript{
 \fcolorbox{black}{tempColor}{
 \Huge{\,\,}
 }
 }
 }
 }{
 #2
 }
}

%\newcommand{\ubung} {{\LARGE \triangleright}}
\newcommand{\ubung}{\ding{228} \textbf{Aufgabe:}\,}

\newcommand{\TemplateSource}[1]
{
%\begin{TemplateCodeInside}{}{\baselineskip}{\baselineskip}{}{}{true}
\begin{scriptsize}
\begin{myshaded}\ttfamily
#1
\end{myshaded}
\end{scriptsize}
%\end{TemplateCodeInside}
}

\newenvironment{TemplateInfo}[2]
% no more parameters
%**
% Template Info
% Kasten mit Logo, Titelzeile, Text
% kann für folgende Wiki-Vorlagen benutzt werden:
% Vorlage:merke, Vorlage:Achtung u.ä.
%
% #1 Logo (optional) default: \Info
% #2 Titel (optional) default: Information; könnte theoretisch auch leer sein,
% das ist aber wegen des Logos nicht sinnvoll
%**
{
% Definition des Kastens mit Standardwerten
% u.U. ist linewidth=1pt erorderlich
\begin{mdframed}[skipabove=\baselineskip, skipbelow=\baselineskip,
linewidth=1pt,
innertopmargin=0, innerbottommargin=0]
% linksbündig ist besser, weil es in der Regel wenige Zeilen sind, die teilweise kurz sind
\begin{flushleft}
% Überschrift größer darstellen
\begin{Large}
% #1 wird als Logo verwendet, Vorgabe ist \Info aus marvosym
% für andere Logos muss ggf. das Package eingebunden werden
% das Logo kann auch mit einer Größe verbunden werden, z.B. \LARGE\danger als #1
{#1 } \
% #2 wird als Titelzeile verwendet, Vorgabe ist 'Information'
{\bfseries #2}
\medskip \end{Large} \\
} % Ende der begin-Anweisungen, es folgenden die end-Anweisungen
{ \end{flushleft}\end{mdframed} }

\newcommand{\TemplateHeaderExercise}[3]
% no more parameters
%**
% Template Header Exercise
% Rahmen als minisec mit Nummer der Aufgabe und Titel und grauem Hintergrund
% ist gedacht für folgende Wiki-Vorlage:
% Vorlage:Übung4
% kann genauso für den Aufgaben-Teil folgender Vorlagen verwendet werden:
% Vorlage:Übung (wird zz. nur einmal benutzt)
% Vorlage:Übung2 (wird zz. gar nicht benutzt)
% Vorlage:Übung3 (wird zz. in 2 Büchern häufig benutzt)
% C++-Programmierung/ Vorlage:Aufgabe (wird zz. nur selten benutzt,
% ist in LatexRenderer.hs schon erledigt)
%
% #1 Text (optional) 'Aufgabe' oder 'Übung', kann auch leer sein
% #2 Nummer (Pflicht) könnte theoretisch auch leer sein, aber dann sieht die Zeile
% seltsam aus; oder die if-Abfragen wären unnötig komplex
% #3 Titel (optional) Inhaltsangabe der Aufgabe, kann auch leer sein
%**
{
\minisec{\normalfont \fcolorbox{black}{shadecolor}{\large \, #1 #2 \ifx{#3}{}{}\else{-- #3}\fi \,} \medskip }
}

\newcommand{\TemplateHeaderSolution}[3]
% no more parameters
%**
% Template Header Solution
% Rahmen als minisec mit Nummer der Aufgabe und Titel und grauem Hintergrund
%
% ist gedacht für den Lösungen-Teil der Vorlagen und wird genauso
% verwendet wie \TemplateHeaderExercise
%**
{
\minisec{\normalfont \fcolorbox{black}{shadecolor}{\large \, Lösung zu #1 #2 \ifx{#3}{}{}\else{-- #3}\fi \,} \medskip }
}

\newcommand{\TemplateUbungDrei}[4]
{
\TemplateHeaderExercise{Übung}{#1}{#2}
#3
\TemplateHeaderSolution{Übung}{#1}{#2}
#4
}

\newcommand{\Mywrapfigure}[2]
{
\begin{wrapfigure}{r}{#1\textwidth}
\begin{center}
#2
\end{center}
\end{wrapfigure}
}

\newcommand{\Mymakebox}[2]
{
\begin{minipage}{#1\textwidth}
#2
\end{minipage}
}

\newcommand{\MyBlau}[1]{
\textcolor{darkblue}{#1}
}
\newcommand{\MyRot}[1]{
\textcolor{red}{#1}
}
\newcommand{\MyGrun}[1]{
\textcolor{mydarkgreen}{#1}
}
\newcommand{\MyBg}[2]{
\fcolorbox{#1}{#1}{#2}
}

\newcommand{\BNPModule}[1]{
the "#1" module
}

\newcommand{\LaTeXMerkeZweiTemplate}[1]{\LaTeXDoubleBoxTemplate{Merke}{#1}}

\newcommand{\LaTeXDefinitionTemplate}[1]{\LaTeXDoubleBoxTemplate{Definition}{#1}}

\newcommand{\LaTeXAnorganischeChemieFuerSchuelerVorlageMerksatzTemplate}[1]{\LaTeXDoubleBoxTemplate{Merksatz}{#1}}

\newcommand{\LaTeXTextTemplate}[1]{\LaTeXDoubleBoxTemplate{}{#1}}

\newcommand{\LaTeXExampleTemplate}[1]{\LaTeXDoubleBoxTemplate{Example:}{#1}}

\newcommand{\LaTeXexampleTemplate}[1]{\LaTeXDoubleBoxTemplate{Example:}{#1}}

\newcommand{\LaTeXPTPBoxTemplate}[1]{\LaTeXDoubleBoxTemplate{Points to ponder:}{#1}}

\newcommand{\LaTeXNOTETemplate}[2]{\LaTeXDoubleBoxTemplate{Note:}{#1 #2}}

\newcommand{\LaTeXNotizTemplate}[1]{\LaTeXDoubleBoxTemplate{Notiz:}{#1}}

\newcommand{\LaTeXbodynoteTemplate}[1]{\LaTeXDoubleBoxTemplate{Note:}{#1}}

\newcommand{\LaTeXcquoteTemplate}[1]{\LaTeXDoubleBoxTemplate{Quote:}{#1}}

\newcommand{\LaTeXCquoteTemplate}[1]{\LaTeXDoubleBoxTemplate{Quote:}{#1}}

\newcommand{\LaTeXSideNoteTemplate}[1]{\LaTeXDoubleBoxTemplate{Note:}{#1}}

\newcommand{\LaTeXsideNoteTemplate}[1]{\LaTeXDoubleBoxTemplate{Note:}{#1}}

\newcommand{\LaTeXExercisesTemplate}[1]{\LaTeXDoubleBoxTemplate{Exercises:}{#1}}

\newcommand{\LaTeXCppProgrammierungVorlageTippTemplate}[1]{\LaTeXDoubleBoxTemplate{Tip}{#1}}

\newcommand{\LaTeXTipTemplate}[1]{\LaTeXDoubleBoxTemplate{Tip}{#1}}
\newcommand{\LaTeXUnknownTemplate}[1]{unknown}

\newcommand{\LaTeXCppProgrammierungVorlageHinweisTemplate}[1]{\LaTeXDoubleBoxTemplate{Hinweis}{#1}}

\newcommand{\LaTeXCppProgrammierungVorlageSpaeterImBuchTemplate}[1]{\LaTeXDoubleBoxTemplate{Thema wird später näher erläutert...}{#1}}

\newcommand{\SGreen}[1]{This page uses material from Dr. Sheldon Green's Hypertext Help with LaTeX.}
\newcommand{\ARoberts}[1]{This page uses material from Andy Roberts' Getting to grips with LaTeX with permission from the author.}

\newcommand{\LaTeXCppProgrammierungVorlageAnderesBuchTemplate}[1]{\LaTeXDoubleBoxTemplate{Buchempfehlung}{#1}}

\newcommand{\LaTeXCppProgrammierungVorlageNichtNaeherBeschriebenTemplate}[1]{\LaTeXDoubleBoxTemplate{Nicht Thema dieses Buches...}{#1}}

\newcommand{\LaTeXPythonUnterLinuxVorlagenVorlageDetailsTemplate}[1]{\LaTeXDoubleBoxTemplate{Details}{#1}}

\newcommand{\LaTeXChapterTemplate}[1]{\chapter{#1}
\myminitoc
}

\newcommand{\Sample}[2]{
\begin{longtable}{|p{\linewidth}|}
\hline
#1 \\ \hline
#2 \\ \hline
\end{longtable}
}

\newcommand{\Syntax}[1]{
\LaTeXDoubleBoxTemplate{Syntax}{#1}}

\newcommand{\LaTeXTT}[1]{{\ttfamily #1}}
\newcommand{\LaTeXBF}[1]{{\bfseries #1}}
\newcommand{\LaTeXIT}[1]{{\itshape #1}}

\newcommand{\LaTeXCenter}[1]{
\begin{center}
#1
\end{center}}

\newcommand{\BNPManual}[2]{The Blender Manual page on #1 at \url{http://wiki.blender.org/index.php/Doc:Manual/#1}}
\newcommand{\BNPWeb}[2]{#1 at \url{#2}}

\newcommand{\Noframecenter}[2]{
\begin{tablular}{p{\linewidth}}
#2\\
#1
\end{tabluar}
}

\newcommand{\LaTeXTTUlineTemplate}[1]{{\ttfamily \uline{#1}}
}

\newcommand{\PythonUnterLinuxDenulltails}[1]{
\begin{tabular}{|p{\linewidth}|}\hline
\textbf{Denulltails} \\ \hline
#1 \\ \hline
\end{tabular}}

\newcommand{\GNURTip}[1]{
\begin{longtable}{|p{\linewidth}|}\hline
\textbf{Tip} \\ \hline
#1 \\ \hline
\end{longtable}}

\newcommand{\PerlUebung}[1]{
\begin{longtable}{|p{\linewidth}|}\hline
#1 \\ \hline
\end{longtable}}

\newcommand{\PerlNotiz}[1]{
\begin{table}{|p{\linewidth}|}\hline
#1 \\ \hline
\end{table}}

\newcommand{\ACFSZusatz}[1]{\textbf{ Zusatzinformation }}
\newcommand{\ACFSVorlageB}[1]{\textbf{ Beobachtung }}
\newcommand{\ACFSVorlageV}[1]{\textbf{ Versuchsbeschreibung }}
\newcommand{\TemplateHeaderSolutionUebung}[2]{\TemplateHeaderSolution{Übung}{#1}{#2}}
\newcommand{\TemplateHeaderExerciseUebung}[2]{\TemplateHeaderExercise{Übung}{#1}{#2}}

\newcommand{\ChemTemplate}[9]{\texttt{
#1#2#3#4#5#6#7#8#9}}

\newcommand{\WaningTemplate}[1]{
\begin{TemplateInfo}{\danger}{Warning}
#1
\end{TemplateInfo}}

\newcommand{\WarnungTemplate}[1]{
\begin{TemplateInfo}{\danger}{Warnung}
#1
\end{TemplateInfo}}

\newcommand{\BlenderAlignedToViewIssue}[1]{
\begin{TemplateInfo}{\danger}{Blender3d Aligned to view issue}
This tutorial relies on objects being created so that they are aligned to the view that you’re looking through. Versions 2.48 and above have changed the way this works. Visit Aligned (\url{http://en.wikibooks.org/wiki/Blender_3D:_Noob_to_Pro/Aligned_to_view_issue}) to view issue to understand the settings that need to be changed.
\end{TemplateInfo}}

\newcommand{\BlenderVersion}[1]{
{\itshape Diese Seite bezieht sich auf }{\bfseries \quad Blender Version #1}}

\newcommand{\Literal}[1]{{\itshape #1}}

\newcommand{\JavaIllustration}[3]{
\begin{tablular}
{Figure #1: #2}
\\
#3
\end{ltablular}
}

\newcommand{\PDFLink}[1]{#1 PDF}

\newcommand{\Ja}[1]{\Checkmark {\bfseries Ja}}
\newcommand{\Nein}[1]{\XSolidBrush {\bfseries Nein}}

\newcommand{\SVGVersions}[8]{
{\scriptsize
\begin{tabular}{|p{0.45\linewidth}|p{0.13\linewidth}|}\hline
Squiggle (Batik) & #1 \\ \hline
Opera (Presto) & #2 \\ \hline
Firefox (Gecko; auch SeaMonkey, Iceape, Iceweasel etc) & #3 \\ \hline
Konqueror (KSVG) & #4 \\ \hline
Safari (Webkit) & #5 \\ \hline
Chrome (Webkit) & #6 \\ \hline
Microsoft Internet Explorer (Trident) & #7 \\ \hline
librsvg & #8 \\\hline
\end{tabular}}

}

\theoremstyle{plain}
\newtheorem{satz}{Satz}
\newtheorem{beweis}{Beweis}
\newtheorem{beispiel}{Beispiel}

\theoremstyle{definition}
\newtheorem{mydef}{Definition}

\newcommand{\NFSatz}[2]{\begin{satz}#1\end{satz}#2}

\newcommand{\NFDef}[2]{\begin{mydef}#1\end{mydef}#2}

\newcommand{\NFBeweis}[2]{\begin{beweis}#1\end{beweis}#2}

\newcommand{\NFBeispiel}[2]{\begin{beweis}#1\end{beweis}#2}

\newcommand{\NFFrage}[3]{

\definecolor{shadecolor}{gray}{0.9}\begin{myshaded}{\itshape \uline{#1}: #2} \\
#3
\end{myshaded}

}

\newcommand{\NFFrageB}[2]{

\definecolor{shadecolor}{gray}{0.9}\begin{myshaded}{\itshape \uline{Frage}: #1} \\
#2
\end{myshaded}

}

\newcommand{\NFVertiefung}[1]{
{\bfseries Vertiefung:} \\
Der Inhalt des folgenden Abschnitts ist eine Vertiefung des Stoffes. Für die nächsten Kapitel ist es nicht notwendig, dass du dieses Kapitel gelesen hast.

}

headers/title.tex

\publishers{Wikibooks.org}
\title{Think Python}

headers/unicodes.tex

\newcommand{\R}{\ensuremath{\mathbb{R}}}
\newcommand{\N}{\ensuremath{\mathbb{N}}}
\newcommand{\Z}{\ensuremath{\mathbb{Z}}}
\newcommand{\Q}{\ensuremath{\mathbb{Q}}}
\renewcommand{\C}{\ensuremath{\mathbb{C}}}

images/1.pdf

Output

Source Code Interpreter

images/2.pdf

Source code Compiler Object code Executor

Output

main/main.out

\BOOKMARK [0][]{chapter.1}{\376\377\0001\000\040\000P\000r\000e\000f\000a\000c\000e}{}% 1
\BOOKMARK [1][]{section.1.1}{\376\377\0001\000.\0001\000\040\000C\000h\000a\000p\000t\000e\000r\000\040\0000\000:\000\040\000P\000r\000e\000f\000a\000c\000e}{chapter.1}% 2
\BOOKMARK [0][]{chapter.2}{\376\377\0002\000\040\000T\000h\000e\000\040\000w\000a\000y\000\040\000o\000f\000\040\000t\000h\000e\000\040\000p\000r\000o\000g\000r\000a\000m}{}% 3
\BOOKMARK [1][]{section.2.1}{\376\377\0002\000.\0001\000\040\000R\000e\000f\000e\000r\000e\000n\000c\000e\000s}{chapter.2}% 4
\BOOKMARK [0][]{chapter.3}{\376\377\0003\000\040\000V\000a\000r\000i\000a\000b\000l\000e\000s\000,\000\040\000e\000x\000p\000r\000e\000s\000s\000i\000o\000n\000s\000\040\000a\000n\000d\000\040\000s\000t\000a\000t\000e\000m\000e\000n\000t\000s}{}% 5
\BOOKMARK [0][]{chapter.4}{\376\377\0004\000\040\000F\000u\000n\000c\000t\000i\000o\000n\000s}{}% 6
\BOOKMARK [1][]{section.4.1}{\376\377\0004\000.\0001\000\040\000F\000u\000n\000c\000t\000i\000o\000n\000\040\000c\000a\000l\000l\000s}{chapter.4}% 7
\BOOKMARK [1][]{section.4.2}{\376\377\0004\000.\0002\000\040\000T\000y\000p\000e\000\040\000c\000o\000n\000v\000e\000r\000s\000i\000o\000n\000\040\000f\000u\000n\000c\000t\000i\000o\000n\000s}{chapter.4}% 8
\BOOKMARK [1][]{section.4.3}{\376\377\0004\000.\0003\000\040\000M\000a\000t\000h\000\040\000f\000u\000n\000c\000t\000i\000o\000n\000s}{chapter.4}% 9
\BOOKMARK [1][]{section.4.4}{\376\377\0004\000.\0004\000\040\000C\000o\000m\000p\000o\000s\000i\000t\000i\000o\000n}{chapter.4}% 10
\BOOKMARK [1][]{section.4.5}{\376\377\0004\000.\0005\000\040\000A\000d\000d\000i\000n\000g\000\040\000n\000e\000w\000\040\000f\000u\000n\000c\000t\000i\000o\000n\000s}{chapter.4}% 11
\BOOKMARK [1][]{section.4.6}{\376\377\0004\000.\0006\000\040\000D\000e\000f\000i\000n\000i\000t\000i\000o\000n\000s\000\040\000a\000n\000d\000\040\000u\000s\000e\000s}{chapter.4}% 12
\BOOKMARK [1][]{section.4.7}{\376\377\0004\000.\0007\000\040\000F\000l\000o\000w\000\040\000o\000f\000\040\000e\000x\000e\000c\000u\000t\000i\000o\000n}{chapter.4}% 13
\BOOKMARK [1][]{section.4.8}{\376\377\0004\000.\0008\000\040\000P\000a\000r\000a\000m\000e\000t\000e\000r\000s\000\040\000a\000n\000d\000\040\000a\000r\000g\000u\000m\000e\000n\000t\000s}{chapter.4}% 14
\BOOKMARK [1][]{section.4.9}{\376\377\0004\000.\0009\000\040\000V\000a\000r\000i\000a\000b\000l\000e\000s\000\040\000a\000n\000d\000\040\000p\000a\000r\000a\000m\000e\000t\000e\000r\000s\000\040\000a\000r\000e\000\040\000l\000o\000c\000a\000l}{chapter.4}% 15
\BOOKMARK [1][]{section.4.10}{\376\377\0004\000.\0001\0000\000\040\000S\000t\000a\000c\000k\000\040\000d\000i\000a\000g\000r\000a\000m\000s}{chapter.4}% 16
\BOOKMARK [1][]{section.4.11}{\376\377\0004\000.\0001\0001\000\040\000F\000r\000u\000i\000t\000f\000u\000l\000\040\000f\000u\000n\000c\000t\000i\000o\000n\000s\000\040\000a\000n\000d\000\040\000v\000o\000i\000d\000\040\000f\000u\000n\000c\000t\000i\000o\000n\000s}{chapter.4}% 17
\BOOKMARK [1][]{section.4.12}{\376\377\0004\000.\0001\0002\000\040\000W\000h\000y\000\040\000f\000u\000n\000c\000t\000i\000o\000n\000s\000?}{chapter.4}% 18
\BOOKMARK [1][]{section.4.13}{\376\377\0004\000.\0001\0003\000\040\000D\000e\000b\000u\000g\000g\000i\000n\000g}{chapter.4}% 19
\BOOKMARK [1][]{section.4.14}{\376\377\0004\000.\0001\0004\000\040\000G\000l\000o\000s\000s\000a\000r\000y}{chapter.4}% 20
\BOOKMARK [1][]{section.4.15}{\376\377\0004\000.\0001\0005\000\040\000E\000x\000e\000r\000c\000i\000s\000e\000s}{chapter.4}% 21
\BOOKMARK [0][]{chapter.5}{\376\377\0005\000\040\000C\000o\000n\000d\000i\000t\000i\000o\000n\000a\000l\000\040\000a\000n\000d\000\040\000r\000e\000c\000u\000r\000s\000i\000o\000n}{}% 22
\BOOKMARK [0][]{chapter.6}{\376\377\0006\000\040\000F\000r\000u\000i\000t\000f\000u\000l\000\040\000f\000u\000n\000c\000t\000i\000o\000n\000s}{}% 23
\BOOKMARK [1][]{section.6.1}{\376\377\0006\000.\0001\000\040\000R\000e\000t\000u\000r\000n\000\040\000v\000a\000l\000u\000e\000s}{chapter.6}% 24
\BOOKMARK [1][]{section.6.2}{\376\377\0006\000.\0002\000\040\000I\000n\000c\000r\000e\000m\000e\000n\000t\000a\000l\000\040\000d\000e\000v\000e\000l\000o\000p\000m\000e\000n\000t}{chapter.6}% 25
\BOOKMARK [1][]{section.6.3}{\376\377\0006\000.\0003\000\040\000C\000o\000m\000p\000o\000s\000i\000t\000i\000o\000n}{chapter.6}% 26
\BOOKMARK [1][]{section.6.4}{\376\377\0006\000.\0004\000\040\000B\000o\000o\000l\000e\000a\000n\000\040\000f\000u\000n\000c\000t\000i\000o\000n\000s}{chapter.6}% 27
\BOOKMARK [1][]{section.6.5}{\376\377\0006\000.\0005\000\040\000M\000o\000r\000e\000\040\000r\000e\000c\000u\000r\000s\000i\000o\000n}{chapter.6}% 28
\BOOKMARK [1][]{section.6.6}{\376\377\0006\000.\0006\000\040\000L\000e\000a\000p\000\040\000o\000f\000\040\000f\000a\000i\000t\000h}{chapter.6}% 29
\BOOKMARK [1][]{section.6.7}{\376\377\0006\000.\0007\000\040\000O\000n\000e\000\040\000m\000o\000r\000e\000\040\000e\000x\000a\000m\000p\000l\000e}{chapter.6}% 30
\BOOKMARK [1][]{section.6.8}{\376\377\0006\000.\0008\000\040\000C\000h\000e\000c\000k\000i\000n\000g\000\040\000t\000y\000p\000e\000s}{chapter.6}% 31
\BOOKMARK [1][]{section.6.9}{\376\377\0006\000.\0009\000\040\000D\000e\000b\000u\000g\000g\000i\000n\000g}{chapter.6}% 32
\BOOKMARK [1][]{section.6.10}{\376\377\0006\000.\0001\0000\000\040\000G\000l\000o\000s\000s\000a\000r\000y}{chapter.6}% 33
\BOOKMARK [1][]{section.6.11}{\376\377\0006\000.\0001\0001\000\040\000E\000x\000e\000r\000c\000i\000s\000e\000s}{chapter.6}% 34
\BOOKMARK [1][]{section.6.12}{\376\377\0006\000.\0001\0002\000\040\000M\000u\000l\000t\000i\000p\000l\000e\000\040\000a\000s\000s\000i\000g\000n\000m\000e\000n\000t}{chapter.6}% 35
\BOOKMARK [1][]{section.6.13}{\376\377\0006\000.\0001\0003\000\040\000U\000p\000d\000a\000t\000i\000n\000g\000\040\000v\000a\000r\000i\000a\000b\000l\000e\000s}{chapter.6}% 36
\BOOKMARK [1][]{section.6.14}{\376\377\0006\000.\0001\0004\000\040\000T\000h\000e\000\040\000w\000h\000i\000l\000e\000\040\000s\000t\000a\000t\000e\000m\000e\000n\000t}{chapter.6}% 37
\BOOKMARK [1][]{section.6.15}{\376\377\0006\000.\0001\0005\000\040\000b\000r\000e\000a\000k}{chapter.6}% 38
\BOOKMARK [1][]{section.6.16}{\376\377\0006\000.\0001\0006\000\040\000S\000q\000u\000a\000r\000e\000\040\000r\000o\000o\000t\000s}{chapter.6}% 39
\BOOKMARK [1][]{section.6.17}{\376\377\0006\000.\0001\0007\000\040\000A\000l\000g\000o\000r\000i\000t\000h\000m\000s}{chapter.6}% 40
\BOOKMARK [1][]{section.6.18}{\376\377\0006\000.\0001\0008\000\040\000D\000e\000b\000u\000g\000g\000i\000n\000g}{chapter.6}% 41
\BOOKMARK [1][]{section.6.19}{\376\377\0006\000.\0001\0009\000\040\000G\000l\000o\000s\000s\000a\000r\000y}{chapter.6}% 42
\BOOKMARK [1][]{section.6.20}{\376\377\0006\000.\0002\0000\000\040\000E\000x\000e\000r\000c\000i\000s\000e\000s}{chapter.6}% 43
\BOOKMARK [0][]{chapter.7}{\376\377\0007\000\040\000S\000t\000r\000i\000n\000g\000s}{}% 44
\BOOKMARK [1][]{section.7.1}{\376\377\0007\000.\0001\000\040\000A\000\040\000s\000t\000r\000i\000n\000g\000\040\000i\000s\000\040\000a\000\040\000s\000e\000q\000u\000e\000n\000c\000e}{chapter.7}% 45
\BOOKMARK [1][]{section.7.2}{\376\377\0007\000.\0002\000\040\000l\000e\000n}{chapter.7}% 46
\BOOKMARK [1][]{section.7.3}{\376\377\0007\000.\0003\000\040\000T\000r\000a\000v\000e\000r\000s\000a\000l\000\040\000w\000i\000t\000h\000\040\000a\000\040\000f\000o\000r\000\040\000l\000o\000o\000p}{chapter.7}% 47
\BOOKMARK [1][]{section.7.4}{\376\377\0007\000.\0004\000\040\000S\000t\000r\000i\000n\000g\000\040\000s\000l\000i\000c\000e\000s}{chapter.7}% 48
\BOOKMARK [1][]{section.7.5}{\376\377\0007\000.\0005\000\040\000S\000t\000r\000i\000n\000g\000s\000\040\000a\000r\000e\000\040\000i\000m\000m\000u\000t\000a\000b\000l\000e}{chapter.7}% 49
\BOOKMARK [1][]{section.7.6}{\376\377\0007\000.\0006\000\040\000S\000e\000a\000r\000c\000h\000i\000n\000g}{chapter.7}% 50
\BOOKMARK [1][]{section.7.7}{\376\377\0007\000.\0007\000\040\000L\000o\000o\000p\000i\000n\000g\000\040\000a\000n\000d\000\040\000c\000o\000u\000n\000t\000i\000n\000g}{chapter.7}% 51
\BOOKMARK [1][]{section.7.8}{\376\377\0007\000.\0008\000\040\000s\000t\000r\000i\000n\000g\000\040\000m\000e\000t\000h\000o\000d\000s}{chapter.7}% 52
\BOOKMARK [1][]{section.7.9}{\376\377\0007\000.\0009\000\040\000T\000h\000e\000\040\000i\000n\000\040\000o\000p\000e\000r\000a\000t\000o\000r}{chapter.7}% 53
\BOOKMARK [1][]{section.7.10}{\376\377\0007\000.\0001\0000\000\040\000S\000t\000r\000i\000n\000g\000\040\000c\000o\000m\000p\000a\000r\000i\000s\000o\000n}{chapter.7}% 54
\BOOKMARK [1][]{section.7.11}{\376\377\0007\000.\0001\0001\000\040\000D\000e\000b\000u\000g\000g\000i\000n\000g}{chapter.7}% 55
\BOOKMARK [1][]{section.7.12}{\376\377\0007\000.\0001\0002\000\040\000G\000l\000o\000s\000s\000a\000r\000y}{chapter.7}% 56
\BOOKMARK [1][]{section.7.13}{\376\377\0007\000.\0001\0003\000\040\000E\000x\000e\000r\000c\000i\000s\000e\000s}{chapter.7}% 57
\BOOKMARK [1][]{section.7.14}{\376\377\0007\000.\0001\0004\000\040\000N\000o\000t\000e\000s}{chapter.7}% 58
\BOOKMARK [0][]{chapter.8}{\376\377\0008\000\040\000C\000a\000s\000e\000\040\000s\000t\000u\000d\000y\000:\000\040\000w\000o\000r\000d\000\040\000p\000l\000a\000y}{}% 59
\BOOKMARK [1][]{section.8.1}{\376\377\0008\000.\0001\000\040\000R\000e\000a\000d\000i\000n\000g\000\040\000w\000o\000r\000d\000\040\000l\000i\000s\000t\000s}{chapter.8}% 60
\BOOKMARK [1][]{section.8.2}{\376\377\0008\000.\0002\000\040\000E\000x\000e\000r\000c\000i\000s\000e\000s}{chapter.8}% 61
\BOOKMARK [1][]{section.8.3}{\376\377\0008\000.\0003\000\040\000S\000e\000a\000r\000c\000h}{chapter.8}% 62
\BOOKMARK [1][]{section.8.4}{\376\377\0008\000.\0004\000\040\000L\000o\000o\000p\000i\000n\000g\000\040\000w\000i\000t\000h\000\040\000i\000n\000d\000i\000c\000e\000s}{chapter.8}% 63
\BOOKMARK [1][]{section.8.5}{\376\377\0008\000.\0005\000\040\000D\000e\000b\000u\000g\000g\000i\000n\000g}{chapter.8}% 64
\BOOKMARK [1][]{section.8.6}{\376\377\0008\000.\0006\000\040\000G\000l\000o\000s\000s\000a\000r\000y}{chapter.8}% 65
\BOOKMARK [1][]{section.8.7}{\376\377\0008\000.\0007\000\040\000E\000x\000e\000r\000c\000i\000s\000e\000s}{chapter.8}% 66
\BOOKMARK [1][]{section.8.8}{\376\377\0008\000.\0008\000\040\000N\000o\000t\000e\000s}{chapter.8}% 67
\BOOKMARK [0][]{chapter.9}{\376\377\0009\000\040\000L\000i\000s\000t\000s}{}% 68
\BOOKMARK [1][]{section.9.1}{\376\377\0009\000.\0001\000\040\000A\000\040\000l\000i\000s\000t\000\040\000i\000s\000\040\000a\000\040\000s\000e\000q\000u\000e\000n\000c\000e}{chapter.9}% 69
\BOOKMARK [1][]{section.9.2}{\376\377\0009\000.\0002\000\040\000L\000i\000s\000t\000s\000\040\000a\000r\000e\000\040\000m\000u\000t\000a\000b\000l\000e}{chapter.9}% 70
\BOOKMARK [1][]{section.9.3}{\376\377\0009\000.\0003\000\040\000T\000r\000a\000v\000e\000r\000s\000i\000n\000g\000\040\000a\000\040\000l\000i\000s\000t}{chapter.9}% 71
\BOOKMARK [1][]{section.9.4}{\376\377\0009\000.\0004\000\040\000L\000i\000s\000t\000\040\000o\000p\000e\000r\000a\000t\000i\000o\000n\000s}{chapter.9}% 72
\BOOKMARK [1][]{section.9.5}{\376\377\0009\000.\0005\000\040\000L\000i\000s\000t\000\040\000s\000l\000i\000c\000e\000s}{chapter.9}% 73
\BOOKMARK [1][]{section.9.6}{\376\377\0009\000.\0006\000\040\000L\000i\000s\000t\000\040\000m\000e\000t\000h\000o\000d\000s}{chapter.9}% 74
\BOOKMARK [1][]{section.9.7}{\376\377\0009\000.\0007\000\040\000M\000a\000p\000,\000\040\000f\000i\000l\000t\000e\000r\000\040\000a\000n\000d\000\040\000r\000e\000d\000u\000c\000e}{chapter.9}% 75
\BOOKMARK [1][]{section.9.8}{\376\377\0009\000.\0008\000\040\000D\000e\000l\000e\000t\000i\000n\000g\000\040\000e\000l\000e\000m\000e\000n\000t\000s}{chapter.9}% 76
\BOOKMARK [1][]{section.9.9}{\376\377\0009\000.\0009\000\040\000L\000i\000s\000t\000s\000\040\000a\000n\000d\000\040\000s\000t\000r\000i\000n\000g\000s}{chapter.9}% 77
\BOOKMARK [1][]{section.9.10}{\376\377\0009\000.\0001\0000\000\040\000O\000b\000j\000e\000c\000t\000s\000\040\000a\000n\000d\000\040\000v\000a\000l\000u\000e\000s}{chapter.9}% 78
\BOOKMARK [1][]{section.9.11}{\376\377\0009\000.\0001\0001\000\040\000A\000l\000i\000a\000s\000i\000n\000g}{chapter.9}% 79
\BOOKMARK [1][]{section.9.12}{\376\377\0009\000.\0001\0002\000\040\000L\000i\000s\000t\000\040\000a\000r\000g\000u\000m\000e\000n\000t\000s}{chapter.9}% 80
\BOOKMARK [1][]{section.9.13}{\376\377\0009\000.\0001\0003\000\040\000D\000e\000b\000u\000g\000g\000i\000n\000g}{chapter.9}% 81
\BOOKMARK [1][]{section.9.14}{\376\377\0009\000.\0001\0004\000\040\000G\000l\000o\000s\000s\000a\000r\000y}{chapter.9}% 82
\BOOKMARK [1][]{section.9.15}{\376\377\0009\000.\0001\0005\000\040\000E\000x\000e\000r\000c\000i\000s\000e\000s}{chapter.9}% 83
\BOOKMARK [0][]{chapter.10}{\376\377\0001\0000\000\040\000D\000i\000c\000t\000i\000o\000n\000a\000r\000i\000e\000s}{}% 84
\BOOKMARK [1][]{section.10.1}{\376\377\0001\0000\000.\0001\000\040\000D\000i\000c\000t\000i\000o\000n\000a\000r\000y\000\040\000a\000s\000\040\000a\000\040\000s\000e\000t\000\040\000o\000f\000\040\000c\000o\000u\000n\000t\000e\000r\000s}{chapter.10}% 85
\BOOKMARK [1][]{section.10.2}{\376\377\0001\0000\000.\0002\000\040\000L\000o\000o\000p\000i\000n\000g\000\040\000a\000n\000d\000\040\000d\000i\000c\000t\000i\000o\000n\000a\000r\000i\000e\000s}{chapter.10}% 86
\BOOKMARK [1][]{section.10.3}{\376\377\0001\0000\000.\0003\000\040\000R\000e\000v\000e\000r\000s\000e\000\040\000l\000o\000o\000k\000u\000p}{chapter.10}% 87
\BOOKMARK [1][]{section.10.4}{\376\377\0001\0000\000.\0004\000\040\000D\000i\000c\000t\000i\000o\000n\000a\000r\000i\000e\000s\000\040\000a\000n\000d\000\040\000l\000i\000s\000t\000s}{chapter.10}% 88
\BOOKMARK [1][]{section.10.5}{\376\377\0001\0000\000.\0005\000\040\000M\000e\000m\000o\000s}{chapter.10}% 89
\BOOKMARK [1][]{section.10.6}{\376\377\0001\0000\000.\0006\000\040\000G\000l\000o\000b\000a\000l\000\040\000v\000a\000r\000i\000a\000b\000l\000e\000s}{chapter.10}% 90
\BOOKMARK [1][]{section.10.7}{\376\377\0001\0000\000.\0007\000\040\000L\000o\000n\000g\000\040\000i\000n\000t\000e\000g\000e\000r\000s}{chapter.10}% 91
\BOOKMARK [1][]{section.10.8}{\376\377\0001\0000\000.\0008\000\040\000D\000e\000b\000u\000g\000g\000i\000n\000g}{chapter.10}% 92
\BOOKMARK [1][]{section.10.9}{\376\377\0001\0000\000.\0009\000\040\000G\000l\000o\000s\000s\000a\000r\000y}{chapter.10}% 93
\BOOKMARK [1][]{section.10.10}{\376\377\0001\0000\000.\0001\0000\000\040\000E\000x\000e\000r\000c\000i\000s\000e\000-\0008}{chapter.10}% 94
\BOOKMARK [1][]{section.10.11}{\376\377\0001\0000\000.\0001\0001\000\040\000N\000o\000t\000e\000s}{chapter.10}% 95
\BOOKMARK [0][]{chapter.11}{\376\377\0001\0001\000\040\000T\000u\000p\000l\000e\000s}{}% 96
\BOOKMARK [1][]{section.11.1}{\376\377\0001\0001\000.\0001\000\040\000T\000u\000p\000l\000e\000s\000\040\000a\000r\000e\000\040\000i\000m\000m\000u\000t\000a\000b\000l\000e}{chapter.11}% 97
\BOOKMARK [1][]{section.11.2}{\376\377\0001\0001\000.\0002\000\040\000T\000u\000p\000l\000e\000\040\000a\000s\000s\000i\000g\000n\000m\000e\000n\000t}{chapter.11}% 98
\BOOKMARK [1][]{section.11.3}{\376\377\0001\0001\000.\0003\000\040\000T\000u\000p\000l\000e\000s\000\040\000a\000s\000\040\000r\000e\000t\000u\000r\000n\000\040\000v\000a\000l\000u\000e\000s}{chapter.11}% 99
\BOOKMARK [1][]{section.11.4}{\376\377\0001\0001\000.\0004\000\040\000V\000a\000r\000i\000a\000b\000l\000e\000-\000l\000e\000n\000g\000t\000h\000\040\000a\000r\000g\000u\000m\000e\000n\000t\000\040\000t\000u\000p\000l\000e\000s}{chapter.11}% 100
\BOOKMARK [1][]{section.11.5}{\376\377\0001\0001\000.\0005\000\040\000L\000i\000s\000t\000s\000\040\000a\000n\000d\000\040\000t\000u\000p\000l\000e\000s}{chapter.11}% 101
\BOOKMARK [1][]{section.11.6}{\376\377\0001\0001\000.\0006\000\040\000D\000i\000c\000t\000i\000o\000n\000a\000r\000i\000e\000s\000\040\000a\000n\000d\000\040\000t\000u\000p\000l\000e\000s}{chapter.11}% 102
\BOOKMARK [1][]{section.11.7}{\376\377\0001\0001\000.\0007\000\040\000C\000o\000m\000p\000a\000r\000i\000n\000g\000\040\000t\000u\000p\000l\000e\000s}{chapter.11}% 103
\BOOKMARK [1][]{section.11.8}{\376\377\0001\0001\000.\0008\000\040\000S\000e\000q\000u\000e\000n\000c\000e\000s\000\040\000o\000f\000\040\000s\000e\000q\000u\000e\000n\000c\000e\000s}{chapter.11}% 104
\BOOKMARK [1][]{section.11.9}{\376\377\0001\0001\000.\0009\000\040\000D\000e\000b\000u\000g\000g\000i\000n\000g}{chapter.11}% 105
\BOOKMARK [1][]{section.11.10}{\376\377\0001\0001\000.\0001\0000\000\040\000G\000l\000o\000s\000s\000a\000r\000y}{chapter.11}% 106
\BOOKMARK [1][]{section.11.11}{\376\377\0001\0001\000.\0001\0001\000\040\000E\000x\000e\000r\000c\000i\000s\000e\000s}{chapter.11}% 107
\BOOKMARK [1][]{section.11.12}{\376\377\0001\0001\000.\0001\0002\000\040\000W\000o\000r\000d\000\040\000f\000r\000e\000q\000u\000e\000n\000c\000y\000\040\000a\000n\000a\000l\000y\000s\000i\000s}{chapter.11}% 108
\BOOKMARK [1][]{section.11.13}{\376\377\0001\0001\000.\0001\0003\000\040\000R\000a\000n\000d\000o\000m\000\040\000n\000u\000m\000b\000e\000r\000s}{chapter.11}% 109
\BOOKMARK [1][]{section.11.14}{\376\377\0001\0001\000.\0001\0004\000\040\000W\000o\000r\000d\000\040\000h\000i\000s\000t\000o\000g\000r\000a\000m}{chapter.11}% 110
\BOOKMARK [1][]{section.11.15}{\376\377\0001\0001\000.\0001\0005\000\040\000M\000o\000s\000t\000\040\000c\000o\000m\000m\000o\000n\000\040\000w\000o\000r\000d\000s}{chapter.11}% 111
\BOOKMARK [1][]{section.11.16}{\376\377\0001\0001\000.\0001\0006\000\040\000O\000p\000t\000i\000o\000n\000a\000l\000\040\000p\000a\000r\000a\000m\000e\000t\000e\000r\000s}{chapter.11}% 112
\BOOKMARK [1][]{section.11.17}{\376\377\0001\0001\000.\0001\0007\000\040\000D\000i\000c\000t\000i\000o\000n\000a\000r\000y\000\040\000s\000u\000b\000t\000r\000a\000c\000t\000i\000o\000n}{chapter.11}% 113
\BOOKMARK [1][]{section.11.18}{\376\377\0001\0001\000.\0001\0008\000\040\000R\000a\000n\000d\000o\000m\000\040\000w\000o\000r\000d\000s}{chapter.11}% 114
\BOOKMARK [1][]{section.11.19}{\376\377\0001\0001\000.\0001\0009\000\040\000M\000a\000r\000k\000o\000v\000\040\000a\000n\000a\000l\000y\000s\000i\000s}{chapter.11}% 115
\BOOKMARK [1][]{section.11.20}{\376\377\0001\0001\000.\0002\0000\000\040\000D\000a\000t\000a\000\040\000s\000t\000r\000u\000c\000t\000u\000r\000e\000s}{chapter.11}% 116
\BOOKMARK [1][]{section.11.21}{\376\377\0001\0001\000.\0002\0001\000\040\000D\000e\000b\000u\000g\000g\000i\000n\000g}{chapter.11}% 117
\BOOKMARK [1][]{section.11.22}{\376\377\0001\0001\000.\0002\0002\000\040\000G\000l\000o\000s\000s\000a\000r\000y}{chapter.11}% 118
\BOOKMARK [1][]{section.11.23}{\376\377\0001\0001\000.\0002\0003\000\040\000E\000x\000e\000r\000c\000i\000s\000e\000s}{chapter.11}% 119
\BOOKMARK [1][]{section.11.24}{\376\377\0001\0001\000.\0002\0004\000\040\000P\000e\000r\000s\000i\000s\000t\000e\000n\000c\000e}{chapter.11}% 120
\BOOKMARK [1][]{section.11.25}{\376\377\0001\0001\000.\0002\0005\000\040\000R\000e\000a\000d\000i\000n\000g\000\040\000a\000n\000d\000\040\000w\000r\000i\000t\000i\000n\000g}{chapter.11}% 121
\BOOKMARK [1][]{section.11.26}{\376\377\0001\0001\000.\0002\0006\000\040\000F\000o\000r\000m\000a\000t\000\040\000o\000p\000e\000r\000a\000t\000o\000r}{chapter.11}% 122
\BOOKMARK [1][]{section.11.27}{\376\377\0001\0001\000.\0002\0007\000\040\000F\000i\000l\000e\000n\000a\000m\000e\000s\000\040\000a\000n\000d\000\040\000p\000a\000t\000h\000s}{chapter.11}% 123
\BOOKMARK [1][]{section.11.28}{\376\377\0001\0001\000.\0002\0008\000\040\000C\000a\000t\000c\000h\000i\000n\000g\000\040\000e\000x\000c\000e\000p\000t\000i\000o\000n\000s}{chapter.11}% 124
\BOOKMARK [1][]{section.11.29}{\376\377\0001\0001\000.\0002\0009\000\040\000D\000a\000t\000a\000b\000a\000s\000e\000s}{chapter.11}% 125
\BOOKMARK [1][]{section.11.30}{\376\377\0001\0001\000.\0003\0000\000\040\000P\000i\000c\000k\000l\000i\000n\000g}{chapter.11}% 126
\BOOKMARK [1][]{section.11.31}{\376\377\0001\0001\000.\0003\0001\000\040\000P\000i\000p\000e\000s}{chapter.11}% 127
\BOOKMARK [1][]{section.11.32}{\376\377\0001\0001\000.\0003\0002\000\040\000W\000r\000i\000t\000i\000n\000g\000\040\000m\000o\000d\000u\000l\000e\000s}{chapter.11}% 128
\BOOKMARK [1][]{section.11.33}{\376\377\0001\0001\000.\0003\0003\000\040\000D\000e\000b\000u\000g\000g\000i\000n\000g}{chapter.11}% 129
\BOOKMARK [1][]{section.11.34}{\376\377\0001\0001\000.\0003\0004\000\040\000G\000l\000o\000s\000s\000a\000r\000y}{chapter.11}% 130
\BOOKMARK [1][]{section.11.35}{\376\377\0001\0001\000.\0003\0005\000\040\000E\000x\000e\000r\000c\000i\000s\000e\000s}{chapter.11}% 131
\BOOKMARK [0][]{chapter.12}{\376\377\0001\0002\000\040\000C\000l\000a\000s\000s\000e\000s\000\040\000a\000n\000d\000\040\000o\000b\000j\000e\000c\000t\000s}{}% 132
\BOOKMARK [1][]{section.12.1}{\376\377\0001\0002\000.\0001\000\040\000U\000s\000e\000r\000-\000d\000e\000f\000i\000n\000e\000d\000\040\000t\000y\000p\000e\000s}{chapter.12}% 133
\BOOKMARK [1][]{section.12.2}{\376\377\0001\0002\000.\0002\000\040\000A\000t\000t\000r\000i\000b\000u\000t\000e\000s}{chapter.12}% 134
\BOOKMARK [1][]{section.12.3}{\376\377\0001\0002\000.\0003\000\040\000R\000e\000c\000t\000a\000n\000g\000l\000e\000s}{chapter.12}% 135
\BOOKMARK [1][]{section.12.4}{\376\377\0001\0002\000.\0004\000\040\000I\000n\000s\000t\000a\000n\000c\000e\000s\000\040\000a\000s\000\040\000r\000e\000t\000u\000r\000n\000\040\000v\000a\000l\000u\000e\000s}{chapter.12}% 136
\BOOKMARK [1][]{section.12.5}{\376\377\0001\0002\000.\0005\000\040\000O\000b\000j\000e\000c\000t\000s\000\040\000a\000r\000e\000\040\000m\000u\000t\000a\000b\000l\000e}{chapter.12}% 137
\BOOKMARK [1][]{section.12.6}{\376\377\0001\0002\000.\0006\000\040\000C\000o\000p\000y\000i\000n\000g}{chapter.12}% 138
\BOOKMARK [1][]{section.12.7}{\376\377\0001\0002\000.\0007\000\040\000D\000e\000b\000u\000g\000g\000i\000n\000g}{chapter.12}% 139
\BOOKMARK [1][]{section.12.8}{\376\377\0001\0002\000.\0008\000\040\000G\000l\000o\000s\000s\000a\000r\000y}{chapter.12}% 140
\BOOKMARK [1][]{section.12.9}{\376\377\0001\0002\000.\0009\000\040\000E\000x\000e\000r\000c\000i\000s\000e\000s}{chapter.12}% 141
\BOOKMARK [0][]{chapter.13}{\376\377\0001\0003\000\040\000C\000l\000a\000s\000s\000e\000s\000\040\000a\000n\000d\000\040\000f\000u\000n\000c\000t\000i\000o\000n\000s}{}% 142
\BOOKMARK [1][]{section.13.1}{\376\377\0001\0003\000.\0001\000\040\000T\000i\000m\000e}{chapter.13}% 143
\BOOKMARK [1][]{section.13.2}{\376\377\0001\0003\000.\0002\000\040\000P\000u\000r\000e\000\040\000f\000u\000n\000c\000t\000i\000o\000n\000s}{chapter.13}% 144
\BOOKMARK [1][]{section.13.3}{\376\377\0001\0003\000.\0003\000\040\000M\000o\000d\000i\000f\000i\000e\000r\000s}{chapter.13}% 145
\BOOKMARK [1][]{section.13.4}{\376\377\0001\0003\000.\0004\000\040\000P\000r\000o\000t\000o\000t\000y\000p\000i\000n\000g\000\040\000v\000e\000r\000s\000u\000s\000\040\000p\000l\000a\000n\000n\000i\000n\000g}{chapter.13}% 146
\BOOKMARK [1][]{section.13.5}{\376\377\0001\0003\000.\0005\000\040\000D\000e\000b\000u\000g\000g\000i\000n\000g}{chapter.13}% 147
\BOOKMARK [1][]{section.13.6}{\376\377\0001\0003\000.\0006\000\040\000G\000l\000o\000s\000s\000a\000r\000y}{chapter.13}% 148
\BOOKMARK [1][]{section.13.7}{\376\377\0001\0003\000.\0007\000\040\000E\000x\000e\000r\000c\000i\000s\000e\000s}{chapter.13}% 149
\BOOKMARK [0][]{chapter.14}{\376\377\0001\0004\000\040\000C\000l\000a\000s\000s\000e\000s\000\040\000a\000n\000d\000\040\000m\000e\000t\000h\000o\000d\000s}{}% 150
\BOOKMARK [1][]{section.14.1}{\376\377\0001\0004\000.\0001\000\040\000O\000b\000j\000e\000c\000t\000-\000o\000r\000i\000e\000n\000t\000e\000d\000\040\000f\000e\000a\000t\000u\000r\000e\000s}{chapter.14}% 151
\BOOKMARK [1][]{section.14.2}{\376\377\0001\0004\000.\0002\000\040\000P\000r\000i\000n\000t\000i\000n\000g\000\040\000o\000b\000j\000e\000c\000t\000s}{chapter.14}% 152
\BOOKMARK [1][]{section.14.3}{\376\377\0001\0004\000.\0003\000\040\000A\000n\000o\000t\000h\000e\000r\000\040\000e\000x\000a\000m\000p\000l\000e}{chapter.14}% 153
\BOOKMARK [1][]{section.14.4}{\376\377\0001\0004\000.\0004\000\040\000A\000\040\000m\000o\000r\000e\000\040\000c\000o\000m\000p\000l\000i\000c\000a\000t\000e\000d\000\040\000e\000x\000a\000m\000p\000l\000e}{chapter.14}% 154
\BOOKMARK [1][]{section.14.5}{\376\377\0001\0004\000.\0005\000\040\000T\000h\000e\000\040\000i\000n\000i\000t\000\040\000m\000e\000t\000h\000o\000d}{chapter.14}% 155
\BOOKMARK [1][]{section.14.6}{\376\377\0001\0004\000.\0006\000\040\000T\000h\000e\000\040\000\137\000\137\000s\000t\000r\000\137\000\137\000\040\000m\000e\000t\000h\000o\000d}{chapter.14}% 156
\BOOKMARK [1][]{section.14.7}{\376\377\0001\0004\000.\0007\000\040\000O\000p\000e\000r\000a\000t\000o\000r\000\040\000o\000v\000e\000r\000l\000o\000a\000d\000i\000n\000g}{chapter.14}% 157
\BOOKMARK [1][]{section.14.8}{\376\377\0001\0004\000.\0008\000\040\000T\000y\000p\000e\000-\000b\000a\000s\000e\000d\000\040\000d\000i\000s\000p\000a\000t\000c\000h}{chapter.14}% 158
\BOOKMARK [1][]{section.14.9}{\376\377\0001\0004\000.\0009\000\040\000P\000o\000l\000y\000m\000o\000r\000p\000h\000i\000s\000m}{chapter.14}% 159
\BOOKMARK [1][]{section.14.10}{\376\377\0001\0004\000.\0001\0000\000\040\000D\000e\000b\000u\000g\000g\000i\000n\000g}{chapter.14}% 160
\BOOKMARK [1][]{section.14.11}{\376\377\0001\0004\000.\0001\0001\000\040\000G\000l\000o\000s\000s\000a\000r\000y}{chapter.14}% 161
\BOOKMARK [1][]{section.14.12}{\376\377\0001\0004\000.\0001\0002\000\040\000E\000x\000e\000r\000c\000i\000s\000e\000s}{chapter.14}% 162
\BOOKMARK [1][]{section.14.13}{\376\377\0001\0004\000.\0001\0003\000\040\000F\000u\000r\000t\000h\000e\000r\000\040\000r\000e\000a\000d\000i\000n\000g}{chapter.14}% 163
\BOOKMARK [0][]{chapter.15}{\376\377\0001\0005\000\040\000I\000n\000h\000e\000r\000i\000t\000a\000n\000c\000e}{}% 164
\BOOKMARK [1][]{section.15.1}{\376\377\0001\0005\000.\0001\000\040\000C\000a\000r\000d\000\040\000o\000b\000j\000e\000c\000t\000s}{chapter.15}% 165
\BOOKMARK [1][]{section.15.2}{\376\377\0001\0005\000.\0002\000\040\000C\000l\000a\000s\000s\000\040\000a\000t\000t\000r\000i\000b\000u\000t\000e\000s}{chapter.15}% 166
\BOOKMARK [1][]{section.15.3}{\376\377\0001\0005\000.\0003\000\040\000C\000o\000m\000p\000a\000r\000i\000n\000g\000\040\000c\000a\000r\000d\000s}{chapter.15}% 167
\BOOKMARK [1][]{section.15.4}{\376\377\0001\0005\000.\0004\000\040\000D\000e\000c\000k\000s}{chapter.15}% 168
\BOOKMARK [1][]{section.15.5}{\376\377\0001\0005\000.\0005\000\040\000P\000r\000i\000n\000t\000i\000n\000g\000\040\000t\000h\000e\000\040\000d\000e\000c\000k}{chapter.15}% 169
\BOOKMARK [1][]{section.15.6}{\376\377\0001\0005\000.\0006\000\040\000A\000d\000d\000,\000\040\000r\000e\000m\000o\000v\000e\000,\000\040\000s\000h\000u\000f\000f\000l\000e\000\040\000a\000n\000d\000\040\000s\000o\000r\000t}{chapter.15}% 170
\BOOKMARK [1][]{section.15.7}{\376\377\0001\0005\000.\0007\000\040\000I\000n\000h\000e\000r\000i\000t\000a\000n\000c\000e}{chapter.15}% 171
\BOOKMARK [1][]{section.15.8}{\376\377\0001\0005\000.\0008\000\040\000C\000l\000a\000s\000s\000\040\000d\000i\000a\000g\000r\000a\000m\000s}{chapter.15}% 172
\BOOKMARK [1][]{section.15.9}{\376\377\0001\0005\000.\0009\000\040\000D\000e\000b\000u\000g\000g\000i\000n\000g}{chapter.15}% 173
\BOOKMARK [1][]{section.15.10}{\376\377\0001\0005\000.\0001\0000\000\040\000G\000l\000o\000s\000s\000a\000r\000y}{chapter.15}% 174
\BOOKMARK [1][]{section.15.11}{\376\377\0001\0005\000.\0001\0001\000\040\000E\000x\000e\000r\000c\000i\000s\000e\000s}{chapter.15}% 175
\BOOKMARK [0][]{chapter.16}{\376\377\0001\0006\000\040\000D\000e\000b\000u\000g\000g\000i\000n\000g}{}% 176
\BOOKMARK [1][]{section.16.1}{\376\377\0001\0006\000.\0001\000\040\000S\000y\000n\000t\000a\000x\000\040\000e\000r\000r\000o\000r\000s}{chapter.16}% 177
\BOOKMARK [1][]{section.16.2}{\376\377\0001\0006\000.\0002\000\040\000R\000u\000n\000t\000i\000m\000e\000\040\000e\000r\000r\000o\000r\000s}{chapter.16}% 178
\BOOKMARK [1][]{section.16.3}{\376\377\0001\0006\000.\0003\000\040\000S\000e\000m\000a\000n\000t\000i\000c\000\040\000e\000r\000r\000o\000r\000s}{chapter.16}% 179
\BOOKMARK [0][]{chapter.17}{\376\377\0001\0007\000\040\000A\000n\000s\000w\000e\000r\000s}{}% 180
\BOOKMARK [1][]{section.17.1}{\376\377\0001\0007\000.\0001\000\040\000C\000h\000a\000p\000t\000e\000r\000\040\0001}{chapter.17}% 181
\BOOKMARK [1][]{section.17.2}{\376\377\0001\0007\000.\0002\000\040\000C\000h\000a\000p\000t\000e\000r\000\040\0002}{chapter.17}% 182
\BOOKMARK [1][]{section.17.3}{\376\377\0001\0007\000.\0003\000\040\000C\000h\000a\000p\000t\000e\000r\000\040\0003}{chapter.17}% 183
\BOOKMARK [1][]{section.17.4}{\376\377\0001\0007\000.\0004\000\040\000C\000h\000a\000p\000t\000e\000r\000\040\0009}{chapter.17}% 184
\BOOKMARK [1][]{section.17.5}{\376\377\0001\0007\000.\0005\000\040\000C\000h\000a\000p\000t\000e\000r\000\040\0001\0000}{chapter.17}% 185
\BOOKMARK [1][]{section.17.6}{\376\377\0001\0007\000.\0006\000\040\000C\000h\000a\000p\000t\000e\000r\000\040\0001\0001}{chapter.17}% 186
\BOOKMARK [1][]{section.17.7}{\376\377\0001\0007\000.\0007\000\040\000C\000h\000a\000p\000t\000e\000r\000\040\0001\0002}{chapter.17}% 187
\BOOKMARK [1][]{section.17.8}{\376\377\0001\0007\000.\0008\000\040\000C\000h\000a\000p\000t\000e\000r\000\040\0001\0003}{chapter.17}% 188
\BOOKMARK [1][]{section.17.9}{\376\377\0001\0007\000.\0009\000\040\000C\000h\000a\000p\000t\000e\000r\000\040\0001\0004}{chapter.17}% 189
\BOOKMARK [1][]{section.17.10}{\376\377\0001\0007\000.\0001\0000\000\040\000C\000h\000a\000p\000t\000e\000r\000\040\0001\0005}{chapter.17}% 190
\BOOKMARK [1][]{section.17.11}{\376\377\0001\0007\000.\0001\0001\000\040\000C\000h\000a\000p\000t\000e\000r\000\040\0001\0006}{chapter.17}% 191
\BOOKMARK [1][]{section.17.12}{\376\377\0001\0007\000.\0001\0002\000\040\000C\000h\000a\000p\000t\000e\000r\000\040\0003\000.\0005}{chapter.17}% 192
\BOOKMARK [1][]{section.17.13}{\376\377\0001\0007\000.\0001\0003\000\040\000I\000n\000d\000e\000x}{chapter.17}% 193
\BOOKMARK [0][]{chapter.18}{\376\377\0001\0008\000\040\000C\000o\000n\000t\000r\000i\000b\000u\000t\000o\000r\000s}{}% 194
\BOOKMARK [0][]{chapter*.17}{\376\377\000L\000i\000s\000t\000\040\000o\000f\000\040\000F\000i\000g\000u\000r\000e\000s}{}% 195
\BOOKMARK [0][]{chapter.19}{\376\377\0001\0009\000\040\000L\000i\000c\000e\000n\000s\000e\000s}{}% 196
\BOOKMARK [1][]{section.19.1}{\376\377\0001\0009\000.\0001\000\040\000G\000N\000U\000\040\000G\000E\000N\000E\000R\000A\000L\000\040\000P\000U\000B\000L\000I\000C\000\040\000L\000I\000C\000E\000N\000S\000E}{chapter.19}% 197
\BOOKMARK [1][]{section.19.2}{\376\377\0001\0009\000.\0002\000\040\000G\000N\000U\000\040\000F\000r\000e\000e\000\040\000D\000o\000c\000u\000m\000e\000n\000t\000a\000t\000i\000o\000n\000\040\000L\000i\000c\000e\000n\000s\000e}{chapter.19}% 198
\BOOKMARK [1][]{section.19.3}{\376\377\0001\0009\000.\0003\000\040\000G\000N\000U\000\040\000L\000e\000s\000s\000e\000r\000\040\000G\000e\000n\000e\000r\000a\000l\000\040\000P\000u\000b\000l\000i\000c\000\040\000L\000i\000c\000e\000n\000s\000e}{chapter.19}% 199

