

Cornell University Library Ithaca, New York

THE LIBRARY OF

EMIL KUICHLING, C. E. ROCHESTER, NEW YORK

> THE GIFT OF SARAH L. KUICHLING 1919

Engineering

Cornell University Library

The original of this book is in the Cornell University Library.

There are no known copyright restrictions in the United States on the use of the text.

http://www.archive.org/details/cu31924004979633

Surveys, Plans, Estimates, and Reports made and Construction Superintended.

Compliments of

L. E. CHAPIN, culv

Assoc. M. Am. Soc. C. E.,

CANTON, OHIO.

CONSULTING ENGINEER

FOR WATER WORKS, SEWERAGE, SEWAGE DISPOSAL AND STREET IMPROVEMENTS.

CITY OF CANTON, OHIO.

REPORT OF THE BOARD

1

OF

SEWER COMMISSIONERS

FOR THE PERIOD COMMENCING OCTOBER 30, 1880,

AND ENDING APRIL 1, 1893,

COMPRISING

THE CONSTRUCTION OF A MAIN SEWER, OF LATERAL

AND STORM WATER SEWERS,

AND OF

SEWAGE DISPOSAL WORKS.

Press of The Repository Printing Company, Canton, Ohio.

Corri UNIV. (Extract from minutes of the proceedings of the City Council of the City of Canton, Jan 30, 1893:)

044

¢

. . .

"Resolution by Mr. Campbell—

WHEREAS the Sewer Commission is about to present a report which will necessarily be quite extensive, we have therefore thought it best to have the same put in pamplet form. Therefore, be it

Resolved, That said Sewer Commissioners are hereby instructed to proceed with said work in manner as they see proper.

Adopted unanimously."

.

BOARD OF SEWER COMMISSIONERS.

.

From June 5, 1882 to February 6, 1888:

WILLIAM DANNEMILLER, President.DANIEL PARR.E. O. PORTMAN.W. A. LYNCH.JOSIAH HARTZELL, Clerk.

From February 6, 1888, to the date of this Report:

WILLIAM DANNEMILLER, President DANIEL PARR. E. O. PORTMAN. W. R. DAY. JOSIAH HARTZELL, Clerk.

CITY GOVERNMENT.

CITY OFFICERS DURING THE EXISTENCE OF THE BOARD OF SEWER

1882.

WILLIAM J. PIERO, Mayor. E. M. Grimes, City Clerk. John C. Welty, City Solicitor. John H. Holl, City Engineer.

COUNCIL.

R. S. Shields, President. Matthew Bast. John C. Stinchcomb. John Werner. William H. McCammon. William H. Wyant. George Rex. Henry T. Warner. Arvine C. Hiner. Abram D. Coldron. John Murray. Johnson Sherrick. John P. Rauch. Jacob P. Fawcett.

1883.

WILLIAM J. PIERO, Mayor. E. M. Grimes, City Clerk. John M. Myers, City Solicitor. John H. Holl, City Engineer.

COUNCIL.

R. S. Shields, President.
Matthew Bast.
Arvine C. Hiner.
Stephen Wagner.
William H. McCammon.
John Class.
Alexander Howenstine.
Henry T. Warner.
H. W. Haines.
John H. Werner.
John Murray.
William H. Wyant.
John P. Rauch.
J. P. Fawcett.

1884.

WILLIAM J. PIERO, Mayor. E. M. Grimes, City Clerk. John M. Myers, City Solicitor. John H. Holl, City Engineer.

COUNCIL.

R. S. Shields, President. John H. Piero. Michael Adler. Augustus Gachatte. John Murray. John Webb. David Swanger. Henry T. Warner. Harry W. Haines. Stephen Wagner. Henry A. Weaver. John Class. Alexander Howenstine. J. P. Fawcett.

1885.

GEORGE REX, Mayor. E. M. Grimes, City Clerk. John M. Myers, City Solicitor. John H. Holl, City Engineer.

COUNCIL.

J. P. Fawcett, President. Ignatius G. Maline. William Miller. Henry Voglegesang. Benjamin F. Rohrer. Charles R. Frazer. Matthew E. Meek. John H. Piero. Michael Adler. Augustus Gachatte. John Murray. John Webb. David Swanger. Samuel J. Roberts.

1886.

GEORGE REX, Mayor. E. M. Grimes, City Clerk. John M. Myers, City Solicitor. John H. Holl, City Engineer.

COUNCIL.

Charles R. Frazer, President. John W. Walser. William/Volkman. Augustus Gachatte. Albert Ringle. Matthew E. Meek. Samuel J. Roberts. Ignatius G. Maline. William Miller. Henry Voglegesang. A. W. Conger. Louis Loichot, Jr. John E. Dine. B. F. Schweier.

1887.

JOHN F. BLAKE, Mayor. E. M. Grimes, City Clerk. Atlee Pomerene, City Solicitor. John H. Holl, City Engineer.

COUNCIL.

Daniel Worley, President. William Volkman. Augustus Gachatte. Albert Ringle. Louis Loichot, Jr. John E. Dine. Benjamin F. Schweier. John W. Walser. Henry G. Schaub. Henry Voglegesang. Jules Py. O. A. Essig. Charles H. Henderson. William L. Alexander.

1888.

JOHN F. BLAKE, Mayor. Henry G. Schaub, City Clerk. Atlee Pomerene, City Solicitor. John H. Holl, City Engineer.

COUNCIL.

Daniel Worley, President. E. J. Donze. Henry Voglegesang. Jules Py. O. A. Essig.
Charles H. Henderson.
W. L. Alexander.
Joseph H. Dumoulin.
William Volkman.
Gustave A. Fries.
Albert Ringle.
Louis A. Loichot, Jr.
John J. Adams.
Paul Field.

1889.

JOHN F. BLAKE, Mayor. Henry G. Schaub, City Clerk. Atlee Pomerene, City Solicitor. John H. Holl, City Engineer, to Sept. 8. R. R. Marble, City Engineer, from Sept. 8.

COUNCIL.

Louis A. Loichot, Jr., President. • Paul Gschwend. E. J. Donze. Orville L. Slentz. Jules Py. J. J. Adams. Paul Field. J. H. Dumoulin. William Volkman. Gustave A. Fries. Albert Ringle. O. A. Essig. John Duffy. Frederick Lied.

1890.

JOHN F. BLAKE, Mayor. Henry G. Schaub, City Clerk. Atlee Pomerene, City Solicitor. R. R. Marble, City Engineer.

COUNCIL.

