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A widespread approach to investigating the dynamical
behaviour of complex social systems is via agent-based models
(ABMs). In this paper, we describe how such models can
be dynamically calibrated using the ensemble Kalman filter
(EnKF), a standard method of data assimilation. Our goal is
twofold. First, we want to present the EnKF in a simple setting
for the benefit of ABM practitioners who are unfamiliar with
it. Second, we want to illustrate to data assimilation experts
the value of using such methods in the context of ABMs of
complex social systems and the new challenges these types of
model present. We work towards these goals within the context
of a simple question of practical value: how many people are
there in Leeds (or any other major city) right now? We build
a hierarchy of exemplar models that we use to demonstrate
how to apply the EnKF and calibrate these using open data of
footfall counts in Leeds.

1. Introduction
Agent-based models (ABMs) are characterized by a set of
rules, typically compiled together in a computer program,
which describe the evolution of the model in time from an
initial condition. The models are distinguished from others
by representing individual actors in the modelled system
as individuals, with their own behaviours and histories,
often embedded with their own positions within a data
environment. Such ‘agents’ may enact behaviour based on the
same, or different, parameters and the rules they work to
may vary from mathematical equations to adaptable artificial
intelligence routines.

While agent-based systems can be used for a wide variety
of purposes, including systems control, Web-search and robotics
[1], ABMs are commonly implemented in science to understand
social and environmental systems, either as simple in silico
thought experiments or, increasingly, as detailed models of
the real world [2]. In the latter case, the aim is not always
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just to understand the system studied, but also to predict it; early examples include eco-management
[3], transport [4] and petrol prices [5]. One motivation for using properly calibrated ABMs to make
predictions is that they can provide detailed information about the microscopic system state, something
that could not be inferred from standard time series or statistical methods. At the moment, however,
such predictive ABMs are generally calibrated once, using historical data to adjust their more flexible
parameters such that the model predicts present and past conditions well. The models are then allowed
to roll forward in time, independent of the world, to make a prediction. As the systems modelled are
usually complex, it is likely that over longer time periods such models diverge from realistic estimates.
Even over shorter time periods there is little done to check model performance, let alone constrain it.

This picture has largely resulted from the low data availability in the fields using ABMs. It has
been rare that sufficient data have been available for both calibration and model initialization, let
alone validation and what data there have been available have been collected at only a few time
periods because of the associated expense. However, the rise of Web-based services, cheap field sensors
and individual-level data collection and collation has recently led to a much greater availability of
individual-level and environmental data, much of it streamed over near-continuous time. Such data
offer the opportunity for models that use dynamic data assimilation (DDA) to constrain their continued
predictive evolution against the real world [6]. In particular, there is a significant opportunity to draw
from fields, such as meteorology, which have experience in error suppression during the predictive
modelling of complex systems. Nevertheless, such attempts have been very limited. Areas where DDA
could be applied to sociological and ecological models have typically been restricted to aggregated
partial differential equation models, e.g. in the context of traffic flow [7,8] and urban crime [9], or for
probabilistic and compartmental models of epidemic spreading [10–12]. Areas such as these are open to
an ABM approach.

In this paper, we attempt to use DDA with an ABM as the fundamental framework. We focus on using
the ensemble Kalman filter (EnKF), as ABMs are often highly nonlinear and can be computationally
intensive. The EnKF is also relatively easy to implement, and thus seems a natural starting point for
DDA with ABMs. In §3, we describe how the EnKF can be applied generically to ABMs and illustrate
this in §4 using a simple example. As a more involved case study using real data, described in §6, we
take the problem of estimating the number of people on a street in a major UK city, namely Leeds. In the
case here, we formulate a behavioural model in §7 that captures the arrivals and departures of agents
within a specific area in the city centre. In this area, cameras record hourly footfall counts and these data
have been made available by the Leeds Data Mill [13]. In §8, we use these data to dynamically calibrate
our model and describe the issues faced and our approach to overcome them.

2. Agent-based model formalism
Data assimilation methods, such as the EnKF, can be applied to generic dynamical models. Here we
describe how ABMs fit into this framework. As noted earlier, ABMs encode in a computer program a
set of behavioural rules that describe the evolution of the agents in the system. At any given instant, the
state of the ABM is represented by many variables stored on the computer relating to, for example, the
state of each agent and their environment. Such variables may include input and output data, as well
as internal parameters and variable values. They may be real numbers, integers or categorical variables,
but ultimately these can all be collected together in a single vector variable that describes the state of the
model at a given time. In this paper, we will assume that this state vector has a fixed size. This does not
exclude models where, for example, the number of agents changes in time. In reality, there will be an
upper limit on the number of agents, dictated by the computer memory available, and the state vector
would reflect this maximum possible size. Variables that are not in use can be set to zero allowing the
state vector to be treated as sparse and thus passed efficiently between routines.