main/main.aux

\relax
\providecommand\HyperFirstAtBeginDocument{\AtBeginDocument}
\HyperFirstAtBeginDocument{\ifx\hyper@anchor\@undefined
\global\let\oldcontentsline\contentsline
\gdef\contentsline#1#2#3#4{\oldcontentsline{#1}{#2}{#3}}
\global\let\oldnewlabel\newlabel
\gdef\newlabel#1#2{\newlabelxx{#1}#2}
\gdef\newlabelxx#1#2#3#4#5#6{\oldnewlabel{#1}{{#2}{#3}}}
\AtEndDocument{\ifx\hyper@anchor\@undefined
\let\contentsline\oldcontentsline
\let\newlabel\oldnewlabel
\fi}
\fi}
\global\let\hyper@last\relax
\gdef\HyperFirstAtBeginDocument#1{#1}
\providecommand\HyField@AuxAddToFields[1]{}
\select@language{english}
\@writefile{toc}{\select@language{english}}
\@writefile{lof}{\select@language{english}}
\@writefile{lot}{\select@language{english}}
\tocstyle@set@width {unum}{toc}{}{30.4166pt}
\tocstyle@set@width {num}{toc}{0}{18.8887pt}
\tocstyle@set@width {skip}{toc}{0}{0.0pt}
\tocstyle@set@width {num}{toc}{1}{30.4166pt}
\tocstyle@set@width {skip}{toc}{1}{18.8887pt}
\newlabel{0}{{}{1}{\relax }{chapter*.1}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {1}Preface}{3}{chapter.1}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lol}{\addvspace {10\p@ }}
\newlabel{1}{{1}{3}{Preface\relax }{chapter.1}{}}
\newlabel{2}{{1}{3}{Preface\relax }{chapter.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {1.1}Chapter 0: Preface}{3}{section.1.1}}
\newlabel{3}{{1.1}{3}{Chapter 0: Preface\relax }{section.1.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {1.1.1}The strange history of this book}{3}{subsection.1.1.1}}
\newlabel{4}{{1.1.1}{3}{The strange history of this book\relax }{subsection.1.1.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {1.1.2}Acknowledgements}{5}{subsection.1.1.2}}
\newlabel{5}{{1.1.2}{5}{Acknowledgements\relax }{subsection.1.1.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {1.1.3}Contributor List}{5}{subsection.1.1.3}}
\newlabel{6}{{1.1.3}{5}{Contributor List\relax }{subsection.1.1.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {1.1.4}The further strange adventures of this book}{8}{subsection.1.1.4}}
\newlabel{7}{{1.1.4}{8}{The further strange adventures of this book\relax }{subsection.1.1.4}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {2}The way of the program}{9}{chapter.2}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lol}{\addvspace {10\p@ }}
\newlabel{8}{{2}{9}{The way of the program\relax }{chapter.2}{}}
\newlabel{9}{{2}{9}{The way of the program\relax }{chapter.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.0.5}The Python programming language}{9}{subsection.2.0.5}}
\newlabel{10}{{2.0.5}{9}{The Python programming language\relax }{subsection.2.0.5}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.0.6}What is a program?}{11}{subsection.2.0.6}}
\newlabel{11}{{2.0.6}{11}{What is a program?\relax }{subsection.2.0.6}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.0.7}What is debugging?}{11}{subsection.2.0.7}}
\newlabel{12}{{2.0.7}{11}{What is debugging?\relax }{subsection.2.0.7}{}}
\@writefile{toc}{\contentsline {subsubsection}{Syntax errors}{11}{section*.2}}
\newlabel{13}{{2.0.7}{11}{Syntax errors\relax }{section*.2}{}}
\@writefile{toc}{\contentsline {subsubsection}{Runtime errors}{11}{section*.3}}
\newlabel{14}{{2.0.7}{11}{Runtime errors\relax }{section*.3}{}}
\@writefile{toc}{\contentsline {subsubsection}{Semantic errors}{12}{section*.4}}
\newlabel{15}{{2.0.7}{12}{Semantic errors\relax }{section*.4}{}}
\@writefile{toc}{\contentsline {subsubsection}{Experimental debugging}{12}{section*.5}}
\newlabel{16}{{2.0.7}{12}{Experimental debugging\relax }{section*.5}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.0.8}Formal and natural languages}{12}{subsection.2.0.8}}
\newlabel{17}{{2.0.8}{12}{Formal and natural languages\relax }{subsection.2.0.8}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.0.9}The first program}{14}{subsection.2.0.9}}
\newlabel{18}{{2.0.9}{14}{The first program\relax }{subsection.2.0.9}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.0.10}Debugging}{14}{subsection.2.0.10}}
\newlabel{19}{{2.0.10}{14}{Debugging\relax }{subsection.2.0.10}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.0.11}Glossary}{15}{subsection.2.0.11}}
\newlabel{20}{{2.0.11}{15}{Glossary\relax }{subsection.2.0.11}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.0.12}Exercises}{16}{subsection.2.0.12}}
\newlabel{21}{{2.0.12}{16}{Exercises\relax }{subsection.2.0.12}{}}
\@writefile{toc}{\contentsline {subsubsection}{Exercise 2}{16}{section*.6}}
\newlabel{22}{{2.0.12}{16}{Exercise 2\relax }{section*.6}{}}
\@writefile{toc}{\contentsline {subsubsection}{Exercise 3}{16}{section*.7}}
\newlabel{23}{{2.0.12}{16}{Exercise 3\relax }{section*.7}{}}
\@writefile{toc}{\contentsline {subsubsection}{Exercise 4}{16}{section*.8}}
\newlabel{24}{{2.0.12}{16}{Exercise 4\relax }{section*.8}{}}
\@writefile{toc}{\contentsline {section}{\numberline {2.1}References}{16}{section.2.1}}
\newlabel{25}{{2.1}{16}{References\relax }{section.2.1}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {3}Variables, expressions and statements}{17}{chapter.3}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lol}{\addvspace {10\p@ }}
\newlabel{26}{{3}{17}{Variables, expressions and statements\relax }{chapter.3}{}}
\newlabel{27}{{3}{17}{Variables, expressions and statements\relax }{chapter.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.0.1}Values and types}{17}{subsection.3.0.1}}
\newlabel{28}{{3.0.1}{17}{Values and types\relax }{subsection.3.0.1}{}}
\gdef \LT@i {\LT@entry
 {1}{69.6214pt}\LT@entry
 {1}{37.70943pt}\LT@entry
 {1}{309.78775pt}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.0.2}Variables}{18}{subsection.3.0.2}}
\newlabel{29}{{3.0.2}{18}{Variables\relax }{subsection.3.0.2}{}}
\@writefile{toc}{\contentsline {subsubsection}{Exercise 1}{18}{section*.9}}
\newlabel{30}{{3.0.2}{18}{Exercise 1\relax }{section*.9}{}}
\gdef \LT@ii {\LT@entry
 {1}{94.64314pt}\LT@entry
 {1}{86.28493pt}\LT@entry
 {1}{77.91348pt}\LT@entry
 {1}{77.91348pt}\LT@entry
 {1}{69.54866pt}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.0.3}Variable names and keywords}{19}{subsection.3.0.3}}
\newlabel{31}{{3.0.3}{19}{Variable names and keywords\relax }{subsection.3.0.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.0.4}Statements}{20}{subsection.3.0.4}}
\newlabel{32}{{3.0.4}{20}{Statements\relax }{subsection.3.0.4}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.0.5}Operators and operands}{20}{subsection.3.0.5}}
\newlabel{33}{{3.0.5}{20}{Operators and operands\relax }{subsection.3.0.5}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.0.6}Expressions}{21}{subsection.3.0.6}}
\newlabel{34}{{3.0.6}{21}{Expressions\relax }{subsection.3.0.6}{}}
\@writefile{toc}{\contentsline {subsubsection}{Exercise 2}{21}{section*.10}}
\newlabel{35}{{3.0.6}{21}{Exercise 2\relax }{section*.10}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.0.7}Order of operations}{21}{subsection.3.0.7}}
\newlabel{36}{{3.0.7}{21}{Order of operations\relax }{subsection.3.0.7}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.0.8}String operations}{22}{subsection.3.0.8}}
\newlabel{37}{{3.0.8}{22}{String operations\relax }{subsection.3.0.8}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.0.9}Comments}{22}{subsection.3.0.9}}
\newlabel{38}{{3.0.9}{22}{Comments\relax }{subsection.3.0.9}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.0.10}Debugging}{23}{subsection.3.0.10}}
\newlabel{39}{{3.0.10}{23}{Debugging\relax }{subsection.3.0.10}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.0.11}Glossary}{24}{subsection.3.0.11}}
\newlabel{40}{{3.0.11}{24}{Glossary\relax }{subsection.3.0.11}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.0.12}Exercises}{24}{subsection.3.0.12}}
\newlabel{41}{{3.0.12}{24}{Exercises\relax }{subsection.3.0.12}{}}
\@writefile{toc}{\contentsline {subsubsection}{Exercise 3}{24}{section*.11}}
\newlabel{42}{{3.0.12}{24}{Exercise 3\relax }{section*.11}{}}
\@writefile{toc}{\contentsline {subsubsection}{Exercise 4}{25}{section*.12}}
\newlabel{43}{{3.0.12}{25}{Exercise 4\relax }{section*.12}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.0.13}Notes}{25}{subsection.3.0.13}}
\newlabel{44}{{3.0.13}{25}{Notes\relax }{subsection.3.0.13}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {4}Functions}{27}{chapter.4}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lol}{\addvspace {10\p@ }}
\newlabel{45}{{4}{27}{Functions\relax }{chapter.4}{}}
\newlabel{46}{{4}{27}{Functions\relax }{chapter.4}{}}
\@writefile{toc}{\contentsline {section}{\numberline {4.1}Function calls}{27}{section.4.1}}
\newlabel{47}{{4.1}{27}{Function calls\relax }{section.4.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {4.2}Type conversion functions}{27}{section.4.2}}
\newlabel{48}{{4.2}{27}{Type conversion functions\relax }{section.4.2}{}}
\@writefile{toc}{\contentsline {section}{\numberline {4.3}Math functions}{28}{section.4.3}}
\newlabel{49}{{4.3}{28}{Math functions\relax }{section.4.3}{}}
\@writefile{toc}{\contentsline {section}{\numberline {4.4}Composition}{29}{section.4.4}}
\newlabel{50}{{4.4}{29}{Composition\relax }{section.4.4}{}}
\@writefile{toc}{\contentsline {section}{\numberline {4.5}Adding new functions}{29}{section.4.5}}
\newlabel{51}{{4.5}{29}{Adding new functions\relax }{section.4.5}{}}
\@writefile{toc}{\contentsline {section}{\numberline {4.6}Definitions and uses}{30}{section.4.6}}
\newlabel{52}{{4.6}{30}{Definitions and uses\relax }{section.4.6}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.6.1}Exercise 1}{31}{subsection.4.6.1}}
\newlabel{53}{{4.6.1}{31}{Exercise 1\relax }{subsection.4.6.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.6.2}Exercise 2}{31}{subsection.4.6.2}}
\newlabel{54}{{4.6.2}{31}{Exercise 2\relax }{subsection.4.6.2}{}}
\@writefile{toc}{\contentsline {section}{\numberline {4.7}Flow of execution}{31}{section.4.7}}
\newlabel{55}{{4.7}{31}{Flow of execution\relax }{section.4.7}{}}
\@writefile{toc}{\contentsline {section}{\numberline {4.8}Parameters and arguments}{32}{section.4.8}}
\newlabel{56}{{4.8}{32}{Parameters and arguments\relax }{section.4.8}{}}
\@writefile{toc}{\contentsline {section}{\numberline {4.9}Variables and parameters are local}{33}{section.4.9}}
\newlabel{57}{{4.9}{33}{Variables and parameters are local\relax }{section.4.9}{}}
\@writefile{toc}{\contentsline {section}{\numberline {4.10}Stack diagrams}{33}{section.4.10}}
\newlabel{58}{{4.10}{33}{Stack diagrams\relax }{section.4.10}{}}
\@writefile{toc}{\contentsline {section}{\numberline {4.11}Fruitful functions and void functions}{35}{section.4.11}}
\newlabel{59}{{4.11}{35}{Fruitful functions and void functions\relax }{section.4.11}{}}
\@writefile{toc}{\contentsline {section}{\numberline {4.12}Why functions?}{36}{section.4.12}}
\newlabel{60}{{4.12}{36}{Why functions?\relax }{section.4.12}{}}
\@writefile{toc}{\contentsline {section}{\numberline {4.13}Debugging}{36}{section.4.13}}
\newlabel{61}{{4.13}{36}{Debugging\relax }{section.4.13}{}}
\@writefile{toc}{\contentsline {section}{\numberline {4.14}Glossary}{37}{section.4.14}}
\newlabel{62}{{4.14}{37}{Glossary\relax }{section.4.14}{}}
\@writefile{toc}{\contentsline {section}{\numberline {4.15}Exercises}{38}{section.4.15}}
\newlabel{63}{{4.15}{38}{Exercises\relax }{section.4.15}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.15.1}Exercise 3}{38}{subsection.4.15.1}}
\newlabel{64}{{4.15.1}{38}{Exercise 3\relax }{subsection.4.15.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.15.2}Exercise 4}{38}{subsection.4.15.2}}
\newlabel{65}{{4.15.2}{38}{Exercise 4\relax }{subsection.4.15.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.15.3}Exercise 5}{39}{subsection.4.15.3}}
\newlabel{66}{{4.15.3}{39}{Exercise 5\relax }{subsection.4.15.3}{}}
\newlabel{67}{{4.15.3}{39}{Exercise 5\relax }{Item.6}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.15.4}TurtleWorld}{39}{subsection.4.15.4}}
\newlabel{68}{{4.15.4}{39}{TurtleWorld\relax }{subsection.4.15.4}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.15.5}Simple repetition}{40}{subsection.4.15.5}}
\newlabel{69}{{4.15.5}{40}{Simple repetition\relax }{subsection.4.15.5}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.15.6}Exercises}{41}{subsection.4.15.6}}
\newlabel{70}{{4.15.6}{41}{Exercises\relax }{subsection.4.15.6}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.15.7}Encapsulation}{42}{subsection.4.15.7}}
\newlabel{71}{{4.15.7}{42}{Encapsulation\relax }{subsection.4.15.7}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.15.8}Generalization}{43}{subsection.4.15.8}}
\newlabel{72}{{4.15.8}{43}{Generalization\relax }{subsection.4.15.8}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.15.9}Interface design}{43}{subsection.4.15.9}}
\newlabel{73}{{4.15.9}{43}{Interface design\relax }{subsection.4.15.9}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.15.10}Refactoring}{44}{subsection.4.15.10}}
\newlabel{74}{{4.15.10}{44}{Refactoring\relax }{subsection.4.15.10}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.15.11}A development plan}{45}{subsection.4.15.11}}
\newlabel{75}{{4.15.11}{45}{A development plan\relax }{subsection.4.15.11}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.15.12}docstring}{46}{subsection.4.15.12}}
\newlabel{76}{{4.15.12}{46}{docstring\relax }{subsection.4.15.12}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.15.13}Debugging}{46}{subsection.4.15.13}}
\newlabel{77}{{4.15.13}{46}{Debugging\relax }{subsection.4.15.13}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.15.14}Glossary}{47}{subsection.4.15.14}}
\newlabel{78}{{4.15.14}{47}{Glossary\relax }{subsection.4.15.14}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.15.15}Exercises}{47}{subsection.4.15.15}}
\newlabel{79}{{4.15.15}{47}{Exercises\relax }{subsection.4.15.15}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {5}Conditional and recursion}{49}{chapter.5}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lol}{\addvspace {10\p@ }}
\newlabel{80}{{5}{49}{Conditional and recursion\relax }{chapter.5}{}}
\newlabel{81}{{5}{49}{Conditional and recursion\relax }{chapter.5}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.0.16}Modulus operator}{49}{subsection.5.0.16}}
\newlabel{82}{{5.0.16}{49}{Modulus operator\relax }{subsection.5.0.16}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.0.17}Boolean expressions}{49}{subsection.5.0.17}}
\newlabel{83}{{5.0.17}{49}{Boolean expressions\relax }{subsection.5.0.17}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.0.18}Logical operators}{50}{subsection.5.0.18}}
\newlabel{84}{{5.0.18}{50}{Logical operators\relax }{subsection.5.0.18}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.0.19}Conditional execution}{50}{subsection.5.0.19}}
\newlabel{85}{{5.0.19}{50}{Conditional execution\relax }{subsection.5.0.19}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.0.20}Alternative execution}{51}{subsection.5.0.20}}
\newlabel{86}{{5.0.20}{51}{Alternative execution\relax }{subsection.5.0.20}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.0.21}Chained conditionals}{51}{subsection.5.0.21}}
\newlabel{87}{{5.0.21}{51}{Chained conditionals\relax }{subsection.5.0.21}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.0.22}Nested conditionals}{51}{subsection.5.0.22}}
\newlabel{88}{{5.0.22}{51}{Nested conditionals\relax }{subsection.5.0.22}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.0.23}Recursion}{52}{subsection.5.0.23}}
\newlabel{89}{{5.0.23}{52}{Recursion\relax }{subsection.5.0.23}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.0.24}Stack diagrams for recursive functions}{53}{subsection.5.0.24}}
\newlabel{90}{{5.0.24}{53}{Stack diagrams for recursive functions\relax }{subsection.5.0.24}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.0.25}Infinite recursion}{54}{subsection.5.0.25}}
\newlabel{91}{{5.0.25}{54}{Infinite recursion\relax }{subsection.5.0.25}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.0.26}Keyboard input}{54}{subsection.5.0.26}}
\newlabel{92}{{5.0.26}{54}{Keyboard input\relax }{subsection.5.0.26}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.0.27}Debugging}{55}{subsection.5.0.27}}
\newlabel{93}{{5.0.27}{55}{Debugging\relax }{subsection.5.0.27}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.0.28}Glossary}{56}{subsection.5.0.28}}
\newlabel{94}{{5.0.28}{56}{Glossary\relax }{subsection.5.0.28}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.0.29}Exercises}{56}{subsection.5.0.29}}
\newlabel{95}{{5.0.29}{56}{Exercises\relax }{subsection.5.0.29}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.0.30}Notes}{58}{subsection.5.0.30}}
\newlabel{96}{{5.0.30}{58}{Notes\relax }{subsection.5.0.30}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {6}Fruitful functions}{59}{chapter.6}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lol}{\addvspace {10\p@ }}
\newlabel{97}{{6}{59}{Fruitful functions\relax }{chapter.6}{}}
\newlabel{98}{{6}{59}{Fruitful functions\relax }{chapter.6}{}}
\@writefile{toc}{\contentsline {section}{\numberline {6.1}Return values}{59}{section.6.1}}
\newlabel{99}{{6.1}{59}{Return values\relax }{section.6.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {6.1.1}Exercise 1}{60}{subsection.6.1.1}}
\newlabel{100}{{6.1.1}{60}{Exercise 1\relax }{subsection.6.1.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {6.2}Incremental development}{60}{section.6.2}}
\newlabel{101}{{6.2}{60}{Incremental development\relax }{section.6.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {6.2.1}Exercise 2}{62}{subsection.6.2.1}}
\newlabel{102}{{6.2.1}{62}{Exercise 2\relax }{subsection.6.2.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {6.3}Composition}{62}{section.6.3}}
\newlabel{103}{{6.3}{62}{Composition\relax }{section.6.3}{}}
\@writefile{toc}{\contentsline {section}{\numberline {6.4}Boolean functions}{62}{section.6.4}}
\newlabel{104}{{6.4}{62}{Boolean functions\relax }{section.6.4}{}}
\@writefile{toc}{\contentsline {section}{\numberline {6.5}More recursion}{63}{section.6.5}}
\newlabel{105}{{6.5}{63}{More recursion\relax }{section.6.5}{}}
\@writefile{toc}{\contentsline {section}{\numberline {6.6}Leap of faith}{65}{section.6.6}}
\newlabel{106}{{6.6}{65}{Leap of faith\relax }{section.6.6}{}}
\@writefile{toc}{\contentsline {section}{\numberline {6.7}One more example}{65}{section.6.7}}
\newlabel{107}{{6.7}{65}{One more example\relax }{section.6.7}{}}
\@writefile{toc}{\contentsline {section}{\numberline {6.8}Checking types}{66}{section.6.8}}
\newlabel{108}{{6.8}{66}{Checking types\relax }{section.6.8}{}}
\@writefile{toc}{\contentsline {section}{\numberline {6.9}Debugging}{67}{section.6.9}}
\newlabel{109}{{6.9}{67}{Debugging\relax }{section.6.9}{}}
\@writefile{toc}{\contentsline {section}{\numberline {6.10}Glossary}{68}{section.6.10}}
\newlabel{110}{{6.10}{68}{Glossary\relax }{section.6.10}{}}
\@writefile{toc}{\contentsline {section}{\numberline {6.11}Exercises}{68}{section.6.11}}
\newlabel{111}{{6.11}{68}{Exercises\relax }{section.6.11}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {6.11.1}Exercise 4}{68}{subsection.6.11.1}}
\newlabel{112}{{6.11.1}{68}{Exercise 4\relax }{subsection.6.11.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {6.11.2}Exercise 5}{69}{subsection.6.11.2}}
\newlabel{113}{{6.11.2}{69}{Exercise 5\relax }{subsection.6.11.2}{}}
\newlabel{119}{{6.11.2}{69}{Exercise 5\relax }{subsection.6.11.2}{}}
\@writefile{toc}{\contentsline {section}{\numberline {6.12}Multiple assignment}{69}{section.6.12}}
\newlabel{120}{{6.12}{69}{Multiple assignment\relax }{section.6.12}{}}
\@writefile{toc}{\contentsline {section}{\numberline {6.13}Updating variables}{69}{section.6.13}}
\newlabel{121}{{6.13}{69}{Updating variables\relax }{section.6.13}{}}
\@writefile{toc}{\contentsline {section}{\numberline {6.14}The while statement}{70}{section.6.14}}
\newlabel{122}{{6.14}{70}{The while statement\relax }{section.6.14}{}}
\@writefile{toc}{\contentsline {section}{\numberline {6.15}break}{71}{section.6.15}}
\newlabel{123}{{6.15}{71}{break\relax }{section.6.15}{}}
\@writefile{toc}{\contentsline {section}{\numberline {6.16}Square roots}{72}{section.6.16}}
\newlabel{124}{{6.16}{72}{Square roots\relax }{section.6.16}{}}
\@writefile{toc}{\contentsline {section}{\numberline {6.17}Algorithms}{73}{section.6.17}}
\newlabel{125}{{6.17}{73}{Algorithms\relax }{section.6.17}{}}
\@writefile{toc}{\contentsline {section}{\numberline {6.18}Debugging}{74}{section.6.18}}
\newlabel{126}{{6.18}{74}{Debugging\relax }{section.6.18}{}}
\@writefile{toc}{\contentsline {section}{\numberline {6.19}Glossary}{74}{section.6.19}}
\newlabel{127}{{6.19}{74}{Glossary\relax }{section.6.19}{}}
\@writefile{toc}{\contentsline {section}{\numberline {6.20}Exercises}{74}{section.6.20}}
\newlabel{128}{{6.20}{74}{Exercises\relax }{section.6.20}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {6.20.1}Exercise 3}{74}{subsection.6.20.1}}
\newlabel{129}{{6.20.1}{74}{Exercise 3\relax }{subsection.6.20.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {6.20.2}Exercise 4}{75}{subsection.6.20.2}}
\newlabel{130}{{6.20.2}{75}{Exercise 4\relax }{subsection.6.20.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {6.20.3}Exercise 5}{75}{subsection.6.20.3}}
\newlabel{131}{{6.20.3}{75}{Exercise 5\relax }{subsection.6.20.3}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {7}Strings}{77}{chapter.7}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lol}{\addvspace {10\p@ }}
\newlabel{132}{{7}{77}{Strings\relax }{chapter.7}{}}
\newlabel{133}{{7}{77}{Strings\relax }{chapter.7}{}}
\@writefile{toc}{\contentsline {section}{\numberline {7.1}A string is a sequence}{77}{section.7.1}}
\newlabel{134}{{7.1}{77}{A string is a sequence\relax }{section.7.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {7.2}len}{77}{section.7.2}}
\newlabel{135}{{7.2}{77}{len\relax }{section.7.2}{}}
\@writefile{toc}{\contentsline {section}{\numberline {7.3}Traversal with a for loop}{78}{section.7.3}}
\newlabel{136}{{7.3}{78}{Traversal with a for loop\relax }{section.7.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {7.3.1}Exercise 2}{79}{subsection.7.3.1}}
\newlabel{137}{{7.3.1}{79}{Exercise 2\relax }{subsection.7.3.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {7.4}String slices}{79}{section.7.4}}
\newlabel{138}{{7.4}{79}{String slices\relax }{section.7.4}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {7.4.1}Exercise 3}{79}{subsection.7.4.1}}
\newlabel{139}{{7.4.1}{79}{Exercise 3\relax }{subsection.7.4.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {7.5}Strings are immutable}{80}{section.7.5}}
\newlabel{140}{{7.5}{80}{Strings are immutable\relax }{section.7.5}{}}
\@writefile{toc}{\contentsline {section}{\numberline {7.6}Searching}{80}{section.7.6}}
\newlabel{141}{{7.6}{80}{Searching\relax }{section.7.6}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {7.6.1}Exercise 4}{81}{subsection.7.6.1}}
\newlabel{142}{{7.6.1}{81}{Exercise 4\relax }{subsection.7.6.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {7.7}Looping and counting}{81}{section.7.7}}
\newlabel{143}{{7.7}{81}{Looping and counting\relax }{section.7.7}{}}
\@writefile{toc}{\contentsline {section}{\numberline {7.8}string methods}{81}{section.7.8}}
\newlabel{144}{{7.8}{81}{string methods\relax }{section.7.8}{}}
\@writefile{toc}{\contentsline {section}{\numberline {7.9}The in operator}{82}{section.7.9}}
\newlabel{145}{{7.9}{82}{The in operator\relax }{section.7.9}{}}
\@writefile{toc}{\contentsline {section}{\numberline {7.10}String comparison}{83}{section.7.10}}
\newlabel{146}{{7.10}{83}{String comparison\relax }{section.7.10}{}}
\@writefile{toc}{\contentsline {section}{\numberline {7.11}Debugging}{83}{section.7.11}}
\newlabel{147}{{7.11}{83}{Debugging\relax }{section.7.11}{}}
\@writefile{toc}{\contentsline {section}{\numberline {7.12}Glossary}{84}{section.7.12}}
\newlabel{148}{{7.12}{84}{Glossary\relax }{section.7.12}{}}
\@writefile{toc}{\contentsline {section}{\numberline {7.13}Exercises}{85}{section.7.13}}
\newlabel{149}{{7.13}{85}{Exercises\relax }{section.7.13}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {7.13.1}Exercise 9}{85}{subsection.7.13.1}}
\newlabel{150}{{7.13.1}{85}{Exercise 9\relax }{subsection.7.13.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {7.13.2}Exercise 10}{85}{subsection.7.13.2}}
\newlabel{151}{{7.13.2}{85}{Exercise 10\relax }{subsection.7.13.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {7.13.3}Exercise 11}{85}{subsection.7.13.3}}
\newlabel{152}{{7.13.3}{85}{Exercise 11\relax }{subsection.7.13.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {7.13.4}Exercise 12}{86}{subsection.7.13.4}}
\newlabel{153}{{7.13.4}{86}{Exercise 12\relax }{subsection.7.13.4}{}}
\@writefile{toc}{\contentsline {section}{\numberline {7.14}Notes}{86}{section.7.14}}
\newlabel{154}{{7.14}{86}{Notes\relax }{section.7.14}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {8}Case study: word play}{87}{chapter.8}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lol}{\addvspace {10\p@ }}
\newlabel{155}{{8}{87}{Case study: word play\relax }{chapter.8}{}}
\newlabel{156}{{8}{87}{Case study: word play\relax }{chapter.8}{}}
\@writefile{toc}{\contentsline {section}{\numberline {8.1}Reading word lists}{87}{section.8.1}}
\newlabel{157}{{8.1}{87}{Reading word lists\relax }{section.8.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {8.2}Exercises}{88}{section.8.2}}
\newlabel{158}{{8.2}{88}{Exercises\relax }{section.8.2}{}}
\@writefile{toc}{\contentsline {section}{\numberline {8.3}Search}{88}{section.8.3}}
\newlabel{159}{{8.3}{88}{Search\relax }{section.8.3}{}}
\@writefile{toc}{\contentsline {section}{\numberline {8.4}Looping with indices}{90}{section.8.4}}
\newlabel{160}{{8.4}{90}{Looping with indices\relax }{section.8.4}{}}
\@writefile{toc}{\contentsline {section}{\numberline {8.5}Debugging}{91}{section.8.5}}
\newlabel{161}{{8.5}{91}{Debugging\relax }{section.8.5}{}}
\@writefile{toc}{\contentsline {section}{\numberline {8.6}Glossary}{91}{section.8.6}}
\newlabel{162}{{8.6}{91}{Glossary\relax }{section.8.6}{}}
\@writefile{toc}{\contentsline {section}{\numberline {8.7}Exercises}{92}{section.8.7}}
\newlabel{163}{{8.7}{92}{Exercises\relax }{section.8.7}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {8.7.1}Exercise 7}{92}{subsection.8.7.1}}
\newlabel{164}{{8.7.1}{92}{Exercise 7\relax }{subsection.8.7.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {8.7.2}Exercise 8}{92}{subsection.8.7.2}}
\newlabel{165}{{8.7.2}{92}{Exercise 8\relax }{subsection.8.7.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {8.7.3}Exercise 9}{92}{subsection.8.7.3}}
\newlabel{166}{{8.7.3}{92}{Exercise 9\relax }{subsection.8.7.3}{}}
\@writefile{toc}{\contentsline {section}{\numberline {8.8}Notes}{93}{section.8.8}}
\newlabel{167}{{8.8}{93}{Notes\relax }{section.8.8}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {9}Lists}{95}{chapter.9}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lol}{\addvspace {10\p@ }}
\newlabel{168}{{9}{95}{Lists\relax }{chapter.9}{}}
\newlabel{169}{{9}{95}{Lists\relax }{chapter.9}{}}
\@writefile{toc}{\contentsline {section}{\numberline {9.1}A list is a sequence}{95}{section.9.1}}
\newlabel{170}{{9.1}{95}{A list is a sequence\relax }{section.9.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {9.2}Lists are mutable}{95}{section.9.2}}
\newlabel{171}{{9.2}{95}{Lists are mutable\relax }{section.9.2}{}}
\@writefile{toc}{\contentsline {section}{\numberline {9.3}Traversing a list}{96}{section.9.3}}
\newlabel{172}{{9.3}{96}{Traversing a list\relax }{section.9.3}{}}
\@writefile{toc}{\contentsline {section}{\numberline {9.4}List operations}{97}{section.9.4}}
\newlabel{173}{{9.4}{97}{List operations\relax }{section.9.4}{}}
\@writefile{toc}{\contentsline {section}{\numberline {9.5}List slices}{97}{section.9.5}}
\newlabel{174}{{9.5}{97}{List slices\relax }{section.9.5}{}}
\@writefile{toc}{\contentsline {section}{\numberline {9.6}List methods}{98}{section.9.6}}
\newlabel{175}{{9.6}{98}{List methods\relax }{section.9.6}{}}
\@writefile{toc}{\contentsline {section}{\numberline {9.7}Map, filter and reduce}{98}{section.9.7}}
\newlabel{176}{{9.7}{98}{Map, filter and reduce\relax }{section.9.7}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {9.7.1}Exercise 1}{99}{subsection.9.7.1}}
\newlabel{177}{{9.7.1}{99}{Exercise 1\relax }{subsection.9.7.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {9.8}Deleting elements}{99}{section.9.8}}
\newlabel{178}{{9.8}{99}{Deleting elements\relax }{section.9.8}{}}
\@writefile{toc}{\contentsline {section}{\numberline {9.9}Lists and strings}{100}{section.9.9}}
\newlabel{179}{{9.9}{100}{Lists and strings\relax }{section.9.9}{}}
\@writefile{toc}{\contentsline {section}{\numberline {9.10}Objects and values}{101}{section.9.10}}
\newlabel{180}{{9.10}{101}{Objects and values\relax }{section.9.10}{}}
\@writefile{toc}{\contentsline {section}{\numberline {9.11}Aliasing}{102}{section.9.11}}
\newlabel{181}{{9.11}{102}{Aliasing\relax }{section.9.11}{}}
\@writefile{toc}{\contentsline {section}{\numberline {9.12}List arguments}{102}{section.9.12}}
\newlabel{182}{{9.12}{102}{List arguments\relax }{section.9.12}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {9.12.1}Exercise 2}{103}{subsection.9.12.1}}
\newlabel{183}{{9.12.1}{103}{Exercise 2\relax }{subsection.9.12.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {9.13}Debugging}{104}{section.9.13}}
\newlabel{184}{{9.13}{104}{Debugging\relax }{section.9.13}{}}
\@writefile{toc}{\contentsline {section}{\numberline {9.14}Glossary}{105}{section.9.14}}
\newlabel{185}{{9.14}{105}{Glossary\relax }{section.9.14}{}}
\@writefile{toc}{\contentsline {section}{\numberline {9.15}Exercises}{105}{section.9.15}}
\newlabel{186}{{9.15}{105}{Exercises\relax }{section.9.15}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {9.15.1}Exercise 3}{105}{subsection.9.15.1}}
\newlabel{187}{{9.15.1}{105}{Exercise 3\relax }{subsection.9.15.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {9.15.2}Exercise 4}{105}{subsection.9.15.2}}
\newlabel{188}{{9.15.2}{105}{Exercise 4\relax }{subsection.9.15.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {9.15.3}Exercise 7}{106}{subsection.9.15.3}}
\newlabel{189}{{9.15.3}{106}{Exercise 7\relax }{subsection.9.15.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {9.15.4}Exercise 8}{106}{subsection.9.15.4}}
\newlabel{190}{{9.15.4}{106}{Exercise 8\relax }{subsection.9.15.4}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {9.15.5}Exercise 9}{106}{subsection.9.15.5}}
\newlabel{191}{{9.15.5}{106}{Exercise 9\relax }{subsection.9.15.5}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {9.15.6}Exercise 10}{106}{subsection.9.15.6}}
\newlabel{192}{{9.15.6}{106}{Exercise 10\relax }{subsection.9.15.6}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {10}Dictionaries}{109}{chapter.10}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lol}{\addvspace {10\p@ }}
\newlabel{193}{{10}{109}{Dictionaries\relax }{chapter.10}{}}
\newlabel{194}{{10}{109}{Dictionaries\relax }{chapter.10}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {10.0.7}Exercise 1}{110}{subsection.10.0.7}}
\newlabel{195}{{10.0.7}{110}{Exercise 1\relax }{subsection.10.0.7}{}}
\@writefile{toc}{\contentsline {section}{\numberline {10.1}Dictionary as a set of counters}{110}{section.10.1}}
\newlabel{196}{{10.1}{110}{Dictionary as a set of counters\relax }{section.10.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {10.1.1}Exercise 2}{111}{subsection.10.1.1}}
\newlabel{197}{{10.1.1}{111}{Exercise 2\relax }{subsection.10.1.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {10.2}Looping and dictionaries}{112}{section.10.2}}
\newlabel{198}{{10.2}{112}{Looping and dictionaries\relax }{section.10.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {10.2.1}Exercise 3}{112}{subsection.10.2.1}}
\newlabel{199}{{10.2.1}{112}{Exercise 3\relax }{subsection.10.2.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {10.3}Reverse lookup}{112}{section.10.3}}
\newlabel{200}{{10.3}{112}{Reverse lookup\relax }{section.10.3}{}}
\@writefile{toc}{\contentsline {section}{\numberline {10.4}Dictionaries and lists}{113}{section.10.4}}
\newlabel{201}{{10.4}{113}{Dictionaries and lists\relax }{section.10.4}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {10.4.1}Exercise 5}{114}{subsection.10.4.1}}
\newlabel{202}{{10.4.1}{114}{Exercise 5\relax }{subsection.10.4.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {10.5}Memos}{115}{section.10.5}}
\newlabel{203}{{10.5}{115}{Memos\relax }{section.10.5}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {10.5.1}Exercise 6}{115}{subsection.10.5.1}}
\newlabel{204}{{10.5.1}{115}{Exercise 6\relax }{subsection.10.5.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {10.6}Global variables}{115}{section.10.6}}
\newlabel{205}{{10.6}{115}{Global variables\relax }{section.10.6}{}}
\@writefile{toc}{\contentsline {section}{\numberline {10.7}Long integers}{117}{section.10.7}}
\newlabel{206}{{10.7}{117}{Long integers\relax }{section.10.7}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {10.7.1}Exercise 7}{117}{subsection.10.7.1}}
\newlabel{207}{{10.7.1}{117}{Exercise 7\relax }{subsection.10.7.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {10.8}Debugging}{117}{section.10.8}}
\newlabel{208}{{10.8}{117}{Debugging\relax }{section.10.8}{}}
\@writefile{toc}{\contentsline {section}{\numberline {10.9}Glossary}{118}{section.10.9}}
\newlabel{209}{{10.9}{118}{Glossary\relax }{section.10.9}{}}
\@writefile{toc}{\contentsline {section}{\numberline {10.10}Exercise-{}8}{118}{section.10.10}}
\newlabel{210}{{10.10}{118}{Exercise-{}8\relax }{section.10.10}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {10.10.1}Exercise 9}{119}{subsection.10.10.1}}
\newlabel{211}{{10.10.1}{119}{Exercise 9\relax }{subsection.10.10.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {10.10.2}Exercise 10}{119}{subsection.10.10.2}}
\newlabel{212}{{10.10.2}{119}{Exercise 10\relax }{subsection.10.10.2}{}}
\@writefile{toc}{\contentsline {section}{\numberline {10.11}Notes}{119}{section.10.11}}
\newlabel{213}{{10.11}{119}{Notes\relax }{section.10.11}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {11}Tuples}{121}{chapter.11}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lol}{\addvspace {10\p@ }}
\newlabel{214}{{11}{121}{Tuples\relax }{chapter.11}{}}
\newlabel{215}{{11}{121}{Tuples\relax }{chapter.11}{}}
\@writefile{toc}{\contentsline {section}{\numberline {11.1}Tuples are immutable}{121}{section.11.1}}
\newlabel{216}{{11.1}{121}{Tuples are immutable\relax }{section.11.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {11.2}Tuple assignment}{122}{section.11.2}}
\newlabel{217}{{11.2}{122}{Tuple assignment\relax }{section.11.2}{}}
\@writefile{toc}{\contentsline {section}{\numberline {11.3}Tuples as return values}{123}{section.11.3}}
\newlabel{218}{{11.3}{123}{Tuples as return values\relax }{section.11.3}{}}
\@writefile{toc}{\contentsline {section}{\numberline {11.4}Variable-{}length argument tuples}{123}{section.11.4}}
\newlabel{219}{{11.4}{123}{Variable-{}length argument tuples\relax }{section.11.4}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {11.4.1}Exercise 1}{124}{subsection.11.4.1}}
\newlabel{220}{{11.4.1}{124}{Exercise 1\relax }{subsection.11.4.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {11.5}Lists and tuples}{124}{section.11.5}}
\newlabel{221}{{11.5}{124}{Lists and tuples\relax }{section.11.5}{}}
\@writefile{toc}{\contentsline {section}{\numberline {11.6}Dictionaries and tuples}{125}{section.11.6}}
\newlabel{222}{{11.6}{125}{Dictionaries and tuples\relax }{section.11.6}{}}
\@writefile{toc}{\contentsline {section}{\numberline {11.7}Comparing tuples}{126}{section.11.7}}
\newlabel{223}{{11.7}{126}{Comparing tuples\relax }{section.11.7}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {11.7.1}Exercise 2}{127}{subsection.11.7.1}}
\newlabel{224}{{11.7.1}{127}{Exercise 2\relax }{subsection.11.7.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {11.8}Sequences of sequences}{127}{section.11.8}}
\newlabel{225}{{11.8}{127}{Sequences of sequences\relax }{section.11.8}{}}
\@writefile{toc}{\contentsline {section}{\numberline {11.9}Debugging}{128}{section.11.9}}
\newlabel{226}{{11.9}{128}{Debugging\relax }{section.11.9}{}}
\@writefile{toc}{\contentsline {section}{\numberline {11.10}Glossary}{129}{section.11.10}}
\newlabel{227}{{11.10}{129}{Glossary\relax }{section.11.10}{}}
\@writefile{toc}{\contentsline {section}{\numberline {11.11}Exercises}{129}{section.11.11}}
\newlabel{228}{{11.11}{129}{Exercises\relax }{section.11.11}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {11.11.1}Exercise 3}{129}{subsection.11.11.1}}
\newlabel{229}{{11.11.1}{129}{Exercise 3\relax }{subsection.11.11.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {11.11.2}Exercise 4}{129}{subsection.11.11.2}}
\newlabel{230}{{11.11.2}{129}{Exercise 4\relax }{subsection.11.11.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {11.11.3}Exercise 5}{130}{subsection.11.11.3}}
\newlabel{231}{{11.11.3}{130}{Exercise 5\relax }{subsection.11.11.3}{}}
\newlabel{232}{{11.11.3}{131}{Exercise 5\relax }{subsection.11.11.3}{}}
\@writefile{toc}{\contentsline {section}{\numberline {11.12}Word frequency analysis}{131}{section.11.12}}
\newlabel{233}{{11.12}{131}{Word frequency analysis\relax }{section.11.12}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {11.12.1}Exercise 1}{131}{subsection.11.12.1}}
\newlabel{234}{{11.12.1}{131}{Exercise 1\relax }{subsection.11.12.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {11.12.2}Exercise 2}{131}{subsection.11.12.2}}
\newlabel{235}{{11.12.2}{131}{Exercise 2\relax }{subsection.11.12.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {11.12.3}Exercise 3}{131}{subsection.11.12.3}}
\newlabel{236}{{11.12.3}{131}{Exercise 3\relax }{subsection.11.12.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {11.12.4}Exercise 4}{132}{subsection.11.12.4}}
\newlabel{237}{{11.12.4}{132}{Exercise 4\relax }{subsection.11.12.4}{}}
\@writefile{toc}{\contentsline {section}{\numberline {11.13}Random numbers}{132}{section.11.13}}
\newlabel{238}{{11.13}{132}{Random numbers\relax }{section.11.13}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {11.13.1}Exercise 5}{133}{subsection.11.13.1}}
\newlabel{239}{{11.13.1}{133}{Exercise 5\relax }{subsection.11.13.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {11.14}Word histogram}{133}{section.11.14}}
\newlabel{240}{{11.14}{133}{Word histogram\relax }{section.11.14}{}}
\@writefile{toc}{\contentsline {section}{\numberline {11.15}Most common words}{134}{section.11.15}}
\newlabel{241}{{11.15}{134}{Most common words\relax }{section.11.15}{}}
\@writefile{toc}{\contentsline {section}{\numberline {11.16}Optional parameters}{134}{section.11.16}}
\newlabel{242}{{11.16}{134}{Optional parameters\relax }{section.11.16}{}}
\@writefile{toc}{\contentsline {section}{\numberline {11.17}Dictionary subtraction}{135}{section.11.17}}
\newlabel{243}{{11.17}{135}{Dictionary subtraction\relax }{section.11.17}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {11.17.1}Exercise 6}{136}{subsection.11.17.1}}
\newlabel{244}{{11.17.1}{136}{Exercise 6\relax }{subsection.11.17.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {11.18}Random words}{136}{section.11.18}}
\newlabel{245}{{11.18}{136}{Random words\relax }{section.11.18}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {11.18.1}Exercise 7}{136}{subsection.11.18.1}}
\newlabel{246}{{11.18.1}{136}{Exercise 7\relax }{subsection.11.18.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {11.19}Markov analysis}{137}{section.11.19}}
\newlabel{247}{{11.19}{137}{Markov analysis\relax }{section.11.19}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {11.19.1}Exercise 8}{138}{subsection.11.19.1}}
\newlabel{248}{{11.19.1}{138}{Exercise 8\relax }{subsection.11.19.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {11.20}Data structures}{138}{section.11.20}}
\newlabel{249}{{11.20}{138}{Data structures\relax }{section.11.20}{}}
\@writefile{toc}{\contentsline {section}{\numberline {11.21}Debugging}{139}{section.11.21}}
\newlabel{250}{{11.21}{139}{Debugging\relax }{section.11.21}{}}
\@writefile{toc}{\contentsline {section}{\numberline {11.22}Glossary}{140}{section.11.22}}
\newlabel{251}{{11.22}{140}{Glossary\relax }{section.11.22}{}}
\@writefile{toc}{\contentsline {section}{\numberline {11.23}Exercises}{141}{section.11.23}}
\newlabel{252}{{11.23}{141}{Exercises\relax }{section.11.23}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {11.23.1}Exercise 9}{141}{subsection.11.23.1}}
\newlabel{253}{{11.23.1}{141}{Exercise 9\relax }{subsection.11.23.1}{}}
\newlabel{256}{{11.23.1}{141}{Exercise 9\relax }{subsection.11.23.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {11.24}Persistence}{141}{section.11.24}}
\newlabel{257}{{11.24}{141}{Persistence\relax }{section.11.24}{}}
\@writefile{toc}{\contentsline {section}{\numberline {11.25}Reading and writing}{141}{section.11.25}}
\newlabel{258}{{11.25}{141}{Reading and writing\relax }{section.11.25}{}}
\@writefile{toc}{\contentsline {section}{\numberline {11.26}Format operator}{142}{section.11.26}}
\newlabel{259}{{11.26}{142}{Format operator\relax }{section.11.26}{}}
\@writefile{toc}{\contentsline {section}{\numberline {11.27}Filenames and paths}{143}{section.11.27}}
\newlabel{260}{{11.27}{143}{Filenames and paths\relax }{section.11.27}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {11.27.1}Exercise 1}{144}{subsection.11.27.1}}
\newlabel{261}{{11.27.1}{144}{Exercise 1\relax }{subsection.11.27.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {11.28}Catching exceptions}{144}{section.11.28}}
\newlabel{262}{{11.28}{144}{Catching exceptions\relax }{section.11.28}{}}
\@writefile{toc}{\contentsline {section}{\numberline {11.29}Databases}{145}{section.11.29}}
\newlabel{263}{{11.29}{145}{Databases\relax }{section.11.29}{}}
\@writefile{toc}{\contentsline {section}{\numberline {11.30}Pickling}{146}{section.11.30}}
\newlabel{264}{{11.30}{146}{Pickling\relax }{section.11.30}{}}
\@writefile{toc}{\contentsline {section}{\numberline {11.31}Pipes}{146}{section.11.31}}
\newlabel{265}{{11.31}{146}{Pipes\relax }{section.11.31}{}}
\@writefile{toc}{\contentsline {section}{\numberline {11.32}Writing modules}{147}{section.11.32}}
\newlabel{266}{{11.32}{147}{Writing modules\relax }{section.11.32}{}}
\@writefile{toc}{\contentsline {section}{\numberline {11.33}Debugging}{148}{section.11.33}}
\newlabel{267}{{11.33}{148}{Debugging\relax }{section.11.33}{}}
\@writefile{toc}{\contentsline {section}{\numberline {11.34}Glossary}{149}{section.11.34}}
\newlabel{268}{{11.34}{149}{Glossary\relax }{section.11.34}{}}
\@writefile{toc}{\contentsline {section}{\numberline {11.35}Exercises}{149}{section.11.35}}
\newlabel{269}{{11.35}{149}{Exercises\relax }{section.11.35}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {12}Classes and objects}{151}{chapter.12}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lol}{\addvspace {10\p@ }}
\newlabel{270}{{12}{151}{Classes and objects\relax }{chapter.12}{}}
\newlabel{271}{{12}{151}{Classes and objects\relax }{chapter.12}{}}
\@writefile{toc}{\contentsline {section}{\numberline {12.1}User-{}defined types}{151}{section.12.1}}
\newlabel{272}{{12.1}{151}{User-{}defined types\relax }{section.12.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {12.2}Attributes}{152}{section.12.2}}
\newlabel{273}{{12.2}{152}{Attributes\relax }{section.12.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {12.2.1}Exercise 1}{153}{subsection.12.2.1}}
\newlabel{274}{{12.2.1}{153}{Exercise 1\relax }{subsection.12.2.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {12.3}Rectangles}{153}{section.12.3}}
\newlabel{275}{{12.3}{153}{Rectangles\relax }{section.12.3}{}}
\@writefile{toc}{\contentsline {section}{\numberline {12.4}Instances as return values}{153}{section.12.4}}
\newlabel{276}{{12.4}{153}{Instances as return values\relax }{section.12.4}{}}
\@writefile{toc}{\contentsline {section}{\numberline {12.5}Objects are mutable}{154}{section.12.5}}
\newlabel{277}{{12.5}{154}{Objects are mutable\relax }{section.12.5}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {12.5.1}Exercise 2}{154}{subsection.12.5.1}}
\newlabel{278}{{12.5.1}{154}{Exercise 2\relax }{subsection.12.5.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {12.6}Copying}{155}{section.12.6}}
\newlabel{279}{{12.6}{155}{Copying\relax }{section.12.6}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {12.6.1}Exercise 3}{156}{subsection.12.6.1}}
\newlabel{280}{{12.6.1}{156}{Exercise 3\relax }{subsection.12.6.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {12.7}Debugging}{156}{section.12.7}}
\newlabel{281}{{12.7}{156}{Debugging\relax }{section.12.7}{}}
\@writefile{toc}{\contentsline {section}{\numberline {12.8}Glossary}{156}{section.12.8}}
\newlabel{282}{{12.8}{156}{Glossary\relax }{section.12.8}{}}
\@writefile{toc}{\contentsline {section}{\numberline {12.9}Exercises}{157}{section.12.9}}
\newlabel{283}{{12.9}{157}{Exercises\relax }{section.12.9}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {12.9.1}Exercise 4}{157}{subsection.12.9.1}}
\newlabel{284}{{12.9.1}{157}{Exercise 4\relax }{subsection.12.9.1}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {13}Classes and functions}{159}{chapter.13}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lol}{\addvspace {10\p@ }}
\newlabel{285}{{13}{159}{Classes and functions\relax }{chapter.13}{}}
\newlabel{286}{{13}{159}{Classes and functions\relax }{chapter.13}{}}
\@writefile{toc}{\contentsline {section}{\numberline {13.1}Time}{159}{section.13.1}}
\newlabel{287}{{13.1}{159}{Time\relax }{section.13.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {13.1.1}Exercise 1}{159}{subsection.13.1.1}}
\newlabel{288}{{13.1.1}{159}{Exercise 1\relax }{subsection.13.1.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {13.1.2}Exercise 2}{159}{subsection.13.1.2}}
\newlabel{289}{{13.1.2}{159}{Exercise 2\relax }{subsection.13.1.2}{}}
\@writefile{toc}{\contentsline {section}{\numberline {13.2}Pure functions}{159}{section.13.2}}
\newlabel{290}{{13.2}{159}{Pure functions\relax }{section.13.2}{}}
\@writefile{toc}{\contentsline {section}{\numberline {13.3}Modifiers}{161}{section.13.3}}
\newlabel{291}{{13.3}{161}{Modifiers\relax }{section.13.3}{}}
\@writefile{toc}{\contentsline {section}{\numberline {13.4}Prototyping versus planning}{161}{section.13.4}}
\newlabel{292}{{13.4}{161}{Prototyping versus planning\relax }{section.13.4}{}}
\@writefile{toc}{\contentsline {section}{\numberline {13.5}Debugging}{163}{section.13.5}}
\newlabel{293}{{13.5}{163}{Debugging\relax }{section.13.5}{}}
\@writefile{toc}{\contentsline {section}{\numberline {13.6}Glossary}{163}{section.13.6}}
\newlabel{294}{{13.6}{163}{Glossary\relax }{section.13.6}{}}
\@writefile{toc}{\contentsline {section}{\numberline {13.7}Exercises}{164}{section.13.7}}
\newlabel{295}{{13.7}{164}{Exercises\relax }{section.13.7}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {13.7.1}Exercise 6}{164}{subsection.13.7.1}}
\newlabel{296}{{13.7.1}{164}{Exercise 6\relax }{subsection.13.7.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {13.7.2}Exercise 7}{164}{subsection.13.7.2}}
\newlabel{297}{{13.7.2}{164}{Exercise 7\relax }{subsection.13.7.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {13.7.3}Exercise 8}{164}{subsection.13.7.3}}
\newlabel{298}{{13.7.3}{164}{Exercise 8\relax }{subsection.13.7.3}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {14}Classes and methods}{165}{chapter.14}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lol}{\addvspace {10\p@ }}
\newlabel{299}{{14}{165}{Classes and methods\relax }{chapter.14}{}}
\newlabel{300}{{14}{165}{Classes and methods\relax }{chapter.14}{}}
\@writefile{toc}{\contentsline {section}{\numberline {14.1}Object-{}oriented features}{165}{section.14.1}}
\newlabel{301}{{14.1}{165}{Object-{}oriented features\relax }{section.14.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {14.2}Printing objects}{166}{section.14.2}}
\newlabel{302}{{14.2}{166}{Printing objects\relax }{section.14.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {14.2.1}Exercise 1}{167}{subsection.14.2.1}}
\newlabel{303}{{14.2.1}{167}{Exercise 1\relax }{subsection.14.2.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {14.3}Another example}{167}{section.14.3}}
\newlabel{304}{{14.3}{167}{Another example\relax }{section.14.3}{}}
\@writefile{toc}{\contentsline {section}{\numberline {14.4}A more complicated example}{168}{section.14.4}}
\newlabel{305}{{14.4}{168}{A more complicated example\relax }{section.14.4}{}}
\@writefile{toc}{\contentsline {section}{\numberline {14.5}The init method}{168}{section.14.5}}
\newlabel{306}{{14.5}{168}{The init method\relax }{section.14.5}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {14.5.1}Exercise 2}{169}{subsection.14.5.1}}
\newlabel{307}{{14.5.1}{169}{Exercise 2\relax }{subsection.14.5.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {14.6}The \@uscore .\@uscore .str\@uscore .\@uscore . method}{169}{section.14.6}}
\newlabel{308}{{14.6}{169}{The __str__ method\relax }{section.14.6}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {14.6.1}Exercise 3}{169}{subsection.14.6.1}}
\newlabel{309}{{14.6.1}{169}{Exercise 3\relax }{subsection.14.6.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {14.7}Operator overloading}{169}{section.14.7}}
\newlabel{310}{{14.7}{169}{Operator overloading\relax }{section.14.7}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {14.7.1}Exercise 4}{170}{subsection.14.7.1}}
\newlabel{311}{{14.7.1}{170}{Exercise 4\relax }{subsection.14.7.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {14.8}Type-{}based dispatch}{170}{section.14.8}}
\newlabel{312}{{14.8}{170}{Type-{}based dispatch\relax }{section.14.8}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {14.8.1}Exercise 5}{171}{subsection.14.8.1}}
\newlabel{313}{{14.8.1}{171}{Exercise 5\relax }{subsection.14.8.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {14.9}Polymorphism}{171}{section.14.9}}
\newlabel{314}{{14.9}{171}{Polymorphism\relax }{section.14.9}{}}
\@writefile{toc}{\contentsline {section}{\numberline {14.10}Debugging}{172}{section.14.10}}
\newlabel{315}{{14.10}{172}{Debugging\relax }{section.14.10}{}}
\@writefile{toc}{\contentsline {section}{\numberline {14.11}Glossary}{173}{section.14.11}}
\newlabel{316}{{14.11}{173}{Glossary\relax }{section.14.11}{}}
\@writefile{toc}{\contentsline {section}{\numberline {14.12}Exercises}{173}{section.14.12}}
\newlabel{317}{{14.12}{173}{Exercises\relax }{section.14.12}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {14.12.1}Exercise 6}{173}{subsection.14.12.1}}
\newlabel{318}{{14.12.1}{173}{Exercise 6\relax }{subsection.14.12.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {14.12.2}Exercise 7}{174}{subsection.14.12.2}}
\newlabel{319}{{14.12.2}{174}{Exercise 7\relax }{subsection.14.12.2}{}}
\@writefile{toc}{\contentsline {section}{\numberline {14.13}Further reading}{175}{section.14.13}}
\newlabel{320}{{14.13}{175}{Further reading\relax }{section.14.13}{}}
\gdef \LT@iii {\LT@entry
 {1}{234.30595pt}\LT@entry
 {1}{101.78465pt}\LT@entry
 {1}{81.03459pt}}
\gdef \LT@iv {\LT@entry
 {1}{190.49146pt}\LT@entry
 {1}{113.05237pt}\LT@entry
 {1}{113.58136pt}}
\@writefile{toc}{\contentsline {chapter}{\numberline {15}Inheritance}{177}{chapter.15}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lol}{\addvspace {10\p@ }}
\newlabel{321}{{15}{177}{Inheritance\relax }{chapter.15}{}}
\newlabel{322}{{15}{177}{Inheritance\relax }{chapter.15}{}}
\@writefile{toc}{\contentsline {section}{\numberline {15.1}Card objects}{177}{section.15.1}}
\newlabel{323}{{15.1}{177}{Card objects\relax }{section.15.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {15.2}Class attributes}{178}{section.15.2}}
\newlabel{324}{{15.2}{178}{Class attributes\relax }{section.15.2}{}}
\@writefile{toc}{\contentsline {section}{\numberline {15.3}Comparing cards}{179}{section.15.3}}
\newlabel{325}{{15.3}{179}{Comparing cards\relax }{section.15.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {15.3.1}Exercise 1}{180}{subsection.15.3.1}}
\newlabel{326}{{15.3.1}{180}{Exercise 1\relax }{subsection.15.3.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {15.4}Decks}{180}{section.15.4}}
\newlabel{327}{{15.4}{180}{Decks\relax }{section.15.4}{}}
\@writefile{toc}{\contentsline {section}{\numberline {15.5}Printing the deck}{180}{section.15.5}}
\newlabel{328}{{15.5}{180}{Printing the deck\relax }{section.15.5}{}}
\@writefile{toc}{\contentsline {section}{\numberline {15.6}Add, remove, shuffle and sort}{181}{section.15.6}}
\newlabel{329}{{15.6}{181}{Add, remove, shuffle and sort\relax }{section.15.6}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {15.6.1}Exercise 2}{182}{subsection.15.6.1}}
\newlabel{330}{{15.6.1}{182}{Exercise 2\relax }{subsection.15.6.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {15.7}Inheritance}{182}{section.15.7}}
\newlabel{331}{{15.7}{182}{Inheritance\relax }{section.15.7}{}}
\@writefile{toc}{\contentsline {section}{\numberline {15.8}Class diagrams}{183}{section.15.8}}
\newlabel{332}{{15.8}{183}{Class diagrams\relax }{section.15.8}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {15.8.1}Exercise 4}{184}{subsection.15.8.1}}
\newlabel{333}{{15.8.1}{184}{Exercise 4\relax }{subsection.15.8.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {15.9}Debugging}{184}{section.15.9}}
\newlabel{334}{{15.9}{184}{Debugging\relax }{section.15.9}{}}
\@writefile{toc}{\contentsline {section}{\numberline {15.10}Glossary}{185}{section.15.10}}
\newlabel{335}{{15.10}{185}{Glossary\relax }{section.15.10}{}}
\@writefile{toc}{\contentsline {section}{\numberline {15.11}Exercises}{185}{section.15.11}}
\newlabel{336}{{15.11}{185}{Exercises\relax }{section.15.11}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {15.11.1}Exercise 5}{185}{subsection.15.11.1}}
\newlabel{337}{{15.11.1}{185}{Exercise 5\relax }{subsection.15.11.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {15.11.2}Exercise 6}{186}{subsection.15.11.2}}
\newlabel{338}{{15.11.2}{186}{Exercise 6\relax }{subsection.15.11.2}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {16}Debugging}{189}{chapter.16}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lol}{\addvspace {10\p@ }}
\newlabel{339}{{16}{189}{Debugging\relax }{chapter.16}{}}
\newlabel{340}{{16}{189}{Debugging\relax }{chapter.16}{}}
\@writefile{toc}{\contentsline {section}{\numberline {16.1}Syntax errors}{189}{section.16.1}}
\newlabel{341}{{16.1}{189}{Syntax errors\relax }{section.16.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {16.1.1}I keep making changes and it makes no difference.}{190}{subsection.16.1.1}}
\newlabel{342}{{16.1.1}{190}{I keep making changes and it makes no difference}{subsection.16.1.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {16.2}Runtime errors}{191}{section.16.2}}
\newlabel{343}{{16.2}{191}{Runtime errors\relax }{section.16.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {16.2.1}My program does absolutely nothing.}{191}{subsection.16.2.1}}
\newlabel{344}{{16.2.1}{191}{My program does absolutely nothing}{subsection.16.2.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {16.2.2}My program hangs.}{191}{subsection.16.2.2}}
\newlabel{345}{{16.2.2}{191}{My program hangs}{subsection.16.2.2}{}}
\@writefile{toc}{\contentsline {subsubsection}{Infinite Loop}{192}{section*.13}}
\newlabel{346}{{16.2.2}{192}{Infinite Loop\relax }{section*.13}{}}
\@writefile{toc}{\contentsline {subsubsection}{Infinite Recursion}{192}{section*.14}}
\newlabel{347}{{16.2.2}{192}{Infinite Recursion\relax }{section*.14}{}}
\@writefile{toc}{\contentsline {subsubsection}{Flow of Execution}{192}{section*.15}}
\newlabel{348}{{16.2.2}{192}{Flow of Execution\relax }{section*.15}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {16.2.3}When I run the program I get an exception.}{193}{subsection.16.2.3}}
\newlabel{349}{{16.2.3}{193}{When I run the program I get an exception}{subsection.16.2.3}{}}
\@writefile{toc}{\contentsline {subsubsection}{I added so many print statements I get inundated with output.}{194}{section*.16}}
\newlabel{350}{{16.2.3}{194}{I added so many print statements I get inundated with output}{section*.16}{}}
\@writefile{toc}{\contentsline {section}{\numberline {16.3}Semantic errors}{194}{section.16.3}}
\newlabel{351}{{16.3}{194}{Semantic errors\relax }{section.16.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {16.3.1}My program doesnâ��t work.}{194}{subsection.16.3.1}}
\newlabel{352}{{16.3.1}{194}{My program doesnâ��t work}{subsection.16.3.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {16.3.2}I\textquotesingle {}m really, really stuck and I need help.}{196}{subsection.16.3.2}}
\newlabel{353}{{16.3.2}{196}{I\textquotesingle {}m really, really stuck and I need help}{subsection.16.3.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {16.3.3}No, I really need help.}{196}{subsection.16.3.3}}
\newlabel{354}{{16.3.3}{196}{No, I really need help}{subsection.16.3.3}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {17}Answers}{199}{chapter.17}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lol}{\addvspace {10\p@ }}
\newlabel{355}{{17}{199}{Answers\relax }{chapter.17}{}}
\newlabel{356}{{17}{199}{Answers\relax }{chapter.17}{}}
\@writefile{toc}{\contentsline {section}{\numberline {17.1}Chapter 1}{199}{section.17.1}}
\newlabel{357}{{17.1}{199}{Chapter 1\relax }{section.17.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {17.1.1}Exercise 1.4}{199}{subsection.17.1.1}}
\newlabel{358}{{17.1.1}{199}{Exercise 1.4\relax }{subsection.17.1.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {17.2}Chapter 2}{200}{section.17.2}}
\newlabel{359}{{17.2}{200}{Chapter 2\relax }{section.17.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {17.2.1}Exercise 2.1}{200}{subsection.17.2.1}}
\newlabel{360}{{17.2.1}{200}{Exercise 2.1\relax }{subsection.17.2.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {17.2.2}Exercise 2.4}{200}{subsection.17.2.2}}
\newlabel{361}{{17.2.2}{200}{Exercise 2.4\relax }{subsection.17.2.2}{}}
\@writefile{toc}{\contentsline {section}{\numberline {17.3}Chapter 3}{202}{section.17.3}}
\newlabel{362}{{17.3}{202}{Chapter 3\relax }{section.17.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {17.3.1}Exercise 3.3}{202}{subsection.17.3.1}}
\newlabel{363}{{17.3.1}{202}{Exercise 3.3\relax }{subsection.17.3.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {17.3.2}Exercise 3.4}{202}{subsection.17.3.2}}
\newlabel{364}{{17.3.2}{202}{Exercise 3.4\relax }{subsection.17.3.2}{}}
\@writefile{toc}{\contentsline {section}{\numberline {17.4}Chapter 9}{204}{section.17.4}}
\newlabel{365}{{17.4}{204}{Chapter 9\relax }{section.17.4}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {17.4.1}Exercise 9.1}{204}{subsection.17.4.1}}
\newlabel{366}{{17.4.1}{204}{Exercise 9.1\relax }{subsection.17.4.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {17.5}Chapter 10}{204}{section.17.5}}
\newlabel{367}{{17.5}{204}{Chapter 10\relax }{section.17.5}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {17.5.1}Exercise 10.1}{204}{subsection.17.5.1}}
\newlabel{368}{{17.5.1}{204}{Exercise 10.1\relax }{subsection.17.5.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {17.5.2}Exercise 10.2}{204}{subsection.17.5.2}}
\newlabel{369}{{17.5.2}{204}{Exercise 10.2\relax }{subsection.17.5.2}{}}
\@writefile{toc}{\contentsline {section}{\numberline {17.6}Chapter 11}{205}{section.17.6}}
\newlabel{370}{{17.6}{205}{Chapter 11\relax }{section.17.6}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {17.6.1}Exercise 11.1}{205}{subsection.17.6.1}}
\newlabel{371}{{17.6.1}{205}{Exercise 11.1\relax }{subsection.17.6.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {17.6.2}Exercise 11.2}{205}{subsection.17.6.2}}
\newlabel{372}{{17.6.2}{205}{Exercise 11.2\relax }{subsection.17.6.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {17.6.3}Exercise 11.4}{205}{subsection.17.6.3}}
\newlabel{373}{{17.6.3}{205}{Exercise 11.4\relax }{subsection.17.6.3}{}}
\@writefile{toc}{\contentsline {section}{\numberline {17.7}Chapter 12}{205}{section.17.7}}
\newlabel{374}{{17.7}{205}{Chapter 12\relax }{section.17.7}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {17.7.1}Exercise 12.1}{205}{subsection.17.7.1}}
\newlabel{375}{{17.7.1}{205}{Exercise 12.1\relax }{subsection.17.7.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {17.7.2}Exercise 12.2}{206}{subsection.17.7.2}}
\newlabel{376}{{17.7.2}{206}{Exercise 12.2\relax }{subsection.17.7.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {17.7.3}Exercise 12.3}{207}{subsection.17.7.3}}
\newlabel{377}{{17.7.3}{207}{Exercise 12.3\relax }{subsection.17.7.3}{}}
\@writefile{toc}{\contentsline {section}{\numberline {17.8}Chapter 13}{207}{section.17.8}}
\newlabel{378}{{17.8}{207}{Chapter 13\relax }{section.17.8}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {17.8.1}Exercise 13.7}{207}{subsection.17.8.1}}
\newlabel{379}{{17.8.1}{207}{Exercise 13.7\relax }{subsection.17.8.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {17.9}Chapter 14}{208}{section.17.9}}
\newlabel{380}{{17.9}{208}{Chapter 14\relax }{section.17.9}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {17.9.1}Exercise 14.3}{208}{subsection.17.9.1}}
\newlabel{381}{{17.9.1}{208}{Exercise 14.3\relax }{subsection.17.9.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {17.9.2}Exercise 14.5}{208}{subsection.17.9.2}}
\newlabel{382}{{17.9.2}{208}{Exercise 14.5\relax }{subsection.17.9.2}{}}
\@writefile{toc}{\contentsline {section}{\numberline {17.10}Chapter 15}{209}{section.17.10}}
\newlabel{383}{{17.10}{209}{Chapter 15\relax }{section.17.10}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {17.10.1}Exercise 15.1}{209}{subsection.17.10.1}}
\newlabel{384}{{17.10.1}{209}{Exercise 15.1\relax }{subsection.17.10.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {17.11}Chapter 16}{210}{section.17.11}}
\newlabel{385}{{17.11}{210}{Chapter 16\relax }{section.17.11}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {17.11.1}Exercise 16.1}{210}{subsection.17.11.1}}
\newlabel{386}{{17.11.1}{210}{Exercise 16.1\relax }{subsection.17.11.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {17.11.2}Exercise 16.2}{210}{subsection.17.11.2}}
\newlabel{387}{{17.11.2}{210}{Exercise 16.2\relax }{subsection.17.11.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {17.11.3}Exercise 16.3}{210}{subsection.17.11.3}}
\newlabel{388}{{17.11.3}{210}{Exercise 16.3\relax }{subsection.17.11.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {17.11.4}Exercise 16.4}{211}{subsection.17.11.4}}
\newlabel{389}{{17.11.4}{211}{Exercise 16.4\relax }{subsection.17.11.4}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {17.11.5}Exercise 16.5}{211}{subsection.17.11.5}}
\newlabel{390}{{17.11.5}{211}{Exercise 16.5\relax }{subsection.17.11.5}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {17.11.6}Exercise 16.6}{211}{subsection.17.11.6}}
\newlabel{391}{{17.11.6}{211}{Exercise 16.6\relax }{subsection.17.11.6}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {17.11.7}Exercise 16.7}{212}{subsection.17.11.7}}
\newlabel{392}{{17.11.7}{212}{Exercise 16.7\relax }{subsection.17.11.7}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {17.11.8}Exercise 16.8}{213}{subsection.17.11.8}}
\newlabel{393}{{17.11.8}{213}{Exercise 16.8\relax }{subsection.17.11.8}{}}
\@writefile{toc}{\contentsline {section}{\numberline {17.12}Chapter 3.5}{213}{section.17.12}}
\newlabel{394}{{17.12}{213}{Chapter 3.5\relax }{section.17.12}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {17.12.1}calculator}{213}{subsection.17.12.1}}
\newlabel{395}{{17.12.1}{213}{calculator\relax }{subsection.17.12.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {17.12.2}palindrome}{214}{subsection.17.12.2}}
\newlabel{396}{{17.12.2}{214}{palindrome\relax }{subsection.17.12.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {17.12.3}sum of all digits}{215}{subsection.17.12.3}}
\newlabel{397}{{17.12.3}{215}{sum of all digits\relax }{subsection.17.12.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {17.12.4}Exercise 18.5}{215}{subsection.17.12.4}}
\newlabel{398}{{17.12.4}{215}{Exercise 18.5\relax }{subsection.17.12.4}{}}
\newlabel{399}{{17.12.4}{219}{Exercise 18.5\relax }{subsection.17.12.4}{}}
\@writefile{toc}{\contentsline {section}{\numberline {17.13}Index}{219}{section.17.13}}
\newlabel{400}{{17.13}{219}{Index\relax }{section.17.13}{}}
\gdef \LT@v {\LT@entry
 {1}{40.63092pt}\LT@entry
 {1}{272.01709pt}}
\@writefile{toc}{\contentsline {chapter}{\numberline {18}Contributors}{253}{chapter.18}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lol}{\addvspace {10\p@ }}
\newlabel{Contributors}{{18}{253}{Contributors\relax }{chapter.18}{}}
\@writefile{toc}{\contentsline {chapter}{List of Figures}{255}{chapter*.17}}
\newlabel{ListOfFigures}{{18}{255}{Contributors\relax }{chapter*.17}{}}
\gdef \LT@vi {\LT@entry
 {1}{34.46918pt}\LT@entry
 {1}{272.41708pt}\LT@entry
 {1}{77.40096pt}}
\@writefile{toc}{\contentsline {chapter}{\numberline {19}Licenses}{259}{chapter.19}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lol}{\addvspace {10\p@ }}
\newlabel{Licenses}{{19}{259}{Licenses\relax }{chapter.19}{}}
\@writefile{toc}{\contentsline {section}{\numberline {19.1}GNU GENERAL PUBLIC LICENSE}{259}{section.19.1}}
\@writefile{toc}{\contentsline {section}{\numberline {19.2}GNU Free Documentation License}{260}{section.19.2}}
\@writefile{toc}{\contentsline {section}{\numberline {19.3}GNU Lesser General Public License}{261}{section.19.3}}

main/utf8plainenc.dfu

%%
%% This is file `utf8enc.dfu',
%% generated with the docstrip utility.
%%
%% The original source files were:
%%
%% utf8ienc.dtx (with options: `all')
%%
%% This is a generated file.
%%
%% Copyright 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
%% The LaTeX3 Project and any individual authors listed elsewhere
%% in this file.
%%
%% This file was generated from file(s) of the LaTeX base system.
%% --
%%
%% It may be distributed and/or modified under the
%% conditions of the LaTeX Project Public License, either version 1.3c
%% of this license or (at your option) any later version.
%% The latest version of this license is in
%% http://www.latex-project.org/lppl.txt
%% and version 1.3c or later is part of all distributions of LaTeX
%% version 2005/12/01 or later.
%%
%% This file has the LPPL maintenance status "maintained".
%%
%% This file may only be distributed together with a copy of the LaTeX
%% base system. You may however distribute the LaTeX base system without
%% such generated files.
%%
%% The list of all files belonging to the LaTeX base distribution is
%% given in the file `manifest.txt'. See also `legal.txt' for additional
%% information.
%%
%% The list of derived (unpacked) files belonging to the distribution
%% and covered by LPPL is defined by the unpacking scripts (with
%% extension .ins) which are part of the distribution.
 \ProvidesFile{utf8enc.dfu}
 [2008/04/05 v1.1m UTF-8 support for inputenc]
\DeclareUnicodeCharacter{00A1}{\textexclamdown}
\DeclareUnicodeCharacter{00A2}{\textcent}
\DeclareUnicodeCharacter{00A3}{\textsterling}
\DeclareUnicodeCharacter{00A4}{\textcurrency}
\DeclareUnicodeCharacter{00A5}{\textyen}
\DeclareUnicodeCharacter{00A6}{\textbrokenbar}
\DeclareUnicodeCharacter{00A7}{\textsection}
\DeclareUnicodeCharacter{00A8}{\textasciidieresis}
\DeclareUnicodeCharacter{00A9}{\textcopyright}
\DeclareUnicodeCharacter{00AA}{\textordfeminine}
\DeclareUnicodeCharacter{00AB}{\guillemotleft}
\DeclareUnicodeCharacter{00AC}{\textlnot}
\DeclareUnicodeCharacter{00AE}{\textregistered}
\DeclareUnicodeCharacter{00AF}{\textasciimacron}
\DeclareUnicodeCharacter{00B0}{\textdegree}
\DeclareUnicodeCharacter{00B1}{\textpm}
\DeclareUnicodeCharacter{00B2}{\texttwosuperior}
\DeclareUnicodeCharacter{00B3}{\textthreesuperior}
\DeclareUnicodeCharacter{00B4}{\textasciiacute}
\DeclareUnicodeCharacter{00B5}{\textmu} % micro sign
\DeclareUnicodeCharacter{00B6}{\textparagraph}
\DeclareUnicodeCharacter{00B7}{\textperiodcentered}
\DeclareUnicodeCharacter{00B8}{\c\ }
\DeclareUnicodeCharacter{00B9}{\textonesuperior}
\DeclareUnicodeCharacter{00BA}{\textordmasculine}
\DeclareUnicodeCharacter{00BB}{\guillemotright}
\DeclareUnicodeCharacter{00BC}{\textonequarter}
\DeclareUnicodeCharacter{00BD}{\textonehalf}
\DeclareUnicodeCharacter{00BE}{\textthreequarters}
\DeclareUnicodeCharacter{00BF}{\textquestiondown}
\DeclareUnicodeCharacter{00C0}{\@tabacckludge`A}
\DeclareUnicodeCharacter{00C1}{\@tabacckludge'A}
\DeclareUnicodeCharacter{00C2}{\^A}
\DeclareUnicodeCharacter{00C3}{\~A}
\DeclareUnicodeCharacter{00C4}{\"A}
\DeclareUnicodeCharacter{00C5}{\r A}
\DeclareUnicodeCharacter{00C6}{\AE}
\DeclareUnicodeCharacter{00C7}{\c C}
\DeclareUnicodeCharacter{00C8}{\@tabacckludge`E}
\DeclareUnicodeCharacter{00C9}{\@tabacckludge'E}
\DeclareUnicodeCharacter{00CA}{\^E}
\DeclareUnicodeCharacter{00CB}{\"E}
\DeclareUnicodeCharacter{00CC}{\@tabacckludge`I}
\DeclareUnicodeCharacter{00CD}{\@tabacckludge'I}
\DeclareUnicodeCharacter{00CE}{\^I}
\DeclareUnicodeCharacter{00CF}{\"I}
\DeclareUnicodeCharacter{00D0}{\DH}
\DeclareUnicodeCharacter{00D1}{\~N}
\DeclareUnicodeCharacter{00D2}{\@tabacckludge`O}
\DeclareUnicodeCharacter{00D3}{\@tabacckludge'O}
\DeclareUnicodeCharacter{00D4}{\^O}
\DeclareUnicodeCharacter{00D5}{\~O}
\DeclareUnicodeCharacter{00D6}{\"O}
\DeclareUnicodeCharacter{00D7}{\texttimes}
\DeclareUnicodeCharacter{00D8}{\O}
\DeclareUnicodeCharacter{00D9}{\@tabacckludge`U}
\DeclareUnicodeCharacter{00DA}{\@tabacckludge'U}
\DeclareUnicodeCharacter{00DB}{\^U}
\DeclareUnicodeCharacter{00DC}{\"U}
\DeclareUnicodeCharacter{00DD}{\@tabacckludge'Y}
\DeclareUnicodeCharacter{00DE}{\TH}
\DeclareUnicodeCharacter{00DF}{\ss}
\DeclareUnicodeCharacter{00E0}{\@tabacckludge`a}
\DeclareUnicodeCharacter{00E1}{\@tabacckludge'a}
\DeclareUnicodeCharacter{00E2}{\^a}
\DeclareUnicodeCharacter{00E3}{\~a}
\DeclareUnicodeCharacter{00E4}{\"a}
\DeclareUnicodeCharacter{00E5}{\r a}
\DeclareUnicodeCharacter{00E6}{\ae}
\DeclareUnicodeCharacter{00E7}{\c c}
\DeclareUnicodeCharacter{00E8}{\@tabacckludge`e}
\DeclareUnicodeCharacter{00E9}{\@tabacckludge'e}
\DeclareUnicodeCharacter{00EA}{\^e}
\DeclareUnicodeCharacter{00EB}{\"e}
\DeclareUnicodeCharacter{00EC}{\@tabacckludge`\i}
\DeclareUnicodeCharacter{00ED}{\@tabacckludge'\i}
\DeclareUnicodeCharacter{00EE}{\^\i}
\DeclareUnicodeCharacter{00EF}{\"\i}
\DeclareUnicodeCharacter{00F0}{\dh}
\DeclareUnicodeCharacter{00F1}{\~n}
\DeclareUnicodeCharacter{00F2}{\@tabacckludge`o}
\DeclareUnicodeCharacter{00F3}{\@tabacckludge'o}
\DeclareUnicodeCharacter{00F4}{\^o}
\DeclareUnicodeCharacter{00F5}{\~o}
\DeclareUnicodeCharacter{00F6}{\"o}
\DeclareUnicodeCharacter{00F7}{\textdiv}
\DeclareUnicodeCharacter{00F8}{\o}
\DeclareUnicodeCharacter{00F9}{\@tabacckludge`u}
\DeclareUnicodeCharacter{00FA}{\@tabacckludge'u}
\DeclareUnicodeCharacter{00FB}{\^u}
\DeclareUnicodeCharacter{00FC}{\"u}
\DeclareUnicodeCharacter{00FD}{\@tabacckludge'y}
\DeclareUnicodeCharacter{00FE}{\th}
\DeclareUnicodeCharacter{00FF}{\"y}
\DeclareUnicodeCharacter{0102}{\u A}
\DeclareUnicodeCharacter{0103}{\u a}
\DeclareUnicodeCharacter{0104}{\k A}
\DeclareUnicodeCharacter{0105}{\k a}
\DeclareUnicodeCharacter{0106}{\@tabacckludge'C}
\DeclareUnicodeCharacter{0107}{\@tabacckludge'c}
\DeclareUnicodeCharacter{010C}{\v C}
\DeclareUnicodeCharacter{010D}{\v c}
\DeclareUnicodeCharacter{010E}{\v D}
\DeclareUnicodeCharacter{010F}{\v d}
\DeclareUnicodeCharacter{0110}{\DJ}
\DeclareUnicodeCharacter{0111}{\dj}
\DeclareUnicodeCharacter{0118}{\k E}
\DeclareUnicodeCharacter{0119}{\k e}
\DeclareUnicodeCharacter{011A}{\v E}
\DeclareUnicodeCharacter{011B}{\v e}
\DeclareUnicodeCharacter{011E}{\u G}
\DeclareUnicodeCharacter{011F}{\u g}
\DeclareUnicodeCharacter{0130}{\.I}
\DeclareUnicodeCharacter{0131}{\i}
\DeclareUnicodeCharacter{0132}{\IJ}
\DeclareUnicodeCharacter{0133}{\ij}
\DeclareUnicodeCharacter{0139}{\@tabacckludge'L}
\DeclareUnicodeCharacter{013A}{\@tabacckludge'l}
\DeclareUnicodeCharacter{013D}{\v L}
\DeclareUnicodeCharacter{013E}{\v l}
\DeclareUnicodeCharacter{0141}{\L}
\DeclareUnicodeCharacter{0142}{\l}
\DeclareUnicodeCharacter{0143}{\@tabacckludge'N}
\DeclareUnicodeCharacter{0144}{\@tabacckludge'n}
\DeclareUnicodeCharacter{0147}{\v N}
\DeclareUnicodeCharacter{0148}{\v n}
\DeclareUnicodeCharacter{014A}{\NG}
\DeclareUnicodeCharacter{014B}{\ng}
\DeclareUnicodeCharacter{0150}{\H O}
\DeclareUnicodeCharacter{0151}{\H o}
\DeclareUnicodeCharacter{0152}{\OE}
\DeclareUnicodeCharacter{0153}{\oe}
\DeclareUnicodeCharacter{0154}{\@tabacckludge'R}
\DeclareUnicodeCharacter{0155}{\@tabacckludge'r}
\DeclareUnicodeCharacter{0158}{\v R}
\DeclareUnicodeCharacter{0159}{\v r}
\DeclareUnicodeCharacter{015A}{\@tabacckludge'S}
\DeclareUnicodeCharacter{015B}{\@tabacckludge's}
\DeclareUnicodeCharacter{015E}{\c S}
\DeclareUnicodeCharacter{015F}{\c s}
\DeclareUnicodeCharacter{0160}{\v S}
\DeclareUnicodeCharacter{0161}{\v s}
\DeclareUnicodeCharacter{0162}{\c T}
\DeclareUnicodeCharacter{0163}{\c t}
\DeclareUnicodeCharacter{0164}{\v T}
\DeclareUnicodeCharacter{0165}{\v t}
\DeclareUnicodeCharacter{016E}{\r U}
\DeclareUnicodeCharacter{016F}{\r u}
\DeclareUnicodeCharacter{0170}{\H U}
\DeclareUnicodeCharacter{0171}{\H u}
\DeclareUnicodeCharacter{0178}{\"Y}
\DeclareUnicodeCharacter{0179}{\@tabacckludge'Z}
\DeclareUnicodeCharacter{017A}{\@tabacckludge'z}
\DeclareUnicodeCharacter{017B}{\.Z}
\DeclareUnicodeCharacter{017C}{\.z}
\DeclareUnicodeCharacter{017D}{\v Z}
\DeclareUnicodeCharacter{017E}{\v z}
\DeclareUnicodeCharacter{0192}{\textflorin}
\DeclareUnicodeCharacter{02C6}{\textasciicircum}
\DeclareUnicodeCharacter{02C7}{\textasciicaron}
\DeclareUnicodeCharacter{02DC}{\textasciitilde}
\DeclareUnicodeCharacter{02D8}{\textasciibreve}
\DeclareUnicodeCharacter{02DD}{\textacutedbl}
\DeclareUnicodeCharacter{0E3F}{\textbaht}
\DeclareUnicodeCharacter{200C}{\textcompwordmark}
\DeclareUnicodeCharacter{2013}{\textendash}
\DeclareUnicodeCharacter{2014}{\textemdash}
\DeclareUnicodeCharacter{2016}{\textbardbl}
\DeclareUnicodeCharacter{2018}{\textquoteleft}
\DeclareUnicodeCharacter{2019}{\textquoteright}
\DeclareUnicodeCharacter{201A}{\quotesinglbase}
\DeclareUnicodeCharacter{201C}{\textquotedblleft}
\DeclareUnicodeCharacter{201D}{\textquotedblright}
\DeclareUnicodeCharacter{201E}{\quotedblbase}
\DeclareUnicodeCharacter{2020}{\textdagger}
\DeclareUnicodeCharacter{2021}{\textdaggerdbl}
\DeclareUnicodeCharacter{2022}{\textbullet}
\DeclareUnicodeCharacter{2026}{\textellipsis}
\DeclareUnicodeCharacter{2030}{\textperthousand}
\DeclareUnicodeCharacter{2031}{\textpertenthousand}
\DeclareUnicodeCharacter{2039}{\guilsinglleft}
\DeclareUnicodeCharacter{203A}{\guilsinglright}
\DeclareUnicodeCharacter{203B}{\textreferencemark}
\DeclareUnicodeCharacter{203D}{\textinterrobang}
\DeclareUnicodeCharacter{2044}{\textfractionsolidus}
\DeclareUnicodeCharacter{204E}{\textasteriskcentered} % LOW ASTERISK
\DeclareUnicodeCharacter{2052}{\textdiscount}
\DeclareUnicodeCharacter{20A1}{\textcolonmonetary}
\DeclareUnicodeCharacter{20A4}{\textlira}
\DeclareUnicodeCharacter{20A6}{\textnaira}
\DeclareUnicodeCharacter{20A9}{\textwon}
\DeclareUnicodeCharacter{20AB}{\textdong}
\DeclareUnicodeCharacter{20AC}{\texteuro}
\DeclareUnicodeCharacter{20B1}{\textpeso}
\DeclareUnicodeCharacter{2103}{\textcelsius}
\DeclareUnicodeCharacter{2116}{\textnumero}
\DeclareUnicodeCharacter{2117}{\textcircledP}
\DeclareUnicodeCharacter{211E}{\textrecipe}
\DeclareUnicodeCharacter{2120}{\textservicemark}
\DeclareUnicodeCharacter{2122}{\texttrademark}
\DeclareUnicodeCharacter{2126}{\textohm}
\DeclareUnicodeCharacter{2127}{\textmho}
\DeclareUnicodeCharacter{212E}{\textestimated}
\DeclareUnicodeCharacter{2190}{\textleftarrow}
\DeclareUnicodeCharacter{2191}{\textuparrow}
\DeclareUnicodeCharacter{2192}{\textrightarrow}
\DeclareUnicodeCharacter{2193}{\textdownarrow}
\DeclareUnicodeCharacter{2329}{\textlangle}
\DeclareUnicodeCharacter{232A}{\textrangle}
\DeclareUnicodeCharacter{2422}{\textblank}
\DeclareUnicodeCharacter{2423}{\textvisiblespace}
\DeclareUnicodeCharacter{25E6}{\textopenbullet}
\DeclareUnicodeCharacter{25EF}{\textbigcircle}
\DeclareUnicodeCharacter{266A}{\textmusicalnote}

\endinput
%%
%% End of file `utf8enc.dfu'.

images/1.info

images/2.info

images/3.info

main/main.lof

\select@language {english}
\addvspace {10\p@ }
\addvspace {10\p@ }
\addvspace {10\p@ }
\addvspace {10\p@ }
\addvspace {10\p@ }
\addvspace {10\p@ }
\addvspace {10\p@ }
\addvspace {10\p@ }
\addvspace {10\p@ }
\addvspace {10\p@ }
\addvspace {10\p@ }
\addvspace {10\p@ }
\addvspace {10\p@ }
\addvspace {10\p@ }
\addvspace {10\p@ }
\addvspace {10\p@ }
\addvspace {10\p@ }
\addvspace {10\p@ }
\addvspace {10\p@ }

main/main.log

This is pdfTeX, Version 3.1415926-2.4-1.40.13 (TeX Live 2012/Debian) (format=pdflatex 2012.10.25) 16 MAR 2013 10:41
entering extended mode
 restricted \write18 enabled.
 %&-line parsing enabled.
**main.tex
(./main.tex
LaTeX2e <2011/06/27>
Babel <v3.8m> and hyphenation patterns for english, dumylang, nohyphenation, et
hiopic, farsi, arabic, pinyin, croatian, bulgarian, ukrainian, russian, slovak,
 czech, danish, dutch, usenglishmax, ukenglish, finnish, french, basque, ngerma
n, german, swissgerman, ngerman-x-2012-05-30, german-x-2012-05-30, monogreek, g
reek, ibycus, ancientgreek, hungarian, bengali, tamil, hindi, telugu, gujarati,
 sanskrit, malayalam, kannada, assamese, marathi, oriya, panjabi, italian, lati
n, latvian, lithuanian, mongolian, mongolianlmc, nynorsk, bokmal, indonesian, e
speranto, coptic, welsh, irish, interlingua, serbian, serbianc, slovenian, friu
lan, romansh, estonian, romanian, armenian, uppersorbian, turkish, afrikaans, i
celandic, kurmanji, polish, portuguese, galician, catalan, spanish, swedish, th
ai, loaded.
(/usr/share/texlive/texmf-dist/tex/generic/oberdiek/hyphsubst.sty
Package: hyphsubst 2008/06/09 v0.2 Substitute hyphenation patterns (HO)

(/usr/share/texlive/texmf-dist/tex/generic/oberdiek/infwarerr.sty
Package: infwarerr 2010/04/08 v1.3 Providing info/warning/error messages (HO)
))
(/usr/share/texlive/texmf-dist/tex/latex/koma-script/scrbook.cls
Document Class: scrbook 2012/05/15 v3.11 KOMA-Script document class (book)
(/usr/share/texlive/texmf-dist/tex/latex/koma-script/scrkbase.sty
Package: scrkbase 2012/05/15 v3.11 KOMA-Script package (KOMA-Script-dependent b
asics and keyval usage)

(/usr/share/texlive/texmf-dist/tex/latex/koma-script/scrbase.sty
Package: scrbase 2012/05/15 v3.11 KOMA-Script package (KOMA-Script-independent
basics and keyval usage)

(/usr/share/texlive/texmf-dist/tex/latex/graphics/keyval.sty
Package: keyval 1999/03/16 v1.13 key=value parser (DPC)
\KV@toks@=\toks14
)
(/usr/share/texlive/texmf-dist/tex/latex/koma-script/scrlfile.sty
Package: scrlfile 2011/03/09 v3.09 KOMA-Script package (loading files)

Package scrlfile, 2011/03/09 v3.09 KOMA-Script package (loading files)
 Copyright (C) Markus Kohm

))) (/usr/share/texlive/texmf-dist/tex/latex/koma-script/tocbasic.sty
Package: tocbasic 2012/04/04 v3.10b KOMA-Script package (handling toc-files)
)
Package tocbasic Info: omitting babel extension for `toc'
(tocbasic) because of feature `nobabel' available
(tocbasic) for `toc' on input line 117.
Package tocbasic Info: omitting babel extension for `lof'
(tocbasic) because of feature `nobabel' available
(tocbasic) for `lof' on input line 118.
Package tocbasic Info: omitting babel extension for `lot'
(tocbasic) because of feature `nobabel' available
(tocbasic) for `lot' on input line 119.
Class scrbook Info: File `scrsize11pt.clo' used to setup font sizes on input li
ne 1366.

(/usr/share/texlive/texmf-dist/tex/latex/koma-script/scrsize11pt.clo
File: scrsize11pt.clo 2012/05/15 v3.11 KOMA-Script font size class option (11pt
)
)
(/usr/share/texlive/texmf-dist/tex/latex/koma-script/typearea.sty
Package: typearea 2012/05/15 v3.11 KOMA-Script package (type area)

Package typearea, 2012/05/15 v3.11 KOMA-Script package (type area)
 Copyright (C) Frank Neukam, 1992-1994
 Copyright (C) Markus Kohm, 1994-

\ta@bcor=\skip41
\ta@div=\count79
\ta@hblk=\skip42
\ta@vblk=\skip43
\ta@temp=\skip44
Package typearea Info: These are the values describing the layout:
(typearea) DIV = 13
(typearea) BCOR = 34.1433pt
(typearea) \paperwidth = 597.50793pt
(typearea) \textwidth = 433.35742pt
(typearea) DIV departure = -10%
(typearea) \evensidemargin = 14.40149pt
(typearea) \oddsidemargin = 5.20905pt
(typearea) \paperheight = 845.04694pt
(typearea) \textheight = 650.20029pt
(typearea) \topmargin = -44.6664pt
(typearea) \headheight = 17.0pt
(typearea) \headsep = 20.40001pt
(typearea) \topskip = 11.0pt
(typearea) \footskip = 47.60002pt
(typearea) \baselineskip = 13.6pt
(typearea) on input line 1211.
)
\c@part=\count80
\c@chapter=\count81
\c@section=\count82
\c@subsection=\count83
\c@subsubsection=\count84
\c@paragraph=\count85
\c@subparagraph=\count86
\abovecaptionskip=\skip45
\belowcaptionskip=\skip46
\c@pti@nb@sid@b@x=\box26
\c@figure=\count87
\c@table=\count88
\bibindent=\dimen102
) (../headers/paper.tex) (../headers/packages1.tex
(/usr/share/texlive/texmf-dist/tex/latex/graphics/color.sty
Package: color 2005/11/14 v1.0j Standard LaTeX Color (DPC)

(/usr/share/texlive/texmf-dist/tex/latex/latexconfig/color.cfg
File: color.cfg 2007/01/18 v1.5 color configuration of teTeX/TeXLive
)
Package color Info: Driver file: pdftex.def on input line 130.

(/usr/share/texlive/texmf-dist/tex/latex/pdftex-def/pdftex.def
File: pdftex.def 2011/05/27 v0.06d Graphics/color for pdfTeX

(/usr/share/texlive/texmf-dist/tex/generic/oberdiek/ltxcmds.sty
Package: ltxcmds 2011/11/09 v1.22 LaTeX kernel commands for general use (HO)
)
\Gread@gobject=\count89
))
(/usr/share/texlive/texmf-dist/tex/latex/base/textcomp.sty
Package: textcomp 2005/09/27 v1.99g Standard LaTeX package
Package textcomp Info: Sub-encoding information:
(textcomp) 5 = only ISO-Adobe without \textcurrency
(textcomp) 4 = 5 + \texteuro
(textcomp) 3 = 4 + \textohm
(textcomp) 2 = 3 + \textestimated + \textcurrency
(textcomp) 1 = TS1 - \textcircled - \t
(textcomp) 0 = TS1 (full)
(textcomp) Font families with sub-encoding setting implement
(textcomp) only a restricted character set as indicated.
(textcomp) Family '?' is the default used for unknown fonts.
(textcomp) See the documentation for details.
Package textcomp Info: Setting ? sub-encoding to TS1/1 on input line 71.

(/usr/share/texlive/texmf-dist/tex/latex/base/ts1enc.def
File: ts1enc.def 2001/06/05 v3.0e (jk/car/fm) Standard LaTeX file
)
LaTeX Info: Redefining \oldstylenums on input line 266.
Package textcomp Info: Setting cmr sub-encoding to TS1/0 on input line 281.
Package textcomp Info: Setting cmss sub-encoding to TS1/0 on input line 282.
Package textcomp Info: Setting cmtt sub-encoding to TS1/0 on input line 283.
Package textcomp Info: Setting cmvtt sub-encoding to TS1/0 on input line 284.
Package textcomp Info: Setting cmbr sub-encoding to TS1/0 on input line 285.
Package textcomp Info: Setting cmtl sub-encoding to TS1/0 on input line 286.
Package textcomp Info: Setting ccr sub-encoding to TS1/0 on input line 287.
Package textcomp Info: Setting ptm sub-encoding to TS1/4 on input line 288.
Package textcomp Info: Setting pcr sub-encoding to TS1/4 on input line 289.
Package textcomp Info: Setting phv sub-encoding to TS1/4 on input line 290.
Package textcomp Info: Setting ppl sub-encoding to TS1/3 on input line 291.
Package textcomp Info: Setting pag sub-encoding to TS1/4 on input line 292.
Package textcomp Info: Setting pbk sub-encoding to TS1/4 on input line 293.
Package textcomp Info: Setting pnc sub-encoding to TS1/4 on input line 294.
Package textcomp Info: Setting pzc sub-encoding to TS1/4 on input line 295.
Package textcomp Info: Setting bch sub-encoding to TS1/4 on input line 296.
Package textcomp Info: Setting put sub-encoding to TS1/5 on input line 297.
Package textcomp Info: Setting uag sub-encoding to TS1/5 on input line 298.
Package textcomp Info: Setting ugq sub-encoding to TS1/5 on input line 299.
Package textcomp Info: Setting ul8 sub-encoding to TS1/4 on input line 300.
Package textcomp Info: Setting ul9 sub-encoding to TS1/4 on input line 301.
Package textcomp Info: Setting augie sub-encoding to TS1/5 on input line 302.
Package textcomp Info: Setting dayrom sub-encoding to TS1/3 on input line 303.
Package textcomp Info: Setting dayroms sub-encoding to TS1/3 on input line 304.

Package textcomp Info: Setting pxr sub-encoding to TS1/0 on input line 305.
Package textcomp Info: Setting pxss sub-encoding to TS1/0 on input line 306.
Package textcomp Info: Setting pxtt sub-encoding to TS1/0 on input line 307.
Package textcomp Info: Setting txr sub-encoding to TS1/0 on input line 308.
Package textcomp Info: Setting txss sub-encoding to TS1/0 on input line 309.
Package textcomp Info: Setting txtt sub-encoding to TS1/0 on input line 310.
Package textcomp Info: Setting lmr sub-encoding to TS1/0 on input line 311.
Package textcomp Info: Setting lmdh sub-encoding to TS1/0 on input line 312.
Package textcomp Info: Setting lmss sub-encoding to TS1/0 on input line 313.
Package textcomp Info: Setting lmssq sub-encoding to TS1/0 on input line 314.
Package textcomp Info: Setting lmvtt sub-encoding to TS1/0 on input line 315.
Package textcomp Info: Setting qhv sub-encoding to TS1/0 on input line 316.
Package textcomp Info: Setting qag sub-encoding to TS1/0 on input line 317.
Package textcomp Info: Setting qbk sub-encoding to TS1/0 on input line 318.
Package textcomp Info: Setting qcr sub-encoding to TS1/0 on input line 319.
Package textcomp Info: Setting qcs sub-encoding to TS1/0 on input line 320.
Package textcomp Info: Setting qpl sub-encoding to TS1/0 on input line 321.
Package textcomp Info: Setting qtm sub-encoding to TS1/0 on input line 322.
Package textcomp Info: Setting qzc sub-encoding to TS1/0 on input line 323.
Package textcomp Info: Setting qhvc sub-encoding to TS1/0 on input line 324.
Package textcomp Info: Setting futs sub-encoding to TS1/4 on input line 325.
Package textcomp Info: Setting futx sub-encoding to TS1/4 on input line 326.
Package textcomp Info: Setting futj sub-encoding to TS1/4 on input line 327.
Package textcomp Info: Setting hlh sub-encoding to TS1/3 on input line 328.
Package textcomp Info: Setting hls sub-encoding to TS1/3 on input line 329.
Package textcomp Info: Setting hlst sub-encoding to TS1/3 on input line 330.
Package textcomp Info: Setting hlct sub-encoding to TS1/5 on input line 331.
Package textcomp Info: Setting hlx sub-encoding to TS1/5 on input line 332.
Package textcomp Info: Setting hlce sub-encoding to TS1/5 on input line 333.
Package textcomp Info: Setting hlcn sub-encoding to TS1/5 on input line 334.
Package textcomp Info: Setting hlcw sub-encoding to TS1/5 on input line 335.
Package textcomp Info: Setting hlcf sub-encoding to TS1/5 on input line 336.
Package textcomp Info: Setting pplx sub-encoding to TS1/3 on input line 337.
Package textcomp Info: Setting pplj sub-encoding to TS1/3 on input line 338.
Package textcomp Info: Setting ptmx sub-encoding to TS1/4 on input line 339.
Package textcomp Info: Setting ptmj sub-encoding to TS1/4 on input line 340.
)
(/usr/share/texlive/texmf-dist/tex/latex/base/alltt.sty
Package: alltt 1997/06/16 v2.0g defines alltt environment
)
(/usr/share/texlive/texmf-dist/tex/latex/mdwtools/syntax.sty
Package: syntax 1996/05/17 1.07 Syntax typesetting (MDW)
\grammarparsep=\skip47
\grammarindent=\dimen103
\sdstartspace=\skip48
\sdendspace=\skip49
\sdmidskip=\skip50
\sdtokskip=\skip51
\sdfinalskip=\skip52
\sdrulewidth=\dimen104
\sdcirclediam=\dimen105
\sdindent=\dimen106
)
(/usr/share/texlive/texmf-dist/tex/latex/parskip/parskip.sty
Package: parskip 2001/04/09 non-zero parskip adjustments
)
(/usr/share/texlive/texmf-dist/tex/generic/ulem/ulem.sty
\UL@box=\box27
\UL@hyphenbox=\box28
\UL@skip=\skip53
\UL@hook=\toks15
\UL@height=\dimen107
\UL@pe=\count90
\UL@pixel=\dimen108
\ULC@box=\box29
Package: ulem 2012/05/18
\ULdepth=\dimen109
)
(/usr/share/texlive/texmf-dist/tex/latex/hyperref/hyperref.sty
Package: hyperref 2012/05/13 v6.82q Hypertext links for LaTeX

(/usr/share/texlive/texmf-dist/tex/generic/oberdiek/hobsub-hyperref.sty
Package: hobsub-hyperref 2012/05/28 v1.13 Bundle oberdiek, subset hyperref (HO)

(/usr/share/texlive/texmf-dist/tex/generic/oberdiek/hobsub-generic.sty
Package: hobsub-generic 2012/05/28 v1.13 Bundle oberdiek, subset generic (HO)
Package: hobsub 2012/05/28 v1.13 Construct package bundles (HO)
Package hobsub Info: Skipping package `infwarerr' (already loaded).
Package hobsub Info: Skipping package `ltxcmds' (already loaded).
Package: ifluatex 2010/03/01 v1.3 Provides the ifluatex switch (HO)
Package ifluatex Info: LuaTeX not detected.
Package: ifvtex 2010/03/01 v1.5 Detect VTeX and its facilities (HO)
Package ifvtex Info: VTeX not detected.
Package: intcalc 2007/09/27 v1.1 Expandable calculations with integers (HO)
Package: ifpdf 2011/01/30 v2.3 Provides the ifpdf switch (HO)
Package ifpdf Info: pdfTeX in PDF mode is detected.
Package: etexcmds 2011/02/16 v1.5 Avoid name clashes with e-TeX commands (HO)
Package etexcmds Info: Could not find \expanded.
(etexcmds) That can mean that you are not using pdfTeX 1.50 or
(etexcmds) that some package has redefined \expanded.
(etexcmds) In the latter case, load this package earlier.
Package: kvsetkeys 2012/04/25 v1.16 Key value parser (HO)
Package: kvdefinekeys 2011/04/07 v1.3 Define keys (HO)
Package: pdftexcmds 2011/11/29 v0.20 Utility functions of pdfTeX for LuaTeX (HO
)
Package pdftexcmds Info: LuaTeX not detected.
Package pdftexcmds Info: \pdf@primitive is available.
Package pdftexcmds Info: \pdf@ifprimitive is available.
Package pdftexcmds Info: \pdfdraftmode found.
Package: pdfescape 2011/11/25 v1.13 Implements pdfTeX's escape features (HO)
Package: bigintcalc 2012/04/08 v1.3 Expandable calculations on big integers (HO
)
Package: bitset 2011/01/30 v1.1 Handle bit-vector datatype (HO)
Package: uniquecounter 2011/01/30 v1.2 Provide unlimited unique counter (HO)
)
Package hobsub Info: Skipping package `hobsub' (already loaded).
Package: letltxmacro 2010/09/02 v1.4 Let assignment for LaTeX macros (HO)
Package: hopatch 2012/05/28 v1.2 Wrapper for package hooks (HO)
Package: xcolor-patch 2011/01/30 xcolor patch
Package: atveryend 2011/06/30 v1.8 Hooks at the very end of document (HO)
Package atveryend Info: \enddocument detected (standard20110627).
Package: atbegshi 2011/10/05 v1.16 At begin shipout hook (HO)
Package: refcount 2011/10/16 v3.4 Data extraction from label references (HO)
Package: hycolor 2011/01/30 v1.7 Color options for hyperref/bookmark (HO)
)
(/usr/share/texlive/texmf-dist/tex/generic/ifxetex/ifxetex.sty
Package: ifxetex 2010/09/12 v0.6 Provides ifxetex conditional
)
(/usr/share/texlive/texmf-dist/tex/latex/oberdiek/kvoptions.sty
Package: kvoptions 2011/06/30 v3.11 Key value format for package options (HO)
)
\@linkdim=\dimen110
\Hy@linkcounter=\count91
\Hy@pagecounter=\count92

(/usr/share/texlive/texmf-dist/tex/latex/hyperref/pd1enc.def
File: pd1enc.def 2012/05/13 v6.82q Hyperref: PDFDocEncoding definition (HO)
)
\Hy@SavedSpaceFactor=\count93

(/usr/share/texlive/texmf-dist/tex/latex/latexconfig/hyperref.cfg
File: hyperref.cfg 2002/06/06 v1.2 hyperref configuration of TeXLive
)
Package hyperref Info: Option `unicode' set `true' on input line 3941.

(/usr/share/texlive/texmf-dist/tex/latex/hyperref/puenc.def
File: puenc.def 2012/05/13 v6.82q Hyperref: PDF Unicode definition (HO)
)
Package hyperref Info: Hyper figures OFF on input line 4062.
Package hyperref Info: Link nesting OFF on input line 4067.
Package hyperref Info: Hyper index ON on input line 4070.
Package hyperref Info: Plain pages OFF on input line 4077.
Package hyperref Info: Backreferencing OFF on input line 4082.
Package hyperref Info: Implicit mode ON; LaTeX internals redefined.
Package hyperref Info: Bookmarks ON on input line 4300.
\c@Hy@tempcnt=\count94

(/usr/share/texlive/texmf-dist/tex/latex/url/url.sty
\Urlmuskip=\muskip10
Package: url 2006/04/12 ver 3.3 Verb mode for urls, etc.
)
LaTeX Info: Redefining \url on input line 4653.
\Fld@menulength=\count95
\Field@Width=\dimen111
\Fld@charsize=\dimen112
Package hyperref Info: Hyper figures OFF on input line 5773.
Package hyperref Info: Link nesting OFF on input line 5778.
Package hyperref Info: Hyper index ON on input line 5781.
Package hyperref Info: backreferencing OFF on input line 5788.
Package hyperref Info: Link coloring OFF on input line 5793.
Package hyperref Info: Link coloring with OCG OFF on input line 5798.
Package hyperref Info: PDF/A mode OFF on input line 5803.
LaTeX Info: Redefining \ref on input line 5843.
LaTeX Info: Redefining \pageref on input line 5847.
\Hy@abspage=\count96
\c@Item=\count97
\c@Hfootnote=\count98
)

Package hyperref Message: Driver: hpdftex.

(/usr/share/texlive/texmf-dist/tex/latex/hyperref/hpdftex.def
File: hpdftex.def 2012/05/13 v6.82q Hyperref driver for pdfTeX
\Fld@listcount=\count99
\c@bookmark@seq@number=\count100

(/usr/share/texlive/texmf-dist/tex/latex/oberdiek/rerunfilecheck.sty
Package: rerunfilecheck 2011/04/15 v1.7 Rerun checks for auxiliary files (HO)
Package uniquecounter Info: New unique counter `rerunfilecheck' on input line 2
82.
)
\Hy@SectionHShift=\skip54
)
(/usr/share/texlive/texmf-dist/tex/latex/koma-script/tocstyle.sty
Package: tocstyle 2009/11/09 v0.2d-alpha LaTeX2e KOMA-Script package (versatile
 toc styles)

Package tocstyle Warning: THIS IS AN ALPHA VERSION!
(tocstyle) USAGE OF THIS VERSION IS ON YOUR OWN RISK!
(tocstyle) EVERYTHING MAY HAPPEN!
(tocstyle) EVERYTHING MAY CHANGE IN FUTURE!
(tocstyle) THERE IS NO SUPPORT, IF YOU USE THIS PACKAGE!
(tocstyle) Maybe it would be better, not to load this package.

\tocstyle@indentstyle=\count101
Package tocstyle Info: no tocstyle.cfg found on input line 838.
) (/usr/share/texlive/texmf-dist/tex/latex/paralist/paralist.sty
Package: paralist 2002/03/18 v2.3b Extended list environments (BS)
\pltopsep=\skip55
\plpartopsep=\skip56
\plitemsep=\skip57
\plparsep=\skip58
\pl@lab=\toks16
)
(/usr/share/texlive/texmf-dist/tex/latex/tools/trace.sty
Package: trace 2003/04/30 v1.1c trace LaTeX code
)
(/usr/share/texlive/texmf-dist/tex/latex/multirow/bigstrut.sty
\bigstrutjot=\dimen113
)
(/usr/share/texlive/texmf-dist/tex/latex/keystroke/keystroke.sty
Package: keystroke 2010/04/23 v1.6 3D keystrokes (SuSE GmbH/RN)

(/usr/share/texlive/texmf-dist/tex/latex/graphics/graphics.sty
Package: graphics 2009/02/05 v1.0o Standard LaTeX Graphics (DPC,SPQR)

(/usr/share/texlive/texmf-dist/tex/latex/graphics/trig.sty
Package: trig 1999/03/16 v1.09 sin cos tan (DPC)
)
(/usr/share/texlive/texmf-dist/tex/latex/latexconfig/graphics.cfg
File: graphics.cfg 2010/04/23 v1.9 graphics configuration of TeX Live
)
Package graphics Info: Driver file: pdftex.def on input line 91.
)
\suse@key=\box30
\keystroke@left=\box31
\keystroke@right=\box32
\keystroke@middle=\box33

<keystroke_left.pdf, id=1, 42.1575pt x 195.73125pt>
File: keystroke_left.pdf Graphic file (type pdf)
 <use keystroke_left.pdf>
Package pdftex.def Info: keystroke_left.pdf used on input line 171.
(pdftex.def) Requested size: 42.15738pt x 195.73076pt.

<keystroke_middle.pdf, id=2, 116.435pt x 195.73125pt>
File: keystroke_middle.pdf Graphic file (type pdf)

<use keystroke_middle.pdf>
Package pdftex.def Info: keystroke_middle.pdf used on input line 172.
(pdftex.def) Requested size: 116.43471pt x 195.73076pt.

<keystroke_right.pdf, id=3, 42.1575pt x 195.73125pt>
File: keystroke_right.pdf Graphic file (type pdf)
 <use keystroke_right.pdf>
Package pdftex.def Info: keystroke_right.pdf used on input line 173.
(pdftex.def) Requested size: 42.15738pt x 195.73076pt.
) (/usr/share/texlive/texmf-dist/tex/latex/supertabular/supertabular.sty
Package: supertabular 2004/02/20 v4.1e the supertabular environment
\c@tracingst=\count102
\ST@wd=\dimen114
\ST@rightskip=\skip59
\ST@leftskip=\skip60
\ST@parfillskip=\skip61
\ST@pageleft=\dimen115
\ST@headht=\dimen116
\ST@tailht=\dimen117
\ST@pagesofar=\dimen118
\ST@pboxht=\dimen119
\ST@lineht=\dimen120
\ST@stretchht=\dimen121
\ST@prevht=\dimen122
\ST@toadd=\dimen123
\ST@dimen=\dimen124
\ST@pbox=\box34
)
(/usr/share/texlive/texmf-dist/tex/latex/wrapfig/wrapfig.sty
\wrapoverhang=\dimen125
\WF@size=\dimen126
\c@WF@wrappedlines=\count103
\WF@box=\box35
\WF@everypar=\toks17
Package: wrapfig 2003/01/31 v 3.6
))
(../headers/babel.tex (/var/lib/texmf/tex/generic/babel/babel.sty
Package: babel 2008/07/08 v3.8m The Babel package

(/usr/share/texlive/texmf-dist/tex/generic/babel/english.ldf
Language: english 2005/03/30 v3.3o English support from the babel system

(/usr/share/texlive/texmf-dist/tex/generic/babel/babel.def
File: babel.def 2008/07/08 v3.8m Babel common definitions
\babel@savecnt=\count104
\U@D=\dimen127
)
\l@canadian = a dialect from \language\l@american
\l@australian = a dialect from \language\l@british
\l@newzealand = a dialect from \language\l@british
)))
(../headers/svg.tex) (../headers/packages2.tex
(/usr/share/texlive/texmf-dist/tex/latex/psnfss/mathptmx.sty
Package: mathptmx 2005/04/12 PSNFSS-v9.2a Times w/ Math, improved (SPQR, WaS)
LaTeX Font Info: Redeclaring symbol font `operators' on input line 28.
LaTeX Font Info: Overwriting symbol font `operators' in version `normal'
(Font) OT1/cmr/m/n --> OT1/ztmcm/m/n on input line 28.
LaTeX Font Info: Overwriting symbol font `operators' in version `bold'
(Font) OT1/cmr/bx/n --> OT1/ztmcm/m/n on input line 28.
LaTeX Font Info: Redeclaring symbol font `letters' on input line 29.
LaTeX Font Info: Overwriting symbol font `letters' in version `normal'
(Font) OML/cmm/m/it --> OML/ztmcm/m/it on input line 29.
LaTeX Font Info: Overwriting symbol font `letters' in version `bold'
(Font) OML/cmm/b/it --> OML/ztmcm/m/it on input line 29.
LaTeX Font Info: Redeclaring symbol font `symbols' on input line 30.
LaTeX Font Info: Overwriting symbol font `symbols' in version `normal'
(Font) OMS/cmsy/m/n --> OMS/ztmcm/m/n on input line 30.
LaTeX Font Info: Overwriting symbol font `symbols' in version `bold'
(Font) OMS/cmsy/b/n --> OMS/ztmcm/m/n on input line 30.
LaTeX Font Info: Redeclaring symbol font `largesymbols' on input line 31.
LaTeX Font Info: Overwriting symbol font `largesymbols' in version `normal'
(Font) OMX/cmex/m/n --> OMX/ztmcm/m/n on input line 31.
LaTeX Font Info: Overwriting symbol font `largesymbols' in version `bold'
(Font) OMX/cmex/m/n --> OMX/ztmcm/m/n on input line 31.
\symbold=\mathgroup4
\symitalic=\mathgroup5
LaTeX Font Info: Redeclaring math alphabet \mathbf on input line 34.
LaTeX Font Info: Overwriting math alphabet `\mathbf' in version `normal'
(Font) OT1/cmr/bx/n --> OT1/ptm/bx/n on input line 34.
LaTeX Font Info: Overwriting math alphabet `\mathbf' in version `bold'
(Font) OT1/cmr/bx/n --> OT1/ptm/bx/n on input line 34.
LaTeX Font Info: Redeclaring math alphabet \mathit on input line 35.
LaTeX Font Info: Overwriting math alphabet `\mathit' in version `normal'
(Font) OT1/cmr/m/it --> OT1/ptm/m/it on input line 35.
LaTeX Font Info: Overwriting math alphabet `\mathit' in version `bold'
(Font) OT1/cmr/bx/it --> OT1/ptm/m/it on input line 35.
LaTeX Info: Redefining \hbar on input line 50.
)
(/usr/share/texlive/texmf-dist/tex/latex/psnfss/helvet.sty
Package: helvet 2005/04/12 PSNFSS-v9.2a (WaS)
)
(/usr/share/texlive/texmf-dist/tex/latex/psnfss/courier.sty
Package: courier 2005/04/12 PSNFSS-v9.2a (WaS)
)
(/usr/share/texlive/texmf-dist/tex/latex/base/fontenc.sty
Package: fontenc 2005/09/27 v1.99g Standard LaTeX package

(/usr/share/texlive/texmf-dist/tex/latex/base/t1enc.def
File: t1enc.def 2005/09/27 v1.99g Standard LaTeX file
LaTeX Font Info: Redeclaring font encoding T1 on input line 43.
))
(/usr/share/texlive/texmf-dist/tex/latex/multirow/multirow.sty)
(/usr/share/texlive/texmf-dist/tex/latex/tools/multicol.sty
Package: multicol 2011/06/27 v1.7a multicolumn formatting (FMi)
\c@tracingmulticols=\count105
\mult@box=\box36
\multicol@leftmargin=\dimen128
\c@unbalance=\count106
\c@collectmore=\count107
\doublecol@number=\count108
\multicoltolerance=\count109
\multicolpretolerance=\count110
\full@width=\dimen129
\page@free=\dimen130
\premulticols=\dimen131
\postmulticols=\dimen132
\multicolsep=\skip62
\multicolbaselineskip=\skip63
\partial@page=\box37
\last@line=\box38
\mult@rightbox=\box39
\mult@grightbox=\box40
\mult@gfirstbox=\box41
\mult@firstbox=\box42
\@tempa=\box43
\@tempa=\box44
\@tempa=\box45
\@tempa=\box46
\@tempa=\box47
\@tempa=\box48
\@tempa=\box49
\@tempa=\box50
\@tempa=\box51
\@tempa=\box52
\@tempa=\box53
\@tempa=\box54
\@tempa=\box55
\@tempa=\box56
\@tempa=\box57
\@tempa=\box58
\@tempa=\box59
\c@columnbadness=\count111
\c@finalcolumnbadness=\count112
\last@try=\dimen133
\multicolovershoot=\dimen134
\multicolundershoot=\dimen135
\mult@nat@firstbox=\box60
\colbreak@box=\box61
\multicol@sort@counter=\count113
)
(/usr/share/texlive/texmf-dist/tex/latex/tools/array.sty
Package: array 2008/09/09 v2.4c Tabular extension package (FMi)
\col@sep=\dimen136
\extrarowheight=\dimen137
\NC@list=\toks18
\extratabsurround=\skip64
\backup@length=\skip65
)
(/usr/share/texlive/texmf-dist/tex/latex/ms/ragged2e.sty
Package: ragged2e 2009/05/21 v2.1 ragged2e Package (MS)

(/usr/share/texlive/texmf-dist/tex/latex/ms/everysel.sty
Package: everysel 2011/10/28 v1.2 EverySelectfont Package (MS)
)
\CenteringLeftskip=\skip66
\RaggedLeftLeftskip=\skip67
\RaggedRightLeftskip=\skip68
\CenteringRightskip=\skip69
\RaggedLeftRightskip=\skip70
\RaggedRightRightskip=\skip71
\CenteringParfillskip=\skip72
\RaggedLeftParfillskip=\skip73
\RaggedRightParfillskip=\skip74
\JustifyingParfillskip=\skip75
\CenteringParindent=\skip76
\RaggedLeftParindent=\skip77
\RaggedRightParindent=\skip78
\JustifyingParindent=\skip79
)
(/usr/share/texlive/texmf-dist/tex/latex/tools/longtable.sty
Package: longtable 2004/02/01 v4.11 Multi-page Table package (DPC)
\LTleft=\skip80
\LTright=\skip81
\LTpre=\skip82
\LTpost=\skip83
\LTchunksize=\count114
\LTcapwidth=\dimen138
\LT@head=\box62
\LT@firsthead=\box63
\LT@foot=\box64
\LT@lastfoot=\box65
\LT@cols=\count115
\LT@rows=\count116
\c@LT@tables=\count117
\c@LT@chunks=\count118
\LT@p@ftn=\toks19
)
Class scrbook Info: longtable captions redefined on input line 17.