J. H. Dumoulin, President. Martin Henry. Gustave A. Fries. J. A. Russell. Nicholas Guirlinger. F. Joseph Wagner. W. E. Sefton. E. J. Donze. O. L. Slentz. Jules Py. O. A. Essig. John Duffy. Frederick Lied. Paul Gschwend.

1891.

JOHN F. BLAKE, Mayor. George W. Yohe, City Clerk, to June 23. Wm. Lichtenwalter City Ck, from June 23. Thomas F. Turner, City Solicitor. R. R. Marble, City Engineer, to Sept. 8. L. E. Chapin, City Engineer, from Sept. 8.

COUNCIL.

W. E. Sefton, President.
Joseph A. Linville.
Anthony Francis.
David L. Miller.
George W. Trump.
A. Best.
William B. Dager.
J. H. Dumoulin.
Martin Henry.
Gustave A. Fries.
John A. Russell.
Nicholas Guirlinger.
F. Joseph Wagner.
J. M. Campbell.

JOHN F. BLAKE, Mayor. William Lichtenwalter, City Clerk. Thomas F Turner, City Solicitor. L. E. Chapin, City Engineer.

COUNCIL.

J. A. Linville, President. Anthony Francis. David L. Miller. George W. Trump. Andrew Best. William B. Dager. J. M. Campbell. Henry T. Warner. Ed. Sexauer. G. Eicher. W. C. Dahinden. F. Joseph Wagner. H. W. Detmering.

REPORT.

To the Honorable Mayor, and President and Members of the City Council of the City of Canton:

It has been deemed best that a statement should be made by the Board of Sewer Commissioners descriptive of the sewer system, and of the more important events affecting its construction. We therefore beg leave to submit the following report :

The census of 1880 gave Canton a population of 12,258. The three or four last years of the preceding decade had been characterized by unusual Each year witnessed a larger addition to the population, and activity. improvements, both public and private, were assuming proportions of greater importance. The city water works had already been in operation for ten years.

The subject of sewers was beginning to engage the attention of reflecting citizens. In the absence of sewers the advantages afforded by the water supply were largely curtailed. The influx of water without drainage, imposed heavy burdens. The retention of house wastes on the thickly settled areas was a menace to health. Certain large enterprises, and permanent street improvements, could be intelligently undertaken only after a sewer system had been introduced.

The needs of our situation were diligently urged upon the public attentlon; the arguments in favor of sewer drainage were also combatted with assiduity. The first tangible result of this agitation appeared in a successful effort to obtain an opinion from Col. George E. Waring, Jr., in regard to a sewer system for Canton. Col. Waring visited the city in the fall of 1880, and subsequently presented his report. The portions of the report that were most directly applicable to the problem of Canton sewerage were as follows:

COL. WARING RECOMMENDS THE SEPARATE SYSTEM.

To the Mayor and Common Council of the City of Canton :

There has been a modification in the size, and a vast improvement in the construc-tion of sewers within the past thirty years—or since the introduction of earthenware pipes; but the old custom is still almost universal—the use of pipes has only modified lt—and Instances of the separation of surface water and household waste are very recent. My own idea is that not only should surface water and household waste be removed by separate means, but that their removal should be considered, or may be considered as sulfadictinct problems

quite distinct problems.

quite distinct problems. It is evident from an examination of your streets that an argument to spend money for construction of engineering works to get rid of the surface water which falls in Can-ton would make no converts. I believe that the number is very large of those who consider the introduction of some system by which the filth of the town may be properly removed the most important question now before the public. I propose to treat this latter question without involving it in any way with the former. That is to say, I advise leaving the storm water question to take care of itself, and consider the removal of foul sewage without the least reference to it.

Sewage without the least reference to it. I send herewith a tracing of the map of the city, with sewers laid down as accurately as the information in my possession as to the slopes of the ground will allow. These

slopes were constructed, as shown by the blue lines on the tracing, from levels received before my visit. They have been somewhat modified according to the corrected lines, but these were not transferred to the tracing, as it was not thought worth while at this time to go to the additional expense.

Accurate surveys, made with a view to the execution of the work, would doubtless modify the direction of some of these sewers, but not in such a manner as to make any material difference in the general plan, or in the cost of its execution.

The main outlet of the sewer is 15 inches in diameter from the dam up to the junction of the Poplar street and Plum street system.

From this junction along the railroad to Cherry street it is 12 inches in diameter, that size having been continued to Cherry street, in order to provide an outlet for the eastern part of the town when it shall be sewered.

The sewer in Walnut street is 10 inches in diameter.

The rest of the material is mainly of six-inch pipe-eight inch being used where a number of laterals come together.

The streets in which the sewers are laid have been selected with very much less information than would be necessary for the final plan; it is quite likely that some streets are included that ought to have been omitted, and that some are omitted which ought to have been included. The only object aimed at has been to give an intelligent idea of the manner in which it is proposed to do the work, and to furnish a basis for a somewhat accurate estimate of its cost. It will be easy to judge the cost of any necessary alterations.

Col. Waring then quotes from a statement made by him before the American Public Health Association at Nashville in 1879, showing the manner in which his system is applied, as follows :

"The discussion between the advocates of the combined and the separate systems of sewerage, especially in England, has long been active. The issue between them seemed doubtful until the matter of agricultural or chemical purification of the effluent became prominent.

The arguments in favor of the exclusion of storm water from the sewers proper seems to me so conclusive that I no longer hesitate to accept such separation as essential to the best sanitary sewerage.

Sewers large enough to remove storm water, according to the usual formula, are open to several serious objections :

The question of cost is so often the controlling question, even in improvements of most vital importance, that the expense entailed by the construction of storm water sewers constitutes an insuperable obstacle in the case of many a small town where sewerage is not necessary. Even in the larger cities the expenditure in this direction might sometimes, if not always, be economized for the benefit of other necessary work.

The larger the sewer the more difficult becomes the matter of its ventilation. 2.

3. Cases are extremely rare where sewers of the storm water size are not, at least during the hot and dry season, sewers of deposit to such an extent as to have their air made most foul by the decomposition of their sediment.

Where the question of final disposal has been important, the admixture of storm water with the sewage leads to the constant embarrassment of the system, whether the process be chemical or agricultural.

The carrying of surface water to a depth of ten or fifteen feet below the surface seems to be at least unnecessary. Street wash can be safely admitted to sewers only after passing through settling basins, and these are sure to accumulate an offensive and dangerous amount of decomposing filth.

I believe that one of the most important improvements that we are destined to see is the removal of storm water, as far as possible, by surface gutters—carrying away the greater accumulations through very shallow conduits; largely, perhaps, through covered gutters, easily accessible for cleansing and flushing.