We now set up a precise description of the types of ABMs that we are interested in. If the state of
the system has a fixed size then all possible states of the system belong to some finite state space X ,
and we will assume for the models of interest that this corresponds to the n-dimensional vector space of
real numbers, i.e. X := R

n. The state of the ABM evolves in some time set T , which could be continuous
or discrete. However, in this paper we will be interested in the state of the model at particular times
t0, t1, . . . , tT, with tk < tk+1, when we receive observations, and so we will focus on discrete times, i.e.
T := {t0, t1, . . . , tT}. Even if the underlying model runs in continuous time (as ours will), we can still
record the model state at the discrete observation times tk. We denote the state of the ABM at time tk by
xk ∈X for k = 0, . . . , T.
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From a mathematical perspective, ABMs are typically stochastic processes: the decisions made by

agents are dependent on draws from a random number generator. In this paper, we will focus on ABMs
that are Markovian. While some ABMs track agent histories and use these data to determine the future
evolution of the model, these can be recast as Markov processes by expanding the state vector to include
the agent histories. Markov processes are typically defined in terms of their transition matrix P(xk+1 | xk);
however, this is not the case for the ABMs we are interested in. Instead, we are only able to sample this
distribution via simulation. Also, in most of the literature on data assimilation of stochastic processes,
the dynamical model is written as a stochastic differential or difference equation, e.g.

xk+1 = F(xk) + υk,

where F : X →X is a deterministic map and υk ∈X is a random variable with known probability
distribution. While it may be possible in theory to write the ABMs of interest to social scientists in this
form, in practice, this is typically not tractable without approximation.

Instead, we use the following formalism. We assume that our ABM is defined by a fixed set of rules
and stochasticity results from a finite set of conditions within these rules that are dependent on random
numbers encoded in a random variable ξk ∈ R

q. Thus, the programmatic implementation of our ABM
can be represented by a time-dependent deterministic map between states Mk : X × R

q →X that takes the
stochastic variable ξk as an input, specifically1

Xk+1 = Mk(xk; ξk), (2.1)

where Xk+1 is a random variable corresponding to the state of the system at time tk+1. Formally, ξk is
associated with a probability space and so we denote a particular realization by ξk(ω), where ω ∈ Ω is an
element of the sample space Ω of ξk. As ξk entirely characterizes the stochasticity of our simulation, we
similarly denote a particular realization of the ABM by the lower case variable xk := Xk(ω).

3. The ensemble Kalman filter
With our formulation of ABMs in place, we now describe the EnKF for the purpose of state estimation.
This follows closely the description in ch. 30 of Lewis et al. [14], to which we direct the reader for further
details. In §4, we illustrate how the same basic procedure can be extended to sequential parameter
estimation.

The EnKF is an iterative method that uses two basic steps, roughly described as follows:

(i) In the forecast step, an ensemble of estimated model states, x̂k(i) at time tk for i = 1, . . . , N, are
evolved forward independently until the next observation time tk+1, yielding an ensemble of
forecasts xf

k+1(i). The mean of the ensemble forecast states, xf
k+1, provides an estimate of the true

state at the future time tk+1 and the covariance of the ensemble forecast states, Pf
k+1, provides a

measure of its uncertainty.
(ii) In the data assimilation step, after the observation zk+1 is received, the ensemble forecasts are

updated in the light of the new data. The collection of updated variables, x̂k+1(i), is called the
ensemble analysis. The mean of the ensemble analysis states, x̂k+1, provides a best guess of the
system state and the covariance of the ensemble analysis states, P̂k+1, provides an estimate of its
uncertainty.

This process can then be repeated iteratively. It is initialized with knowledge or an estimation of the
initial system state and its covariance.

We now describe the EnKF algorithm in more detail. To produce the forecasts, the ensemble of model
states x̂k(i) ∈ R

n at time tk are used as initial conditions in the dynamical model and evolved forward to
the next observation time tk+1. Specifically, our ABM produces forecast realizations xf

k+1(i) := Xf
k+1(ω) ∈

R
n of the random variable

Xf
k+1 = Mk(x̂k(i); ξk). (3.1)

The average of the forecast ensemble

xf
k+1 = 1

N

N∑
i=1

xf
k+1(i)

1Note that we assume that the map Mk implicitly encodes model parameters.
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provides an estimate of the forecasted system state and we can use the ensemble forecast error

ef
k+1(i) = xf

k+1(i) − xf
k+1

to determine the forecast covariance

Pf
k+1 = 1

N − 1

N∑
i=1

ef
k+1(i)[ef

k+1(i)]T.

This quantifies the uncertainty in our forecast estimate of the system state.
In the data assimilation step, we assume that the observation zk ∈ R

m is a linear function of the true
state of the system plus additive Gaussian noise, i.e.

zk = Hkxk + νk, (3.2)

where νk ∼ N(0, Rk) and the matrix H ∈ R
m×n is called the forward model. The covariance matrix Rk ∈

R
m×m represents our uncertainty in the observation. Following the observation zk+1 at time tk+1, we

produce an ensemble of ‘virtual observations’, given by

zk+1(i) = zk+1 + νk+1(i),

where νk+1(i) ∼ N(0, Rk+1). The use of virtual observations provides a better estimate of the posterior
covariance [14]. These are then used to adjust the states of the ensemble and produce the ensemble
analysis

x̂k+1(i) = xf
k+1(i) + K[zk+1(i) − Hk+1xf

k+1(i)],

where K ∈ R
n×m is the ‘Kalman gain matrix’. This shifts the forecast by an amount relative to the

difference between the predicted observations Hk+1xf
k+1(i) and the virtual observations zk+1(i). The

Kalman gain matrix, given by

K = Pf
k+1HT

k+1[Hk+1Pf
k+1HT

k+1 + Rk+1]−1,

is chosen to reduce the analysis variance and for the case of a linear model it provides the minimum
variance as N → ∞.

Finally, we average the ensemble analysis

x̂k+1 = 1
N

N∑
i=1

x̂k+1(i)

to approximate the system state at time tk+1. Denoting the error of the ith ensemble member by

êk+1(i) = x̂k+1(i) − x̂k+1,

the ensemble analysis covariance is given by

P̂k+1 = 1
N − 1

N∑
i=1

êk+1(i)[êk+1(i)]T.