(/usr/share/texlive/texmf-dist/tex/latex/koma-script/scrpage2.sty
Package: scrpage2 2010/04/22 v2.5 LaTeX2e KOMA-Script package
LaTeX Info: Redefining \pagemark on input line 176.
)
(/usr/share/texlive/texmf-dist/tex/latex/mdwtools/footnote.sty
Package: footnote 1997/01/28 1.13 Save footnotes around boxes
\fn@notes=\box66
\fn@width=\dimen139
)
(/usr/share/texlive/texmf-dist/tex/latex/tools/verbatim.sty
Package: verbatim 2003/08/22 v1.5q LaTeX2e package for verbatim enhancements
\every@verbatim=\toks20
\verbatim@line=\toks21
\verbatim@in@stream=\read1
)
(/usr/share/texlive/texmf-dist/tex/latex/framed/framed.sty
Package: framed 2011/10/22 v 0.96: framed or shaded text with page breaks
\OuterFrameSep=\skip84
\fb@frw=\dimen140
\fb@frh=\dimen141
\FrameRule=\dimen142
\FrameSep=\dimen143
) (./mdframed.sty
Package: mdframed 2010/12/22 v0.6a: mdframed

(/usr/share/texlive/texmf-dist/tex/latex/etex-pkg/etex.sty
Package: etex 1998/03/26 v2.0 eTeX basic definition package (PEB)
\et@xins=\count119
)
(/usr/share/texlive/texmf-dist/tex/latex/tools/calc.sty
Package: calc 2007/08/22 v4.3 Infix arithmetic (KKT,FJ)
\calc@Acount=\count120
\calc@Bcount=\count121
\calc@Adimen=\dimen144
\calc@Bdimen=\dimen145
\calc@Askip=\skip85
\calc@Bskip=\skip86
LaTeX Info: Redefining \setlength on input line 76.
LaTeX Info: Redefining \addtolength on input line 77.
\calc@Ccount=\count122
\calc@Cskip=\skip87
) (./etoolbox.sty
Package: etoolbox 2011/01/03 v2.1 e-TeX tools for LaTeX
\etb@tempcnta=\count123
)
\md@templength=\skip88
\mdf@skipabove@length=\skip89
\mdf@skipbelow@length=\skip90
\mdf@leftmargin@length=\skip91
\mdf@rightmargin@length=\skip92
\mdf@margin@length=\skip93
\mdf@innerleftmargin@length=\skip94
\mdf@innerrightmargin@length=\skip95
\mdf@innertopmargin@length=\skip96
\mdf@innerbottommargin@length=\skip97
\mdf@splittopskip@length=\skip98
\mdf@splitbottomskip@length=\skip99
\mdf@linewidth@length=\skip100
\mdf@innerlinewidth@length=\skip101
\mdf@middlelinewidth@length=\skip102
\mdf@outerlinewidth@length=\skip103
\mdf@roundcorner@length=\skip104

(./md-frame-0.mdf
File: md-frame-3.mdf 2010/12/22 v0.6a: md-frame-0
)
\md@temp@skip@a=\skip105
\md@verticalmarginwhole@length=\skip106
\mdf@xmargin@length=\skip107
\mdf@ymargin@length=\skip108
\mdfboxheight=\skip109
\mdfboxwidth=\skip110
\mdfboundingboxheight=\skip111
\mdfboundingboxwidth=\skip112
\mdfpositionx=\skip113
\mdfpositiony=\skip114
\md@freevspace@length=\skip115
\md@horizontalspaceofbox=\skip116
\md@temp@frame@hsize=\skip117
\md@temp@frame@vsize=\skip118
)
(/usr/share/texlive/texmf-dist/tex/latex/listings/listings.sty
\lst@mode=\count124
\lst@gtempboxa=\box67
\lst@token=\toks22
\lst@length=\count125
\lst@currlwidth=\dimen146
\lst@column=\count126
\lst@pos=\count127
\lst@lostspace=\dimen147
\lst@width=\dimen148
\lst@newlines=\count128
\lst@lineno=\count129
\lst@maxwidth=\dimen149

(/usr/share/texlive/texmf-dist/tex/latex/listings/lstmisc.sty
File: lstmisc.sty 2007/02/22 1.4 (Carsten Heinz)
\c@lstnumber=\count130
\lst@skipnumbers=\count131
\lst@framebox=\box68
)
(/usr/share/texlive/texmf-dist/tex/latex/listings/listings.cfg
File: listings.cfg 2007/02/22 1.4 listings configuration
))
Package: listings 2007/02/22 1.4 (Carsten Heinz)

(/usr/share/texlive/texmf-dist/tex/latex/lineno/lineno.sty
Package: lineno 2005/11/02 line numbers on paragraphs v4.41
\linenopenalty=\count132
\output=\toks23
\linenoprevgraf=\count133
\linenumbersep=\dimen150
\linenumberwidth=\dimen151
\c@linenumber=\count134
\c@pagewiselinenumber=\count135
\c@LN@truepage=\count136
\c@internallinenumber=\count137
\c@internallinenumbers=\count138
\quotelinenumbersep=\dimen152
\bframerule=\dimen153
\bframesep=\dimen154
\bframebox=\box69
LaTeX Info: Redefining \\ on input line 3056.
)
(/usr/share/texlive/texmf-dist/tex/latex/amsmath/amsmath.sty
Package: amsmath 2000/07/18 v2.13 AMS math features
\@mathmargin=\skip119

For additional information on amsmath, use the `?' option.
(/usr/share/texlive/texmf-dist/tex/latex/amsmath/amstext.sty
Package: amstext 2000/06/29 v2.01

(/usr/share/texlive/texmf-dist/tex/latex/amsmath/amsgen.sty
File: amsgen.sty 1999/11/30 v2.0
\@emptytoks=\toks24
\ex@=\dimen155
))
(/usr/share/texlive/texmf-dist/tex/latex/amsmath/amsbsy.sty
Package: amsbsy 1999/11/29 v1.2d
\pmbraise@=\dimen156
)
(/usr/share/texlive/texmf-dist/tex/latex/amsmath/amsopn.sty
Package: amsopn 1999/12/14 v2.01 operator names
)
\inf@bad=\count139
LaTeX Info: Redefining \frac on input line 211.
\uproot@=\count140
\leftroot@=\count141
LaTeX Info: Redefining \overline on input line 307.
\classnum@=\count142
\DOTSCASE@=\count143
LaTeX Info: Redefining \ldots on input line 379.
LaTeX Info: Redefining \dots on input line 382.
LaTeX Info: Redefining \cdots on input line 467.
\Mathstrutbox@=\box70
\strutbox@=\box71
\big@size=\dimen157
LaTeX Font Info: Redeclaring font encoding OML on input line 567.
LaTeX Font Info: Redeclaring font encoding OMS on input line 568.
\macc@depth=\count144
\c@MaxMatrixCols=\count145
\dotsspace@=\muskip11
\c@parentequation=\count146
\dspbrk@lvl=\count147
\tag@help=\toks25
\row@=\count148
\column@=\count149
\maxfields@=\count150
\andhelp@=\toks26
\eqnshift@=\dimen158
\alignsep@=\dimen159
\tagshift@=\dimen160
\tagwidth@=\dimen161
\totwidth@=\dimen162
\lineht@=\dimen163
\@envbody=\toks27
\multlinegap=\skip120
\multlinetaggap=\skip121
\mathdisplay@stack=\toks28
LaTeX Info: Redefining \[on input line 2666.
LaTeX Info: Redefining \] on input line 2667.
)
(/usr/share/texlive/texmf-dist/tex/latex/amsfonts/amssymb.sty
Package: amssymb 2009/06/22 v3.00

(/usr/share/texlive/texmf-dist/tex/latex/amsfonts/amsfonts.sty
Package: amsfonts 2009/06/22 v3.00 Basic AMSFonts support
\symAMSa=\mathgroup6
\symAMSb=\mathgroup7
LaTeX Font Info: Overwriting math alphabet `\mathfrak' in version `bold'
(Font) U/euf/m/n --> U/euf/b/n on input line 96.
))
(/usr/share/texlive/texmf-dist/tex/latex/psnfss/pifont.sty
Package: pifont 2005/04/12 PSNFSS-v9.2a Pi font support (SPQR)
LaTeX Font Info: Try loading font information for U+pzd on input line 63.

(/usr/share/texlive/texmf-dist/tex/latex/psnfss/upzd.fd
File: upzd.fd 2001/06/04 font definitions for U/pzd.
)
LaTeX Font Info: Try loading font information for U+psy on input line 64.

(/usr/share/texlive/texmf-dist/tex/latex/psnfss/upsy.fd
File: upsy.fd 2001/06/04 font definitions for U/psy.
))
(/usr/share/texlive/texmf-dist/tex/latex/marvosym/marvosym.sty
Package: marvosym 2011/07/20 v2.2 Martin Vogel's Symbols font definitions
)
(/usr/share/texlive/texmf-dist/tex/latex/fourier/fourier-orns.sty
Package: fourier-orns 2004/01/30 1.1 fourier-ornaments package
)
(/usr/share/texlive/texmf-dist/tex/latex/graphics/graphicx.sty
Package: graphicx 1999/02/16 v1.0f Enhanced LaTeX Graphics (DPC,SPQR)
\Gin@req@height=\dimen164
\Gin@req@width=\dimen165
)
(/usr/share/texlive/texmf-dist/tex/latex/wasysym/wasysym.sty
Package: wasysym 2003/10/30 v2.0 Wasy-2 symbol support package
\symwasy=\mathgroup8
LaTeX Font Info: Overwriting symbol font `wasy' in version `bold'
(Font) U/wasy/m/n --> U/wasy/b/n on input line 90.
)
(/usr/share/texlive/texmf-dist/tex/latex/bbm-macros/bbm.sty
Package: bbm 1999/03/15 V 1.2 provides fonts for set symbols - TH
LaTeX Font Info: Overwriting math alphabet `\mathbbm' in version `bold'
(Font) U/bbm/m/n --> U/bbm/bx/n on input line 33.
LaTeX Font Info: Overwriting math alphabet `\mathbbmss' in version `bold'
(Font) U/bbmss/m/n --> U/bbmss/bx/n on input line 35.
)
(/usr/share/texlive/texmf-dist/tex/latex/skull/skull.sty
Package: skull 2002/01/23 v0.1 (c) Henrik Christian Grove <grove@math.ku.dk>
\symSKULL=\mathgroup9
)
(/usr/share/texmf/tex/latex/tipa/tipa.sty
Package: tipa 2002/08/08 TIPA version 1.1

(/usr/share/texlive/texmf-dist/tex/latex/base/fontenc.sty
Package: fontenc 2005/09/27 v1.99g Standard LaTeX package

(/usr/share/texmf/tex/latex/tipa/t3enc.def
File: t3enc.def 2001/12/31 T3 encoding
LaTeX Font Info: Try loading font information for T1+phv on input line 357.

(/usr/share/texlive/texmf-dist/tex/latex/psnfss/t1phv.fd
File: t1phv.fd 2001/06/04 scalable font definitions for T1/phv.
)
LaTeX Font Info: Font shape `T1/phv/m/n' will be
(Font) scaled to size 10.07397pt on input line 357.
)
(/usr/share/texlive/texmf-dist/tex/latex/base/t1enc.def
File: t1enc.def 2005/09/27 v1.99g Standard LaTeX file
LaTeX Font Info: Redeclaring font encoding T1 on input line 43.
)))
(/usr/share/texlive/texmf-dist/tex/latex/fancyvrb/fancyvrb.sty
Package: fancyvrb 2008/02/07

Style option: `fancyvrb' v2.7a, with DG/SPQR fixes, and firstline=lastline fix
<2008/02/07> (tvz)
\FV@CodeLineNo=\count151
\FV@InFile=\read2
\FV@TabBox=\box72
\c@FancyVerbLine=\count152
\FV@StepNumber=\count153
\FV@OutFile=\write3
) (/usr/share/texlive/texmf-dist/tex/latex/bbding/bbding.sty
Package: bbding 1999/04/15 v1.01 Dingbats symbols
) (/usr/share/texmf/tex/latex/xcolor/xcolor.sty
Package: xcolor 2007/01/21 v2.11 LaTeX color extensions (UK)

(/usr/share/texlive/texmf-dist/tex/latex/latexconfig/color.cfg
File: color.cfg 2007/01/18 v1.5 color configuration of teTeX/TeXLive
)
Package xcolor Info: Driver file: pdftex.def on input line 225.

(/usr/share/texlive/texmf-dist/tex/latex/colortbl/colortbl.sty
Package: colortbl 2012/02/13 v1.0a Color table columns (DPC)
\everycr=\toks29
\minrowclearance=\skip122
)
LaTeX Info: Redefining \color on input line 702.
\rownum=\count154
Package xcolor Info: Model `cmy' substituted by `cmy0' on input line 1337.
Package xcolor Info: Model `hsb' substituted by `rgb' on input line 1341.
Package xcolor Info: Model `RGB' extended on input line 1353.
Package xcolor Info: Model `HTML' substituted by `rgb' on input line 1355.
Package xcolor Info: Model `Hsb' substituted by `hsb' on input line 1356.
Package xcolor Info: Model `tHsb' substituted by `hsb' on input line 1357.
Package xcolor Info: Model `HSB' substituted by `hsb' on input line 1358.
Package xcolor Info: Model `Gray' substituted by `gray' on input line 1359.
Package xcolor Info: Model `wave' substituted by `hsb' on input line 1360.
)
(/usr/share/texlive/texmf-dist/tex/latex/microtype/microtype.sty
Package: microtype 2010/01/10 v2.4 Micro-typography with pdfTeX (RS)
\MT@toks=\toks30
\MT@count=\count155
LaTeX Info: Redefining \lsstyle on input line 1597.
LaTeX Info: Redefining \lslig on input line 1597.
\MT@outer@space=\skip123
LaTeX Info: Redefining \textls on input line 1605.
\MT@outer@kern=\dimen166
LaTeX Info: Redefining \textmicrotypecontext on input line 2156.
Package microtype Info: Loading configuration file microtype.cfg.

(/usr/share/texlive/texmf-dist/tex/latex/microtype/microtype.cfg
File: microtype.cfg 2010/01/10 v2.4 microtype main configuration file (RS)
))
(/usr/share/texlive/texmf-dist/tex/latex/graphics/lscape.sty
Package: lscape 2000/10/22 v3.01 Landscape Pages (DPC)
)
(/usr/share/texlive/texmf-dist/tex/latex/amscls/amsthm.sty
Package: amsthm 2009/07/02 v2.20.1
\thm@style=\toks31
\thm@bodyfont=\toks32
\thm@headfont=\toks33
\thm@notefont=\toks34
\thm@headpunct=\toks35
\thm@preskip=\skip124
\thm@postskip=\skip125
\thm@headsep=\skip126
\dth@everypar=\toks36
))
(../headers/defaultcolors.tex) (../headers/hyphenation.tex)
(../headers/commands.tex
\fnwidth=\skip127
\mylength=\skip128
\myhight=\skip129
\myshadingheight=\skip130
) (/usr/share/texmf/tex/latex/cm-super/type1ec.sty
Package: type1ec 2002/09/07 v1.1 Type1 EC font definitions (for CM-Super fonts)

(/usr/share/texlive/texmf-dist/tex/latex/base/t1cmr.fd
File: t1cmr.fd 1999/05/25 v2.5h Standard LaTeX font definitions
))
(/usr/share/texmf/tex/latex/CJK/CJKutf8.sty
Package: CJKutf8 2012/05/07 4.8.3

(/usr/share/texlive/texmf-dist/tex/latex/base/inputenc.sty
Package: inputenc 2008/03/30 v1.1d Input encoding file
\inpenc@prehook=\toks37
\inpenc@posthook=\toks38

(/usr/share/texlive/texmf-dist/tex/latex/base/utf8.def
File: utf8.def 2008/04/05 v1.1m UTF-8 support for inputenc
Now handling font encoding OML ...
... no UTF-8 mapping file for font encoding OML
Now handling font encoding T1 ...
... processing UTF-8 mapping file for font encoding T1

(/usr/share/texlive/texmf-dist/tex/latex/base/t1enc.dfu
File: t1enc.dfu 2008/04/05 v1.1m UTF-8 support for inputenc
 defining Unicode char U+00A1 (decimal 161)
 defining Unicode char U+00A3 (decimal 163)
 defining Unicode char U+00AB (decimal 171)
 defining Unicode char U+00BB (decimal 187)
 defining Unicode char U+00BF (decimal 191)
 defining Unicode char U+00C0 (decimal 192)
 defining Unicode char U+00C1 (decimal 193)
 defining Unicode char U+00C2 (decimal 194)
 defining Unicode char U+00C3 (decimal 195)
 defining Unicode char U+00C4 (decimal 196)
 defining Unicode char U+00C5 (decimal 197)
 defining Unicode char U+00C6 (decimal 198)
 defining Unicode char U+00C7 (decimal 199)
 defining Unicode char U+00C8 (decimal 200)
 defining Unicode char U+00C9 (decimal 201)
 defining Unicode char U+00CA (decimal 202)
 defining Unicode char U+00CB (decimal 203)
 defining Unicode char U+00CC (decimal 204)
 defining Unicode char U+00CD (decimal 205)
 defining Unicode char U+00CE (decimal 206)
 defining Unicode char U+00CF (decimal 207)
 defining Unicode char U+00D0 (decimal 208)
 defining Unicode char U+00D1 (decimal 209)
 defining Unicode char U+00D2 (decimal 210)
 defining Unicode char U+00D3 (decimal 211)
 defining Unicode char U+00D4 (decimal 212)
 defining Unicode char U+00D5 (decimal 213)
 defining Unicode char U+00D6 (decimal 214)
 defining Unicode char U+00D8 (decimal 216)
 defining Unicode char U+00D9 (decimal 217)
 defining Unicode char U+00DA (decimal 218)
 defining Unicode char U+00DB (decimal 219)
 defining Unicode char U+00DC (decimal 220)
 defining Unicode char U+00DD (decimal 221)
 defining Unicode char U+00DE (decimal 222)
 defining Unicode char U+00DF (decimal 223)
 defining Unicode char U+00E0 (decimal 224)
 defining Unicode char U+00E1 (decimal 225)
 defining Unicode char U+00E2 (decimal 226)
 defining Unicode char U+00E3 (decimal 227)
 defining Unicode char U+00E4 (decimal 228)
 defining Unicode char U+00E5 (decimal 229)
 defining Unicode char U+00E6 (decimal 230)
 defining Unicode char U+00E7 (decimal 231)
 defining Unicode char U+00E8 (decimal 232)
 defining Unicode char U+00E9 (decimal 233)
 defining Unicode char U+00EA (decimal 234)
 defining Unicode char U+00EB (decimal 235)
 defining Unicode char U+00EC (decimal 236)
 defining Unicode char U+00ED (decimal 237)
 defining Unicode char U+00EE (decimal 238)
 defining Unicode char U+00EF (decimal 239)
 defining Unicode char U+00F0 (decimal 240)
 defining Unicode char U+00F1 (decimal 241)
 defining Unicode char U+00F2 (decimal 242)
 defining Unicode char U+00F3 (decimal 243)
 defining Unicode char U+00F4 (decimal 244)
 defining Unicode char U+00F5 (decimal 245)
 defining Unicode char U+00F6 (decimal 246)
 defining Unicode char U+00F8 (decimal 248)
 defining Unicode char U+00F9 (decimal 249)
 defining Unicode char U+00FA (decimal 250)
 defining Unicode char U+00FB (decimal 251)
 defining Unicode char U+00FC (decimal 252)
 defining Unicode char U+00FD (decimal 253)
 defining Unicode char U+00FE (decimal 254)
 defining Unicode char U+00FF (decimal 255)
 defining Unicode char U+0102 (decimal 258)
 defining Unicode char U+0103 (decimal 259)
 defining Unicode char U+0104 (decimal 260)
 defining Unicode char U+0105 (decimal 261)
 defining Unicode char U+0106 (decimal 262)
 defining Unicode char U+0107 (decimal 263)
 defining Unicode char U+010C (decimal 268)
 defining Unicode char U+010D (decimal 269)
 defining Unicode char U+010E (decimal 270)
 defining Unicode char U+010F (decimal 271)
 defining Unicode char U+0110 (decimal 272)
 defining Unicode char U+0111 (decimal 273)
 defining Unicode char U+0118 (decimal 280)
 defining Unicode char U+0119 (decimal 281)
 defining Unicode char U+011A (decimal 282)
 defining Unicode char U+011B (decimal 283)
 defining Unicode char U+011E (decimal 286)
 defining Unicode char U+011F (decimal 287)
 defining Unicode char U+0130 (decimal 304)
 defining Unicode char U+0131 (decimal 305)
 defining Unicode char U+0132 (decimal 306)
 defining Unicode char U+0133 (decimal 307)
 defining Unicode char U+0139 (decimal 313)
 defining Unicode char U+013A (decimal 314)
 defining Unicode char U+013D (decimal 317)
 defining Unicode char U+013E (decimal 318)
 defining Unicode char U+0141 (decimal 321)
 defining Unicode char U+0142 (decimal 322)
 defining Unicode char U+0143 (decimal 323)
 defining Unicode char U+0144 (decimal 324)
 defining Unicode char U+0147 (decimal 327)
 defining Unicode char U+0148 (decimal 328)
 defining Unicode char U+014A (decimal 330)
 defining Unicode char U+014B (decimal 331)
 defining Unicode char U+0150 (decimal 336)
 defining Unicode char U+0151 (decimal 337)
 defining Unicode char U+0152 (decimal 338)
 defining Unicode char U+0153 (decimal 339)
 defining Unicode char U+0154 (decimal 340)
 defining Unicode char U+0155 (decimal 341)
 defining Unicode char U+0158 (decimal 344)
 defining Unicode char U+0159 (decimal 345)
 defining Unicode char U+015A (decimal 346)
 defining Unicode char U+015B (decimal 347)
 defining Unicode char U+015E (decimal 350)
 defining Unicode char U+015F (decimal 351)
 defining Unicode char U+0160 (decimal 352)
 defining Unicode char U+0161 (decimal 353)
 defining Unicode char U+0162 (decimal 354)
 defining Unicode char U+0163 (decimal 355)
 defining Unicode char U+0164 (decimal 356)
 defining Unicode char U+0165 (decimal 357)
 defining Unicode char U+016E (decimal 366)
 defining Unicode char U+016F (decimal 367)
 defining Unicode char U+0170 (decimal 368)
 defining Unicode char U+0171 (decimal 369)
 defining Unicode char U+0178 (decimal 376)
 defining Unicode char U+0179 (decimal 377)
 defining Unicode char U+017A (decimal 378)
 defining Unicode char U+017B (decimal 379)
 defining Unicode char U+017C (decimal 380)
 defining Unicode char U+017D (decimal 381)
 defining Unicode char U+017E (decimal 382)
 defining Unicode char U+200C (decimal 8204)
 defining Unicode char U+2013 (decimal 8211)
 defining Unicode char U+2014 (decimal 8212)
 defining Unicode char U+2018 (decimal 8216)
 defining Unicode char U+2019 (decimal 8217)
 defining Unicode char U+201A (decimal 8218)
 defining Unicode char U+201C (decimal 8220)
 defining Unicode char U+201D (decimal 8221)
 defining Unicode char U+201E (decimal 8222)
 defining Unicode char U+2030 (decimal 8240)
 defining Unicode char U+2031 (decimal 8241)
 defining Unicode char U+2039 (decimal 8249)
 defining Unicode char U+203A (decimal 8250)
 defining Unicode char U+2423 (decimal 9251)
)
Now handling font encoding OT1 ...
... processing UTF-8 mapping file for font encoding OT1

(/usr/share/texlive/texmf-dist/tex/latex/base/ot1enc.dfu
File: ot1enc.dfu 2008/04/05 v1.1m UTF-8 support for inputenc
 defining Unicode char U+00A1 (decimal 161)
 defining Unicode char U+00A3 (decimal 163)
 defining Unicode char U+00B8 (decimal 184)
 defining Unicode char U+00BF (decimal 191)
 defining Unicode char U+00C5 (decimal 197)
 defining Unicode char U+00C6 (decimal 198)
 defining Unicode char U+00D8 (decimal 216)
 defining Unicode char U+00DF (decimal 223)
 defining Unicode char U+00E6 (decimal 230)
 defining Unicode char U+00EC (decimal 236)
 defining Unicode char U+00ED (decimal 237)
 defining Unicode char U+00EE (decimal 238)
 defining Unicode char U+00EF (decimal 239)
 defining Unicode char U+00F8 (decimal 248)
 defining Unicode char U+0131 (decimal 305)
 defining Unicode char U+0141 (decimal 321)
 defining Unicode char U+0142 (decimal 322)
 defining Unicode char U+0152 (decimal 338)
 defining Unicode char U+0153 (decimal 339)
 defining Unicode char U+2013 (decimal 8211)
 defining Unicode char U+2014 (decimal 8212)
 defining Unicode char U+2018 (decimal 8216)
 defining Unicode char U+2019 (decimal 8217)
 defining Unicode char U+201C (decimal 8220)
 defining Unicode char U+201D (decimal 8221)
)
Now handling font encoding OMS ...
... processing UTF-8 mapping file for font encoding OMS

(/usr/share/texlive/texmf-dist/tex/latex/base/omsenc.dfu
File: omsenc.dfu 2008/04/05 v1.1m UTF-8 support for inputenc
 defining Unicode char U+00A7 (decimal 167)
 defining Unicode char U+00B6 (decimal 182)
 defining Unicode char U+00B7 (decimal 183)
 defining Unicode char U+2020 (decimal 8224)
 defining Unicode char U+2021 (decimal 8225)
 defining Unicode char U+2022 (decimal 8226)
)
Now handling font encoding OMX ...
... no UTF-8 mapping file for font encoding OMX
Now handling font encoding U ...
... no UTF-8 mapping file for font encoding U
Now handling font encoding TS1 ...
... processing UTF-8 mapping file for font encoding TS1

(/usr/share/texlive/texmf-dist/tex/latex/base/ts1enc.dfu
File: ts1enc.dfu 2008/04/05 v1.1m UTF-8 support for inputenc
 defining Unicode char U+00A2 (decimal 162)
 defining Unicode char U+00A3 (decimal 163)
 defining Unicode char U+00A4 (decimal 164)
 defining Unicode char U+00A5 (decimal 165)
 defining Unicode char U+00A6 (decimal 166)
 defining Unicode char U+00A7 (decimal 167)
 defining Unicode char U+00A8 (decimal 168)
 defining Unicode char U+00A9 (decimal 169)
 defining Unicode char U+00AA (decimal 170)
 defining Unicode char U+00AC (decimal 172)
 defining Unicode char U+00AE (decimal 174)
 defining Unicode char U+00AF (decimal 175)
 defining Unicode char U+00B0 (decimal 176)
 defining Unicode char U+00B1 (decimal 177)
 defining Unicode char U+00B2 (decimal 178)
 defining Unicode char U+00B3 (decimal 179)
 defining Unicode char U+00B4 (decimal 180)
 defining Unicode char U+00B5 (decimal 181)
 defining Unicode char U+00B6 (decimal 182)
 defining Unicode char U+00B7 (decimal 183)
 defining Unicode char U+00B9 (decimal 185)
 defining Unicode char U+00BA (decimal 186)
 defining Unicode char U+00BC (decimal 188)
 defining Unicode char U+00BD (decimal 189)
 defining Unicode char U+00BE (decimal 190)
 defining Unicode char U+00D7 (decimal 215)
 defining Unicode char U+00F7 (decimal 247)
 defining Unicode char U+0192 (decimal 402)
 defining Unicode char U+02C7 (decimal 711)
 defining Unicode char U+02D8 (decimal 728)
 defining Unicode char U+02DD (decimal 733)
 defining Unicode char U+0E3F (decimal 3647)
 defining Unicode char U+2016 (decimal 8214)
 defining Unicode char U+2020 (decimal 8224)
 defining Unicode char U+2021 (decimal 8225)
 defining Unicode char U+2022 (decimal 8226)
 defining Unicode char U+2030 (decimal 8240)
 defining Unicode char U+2031 (decimal 8241)
 defining Unicode char U+203B (decimal 8251)
 defining Unicode char U+203D (decimal 8253)
 defining Unicode char U+2044 (decimal 8260)
 defining Unicode char U+204E (decimal 8270)
 defining Unicode char U+2052 (decimal 8274)
 defining Unicode char U+20A1 (decimal 8353)
 defining Unicode char U+20A4 (decimal 8356)
 defining Unicode char U+20A6 (decimal 8358)
 defining Unicode char U+20A9 (decimal 8361)
 defining Unicode char U+20AB (decimal 8363)
 defining Unicode char U+20AC (decimal 8364)
 defining Unicode char U+20B1 (decimal 8369)
 defining Unicode char U+2103 (decimal 8451)
 defining Unicode char U+2116 (decimal 8470)
 defining Unicode char U+2117 (decimal 8471)
 defining Unicode char U+211E (decimal 8478)
 defining Unicode char U+2120 (decimal 8480)
 defining Unicode char U+2122 (decimal 8482)
 defining Unicode char U+2126 (decimal 8486)
 defining Unicode char U+2127 (decimal 8487)
 defining Unicode char U+212E (decimal 8494)
 defining Unicode char U+2190 (decimal 8592)
 defining Unicode char U+2191 (decimal 8593)
 defining Unicode char U+2192 (decimal 8594)
 defining Unicode char U+2193 (decimal 8595)
 defining Unicode char U+2329 (decimal 9001)
 defining Unicode char U+232A (decimal 9002)
 defining Unicode char U+2422 (decimal 9250)
 defining Unicode char U+25E6 (decimal 9702)
 defining Unicode char U+25EF (decimal 9711)
 defining Unicode char U+266A (decimal 9834)
)
Now handling font encoding PD1 ...
... no UTF-8 mapping file for font encoding PD1
Now handling font encoding PU ...
... no UTF-8 mapping file for font encoding PU
Now handling font encoding T3 ...
... no UTF-8 mapping file for font encoding T3
 defining Unicode char U+00A9 (decimal 169)
 defining Unicode char U+00AA (decimal 170)
 defining Unicode char U+00AE (decimal 174)
 defining Unicode char U+00BA (decimal 186)
 defining Unicode char U+02C6 (decimal 710)
 defining Unicode char U+02DC (decimal 732)
 defining Unicode char U+200C (decimal 8204)
 defining Unicode char U+2026 (decimal 8230)
 defining Unicode char U+2122 (decimal 8482)
 defining Unicode char U+2423 (decimal 9251)
))
(/usr/share/texmf/tex/latex/CJK/CJK.sty
Package: CJK 2012/05/07 4.8.3

(/usr/share/texmf/tex/latex/CJK/mule/MULEenc.sty
Package: MULEenc 2012/05/07 4.8.3
)
(/usr/share/texmf/tex/latex/CJK/CJK.enc
File: CJK.enc 2012/05/07 4.8.3
Now handling font encoding C00 ...
... no UTF-8 mapping file for font encoding C00
Now handling font encoding C05 ...
... no UTF-8 mapping file for font encoding C05
Now handling font encoding C09 ...
... no UTF-8 mapping file for font encoding C09
Now handling font encoding C10 ...
... no UTF-8 mapping file for font encoding C10
Now handling font encoding C20 ...
... no UTF-8 mapping file for font encoding C20
Now handling font encoding C19 ...
... no UTF-8 mapping file for font encoding C19
Now handling font encoding C40 ...
... no UTF-8 mapping file for font encoding C40
Now handling font encoding C42 ...
... no UTF-8 mapping file for font encoding C42
Now handling font encoding C43 ...
... no UTF-8 mapping file for font encoding C43
Now handling font encoding C50 ...
... no UTF-8 mapping file for font encoding C50
Now handling font encoding C52 ...
... no UTF-8 mapping file for font encoding C52
Now handling font encoding C49 ...
... no UTF-8 mapping file for font encoding C49
Now handling font encoding C60 ...
... no UTF-8 mapping file for font encoding C60
Now handling font encoding C61 ...
... no UTF-8 mapping file for font encoding C61
Now handling font encoding C63 ...
... no UTF-8 mapping file for font encoding C63
Now handling font encoding C64 ...
... no UTF-8 mapping file for font encoding C64
Now handling font encoding C65 ...
... no UTF-8 mapping file for font encoding C65
Now handling font encoding C70 ...
... no UTF-8 mapping file for font encoding C70
Now handling font encoding C31 ...
... no UTF-8 mapping file for font encoding C31
Now handling font encoding C32 ...
... no UTF-8 mapping file for font encoding C32
Now handling font encoding C33 ...
... no UTF-8 mapping file for font encoding C33
Now handling font encoding C34 ...
... no UTF-8 mapping file for font encoding C34
Now handling font encoding C35 ...
... no UTF-8 mapping file for font encoding C35
Now handling font encoding C36 ...
... no UTF-8 mapping file for font encoding C36
Now handling font encoding C37 ...
... no UTF-8 mapping file for font encoding C37
Now handling font encoding C80 ...
... no UTF-8 mapping file for font encoding C80
Now handling font encoding C81 ...
... no UTF-8 mapping file for font encoding C81
Now handling font encoding C01 ...
... no UTF-8 mapping file for font encoding C01
Now handling font encoding C11 ...
... no UTF-8 mapping file for font encoding C11
Now handling font encoding C21 ...
... no UTF-8 mapping file for font encoding C21
Now handling font encoding C41 ...
... no UTF-8 mapping file for font encoding C41
Now handling font encoding C62 ...
... no UTF-8 mapping file for font encoding C62
)
LaTeX Info: Redefining \selectfont on input line 755.
\CJK@indent=\box73
)
(/usr/share/texlive/texmf-dist/tex/latex/base/fontenc.sty
Package: fontenc 2005/09/27 v1.99g Standard LaTeX package
))
(/usr/share/texmf/tex/latex/CJK/ruby.sty
Package: ruby 2012/05/07 4.8.3
\ruby@width=\dimen167
)
(/usr/share/texmf/tex/latex/CJK/CJKulem.sty
Package: CJKulem 2012/05/07 4.8.3
\UL@lastkern=\dimen168
\CJK@skip=\skip131
) (../headers/title.tex)
(../headers/options.tex
LaTeX Font Info: Try loading font information for T1+ptm on input line 13.

(/usr/share/texlive/texmf-dist/tex/latex/psnfss/t1ptm.fd
File: t1ptm.fd 2001/06/04 font definitions for T1/ptm.
)

Package typearea Warning: Bad type area settings!
(typearea) The detected line width is about 18%
(typearea) larger than the heuristically detected line width.
(typearea) You should e.g. decrease DIV, increase fontsize
(typearea) or change papersize.

Package typearea Info: These are the values describing the layout:
(typearea) DIV = 13
(typearea) BCOR = 34.1433pt
(typearea) \paperwidth = 597.50793pt
(typearea) \textwidth = 433.35742pt
(typearea) DIV departure = -18%
(typearea) \evensidemargin = 14.40149pt
(typearea) \oddsidemargin = 5.20905pt
(typearea) \paperheight = 845.04694pt
(typearea) \textheight = 650.20029pt
(typearea) \topmargin = -44.6664pt
(typearea) \headheight = 17.0pt
(typearea) \headsep = 20.40001pt
(typearea) \topskip = 11.0pt
(typearea) \footskip = 47.60002pt
(typearea) \baselineskip = 13.6pt
(typearea) on input line 13.
) (../headers/formattings.tex
Package hyperref Info: Option `breaklinks' set `true' on input line 17.
Package hyperref Info: Option `colorlinks' set `false' on input line 17.
Package hyperref Info: Option `bookmarksopen' set `true' on input line 17.
Package hyperref Info: Option `bookmarksnumbered' set `true' on input line 17.
Package hyperref Info: Option `frenchlinks' set `false' on input line 17.
) (../headers/unicodes.tex)
(../headers/templates.tex
\wbtemplengtha=\skip132
\wbtemplengthb=\skip133
\wbtemplengthc=\skip134
\wbtemplengthd=\skip135
\wbtemplengthe=\skip136
\wbtempcounta=\count156
\wbtempcountb=\count157
\wbtempcountc=\count158

! LaTeX Error: Command \PDFLink already defined.
 Or name \end... illegal, see p.192 of the manual.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.591 \newcommand{\PDFLink}[1]{#1 PDF}

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

\c@satz=\count159
\c@beweis=\count160
\c@beispiel=\count161
\c@mydef=\count162
) (../headers/templates-dirk.tex) (../headers/templates-chemie.tex)
(/usr/share/texmf/tex/latex/lm/lmodern.sty
Package: lmodern 2009/10/30 v1.6 Latin Modern Fonts
LaTeX Font Info: Overwriting symbol font `operators' in version `normal'
(Font) OT1/ztmcm/m/n --> OT1/lmr/m/n on input line 22.
LaTeX Font Info: Overwriting symbol font `letters' in version `normal'
(Font) OML/ztmcm/m/it --> OML/lmm/m/it on input line 23.
LaTeX Font Info: Overwriting symbol font `symbols' in version `normal'
(Font) OMS/ztmcm/m/n --> OMS/lmsy/m/n on input line 24.
LaTeX Font Info: Overwriting symbol font `largesymbols' in version `normal'
(Font) OMX/ztmcm/m/n --> OMX/lmex/m/n on input line 25.
LaTeX Font Info: Overwriting symbol font `operators' in version `bold'
(Font) OT1/ztmcm/m/n --> OT1/lmr/bx/n on input line 26.
LaTeX Font Info: Overwriting symbol font `letters' in version `bold'
(Font) OML/ztmcm/m/it --> OML/lmm/b/it on input line 27.
LaTeX Font Info: Overwriting symbol font `symbols' in version `bold'
(Font) OMS/ztmcm/m/n --> OMS/lmsy/b/n on input line 28.
LaTeX Font Info: Overwriting symbol font `largesymbols' in version `bold'
(Font) OMX/ztmcm/m/n --> OMX/lmex/m/n on input line 29.
LaTeX Font Info: Overwriting math alphabet `\mathbf' in version `normal'
(Font) OT1/ptm/bx/n --> OT1/lmr/bx/n on input line 31.
LaTeX Font Info: Overwriting math alphabet `\mathsf' in version `normal'
(Font) OT1/cmss/m/n --> OT1/lmss/m/n on input line 32.
LaTeX Font Info: Overwriting math alphabet `\mathit' in version `normal'
(Font) OT1/ptm/m/it --> OT1/lmr/m/it on input line 33.
LaTeX Font Info: Overwriting math alphabet `\mathtt' in version `normal'
(Font) OT1/cmtt/m/n --> OT1/lmtt/m/n on input line 34.
LaTeX Font Info: Overwriting math alphabet `\mathbf' in version `bold'
(Font) OT1/ptm/bx/n --> OT1/lmr/bx/n on input line 35.
LaTeX Font Info: Overwriting math alphabet `\mathsf' in version `bold'
(Font) OT1/cmss/bx/n --> OT1/lmss/bx/n on input line 36.
LaTeX Font Info: Overwriting math alphabet `\mathit' in version `bold'
(Font) OT1/ptm/m/it --> OT1/lmr/bx/it on input line 37.
LaTeX Font Info: Overwriting math alphabet `\mathtt' in version `bold'
(Font) OT1/cmtt/m/n --> OT1/lmtt/m/n on input line 38.
) (./main.aux)
\openout1 = `main.aux'.

LaTeX Font Info: Checking defaults for OML/cmm/m/it on input line 23.
LaTeX Font Info: ... okay on input line 23.
LaTeX Font Info: Checking defaults for T1/cmr/m/n on input line 23.
LaTeX Font Info: ... okay on input line 23.
LaTeX Font Info: Checking defaults for OT1/cmr/m/n on input line 23.
LaTeX Font Info: ... okay on input line 23.
LaTeX Font Info: Checking defaults for OMS/cmsy/m/n on input line 23.
LaTeX Font Info: ... okay on input line 23.
LaTeX Font Info: Checking defaults for OMX/cmex/m/n on input line 23.
LaTeX Font Info: ... okay on input line 23.
LaTeX Font Info: Checking defaults for U/cmr/m/n on input line 23.
LaTeX Font Info: ... okay on input line 23.
LaTeX Font Info: Checking defaults for TS1/cmr/m/n on input line 23.
LaTeX Font Info: Try loading font information for TS1+cmr on input line 23.

(/usr/share/texlive/texmf-dist/tex/latex/base/ts1cmr.fd
File: ts1cmr.fd 1999/05/25 v2.5h Standard LaTeX font definitions
)
LaTeX Font Info: ... okay on input line 23.
LaTeX Font Info: Checking defaults for PD1/pdf/m/n on input line 23.
LaTeX Font Info: ... okay on input line 23.
LaTeX Font Info: Checking defaults for PU/pdf/m/n on input line 23.
LaTeX Font Info: ... okay on input line 23.
LaTeX Font Info: Checking defaults for T3/cmr/m/n on input line 23.
LaTeX Font Info: Try loading font information for T3+cmr on input line 23.

(/usr/share/texmf/tex/latex/tipa/t3cmr.fd
File: t3cmr.fd 2001/12/31 TIPA font definitions
)
LaTeX Font Info: ... okay on input line 23.
LaTeX Font Info: Checking defaults for C00/song/m/n on input line 23.
LaTeX Font Info: ... okay on input line 23.
LaTeX Font Info: Checking defaults for C05/song/m/n on input line 23.
LaTeX Font Info: ... okay on input line 23.
LaTeX Font Info: Checking defaults for C09/song/m/n on input line 23.
LaTeX Font Info: ... okay on input line 23.
LaTeX Font Info: Checking defaults for C10/song/m/n on input line 23.
LaTeX Font Info: ... okay on input line 23.
LaTeX Font Info: Checking defaults for C20/song/m/n on input line 23.
LaTeX Font Info: ... okay on input line 23.
LaTeX Font Info: Checking defaults for C19/song/m/n on input line 23.
LaTeX Font Info: ... okay on input line 23.
LaTeX Font Info: Checking defaults for C40/song/m/n on input line 23.
LaTeX Font Info: ... okay on input line 23.
LaTeX Font Info: Checking defaults for C42/song/m/n on input line 23.
LaTeX Font Info: ... okay on input line 23.
LaTeX Font Info: Checking defaults for C43/song/m/n on input line 23.
LaTeX Font Info: ... okay on input line 23.
LaTeX Font Info: Checking defaults for C50/song/m/n on input line 23.
LaTeX Font Info: ... okay on input line 23.
LaTeX Font Info: Checking defaults for C52/song/m/n on input line 23.
LaTeX Font Info: ... okay on input line 23.
LaTeX Font Info: Checking defaults for C49/song/m/n on input line 23.
LaTeX Font Info: ... okay on input line 23.
LaTeX Font Info: Checking defaults for C60/mj/m/n on input line 23.
LaTeX Font Info: ... okay on input line 23.
LaTeX Font Info: Checking defaults for C61/mj/m/n on input line 23.
LaTeX Font Info: ... okay on input line 23.
LaTeX Font Info: Checking defaults for C63/mj/m/n on input line 23.
LaTeX Font Info: ... okay on input line 23.
LaTeX Font Info: Checking defaults for C64/mj/m/n on input line 23.
LaTeX Font Info: ... okay on input line 23.
LaTeX Font Info: Checking defaults for C65/mj/m/n on input line 23.
LaTeX Font Info: ... okay on input line 23.
LaTeX Font Info: Checking defaults for C70/song/m/n on input line 23.
LaTeX Font Info: ... okay on input line 23.
LaTeX Font Info: Checking defaults for C31/song/m/n on input line 23.
LaTeX Font Info: ... okay on input line 23.
LaTeX Font Info: Checking defaults for C32/song/m/n on input line 23.
LaTeX Font Info: ... okay on input line 23.
LaTeX Font Info: Checking defaults for C33/song/m/n on input line 23.
LaTeX Font Info: ... okay on input line 23.
LaTeX Font Info: Checking defaults for C34/song/m/n on input line 23.
LaTeX Font Info: ... okay on input line 23.
LaTeX Font Info: Checking defaults for C35/song/m/n on input line 23.
LaTeX Font Info: ... okay on input line 23.
LaTeX Font Info: Checking defaults for C36/song/m/n on input line 23.
LaTeX Font Info: ... okay on input line 23.
LaTeX Font Info: Checking defaults for C37/song/m/n on input line 23.
LaTeX Font Info: ... okay on input line 23.
LaTeX Font Info: Checking defaults for C80/song/m/n on input line 23.
LaTeX Font Info: ... okay on input line 23.
LaTeX Font Info: Checking defaults for C81/song/m/n on input line 23.
LaTeX Font Info: ... okay on input line 23.
LaTeX Font Info: Checking defaults for C01/song/m/n on input line 23.
LaTeX Font Info: ... okay on input line 23.
LaTeX Font Info: Checking defaults for C11/song/m/n on input line 23.
LaTeX Font Info: ... okay on input line 23.
LaTeX Font Info: Checking defaults for C21/song/m/n on input line 23.
LaTeX Font Info: ... okay on input line 23.
LaTeX Font Info: Checking defaults for C41/song/m/n on input line 23.
LaTeX Font Info: ... okay on input line 23.
LaTeX Font Info: Checking defaults for C62/song/m/n on input line 23.
LaTeX Font Info: ... okay on input line 23.
LaTeX Font Info: Try loading font information for T1+lmr on input line 23.

(/usr/share/texmf/tex/latex/lm/t1lmr.fd
File: t1lmr.fd 2009/10/30 v1.6 Font defs for Latin Modern
)
(/usr/share/texlive/texmf-dist/tex/context/base/supp-pdf.mkii
[Loading MPS to PDF converter (version 2006.09.02).]
\scratchcounter=\count163
\scratchdimen=\dimen169
\scratchbox=\box74
\nofMPsegments=\count164
\nofMParguments=\count165
\everyMPshowfont=\toks39
\MPscratchCnt=\count166
\MPscratchDim=\dimen170
\MPnumerator=\count167
\makeMPintoPDFobject=\count168
\everyMPtoPDFconversion=\toks40
)
\AtBeginShipoutBox=\box75
Package hyperref Info: Link coloring OFF on input line 23.
 (/usr/share/texlive/texmf-dist/tex/latex/hyperref/nameref.sty
Package: nameref 2010/04/30 v2.40 Cross-referencing by name of section

(/usr/share/texlive/texmf-dist/tex/generic/oberdiek/gettitlestring.sty
Package: gettitlestring 2010/12/03 v1.4 Cleanup title references (HO)
)
\c@section@level=\count169
)
LaTeX Info: Redefining \ref on input line 23.
LaTeX Info: Redefining \pageref on input line 23.
LaTeX Info: Redefining \nameref on input line 23.

(./main.out) (./main.out)
\@outlinefile=\write4
\openout4 = `main.out'.

LaTeX Font Info: Try loading font information for T1+lmss on input line 23.
 (/usr/share/texmf/tex/latex/lm/t1lmss.fd
File: t1lmss.fd 2009/10/30 v1.6 Font defs for Latin Modern
)
Package tocstyle Info: prepare \l@part for redefinition on input line 23.
Package tocstyle Info: prepare \l@chapter for redefinition on input line 23.
Package tocstyle Info: prepare \l@section for redefinition on input line 23.
LaTeX Font Info: Try loading font information for OT1+lmr on input line 23.

(/usr/share/texmf/tex/latex/lm/ot1lmr.fd
File: ot1lmr.fd 2009/10/30 v1.6 Font defs for Latin Modern
)
LaTeX Font Info: Try loading font information for OML+lmm on input line 23.

(/usr/share/texmf/tex/latex/lm/omllmm.fd
File: omllmm.fd 2009/10/30 v1.6 Font defs for Latin Modern
)
LaTeX Font Info: Try loading font information for OMS+lmsy on input line 23.

(/usr/share/texmf/tex/latex/lm/omslmsy.fd
File: omslmsy.fd 2009/10/30 v1.6 Font defs for Latin Modern
)
LaTeX Font Info: Try loading font information for OMX+lmex on input line 23.

(/usr/share/texmf/tex/latex/lm/omxlmex.fd
File: omxlmex.fd 2009/10/30 v1.6 Font defs for Latin Modern
)
LaTeX Font Info: External font `lmex10' loaded for size
(Font) <10.95> on input line 23.
LaTeX Font Info: External font `lmex10' loaded for size
(Font) <8> on input line 23.
LaTeX Font Info: External font `lmex10' loaded for size
(Font) <6> on input line 23.
LaTeX Font Info: Try loading font information for OT1+ptm on input line 23.

(/usr/share/texlive/texmf-dist/tex/latex/psnfss/ot1ptm.fd
File: ot1ptm.fd 2001/06/04 font definitions for OT1/ptm.
)
LaTeX Font Info: Font shape `OT1/ptm/bx/n' in size <10.95> not available
(Font) Font shape `OT1/ptm/b/n' tried instead on input line 23.
LaTeX Font Info: Font shape `OT1/ptm/bx/n' in size <8> not available
(Font) Font shape `OT1/ptm/b/n' tried instead on input line 23.
LaTeX Font Info: Font shape `OT1/ptm/bx/n' in size <6> not available
(Font) Font shape `OT1/ptm/b/n' tried instead on input line 23.
LaTeX Font Info: Try loading font information for U+msa on input line 23.

(/usr/share/texlive/texmf-dist/tex/latex/amsfonts/umsa.fd
File: umsa.fd 2009/06/22 v3.00 AMS symbols A
)
LaTeX Font Info: Try loading font information for U+msb on input line 23.

(/usr/share/texlive/texmf-dist/tex/latex/amsfonts/umsb.fd
File: umsb.fd 2009/06/22 v3.00 AMS symbols B
)
LaTeX Font Info: Try loading font information for U+wasy on input line 23.

(/usr/share/texlive/texmf-dist/tex/latex/wasysym/uwasy.fd
File: uwasy.fd 2003/10/30 v2.0 Wasy-2 symbol font definitions
)
Package tocstyle Info: prepare \l@subsection for redefinition on input line 23.

Package tocstyle Info: prepare \l@table for redefinition on input line 23.
Package tocstyle Info: prepare \l@figure for redefinition on input line 23.

(/usr/share/texlive/texmf-dist/tex/latex/oberdiek/epstopdf-base.sty
Package: epstopdf-base 2010/02/09 v2.5 Base part for package epstopdf

(/usr/share/texlive/texmf-dist/tex/latex/oberdiek/grfext.sty
Package: grfext 2010/08/19 v1.1 Manage graphics extensions (HO)
)
Package grfext Info: Graphics extension search list:
(grfext) [.png,.pdf,.jpg,.mps,.jpeg,.jbig2,.jb2,.PNG,.PDF,.JPG,.JPE
G,.JBIG2,.JB2,.eps]
(grfext) \AppendGraphicsExtensions on input line 452.

(/usr/share/texlive/texmf-dist/tex/latex/latexconfig/epstopdf-sys.cfg
File: epstopdf-sys.cfg 2010/07/13 v1.3 Configuration of (r)epstopdf for TeX Liv
e
))

Class scrbook Warning: discard change of \selectfont.

ABD: EverySelectfont initializing macros

LaTeX Warning: Command \selectfont has changed.
 Check if current package is valid.

LaTeX Info: Redefining \selectfont on input line 23.
\c@lstlisting=\count170
LaTeX Info: Redefining \microtypecontext on input line 23.
Package microtype Info: Generating PDF output.
Package microtype Info: Character protrusion enabled (level 2).
Package microtype Info: Using default protrusion set `alltext'.
Package microtype Info: Automatic font expansion enabled (level 2),
(microtype) stretch: 20, shrink: 20, step: 1, non-selected.
Package microtype Info: Using default expansion set `basictext'.
Package microtype Info: No tracking.
Package microtype Info: No adjustment of interword spacing.
Package microtype Info: No adjustment of character kerning.
(/usr/share/texlive/texmf-dist/tex/latex/microtype/mt-cmr.cfg
File: mt-cmr.cfg 2009/11/09 v2.0 microtype config. file: Computer Modern Roman
(RS)
)
(/usr/share/texmf/tex/latex/CJK/UTF8/UTF8.bdg
File: UTF8.bdg 2012/05/07 4.8.3
)
(/usr/share/texmf/tex/latex/CJK/UTF8/UTF8.enc
File: UTF8.enc 2012/05/07 4.8.3
)
(/usr/share/texmf/tex/latex/CJK/UTF8/UTF8.chr
File: UTF8.chr 2012/05/07 4.8.3
)
exclude:
exclude:
exclude:
exclude:
exclude:
exclude:
exclude:
LaTeX Font Info: External font `lmex10' loaded for size
(Font) <14.4> on input line 34.
LaTeX Font Info: Font shape `OT1/ptm/bx/n' in size <14.4> not available
(Font) Font shape `OT1/ptm/b/n' tried instead on input line 34.
(/usr/share/texlive/texmf-dist/tex/latex/microtype/mt-ptm.cfg
File: mt-ptm.cfg 2006/04/20 v1.7 microtype config. file: Times (RS)
)
(/usr/share/texlive/texmf-dist/tex/latex/microtype/mt-msa.cfg
File: mt-msa.cfg 2006/02/04 v1.1 microtype config. file: AMS symbols (a) (RS)
)
(/usr/share/texlive/texmf-dist/tex/latex/microtype/mt-msb.cfg
File: mt-msb.cfg 2005/06/01 v1.0 microtype config. file: AMS symbols (b) (RS)
)

LaTeX Warning: No \author given.

[1

{/var/lib/texmf/fonts/map/pdftex/updmap/pdftex.map}]
LaTeX Font Info: External font `lmex10' loaded for size
(Font) <10> on input line 34.
LaTeX Font Info: External font `lmex10' loaded for size
(Font) <7.4> on input line 34.
LaTeX Font Info: Font shape `OT1/ptm/bx/n' in size <10> not available
(Font) Font shape `OT1/ptm/b/n' tried instead on input line 34.
LaTeX Font Info: Font shape `OT1/ptm/bx/n' in size <7.4> not available
(Font) Font shape `OT1/ptm/b/n' tried instead on input line 34.
LaTeX Font Info: Try loading font information for T1+lmtt on input line 34.

(/usr/share/texmf/tex/latex/lm/t1lmtt.fd
File: t1lmtt.fd 2009/10/30 v1.6 Font defs for Latin Modern
) [2

]
Package tocbasic Info: character protrusion at toc deactivated on input line 37
.
 (./main.toc
number indent by \l@... (toc, 0): 0.0pt
text indent by \l@... (toc, 0): 16.42499pt
number indent by parent (toc, 0): 0.0pt
text indent calculated (toc, 0): 18.8887pt
number indent calculated (toc, 0): 0.0pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 0): 0.0pt
text indent by \l@... (toc, 0): 16.42499pt
number indent by parent (toc, 0): 0.0pt
text indent calculated (toc, 0): 18.8887pt
number indent calculated (toc, 0): 0.0pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 0): 0.0pt
text indent by \l@... (toc, 0): 16.42499pt
number indent by parent (toc, 0): 0.0pt
text indent calculated (toc, 0): 18.8887pt
number indent calculated (toc, 0): 0.0pt
number indent by \l@... (toc, 0): 0.0pt
text indent by \l@... (toc, 0): 16.42499pt
number indent by parent (toc, 0): 0.0pt
text indent calculated (toc, 0): 18.8887pt
number indent calculated (toc, 0): 0.0pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 0): 0.0pt
text indent by \l@... (toc, 0): 16.42499pt
number indent by parent (toc, 0): 0.0pt
text indent calculated (toc, 0): 18.8887pt
number indent calculated (toc, 0): 0.0pt
number indent by \l@... (toc, 0): 0.0pt
text indent by \l@... (toc, 0): 16.42499pt
number indent by parent (toc, 0): 0.0pt
text indent calculated (toc, 0): 18.8887pt
number indent calculated (toc, 0): 0.0pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
[3

]
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 0): 0.0pt
text indent by \l@... (toc, 0): 16.42499pt
number indent by parent (toc, 0): 0.0pt
text indent calculated (toc, 0): 18.8887pt
number indent calculated (toc, 0): 0.0pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 0): 0.0pt
text indent by \l@... (toc, 0): 16.42499pt
number indent by parent (toc, 0): 0.0pt
text indent calculated (toc, 0): 18.8887pt
number indent calculated (toc, 0): 0.0pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 0): 0.0pt
text indent by \l@... (toc, 0): 16.42499pt
number indent by parent (toc, 0): 0.0pt
text indent calculated (toc, 0): 18.8887pt
number indent calculated (toc, 0): 0.0pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
[4]
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 0): 0.0pt
text indent by \l@... (toc, 0): 16.42499pt
number indent by parent (toc, 0): 0.0pt
text indent calculated (toc, 0): 18.8887pt
number indent calculated (toc, 0): 0.0pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 0): 0.0pt
text indent by \l@... (toc, 0): 16.42499pt
number indent by parent (toc, 0): 0.0pt
text indent calculated (toc, 0): 18.8887pt
number indent calculated (toc, 0): 0.0pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
[5]
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 0): 0.0pt
text indent by \l@... (toc, 0): 16.42499pt
number indent by parent (toc, 0): 0.0pt
text indent calculated (toc, 0): 18.8887pt
number indent calculated (toc, 0): 0.0pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 0): 0.0pt
text indent by \l@... (toc, 0): 16.42499pt
number indent by parent (toc, 0): 0.0pt
text indent calculated (toc, 0): 18.8887pt
number indent calculated (toc, 0): 0.0pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 0): 0.0pt
text indent by \l@... (toc, 0): 16.42499pt
number indent by parent (toc, 0): 0.0pt
text indent calculated (toc, 0): 18.8887pt
number indent calculated (toc, 0): 0.0pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 0): 0.0pt
text indent by \l@... (toc, 0): 16.42499pt
number indent by parent (toc, 0): 0.0pt
text indent calculated (toc, 0): 18.8887pt
number indent calculated (toc, 0): 0.0pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
[6]
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 0): 0.0pt
text indent by \l@... (toc, 0): 16.42499pt
number indent by parent (toc, 0): 0.0pt
text indent calculated (toc, 0): 18.8887pt
number indent calculated (toc, 0): 0.0pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 0): 0.0pt
text indent by \l@... (toc, 0): 16.42499pt
number indent by parent (toc, 0): 0.0pt
text indent calculated (toc, 0): 18.8887pt
number indent calculated (toc, 0): 0.0pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 0): 0.0pt
text indent by \l@... (toc, 0): 16.42499pt
number indent by parent (toc, 0): 0.0pt
text indent calculated (toc, 0): 18.8887pt
number indent calculated (toc, 0): 0.0pt
number indent by \l@... (toc, 0): 0.0pt
text indent by \l@... (toc, 0): 16.42499pt
number indent by parent (toc, 0): 0.0pt
text indent calculated (toc, 0): 18.8887pt
number indent calculated (toc, 0): 0.0pt
number indent by \l@... (toc, 0): 0.0pt
text indent by \l@... (toc, 0): 16.42499pt
number indent by parent (toc, 0): 0.0pt
text indent calculated (toc, 0): 18.8887pt
number indent calculated (toc, 0): 0.0pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
number indent by \l@... (toc, 1): 16.42499pt
text indent by \l@... (toc, 1): 25.18501pt
number indent by parent (toc, 1): 18.8887pt
text indent calculated (toc, 1): 30.4166pt
number indent calculated (toc, 1): 12.59247pt
)
\tf@toc=\write5
\openout5 = `main.toc'.

 [1] [2

]
Chapter 1.

Class scrbook Warning: \float@addtolists detected!
(scrbook) You should use the features of package `tocbasic'
(scrbook) instead of \float@addtolists.
(scrbook) Support for \float@addtolists may be removed from
(scrbook) `scrbook' soon .

LaTeX Font Info: External font `lmex10' loaded for size
(Font) <9> on input line 68.
LaTeX Font Info: External font `lmex10' loaded for size
(Font) <7> on input line 68.
LaTeX Font Info: External font `lmex10' loaded for size
(Font) <5> on input line 68.
LaTeX Font Info: Font shape `OT1/ptm/bx/n' in size <9> not available
(Font) Font shape `OT1/ptm/b/n' tried instead on input line 68.
LaTeX Font Info: Font shape `OT1/ptm/bx/n' in size <7> not available
(Font) Font shape `OT1/ptm/b/n' tried instead on input line 68.
LaTeX Font Info: Font shape `OT1/ptm/bx/n' in size <5> not available
(Font) Font shape `OT1/ptm/b/n' tried instead on input line 68.
LaTeX Font Info: Try loading font information for TS1+lmr on input line 78.
(/usr/share/texmf/tex/latex/lm/ts1lmr.fd
File: ts1lmr.fd 2009/10/30 v1.6 Font defs for Latin Modern
) [3]
Underfull \hbox (badness 10000) in paragraph at lines 116--117

 []

Underfull \hbox (badness 10000) in paragraph at lines 118--119

 []

[4] [5] [6]
LaTeX Font Info: Try loading font information for C70+megafont on input line
 247.
 (/home/dirk/.texmf-var/tex/latex/megafont/c70megafont.fd
File: c70megafont.fd
) [7]
[8]
Chapter 2.
<../images/1.png, id=1111, 1244.65pt x 376.40625pt>
File: ../images/1.png Graphic file (type png)
 <use ../images/1.png>
Package pdftex.def Info: ../images/1.png used on input line 344.
(pdftex.def) Requested size: 433.35501pt x 131.05493pt.

[9

] <../images/2.png, id=1118, 1244.65pt x 236.885pt>
File: ../images/2.png Graphic file (type png)
 <use ../images/2.png>
Package pdftex.def Info: ../images/2.png used on input line 361.
(pdftex.def) Requested size: 433.35501pt x 82.47723pt.

[10 <../images/1.png> <../images/2.png>] [11] [12] [13]
LaTeX Font Info: Font shape `T1/lmtt/bx/n' in size <8> not available
(Font) Font shape `T1/lmtt/b/n' tried instead on input line 609.

Underfull \hbox (badness 10000) in paragraph at lines 620--620

 []

[14] [15] [16]
Chapter 3.
[17

]
LaTeX Font Info: Try loading font information for TS1+lmtt on input line 896
.
 (/usr/share/texmf/tex/latex/lm/ts1lmtt.fd
File: ts1lmtt.fd 2009/10/30 v1.6 Font defs for Latin Modern
)
Package microtype Info: Character `texttrademark ' is missing
(microtype) in font `TS1/lmtt/m/n/10.95'.
(microtype) Ignoring protrusion settings for this character.
 [18]
Package microtype Info: Character `texttrademark ' is missing
(microtype) in font `TS1/lmtt/m/n/8'.
(microtype) Ignoring protrusion settings for this character.

Underfull \hbox (badness 10000) in paragraph at lines 974--974

 []

[19]
Underfull \hbox (badness 10000) in paragraph at lines 1023--1023

 []

Underfull \hbox (badness 10000) in paragraph at lines 1027--1027

 []

Underfull \hbox (badness 10000) in paragraph at lines 1039--1039

 []

Underfull \hbox (badness 10000) in paragraph at lines 1049--1049

 []

[20]
Underfull \hbox (badness 10000) in paragraph at lines 1064--1064

 []

Underfull \hbox (badness 10000) in paragraph at lines 1075--1075

 []

Underfull \hbox (badness 10000) in paragraph at lines 1080--1080

 []

[21]
Underfull \hbox (badness 10000) in paragraph at lines 1120--1120

 []

Underfull \hbox (badness 10000) in paragraph at lines 1129--1129

 []

[22]
Underfull \hbox (badness 10000) in paragraph at lines 1216--1216

 []

Underfull \hbox (badness 10000) in paragraph at lines 1227--1227

 []

Underfull \hbox (badness 10000) in paragraph at lines 1235--1235

 []

[23] [24]

LaTeX Font Warning: Font shape `C70/megafont/m/it' undefined
(Font) using `C70/megafont/m/n' instead on input line 1325.

[25] [26

]
Chapter 4.
[27] [28] [29] [30] [31] [32]

LaTeX Warning: File `../images/3.png' not found on input line 1985.

! Package pdftex.def Error: File `../images/3.png' not found.

See the pdftex.def package documentation for explanation.
Type H <return> for immediate help.
 ...

l.1985 ...=6.5in,keepaspectratio]{../images/3.png}

Using draft setting for this image.
Try typing <return> to proceed.
If that doesn't work, type X <return> to quit.

[33] [34]
LaTeX Font Info: Font shape `T1/lmtt/bx/n' in size <10.95> not available
(Font) Font shape `T1/lmtt/b/n' tried instead on input line 2049.
 [35] [36] [37]
Underfull \hbox (badness 10000) in paragraph at lines 2294--2294

 []

Underfull \hbox (badness 10000) in paragraph at lines 2306--2306

 []

Underfull \hbox (badness 10000) in paragraph at lines 2317--2317

 []

Package microtype Info: Character `texttrademark ' is missing
(microtype) in font `TS1/lmtt/m/it/10.95'.
(microtype) Ignoring protrusion settings for this character.
[38]
Package microtype Info: Character `texttrademark ' is missing
(microtype) in font `TS1/lmtt/m/it/8'.
(microtype) Ignoring protrusion settings for this character.

Underfull \hbox (badness 10000) in paragraph at lines 2373--2373

 []

[39]
Underfull \hbox (badness 10000) in paragraph at lines 2470--2470

 []

[40]
Underfull \hbox (badness 10000) in paragraph at lines 2479--2479

 []

Underfull \hbox (badness 10000) in paragraph at lines 2485--2485

 []

Underfull \hbox (badness 10000) in paragraph at lines 2494--2494

 []

[41] [42]
Underfull \hbox (badness 10000) in paragraph at lines 2633--2633

 []

Underfull \hbox (badness 10000) in paragraph at lines 2649--2649

 []

Underfull \hbox (badness 10000) in paragraph at lines 2656--2656

 []

Underfull \hbox (badness 10000) in paragraph at lines 2674--2674

 []

[43]
Underfull \hbox (badness 10000) in paragraph at lines 2709--2709

 []

Underfull \hbox (badness 10000) in paragraph at lines 2733--2733

 []

Underfull \hbox (badness 10000) in paragraph at lines 2743--2743

 []

[44]
Underfull \hbox (badness 10000) in paragraph at lines 2755--2755

 []

Underfull \hbox (badness 10000) in paragraph at lines 2759--2759

 []

[45]
Underfull \hbox (badness 10000) in paragraph at lines 2822--2822

 []

[46]
Underfull \hbox (badness 10000) in paragraph at lines 2893--2896
\T1/lmr/bx/n/10.95 Exercise\C70/megafont/bx/n/10.95/00 [][]\T1/lmr/bx/n/10.95
1\C70/megafont/bx/n/10.95/00 \T1/lmr/m/it/10.95 (+20) Down-load the code in
this chap-ter from
 []

[47] [48

]
Chapter 5.

Underfull \hbox (badness 10000) in paragraph at lines 2974--2974

 []

Underfull \hbox (badness 10000) in paragraph at lines 2995--2995

 []

Underfull \hbox (badness 10000) in paragraph at lines 3003--3003

 []

Underfull \hbox (badness 10000) in paragraph at lines 3011--3011

 []

[49]
Underfull \hbox (badness 10000) in paragraph at lines 3037--3037

 []

[50]
Underfull \hbox (badness 10000) in paragraph at lines 3115--3115

 []

Underfull \hbox (badness 10000) in paragraph at lines 3126--3126

 []

Underfull \hbox (badness 10000) in paragraph at lines 3143--3143

 []

[51]
Underfull \hbox (badness 10000) in paragraph at lines 3160--3160

 []

Underfull \hbox (badness 10000) in paragraph at lines 3165--3165

 []

Underfull \hbox (badness 10000) in paragraph at lines 3179--3179

 []

Underfull \hbox (badness 10000) in paragraph at lines 3185--3185

 []

[52]
Underfull \hbox (badness 10000) in paragraph at lines 3210--3210

 []

Underfull \hbox (badness 10000) in paragraph at lines 3221--3221

 []

[53]
Underfull \hbox (badness 10000) in paragraph at lines 3273--3273

 []

Underfull \hbox (badness 10000) in paragraph at lines 3286--3286

 []

Underfull \hbox (badness 10000) in paragraph at lines 3305--3305

 []

Underfull \hbox (badness 10000) in paragraph at lines 3315--3315

 []

Underfull \hbox (badness 10000) in paragraph at lines 3329--3329

 []

[54]
Underfull \hbox (badness 10000) in paragraph at lines 3337--3337

 []

Underfull \hbox (badness 10000) in paragraph at lines 3366--3366

 []

Underfull \hbox (badness 10000) in paragraph at lines 3383--3383

 []

Underfull \hbox (badness 10000) in paragraph at lines 3390--3390

 []

[55]

LaTeX Font Warning: Font shape `C70/megafont/bx/it' undefined
(Font) using `C70/megafont/bx/n' instead on input line 3454.

[56] [57]
Underfull \hbox (badness 1102) in paragraph at lines 3570--3572
[]\T1/lmr/m/n/10.95 (+20) Koch curves to make the out-line of a snowflake. \T1/
lmr/m/it/10.95 (+20) You can see my so-lu-tion at
 []

[58]
Chapter 6.
[59

] [60] [61]
Underfull \hbox (badness 10000) in paragraph at lines 3929--3929

 []

[62]
Underfull \hbox (badness 10000) in paragraph at lines 3939--3939

 []

Underfull \hbox (badness 10000) in paragraph at lines 3944--3944

 []

Underfull \hbox (badness 10000) in paragraph at lines 3949--3949

 []

Underfull \hbox (badness 10000) in paragraph at lines 3953--3953

 []

[63]
Underfull \hbox (badness 10000) in paragraph at lines 4005--4005

 []

Underfull \hbox (badness 10000) in paragraph at lines 4010--4010

 []

Underfull \hbox (badness 10000) in paragraph at lines 4021--4021

 []

[64]
Underfull \hbox (badness 5189) in paragraph at lines 4098--4105
\T1/lmr/m/n/10.95 (+20) ALIGN=center NOWRAP>[]<TD ALIGN=left NOWRAP>fibonacci(0
)\C70/megafont/bx/it/10.95/00 \T1/lmr/m/n/10.95 (+20) =\C70/megafont/bx/it/10.
95/00 \T1/lmr/m/n/10.95 (+20) 0\C70/megafont/bx/it/10.95/00 \T1/lmr/m/n/10.9
5 (+20) <TD
 []

Underfull \hbox (badness 10000) in paragraph at lines 4098--4105
\T1/lmr/m/n/10.95 (+20) ALIGN=right NOWRAP>[]<TD ALIGN=center NOWRAP>[]<TD ALIG
N=left
 []

Underfull \hbox (badness 1924) in paragraph at lines 4098--4105
\T1/lmr/m/n/10.95 (+20) NOWRAP>fibonacci(1)\C70/megafont/bx/it/10.95/00 \T1/lm
r/m/n/10.95 (+20) =\C70/megafont/bx/it/10.95/00 \T1/lmr/m/n/10.95 (+20) 1\C70/
megafont/bx/it/10.95/00 \T1/lmr/m/n/10.95 (+20) <TD ALIGN=right NOWRAP>[]<TD
ALIGN=center
 []

Underfull \hbox (badness 10000) in paragraph at lines 4116--4116

 []

[65]
Underfull \hbox (badness 10000) in paragraph at lines 4128--4128

 []

Underfull \hbox (badness 10000) in paragraph at lines 4160--4160

 []

Underfull \hbox (badness 10000) in paragraph at lines 4171--4171

 []

[66]
Underfull \hbox (badness 10000) in paragraph at lines 4233--4233

 []

Underfull \hbox (badness 10000) in paragraph at lines 4248--4248

 []

[67]
Underfull \hbox (badness 10000) in paragraph at lines 4292--4292

 []

[68]
Underfull \hbox (badness 10000) in paragraph at lines 4365--4365

 []

[69]
Underfull \hbox (badness 10000) in paragraph at lines 4374--4374

 []

Underfull \hbox (badness 10000) in paragraph at lines 4380--4380

 []

Underfull \hbox (badness 10000) in paragraph at lines 4400--4400

 []

[70]
Underfull \hbox (badness 10000) in paragraph at lines 4437--4437

 []

Underfull \hbox (badness 10000) in paragraph at lines 4477--4477

 []

Underfull \hbox (badness 10000) in paragraph at lines 4489--4489

 []

[71]
Underfull \hbox (badness 10000) in paragraph at lines 4517--4517

 []

Underfull \hbox (badness 10000) in paragraph at lines 4524--4524

 []

Underfull \hbox (badness 10000) in paragraph at lines 4535--4535

 []

Underfull \hbox (badness 10000) in paragraph at lines 4548--4548

 []

[72]
Underfull \hbox (badness 10000) in paragraph at lines 4558--4558

 []

Underfull \hbox (badness 10000) in paragraph at lines 4570--4570

 []

[73] [74] [75] [76

]
Chapter 7.

Underfull \hbox (badness 10000) in paragraph at lines 4750--4750

 []

Underfull \hbox (badness 10000) in paragraph at lines 4760--4760

 []

Underfull \hbox (badness 10000) in paragraph at lines 4767--4767

 []

Underfull \hbox (badness 10000) in paragraph at lines 4778--4778

 []

Underfull \hbox (badness 10000) in paragraph at lines 4786--4786

 []

Underfull \hbox (badness 10000) in paragraph at lines 4793--4793

 []

[77]
Underfull \hbox (badness 10000) in paragraph at lines 4800--4800

 []

Underfull \hbox (badness 10000) in paragraph at lines 4816--4816

 []

Underfull \hbox (badness 10000) in paragraph at lines 4830--4830

 []

Underfull \hbox (badness 10000) in paragraph at lines 4846--4846

 []

Underfull \hbox (badness 10000) in paragraph at lines 4856--4856

 []

[78]
Underfull \hbox (badness 10000) in paragraph at lines 4871--4871

 []

Underfull \hbox (badness 10000) in paragraph at lines 4886--4886

 []

Underfull \hbox (badness 10000) in paragraph at lines 4893--4893

 []

[79]
Underfull \hbox (badness 10000) in paragraph at lines 4909--4909

 []

Underfull \hbox (badness 10000) in paragraph at lines 4923--4923

 []

Underfull \hbox (badness 10000) in paragraph at lines 4938--4938

 []

[80]
Underfull \hbox (badness 10000) in paragraph at lines 4968--4968

 []

Underfull \hbox (badness 10000) in paragraph at lines 4996--4996

 []

Underfull \hbox (badness 10000) in paragraph at lines 5009--5009

 []

[81]
Underfull \hbox (badness 10000) in paragraph at lines 5017--5017

 []

Underfull \hbox (badness 10000) in paragraph at lines 5024--5024

 []

Underfull \hbox (badness 10000) in paragraph at lines 5029--5029

 []

Underfull \hbox (badness 10000) in paragraph at lines 5050--5050

 []

Underfull \hbox (badness 10000) in paragraph at lines 5057--5057

 []

Underfull \hbox (badness 10000) in paragraph at lines 5068--5068

 []

[82]
Underfull \hbox (badness 10000) in paragraph at lines 5104--5104

 []

Underfull \hbox (badness 10000) in paragraph at lines 5131--5131

 []

[83]
Underfull \hbox (badness 10000) in paragraph at lines 5154--5154

 []

Underfull \hbox (badness 10000) in paragraph at lines 5165--5165

 []

Underfull \hbox (badness 10000) in paragraph at lines 5171--5171

 []

Underfull \hbox (badness 10000) in paragraph at lines 5186--5186

 []

[84]
Underfull \hbox (badness 1472) in paragraph at lines 5249--5254
\T1/lmr/m/n/10.95 (+20) Read the doc-u-men-ta-tion of the string meth-ods at \T
S1/lmr/bx/n/10.95 '\T1/lmr/bx/n/10.95 docs.python.org/lib/string-
 []

[85] [86]
Chapter 8.

Underfull \hbox (badness 10000) in paragraph at lines 5352--5352

 []

Underfull \hbox (badness 10000) in paragraph at lines 5363--5363

 []

Underfull \hbox (badness 10000) in paragraph at lines 5373--5373

 []

Underfull \hbox (badness 10000) in paragraph at lines 5383--5383

 []

[87

]
Underfull \hbox (badness 10000) in paragraph at lines 5392--5392

 []

Underfull \hbox (badness 10000) in paragraph at lines 5456--5456

 []

[88]
Underfull \hbox (badness 10000) in paragraph at lines 5473--5473

 []

Underfull \hbox (badness 10000) in paragraph at lines 5484--5484

 []

Underfull \hbox (badness 10000) in paragraph at lines 5496--5496

 []

Underfull \hbox (badness 10000) in paragraph at lines 5506--5506

 []

[89]
Underfull \hbox (badness 10000) in paragraph at lines 5526--5526

 []

Underfull \hbox (badness 10000) in paragraph at lines 5535--5535

 []

Underfull \hbox (badness 10000) in paragraph at lines 5544--5544

 []

Underfull \hbox (badness 10000) in paragraph at lines 5577--5577

 []

[90]
Underfull \hbox (badness 10000) in paragraph at lines 5582--5582

 []

[91]
Underfull \hbox (badness 10000) in paragraph at lines 5647--5649
[]\T1/lmr/m/it/10.95 (+20) Write a pro-gram to find it. You can see my so-lu-ti
on at
 []

[92] [93] [94

]
Chapter 9.

Underfull \hbox (badness 10000) in paragraph at lines 5717--5717

 []

Underfull \hbox (badness 10000) in paragraph at lines 5723--5723

 []

Underfull \hbox (badness 10000) in paragraph at lines 5736--5736

 []

Underfull \hbox (badness 10000) in paragraph at lines 5745--5745

 []

Underfull \hbox (badness 10000) in paragraph at lines 5754--5754

 []

[95]
Underfull \hbox (badness 10000) in paragraph at lines 5785--5785

 []

Underfull \hbox (badness 10000) in paragraph at lines 5792--5792

 []

Underfull \hbox (badness 10000) in paragraph at lines 5800--5800

 []

Underfull \hbox (badness 10000) in paragraph at lines 5812--5812

 []

[96]
Underfull \hbox (badness 10000) in paragraph at lines 5819--5819

 []

Underfull \hbox (badness 10000) in paragraph at lines 5829--5829

 []

Underfull \hbox (badness 10000) in paragraph at lines 5836--5836

 []

Underfull \hbox (badness 10000) in paragraph at lines 5849--5849

 []

Underfull \hbox (badness 10000) in paragraph at lines 5856--5856

 []

Underfull \hbox (badness 10000) in paragraph at lines 5868--5868

 []

[97]
Underfull \hbox (badness 10000) in paragraph at lines 5878--5878

 []

Underfull \hbox (badness 10000) in paragraph at lines 5887--5887

 []

Underfull \hbox (badness 10000) in paragraph at lines 5896--5896

 []

Underfull \hbox (badness 10000) in paragraph at lines 5908--5908

 []

Underfull \hbox (badness 10000) in paragraph at lines 5914--5914

 []

Underfull \hbox (badness 10000) in paragraph at lines 5917--5917

 []

Underfull \hbox (badness 10000) in paragraph at lines 5927--5927

 []

[98]
Underfull \hbox (badness 10000) in paragraph at lines 5939--5939

 []

Underfull \hbox (badness 10000) in paragraph at lines 5956--5956

 []

Underfull \hbox (badness 10000) in paragraph at lines 5987--5987

 []

[99]
Underfull \hbox (badness 10000) in paragraph at lines 5999--5999

 []

Underfull \hbox (badness 10000) in paragraph at lines 6007--6007

 []

Underfull \hbox (badness 10000) in paragraph at lines 6016--6016

 []

Underfull \hbox (badness 10000) in paragraph at lines 6030--6030

 []

Underfull \hbox (badness 10000) in paragraph at lines 6044--6044

 []

[100]
Underfull \hbox (badness 10000) in paragraph at lines 6053--6053

 []

Underfull \hbox (badness 10000) in paragraph at lines 6064--6064

 []

Underfull \hbox (badness 10000) in paragraph at lines 6074--6074

 []

Underfull \hbox (badness 10000) in paragraph at lines 6091--6091

 []

Underfull \hbox (badness 10000) in paragraph at lines 6100--6100

 []

[101]
Underfull \hbox (badness 10000) in paragraph at lines 6123--6123

 []

Underfull \hbox (badness 10000) in paragraph at lines 6139--6139

 []

Underfull \hbox (badness 10000) in paragraph at lines 6148--6148

 []

Underfull \hbox (badness 10000) in paragraph at lines 6159--6159

 []

Underfull \hbox (badness 10000) in paragraph at lines 6165--6165

 []

[102]
Underfull \hbox (badness 10000) in paragraph at lines 6191--6191

 []

Underfull \hbox (badness 10000) in paragraph at lines 6197--6197

 []

Underfull \hbox (badness 10000) in paragraph at lines 6208--6208

 []

Underfull \hbox (badness 10000) in paragraph at lines 6215--6215

 []

[103]
Underfull \hbox (badness 10000) in paragraph at lines 6236--6236

 []

Underfull \hbox (badness 10000) in paragraph at lines 6239--6239

 []

Underfull \hbox (badness 10000) in paragraph at lines 6267--6267

 []

Underfull \hbox (badness 10000) in paragraph at lines 6273--6273

 []

Underfull \hbox (badness 10000) in paragraph at lines 6291--6291

 []

[104] [105] [106] [107] [108

]
Chapter 10.

Underfull \hbox (badness 10000) in paragraph at lines 6466--6466

 []

Underfull \hbox (badness 10000) in paragraph at lines 6471--6471

 []

Underfull \hbox (badness 10000) in paragraph at lines 6479--6479

 []

Underfull \hbox (badness 10000) in paragraph at lines 6483--6483

 []

Underfull \hbox (badness 10000) in paragraph at lines 6487--6487

 []

Underfull \hbox (badness 10000) in paragraph at lines 6498--6498

 []

[109]
Underfull \hbox (badness 10000) in paragraph at lines 6506--6506

 []

Underfull \hbox (badness 10000) in paragraph at lines 6512--6512

 []

Underfull \hbox (badness 10000) in paragraph at lines 6521--6521

 []

Underfull \hbox (badness 10000) in paragraph at lines 6529--6529

 []

[110]
Underfull \hbox (badness 10000) in paragraph at lines 6581--6581

 []

Underfull \hbox (badness 10000) in paragraph at lines 6596--6596

 []

[111]
Underfull \hbox (badness 10000) in paragraph at lines 6625--6625

 []

Underfull \hbox (badness 10000) in paragraph at lines 6634--6634

 []

Underfull \hbox (badness 10000) in paragraph at lines 6663--6663

 []

[112]
Underfull \hbox (badness 10000) in paragraph at lines 6678--6678

 []

Underfull \hbox (badness 10000) in paragraph at lines 6685--6685

 []

Underfull \hbox (badness 10000) in paragraph at lines 6695--6695

 []

Underfull \hbox (badness 10000) in paragraph at lines 6723--6723

 []

[113]
Underfull \hbox (badness 10000) in paragraph at lines 6738--6738

 []

Underfull \hbox (badness 10000) in paragraph at lines 6756--6756

 []

[114]
Underfull \hbox (badness 10000) in paragraph at lines 6816--6816

 []

[115]
Underfull \hbox (badness 10000) in paragraph at lines 6848--6848

 []

Underfull \hbox (badness 10000) in paragraph at lines 6857--6857

 []

Underfull \hbox (badness 10000) in paragraph at lines 6870--6870

 []

Underfull \hbox (badness 10000) in paragraph at lines 6880--6880

 []

Underfull \hbox (badness 10000) in paragraph at lines 6885--6885

 []

Underfull \hbox (badness 10000) in paragraph at lines 6893--6893

 []

Underfull \hbox (badness 10000) in paragraph at lines 6901--6901

 []

[116]
Underfull \hbox (badness 10000) in paragraph at lines 6908--6908

 []

Underfull \hbox (badness 10000) in paragraph at lines 6914--6914

 []

Underfull \hbox (badness 10000) in paragraph at lines 6933--6933

 []

[117]

! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.7023

Your command was ignored.
Type I <command> <return> to replace it with another command,
or <return> to continue without it.

[118]
Underfull \hbox (badness 5622) in paragraph at lines 7070--7078
[]\T1/lmr/m/it/10.95 (+20) To check whether two words are ho-mo-phones, you can
 use the CMU \T1/lmr/m/n/10.95 (+20) Pro-
 []

Underfull \hbox (badness 1292) in paragraph at lines 7070--7078
\T1/lmr/m/n/10.95 (+20) nounc-ing Dic-tio-nary. You can down-load it from \TS1/
lmr/bx/n/10.95 '\T1/lmr/bx/n/10.95 www.speech.cs.cmu.edu/cgi-
 []

[119] [120

]
Chapter 11.