In my judgment a perfect system of sanitary sewerage, for a small town or a large one, would be something like the following :

No sewer should be used of a smaller diameter than six inches: (a) because it will not be safe to adopt a smaller size than four inch for house drains, and the sewer must be large enough surely to remove whatever may be delivered by these; (b) because a smaller pipe than six inch would be less readily ventilated than is desirable; (c) and because it is not necessary to adopt a smaller radius than three inches to secure a cleansing of the channel by reasonably copious flushing.

No sewer should be more than six inches in diameter until it and its branches have accumulated a sufficient flow at the hour of greatest use to fill this size half full, because the use of a larger size would be wasteful, and because when a sufficient ventilating capacity is secured, as it is in the use of a six inch pipe, the ventilation becomes less complete as the size increases-leaving a larger volume of contained air to be moved by the friction of current or by extraneous influences, or to be acted upon by changes of tempera-ture and of volume of flow within the sewer. The size should be increased gradually and only so rapidly as is made necessary by the filling of the sewer half full at the hour of greatest flow.

Every point of the sewer should, by the use of gaskets or otherwise, be protected against the least intrusion of cement, which in spite of the greatest care, creates a roughness that is liable to accumulate obstructions.

The upper end of each branch sewer should be provided with a Field's flush tank of sufficient capacity to insure the thorough daily cleansing of so much of the conduit as

from its limited flow is liable to deposit matters by the way. There should be sufficient man-holes, covered by open gratings, to admit air for ven-tilation. If the directions already given are adhered to, man-holes will not be necessary for cleansing.

The use of the flush tank will be a safeguard against deposit. With the system of ventilation about to be described, it will suffice to place the man-holes at intervals of not less than 1,000 feet.

For the complete ventilation of the sewers it should be made compulsory for every house-holder to make his connection without a trap, and to continue his soil-pipe to a point above the roof of his house. That is, every house connection should furnish an uninterrupted ventilation channel four inches in diameter throughout its entire length. This is directly the reverse of the system of connection that should be adopted in the case of storm water and street wash sewers. These are foul, and the volume of their contained air is too great to be thoroughly ventilated by such appliances. Their atmosphere conair is too great to be thoroughly ventilated by such appliances. Their atmosphere con-tains too much of the impure gases to make it prudent to discharge it through house drains and soil pipes.

With the system of small pipes now described, the flushing would be so constant and complete, and the amount of ventilation furnished, as compared with the amount of air to be changed, would be so great, that what is popularly known as sewer gas would never exist in any part of the public drains. Even the gases produced in the traps and pipes of the house itself would be amply rectified, diluted, and removed by the constant movement of air through the latter.

All house connections with sewers should be through inlets entering in the direction of the flow, and these inlets should be funnel-shaped so that their flow may be delivered at the bottom of the sewer, and so they may withdraw the air from its crown; that is, the vertical diameter of the inlet at its point of junction should be the same as the diameter of the sewer.

All changes of direction should be on gradual curves, and, as a matter of course, the fall of the head of each branch to the outlet should be continuous. The reduction of grade within these limits, if considerable, should always be gradual.

So far as circumstances will allow, the drains should be brought together, and they should finally discharge through one, or a few main outlets. The outlet, if water-locked, should have ample means for the admission of fresh air. If open, its mouth should be protected against the direct action of the wind.

It will be seen that the system of sewerage here described is radically different from the usual practice. I believe that it is, in all essential particulars, much better adapted to the purposes of sanitary drainage. It is cleaner, is much more completely ventilated, and is more exactly suited to the work to be performed. It obviates the filthy accumulation of street manure in catch-basins and sewers, and it discharges all that is delivered to it at the point of the ultimate outlet outside the town, before decomposition can ever begin. If the discharge is of domestic sewage only, its solid matter will be consumed by fishes; if it is delivered into a water-course, its dissolved material will be taken up by aquatic vegetation.

The limited quantity and the uniform volume of the sewage, together with the absence of dilution by rain-fall, will make its disposal by agricultural or chemical processes easy and reliable.

The cost of construction, as compared with that of most restricted storm-water sewers, will be so small as to bring the improvement within the reach of the smaller communities.

In other words, while the system is, in my judgment, the best for large cities, it is the only one that can be afforded in the case of small towns.

Col. Waring concludes his report in regard to proposed sewers for Canton as follows:

"The flush tanks referred to in this paper as being placed at the heads of the laterals, are on this plan 37 in number. They would be supplied from the public water-works with a trickling stream sufficient to fill them (about 112 gallons each) in from fifteen to twenty-four hours. When filled they would discharge themselves very rapidly and wash the whole system clean.

As Schriver's run furnishes an abundant supply of water for the purpose I have thought best, in order to insure an effective flushing of the whole main line, to build a tank of ten thousand gallons capacity at the crossing of Walnut and North streets to be supplied from this stream, to discharge as often as may be thought necessary. There is no reason why this may not be daily.

to be as follows:	
\$6,7 1,3, 2,1 2,1 2,1 15,9	713.00 349.00 178.00 136.00 969.00
	345.00 50.00 50.00 00.00
	95.00 90.00
erintendence \$37,28	85.00 93 .00
	78.00

1 / 1

a a fallaria .

Although the allowances on this estimate are doubtless larger than are required, as there is no probability of rock being encountered, still, to make the estimates amply large, it may be best to fix the whole cost at \$45,000.00.

Very respectfully yours, GEO. E. WARING, Newport, R. I., October 30, 1880. Consulting Engineer,"

The Canton Sewers, as finally constructed, exhibit considerable deviation from Col. Waring's recommendations; but these changes apply only to

Locate cess-pool as far from kitchen as possible. If a sewer is available abolish the cess-pool and make a safe connection with the sewer without delay.

in which it is proposed to do the work."

collateral details. The system he proposed was generally adhered to. As a matter of fact the city's population had almost doubled between the date of Col. Waring's visit and the time when sewer connection commenced, in 1888. He anticipated these changes, as is seen by his statement that his plan is based upon "Very much less information than would be necessary for the final plan." He says also that "The only object aimed at has been to give an intelligent idea of the manner

A BOARD OF SEWER COMMISSIONERS IS CREATED.