The mean of the ensemble analysis provides an estimate of the true state in the light of the observed data
and the analysis covariance quantifies its uncertainty. This completes one step of the EnKF.

The EnKF update of the forecast state xf
k+1 and covariance Pf

k+1 is a non-deterministic linear coupling.
While the choice of this coupling is not unique, using the Kalman gain matrix K with virtual observations
ensures that x̂k+1 and P̂k+1 are best unbiased linear estimates [15] and, in the special case of linear
dynamics, the EnKF approaches the standard Kalman filter for large N. For more details, see ch. 30
of Lewis et al. [14].

4. A simple example
To demonstrate the EnKF at work, we consider a simple but relevant model of arrivals and departures
of people from a given area, e.g. a shop, a district or a city. In this section, we describe this model and its
dynamics, and in the next section, we apply the EnKF to it to make forecasts about the model state and
its parameters. We imagine that the area of interest in the model is a ‘box’ that can hold any number of
people. In addition, we suppose that people arrive in the box at random times but with a fixed average
rate α, and each person departs at a different fixed average rate β. Thus, if x(t) is the number of people in
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the box at time t, then the average rate of departures is βx(t). We simulate this model using the Gillespie
algorithm2 [16] from an initial condition x0 := x(0).

This model is sufficiently simple that we can determine explicit expressions for its time evolution. The
master equation for the probability pn(t) that there are n people in the box at time t is

ṗn = αpn−1 + β(n + 1)pn+1 − [α + βn]pn(t), (4.1)

for n ≥ 0. From this master equation, we can easily determine the evolution of the mean and variance
in the number of people. Let u(t) = ∑∞

n=0 npn(t) be the mean, then substitution into (4.1) yields a linear
first-order ordinary differential equation

u̇ = α − βu,

which has solution
u(t) = γ + (u0 − γ )e−βt, (4.2)

where γ = α/β. We can also compute the variance in the number of people

v(t) =
∞∑

n=0

(n − u)2pn(t),

which on substitution into (4.1) yields a linear inhomogeneous first-order ordinary differential equation

v̇ = α + βu − 2βv.

Using the solution for u(t), we find

v(t) = γ + (u0 − γ )e−βt + [v0 − γ − (u0 − γ )]e−2βt. (4.3)

It is also possible to determine an explicit solution for the distribution pn(t) via generating functions.
In figure 1, we illustrate results from 200 stochastic simulation realizations of our box model and

compare them with the expressions derived from theory. The simulations used to produce the results
depicted in figure 1a–d all correspond to parameter values α = 50 and β = 0.25 computed from initial
conditions sampled from a Poisson distribution with mean x̄0 = 5. Note that 1/β = 4 gives the average
time spent in the box. Figure 1a illustrates the time evolution up to t = 15. Individual realizations are
plotted in light grey (20 chosen at random from the ensemble). The mean of the 200 realizations is plotted
in red and the mean ± 1 s.d. in light red. The theoretical mean, given by (4.2), is plotted in dashed blue
and the theoretical mean ± 1 s.d., as determined by the square root of (4.3), is plotted in dashed light blue.
The dynamics are particularly simple—the state variable x evolves stochastically towards a steady state
given by α/β, around which individual stochastic realizations fluctuate. The scale of these fluctuations
around the steady state is

√
α/β, illustrated in figure 1b, whose format is the same as figure 1a but depicts

a later time interval. In figure 1c, we show a histogram of states x(T) with T = 60 from 5000 realizations.
The histogram bins are the integers and plotted in red is a Gaussian distribution with the theoretical
mean and variance at T = 60, which gives a good approximation to the distribution. In figure 1d , we
illustrate the autocorrelation ah for different time lags h computed from 500 realizations, simulated up to
t = 180 using 4500 equally spaced observations. The decay of the autocorrelation function is exponential
and characterizes the time scale over which previous states are ‘forgotten’.

4.1. State estimation
Having described our box model and its dynamics, we now illustrate how the EnKF can be used with the
box model to make predictions about noisy observations. Before applying the EnKF, we created synthetic
observation data from a single realization of the model which we took as the ground truth state. Note that
in this example the model used by the EnKF is the same as that used to generate the observation data,
whereas with real data our model would only be an approximate description of the true data generating
process. Furthermore, when applying the EnKF to real data we do not have knowledge of the true state,
only what we get from (noisy) observations.

The synthetic ground truth data consisted of the number of people in the box xk at times tk = k for
k = 0, 1, . . . , 100. In computing the ground truth data, we used the rate parameters α ≈ 52.52, chosen at
random from a normal distribution with mean 50 and variance 25, and β ≈ 0.2580, chosen at random
from a normal distribution with mean 0.25 and variance 10−4 (we use random samples because we
will also use this synthetic data for sequential parameter estimation in the next subsection). The initial

2The Gillespie algorithm is an event-based method that enables efficient simulation of stochastic Poisson point processes.
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Figure 1. Illustration of the dynamics of the simple box model. (a,b) Time-series trajectories of stochastic simulation realizations (grey)
and the corresponding averages in red. The mean predicted from theory is illustrated in dashed blue. (c) A histogram of the ensemble at
t = 60 and (d) the autocorrelation at different lags h. More details are included in the main text.

condition was also chosen at random from a rounded normal distribution with mean 200 and variance
200, and in this instance we drew x0 = 200. We produced observations zk from the ground truth xk by
adding Gaussian noise with mean zero and variance R = 16.