Underfull \hbox (badness 10000) in paragraph at lines 7103--7103

 []

Underfull \hbox (badness 10000) in paragraph at lines 7108--7108

 []

Underfull \hbox (badness 10000) in paragraph at lines 7115--7115

 []

Underfull \hbox (badness 10000) in paragraph at lines 7121--7121

 []

Underfull \hbox (badness 10000) in paragraph at lines 7128--7128

 []

Underfull \hbox (badness 10000) in paragraph at lines 7134--7134

 []

Underfull \hbox (badness 10000) in paragraph at lines 7144--7144

 []

[121]
Underfull \hbox (badness 10000) in paragraph at lines 7149--7149

 []

Underfull \hbox (badness 10000) in paragraph at lines 7155--7155

 []

Underfull \hbox (badness 10000) in paragraph at lines 7161--7161

 []

Underfull \hbox (badness 10000) in paragraph at lines 7170--7170

 []

Underfull \hbox (badness 10000) in paragraph at lines 7173--7173

 []

Underfull \hbox (badness 10000) in paragraph at lines 7184--7184

 []

Underfull \hbox (badness 10000) in paragraph at lines 7191--7191

 []

Underfull \hbox (badness 10000) in paragraph at lines 7199--7199

 []

[122]
Underfull \hbox (badness 10000) in paragraph at lines 7215--7215

 []

Underfull \hbox (badness 10000) in paragraph at lines 7223--7223

 []

Underfull \hbox (badness 10000) in paragraph at lines 7227--7227

 []

Underfull \hbox (badness 10000) in paragraph at lines 7239--7239

 []

Underfull \hbox (badness 10000) in paragraph at lines 7244--7244

 []

Underfull \hbox (badness 10000) in paragraph at lines 7249--7249

 []

[123]
Underfull \hbox (badness 10000) in paragraph at lines 7262--7262

 []

Underfull \hbox (badness 10000) in paragraph at lines 7266--7266

 []

Underfull \hbox (badness 10000) in paragraph at lines 7296--7296

 []

Underfull \hbox (badness 10000) in paragraph at lines 7305--7305

 []

Underfull \hbox (badness 10000) in paragraph at lines 7312--7312

 []

[124]
Underfull \hbox (badness 10000) in paragraph at lines 7320--7320

 []

Underfull \hbox (badness 10000) in paragraph at lines 7332--7332

 []

Underfull \hbox (badness 10000) in paragraph at lines 7338--7338

 []

Underfull \hbox (badness 10000) in paragraph at lines 7343--7343

 []

Underfull \hbox (badness 10000) in paragraph at lines 7353--7353

 []

Underfull \hbox (badness 10000) in paragraph at lines 7363--7363

 []

Underfull \hbox (badness 10000) in paragraph at lines 7370--7370

 []

[125]
Underfull \hbox (badness 10000) in paragraph at lines 7378--7378

 []

Underfull \hbox (badness 10000) in paragraph at lines 7383--7383

 []

Underfull \hbox (badness 10000) in paragraph at lines 7392--7392

 []

Underfull \hbox (badness 10000) in paragraph at lines 7398--7398

 []

Underfull \hbox (badness 10000) in paragraph at lines 7428--7428

 []

[126]
Underfull \hbox (badness 10000) in paragraph at lines 7450--7450

 []

[127]
Underfull \hbox (badness 10000) in paragraph at lines 7523--7523

 []

Underfull \hbox (badness 10000) in paragraph at lines 7529--7529

 []

Underfull \hbox (badness 10000) in paragraph at lines 7535--7535

 []

Underfull \hbox (badness 10000) in paragraph at lines 7541--7541

 []

[128]
Underfull \hbox (badness 10000) in paragraph at lines 7546--7546

 []

[129] [130] [131]
Underfull \hbox (badness 10000) in paragraph at lines 7787--7787

 []

Underfull \hbox (badness 10000) in paragraph at lines 7796--7796

 []

Underfull \hbox (badness 10000) in paragraph at lines 7805--7805

 []

[132]
Underfull \hbox (badness 10000) in paragraph at lines 7846--7846

 []

Underfull \hbox (badness 10000) in paragraph at lines 7868--7868

 []

[133]
Underfull \hbox (badness 10000) in paragraph at lines 7873--7873

 []

Underfull \hbox (badness 10000) in paragraph at lines 7877--7877

 []

Underfull \hbox (badness 10000) in paragraph at lines 7881--7881

 []

Underfull \hbox (badness 10000) in paragraph at lines 7894--7894

 []

Underfull \hbox (badness 10000) in paragraph at lines 7900--7900

 []

Underfull \hbox (badness 10000) in paragraph at lines 7913--7913

 []

Underfull \hbox (badness 10000) in paragraph at lines 7925--7925

 []

[134]
Underfull \hbox (badness 10000) in paragraph at lines 7931--7931

 []

Underfull \hbox (badness 10000) in paragraph at lines 7934--7934

 []

Underfull \hbox (badness 10000) in paragraph at lines 7959--7959

 []

Underfull \hbox (badness 10000) in paragraph at lines 7969--7969

 []

Underfull \hbox (badness 10000) in paragraph at lines 7974--7974

 []

[135]
Underfull \hbox (badness 10000) in paragraph at lines 7996--7996

 []

[136]
Underfull \hbox (badness 10000) in paragraph at lines 8041--8041

 []

Underfull \hbox (badness 10000) in paragraph at lines 8053--8054

 []

Underfull \hbox (badness 10000) in paragraph at lines 8055--8056

 []

Underfull \hbox (badness 10000) in paragraph at lines 8057--8058

 []

Underfull \hbox (badness 10000) in paragraph at lines 8059--8060

 []

Underfull \hbox (badness 10000) in paragraph at lines 8061--8062

 []

Underfull \hbox (badness 10000) in paragraph at lines 8063--8064

 []

Underfull \hbox (badness 10000) in paragraph at lines 8065--8066

 []

Underfull \hbox (badness 10000) in paragraph at lines 8067--8068

 []

[137]
Underfull \hbox (badness 10000) in paragraph at lines 8155--8155

 []

[138] [139] [140]
Underfull \hbox (badness 10000) in paragraph at lines 8330--8330

 []

Underfull \hbox (badness 10000) in paragraph at lines 8338--8338

 []

[141]
Underfull \hbox (badness 10000) in paragraph at lines 8343--8343

 []

Underfull \hbox (badness 10000) in paragraph at lines 8346--8346

 []

Underfull \hbox (badness 10000) in paragraph at lines 8354--8354

 []

Underfull \hbox (badness 10000) in paragraph at lines 8370--8370

 []

Underfull \hbox (badness 10000) in paragraph at lines 8379--8379

 []

Underfull \hbox (badness 10000) in paragraph at lines 8385--8385

 []

Underfull \hbox (badness 10000) in paragraph at lines 8394--8394

 []

[142]
Underfull \hbox (badness 10000) in paragraph at lines 8415--8415

 []

Underfull \hbox (badness 10000) in paragraph at lines 8430--8430

 []

Underfull \hbox (badness 10000) in paragraph at lines 8436--8436

 []

Underfull \hbox (badness 10000) in paragraph at lines 8442--8442

 []

Underfull \hbox (badness 10000) in paragraph at lines 8449--8449

 []

[143]
Underfull \hbox (badness 10000) in paragraph at lines 8490--8490

 []

Underfull \hbox (badness 10000) in paragraph at lines 8495--8495

 []

Underfull \hbox (badness 10000) in paragraph at lines 8499--8499

 []

Underfull \hbox (badness 10000) in paragraph at lines 8515--8515

 []

[144]
Underfull \hbox (badness 10000) in paragraph at lines 8541--8541

 []

Underfull \hbox (badness 10000) in paragraph at lines 8548--8548

 []

Underfull \hbox (badness 10000) in paragraph at lines 8552--8552

 []

Underfull \hbox (badness 10000) in paragraph at lines 8558--8558

 []

Underfull \hbox (badness 10000) in paragraph at lines 8565--8565

 []

Underfull \hbox (badness 10000) in paragraph at lines 8569--8569

 []

[145]
Underfull \hbox (badness 10000) in paragraph at lines 8586--8586

 []

Underfull \hbox (badness 10000) in paragraph at lines 8595--8595

 []

Underfull \hbox (badness 10000) in paragraph at lines 8602--8602

 []

[146]
Underfull \hbox (badness 10000) in paragraph at lines 8641--8641

 []

Underfull \hbox (badness 10000) in paragraph at lines 8649--8649

 []

Underfull \hbox (badness 10000) in paragraph at lines 8655--8655

 []

Underfull \hbox (badness 10000) in paragraph at lines 8668--8668

 []

Underfull \hbox (badness 10000) in paragraph at lines 8683--8683

 []

Underfull \hbox (badness 10000) in paragraph at lines 8689--8689

 []

[147]
Underfull \hbox (badness 10000) in paragraph at lines 8694--8694

 []

Underfull \hbox (badness 10000) in paragraph at lines 8698--8698

 []

Underfull \hbox (badness 10000) in paragraph at lines 8710--8710

 []

Underfull \hbox (badness 10000) in paragraph at lines 8739--8739

 []

Underfull \hbox (badness 10000) in paragraph at lines 8747--8747

 []

[148] [149] [150]
Chapter 12.

Underfull \hbox (badness 10000) in paragraph at lines 8948--8948

 []

Underfull \hbox (badness 10000) in paragraph at lines 8960--8960

 []

Underfull \hbox (badness 10000) in paragraph at lines 8969--8969

 []

[151

]
Underfull \hbox (badness 10000) in paragraph at lines 8984--8984

 []

Underfull \hbox (badness 10000) in paragraph at lines 9008--9008

 []

Underfull \hbox (badness 10000) in paragraph at lines 9020--9020

 []

Underfull \hbox (badness 10000) in paragraph at lines 9026--9026

 []

Underfull \hbox (badness 10000) in paragraph at lines 9032--9032

 []

[152]
Underfull \hbox (badness 10000) in paragraph at lines 9064--9064

 []

Underfull \hbox (badness 10000) in paragraph at lines 9077--9077

 []

Underfull \hbox (badness 10000) in paragraph at lines 9097--9097

 []

[153]
Underfull \hbox (badness 10000) in paragraph at lines 9103--9103

 []

Underfull \hbox (badness 10000) in paragraph at lines 9111--9111

 []

Underfull \hbox (badness 10000) in paragraph at lines 9119--9119

 []

Underfull \hbox (badness 10000) in paragraph at lines 9130--9130

 []

[154]
Underfull \hbox (badness 10000) in paragraph at lines 9157--9157

 []

Underfull \hbox (badness 10000) in paragraph at lines 9168--9168

 []

Underfull \hbox (badness 10000) in paragraph at lines 9185--9185

 []

Underfull \hbox (badness 10000) in paragraph at lines 9209--9209

 []

[155]
Underfull \hbox (badness 10000) in paragraph at lines 9224--9224

 []

Underfull \hbox (badness 10000) in paragraph at lines 9229--9229

 []

Underfull \hbox (badness 10000) in paragraph at lines 9237--9237

 []

[156] [157] [158]
Chapter 13.

Underfull \hbox (badness 10000) in paragraph at lines 9421--9421

 []

[159

]
Underfull \hbox (badness 10000) in paragraph at lines 9448--9448

 []

Underfull \hbox (badness 10000) in paragraph at lines 9471--9471

 []

[160]
Underfull \hbox (badness 10000) in paragraph at lines 9493--9493

 []

[161]
Underfull \hbox (badness 10000) in paragraph at lines 9558--9558

 []

Underfull \hbox (badness 10000) in paragraph at lines 9568--9568

 []

Underfull \hbox (badness 10000) in paragraph at lines 9579--9579

 []

[162]
Underfull \hbox (badness 10000) in paragraph at lines 9623--9623

 []

Underfull \hbox (badness 10000) in paragraph at lines 9634--9634

 []

Underfull \hbox (badness 10000) in paragraph at lines 9644--9644

 []

[163] [164]
Chapter 14.
[165

]
Underfull \hbox (badness 10000) in paragraph at lines 9778--9778

 []

Underfull \hbox (badness 10000) in paragraph at lines 9787--9787

 []

Underfull \hbox (badness 10000) in paragraph at lines 9796--9796

 []

Underfull \hbox (badness 10000) in paragraph at lines 9802--9802

 []

Underfull \hbox (badness 10000) in paragraph at lines 9811--9811

 []

Underfull \hbox (badness 10000) in paragraph at lines 9829--9829

 []

[166]
Underfull \hbox (badness 10000) in paragraph at lines 9866--9866

 []

Underfull \hbox (badness 10000) in paragraph at lines 9877--9877

 []

Underfull \hbox (badness 10000) in paragraph at lines 9888--9888

 []

[167]
Underfull \hbox (badness 10000) in paragraph at lines 9903--9903

 []

Underfull \hbox (badness 10000) in paragraph at lines 9908--9908

 []

Underfull \hbox (badness 10000) in paragraph at lines 9924--9924

 []

Underfull \hbox (badness 10000) in paragraph at lines 9928--9928

 []

Underfull \hbox (badness 10000) in paragraph at lines 9937--9937

 []

Underfull \hbox (badness 10000) in paragraph at lines 9942--9942

 []

[168]
Underfull \hbox (badness 10000) in paragraph at lines 9948--9948

 []

Package hyperref Warning: Token not allowed in a PDF string (Unicode):
(hyperref) removing `\@ifnextchar' on input line 9956.

Package hyperref Warning: Token not allowed in a PDF string (Unicode):
(hyperref) removing `\@ifnextchar' on input line 9956.

Package hyperref Warning: Token not allowed in a PDF string (Unicode):
(hyperref) removing `\@ifnextchar' on input line 9956.

Package hyperref Warning: Token not allowed in a PDF string (Unicode):
(hyperref) removing `\@ifnextchar' on input line 9956.

Underfull \hbox (badness 10000) in paragraph at lines 9967--9967

 []

Underfull \hbox (badness 10000) in paragraph at lines 9973--9973

 []

Underfull \hbox (badness 10000) in paragraph at lines 9995--9995

 []

[169]
Underfull \hbox (badness 10000) in paragraph at lines 10001--10001

 []

Underfull \hbox (badness 10000) in paragraph at lines 10036--10036

 []

[170]
Underfull \hbox (badness 10000) in paragraph at lines 10056--10056

 []

Underfull \hbox (badness 10000) in paragraph at lines 10062--10062

 []

Underfull \hbox (badness 10000) in paragraph at lines 10074--10074

 []

Underfull \hbox (badness 10000) in paragraph at lines 10078--10078

 []

Underfull \hbox (badness 10000) in paragraph at lines 10108--10108

 []

[171]
Underfull \hbox (badness 10000) in paragraph at lines 10115--10115

 []

Underfull \hbox (badness 10000) in paragraph at lines 10129--10129

 []

Underfull \hbox (badness 10000) in paragraph at lines 10153--10153

 []

Underfull \hbox (badness 10000) in paragraph at lines 10159--10159

 []

[172] [173] [174] [175] [176

]
Chapter 15.
[177] [178]
Underfull \hbox (badness 10000) in paragraph at lines 10503--10503

 []

[179]
Underfull \hbox (badness 10000) in paragraph at lines 10512--10512

 []

Underfull \hbox (badness 10000) in paragraph at lines 10540--10540

 []

Underfull \hbox (badness 10000) in paragraph at lines 10554--10554

 []

[180]
Underfull \hbox (badness 10000) in paragraph at lines 10572--10572

 []

Underfull \hbox (badness 10000) in paragraph at lines 10585--10585

 []

Underfull \hbox (badness 10000) in paragraph at lines 10596--10596

 []

Underfull \hbox (badness 10000) in paragraph at lines 10613--10613

 []

[181]
Underfull \hbox (badness 10000) in paragraph at lines 10650--10650

 []

Underfull \hbox (badness 10000) in paragraph at lines 10667--10667

 []

Underfull \hbox (badness 10000) in paragraph at lines 10674--10674

 []

[182]
Underfull \hbox (badness 10000) in paragraph at lines 10682--10682

 []

Underfull \hbox (badness 10000) in paragraph at lines 10691--10691

 []

[183]
Underfull \hbox (badness 10000) in paragraph at lines 10794--10794

 []

Underfull \hbox (badness 10000) in paragraph at lines 10799--10799

 []

[184] [185] [186] [187] [188

]
Chapter 16.
[189] [190] [191]
Underfull \hbox (badness 10000) in paragraph at lines 11224--11224

 []

[192] [193] [194]
Underfull \hbox (badness 10000) in paragraph at lines 11441--11441

 []

Underfull \hbox (badness 10000) in paragraph at lines 11446--11446

 []

Underfull \hbox (badness 10000) in paragraph at lines 11462--11462

 []

Underfull \hbox (badness 10000) in paragraph at lines 11470--11470

 []

[195]
Underfull \hbox (badness 10000) in paragraph at lines 11486--11486

 []

Underfull \hbox (badness 10000) in paragraph at lines 11490--11490

 []

[196] [197] [198

]
Chapter 17.

Underfull \hbox (badness 10000) in paragraph at lines 11599--11599

 []

Underfull \hbox (badness 10000) in paragraph at lines 11601--11604

 []

Underfull \hbox (badness 10000) in paragraph at lines 11605--11606

 []

Underfull \hbox (badness 10000) in paragraph at lines 11607--11608

 []

Underfull \hbox (badness 10000) in paragraph at lines 11609--11610

 []

Underfull \hbox (badness 10000) in paragraph at lines 11611--11612

 []

Underfull \hbox (badness 10000) in paragraph at lines 11613--11614

 []

Underfull \hbox (badness 10000) in paragraph at lines 11615--11616

 []

Underfull \hbox (badness 10000) in paragraph at lines 11617--11618

 []

Underfull \hbox (badness 10000) in paragraph at lines 11619--11620

 []

[199]
Underfull \hbox (badness 10000) in paragraph at lines 11631--11631

 []

Underfull \hbox (badness 10000) in paragraph at lines 11636--11636

 []

Underfull \hbox (badness 10000) in paragraph at lines 11645--11645

 []

Underfull \hbox (badness 10000) in paragraph at lines 11657--11657

 []

Underfull \hbox (badness 10000) in paragraph at lines 11674--11674

 []

[200]
Underfull \hbox (badness 10000) in paragraph at lines 11700--11700

 []

Underfull \hbox (badness 10000) in paragraph at lines 11718--11718

 []

[201]
Underfull \hbox (badness 10000) in paragraph at lines 11733--11733

 []

[202] [203] [204] [205] [206] [207] [208] [209] [210] [211] [212] [213]
[214] [215] [216] [217] [218] [219] [220] [221] [222] [223] [224] [225]
[226] [227] [228] [229] [230] [231] [232] [233] [234] [235] [236] [237]
[238] [239] [240] [241] [242] [243] [244] [245] [246] [247] [248] [249]
[250] [251] [252]
Chapter 18.
[253

] [254]
Package tocbasic Info: character protrusion at lof deactivated on input line 16
551.
 (./main.lof)
\tf@lof=\write6
\openout6 = `main.lof'.

 [255

] [256]
Underfull \vbox (badness 10000) detected at line 16590
 []

[257]

Class scrbook Warning: Using fallback calculation to setup font sizes
(scrbook) for basic size `9pt' on input line 16591.

Package typearea Warning: \typearea used at group level 2.
(typearea) Using \typearea inside any group, e.g.
(typearea) environments, math mode, boxes, etc. may result in
(typearea) many type setting problems.
(typearea) You should move the command \typearea
(typearea) outside all groups on input line 16591.

Package typearea Warning: Bad type area settings!
(typearea) The detected line width is about 66%
(typearea) larger than the heuristically detected line width.
(typearea) You should e.g. decrease DIV, increase fontsize
(typearea) or change papersize.

Package typearea Info: These are the values describing the layout:
(typearea) DIV = 90
(typearea) BCOR = 34.1433pt
(typearea) \paperwidth = 597.50793pt
(typearea) \textwidth = 544.58585pt
(typearea) DIV departure = -66%
(typearea) \evensidemargin = -59.7508pt
(typearea) \oddsidemargin = -31.8671pt
(typearea) \paperheight = 845.04694pt
(typearea) \textheight = 818.99794pt
(typearea) \topmargin = -92.58049pt
(typearea) \headheight = 13.49995pt
(typearea) \headsep = 16.19995pt
(typearea) \topskip = 9.0pt
(typearea) \footskip = 37.7999pt
(typearea) \baselineskip = 10.79997pt
(typearea) on input line 16591.

Package typearea Warning: Typearea changed!
(typearea) You should do this only at preamble, because only
(typearea) \begin{document} calculates output dimensions!
(typearea) Trying to calculate new output dimensions, but
(typearea) this is only a dirty hack on input line 16591.

Package typearea Warning: \typearea used at group level 2.
(typearea) Using \typearea inside any group, e.g.
(typearea) environments, math mode, boxes, etc. may result in
(typearea) many type setting problems.
(typearea) You should move the command \typearea
(typearea) outside all groups on input line 16591.

Package typearea Warning: Bad type area settings!
(typearea) The detected line width is about 76%
(typearea) larger than the heuristically detected line width.
(typearea) You should e.g. decrease DIV, increase fontsize
(typearea) or change papersize.

Package typearea Info: These are the values describing the layout:
(typearea) DIV = 90
(typearea) BCOR = 0.0pt
(typearea) \paperwidth = 597.50793pt
(typearea) \textwidth = 577.591pt
(typearea) DIV departure = -76%
(typearea) \evensidemargin = -58.99203pt
(typearea) \oddsidemargin = -65.63101pt
(typearea) \paperheight = 845.04694pt
(typearea) \textheight = 818.99794pt
(typearea) \topmargin = -92.58049pt
(typearea) \headheight = 13.49995pt
(typearea) \headsep = 16.19995pt
(typearea) \topskip = 9.0pt
(typearea) \footskip = 37.7999pt
(typearea) \baselineskip = 10.79997pt
(typearea) on input line 16591.

Package typearea Warning: Typearea changed!
(typearea) You should do this only at preamble, because only
(typearea) \begin{document} calculates output dimensions!
(typearea) Trying to calculate new output dimensions, but
(typearea) this is only a dirty hack on input line 16591.

[258

]
Chapter 19.
[259] [260]
Underfull \hbox (badness 7433) in paragraph at lines 16941--16942
[]\T1/lmr/m/n/4.5 "Massive Mul-ti-au-thor Col-lab-o-ra-tion Site" (or
 []

Underfull \hbox (badness 10000) in paragraph at lines 16943--16944
[]\T1/lmr/m/n/4.5 "CC-BY-SA" means the Cre-ative Com-mons
 []

[261]
Package atveryend Info: Empty hook `BeforeClearDocument' on input line 17045.
Package atveryend Info: Empty hook `AfterLastShipout' on input line 17045.
 (./main.aux)
Package atveryend Info: Executing hook `AtVeryEndDocument' on input line 17045.

Package atveryend Info: Executing hook `AtEndAfterFileList' on input line 17045
.
Package rerunfilecheck Info: File `main.out' has not changed.
(rerunfilecheck) Checksum: 1830F1BFF6DB030B9E79EC506446308E;30817.

LaTeX Font Warning: Some font shapes were not available, defaults substituted.

Package atveryend Info: Empty hook `AtVeryVeryEnd' on input line 17045.
)
Here is how much of TeX's memory you used:
 21279 strings out of 493485
 304505 string characters out of 3143525
 584166 words of memory out of 3000000
 23057 multiletter control sequences out of 15000+200000
 171526 words of font info for 261 fonts, out of 3000000 for 9000
 990 hyphenation exceptions out of 8191
 48i,12n,47p,1889b,1446s stack positions out of 5000i,500n,10000p,200000b,50000s
pdfTeX warning (dest): name{Hfootnote.61} has been referenced but does not ex
ist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.60} has been referenced but does not exis
t, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.58} has been referenced but does not exis
t, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.57} has been referenced but does not exis
t, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.56} has been referenced but does not exis
t, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.55} has been referenced but does not exis
t, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.54} has been referenced but does not exis
t, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.53} has been referenced but does not exis
t, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.52} has been referenced but does not exis
t, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.51} has been referenced but does not exis
t, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.50} has been referenced but does not exis
t, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.49} has been referenced but does not exis
t, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.48} has been referenced but does not exis
t, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.47} has been referenced but does not exis
t, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.46} has been referenced but does not exis
t, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.45} has been referenced but does not exis
t, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.44} has been referenced but does not exis
t, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.43} has been referenced but does not exis
t, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.42} has been referenced but does not exis
t, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.41} has been referenced but does not exis
t, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.40} has been referenced but does not exis
t, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.39} has been referenced but does not exis
t, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.38} has been referenced but does not exis
t, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.37} has been referenced but does not exis
t, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.36} has been referenced but does not exis
t, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.35} has been referenced but does not exis
t, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.34} has been referenced but does not exis
t, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.33} has been referenced but does not exis
t, replaced by a fixed one

{/usr/share/texmf/fonts/enc/dvips/lm/lm-ts1.enc}{/usr/share/texmf/fonts/enc/dvi
ps/lm/lm-ec.enc} </home/dirk/.texmf-var/fonts/pk/modeless/megafont/megafont21.6
57pk>{/usr/share/texmf/fonts/enc/dvips/lm/lm-mathit.enc}{/usr/share/texmf/fonts
/enc/dvips/lm/lm-rm.enc}{/usr/share/texmf/fonts/enc/dvips/lm/lm-mathsy.enc}{/us
r/share/texmf/fonts/enc/dvips/lm/lm-mathex.enc} </home/dirk/.texmf-var/fonts/pk
/modeless/megafont/megafont22.657pk> </home/dirk/.texmf-var/fonts/pk/modeless/m
egafont/megafont03.657pk> </home/dirk/.texmf-var/fonts/pk/modeless/megafont/meg
afont00.657pk></usr/share/texmf/fonts/type1/public/lm/lmbx10.pfb></usr/share/te
xmf/fonts/type1/public/lm/lmbx12.pfb></usr/share/texmf/fonts/type1/public/lm/lm
bxi10.pfb></usr/share/texmf/fonts/type1/public/lm/lmex10.pfb></usr/share/texmf/
fonts/type1/public/lm/lmmi10.pfb></usr/share/texmf/fonts/type1/public/lm/lmmi6.
pfb></usr/share/texmf/fonts/type1/public/lm/lmmi8.pfb></usr/share/texmf/fonts/t
ype1/public/lm/lmr10.pfb></usr/share/texmf/fonts/type1/public/lm/lmr12.pfb></us
r/share/texmf/fonts/type1/public/lm/lmr5.pfb></usr/share/texmf/fonts/type1/publ
ic/lm/lmr6.pfb></usr/share/texmf/fonts/type1/public/lm/lmr7.pfb></usr/share/tex
mf/fonts/type1/public/lm/lmr8.pfb></usr/share/texmf/fonts/type1/public/lm/lmr9.
pfb></usr/share/texmf/fonts/type1/public/lm/lmri10.pfb></usr/share/texmf/fonts/
type1/public/lm/lmri8.pfb></usr/share/texmf/fonts/type1/public/lm/lmsy10.pfb></
usr/share/texmf/fonts/type1/public/lm/lmsy8.pfb></usr/share/texmf/fonts/type1/p
ublic/lm/lmtk10.pfb></usr/share/texmf/fonts/type1/public/lm/lmtt10.pfb></usr/sh
are/texmf/fonts/type1/public/lm/lmtt8.pfb></usr/share/texmf/fonts/type1/public/
lm/lmtt9.pfb></usr/share/texmf/fonts/type1/public/lm/lmtti10.pfb>
Output written on main.pdf (267 pages, 1191858 bytes).
PDF statistics:
 2847 PDF objects out of 2984 (max. 8388607)
 2512 compressed objects within 26 object streams
 719 named destinations out of 1000 (max. 500000)
 55906 words of extra memory for PDF output out of 61914 (max. 10000000)

main/etoolbox.sty

% $Id: etoolbox.sty,v 2.1 2011/01/03 19:14:10 lehman stable $

% Copyright (c) 2007-2011 Philipp Lehman.
%
% Permission is granted to copy, distribute and/or modify this
% software under the terms of the LaTeX Project Public License
% (LPPL), version 1.3.
%
% The LPPL maintenance status of this software is
% 'author-maintained'.
%
% This software is provided 'as is', without warranty of any kind,
% either expressed or implied, including, but not limited to, the
% implied warranties of merchantability and fitness for a
% particular purpose.

\def\etb@rcsid$#1: #2 #3 #4 #5${#4 v#3}

\NeedsTeXFormat{LaTeX2e}
\ProvidesPackage{etoolbox}
[\etb@rcsid $Id: etoolbox.sty,v 2.1 2011/01/03 19:14:10 lehman stable $
 e-TeX tools for LaTeX]

\begingroup
\@ifundefined{eTeXversion}
 {\PackageError{etoolbox}
 {Not running under e-TeX}
 {This package requires e-TeX. Try compiling the document
 with\MessageBreak 'elatex' instead of 'latex'. When using
 pdfTeX, try 'pdfelatex'\MessageBreak instead of 'pdflatex'.
 This is a fatal error. I'm aborting now.}%
 \aftergroup\endinput}
 {}
\endgroup

\RequirePackage{etex}

\def\etb@catcodes{\do\&\do\|\do\:\do\-\do\=\do\<\do\>}
\def\do#1{\catcode\number`#1=\the\catcode`#1\relax}
\edef\etb@catcodes{\etb@catcodes}
\let\do\noexpand
\AtEndOfPackage{\etb@catcodes\undef\etb@catcodes}

\catcode`\&=3
\catcode`\|=3
\@makeother\:
\@makeother\-
\@makeother\=
\@makeother\<
\@makeother\>

\protected\def\etb@error{\PackageError{etoolbox}}
\protected\def\etb@warning{\PackageWarning{etoolbox}}
\protected\def\etb@info{\PackageInfo{etoolbox}}
\newcount\etb@tempcnta

% {<cstoken>}[<arguments>][<optarg default>]{<definition>}

\newcommand*{\newrobustcmd}{}
\protected\def\newrobustcmd{\@star@or@long\etb@new@command}

\def\etb@new@command#1{\@testopt{\etb@newcommand#1}0}

\def\etb@newcommand#1[#2]{%
 \@ifnextchar[%]
 {\etb@xargdef#1[#2]}
 {\ifx\l@ngrel@x\relax
 \let\l@ngrel@x\protected
 \else
 \protected\def\l@ngrel@x{\protected\long}%
 \fi
 \@argdef#1[#2]}}

\long\def\etb@xargdef#1[#2][#3]#4{%
 \@ifdefinable#1{%
 \expandafter\protected
 \expandafter\def
 \expandafter#1%
 \expandafter{%
 \expandafter\@testopt
 \csname\string#1\endcsname{#3}}%
 \expandafter\@yargdef\csname\string#1\endcsname\tw@{#2}{#4}}}

% {<cstoken>}[<arguments>][<optarg default>]{<definition>}

\newrobustcmd*{\renewrobustcmd}{\@star@or@long\etb@renew@command}

\def\etb@renew@command#1{%
 \ifundef{#1}
 {\etb@error{\string#1 undefined}\@ehc}
 {}%
 \let\@ifdefinable\@rc@ifdefinable
 \etb@new@command#1}

% {<cstoken>}[<arguments>][<optarg default>]{<definition>}

\newrobustcmd*{\providerobustcmd}{\@star@or@long\etb@provide@command}

\def\etb@provide@command#1{%
 \ifundef{#1}
 {\def\reserved@a{\etb@new@command#1}}
 {\def\reserved@a{\etb@renew@command\reserved@a}}%
 \reserved@a}

% {<csname>}

\newrobustcmd*{\csshow}[1]{%
 \begingroup\expandafter\endgroup
 \expandafter\show\csname#1\endcsname}

% {<cstoken>}{<true>}{<false>}

\newcommand{\ifdef}[1]{%
 \ifdefined#1%
 \expandafter\@firstoftwo
 \else
 \expandafter\@secondoftwo
 \fi}

% {<cstoken>}{<true>}{<false>}

\newcommand{\ifundef}[1]{%
 \ifdefined#1%
 \ifx#1\relax
 \expandafter\expandafter
 \expandafter\@firstoftwo
 \else
 \expandafter\expandafter
 \expandafter\@secondoftwo
 \fi
 \else
 \expandafter\@firstoftwo
 \fi}

% {<csname>}{<true>}{<false>}

\newcommand*{\ifcsdef}[1]{%
 \ifcsname#1\endcsname
 \expandafter\@firstoftwo
 \else
 \expandafter\@secondoftwo
 \fi}

% {<csname>}{<true>}{<false>}

\newcommand*{\ifcsundef}[1]{%
 \ifcsname#1\endcsname
 \expandafter\ifx\csname#1\endcsname\relax
 \expandafter\expandafter
 \expandafter\@firstoftwo
 \else
 \expandafter\expandafter
 \expandafter\@secondoftwo
 \fi
 \else
 \expandafter\@firstoftwo
 \fi}

% {<cstoken>}{<true}{<false>}

\newcommand{\ifdefmacro}{}
\long\edef\ifdefmacro#1{%
 \noexpand\expandafter\noexpand\etb@ifdefmacro
 \noexpand\meaning#1\detokenize{macro}:&}
\edef\etb@ifdefmacro{%
 \def\noexpand\etb@ifdefmacro##1\detokenize{macro}:##2&}
\etb@ifdefmacro{\notblank{#2}}

% {<csname>}{<true>}{<false>}

\newcommand*{\ifcsmacro}[1]{%
 \ifcsdef{#1}
 {\expandafter\ifdefmacro\csname#1\endcsname}
 {\@secondoftwo}}

% {<cstoken>}{<true}{<false>}

\newcommand{\ifdefprefix}[1]{%
 \ifdefmacro{#1}
 {\etb@ifdefprefix{#1}}
 {\@secondoftwo}}
\long\edef\etb@ifdefprefix#1{%
 \noexpand\expandafter\noexpand\etb@ifdefprefix@i
 \noexpand\meaning#1\detokenize{macro}:&}
\edef\etb@ifdefprefix@i{%
 \def\noexpand\etb@ifdefprefix@i##1\detokenize{macro}:##2&}
\etb@ifdefprefix@i{\notblank{#1}}

% {<csname>}{<true>}{<false>}

\newcommand*{\ifcsprefix}[1]{%
 \ifcsdef{#1}
 {\expandafter\ifdefprefix\csname#1\endcsname}
 {\@secondoftwo}}

% {<cstoken>}{<true}{<false>}

\newcommand{\ifdefparam}{}
\long\edef\ifdefparam#1{%
 \noexpand\expandafter\noexpand\etb@ifdefparam
 \noexpand\meaning#1\detokenize{macro}:->&}
\edef\etb@ifdefparam{%
 \def\noexpand\etb@ifdefparam##1\detokenize{macro}:##2->##3&}
\etb@ifdefparam{\notblank{#2}}

% {<csname>}{<true>}{<false>}

\newcommand*{\ifcsparam}[1]{%
 \ifcsdef{#1}
 {\expandafter\ifdefparam\csname#1\endcsname}
 {\@secondoftwo}}

% {<cstoken>}{<true}{<false>}

\newcommand{\ifdefprotected}{}
\long\edef\ifdefprotected#1{%
 \noexpand\expandafter\noexpand\etb@ifdefprotected
 \noexpand\meaning#1\string\protected&}
\edef\etb@ifdefprotected{%
 \def\noexpand\etb@ifdefprotected##1\string\protected##2&}
\etb@ifdefprotected{\notblank{#2}}

% {<csname>}{<true>}{<false>}

\newcommand*{\ifcsprotected}[1]{%
 \ifcsdef{#1}
 {\expandafter\ifdefprotected\csname#1\endcsname}
 {\@secondoftwo}}

% {<cstoken>}{<true}{<false>}

\newrobustcmd{\ifdefltxprotect}[1]{%
 \begingroup
 \edef\etb@resrvda{%
 \noexpand\protect\expandafter\noexpand
 \csname\expandafter\@gobble\string#1 \endcsname}%
 \expandafter\endgroup\ifx#1\etb@resrvda
 \expandafter\@firstoftwo
 \else
 \expandafter\@secondoftwo
 \fi}

% {<csname>}{<true>}{<false>}

\newrobustcmd*{\ifcsltxprotect}[1]{%
 \ifcsdef{#1}
 {\expandafter\ifdefltxprotect\csname#1\endcsname}
 {\@secondoftwo}}

% {<cstoken>}{<true>}{<false>}

\newcommand{\ifdefempty}[1]{%
 \ifundef{#1}
 {\@secondoftwo}
 {\ifdefmacro{#1}
 {\ifdefparam{#1}
	 {\@secondoftwo}
	 {\etb@ifdefempty{#1}}}
 {\@secondoftwo}}}

\def\etb@ifdefempty#1{%
 \expandafter\expandafter
 \expandafter\ifblank
 \expandafter\expandafter
 \expandafter{%
 \expandafter\strip@prefix\meaning#1}}

% {<csname>}{<true>}{<false>}

\newcommand*{\ifcsempty}[1]{%
 \ifcsundef{#1}
 {\@secondoftwo}
 {\expandafter\ifdefparam\csname#1\endcsname
 {\@secondoftwo}
 {\expandafter\etb@ifdefempty\csname#1\endcsname}}}

% {<cstoken>}{<true>}{<false>}

\newcommand{\ifdefvoid}[1]{%
 \ifundef{#1}
 {\@firstoftwo}
 {\ifdefmacro{#1}
 {\ifdefparam{#1}
	 {\@secondoftwo}
	 {\etb@ifdefempty{#1}}}
 {\@secondoftwo}}}

% {<csname>}{<true>}{<false>}

\newcommand*{\ifcsvoid}[1]{%
 \ifcsundef{#1}
 {\@firstoftwo}
 {\expandafter\ifdefparam\csname#1\endcsname
 {\@secondoftwo}
 {\expandafter\etb@ifdefempty\csname#1\endcsname}}}

% {<cstoken1>}{<cstoken2>}{<true>}{<false>}

\newcommand{\ifdefequal}[2]{%
 \ifundef{#1}
 {\@secondoftwo}
 {\ifundef{#2}
 {\@secondoftwo}
 {\ifx#1#2%
 \expandafter\@firstoftwo
 \else
 \expandafter\@secondoftwo
 \fi}}}

% {<csname1>}{<csname2>}{<true>}{<false>}

\newcommand*{\ifcsequal}[2]{%
 \ifcsundef{#1}
 {\@secondoftwo}
 {\ifcsundef{#2}
 {\@secondoftwo}
 {\expandafter\ifx
 \csname#1\expandafter\endcsname
 \csname#2\endcsname
 \expandafter\@firstoftwo
 \else
 \expandafter\@secondoftwo
 \fi}}}

% {<cstoken1>}{<cstoken2>}{<true>}{<false>}

\newrobustcmd{\ifdefstrequal}[2]{%
 \ifdefmacro{#1}
 {\ifdefmacro{#2}
 {\begingroup
	\edef\etb@tempa{\expandafter\strip@prefix\meaning#1}%
	\edef\etb@tempb{\expandafter\strip@prefix\meaning#2}%
	\ifx\etb@tempa\etb@tempb
	 \aftergroup\@firstoftwo
	\else
	 \aftergroup\@secondoftwo
	\fi
	\endgroup}
 {\@secondoftwo}}
 {\@secondoftwo}}

% {<csname1>}{<csname2>}{<true>}{<false>}

\newcommand*{\ifcsstrequal}[2]{%
 \ifcsundef{#1}
 {\@secondoftwo}
 {\ifcsundef{#2}
 {\@secondoftwo}
 {\expandafter\ifdefstrequal
 \csname#1\expandafter\endcsname
	\csname#2\endcsname}}}

% {<cstoken>}{<string>}{<true>}{<false>}

\newrobustcmd{\ifdefstring}[2]{%
 \ifdefmacro{#1}
 {\begingroup
 \edef\etb@tempa{\expandafter\strip@prefix\meaning#1}%
 \edef\etb@tempb{\detokenize{#2}}%
 \ifx\etb@tempa\etb@tempb
 \aftergroup\@firstoftwo
 \else
 \aftergroup\@secondoftwo
 \fi
 \endgroup}
 {\@secondoftwo}}

% {<csname>}{<string>}{<true>}{<false>}

\newrobustcmd{\ifcsstring}[2]{%
 \ifcsundef{#1}
 {\@secondoftwo}
 {\expandafter\ifdefstring\csname#1\endcsname{#2}}}

% {<cstoken>}{<true}{<false>}

\newcommand{\ifdefcounter}[1]{\etb@ifcounter#1&}
\long\def\etb@ifcounter#1#2&{%
 \ifx\count#1%
 \expandafter\@secondoftwo
 \else
 \expandafter\etb@ifcounter@i\meaning#1:%
 \fi}
\edef\etb@ifcounter@i#1:#2\fi{\noexpand\fi
 \noexpand\etb@ifcounter@ii#1\string\count&}
\edef\etb@ifcounter@ii{%
 \def\noexpand\etb@ifcounter@ii##1\string\count##2&}
\etb@ifcounter@ii{\ifblank{#1}}

% {<csname>}{<true>}{<false>}

\newcommand*{\ifcscounter}[1]{%
 \ifcsdef{#1}
 {\expandafter\ifdefcounter\csname#1\endcsname}
 {\@secondoftwo}}

% {<name>}{<true>}{<false>}

\newcommand*{\ifltxcounter}[1]{%
 \ifcsdef{c@#1}
 {\expandafter\ifdefcounter\csname c@#1\endcsname}
 {\@secondoftwo}}

% {<cstoken>}{<true}{<false>}

\newcommand{\ifdeflength}[1]{\etb@iflength#1&}
\long\def\etb@iflength#1#2&{%
 \ifx\skip#1%
 \expandafter\@secondoftwo
 \else
 \expandafter\etb@iflength@i\meaning#1:%
 \fi}
\edef\etb@iflength@i#1:#2\fi{\noexpand\fi
 \noexpand\etb@iflength@ii#1\string\skip&}
\edef\etb@iflength@ii{%
 \def\noexpand\etb@iflength@ii##1\string\skip##2&}
\etb@iflength@ii{\ifblank{#1}}

% {<csname>}{<true>}{<false>}

\newcommand*{\ifcslength}[1]{%
 \ifcsdef{#1}
 {\expandafter\ifdeflength\csname#1\endcsname}
 {\@secondoftwo}}

% {<cstoken>}{<true}{<false>}

\newcommand{\ifdefdimen}[1]{\etb@ifdimen#1&}
\long\def\etb@ifdimen#1#2&{%
 \ifx\dimen#1%
 \expandafter\@secondoftwo
 \else
 \expandafter\etb@ifdimen@i\meaning#1:%
 \fi}
\edef\etb@ifdimen@i#1:#2\fi{\noexpand\fi
 \noexpand\etb@ifdimen@ii#1\string\dimen&}
\edef\etb@ifdimen@ii{%
 \def\noexpand\etb@ifdimen@ii##1\string\dimen##2&}
\etb@ifdimen@ii{\ifblank{#1}}

% {<csname>}{<true>}{<false>}

\newcommand*{\ifcsdimen}[1]{%
 \ifcsdef{#1}
 {\expandafter\ifdefdimen\csname#1\endcsname}
 {\@secondoftwo}}

% {<string1>}{<string2>}{<true>}{<false>}

\newrobustcmd{\ifstrequal}[2]{%
 \begingroup
 \edef\etb@tempa{\detokenize{#1}}%
 \edef\etb@tempb{\detokenize{#2}}%
 \ifx\etb@tempa\etb@tempb
 \aftergroup\@firstoftwo
 \else
 \aftergroup\@secondoftwo
 \fi
 \endgroup}

% {<string>}{<true>}{<false>}

\newcommand{\ifstrempty}[1]{%
 \expandafter\ifx\expandafter&\detokenize{#1}&%
 \expandafter\@firstoftwo
 \else
 \expandafter\@secondoftwo
 \fi}

% {<string>}{<true>}{<false>}

\newcommand{\ifblank}[1]{% from url.sty
 \etb@ifblank@i#1&&\@secondoftwo\@firstoftwo:}
\long\def\etb@ifblank@i#1#2#4#5:{#4}

\newcommand{\notblank}[1]{%
 \etb@ifblank@i#1&&\@firstoftwo\@secondoftwo:}

% {<numexpr>}{<comp>}{<numexpr>}{<true>}{<false>}

\newcommand*{\ifnumcomp}[3]{%
 \ifnum\numexpr#1\relax#2\numexpr#3\relax
 \expandafter\@firstoftwo
 \else
 \expandafter\@secondoftwo
 \fi}

% {<numexpr>}{<numexpr>}{<true>}{<false>}

\newcommand*{\ifnumequal}[1]{%
 \ifnumcomp{#1}=}

\newcommand*{\ifnumgreater}[1]{%
 \ifnumcomp{#1}>}

\newcommand*{\ifnumless}[1]{%
 \ifnumcomp{#1}<}

% {<numexpr>}{<true>}{<false>}

\newcommand*{\ifnumodd}[1]{%
 \ifodd\numexpr#1\relax
 \expandafter\@firstoftwo
 \else
 \expandafter\@secondoftwo
 \fi}

% {<dimexpr>}{<comp>}{<dimexpr>}{<true>}{<false>}

\newcommand*{\ifdimcomp}[3]{%
 \ifdim\dimexpr#1\relax#2\dimexpr#3\relax
 \expandafter\@firstoftwo
 \else
 \expandafter\@secondoftwo
 \fi}

% {<dimexpr>}{<dimexpr>}{<true>}{<false>}

\newcommand*{\ifdimequal}[1]{%
 \ifdimcomp{#1}=}

\newcommand*{\ifdimgreater}[1]{%
 \ifdimcomp{#1}>}

\newcommand*{\ifdimless}[1]{%
 \ifdimcomp{#1}<}

% {<expr>}{<true>}{<false>}

\newcommand{\ifboolexpe}[1]{%
 \etb@be@beg\etb@be@bgroup#1(&\etb@be@end}

\let\etb@be@true\@empty
\def\etb@be@false{-\@ne}

\def\etb@be@beg{%
 \ifnum\numexpr\z@\ifnum\numexpr\z@}

\def\etb@be@end{%
 <\z@
 \expandafter\etb@be@false
 \fi
 <\z@
 \expandafter\@secondoftwo
 \else
 \expandafter\@firstoftwo
 \fi}

\long\def\etb@be@bgroup#1(#2&{%
 \etb@be@egroup#1)&%
 \ifblank{#2}
 {}
 {\etb@be@beg
 \etb@be@bgroup#2&}}

\long\def\etb@be@egroup#1)#2&{%
 \etb@be@and#1and&%
 \ifblank{#2}
 {}
 {\etb@be@end\etb@be@true\etb@be@false
 \etb@be@egroup#2&}}

\long\def\etb@be@and#1and#2&{%
 \etb@be@or#1or&%
 \ifblank{#2}
 {}
 {<\z@
 \expandafter\@firstofone
 \else
 \expandafter\@gobble
 \fi
 {=\z@\fi\ifnum\numexpr\m@ne}%
 \ifnum\numexpr\z@
 \etb@be@and#2&}}

\long\def\etb@be@or#1or#2&{%
 \etb@be@not#1not&%
 \ifblank{#2}
 {}
 {<\z@
 \expandafter\@secondoftwo
 \else
 \expandafter\@firstoftwo
 \fi
 {=\z@\fi\ifnum\numexpr\z@
 \ifnum\numexpr\@ne}
 {=\z@\fi\ifnum\numexpr\z@
 \ifnum\numexpr\z@}%
 \etb@be@or#2&}}

\long\def\etb@be@not#1not#2&{%
 \etb@be@togl#1togl&%
 \ifblank{#2}
 {}
 {>\z@
 \expandafter\@firstoftwo
 \else
 \expandafter\@secondoftwo
 \fi
 {\unless\ifnum\numexpr\m@ne}
 {\unless\ifnum\numexpr\z@}%
 \etb@be@not#2&}}

\long\def\etb@be@togl#1togl#2&{%
 \etb@be@bool#1bool&%
 \ifblank{#2}
 {}
 {\etb@be@togl@i#2&}}

\long\def\etb@be@togl@i#1#2&{%
 \ifcsdef{etb@tgl@#1}
 {\csname etb@tgl@#1\endcsname\etb@be@true\etb@be@false}
 {\etb@be@err{Toggle '#1' undefined}{}}%
 \etb@be@togl#2&}

\long\def\etb@be@bool#1bool#2&{%
 \etb@be@test#1test&%
 \ifblank{#2}
 {}
 {\etb@be@bool@i#2&}}

\long\def\etb@be@bool@i#1#2&{%
 \ifcsundef{if#1}
 {\etb@be@err{Boolean '#1' undefined}{}}
 {\csname if#1\endcsname
 \else
 \etb@be@false
 \fi}%
 \etb@be@bool#2&}

\long\def\etb@be@test#1test#2&{%
 \ifblank{#1}
 {}
 {\etb@be@err{The invalid part is: '\detokenize{#1}'}{}}%
 \ifblank{#2}
 {}
 {\etb@be@test@i#2&}}

\long\def\etb@be@test@i#1#2&{%
 #1\etb@be@true\etb@be@false
 \etb@be@test#2&}

\long\def\etb@be@err#1#2{%
 \expandafter\ifnum\the\numexpr
 \expandafter\ifnum\the\currentiftype=-3
 \expandafter\thr@@
 \else
 \expandafter\currentiftype
 \fi
 =\thr@@
 \expandafter\@firstoftwo
 \else
 \expandafter\@secondoftwo
 \fi
 {=\z@\fi
 \etb@be@err{#1}{#2\ifnum\numexpr\m@ne}}
 {\etb@err@expr{#1}#2}}

% {<expr>}{<true>}{<false>}

\newrobustcmd{\ifboolexpr}[1]{\etb@boolexpr{#1}}

\long\def\etb@boolexpr#1{%
 \begingroup
 \let\etb@br@neg\@firstoftwo
 \etb@tempcnta\z@
 \etb@br@beg
 \etb@br@bgroup#1(&%
 \etb@br@end
 \etb@br@eval}

\def\etb@br@beg{%
 \begingroup
 \let\etb@br@neg\@firstoftwo
 \etb@tempcnta\z@}

\def\etb@br@end{%
 \etb@br@eval\etb@br@true\etb@br@false}

\def\etb@br@eval{%
 \ifnum\etb@tempcnta<\z@
 \aftergroup\@secondoftwo
 \else
 \aftergroup\@firstoftwo
 \fi
 \endgroup}

\def\etb@br@true{%
 \advance\etb@tempcnta\etb@br@neg\z@\m@ne
 \let\etb@br@neg\@firstoftwo}

\def\etb@br@false{%
 \advance\etb@tempcnta\etb@br@neg\m@ne\z@
 \let\etb@br@neg\@firstoftwo}

\long\def\etb@br@bgroup#1(#2&{%
 \etb@br@egroup#1)&%
 \ifblank{#2}
 {}
 {\etb@br@beg
 \etb@br@bgroup#2&}}

\long\def\etb@br@egroup#1)#2&{%
 \etb@br@and#1and&%
 \ifblank{#2}
 {}
 {\etb@br@end
 \etb@br@egroup#2&}}

\long\def\etb@br@and#1and#2&{%
 \etb@br@or#1or&%
 \ifblank{#2}
 {}
 {\ifnum\etb@tempcnta<\z@
 \etb@tempcnta\m@ne
 \else
 \etb@tempcnta\z@
 \fi
 \etb@br@and#2&}}

\long\def\etb@br@or#1or#2&{%
 \etb@br@not#1not&%
 \ifblank{#2}
 {}
 {\ifnum\etb@tempcnta<\z@
 \etb@tempcnta\z@
 \else
 \etb@tempcnta\@ne
 \fi
 \etb@br@or#2&}}

\long\def\etb@br@not#1not#2&{%
 \etb@br@togl#1togl&%
 \ifblank{#2}
 {}
 {\let\etb@br@neg\@secondoftwo
 \etb@br@not#2&}}

\long\def\etb@br@togl#1togl#2&{%
 \etb@br@bool#1bool&%
 \ifblank{#2}
 {}
 {\etb@br@togl@i#2&}}

\long\def\etb@br@togl@i#1#2&{%
 \ifcsdef{etb@tgl@#1}
 {\csname etb@tgl@#1\endcsname\etb@br@true\etb@br@false}
 {\etb@err@expr{Toggle '#1' undefined}\etb@br@false}%
 \etb@br@togl#2&}

\long\def\etb@br@bool#1bool#2&{%
 \etb@br@test#1test&%
 \ifblank{#2}
 {}
 {\etb@br@bool@i#2&}}

\long\def\etb@br@bool@i#1#2&{%
 \ifcsundef{if#1}
 {\etb@err@expr{Boolean '#1' undefined}\etb@br@false}
 {\csname if#1\endcsname
 \etb@br@true
 \else
 \etb@br@false
 \fi}%
 \etb@br@bool#2&}

\long\def\etb@br@test#1test#2&{%
 \ifblank{#1}
 {}
 {\etb@err@expr{The invalid part is: '\detokenize{#1}'}}%
 \ifblank{#2}
 {}
 {\etb@br@test@i#2&}}

\long\def\etb@br@test@i#1#2&{%
 \ignorespaces#1\etb@br@true\etb@br@false
 \etb@br@test#2&}

\long\def\etb@err@expr#1{%
 \etb@error
 {Invalid boolean expression}
 {#1.}}

% {<expr>}{<code>}

\newrobustcmd{\whileboolexpr}[2]{%
 \etb@boolexpr{#1}{#2\whileboolexpr{#1}{#2}}{}}

% {<expr>}{<code>}

\newrobustcmd{\unlessboolexpr}[2]{%
 \etb@boolexpr{#1}{}{#2\unlessboolexpr{#1}{#2}}}

% {<cstoken>}

\newcommand{\expandonce}[1]{%
 \unexpanded\expandafter{#1}}

% {<csname>}

\newcommand*{\csexpandonce}[1]{%
 \expandafter\expandonce\csname#1\endcsname}

% {<code>}

\newcommand*{\protecting}{}
\def\protecting#{%
 \ifx\protect\@typeset@protect
 \etb@protecting\@firstofone
 \fi
 \ifx\protect\@unexpandable@protect
 \etb@protecting\etb@unexpandable
 \fi
 \ifx\protect\noexpand
 \etb@protecting\unexpanded
 \fi
 \ifx\protect\string
 \etb@protecting\detokenize
 \fi
 \relax\@firstofone}

\def\etb@protecting#1#2\relax\@firstofone{\fi#1}
\long\def\etb@unexpandable#1{\unexpanded{\protecting{#1}}}

% {<csname>}

\newrobustcmd*{\csdef}[1]{\expandafter\def\csname#1\endcsname}
\newrobustcmd*{\csedef}[1]{\expandafter\edef\csname#1\endcsname}
\newrobustcmd*{\csgdef}[1]{\expandafter\gdef\csname#1\endcsname}
\newrobustcmd*{\csxdef}[1]{\expandafter\xdef\csname#1\endcsname}
\newrobustcmd*{\protected@csedef}{\etb@protected\csedef}
\newrobustcmd*{\protected@csxdef}{\etb@protected\csxdef}

\def\etb@protected{%
 \let\@@protect\protect
 \let\protect\@unexpandable@protect
 \afterassignment\restore@protect}

% {<csname>}{<cstoken>}

\newrobustcmd{\cslet}[2]{%
 \expandafter\let\csname#1\endcsname#2}

% {<cstoken>}{<csname>}

\newrobustcmd{\letcs}[2]{%
 \ifcsdef{#2}
 {\expandafter\let\expandafter#1\csname#2\endcsname}
 {\undef#1}}

% {<csname>}{<csname>}

\newrobustcmd*{\csletcs}[2]{%
 \ifcsdef{#2}
 {\expandafter\let
 \csname#1\expandafter\endcsname
 \csname#2\endcsname}
 {\csundef{#1}}}

% {<csname>}

\newcommand*{\csuse}[1]{%
 \ifcsname#1\endcsname
 \csname#1\expandafter\endcsname
 \fi}

% {<cstoken>}

\newrobustcmd{\undef}[1]{\let#1\etb@undefined}

% {<csname>}

\newrobustcmd*{\csundef}[1]{\cslet{#1}\etb@undefined}

% {<cstoken>}{<code>}

\newrobustcmd{\appto}[2]{%
 \ifundef{#1}
 {\edef#1{\unexpanded{#2}}}
 {\edef#1{\expandonce#1\unexpanded{#2}}}}
\newrobustcmd{\eappto}[2]{%
 \ifundef{#1}
 {\edef#1{#2}}
 {\edef#1{\expandonce#1#2}}}
\newrobustcmd{\gappto}[2]{%
 \ifundef{#1}
 {\xdef#1{\unexpanded{#2}}}
 {\xdef#1{\expandonce#1\unexpanded{#2}}}}
\newrobustcmd{\xappto}[2]{%
 \ifundef{#1}
 {\xdef#1{#2}}
 {\xdef#1{\expandonce#1#2}}}

\newrobustcmd*{\protected@eappto}{\etb@protected\eappto}
\newrobustcmd*{\protected@xappto}{\etb@protected\xappto}

% {<cstoken>}{<code>}

\newrobustcmd{\preto}[2]{%
 \ifundef{#1}
 {\edef#1{\unexpanded{#2}}}
 {\edef#1{\unexpanded{#2}\expandonce#1}}}
\newrobustcmd{\epreto}[2]{%
 \ifundef{#1}
 {\edef#1{#2}}
 {\edef#1{#2\expandonce#1}}}
\newrobustcmd{\gpreto}[2]{%
 \ifundef{#1}
 {\xdef#1{\unexpanded{#2}}}
 {\xdef#1{\unexpanded{#2}\expandonce#1}}}
\newrobustcmd{\xpreto}[2]{%
 \ifundef{#1}
 {\xdef#1{#2}}
 {\xdef#1{#2\expandonce#1}}}

\newrobustcmd*{\protected@epreto}{\etb@protected\epreto}
\newrobustcmd*{\protected@xpreto}{\etb@protected\xpreto}

% {<csname>}{<code>}

\newrobustcmd*{\csappto}[1]{\expandafter\appto\csname#1\endcsname}
\newrobustcmd*{\cseappto}[1]{\expandafter\eappto\csname#1\endcsname}
\newrobustcmd*{\csgappto}[1]{\expandafter\gappto\csname#1\endcsname}
\newrobustcmd*{\csxappto}[1]{\expandafter\xappto\csname#1\endcsname}
\newrobustcmd*{\protected@cseappto}{\etb@protected\cseappto}
\newrobustcmd*{\protected@csxappto}{\etb@protected\csxappto}

% {<csname>}{<code>}

\newrobustcmd*{\cspreto}[1]{\expandafter\preto\csname#1\endcsname}
\newrobustcmd*{\csepreto}[1]{\expandafter\epreto\csname#1\endcsname}
\newrobustcmd*{\csgpreto}[1]{\expandafter\gpreto\csname#1\endcsname}
\newrobustcmd*{\csxpreto}[1]{\expandafter\xpreto\csname#1\endcsname}
\newrobustcmd*{\protected@csepreto}{\etb@protected\csepreto}
\newrobustcmd*{\protected@csxpreto}{\etb@protected\csxpreto}

% {<cstoken>}{<numexpr>}

\newrobustcmd*{\numdef}[2]{%
 \ifundef#1{\let#1\z@}{}%
 \edef#1{\the\numexpr#2}}
\newrobustcmd*{\numgdef}[2]{%
 \ifundef#1{\let#1\z@}{}%
 \xdef#1{\the\numexpr#2}}

% {<csname>}{<numexpr>}

\newrobustcmd*{\csnumdef}[1]{%
 \expandafter\numdef\csname#1\endcsname}
\newrobustcmd*{\csnumgdef}[1]{%
 \expandafter\numgdef\csname#1\endcsname}

% {<cstoken>}{<dimexpr>}

\newrobustcmd*{\dimdef}[2]{%
 \ifundef#1{\let#1\z@}{}%
 \edef#1{\the\dimexpr#2}}
\newrobustcmd*{\dimgdef}[2]{%
 \ifundef#1{\let#1\z@}{}%
 \xdef#1{\the\dimexpr#2}}

% {<csname>}{<dimexpr>}

\newrobustcmd*{\csdimdef}[1]{%
 \expandafter\dimdef\csname#1\endcsname}
\newrobustcmd*{\csdimgdef}[1]{%
 \expandafter\dimgdef\csname#1\endcsname}

% {<cstoken>}{<glueexpr>}

\newrobustcmd*{\gluedef}[2]{%
 \ifundef#1{\let#1\z@skip}{}%
 \edef#1{\the\glueexpr#2}}
\newrobustcmd*{\gluegdef}[2]{%
 \ifundef#1{\let#1\z@skip}{}%
 \xdef#1{\the\glueexpr#2}}

% {<csname>}{<glueexpr>}

\newrobustcmd*{\csgluedef}[1]{%
 \expandafter\gluedef\csname#1\endcsname}
\newrobustcmd*{\csgluegdef}[1]{%
 \expandafter\gluegdef\csname#1\endcsname}

% {<cstoken>}{<muexpr>}

\newrobustcmd*{\mudef}[2]{%
 \ifundef#1{\def#1{0mu}}{}%
 \edef#1{\the\muexpr#2}}
\newrobustcmd*{\mugdef}[2]{%
 \ifundef#1{\let#1\z@}{}%
 \xdef#1{\the\muexpr#2}}

% {<csname>}{<muexpr>}

\newrobustcmd*{\csmudef}[1]{%
 \expandafter\mudef\csname#1\endcsname}
\newrobustcmd*{\csmugdef}[1]{%
 \expandafter\mugdef\csname#1\endcsname}

% {<counter>}{<numexpr>}

\newrobustcmd*{\defcounter}[2]{%
 \ifcsundef{c@#1}
 {\etb@noglobal\@nocounterr{#1}}%
 {\csname c@#1\endcsname\numexpr#2\relax}}

% {<length>}{<glueexpr>}

\newrobustcmd*{\deflength}[2]{%
 \ifundef{#1}
 {\etb@noglobal\etb@err@nolen{#1}}%
 {#1\glueexpr#2\relax}}

\protected\def\etb@err@nolen#1{%
 \etb@error{Length '\string#1' undefined}\@eha}

% {<name>}

\newrobustcmd*{\newbool}[1]{%
 \expandafter\@ifdefinable\csname if#1\endcsname{%
 \expandafter\newif\csname if#1\endcsname}}

% {<name>}

\newrobustcmd*{\providebool}[1]{%
 \ifcsundef{if#1}
 {\expandafter\newif\csname if#1\endcsname}
 {\begingroup
 \edef\@tempa{\expandafter\meaning\csname if#1\endcsname}%
 \ifx\@tempa\etb@isfalse
 \else
 \ifx\@tempa\etb@istrue
 \else
 \etb@error{\@backslashchar if#1 not a boolean}\@eha
 \fi
 \fi
 \endgroup}}

% {<name>}{<true>|<false>}

\newrobustcmd*{\setbool}[2]{%
 \ifcsundef{if#1}
 {\etb@noglobal\etb@err@nobool{#1}}
 {\ifcsundef{#1#2}
 {\etb@noglobal\etb@err@boolval{#2}}
 {\csname#1#2\endcsname}}}

% {<name>}

\newrobustcmd*{\booltrue}[1]{%
 \ifcsundef{if#1}
 {\etb@noglobal\etb@err@nobool{#1}}
 {\csname#1true\endcsname}}

% {<name>}

\newrobustcmd*{\boolfalse}[1]{%
 \ifcsundef{if#1}
 {\etb@noglobal\etb@err@nobool{#1}}
 {\csname#1false\endcsname}}

\edef\etb@istrue{\meaning\iftrue}
\edef\etb@isfalse{\meaning\iffalse}
\protected\def\etb@noglobal{\let\relax\relax}

% {<name>}{<true}{<false>}

\newcommand*{\ifbool}[1]{%
 \ifcsundef{if#1}
 {\etb@err@nobool{#1}\@gobbletwo}
 {\csname if#1\endcsname
 \expandafter\@firstoftwo
 \else
 \expandafter\@secondoftwo
 \fi}}

% {<name>}{<not true}{<not false>}

\newcommand*{\notbool}[1]{%
 \ifcsundef{if#1}
 {\etb@err@nobool{#1}\@gobbletwo}
 {\csname if#1\endcsname
 \expandafter\@secondoftwo
 \else
 \expandafter\@firstoftwo
 \fi}}

\protected\def\etb@err@nobool#1{%
 \etb@error{Boolean '\@backslashchar if#1' undefined}\@eha}

\def\etb@err@boolval#1{%
 \etb@error
 {Invalid boolean value '#1'}
 {Valid boolean values are 'true' and 'false'.}}

% {<name>}

\newrobustcmd*{\newtoggle}[1]{%
 \ifcsdef{etb@tgl@#1}
 {\etb@error{Toggle '#1' already defined}\@eha}
 {\cslet{etb@tgl@#1}\@secondoftwo}}

% {<name>}

\newrobustcmd*{\providetoggle}[1]{%
 \ifcsdef{etb@tgl@#1}
 {}
 {\cslet{etb@tgl@#1}\@secondoftwo}}

% {<name>}{<true>|<false>}

\newrobustcmd*{\settoggle}[2]{%
 \ifcsdef{etb@tgl@#1}
 {\ifcsdef{etb@toggle#2}
 {\csletcs{etb@tgl@#1}{etb@toggle#2}}
 {\etb@noglobal\etb@err@boolval{#2}}}
 {\etb@noglobal\etb@err@notoggle{#1}}}

% {<name>}

\newrobustcmd*{\toggletrue}[1]{%
 \ifcsdef{etb@tgl@#1}
 {\cslet{etb@tgl@#1}\etb@toggletrue}
 {\etb@noglobal\etb@err@notoggle{#1}}}

% {<name>}

\newrobustcmd*{\togglefalse}[1]{%
 \ifcsdef{etb@tgl@#1}
 {\cslet{etb@tgl@#1}\etb@togglefalse}
 {\etb@noglobal\etb@err@notoggle{#1}}}

\let\etb@toggletrue\@firstoftwo
\let\etb@togglefalse\@secondoftwo

% {<name>}{<true}{<false>}

\newcommand*{\iftoggle}[1]{%
 \ifcsdef{etb@tgl@#1}
 {\csname etb@tgl@#1\endcsname}
 {\etb@err@notoggle{#1}\@gobbletwo}}

% {<name>}{<not true}{<not false>}

\newcommand*{\nottoggle}[1]{%
 \ifcsdef{etb@tgl@#1}
 {\csname etb@tgl@#1\endcsname\@secondoftwo\@firstoftwo}
 {\etb@err@notoggle{#1}\@gobbletwo}}

\protected\def\etb@err@notoggle#1{%
 \etb@error{Toggle '#1' undefined}\@eha}

% {<cstoken>}{<true}{<false>}

\protected\def\etb@ifscanable#1{%
 \begingroup
 \edef\etb@resrvda{%
 \def\noexpand\etb@resrvda####1\detokenize{macro}:####2->####3&{%
 ####1\def\string\etb@resrvda####2{####3}}%
 \edef\noexpand\etb@resrvda{\noexpand\etb@resrvda\meaning#1&}}%
 \etb@resrvda
 \makeatletter
 \scantokens\expandafter{\etb@resrvda}%
 \expandafter\endgroup\ifx#1\etb@resrvda
 \expandafter\@firstoftwo
 \else
 \expandafter\@secondoftwo
 \fi}

% {<cstoken>}{<search>}{<true}{<false>}

\protected\long\def\etb@ifpattern#1#2{%
 \begingroup
 \edef\etb@resrvda{%
 \def\noexpand\etb@resrvda####1\detokenize{#2}####2&{%
 \endgroup\noexpand\noexpand\noexpand\ifblank{####2}}%
 \edef\noexpand\etb@resrvda{\noexpand\etb@resrvda
 \expandafter\strip@prefix\meaning#1\detokenize{#2}&}%
 \noexpand\etb@resrvda}
 \etb@resrvda\@secondoftwo\@firstoftwo}

% {<string>}{<true}{<false>}

\protected\long\def\etb@ifhashcheck#1{%
 \begingroup
 \edef\etb@resrvda{\detokenize{#1}}%
 \expandafter\endgroup
 \expandafter\etb@ifhashcheck@i\meaning\etb@resrvda&}

\edef\etb@ifhashcheck@i#1&{%
 \noexpand\expandafter
 \noexpand\etb@ifhashcheck@ii
 \noexpand\strip@prefix#1\string#\string#&}

\edef\etb@ifhashcheck@ii{%
 \def\noexpand\etb@ifhashcheck@ii##1\string#\string###2&}
\etb@ifhashcheck@ii{\ifblank{#2}}

% {<cstoken>}

\newrobustcmd*{\robustify}[1]{%
 \ifundef{#1}
 {\etb@error{\string#1 undefined}\@eha}
 {\ifdefmacro{#1}
 {\ifdefltxprotect{#1}
 {\letcs\etb@resrvda{\expandafter\@gobble\string#1 }%
 \@tempswatrue}
 {\let\etb@resrvda#1%
 \@tempswafalse}%
 \ifdefparam\etb@resrvda
 {\etb@ifscanable\etb@resrvda
 {\etb@robustify\etb@resrvda
 \let#1\etb@resrvda}
 {\etb@error{Failed to robustify \string#1}
 {The command is special and cannot be
 handled by \string\robustify.}%
 \@tempswafalse}}
 {\protected\edef#1{\expandonce\etb@resrvda}}
 \if@tempswa
 \ifcsdef{\string#1 }
 {}
 {\csundef{\expandafter\@gobble\string#1 }}%
 \fi
 \undef\etb@resrvda}
 {\etb@error{\string#1 not a macro}\@eha}}}

\def\etb@robustify#1{%
 \begingroup
 \edef\etb@resrvdb{%
 \def\noexpand\etb@resrvdb####1\detokenize{macro}:####2->####3&{%
 \protected####1\def\string#1\space####2{####3}}%
 \edef\noexpand\etb@resrvdb{%
 \noexpand\etb@resrvdb\meaning#1&}}%
 \etb@resrvdb
 \etb@patchcmd@scantoks\etb@resrvdb}

% {<cstoken>}{<search>}{<true}{<false>}
% *{<cstoken>}{<true}{<false>}

\newrobustcmd{\ifpatchable}{%
 \etb@dbg@trce\ifpatchable
 \begingroup
 \@makeother\#%
 \@ifstar\etb@ifpatchable@i\etb@ifpatchable}

\long\def\etb@ifpatchable#1#2{%
 \endgroup
 \etb@dbg@init#1%
 \ifundef{#1}
 {\etb@dbg@fail{def}\@secondoftwo}
 {\etb@dbg@info{def}%
 \ifdefmacro{#1}
 {\etb@dbg@info{mac}%
 \etb@ifscanable{#1}
 {\etb@ifhashcheck{#2}
 {\etb@dbg@info{tok}%
 \etb@ifpattern#1{#2}
 {\etb@dbg@info{pat}%
 \etb@dbg@info{pos}\@firstoftwo}
 {\etb@dbg@fail{pat}\@secondoftwo}}
 {\etb@dbg@fail{hsh}\@secondoftwo}}
 {\etb@dbg@fail{tok}\@secondoftwo}}
 {\etb@dbg@fail{mac}\@secondoftwo}}}

\long\def\etb@ifpatchable@i#1{%
 \endgroup
 \etb@dbg@init#1%
 \ifundef{#1}
 {\etb@dbg@fail{def}\@secondoftwo}
 {\etb@dbg@info{def}%
 \ifdefmacro{#1}
 {\etb@dbg@info{mac}%
 \ifdefparam{#1}
 {\etb@dbg@info{prm}%
 \etb@ifscanable{#1}
 {\etb@dbg@info{tok}%
 \etb@dbg@info{pos}\@firstoftwo}
 {\etb@dbg@fail{tok}\@secondoftwo}}
 {\etb@dbg@info{prl}%
 \ifdefprotected{#1}
 {\etb@dbg@info{pro}}
 {}%
 \etb@dbg@info{pos}\@firstoftwo}}
 {\etb@dbg@fail{mac}\@secondoftwo}}}

% [<prefix>]{<cstoken>}{<search>}{<replace>}{<success>}{<failure>}

\newrobustcmd*{\patchcmd}{%
 \etb@dbg@trce\patchcmd
 \begingroup
 \@makeother\#%
 \etb@patchcmd}

\newcommand{\etb@patchcmd}[4][########1]{%
 \etb@ifpatchable#2{#3}
 {\etb@dbg@succ{ret}%
 \begingroup
 \edef\etb@resrvda{%
 \def\noexpand\etb@resrvda####1\detokenize{macro:}####2->####3&{%
 #1\def\string\etb@resrvda\space####2{\noexpand\etb@resrvdb####3&}}%
 \def\noexpand\etb@resrvdb####1\detokenize{#3}####2&{%
 ####1\detokenize{#4}####2}%
 \edef\noexpand\etb@resrvda{%
 \noexpand\etb@resrvda\meaning#2&}}%
 \etb@resrvda
 \etb@patchcmd@scantoks\etb@resrvda
 \let#2\etb@resrvda
 \undef\etb@resrvda
 \@firstoftwo}
 {\@secondoftwo}}

\def\etb@patchcmd@scantoks#1{%
 \edef\etb@resrvda{\endgroup
 \unexpanded{\makeatletter\scantokens}{#1}%
 \catcode\number`\@=\the\catcode`\@\relax}%
 \etb@resrvda}

% {<cstoken>}{<code>}{<success>}{<failure>}

\newrobustcmd*{\apptocmd}{%
 \etb@dbg@trce\apptocmd
 \begingroup
 \@makeother\#%
 \etb@hooktocmd\etb@append}

\newrobustcmd*{\pretocmd}{%
 \etb@dbg@trce\pretocmd
 \begingroup
 \@makeother\#%
 \etb@hooktocmd\etb@prepend}

\long\def\etb@hooktocmd#1#2#3{%
 \endgroup
 \etb@dbg@init#2%
 \ifundef{#2}
 {\etb@dbg@fail{def}\@secondoftwo}
 {\etb@dbg@info{def}%
 \ifdefmacro{#2}
 {\etb@dbg@info{mac}%
 \ifdefparam{#2}
 {\etb@dbg@info{prm}%
 \etb@ifscanable{#2}
 {\etb@ifhashcheck{#3}
 {\etb@dbg@info{tok}%
 \etb@dbg@succ{ret}%
 \etb@hooktocmd@i#1#2{#3}%
 \@firstoftwo}
 {\etb@dbg@fail{hsh}\@secondoftwo}}
 {\etb@dbg@fail{tok}\@secondoftwo}}
 {\etb@dbg@info{prl}%
 \ifdefprotected{#2}
 {\etb@dbg@info{pro}%
 \etb@dbg@succ{red}%
 \protected}
 {\etb@dbg@succ{red}}%
 \edef#2{#1{\expandonce#2}{\unexpanded{#3}}}%
 \@firstoftwo}}
 {\etb@dbg@fail{mac}\@secondoftwo}}}

\long\def\etb@hooktocmd@i#1#2#3{%
 \begingroup
 \edef\etb@resrvda{%
 \def\noexpand\etb@resrvda####1\detokenize{macro}:####2->####3&{%
 ####1\def\string\etb@resrvda\space####2{#1{####3}{\detokenize{#3}}}}%
 \edef\noexpand\etb@resrvda{%
 \noexpand\etb@resrvda\meaning#2&}}%
 \etb@resrvda
 \etb@patchcmd@scantoks\etb@resrvda
 \let#2\etb@resrvda
 \undef\etb@resrvda}

\long\def\etb@append#1#2{#1#2}
\long\def\etb@prepend#1#2{#2#1}

\newrobustcmd*{\tracingpatches}{%
 \etb@info{Enabling tracing}%
 \input{etoolbox.def}%
 \global\let\tracingpatches\relax}
\@onlypreamble\tracingpatches

\let\etb@dbg@trce\@gobble
\let\etb@dbg@init\@gobble
\let\etb@dbg@info\@gobble
\let\etb@dbg@succ\@gobble
\let\etb@dbg@fail\@gobble

% {<numeral>}

\newcommand{\rmntonum}[1]{%
 \ifblank{#1}
 {}
 {\expandafter\etb@rti@end\number\numexpr
 \expandafter\etb@rti@prs\detokenize{#1}&\relax}}

\def\etb@rti@prs#1#2{%
 \ifx%
 \expandafter\@firstoftwo
 \else
 \expandafter\@secondoftwo
 \fi
 {#1#2}
 {\ifx%
 \expandafter\@firstoftwo
 \else
 \expandafter\@secondoftwo
 \fi
 {\etb@rti@chk#1+\etb@rti@num#1#2}
 {\etb@rti@chk#1\etb@rti@chk#2%
 \ifnum\etb@rti@num#1<\etb@rti@num#2 %
 \expandafter\@firstoftwo
 \else
 \expandafter\@secondoftwo
 \fi
 {+\etb@rti@num#2-\etb@rti@num#1\etb@rti@prs}
 {+\etb@rti@num#1\etb@rti@prs#2}}}}

\def\etb@rti@chk#1{%
 \ifcsname etb@rmn@#1\endcsname
 \else
 \expandafter\etb@rti@brk
 \fi}

\def\etb@rti@brk#1&{+\z@&-1}
\def\etb@rti@end#1\relax{\ifblank{#2}{#1}{#2}}
\def\etb@rti@num#1{\csname etb@rmn@#1\endcsname}

\chardef\etb@rmn@i=1
\chardef\etb@rmn@I=1
\chardef\etb@rmn@v=5
\chardef\etb@rmn@V=5
\chardef\etb@rmn@x=10
\chardef\etb@rmn@X=10
\chardef\etb@rmn@l=50
\chardef\etb@rmn@L=50
\chardef\etb@rmn@c=100
\chardef\etb@rmn@C=100
\mathchardef\etb@rmn@d=500
\mathchardef\etb@rmn@D=500
\mathchardef\etb@rmn@m=1000
\mathchardef\etb@rmn@M=1000

% {<numeral>}{<true>}{<false>}

\newcommand{\ifrmnum}[1]{%
 \ifblank{#1}
 {\@secondoftwo}
 {\expandafter\etb@ifr@prs\detokenize{#1}\relax}}

\def\etb@ifr@prs#1{%
 \ifx\relax#1%
 \expandafter\@firstoftwo
 \else
 \ifcsname etb@rmn@#1\endcsname
 \expandafter\expandafter
 \expandafter\etb@ifr@prs
 \else
 \expandafter\expandafter
 \expandafter\etb@ifr@brk
 \fi
 \fi}

\def\etb@ifr@brk#1\relax{\@secondoftwo}

% <*>{<command>}{<separator>}

\newrobustcmd*{\DeclareListParser}{%
 \@ifstar
 {\etb@defparser\etb@defparser@arg}
 {\etb@defparser\etb@defparser@do}}

\def\etb@defparser#1#2#3{%
 \@ifdefinable#2{#1{#2}{#3}}}

\def\etb@defparser@do#1#2{%
 \begingroup
 \edef\@tempa{\endgroup
 \long\def\noexpand#1####1{%
 \expandafter\noexpand
 \csname etb@lst@\expandafter\@gobble\string#1\endcsname
 \space####1\noexpand#2&}%
 \long\csdef{etb@lst@\expandafter\@gobble\string#1}####1\noexpand#2####2&{%
 \noexpand\etb@listitem\noexpand\do{####1}%
 \noexpand\ifblank{####2}
 {\noexpand\listbreak}
 {\expandafter\noexpand
 \csname etb@lst@\expandafter\@gobble\string#1\endcsname
	 \space####2}&}}%
 \@tempa}

\def\etb@defparser@arg#1#2{%
 \begingroup
 \edef\@tempa{\endgroup
 \long\def\noexpand#1####1####2{%
 \expandafter\noexpand
 \csname etb@lst@\expandafter\@gobble\string#1\endcsname
 {####1}\space####2\noexpand#2&}%
 \long\csdef{etb@lst@\expandafter\@gobble\string#1}####1####2\noexpand#2####3&{%
 \noexpand\etb@listitem{####1}{####2}%
 \noexpand\ifblank{####3}
 {\noexpand\listbreak}
 {\expandafter\noexpand
 \csname etb@lst@\expandafter\@gobble\string#1\endcsname
	 {####1}\space####3}&}}%
 \@tempa}

\long\def\etb@listitem#1#2{%
 \ifblank{#2}
 {}
 {\expandafter\etb@listitem@i
 \expandafter{\@firstofone#2}{#1}}}
\long\def\etb@listitem@i#1#2{#2{#1}}

\newcommand*{\listbreak}{}
\long\def\listbreak#1&{}

% {<item1>,<item2>,...} => \do{<item1>}\do{<item2>}...

\DeclareListParser{\docsvlist}{,}

% {<handler>}{<item1>,<item2>,...} => <handler>{<item1>}<handler>{<item2>}...

\DeclareListParser*{\forcsvlist}{,}

% {<listmacro>}{<string>}

\newrobustcmd{\listadd}[2]{%
 \ifblank{#2}{}{\appto#1{#2|}}}
\newrobustcmd{\listeadd}[2]{%
 \begingroup
 \edef\etb@tempa{\endgroup\noexpand\ifblank{#2}}%
 \etb@tempa{}{\eappto#1{#2|}}}
\newrobustcmd{\listgadd}[2]{%
 \ifblank{#2}{}{\gappto#1{#2|}}}
\newrobustcmd{\listxadd}[2]{%
 \begingroup
 \edef\etb@tempa{\endgroup\noexpand\ifblank{#2}}%
 \etb@tempa{}{\xappto#1{#2|}}}

% {<listcsname>}{<string>}

\newrobustcmd{\listcsadd}[1]{%
 \expandafter\listadd\csname#1\endcsname}
\newrobustcmd{\listcseadd}[1]{%
 \expandafter\listeadd\csname#1\endcsname}
\newrobustcmd{\listcsgadd}[1]{%
 \expandafter\listgadd\csname#1\endcsname}
\newrobustcmd{\listcsxadd}[1]{%
 \expandafter\listxadd\csname#1\endcsname}

% {<string>}{<listmacro>}{<true>}{<false>}

\newrobustcmd{\ifinlist}[2]{%
 \begingroup
 \def\etb@tempa##1|#1|##2&{\endgroup
 \ifblank{##2}\@secondoftwo\@firstoftwo}%
 \expandafter\etb@tempa\expandafter|#2|#1|&}

\newrobustcmd{\xifinlist}[1]{%
 \begingroup
 \edef\etb@tempa{\endgroup\ifinlist{#1}}%
 \etb@tempa}

% {<string>}{<listcsname>}{<true>}{<false>}

\newrobustcmd{\ifinlistcs}[2]{%
 \expandafter\etb@ifinlistcs@i\csname #2\endcsname{#1}}
\long\def\etb@ifinlistcs@i#1#2{\ifinlist{#2}{#1}}

\newrobustcmd{\xifinlistcs}[1]{%
 \begingroup
 \edef\etb@tempa{\endgroup\ifinlistcs{#1}}%
 \etb@tempa}

% {<handler>}{<listmacro>} => <handler>{<item1>}<handler>{<item2>}...

\newcommand*{\forlistloop}[2]{%
 \expandafter\etb@forlistloop\expandafter{#2}{#1}}

\long\def\etb@forlistloop#1#2{\etb@forlistloop@i{#2}#1|&}

\long\def\etb@forlistloop@i#1#2|#3&{%
 \ifblank{#2}
 {}
 {#1{#2}}%
 \ifblank{#3}
 {\listbreak}
 {\etb@forlistloop@i{#1}#3}%
 &}

% {<handler>}{<listcsname>} => <handler>{<item1>}<handler>{<item2>}...

\newcommand*{\forlistcsloop}[2]{%
 \expandafter\expandafter\expandafter\etb@forlistloop
 \expandafter\expandafter\expandafter{\csname#2\endcsname}{#1}}

% {<listmacro>} => \do{<item1>}\do{<item2>}...

\newcommand*{\dolistloop}{\forlistloop\do}

% {<listcsname>} => \do{<item1>}\do{<item2>}...