No action was taken by the Council in regard to Col. Waring's report. The need of sewers, and their advantages, and the rapidly increasing foulness of the city, and the dangers of delay, were pressed upon public attention through the newspapers with considerable vigor. At length the Council, on June 5th, 1882, took action looking to the creation of a Sewer Board by the passage of the following ordinance:

AN ORDINANCE Authorizing Five Persons to Constitute the Board of Commissioners of Sewers of City of Canton and Prescribing their Duties :

WHEREAS, In the opinion of the City Council of the city of Canton, Ohio: That many and manifest reasons, especially the health of the inhabitants of said city, demand that a system of sewerage and drainage be provided for said city, and in order to establish proper sewer districts in said city, therefore, SECTION 1. Be it ordained by the City Council of the city of Canton. O.: That there be appointed by the Mayor of said city subject to the confirmation of the City Council of said city, five persons, one of whom shall be appointed for one year, one for two years, one for three years, one for four years and one for five years, and yearly thereafter one shall be appointed to serve for a term of five years, to constitute the Board of Commission-ers of Sewers, and they shall serve without compensation. ers of Sewers, and they shall serve without compensation. SEC. II. That it shall be the duty of the said Board of Commissioners of Sewers of

SEC. II. Infat it shall be the duty of the said Board of Commissioners of Sewers of said city to fix the boundary lines of each sewer district in said city according to the natural drainage, and that said board shall, as soon as convenient for them report to said Council of said city, plans, specifications and estimates of a main sewer, which shall be properly located looking to the drainage of that part of said city needing immediate sewerage. SEC. III. That if, in the opinion of said Council, said main sewer shall be built as reported by said Board of Commissioners of Sewers after the cost thereof has been estimated and reported, said Council shall provide that the necessary means to construct said main sewer shall be collected under and by virtue of the special assessment plan which provides that the entire expense of sewerage of each sewer district shall be paid by each of said sewer districts excent what is in excess of the amount necessary to build an ordinary street sewer districts except what is in excess of the amount necessary to build an ordinary street sewer districts except what is in excess of the amount necessary to build an ordinary street sewer of sufficient capacity to drain or sewer said street on which said main sewer is located. Such excess shall be paid by general taxation on all property in said city as required by law, and that the expense of all lateral sewers to be paid by the owners of property abutting on said street where such lateral sewers shall be located, and by owners of adjacent prop-erty benefitted thereby. The necessary means to construct said main sewer to be provided for in advance of the contract to build said sewer, as the Council hereafter may direct. SEC. IV. That the Mayor shall appoint said members of the Board of said Commis-sioners of Sewers subject to the confirmation of the City Council on or before April 1, 1882, and one member yearly thereafter to serve as in this ordinance provided. SEC. V. That this ordinance shall take effect and be in force from and after its passage and due publication. Passed March 6th, 1882.

The Mayor, Wm. J. Piero, appointed the following as Sewer Commissioners:

William Dannemiller for five years;

Josiah Hartzell for four years;

William A. Lynch for three years;

E. O. Portman for two years;

Daniel Parr for one year;

The appointments were confirmed by the Council.

The Board was organized by the election of William Dannemiller as President, and Josiah Hartzell as Clerk.

There were no funds available for sewer. work, either in possession or anticipation. The efforts of the new Board were therefore restricted to the preliminary duty of carefully considering the subject with a view to determining upon the wisest course of proceedure.

The first practical step was to select a Consulting Engineer under whose supervision detailed maps, plans and specifications could be prepared. If the choice of a large proportion of our citizens was to have weight, an engineer who would provide the city with a combined sewer built of brick, would have been preferred.

On the other hand the more modern plan, the small pipe sewers, for house wastes only, had its adherents.

The employment of an engineer was, of itself, an act which, to all intents and purposes, decided the question as to which system of sewers Canton was to have. Such was the view taken by the Board of Sewer Commissioners. The Board decided to adopt the Separate System.

REASONS FOR ADOPTING THE SEPARATE SYSTEM.

Inasmuch as the city had delegated to the Board of Sewer Commissioners the important duty of deciding these questions, upon which health, taxation, and the future prosperity of the city would depend, and inasmuch as this decisive action of the Board was unfavorably commented upon, both at the time and subsequently, it is proper here to present some of the reasons which supported their conclusion. And in glancing over these facts it is well to bear in mind that facts and experiments in support of such action were by no means so abundant ten years ago as now. It is, however, a source of congratulation to know that the history of the art of sewer-building during all these years has been a continuous and irrefragable vindication of the action of the Board.

SIGNIFICANT EXPERIMENTS.

Pipes of stoneware are said to have been first used in London, about 1846, being inserted in place of brick and stone sewers for the purpose of decreasing the diameters sufficiently to make them self cleansing.

In view of the results obtained a distinguished sanitary engineer said : "Every sewer as formerly made is an elongated retort; the sewage is the organic compound from which the foul gases are generated, and the drains which convey the sewage into it from the openings in the sinks and the closet pans are the necks from it, carrying the gases up into the sewer openings, from which they pass into the houses."

Several of the earlier experiments were described, as follows:

"The Sewer in upper George street, London, is five and one-half feet high by three and one-half feet wide, draining a built area of 44 acres. In the bottom of this sewer was laid a 12-inch pipe 560 feet long, and a dam was built at the upper end, thus forcing the sewage of the whole area to pass through this pipe. The velocity of the water in the pipe was found to be four and one-half times greater than on the bed of the old sewer and its drainage power twenty times that of the old sewer in proportion to its size. In one trial a quantity of sand, brick-bats and stone was thrown into the head of the pipe and the whole of this was passed through the pipe and deposited some distance from the lower end. 'It was found that this 12-inch pipe was of ample size to drain the 44 acres, and indeed, it was rarely ever more than half full at its head, though the sum of the cross sections of the house drains delivering into this half-full 12-inch pipe was equal to a circle 30 feet in diameter.' 30 feet in diameter.'

30 feet in diameter.' "Another experiment was made with the Earl street sewer, which took the drainage from 1,200 average size London houses, occupying a paved or covered surface of 43 acres. The sewer had a sectional area of 15 feet, and an average fall of 1 in 118, and the soil deposits from 1,200 houses accumulated 6,000 cubic feet per month. A 15-inch pipe was placed in this sewer with an inclination of 1 in 133, and it was kept perfectly clear of deposit. 'The average flow from each house was about 51 gallons per day, and apart from the rainfall the 1,200 houses could have been drained by a 5-inch pipe.'" Says one writer: "Only a few years ago it was estimated that the sewage proper of London might be discharged through a sewer three feet in diameter, yet there is scarcely a town of 5,000 inhabitants whose officers would be satisfied with one of less size."

Col. Geo. E. Waring, who was the first to recommend for Canton the system which is now put in, gives an example of the capacity of small pipes in a case where a six-inch pipe was used to drain one detached house. "One after another as new houses were built new drains were connected with the same pipe, until after a time it was found to be clean and in perfect order, though carrying all the drainage for 150 houses."