For the EnKF, we initialized each of the N = 100 ensemble simulations using a rounded normal
distribution with mean 200 and variance 200, as we did for the ground truth data, and used the
corresponding rate parameters α ≈ 52.52 and β ≈ 0.2580. Note that as the simulation directly produces
the quantity we are observing, namely the number of people in the box, we have H = 1. The EnKF
produces estimates of the true state xk at the observation times tk. The estimate before the observation
is the forecast xf

k, and after is the analysis x̂k. Figure 2a illustrates a snap shot of the EnKF at work. The
ground truth synthetic data xk is plotted in black and the theoretical mean, u = α/β ≈ 203.5, is indicated
by a dashed black line. Black markers correspond to the noisy observations zk, blue markers to the
forecasts xf

k and red markers to the analysis following observations x̂k. The means ± 1(2) s.d. for the
forecast are shaded in blue (light blue) and similarly for the analysis in red (light red). To illustrate the
dynamics of the ensemble, we plot the individual realizations between observations at t = 9 and t = 10 in
light grey. Note that the analysis uncertainty is always less than the forecast uncertainty. The ensemble
averaged forecasts tend to move towards the steady state, so it is important that the observation data
occur sufficiently frequently that the dynamics are not dominated by stochastic fluctuations.

In figure 2b, we illustrate the forecast errors. Specifically, we use the forecast xf
k as the baseline at zero,

indicated by the blue line, and the error between the forecast and ground truth, ef
k = xk − xf

k, in black with
circular markers. We also include the difference between the forecast and observation, zk − xf

k, indicated
with square markers. This allows us to visualize the forecast variance Pf

k clearly. The shaded dark blue

region corresponds to ±
√

Pf
k and the shaded light blue region corresponds to ±2

√
Pf

k. The behaviour
illustrated is typical—the forecast variance quickly decays to a value that then remains roughly constant.
Similarly, in figure 2c, we illustrate the analysis errors êk = xk − x̂k plotted in black with circular markers
using the analysis x̂k as the baseline, plotted in red. The differences zk − x̂k are plotted using square
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Figure 2. Illustration of the EnKF applied to the box model. (a) Synthetic ground truth data are represented by the solid black line,
noisy observations are indicated by open circular blackmarkers, the forecasts by bluemarkers and the analysis by redmarkers. Individual
ensemble realizations are plotted in grey. (b) and (c) illustrate the forecast and analysis errors, respectively. More details are included in
the main text.

markers. We use the same scale as figure 2b to illustrate that the analysis errors are much smaller than
the forecast errors.

For the above case, we have forecast RMSE: 8.4557; analysis RMSE: 3.3648; observation RMSE:
3.8177 (i.e. the difference between the observations with measurement error and the synthetic ground
truth). Note that the analysis RMSE is better than the observation RMSE. This illustrates a key point.
Knowledge of the underlying process should allow us to make a better estimate of the true state than
noisy observations.

Our simple box model has very simple dynamics, as illustrated in figure 1, but the initial conditions
used in this example were deliberately chosen near to the steady state α/β. Thus, the ground truth
simulation trajectory simply fluctuates randomly around this steady state. With this in mind, a very
simple forecast would be the steady state calculated from theory. This gives an RMSE of 13.3465, worse
than all of the RMSEs listed above. This highlights another feature of the EnKF. Even in the absence of
dynamical behaviour, the EnKF allows us to take advantage of autocorrelations in order to approximate
the true system state.

4.2. Sequential parameter estimation
In addition to state estimation, we can also use the EnKF to make predictions about unknown parameters
[14,15] by including them in the EnKF state vector. This is known as sequential parameter estimation.
From a practical perspective, this necessitates an interface script that takes the parameters and model
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state variable from the EnKF state vector and puts them into the correct format for the model evolution
routine.

In figure 3, we illustrate sequential parameter estimation applied to the simple box model using
exactly the same ground truth data as used in §4a. In this case, we do not assume knowledge of the
parameters α and β, and initialize the ensemble using the distributions described in §4a, namely normal
distributions with means 50 and 0.25, and variances 25 and 10−4, respectively. Thus at each observation
time, the EnKF produces a forecast of the parameters, denoted αf

k and βf, and an analysis, denoted by α̂k

and β̂k, in addition to the forecast and analysis of the model state. In figure 3a,b, we plot the forecast and
analysis errors, respectively, of the number of people in the box x. Note that the forecast errors are larger
in this case than in §4a, but the analysis errors are roughly the same. We also illustrate the forecast and
analysis errors for the arrival rate parameter α in figure 3c, d, respectively, and similarly for the departure
rate parameter β in figure 3e,f , respectively. The errors,

ef
α(k) = α − αf

k, ef
β (k) = β − βk,

êα(k) = α − α̂k and êβ (k) = β − β̂k,

are plotted in black. We use the forecast and analysis estimations of the parameters as the base line,
indicated by blue and red lines, respectively. Note that the actual ground truth parameters are constant.
In addition, changes in the estimates of the parameters in the EnKF are driven solely by their covariance
with xk, the number of people in the box.

Figure 3c–e show that while the uncertainty around the estimated parameter values decreases in time,
the estimates do not necessarily get closer to the true values. In fact, at the end of the simulation period
the true values lie outside of the two standard deviation range around the estimated values. However,
the ratio of the estimated parameters, which corresponds to the steady state, is 201.1 for the forecast and
200.3 for the analysis, the true value being 203.5. From §4, we know that it is this ratio that governs the
stationary statistics and so in this sense the EnKF has found the correct parametric representation of the
synthetic data. This observation shows that understanding the relationship between model parameters
and model dynamics is important if we are to correctly interpret the results of sequential parameter
estimation when using the EnKF.