\newcommand*{\dolistcsloop}{\forlistcsloop\do}

% {<code>}

\newrobustcmd*{\AtEndPreamble}{\gappto\@endpreamblehook}
\newcommand*{\@endpreamblehook}{}

\preto\document{%
 \endgroup
 \let\AtEndPreamble\@firstofone
 \@endpreamblehook
 \protected\def\AtEndPreamble{\@notprerr\@gobble}%
 \undef\@endpreamblehook
 \begingroup}

% {<code>}

\newrobustcmd*{\AfterPreamble}{\AtBeginDocument}
\AtEndPreamble{\let\AfterPreamble\@firstofone}

% {<code>}

\newrobustcmd*{\AfterEndPreamble}{\gappto\@afterendpreamblehook}
\newcommand*{\@afterendpreamblehook}{}

\appto\document{%
 \let\AfterEndPreamble\@firstofone
 \@afterendpreamblehook
 \protected\def\AfterEndPreamble{\@notprerr\@gobble}%
 \undef\@afterendpreamblehook
 \ignorespaces}

\AtEndDocument{\let\AfterEndPreamble\@gobble}

% {<code>}

\newrobustcmd*{\AfterEndDocument}{\gappto\@afterenddocumenthook}
\newcommand*{\@afterenddocumenthook}{}

\patchcmd\enddocument
 {\deadcycles}
 {\let\AfterEndDocument\@firstofone
 \@afterenddocumenthook
 \deadcycles}
 {}
 {\let\etb@@end\@@end
 \def\@@end{%
 \let\AfterEndDocument\@firstofone
 \@afterenddocumenthook
 \etb@@end}}

% {<environment>}{<code>}

\newrobustcmd{\AtBeginEnvironment}[1]{%
 \csgappto{@begin@#1@hook}}

\patchcmd\begin
 {\csname #1\endcsname}
 {\csuse{@begin@#1@hook}%
 \csname #1\endcsname}
 {}
 {\etb@warning{%
 Patching '\string\begin' failed!\MessageBreak
 '\string\AtBeginEnvironment' will not work\@gobble}}

% {<environment>}{<code>}

\newrobustcmd{\AtEndEnvironment}[1]{%
 \csgappto{@end@#1@hook}}

\patchcmd\end
 {\csname end#1\endcsname}
 {\csuse{@end@#1@hook}%
 \csname end#1\endcsname}
 {}
 {\etb@warning{%
 Patching '\string\end' failed!\MessageBreak
 '\string\AtEndEnvironment' will not work\@gobble}}

% {<environment>}{<code>}

\newrobustcmd{\BeforeBeginEnvironment}[1]{%
 \csgappto{@beforebegin@#1@hook}}

\pretocmd\begin
 {\csuse{@beforebegin@#1@hook}}
 {}
 {\etb@warning{%
 Patching '\string\begin' failed!\MessageBreak
 '\string\BeforeBeginEnvironment' will not work\@gobble}}

% {<environment>}{<code>}

\newrobustcmd{\AfterEndEnvironment}[1]{%
 \csgappto{@afterend@#1@hook}}

\patchcmd\end
 {\if@ignore}
 {\csuse{@afterend@#1@hook}%
 \if@ignore}
 {}
 {\etb@warning{%
 Patching '\string\end' failed!\MessageBreak
 '\string\AfterEndEnvironment' will not work\@gobble}}

\endinput

main/mdframed.sty

%%==%%
%%========Is based on the idea of framed.sty========%%
%%==%%
%%===== Currently the package has a beta-Status ====%%
%%==%%
%% WITH THANKS TO (alphabetically):
%% ROLF NIEPRASCHK
%% HEIKO OBERDIEK
%% HERBERT VOSS

%% Copyright (c) 2010 Marco Daniel
%
%% This package may be distributed under the terms of the LaTeX Project
%% Public License, as described in lppl.txt in the base LaTeX distribution.
%% Either version 1.0 or, at your option, any later version.
%%
%%
%%==%%
%% Erstellung eines Rahmens, der am Seitenende keine
%% horizontale Linie einfuegt
%%>>>%%
%% _______________ %%
%% | page 1 | %%
%% | Text | %%
%% | __Text__ | %%
%% | | Text | | %%
%% P A G E B R E A K %%
%% | | Text | | %%
%% | |_Text_| | %%
%% | Text | %%
%% |____page 2___| %%
%% %%
%%>>>%%

%%$Id: mdframed.sty 103 2010-12-22 16:46:10Z marco $
%%$Rev: 103 $
%%$Author: marco $
%%$Date: 2010-12-22 17:46:10 +0100 (Mi, 22. Dez 2010) $

%% Allgemeine Angaben
\def\mdversion{v0.6a}
\def\mdframedpackagename{mdframed}
\def\md@maindate@svn$#1: #2 #3 #4-#5-#6 #7 #8${#4/#5/#6\space }
\NeedsTeXFormat{LaTeX2e}
\ProvidesPackage{mdframed}[\md@maindate@svn$Id: mdframed.sty 103 2010-12-22 16:46:10Z marco $ \mdversion: \mdframedpackagename]

%%==%%
%%=============== Benoetigte Pakete ================%%
%%==%%

\newcommand*\md@PackageWarning[1]{\PackageWarning{\mdframedpackagename}{#1}}
\newcommand*\md@PackageInfo[1]{\PackageInfo{\mdframedpackagename}{#1}}
\newcommand*\md@LoadFile@IfExist[1]{%
 \IfFileExists{#1.sty}{%
 \RequirePackage{#1}%
 }{%
 \md@PackageWarning{The package #1 does not exist\MessageBreak
 but it is required by \mdframedpackagename}%
 }
}
\md@LoadFile@IfExist{kvoptions}

\md@LoadFile@IfExist{etex}

\md@LoadFile@IfExist{calc}

\md@LoadFile@IfExist{color}

%Eingearbeitet in Optionen
%\md@LoadFile@IfExist{pstricks}
%\md@LoadFile@IfExist{pstricks}

\md@LoadFile@IfExist{etoolbox}

\SetupKeyvalOptions{family=mdf,prefix=mdf@}

%%==%%
%%========Hilfsmakro zur Bestimmung ob Laenge=======%%
%%============= IDEE: Martin Scharrer ==============%%
%%==%%

%%%\md@iflength{<EINGABE>}{<IST LAENGE>}{<IST KEINE LAENGE>}
\newlength{\md@templength}
\def\md@iflength#1{%
 \afterassignment\md@iflength@check%
 \md@templength=#1\mdf@defaultunit\relax\relax
 \expandafter\endgroup\next
}
\def\md@iflength@check#1{%
 \begingroup
 \ifx\relax#1\@empty
 \def\next{\@secondoftwo}
 \else
 \def\next{\@firstoftwo}
 \expandafter\md@iflength@cleanup
 \fi
}
\def\md@iflength@cleanup#1\relax{}

%%\def\md@@iflength#1{
%% \begingroup
%% \def\@tempa{#1}
%% \md@iflength{\@tempa}{%
%% \expandafter\global\expandafter%
%% \edef\csname #1\endcsname{\the\md@templength}%
%% }{%
%% \expandafter\global\expandafter%
%% \edef\csname #1\endcsname{\the\md@templength}%
%% }%
%% \endgroup%
%%}

%%==%%
%%==================== Optionen ====================%%
%%==%%

%Festlegung welcher Stildatei
%% 0 := tex-Kommandos -- rule
%% 1 := tikz
%% 2 := tikz-erweitert
%% 3 := pstricks-einfach
%% 4 := pstricks-erweitert

\DeclareStringOption[0]{style}

\define@key{mdf}{globalstyle}[\mdf@style]{%
 \renewcommand*{\do}[1]{%
 \def\@tempa{##1}
 \ifcase\number\@tempa\relax
 %0 <- kein Grafikpaket
 \or
 \md@LoadFile@IfExist{tikz}
 %1 <- tikz wird benoetigt
 \or
 \md@LoadFile@IfExist{tikz}
 %2 <- tikz wird benoetigt
 \or
 \md@LoadFile@IfExist{pstricks-add}
 %3 <- pstricks wird benoetigt
 \or
 \md@LoadFile@IfExist{pstricks-add}
 %4 <- pstricks wird benoetigt
 \else
 \md@PackageWarning{Unknown global style \@tempa}
 \fi
 }%
 \docsvlist{\mdf@style,#1}%
 }

%%%%Optionen mit Laengen

\newcommand*\mdf@skipabove{\z@}
\newcommand*\mdfl@skipabove{}
\newlength\mdf@skipabove@length
\deflength\mdf@skipabove@length{\z@}
\define@key{mdf}{skipabove}[\z@]{%
 \def\@tempa{#1}
 \md@iflength{\@tempa}%
 {\global\edef\mdfl@skipabove{\the\md@templength}}%
 {\global\edef\mdfl@skipabove{\the\md@templength}}
\let\mdf@skipabove\mdfl@skipabove
\setlength\mdf@skipabove@length{\mdf@skipabove}
}

\newcommand*\mdf@skipbelow{\z@}
\newcommand*\mdfl@skipbelow{}
\newlength\mdf@skipbelow@length
\deflength\mdf@skipbelow@length{\z@}
\define@key{mdf}{skipbelow}[\z@]{%
 \def\@tempa{#1}
 \md@iflength{\@tempa}%
 {\global\edef\mdfl@skipbelow{\the\md@templength}}%
 {\global\edef\mdfl@skipbelow{\the\md@templength}}
\let\mdf@skipbelow\mdfl@skipbelow
\setlength\mdf@skipbelow@length{\mdf@skipbelow}
}

\newcommand*\mdf@leftmargin{\z@}
\newcommand*\mdfl@leftmargin{}
\newlength\mdf@leftmargin@length
\deflength\mdf@leftmargin@length{\z@}
\define@key{mdf}{leftmargin}[\z@]{%
 \def\@tempa{#1}
 \md@iflength{\@tempa}%
 {\global\edef\mdfl@leftmargin{\the\md@templength}}%
 {\global\edef\mdfl@leftmargin{\the\md@templength}}
\let\mdf@leftmargin\mdfl@leftmargin
\setlength\mdf@leftmargin@length{\mdf@leftmargin}
}

\newcommand*\mdf@rightmargin{\z@}
\newcommand*\mdfl@rightmargin{}
\newlength\mdf@rightmargin@length
\deflength\mdf@rightmargin@length{\z@}
\define@key{mdf}{rightmargin}[\z@]{%
 \def\@tempa{#1}
 \md@iflength{\@tempa}%
 {\global\edef\mdfl@rightmargin{\the\md@templength}}%
 {\global\edef\mdfl@rightmargin{\the\md@templength}}
\let\mdf@rightmargin\mdfl@rightmargin
\setlength\mdf@rightmargin@length{\mdf@rightmargin}
}

\newcommand*\mdf@margin{20pt}
\newcommand*\mdfl@margin{}
\newlength\mdf@margin@length
\deflength\mdf@margin@length{20pt}
\define@key{mdf}{margin}[20pt]{%
 \md@PackageWarning{The option margin is obsolote and no longer used\MessageBreak
 use instead innerleftmargin and innerrightmargin\MessageBreak
 For more details look at the documentation \mdframedpackagename}%
 \def\@tempa{#1}
 \md@iflength{\@tempa}%
 {\global\edef\mdfl@margin{\the\md@templength}}%
 {\global\edef\mdfl@margin{\the\md@templength}}
\let\mdf@margin\mdfl@margin
\setlength\mdf@margin@length{\mdf@margin}
}

\newcommand*\mdf@innerleftmargin{10pt}
\newcommand*\mdfl@innerleftmargin{}
\newlength\mdf@innerleftmargin@length
\deflength\mdf@innerleftmargin@length{10pt}
\define@key{mdf}{innerleftmargin}[10pt]{%
 \def\@tempa{#1}
 \md@iflength{\@tempa}%
 {\global\edef\mdfl@innerleftmargin{\the\md@templength}}%
 {\global\edef\mdfl@innerleftmargin{\the\md@templength}}
\let\mdf@innerleftmargin\mdfl@innerleftmargin
\setlength\mdf@innerleftmargin@length{\mdf@innerleftmargin}
}

\newcommand*\mdf@innerrightmargin{10pt}
\newcommand*\mdfl@innerrightmargin{}
\newlength\mdf@innerrightmargin@length
\deflength\mdf@innerrightmargin@length{10pt}
\define@key{mdf}{innerrightmargin}[10pt]{%
 \def\@tempa{#1}
 \md@iflength{\@tempa}%
 {\global\edef\mdfl@innerrightmargin{\the\md@templength}}%
 {\global\edef\mdfl@innerrightmargin{\the\md@templength}}
\let\mdf@innerrightmargin\mdfl@innerrightmargin
\setlength\mdf@innerrightmargin@length{\mdf@innerrightmargin}
}

\newcommand*\mdf@innertopmargin{0.4\baselineskip}
\newcommand*\mdfl@innertopmargin{}
\newlength\mdf@innertopmargin@length
\deflength\mdf@innertopmargin@length{0.4\baselineskip}
\define@key{mdf}{innertopmargin}[0.4\baselineskip]{%
 \def\@tempa{#1}
 \md@iflength{\@tempa}%
 {\global\edef\mdfl@innertopmargin{\the\md@templength}}%
 {\global\edef\mdfl@innertopmargin{\the\md@templength}}
\let\mdf@innertopmargin\mdfl@innertopmargin
\setlength\mdf@innertopmargin@length{\mdf@innertopmargin}
}

\newcommand*\mdf@innerbottommargin{0.4\baselineskip}
\newcommand*\mdfl@innerbottommargin{}
\newlength\mdf@innerbottommargin@length
\deflength\mdf@innerbottommargin@length{0.4\baselineskip}
\define@key{mdf}{innerbottommargin}[0.4\baselineskip]{%
 \def\@tempa{#1}
 \md@iflength{\@tempa}%
 {\global\edef\mdfl@innerbottommargin{\the\md@templength}}%
 {\global\edef\mdfl@innerbottommargin{\the\md@templength}}
\let\mdf@innerbottommargin\mdfl@innerbottommargin
\setlength\mdf@innerbottommargin@length{\mdf@innerbottommargin}
}

\newcommand*\mdf@splittopskip{\z@}
\newcommand*\mdfl@splittopskip{}
\newlength\mdf@splittopskip@length
\deflength\mdf@splittopskip@length{\z@}
\define@key{mdf}{splittopskip}[\z@]{%
 \def\@tempa{#1}
 \md@iflength{\@tempa}%
 {\global\edef\mdfl@splittopskip{\the\md@templength}}%
 {\global\edef\mdfl@splittopskip{\the\md@templength}}
\let\mdf@splittopskip\mdfl@splittopskip
\setlength\mdf@splittopskip@length{\mdf@splittopskip}
}

\newcommand*\mdf@splitbottomskip{\z@}
\newcommand*\mdfl@splitbottomskip{}
\newlength\mdf@splitbottomskip@length
\deflength\mdf@splitbottomskip@length{\z@}
\define@key{mdf}{splitbottomskip}[\z@]{%
 \def\@tempa{#1}
 \md@iflength{\@tempa}%
 {\global\edef\mdfl@splitbottomskip{\the\md@templength}}%
 {\global\edef\mdfl@splitbottomskip{\the\md@templength}}
\let\mdf@splitbottomskip\mdfl@splitbottomskip
\setlength\mdf@splitbottomskip@length{\mdf@splitbottomskip}
}

%% Linienstaerken
\newcommand*\mdf@linewidth{0.4pt}
\newcommand*\mdfl@linewidth{}
\newlength\mdf@linewidth@length
\deflength\mdf@linewidth@length{0.4pt}
\define@key{mdf}{linewidth}[0.4pt]{%
 \def\@tempa{#1}
 \md@iflength{\@tempa}%
 {\global\edef\mdfl@linewidth{\the\md@templength}}%
 {\global\edef\mdfl@linewidth{\the\md@templength}}
\let\mdf@linewidth\mdfl@linewidth
\setlength\mdf@linewidth@length{\mdf@linewidth}%
\ifnumequal{\mdf@style}{1}{%
\deflength\mdf@middlelinewidth@length{\mdf@linewidth@length}%
}{}%
}

\newcommand*\mdf@innerlinewidth{\z@}
\newcommand*\mdfl@innerlinewidth{}
\newlength\mdf@innerlinewidth@length
\deflength\mdf@innerlinewidth@length{\z@}
\define@key{mdf}{innerlinewidth}[\z@]{%
 \def\@tempa{#1}
 \md@iflength{\@tempa}%
 {\global\edef\mdfl@innerlinewidth{\the\md@templength}}%
 {\global\edef\mdfl@innerlinewidth{\the\md@templength}}
\let\mdf@innerlinewidth\mdfl@innerlinewidth
\setlength\mdf@innerlinewidth@length{\mdf@innerlinewidth}
}

\newcommand*\mdf@middlelinewidth{\mdf@linewidth}
\newcommand*\mdfl@middlelinewidth{}
\newlength\mdf@middlelinewidth@length
\deflength\mdf@middlelinewidth@length{\mdf@linewidth@length}
\define@key{mdf}{middlelinewidth}[\mdf@linewidth]{%
 \def\@tempa{#1}
 \md@iflength{\@tempa}%
 {\global\edef\mdfl@middlelinewidth{\the\md@templength}}%
 {\global\edef\mdfl@middlelinewidth{\the\md@templength}}
\let\mdf@middlelinewidth\mdfl@middlelinewidth
\setlength\mdf@middlelinewidth@length{\mdf@middlelinewidth}
}

\newcommand*\mdf@outerlinewidth{\z@}
\newcommand*\mdfl@outerlinewidth{}
\newlength\mdf@outerlinewidth@length
\deflength\mdf@outerlinewidth@length{\z@}
\define@key{mdf}{outerlinewidth}[\z@]{%
 \def\@tempa{#1}
 \md@iflength{\@tempa}%
 {\global\edef\mdfl@outerlinewidth{\the\md@templength}}%
 {\global\edef\mdfl@outerlinewidth{\the\md@templength}}
\let\mdf@outerlinewidth\mdfl@outerlinewidth
\setlength\mdf@outerlinewidth@length{\mdf@outerlinewidth}
}

\newcommand*\mdf@roundcorner{\z@}
\newcommand*\mdfl@roundcorner{}
\newlength\mdf@roundcorner@length
\deflength\mdf@roundcorner@length{\z@}
\define@key{mdf}{roundcorner}[\z@]{%
 \def\@tempa{#1}
 \md@iflength{\@tempa}%
 {\global\edef\mdfl@roundcorner{\the\md@templength}}%
 {\global\edef\mdfl@roundcorner{\the\md@templength}}
\let\mdf@roundcorner\mdfl@roundcorner
\setlength\mdf@roundcorner@length{\mdf@roundcorner}
}

%Unterstuetzung der Optionen fuer pstricks
\def\mdf@psset@local{}
\define@key{mdf}{pstrickssetting}{%
 \def\mdf@psset@local{#1}
}

%%Defaulunit
\DeclareStringOption[pt]{defaultunit}

%%mdframed umfasst ntheorem-Umgebung ja/nein
\DeclareBoolOption{ntheorem}

\DeclareBoolOption[true]{topline}
\DeclareBoolOption[true]{leftline}
\DeclareBoolOption[true]{bottomline}
\DeclareBoolOption[true]{rightline}

%%FARBEN
\DeclareStringOption[none]{xcolor}
\DeclareStringOption[black]{linecolor}
\DeclareStringOption[white]{backgroundcolor}
\DeclareStringOption[black]{fontcolor}
\DeclareStringOption[\mdf@linecolor]{innerlinecolor}
\DeclareStringOption[\mdf@linecolor]{outerlinecolor}
\DeclareStringOption[\mdf@backgroundcolor]{middlelinecolor}

\DeclareDefaultOption{%
 \md@PackageWarning{Unknown Option '\CurrentOption' for mdframed}}

%%==%%
%%========== ENDE DER OPTIONENDEKLARATION ==========%%
%%==%%

\ProcessKeyvalOptions*
\newcommand*{\mdfsetup}{\setkeys{mdf}}
\mdfsetup{globalstyle=0}

%%==%%
%%========Sicherstellen der key-value-Syntax========%%
%%==%%
\AtBeginDocument{
 \@ifpackageloaded{xcolor}{%
 \let\mdf@xcolor\@empty %ignoriere die Eingabe der Optionen
 }{%
 \def\@tempa{none}
 \ifx\mdf@xcolor\@tempa
 \else
 \PassOptionsToPackage{\mdf@xcolor}{xcolor}
 \RequirePackage{xcolor}
 \fi
 }
}

%%Farbabkuerzungen:
\newcommand*\mdf@@linecolor{\color{\mdf@linecolor}}
\newcommand*\mdf@@backgroundcolor{
 \ifx\mdf@backgroundcolor\@empty
 \else
 \color{\mdf@backgroundcolor}
 \fi}
\newcommand*\mdf@@fontcolor{\color{\mdf@fontcolor}}
\newcommand*\mdf@@innerlinecolor{\color{\mdf@innerlinecolor}}
\newcommand*\mdf@@outerlinecolor{\color{\mdf@outerlinecolor}}
\newcommand*\mdf@@middlelinecolor{\color{\mdf@middlelinecolor}}

%%==%%
%%======= Laden der gewuenschten Style-Datei =======%%
%%==%%
\ifcase\mdf@style\relax%
 \input{md-frame-0.mdf}%
 \or%
 \input{md-frame-1.mdf}%
 \or%
 \md@PackageWarning{The style number\mdf@style does not exist\MessageBreak
 mdframed ues instead style=0 \mdframedpackagename}%
 \input{md-frame-1.mdf}%
 \or%
 \input{md-frame-3.mdf}%
 \else%
 \IfFileExists{md-frame-\mdf@style.mdf}{%
 \input{md-frame-\mdf@style.mdf}%
 }{%
 \input{md-frame-1.mdf}%
 \md@PackageWarning{The style number \mdf@style does not exist\MessageBreak
 mdframed ues instead style=0 \mdframedpackagename}%
 }%
\fi%

%%==%%
%%===Globale Umgebung -- noch keine Modifikation ===%%
%%==%%
\def\md@margin@startenv{% latex.ltx -> \@startsection
 \if@noskipsec \leavevmode \fi
 \par%\kern-\lastskip%
 \@tempskipa -\mdf@skipabove@length\relax
 \@afterindenttrue
 \ifdim \@tempskipa < \z@
 \@tempskipa -\@tempskipa \@afterindentfalse%
 \fi
 \if@nobreak
 \everypar{}%
 \else
 \addpenalty\@secpenalty\addvspace\@tempskipa%
 \par\kern-\ht\strutbox
 \fi%
}%

\def\mdframed{%
 \@ifnextchar[%]
 \mdframed@i\mdframed@ii}%

\def\mdframed@ii{\mdframed@i[]}%
\def\mdframed@i[#1]{% default-Umgebung
 \mdfsetup{#1}%%
 \md@margin@startenv%
 \ifmdf@ntheorem% %%% Pruefen ob ntheorem gesetzt ist
 \ifundef{\theorempreskipamount}%
 {\md@PackageWarning{You have not loaded ntheorem yet}}%
 {\setlength{\theorempreskipamount}{0pt}%
 \setlength{\theorempostskipamount}{0pt}}%
 \fi%
 \ifnumequal{\mdf@style}{0}%
 {\deflength{\mdf@innerlinewidth@length}{\z@}%
 \deflength{\mdf@middlelinewidth@length}{\mdf@linewidth@length}%
 \deflength{\mdf@outerlinewidth@length}{\z@}%
 \let\mdf@innerlinecolor\mdf@linecolor%
 \let\mdf@middlelinecolor\mdf@linecolor%
 \let\mdf@outerlinecolor\mdf@linecolor%
 }{}%
 \ifnumequal{\mdf@style}{3}%
 {\deflength{\mdf@innerlinewidth@length}{\z@}%
 \deflength{\mdf@middlelinewidth@length}{\mdf@linewidth}%
 \deflength{\mdf@outerlinewidth@length}{\z@}%
 \let\mdf@innerlinecolor\mdf@linecolor%
 }{}%
 \mdframed@global@env%
 }%

\def\endmdframed{\endmdframed@global@env\endtrivlist%
\vspace{\mdf@skipbelow@length}}%

%%==%%
%%==Deklaration diverser Eingabe und Hilfsparameter=%%
%%==%%

\newskip\md@temp@skip@a \md@temp@skip@a\z@ %% Hilfslaenge

\newlength\md@verticalmarginwhole@length

\newlength\mdf@xmargin@length%
\newlength\mdf@ymargin@length%
\newlength\mdfboxheight% %% Berechnungsvariable tikz
\newlength\mdfboxwidth% %% Berechnungsvariable tikz

\newlength\mdfboundingboxheight
\newlength\mdfboundingboxwidth
\newlength\mdfpositionx
\newlength\mdfpositiony

\providecommand*\ptTps{}

%%==%%
%%=================== Kommentare ===================%%
%%==%%

\chardef\md@arrayparboxrestore=\catcode`\| % for debug
\catcode`\|=\catcode`\% % (debug: insert space after backslash)
%% Kommentare werden im Code mit | gekennzeichnet

%%==%%
%%================= Platz auf Seite ================%%
%%==%%
\newlength\md@freevspace@length
\def\md@freepagevspace{%
 \ifdimequal{\pagegoal}{\maxdimen}%
 {%
 \setlength{\md@freevspace@length}{\vsize}%
 }{
 \setlength{\md@freevspace@length}{\pagegoal}%
 \addtolength{\md@freevspace@length}{-\pagetotal}%
 }%
}

%%==%%
%================= Breite der BOX =================%%
%%==%%

% edge-leftmargin-outerlinewith-middlelinewidth-innerlinewidth-innerleftmargin-TEXTBREITE-
% innerrightmargin-innerlinewidth-middlelinewidth-outelinewith-edge
\newlength\md@horizontalspaceofbox
\def\md@horizontalmargin@equation{%
 \setlength{\md@horizontalspaceofbox}{\hsize}
 \addtolength{\md@horizontalspaceofbox}{%
 -\mdf@leftmargin@length%
 -\mdf@outerlinewidth@length%
 -\mdf@middlelinewidth@length%
 -\mdf@innerlinewidth@length%
 -\mdf@innerleftmargin@length%
 -\mdf@innerrightmargin@length%
 -\mdf@innerlinewidth@length%
 -\mdf@middlelinewidth@length%
 -\mdf@outerlinewidth@length%
 -\mdf@rightmargin@length%
 }%
 \ifboolexpr{ test {\ifnumequal{\mdf@style}{0}} or test {\ifnumequal{\mdf@style}{3}}}%
 {
 \notbool{mdf@leftline}{\addtolength{\md@horizontalspaceofbox}{%
 \mdf@innerlinewidth@length%
 +\mdf@middlelinewidth@length%
 +\mdf@outerlinewidth@length%
 }}{}%
 \notbool{mdf@rightline}{\addtolength{\md@horizontalspaceofbox}{%
 \mdf@innerlinewidth@length%
 +\mdf@middlelinewidth@length%
 +\mdf@outerlinewidth@length%
 }}{}%
 }{}%
 \advance\md@horizontalspaceofbox by - \width\md@arrayparboxrestore%
 %%% Beruecksichtigung, dass Auszaehlung bzw. list-Umgebung enthalten
 \ifdimless{\md@horizontalspaceofbox}{3cm}{\md@PackageWarning{You have only a width of 3cm}}{}
 \hsize=\md@horizontalspaceofbox%
}

%%==%%
%%========= Seitenparameter und Strafpunkte ========%%
%%==%%
\def\md@penalty@startenv{%
 \begingroup%
 \skip@\lastskip% %%% lastskip nur ungleich null nach section, list, figure, usw.
 \if@nobreak%
 \else
 \penalty9999 % updates \page parameters <-pruefen
 \ifdim\pagefilstretch=\z@ %%% pagefilstretch ist ein internes Register fuer den
 %%% Seitenumbruch. Es entaehlt den akkumulierten (gespeicherten) fil-Anteil
 %%% auf der aktuellen Seite
 \ifdim\pagefillstretch=\z@ %%% pagefillstretch ist ein internes Register fuer den
 %%% Seitenumbruch. Es entaehlt den akkumulierten (gespeicherten) fill-Anteil
 %%% auf der aktuellen Seite
 %%% nicht unendlich dehnbar, so hier foerdern eines Seitenumbruches
 \edef\@tempa{\the\skip@}%
 \edef\@tempb{\the\z@skip}%
 \ifx\@tempa\@tempb %%% ???????
 \penalty-30%
 \else
 \vskip-\skip@%
 \penalty-30%
 \vskip\skip@%
 \fi
 \fi
 \fi
 \penalty\z@%
 % Give a stretchy breakpoint that will always be taken in preference
 % to the \penalty 9999 used to update page parameters. The cube root
 % of 10000/100 indicates a multiplier of 0.21545, but the maximum
 % calculated badness is really 8192, not 10000, so the multiplier
 % is 0.2301.
 \advance\skip@ \z@ plus-.5\baselineskip%
 \advance\skip@ \z@ plus-.231\height%
 \advance\skip@ \z@ plus-.231\skip@%
 \advance\skip@ \z@ plus-.231\topsep%
 \vskip-\skip@ \penalty 1800 \vskip\skip@%
 \fi
 \addvspace{\topsep}%
 \endgroup%
 % clear out pending page break
 \nobreak \vskip 2\baselineskip \vskip\height% %%%\@M=10000
 \penalty9999 \vskip -2\baselineskip \vskip-\height%
 \penalty9999 % updates \pagetotal
}%

%%==%%
%%============Start der globalen Umgebung===========%%
%%==%%
\newskip\md@temp@frame@hsize \md@temp@frame@hsize=0pt%
\newskip\md@temp@frame@vsize \md@temp@frame@vsize=0pt%

\def\mdframed@global@env{\relax%
 \let\width\z@%
 \let\height\z@%
 \md@penalty@startenv%
 \def\@doendpe{\@endpetrue% %%% SIEHE LATEX.ltx -- ersten Absatz ignorieren
 \def\par{\@restorepar\par\@endpefalse}%
 \everypar{{\setbox\z@\lastbox}\everypar{}\@endpefalse}%
 }%
 \md@horizontalmargin@equation%
 \setbox\@tempboxa%
 \vbox\bgroup\@doendpe%
 \begingroup% %%% zweites begingroup noetig, dass fontcolor gesetzt werden kann
 \mdf@@fontcolor% %%% Setzen der Schriftfarbe
 \textwidth\md@horizontalspaceofbox \columnwidth\md@horizontalspaceofbox%
}%

\def\endmdframed@global@env{\par%
 \kern\z@%
 \hrule\@width\md@horizontalspaceofbox\@height\z@%
 \penalty-100 % put depth into height
 \endgroup%
 \egroup%
 \begingroup%
 \mdf@@fontcolor%
 \setbox\@tempboxa\vbox{\unvbox\@tempboxa}
 \md@put@frame%
 \endgroup%
}

%%==%%
%%===========Ausgaberoutine -> Berechnung===========%%
%%==%%

%% \md@put@frame nimmt den Inhalt der \@tempboxa und packt alles oder nur einen Teil
%% auf die Seite mit dem Rahmen.
%% Es ist rekursiv, solange alles von der \@tempboxa aufgebraucht ist (\@tempboxa muss die Tiefe 0 haben.)
%% Erste Iteration: Versuche alles in einen Rahmen zu bekommen. Falls es nicht passt,
%% splitte es fuer die erste Rahmenumgebung
%% Spaetere Iteration: Versuche alles in den letzten Rahmen zu bekommen. Falls es nicht passt,
%% splitte es erneut. (Versuchsstadium -- Da bisher nur Anfang und Ende enthalten)

\def\md@put@frame{\relax%
 \md@freepagevspace
 \ifdimless{\md@freevspace@length}{1.999\baselineskip}
 {\md@PackageInfo{Not enough space on this page}%die Seite hat nur noch minimal Platz
 \clearpage%
 \md@put@frame
 }{%
 %Hier berechnung Box-Inhalt+Rahmen oben und unten
 \setlength{\md@verticalmarginwhole@length}{\ht\@tempboxa+\dp\@tempboxa}%
 \addtolength{\md@verticalmarginwhole@length}{%
 \mdf@outerlinewidth@length%
 +\mdf@middlelinewidth@length%
 +\mdf@innerlinewidth@length%
 +\mdf@innertopmargin@length%
 +\mdf@innerbottommargin@length%
 +\mdf@innerlinewidth@length%
 +\mdf@middlelinewidth@length%
 +\mdf@outerlinewidth@length%
 }%
 \ifnumequal{\mdf@style}{0}%
 {\ifbool{mdf@topline}{}%
 {\addtolength{\md@verticalmarginwhole@length}{-\mdf@middlelinewidth@length}%
 }%
 \ifbool{mdf@bottomline}{}%
 {\addtolength{\md@verticalmarginwhole@length}{-\mdf@middlelinewidth@length}%
 }%
 }{}
 \ifnumequal{\mdf@style}{3}%
 {\ifbool{mdf@topline}{}%
 {\addtolength{\md@verticalmarginwhole@length}{-\mdf@middlelinewidth@length}%
 }%
 \ifbool{mdf@bottomline}{}%
 {\addtolength{\md@verticalmarginwhole@length}{-\mdf@middlelinewidth@length}%
 }%
 }{}
 \ifdimless{\md@verticalmarginwhole@length}{\md@freevspace@length}%
 {\md@putbox@single}%passt auf Seite
 {\md@put@frame@i}%passt nicht auf Seite
 }
}

\def\md@put@frame@i{%Box muss gesplittet werden -- Ausgabe der ersten Teilbox
 %Berechnung der Splittgroesse -- Linien und Abstand oben
 \md@freepagevspace
 \setlength{\dimen@}{\md@freevspace@length}%
 \addtolength{\dimen@}{%
 -\mdf@outerlinewidth@length%
 -\mdf@middlelinewidth@length%
 -\mdf@innerlinewidth@length%
 -\mdf@innertopmargin@length%
 -\mdf@splitbottomskip@length%
 }%
 \ifnumequal{\mdf@style}{0}%
 {\ifbool{mdf@topline}{}%
 {\addtolength{\dimen@}{+\mdf@middlelinewidth@length}%
 }%
 }{}
 \ifnumequal{\mdf@style}{3}%
 {\ifbool{mdf@topline}{}%
 {\addtolength{\dimen@}{\mdf@middlelinewidth@length}%
 }%
 }{}
 \ifdimless{\ht\@tempboxa+\dp\@tempboxa}{\dimen@}%
 {\md@PackageWarning{You got a bad break\MessageBreak
 you have to change it manually\MessageBreak
 by changing the text, the space\MessageBreak
 or something else}%
 \addtolength{\dimen@}{-1.8\baselineskip}
 }{}%
 \addtolength{\dimen@}{-\pageshrink}%Box darf nicht zu GroÃ� werden.
 \boxmaxdepth\z@ \splittopskip\mdf@splittopskip@length%
 \setbox\tw@\vsplit\@tempboxa to \dimen@
 \setbox\tw@\vbox{\unvbox\tw@}%
 \ifdimgreater{\ht\tw@+\dp\tw@}{\dimen@}{%Falsch gesplittet
 \setlength\dimen@i{\dimen@}
 \addtolength{\dimen@}{-\ht\tw@-\dp\tw@}
 \addtolength\dimen@i{0.5\dimen@}
 \boxmaxdepth\z@ \splittopskip\z@%
 \setbox\@tempboxa\vbox{\unvbox\tw@\unvbox\@tempboxa}
 \boxmaxdepth\z@ \splittopskip\mdf@splittopskip@length%
 \setbox\tw@\vsplit\@tempboxa to \dimen@i
 \setbox\tw@\vbox{\unvbox\tw@}%
 }{}%
 \setbox\@tempboxa\vbox{\unvbox\@tempboxa}%PRUEFEN!!!!
 \ifvoid\@tempboxa
 \md@PackageWarning{You got a bad break\MessageBreak
 because the splittet box is empty\MessageBreak
 You have to change the page settings\MessageBreak
 like enlargethispage or something else}%
 \fi
 \ifdimequal{\wd\tw@}{0pt}%%pruefe, ob erste Box leer ist
 {\clearpage%
 \md@put@frame}%
 {\md@putbox@first%%Groesse des Splittens passt
 \eject%\clearpage%
 \md@put@frame@ii}%
}

\def\md@put@frame@ii{%Ausgabe der mittleren Box(en) wenn vorhanden
 \setlength{\md@freevspace@length}{\vsize}%
 \setlength{\dimen@}{\ht\@tempboxa+\dp\@tempboxa}%
 \addtolength{\dimen@}{%%Addition der Linien unten
 \mdf@outerlinewidth@length%
 +\mdf@middlelinewidth@length%
 +\mdf@innerlinewidth@length%
 +\mdf@innerbottommargin@length%
 }%
 \ifboolexpr{(bool {mdf@bottomline})
 and
 (test {\ifnumequal{\mdf@style}{0}}
 or
 test {\ifnumequal{\mdf@style}{3}}
)
 }%
 {}{\addtolength{\dimen@}{-\mdf@middlelinewidth@length}}%
 \ifdimgreater{\dimen@}{\md@freevspace@length}%
 {%
 \addtolength{\md@freevspace@length}{%%Abzug der Linien unten
 -\mdf@splitbottomskip@length%
 }%
 \boxmaxdepth\z@ \splittopskip\mdf@splittopskip@length%
 \setbox\tw@\vsplit\@tempboxa to \md@freevspace@length%
 \setbox\tw@\vbox{\unvbox\tw@}%PRUEFEN!!!
 \setbox\@tempboxa\vbox{\unvbox\@tempboxa}%PRUEFEN!!!!
 \ifvoid\@tempboxa\relax%
 \md@PackageWarning{You got a bad break\MessageBreak
 because the splittet box is empty\MessageBreak
 You have to change the settings}%
 \fi%
 \md@putbox@middle%
 \clearpage\md@put@frame@ii%
 }%Hier die Ausgabe der mittleren Box
 {\ifdimequal{\wd\@tempboxa}{\z@}{\md@PackageWarning{You got a bad break\MessageBreak
 because the splittet box is empty\MessageBreak
 You have to change the settings}%
 }{}%
 \md@putbox@second}%Hier kommt die Ausgabe der letzten Box
}

\catcode`\|=\md@arrayparboxrestore %%%????

% \md@arrayparboxrestore has parts of \@parboxrestore, performing a similar but
% less complete restoration of a default layout. See how it is used in the
% "settings" argument of \MakeFrame. Though not a parameter, \hsize
% should be set to the desired total line width available inside the
% frame before invoking \md@arrayparboxrestore.
\def\md@arrayparboxrestore{%
 %%%AUS ltboxes.dtx -> \@arrayparboxrestore
 \let\if@nobreak\iffalse
 \let\if@noskipsec\iffalse
 \let\-\@dischyph %%%Default \let\@dischyph=\-
 \let\'\@acci\let\`\@accii\let\=\@acciii %%%Default: \let\@acci\' \let\@accii\` \let\@acciii\= <- Sicher gehen
 %%%dass Defaultwerte erhalten sind
 %%%Scheinen Mathesymbole zu sein ???
 % Test ob Listenumgebung enthalten ist
 \ifnum \ifdim\@totalleftmargin>\z@ 1\fi %%%In latex.ltx->totalleftmargin=\z@, ausser in list-Umgebung:
 %%%\advance\@totalleftmargin \leftmargin
 \ifdim\rightmargin >\z@ 1\fi %%%Default \rightmargin=\z@, Ausnahme: quote usw.
 \ifnum\@listdepth >0 1\fi %%%Zaehler fuer Listentiefe -> Keine Liste \@listdepth=0 sonst, je Ebene +1
 0>\z@ %%%Ist ein Parameter erfuellt, dann ist es eine Listenumgebung
 \@setminipage %%%Passform rund um das Element
 % Nun wird versucht, Aenderungen der Breite von \hsize entsprechend der Listenparameter zu uebergeben.
 % Dies ist defizitaer, denn eine erweiterte Moeglichkeit, Aenderungen der Textdimension anzugegeben
 % ist (noch) nicht vorgesehen, insbesondere keine getrennte linke / rechte Einstellung.
 \advance\linewidth-\columnwidth \advance\linewidth\md@horizontalspaceofbox
 \parshape\@ne \@totalleftmargin \linewidth %%% parshape definiert das Aussehen eines Absatzes Zeile fuer Zeile.
 %%% Seine Parameterversorgung geschieht mittels der folgenden Syntax:
 %%% \parshape = n i1 l1 i2 l2 ... in ln.
 %%% Dabei gibt der Parameter n an, fuer wieviele Zeilen Definitionspaare folgen.
 %%% Jedes Definitionspaar besteht aus der Angabe i_j fuer den Einzug und
 %%% der Laengenangabe l_j fuer die entsprechende Zeile. Sind mehr als n Zeilen
 %%% vorhanden, so wird die letzte Angabe stets weiter verwendet
 \else % Not in list
 \linewidth=\md@horizontalspaceofbox
 \fi
 \sloppy
}

%%==%%
%%= Sicherstellen, dass Optionen nur global setzbar=%%
%%==%%

\DisableKeyvalOption[%
 action=warning,
 package=mdframed,
]{mdf}{globalstyle}%

\DisableKeyvalOption[%
 action=warning,
 package=mdframed,
]{mdf}{xcolor}%

\endinput
%%%
EOF
EOF
EOF

main/main.tex~

\RequirePackage{hyphsubst}
\documentclass[fontsize=11pt,paper=A4,BCOR=12mm,DIV=13,open=any,listof=totoc]{scrbook}
\input{../headers/paper}
\input{../headers/packages1}
\input{../headers/babel}
\input{../headers/svg}
\input{../headers/packages2}
\input{../headers/defaultcolors}
\input{../headers/hyphenation}
\input{../headers/commands}
\usepackage{type1ec}
\usepackage{CJKutf8}
\usepackage[overlap, CJK]{ruby}
\usepackage{CJKulem}
\input{../headers/title}
\input{../headers/options}
\input{../headers/formattings}
\input{../headers/unicodes}
\input{../headers/templates}
\input{../headers/templates-dirk}
\input{../headers/templates-chemie}
\usepackage{lmodern}
\begin{document}
\begin{CJK}{UTF8}{megafont}
\usetocstyle{standard}
\raggedbottom
\thispagestyle{empty}
\pagestyle{empty}
%\include{coverfrontpage}

%\cleardoublepage
\pagenumbering{Roman}
\maketitle
\pagestyle{scrheadings}

\setcounter{tocdepth}{\mytocdepth}
\tableofcontents

%\cleardoublepage
\pagenumbering{arabic}

%\include{kap-vorwort}

\label{0}

\chapter{Preface}
This wikibook is going to be an introductory text about electric circuits. It will cover some the basics of electric circuit theory, circuit analysis, and will touch on circuit design. This book will serve as a companion reference for a 1st year of an Electrical Engineering undergraduate curriculum. Topics covered include AC and DC circuits, passive circuit components, phasors, and RLC circuits. The focus is on students of an electrical engineering undergraduate program. Hobbyists would benefit more from reading \myhref{http://en.wikibooks.org/wiki/Electronics}{Electronics} instead.

{\itshape This book is not nearly completed, and could still be improved. People with knowledge of the subject are encouraged to contribute.}

The main editable text of this book is located at \myplainurl{http://en.wikibooks.org/wiki/Circuit_Theory.} The wikibooks version of this text is considered the most up-{}to-{}date version, and is the best place to edit this book and contribute to it.
\LaTeXNullTemplate{}
\chapter{Introduction}

\label{1}

\chapter{Basic Terminology}

\label{2}
\LaTeXNullTemplate{}
\section{Basic Terminology}
\label{3}

There are a few key terms that need to be understood at the beginning of this book, before we can continue. This is only a partial list of all terms that will be used throughout this book, but these key words are important to know before we begin the main narrative of this text.
{\bfseries
\begin{mydescription}Time domain
\end{mydescription}
}
\begin{myquote}\item{} The time domain is described by graphs of power, voltage and current that depend upon time. The \symbol{34}Time domain\symbol{34} is simply another way of saying that our circuits change with time, and that the major variable used to describe the system is time. Another name is \symbol{34}Temporal\symbol{34}.
\end{myquote}

{\bfseries
\begin{mydescription}Frequency domain
\end{mydescription}
}
\begin{myquote}\item{} The frequency domain are graphs of power, voltage and/or current that depend upon frequency such as \myhref{http://en.wikibooks.org/wiki/\%3Aw\%3ABode_plot}{Bode plots}. Variable frequencies in wireless communication can represent changing channels or data on a channel. Another name is the \symbol{34}\myhref{http://en.wikibooks.org/wiki/\%3Aw\%3AFourier_transform}{Fourier domain}\symbol{34}. Other domains that an engineer might encounter are the \symbol{34}Laplace domain\symbol{34} (or the \symbol{34}s domain\symbol{34} or \symbol{34}complex frequency domain\symbol{34}), and the \symbol{34}Z domain\symbol{34}. When combined with the time, it is called a \symbol{34}Spectral\symbol{34} or \symbol{34}\myhref{http://en.wikipedia.org/wiki/Spectrogram}{Waterfall}.\symbol{34}
\end{myquote}

{\bfseries
\begin{mydescription}Circuit Response
\end{mydescription}
}
\begin{myquote}\item{} Circuits generally have inputs and outputs. In fact, it is safe to say that a circuit isn\textquotesingle{}t useful if it doesn\textquotesingle{}t have one or the other (usually both). Circuit response is the relationship between the circuit\textquotesingle{}s input to the circuit\textquotesingle{}s output. The circuit response may be a measure of either current or voltage.
\end{myquote}

{\bfseries
\begin{mydescription}Steady State
\end{mydescription}
}
\begin{myquote}\item{} The final value, when all elements have a constant or periodic behaviour, is known as the steady-{}state value of the circuit. The circuit response at steady state (when things aren\textquotesingle{}t changing) is also known as the \symbol{34}steady state response\symbol{34}. The steady state solution is called the \myhref{http://en.wikibooks.org/wiki/Ordinary_Differential_Equations\%2FNon_Homogenous_1}{{\bfseries particular solution}}.
\end{myquote}

{\bfseries
\begin{mydescription}Transient Response
\end{mydescription}
}
\begin{myquote}\item{} A transient response occurs when:
\end{myquote}

\begin{myquote}
\item{}
\begin{myquote}
\item{} a circuit is turned on or off
\item{} a sensor responds to the physical world changes
\item{} static electricity is discharged
\item{} an old car with old spark plugs (before resistors were put in spark plugs) drives by
\end{myquote}

\end{myquote}

\begin{myquote}
\item{} Transient means momentary, or a short period of time. Transient means that the energy in a circuit suddenly changes which causes the energy storage elements to react. The circuit\textquotesingle{}s energy state is forced to change. When a car goes over a bump, it can fly apart, feel like a rock, or cushion the impact in a designed manner. The goal of most circuit design is to plan for transients, whether intended or not.
\end{myquote}

\begin{myquote}
\item{} Transient solutions are determined using a \myhref{http://en.wikibooks.org/wiki/Ordinary_Differential_Equations\%2FHomogenous_1}{{\bfseries homogeneous solution}} technique.
\end{myquote}

\section{Summary}
\label{4}
When something changes in a circuit, there is a certain transition period before a circuit \symbol{34}settles down\symbol{34}, and reaches its final value. The response that a circuit has before settling into its {\itshape steady-{}state response} is known as the {\itshape transient response}. Using using \myhref{http://en.wikibooks.org/wiki/\%3Aw\%3AEuler\%2527s_formula}{{\bfseries Euler\textquotesingle{}s formula}}, \myhref{http://en.wikibooks.org/wiki/Arithmetic_Course\%2FTypes_of_Number\%2FComplex_Number}{{\bfseries complex numbers}}, \myhref{http://en.wikibooks.org/wiki/\%3Aw\%3APhasors}{{\bfseries phasors}} and the \myhref{http://en.wikibooks.org/wiki/\%3Aw\%3AS-plane}{{\bfseries s-{}plane}}, a \myhref{http://en.wikibooks.org/wiki/Ordinary_Differential_Equations\%2FHomogenous_1}{{\bfseries homogeneous solution}} technique will be developed that captures the transient response by assuming the final state has no energy. In addition, a \myhref{http://en.wikibooks.org/wiki/Ordinary_Differential_Equations\%2FNon_Homogenous_1}{{\bfseries particular solution}} technique will be developed that finds the final energy state. Added together, they predict the {\itshape circuit response}.

The related \myhref{http://en.wikibooks.org/wiki/Ordinary_Differential_Equations}{{\bfseries Differential equation}} development of homogeneous and particular solutions will be avoided.
\chapter{Variables and Standard Units}

\label{5}
\LaTeXNullTemplate{}
\section{Electric Charge (Coulombs)}
\label{6}

\LaTeXPlainBoxTemplate{{\bfseries Note:} \newline{}
An electron has a charge of \newline{}
 {\bfseries -{}1.602{\mbox{\times}}10E-{}19} C.}

\myhref{http://en.wikibooks.org/wiki/\%3Aw\%3AElectric_charge}{{\bfseries Electric charge}} is a \myhref{http://en.wikibooks.org/wiki/\%3Aw\%3Aphysical\%20property}{physical property} of \myhref{http://en.wikibooks.org/wiki/\%3Aw\%3Amatter}{matter} that causes it to experience a \myhref{http://en.wikibooks.org/wiki/\%3Aw\%3Aforce}{force} when near other electrically charged matter. Electric Charge (symbol q) is measured in SI units called {\bfseries \symbol{34}Coulombs\symbol{34}}, which are abbreviated with the letter capital C.

We know that q=n*e, where n = number of electrons and e= 1.6*10\textsuperscript{-{}19}. Hence n=1/e coulombs. A Coulomb is the total charge of 6.24150962915265×1018 electrons, thus a single electron has a charge of −1.602 × 10−19.

It is important to understand that this concept of \symbol{34}charge\symbol{34} is associated with static electricity. Charge, as a concept, has a physical boundary that is related to counting a group of electrons. \symbol{34}Flowing\symbol{34} electricity is an \myhref{http://en.wikibooks.org/wiki/\%3Aw\%3AElectric_charge\%23Static_electricity_and_electric_current}{{\bfseries entirely different situation}}. \symbol{34}Charge\symbol{34} and electrons separate. Charge moves at the speed of light while electrons move at the speed of \myhref{http://en.wikibooks.org/wiki/\%3Aw\%3ADrift_velocity}{{\bfseries 1 meter/hour}}. Thus in most circuit analysis, \symbol{34}charge\symbol{34} is an abstract concept unrelated to energy or an electron and more related to the flow of \myhref{http://en.wikibooks.org/wiki/\%3Aw\%3APhysical_information}{{\bfseries information}}.

Electric charge is the subject of many fundamental laws, such as \myhref{http://en.wikibooks.org/wiki/\%3Aw\%3ACoulomb\%2527s_law}{{\bfseries Coulomb\textquotesingle{}s Law}} and \myhref{http://en.wikibooks.org/wiki/\%3Aw\%3AGauss\%2527s_law}{{\bfseries Gauss\textquotesingle{} Law}} (static electricity) but is not used much in circuit theory.
\section{Voltage (Volts)}
\label{7}

{\bfseries Voltage} is a measure of the work required to move a charge from one point to another in a electric field. Thus the unit \symbol{34}volt\symbol{34} is defined as a Joules (J) per Coulomb (C).

\begin{myquote}
\item{} \begin{equation*}V = \frac{W}{q}\end{equation*}
\end{myquote}

W represents work, q represents an amount of charge. Charge is a static electricity concept. The definition of a volt is shared between static and \symbol{34}flowing\symbol{34} electronics.

Voltage is sometimes called \symbol{34}electric potential\symbol{34}, because voltage represents the a difference in Electro Motive Force (EMF) that can produce current in a circuit. More voltage means more potential for current. Voltage also can be called \symbol{34}Electric Pressure\symbol{34}, although this is far less common.

Voltage is not measured in absolutes but in {\itshape relative} terms. The English language tradition obscures this. For example we say \symbol{34}What is the distance to New York?\symbol{34} Clearly implied is the relative distance from where we are standing to New York. But if we say \symbol{34}What is the voltage at ______?\symbol{34} What is the starting point?

Voltage is defined between two points. Voltage is relative to where 0 is defined. We say \symbol{34}The voltage from point A to B is 5 volts.\symbol{34} It is important to understand EMF and voltage are two different things.

When the question is asked \symbol{34}What is the voltage at ______?\symbol{34}, look for the ground symbol on a circuit diagram. Measure voltage from ground to _____. If the question is asked \symbol{34}What is the voltage from A to B?\symbol{34} then put the red probe on A and the black probe on B (not ground).

The absolute is referred to as \symbol{34}EMF\symbol{34} or Electro Motive Force. The difference between the two EMF\textquotesingle{}s is a voltage.
\section{Current (Amperes)}
\label{8}

{\bfseries Current} is a measurement of the flow of electricity. Current is measured in units called {\bfseries Amperes} (or \symbol{34}Amps\symbol{34}). An ampere is \symbol{34}charge volume velocity\symbol{34} in the same way water current could be measured in \symbol{34}cubic feet of water per second.\symbol{34} But current is a \myhref{http://en.wikibooks.org/wiki/\%3Aw\%3ASI_base_unit}{{\bfseries base SI unit}}, a fundamental dimension of reality like space, time and mass. A coulomb or charge is not. A coulomb is actually defined in terms of the ampere. \symbol{34}Charge or Coulomb\symbol{34} is a \myhref{http://en.wikibooks.org/wiki/\%3Aw\%3ASI_derived_units\%23Derived_units_with_special_names}{{\bfseries derived SI Unit}}. The coulomb is a fictitious entity left over from the \myhref{http://en.wikibooks.org/wiki/\%3Aw\%3AHistory_of_electromagnetic_theory\%23Late_18th_century}{{\bfseries one fluid /two fluid}} philosophies of the 18th century.

This course is about flowing electrical energy that is found in all modern electronics. Charge volume velocity (defined by current) is a useful concept, but understand it has no basis in reality. Do not think of current as a bundle electrons carrying energy through a wire. \myhref{http://en.wikibooks.org/wiki/Special_Relativity}{Special relativity} and \myhref{http://en.wikibooks.org/wiki/Quantum_Mechanics}{quantum mechanics} concepts are necessary to understand how electrons move at \myhref{http://en.wikibooks.org/wiki/\%3Aw\%3ADrift_velocity}{{\bfseries 1 meter/hour}} through copper, yet electromagnetic energy moves at near the speed of light.

\LaTeXPlainBoxTemplate{\myhref{http://en.wikibooks.org/wiki/\%3Aw\%3AElectric_charge\%23Properties}{{\bfseries Charge}} is similar to the \myhref{http://en.wikibooks.org/wiki/\%3Aw\%3ARest_mass}{{\bfseries rest mass}} concept of relativity and generates the \myhref{http://en.wikibooks.org/wiki/\%3Aw\%3ACharge_\%28physics\%29}{{\bfseries U(1) symmetry}} of electromagnetism}

Amperes are abbreviated with an \symbol{34}A\symbol{34} (upper-{}case A), and the variable most often associated with current is the letter \symbol{34}i\symbol{34} (lower-{}case I). In terms of coulombs, an ampere is:

\begin{myquote}
\item{} \begin{equation*}i = \frac{dq}{dt}\end{equation*}
\end{myquote}

\LaTeXPlainBoxTemplate{For the rest of this book, the lower-{}case J (j) will be used to denote an imaginary number, and the lower-{}case I (i) will be used to denote current.}

Because of the widespread use of complex numbers in Electrical Engineering, it is common for electrical engineering texts to use the letter \symbol{34}j\symbol{34} (lower-{}case J) as the imaginary number, instead of the \symbol{34}i\symbol{34} (lower-{}case I) commonly used in math texts. This wikibook will adopt the \symbol{34}j\symbol{34} as the imaginary number, to avoid confusion.
\section{Energy and Power}
\label{9}

Electrical theory is about energy storage and the flow of energy in circuits. Energy is chopped up arbitrarily into something that doesn\textquotesingle{}t exist but can be counted called a coulomb. Energy per coulomb is voltage. The velocity of a coulomb is current. Multiplied together, the units are energy velocity or power ... and the unreal \symbol{34}coulomb\symbol{34} disappears.
\subsection{Energy}
\label{10}
Energy is measured most commonly in Joules, which are abbreviated with a \symbol{34}J\symbol{34} (upper-{}case J). The variable most commonly used with energy is \symbol{34}w\symbol{34} (lower-{}case W). The energy symbol is w which stands for work. Work is something good that we, as humans value.

From a thermodynamics point of view, all energy consumed by a circuit is work ... all the heat is turned into work. Practically speaking, this can not be true. If it were true, computers would never consume any energy and never heat up.

The reason that all the energy going into a circuit and leaving a circuit is considered \symbol{34}work\symbol{34} is because from a thermodynamic point of view, electrical energy is ideal. All of it can be used. Ideally all of it can be turned into work. Most introduction to thermodynamics courses assume that electrical energy is completely organized (and has entropy of 0).
\subsection{Power}
\label{11}
A corollary to the concept of energy being work, is that all the energy/power of a circuit (ideally) can be accounted for. The sum of all the power entering and leaving a circuit should add up to zero. No energy should be accumulated (theoretically). Of course capacitors will charge up and may hold onto their energy when the circuit is turned off. Inductors will create a magnetic field containing energy that will instantly disappear back into the source through the switch that turns the circuit off.

This course uses what is called the \symbol{34}\myhref{http://en.wikibooks.org/wiki/\%3Aw\%3AElectric_power\%23Passive_sign_convention}{passive}\symbol{34} sign convention for power. Energy put into a circuit by a power supply is negative, energy leaving a circuit is positive.

Power (the flow of energy) computations are an important part of this course. The symbol for power is w (for work) and the units are Watts or W.
\chapter{Electric Circuit Basics}

\label{12}
\LaTeXNullTemplate{}
\section{Circuits}
\label{13}

{\bfseries Circuits} (also known as \symbol{34}networks\symbol{34}) are collections of circuit elements and wires. Wires are designated on a schematic as being straight lines. Nodes are locations on a schematic where 2 or more wires connect, and are usually marked with a dark black dot. Circuit Elements are \symbol{34}everything else\symbol{34} in a sense. Most basic circuit elements have their own symbols so as to be easily recognizable, although some will be drawn as a simple box image, with the specifications of the box written somewhere that is easy to find. We will discuss several types of basic circuit components in this book.
\section{Ideal Wires}
\label{14}

For the purposes of this book, we will assume that an ideal wire has zero total resistance, no capacitance, and no inductance. A consequence of these assumptions is that these ideal wires have infinite bandwidth, are immune to interference, and are — in essence — completely uncomplicated. This is not the case in real wires, because all wires have at least some amount of associated resistance. Also, placing multiple real wires together, or bending real wires in certain patterns will produce small amounts of capacitance and inductance, which can play a role in circuit design and analysis. This book will assume that all wires are ideal.
\section{Ideal Junctions or Nodes}
\label{15}

\begin{minipage}{1.0\linewidth}
\begin{center}
\includegraphics[width=1.0\linewidth,height=6.5in,keepaspectratio]{../images/1.jpg}
\end{center}
\raggedright{}\myfigurewithcaption{1}{Nodes are areas where the Electromotive Force is the same.}
\end{minipage}\vspace{0.75cm}

Nodes are also called \symbol{34}junctions\symbol{34} in this book in order to make a distinction between Node analysis, Kirchhoff\textquotesingle{}s current law and discussions about a physical node itself. Here a physical node is discussed.

A junction is a group of wires that share the same \myhref{http://en.wikibooks.org/wiki/\%3Awikipedia\%3AElectromotive_force}{electromotive force} (not voltage). Wires ideally have no resistance, thus all wires that touch wire to wire somewhere are part of the same node. The diagram on the right shows three big blue nodes, two smaller green nodes and two trivial (one wire touching another) nodes.

Sometimes a node is described as where two or more wires touch and students circle where wires intersect and call this a node. This only works on simple circuits.

One node has to be labeled ground in any circuit drawn before voltage can be computed or the circuit simulated. Typically this is the node having the most components connected to it. Logically it is normally placed at the bottom of the circuit logic diagram.

Ground is not always needed physically. Some circuits are \myhref{http://en.wikibooks.org/wiki/\%3Aw\%3AFloating_ground}{floated} on purpose.

\myhref{http://en.wikibooks.org/wiki/\%2FNodeQuiz\%2F}{Node Quiz}
\section{Measuring instruments}
\label{16}
{\bfseries Voltmeters and Ammeters} are devices that are used to measure the voltage across an element, and the current flowing through a wire, respectively.
\subsection{Ideal Voltmeters}
\label{17}
An ideal voltmeter has an infinite resistance (in reality, several megaohms), and acts like an open circuit. A \myhref{http://en.wikibooks.org/wiki/\%3Awikiversity\%3ATutorial_on_preparing_the_multimeter_for_start_measuring_the_voltage}{voltmeter} is placed across the terminals of a circuit element, to determine the voltage across that element. In practice the voltmeter siphons a enough energy to move a needle, cause thin strips of metal to separate or turn on a transistor so a number is displayed.
\subsection{Ideal Ammeters}
\label{18}

An ideal ammeter has zero resistance and acts like a short circuit. Ammeters require cutting a wire and plugging the two ends into the Ammeter. In practice an ammeter places a tiny resistor in a wire and measures the tiny voltage across it or the ammeter measures the \myhref{http://en.wikibooks.org/wiki/\%3Aw\%3AClamp_meter}{magnetic field strength} generated by current flowing through a wire. Ammeters are not used that much because of the wire cutting, or wire disconnecting they require.
\section{Active Passive \& ReActive}
\label{19}

The elements which are capable of delivering energy or which are capable to amplify the signal are called \symbol{34}Active elements\symbol{34}. All power supplies fit into this category.

The elements which will receive the energy and dissipate it are called \symbol{34}Passive elements\symbol{34}. Resistors model these devices.

Reactive elements store and release energy into a circuit. Ideally they don\textquotesingle{}t either consume or generate energy. Capacitors, and inductors fall into this category.
\section{Open and Short Circuits}
\label{20}
\subsection{Open}
\label{21}
No current flows through an open. Normally an {\bfseries open} is created by a bad connector. Dust, bad solder joints, bad crimping, cracks in circuit board traces, create an {\bfseries open}. Capacitors respond to DC by turning into {\bfseries opens} after charging up. Uncharged inductors appear as {\bfseries opens} immediately after powering up a circuit. The word {\bfseries open} can refer to a problem description. The word {\bfseries open} can also help develop an intuition about circuits.

Typically the circuit stops working with opens because 99\% of all circuits are driven by voltage power sources. Voltage sources respond to an open with no current. Opens are the equivalent of clogs in plumbing .. which stop water from flowing.

On one side of the open, EMF will build up, just like water pressure will build up on one side of a clogged pipe. Typically a voltage will appear across the open.
\subsection{Short}
\label{22}
A voltage source responds to a {\bfseries short} by delivering as much current as possible. An extreme example of this can be seen in this \myhref{http://www.youtube.com/watch?v=g60okBMeTKo}{ ball bearing motor video}. The motor appears as a short to the battery. Notice he only completes the short for a short time because he is worried about the car battery exploding.

Maximum current flows through a {\bfseries short}. Normally a {\bfseries short} is created by a wire, a nail, or some loose screw touching parts of the circuit unintentionally. Most component failures start with heat build up. The heat destroys varnish, paint, or thin insulation creating a {\bfseries short}. The {\bfseries short} causes more current to flow which causes more heat. This cycle repeats faster and faster until there is a puff of smoke and everything breaks creating an {\bfseries open}. Most component failures start with a {\bfseries short} and end in an {\bfseries open} as they burn up. Feel the air temperature above each circuit component after power on. Build a memory of what normal operating temperatures are. Cold can indicate a short that has already turned into an open.

An uncharged capacitor initially appears as a {\bfseries short} immediately after powering on a circuit. An inductor appears as a {\bfseries short} to DC after charging up. The {\bfseries short} concept also helps build our intuition, provides an an opportunity to talk about electrical safety and helps describe component failure modes.

A {\bfseries closed} switch can be thought of as short. \myhref{http://en.wikibooks.org/wiki/\%3Awikipedia\%3ASwitch}{Switches} are surprisingly complicated. It is in a study of switches that the term {\bfseries closed} begins to dominate that of {\bfseries short}.
\chapter{Resistors and Resistance}

\label{23}
\LaTeXNullTemplate{}
\subsection{Resistors}
\label{24}

Mechanical engineers seem to model everything with a spring. Electrical engineers compare everything to a {\bfseries Resistor}. Resistors are circuit elements that resist the flow of current. When this is done a voltage appears across the resistor\textquotesingle{}s two wires.

A pure \myhref{http://en.wikibooks.org/wiki/\%3Aw\%3AResistor}{resistor} turns electrical energy into heat. Devices similar to resistors turn this energy into light, motion, heat, and other forms of energy.

\begin{minipage}{1.0\linewidth}
\begin{center}
\includegraphics[width=1.0\linewidth,height=6.5in,keepaspectratio]{../images/2.png}
\end{center}
\raggedright{}\myfigurewithoutcaption{2}
\end{minipage}\vspace{0.75cm}

Current in the drawing above is shown entering the + side of the resistor. Resistors don\textquotesingle{}t care which leg is connected to positive or negative. The + means where the positive or red probe of the volt meter is to be placed in order to get a positive reading. This is called the \symbol{34}\myhref{http://en.wikibooks.org/wiki/\%3Aw\%3AElectric_current\%23Conventions}{positive charge}\symbol{34} flow sign convention. Some circuit theory classes (often within a physics oriented curriculum) are taught with an \symbol{34}electon flow\symbol{34} sign convention.

In this case, current entering the + side of the resistor means that the resistor is removing energy from the circuit. This is good. The goal of most circuits is to send energy out into the world in the form of motion, light, sound, etc.
\subsection{Resistance}
\label{25}

{\bfseries \myhref{http://en.wikibooks.org/wiki/\%3AWikipedia\%3AElectrical\%20resistance}{Resistance}} is measured in terms of units called \symbol{34}Ohms\symbol{34} (volts per ampere), which is commonly abbreviated with the Greek letter {\mbox{Ω}} (\symbol{34}Omega\symbol{34}). Ohms are also used to measure the quantities of {\itshape impedance} and {\itshape reactance}, as described in a later chapter. The variable most commonly used to represent resistance is \symbol{34}r\symbol{34} or \symbol{34}R\symbol{34}.

Resistance is defined as:

\begin{myquote}
\item{} \begin{equation*}r = {\rho L \over A}\end{equation*}
\end{myquote}

where {\mbox{ρ}} is the resistivity of the material, L is the length of the resistor, and A is the cross-{}sectional area of the resistor.
\subsection{Conductance}
\label{26}

{\bfseries Conductance} is the inverse of resistance. Conductance has units of \symbol{34}Siemens\symbol{34} (S), sometimes referred to as mhos (ohms backwards, abbreviated as an upside-{}down {\mbox{Ω}}). The associated variable is \symbol{34}G\symbol{34}:

\begin{myquote}
\item{} \begin{equation*}G = \frac{1}{r}\end{equation*}
\end{myquote}

Before calculators and computers, conductance helped \myhref{http://en.wikibooks.org/wiki/\%3Aw\%3ASmith\%20chart}{reduce} the number of hand calculations that had to be done. Now conductance and it\textquotesingle{}s related concepts of \myhref{http://en.wikibooks.org/wiki/\%3Awikipedia\%3AAdmittance}{admittance} and susceptance can be skipped with matlab, octave, wolfram alpha and other computing tools. Learning one or more these computing tools is now absolutely necessary in order to get through this text.
\subsection{Resistor terminal relation}
\label{27}

\begin{minipage}{1.0\linewidth}
\begin{center}
\includegraphics[width=1.0\linewidth,height=6.5in,keepaspectratio]{../images/3.png}
\end{center}
\raggedright{}\myfigurewithcaption{3}{A simple circuit diagram relating current, voltage, and resistance}
\end{minipage}\vspace{0.75cm}

The drawing on the right is of a battery and a resistor. Current is leaving the + terminal of the battery. This means this battery is turning chemical potential energy into electromagnetic potential energy and dumping this energy into the circuit. The flow of this energy or power is negative.

Current is entering the positive side of the resistor even though a + has not been put on the resistor. This means electromagnetic potential energy is being converted into heat, motion, light, or sound depending upon the nature of the resistor. Power flowing out of the circuit is given a positive sign.

The relationship of the voltage across the resistor V, the current through the resistor I and the value of the resistor R is related by \myhref{http://en.wikibooks.org/wiki/\%3Awikiversity\%3AOhm\%2527s_law}{ohm\textquotesingle{}s law}:

\EqnTemplate{Resistor Terminal Relation}
\begin{myquote}
\item{} \begin{equation*}V=R*I\end{equation*}
\end{myquote}

A resistor, capacitor and inductor all have only two wires attached to them. Sometimes it is hard to tell them apart. In the real world, all three have a bit of resistance, capacitance and inductance in them. In this unknown context, they are called two terminal devices. In more complicated devices, the wires are grouped into \myhref{http://en.wikibooks.org/wiki/\%3Awikipedia\%3ATwo-port_network}{ports}. A two terminal device that expresses Ohm\textquotesingle{}s law when current and voltage are applied to it, is called a resistor.
\subsection{Resistor Safety}
\label{28}
Resistors come in all forms. Most have a maximum power rating in watts. If you put too much through them, they can melt, catch on fire, etc.
\subsection{Example}
\label{29}
Suppose the voltage across a resistor\textquotesingle{}s two terminals is 10 volts and the measured current through it is 2 amps. What is the resistance?

If {$ v=iR $} then {$ R = v/i = 10V/2A = 5 ohms$}

\LaTeXNullTemplate{}
\chapter{Resistive Circuit Analysis Techniques}

\label{30}

\chapter{Source Transformations}

\label{31}
\LaTeXNullTemplate{}
\section{Source Transformations}
\label{32}

Independent current sources can be turned into independent voltage sources, and vice-{}versa, by methods called \symbol{34}Source Transformations.\symbol{34} These transformations are useful for solving circuits. We will explain the two most important source transformations, {\bfseries Thevenin\textquotesingle{}s Source}, and {\bfseries Norton\textquotesingle{}s Source}, and we will explain how to use these conceptual tools for solving circuits.
\section{Black Boxes}
\label{33}

A circuit (or any system, for that matter) may be considered a {\bfseries black box} if we don\textquotesingle{}t know what is inside the system. For instance, most people treat their computers like a black box because they don\textquotesingle{}t know what is inside the computer (most don\textquotesingle{}t even care), all they know is what goes in to the system (keyboard and mouse input), and what comes out of the system (monitor and printer output).

Black boxes, by definition, are systems whose internals aren\textquotesingle{}t known to an outside observer. The only methods that an outside observer has to examine a black box is to send input into the systems, and gauge the output.
\section{Thevenin\textquotesingle{}s Theorem}
\label{34}

Let\textquotesingle{}s start by drawing a general circuit consisting of a source and a load, as a block diagram:

\begin{minipage}{1.0\linewidth}
\begin{center}
\includegraphics[width=1.0\linewidth,height=6.5in,keepaspectratio]{../images/4.\SVGExtension}
\end{center}
\raggedright{}\myfigurewithoutcaption{4}
\end{minipage}\vspace{0.75cm}

Let\textquotesingle{}s say that the source is a collection of voltage sources, current sources and resistances, while the load is a collection of resistances only. Both the source and the load can be arbitrarily complex, but we can conceptually say that the source is directly equivalent to a single voltage source and resistance (figure (a) below).

\begin{longtable}{>{\RaggedRight}p{0.45982\linewidth}>{\RaggedRight}p{0.45982\linewidth}}
\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\begin{minipage}{1.0\linewidth}\begin{center}\includegraphics[width=1.0\linewidth,height=6.5in,keepaspectratio]{../images/5.\SVGExtension}\end{center}\myfigurewithoutcaption{5}\end{minipage}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\begin{minipage}{1.0\linewidth}\begin{center}\includegraphics[width=1.0\linewidth,height=6.5in,keepaspectratio]{../images/6.\SVGExtension}\end{center}\myfigurewithoutcaption{6}\end{minipage}\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\itshape (a)}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\itshape (b)}
\end{longtable}

We can determine the value of the resistance {\itshape R\textsubscript{s}} and the voltage source, {\itshape v\textsubscript{s}} by attaching an independent source to the output of the circuit, as in figure (b) above. In this case we are using a current source, but a voltage source could also be used. By varying {\itshape i} and measuring {\itshape v}, both {\itshape v\textsubscript{s}} and {\itshape R\textsubscript{s}} can be found using the following equation:

\begin{myquote}
\item{}
\begin{myquote}
\item{} \begin{equation*}v=v_s+iR_s \,\end{equation*}
\end{myquote}

\end{myquote}

There are two variables, so two values of {\itshape i} will be needed. See \myhref{http://en.wikibooks.org/wiki/\%2FExamples\%23Example1}{Example 1} for more details. We can easily see from this that if the current source is set to zero (equivalent to an open circuit), then {\itshape v} is equal to the voltage source, {\itshape v\textsubscript{s}}. This is also called the open-{}circuit voltage, {\itshape v\textsubscript{oc}}.

This is an important concept, because it allows us to model what is inside a unknown (linear) circuit, just by knowing what is coming out of the circuit. This concept is known as {\bfseries Thévenin\textquotesingle{}s Theorem} after French telegraph engineer \myhref{http://en.wikipedia.org/wiki/L\%E9on\%20Charles\%20Th\%E9venin}{Léon Charles Thévenin}, and the circuit consisting of the voltage source and resistance is called the {\bfseries Thévenin Equivalent Circuit}.
\section{Norton\textquotesingle{}s Theorem}
\label{35}

Recall from above that the output voltage, {\itshape v}, of a Thévenin equivalent circuit can be expressed as

\begin{myquote}
\item{}
\begin{myquote}
\item{} \begin{equation*}v=v_s+iR_s \,\end{equation*}
\end{myquote}

\end{myquote}

Now, let\textquotesingle{}s rearrange it for the output current, {\itshape i}:

\begin{myquote}
\item{}
\begin{myquote}
\item{} \begin{equation*}i=-\frac{v_s}{R_s}+\frac{v}{R_s}\end{equation*}
\end{myquote}

\end{myquote}

This is equivalent to a KCL description of the following circuit. We can call the constant term {\itshape v\textsubscript{s}/R\textsubscript{s}} the source current, {\itshape i\textsubscript{s}}.

\begin{minipage}{1.0\linewidth}
\begin{center}
\includegraphics[width=1.0\linewidth,height=6.5in,keepaspectratio]{../images/7.\SVGExtension}
\end{center}
\raggedright{}\myfigurewithoutcaption{7}
\end{minipage}\vspace{0.75cm}

The equivalent current source and the equivalent resistance can be found with an independent source as before (see \myhref{http://en.wikibooks.org/wiki/\%2FExamples\%23Example\%202}{Example 2}).

When the above circuit (the {\bfseries Norton Equivalent Circuit}, after Bell Labs engineer \myhref{http://en.wikipedia.org/wiki/Edward_Lawry_Norton}{E.L. Norton}) is disconnected from the external load, the current from the source all flows through the resistor, producing the requisite voltage across the terminals, {\itshape v\textsubscript{oc}}. Also, if we were to short the two terminals of our circuit, the current would all flow through the wire, and none of it would flow through the resistor (current divider rule). In this way, the circuit would produce the short-{}circuit current {\itshape i\textsubscript{sc}} (which is exactly the same as the source current {\itshape i\textsubscript{s}}).
\section{Circuit Transforms}
\label{36}

We have just shown turns out that the Thévenin and Norton circuits are just different representations of the same black box circuit, with the same Ohm\textquotesingle{}s Law/KCL equations. This means that we cannot distinguish between Thévenin source and a Norton source from outside the black box, and that we can directly equate the two as below:

\begin{longtable}{>{\RaggedRight}p{0.41685\linewidth}>{\RaggedRight}p{0.04576\linewidth}>{\RaggedRight}p{0.41685\linewidth}}
\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\begin{minipage}{1.0\linewidth}\begin{center}\includegraphics[width=1.0\linewidth,height=6.5in,keepaspectratio]{../images/8.\SVGExtension}\end{center}\myfigurewithoutcaption{8}\end{minipage}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\equiv}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\begin{minipage}{1.0\linewidth}\begin{center}\includegraphics[width=1.0\linewidth,height=6.5in,keepaspectratio]{../images/9.\SVGExtension}\end{center}\myfigurewithoutcaption{9}\end{minipage}
\end{longtable}

We can draw up some rules to convert between the two:

\begin{myitemize}
\item{} The values of the resistors in each circuit are conceptually identical, and can be called the equivalent resistance, {\itshape R\textsubscript{eq}}:
\end{myitemize}

\begin{myquote}
\item{}
\begin{myquote}
\item{} \begin{equation*}R_{s_n}=R_{s_t}=R_s=R_{eq}\end{equation*}
\end{myquote}

\end{myquote}

\begin{myitemize}
\item{} The value of a Thévenin voltage source is the value of the Norton current source times the equivalent resistance (Ohm\textquotesingle{}s law):
\end{myitemize}

\begin{myquote}
\item{}
\begin{myquote}
\item{} \begin{equation*}v_s=i_sr\,\end{equation*}
\end{myquote}

\end{myquote}

If these rules are followed, the circuits will behave identically. Using these few rules, we can transform a Norton circuit into a Thévenin circuit, and vice versa. This method is called {\bfseries source transformation}. See \myhref{http://en.wikibooks.org/wiki/\%2FExamples\%23Example\%203}{Example 3}.
\section{Open Circuit Voltage and Short Circuit Current}
\label{37}

The open-{}circuit voltage, {\itshape v\textsubscript{oc}} of a circuit is the voltage across the terminals when the current is zero, and the short-{}circuit current {\itshape i\textsubscript{sc}} is the current when the voltage across the terminals is zero:

\begin{longtable}{>{\RaggedRight}p{0.45982\linewidth}>{\RaggedRight}p{0.45982\linewidth}}
\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\begin{minipage}{1.0\linewidth}\begin{center}\includegraphics[width=1.0\linewidth,height=6.5in,keepaspectratio]{../images/10.\SVGExtension}\end{center}\myfigurewithoutcaption{10}\end{minipage}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\begin{minipage}{1.0\linewidth}\begin{center}\includegraphics[width=1.0\linewidth,height=6.5in,keepaspectratio]{../images/11.\SVGExtension}\end{center}\myfigurewithoutcaption{11}\end{minipage}\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\itshape The open circuit voltage}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\itshape The short circuit current}
\end{longtable}

We can also observe the following:

\begin{myitemize}
\item{} The value of the Thévenin voltage source is the open-{}circuit voltage:
\end{myitemize}

\begin{myquote}
\item{}
\begin{myquote}
\item{} \begin{equation*}v_s=v_{oc}\,\end{equation*}
\end{myquote}

\end{myquote}

\begin{myitemize}
\item{} The value of the Norton current source is the short-{}circuit current:
\end{myitemize}

\begin{myquote}
\item{}
\begin{myquote}
\item{} \begin{equation*}i_s=i_{sc}\,\end{equation*}
\end{myquote}

\end{myquote}

We can say that, generally,

\begin{myquote}
\item{}
\begin{myquote}
\item{} \begin{equation*}R_{eq}=\frac{v_{oc}}{i_{sc}}\end{equation*}
\end{myquote}

\end{myquote}

\section{Why Transform Circuits?}
\label{38}

How are Thevenin and Norton transforms useful?
\begin{myquote}
\item{} Describe a black box characteristics in a way that can predict its reaction to any load.
\item{} Find the current through and voltage across any device by removing the device from the circuit! This can instantly make a complex circuit much simpler to analyze.
\item{} Stepwise simplification of a circuit is possible if voltage sources have a series impedance and current sources have a parallel impedance.
\end{myquote}

\chapter{Maximum Power Transfer}

\label{39}
\LaTeXNullTemplate{}
\section{Maximum Power Transfer}
\label{40}

Often we would like to transfer the most power from a source to a load placed across the terminals as possible. How can we determine the optimum resistance of the load for this to occur?

Let us consider a source modelled by a Thévenin equivalent (a Norton equivalent will lead to the same result, as the two are directly equivalent), with a load resistance, {\itshape R\textsubscript{L}}. The source resistance is {\itshape R\textsubscript{s}} and the open circuit voltage of the source is {\itshape v\textsubscript{s}}:

\begin{minipage}{1.0\linewidth}
\begin{center}
\includegraphics[width=1.0\linewidth,height=6.5in,keepaspectratio]{../images/12.\SVGExtension}
\end{center}
\raggedright{}\myfigurewithoutcaption{12}
\end{minipage}\vspace{0.75cm}

The current in this circuit is found using Ohm\textquotesingle{}s Law:

\begin{myquote}
\item{}
\begin{myquote}
\item{} \begin{equation*}i=\frac{v_s}{R_s+R_L}\end{equation*}
\end{myquote}

\end{myquote}

The voltage across the load resistor, {\itshape v\textsubscript{L}}, is found using the voltage divider rule:

\begin{myquote}
\item{}
\begin{myquote}
\item{} \begin{equation*}v_L=v_s \,\frac{R_L}{R_s + R_L}\end{equation*}
\end{myquote}

\end{myquote}

We can now find the power dissipated in the load, {\itshape P\textsubscript{L}} as follows:

\begin{myquote}
\item{}
\begin{myquote}
\item{} \begin{equation*}P_L=v_Li=\frac{R_L \, v^2_s}{\left(R_s+R_L\right)^2}\end{equation*}
\end{myquote}

\end{myquote}

We can now rewrite this to get rid of the {\itshape R\textsubscript{L}} on the top:

\begin{myquote}
\item{}
\begin{myquote}
\item{} \begin{equation*}P_L=\frac{v^2_s}{ \left(\frac{R_s}{\sqrt{R_L}}+\sqrt{R_L}\right)^2} = \frac{v^2_s}{ R_s \left(\frac{\sqrt{R_s}}{\sqrt{R_L}}+\frac{\sqrt{R_L}}{\sqrt{R_s} }\right)^2}\end{equation*}
\end{myquote}

\end{myquote}

Assuming the source resistance is not changeable, then we obtain maximum power by minimising the bracketed part of the denominator in the above equation. It is an elementary mathematical result that {$x+x^{-1}$} is at a minimum when {\itshape x=1}. In this case, it is equal to 2. Therefore, the above expression is minimum under the following condition:

\begin{myquote}
\item{}
\begin{myquote}
\item{} \begin{equation*}\frac{\sqrt{R_s}}{\sqrt{R_L}}=1\end{equation*}
\end{myquote}

\end{myquote}

This leads to the condition that:

\begin{myquote}
\item{}
\begin{myquote}
\item{} \{|style=\symbol{34} border: solid 2px \#D6D6FF; padding: 1em;\symbol{34} valign=\symbol{34}top\symbol{34}
\end{myquote}

\end{myquote}

|align=\symbol{34}left\symbol{34}|{$R_L=R_s \,$}
|\}

\LaTeXZeroBoxOpenTemplate{We will get maximum power out of the source if the load resistance is identical to the internal source resistance. This is the {\bfseries Maximum Power Transfer Theorem}. }
\subsection{Efficiency}
\label{41}

The efficiency, {\itshape {\mbox{η}}} of the circuit is the proportion of all the energy dissipated in the circuit that is dissipated in the load. We can immediately see that at maximum power transfer to the load, the efficiency is 0.5, as the source resistor has half the voltage across it. We can also see that efficiency will increase as the load resistance increases, even though the power transferred will fall.

The efficiency can be calculated using the following equation:

\begin{myquote}
\item{}
\begin{myquote}
\item{} \begin{equation*}\eta=\frac{P_L}{P_L+P_s}\end{equation*}
\end{myquote}

\end{myquote}

where {\itshape P\textsubscript{s}} is the power in the source resistor. This can be found using a simple modification to the equation for {\itshape P\textsubscript{L}}:

\begin{myquote}
\item{}
\begin{myquote}
\item{} \begin{equation*}P_s=\frac{v^2_s}{ R_L \left(\frac{\sqrt{R_s}}{\sqrt{R_L}}+\frac{\sqrt{R_L}}{\sqrt{R_s} }\right)^2}\end{equation*}
\end{myquote}

\end{myquote}

The graph below shows the power in the load (as a proportion of the maximum power, {\itshape P\textsubscript{max}}) and the efficiency for values of {\itshape R\textsubscript{L}} between 0 and 5 times {\itshape R\textsubscript{s}}.

\begin{minipage}{1.0\linewidth}
\begin{center}
\includegraphics[width=1.0\linewidth,height=6.5in,keepaspectratio]{../images/13.\SVGExtension}
\end{center}
\raggedright{}\myfigurewithoutcaption{13}
\end{minipage}\vspace{0.75cm}

It is important to note that under conditions of maximum power transfer as much power is dissipated in the source as in the load. This is not a desirable condition if, for example, the source is the electricity supply system and the load is your electric heater. This would mean that the electricity supply company would be wasting half the power it generates. In this case, the generators, power lines, etc. are designed to give the lowest source resistance possible, giving high efficiency. The maximum power transfer condition is used in (usually high-{}frequency) communications systems where the source resistance can not be made low, the power levels are relatively low and it is paramount to get as much signal power as possible to the receiving end of the system (the load).
\chapter{Resistive Circuit Analysis Methods}

\label{42}
\LaTeXNullTemplate{}
\section{Analysis Methods}
\label{43}

When circuits get large and complicated, it is useful to have various methods for simplifying and analyzing the circuit. There is no perfect formula for solving a circuit. Depending on the type of circuit, there are different methods that can be employed to solve the circuit. Some methods might not work, and some methods may be very difficult in terms of long math problems. Two of the most important methods for solving circuits are {\bfseries Nodal Analysis}, and {\bfseries Mesh Current Analysis}. These will be explained below.
\section{Superposition}
\label{44}

One of the most important principals in the field of circuit analysis is the principal of {\bfseries superposition}. It is valid only in linear circuits.

\LaTeXZeroBoxOpenTemplate{{\itshape The {\bfseries superposition principle} states that the total effect of multiple contributing sources on a linear circuit is equal to the sum of the individual effects of the sources, taken one at a time.}}

What does this mean? In plain English, it means that if we have a circuit with multiple sources, we can \symbol{34}turn off\symbol{34} all but one source at a time, and then investigate the circuit with only one source active at a time. We do this with every source, in turn, and then add together the effects of each source to get the total effect. Before we put this principle to use, we must be aware of the underlying mathematics.
\subsection{Necessary Conditions}
\label{45}

Superposition can only be applied to {\bfseries linear} circuits; that is, all of a circuit\textquotesingle{}s sources hold a linear relationship with the circuit\textquotesingle{}s responses. Using only a few algebraic rules, we can build a mathematical understanding of superposition. If {\itshape f} is taken to be the response, and {\itshape a} and {\itshape b} are constant, then:

\begin{myquote}
\item{} \begin{equation*}f(ax_1+bx_2)= f(ax_1) + f(bx_2) \,\end{equation*}
\end{myquote}

In terms of a circuit, it clearly explains the concept of superposition; each input can be considered individually and then summed to obtain the output. With just a few more algebraic properties, we can see that superposition cannot be applied to non-{}linear circuits. In this example, the response {\itshape y} is equal to the square of the input x, i.e. y=x2. If {\itshape a} and {\itshape b} are constant, then:

\begin{myquote}
\item{} \begin{equation*}y=(ax_1+bx_2)^2 \ne (ax_1)^2 + (bx_2)^2 = y_1+y_2\,\end{equation*}
\end{myquote}

Note that this is only one of an infinite number of counter-{}examples...
\subsection{Step by Step}
\label{46}

Using superposition to find a given output can be broken down into four steps:

\begin{myenumerate}
\item{} Isolate a source -{} Select a source, and set all of the remaining sources to zero. The consequences of \symbol{34}turning off\symbol{34} these sources are explained in \mylref{22}{Open and Closed Circuits}. In summary, turning off a voltage source results in a short circuit, and turning off a current source results in an open circuit. (Reasoning -{} no current can flow through a open circuit and there can be no voltage drop across a short circuit.)
\item{} Find the output from the isolated source -{} Once a source has been isolated, the response from the source in question can be found using any of the techniques we\textquotesingle{}ve learned thus far.
\item{} Repeat steps 1 and 2 for each source -{} Continue to choose a source, set the remaining sources to zero, and find the response. Repeat this procedure until every source has been accounted for.
\item{} Sum the Outputs -{} Once the output due to each source has been found, add them together to find the total response.
\end{myenumerate}

\section{Impulse Response}
\label{47}

An {\bfseries impulse response} of a circuit can be used to determine the output of the circuit:

\begin{minipage}{1.0\linewidth}
\begin{center}
\includegraphics[width=1.0\linewidth,height=6.5in,keepaspectratio]{../images/14.\SVGExtension}
\end{center}
\raggedright{}\myfigurewithoutcaption{14}
\end{minipage}\vspace{0.75cm}

The output y is the {\bfseries convolution} h * x of the input x and the impulse response:

\EqnTemplate{Convolution}
\begin{myquote}
\item{} \begin{equation*}y(t) = (h*x)(t) = \int_{-\infty}^{+\infty} h(t-s)x(s)ds\end{equation*}
\end{myquote}

If the input, x(t), was an {\bfseries impulse} ({$\delta(t)$}), the output y(t) would be equal to h(t).