A similar set of experiments was made in St. Louis, in the summer of 1880, by Sewer Commissioner Moore, with the following results :

[&]quot;The first sewer experimented on was seven and one-quarter feet in diameter, drain-ing an area of 440 acres, upon which 1,370 houses were inhabited by 11,000 people. A dam was built across the sewer and a 12-inch pipe inserted. The greatest depth of flow was six and one-half inches. The second sewer drained an area of 155 acres, being in size $3\frac{1}{2}$ by $4\frac{1}{2}$ feet. This was treated in the same manner, with the exception that a nine-inch pipe was inserted. The greatest depth of flow here was also found to be $6\frac{1}{2}$ inches. These results indicate a consumption equal to 80 gallons of water per day for each inhebitant " each inhabitant."

As has been already intimated, the early innovations of the smaller bore sewers had to be built under protest. An early departure in this respect was undertaken by Col. Waring at Saratoga, N. Y., in 1875. The main sewer was not very small, being three feet in diameter. Mr. Waring says: "From the very beginning of the work it encountered the most violent opposition on the part of many citizens who believed the sewer would be entirely inadequate. We were constantly reminded that one hotel had a main drain 18 inches in diameter; another one $2\frac{1}{2}$ feet in diameter, and that it was madness, with these drains as our guide, to attempt to accomplish the whole work with a three-foot sewer."

It is needless to say that when the sewer was completed, and these same landlords and respectable fossils saw that all the sewage flow in the morning, at the hour of the largest flow, might have been discharged through a $2\frac{1}{2}$ inch pipe, they changed their tune.

Col. Waring adds, speaking of this Saratoga sewer: "1 can excuse my course in recommending so large a sewer as one of three feet only by the fact that, in the state of public opinion then, it would have been impossible to secure the making of anything smaller."

THE MEMPHIS SEWERS.

In the entire history of sewer building no event called forth such general comment as the new Memphis sewers, built under the supervision of Col. Waring, in 1880. The distinctive features of that system were:

1. The small pipes used. In Memphis the largest sewer (brick) is only twenty inches in diameter. The pipes from the houses to the street connections are uniformly four (4) inches and are glazed sewer tiling with cemented joints. The next sizes are 6, 8, 10, 12 and 15 inches.

2. At the end of each extension there is a flushing tank with a capacity of 120 gallons of water, which empties itself automatically at stated intervals.

3. All surface water, street washings, and even the roof and houseyard water is excluded from the drains.

4. All sewage, liquid or solid, kitchen and laundry slops, and factory liquid refuse is admitted.

5. There are no man-holes, nor catch basins, and the pipes are ventilated by shafts in connection with each house.

6. The sewage and all liquids entering the pipes, owing to the small size of the pipes, is carried on so rapidly, especially by the copious and systematic flushings, that the pipes are kept perfectly clean, and no decomposition or fermentation of the sewage takes place before it finds its way to its place of disposal.

7. The cost of construction and maintenance is about one-tenth of the old combined system, where storm water and all surface water must be provided for in some sewer.

The actual cost of construction was \$187,000. For the sewerage of the same area by the combined plan the estimates ranged from \$800,000 to \$2,225,000.

This experiment engaged the attention of engineers throughout the world. In November, 1880, a report on the Memphis plan was presented to the American Society of Civil Engineers. After full discussion this conclusion was reached:

"With the results already achieved by this small-pipe system of sewerage, it seems safe to predict that a new era has been inaugurated, and that the coming years will witness great modifications in the prevailing methods of sewerage."

The "Social Statistics of the Cities of the United States," Tenth Census, contains the report of an examination of the Memphis Sewers, of which this is the last paragraph:

"Neither in removing obstructions, in cleansing the main sewers, nor in connecting house drains is the odor of sewer-gas ever observed."

The following letter is self-explanatory:

U. S. ENGINEER'S OFFICE, MEMPHIS, TENN., October 9, 1880.

To the Mayor and Common Council, City of Newport, R. I.:

Having been requested to give my opinion in regard to the system of sewerage adopted for the city of Memphis, I desire to state that I have closely observed the work from its very inception and have made frequent inspections in order to observe the work-ings or the different parts. While the entire work has not been completed—though nearly so—I am perfectly satisfied that the success or the system is assured. The sizes of the pipes adopted and their arrangement are amply sufficient to carry off all the flow, and the addition of the flush tanks assures at all times a freedom from accumulated matter. Everything works admirably. [SIGNED.] W. H. H. BENYAURD, Maior Engineers

Major Engineers.

Dr. J. F. Kennedy, Secretary of the lowa Board of Health, made a personal visit of inspection, and as the result, recommended the separate system for use in the cities of that State. The same course was pursued by other health officers.

The weight of English authority, comprising the most eminent engineers, preponderated heavily on the side of the separate system.

The Government Chronicle (London) after a careful review of the new Memphis experiment, and its workings up to September, 1880, put one of its conclusions into these words :

"In short, it seems clear that a sufficient case has been made out to cause any sani-tary authority which is proposing to adopt a system of large storm-water sewers, to pause and enquire whether small sewers for the reception of sewage only, carefully laid, and periodically flushed by means of proper flush-tanks, would not be better and cheaper, and at the same time healthier. The large sewers in dry seasons are only too likely to become sewers of deposit; to leak and give off offensive odors; whereas the smaller ones, if properly laid and regularly flushed, may be kept equally clean the whole year around."

Already, in 1883, a portion of Paris, France, had been sewered by the Waring plan. In his report M. Pontzen, the engineer in charge, states the following conclusions :

"The first application of sewerage according to Waring's system, made in Paris in 1883, in a quarter where all of the unfavorable conditions are combined, has been a com-

1003, in a quarter while an or the property of the stabilishments drained by Waring's system leave nothing further to be desired in a sanitary point of view, and the *ensemble* of the drainage work has not, during the five months it has been in operation given rise to the least complaint. "The establishment and maintenance of a system of sewers according to Waring's the in the set of the advantage of being economical."

system has in all cases the advantage of being economical. "PARIS, May, 1884."

A direct inquiry, addressed to the Memphis Board of Health, brought the following response :

OFFICE OF THE BOARD OF HEALTH,

MEMPHIS, TENN, May 21, 1882.

Josiah Hartzell, Esq., Canton, O.:

DEAR SIR :--Your inquiry in regard to the Waring system of sewerage has remained unanswered longer than I had intended it should, and I herewith apologize for the delay.

So far the Waring system has fulfilled all that was expected of it. By all observers it is declared a success. It is an utter impossibility for the sewers to cause an increase of the mortality, for there is a stream of water continually for the sewers to cause an increase of the mortality, for there is a stream of water continually flowing through the pipes, and there is no accumulation of effete material anywhere. It is carried off and emptied into the river. There is no formation of sewer gas throughout the course of the pipes, and in opening a man-hole in any portion of the city, not the faintest odor can be detected. Probably our death rate was some larger last year than the year before, but that may be accounted for by an increase of our population. The authorities here are highly pleased with the sewers and think them to be quite an advantage to our city. with the sewers, and think them to be quite an advantage to our city.