For our sequential parameter estimation, we have forecast RMSE: 9.3456; analysis RMSE: 3.4938 and
observation RMSE: 3.8682. While the forecast and analysis RMSEs are larger than for the state estimation
case, the analysis RMSE is still smaller than the observation RMSE.

5. Case study background
We now proceed to a more involved case study in which we develop a model that can be used to estimate
hourly footfall counts on a pedestrian high street. There has been long-standing interest in modelling
pedestrian behaviour. Early approaches adapted models from fluid dynamics [17,18] and magnetism
(often termed ‘social-force’) [19–21]. More recently, ABMs that incorporate individual-level advanced
cognitive behaviour have been able to accurately simulate the dynamics of human crowds [22,23]. While
models of detailed crowd dynamics are essential for some applications (such as evacuation [24] and
public gatherings [25]), these models are not usually applied in areas where crowd density is low. In the
application discussed here, only very rare events will cause the density of the crowd to reach a point
that it changes individual shopper behaviour. Hence an advanced model that realistically represents
individual trajectories adds unnecessary complexity.

There is also a rich literature from the field of retail geography that attempts to better understand what
attracts people to certain shops and, ultimately, where they will choose to visit. Early efforts handled
the problem with an Intervening Opportunities Model [26], in which a starting population entering a
street is subdivided between shops approached from a particular direction, and with a given probability
of attracting customers from the street. More recently, techniques such as spatial interaction models
[27,28] have attempted to estimate the volumes of flows from origins (homes) to destinations (shops).
However, these approaches largely model populations at the aggregate level—an approach that has led
to difficulties with aspects such as modelling multi-purpose trips. Models might provide estimates of the
number of pedestrians in a shopping district, but not their movements between shops on the high street.
This limitation has been well known for some time [29,30].

To this end, a complementary literature has also grown around the concept of route choice and, in
particular, what drives individuals to choose certain shops. For example, Borgers & Timmermans [31]
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attempt to model the behaviour of pedestrians in a ‘downtown’ area who are motivated by shopping,
strolling or by other factors, using a multinomial logit model. The rules that govern the model are largely
distance based; as individuals move farther away from their entry point they are gradually driven back
to where they started. In a similar vein, Hoogendoorn & Bovy [32] present a model of pedestrians
as subjective utility maximizers. However, although these examples (and others like them) have proved
interesting, they also operate at an aggregate level and hence face difficulties incorporating individual
heterogeneity. To avoid this drawback, microscopic/individual-level studies have also begun to emerge.
One of the earliest agent-based pedestrian models, entitled STREETS [33], was able to create ‘plausible’
emergent patterns (although, as the authors admit, it was only loosely validated). Similarly, Asano et al.
[34] implement a model with two complementary sub-processes: a tactical process that finds an optimal
shortest path for an agent and an operational process that dynamically adapts the route to avoid other
pedestrians, etc. The authors note that such models are valuable in maintaining a certain level of service
in busy pedestrian areas such as ‘busy stations and event venues’ [35] (cited in [34]). As noted above,
however, a detailed pedestrian route-choice model is unnecessary here. Directness and distance are the
most common strategies for deciding on a route [32,36]. Therefore, as before, a detailed model of route
choice adds unnecessary complexity.

6. Data and study area
This paper explores the potential offered by DDA in a particular study area: the high street Briggate
in Leeds, UK. In order to monitor footfall in the city centre, Leeds City Council commissioned the
installation of cameras at a number of locations around the city. The cameras track pedestrian movements
and count the number of people who pass their location. These data are subsequently aggregated to
hourly flow counts and released publicly as part of the Leeds City Centre Footfall dataset available on the
Leeds Data Mill [13]. There are two cameras located on Briggate, one near the Headrow at the northern
end of the street and another at the exit of Briggate near Boar Lane/Duncan Street. As discussed, the
camera data include no estimate of total population or flow direction. Furthermore, Briggate is not a
closed system. Pedestrians can enter or leave without passing the points covered by cameras.

The footfall count data consist of integer counts of people during each hour of the day. In this paper,
we will restrict our attention to the Briggate camera. This dataset has counts every hour from 00:00 on
Friday 20 July 2007 to 23:00 on Thursday 30 January 2014 (times are in 24 h), 2387 days in total. The
minimum count is 0, of which there are 14 occurrences (6 of which occur on Thursday 31 July 2008
between 18:00 and 23:00), and the maximum count is 19 820, which occurs at 12:00 on Thursday 26
December 2013.

It proved infeasible to run our EnKF algorithm over the entire dataset, so we chose a six-week period
between 00:00 on Saturday 5 May 2012 and 23:00 on Friday 16 June 2012 as a testing dataset. This period
was chosen to enable us to simulate a reasonable period of time because the counts over this period stay
relatively low. The following data analysis uses only data prior to that date, which we consider as training
data for our model development.

In figure 4, we illustrate our key observations from the footfall data. The mean hourly counts across
days of the week, z̄w, starting from Saturday, are plotted in black in figure 4a. In addition, the shading
corresponds to the log of the probability that the observed count lies within the corresponding 50 count
interval. For illustrative purposes, the vertical scale does not capture the full spread of values that occur.
On average, Saturdays are the busiest days of the week, and Sundays are the least busy. As the profiles
between different weekdays (Monday to Friday) are similar but Saturdays and Sundays are distinct, we
decided to restrict our attention to predicting weekday behaviour. This meant that the next reading after
23:00 on Friday was 00:00 on Monday, but we believe the data are sufficiently noisy that this does not
cause an issue. Combining weekdays into a single 24 h period, z̄d, in figure 4b, we plot the same type of
plot as in figure 4a but scale the footfall counts logarithmically. This illustrates clearly that there are three
distinct periods during the day when the growth or decay in the number of counts is approximately
exponential.