By knowing the impulse response of a circuit, any source can be plugged-{}in to the circuit, and the output can be calculated by convolution.
\section{Convolution}
\label{48}

The {\bfseries convolution operation} is a very difficult, involved operation that combines two equations into a single resulting equation. Convolution is defined in terms of a definite integral, and as such, solving convolution equations will require knowledge of integral calculus. This wikibook will not require a prior knowledge of integral calculus, and therefore will not go into more depth on this subject then a simple definition, and some light explanation.
\subsection{Definition}
\label{49}

The convolution a * b of two functions a and b is defined as:

\begin{myquote}
\item{} \begin{equation*}(a * b)(t) = \int_{-\infty}^\infty a(\tau)b(t - \tau)d\tau\end{equation*}
\end{myquote}

\LaTeXPlainBoxTemplate{Remember: \newline{}
Asterisks mean {\bfseries convolution}, not {\bfseries multiplication}}

The asterisk operator is used to denote convolution. Many computer systems, and people who frequently write mathematics on a computer will often use an asterisk to denote simple multiplication (the asterisk is the multiplication operator in many programming languages), however an important distinction must be made here: {\bfseries The asterisk operator means convolution.}
\subsection{Properties}
\label{50}

Convolution is commutative, in the sense that {$a * b = b * a$}. Convolution is also {\itshape distributive} over addition, i.e. {$a * (b + c) = a * b + a * c$}, and {\itshape associative}, i.e. {$a * (b * c) = (a * b) * c$}.
\subsection{Systems, and convolution}
\label{51}

Let us say that we have the following block-{}diagram system:

\begin{longtable}{|>{\RaggedRight}p{0.45982\linewidth}|>{\RaggedRight}p{0.45982\linewidth}|} \hline
\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\begin{minipage}{1.0\linewidth}\begin{center}\includegraphics[width=1.0\linewidth,height=6.5in,keepaspectratio]{../images/15.\SVGExtension}\end{center}\myfigurewithoutcaption{15}\end{minipage}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\begin{myitemize}\item{} {\itshape x(t)} = {\bfseries system input}\item{} {\itshape h(t)} = {\bfseries impulse response}\item{} {\itshape y(t)} = {\bfseries system output}\end{myitemize}\\ \hline
\end{longtable}

Where x(t) is the input to the circuit, h(t) is the circuit\textquotesingle{}s impulse response, and y(t) is the output. Here, we can find the output by convoluting the impulse response with the input to the circuit. Hence we see that the impulse response of a circuit is not just the ratio of the output over the input. In the frequency domain however, component in the output with frequency {\mbox{ω}} is the product of the input component with the same frequency and the transition function at that frequency. The moral of the story is this: {\itshape the output to a circuit is the input convolved with the impulse response.}

\LaTeXNullTemplate{}
\chapter{Energy Storage Elements}

\label{52}

\chapter{First-{}Order Circuits}

\label{53}
\LaTeXNullTemplate{}
\section{First Order Circuits}
\label{54}

First order circuits are circuits that contain only one energy storage element (capacitor or inductor), and that can therefore be described using only a first order differential equation. The two possible types of first-{}order circuits are:

\begin{myenumerate}
\item{} RC (resistor and capacitor)
\item{} RL (resistor and inductor)
\end{myenumerate}

RL and RC circuits is a term we will be using to describe a circuit that has either a) resistors and inductors (RL), or b) resistors and capacitors (RC).
\section{RL Circuits}
\label{55}

\begin{minipage}{1.0\linewidth}
\begin{center}
\includegraphics[width=1.0\linewidth,height=6.5in,keepaspectratio]{../images/16.png}
\end{center}
\raggedright{}\myfigurewithcaption{16}{An RL parallel circuit}
\end{minipage}\vspace{0.75cm}

An RL Circuit has at least one resistor (R) and one inductor (L). These can be arranged in parallel, or in series. Inductors are best solved by considering the current flowing through the inductor. Therefore, we will combine the resistive element and the source into a Norton Source Circuit. The Inductor then, will be the external load to the circuit. We remember the equation for the inductor:

\begin{myquote}
\item{} \begin{equation*}v(t) = L\frac{di}{dt}\end{equation*}
\end{myquote}

\myhref{http://en.wikipedia.org/wiki/RL\%20circuit}{w:RL circuit}

If we apply KCL on the node that forms the positive terminal of the voltage source, we can solve to get the following differential equation:

\begin{myquote}
\item{} \begin{equation*}i_{source}(t) = \frac{L}{R_n}\frac{di_{inductor}(t)}{dt} + i_{inductor}(t)\end{equation*}
\end{myquote}

We will show how to solve differential equations in a later chapter.
\section{RC Circuits}
\label{56}

\myhref{http://en.wikipedia.org/wiki/RC\%20circuit}{w:RC circuit}

\begin{minipage}{1.0\linewidth}
\begin{center}
\includegraphics[width=1.0\linewidth,height=6.5in,keepaspectratio]{../images/17.png}
\end{center}
\raggedright{}\myfigurewithcaption{17}{A parallel RC Circuit}
\end{minipage}\vspace{0.75cm}

An RC circuit is a circuit that has both a resistor (R) and a capacitor (C). Like the RL Circuit, we will combine the resistor and the source on one side of the circuit, and combine them into a thevenin source. Then if we apply KVL around the resulting loop, we get the following equation:

\begin{myquote}
\item{} \begin{equation*}v_{source} = RC\frac{dv_{capacitor}(t)}{dt} + v_{capacitor}(t)\end{equation*}
\end{myquote}

\newline{}
\section{First Order Solution}
\label{57}\subsection{Series RL}
\label{58}
The differential equation of the series RL circuit
\begin{myquote}
\item{} {$L \frac{dI}{dt} + I R = 0$}
\item{} {$\frac{dI}{dt} = - I \frac{R}{L}$}
\item{} {$\frac{1}{I} dI = - \frac{R}{L} dt$}
\item{} {$\int \frac{1}{I} dI = - \frac{R}{L} \int dt$}
\item{} {$ln I = - \frac{R}{L} t + C$}
\item{} {$I = e^(- \frac{R}{L} t + C)$}
\item{} {$I = A e^(- \frac{R}{L} t)$} . A = eC
\end{myquote}

\begin{longtable}{|>{\RaggedRight}p{0.36820\linewidth}|>{\RaggedRight}p{0.55144\linewidth}|} \hline
{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} t }&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} I(t)}\endhead \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} A\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1 {$\frac{R}{L}$} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 36\% A\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 2 {$\frac{R}{L}$} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} A\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 3 {$\frac{R}{L}$} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} A\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 4 {$\frac{R}{L}$} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} A\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 5 {$\frac{R}{L}$} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1\% A\\ \hline
\end{longtable}

\subsection{Series RC}
\label{59}
The differential equation of the series RC circuit
\begin{myquote}
\item{} {$C \frac{dV}{dt} + \frac{V}{R} = 0$}
\item{} {$\frac{dV}{dt} = - V \frac{1}{RC}$}
\item{} {$\frac{1}{V} dV = - \frac{1}{RC} dt$}
\item{} {$\int \frac{1}{V} dV = - \frac{1}{RC} \int dt$}
\item{} {$ln V = - \frac{1}{RC} t + C$}
\item{} {$V = e^(- \frac{1}{RC} t + C)$}
\item{} {$V = A e^(- \frac{1}{RC} t)$} . A = eC
\end{myquote}

\begin{longtable}{|>{\RaggedRight}p{0.40280\linewidth}|>{\RaggedRight}p{0.51684\linewidth}|} \hline
{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} t }&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} V(t)}\endhead \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} A\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1 {$\frac{1}{RC}$} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 36\% A\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 2 {$\frac{1}{RC}$} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} A\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 3 {$\frac{1}{RC}$} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} A\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 4 {$\frac{1}{RC}$} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} A\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 5 {$\frac{1}{RC}$} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1\% A\\ \hline
\end{longtable}

\subsection{Time Constant}
\label{60}
The series RL and RC has a Time Constant
\begin{myquote}
\item{} \begin{equation*}T = \frac{L}{R}\end{equation*}
\item{} \begin{equation*}T = \frac{RC}{1}\end{equation*}
\end{myquote}

In general, from an engineering standpoint, we say that the system is at steady state (Voltage or Current is almost at Ground Level) after a time period of five Time Constants.
\chapter{RLC Circuits}

\label{61}
\LaTeXNullTemplate{}
\myhref{http://en.wikipedia.org/wiki/RLC\%20Circuit}{w:RLC Circuit}

\section{Series RLC Circuit}
\label{62}

\begin{minipage}{0.50000\textwidth}
\begin{center}
\includegraphics[width=1.0\textwidth,height=6.5in,keepaspectratio]{../images/18.png}
\end{center}
\raggedright{}\myfigurewithoutcaption{18}
\end{minipage}\vspace{0.75cm}

\subsection{Second Order Differential Equation}
\label{63}
\begin{myquote}
\item{} \begin{equation*}L \frac{dI}{dt} + I R + \frac{1}{C} \int I dt = 0\end{equation*}
\item{} \begin{equation*}\frac{d^2I}{dt^2} + \frac{R}{L} \frac{dI}{dt} + \frac{I}{LC} = 0\end{equation*}
\end{myquote}

The characteristic equation is
\begin{myquote}
\item{} \begin{equation*}s^2 + \frac{R}{L}s + \frac{1}{LC} = 0\end{equation*}
\item{} \begin{equation*}s = -\alpha \pm \sqrt{\alpha^2 - \beta^2}\end{equation*}
\end{myquote}

Where
\begin{myquote}
\item{} \begin{equation*}\alpha = \frac{R}{2L}\end{equation*}
\item{} \begin{equation*}\beta = \frac{1}\sqrt{LC}\end{equation*}
\end{myquote}

When {$\sqrt{\alpha^2 - \beta^2} = 0$}
\begin{myquote}
\item{} {$ \alpha^2 = \beta^2 ; R = 2 \sqrt{\frac{L}{C}}$}
\item{} The equation only has one real root . {$s = -\alpha = - \frac{R}{2L}$}
\item{} The solution for {$I(t) = A e^(-\frac{R}{2L} t)$}
\item{} The I -{} t curve would look like
\end{myquote}

When {$\sqrt{\alpha^2 - \beta^2} > 0$}
\begin{myquote}
\item{} {$\alpha^2 > \beta^2$} . R >{} {$\frac{L}{C}$}
\item{} The equation only has two real root . {$s = -\alpha $} ± {$\sqrt{\alpha^2 - \beta^2}$}
\item{} The solution for {$I(t) = e^{- \alpha + \sqrt{\alpha^2 - \beta^2} t} + e^{- \alpha - \sqrt{\alpha^2 - \beta^2} t} = e^{-\alpha} e^{j(\sqrt{\alpha^2 - \beta^2}} + e^{-j(\sqrt{\alpha^2 - \beta^2})}$}
\item{} The I -{} t curve would look like
\end{myquote}

When {$\sqrt{\alpha^2 - \beta^2} < 0$}
\begin{myquote}
\item{} {$\alpha^2 < \beta^2$} . R <{} {$\frac{L}{C}$}
\item{} The equation has two complex root . {$s = -\alpha $} ± j{$\sqrt{\beta^2 - \alpha^2}$}
\item{} The solution for {$I(t) = e^{(- \alpha + \sqrt{\beta^2 - \alpha^2} t)} + e^{(- \alpha - \sqrt{\beta^2 - \alpha^2} t)} = e^{-\alpha} e^{j(\sqrt{\beta^2 - \alpha^2})} + e^{-j(\sqrt{\beta^2 - \alpha^2})}$}
\item{} The I -{} t curve would look like
\end{myquote}

\subsection{Damping Factor}
\label{64}

The damping factor is the amount by which the oscillations of a circuit gradually decrease over time. We define the damping ratio to be:

\begin{center}

\begin{longtable}{|>{\RaggedRight}p{0.37882\linewidth}|>{\RaggedRight}p{0.23087\linewidth}|>{\RaggedRight}p{0.26977\linewidth}|} \hline
{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt}Circuit Type}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt}Series RLC }&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Parallel RLC}\endhead \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt}Damping Factor &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {$\zeta = {R \over 2L}$}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}{$\zeta = {1 \over 2RC}$}\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt}Resonance Frequency &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {$\omega_o = {1 \over \sqrt{L C}}$}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}{$\omega_o = {1 \over \sqrt{L C}}$}\\ \hline
\end{longtable}

\end{center}

Compare The Damping factor with The Resonance Frequency give rise to different types of circuits: {\bfseries Overdamped}, {\bfseries Underdamped}, and {\bfseries Critically Damped}.
\subsection{Bandwidth}
\label{65}

\EqnTemplate{Bandwidth}
\begin{myquote}
\item{} \begin{equation*} \Delta \omega = 2 \zeta \end{equation*}
\end{myquote}

For series RLC circuit:

\begin{myquote}
\item{} \begin{equation*} \Delta \omega = 2 \zeta = { R \over L}\end{equation*}
\end{myquote}

For Parallel RLC circuit:

\begin{myquote}
\item{} \begin{equation*} \Delta \omega = 2 \zeta = { 1 \over RC}\end{equation*}
\end{myquote}

\subsection{Quality Factor}
\label{66}
\EqnTemplate{Quality Factor}
\begin{myquote}
\item{} \begin{equation*}Q = {\omega_o \over \Delta \omega } = {\omega_o \over 2\zeta }\end{equation*}
\end{myquote}

For Series RLC circuit:

\begin{myquote}
\item{} \begin{equation*}Q = {\omega_o \over \Delta \omega } = {\omega_o \over 2\zeta } = {L \over R \sqrt{LC}} = {1 \over R} \sqrt{L \over C}\end{equation*}
\end{myquote}

For Parallel RLC circuit:

\begin{myquote}
\item{} \begin{equation*}Q = {\omega_o \over \Delta \omega } = {\omega_o \over 2\zeta } = {RC \over \sqrt{LC}} = {R} \sqrt{C \over L}\end{equation*}
\end{myquote}

\subsection{Stability}
\label{67}

Because inductors and capacitors act differently to different inputs, there is some potential for the circuit response to approach infinity when subjected to certain types and amplitudes of inputs. When the output of a circuit approaches infinity, the circuit is said to be {\bfseries unstable}. Unstable circuits can actually be dangerous, as unstable elements overheat, and potentially rupture.

A circuit is considered to be stable when a \symbol{34}well-{}behaved\symbol{34} input produces a \symbol{34}well-{}behaved\symbol{34} output response. We use the term \symbol{34}Well-{}Behaved\symbol{34} differently for each application, but generally, we mean \symbol{34}Well-{}Behaved\symbol{34} to mean a finite and controllable quantity.
\section{Resonance}
\label{68}\subsection{With R = 0}
\label{69}

When R = 0 , the circuit reduces to a series LC circuit. When the circuit is in resonance, the circuit will vibrate at the resonant frequency.

\begin{myquote}
\item{} \begin{equation*}Z_L = Z_C\end{equation*}
\item{} \begin{equation*}\omega L = \frac{1}{\omega C}\end{equation*}
\item{} \begin{equation*}\omega = \frac{1}{\sqrt{LC}}\end{equation*}
\item{} \begin{equation*}f = \frac{1}{2\pi} \frac{1}{\sqrt{LC}}\end{equation*}
\end{myquote}

{\itshape The circuit vibrates and has the capability of producing a Standing Wave when R = 0 , L = C}
\subsection{With R ≠ 0}
\label{70}
When R ≠ 0 and the circuit operates in resonance .
\begin{myquote}
\item{} The frequency dependent components L , C cancel out ie Z\textsubscript{L} -{} Z\textsubscript{C} = 0 so that the total impedance of the circuit is {$Z_R + Z_L + Z_C = R + [Z_L - Z_C] = R + 0 = R$}
\item{} The current of the circuit is {$I = \frac{V}{R}$}
\item{} The Operating Frequency is {$\omega = \frac{1}{\sqrt{LC}}$}
\end{myquote}

If the current is halved by doubling the value of resistance then
\begin{myquote}
\item{} {$I = \frac{V}{2R}$}
\item{} Circuit will be stable over the range of frquencies from {$\omega_1 - \omega_2$}
\end{myquote}

{\itshape The circuit has the capability to select bandwidth where the circuit is stable } . Therefore, it is best suited for Tuned Resonance Select Bandwidth Filter

Once using L or C to tune circuit into resonance at resonance frequency {$f = \frac{1}{2\pi} \frac{1}{\sqrt{LC}}$}{\itshape The current is at its maximum value {$I = \frac{V}{R}$} . Reduce current above {$I = \frac{V}{2R}$} circuit will respond to narrower bandwidth than {$\omega_1 - \omega_2$}. Reduce current below {$I = \frac{V}{2R}$} circuit will respond to wider bandwidth than {$\omega_1 - \omega_2$}.}
\section{Conclusion}
\label{71}

\begin{center}

\begin{longtable}{|>{\RaggedRight}p{0.22369\linewidth}|>{\RaggedRight}p{0.15770\linewidth}|>{\RaggedRight}p{0.22895\linewidth}|>{\RaggedRight}p{0.22895\linewidth}|} \hline
{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt}Circuit}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} General}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt}Series RLC }&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Parallel RLC }\endhead \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt}Circuit&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\begin{minipage}{1.0\linewidth}\begin{center}\includegraphics[width=1.0\linewidth,height=6.5in,keepaspectratio]{../images/19.png}\end{center}\myfigurewithoutcaption{19}\end{minipage}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\begin{minipage}{1.0\linewidth}\begin{center}\includegraphics[width=1.0\linewidth,height=6.5in,keepaspectratio]{../images/20.png}\end{center}\myfigurewithoutcaption{20}\end{minipage}\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt}Impedance&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}Z&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}{$Z = (j\omega)^2 + (j\omega)\frac{R}{L} + \frac{1}{LC}$}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}{$Z = \frac{1}{RLC} \frac{1}{(j\omega)^2 + j\omega\frac{1}{RC} + \frac{1}{LC}}$}\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt}Roots&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}λ&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}λ = {$ - \zeta \pm \sqrt{\zeta^2 - \omega_o^2} $}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}λ = {$ - \zeta \pm \sqrt{\zeta^2 - \omega_o^2} $}\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt}I(t)&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}Ae\textsuperscript{λ\textsubscript{1}t} + Be\textsuperscript{λ\textsubscript{2}t}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Ae\textsuperscript{λ\textsubscript{1}t} + Be\textsuperscript{λ\textsubscript{2}t}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}Ae\textsuperscript{λ\textsubscript{1}t} + Be\textsuperscript{λ\textsubscript{2}t}\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt}Damping Factor&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}{ζ} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {$\zeta = {R \over 2L}$}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}{$\zeta = {1 \over 2RC}$}\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt}Resonant Frequency&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}{ω_o} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {$\omega_o = {1 \over \sqrt{L C}}$}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}{$\omega_o = {1 \over \sqrt{L C}}$}\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt}Band Width &\hspace*{0pt}\ignorespaces{}\hspace*{0pt}{$ \Delta \omega = 2 \zeta $} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt}{$ { R \over L}$}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}{$ { 1 \over CR}$}\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt}Quality factor&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}{$Q = {\omega_o \over \Delta \omega } = {\omega_o \over 2\zeta }$}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}{$Q = {L \over R \sqrt{LC}} = {1 \over R} \sqrt{L \over C}$}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}{$Q = {CR \over \sqrt{LC}} = {R} \sqrt{C \over L}$}\\ \hline
\end{longtable}

\end{center}

\chapter{The Second-{}Order Circuit Solution}

\label{72}
\LaTeXNullTemplate{}
\section{Second-{}Order Solution}
\label{73}

This page is going to talk about the solutions to a second-{}order, RLC circuit. The second-{}order solution is reasonably complicated, and a complete understanding of it will require an understanding of differential equations. This book will not require you to know about differential equations, so we will describe the solutions without showing how to derive them. The derivations may be put into another chapter, eventually.

The aim of this chapter is to develop the {\bfseries complete response} of the second-{}order circuit. There are a number of steps involved in determining the complete response:

\begin{myenumerate}
\item{} Obtain the differential equations of the circuit
\item{} Determine the resonant frequency and the damping ratio
\item{} Obtain the characteristic equations of the circuit
\item{} Find the roots of the characteristic equation
\item{} Find the natural response
\item{} Find the forced response
\item{} Find the complete response
\end{myenumerate}

We will discuss all these steps one at a time.
\section{Finding Differential Equations}
\label{74}

A {\bfseries Second-{}order circuit} cannot possibly be solved until we obtain the second-{}order differential equation that describes the circuit. We will discuss here some of the techniques used for obtaining the second-{}order differential equation for an RLC Circuit.
{\bfseries
\begin{mydescription}Note
\end{mydescription}
}
\begin{myquote}\item{}Parallel RLC Circuits are easier to solve in terms of current. Series RLC circuits are easier to solve in terms of voltage.
\end{myquote}

\subsection{The Direct Method}
\label{75}

The most direct method for finding the differential equations of a circuit is to perform a nodal analysis, or a mesh current analysis on the circuit, and then solve the equation for the input function. The final equation should contain only derivatives, no integrals.
\subsection{The Variable Method}
\label{76}

If we create two variables, g and h, we can use them to create a second-{}order differential equation. First, we set g and h to be either inductor currents, capacitor voltages, or both. Next, we create a single first order differential equation that has g = f(g, h). Then, we write another first-{}order differential equation that has the form:

\begin{myquote}
\item{} {$\frac{dh}{dt} = Kg$} or {$ \frac{1}{K}\frac{dh}{dt} = g$}
\end{myquote}

Next, we substitute in our second equation into our first equation, and we have a second-{}order equation.
\section{Zero-{}Input Response}
\label{77}

The {\bfseries zero-{}input} response of a circuit is the state of the circuit when there is no forcing function (no current input, and no voltage input). We can set the differential equation as such:

\begin{myquote}
\item{} \begin{equation*} {{d^2 i} \over {dt^2}} + 2 \zeta {{di} \over {dt}} + \omega_o^2 i(t) = 0 \end{equation*}
\end{myquote}

This gives rise to the characteristic equation of the circuit, which is explained below.
\section{Characteristic Equation}
\label{78}

The characteristic equation of an RLC circuit is obtained using the \symbol{34}Operator Method\symbol{34} described below, with zero input. The characteristic equation of an RLC circuit (series or parallel) will be:

\begin{myquote}
\item{} \begin{equation*}s^2i + {R \over L} si + {1 \over {LC}} i = 0\end{equation*}
\end{myquote}

The roots to the characteristic equation are the \symbol{34}solutions\symbol{34} that we are looking for.
\subsection{Finding the Characteristic Equation}
\label{79}

This method of obtaining the characteristic equation requires a little trickery. First, we create an operator s such that:

\begin{myquote}
\item{} \begin{equation*}sx = \frac{dx}{dt}\end{equation*}
\end{myquote}

Also, we can show higher-{}order operators as such:

\begin{myquote}
\item{} \begin{equation*}s^2x = \frac{d^2x}{dt^2}\end{equation*}
\end{myquote}

Where x is the voltage (in a series circuit) or the current (in a parallel circuit) of the circuit source. We write 2 first order differential equations for the inductor currents and/or the capacitor voltages in our circuit. We convert all the differentiations to s, and all the integrations (if any) into (1/s). We can then use Cramer\textquotesingle{}s rule to solve for a solution.
\subsection{Solutions}
\label{80}

The solutions of the characteristic equation are given in terms of the resonant frequency and the damping ratio:

\EqnTemplate{Characteristic Equation Solution}
\begin{myquote}
\item{} \begin{equation*} s = - \zeta \pm \sqrt{\zeta^2 - \omega_o^2} \end{equation*}
\end{myquote}

If {\itshape either} of these two values are used for {\itshape s} in the assumed solution {$x = Ae^{st}$} and that solution completes the differential equation then it can be considered a valid solution. We will discuss this more, below.
\section{Damping}
\label{81}

The solutions to a circuit are dependant on the type of {\bfseries damping} that the circuit exhibits, as determined by the relationship between the damping ratio and the resonant frequency. The different types of damping are Overdamping, Underdamping, and Critical Damping.
\subsection{Overdamped}
\label{82}

\begin{minipage}{1.0\linewidth}
\begin{center}
\includegraphics[width=1.0\linewidth,height=6.5in,keepaspectratio]{../images/21.png}
\end{center}
\raggedright{}\myfigurewithcaption{21}{RLC series Over-{}Damped Response}
\end{minipage}\vspace{0.75cm}

A circuit is called {\bfseries Overdamped} when the following condition is true:

\begin{myquote}
\item{} \begin{equation*}\alpha > \omega_0\end{equation*}
\end{myquote}

In this case, the solutions to the characteristic equation are two distinct, positive numbers, and are given by the equation:

\begin{myquote}
\item{} {$I(t)=A e^{\ s_1 t} + B e^{\ s_2 t}$}, where
\item{} {$ s_1,s_2 = - \alpha \pm \sqrt{\alpha^2 - \omega_0^2}$}
\end{myquote}

In a parallel circuit:
\begin{myquote}
\item{} \begin{equation*}\alpha = 1/(2RC)\end{equation*}
\item{} \begin{equation*}\omega_0 = 1 / sqrt(LC)\end{equation*}
\end{myquote}

In a series circuit:
\begin{myquote}
\item{} \begin{equation*}\alpha = R/(2L)\end{equation*}
\item{} \begin{equation*}\omega_0 = 1 / sqrt(LC)\end{equation*}
\end{myquote}

Overdamped circuits are characterized as having a very large settling time, and possibly a large steady-{}state error.

\newline{}
\subsection{Underdamped}
\label{83}

A Circuit is called {\bfseries Underdamped} when the damping ratio is less than the resonant frequency.

\begin{myquote}
\item{} \begin{equation*}\zeta < \omega_0\end{equation*}
\end{myquote}

In this case, the characteristic polynomial\textquotesingle{}s solutions are complex conjugates. This results in oscillations or {\itshape ringing} in the circuit. The solution consists of two conjugate roots:

\begin{myquote}
\item{} \begin{equation*}\lambda_1 = -\zeta + i\omega_c\end{equation*}
\end{myquote}

and

\begin{myquote}
\item{} \begin{equation*}\lambda_2 = -\zeta - i\omega_c\end{equation*}
\end{myquote}

where

\begin{myquote}
\item{} \begin{equation*}\omega_c = \sqrt{\omega_o^2 - \zeta^2}\end{equation*}
\end{myquote}

The solutions are:

\begin{myquote}
\item{} \begin{equation*}i(t) = Ae^{(-\zeta + i \omega_c)t} + Be^{(-\zeta - i \omega_c)t} \end{equation*}
\end{myquote}

for arbitrary constants {\itshape A} and {\itshape B}. Using Euler\textquotesingle{}s formula, we can simplify the solution as:

\begin{myquote}
\item{}
\begin{myquote}
\item{} \begin{equation*}i(t)=e^{-\zeta t} \left[C \sin(\omega_c t) + D \cos(\omega_c t) \right]\end{equation*}
\end{myquote}

\end{myquote}

for arbitrary constants {\itshape C} and {\itshape D}. These solutions are characterized by {\itshape exponentially decaying sinusoidal response}. The higher the {\bfseries Quality Factor} (below), the longer it takes for the oscillations to decay.

\newline{}
\subsection{Critically Damped}
\label{84}

\begin{minipage}{1.0\linewidth}
\begin{center}
\includegraphics[width=1.0\linewidth,height=6.5in,keepaspectratio]{../images/22.png}
\end{center}
\raggedright{}\myfigurewithcaption{22}{RLC series Critically Damped}
\end{minipage}\vspace{0.75cm}

A circuit is called {\bfseries Critically Damped} if the damping factor is equal to the resonant frequency:

\begin{myquote}
\item{} \begin{equation*}\zeta=\omega_0 \end{equation*}
\end{myquote}

In this case, the solutions to the characteristic equation is a double root. The two roots are identical ({$ \lambda_1=\lambda_2=\lambda $}), the solutions are:

\begin{myquote}
\item{} \begin{equation*}I(t)=(A+Bt) e^{\lambda t}\end{equation*}
\end{myquote}

for arbitrary constants {\itshape A} and {\itshape B}. Critically damped circuits typically have low overshoot, no oscillations, and quick settling time.

\newline{}
\section{Series RLC}
\label{85}

\begin{minipage}{1.0\linewidth}
\begin{center}
\includegraphics[width=1.0\linewidth,height=6.5in,keepaspectratio]{../images/23.png}
\end{center}
\raggedright{}\myfigurewithcaption{23}{A series RLC circuit.}
\end{minipage}\vspace{0.75cm}

The differential equation to a simple series circuit with a constant voltage source V, and a resistor R, a capacitor C, and an inductor L is:

\begin{myquote}
\item{} \begin{equation*}L\frac{d^2i}{dt^2} + R\frac{di}{dt} + {1 \over C}i = 0\end{equation*}
\end{myquote}

The characteristic equation then, is as follows:

\begin{myquote}
\item{} \begin{equation*}Ls^2 + Rs + {1 \over C} = 0\end{equation*}
\end{myquote}

With the two roots:

\begin{myquote}
\item{} \begin{equation*}s_1 = -{R\over 2L} + \sqrt{({R\over 2L})^2 - {1 \over LC}}\end{equation*}
\end{myquote}

and

\begin{myquote}
\item{} \begin{equation*}s_2 = -{R\over 2L} - \sqrt{({R\over 2L})^2 - {1 \over LC}}\end{equation*}
\end{myquote}

\newline{}
\section{Parallel RLC}
\label{86}

\begin{minipage}{1.0\linewidth}
\begin{center}
\includegraphics[width=1.0\linewidth,height=6.5in,keepaspectratio]{../images/24.png}
\end{center}
\raggedright{}\myfigurewithcaption{24}{A parallel RLC Circuit.}
\end{minipage}\vspace{0.75cm}

The differential equation to a parallel RLC circuit with a resistor {\itshape R}, a capacitor {\itshape C}, and an inductor {\itshape L} is as follows:

\begin{myquote}
\item{} \begin{equation*}C\frac{d^2v}{dt^2} + \frac{1}{R}\frac{dv}{dt} + {1 \over L}v = 0\end{equation*}
\end{myquote}

Where {\itshape v} is the voltage across the circuit. The characteristic equation then, is as follows:

\begin{myquote}
\item{} \begin{equation*}Cs^2 + {1 \over R}s + {1 \over L} = 0\end{equation*}
\end{myquote}

With the two roots:

\begin{myquote}
\item{} \begin{equation*}s_1 = -{1\over 2RC} + \sqrt{({1\over 2RC})^2 - {1 \over LC}}\end{equation*}
\end{myquote}

and

\begin{myquote}
\item{} \begin{equation*}s_2 = -{1\over 2RC} - \sqrt{({1\over 2RC})^2 - {1 \over LC}}\end{equation*}
\end{myquote}

\newline{}
\section{Circuit Response}
\label{87}

Once we have our differential equations, and our characteristic equations, we are ready to assemble the mathematical form of our circuit response. RLC Circuits have differential equations in the form:

\begin{myquote}
\item{} \begin{equation*}a_2 \frac{d^2x}{dt^2} + a_1\frac{dx}{dt} + a_0 x = f(t)\end{equation*}
\end{myquote}

Where {\itshape f(t)} is the forcing function of the RLC circuit.
\subsection{Natural Response}
\label{88}

The {\bfseries natural response} of a circuit is the response of a given circuit to zero input (i.e. depending only upon the initial condition values). The natural Response to a circuit will be denoted as {\itshape x\textsubscript{n}(t)}. The natural response of the system must satisfy the unforced differential equation of the circuit:

\EqnTemplate{Unforced function}
\begin{myquote}
\item{} \begin{equation*}a_2 \frac{d^2x}{dt^2} + a_1\frac{dx}{dt} + a_0 x = 0\end{equation*}
\end{myquote}

We remember this equation as being the \symbol{34}zero input response\symbol{34}, that we discussed above. We now define the natural response to be an exponential function:

\begin{myquote}
\item{} \begin{equation*}x_n = A_1e^{st} + A_2e^{st}\end{equation*}
\end{myquote}

Where {\itshape s} are the roots of the characteristic equation of the circuit. The reasons for choosing this specific solution for {\itshape x\textsubscript{n}} is based in differential equations theory, and we will just accept it without proof for the time being. We can solve for the constant values, by using a system of two equations:

\begin{myquote}
\item{} \begin{equation*}x(0) = A_1 + A_2\end{equation*}
\end{myquote}

\begin{myquote}
\item{} \begin{equation*}\frac{dx(0)}{dt} = s_1A_1 + s_2A_2 \end{equation*}
\end{myquote}

Where {\itshape x} is the voltage (of the elements in a parallel circuit) or the current (through the elements in a series circuit).
\subsection{Forced Response}
\label{89}

The {\bfseries forced response} of a circuit is the way the circuit responds to an input forcing function. The Forced response is denoted as {\itshape x\textsubscript{f}(t)}.

Where the forced response must satisfy the forced differential equation:

\EqnTemplate{Forced function}
\begin{myquote}
\item{} \begin{equation*}a_2 \frac{d^2x}{dt^2} + a_1\frac{dx}{dt} + a_0 x = f(t)\end{equation*}
\end{myquote}

The forced response is based on the input function, so we can\textquotesingle{}t give a general solution to it. However, we can provide a set of solutions for different inputs:

\begin{longtable}{|>{\RaggedRight}p{0.35286\linewidth}|>{\RaggedRight}p{0.56679\linewidth}|} \hline
{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt}Input Form }&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Output Form}\endhead \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\itshape K} (constant) &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\itshape A} (constant)\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt}{$M \sin(\omega t)$} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {$A \sin(\omega t) + B \cos (\omega t)$}\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt}{$M e^{-at}$} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {$A e^{-at}$}\\ \hline
\end{longtable}

\subsection{Complete Response}
\label{90}

The {\bfseries Complete response} of a circuit is the sum of the forced response, and the natural response of the system:

\EqnTemplate{Complete Response}
\begin{myquote}
\item{} \begin{equation*}x_c(t) = x_t(t) + x_s(t)\end{equation*}
\end{myquote}

Once we have derived the complete response of the circuit, we can say that we have \symbol{34}solved\symbol{34} the circuit, and are finished working.
\chapter{Mutual Inductance}

\label{91}
\LaTeXNullTemplate{}\section{Magnetic Fields}
\label{92}

\begin{minipage}{1.0\linewidth}
\begin{center}
\includegraphics[width=1.0\linewidth,height=6.5in,keepaspectratio]{../images/25.\SVGExtension}
\end{center}
\raggedright{}\myfigurewithoutcaption{25}
\end{minipage}\vspace{0.75cm}

Inductors store energy in the form of a magnetic field. The magnetic field of an inductor actually extends outside of the inductor, and can be affected (or can affect) another inductor close by. The image above shows a magnetic field (red lines) extending around an inductor.
\section{Mutual Inductance}
\label{93}

\begin{minipage}{0.50000\textwidth}
\begin{center}
\includegraphics[width=1.0\textwidth,height=6.5in,keepaspectratio]{../images/26.\SVGExtension}
\end{center}
\raggedright{}\myfigurewithoutcaption{26}
\end{minipage}\vspace{0.75cm}

If we accidentally or purposefully put two inductors close together, we can actually transfer voltage and current from one inductor to another. This property is called {\bfseries Mutual Inductance}. A device which utilizes mutual inductance to alter the voltage or current output is called a {\bfseries transformer}.

The inductor that creates the magnetic field is called the {\itshape primary coil}, and the inductor that picks up the magnetic field is called the {\itshape secondary coil}. Transformers are designed to have the greatest mutual inductance possible by winding both coils on the same {\itshape core}. (In calculations for inductance, we need to know which materials form the path for magnetic flux. {\itshape Air core} coils have low inductance; Cores of iron or other magnetic materials are better \textquotesingle{}conductors\textquotesingle{} of magnetic flux.)

The voltage that appears in the secondary is caused by the {\itshape change} in the shared magnetic field, each time the current through the primary changes. Thus, transformers work on A.C. power, since the voltage and current change continuously.
\section{Ideal Transformers}
\label{94}

\begin{minipage}{1.0\linewidth}
\begin{center}
\includegraphics[width=1.0\linewidth,height=6.5in,keepaspectratio]{../images/27.png}
\end{center}
\raggedright{}\myfigurewithoutcaption{27}
\end{minipage}\vspace{0.75cm}

\section{Modern Inductors}
\label{95}

\begin{minipage}{0.75000\textwidth}
\begin{center}
\includegraphics[width=1.0\textwidth,height=6.5in,keepaspectratio]{../images/28.\SVGExtension}
\end{center}
\raggedright{}\myfigurewithoutcaption{28}
\end{minipage}\vspace{0.75cm}

When the coils of number of turns N\textsubscript{1} conducts current . There exists a Magnetic Field B on the coil . Changes of B will generates an Induced Voltage on the turns of coil N\textsubscript{1} and N\textsubscript{2} as shown
\begin{myquote}
\item{} {\bfseries
\begin{mydescription}-{}ξ\textsubscript{p} = {$N_p \frac{dB}{dt}$}
\end{mydescription}
}
{\bfseries
\begin{mydescription}-{}ξ\textsubscript{s} = {$N_s \frac{dB}{dt}$}
\end{mydescription}
}

\end{myquote}

The ratio of -{}ξ\textsubscript{2} over -{}ξ\textsubscript{1}
\begin{myquote}
\item{} {\bfseries
\begin{mydescription}-{}ξ\textsubscript{p} / -{}ξ\textsubscript{s} = {$\frac{N_p}{N_s}$}
\end{mydescription}
}

\end{myquote}

If Input voltage at coil of turn N\textsubscript{p} = -{}ξ\textsubscript{p} and the Output voltage will be
\begin{myquote}
\item{} {$\frac{V_s}{V_p}$} = -{}ξ\textsubscript{s} / -{}ξ\textsubscript{p} = {$\frac{N_s}{N_p}$}
\end{myquote}

\begin{myquote}
\item{} {\bfseries
\begin{mydescription}{$V_s = V_p \frac{N_s}{N_p}$}
\end{mydescription}
}

\end{myquote}

Thus, this device is capable of Increase, Decrease and Conduct Voltage just by changing the turn ratio of the coils

Therefore, the output voltage can be
\begin{myitemize}
\item{} Increased or Step Up by increasing number of turns of coil N\textsubscript{s} greater than N\textsubscript{p}
\end{myitemize}

\begin{myitemize}
\item{} Decreased or Step Down by Decreasing number of turns of coil N\textsubscript{s} less than N\textsubscript{p}
\end{myitemize}

\begin{myitemize}
\item{} Buffered by setting number of turns of coil N\textsubscript{s} equal to N\textsubscript{p}
\end{myitemize}

The following photo shows several examples of the construction of
inductors and transformers. At the upper right is a toroidal core
type (toroid is the mathematical term for a donut shape). This
shape very efficiently contains the magnetic flux, so less
power (or signal) is lost to heating up the core.

\begin{minipage}{1.0\linewidth}
\begin{center}
\includegraphics[width=1.0\linewidth,height=6.5in,keepaspectratio]{../images/29.jpg}
\end{center}
\raggedright{}\myfigurewithoutcaption{29}
\end{minipage}\vspace{0.75cm}

\section{Step Up and Step Down}
\label{96}

The terms \textquotesingle{}step-{}up\textquotesingle{} and \textquotesingle{}step-{}down\textquotesingle{} are used to compare the secondary (output) voltage to the voltage supplied to the primary.

Many transformers are specially designed to operate exclusively as step-{}up or step-{}down. While an ideal transformer could simply be \textquotesingle{}turned around\textquotesingle{}, we find that many actual transformers are built to perform best at certain ranges of voltage and current.

For example, a power transformer may be used to step down household AC (about 120 Volts) to 24V for home heating controls, etc. The output current is higher than the primary current in this example, so the transformer is made with a heavier gauge of wire in its secondary windings.

In transformers that deal with very high voltages, special attention is paid to insulation. The windings that deal with thousands of volts must resist arcing and other problems we do not see at home.

Finally, some transformers in electronic equipment are designed
for a task known as \textquotesingle{}impedance matching\textquotesingle{}, rather than for specific in/out voltages. This function is explained in literature covering audio and radio topics.
\section{further reading}
\label{97}

\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Electronics\%2FTransformers}{Electronics/Transformers}
\end{myitemize}

\LaTeXNullTemplate{}
\chapter{State-{}Variable Approach}

\label{98}
\LaTeXNullTemplate{}
\section{State Variables}
\label{99}

A more modern approach to circuit analysis is known as the {\bfseries state variable method}, which we will attempt to describe here. We use variables called {\bfseries state variables} to describe the current state of the energy storage elements (capacitors and inductors). Here, we are using the word \symbol{34}state\symbol{34} to mean \symbol{34}condition\symbol{34} or \symbol{34}status\symbol{34} of the elements.
\section{Aim of State Variables}
\label{100}

What is the goal of using state variables? We have all sorts of other methods for solving and describing circuits, so why would we introduce another method for dealing with circuits?

An answer to both these questions lay in the theory of the state variable method: the state variable approach attempts to describe a circuit using a system of first-{}order differential equations instead of a single, higher-{}order equation. A system of first-{}order equations can then be easily manipulated using linear algebra techniques, and can be solved through brute-{}force methods such as {\bfseries cramers rule}.
\section{State Variable Selection}
\label{101}

We choose state variables to be either the voltage across a capacitor, or the current through an inductor. If our circuit has multiple irreducible capacitors or inductors, we assign a state variable to each one.
\section{System of Equations}
\label{102}

Once we have assigned our state variables, we are tasked with finding a first-{}order differential equation that describes each one individually. Once we have all of these equations, we can set them up in matrix form, and use Cramers rule, or another analysis method to solve the system.
\section{Further Reading}
\label{103}

\begin{myitemize}
\item{} \myhref{http://en.wikibooks.org/wiki/Control\%20Systems\%2FState-Space\%20Equations}{Control Systems/State-{}Space Equations}
\end{myitemize}

\LaTeXNullTemplate{}
\chapter{Sinusoidal Sources}

\label{104}
\LaTeXNullTemplate{}
\section{Steady State}
\label{105}
\symbol{34}Steady State\symbol{34} means that we are not dealing with turning on or turning off circuits in this section. We are assuming that the circuit was turned on a very long time ago and it is behaving in a pattern. We are computing what the pattern will look like. The \symbol{34}complex frequency\symbol{34} section models turning on and off a circuit with an exponential.
\section{Sinusoidal Forcing Functions}
\label{106}

Let us consider a general AC forcing function:

\begin{myquote}
\item{} \begin{equation*}v(t) = M\sin(\omega t + \phi)\end{equation*}
\end{myquote}

In this equation, the term M is called the \symbol{34}Magnitude\symbol{34}, and it acts like a scaling factor that allows the peaks of the sinusoid to be higher or lower than +/-{} 1. The term {\mbox{ω}} is what is known as the \symbol{34}Radial Frequency\symbol{34}. The term {\mbox{φ}} is an offset parameter known as the \symbol{34}Phase\symbol{34}.

Sinusoidal sources can be current sources, but most often they are voltage sources.
\section{Other Terms}
\label{107}

There are a few other terms that are going to be used in many of the following sections, so we will introduce them here:
{\bfseries
\begin{mydescription}Period
\end{mydescription}
}
\begin{myquote}\item{} The period of a sinusoidal function is the amount of time, in seconds, that the sinusoid takes to make a complete wave. The period of a sinusoid is always denoted with a capital T. This is not to be confused with a lower-{}case t, which is used as the independent variable for time.
\end{myquote}

{\bfseries
\begin{mydescription}Frequency
\end{mydescription}
}
\begin{myquote}\item{} Frequency is the reciprocal of the period, and is the number of times, per second, that the sinusoid completes an entire cycle. Frequency is measured in Hertz (Hz). The relationship between frequency and the Period is as follows:
\end{myquote}

\begin{myquote}
\item{}
\begin{myquote}
\item{} \begin{equation*}f = \frac{1}{T}\end{equation*}
\end{myquote}

\end{myquote}

\begin{myquote}
\item{} Where f is the variable most commonly used to express the frequency.
\end{myquote}

{\bfseries
\begin{mydescription}Radian Frequency
\end{mydescription}
}
\begin{myquote}\item{} Radian frequency is the value of the frequency expressed in terms of Radians Per Second, instead of Hertz. Radian Frequency is denoted with the variable {ω}. The relationship between the Frequency, and the Radian Frequency is as follows:
\end{myquote}

\begin{myquote}
\item{}
\begin{myquote}
\item{} \begin{equation*}\omega = 2 \pi f\end{equation*}
\end{myquote}

\end{myquote}

{\bfseries
\begin{mydescription}Phase
\end{mydescription}
}
\begin{myquote}\item{} The phase is a quantity, expressed in radians, of the time shift of a sinusoid. A sinusoid phase-{}shifted {$\phi = +2 \pi$} is moved forward by 1 whole period, and looks exactly the same. An important fact to remember is this:
\end{myquote}

\begin{myquote}
\item{}
\begin{myquote}
\item{} {$\sin (\frac{\pi}{2}-t) = \cos (t)$} or {$\sin (t) = \cos (t - \frac{\pi}{2})$}
\end{myquote}

\end{myquote}

Phase is often expressed with many different variables, including {$\phi, \psi, \theta, \gamma$} etc... This wikibook will try to stick with the symbol {ϕ}, to prevent confusion.
\section{Lead and Lag}
\label{108}

A circuit element may have both a voltage across its terminals and a current flowing through it. If one of the two (current or voltage) is a sinusoid, then the other must also be a sinusoid (remember, voltage is the derivative of the current, and the derivative of a sinusoid is always a sinusoid). However, the sinusoids of the voltage and the current may differ by quantities of magnitude and phase.

If the current has a lower phase angle than the voltage the current is said to {\bfseries lag} the voltage. If the current has a higher phase angle then the voltage, it is said to {\bfseries lead} the voltage. Many circuits can be classified and examined using lag and lead ideas.
\section{Sinusoidal Response}
\label{109}

Reactive components (capacitors and inductors) are going to take energy out of a circuit like a resistor and then pump some of it back into the circuit like a source. The result is initially a mess. But after a while (5 time constants), the circuit starts behaving in a pattern. The capacitors and inductors get in a rhythm that reflects the driving sources. If the source is sinusoidal, the currents and voltages will be sinusoidal. This is called the \symbol{34}particular\symbol{34} or \symbol{34}steady state\symbol{34} response. In general:

\begin{myquote}
\item{} \begin{equation*}A_{in} \cos(\omega_{in} t + \phi_{in}) \to A_{out} \cos(\omega_{out} t + \phi_{out})\end{equation*}
\end{myquote}

What happens initially, what happens if the capacitor is initially charged, what happens if sources are switched in and out of a circuit is that there is an energy imbalance. A voltage or current source might be charged by the initial energy in a capacitor. The derivative of the voltage across an Inductor might instantaneously switch polarity. Lots of things are happening. We are going to save this for later. Here we deal with the steady state or \symbol{34}particular\symbol{34} response first.
\section{Sinusoidal Conventions}
\label{110}

For the purposes of this book we will generally use cosine functions, as opposed to sine functions. If we absolutely need to use a sine, we can remember the following trigonometric identity:

\begin{myquote}
\item{} \begin{equation*}\cos(\omega t) = \sin(\pi/2 -\omega t)\end{equation*}
\end{myquote}

We can express all sine functions as cosine functions. This way, we don\textquotesingle{}t have to compare apples to oranges per se. This is simply a convention that this wikibook chooses to use to keep things simple. We could easily choose to use all sin() functions, but further down the road it is often more convenient to use cosine functions instead by default.
\section{Sinusoidal Sources}
\label{111}
There are two primary sinusoidal sources: wall outlets and \myhref{http://en.wikibooks.org/wiki/\%3Aw\%3AElectronic_oscillator}{oscillators}. Oscillators are typically crystals that electrically vibrate and are found in devices that communicate or display video such as TV\textquotesingle{}s, computers, cell phones, radios. An electrical engineer or tech\textquotesingle{}s working area will typically include a \symbol{34}\myhref{http://en.wikibooks.org/wiki/\%3Aw\%3AFunction_generator}{function generator}\symbol{34} which can produce oscillations at many frequencies and in shapes that are not just sinusoidal.

RMS or \myhref{http://en.wikibooks.org/wiki/\%3Aw\%3ARoot\%20mean\%20square}{Root mean square} is a measure of amplitude that compares with DC magnitude in terms of power, strength of motor, brightness of light, etc. The trouble is that there are several types of AC amplitude:
\begin{myitemize}
\item{} peak
\item{} peak to peak
\item{} average
\item{} RMS
\end{myitemize}

Wall outlets are called \myhref{http://en.wikibooks.org/wiki/\%3Aw\%3AAlternating\%20current}{AC} or alternating current.
Wall outlets are sinusoidal voltage sources that range from 100 RMS volts, 50 Hz to 240 RMS volts 60 Hz world wide. RMS, rather than peak (which makes more sense mathematically), is used to describe magnitude for several reasons:
\begin{myitemize}
\item{} historical reasons related to the competition between Edison (DC power) and Tesla (Sinusoidal or AC power)
\item{} effort to compare/relate AC (wall outlets) to DC (cars, batteries) .. 100 RMS volts is approximately 100 DC volts.
\item{} average sinusoidal is zero
\item{} meter movements (\myhref{http://en.wikibooks.org/wiki/\%3Aw\%3AAmmeter\%23Types}{physical needles moving} on measurement devices) were designed to measure both DC and RMS AC
\end{myitemize}

RMS is a type of average: {$ p_{\mathrm{rms}} = \sqrt {{1 \over {T_2-T_1}} {\int_{T_1}^{T_2} {[p(t)]}^2\, dt}} $}

\myhref{http://en.wikibooks.org/wiki/\%3Aw\%3AThree-phase_electric_power}{Electrical power delivery} is a complicated subject that will not be covered in this course. Here we are trying to define terms, design devices that use the power and understand clearly what comes out of wall outlets.
\chapter{Phasor Representation}

\label{112}
\LaTeXNullTemplate{}

\LaTeXNullTemplate{}\chapter{Phasors}

\myminitoc
\label{113}\section{Variables}
\label{114}
Variables are defined the same way. But there is a difference. Before variables were either \symbol{34}known\symbol{34} or \symbol{34}unknown.\symbol{34} Now there is a sort of in between.

At this point the concept of a constant function (a number) and a variable function (varies with time) needs to be reviewed. See this \myhref{http://en.wikibooks.org/wiki/\%2Fstudent\%20professor\%20\%2F}{/student professor /} dialogue. Knowns are described in terms of functions, unknowns are computed based upon the knowns and are also functions.

For example:
\begin{myquote}
\item{} {$v(t) = M_v \cos (\omega t + \phi_v)$} voltage varying with time
\end{myquote}

Here {$v(t)$} is the symbol for a function. It is assigned a function of the symbols {M_v, ω, ϕ_v} and {t}. Typically time is not ever solved for.

Time remains an unknown. Furthermore all power, voltage and current turn into equations of time. Time is not solved for. Because time is everywhere, it can be eliminated from the equations. Integrals and derivatives turn into algebra and the answers can be purely numeric (before time is added back in).

At the last moment, time is put back into voltage, current and power and the final solution is a function of time.

Most of the math in this course has these steps:
\begin{myenumerate}
\item{} describe knowns and unknowns in the time domain, describe all equations
\item{} change knowns into phasors, eliminate derivatives and integrals in the equations
\item{} solve numerically or symbolically for unknowns in the phasor domain
\item{} transform unknowns back into the time domain
\end{myenumerate}

\section{Passive circuit output is similar to input}
\label{115}

If the input to a linear circuit is a sinusoid, then the output from the circuit will be a sinusoid. Specifically, if we have a voltage sinusoid as such:

\begin{myquote}
\item{} \begin{equation*}v(t) = M_v \cos (\omega t + \phi_v)\end{equation*}
\end{myquote}

Then the current through the linear circuit will also be a sinusoid, although its magnitude and phase may be different quantities:

\begin{myquote}
\item{} \begin{equation*}i(t) = M_i \cos (\omega t + \phi_i)\end{equation*}
\end{myquote}

Note that both the voltage and the current are sinusoids with the same radial frequency, but different magnitudes, and different phase angles. Passive circuit elements cannot change the frequency of a sinusoid, only the magnitude and the phase. Why then do we need to write {ω} in every equation, when it doesnt change? For that matter, why do we need to write out the cos() function, if that never changes either? The answers to these questions is that {\itshape we don\textquotesingle{}t need to write these things every time.} Instead, engineers have produced a short-{}hand way of writing these functions, called \symbol{34}phasors\symbol{34}.
\section{Phasor Transform}
\label{116}
Phasors are a type of \symbol{34}transform.\symbol{34} We are transforming the circuit math so that time disappears. Imagine going to a place where time doesn\textquotesingle{}t exist.

We know that every function can be written as a series of sine waves of various frequencies and magnitudes added together. (Look up fourier transform animation). The entire world can be constructed from \myhref{http://en.wikibooks.org/wiki/\%3Aw\%3AMatter_wave}{sin waves}. Here, one sine wave is looked at, the repeating nature ({ω}) is stripped away. Whats left is a phasor. Since time is made of circles, and if we consider just one of these circles, we can move to a world where time doesn\textquotesingle{}t exist and circles are \symbol{34}things\symbol{34}. Instead of the word \symbol{34}world\symbol{34}, use the word \symbol{34}domain\symbol{34} or \symbol{34}plane\symbol{34} as in two dimensions.

Math in the Phasor domain is almost the same as DC circuit analysis. What is different is that inductors and capacitors have an impact that needs to be accounted for.

The transform into the Phasors plane or domain and transforming back into time is based upon Euler\textquotesingle{}s equation. It is the reason you studied imaginary numbers in past math class.
\section{Euler\textquotesingle{}s Equation}
\label{117}

\begin{minipage}{1.0\linewidth}
\begin{center}
\includegraphics[width=1.0\linewidth,height=6.5in,keepaspectratio]{../images/30.\SVGExtension}
\end{center}
\raggedright{}\myfigurewithcaption{30}{Euler\textquotesingle{}s Formula}
\end{minipage}\vspace{0.75cm}

{\bfseries Euler\textquotesingle{}s formula} is a mathematical formula that establishes the deep relationship between the trigonometric functions and the complex exponential function. Euler\textquotesingle{}s formula states that, for any real number{\mbox{$~$}}{\itshape x},

\begin{myquote}
\item{} \begin{equation*}e^{ix} = \cos x + i\sin x \ \end{equation*}
\end{myquote}

where {\itshape e} is the \myhref{http://en.wikibooks.org/wiki/\%3Aw\%3Ae\%20\%28mathematical\%20constant\%29}{base of the natural logarithm}, {\itshape i} is the \myhref{http://en.wikibooks.org/wiki/\%3Aw\%3Aimaginary\%20unit}{square root of a negative one}, and cos and sin are the \myhref{http://en.wikibooks.org/wiki/\%3Aw\%3Atrigonometric\%20functions}{trig functions}, with the argument {\itshape x} given in \myhref{http://en.wikibooks.org/wiki/\%3Aw\%3Aradian}{radians}.

Euler\textquotesingle{}s formula is ubiquitous in mathematics, physics, and engineering. The physicist \myhref{http://en.wikibooks.org/wiki/\%3Aw\%3ARichard\%20Feynman}{Richard Feynman} called the equation \symbol{34}our jewel\symbol{34} and \symbol{34}one of the most remarkable, almost astounding, formulas in all of mathematics.\symbol{34}

A more general version of Euler\textquotesingle{}s equation is:

\EqnTemplate{Euler\textquotesingle{}s Equation}
\begin{myquote}
\item{} \begin{equation*}M e^{j(\omega t + \phi)} = M \cos (\omega t + \phi) + j M \sin (\omega t + \phi)\end{equation*}
\end{myquote}

This equation allows us to view sinusoids as complex exponential functions. The circle in time of voltage, current or power turns into an arrow have length (magnitude {\mathbb{C}}) and angle (phase {ϕ}) or a point having a real ({X}) and imaginary ({Y}) coordinates in the phasor domain/plane or complex domain/plane.

Generically, the phasor {\mathbb{C}}, (which could be voltage, current or power) can be written:

\begin{myquote}
\item{} {$\mathbb{C} = X + jY$} (rectangular coordinates) \newline{}

\item{} {$\mathbb{C} = M_v \angle \phi$} (polar coordinates)
\end{myquote}

We can graph the point (X, Y) on the complex plane and draw an arrow to it showing the relationship between {X,Y,\mathbb{C}} and {ϕ}.

Using this fact, we can get the angle from the origin of the complex plane to out point (X, Y) with the function:

\EqnTemplate{Angle equation}
\begin{myquote}
\item{} \begin{equation*}\theta_C = \arctan(\frac{Y}{X})\end{equation*}
\end{myquote}

And using the pythagorean theorem, we can find the magnitude of C -{}-{} the distance from the origin to the point (X, Y) -{}-{} as:

\EqnTemplate{Pythagorean Theorem}
\begin{myquote}
\item{} \begin{equation*}M_C = |\mathbb{C}| = \sqrt{X^2 + Y^2}\end{equation*}
\end{myquote}

\section{Phasor Symbols}
\label{118}

\LaTeXPlainBoxTemplate{Phasors don\textquotesingle{}t account for the frequency information, so make sure you write down the frequency some place safe.}

Suppose in the time domain:
\begin{myquote}
\item{} \begin{equation*}v(t) = M_v e^{j(\omega t + \phi)}\end{equation*}
\end{myquote}

In the phasor domain, this voltage is expressed like this:
\begin{myquote}
\item{} \begin{equation*}\mathbb{V} = M_v \angle \phi\end{equation*}
\end{myquote}

The radial velocity {ω} disappears from known functions (not the derivate and integral operations) and reappears in the time expression for the unknowns.
\section{Not Vectors}
\label{119}

Contrary to the statement made in this heading, phasors (phase vectors), are vectors. Phasors form a vector space with additional structure, hence they have some properties that are not common to all vector spaces; these additional properties exist because phasors form a field -{} thus you also get division.

For more details see \myplainurl{http://en.wikipedia.org/wiki/Phasor_(electronics)}

Like many kinds of vectors they have additional struct
Phasors will always be written out either with a large bold letter (as above). They are not a vector. Vectors have two or more real axes that are not related by Euler, but are independent. They share some math in two dimensions, but this math diverges.

\begin{myquote}
\item{}
\begin{myquote}
\item{}
\begin{myquote}
\item{}
\begin{myquote}
\item{}
\begin{myquote}
\item{}
\begin{myquote}
\item{} {\bfseries Phasors can be divided, but vectors can not.}
\end{myquote}

\end{myquote}

\end{myquote}

\end{myquote}

\end{myquote}

\end{myquote}

Voltage can be divided by current (in the phasor domain), but East can not be divided by North (vectors can not be divided). Vectors move into three or more dimensions of linear algebra math that help build complicated structures in the real world such as \myhref{http://en.wikibooks.org/wiki/\%3Aw\%3ASpace_frame}{space frames}. Phasors move into more complicated transforms related to differential equation math and electronics.

\begin{minipage}{1.0\linewidth}
\begin{center}
\includegraphics[width=1.0\linewidth,height=6.5in,keepaspectratio]{../images/31.png}
\end{center}
\raggedright{}\myfigurewithcaption{31}{cross product visualization}
\end{minipage}\vspace{0.75cm}

The math of phasors is exactly the same as ordinary math, except with imaginary numbers. Vectors demand new mathematical operations such as dot product and cross product:

\begin{myitemize}
\item{} The dot product of vectors finds the shadow of one vector on another.
\item{} The cross product of vectors combines vectors into a third vector perpendicular to both.
\end{myitemize}

\section{Cosine Convention}
\label{120}

\LaTeXPlainBoxTemplate{In this book, all phasors correspond to a {\bfseries cosine} function, not a {\bfseries sine} function.}

It is important to remember which trigonometric function your phasors are mapping to. Since a phasor only includes information on magnitude and phase angle, it is impossible to know whether a given phasor maps to a sin() function, or a cos() function instead. By convention, this wikibook and most electronic texts/documentation map to the cosine function.

If you end up with an answer that is sin, convert to cos by subtracting 90 degrees:
\begin{myquote}
\item{} \begin{equation*}\sin(\omega t + \phi) = cos(\omega t + \phi - \frac{\pi}{2})\end{equation*}
\end{myquote}

If your simulator requires the source to be in sin form, but the starting point is cos, then convert to sin by adding 90 degrees:
\begin{myquote}
\item{} \begin{equation*}\cos(\omega t + \phi) = sin(\omega t + \phi + \frac{\pi}{2})\end{equation*}
\end{myquote}

\section{Phasor Concepts}
\label{121}

Inside the phasor domain, concepts appear and are named. Inductors and capacitors can be coupled with their derivative operator transforms and appear as imaginary resistors called \symbol{34}reactance.\symbol{34} The combination of resistance and reactance is called \symbol{34}impedance.\symbol{34} Impedance can be treated algebraically as a phasor although technically it is not. Power concepts such as real, reactive, apparent and power factor appear in the phasor domain. Numeric math can be done in the phasor domain. Symbols can be manipulated in the phasor domain.
\section{Phasor Math}
\label{122}
\LaTeXPlainBoxTemplate{There is more information about Phasors in \newline{}
 {\bfseries \mylref{231}{The Appendix}}}
Phasor math turns into the imaginary number math which is reviewed below.

Phasor A can be multiplied by phasor B:

\EqnTemplate{Phasor Multiplication}
\begin{myquote}
\item{} \begin{equation*}\mathbb{A} \times \mathbb{B} = (M_a \times M_b) \angle (\phi_a + \phi_b)\end{equation*}
\end{myquote}

The phase angles add because in the time domain they are exponents of two things multiplied together.

\EqnTemplate{Phasor Division}
\begin{myquote}
\item{} \begin{equation*}\mathbb{A} / \mathbb{B} = (M_a / M_b) \angle (\phi_a - \phi_b)\end{equation*}
\end{myquote}

Again the phase angles are treated like exponents ... so they subtract.

The magnitude and angle form of phasors can not be used for addition and subtraction. For this, we need to convert the phasors into rectangular notation:
\begin{myquote}
\item{} \begin{equation*}\mathbb{C} = X + jY\end{equation*}
\end{myquote}

Here is how to convert from polar form (magnitude and angle) to rectangular form (real and imaginary)
\begin{myquote}
\item{} \begin{equation*}X = M \cos (\phi)\end{equation*}\begin{equation*}Y = M \sin (\phi)\end{equation*}
\end{myquote}

Once in rectangular form:
\begin{myitemize}
\item{} Real parts get add or subtract
\item{} Imaginary parts add or subtract
\end{myitemize}

\EqnTemplate{Phasor Addition}
\begin{myquote}
\item{} \begin{equation*}\mathbb{C} = \mathbb{A} + \mathbb{B} = (X_A + X_B) + j(Y_A + Y_B) = X_C + jY_C\end{equation*}
\end{myquote}

Here is how to convert from rectangular form to polar form:

\begin{myquote}
\item{} \begin{equation*}\mathbb{C} = M_c \angle \phi_c = \sqrt{X^2 + Y^2} \angle \arctan(\frac{Y}{X})\end{equation*}
\end{myquote}

Once in polar phasor form, conversion back into the time domain is easy:

\begin{myquote}
\item{} \begin{equation*}\operatorname{Re}(M e^{j(\omega t + \phi)}) = M \cos (\omega t + \phi)\end{equation*}
\end{myquote}

\section{Function transformation Derivation}
\label{123}

{$g(t)$} represents either voltage, current or power.

\begin{myquote}
\item{} {$g(t)=G_m cos(\omega t + \phi)$} starting point$\text{ }$\newline{}

\item{} {$g(t)=G_m \operatorname{Re}(e^{j(\omega t + \phi)})$} from Euler\textquotesingle{}s Equation \newline{}

\item{} {$g(t)=G_m \operatorname{Re}(e^{j\phi}e^{j\omega t})$} law of exponents
\item{} {$g(t)=\operatorname{Re}(G_m e^{j\phi}e^{j\omega t})$} {$G_m$} is a real number so it can be moved inside
\item{} {$g(t)=\operatorname{Re}(\mathbb{G} e^{j\omega t})$} {$ \mathbb{G}$} is the definition of a phasor, here it is an expression substituting for {$G_m e^{j\phi}$}
\item{} {$g(t) \Leftrightarrow \mathbb{G}$} where {$ \mathbb{G} = G_m e^{j\omega}$}
\end{myquote}

What happens to {$e^{j\omega t}$} term? \myhref{http://en.wikibooks.org/wiki/\%2Fj\%20omega\%20disappears\%2F}{Long Answer}. It hangs around until it is time to transform back into the time domain. Because it is an exponent, and all the phasor math is algebra associated with exponents, the final phasor can be multiplied by it. Then the real part of the expression will be the time domain solution.

\begin{longtable}{|>{\RaggedRight}p{0.31119\linewidth}|>{\RaggedRight}p{0.24714\linewidth}|>{\RaggedRight}p{0.32114\linewidth}|} \hline
{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} time domain }&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} transformation }&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} phasor domain}\endhead \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {$A cos(\omega t)$} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\Leftrightarrow} \myhref{http://en.wikibooks.org/wiki/\%2Fproof1\%2F}{proof}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {A}\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {$A sin(\omega t)$} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\Leftrightarrow} \myhref{http://en.wikibooks.org/wiki/\%2Fproof2\%2F}{proof}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {$-Aj$}\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {$A cos(\omega t) + B sin(\omega t)$} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\Leftrightarrow} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {$A-Bj$}\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {$A cos(\omega t) - B sin(\omega t)$} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\Leftrightarrow} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {$A+Bj$}\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {$A cos(\omega t + \phi)$} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\Leftrightarrow} \myhref{http://en.wikibooks.org/wiki/\%2Fproof5\%2F}{proof} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {$A cos(\phi) + A sin(\phi)j$}\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {$A sin(\omega t + \phi)$} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\Leftrightarrow} \myhref{http://en.wikibooks.org/wiki/\%2Fproof6\%2F}{proof} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {$A sin(\phi) - A cos(\phi)j$}\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {$A cos(\omega t - \phi)$} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\Leftrightarrow} \myhref{http://en.wikibooks.org/wiki/\%2Fproof7\%2F}{proof} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {$A cos(\phi) - A sin(\phi)j$}\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {$A sin(\omega t - \phi)$} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\Leftrightarrow} \myhref{http://en.wikibooks.org/wiki/\%2Fproof8\%2F}{proof} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {$-A sin(\phi) - A cos(\phi)j$}\\ \hline
\end{longtable}

In all the cases above, remember that {ϕ} is a constant, a known value in most cases. Thus the phasor is an complex number in most calculations.

There is another transform associated with a derivatives that is discussed in \symbol{34}phasor calculus.\symbol{34}
\section{Transforming calculus operators into phasors}
\label{124}

When sinusoids are represented as phasors, differential equations become algebra. This result follows from the fact that the complex exponential is the \myhref{http://en.wikibooks.org/wiki/\%3Aw\%3AEigenfunction}{eigenfunction} of the operation:

\begin{myquote}
\item{} \begin{equation*}\frac{d}{dt}(e^{j \omega t}) = j \omega e^{j \omega t}\end{equation*}
\end{myquote}

That is, only the complex amplitude is changed by the derivative operation. Taking the real part of both sides of the above equation gives the familiar result:

\begin{myquote}
\item{} \begin{equation*}\frac{d}{dt} \cos{\omega t} = - \omega \sin{\omega t}\,\end{equation*}
\end{myquote}

Thus, a time derivative of a sinusoid becomes, when tranformed into the phasor domain, algebra:

\begin{myquote}
\item{} {${d \over dt}i(t)\rightarrow j\omega\mathbb{I}$} j is the square root of -{}1 or an imaginary number
\end{myquote}

In a similar way the time integral, when transformed into the phasor domain is:
\begin{myquote}
\item{} \begin{equation*}\int V(t) dt \rightarrow \frac{\mathbb{V}}{j\omega}\end{equation*}
\end{myquote}

The above is true of voltage, current, and power.

The question is why does this work? Where is the proof? Lets do this three times: once for a resistor, then inductor, then capacitor. The symbols for the current and voltage going through the terminals are:
{$V_m cos(\omega t + \phi_v)$} and {$I_m cos(\omega t + \phi_I)$}
\subsection{Resistor Terminal Equation}
\label{125}
\begin{myquote}
\item{} {$V=R I$} . terminal relationship
\item{} {$V_m cos(\omega t + \phi_V) = R I_m cos(\omega t + \phi_I)$} .. substituting example functions
\item{} {$V_m e^{\omega t + j \phi_V} = R I_m e^{\omega t + j \phi_I}$} .. Euler\textquotesingle{}s version of the terminal relationship
\item{} {$V_m e^{\omega t} e^{j \phi_V} = R I_m e^{\omega t} e^{j \phi_I}$} .. law of exponents
\item{} {$V_m \cancel{e^{\omega t}} e^{j \phi_V} = R I_m \cancel{e^{\omega t}} e^{j \phi_I}$} .. do same thing go both sides of equal sign
\item{} {$V_m e^{j \phi_V} = R I_m e^{j \phi_I}$} .. time domain result
\item{} {$\mathbb{V} = R \mathbb{I}$} .. phasor expression
\end{myquote}

Just put the voltage and current in phasor form and substitute to migrate equation into the phasor domain.
\subsection{Inductor Terminal Equation}
\label{126}
\begin{myquote}
\item{} {$V = L\frac{d}{dt}I$} ... terminal relationship
\item{} {$V_m cos(\omega t + \phi_V) = L \frac{d}{dt} (I_m cos(\omega t + \phi_I))$} .. substitution of a generic sinusodial
\item{} {$V_m cos(\omega t + \phi_V) = -\omega L I_m sin(\omega t + \phi_I)$} .. taking the derivative
\item{} {$- sin(\omega t + \phi_I) = cos(\omega t + \phi_I + \frac{\pi}{2})$} .. trig
\item{} {$V_m cos(\omega t + \phi_V) = \omega L I_m cos(\omega t + \phi_I + \frac{\pi}{2})$} .. substitution
\item{} {$V_m \operatorname{Re}(e^{j(\omega t + \phi_V)}) = \omega L I_m \operatorname{Re}(e^{j(\omega t + \phi_L + \frac{\pi}{2})})$} from Euler\textquotesingle{}s Equation
\item{} {$V_m \operatorname{Re}(e^{j\omega t} e^{j\phi_V}) = \omega L I_m \operatorname{Re}(e^{j\omega t}e^{j\phi_L}e^{j\frac{\pi}{2}})$} law of exponents
\item{} {$ \operatorname{Re}(V_m e^{j\phi_V} \cancel{e^{j\omega t}}) = \operatorname{Re}(e^{j\frac{\pi}{2}} \omega L I_m e^{j\phi_L} \cancel{e^{j\omega t}})$} real numbers can be moved inside
\item{} {$e^{j\frac{\pi}{2}} = cos(\frac{\pi}{2}) + j*sin(\frac{\pi}{2}) = j$} ... substitute in above
\item{} {$\mathbb{I} = I_m e^{j\phi_L}$} and {$\mathbb{V} = V_m e^{j\phi_V}$} .. substitute in above
\item{} cancel out the {$e^{j\omega}$} terms on both sides
\item{} {$ \operatorname{Re}(\mathbb{V}e^{j\omega t}) = \operatorname{Re}(j \omega L \mathbb{I}e^{j\omega t})$} definition of phasors
\item{} {$ \mathbb{V} = j \omega L \mathbb{I}$} equation transformed into phasor domain
\end{myquote}

Conclusion, put the voltage and current in phasor form, replace {$\frac{d}{dt}$} with {$j\omega$} to translate the equation to the phasor domain.
\subsection{Capacitor Terminal Equation}
\label{127}
A capacitor is basically the same form, V and I switch sides, C is substituted for L.

\begin{myquote}
\item{} {$I = C\frac{d}{dt}V$} ... terminal relationship
\item{} {$I_m cos(\omega t + \phi_I) = C \frac{d}{dt} (V_m cos(\omega t + \phi_V))$} .. substitution of a generic sinusodial
\item{} {$I_m cos(\omega t + \phi_I) = -\omega C V_m sin(\omega t + \phi_V)$} .. taking the derivative
\item{} {$- sin(\omega t + \phi_V) = cos(\omega t + \phi_V + \frac{\pi}{2})$} .. trig
\item{} {$I_m cos(\omega t + \phi_I) = \omega C V_m cos(\omega t + \phi_V + \frac{\pi}{2})$} .. substitution
\item{} {$I_m \operatorname{Re}(e^{j(\omega t + \phi_I)}) = \omega C V_m \operatorname{Re}(e^{j(\omega t + \phi_V + \frac{\pi}{2})})$} from Euler\textquotesingle{}s Equation
\item{} {$I_m \operatorname{Re}(e^{j\omega t} e^{j\phi_I}) = \omega C V_m \operatorname{Re}(e^{j\omega t}e^{j\phi_V}e^{j\frac{\pi}{2}})$} law of exponents
\item{} {$ \operatorname{Re}(I_m e^{j\phi_I} \cancel{e^{j\omega t}}) = \operatorname{Re}(e^{j\frac{\pi}{2}} \omega C V_m e^{j\phi_V} \cancel{e^{j\omega t}})$} real numbers can be moved inside
\item{} {$e^{j\frac{\pi}{2}} = cos(\frac{\pi}{2}) + j*sin(\frac{\pi}{2}) = j$} ... substitute in above equation
\item{} {$\mathbb{V} = V_m e^{j\phi_V}$} and {$\mathbb{I} = I_m e^{j\phi_I}$}.. substitute in above
\item{} cancel out the {$e^{j\omega}$} terms on both sides
\item{} {$ \operatorname{Re}(\mathbb{I}e^{j\omega t}) = \operatorname{Re}(j \omega C \mathbb{V}e^{j\omega t})$} definition of phasors
\item{} {$ \mathbb{I} = j \omega C \mathbb{V}$} equation transformed into phasor domain
\end{myquote}

Conclusion, put the voltage and current in phasor form, replace {$\frac{d}{dt}$} with {$j\omega$} to translate the equation to the phasor domain.

In summary, all the terminal relations have {$e^{j \omega}$} terms that cancel:

\begin{myquote}
\item{} \begin{equation*}V_m e^{j\phi}\cancel{e^{j\omega t}} = I_m e^{j\phi}\cancel{e^{j\omega t}} * R\end{equation*}
\item{} \begin{equation*}\mathbb{V} = \mathbb{I}R\end{equation*}
\end{myquote}

\begin{myquote}
\item{} \begin{equation*}V_m e^{j\phi}\cancel{e^{j\omega t}} = I_m e^{j\phi}\cancel{e^{j\omega t}} * j\omega*L\end{equation*}
\item{} \begin{equation*}\mathbb{V} = \mathbb{I}j\omega L\end{equation*}
\end{myquote}

\begin{myquote}
\item{} \begin{equation*}I_m e^{j\phi}\cancel{e^{j\omega t}} = V_m e^{j\phi}\cancel{e^{j\omega t}} * j\omega*C\end{equation*}
\item{} \begin{equation*}\mathbb{I} = \mathbb{V}j\omega C\end{equation*}
\end{myquote}

What is interesting about this path of inquiry/logic/thought is a new concept emerges:

\begin{longtable}{|>{\RaggedRight}p{0.39710\linewidth}|>{\RaggedRight}p{0.23816\linewidth}|>{\RaggedRight}p{0.24420\linewidth}|} \hline
{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Device }&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {$\frac{\mathbb{V}}{\mathbb{I}}$} }&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {$\frac{\mathbb{I}}{\mathbb{V}}$}}\endhead \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Resistor &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {R} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {$\frac{1}{R}$}\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Capacitor &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {$\frac{1}{j\omega C}$} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {$j\omega C$}\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Inductor &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {$j\omega L$} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {$\frac{1}{j\omega L}$}\\ \hline
\end{longtable}

The {$j\omega$} terms that don\textquotesingle{}t cancel out come from the derivative terms in the terminal relations. These derivative terms are associated with the capacitors and inductors themselves, not the sources. Although the derivative is applied to a source, the independent device the derivative originates from (a capacitor or inductor) is left with it\textquotesingle{}s feature after the transform! So if we leave the driving forces as {$\frac{output}{input}$} ratios on one side of the equal sign, we can consider separately the other side of the equal sign as a function! These functions have a name ... Transfer Functions. When we analyze the voltage/current ratios\textquotesingle{}s in terms of R, L an C, we can sweep {ω} through a variety of driving source frequencies, or keep the frequency constant and sweep through a variety of inductor values .. . we can analyze the circuit response!

Note: Transfer Functions are an entire section of this course. They come up in mechanical engineering control system classes also. There are similarities. Driving over a bump is like a surge or spike. Driving over a curb is like turning on a circuit. And when mechanical engineers study vibrations, they deal with sinusoidal driving functions, but they are dealing with a three dimensional object rather than a one dimensional object like we are in this course.
\section{Phasor Domain to Time Domain}
\label{128}
Getting back into the time domain is just about as simple. After working through the equations in the phasor domain and finding {\mathbb{V}} and {\mathbb{I}}, the goal is to convert them to {V} and {I}.

The phasor solutions will have the form {$\mathbb{G} = A + Bj = G_m e^{j\phi}$} you should be able now to convert between the two forms of the solution. Then:
\begin{myquote}
\item{} \begin{equation*}G = \operatorname{Re}(\mathbb{G} e^{j\omega t})= \operatorname{Re}(G_m e^{j\phi}e^{j\omega t}) = \operatorname{Re}(G_m e^{j(\omega t + \phi)}) = G_m cos(\omega t + \phi)\end{equation*}
\end{myquote}

\section{What is not covered}
\label{129}
There is another way of thinking about circuits where inductors and capacitors are complex resistances. The idea is:

\begin{myquote}
\item{}
\begin{myquote}
\item{}
\begin{myquote}
\item{} impedance = resistance + j * reactance
\end{myquote}

\end{myquote}

\end{myquote}

Or symbolically

\begin{myquote}
\item{}
\begin{myquote}
\item{}
\begin{myquote}
\item{} \begin{equation*}Z = R + j*X\end{equation*}
\end{myquote}

\end{myquote}

\end{myquote}

\myhref{http://en.wikibooks.org/wiki/Electronics\%2FImpedance}{Here} the derivative is attached to the inductance and capacitance, rather than to the terminal equation as we have done. This spreads the math of solving circuit problems into smaller pieces that is more easily checked, but it makes symbolic solutions more complex and can cause numeric solution errors to accumulate because of intermediate calculations.

The phasor concept is found everywhere. Some day it will be necessary to study this if you get in involved in microwave projects that involve \symbol{34}\myhref{http://en.wikibooks.org/wiki/Communication_Systems\%2FMicrowave_Systems\%23Microwave_Components}{stubs}\symbol{34} or antenna projects that involve a \symbol{34}\myhref{http://en.wikibooks.org/wiki/\%3Aw\%3ALoading_coil\%23Radio_antenna}{loading coil}\symbol{34} ... the list is huge.

The goal here is to avoid the concepts of \myhref{http://en.wikibooks.org/wiki/\%3Aw\%3AAdmittance}{conductance, reactance, impedance, susceptance, and admittance} ... and avoid the the confusion of relating these concepts while trying to compare phasor math with calculus and Laplace transforms.
\section{Phasor Notation}
\label{130}

\LaTeXPlainBoxTemplate{Remember, a phasor represents a single value that can be displayed in multiple ways.}

\begin{myquote}
\item{} {$\mathbb{C} = M \angle \phi$} \symbol{34}Polar Notation\symbol{34}
\item{} {$C = M e^{j(\omega t + \phi)}$} \symbol{34}Exponential Notation\symbol{34}
\item{} {$\mathbb{C} = A + jB$} \symbol{34}Rectangular Notation\symbol{34}
\item{} {$C = M \cos (\omega t + \phi) + j M \sin (\omega t + \phi)$} \symbol{34}time domain notation\symbol{34}
\end{myquote}

These 4 notations are all just different ways of writing the same exact thing.
\section{Phasor symbols}
\label{131}

When writing on a board or on paper, use hats {\hat{V}} to denote phasors. Expect variations in books and online:
\begin{myitemize}
\item{} {\mathbb{V}} (the large bold block-{}letters we use in this wikibook)
\item{} {\bar{V}} (\symbol{34}bar\symbol{34} notation, used by Wikipedia)
\item{} {\vec{V}} (bad ... save for vectors ... vector arrow notation)
\item{} {\tilde{V}} (some text books)
\item{} {\hat{V}} (some text books)
\end{myitemize}

\chapter{Differential Equations}

\myminitoc
\label{132}\section{Phasors Generate the Particular Solution}
\label{133}
Phasors can replace calculus, they can replace Laplace transforms, they can replace trig. But there is one thing they can not do: initial conditions/integration constants. When doing problems with both phasors and Laplace, or phasors and calculus, the difference in the answers is going to be an integration constant.

Differential equations are solved in this course in three steps:
\begin{myitemize}
\item{} finding the particular solution ... particular to the driving function ... particular to the voltage or current source
\item{} finding the homogenous solution ... the solution that is the same no matter what the driving function is ... the solution that explores how an initial energy imbalance in the circuit is balanced
\item{} determining the coefficients, the constants of integration from initial conditions
\end{myitemize}

\section{Phasors Don\textquotesingle{}t Generate Integration Constants}
\label{134}
The integration constant doesn\textquotesingle{}t appear in phasor solutions. But they will appear in the Laplace and Calculus alternatives to phasor solutions. If the full differential equation is going to be solved, it is absolutely necessary to see where the phasors fail to create a symbol for the unknown integration constant ... that is calculated in the third step.

Phasors are the technique used to find the particular AC solution. Integration constants document the initial DC bias or energy difference in the circuit. Finding these constants requires first finding the homogeneous solution which deals with the fact that capacitors may or may not be charged when a circuit is first turned on. Phasors don\textquotesingle{}t completely replace the steps of Differential Equations. Phasors just replace the first step: finding the particular solution.
\section{Differential Equations Review}
\label{135}

The goal is to solve Ordinary Differential Equations (ODE) of the first and second order with both phasors, calculus, and Laplace transforms. This way the phasor solution can be compared with content of pre-{}requiste or co-{}requiste math courses. The goal is to do these problems with numeric and symbolic tools such as matLab and mupad/mathematica/wolframalpha. If you have already had the differential equations course, this is a quick review.

The most important thing to understand is the nature of a function. Trig, Calculus, and Laplace transforms and phasors are all associated with functions, not algebra. If you don\textquotesingle{}t understand the difference between algebra and a function, maybe this \myhref{http://en.wikibooks.org/wiki/\%2Fstudent\%20professor\%2F}{/student professor/} dialogue will help.

We start with equations from terminal definitions, loops and junctions. Each of the symbols in these algebraic equations is a function. We are not transforming the equations. We are transforming the functions in these equations. All sorts of operators appear in these equations including + -{} * / and {$\frac{d}{dt}$}. The first table focuses on transforming these operators. The second focuses on transforming the functions themselves.

The real power of the Laplace tranform is that it eliminates the integral and differential operators. Then the functions themselves can be transformed. Then unknowns can be found with just algebra. Then the functions can be transformed back into time domain functions.

Here are some of the \myhref{http://en.wikibooks.org/wiki/\%3Aw\%3ALaplace_transform\%23Properties_and_theorems}{Properties and Theorems} needed to transform the typical sinusolidal voltages, powers and currents in this class.
\subsection{Laplace Operator Transforms}
\label{136}

\begin{longtable}{|>{\RaggedRight}p{0.25\linewidth}|>{\RaggedRight}p{0.25\linewidth}|>{\RaggedRight}p{0.25\linewidth}|>{\RaggedRight}p{0.25\linewidth}|} \hline
 Properties of the unilateral Laplace transform{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt}}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Time domain}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} \textquotesingle{}s\textquotesingle{} domain}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Comment}\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Time scaling}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {$f(at)$}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {$ \frac{1}{|a|} F \left ({s \over a} \right)$}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} for figuring out how {ω} affects the equation\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Time shifting}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {$ f(t - a) u(t - a) \ $}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {$ e^{-as} F(s) \ $}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\itshape u}({\itshape t}) is the unit step function .. for figuring out the {ϕ} phase angle\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Linearity}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {$ a f(t) + b g(t) \ $}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {$ a F(s) + b G(s) \ $}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Can be proved using basic rules of integration.\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Differentiation}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {$ f'(t) \ $}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {$ s F(s) - f(0) \ $}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\itshape f} is assumed to be a differentiable function, and its derivative is assumed to be of exponential type. This can then be obtained by integration by parts\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Integration}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {$ \int_0^t f(\tau)\, d\tau = (u * f)(t)$}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {$ {1 \over s} F(s) $}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} a constant pops out at the end of this too\\ \hline
\end{longtable}

\subsection{Laplace Function Transform}
\label{137}
Here are some of the \myhref{http://en.wikibooks.org/wiki/\%3Aw\%3ALaplace_transform\%23Table_of_selected_Laplace_transforms}{transforms} needed in this course:

\begin{longtable}{|>{\RaggedRight}p{0.15982\linewidth}|>{\RaggedRight}p{0.15982\linewidth}|>{\RaggedRight}p{0.15982\linewidth}|>{\RaggedRight}p{0.15982\linewidth}|>{\RaggedRight}p{0.15982\linewidth}|} \hline
{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Function}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Time domain \newline{} {$f(t) = \mathcal{L}^{-1} \left\{ F(s) \right\}$} }&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Laplace s-{}domain \newline{} {$F(s) = \mathcal{L}\left\{ f(t) \right\}$} }&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Region of convergence }&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Reference}\endhead \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} exponential decay&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {$ e^{-\alpha t} \cdot u(t) \ $} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {$ { 1 \over s+\alpha } $} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Re({\itshape s}) >{} −α &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Frequency shift of\newline{}unit step\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} exponential approach &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {$(1-e^{-\alpha t}) \cdot u(t) \ $} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {$\frac{\alpha}{s(s+\alpha)} $} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Re({\itshape s}) >{} 0&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Unit step minus\newline{}exponential decay\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} sine&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {$ \sin(\omega t) \cdot u(t) \ $} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {$ { \omega \over s^2 + \omega^2 } $} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Re({\itshape s}) >{} 0 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} cosine &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {$ \cos(\omega t) \cdot u(t) \ $} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {$ { s \over s^2 + \omega^2 } $} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Re({\itshape s}) >{} 0 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} exponentially decaying \newline{} sine wave &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {$e^{-\alpha t} \sin(\omega t) \cdot u(t) \ $} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {$ { \omega \over (s+\alpha)^2 + \omega^2 } $} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Re({\itshape s}) >{} −α &\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} exponentially decaying \newline{} cosine wave &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {$e^{-\alpha t} \cos(\omega t) \cdot u(t) \ $} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {$ { s+\alpha \over (s+\alpha)^2 + \omega^2 } $} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Re({\itshape s}) >{} −α &\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\\ \hline
\end{longtable}

\chapter{Phasor Circuit Analysis}

\label{138}
\LaTeXNullTemplate{}
\section{Phasor Analysis}
\label{139}

The mathematical representations of individual circuit elements can be converted into phasor notation, and then the circuit can be solved using phasors.
\section{Resistance, Impedance and Admittance}
\label{140}

In phasor notation, resistance, capacitance, and inductance can all be lumped together into a single term called \symbol{34}impedance\symbol{34}. The phasor used for impedance is {\mathbb{Z}}. The inverse of Impedance is called \symbol{34}Admittance\symbol{34} and is denoted with a {\mathbb{Y}}. {\mathbb{V}} is Voltage and {\mathbb{I}} is current.

\begin{myquote}
\item{} \begin{equation*}\mathbb{Z} = \frac{1}{\mathbb{Y}}\end{equation*}
\end{myquote}

And the Ohm\textquotesingle{}s law for phasors becomes:

\begin{myquote}
\item{} \begin{equation*}\mathbb{V} = \mathbb{Z} \mathbb{I} = \frac{\mathbb{I}}{\mathbb{Y}}\end{equation*}
\end{myquote}

It is important to note at this point that {\itshape Ohm\textquotesingle{}s Law still holds true} even when we switch from the time domain to the phasor domain. This is made all the more amazing by the fact that the new term, impedance, is no longer a property only of resistors, but now encompasses all load elements on a circuit (capacitors and inductors too!).

Impedance is still measured in units of Ohms, and admittance (like Conductance, its DC-{}counterpart) is still measured in units of Siemens.

Let\textquotesingle{}s take a closer look at this equation:

\EqnTemplate{Ohm\textquotesingle{}s Law with Phasors}
\begin{myquote}
\item{} \begin{equation*}\mathbb{V} = \mathbb{Z} \mathbb{I}\end{equation*}
\end{myquote}

If we break this up into polar notation, we get the following result:

\begin{myquote}
\item{} \begin{equation*}M_V \angle \phi_V = (M_Z \times M_I) \angle (\phi_Z + \phi_I)\end{equation*}
\end{myquote}

\myhref{http://en.wikipedia.org/wiki/Electrical\%20impedance}{w:Electrical impedance}

This is important, because it shows that not only are the magnitude values of voltage and current related to each other, but also the phase angle of their respective waves are also related. Different circuit elements will have different effects on both the magnitude and the phase angle of the voltage given a certain current. We will explore those relationships below.
\section{Resistors}
\label{141}

Resistors do not affect the phase of the voltage or current, only the magnitude. Therefore, the impedance of a resistor with resistance R is:

\EqnTemplate{Resistor Impedance}
\begin{myquote}
\item{} \begin{equation*}\mathbb{Z} = R \angle 0\end{equation*}
\end{myquote}

Through a resistor, the phase difference between current and voltage will not change. This is important to remember when analyzing circuits.
\section{Capacitors}
\label{142}

A capacitor with a capacitance of C has a phasor value:

\EqnTemplate{Capacitor Impedance}
\begin{myquote}
\item{} \begin{equation*}\mathbb{Z} = C \angle \left(-\frac{\pi}{2}\right)\end{equation*}
\end{myquote}

To write this in terms of degrees, we can say:

\begin{myquote}
\item{} \begin{equation*}\mathbb{Z} = C \angle (-90^{\circ})\end{equation*}
\end{myquote}

We can accept this for now as being axiomatic. If we consider the fact that phasors can be graphed on the imaginary plane, we can easily see that the angle of {$-\pi/2$} points directly downward, along the negative imaginary axis. We then come to an important conclusion: The impedance of a capacitor is {\itshape imaginary}, in a sense. Since the angle follows directly along the imaginary axis, there is no real part to the phasor at all. Because there is no real part to the impedance, we can see that capacitors have no resistance (because resistance is a real value, as stated above).
\subsection{Reactance}
\label{143}

A capacitor with a capacitance of C in an AC circuit with an angular velocity {$ \omega $} has a reactance given by

{$\mathbb{X} = \frac {1}{\omega C} \angle (-90^{\circ})$}

Reactance is the impedance specific to an AC circuit with angular velocity {$ \omega $}.
\section{Inductors}
\label{144}

Inductors have a phasor value:

\EqnTemplate{Inductor Impedance}
\begin{myquote}
\item{} \begin{equation*}\mathbb{Z} = L \angle \left(\frac{\pi}{2}\right)\end{equation*}
\end{myquote}

Where L is the inductance of the inductor. We can also write this using degrees:

\begin{myquote}
\item{} \begin{equation*}\mathbb{Z} = L \angle (90^\circ)\end{equation*}
\end{myquote}

Like capacitors, we can see that the phasor for inductor shows that the value of the impedance is located directly on the imaginary axis. However, the phasor value for inductance points in exactly the opposite direction from the capacitance phasor. We notice here also that inductors have no resistance, because the resistance is a real value, and inductors have only an imaginary value.
\subsection{Reactance}
\label{145}

In an AC circuit with a source angular velocity of {$ \omega $}, and inductor with inductance L.