Very truly yours,

J. H. BURNELL, Secretary Board of Health.

The last official report of the City Engineer of Memphis, published in

"The system in the main has so far worked admirably and has given entire satisfaction."

KEENE, N. H.

The city of Keene, N. H., was sewered on the Memphis plan in 1882. Inquiries as to the workings of the system were respond-

ed to by the Mayor as follows :

"So far as completed it worked well. (1882.) No arrangements were made for (1883.) "Has worked with perfect success like clock work. There has been no trouble with the flush-tanks, the water in them has not frozen. (1884.) "It seems to me also that the construction of our sewers is as nearly perfect as

can be, from the fact that no impediments to a steady flow have been discovered from the beginning, and I have not heard that any one of the forty-four tlush-tanks has failed at any time to perform its duty with accuracy. There has not been a single stoppage of the pipes."

WEST TROY, N. Y.

West Troy, N. Y., was sewered by the separate system. An inquiry was thus responded to by Geo. H. Kimberly, a prominent business man:

"The whole sewer system has worked well thus far, and given satisfaction. parties who were sure the pipes were too small and that they would fill up, will have to The wait longer to see their prediction fulfilled."

The Canton ordinance requires iron soil pipe to be placed ider houses. One of the reasons for this is made plain by under houses. the above picture.

LENOX, MASS.

Mr. William D. Curtis, Chief of the Dist., Com. of Lenox, Mass., replied to an inquiry as follows :

"Josiah Hartzell, Esg.:

"DEAR SIR :--Our sewers, put in by Col. Waring, of Newport, R. I., work very sat-isfactorily. The small pipe system has the advantage of being easily flushed and kept sweet and clean."

OMAHA, NEB.

Mr. D. H. Goodrich, Superintendent of Water Works, Omaha, Neb., responded as follows, March 15, 1883:

"Josiah Hartzell, Esq., Canton, O.:

"DEAR SIR :—I have your favor of the 13th inst., in relation to the Waring sewer system. We have nothing to do with sewers in this office directly, but of course I feel deeply interested in their development. "After much opposition the Waring system was adopted for the larger portion of the city. It has so far been a decided success. In connection we have with this, however, a system of storm water sewers which are necessary in nearly all cities. These are very costly as compared with the Waring. There is probably no doubt as to this latter being the best, at the least cost, and for the largest number."

The following extracts from the last annual message of the Mayor of Omaha, Neb., explains itself: "The health of the city depends in a great measure upon its supply of water and upon its system of sewerage. It is gratifying to know that our city is free from the odious gases and odors that in most other cities are emitted from sewers at every corner of their streets. According to the report of the sewer inspector there was but \$2,285.09 expended for salaries and in keeping our system in good working condition. This is certainly a very small sum. There can be no doubt that the Waring system of sewerage is, for sanitary purposes, the best ever devised. It is not intended for storm water or waste water from elevators, and in the business portion of the city other means will have to be provided for the overflow from the latter."

YOUNGSTOWN, OHIO.

At a convention of the Ohio State Sanitary Association, held in Mansfield, February 24, 1883, Dr. John McCurdy, a prominent citizen of Youngstown, said: "The Youngstown people are using the large brick sewers which have cost them nearly \$200,000, and notwithstanding this great expense the system is a failure from a sanitary point of view."

In the general discussion which followed the small pipe sewer, which could be easily flushed, was unanimously considered the best.

OPINION OF THE ENGLISH HEALTH BOARD.

This Board was composed of the most widely known and authoritative Sanitary Specialists. Their "General Conclusions," after a thorough

investigation of the whole subject of sewerage, were embodied under five heads. Number 4 reads as follows:

"That brick and stone house drains are false in principle, wasteful in cleaning, construction, and repairs. That house drains and sewers, properly constructed of vitrified stone-ware, detain and accumulate no deposit, emit no offensive odor, and require no additional surplus of water to keep them clean."

ENGLISH ENGINEERING OPINION.

In 1881, James T. Gardiner, C. E., Director of the New York State Survey, was employed to make a report to the State Board of Health on the methods of sewerage for cities. On page 6 of this report is this paragraph:

"I visited in London the sanitary department of the Local Government Board which has general supervision of the sanitary affairs of England. The Chief Engineer, Mr. Robert Rawlinson, C. E., and the principal medical inspectors, Dr. Ballard and Mr. Rad-cliffe, are perfectly agreed that the combined sewer system is radically defective from a sanitary standpoint. In this opinion Dr. Richardson, and other prominent sanitarians concurred. At the meeting of the British Association for the Advancement of Science in York, the leading civil engineers whom I met had abandoned their belief in the 'combined system' of sewers, being convinced that it could not be made healthful."

SEWER SYSTEMS FOR NEW YORK STATE.

In the document last named we read Engineer Gardiner's conclusion, on page 14, as follows:

CONCLUSION:

"In obedience to the resolution of this Board I have endeavored, by the examination In obedience to the resolution of this Board I have endeavored, by the examination of foreign and American experience, to determine what method of sewerage we ought to recommend to the towns and cities of this state applying for advice. I am convinced that both in England, and America at large, combined sewers, for carrying storm-water and sewage are, and necessarily must be, constant and powerful sources of disease, and that for most towns, they are a very costly method of removing sewage. I am of the opinion that the separate system of small sewers avoids in a great measure the inherent sanitary difficulties of the combined plan; and that it is an efficient and economical method of removing the sewage of towns. I therefore recommend the State Board of Health to advise the adoption of the separate system of sewerage in those towns which have asked for information on this subject.

which have asked for information on this subject.

Verv respectfully yours,

JAMES T. GARDINER. Director of the New York State Survey."

At the quarterly meeting of the State Board of Health held at Albany, February 8th, 1881, the following action was taken:

"The costly plan of large combined sewers for carrying sewage and storm-water together has proved a sanitary failure both in England and in this country; while the 'separate system,' when properly constructed, avoids in great measure the evils from sewer air now so common, and is much less expensive for most towns. Therefore the use of the 'Separate System of Sewers' with flushing tanks is hereby recommended for general use in this state."

KALAMAZOO, MICH.

The cost of combined sewers is variously estimated as being from five to ten times greater than that of separate sewers.

In the village of Kalamazoo, Mich., which had about 10,000 inhabitants in 1883, there were in that year, 5.89 miles of sewers, which had cost \$40,184.75, or 1, 29 per foot, or \$6,811 per mile. The smallest are 4-inch and the largest 12-inch pipes: This information is taken from the report of George H. Pierson, C. E., made April-11th, 1853.