In figure 4c, we also plot the distribution of peak weekday counts and compare it with a
lognormal distribution with the corresponding exponential mean and variance. This shows that there
is extremely high variability between daily peak counts. Moreover, the correlation between peak counts
of consecutive days is only approximately 0.30. Thus, today being busy is not a good indication of
whether tomorrow will be busy. We will see in §7 that this daily volatility of counts proves challenging
for behavioural models.
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Figure 4. Statistics of Briggate footfall data. (a) The mean hourly counts from Saturday to Friday. (b) The mean hourly counts of just
weekdays (Monday to Friday) together. (c) The distribution of peak daily counts and comparison with a lognormal distribution. More
details are included in the main text.

7. WHIRS model
Our first attempt to come up with a relatively simple behavioural model with which we could forecast
footfall counts was not successful, but provided some key insights. In this model, we considered the
length of Briggate to be made up of discrete one-dimensional cells. Agents could arrive at various
locations, corresponding to the true geometry of Briggate, and would proceed to ‘walk’ by hopping
between neighbouring cells. As well as walking, agents could also enter and exit shops at specified rates
before returning to the street and continuing to walk. Agents could leave the street at a fixed rate from
certain designated places or could walk off either end of the street, removing them from the simulation.
We assumed that the arrival rates varied piecewise linearly across the day. We included virtual cameras
that observed the number of agents crossing certain points corresponding to the locations of the footfall
cameras, within each hour of the day.

However, this naive modelling approach had two fundamental issues. First, given a realistic walking
speed most agents could traverse the length of Briggate within an hour—Briggate is approximately 320 m
long, average walking speed is around 5 kph and so it would take approximately 4 min to walk its length,
excluding any time spent in shops. Consequently, the camera observations from our simulation were
highly correlated with the arrival rates, and this persisted even when we included shopping behaviour.
Thus, within the parameter values investigated, the behavioural components of this model (walking and
shopping) had little effect on the virtual footfall counts recorded in simulations. We discovered this while
trying to fit this model to the observation data because there was a weak dependence of the simulated
observations on the behavioural parameters and so these were not constrained by the observation data.
Thus, it would be erroneous to draw conclusions from the dynamics of the fitted model about real
behaviour. But with no behavioural element, we may also use standard time series or statistical methods
to forecast the footfall counts.
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The second issue with this model is that, while the arrival rates may vary during the course of a day,

following the analysis of our simple model in §4, the spread in the distribution of the peak number of
arrivals (and consequently the number of camera counts) should go roughly like the square root of the
peak number of arrivals. The average number of arrivals observed in the data is approximately 5000, so
if our simulations replicate this we would observe a standard deviation of around 70, which corresponds
to less than a 2% variation. However, as illustrated in §6, in the real data the standard deviation around
the mean is much larger, around 2000, approximately 45% of the mean. Thus, the stochasticity of our first
modelling approach woefully underestimates the true spread in the peak camera counts.

It seems likely that the underlying volatility of the peak camera counts may be due to external factors,
such as the weather, public holidays and sporting or music events. A model that requires knowledge
of such events is not well placed to make forecasts using the footfall data alone, as is our goal, as such
events may themselves be unpredictable (the weather) or may require additional data (e.g. times and
locations of sporting events). Our goal is to produce a plausible model that does not require such prior
information.

To achieve this, we assume that knowledge of such events is shared by the agents in our system, and
thus the number of people in the system on a given day can be used as a proxy for whether that day will
attract more or less people. Thus, in a similar manner to epidemic models, we propose a ‘rich gets richer
mechanism’ for the arrival of people into the city. In this first instance, we do not consider the geometry of
the city centre and focus on the data collected by only the Briggate camera. We assume a large, but fixed,
number of agents N in our model who form the pool of people who may walk past the footfall camera.
Each of these agents is either a shopper or a worker. Shoppers can be in one of three states: susceptible to
going shopping, denoted by S; in town, denoted by I; or returned home, denoted by R. Workers can be
in one of two states: at home, denoted by H; or at work, denoted by W . Shoppers cannot become workers
and vice versa, so the number of workers Nw and the number of shoppers N − Nw remain fixed.

We denote the time-dependent number of susceptible, in town and returned home agents by S(t), I(t)
and R(t), respectively, and the number of workers at home and at work by H(t) and W(t), respectively. For
the purpose of brevity, we will drop the explicit time dependence in our notation. The number of workers
is then Nw = H + W and the number of shoppers is N − Nw = S + I + R. In our model, if S > 0 and the
time is between 09:00 and 18:00, arrival events of susceptible shoppers going into town, i.e. S → I, occur
at a rate

ε + αS
(I + W)

N
,

where ε and α are positive rate constants. Thus, there is a constant underlying attraction to going into
town, captured by the rate ε, but the overall rate at which agents go into town increases relative to the
fraction of agents in town, (I + W)/N, but decreases as the number of susceptibles S decreases. Here we
are using (I + W)/N as a proxy for whether now is a good or bad time to go into town. Departure events
of agents that are in town, i.e. I →R, occur at a rate βI. Agents that have returned home remain in that
state until 00:00 when they all become susceptible, allowing for daily periodicity.