{$\mathbb{X} = \omega L \angle (90^\circ)$}
\section{Impedances Connected in Series}
\label{146}

If there are several impedances connected in series, the equivalent impedance is simply a sum of the impedance values:
\\

\TemplateSpaceIndent{ {}-{}-{}-{}-{}{[} {}Z1 {}{]}-{}-{}-{}-{}{[} {}Z2 {}{]}-{}-{}-{} {}... {}-{}-{}-{}{[} {}Zn {}{]}-{}-{}-{} {} {} {}==>{} {}-{}-{}-{}{[} {}Zseries {}{]}-{}-{}-{}}

\EqnTemplate{Impedances in Series}
\begin{myquote}
\item{} \begin{equation*}\sum_{series} \mathbb{Z}_n = \mathbb{Z}_{series}\end{equation*}
\end{myquote}

Notice how much easier this is than having to differentiate between the formulas for combining capacitors, resistors, and inductors in series. Notice also that resistors, capacitors, and inductors can all be mixed without caring which type of element they are. This is valuable, because we can now combine different elements into a single impedance value, as opposed to different values of inductance, capacitance, and resistance.

Keep in mind however, that phasors need to be converted to rectangular coordinates before they can be added together. If you know the formulas, you can write a small computer program, or even a small application on a programmable calculator to make the conversion for you.
\section{Impedances in Parallel}
\label{147}

Impedances connected in parallel can be combined in a slightly more complicated process:

\EqnTemplate{Impedances in Parallel}
\begin{myquote}
\item{} \begin{equation*}\mathbb{Z}_{parallel} = \frac{\prod_N Z_n}{\sum_N Z_n}\end{equation*}
\end{myquote}

Where N is the total number of impedances connected in parallel with each other. Impedances may be multiplied in the polar representation, but they must be converted to rectangular coordinates for the summation. This calculation can be a little bit time consuming, but when you consider the alternative (having to deal with each type of element separately), we can see that this is much easier.
\section{Steps For Solving a Circuit With Phasors}
\label{148}

There are a few general steps for solving a circuit with phasors:

\begin{myenumerate}
\item{} Convert all elements to phasor notation
\item{} Combine impedances, if possible
\item{} Combine Sources, if possible
\item{} Use Ohm\textquotesingle{}s Law, and Kirchoff\textquotesingle{}s laws to solve the circuit
\item{} Convert back into time-{}domain representation
\end{myenumerate}

Unfortunately, phasors can only be used with sinusoidal input functions. We cannot employ phasors when examining a DC circuit, nor can we employ phasors when our input function is any non-{}sinusoidal periodic function. To handle these cases, we will look at more general methods in later chapters
\section{Network Function}
\label{149}

The network function is a phasor, {\mathbb{H}} that is a ratio of the circuit\textquotesingle{}s input to its output. This is important, because if we can solve a circuit down to find the network function, we can find the response to {\itshape any} sinusoidal input, by simply multiplying by the network function. With time-{}domain analysis, we would have to solve the circuit for every new input, and this would be very time consuming indeed.

Network functions are defined in the following way:

\EqnTemplate{Network Function}
\begin{myquote}
\item{} \begin{equation*}\mathbb{H} = \frac{\mathbb{Y}}{\mathbb{X}}\end{equation*}
\end{myquote}

Where {\mathbb{Y}} is the phasor representation of the circuit\textquotesingle{}s output, and {\mathbb{X}} is the representation of the circuit\textquotesingle{}s input. In the time domain, to find the output, we would need to convolute the input with the impulse response. With the network function, however, it becomes a simple matter of multiplying the input phasor with the network function, to get the output phasor. Using this method, we have converted an entire circuit to become a simple function that changes magnitude and phase angle.
\section{Gain}
\label{150}

Gain is the amount by which the magnitude of the sinusoid is amplified or attenuated by the circuit. Gain can be computed from the Network function as such:

\EqnTemplate{Gain}
\begin{myquote}
\item{} \begin{equation*}Gain = \left| \mathbb{H}(\omega) \right| = \frac{\left| \mathbb{Y}(\omega) \right|}{\left| \mathbb{X}(\omega) \right|} \end{equation*}
\end{myquote}

Where the bars around the phasors are the \symbol{34}magnitude\symbol{34} of the phasor, and not the \symbol{34}absolute value\symbol{34} as they are in other math texts. Again, gain may be a measure of the magnitude change in either current or voltage. Most frequently, however, it is used to describe voltage.
\section{Phase Shift}
\label{151}

The phase shift of a function is the amount of phase change between the input signal and the output signal. This can be calculated from the network function as such:

\EqnTemplate{Phase Shift}
\begin{myquote}
\item{} \begin{equation*}\angle \mathbb{H}(\omega) = \angle \mathbb{Y}(\omega) - \angle \mathbb{X}(\omega)\end{equation*}
\end{myquote}

Where the {\angle} denotes the phase of the phasor.

Again, the phase change may represent current or voltage.
\chapter{Phasor Theorems}

\label{152}
\LaTeXNullTemplate{}
\section{Circuit Theorems}
\label{153}

Phasors would be absolutely useless if they didn\textquotesingle{}t make the analysis of a circuit easier. Luckily for us, all our old circuit analysis tools work with values in the phasor domain. Here is a quick list of tools that we have already discussed, that continue to work with phasors:

\begin{myitemize}
\item{} Ohm\textquotesingle{}s Law
\item{} Kirchoff\textquotesingle{}s Laws
\item{} Superposition
\item{} Thevenin and Norton Sources
\item{} Maximum Power Transfer
\end{myitemize}

This page will describe how to use some of the tools we discussed for DC circuits in an AC circuit using phasors.
\section{Ohm\textquotesingle{}s Law}
\label{154}

Ohm\textquotesingle{}s law, as we have already seen, becomes the following equation when in the phasor domain:

\begin{myquote}
\item{} \begin{equation*}\mathbb{V} = \mathbb{Z} \mathbb{I}\end{equation*}
\end{myquote}

Separating this out, we get:

\begin{myquote}
\item{} \begin{equation*}M_V \angle \phi_V = (M_Z \times M_I) \angle (\phi_Z + \phi_I)\end{equation*}
\end{myquote}

Where we can clearly see the magnitude and phase relationships between the current, the impedance, and the voltage phasors.
\section{Kirchoff\textquotesingle{}s Laws}
\label{155}

Kirchoff\textquotesingle{}s laws still hold true in phasors, with no alterations.
\subsection{Kirchoff\textquotesingle{}s Current Law}
\label{156}

Kirchoff\textquotesingle{}s current law states that the amount of current entering a particular node must equal the amount of current leaving that node. Notice that KCL never specifies what form the current must be in: any type of current works, and KCL always holds true.

\EqnTemplate{KCL With Phasors}
\begin{myquote}
\item{} \begin{equation*}\sum_n \mathbb{I}_n = 0\end{equation*}
\end{myquote}

\subsection{Kirchoff\textquotesingle{}s Voltage Law}
\label{157}

KVL states: The sum of the voltages around a closed loop must always equal zero. Again, the form of the voltage forcing function is never considered: KVL holds true for any input function.

\EqnTemplate{KVL With Phasors}
\begin{myquote}
\item{} \begin{equation*}\sum_n \mathbb{V}_n = 0\end{equation*}
\end{myquote}

\section{Superposition}
\label{158}

Superposition may be applied to a circuit if all the sources have the same frequency. However, superposition {\itshape must} be used as the only possible method to solve a circuit with sources that have different frequencies. The important part to remember is that impedance values in a circuit are based on the frequency. Different reactive elements react to different frequencies differently. Therefore, the circuit must be solved once for every source frequency. This can be a long process, but it is the only good method to solve these circuits.
\section{Thevenin and Norton Circuits}
\label{159}

Thevenin Circuits and Norton Circuits can be manipulated in a similar manner to their DC counterparts: Using the phasor-{}domain implementation of Ohm\textquotesingle{}s Law.

\begin{myquote}
\item{} \begin{equation*}\mathbb{V} = \mathbb{Z}\mathbb{I}\end{equation*}
\end{myquote}

It is important to remember that the {\mathbb{Z}} does not change in the calculations, although the phase and the magnitude of both the current and the voltage sources might change as a result of the calculation.
\section{Maximum Power Transfer}
\label{160}

The maximum power transfer theorem in phasors is slightly different then the theorem for DC circuits. To obtain maximum power transfer from a thevenin source to a load, the internal thevenin impedance ({\mathbb{Z}_t}) must be the complex conjugate of the load impedance ({\mathbb{Z}_l}):

\EqnTemplate{Maximum Power Transfer, with Phasors}
\begin{myquote}
\item{} \begin{equation*}\mathbb{Z}_l = R_t - jX_t\end{equation*}
\end{myquote}

\chapter{Complex Power}

\label{161}

\LaTeXNullTemplate{}

\label{162}
\LaTeXNullTemplate{}

\LaTeXNullTemplate{}
\section{Laplace Transform}
\label{163}
The {\bfseries Laplace Transform} is a powerful tool that is very useful in Electrical Engineering. The transform allows equations in the \symbol{34}time domain\symbol{34} to be transformed into an equivalent equation in the {\bfseries Complex S Domain}. The laplace transform is an integral transform, although the reader does not need to have a knowledge of integral calculus because all results will be provided. This page will discuss the Laplace transform as being simply a tool for solving and manipulating ordinary differential equations.

Laplace transformations of circuit elements are similar to phasor representations, but they are not the same. Laplace transformations are more general than phasors, and can be easier to use in some instances. Also, do not confuse the term \symbol{34}Complex S Domain\symbol{34} with the complex power ideas that we have been talking about earlier. Complex power uses the variable {\mathbb{S}}, while the Laplace transform uses the variable s. The Laplace variable s has nothing to do with power.

The transform is named after the mathematician {\bfseries Pierre Simon Laplace} (1749-{}1827). The transform itself did not become popular until Oliver Heaviside, a famous electrical engineer, began using a variation of it to solve electrical circuits.

\newline{}
\section{Laplace Domain}
\label{164}

The {\bfseries Laplace domain}, or the \symbol{34}Complex s Domain\symbol{34} is the domain into which the Laplace transform transforms a time-{}domain equation. s is a complex variable, composed of real and imaginary parts:

\begin{myquote}
\item{} \begin{equation*}s = \sigma + j\omega\end{equation*}
\end{myquote}

The Laplace domain graphs the real part ({\mbox{σ}}) as the horizontal axis, and the imaginary part ({\mbox{ω}}) as the vertical axis. The real and imaginary parts of s can be considered as independent quantities.

The similarity of this notation with the notation used in Fourier transform theory is no coincidence; for {$\sigma=0$}, the Laplace transform is the same as the Fourier transform if the signal is causal.
\section{The Transform}
\label{165}

The mathematical definition of the Laplace transform is as follows:

\EqnTemplate{The Laplace Transform}

\begin{myquote}
\item{} \begin{equation*}F(s) = \mathcal{L} \left\{f(t)\right\} = \int_{0^-}^\infty e^{-st} f(t)\,dt\end{equation*}
\end{myquote}

\LaTeXPlainBoxTemplate{{\bfseries Note:} \newline{}
The letter {\bfseries s} has no special significance, and is used with the Laplace Transform as a matter of common convention.}

The transform, by virtue of the definite integral, removes all t from the resulting equation, leaving instead the new variable s, a complex number that is normally written as {$s=\sigma+j\omega$}. In essence, this transform takes the function f(t), and \symbol{34}transforms it\symbol{34} into a function in terms of s, F(s). As a general rule the transform of a function f(t) is written as F(s). Time-{}domain functions are written in lower-{}case, and the resultant s-{}domain functions are written in upper-{}case.

\LaTeXPlainBoxTemplate{There is a table of Laplace Transform pairs in \newline{}
{\bfseries \mylref{249}{the Appendix}}}

we will use the following notation to show the transform of a function:

\begin{myquote}
\item{} \begin{equation*}f(t) \Leftrightarrow F(s)\end{equation*}
\end{myquote}

We use this notation, because we can convert F(s) back into f(t) using the {\bfseries inverse Laplace transform}.
\section{The Inverse Transform}
\label{166}

The {\bfseries inverse laplace transform} converts a function in the complex S-{}domain to its counterpart in the time-{}domain. Its mathematical definition is as follows:

\EqnTemplate{Inverse Laplace Transform}
\begin{myquote}
\item{} \begin{equation*} \mathcal{L}^{-1} \left\{F(s)\right\} = {1 \over {2\pi}}\int_{c-i\infty}^{c+i\infty} e^{ft} F(s)\,ds = f(t)\end{equation*}
\end{myquote}

where {c} is a real constant such that all of the poles {$s_1,s_2,...,s_n$} of {$F(s)$} fall in the region {$\mathfrak{R}\{s_i\} < c$}. In other words, {c} is chosen so that all of the poles of {$F(s)$} are to the left of the vertical line intersecting the real axis at {$s=c$}.

The inverse transform is more difficult mathematically than the transform itself is. However, luckily for us, extensive tables of laplace transforms and their inverses have been computed, and are available for easy browsing.
\section{Transform Properties}
\label{167}

\LaTeXPlainBoxTemplate{There is a table of Laplace Transform properties in \newline{}
{\bfseries \mylref{249}{The Appendix}}}

The most important property of the Laplace Transform (for now) is as follows:

\begin{myquote}
\item{} \begin{equation*}\mathcal{L} \left\{ f'(t) \right\} = sF(s) - f(0)\end{equation*}
\end{myquote}

Likewise, we can express higher-{}order derivatives in a similar manner:

\begin{myquote}
\item{} \begin{equation*}\mathcal{L} \left\{f''(t)\right\} = s^2F(s) - s f(0) - f'(0) \end{equation*}
\end{myquote}

Or for an arbitrary derivative:

\begin{myquote}
\item{} \begin{equation*}\mathcal{L} \left\{f^{(n)}(t)\right\} = s^nF(s) - \sum_{i=0}^{n-1} s^{(n-1-i)} f^{(i)}(0) \end{equation*}
\end{myquote}

where the notation {$ f^{(n)}(t) $} means the nth derivative of the function {$ f $} at the point {$ t $}, and {$ f^{(0)}(t) $} means {$ f(t) $}.

In plain English, the laplace transform converts differentiation into polynomials. The only important thing to remember is that we must add in the initial conditions of the time domain function, but for most circuits, the initial condition is 0, leaving us with nothing to add.

For integrals, we get the following:

\begin{myquote}
\item{} \begin{equation*}\mathcal{L}\left\{ \int_0^t f(t)\, dt \right\} = {1 \over s}F(s)\end{equation*}
\end{myquote}

\section{Initial Value Theorem}
\label{168}

The {\bfseries Initial Value Theorem} of the laplace transform states as follows:

\EqnTemplate{Initial Value Theorem}
\begin{myquote}
\item{} \begin{equation*}f(0) \Leftrightarrow \lim_{s \to \infty} sF(s)\end{equation*}
\end{myquote}

This is useful for finding the initial conditions of a function needed when we perform the transform of a differentiation operation (see above).
\section{Final Value Theorem}
\label{169}

Similar to the Initial Value Theorem, the {\bfseries Final Value Theorem} states that we can find the value of a function f, as t approaches infinity, in the laplace domain, as such:

\EqnTemplate{Final Value Theorem}
\begin{myquote}
\item{} \begin{equation*}\lim_{t \to \infty} f(t) \Leftrightarrow \lim_{s \to 0} sF(s)\end{equation*}
\end{myquote}

This is useful for finding the steady state response of a circuit. The final value theorem may only be applied to stable systems.
\section{Transfer Function}
\label{170}

If we have a circuit with impulse-{}response h(t) in the time domain, with input x(t) and output y(t), we can find the {\bfseries Transfer Function} of the circuit, in the laplace domain, by transforming all three elements:

\begin{minipage}{1.0\linewidth}
\begin{center}
\includegraphics[width=1.0\linewidth,height=6.5in,keepaspectratio]{../images/32.png}
\end{center}
\raggedright{}\myfigurewithoutcaption{32}
\end{minipage}\vspace{0.75cm}

In this situation, H(s) is known as the \symbol{34}Transfer Function\symbol{34} of the circuit. It can be defined as both the transform of the impulse response, or the ratio of the circuit output to its input in the Laplace domain:

\EqnTemplate{Transfer Function}
\begin{myquote}
\item{} \begin{equation*}H(s) = \mathcal{L} \left\{h(t) \right\} = \frac{Y(s)}{X(s)}\end{equation*}
\end{myquote}

Transfer functions are powerful tools for analyzing circuits. If we know the transfer function of a circuit, we have all the information we need to understand the circuit, and we have it in a form that is easy to work with. When we have obtained the transfer function, we can say that the circuit has been \symbol{34}solved\symbol{34} completely.
\section{Convolution Theorem}
\label{171}

Earlier it was mentioned that we could compute the output of a system from the input and the impulse response by using the convolution operation. As a reminder, given the following system:

\begin{longtable}{|>{\RaggedRight}p{0.45982\linewidth}|>{\RaggedRight}p{0.45982\linewidth}|} \hline
\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\begin{minipage}{1.0\linewidth}\begin{center}\includegraphics[width=1.0\linewidth,height=6.5in,keepaspectratio]{../images/33.\SVGExtension}\end{center}\myfigurewithoutcaption{33}\end{minipage}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\begin{myitemize}\item{} {\itshape x(t)} = {\bfseries system input}\item{} {\itshape h(t)} = {\bfseries impulse response}\item{} {\itshape y(t)} = {\bfseries system output}\end{myitemize}\\ \hline
\end{longtable}

We can calculate the output using the convolution operation, as such:

\begin{myquote}
\item{} \begin{equation*}y(t) = x(t) * h(t)\end{equation*}
\end{myquote}

Where the asterisk denotes convolution, not multiplication. However, in the S domain, this operation becomes much easier, because of a property of the laplace transform:

\EqnTemplate{Convolution Theorem}
\begin{myquote}
\item{} \begin{equation*}\mathcal{L} \left\{ a(t) * b(t) \right\} = A(s)B(s)\end{equation*}
\end{myquote}

Where the asterisk operator denotes the convolution operation. This leads us to an English statement of the convolution theorem:

\LaTeXZeroBoxOpenTemplate{Convolution in the time domain becomes multiplication in the S domain, and convolution in the S domain becomes multiplication in the time domain.\myfootnote{Lecture 6 Slide 22 (Page 6 in the PDF document) \myplainurl{http://www.ee.ic.ac.uk/pcheung/teaching/ee2_signals/Lecture\%206\%20-\%20Laplace\%20Transform.pdf}}}

Now, if we have a system in the Laplace S domain:

\begin{longtable}{|>{\RaggedRight}p{0.45982\linewidth}|>{\RaggedRight}p{0.45982\linewidth}|} \hline
\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\begin{minipage}{1.0\linewidth}\begin{center}\includegraphics[width=1.0\linewidth,height=6.5in,keepaspectratio]{../images/34.\SVGExtension}\end{center}\myfigurewithoutcaption{34}\end{minipage}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \begin{myitemize}\item{} {\itshape X(s)} = {\bfseries Input}\item{} {\itshape H(s)} = {\bfseries Transfer Function}\item{} {\itshape Y(s)} = {\bfseries Output}\end{myitemize}\\ \hline
\end{longtable}

We can compute the output Y(s) from the input X(s) and the Transfer Function H(s):

\begin{myquote}
\item{} \begin{equation*}Y(s) = X(s)H(s)\end{equation*}
\end{myquote}

Notice that this property is very similar to phasors, where the output can be determined by multiplying the input by the network function. The network function and the transfer function then, are very similar quantities.
\section{Resistors}
\label{172}

The laplace transform can be used independently on different circuit elements, and then the circuit can be solved entirely in the S Domain (Which is much easier). Let\textquotesingle{}s take a look at some of the circuit elements:

Resistors are time and frequency invariant. Therefore, the transform of a resistor is the same as the resistance of the resistor:

\EqnTemplate{Transform of Resistors}
\begin{myquote}
\item{} \begin{equation*}R(s) = r\end{equation*}
\end{myquote}

Compare this result to the phasor impedance value for a resistance r:

\begin{myquote}
\item{} \begin{equation*}Z_r = r \angle 0\end{equation*}
\end{myquote}

You can see very quickly that resistance values are very similar between phasors and laplace transforms.
\section{Ohm\textquotesingle{}s Law}
\label{173}

If we transform Ohm\textquotesingle{}s law, we get the following equation:

\EqnTemplate{Transform of Ohm\textquotesingle{}s Law}
\begin{myquote}
\item{} \begin{equation*}V(s) = I(s)R\end{equation*}
\end{myquote}

Now, following ohms law, the resistance of the circuit element is a ratio of the voltage to the current. So, we will solve for the quantity {$\frac{V(s)}{I(s)}$}, and the result will be the resistance of our circuit element:

\begin{myquote}
\item{} \begin{equation*}R = \frac{V(s)}{I(s)}\end{equation*}
\end{myquote}

This ratio, the input/output ratio of our resistor is an important quantity, and we will find this quantity for all of our circuit elements. We can say that the transform of a resistor with resistance r is given by:

\EqnTemplate{Tranform of Resistor}
\begin{myquote}
\item{} \begin{equation*}\mathcal{L}\{resistor\} = R = r\end{equation*}
\end{myquote}

\section{Capacitors}
\label{174}

Let us look at the relationship between voltage, current, and capacitance, in the time domain:

\begin{myquote}
\item{} \begin{equation*}i(t) = C\frac{dv(t)}{dt}\end{equation*}
\end{myquote}

Solving for voltage, we get the following integral:

\begin{myquote}
\item{} \begin{equation*}v(t) = \frac{1}{C}\int_{t_0}^{\infty} i(t)dt\end{equation*}
\end{myquote}

Then, transforming this equation into the laplace domain, we get the following:

\begin{myquote}
\item{} \begin{equation*}V(s) = \frac{1}{C} \frac{1}{s} I(s)\end{equation*}
\end{myquote}

Again, if we solve for the ratio {$\frac{V(s)}{I(s)}$}, we get the following:

\begin{myquote}
\item{} \begin{equation*}\frac{V(s)}{I(s)} = \frac{1}{sC}\end{equation*}
\end{myquote}

Therefore, the transform for a capacitor with capacitance C is given by:

\EqnTemplate{Transform of Capacitor}
\begin{myquote}
\item{} \begin{equation*}\mathcal{L}\{\mbox{capacitor}\} = \frac{1}{sC}\end{equation*}
\end{myquote}

\section{Inductors}
\label{175}

Let us look at our equation for inductance:

\begin{myquote}
\item{} \begin{equation*}v(t) = L \frac{di(t)}{dt}\end{equation*}
\end{myquote}

putting this into the laplace domain, we get the formula:

\begin{myquote}
\item{} \begin{equation*}V(s) = sLI(s)\end{equation*}
\end{myquote}

And solving for our ratio {$\frac{V(s)}{I(s)}$}, we get the following:

\begin{myquote}
\item{} \begin{equation*}\frac{V(s)}{I(s)} = sL\end{equation*}
\end{myquote}

Therefore, the transform of an inductor with inductance L is given by:

\EqnTemplate{Transform of Inductor}
\begin{myquote}
\item{} \begin{equation*}\mathcal{L}\{Inductor\} = sL\end{equation*}
\end{myquote}

\section{Impedance}
\label{176}

Since all the load elements can be combined into a single format dependent on s, we call the effect of all load elements {\bfseries impedance}, the same as we call it in phasor representation. We denote impedance values with a capital Z (but not a phasor {\mathbb{Z}}).
\section{References}
\label{177}
\LaTeXNullTemplate{}

\label{178}
\LaTeXNullTemplate{}
\section{Laplace Circuit Solution}
\label{179}

One of the most important uses of the Laplace transform is to solve linear differential equations, just like the type of equations that represent our first-{} and second-{}order circuits. This page will discuss the use of the Laplace Transform to find the complete response of a circuit.
\section{Steps}
\label{180}

Here are the general steps for solving a circuit using the Laplace Transform:

\begin{myenumerate}
\item{} Determine the differential equation for the circuit.
\item{} Use the Laplace Transform on the differential equation.
\item{} Solve for the unknown variable in the laplace domain.
\item{} Use the inverse laplace transform to find the time domain solution.
\end{myenumerate}

Another method that we can use is:

\begin{myenumerate}
\item{} Transform the individual circuit components into impedance values using the Laplace Transform.
\item{} Find the Transfer function that describes the circuit
\item{} Solve for the unknown variable in the laplace domain.
\item{} Use the inverse laplace transform to find the time domain solution.
\end{myenumerate}

\label{181}
\LaTeXNullTemplate{}

\begin{minipage}{1.0\linewidth}
\begin{center}
\includegraphics[width=1.0\linewidth,height=6.5in,keepaspectratio]{../images/35.jpg}
\end{center}
\raggedright{}\myfigurewithcaption{35}{\myhref{http://en.wikipedia.org/wiki/Joseph\%20Fourier}{Joseph Fourier}, after whom the Fourier Transform is named, was a famous mathematician who worked for Napoleon.}
\end{minipage}\vspace{0.75cm}

\section{Fourier Transform}
\label{182}

The {\bfseries Fourier Transform} is a specific case of the Laplace transform. If we separate s into its real and imaginary parts:

\begin{myquote}
\item{} \begin{equation*}s = \sigma + j\omega\end{equation*}
\end{myquote}

Where s is the complex laplace variable, {σ} is the real part of s, and {ω} is the imaginary part of s. Remember, in Electrical Engineering, j is the imaginary number, not i.

Now, if we set {$\sigma \to 0$}, we can get the following:

\begin{myquote}
\item{} \begin{equation*}s = j\omega\end{equation*}
\end{myquote}

Plugging into the Laplace transform, we get the following formula:

\EqnTemplate{Fourier Transform}
\begin{myquote}
\item{} \begin{equation*}F(j\omega) = \mathcal{F} \left\{f(t) \right\} = \int_{-\infty}^\infty f(t) e^{-j\omega t}dt\end{equation*}
\end{myquote}

The variable {ω} is known as the \symbol{34}radial frequency\symbol{34} of the circuit. This term refers to the frequency of the circuit. The Fourier transform, in the respect that it accounts only for the response of the circuit to a given frequency is very similar to phasor notation. However the Fourier Transform produces an equation that can be used to analyze the circuit {\itshape for all frequencies}, not just a single frequency like phasors are limited to.

\LaTeXPlainBoxTemplate{There is a table of Fourier Transform pairs in \newline{}
{\bfseries \mylref{249}{the Appendix}}}

As with the Laplace transform, there is an {\bfseries inverse Fourier transform}:

\EqnTemplate{Inverse Fourier Transform}
\begin{myquote}
\item{} \begin{equation*}\mathcal{F}^{-1}\left\{F(j\omega) \right\} = f(t) = \frac{1}{2\pi}\int_{-\infty}^\infty F(j\omega) e^{j\omega t} d\omega\end{equation*}
\end{myquote}

However, there are extensive tables of Fourier transforms and their inverses available, so we need not waste time computing individual transforms.
\section{Radial Frequency}
\label{183}

In the Fourier transform, the value {ω} is known as the {\bfseries Radial Frequency}, and has units of radians/second (rad/s). People might be more familiar with the variable f, which is called the \symbol{34}Frequency\symbol{34}, and is measured in units called Hertz (Hz). The conversion is done as such:

\EqnTemplate{Radial Frequency}
\begin{myquote}
\item{} \begin{equation*}\omega = 2\pi f\end{equation*}
\end{myquote}

\LaTeXPlainBoxTemplate{{\bfseries Radial Frequency} is measured in radians, {\bfseries frequency} is measured in hertz. Both describe the same quantity.}

For instance, if a given AC source has a frequency of 60Hz, the resultant radial frequency is:

\begin{myquote}
\item{} \begin{equation*}\omega = 2\pi f = 2\pi(60) = 120\pi\end{equation*}
\end{myquote}

\section{Fourier Domain}
\label{184}

The Laplace transform converts functions from the time domain to the complex s domain. s has real and imaginary parts, and these parts form the axes of the s domain: the real part is the horizontal axis, and the imaginary part is the vertical axis. However, in the Fourier transform, we have the relationship:

\begin{myquote}
\item{} \begin{equation*}s \to j \omega\end{equation*}
\end{myquote}

And therefore we don\textquotesingle{}t have a real part of s. The Fourier domain then is broken up into two distinct parts: the {\bfseries magnitude graph}, and the {\bfseries phase graph}. The magnitude graph has j{\mbox{ω}} as the horizontal axis, and the magnitude of the transform as the vertical axis. Remember, we can compute the magnitude of a complex value C as:

\begin{myquote}
\item{} \begin{equation*}C = A + jB\end{equation*}
\item{} \begin{equation*}|C| = \sqrt{A^2 + B^2}\end{equation*}
\end{myquote}

The Phase graph has j{\mbox{ω}} as the horizontal axis, and the phase value of the transform as the vertical axis. Remember, we can compute the phase of a complex value as such:

\begin{myquote}
\item{} \begin{equation*}C = A + jB\end{equation*}
\item{} \begin{equation*}\angle C = \tan^{-1}\left(\frac{B}{A}\right)\end{equation*}
\end{myquote}

The phase and magnitude values of the Fourier transform can be considered independent values, although some abstract relationships do apply. Every fourier transform must include a phase value and a magnitude value, or it cannot be uniquely transformed back into the time domain.

The combination of graphs of the magnitude and phase responses of a circuit, along with some special types of formatting and interpretation are called \mylref{192}{Bode Plots}, and are discussed in more detail in the next chapter.
\section{Impedance and Reactance}
\label{185}

In the Fourier domain, the concepts of capacitance, inductance, and resistance can be generalized into a single complex term called \symbol{34}Impedance.\symbol{34} Impedance in this sense is exactly the same as the impedance quantities from the Laplace domain and the phasor domain. In the fourier domain however, the impedance of a circuit element is defined in terms of the voltage frequency across that element, as such:

\LaTeXPlainBoxTemplate{{\bfseries Remember:} \newline{}
 Reactance is a combination of inductance and capacitance.}

\begin{myquote}
\item{} \begin{equation*}Z(j\omega) = R(j\omega) + jX(j\omega)\end{equation*}
\end{myquote}

Where R is the fourier transform of resistance, and X is the transform of reactance, that we discussed earlier.
\section{Frequency Domain Analysis}
\label{186}

Individual circuit elements can be transformed into the Fourier frequency domain according to a few simple rules. These transformed circuit elements can then be used to find the Frequency Response of the circuit.
\subsection{Resistors}
\label{187}

Resistors are not reactive elements, and their resistance is not a function of time. Therefore, when transformed, the fourier impedance value of a resistor is given as such:

\EqnTemplate{Transform of Resistor}
\begin{myquote}
\item{} \begin{equation*}Z_{resistor}(j\omega) = r\end{equation*}
\end{myquote}

Resistors act equally on all frequencies of input.
\subsection{Capacitors}
\label{188}

Capacitors are reactive elements, and therefore they have reactance, but no resistance, as such:

\EqnTemplate{Transform of Capacitor}
\begin{myquote}
\item{} \begin{equation*}Z_{capacitor}(j\omega) = \frac{1}{j\omega C} = \frac{-j}{\omega C}\end{equation*}
\end{myquote}

\subsection{Inductors}
\label{189}

Inductors are also reactive elements, and have the following fourier transform:

\EqnTemplate{Transform of Inductor}
\begin{myquote}
\item{} \begin{equation*} Z_{inductor}(j\omega) = j\omega L \end{equation*}
\end{myquote}

\subsection{Current and Voltage Sources}
\label{190}

The frequency representation of a source is simply the transform of that source\textquotesingle{}s input function.
\section{Frequency Response}
\label{191}

If we set {$s \to j\omega$}, and plug this value into our transfer function:

\EqnTemplate{Frequency Response}
\begin{myquote}
\item{} \begin{equation*}H(s)|_{s \to j\omega} = H(j\omega)\end{equation*}
\end{myquote}

The function {$H(j\omega)$} is called the \symbol{34}Frequency Response\symbol{34}. The frequency response can be used to find the output of a circuit from the input, in exactly the same way that the Transfer function can be:

\begin{myquote}
\item{} \begin{equation*}Y(j\omega) = X(j\omega)H(j\omega)\end{equation*}
\end{myquote}

In addition, the Convolution Theorem holds for the {ω} domain the same way as it works for the S domain:

\LaTeXZeroBoxOpenTemplate{Convolution in the time domain is multiplication in the frequency domain. Multiplication in the time domain is Convolution in the Frequency domain.}

\label{192}
\LaTeXNullTemplate{}
\section{Decibel}
\label{193}

\LaTeXPlainBoxTemplate{More information about {\bfseries Decibels} can be found in: \newline{}
 {\bfseries \mylref{241}{The Appendix}}}

Decibels (abbreviated \symbol{34}dB\symbol{34}) are not units per se. Instead, a Decibel is simply a logarithmic ratio of the input to the output of a circuit. Decibels represent a power ratio unless they are clearly tagged differently. Most db tags are NOT indicative of the ratio units, but rather, they indicate a comparison of a variable with an accepted standard. For example, dbm means 10 times the log of a power variable in ratio to 1 milliwatt. This is very popular in dealing with telephone lines. Decibels were invented by power weenies and belong to them, so it\textquotesingle{}s power unless someone indicates otherwise.\subsection{Voltage}
\label{194}

\EqnTemplate{Decibel relation}
\begin{myquote}
\item{} \begin{equation*}dB = 20\log{\frac{V_{out}}{V_{in}}}\end{equation*}
\end{myquote}

This is the power ratio (out / in) that exists for a voltage ratio of V_(out)to V_(in). Power goes as the square of the voltage, therefore the 10 log becomes 20 log. Bels, the precursors to decibels, were invented to describe power ratios; therefore, it is customary to describe a voltage ratio in terms of the power ratio that voltage ratio represents. This is used even when the input and output impedance differ. This makes little sense, but it is common practice. This \symbol{34}voltage-{}ratio-{}yields-{}power-{}ratio\symbol{34} comparison only really works when the impedance is the same for In and Out. This is true in such cases as telephone and video systems. The terms \symbol{34}Vin\symbol{34} and \symbol{34}Vout\symbol{34} can either be the time-{}domain values of the voltage input and voltage output, or they can be the magnitudes of the respective phasors. The original definition was bels = log (Power-{}out / Power-{}in), where log is the common (base 10) log, but the bel is a very large unit, hence the birth of the decibel, one-{}tenth of a bel. You can take a log ratio of any two quantities, but they must be the same unit. Oranges over oranges = unit-{}less.
\subsection{Power Gain}
\label{195}

\begin{myquote}
\item{} \begin{equation*}dB = 10\log{\frac{P_{out}}{P_{in}}}\end{equation*}
\end{myquote}

This is used to compare the output power of a system to the input power of a system. Notice that since power is being compared to power, the log prefix is 10. For voltage comparisons the prefix was 20 (due to power being proportional to voltage squared).
\section{Notes on Decibels}
\label{196}
\LaTeXPlainBoxTemplate{{\bfseries Remember:} \newline{}
{\bfseries \symbol{34}Decibels are not numbers, they are ratios\symbol{34}}}
Decibels are plotted on a \symbol{34}log10\symbol{34} graph, where each hash-{}mark on the axis is a successive power of 10. Also, the values on the X-{}axis are plotted on a log-{}10 scale as well. Each successive power-{}of-{}10 on the frequency axis is known as a \symbol{34}decade\symbol{34}. It is important to mention that decibels are simply a convenient way to represent a scaling factor, and that {\itshape decibels are not numbers: they are ratios.} Any quantity ratio can be expressed in decibels. The decibel is really just a common (base ten) log expressed in 0.1 log points; a log with enhanced resolution. It is customary to use a letter to warn the reader that a non-{}typical quantity is being compared by the log of a ratio. For voltage, it is usually dbv. This is a voltage comparison, NOT a power-{}due-{}to-{}the-{}voltage comparison. So 100 volts out for 1 volt in is 20 dbv. Impedance is not relevant for dbv. But this usage is fraught with peril, because dbv is also used to indicate that a variable is being ratioed to 1 volt. Decibels has been converted to an absolute. Beware and make yourself clear. Early telephony usage converted decibels to an absolute power level by setting the denominator to a fixed agreed power value: 6 milliwatts at 500 or 600 ohms impedance. The ratio of a variable to this fixed quantity was called dbm. Modern practice is to use 1 milliwatt as the reference for dbm.
\section{Bode Plots}
\label{197}

Bode plots can be broken down into 2 separate graphs: the magnitude graph, and the phase graph. Both graphs represent the circuit response in each category to sinusoids of different frequencies.
\subsection{Magnitude Graph}
\label{198}

The Bode Magnitude Graph is a graph where the radial frequency is plotted along the X-{}axis, and the gain of the circuit {\itshape at that frequency} is plotted (in Decibels) on the Y-{}axis. The bode magnitude graph most frequently plots the power gain against the frequency, although they may also be used to graph the voltage gain against the frequency. Also, the frequency axis may be in terms of hertz or radians, so the person drawing a bode plot should make sure to label their axes correctly.
\subsection{Phase Graph}
\label{199}

The Bode Phase Plot is a graph where the radial frequency is plotted along the X axis, and phase shift of the circuit {\itshape at that frequency} is plotted on the Y-{}axis. The phase change is almost always represented in terms of radians, although it is not unheard of to express them in terms of degrees. Likewise, the frequency axis may be in units of hertz or radians per second, so the axes need to be labeled correctly.
\section{Bode Plots by Different Methods}
\label{200}

Bode plots can be used both with Phasors (Network Functions), and with the Fourier Transform (Frequency Response). However, there are slightly different methods to doing it each way, and those methods will be examined in the following chapters. The Laplace Transform can be used to construct a bode plot by transposing from the s-{}domain to the fourier-{}domain. However, this is rarely done in practice and the Laplace Transform is instead used with other graphical methods that are unfortunately, outside the scope of this wikibook.
\section{Bode Analysis}
\label{201}

The pages in this section will talk about how to analyze a bode plot of a given circuit, and draw conclusions from that plot.

\LaTeXNullTemplate{}
\section{Log Magnitude Graph}
\label{202}

Using a network function (remember phasors?), we can find the log magnitude and the phase bode plots of a circuit. This page will discuss how to find the bode polt from the network function of a circuit.
\section{Phase Graph}
\label{203}
\section{Poles and Zeros}
\label{204}

The topic of \symbol{34}Poles and Zeros\symbol{34} are discussed in excruciating detail in advanced texts in Electrical Engineering. We will introduce the concepts of what a pole and a zero are in this chapter.
\subsection{Transfer Polynomials}
\label{205}

Let\textquotesingle{}s say that we have a given frequency response:

\begin{myquote}
\item{} \begin{equation*}H(j\omega) = \frac{Z(j\omega)}{P(j\omega)}\end{equation*}
\end{myquote}

Where both Z and P are polynomials. We then set each of these equations to zero, and solve:

\begin{myquote}
\item{} \begin{equation*}Z(j\omega) = 0\end{equation*}
\end{myquote}

\begin{myquote}
\item{} \begin{equation*}P(j\omega) = 0\end{equation*}
\end{myquote}

The solutions to the equation Z = 0 are called the \symbol{34}Zeros\symbol{34} of H. The solutions to the equation P = 0 are called the \symbol{34}Poles\symbol{34} of H.
\subsection{Properties of poles and zeros}
\label{206}

Let\textquotesingle{}s say that we have a frequency response that has a zero at N, and a pole at M. We then plug in these values to our frequency response:

\begin{myquote}
\item{} \begin{equation*}H(j\omega)|_{\omega \to N} = \frac{Z(j\omega)}{P(j\omega)} = \frac{0}{P(j\omega)} = 0\end{equation*}
\end{myquote}

And:

\begin{myquote}
\item{} \begin{equation*}H(j\omega)|_{\omega \to M} = \frac{Z(j\omega)}{P(j\omega)} = \frac{Z(j\omega)}{0} = \infty\end{equation*}
\end{myquote}

Now, some of the purists will immediately say \symbol{34}but you arent allowed to divide by zero\symbol{34}, and to those people I say: you can write in a limit, if you really want to.
\section{Bode Equation Format}
\label{207}

let us say that we have a generic transfer function with poles and zeros:

\begin{myquote}
\item{} \begin{equation*}H(j\omega) = \frac{(\omega_A + j\omega)(\omega_B + j\omega)}{(\omega_C+ j\omega)(\omega_D + j\omega)}\end{equation*}
\end{myquote}

Each term, on top and bottom of the equation, is of the form {$(\omega_N + j\omega)$}. However, we can rearrange our numbers to look like the following:

\begin{myquote}
\item{} \begin{equation*}\omega_N(1 + \frac{j\omega}{\omega_N})\end{equation*}
\end{myquote}

Now, if we do this for every term in the equation, we get the following:

\begin{myquote}
\item{} \begin{equation*}H_{bode}(j\omega) = \frac{\omega_A \omega_B}{\omega_C \omega_D} \frac{(1 + \frac{j\omega}{\omega_A})(1 + \frac{j\omega}{\omega_B})} {(1 + \frac{j\omega}{\omega_C})(1 + \frac{j\omega}{\omega_D})}\end{equation*}
\end{myquote}

This is the format that we are calling \symbol{34}Bode Equations\symbol{34}, although they are simply another way of writing an ordinary frequency response equation.
\section{DC Gain}
\label{208}

The constant term out front:

\begin{myquote}
\item{} \begin{equation*}\frac{\omega_A \omega_B}{\omega_C \omega_D}\end{equation*}
\end{myquote}

is called the \symbol{34}DC Gain\symbol{34} of the function. If we set {$\omega \to 0$}, we can see that everything in the equation cancels out, and the value of H is simply our DC gain. DC then is simply the input with a frequency of zero.
\section{Break Frequencies}
\label{209}

in each term:

\begin{myquote}
\item{} \begin{equation*}(1 + \frac{j\omega}{\omega_N})\end{equation*}
\end{myquote}

the quantity {ω_N} is called the \symbol{34}Break Frequency\symbol{34}. When the radial frequency of the circuit equals a break frequency, that term becomes (1 + 1) = 2. When the radial frequency is much higher than the break frequency, the term becomes much greater than 1. When the radial Frequency is much smaller than the break frequency, the value of that term becomes approximately 1.
\subsection{Much Greater and Much Less}
\label{210}

We use the term \symbol{34}much\symbol{34} as a synonym for the term \symbol{34}At least 10 times\symbol{34}. So \symbol{34}Much Greater\symbol{34} becomes \symbol{34}At least 10 times greater\symbol{34} and \symbol{34}Much less\symbol{34} becomes \symbol{34}At least 10 times less\symbol{34}. We also use the symbol \symbol{34}<{}<{}\symbol{34} to mean \symbol{34}is much less than\symbol{34} and \symbol{34}>{}>{}\symbol{34} to mean \symbol{34}Is much greater than\symbol{34}. Here are some examples:

\begin{myitemize}
\item{} 1 <{}<{} 10
\item{} 10 <{}<{} 1000
\item{} 2 <{}<{} 20 Right!
\item{} 2 <{}<{} 10 WRONG!
\end{myitemize}

\subsection{Engineering Approximations}
\label{211}

For a number of reasons, Electrical Engineers find it appropriate to approximate and round some values very heavily. For instance, manufacturing technology will never create electrical circuits that perfectly conform to mathematical calculations. When we combine this with the <{}<{} and >{}>{} operators, we can come to some important conclusions that help us to simplify our work:

If A <{}<{} B:
\begin{myitemize}
\item{} A + B = B
\item{} A -{} B = -{}B
\item{} A / B = 0
\end{myitemize}

All other mathematical operations need to be performed, but these 3 forms can be approximated away. This point will come important for later work on bode plots.

Using our knowledge of the Bode Equation form, the DC gain value, Decibels, and the \symbol{34}much greater, much less\symbol{34} inequalities, we can come up with a fast way to approximate a bode magnitude plot. Also, it is important to remember that these gain values are not constants, but rely instead on changing frequency values. Therefore, the gains that we find are all {\itshape slopes} of the bode plot. Our slope values all have units of \symbol{34}decibel per decade\symbol{34}, or \symbol{34}db/decade\symbol{34}, for short.
\section{At Zero Radial Frequency}
\label{212}

At zero radial frequency, the value of the bode plot is simply the DC gain value {\itshape in decibels}. Remember, bode plots have a log-{}10 magnitude Y-{}axis, so we need to convert our gain to decibels:

\begin{myquote}
\item{} \begin{equation*}Magnitude = 20\log_{10}(DC Gain)\end{equation*}
\end{myquote}

\section{At a Break Point}
\label{213}

We can notice that each given term changes it\textquotesingle{}s effect as the radial frequency goes from below the break point, to above the break point. Let\textquotesingle{}s show an example:

\begin{myquote}
\item{} \begin{equation*}(1 + \frac{j\omega}{5})\end{equation*}
\end{myquote}

Our breakpoint occurs at 5 radians per second. When our radial frequency is {\itshape much less} than the break point, we have the following:

\begin{myquote}
\item{} \begin{equation*}Gain = (1 + 0) = 1\end{equation*}
\end{myquote}

\begin{myquote}
\item{} \begin{equation*}Magnitude = 20\log_{10}(1) = 0db/decade\end{equation*}
\end{myquote}

When our radial frequency is equal to our break point we have the following:

\begin{myquote}
\item{} \begin{equation*}Gain = |(1 + j)| = \sqrt{2}\end{equation*}
\end{myquote}

\begin{myquote}
\item{} \begin{equation*}Magnitude = 20\log_{10}(\sqrt{2}) = 3db/decade\end{equation*}
\end{myquote}

And when our radial frequency is much higher (10 times) our break point we get:

\begin{myquote}
\item{} \begin{equation*}Gain = |(1 + 10 j)| \approx 10\end{equation*}
\end{myquote}

\begin{myquote}
\item{} \begin{equation*}Magnitude = 20\log_{10}(10) = 20db/decade\end{equation*}
\end{myquote}

However, we need to remember that some of our terms are \symbol{34}Poles\symbol{34} and some of them are \symbol{34}Zeros\symbol{34}.
\subsection{Zeros}
\label{214}

Zeros have a positive effect on the magnitude plot. The contributions of a zero are all positive:
{\bfseries
\begin{mydescription}Radial Frequency <{}<{} Break Point
\end{mydescription}
}
\begin{myquote}\item{} 0db/decade gain.
\end{myquote}
{\bfseries
\begin{mydescription}Radial Frequency = Break Point
\end{mydescription}
}
\begin{myquote}\item{} 3db/decade gain.
\end{myquote}
{\bfseries
\begin{mydescription}Radial Frequency >{}>{} Break Point
\end{mydescription}
}
\begin{myquote}\item{} 20db/decade gain.
\end{myquote}

\subsection{Poles}
\label{215}

Poles have a negative effect on the magnitude plot. The contributions of the poles are as follows:
{\bfseries
\begin{mydescription}Radial Frequency <{}<{} Break Point
\end{mydescription}
}
\begin{myquote}\item{} 0db/decade gain.
\end{myquote}
{\bfseries
\begin{mydescription}Radial Frequency = Break Point
\end{mydescription}
}
\begin{myquote}\item{} -{}3db/decade gain.
\end{myquote}
{\bfseries
\begin{mydescription}Radial Frequency >{}>{} Break Point
\end{mydescription}
}
\begin{myquote}\item{} -{}20db/decade gain.
\end{myquote}

\section{Conclusions}
\label{216}

To draw a bode plot effectively, follow these simple steps:

\begin{myenumerate}
\item{} Put the frequency response equation into bode equation form.
\item{} identify the DC gain value, and mark this as a horizontal line coming in from the far left (where the radial frequency conceptually is zero).
\item{} At every \symbol{34}zero\symbol{34} break point, increase the slope of the line upwards by 20db/decade.
\item{} At every \symbol{34}pole\symbol{34} break point, decrease the slope of the line downwards by 20db/decade.
\item{} at every breakpoint, note that the \symbol{34}actual value\symbol{34} is 3db off from the value graphed.
\end{myenumerate}

And then you are done!
\section{See Also}
\label{217}
\begin{myitemize}
\item{} \myhref{http://wikis.controltheorypro.com/index.php?title=Bode_Plot}{ Bode Plots on ControlTheoryPro.com}
\end{myitemize}

\label{218}
\LaTeXNullTemplate{}
\section{Impedance}
\label{219}

Let\textquotesingle{}s recap: In the transform domain, the quantities of resistance, capacitance, and inductance can all be combined into a single complex value known as \symbol{34}Impedance\symbol{34}. Impedance is denoted with the letter Z, and can be a function of s or j{\mbox{ω}}, depending on the transform used (Laplace or Fourier). This impedance is very similar to the phasor concept of impedance, except that we are in the complex domain (laplace or fourier), and not the phasor domain.

Impedance is a complex quantity, and is therefore comprised of two components: The real component (resistance), and the complex component (reactance). Resistors, because they do not vary with time or frequency, have real values. Capacitors and inductors however, have imaginary values of impedance. The resistance is denoted (as always) with a capital R, and the reactance is denoted with an X (this is common, although it is confusing because X is also the most common input designator). We have therefore, the following relationship between resistance, reactance, and impedance:

\EqnTemplate{Complex Laplace Impedance}
\begin{myquote}
\item{} \begin{equation*}Z = R + jX\end{equation*}
\end{myquote}

\section{Susceptance and Admittance}
\label{220}

The inverse of resistance is a quantity called \symbol{34}Conductance\symbol{34}. Similarly, the inverse of reactance is called \symbol{34}Susceptance\symbol{34}. The inverse of impedance is called \symbol{34}Admittance\symbol{34}. Conductance, Susceptance, and Admittance are all denoted by the variables Y or G, and are given the units {\bfseries Siemens}. This book will not use any of these terms again, and they are just included here for completeness.
\section{Parallel Components}
\label{221}

Once in the transform domain, all circuit components act like basic resistors. Components in parallel are related as follows:

\begin{myquote}
\item{} \begin{equation*}Z_1 || Z_2 = \frac{Z_1 Z_2}{Z_1 + Z_2}\end{equation*}
\end{myquote}

\section{Series Components}
\label{222}

Series components in the transform domain all act like resistors in the time domain as well. If we have two impedances in series with each other, we can combine them as follows:

\begin{myquote}
\item{} \begin{equation*}Z_1 \mbox{ in series with } Z_2 = Z_1 + Z_2\end{equation*}
\end{myquote}

\section{Solving Circuits}
\label{223}

\LaTeXNullTemplate{}

\LaTeXNullTemplate{}

\label{224}

\LaTeXNullTemplate{}
\chapter{Circuit Functions}

\label{225}
\LaTeXNullTemplate{}
\section{Circuit Functions}
\label{226}

This appendix page will list the various values of the variable H that have been used throughout the circuit theory textbooks. These values of H are all equivalent, but are represented in different domains. All of the H functions are a ratio of the circuit input over the circuit output.
\section{The \symbol{34}Impulse Response\symbol{34}}
\label{227}

The {\bfseries impulse response} is the time-{}domain relationship between the circuit input and the circuit output, denoted with the following notation:

\begin{myquote}
\item{} \begin{equation*}h(t)\end{equation*}
\end{myquote}

The impulse response is, strictly speaking, the output that the circuit will produce when an ideal impulse function is the input. The impulse response can be used to determine the output from the input through the convolution operation:

\begin{myquote}
\item{} \begin{equation*}y(t) = h(t) * x(t)\end{equation*}
\end{myquote}

\section{The \symbol{34}Network Function\symbol{34}}
\label{228}

The {\bfseries network function} is the phasor-{}domain representation of the impulse response. The network function is denoted as such:

\begin{myquote}
\item{} \begin{equation*}\mathbb{H}(\omega)\end{equation*}
\end{myquote}

The network function is related to the input and output of the circuit through the following relationships:

\begin{myquote}
\item{} \begin{equation*}\mathbb{Y}(\omega) = \mathbb{H}(\omega) \mathbb{X}(\omega)\end{equation*}
\end{myquote}

Similarly, the network function can be received by dividing the output by the input, in the phasor domain.
\section{The \symbol{34}Transfer Function\symbol{34}}
\label{229}

The {\bfseries transfer function} is the laplace-{}transformed representation of the impulse response. It is denoted with the following notation:

\begin{myquote}
\item{} \begin{equation*}H(s)\end{equation*}
\end{myquote}

The transfer function can be obtained by one of two methods:

\begin{myenumerate}
\item{} Transform the impulse response.
\item{} Transform the circuit, and solve.
\end{myenumerate}

The Transfer function is related to the input and output as follows:

\begin{myquote}
\item{} \begin{equation*}Y(s) = H(s) X(s)\end{equation*}
\end{myquote}

\section{The \symbol{34}Frequency Response\symbol{34}}
\label{230}

The {\bfseries Frequency Response} is the fourier-{}domain representation of the impulse response. It is denoted as such:

\begin{myquote}
\item{} \begin{equation*}H(j \omega)\end{equation*}
\end{myquote}

The frequency response can be obtained in one of three ways:

\begin{myenumerate}
\item{} Transform the impulse response
\item{} Transform the circuit and solve
\item{} Substitute {$s = j \omega$} into the transfer function
\end{myenumerate}

The frequency response has the following relationship to the circuit input and output:

\begin{myquote}
\item{} \begin{equation*}Y(j \omega) = H(j \omega) X(j \omega)\end{equation*}
\end{myquote}

The frequency response is particularly useful when discussing a sinusoidal input, or when constructing a bode diagram.
\chapter{Phasor Arithmetic}

\label{231}
\LaTeXNullTemplate{}
\section{Phasor Arithmetic}
\label{232}

This page will review phasors and phasor arithmetic topics.
\section{Forms}
\label{233}

Phasors have two components, the magnitude (M) and the phase angle ({\mbox{φ}}). Phasors are related to sinusoids through our cosine convention:

\begin{myquote}
\item{} \begin{equation*}\mathbb{C} = M \angle \phi = M \cos (t\omega + \phi)\end{equation*}
\end{myquote}

Remember, there are {\bfseries 3 forms to phasors}:

\begin{myitemize}
\item{} {$\mathbb{C} = M \angle \phi$} \symbol{34}Polar Form\symbol{34}
\item{} {$\mathbb{C} = A + jB$} \symbol{34}Rectangular Form\symbol{34}
\item{} {$\mathbb{C} = Me^{j\phi}$} \symbol{34}Exponential Form\symbol{34}
\end{myitemize}

Phasor and Exponential forms are identical and are also referred to as polar form.
\section{Converting between Forms}
\label{234}

When working with phasors it is often necessary to convert between rectangular and polar form. To convert from rectangular form to polar form:

\begin{myquote}
\item{} \begin{equation*}M = \sqrt{A^2 + B^2}\end{equation*}
\end{myquote}

\begin{myquote}
\item{} \begin{equation*}\phi = \arctan \left(\frac{B}{A} \right)\end{equation*}
\end{myquote}

To convert from polar to rectangular form:

A is the part of the phasor along the real axis

\begin{myquote}
\item{} \begin{equation*}A = M\cos \left(\phi \right)\end{equation*}
\end{myquote}

B is the part of the phasor along the imaginary axis

\begin{myquote}
\item{} \begin{equation*}B = M\sin \left(\phi \right)\end{equation*}
\end{myquote}

\section{Addition}
\label{235}

To add two phasors together, we must convert them into rectangular form:

\begin{myquote}
\item{} \begin{equation*}\mathbb{C}_1 = A_1 + jB_1\end{equation*}
\end{myquote}

\begin{myquote}
\item{} \begin{equation*}\mathbb{C}_2 = A_2 + jB_2\end{equation*}
\end{myquote}

\begin{myquote}
\item{} \begin{equation*}\mathbb{C}_1 + \mathbb{C}_2 = (A_1 + A_2) + j(B_1 + B_2)\end{equation*}
\end{myquote}

This is a well-{}known property of complex arithmetic.
\section{Subtraction}
\label{236}

Subtraction is similar to addition, except now we subtract

\begin{myquote}
\item{} \begin{equation*}\mathbb{C}_1 = A_1 + jB_1\end{equation*}
\end{myquote}

\begin{myquote}
\item{} \begin{equation*}\mathbb{C}_2 = A_2 + jB_2\end{equation*}
\end{myquote}

\begin{myquote}
\item{} \begin{equation*}\mathbb{C}_1 - \mathbb{C}_2 = (A_1 - A_2) + j(B_1 - B_2)\end{equation*}
\end{myquote}

\section{Multiplication}
\label{237}

To multiply two phasors, we should first convert them to polar form to make things simpler. The product in polar form is simply the product of their magnitudes, and the phase is the sum of their phases.

\begin{myquote}
\item{} \begin{equation*}\mathbb{C}_1 = M_1 \angle \phi_1\end{equation*}
\end{myquote}

\begin{myquote}
\item{} \begin{equation*}\mathbb{C}_2 = M_2 \angle \phi_2\end{equation*}
\end{myquote}

\begin{myquote}
\item{} \begin{equation*}\mathbb{C}_1 \times \mathbb{C}_2 = M_1 \times M_2 \angle {\phi_1+\phi_2}\end{equation*}
\end{myquote}

Keep in mind that in polar form, phasors are exponential quantities with a magnitude (M), and an argument ({\mbox{φ}}). Multiplying two exponentials together forces us to multiply the magnitudes, and add the exponents.
\section{Division}
\label{238}

Division is similar to multiplication, except now we divide the magnitudes, and subtract the phases

\begin{myquote}
\item{} \begin{equation*}\mathbb{C}_1 = M_1 \angle \phi_1\end{equation*}
\end{myquote}

\begin{myquote}
\item{} \begin{equation*}\mathbb{C}_2 = M_2 \angle \phi_2\end{equation*}
\end{myquote}

\begin{myquote}
\item{} \begin{equation*}{\mathbb{C}_1 \over \mathbb{C}_2} = {M_1 \over M_2} \angle {\phi_1-\phi_2}\end{equation*}
\end{myquote}

\section{Inversion}
\label{239}

An important relationship that is worth understanding is the {\bfseries inversion property} of phasors:

\begin{myquote}
\item{} \begin{equation*}\mathbb{C} = M_C\angle 0 = -M_C \angle \pi\end{equation*}
\end{myquote}

Or, in degrees,

\begin{myquote}
\item{} \begin{equation*}\mathbb{C} = M_C\angle 0^\circ = -M_C \angle 180^\circ\end{equation*}
\end{myquote}

On the normal cartesian plane, for instance, the negative X axis is 180 degrees around from the positive X axis. By using that fact on an imaginary axis, we can see that the Negative Real axis is facing in the exact opposite direction from the Positive Real axis, and therefore is 180 degrees apart.
\section{Complex Conjugation}
\label{240}

Similar to the inversion property is the {\bfseries complex conjugation property} of phasors. Complex conjugation is denoted with an asterisk above the phasor to be conjugated. Since phasors can be graphed on the Real-{}Imaginary plane, a 90 degree phasor is a purely imaginary number, and a -{}90 degree phasor is its complex conjugate:

\begin{myquote}
\item{} \begin{equation*}\mathbb{C} = M \angle 90^\circ\end{equation*}
\end{myquote}

\begin{myquote}
\item{} \begin{equation*}\mathbb{C}^* = M \angle -90^\circ = M \angle 270^\circ\end{equation*}
\end{myquote}

Essentially, this holds true for phasors with all angles: the sign of the angle is reversed to produce the complex conjugate of the phasor in polar notation. In general, for polar notation, we have:

\begin{myquote}
\item{} \begin{equation*}\mathbb{C} = M \angle \phi\end{equation*}
\item{} \begin{equation*}\mathbb{C}^* = M \angle -\phi\end{equation*}
\end{myquote}

In rectangular form, we can express complex conjugation as:

\begin{myquote}
\item{} \begin{equation*}\mathbb{C} = A + jB\end{equation*}
\item{} \begin{equation*}\mathbb{C}^* = A - jB\end{equation*}
\end{myquote}

Notice the only difference in the complex conjugate of C is the sign change of the imaginary part.
\chapter{Decibels}

\label{241}
\LaTeXNullTemplate{}

This appendix page is going to take a deeper look at the units of decibels, it will describe some of the properties of decibels, and will demonstrate how to use them in calculations.
\section{Definition}
\label{242}

Decibels are, first and foremost, a power calculation. With that in mind, we will state the definition of a decibel:

\begin{myquote}
\item{} \begin{equation*}dB = 10 \log{\frac{P_{out}}{P_{in}}}\end{equation*}
\end{myquote}

The letters \symbol{34}dB\symbol{34} are used as the units for the result of this calculation. dB ratios are always in terms of watts, unless otherwise noted.
\section{Voltage Calculation}
\label{243}

now, another formula has been demonstrated that allows a decibel calculation to be made using voltages, instead of power measurements. We will derive that equation here:

First, we will use the power calculation and Ohm\textquotesingle{}s law to produce a common identity:

\begin{myquote}
\item{} \begin{equation*}P = VI = \frac{V^2}{R}\end{equation*}
\end{myquote}

Now, if we plug that result into the definition of a decibel, we can create a complicated equation:

\begin{myquote}
\item{} \begin{equation*}dB = 10 \log{ \left[\frac{ \frac{V_{out}^2}{R} }{ \frac{V_{in}^2}{R} }\right]}\end{equation*}
\end{myquote}

Now, we can cancel out the resistance values (R) from the top and bottom of the fraction, and rearrange the exponent as such:

\begin{myquote}
\item{} \begin{equation*}dB = 10 \log{\left[\left(\frac{V_{out}}{V_{in}}\right)^2 \right]}\end{equation*}
\end{myquote}

If we remember the properties of logarithms, we will remember that if we have an exponent inside a logarithm, we can move the exponent outside, as a coefficient. This rule gives us our desired result:

\begin{myquote}
\item{} \begin{equation*}dB = 20 \log{\left[\frac{V_{out}}{V_{in}} \right] }\end{equation*}
\end{myquote}

\section{Inverse Calculation}
\label{244}

It is a simple matter of arithmetic to find the inverse of the decibel calculation, so it will not be derived here, but stated simply:

\begin{myquote}
\item{} \begin{equation*}P = 10^{dB/10}\end{equation*}
\end{myquote}

\section{Reference Units}
\label{245}

Now, this decible calculation has proven to be so useful, that occasionally they are applied to other units of measurement, instead of just watts. Specifically, the units \symbol{34}dBm\symbol{34} are used when the power unit being converted was in terms of milliwatts, not just watts. Let\textquotesingle{}s say we have a value of 10dBm, we can go through the inverse calculation:

\begin{myquote}
\item{} \begin{equation*}P = 10^{10dBm/10} = 10mW\end{equation*}
\end{myquote}

Likewise, let\textquotesingle{}s say we want to apply the decibel calculation to a completely unrelated unit: hertz. If we have 100Hz, we can apply the decibel calculation:

\begin{myquote}
\item{} \begin{equation*}dB = 10 \log{100Hz} = 20dBHz\end{equation*}
\end{myquote}

If no letters follow the \symbol{34}dB\symbol{34} lable, the decibels are referenced to watts.
\section{Decibel Arithmetic}
\label{246}

Decibels are ratios, and {\itshape are not real numbers}. Therefore, specific care should be taken not to use decibel values in equations that call for gains, unless decibels are specifically called for (which they usually aren\textquotesingle{}t). However, since decibels are calculated using logarithms, a few principles of logarithms can be used to make decibels usable in calculations.
\subsection{Multiplication}
\label{247}

Let\textquotesingle{}s say that we have three values, {\bfseries a} {\bfseries b} and {\bfseries c}, with their respective decibel equivalents denoted by the upper-{}case letters {\bfseries A} {\bfseries B} and {\bfseries C}. We can show that for the following equation:
\\

\TemplateSpaceIndent{ {}a {}= {}b {}c}

That we can change all the quantities to decibels, and convert the multiplication operations to addition:
\\

\TemplateSpaceIndent{ {}A {}= {}B {}+ {}C}

\subsection{Division}
\label{248}

Let\textquotesingle{}s say that we have three values, {\bfseries a} {\bfseries b} and {\bfseries c}, with their respective decibel equivalents denoted by the upper-{}case letters {\bfseries A} {\bfseries B} and {\bfseries C}. We can show that for the following equation:\\

\TemplateSpaceIndent{ {} \newline{}
 {}a {}= {}b {}/ {}c}

Then we can show through the principals of logarithms that we can convert all the values to decibels, and we can then convert the division operation to subtraction:
\\

\TemplateSpaceIndent{ {}A {}= {}B {}-{} {}C}

\chapter{Transform Tables}

\label{249}

\chapter{Resources}

\label{250}
\LaTeXNullTemplate{}

\section{Further Reading}
\label{251}

Pages listed here are sources of further information on the topic of electric circuits, or are additional subjects that may be of interest for a reader of this book. Many of the resources listed here are sources of information, and this may be treated as a bibliography for this wikibook.
\subsection{Wikibooks}
\label{252}

\begin{myitemize}
\item{} Wikibooks: \myhref{http://en.wikibooks.org/wiki/Electronics}{Electronics}
\item{} Wikibooks: \myhref{http://en.wikibooks.org/wiki/Signals\%20and\%20Systems}{Signals and Systems}
\item{} Wikibooks: \myhref{http://en.wikibooks.org/wiki/Digital\%20Circuits}{Digital Circuits}
\item{} Wikibooks: \myhref{http://en.wikibooks.org/wiki/Circuit\%20Idea}{Circuit Idea}
\end{myitemize}

The following Wikibooks list \myhref{http://en.wikibooks.org/wiki/Circuit\%20Theory}{Circuit Theory} as a prerequisite:
<{}dynamicpagelist>{}\\

\TemplateSpaceIndent{ {} {}category=Circuit {}Theory/Prerequisite \newline{}
 {} {}namespace=Main \newline{}
 {} {}suppresserrors=true}

<{}/dynamicpagelist>{}

\subsection{Other Resources}
\label{253}

\begin{myitemize}
\item{} Horowitz and Hill, {\itshape The Art of Electronics}, Second Edition, Cambridge University Press, 1989. ISBN 0521370957
\item{} US Navy, {\itshape Basic Electrity}, Dover, 1970. ISBN 0486209733
\item{} US Navy, {\itshape Basic Electronics}, Dover, 1973. ISBN 0486210766
\item{} Comer and Comer, {\itshape Fundamentals of Electronic Circuit Design}, John Wiley \& Sons, 2003. \myplainurl{http://www.wiley.com/college/comer/} ISBN 0471410160
\item{} Dorf and Svoboda, {\itshape Introduction to Electric Circuits}, Sixth Edition, John Wiley \& Sons, 2004. ISBN 0471447951
\end{myitemize}

\chapter{Contributors}
\label{Contributors}
\begin{longtable}{rp{0.6\linewidth}}
\textbf{Edits}&\textbf{User}\\
308& \myhref{http://en.wikibooks.org/w/index.php?title=User:1sfoerster}{1sfoerster}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:A.schwarz}{A.schwarz}\\
4& \myhref{http://en.wikibooks.org/w/index.php?title=User:Adicarlo}{Adicarlo}\\
5& \myhref{http://en.wikibooks.org/w/index.php?title=User:Adrignola}{Adrignola}\\
10& \myhref{http://en.wikibooks.org/w/index.php?title=User:Avicennasis}{Avicennasis}\\
2& \myhref{http://en.wikibooks.org/w/index.php?title=User:Az1568}{Az1568}\\
3& \myhref{http://en.wikibooks.org/w/index.php?title=User:Candamil}{Candamil}\\
3& \myhref{http://en.wikibooks.org/w/index.php?title=User:CommonsDelinker}{CommonsDelinker}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Danduddy}{Danduddy}\\
14& \myhref{http://en.wikibooks.org/w/index.php?title=User:Darklama}{Darklama}\\
3& \myhref{http://en.wikibooks.org/w/index.php?title=User:DavidCary}{DavidCary}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Derbeth}{Derbeth}\\
4& \myhref{http://en.wikibooks.org/w/index.php?title=User:Dirk_H\%C3\%BCnniger}{Dirk Hünniger}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Eaglesfein}{Eaglesfein}\\
7& \myhref{http://en.wikibooks.org/w/index.php?title=User:Fale}{Fale}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Ferengi}{Ferengi}\\
2& \myhref{http://en.wikibooks.org/w/index.php?title=User:Frohro}{Frohro}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Gautamraj}{Gautamraj}\\
2& \myhref{http://en.wikibooks.org/w/index.php?title=User:Hanspi}{Hanspi}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Hgmjr}{Hgmjr}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Ifuwant2know}{Ifuwant2know}\\
2& \myhref{http://en.wikibooks.org/w/index.php?title=User:Inductiveload}{Inductiveload}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Int21h}{Int21h}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:JenVan}{JenVan}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Jfrederickson}{Jfrederickson}\\
14& \myhref{http://en.wikibooks.org/w/index.php?title=User:Jguk}{Jguk}\\
9& \myhref{http://en.wikibooks.org/w/index.php?title=User:Jomegat}{Jomegat}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:JonLS}{JonLS}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Kenji.ohi}{Kenji.ohi}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Kluless}{Kluless}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Luminous2269}{Luminous2269}\\
3& \myhref{http://en.wikibooks.org/w/index.php?title=User:Macaddict}{Macaddict}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Mattb112885}{Mattb112885}\\
3& \myhref{http://en.wikibooks.org/w/index.php?title=User:Mattpanico}{Mattpanico}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Mikelee}{Mikelee}\\
3& \myhref{http://en.wikibooks.org/w/index.php?title=User:Mroberto}{Mroberto}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Ndriscoll}{Ndriscoll}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Ntlhui}{Ntlhui}\\
4& \myhref{http://en.wikibooks.org/w/index.php?title=User:Outopiate}{Outopiate}\\
3& \myhref{http://en.wikibooks.org/w/index.php?title=User:Panic2k4}{Panic2k4}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Pdiehr}{Pdiehr}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Petello12000}{Petello12000}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Pnavarrc}{Pnavarrc}\\
10& \myhref{http://en.wikibooks.org/w/index.php?title=User:QuiteUnusual}{QuiteUnusual}\\
11& \myhref{http://en.wikibooks.org/w/index.php?title=User:Rakarlin}{Rakarlin}\\
11& \myhref{http://en.wikibooks.org/w/index.php?title=User:Recent_Runes}{Recent Runes}\\
2& \myhref{http://en.wikibooks.org/w/index.php?title=User:Ronkilburn}{Ronkilburn}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Rory096}{Rory096}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Selectric}{Selectric}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Shellreef}{Shellreef}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Sigma_7}{Sigma 7}\\
3& \myhref{http://en.wikibooks.org/w/index.php?title=User:Spongebob88}{Spongebob88}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Spradlig}{Spradlig}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:StoneT}{StoneT}\\
4& \myhref{http://en.wikibooks.org/w/index.php?title=User:The\%2Arising\%2Atide}{The*rising*tide}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:VSimonian}{VSimonian}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Verdalix}{Verdalix}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Webaware}{Webaware}\\
530& \myhref{http://en.wikibooks.org/w/index.php?title=User:Whiteknight}{Whiteknight}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Willy_on_Wheels\%21}{Willy on Wheels!}\\
3& \myhref{http://en.wikibooks.org/w/index.php?title=User:Xania}{Xania}\\
2& \myhref{http://en.wikibooks.org/w/index.php?title=User:YMS}{YMS}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:\%D0\%A8i\%D0\%86\%D0\%86iam_Shakespeare}{ШiІІiam Shakespeare}\\
\end{longtable}
\pagebreak
\listoffigures
\label{ListOfFigures}
\begin{itemize}
\item GFDL: Gnu Free Documentation License. \url{http://www.gnu.org/licenses/fdl.html}
\item cc-by-sa-3.0: Creative Commons Attribution ShareAlike 3.0 License. \url{http://creativecommons.org/licenses/by-sa/3.0/}
\item cc-by-sa-2.5: Creative Commons Attribution ShareAlike 2.5 License. \url{http://creativecommons.org/licenses/by-sa/2.5/}
\item cc-by-sa-2.0: Creative Commons Attribution ShareAlike 2.0 License. \url{http://creativecommons.org/licenses/by-sa/2.0/}
\item cc-by-sa-1.0: Creative Commons Attribution ShareAlike 1.0 License. \url{http://creativecommons.org/licenses/by-sa/1.0/}
\item cc-by-2.0: Creative Commons Attribution 2.0 License. \url{http://creativecommons.org/licenses/by/2.0/}
\item cc-by-2.0: Creative Commons Attribution 2.0 License. \url{http://creativecommons.org/licenses/by/2.0/deed.en}
\item cc-by-2.5: Creative Commons Attribution 2.5 License. \url{http://creativecommons.org/licenses/by/2.5/deed.en}
\item cc-by-3.0: Creative Commons Attribution 3.0 License. \url{http://creativecommons.org/licenses/by/3.0/deed.en}
\item GPL: GNU General Public License. \url{http://www.gnu.org/licenses/gpl-2.0.txt}
\item LGPL: GNU Lesser General Public License. \url{http://www.gnu.org/licenses/lgpl.html}
 \item PD: This image is in the public domain.
\item ATTR: The copyright holder of this file allows anyone to use it for any purpose, provided that the copyright holder is properly attributed. Redistribution, derivative work, commercial use, and all other use is permitted.
\item EURO: This is the common (reverse) face of a euro coin. The copyright on the design of the common face of the euro coins belongs to the European Commission. Authorised is reproduction in a format without relief (drawings, paintings, films) provided they are not detrimental to the image of the euro.
\item LFK: Lizenz Freie Kunst. \url{http://artlibre.org/licence/lal/de}
\item CFR: Copyright free use.
\item EPL: Eclipse Public License. \url{http://www.eclipse.org/org/documents/epl-v10.php}
\end{itemize}
Copies of the GPL, the LGPL as well as a GFDL are included in chapter \mylref{Licenses}{Licenses}. Please note that images in the public domain do not require attribution. You may click on the image numbers in the following table to open the webpage of the images in your webbrower.
\pagebreak
\small
\begin{longtable}{|p{0.05\textwidth}|p{0.6\textwidth}|p{0.15\textwidth}|}
\hline
\href{http://en.wikibooks.org/wiki/File:Node-pressure.jpg}{1}&

\myhref{http://en.wikibooks.org/wiki/User\%3A1sfoerster}{1sfoerster}
 & cc-by-sa-3.0\\ \hline
\href{http://en.wikibooks.org/wiki/File:Resistor.png}{2}&

 & GFDL\\ \hline
\href{http://en.wikibooks.org/wiki/File:Ohmslawvoltagesource.png}{3}&

 & \\ \hline
\href{http://en.wikibooks.org/wiki/File:General\%20Source-Load\%20Circuit.svg}{4}&

\myhref{http://en.wikibooks.org/wiki/User\%3AInductiveload}{Inductiveload}
 & PD\\ \hline
\href{http://en.wikibooks.org/wiki/File:Thevenin\%20Equivalent.svg}{5}&

\myhref{http://en.wikibooks.org/wiki/User\%3AInductiveload}{Inductiveload}
 & PD\\ \hline
\href{http://en.wikibooks.org/wiki/File:Thevenin\%20Equivalent\%20Under\%20Test.svg}{6}&

\myhref{http://en.wikibooks.org/wiki/User\%3AInductiveload}{Inductiveload}
 & PD\\ \hline
\href{http://en.wikibooks.org/wiki/File:Norton\%20Equivalent\%20Under\%20Test.svg}{7}&

\myhref{http://en.wikibooks.org/wiki/User\%3AInductiveload}{Inductiveload}
 & PD\\ \hline
\href{http://en.wikibooks.org/wiki/File:Thevenin\%20Equivalent.svg}{8}&

\myhref{http://en.wikibooks.org/wiki/User\%3AInductiveload}{Inductiveload}
 & PD\\ \hline
\href{http://en.wikibooks.org/wiki/File:Norton\%20Equivalent.svg}{9}&

\myhref{http://en.wikibooks.org/wiki/User\%3AInductiveload}{Inductiveload}
 & PD\\ \hline
\href{http://en.wikibooks.org/wiki/File:Open\%20Circuit\%20Voltage.svg}{10}&

\myhref{http://en.wikibooks.org/wiki/User\%3AInductiveload}{Inductiveload}
 & PD\\ \hline
\href{http://en.wikibooks.org/wiki/File:Short\%20Circuit\%20Current.svg}{11}&

\myhref{http://en.wikibooks.org/wiki/User\%3AInductiveload}{Inductiveload}
 & PD\\ \hline
\href{http://en.wikibooks.org/wiki/File:Maximum\%20Power\%20Transfer\%20Circuit.svg}{12}&

\myhref{http://en.wikibooks.org/wiki/User\%3AInductiveload}{Inductiveload}
 & PD\\ \hline
\href{http://en.wikibooks.org/wiki/File:Maximum\%20Power\%20Transfer\%20Graph.svg}{13}&

\myhref{http://en.wikibooks.org/wiki/User\%3AInductiveload}{Inductiveload}
 & PD\\ \hline
\href{http://en.wikibooks.org/wiki/File:System\%20Block.svg}{14}&

 & GFDL\\ \hline
\href{http://en.wikibooks.org/wiki/File:System\%20Block.svg}{15}&

 & GFDL\\ \hline
\href{http://en.wikibooks.org/wiki/File:Parallel-RL.png}{16}&

 & GFDL\\ \hline
\href{http://en.wikibooks.org/wiki/File:Parallel-RC.png}{17}&

 & GFDL\\ \hline
\href{http://en.wikibooks.org/wiki/File:RLC\%20series\%20circuit.png}{18}&

 & \\ \hline
\href{http://en.wikibooks.org/wiki/File:RLC\%20series\%20circuit.png}{19}&

 & \\ \hline
\href{http://en.wikibooks.org/wiki/File:RLC\%20parallel\%20circuit.png}{20}&

 & \\ \hline
\href{http://en.wikibooks.org/wiki/File:RLC-serial-Over_Damping.PNG}{21}&

 & GFDL\\ \hline
\href{http://en.wikibooks.org/wiki/File:RLC-serial-Critical_Damping.PNG}{22}&

 & GFDL\\ \hline
\href{http://en.wikibooks.org/wiki/File:RLC\%20series\%20circuit.png}{23}&

 & \\ \hline
\href{http://en.wikibooks.org/wiki/File:Parallel_RLC.png}{24}&

 & GFDL\\ \hline
\href{http://en.wikibooks.org/wiki/File:Basic\%20Inductor\%20with\%20B-field.svg}{25}&

inductiveload
 & PD\\ \hline
\href{http://en.wikibooks.org/wiki/File:Transformer.svg}{26}&

Traced by \myhref{http://en.wikibooks.org/wiki/User\%3AStannered}{User:Stannered}
 & GFDL\\ \hline
\href{http://en.wikibooks.org/wiki/File:Schaltbild\%20Trafo.png}{27}&

\myhref{http://de.wikipedia.org/wiki/Benutzer\%3ADeelkar}{Dirk-{}Lüder Kreie}
 & GFDL\\ \hline
\href{http://en.wikibooks.org/wiki/File:Single-phase\%20transformer.svg}{28}&

 & PD\\ \hline
\href{http://en.wikibooks.org/wiki/File:Transformers.jpg}{29}&

 & \\ \hline
\href{http://en.wikibooks.org/wiki/File:Euler\%27s\%20formula.svg}{30}&

 & GFDL\\ \hline
\href{http://en.wikibooks.org/wiki/File:Cross_product_animation.gif}{31}&

\myhref{http://en.wikibooks.org/wiki/User\%3ANicostella}{Nicostella}
 & PD\\ \hline
\href{http://en.wikibooks.org/wiki/File:LTI.png}{32}&

 & PD\\ \hline
\href{http://en.wikibooks.org/wiki/File:System\%20Block.svg}{33}&

 & GFDL\\ \hline
\href{http://en.wikibooks.org/wiki/File:Laplace\%20Block.svg}{34}&

 & GFDL\\ \hline
\href{http://en.wikibooks.org/wiki/File:Fourier.jpg}{35}&

 & PD\\ \hline

\end{longtable}
\pagebreak\KOMAoptions{fontsize=9pt,DIV=90,BCOR=0pt}
\pagebreak
\chapter{Licenses}
\label{Licenses}
{\tiny
\section {GNU GENERAL PUBLIC LICENSE}
\begin{multicols}{4}

Version 3, 29 June 2007

Copyright © 2007 Free Software Foundation, Inc. <http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.
Preamble

The GNU General Public License is a free, copyleft license for software and other kinds of works.

The licenses for most software and other practical works are designed to take away your freedom to share and change the works. By contrast, the GNU General Public License is intended to guarantee your freedom to share and change all versions of a program--to make sure it remains free software for all its users. We, the Free Software Foundation, use the GNU General Public License for most of our software; it applies also to any other work released this way by its authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for them if you wish), that you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free programs, and that you know you can do these things.

To protect your rights, we need to prevent others from denying you these rights or asking you to surrender the rights. Therefore, you have certain responsibilities if you distribute copies of the software, or if you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must pass on to the recipients the same freedoms that you received. You must make sure that they, too, receive or can get the source code. And you must show them these terms so they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright on the software, and (2) offer you this License giving you legal permission to copy, distribute and/or modify it.

For the developers' and authors' protection, the GPL clearly explains that there is no warranty for this free software. For both users' and authors' sake, the GPL requires that modified versions be marked as changed, so that their problems will not be attributed erroneously to authors of previous versions.

Some devices are designed to deny users access to install or run modified versions of the software inside them, although the manufacturer can do so. This is fundamentally incompatible with the aim of protecting users' freedom to change the software. The systematic pattern of such abuse occurs in the area of products for individuals to use, which is precisely where it is most unacceptable. Therefore, we have designed this version of the GPL to prohibit the practice for those products. If such problems arise substantially in other domains, we stand ready to extend this provision to those domains in future versions of the GPL, as needed to protect the freedom of users.

Finally, every program is threatened constantly by software patents. States should not allow patents to restrict development and use of software on general-purpose computers, but in those that do, we wish to avoid the special danger that patents applied to a free program could make it effectively proprietary. To prevent this, the GPL assures that patents cannot be used to render the program non-free.

The precise terms and conditions for copying, distribution and modification follow.
TERMS AND CONDITIONS
0. Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of works, such as semiconductor masks.

“The Program” refers to any copyrightable work licensed under this License. Each licensee is addressed as “you”. “Licensees” and “recipients” may be individuals or organizations.

To “modify” a work means to copy from or adapt all or part of the work in a fashion requiring copyright permission, other than the making of an exact copy. The resulting work is called a “modified version” of the earlier work or a work “based on” the earlier work.

A “covered work” means either the unmodified Program or a work based on the Program.

To “propagate” a work means to do anything with it that, without permission, would make you directly or secondarily liable for infringement under applicable copyright law, except executing it on a computer or modifying a private copy. Propagation includes copying, distribution (with or without modification), making available to the public, and in some countries other activities as well.

To “convey” a work means any kind of propagation that enables other parties to make or receive copies. Mere interaction with a user through a computer network, with no transfer of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to the extent that it includes a convenient and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells the user that there is no warranty for the work (except to the extent that warranties are provided), that licensees may convey the work under this License, and how to view a copy of this License. If the interface presents a list of user commands or options, such as a menu, a prominent item in the list meets this criterion.
1. Source Code.

The “source code” for a work means the preferred form of the work for making modifications to it. “Object code” means any non-source form of a work.

A “Standard Interface” means an interface that either is an official standard defined by a recognized standards body, or, in the case of interfaces specified for a particular programming language, one that is widely used among developers working in that language.

The “System Libraries” of an executable work include anything, other than the work as a whole, that (a) is included in the normal form of packaging a Major Component, but which is not part of that Major Component, and (b) serves only to enable use of the work with that Major Component, or to implement a Standard Interface for which an implementation is available to the public in source code form. A “Major Component”, in this context, means a major essential component (kernel, window system, and so on) of the specific operating system (if any) on which the executable work runs, or a compiler used to produce the work, or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all the source code needed to generate, install, and (for an executable work) run the object code and to modify the work, including scripts to control those activities. However, it does not include the work's System Libraries, or general-purpose tools or generally available free programs which are used unmodified in performing those activities but which are not part of the work. For example, Corresponding Source includes interface definition files associated with source files for the work, and the source code for shared libraries and dynamically linked subprograms that the work is specifically designed to require, such as by intimate data communication or control flow between those subprograms and other parts of the work.

The Corresponding Source need not include anything that users can regenerate automatically from other parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.
2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the Program, and are irrevocable provided the stated conditions are met. This License explicitly affirms your unlimited permission to run the unmodified Program. The output from running a covered work is covered by this License only if the output, given its content, constitutes a covered work. This License acknowledges your rights of fair use or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not convey, without conditions so long as your license otherwise remains in force. You may convey covered works to others for the sole purpose of having them make modifications exclusively for you, or provide you with facilities for running those works, provided that you comply with the terms of this License in conveying all material for which you do not control copyright. Those thus making or running the covered works for you must do so exclusively on your behalf, under your direction and control, on terms that prohibit them from making any copies of your copyrighted material outside their relationship with you.

Conveying under any other circumstances is permitted solely under the conditions stated below. Sublicensing is not allowed; section 10 makes it unnecessary.
3. Protecting Users' Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure under any applicable law fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or similar laws prohibiting or restricting circumvention of such measures.

When you convey a covered work, you waive any legal power to forbid circumvention of technological measures to the extent such circumvention is effected by exercising rights under this License with respect to the covered work, and you disclaim any intention to limit operation or modification of the work as a means of enforcing, against the work's users, your or third parties' legal rights to forbid circumvention of technological measures.
4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program's source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice; keep intact all notices stating that this License and any non-permissive terms added in accord with section 7 apply to the code; keep intact all notices of the absence of any warranty; and give all recipients a copy of this License along with the Program.

You may charge any price or no price for each copy that you convey, and you may offer support or warranty protection for a fee.
5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to produce it from the Program, in the form of source code under the terms of section 4, provided that you also meet all of these conditions:

 * a) The work must carry prominent notices stating that you modified it, and giving a relevant date.
 * b) The work must carry prominent notices stating that it is released under this License and any conditions added under section 7. This requirement modifies the requirement in section 4 to “keep intact all notices”.
 * c) You must license the entire work, as a whole, under this License to anyone who comes into possession of a copy. This License will therefore apply, along with any applicable section 7 additional terms, to the whole of the work, and all its parts, regardless of how they are packaged. This License gives no permission to license the work in any other way, but it does not invalidate such permission if you have separately received it.
 * d) If the work has interactive user interfaces, each must display Appropriate Legal Notices; however, if the Program has interactive interfaces that do not display Appropriate Legal Notices, your work need not make them do so.

A compilation of a covered work with other separate and independent works, which are not by their nature extensions of the covered work, and which are not combined with it such as to form a larger program, in or on a volume of a storage or distribution medium, is called an “aggregate” if the compilation and its resulting copyright are not used to limit the access or legal rights of the compilation's users beyond what the individual works permit. Inclusion of a covered work in an aggregate does not cause this License to apply to the other parts of the aggregate.
6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sections 4 and 5, provided that you also convey the machine-readable Corresponding Source under the terms of this License, in one of these ways:

 * a) Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by the Corresponding Source fixed on a durable physical medium customarily used for software interchange.
 * b) Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by a written offer, valid for at least three years and valid for as long as you offer spare parts or customer support for that product model, to give anyone who possesses the object code either (1) a copy of the Corresponding Source for all the software in the product that is covered by this License, on a durable physical medium customarily used for software interchange, for a price no more than your reasonable cost of physically performing this conveying of source, or (2) access to copy the Corresponding Source from a network server at no charge.
 * c) Convey individual copies of the object code with a copy of the written offer to provide the Corresponding Source. This alternative is allowed only occasionally and noncommercially, and only if you received the object code with such an offer, in accord with subsection 6b.
 * d) Convey the object code by offering access from a designated place (gratis or for a charge), and offer equivalent access to the Corresponding Source in the same way through the same place at no further charge. You need not require recipients to copy the Corresponding Source along with the object code. If the place to copy the object code is a network server, the Corresponding Source may be on a different server (operated by you or a third party) that supports equivalent copying facilities, provided you maintain clear directions next to the object code saying where to find the Corresponding Source. Regardless of what server hosts the Corresponding Source, you remain obligated to ensure that it is available for as long as needed to satisfy these requirements.
 * e) Convey the object code using peer-to-peer transmission, provided you inform other peers where the object code and Corresponding Source of the work are being offered to the general public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Corresponding Source as a System Library, need not be included in conveying the object code work.