COST OF CLEANING SEWERS.

Many cities are sewered partially on the Separate plan, and thus afford ready means for showing the comparative cost of maintenance. An example of this is given by City Engineer Towle, of New York, in his report for 1871, where the comparative cost of cleaning brick and pipe sewers is given for the 5 years previous. It shows that the cost for brick drains was 125 times more than for pipe drains. This report contains the following: "In all cases where pipe sewers have required cleaning or repair, their failure to work has been traced to error, or unfaithfulness, in their construction."

SEWER VENTILATION.

ŝ

Combined sewers were advocated on the ground that resultant gases could be confined to the sewers. That was shown to be impossible. The dangers of the plan manifested themselves. Baldwin Latham, the English engineer said: "Unventilated sewers are far more dangerous than steam boilers without safety valves." Speaking of the ventilation used in connection with pipe sewers he said: "In my opinion this plan is decidedly the best system that can be adopted."

OPINION OF ENGINEER LATROBE.

. .

A document which had great weight with the Canton Board was the report on a "Plan of Sewerage, made to the City Council of Baltimore," by C. H. Latrobe, chief engineer of the Baltimore and Ohio Railroad. With a view to building sewers, that city obtained the opinion of this eminent engineer. The report appeared in August, 1881.

The pages of this document show that the examination of the entire subject of sewers was made without prejudice. It is an important study. The advantages, and disadvantages, of the Combined system are pointed out. The merits and weaknesses of Separate Sewers are fully set forth. The testimony and authorities comprise the history of sewer building in Europe and America. After a most lucid presentation of the subject Mr. Latrobe concludes thus.

"To sum up: It would seem that the combined system has reached its fullest and most perfect development, and that no material improvement can be expected to take place in its application in the future, from the simple fact that it is called upon to perform two incompatible offices—one the sewage drainage, constant and small; the other, the storm water drainage, intermittent and larger. On the other hand, the separate system seems to be capable of fulfilling accurately the constant and small, though most important office, of the disposal of the sewage proper; whilst the intermittent rush of storm waters can be provided for otherwise."

A visit to Memphis was part of the preparation for this report. After getting his impressions in regard to the work of Col. Waring, then recently completed, Mr. Latrobe says:

"In summing up my impressions as to the separate system as developed at Memphis, I would say that it is well planned and well executed, and fully answers the purpose for which it was intended, and which I conceive to be primarily the object of all sewerage, viz.: to carry off human and industrial waste with rapidity and cleanliness to its ultimate destination."

The fruit of all of Engineer Latrobe's investigations is summed up in these words :

"The separate system is, therefore, the one which 1 would respectfully recommend to your honors as the best adapted to our present and future needs."

THE ACTION OF THE CANTON BOARD.

The above chapter on recorded opinions and experiments might be made longer—much longer. But enough has been said to convince fair-minded citizens that, in adopting the separate system, the Canton Board of Sewer Commissioners, acted in conformity with the best interests of the city, and the examples presented have no other object than that. The conclusions arrived at comprise the following as the

ELEMENTARY REQUISITES OF GOOD SEWERS.

First—The sewer must have a continuous grade from the starting point, or points, to the outlet.

Second—The velocity of the flow must be sufficient to make the sewer self-cleansing.

Third—The size must be adapted to the work it has to perform.

Fourth—It must be thoroughly ventilated.

Fifth—It must be impervious.

These general principles were to be adhered to as to grade, velocity, size, ventilation and construction.

As to shape, Col. Waring says: "A perfectly round pipe, accurately laid at the joints, will deliver under the same circumstances, fifty per cent. more water than one of distorted form and ill-fitting joints."

Concerning the effect produced on the flow by the material of which the sewer is made, the tables prepared by Barzin, the French engineer, are regarded as most reliable. The velocity, under the same circumstances, were found to be: In stone masonry, 3.5; in brick masonry, 6.1; in smooth pipes, 7.8. Smoothness increases velocity so that sectional area can be diminished and the cost reduced.

ALL SEWER WORK SHOULD BE IN HARMONY WITH ONE GENERAL SYSTEM.

Another question to be decided was whether the part of the city in most urgent need of sewers should be drained in the quickest and least expensive manner, or in a manner conforming to, and constituting only part of a general plan which should ultimately comprise the entire area of the city. The opinion prevailed that the method last named would be the part of wisdom. In fact the experience of other cities left no doubt on that subject. For example, page 4, report of 1881, Kalamazoo, Mich., (famed for excellence of sewers) says:

"Should a place at first require sewers in a few streets only, a complete survey would be an economical investment, in order that there might be perfect harmony with all the succeeding sewers, and that all funds be judiciously expended."

The city of Philadelphia had recently created a loan of several millions of dollars, a liberal slice of which had been appropriated for the construction of sewers. In his inaugural address, referring to the use of this borrowed money, President Smith, of the Common Council, made this assertion:

The Canton ordinance requires soil-pipe to be placed against the wall, not in it, also that drain under the house be of iron; also that the fall from house to sewer be, at no point, less than one-half an inch to the foot. All these provisions are violated in the case presented in the picture.

"Never had there been a time when our citizens were more willing to subreasonable and necessary mit to charges, but that they would insist upon the wise and honest expenditure of their money. This we believe, but we are constrained to say that, while the money devoted to sewers has been honestly appropriated, we cannot feel that it is wisely expended. The fact is that none of our large cities have any cumulated in patchwork style, as occasion demanded, but there is no system, properly speaking about them. Hence do we feel that money expended to extend and enlarge this unscientific network of sewers is not money wisely expended. We must begin at the beginning and go all over the work in a proper and scientific way, and the sooner we begin the better and cheaper it will be. Let our small and growing cities profit by the predicament of their elder brethren and start their sewerage on a scientific basis, sufficiently com-prehensive to meet all possibilities of future growth."

It was resolved that the plan for Canton, particularly having reference to the main sewer, should be such as would, as additional drainage areas were added, afford relief to the entire plat of the city.

ENGAGEMENT OF MAJOR HUMPHREYS.

Having adopted the Separate Sewer System the Board deemed it advisable to confer with Col. Waring as to the proper steps to be taken in order to obtain a plan of the work. The following correspondence ensued:

LETTER FROM COL. WARING.

NEWPORT, R. I., March 16, 1883.

Josiah Hartzell, Esq., Clerk of Board of Sewer Commissioners, Canton, O.:

DEAR SIR:—I am very glad to have your letter of March 13, and to know that your board is slowly working its way to success.