In addition to the dynamics of shoppers, if H > 0 and the time is between 06:00 and 10:00 then arrival
events of workers going to work, i.e. H→W , occur at a rate γ− + δ−W. The term δ−W is meant to capture
the morning rush hour. Similarly, if W > 0 and the time is between 14:00 and 23:00 then departure events
of agents leaving work, i.e. W →H, occur at a rate γ+ + δ+W, where the rate δ+W is meant to capture
the evening rush hour. These arrival and departure times are supported by a study of traffic-related air
pollution [37].

The number of people arriving at a given time will be affected by their mode of transport, potentially
resulting in correlations in individual arrival times. To capture this effect, we suppose that the number
of shoppers that arrive (depart) during each arrival (departure) event is distributed according to some
known distribution. A natural choice given the observations in §6 for this model is the (rounded)
lognormal distribution whose natural logarithm has mean μ and variance σ 2, specified as parameters.

The virtual observations, C(t), produced by our simulation correspond to the arrival or departure of
each agent. Thus, if n agents arrive in one arrival event, the camera count is increased by n. These counts
are cumulative but are reset to zero every hour to get the hourly counts. Importantly, the footfall counts
recorded by our simulation model are free from observation error, in contrast with those recorded by the
real cameras.

We implement our model using the Gillespie algorithm [16], which determines the times of each
individual event. In this sense it is agent based, as we simulate the decisions made by each agent and can
keep track of individual agent states over time. However, our model is relatively simple in comparison
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with typical ABMs and is not programmed in an object orientated framework. We dub our model the
WHIRS model.

In summary, our WHIRS model state variable is y(t) = (S(t), I(t), R(t), H(t), W(t), C(t))T, the time-
dependent numbers of susceptible, in town, returned home, at home and at work agents, respectively.
The model runs forward in time from an initial state y0 = y(0). The model parameters are the
number of agents N and the number of workers Nw = H + W; the rate parameters ε, α (shopper
arrival), β (shopper departure), γ± and δ± (worker departure/arrival); the time periods when
shoppers and workers arrive/depart. Our implementation runs for a fixed number of Gillespie steps,
corresponding to individual events, or until a given end time, and outputs the model state at specified
times.

8. Ensemble Kalman filter of the WHIRS model
In our application of the EnKF algorithm to the WHIRS model, the EnKF state vector combined the
following model state variables and parameters:

x = (S(t), I(t), H(t), C(t), N, Nw, α, β, ε, γ , δ+, δ−, σ , μ)T.

Because of the spread of magnitudes and the fact that most of the variables should be strictly positive,
it proved convenient to take the natural logarithm of all but the last component (as μ can be negative)
of the EnKF state vector x. We also stored all of the ensemble states so that we could easily transform
back from the log variables and compute the corresponding means and covariances outside of the EnKF
algorithm. We assumed that there was a 5% measurement error in the footfall count data, which we
modelled as a multiplicative lognormal distribution centred on 1. This corresponds to additive Gaussian
noise in log-space, as required by the linear forward model (3.2). We refer to this as the observation error
distribution.

We chose a ‘training’ period of 30 weekdays between 00:00 on 9 May and 23:00 on 17 June 2011, over
which we ran the EnKF with an ensemble size of N = 100. Figure 5a illustrates the time series of footfall
counts for the training period in black, the ensemble trajectories in grey, the forecasts in blue and the
analysis in red. The forecast and analysis converge to a profile that gives a good representation of the
daily variation away from the lunchtime peak. In figure 5b,c, we show the analysis of the rate parameters
α and β, respectively. The uncertainty in the rate parameters drops considerably from the initial spread,
although the values continue to change slowly. This reflects the fact that the analysis is underestimating
the peak value. It is possible that we might improve on these estimates if we simulated over a longer
period, but the convergence seems slow.

We now compare the EnKF forecasts from our ABM with some simple benchmark forecasts. As it
takes a few days for the parameters in the EnKF to settle down, we used the final EnKF state of the
training period as the initial condition for the EnKF on the testing period of 30 weekdays between 00:00
on 7 May 2012 and 23:00 on 15 June 2012. Figure 5d illustrates the time series of the footfall counts in
black, the ensemble trajectories in grey, the forecasts in blue and the analysis in red. The RMSE between
the forecast and the data over this period is 549.2. We also repeated the training and testing process with
ensemble sizes of N = 10 and N = 1000, which resulted in RMSE scores of 1141 and 457.3, respectively.
Thus using an ensemble size of N = 100 produces considerably better forecasts than using N = 10, but
the gains of going to N = 1000 are not as substantial. This demonstrates an advantage of the EnKF over
particle filtering—relatively small ensemble sizes give reasonable results.

Our first benchmark forecast is the hourly mean, determined from the training data, i.e. all data
prior to the testing period. Thus, the forecast for each day is exactly the same. The RMSE of this
forecast over the testing period is 565.2, slightly worse than our ABM. Our other benchmark forecasts
are the hour before, the same time the day before and the same time the week before. The RMSE
scores for these forecasts are 519.4, 435.9 and 330.1, respectively. Given that our EnKF updates the
system state each hour, we would hope that our ABM could beat the hour before forecast, as they
are both using the same amount of ‘information’. The fact that the N = 1000 ensemble does but the
N = 100 does not illustrates that the initial choice of parameters is critical. While the day before and
hour before forecasts are very simple, they incorporate historical information that is not used in our
ABM. Thus, these are not like-for-like comparisons and so it is perhaps not surprising that they beat
our ABM forecasts. In fact, it is common with volatile data that simple forecasts can be hard to beat
[38]. However, we hope that future developments of our model will allow us to improve upon these
simple forecasts.
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Figure 5. Sequential parameter estimation of the WHIRS model using Briggate footfall counts. (a) The hourly counts C(tk) of the EnKF
forecast (blue) and analysis (red), along with the real training data (black). (b,c) The analysis for the parametersα andβ , respectively.
Panel (d) is the same format as (a), but for the test period data.