A “User Product” is either (1) a “consumer product”, which means any tangible personal property which is normally used for personal, family, or household purposes, or (2) anything designed or sold for incorporation into a dwelling. In determining whether a product is a consumer product, doubtful cases shall be resolved in favor of coverage. For a particular product received by a particular user, “normally used” refers to a typical or common use of that class of product, regardless of the status of the particular user or of the way in which the particular user actually uses, or expects or is expected to use, the product. A product is a consumer product regardless of whether the product has substantial commercial, industrial or non-consumer uses, unless such uses represent the only significant mode of use of the product.

“Installation Information” for a User Product means any methods, procedures, authorization keys, or other information required to install and execute modified versions of a covered work in that User Product from a modified version of its Corresponding Source. The information must suffice to ensure that the continued functioning of the modified object code is in no case prevented or interfered with solely because modification has been made.

If you convey an object code work under this section in, or with, or specifically for use in, a User Product, and the conveying occurs as part of a transaction in which the right of possession and use of the User Product is transferred to the recipient in perpetuity or for a fixed term (regardless of how the transaction is characterized), the Corresponding Source conveyed under this section must be accompanied by the Installation Information. But this requirement does not apply if neither you nor any third party retains the ability to install modified object code on the User Product (for example, the work has been installed in ROM).

The requirement to provide Installation Information does not include a requirement to continue to provide support service, warranty, or updates for a work that has been modified or installed by the recipient, or for the User Product in which it has been modified or installed. Access to a network may be denied when the modification itself materially and adversely affects the operation of the network or violates the rules and protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided, in accord with this section must be in a format that is publicly documented (and with an implementation available to the public in source code form), and must require no special password or key for unpacking, reading or copying.
7. Additional Terms.

“Additional permissions” are terms that supplement the terms of this License by making exceptions from one or more of its conditions. Additional permissions that are applicable to the entire Program shall be treated as though they were included in this License, to the extent that they are valid under applicable law. If additional permissions apply only to part of the Program, that part may be used separately under those permissions, but the entire Program remains governed by this License without regard to the additional permissions.

When you convey a copy of a covered work, you may at your option remove any additional permissions from that copy, or from any part of it. (Additional permissions may be written to require their own removal in certain cases when you modify the work.) You may place additional permissions on material, added by you to a covered work, for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add to a covered work, you may (if authorized by the copyright holders of that material) supplement the terms of this License with terms:

 * a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this License; or
 * b) Requiring preservation of specified reasonable legal notices or author attributions in that material or in the Appropriate Legal Notices displayed by works containing it; or
 * c) Prohibiting misrepresentation of the origin of that material, or requiring that modified versions of such material be marked in reasonable ways as different from the original version; or
 * d) Limiting the use for publicity purposes of names of licensors or authors of the material; or
 * e) Declining to grant rights under trademark law for use of some trade names, trademarks, or service marks; or
 * f) Requiring indemnification of licensors and authors of that material by anyone who conveys the material (or modified versions of it) with contractual assumptions of liability to the recipient, for any liability that these contractual assumptions directly impose on those licensors and authors.

All other non-permissive additional terms are considered “further restrictions” within the meaning of section 10. If the Program as you received it, or any part of it, contains a notice stating that it is governed by this License along with a term that is a further restriction, you may remove that term. If a license document contains a further restriction but permits relicensing or conveying under this License, you may add to a covered work material governed by the terms of that license document, provided that the further restriction does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the relevant source files, a statement of the additional terms that apply to those files, or a notice indicating where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form of a separately written license, or stated as exceptions; the above requirements apply either way.
8. Termination.

You may not propagate or modify a covered work except as expressly provided under this License. Any attempt otherwise to propagate or modify it is void, and will automatically terminate your rights under this License (including any patent licenses granted under the third paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you of the violation by some reasonable means, this is the first time you have received notice of violation of this License (for any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who have received copies or rights from you under this License. If your rights have been terminated and not permanently reinstated, you do not qualify to receive new licenses for the same material under section 10.
9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of the Program. Ancillary propagation of a covered work occurring solely as a consequence of using peer-to-peer transmission to receive a copy likewise does not require acceptance. However, nothing other than this License grants you permission to propagate or modify any covered work. These actions infringe copyright if you do not accept this License. Therefore, by modifying or propagating a covered work, you indicate your acceptance of this License to do so.
10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a license from the original licensors, to run, modify and propagate that work, subject to this License. You are not responsible for enforcing compliance by third parties with this License.

An “entity transaction” is a transaction transferring control of an organization, or substantially all assets of one, or subdividing an organization, or merging organizations. If propagation of a covered work results from an entity transaction, each party to that transaction who receives a copy of the work also receives whatever licenses to the work the party's predecessor in interest had or could give under the previous paragraph, plus a right to possession of the Corresponding Source of the work from the predecessor in interest, if the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or affirmed under this License. For example, you may not impose a license fee, royalty, or other charge for exercise of rights granted under this License, and you may not initiate litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent claim is infringed by making, using, selling, offering for sale, or importing the Program or any portion of it.
11. Patents.

A “contributor” is a copyright holder who authorizes use under this License of the Program or a work on which the Program is based. The work thus licensed is called the contributor's “contributor version”.

A contributor's “essential patent claims” are all patent claims owned or controlled by the contributor, whether already acquired or hereafter acquired, that would be infringed by some manner, permitted by this License, of making, using, or selling its contributor version, but do not include claims that would be infringed only as a consequence of further modification of the contributor version. For purposes of this definition, “control” includes the right to grant patent sublicenses in a manner consistent with the requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contributor's essential patent claims, to make, use, sell, offer for sale, import and otherwise run, modify and propagate the contents of its contributor version.

In the following three paragraphs, a “patent license” is any express agreement or commitment, however denominated, not to enforce a patent (such as an express permission to practice a patent or covenant not to sue for patent infringement). To “grant” such a patent license to a party means to make such an agreement or commitment not to enforce a patent against the party.

If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of the work is not available for anyone to copy, free of charge and under the terms of this License, through a publicly available network server or other readily accessible means, then you must either (1) cause the Corresponding Source to be so available, or (2) arrange to deprive yourself of the benefit of the patent license for this particular work, or (3) arrange, in a manner consistent with the requirements of this License, to extend the patent license to downstream recipients. “Knowingly relying” means you have actual knowledge that, but for the patent license, your conveying the covered work in a country, or your recipient's use of the covered work in a country, would infringe one or more identifiable patents in that country that you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey, or propagate by procuring conveyance of, a covered work, and grant a patent license to some of the parties receiving the covered work authorizing them to use, propagate, modify or convey a specific copy of the covered work, then the patent license you grant is automatically extended to all recipients of the covered work and works based on it.

A patent license is “discriminatory” if it does not include within the scope of its coverage, prohibits the exercise of, or is conditioned on the non-exercise of one or more of the rights that are specifically granted under this License. You may not convey a covered work if you are a party to an arrangement with a third party that is in the business of distributing software, under which you make payment to the third party based on the extent of your activity of conveying the work, and under which the third party grants, to any of the parties who would receive the covered work from you, a discriminatory patent license (a) in connection with copies of the covered work conveyed by you (or copies made from those copies), or (b) primarily for and in connection with specific products or compilations that contain the covered work, unless you entered into that arrangement, or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license or other defenses to infringement that may otherwise be available to you under applicable patent law.
12. No Surrender of Others' Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot convey a covered work so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not convey it at all. For example, if you agree to terms that obligate you to collect a royalty for further conveying from those to whom you convey the Program, the only way you could satisfy both those terms and this License would be to refrain entirely from conveying the Program.
13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have permission to link or combine any covered work with a work licensed under version 3 of the GNU Affero General Public License into a single combined work, and to convey the resulting work. The terms of this License will continue to apply to the part which is the covered work, but the special requirements of the GNU Affero General Public License, section 13, concerning interaction through a network will apply to the combination as such.
14. Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of the GNU General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies that a certain numbered version of the GNU General Public License “or any later version” applies to it, you have the option of following the terms and conditions either of that numbered version or of any later version published by the Free Software Foundation. If the Program does not specify a version number of the GNU General Public License, you may choose any version ever published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU General Public License can be used, that proxy's public statement of acceptance of a version permanently authorizes you to choose that version for the Program.

Later license versions may give you additional or different permissions. However, no additional obligations are imposed on any author or copyright holder as a result of your choosing to follow a later version.
15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be given local legal effect according to their terms, reviewing courts shall apply local law that most closely approximates an absolute waiver of all civil liability in connection with the Program, unless a warranty or assumption of liability accompanies a copy of the Program in return for a fee.

END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to achieve this is to make it free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to most effectively state the exclusion of warranty; and each file should have at least the “copyright” line and a pointer to where the full notice is found.

 <one line to give the program's name and a brief idea of what it does.>
 Copyright (C) <year> <name of author>

 This program is free software: you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License
 along with this program. If not, see <http://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short notice like this when it starts in an interactive mode:

 <program> Copyright (C) <year> <name of author>
 This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
 This is free software, and you are welcome to redistribute it
 under certain conditions; type `show c' for details.

The hypothetical commands `show w' and `show c' should show the appropriate parts of the General Public License. Of course, your program's commands might be different; for a GUI interface, you would use an “about box”.

You should also get your employer (if you work as a programmer) or school, if any, to sign a “copyright disclaimer” for the program, if necessary. For more information on this, and how to apply and follow the GNU GPL, see <http://www.gnu.org/licenses/>.

The GNU General Public License does not permit incorporating your program into proprietary programs. If your program is a subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If this is what you want to do, use the GNU Lesser General Public License instead of this License. But first, please read <http://www.gnu.org/philosophy/why-not-lgpl.html>.
\end{multicols}

\section{GNU Free Documentation License}
\begin{multicols}{4}

Version 1.3, 3 November 2008

Copyright © 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc. <http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.
0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful document "free" in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it, either commercially or noncommercially. Secondarily, this License preserves for the author and publisher a way to get credit for their work, while not being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves be free in the same sense. It complements the GNU General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software needs free documentation: a free program should come with manuals providing the same freedoms that the software does. But this License is not limited to software manuals; it can be used for any textual work, regardless of subject matter or whether it is published as a printed book. We recommend this License principally for works whose purpose is instruction or reference.
1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder saying it can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The "Document", below, refers to any such manual or work. Any member of the public is a licensee, and is addressed as "you". You accept the license if you copy, modify or distribute the work in a way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclusively with the relationship of the publishers or authors of the Document to the Document's overall subject (or to related matters) and contains nothing that could fall directly within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.) The relationship could be a matter of historical connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in the notice that says that the Document is released under this License. If a section does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The Document may contain zero Invariant Sections. If the Document does not identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, that is suitable for revising the document straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor, and that is suitable for input to text formatters or for automatic translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent file format whose markup, or absence of markup, has been arranged to thwart or discourage subsequent modification by readers is not Transparent. An image format is not Transparent if used for any substantial amount of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML, PostScript or PDF designed for human modification. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not generally available, and the machine-generated HTML, PostScript or PDF produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the material this License requires to appear in the title page. For works in formats which do not have any title page as such, "Title Page" means the text near the most prominent appearance of the work's title, preceding the beginning of the body of the text.

The "publisher" means any person or entity that distributes copies of the Document to the public.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands for a specific section name mentioned below, such as "Acknowledgements", "Dedications", "Endorsements", or "History".) To "Preserve the Title" of such a section when you modify the Document means that it remains a section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to the Document. These Warranty Disclaimers are considered to be included by reference in this License, but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may have is void and has no effect on the meaning of this License.
2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this License, the copyright notices, and the license notice saying this License applies to the Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this License. You may not use technical measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.
3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering more than 100, and the Document's license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The front cover must present the full title with all words of the title equally prominent and visible. You may add other material on the covers in addition. Copying with changes limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a computer-network location from which the general network-using public has access to download using public-standard network protocols a complete Transparent copy of the Document, free of added material. If you use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated location until at least one year after the last time you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of copies, to give them a chance to provide you with an updated version of the Document.
4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you release the Modified Version under precisely this License, with the Modified Version filling the role of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

 * A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous versions (which should, if there were any, be listed in the History section of the Document). You may use the same title as a previous version if the original publisher of that version gives permission.
 * B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in the Modified Version, together with at least five of the principal authors of the Document (all of its principal authors, if it has fewer than five), unless they release you from this requirement.
 * C. State on the Title page the name of the publisher of the Modified Version, as the publisher.
 * D. Preserve all the copyright notices of the Document.
 * E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.
 * F. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version under the terms of this License, in the form shown in the Addendum below.
 * G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document's license notice.
 * H. Include an unaltered copy of this License.
 * I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no section Entitled "History" in the Document, create one stating the title, year, authors, and publisher of the Document as given on its Title Page, then add an item describing the Modified Version as stated in the previous sentence.
 * J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for previous versions it was based on. These may be placed in the "History" section. You may omit a network location for a work that was published at least four years before the Document itself, or if the original publisher of the version it refers to gives permission.
 * K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the section, and preserve in the section all the substance and tone of each of the contributor acknowledgements and/or dedications given therein.
 * L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the equivalent are not considered part of the section titles.
 * M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified Version.
 * N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with any Invariant Section.
 * O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no material copied from the Document, you may at your option designate some or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version's license notice. These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your Modified Version by various parties—for example, statements of peer review or that the text has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already includes a cover text for the same cover, previously added by you or by arrangement made by the same entity you are acting on behalf of, you may not add another; but you may replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to assert or imply endorsement of any Modified Version.
5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined in section 4 above for modified versions, provided that you include in the combination all of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of the original author or publisher of that section if known, or else a unique number. Make the same adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original documents, forming one section Entitled "History"; likewise combine any sections Entitled "Acknowledgements", and any sections Entitled "Dedications". You must delete all sections Entitled "Endorsements".
6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License, and replace the individual copies of this License in the various documents with a single copy that is included in the collection, provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License, provided you insert a copy of this License into the extracted document, and follow this License in all other respects regarding verbatim copying of that document.
7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume of a storage or distribution medium, is called an "aggregate" if the copyright resulting from the compilation is not used to limit the legal rights of the compilation's users beyond what the individual works permit. When the Document is included in an aggregate, this License does not apply to the other works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less than one half of the entire aggregate, the Document's Cover Texts may be placed on covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the Document is in electronic form. Otherwise they must appear on printed covers that bracket the whole aggregate.
8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of section 4. Replacing Invariant Sections with translations requires special permission from their copyright holders, but you may include translations of some or all Invariant Sections in addition to the original versions of these Invariant Sections. You may include a translation of this License, and all the license notices in the Document, and any Warranty Disclaimers, provided that you also include the original English version of this License and the original versions of those notices and disclaimers. In case of a disagreement between the translation and the original version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual title.
9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided under this License. Any attempt otherwise to copy, modify, sublicense, or distribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you of the violation by some reasonable means, this is the first time you have received notice of violation of this License (for any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who have received copies or rights from you under this License. If your rights have been terminated and not permanently reinstated, receipt of a copy of some or all of the same material does not give you any rights to use it.
10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License "or any later version" applies to it, you have the option of following the terms and conditions either of that specified version or of any later version that has been published (not as a draft) by the Free Software Foundation. If the Document does not specify a version number of this License, you may choose any version ever published (not as a draft) by the Free Software Foundation. If the Document specifies that a proxy can decide which future versions of this License can be used, that proxy's public statement of acceptance of a version permanently authorizes you to choose that version for the Document.
11. RELICENSING

"Massive Multiauthor Collaboration Site" (or "MMC Site") means any World Wide Web server that publishes copyrightable works and also provides prominent facilities for anybody to edit those works. A public wiki that anybody can edit is an example of such a server. A "Massive Multiauthor Collaboration" (or "MMC") contained in the site means any set of copyrightable works thus published on the MMC site.

"CC-BY-SA" means the Creative Commons Attribution-Share Alike 3.0 license published by Creative Commons Corporation, a not-for-profit corporation with a principal place of business in San Francisco, California, as well as future copyleft versions of that license published by that same organization.

"Incorporate" means to publish or republish a Document, in whole or in part, as part of another Document.

An MMC is "eligible for relicensing" if it is licensed under this License, and if all works that were first published under this License somewhere other than this MMC, and subsequently incorporated in whole or in part into the MMC, (1) had no cover texts or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is eligible for relicensing.
ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document and put the following copyright and license notices just after the title page:

 Copyright (C) YEAR YOUR NAME.
 Permission is granted to copy, distribute and/or modify this document
 under the terms of the GNU Free Documentation License, Version 1.3
 or any later version published by the Free Software Foundation;
 with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
 A copy of the license is included in the section entitled "GNU
 Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the "with … Texts." line with this:

 with the Invariant Sections being LIST THEIR TITLES, with the
 Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these examples in parallel under your choice of free software license, such as the GNU General Public License, to permit their use in free software.
\end{multicols}

\section{GNU Lesser General Public License}
\begin{multicols}{4}

GNU LESSER GENERAL PUBLIC LICENSE

Version 3, 29 June 2007

Copyright © 2007 Free Software Foundation, Inc. <http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

This version of the GNU Lesser General Public License incorporates the terms and conditions of version 3 of the GNU General Public License, supplemented by the additional permissions listed below.
0. Additional Definitions.

As used herein, “this License” refers to version 3 of the GNU Lesser General Public License, and the “GNU GPL” refers to version 3 of the GNU General Public License.

“The Library” refers to a covered work governed by this License, other than an Application or a Combined Work as defined below.

An “Application” is any work that makes use of an interface provided by the Library, but which is not otherwise based on the Library. Defining a subclass of a class defined by the Library is deemed a mode of using an interface provided by the Library.

A “Combined Work” is a work produced by combining or linking an Application with the Library. The particular version of the Library with which the Combined Work was made is also called the “Linked Version”.

The “Minimal Corresponding Source” for a Combined Work means the Corresponding Source for the Combined Work, excluding any source code for portions of the Combined Work that, considered in isolation, are based on the Application, and not on the Linked Version.

The “Corresponding Application Code” for a Combined Work means the object code and/or source code for the Application, including any data and utility programs needed for reproducing the Combined Work from the Application, but excluding the System Libraries of the Combined Work.
1. Exception to Section 3 of the GNU GPL.

You may convey a covered work under sections 3 and 4 of this License without being bound by section 3 of the GNU GPL.
2. Conveying Modified Versions.

If you modify a copy of the Library, and, in your modifications, a facility refers to a function or data to be supplied by an Application that uses the facility (other than as an argument passed when the facility is invoked), then you may convey a copy of the modified version:

 * a) under this License, provided that you make a good faith effort to ensure that, in the event an Application does not supply the function or data, the facility still operates, and performs whatever part of its purpose remains meaningful, or
 * b) under the GNU GPL, with none of the additional permissions of this License applicable to that copy.

3. Object Code Incorporating Material from Library Header Files.

The object code form of an Application may incorporate material from a header file that is part of the Library. You may convey such object code under terms of your choice, provided that, if the incorporated material is not limited to numerical parameters, data structure layouts and accessors, or small macros, inline functions and templates (ten or fewer lines in length), you do both of the following:

 * a) Give prominent notice with each copy of the object code that the Library is used in it and that the Library and its use are covered by this License.
 * b) Accompany the object code with a copy of the GNU GPL and this license document.

4. Combined Works.

You may convey a Combined Work under terms of your choice that, taken together, effectively do not restrict modification of the portions of the Library contained in the Combined Work and reverse engineering for debugging such modifications, if you also do each of the following:

 * a) Give prominent notice with each copy of the Combined Work that the Library is used in it and that the Library and its use are covered by this License.
 * b) Accompany the Combined Work with a copy of the GNU GPL and this license document.
 * c) For a Combined Work that displays copyright notices during execution, include the copyright notice for the Library among these notices, as well as a reference directing the user to the copies of the GNU GPL and this license document.
 * d) Do one of the following:
 o 0) Convey the Minimal Corresponding Source under the terms of this License, and the Corresponding Application Code in a form suitable for, and under terms that permit, the user to recombine or relink the Application with a modified version of the Linked Version to produce a modified Combined Work, in the manner specified by section 6 of the GNU GPL for conveying Corresponding Source.
 o 1) Use a suitable shared library mechanism for linking with the Library. A suitable mechanism is one that (a) uses at run time a copy of the Library already present on the user's computer system, and (b) will operate properly with a modified version of the Library that is interface-compatible with the Linked Version.
 * e) Provide Installation Information, but only if you would otherwise be required to provide such information under section 6 of the GNU GPL, and only to the extent that such information is necessary to install and execute a modified version of the Combined Work produced by recombining or relinking the Application with a modified version of the Linked Version. (If you use option 4d0, the Installation Information must accompany the Minimal Corresponding Source and Corresponding Application Code. If you use option 4d1, you must provide the Installation Information in the manner specified by section 6 of the GNU GPL for conveying Corresponding Source.)

5. Combined Libraries.

You may place library facilities that are a work based on the Library side by side in a single library together with other library facilities that are not Applications and are not covered by this License, and convey such a combined library under terms of your choice, if you do both of the following:

 * a) Accompany the combined library with a copy of the same work based on the Library, uncombined with any other library facilities, conveyed under the terms of this License.
 * b) Give prominent notice with the combined library that part of it is a work based on the Library, and explaining where to find the accompanying uncombined form of the same work.

6. Revised Versions of the GNU Lesser General Public License.

The Free Software Foundation may publish revised and/or new versions of the GNU Lesser General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library as you received it specifies that a certain numbered version of the GNU Lesser General Public License “or any later version” applies to it, you have the option of following the terms and conditions either of that published version or of any later version published by the Free Software Foundation. If the Library as you received it does not specify a version number of the GNU Lesser General Public License, you may choose any version of the GNU Lesser General Public License ever published by the Free Software Foundation.

If the Library as you received it specifies that a proxy can decide whether future versions of the GNU Lesser General Public License shall apply, that proxy's public statement of acceptance of any version is permanent authorization for you to choose that version for the Library.
\end{multicols}
}
\pagebreak
\end{CJK}
\end{document}

headers/options.tex~

% Festlegungen für minitoc
% \renewcommand{\myminitoc}{\minitoc}
% \renewcommand{\mtctitle}{Überblick}
% \setcounter{minitocdepth}{1}
% \dominitoc % diese Zeile aktiviert das Erstellen der minitocs, sie muss vor \tableofcontents kommen

% Seitenformat
% ------------
%\KOMAoption{paper}{A5} % zulässig: letter, legal, executive; A-, B-, C-, D-Reihen
\KOMAoption{open}{right}			% zulässig: right (jedes Kapitel beginnt rechts), left, any
\KOMAoption{numbers}{auto}
% Satzspiegel jetzt neu berechnen, damit er bei Kopf- und Fußzeilen beachtet wird
\KOMAoptions{DIV=13}

% Kopf- und Fusszeilen
% --------------------
% Breite und Trennlinie
%\setheadwidth[-6mm]{textwithmarginpar}
%\setheadsepline[textwithmarginpar]{0.4pt}
\setheadwidth{text}
\setheadsepline[text]{0.4pt}

% Variante 1: Kopf: links Kapitel, rechts Abschnitt (ohne Nummer); Fuß: außen die Seitenzahl
\ohead{\headmark}
\renewcommand{\chaptermark}[1]{\markleft{#1}{}}
\renewcommand{\sectionmark}[1]{\markright{#1}{}}
\ofoot[\pagemark]{\pagemark}

% Variante 2: Kopf außen die Seitenzahl, Fuß nichts
%\ohead{\pagemark}
%\ofoot{}

% Standardschriften
% -----------------
%\KOMAoption{fontsize}{18pt}
\addtokomafont{disposition}{\rmfamily}
\addtokomafont{title}{\rmfamily}
\setkomafont{pageheadfoot}{\normalfont\rmfamily\mdseries}

% vertikaler Ausgleich
% --------------------
% nein -> \raggedbottom
% ja -> \flushbottom aber ungeeignet bei Fußnoten
%\raggedbottom
\flushbottom

% Tiefe des Inhaltsverzeichnisses bestimmen
% ---
% -1 nur \part{}
% 0 bis \chapter{}
% 1 bis \section{}
% 2 bis \subsection{} usw.
\newcommand{\mytocdepth}{1}

% mypart - Teile des Buches und Inhaltsverzeichnis
% --
% Standard: nur im Inhaltsverzeichnis, zusätzlicher Eintrag ohne Seitenzahl
% Variante: nur im Inhaltsverzeichnis, zusätzlicher Eintrag mit Seitenzahl
%\renewcommand{\mypart}[1]{\addcontentsline{toc}{part}{#1}}
% Variante: mit eigener Seite vor dem ersten Kapitel, mit Eintrag und Seitenzahl im Inhaltsverzeichnis
\renewcommand{\mypart}[1]{\part{#1}}

% maketitle
% ---
% Bestandteile des Innentitels
%\title{Einführung in SQL}
%\author{Jürgen Thomas}
%\subtitle{Datenbanken bearbeiten}
\date{}
% Bestandteile von Impressum und CR
% Bestandteile von Impressum und CR

\uppertitleback{
%Detaillierte Daten zu dieser Publikation sind bei Wikibooks zu erhalten:\newline{} \url{http://de.wikibooks.org/}
%Diese Publikation ist bei der Deutschen Nationalbibliothek registriert. Detaillierte Daten sind im Internet zu erhalten: \newline{}\url{https://portal.d-nb.de/opac.htm?method=showSearchForm#top}
%Diese Publikation ist bei der Deutschen Nationalbibliothek registriert. Detaillierte Daten sind im Internet unter der Katalog-Nr. 1008575860 zu erhalten: \newline{}\url{http://d-nb.info/1008575860}

%Namen von Programmen und Produkten sowie sonstige Angaben sind häufig geschützt. Da es auch freie Bezeichnungen gibt, wird das Symbol \textregistered{} nicht verwendet.

%Erstellt am
\today{}
}

\lowertitleback{
{\footnotesize
On the 28th of April 2012 the contents of the English as well as German Wikibooks and Wikipedia projects were licensed under Creative Commons Attribution-ShareAlike 3.0 Unported license. An URI to this license is given in the list of figures on page \pageref{ListOfFigures}. If this document is a derived work from the contents of one of these projects and the content was still licensed by the project under this license at the time of derivation this document has to be licensed under the same, a similar or a compatible license, as stated in section 4b of the license. The list of contributors is included in chapter Contributors on page \pageref{Contributors}. The licenses GPL, LGPL and GFDL are included in chapter Licenses on page \pageref{Licenses}, since this book and/or parts of it may or may not be licensed under one or more of these licenses, and thus require inclusion of these licenses. The licenses of the figures are given in the list of figures on page \pageref{ListOfFigures}. This PDF was generated by the \LaTeX{} typesetting software. The \LaTeX{} source code is included as an attachment ({\tt source.7z.txt}) in this PDF file. To extract the source from the PDF file, we recommend the use of \url{http://www.pdflabs.com/tools/pdftk-the-pdf-toolkit/} utility or clicking the paper clip attachment symbol on the lower left of your PDF Viewer, selecting {\tt Save Attachment}. After extracting it from the PDF file you have to rename it to {\tt source.7z}. To uncompress the resulting archive we recommend the use of \url{http://www.7-zip.org/}. The \LaTeX{} source itself was generated by a program written by Dirk Hünniger, which is freely available under an open source license from \url{http://de.wikibooks.org/wiki/Benutzer:Dirk_Huenniger/wb2pdf}. This distribution also contains a configured version of the {\tt pdflatex
} compiler with all necessary packages and fonts needed to compile the \LaTeX{} source included in this PDF file. Click on the Icon below to save the attached latex source. \attachfile{source.7z.txt}

}}

\renewcommand{\mysubtitle}[1]{}
\renewcommand{\mymaintitle}[1]{}
\renewcommand{\myauthor}[1]{}

\newenvironment{myshaded}{%
 \def\FrameCommand{ \hskip-2pt \fboxsep=\FrameSep \colorbox{shadecolor}}%
 \MakeFramed {\advance\hsize-\width \FrameRestore}}%
 {\endMakeFramed}

headers/packages1.tex~

% Standard für Formatierung
%\usepackage[utf8]{inputenc} % use \usepackage[utf8]{inputenc} for tex4ht
\usepackage[usenames]{color}
\usepackage{textcomp}
\usepackage{alltt}
\usepackage{syntax}
\usepackage{parskip}
\usepackage[normalem]{ulem}
\usepackage[pdftex,unicode=true]{hyperref}
\usepackage{tocstyle}
\usepackage[defblank]{paralist}
\usepackage{trace}
%\usepackage{bigstrut}
% Minitoc
%\usepackage{minitoc}

% Keystroke
\usepackage{keystroke}
\usepackage{supertabular}

\usepackage{wrapfig}
%\newcommand{\bigs}{\bigstrut{}}

headers/packages2.tex~

% für Zeichensätze

%replacemnt for pslatex
\usepackage{mathptmx}
\usepackage[scaled=.92]{helvet}
\usepackage{courier}

\usepackage[T1]{fontenc} % disable this line for tex4ht

% für Tabellen
\usepackage{multirow}
\usepackage{multicol}
\usepackage{array,ragged2e}
\usepackage{longtable}

% für Kopf- und Fußzeilen, Fußnoten
\usepackage{scrpage2}
\usepackage{footnote}

% für Rahmen
\usepackage{verbatim}
\usepackage{framed}
\usepackage{mdframed}
\usepackage{listings}
\usepackage{lineno}

% für Symbole
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{amsfonts}

\usepackage{pifont}
\usepackage{marvosym}
\let\Cross\undefined
\usepackage{fourier-orns} % disable this line for tex4ht % für weitere Logos, z.B. \danger

% für Grafik-Einbindung
\usepackage[pdftex]{graphicx}
\usepackage{wasysym}
\let\Square\undefined

% unklare Verwendung
\usepackage{bbm}
\usepackage{skull}

%arabtex
\usepackage[T1]{tipa} % disable this line for tex4ht

\usepackage{fancyvrb}
\usepackage{bbding}
\usepackage{textcomp}
\usepackage[table]{xcolor}
\usepackage{microtype}
\usepackage{lscape}
\usepackage{amsthm}

headers/templates.tex~

\newcommand{\wbtempcolora}{white}
\newcommand{\wbtempcolorb}{white}
\newcommand{\wbtempcolorc}{white}
\newcommand{\wbtemptexta}{}
\newcommand{\wbtemptextb}{}
\newcommand{\wbtemptextc}{}
\newlength{\wbtemplengtha}
\setlength{\wbtemplengtha}{0pt}
\newlength{\wbtemplengthb}
\setlength{\wbtemplengthb}{0pt}
\newlength{\wbtemplengthc}
\setlength{\wbtemplengthc}{0pt}
\newlength{\wbtemplengthd}
\setlength{\wbtemplengthd}{0pt}
\newlength{\wbtemplengthe}
\setlength{\wbtemplengthe}{0pt}
\newcount\wbtempcounta
\wbtempcounta=0
\newcount\wbtempcountb
\wbtempcountb=0
\newcount\wbtempcountc
\wbtempcountc=0

\newcommand{\CPPAuthorsTemplate}[4]{
\LaTeXZeroBoxTemplate{
The following people are authors to this book:

#3

You can verify who has contributed to this book by examining the history logs at Wikibooks (http://en.wikibooks.org/).

Acknowledgment is given for using some contents from other works like #1, as from the authors #2.

The above authors release their work under the following license:

This work is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license. In short: you are free to share and to make derivatives of this work under the conditions that you appropriately attribute it, and that you only distribute it under the same, similar or a compatible license. Any of the above conditions can be waived if you get permission from the copyright holder.
Unless otherwise noted, #4 used in this book have their own copyright, may use different licenses than the one used here, and were not created by the above authors. The authors, contributors, and licenses used should be acknowledged separately.}
}

\newcommand{\tlTemplate}[1]{{\{\{{\ttfamily #1}\}\}}}

\newcommand{\matrixdimTemplate}[1]{
\definecolor{shadecolor}{gray}{0.9}
\begin{myshaded}
{\bfseries Matrix Dimensions: }\\
A: $p \times p$ \\
B: $p \times q$\\
C: $r \times p$\\
D: $r \times q$\\
\end{myshaded}
}

\newcommand{\matlabTemplate}[1]{
\definecolor{shadecolor}{gray}{0.9}
\begin{myshaded}
This operation can be performed using this MATLAB command:
{\ttfamily #1}
\end{myshaded}}

\newcommand{\PrintUnitPage}[3]{\pagebreak
\begin{flushleft}
{\bfseries \Large #1}
\end{flushleft}

\begin{longtable}{>{\RaggedRight}p{0.5\linewidth}>{\RaggedRight}p{0.5\linewidth}}
& #2
\end{longtable}}

\newcommand{\LaTeXCodeTipTemplate}[3]{

\definecolor{shadecolor}{gray}{0.9}
\begin{myshaded}
#1 \\
#2 \\
#3
\end{myshaded}
}

\newcommand{\DisassemblySyntax}[1]{

\definecolor{shadecolor}{gray}{0.9}
\begin{myshaded}
This code example uses #1 Syntax
\end{myshaded}}

\newcommand{\LaTeXDeutschTemplate}[1]{ {\bfseries deutsch:} #1 }

\newcommand{\LaTeXNullTemplate}[1]{}
\newcommand{\LatexSymbol}[1]{\LaTeX}

\newcommand{\LaTeXDoubleBoxTemplate}[2]{

\begin{minipage}{\linewidth}\definecolor{shadecolor}{gray}{0.9}\begin{myshaded}{\bfseries #1} \\
#2
\end{myshaded}
\end{minipage}

}

\newcommand{\LaTeXSimpleBoxTemplate}[2]{
{\bfseries #1} \\
#2
}

\newcommand{\SolutionBoxTemplate}[2]{
#2
}

\newcommand{\LaTeXDoubleBoxOpenTemplate}[2]{

\definecolor{shadecolor}{gray}{0.9}\begin{myshaded}{\bfseries #1} \\
#2
\end{myshaded}

}

\newcommand{\LaTeXLatinExcerciseTemplate}[3]{

\definecolor{shadecolor}{gray}{0.9}\begin{myshaded}{\bfseries Excercise: #1} \\
#2 \\
{\bfseries Solution}
#3
\end{myshaded}

}

\newcommand{\LaTeXShadedColorBoxTemplate}[2]{
{\linewidth}#1\begin{myshaded}
#2
\end{myshaded}
}

\newcommand{\PGP}[1]{PGP:#1}

\newcommand{\ADAFile}[1]{\LaTeXZeroBoxTemplate{File: #1}}
\newcommand{\ADASample}[1]{\LaTeXZeroBoxTemplate{This code sample is also available in #1}}

This code sample is also available in

\newcommand{\LaTeXZeroBoxTemplate}[1]{
\begin{minipage}{\linewidth}\definecolor{shadecolor}{gray}{0.9}\begin{myshaded}
#1
\end{myshaded}
\end{minipage}
}

\newcommand{\LaTeXZeroBoxOpenTemplate}[1]{
\definecolor{shadecolor}{gray}{0.9}\begin{myshaded}
#1
\end{myshaded}
}

\newcommand{\PDFLink}[1]{
\textbf{PDF} #1
}

\newcommand{\SonnensystemFakten}[3]{
#1 \\
\definecolor{shadecolor}{gray}{0.9}\begin{myshaded}{\bfseries #2} \\
#3 \\
\end{myshaded}
}

\newcommand{\VorlageReferenzenEintrag}[3]{
\begin{longtable}{p{0.2\linewidth}p{0.8\linewidth}}

{[\bfseries #1]} & {\itshape #2} #3 \\
\end{longtable}

}

\newcommand{\MBOX}[2]{\definecolor{shadecolor}{gray}{0.9}
\begin{myshaded}
\begin{longtable}{p{0.2\linewidth}p{0.7\linewidth}}
#1 & #2 \\
\end{longtable}
\end{myshaded}}

\newcommand{\LaTeXIdentityTemplate}[1]{#1
}

\newcommand{\TychoBrahe}[1]{Tycho Brahe}

\newcommand{\LaTeXPlainBoxTemplate}[1]{
\begin{minipage}{\linewidth}\definecolor{shadecolor}{gray}{0.9}\begin{myshaded}
#1
\end{myshaded}
\end{minipage}
}

\newcommand{\Hinweis}[1]{
\begin{TemplateInfo}{{\Huge \textcircled{\LARGE !}}}{Hinweis}
#1
\end{TemplateInfo}}

\newcommand{\LaTexInfoTemplateOne}[1]{
\begin{TemplateInfo}{\Info}{Information}
#1
\end{TemplateInfo}}

\newcommand{\EqnTemplate}[1]{
\begin{flushright}
\textbf{[#1]}
\end{flushright}}

\newcommand{\RefTemplate}[1]{[#1]}

\newcommand{\LaTeXGCCTakeTemplate}[1]{
\LaTeXDoubleBoxTemplate{Take home:}{#1}
}

\newcommand{\LaTeXEditorNote}[1]{\LaTeXDoubleBoxTemplate{Editor's note}{#1}}

\newcommand{\BNPForVersion}[1]{
\LaTeXInfoTemplateOne{Applicable Blender version: #1}
}

\newcommand{\LaTeXInfoTemplateOne}[1]{
\begin{TemplateInfo}{\Info}{Information}
#1
\end{TemplateInfo}
}

\newcommand{\LaTexHelpFulHintTemplate}[1]{
\LaTeXDoubleBoxTemplate{Helpful Hint:}{#1}
}

\newcommand{\MyLaTeXTemplate}[3]{
\LaTeXDoubleBoxTemplate{MyLaTeXTemplate1:}{#1 \\ #2 \\ #3}
}

\newcommand{\TemplatePreformat}[1]{
\par
\begin{scriptsize}
%\setlength{\baselineskip}{0.9\baselineskip}
\ttfamily
#1
\par
\end{scriptsize}
}

\newcommand{\TemplateSpaceIndent}[1]{
\begin{scriptsize}
\begin{framed}
\ttfamily
#1
\end{framed}
\end{scriptsize}
}

\newcommand{\GenericColorBox}[2]
{
\newline
\begin{tabular}[t]{p{0.6cm}p{4cm}}
#1\\
\end{tabular}
}

\newcommand{\legendNamedColorBox}[2]
{
 \GenericColorBox{
 \parbox[t]{0.5\linewidth}{
 \textsuperscript{
 \fcolorbox{black}{#1}{
 \Huge{\,\,}
 }
 }
 }
 }{
 #2
 }
}

\newcommand{\legendColorBox}[2]
{
 \GenericColorBox{
 \definecolor{tempColor}{rgb}{#1}
 \parbox[t]{0.5\linewidth}{
 \textsuperscript{
 \fcolorbox{black}{tempColor}{
 \Huge{\,\,}
 }
 }
 }
 }{
 #2
 }
}

%\newcommand{\ubung} {{\LARGE \triangleright}}
\newcommand{\ubung}{\ding{228} \textbf{Aufgabe:}\,}

\newcommand{\TemplateSource}[1]
{
%\begin{TemplateCodeInside}{}{\baselineskip}{\baselineskip}{}{}{true}
\begin{scriptsize}
\begin{myshaded}\ttfamily
#1
\end{myshaded}
\end{scriptsize}
%\end{TemplateCodeInside}
}

\newenvironment{TemplateInfo}[2]
% no more parameters
%**
% Template Info
% Kasten mit Logo, Titelzeile, Text
% kann für folgende Wiki-Vorlagen benutzt werden:
% Vorlage:merke, Vorlage:Achtung u.ä.
%
% #1 Logo (optional) default: \Info
% #2 Titel (optional) default: Information; könnte theoretisch auch leer sein,
% das ist aber wegen des Logos nicht sinnvoll
%**
{
% Definition des Kastens mit Standardwerten
% u.U. ist linewidth=1pt erorderlich
\begin{mdframed}[skipabove=\baselineskip, skipbelow=\baselineskip,
linewidth=1pt,
innertopmargin=0, innerbottommargin=0]
% linksbündig ist besser, weil es in der Regel wenige Zeilen sind, die teilweise kurz sind
\begin{flushleft}
% Überschrift größer darstellen
\begin{Large}
% #1 wird als Logo verwendet, Vorgabe ist \Info aus marvosym
% für andere Logos muss ggf. das Package eingebunden werden
% das Logo kann auch mit einer Größe verbunden werden, z.B. \LARGE\danger als #1
{#1 } \
% #2 wird als Titelzeile verwendet, Vorgabe ist 'Information'
{\bfseries #2}
\medskip \end{Large} \\
} % Ende der begin-Anweisungen, es folgenden die end-Anweisungen
{ \end{flushleft}\end{mdframed} }

\newcommand{\TemplateHeaderExercise}[3]
% no more parameters
%**
% Template Header Exercise
% Rahmen als minisec mit Nummer der Aufgabe und Titel und grauem Hintergrund
% ist gedacht für folgende Wiki-Vorlage:
% Vorlage:Übung4
% kann genauso für den Aufgaben-Teil folgender Vorlagen verwendet werden:
% Vorlage:Übung (wird zz. nur einmal benutzt)
% Vorlage:Übung2 (wird zz. gar nicht benutzt)
% Vorlage:Übung3 (wird zz. in 2 Büchern häufig benutzt)
% C++-Programmierung/ Vorlage:Aufgabe (wird zz. nur selten benutzt,
% ist in LatexRenderer.hs schon erledigt)
%
% #1 Text (optional) 'Aufgabe' oder 'Übung', kann auch leer sein
% #2 Nummer (Pflicht) könnte theoretisch auch leer sein, aber dann sieht die Zeile
% seltsam aus; oder die if-Abfragen wären unnötig komplex
% #3 Titel (optional) Inhaltsangabe der Aufgabe, kann auch leer sein
%**
{
\minisec{\normalfont \fcolorbox{black}{shadecolor}{\large \, #1 #2 \ifx{#3}{}{}\else{-- #3}\fi \,} \medskip }
}

\newcommand{\TemplateHeaderSolution}[3]
% no more parameters
%**
% Template Header Solution
% Rahmen als minisec mit Nummer der Aufgabe und Titel und grauem Hintergrund
%
% ist gedacht für den Lösungen-Teil der Vorlagen und wird genauso
% verwendet wie \TemplateHeaderExercise
%**
{
\minisec{\normalfont \fcolorbox{black}{shadecolor}{\large \, Lösung zu #1 #2 \ifx{#3}{}{}\else{-- #3}\fi \,} \medskip }
}

\newcommand{\TemplateUbungDrei}[4]
{
\TemplateHeaderExercise{Übung}{#1}{#2}
#3
\TemplateHeaderSolution{Übung}{#1}{#2}
#4
}

\newcommand{\Mywrapfigure}[2]
{
\begin{wrapfigure}{r}{#1\textwidth}
\begin{center}
#2
\end{center}
\end{wrapfigure}
}

\newcommand{\Mymakebox}[2]
{
\begin{minipage}{#1\textwidth}
#2
\end{minipage}
}

\newcommand{\MyBlau}[1]{
\textcolor{darkblue}{#1}
}
\newcommand{\MyRot}[1]{
\textcolor{red}{#1}
}
\newcommand{\MyGrun}[1]{
\textcolor{mydarkgreen}{#1}
}
\newcommand{\MyBg}[2]{
\fcolorbox{#1}{#1}{#2}
}

\newcommand{\BNPModule}[1]{
the "#1" module
}

\newcommand{\LaTeXMerkeZweiTemplate}[1]{\LaTeXDoubleBoxTemplate{Merke}{#1}}

\newcommand{\LaTeXDefinitionTemplate}[1]{\LaTeXDoubleBoxTemplate{Definition}{#1}}

\newcommand{\LaTeXAnorganischeChemieFuerSchuelerVorlageMerksatzTemplate}[1]{\LaTeXDoubleBoxTemplate{Merksatz}{#1}}

\newcommand{\LaTeXTextTemplate}[1]{\LaTeXDoubleBoxTemplate{}{#1}}

\newcommand{\LaTeXExampleTemplate}[1]{\LaTeXDoubleBoxTemplate{Example:}{#1}}

\newcommand{\LaTeXexampleTemplate}[1]{\LaTeXDoubleBoxTemplate{Example:}{#1}}

\newcommand{\LaTeXPTPBoxTemplate}[1]{\LaTeXDoubleBoxTemplate{Points to ponder:}{#1}}

\newcommand{\LaTeXNOTETemplate}[2]{\LaTeXDoubleBoxTemplate{Note:}{#1 #2}}

\newcommand{\LaTeXNotizTemplate}[1]{\LaTeXDoubleBoxTemplate{Notiz:}{#1}}

\newcommand{\LaTeXbodynoteTemplate}[1]{\LaTeXDoubleBoxTemplate{Note:}{#1}}

\newcommand{\LaTeXcquoteTemplate}[1]{\LaTeXDoubleBoxTemplate{Quote:}{#1}}

\newcommand{\LaTeXCquoteTemplate}[1]{\LaTeXDoubleBoxTemplate{Quote:}{#1}}

\newcommand{\LaTeXSideNoteTemplate}[1]{\LaTeXDoubleBoxTemplate{Note:}{#1}}

\newcommand{\LaTeXsideNoteTemplate}[1]{\LaTeXDoubleBoxTemplate{Note:}{#1}}

\newcommand{\LaTeXExercisesTemplate}[1]{\LaTeXDoubleBoxTemplate{Exercises:}{#1}}

\newcommand{\LaTeXCppProgrammierungVorlageTippTemplate}[1]{\LaTeXDoubleBoxTemplate{Tip}{#1}}

\newcommand{\LaTeXTipTemplate}[1]{\LaTeXDoubleBoxTemplate{Tip}{#1}}
\newcommand{\LaTeXUnknownTemplate}[1]{unknown}

\newcommand{\LaTeXCppProgrammierungVorlageHinweisTemplate}[1]{\LaTeXDoubleBoxTemplate{Hinweis}{#1}}

\newcommand{\LaTeXCppProgrammierungVorlageSpaeterImBuchTemplate}[1]{\LaTeXDoubleBoxTemplate{Thema wird später näher erläutert...}{#1}}

\newcommand{\SGreen}[1]{This page uses material from Dr. Sheldon Green's Hypertext Help with LaTeX.}
\newcommand{\ARoberts}[1]{This page uses material from Andy Roberts' Getting to grips with LaTeX with permission from the author.}

\newcommand{\LaTeXCppProgrammierungVorlageAnderesBuchTemplate}[1]{\LaTeXDoubleBoxTemplate{Buchempfehlung}{#1}}

\newcommand{\LaTeXCppProgrammierungVorlageNichtNaeherBeschriebenTemplate}[1]{\LaTeXDoubleBoxTemplate{Nicht Thema dieses Buches...}{#1}}

\newcommand{\LaTeXPythonUnterLinuxVorlagenVorlageDetailsTemplate}[1]{\LaTeXDoubleBoxTemplate{Details}{#1}}

\newcommand{\LaTeXChapterTemplate}[1]{\chapter{#1}
\myminitoc
}

\newcommand{\Sample}[2]{
\begin{longtable}{|p{\linewidth}|}
\hline
#1 \\ \hline
#2 \\ \hline
\end{longtable}
}

\newcommand{\Syntax}[1]{
\LaTeXDoubleBoxTemplate{Syntax}{#1}}

\newcommand{\LaTeXTT}[1]{{\ttfamily #1}}
\newcommand{\LaTeXBF}[1]{{\bfseries #1}}
\newcommand{\LaTeXIT}[1]{{\itshape #1}}

\newcommand{\LaTeXCenter}[1]{
\begin{center}
#1
\end{center}}

\newcommand{\BNPManual}[2]{The Blender Manual page on #1 at \url{http://wiki.blender.org/index.php/Doc:Manual/#1}}
\newcommand{\BNPWeb}[2]{#1 at \url{#2}}

\newcommand{\Noframecenter}[2]{
\begin{tablular}{p{\linewidth}}
#2\\
#1
\end{tabluar}
}

\newcommand{\LaTeXTTUlineTemplate}[1]{{\ttfamily \uline{#1}}
}

\newcommand{\PythonUnterLinuxDenulltails}[1]{
\begin{tabular}{|p{\linewidth}|}\hline
\textbf{Denulltails} \\ \hline
#1 \\ \hline
\end{tabular}}

\newcommand{\GNURTip}[1]{
\begin{longtable}{|p{\linewidth}|}\hline
\textbf{Tip} \\ \hline
#1 \\ \hline
\end{longtable}}

\newcommand{\PerlUebung}[1]{
\begin{longtable}{|p{\linewidth}|}\hline
#1 \\ \hline
\end{longtable}}

\newcommand{\PerlNotiz}[1]{
\begin{table}{|p{\linewidth}|}\hline
#1 \\ \hline
\end{table}}

\newcommand{\ACFSZusatz}[1]{\textbf{ Zusatzinformation }}
\newcommand{\ACFSVorlageB}[1]{\textbf{ Beobachtung }}
\newcommand{\ACFSVorlageV}[1]{\textbf{ Versuchsbeschreibung }}
\newcommand{\TemplateHeaderSolutionUebung}[2]{\TemplateHeaderSolution{Übung}{#1}{#2}}
\newcommand{\TemplateHeaderExerciseUebung}[2]{\TemplateHeaderExercise{Übung}{#1}{#2}}

\newcommand{\ChemTemplate}[9]{\texttt{
#1#2#3#4#5#6#7#8#9}}

\newcommand{\WaningTemplate}[1]{
\begin{TemplateInfo}{\danger}{Warning}
#1
\end{TemplateInfo}}

\newcommand{\WarnungTemplate}[1]{
\begin{TemplateInfo}{\danger}{Warnung}
#1
\end{TemplateInfo}}

\newcommand{\BlenderAlignedToViewIssue}[1]{
\begin{TemplateInfo}{\danger}{Blender3d Aligned to view issue}
This tutorial relies on objects being created so that they are aligned to the view that you’re looking through. Versions 2.48 and above have changed the way this works. Visit Aligned (\url{http://en.wikibooks.org/wiki/Blender_3D:_Noob_to_Pro/Aligned_to_view_issue}) to view issue to understand the settings that need to be changed.
\end{TemplateInfo}}

\newcommand{\BlenderVersion}[1]{
{\itshape Diese Seite bezieht sich auf }{\bfseries \quad Blender Version #1}}

\newcommand{\Literal}[1]{{\itshape #1}}

\newcommand{\JavaIllustration}[3]{
\begin{tablular}
{Figure #1: #2}
\\
#3
\end{ltablular}
}

\newcommand{\PDFLink}[1]{#1 PDF}

\newcommand{\Ja}[1]{\Checkmark {\bfseries Ja}}
\newcommand{\Nein}[1]{\XSolidBrush {\bfseries Nein}}

\newcommand{\SVGVersions}[8]{
{\scriptsize
\begin{tabular}{|p{0.45\linewidth}|p{0.13\linewidth}|}\hline
Squiggle (Batik) & #1 \\ \hline
Opera (Presto) & #2 \\ \hline
Firefox (Gecko; auch SeaMonkey, Iceape, Iceweasel etc) & #3 \\ \hline
Konqueror (KSVG) & #4 \\ \hline
Safari (Webkit) & #5 \\ \hline
Chrome (Webkit) & #6 \\ \hline
Microsoft Internet Explorer (Trident) & #7 \\ \hline
librsvg & #8 \\\hline
\end{tabular}}

}

\theoremstyle{plain}
\newtheorem{satz}{Satz}
\newtheorem{beweis}{Beweis}
\newtheorem{beispiel}{Beispiel}

\theoremstyle{definition}
\newtheorem{mydef}{Definition}

\newcommand{\NFSatz}[2]{\begin{satz}#1\end{satz}#2}

\newcommand{\NFDef}[2]{\begin{mydef}#1\end{mydef}#2}

\newcommand{\NFBeweis}[2]{\begin{beweis}#1\end{beweis}#2}

\newcommand{\NFBeispiel}[2]{\begin{beweis}#1\end{beweis}#2}

\newcommand{\NFFrage}[3]{

\definecolor{shadecolor}{gray}{0.9}\begin{myshaded}{\itshape \uline{#1}: #2} \\
#3
\end{myshaded}

}

\newcommand{\NFFrageB}[2]{

\definecolor{shadecolor}{gray}{0.9}\begin{myshaded}{\itshape \uline{Frage}: #1} \\
#2
\end{myshaded}

}

\newcommand{\NFVertiefung}[1]{
{\bfseries Vertiefung:} \\
Der Inhalt des folgenden Abschnitts ist eine Vertiefung des Stoffes. Für die nächsten Kapitel ist es nicht notwendig, dass du dieses Kapitel gelesen hast.

}

headers/title.tex~

\publishers{Wikibooks.org}
\title{Circuit Theory/All Chapters}

main/main.toc

\select@language {english}
\contentsline {chapter}{\numberline {1}Preface}{3}{chapter.1}
\contentsline {section}{\numberline {1.1}Chapter 0: Preface}{3}{section.1.1}
\contentsline {subsection}{\numberline {1.1.1}The strange history of this book}{3}{subsection.1.1.1}
\contentsline {subsection}{\numberline {1.1.2}Acknowledgements}{5}{subsection.1.1.2}
\contentsline {subsection}{\numberline {1.1.3}Contributor List}{5}{subsection.1.1.3}
\contentsline {subsection}{\numberline {1.1.4}The further strange adventures of this book}{8}{subsection.1.1.4}
\contentsline {chapter}{\numberline {2}The way of the program}{9}{chapter.2}
\contentsline {subsection}{\numberline {2.0.5}The Python programming language}{9}{subsection.2.0.5}
\contentsline {subsection}{\numberline {2.0.6}What is a program?}{11}{subsection.2.0.6}
\contentsline {subsection}{\numberline {2.0.7}What is debugging?}{11}{subsection.2.0.7}
\contentsline {subsubsection}{Syntax errors}{11}{section*.2}
\contentsline {subsubsection}{Runtime errors}{11}{section*.3}
\contentsline {subsubsection}{Semantic errors}{12}{section*.4}
\contentsline {subsubsection}{Experimental debugging}{12}{section*.5}
\contentsline {subsection}{\numberline {2.0.8}Formal and natural languages}{12}{subsection.2.0.8}
\contentsline {subsection}{\numberline {2.0.9}The first program}{14}{subsection.2.0.9}
\contentsline {subsection}{\numberline {2.0.10}Debugging}{14}{subsection.2.0.10}
\contentsline {subsection}{\numberline {2.0.11}Glossary}{15}{subsection.2.0.11}
\contentsline {subsection}{\numberline {2.0.12}Exercises}{16}{subsection.2.0.12}
\contentsline {subsubsection}{Exercise 2}{16}{section*.6}
\contentsline {subsubsection}{Exercise 3}{16}{section*.7}
\contentsline {subsubsection}{Exercise 4}{16}{section*.8}
\contentsline {section}{\numberline {2.1}References}{16}{section.2.1}
\contentsline {chapter}{\numberline {3}Variables, expressions and statements}{17}{chapter.3}
\contentsline {subsection}{\numberline {3.0.1}Values and types}{17}{subsection.3.0.1}
\contentsline {subsection}{\numberline {3.0.2}Variables}{18}{subsection.3.0.2}
\contentsline {subsubsection}{Exercise 1}{18}{section*.9}
\contentsline {subsection}{\numberline {3.0.3}Variable names and keywords}{19}{subsection.3.0.3}
\contentsline {subsection}{\numberline {3.0.4}Statements}{20}{subsection.3.0.4}
\contentsline {subsection}{\numberline {3.0.5}Operators and operands}{20}{subsection.3.0.5}
\contentsline {subsection}{\numberline {3.0.6}Expressions}{21}{subsection.3.0.6}
\contentsline {subsubsection}{Exercise 2}{21}{section*.10}
\contentsline {subsection}{\numberline {3.0.7}Order of operations}{21}{subsection.3.0.7}
\contentsline {subsection}{\numberline {3.0.8}String operations}{22}{subsection.3.0.8}
\contentsline {subsection}{\numberline {3.0.9}Comments}{22}{subsection.3.0.9}
\contentsline {subsection}{\numberline {3.0.10}Debugging}{23}{subsection.3.0.10}
\contentsline {subsection}{\numberline {3.0.11}Glossary}{24}{subsection.3.0.11}
\contentsline {subsection}{\numberline {3.0.12}Exercises}{24}{subsection.3.0.12}
\contentsline {subsubsection}{Exercise 3}{24}{section*.11}
\contentsline {subsubsection}{Exercise 4}{25}{section*.12}
\contentsline {subsection}{\numberline {3.0.13}Notes}{25}{subsection.3.0.13}
\contentsline {chapter}{\numberline {4}Functions}{27}{chapter.4}
\contentsline {section}{\numberline {4.1}Function calls}{27}{section.4.1}
\contentsline {section}{\numberline {4.2}Type conversion functions}{27}{section.4.2}
\contentsline {section}{\numberline {4.3}Math functions}{28}{section.4.3}
\contentsline {section}{\numberline {4.4}Composition}{29}{section.4.4}
\contentsline {section}{\numberline {4.5}Adding new functions}{29}{section.4.5}
\contentsline {section}{\numberline {4.6}Definitions and uses}{30}{section.4.6}
\contentsline {subsection}{\numberline {4.6.1}Exercise 1}{31}{subsection.4.6.1}
\contentsline {subsection}{\numberline {4.6.2}Exercise 2}{31}{subsection.4.6.2}
\contentsline {section}{\numberline {4.7}Flow of execution}{31}{section.4.7}
\contentsline {section}{\numberline {4.8}Parameters and arguments}{32}{section.4.8}
\contentsline {section}{\numberline {4.9}Variables and parameters are local}{33}{section.4.9}
\contentsline {section}{\numberline {4.10}Stack diagrams}{33}{section.4.10}
\contentsline {section}{\numberline {4.11}Fruitful functions and void functions}{35}{section.4.11}
\contentsline {section}{\numberline {4.12}Why functions?}{36}{section.4.12}
\contentsline {section}{\numberline {4.13}Debugging}{36}{section.4.13}
\contentsline {section}{\numberline {4.14}Glossary}{37}{section.4.14}
\contentsline {section}{\numberline {4.15}Exercises}{38}{section.4.15}
\contentsline {subsection}{\numberline {4.15.1}Exercise 3}{38}{subsection.4.15.1}
\contentsline {subsection}{\numberline {4.15.2}Exercise 4}{38}{subsection.4.15.2}
\contentsline {subsection}{\numberline {4.15.3}Exercise 5}{39}{subsection.4.15.3}
\contentsline {subsection}{\numberline {4.15.4}TurtleWorld}{39}{subsection.4.15.4}
\contentsline {subsection}{\numberline {4.15.5}Simple repetition}{40}{subsection.4.15.5}
\contentsline {subsection}{\numberline {4.15.6}Exercises}{41}{subsection.4.15.6}
\contentsline {subsection}{\numberline {4.15.7}Encapsulation}{42}{subsection.4.15.7}
\contentsline {subsection}{\numberline {4.15.8}Generalization}{43}{subsection.4.15.8}
\contentsline {subsection}{\numberline {4.15.9}Interface design}{43}{subsection.4.15.9}
\contentsline {subsection}{\numberline {4.15.10}Refactoring}{44}{subsection.4.15.10}
\contentsline {subsection}{\numberline {4.15.11}A development plan}{45}{subsection.4.15.11}
\contentsline {subsection}{\numberline {4.15.12}docstring}{46}{subsection.4.15.12}
\contentsline {subsection}{\numberline {4.15.13}Debugging}{46}{subsection.4.15.13}
\contentsline {subsection}{\numberline {4.15.14}Glossary}{47}{subsection.4.15.14}
\contentsline {subsection}{\numberline {4.15.15}Exercises}{47}{subsection.4.15.15}
\contentsline {chapter}{\numberline {5}Conditional and recursion}{49}{chapter.5}
\contentsline {subsection}{\numberline {5.0.16}Modulus operator}{49}{subsection.5.0.16}
\contentsline {subsection}{\numberline {5.0.17}Boolean expressions}{49}{subsection.5.0.17}
\contentsline {subsection}{\numberline {5.0.18}Logical operators}{50}{subsection.5.0.18}
\contentsline {subsection}{\numberline {5.0.19}Conditional execution}{50}{subsection.5.0.19}
\contentsline {subsection}{\numberline {5.0.20}Alternative execution}{51}{subsection.5.0.20}
\contentsline {subsection}{\numberline {5.0.21}Chained conditionals}{51}{subsection.5.0.21}
\contentsline {subsection}{\numberline {5.0.22}Nested conditionals}{51}{subsection.5.0.22}
\contentsline {subsection}{\numberline {5.0.23}Recursion}{52}{subsection.5.0.23}
\contentsline {subsection}{\numberline {5.0.24}Stack diagrams for recursive functions}{53}{subsection.5.0.24}
\contentsline {subsection}{\numberline {5.0.25}Infinite recursion}{54}{subsection.5.0.25}
\contentsline {subsection}{\numberline {5.0.26}Keyboard input}{54}{subsection.5.0.26}
\contentsline {subsection}{\numberline {5.0.27}Debugging}{55}{subsection.5.0.27}
\contentsline {subsection}{\numberline {5.0.28}Glossary}{56}{subsection.5.0.28}
\contentsline {subsection}{\numberline {5.0.29}Exercises}{56}{subsection.5.0.29}
\contentsline {subsection}{\numberline {5.0.30}Notes}{58}{subsection.5.0.30}
\contentsline {chapter}{\numberline {6}Fruitful functions}{59}{chapter.6}
\contentsline {section}{\numberline {6.1}Return values}{59}{section.6.1}
\contentsline {subsection}{\numberline {6.1.1}Exercise 1}{60}{subsection.6.1.1}
\contentsline {section}{\numberline {6.2}Incremental development}{60}{section.6.2}
\contentsline {subsection}{\numberline {6.2.1}Exercise 2}{62}{subsection.6.2.1}
\contentsline {section}{\numberline {6.3}Composition}{62}{section.6.3}
\contentsline {section}{\numberline {6.4}Boolean functions}{62}{section.6.4}
\contentsline {section}{\numberline {6.5}More recursion}{63}{section.6.5}
\contentsline {section}{\numberline {6.6}Leap of faith}{65}{section.6.6}
\contentsline {section}{\numberline {6.7}One more example}{65}{section.6.7}
\contentsline {section}{\numberline {6.8}Checking types}{66}{section.6.8}
\contentsline {section}{\numberline {6.9}Debugging}{67}{section.6.9}
\contentsline {section}{\numberline {6.10}Glossary}{68}{section.6.10}
\contentsline {section}{\numberline {6.11}Exercises}{68}{section.6.11}
\contentsline {subsection}{\numberline {6.11.1}Exercise 4}{68}{subsection.6.11.1}
\contentsline {subsection}{\numberline {6.11.2}Exercise 5}{69}{subsection.6.11.2}
\contentsline {section}{\numberline {6.12}Multiple assignment}{69}{section.6.12}
\contentsline {section}{\numberline {6.13}Updating variables}{69}{section.6.13}
\contentsline {section}{\numberline {6.14}The while statement}{70}{section.6.14}
\contentsline {section}{\numberline {6.15}break}{71}{section.6.15}
\contentsline {section}{\numberline {6.16}Square roots}{72}{section.6.16}
\contentsline {section}{\numberline {6.17}Algorithms}{73}{section.6.17}
\contentsline {section}{\numberline {6.18}Debugging}{74}{section.6.18}
\contentsline {section}{\numberline {6.19}Glossary}{74}{section.6.19}
\contentsline {section}{\numberline {6.20}Exercises}{74}{section.6.20}
\contentsline {subsection}{\numberline {6.20.1}Exercise 3}{74}{subsection.6.20.1}
\contentsline {subsection}{\numberline {6.20.2}Exercise 4}{75}{subsection.6.20.2}
\contentsline {subsection}{\numberline {6.20.3}Exercise 5}{75}{subsection.6.20.3}
\contentsline {chapter}{\numberline {7}Strings}{77}{chapter.7}
\contentsline {section}{\numberline {7.1}A string is a sequence}{77}{section.7.1}
\contentsline {section}{\numberline {7.2}len}{77}{section.7.2}
\contentsline {section}{\numberline {7.3}Traversal with a for loop}{78}{section.7.3}
\contentsline {subsection}{\numberline {7.3.1}Exercise 2}{79}{subsection.7.3.1}
\contentsline {section}{\numberline {7.4}String slices}{79}{section.7.4}
\contentsline {subsection}{\numberline {7.4.1}Exercise 3}{79}{subsection.7.4.1}
\contentsline {section}{\numberline {7.5}Strings are immutable}{80}{section.7.5}
\contentsline {section}{\numberline {7.6}Searching}{80}{section.7.6}
\contentsline {subsection}{\numberline {7.6.1}Exercise 4}{81}{subsection.7.6.1}
\contentsline {section}{\numberline {7.7}Looping and counting}{81}{section.7.7}
\contentsline {section}{\numberline {7.8}string methods}{81}{section.7.8}
\contentsline {section}{\numberline {7.9}The in operator}{82}{section.7.9}
\contentsline {section}{\numberline {7.10}String comparison}{83}{section.7.10}
\contentsline {section}{\numberline {7.11}Debugging}{83}{section.7.11}
\contentsline {section}{\numberline {7.12}Glossary}{84}{section.7.12}
\contentsline {section}{\numberline {7.13}Exercises}{85}{section.7.13}
\contentsline {subsection}{\numberline {7.13.1}Exercise 9}{85}{subsection.7.13.1}
\contentsline {subsection}{\numberline {7.13.2}Exercise 10}{85}{subsection.7.13.2}
\contentsline {subsection}{\numberline {7.13.3}Exercise 11}{85}{subsection.7.13.3}
\contentsline {subsection}{\numberline {7.13.4}Exercise 12}{86}{subsection.7.13.4}
\contentsline {section}{\numberline {7.14}Notes}{86}{section.7.14}
\contentsline {chapter}{\numberline {8}Case study: word play}{87}{chapter.8}
\contentsline {section}{\numberline {8.1}Reading word lists}{87}{section.8.1}
\contentsline {section}{\numberline {8.2}Exercises}{88}{section.8.2}
\contentsline {section}{\numberline {8.3}Search}{88}{section.8.3}
\contentsline {section}{\numberline {8.4}Looping with indices}{90}{section.8.4}
\contentsline {section}{\numberline {8.5}Debugging}{91}{section.8.5}
\contentsline {section}{\numberline {8.6}Glossary}{91}{section.8.6}
\contentsline {section}{\numberline {8.7}Exercises}{92}{section.8.7}
\contentsline {subsection}{\numberline {8.7.1}Exercise 7}{92}{subsection.8.7.1}
\contentsline {subsection}{\numberline {8.7.2}Exercise 8}{92}{subsection.8.7.2}
\contentsline {subsection}{\numberline {8.7.3}Exercise 9}{92}{subsection.8.7.3}
\contentsline {section}{\numberline {8.8}Notes}{93}{section.8.8}
\contentsline {chapter}{\numberline {9}Lists}{95}{chapter.9}
\contentsline {section}{\numberline {9.1}A list is a sequence}{95}{section.9.1}
\contentsline {section}{\numberline {9.2}Lists are mutable}{95}{section.9.2}
\contentsline {section}{\numberline {9.3}Traversing a list}{96}{section.9.3}
\contentsline {section}{\numberline {9.4}List operations}{97}{section.9.4}
\contentsline {section}{\numberline {9.5}List slices}{97}{section.9.5}
\contentsline {section}{\numberline {9.6}List methods}{98}{section.9.6}
\contentsline {section}{\numberline {9.7}Map, filter and reduce}{98}{section.9.7}
\contentsline {subsection}{\numberline {9.7.1}Exercise 1}{99}{subsection.9.7.1}
\contentsline {section}{\numberline {9.8}Deleting elements}{99}{section.9.8}
\contentsline {section}{\numberline {9.9}Lists and strings}{100}{section.9.9}
\contentsline {section}{\numberline {9.10}Objects and values}{101}{section.9.10}
\contentsline {section}{\numberline {9.11}Aliasing}{102}{section.9.11}
\contentsline {section}{\numberline {9.12}List arguments}{102}{section.9.12}
\contentsline {subsection}{\numberline {9.12.1}Exercise 2}{103}{subsection.9.12.1}
\contentsline {section}{\numberline {9.13}Debugging}{104}{section.9.13}
\contentsline {section}{\numberline {9.14}Glossary}{105}{section.9.14}
\contentsline {section}{\numberline {9.15}Exercises}{105}{section.9.15}
\contentsline {subsection}{\numberline {9.15.1}Exercise 3}{105}{subsection.9.15.1}
\contentsline {subsection}{\numberline {9.15.2}Exercise 4}{105}{subsection.9.15.2}
\contentsline {subsection}{\numberline {9.15.3}Exercise 7}{106}{subsection.9.15.3}
\contentsline {subsection}{\numberline {9.15.4}Exercise 8}{106}{subsection.9.15.4}
\contentsline {subsection}{\numberline {9.15.5}Exercise 9}{106}{subsection.9.15.5}
\contentsline {subsection}{\numberline {9.15.6}Exercise 10}{106}{subsection.9.15.6}
\contentsline {chapter}{\numberline {10}Dictionaries}{109}{chapter.10}
\contentsline {subsection}{\numberline {10.0.7}Exercise 1}{110}{subsection.10.0.7}
\contentsline {section}{\numberline {10.1}Dictionary as a set of counters}{110}{section.10.1}
\contentsline {subsection}{\numberline {10.1.1}Exercise 2}{111}{subsection.10.1.1}
\contentsline {section}{\numberline {10.2}Looping and dictionaries}{112}{section.10.2}
\contentsline {subsection}{\numberline {10.2.1}Exercise 3}{112}{subsection.10.2.1}
\contentsline {section}{\numberline {10.3}Reverse lookup}{112}{section.10.3}
\contentsline {section}{\numberline {10.4}Dictionaries and lists}{113}{section.10.4}
\contentsline {subsection}{\numberline {10.4.1}Exercise 5}{114}{subsection.10.4.1}
\contentsline {section}{\numberline {10.5}Memos}{115}{section.10.5}
\contentsline {subsection}{\numberline {10.5.1}Exercise 6}{115}{subsection.10.5.1}
\contentsline {section}{\numberline {10.6}Global variables}{115}{section.10.6}
\contentsline {section}{\numberline {10.7}Long integers}{117}{section.10.7}
\contentsline {subsection}{\numberline {10.7.1}Exercise 7}{117}{subsection.10.7.1}
\contentsline {section}{\numberline {10.8}Debugging}{117}{section.10.8}
\contentsline {section}{\numberline {10.9}Glossary}{118}{section.10.9}
\contentsline {section}{\numberline {10.10}Exercise-{}8}{118}{section.10.10}
\contentsline {subsection}{\numberline {10.10.1}Exercise 9}{119}{subsection.10.10.1}
\contentsline {subsection}{\numberline {10.10.2}Exercise 10}{119}{subsection.10.10.2}
\contentsline {section}{\numberline {10.11}Notes}{119}{section.10.11}
\contentsline {chapter}{\numberline {11}Tuples}{121}{chapter.11}
\contentsline {section}{\numberline {11.1}Tuples are immutable}{121}{section.11.1}
\contentsline {section}{\numberline {11.2}Tuple assignment}{122}{section.11.2}
\contentsline {section}{\numberline {11.3}Tuples as return values}{123}{section.11.3}
\contentsline {section}{\numberline {11.4}Variable-{}length argument tuples}{123}{section.11.4}
\contentsline {subsection}{\numberline {11.4.1}Exercise 1}{124}{subsection.11.4.1}
\contentsline {section}{\numberline {11.5}Lists and tuples}{124}{section.11.5}
\contentsline {section}{\numberline {11.6}Dictionaries and tuples}{125}{section.11.6}
\contentsline {section}{\numberline {11.7}Comparing tuples}{126}{section.11.7}
\contentsline {subsection}{\numberline {11.7.1}Exercise 2}{127}{subsection.11.7.1}
\contentsline {section}{\numberline {11.8}Sequences of sequences}{127}{section.11.8}
\contentsline {section}{\numberline {11.9}Debugging}{128}{section.11.9}
\contentsline {section}{\numberline {11.10}Glossary}{129}{section.11.10}
\contentsline {section}{\numberline {11.11}Exercises}{129}{section.11.11}
\contentsline {subsection}{\numberline {11.11.1}Exercise 3}{129}{subsection.11.11.1}
\contentsline {subsection}{\numberline {11.11.2}Exercise 4}{129}{subsection.11.11.2}
\contentsline {subsection}{\numberline {11.11.3}Exercise 5}{130}{subsection.11.11.3}
\contentsline {section}{\numberline {11.12}Word frequency analysis}{131}{section.11.12}
\contentsline {subsection}{\numberline {11.12.1}Exercise 1}{131}{subsection.11.12.1}
\contentsline {subsection}{\numberline {11.12.2}Exercise 2}{131}{subsection.11.12.2}
\contentsline {subsection}{\numberline {11.12.3}Exercise 3}{131}{subsection.11.12.3}
\contentsline {subsection}{\numberline {11.12.4}Exercise 4}{132}{subsection.11.12.4}
\contentsline {section}{\numberline {11.13}Random numbers}{132}{section.11.13}
\contentsline {subsection}{\numberline {11.13.1}Exercise 5}{133}{subsection.11.13.1}
\contentsline {section}{\numberline {11.14}Word histogram}{133}{section.11.14}
\contentsline {section}{\numberline {11.15}Most common words}{134}{section.11.15}
\contentsline {section}{\numberline {11.16}Optional parameters}{134}{section.11.16}
\contentsline {section}{\numberline {11.17}Dictionary subtraction}{135}{section.11.17}
\contentsline {subsection}{\numberline {11.17.1}Exercise 6}{136}{subsection.11.17.1}
\contentsline {section}{\numberline {11.18}Random words}{136}{section.11.18}
\contentsline {subsection}{\numberline {11.18.1}Exercise 7}{136}{subsection.11.18.1}
\contentsline {section}{\numberline {11.19}Markov analysis}{137}{section.11.19}
\contentsline {subsection}{\numberline {11.19.1}Exercise 8}{138}{subsection.11.19.1}
\contentsline {section}{\numberline {11.20}Data structures}{138}{section.11.20}
\contentsline {section}{\numberline {11.21}Debugging}{139}{section.11.21}
\contentsline {section}{\numberline {11.22}Glossary}{140}{section.11.22}
\contentsline {section}{\numberline {11.23}Exercises}{141}{section.11.23}
\contentsline {subsection}{\numberline {11.23.1}Exercise 9}{141}{subsection.11.23.1}
\contentsline {section}{\numberline {11.24}Persistence}{141}{section.11.24}
\contentsline {section}{\numberline {11.25}Reading and writing}{141}{section.11.25}
\contentsline {section}{\numberline {11.26}Format operator}{142}{section.11.26}
\contentsline {section}{\numberline {11.27}Filenames and paths}{143}{section.11.27}
\contentsline {subsection}{\numberline {11.27.1}Exercise 1}{144}{subsection.11.27.1}
\contentsline {section}{\numberline {11.28}Catching exceptions}{144}{section.11.28}
\contentsline {section}{\numberline {11.29}Databases}{145}{section.11.29}
\contentsline {section}{\numberline {11.30}Pickling}{146}{section.11.30}
\contentsline {section}{\numberline {11.31}Pipes}{146}{section.11.31}
\contentsline {section}{\numberline {11.32}Writing modules}{147}{section.11.32}
\contentsline {section}{\numberline {11.33}Debugging}{148}{section.11.33}
\contentsline {section}{\numberline {11.34}Glossary}{149}{section.11.34}
\contentsline {section}{\numberline {11.35}Exercises}{149}{section.11.35}
\contentsline {chapter}{\numberline {12}Classes and objects}{151}{chapter.12}
\contentsline {section}{\numberline {12.1}User-{}defined types}{151}{section.12.1}
\contentsline {section}{\numberline {12.2}Attributes}{152}{section.12.2}
\contentsline {subsection}{\numberline {12.2.1}Exercise 1}{153}{subsection.12.2.1}
\contentsline {section}{\numberline {12.3}Rectangles}{153}{section.12.3}
\contentsline {section}{\numberline {12.4}Instances as return values}{153}{section.12.4}
\contentsline {section}{\numberline {12.5}Objects are mutable}{154}{section.12.5}
\contentsline {subsection}{\numberline {12.5.1}Exercise 2}{154}{subsection.12.5.1}
\contentsline {section}{\numberline {12.6}Copying}{155}{section.12.6}
\contentsline {subsection}{\numberline {12.6.1}Exercise 3}{156}{subsection.12.6.1}
\contentsline {section}{\numberline {12.7}Debugging}{156}{section.12.7}
\contentsline {section}{\numberline {12.8}Glossary}{156}{section.12.8}
\contentsline {section}{\numberline {12.9}Exercises}{157}{section.12.9}
\contentsline {subsection}{\numberline {12.9.1}Exercise 4}{157}{subsection.12.9.1}
\contentsline {chapter}{\numberline {13}Classes and functions}{159}{chapter.13}
\contentsline {section}{\numberline {13.1}Time}{159}{section.13.1}
\contentsline {subsection}{\numberline {13.1.1}Exercise 1}{159}{subsection.13.1.1}
\contentsline {subsection}{\numberline {13.1.2}Exercise 2}{159}{subsection.13.1.2}
\contentsline {section}{\numberline {13.2}Pure functions}{159}{section.13.2}
\contentsline {section}{\numberline {13.3}Modifiers}{161}{section.13.3}
\contentsline {section}{\numberline {13.4}Prototyping versus planning}{161}{section.13.4}
\contentsline {section}{\numberline {13.5}Debugging}{163}{section.13.5}
\contentsline {section}{\numberline {13.6}Glossary}{163}{section.13.6}
\contentsline {section}{\numberline {13.7}Exercises}{164}{section.13.7}
\contentsline {subsection}{\numberline {13.7.1}Exercise 6}{164}{subsection.13.7.1}
\contentsline {subsection}{\numberline {13.7.2}Exercise 7}{164}{subsection.13.7.2}
\contentsline {subsection}{\numberline {13.7.3}Exercise 8}{164}{subsection.13.7.3}
\contentsline {chapter}{\numberline {14}Classes and methods}{165}{chapter.14}
\contentsline {section}{\numberline {14.1}Object-{}oriented features}{165}{section.14.1}
\contentsline {section}{\numberline {14.2}Printing objects}{166}{section.14.2}
\contentsline {subsection}{\numberline {14.2.1}Exercise 1}{167}{subsection.14.2.1}
\contentsline {section}{\numberline {14.3}Another example}{167}{section.14.3}
\contentsline {section}{\numberline {14.4}A more complicated example}{168}{section.14.4}
\contentsline {section}{\numberline {14.5}The init method}{168}{section.14.5}
\contentsline {subsection}{\numberline {14.5.1}Exercise 2}{169}{subsection.14.5.1}
\contentsline {section}{\numberline {14.6}The \@uscore .\@uscore .str\@uscore .\@uscore . method}{169}{section.14.6}
\contentsline {subsection}{\numberline {14.6.1}Exercise 3}{169}{subsection.14.6.1}
\contentsline {section}{\numberline {14.7}Operator overloading}{169}{section.14.7}
\contentsline {subsection}{\numberline {14.7.1}Exercise 4}{170}{subsection.14.7.1}
\contentsline {section}{\numberline {14.8}Type-{}based dispatch}{170}{section.14.8}
\contentsline {subsection}{\numberline {14.8.1}Exercise 5}{171}{subsection.14.8.1}
\contentsline {section}{\numberline {14.9}Polymorphism}{171}{section.14.9}
\contentsline {section}{\numberline {14.10}Debugging}{172}{section.14.10}
\contentsline {section}{\numberline {14.11}Glossary}{173}{section.14.11}
\contentsline {section}{\numberline {14.12}Exercises}{173}{section.14.12}
\contentsline {subsection}{\numberline {14.12.1}Exercise 6}{173}{subsection.14.12.1}
\contentsline {subsection}{\numberline {14.12.2}Exercise 7}{174}{subsection.14.12.2}
\contentsline {section}{\numberline {14.13}Further reading}{175}{section.14.13}
\contentsline {chapter}{\numberline {15}Inheritance}{177}{chapter.15}
\contentsline {section}{\numberline {15.1}Card objects}{177}{section.15.1}
\contentsline {section}{\numberline {15.2}Class attributes}{178}{section.15.2}
\contentsline {section}{\numberline {15.3}Comparing cards}{179}{section.15.3}
\contentsline {subsection}{\numberline {15.3.1}Exercise 1}{180}{subsection.15.3.1}
\contentsline {section}{\numberline {15.4}Decks}{180}{section.15.4}
\contentsline {section}{\numberline {15.5}Printing the deck}{180}{section.15.5}
\contentsline {section}{\numberline {15.6}Add, remove, shuffle and sort}{181}{section.15.6}
\contentsline {subsection}{\numberline {15.6.1}Exercise 2}{182}{subsection.15.6.1}
\contentsline {section}{\numberline {15.7}Inheritance}{182}{section.15.7}
\contentsline {section}{\numberline {15.8}Class diagrams}{183}{section.15.8}
\contentsline {subsection}{\numberline {15.8.1}Exercise 4}{184}{subsection.15.8.1}
\contentsline {section}{\numberline {15.9}Debugging}{184}{section.15.9}
\contentsline {section}{\numberline {15.10}Glossary}{185}{section.15.10}
\contentsline {section}{\numberline {15.11}Exercises}{185}{section.15.11}
\contentsline {subsection}{\numberline {15.11.1}Exercise 5}{185}{subsection.15.11.1}
\contentsline {subsection}{\numberline {15.11.2}Exercise 6}{186}{subsection.15.11.2}
\contentsline {chapter}{\numberline {16}Debugging}{189}{chapter.16}
\contentsline {section}{\numberline {16.1}Syntax errors}{189}{section.16.1}
\contentsline {subsection}{\numberline {16.1.1}I keep making changes and it makes no difference.}{190}{subsection.16.1.1}
\contentsline {section}{\numberline {16.2}Runtime errors}{191}{section.16.2}
\contentsline {subsection}{\numberline {16.2.1}My program does absolutely nothing.}{191}{subsection.16.2.1}
\contentsline {subsection}{\numberline {16.2.2}My program hangs.}{191}{subsection.16.2.2}
\contentsline {subsubsection}{Infinite Loop}{192}{section*.13}
\contentsline {subsubsection}{Infinite Recursion}{192}{section*.14}
\contentsline {subsubsection}{Flow of Execution}{192}{section*.15}
\contentsline {subsection}{\numberline {16.2.3}When I run the program I get an exception.}{193}{subsection.16.2.3}
\contentsline {subsubsection}{I added so many print statements I get inundated with output.}{194}{section*.16}
\contentsline {section}{\numberline {16.3}Semantic errors}{194}{section.16.3}
\contentsline {subsection}{\numberline {16.3.1}My program doesnâ��t work.}{194}{subsection.16.3.1}
\contentsline {subsection}{\numberline {16.3.2}I\textquotesingle {}m really, really stuck and I need help.}{196}{subsection.16.3.2}
\contentsline {subsection}{\numberline {16.3.3}No, I really need help.}{196}{subsection.16.3.3}
\contentsline {chapter}{\numberline {17}Answers}{199}{chapter.17}
\contentsline {section}{\numberline {17.1}Chapter 1}{199}{section.17.1}
\contentsline {subsection}{\numberline {17.1.1}Exercise 1.4}{199}{subsection.17.1.1}
\contentsline {section}{\numberline {17.2}Chapter 2}{200}{section.17.2}
\contentsline {subsection}{\numberline {17.2.1}Exercise 2.1}{200}{subsection.17.2.1}
\contentsline {subsection}{\numberline {17.2.2}Exercise 2.4}{200}{subsection.17.2.2}
\contentsline {section}{\numberline {17.3}Chapter 3}{202}{section.17.3}
\contentsline {subsection}{\numberline {17.3.1}Exercise 3.3}{202}{subsection.17.3.1}
\contentsline {subsection}{\numberline {17.3.2}Exercise 3.4}{202}{subsection.17.3.2}
\contentsline {section}{\numberline {17.4}Chapter 9}{204}{section.17.4}
\contentsline {subsection}{\numberline {17.4.1}Exercise 9.1}{204}{subsection.17.4.1}
\contentsline {section}{\numberline {17.5}Chapter 10}{204}{section.17.5}
\contentsline {subsection}{\numberline {17.5.1}Exercise 10.1}{204}{subsection.17.5.1}
\contentsline {subsection}{\numberline {17.5.2}Exercise 10.2}{204}{subsection.17.5.2}
\contentsline {section}{\numberline {17.6}Chapter 11}{205}{section.17.6}
\contentsline {subsection}{\numberline {17.6.1}Exercise 11.1}{205}{subsection.17.6.1}
\contentsline {subsection}{\numberline {17.6.2}Exercise 11.2}{205}{subsection.17.6.2}
\contentsline {subsection}{\numberline {17.6.3}Exercise 11.4}{205}{subsection.17.6.3}
\contentsline {section}{\numberline {17.7}Chapter 12}{205}{section.17.7}
\contentsline {subsection}{\numberline {17.7.1}Exercise 12.1}{205}{subsection.17.7.1}
\contentsline {subsection}{\numberline {17.7.2}Exercise 12.2}{206}{subsection.17.7.2}
\contentsline {subsection}{\numberline {17.7.3}Exercise 12.3}{207}{subsection.17.7.3}
\contentsline {section}{\numberline {17.8}Chapter 13}{207}{section.17.8}
\contentsline {subsection}{\numberline {17.8.1}Exercise 13.7}{207}{subsection.17.8.1}
\contentsline {section}{\numberline {17.9}Chapter 14}{208}{section.17.9}
\contentsline {subsection}{\numberline {17.9.1}Exercise 14.3}{208}{subsection.17.9.1}
\contentsline {subsection}{\numberline {17.9.2}Exercise 14.5}{208}{subsection.17.9.2}
\contentsline {section}{\numberline {17.10}Chapter 15}{209}{section.17.10}
\contentsline {subsection}{\numberline {17.10.1}Exercise 15.1}{209}{subsection.17.10.1}
\contentsline {section}{\numberline {17.11}Chapter 16}{210}{section.17.11}
\contentsline {subsection}{\numberline {17.11.1}Exercise 16.1}{210}{subsection.17.11.1}
\contentsline {subsection}{\numberline {17.11.2}Exercise 16.2}{210}{subsection.17.11.2}
\contentsline {subsection}{\numberline {17.11.3}Exercise 16.3}{210}{subsection.17.11.3}
\contentsline {subsection}{\numberline {17.11.4}Exercise 16.4}{211}{subsection.17.11.4}
\contentsline {subsection}{\numberline {17.11.5}Exercise 16.5}{211}{subsection.17.11.5}
\contentsline {subsection}{\numberline {17.11.6}Exercise 16.6}{211}{subsection.17.11.6}
\contentsline {subsection}{\numberline {17.11.7}Exercise 16.7}{212}{subsection.17.11.7}
\contentsline {subsection}{\numberline {17.11.8}Exercise 16.8}{213}{subsection.17.11.8}
\contentsline {section}{\numberline {17.12}Chapter 3.5}{213}{section.17.12}
\contentsline {subsection}{\numberline {17.12.1}calculator}{213}{subsection.17.12.1}
\contentsline {subsection}{\numberline {17.12.2}palindrome}{214}{subsection.17.12.2}
\contentsline {subsection}{\numberline {17.12.3}sum of all digits}{215}{subsection.17.12.3}
\contentsline {subsection}{\numberline {17.12.4}Exercise 18.5}{215}{subsection.17.12.4}
\contentsline {section}{\numberline {17.13}Index}{219}{section.17.13}
\contentsline {chapter}{\numberline {18}Contributors}{253}{chapter.18}
\contentsline {chapter}{List of Figures}{255}{chapter*.17}
\contentsline {chapter}{\numberline {19}Licenses}{259}{chapter.19}
\contentsline {section}{\numberline {19.1}GNU GENERAL PUBLIC LICENSE}{259}{section.19.1}
\contentsline {section}{\numberline {19.2}GNU Free Documentation License}{260}{section.19.2}
\contentsline {section}{\numberline {19.3}GNU Lesser General Public License}{261}{section.19.3}

images/trans.dict