8.1. Rate parameter identification
In §6, we saw that the distribution of peak weekday counts is roughly lognormal and there is little
correlation between peak counts on consecutive days. In §7, we described how we tried to include such
daily variability in the WHIRS model, for example, by allowing multiple people to arrive at the same
time. However, we can see from figure 5 that the parameters selected by the EnKF home in on a set that
give rise to profiles with relatively little variability. It is likely that this is because profiles with realistic
volatility may not prove to be good at forecasting. For example, if the size of the peak count is correctly
predicted, but at the wrong time, the model suffers a double penalty when calculating point-wise errors
[38]. In this subsection, we propose a different approach to tackle this issue that incorporates ideas from
ensemble inflation methods and particle filtering [15].

As there is a weak correlation between the peak footfall counts of consecutive days, we suppose
that the rate parameters, which affect the peak count, are sampled independently each day. Thus, the
challenge is to determine, as soon as possible, what rate parameter best fits each day’s data. We used the
training data to determine the distribution of rate parameters to sample from. Specifically, we inferred
the distribution of approximate growth rates α by computing the gradient of the natural logarithm of the
number of counts between 06:00 and 12:00 each day from the training data. This distribution was roughly
normal with mean 0.5302 and s.d. 0.0851. Similarly, we inferred the distribution of approximate decay
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rates β by computing the magnitude of the gradient of the natural logarithm of the number of counts
between 13:00 and 19:00 each day. This was also roughly normal with mean 0.3468 and s.d. 0.0884. The
covariance between the two distributions was −0.0031.

We adapted the EnKF algorithm as follows to determine which of the growth and decay rates from the
daily sample best fit the day’s data. At 00:00 of each day, we sample the rate parameters α and β from a
normal distribution with mean and covariance described above. This has a similar effect to ensemble
inflation, where the spread of the ensemble is artificially increased each day in order to combat the
reduction in variation due to the EnKF [15]. Ensemble inflation allows the EnKF to explore the solution
space to a greater extent. Instead of updating the ensemble following each hourly observation, we do so
on a daily basis after making a 24 h forecast. In order to determine which values of the rate parameters are
most likely each day, we use the hourly observations to determine a weighting of the ensemble, where
the weight wk(i) of the ith ensemble member at the kth observation is

wk(i) ∝ wk−1(i)p(zk | xf
k(i)),

where the constant of proportionality is chosen to normalize the weights and p(zk | xf
k(i)) is the

observation error distribution which, as earlier, we assume to be normal for the logarithm of the number
of footfall counts. The weights tell us each hour which ensemble members, and hence the corresponding
rate parameters, are the most likely candidates for the current day’s observations. This process of
updating weights is similar to a particle filter. We use an ensemble size of N = 100 and the spread in
the normalized weights typically vanishes quickly, giving a clear indication of which ensemble member
matches closest to the data. This effect would be undesirable in a particle filter and is why they typically
need large ensemble sizes in order to faithfully sample the posterior distribution. By contrast, the
reduction in the spread of weights is advantageous here.

We ran this algorithm using the same initial conditions as those used in our EnKF described in the
previous subsection. In figure 6, we illustrate the results for 4 days chosen from the 30 that we fitted.
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The observation data are plotted in black and the five realizations with the largest weights between each
hour are plotted in blue, where the shade corresponds to the weight, with blue being a weight of one
and lighter shades being less. These figures illustrate how the weights can be used to determine which
ensemble member fits the observed data the best

9. Conclusion
In this paper, we have considered how DDA techniques, in particular the EnKF, can be applied to ABMs.
Crucially, such models can provide more insight into the system state than could be achieved by standard
time series or statistical methods. However, we also stress the importance of understanding the statistical
properties of the data of interest in order to properly inform model development. To demonstrate the
potential value of DDA to ABMs, we have investigated using the EnKF to make forecasts about footfall
counts in the city of Leeds. In particular, the underlying dynamics were determined by an ABM that
attempted to capture the behavioural features of people arriving in and departing from the city.

Trying to apply DDA methods to ABMs has highlighted some key challenges. As ABMs are often
computationally intensive, there is a need for wider implementation of parallel computing. Also, we
have not investigated here how to deal with state vectors that consist of both continuous and discrete
variables. An important observation from our study is that a careful sensitivity analysis of the model
parameters is also necessary in order to make accurate forecasts that faithfully reproduce real microscopic
dynamics. However, ABMs often have large numbers of parameters and exploring this space and
the effects these have on the dynamics is difficult manually, particularly when each realization of
the model can take hours to run. This calls for numerical methods that can automatically track the
boundaries between different dynamical regimes. This issue is being addressed elsewhere by so-called
equation free methods [39,40], which apply numerical continuation techniques to black box models.
Combining such an approach with DDA could lead to a quantitative understanding of uncertainties
in ABMs and ultimately faithful models that can be used to better understand human behaviour, test
scenarios of interest and make more accurate real-time predictions that can be used to reliably inform
decision-making.
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