One of the best men in the country for your purpose is Maj. J. H. Humphreys, who had charge of the construction of sewers at Memphis for about four years, who has been

in charge of the Norfolk sewers for a year past, and who is just now living there temporarily during a suspension of the work. I am writing him to send you his address and let you know if he is free. If he is not, I can send one of my own men after a short time. I think it extremely important that you should have the assistance of a man who is

well accustomed to such work. Very truly yours, GEO. E. WARING, JR.

LETTER FROM MAJOR HUMPHREYS.

OFFICE OF THE BOARD OF SEWER AND DRAIN COMMISSIONERS, NORFOLK, VA., March 20, 1883.

Mr. Josiah Hartzell, Clerk of Sewer Board, Canton, O .:

DEAR SIR:—I have received a letter from Col. Waring, of Newport, R. I., in which he tells me your city desires to employ an engineer and requests me to send you my address, etc. My engagement has terminated here and 1 am at present free to make another. Yours respectfully,

J. H. HUMPHREYS.

Learning that Maj. Humphreys had also been employed at Little Rock, Ark., an inquiry brought the following response :

LETTER FROM LITTLE ROCK, ARK.

LITTLE ROCK, ARK., June 12, 1882.

Josiah Hartzell, Esq., Clerk Board Sewer Commissioners :

DEAR SIR:—Your letter of the 7th was delivered at the City Clerk's office and handed to me yesterday.

Maj. J. H. Humphreys was employed by our Board of Sewer Commissioners to come to Little Rock and give us the benefit of his knowledge and experience in building Sewers on the Separate System after we had decided to build sewers of that kind.

I believe Maj. Humphreys a very capable engineer and his experience at Memphis and Norfolk in building that kind of sewers will make him a valuable engineer for you to employ.

employ. We built about two miles of sewers last year which is in fine working order. We believe it has many advantages over the old system and can be built at small cost.

Yours truly, G. H. MEADE,

Secretary Board of Improvement and Manager of Sewers.

EXTRACTS FROM THE MINUTES OF SEWER COMMISSION, MAY 9, 1883.

"Sewer Commissioners met in conference with the City Council and recommended to the latter the employment of Maj. J. H. Humphreys for the purpose of furnishing to the city a plan, map, and specifications of a sewer system for the city of Canton. Subsequently, the same evening, the City Council called a meeting, separately and by unanimous resolution, authorized the Sewer Commissioners to send for Major Humphreys, of Memphis, Tenn."

Major Humphreys arrived in Canton May 16, 1883. Although the primary purpose in engaging the services of Major Humphreys was to furnish sewer plans, the majority in the Council had other problems for which they demanded a solution prior to commencement of operations on the house sewer enterprise. These related principally to the drainage of storm water. It will therefore conduce to a better comprehension of the drainage system of Canton if this branch of the present report be taken up and disposed of before entering upon the subject of house sewers proper.

STORM-WATER SEWERS OF CANTON.

While sewers for the removal of house wastes were urgently needed, there was another problem which, right at the beginning, confronted the Board. This was the disposal of storm water. The Board was agreed as to the superior advantages of separate sewers for sewage. Therefore the concentration of water from rainfalls would have to be otherwise provided for.

After heavy rains, or thaws, the collection of water in the lower lying part of the Second ward assumed the proportions of a small lake, inflicting serious injury on lot owners.

The drainage from large areas in the northern part of the city was through Shriver's Run and Walnut street. As the surface drain of the most thickly settled area, Walnut street often became highly offensive. Petitions for relief from these embarrassments were addressed to the Council, and these were, in turn, referred to the Sewer Commission. With a view to taking measures to obtain the needed relief the Board, on November 3d, 1882, requested the City Civil Engineer to furnish estimates as follows :

Ist. The cost of a sewer through Walnut street to drain the waters tributary to that channel.

2d. The cost of a sewer through Walnut street of sufficient capacity to carry the water tributary to that channel, and, in addition, the storm flow of Shriver's Run.

3d. The cost of a sewer of sufficient capacity to convey the waters of Shriver's Run, and of the low grounds of the Second Ward, eastwardly, to the creek.

On November 10th the Engineer presented a report in which it was assumed that the territory north of Summit street could be drained westwardly into the creek at a moderate expense. As a matter of fact the territory referred to has since been drained westwardly through Lake street.

The Engineer, therefore, very properly, rejected said area, which he fixed at 48.8 acres from his estimate. Upon this basis his estimate for the sewer contemplated by inquiry No. I was \$16,250; for the sewer in response to inquiry No. 2 it was \$26,879; for the sewer No. 3, the estimate was \$8,879. For the drainage of the Second Ward storm water, alone, his estimate was \$3,250.

THE PENNSYLVANIA AVENUE SEWER.

The disposal of storm waters for the areas to which reference has been made, which was the most pressing, continued to be made the subject of investigation. The last report in regard to the flooded district of the Second Ward, submitted to the Board June 18, 1883, was as follows:

A ---

CATCH BASIN, STORM-WATER SEWERS.

When the sediment reaches the height of the outlet the lid is removed and the basin cleaned out.

PLAN OF INLET INTO STORM-WATER SEWERS.

To the Sewer Commissioners of the City of Canton :

With reference to the drainage of the basin east of the run, between Pennsylvania avenue and Washington avenue, observations made by Mr. Holl, City Engineer, show that during the flood of last February there was a continuous sheet of water from the high ground near Mahoning street on the east to Cherry street on the west, and that the water from this territory and the run flowed down along the streets and across lots as far south as Tuscarawas street. The first step necessary to prevent the recurrence of this would seem to be the deepening Shriver's Run sufficiently to prevent its overflow into this basin. This accomplished, I think the three-foot brick conduit, of the cost of which Mr. Holl has furnished you an estimate, would provide for the storm water of the area under any considera-City Engineer Holl's tion. report, referred to, is as follows:

"In the matter of providing a better outlet for the flood water in the late over-flowed district in the Second ward, and in order that damage by future floods may be avoided, the present sewer pipe drain in Pennsylvania avenue should be replaced by a brick sewer of circular shape, 3 feet in diameter, and beginning at the intersection of Gibbs street and Pennsylvania avenue and extending eastwardly along said avenue to Nimishillen creek, a distance of 1,550 feet, which can be constructed with a fall of 21/2 inches per 100 feet, and would have 5 8-10 times the capacity of the present drain, and the top can be covered without interfering with the street grade.

For a wall of one thickness of brick, this sewer would require 75 brick per lineal foot, or for the entire length, 116,250 brick, and the cost of the same would be approximately as follows:

116.250 brick at \$15 per M laid in cement	.\$1,763	75
Excavating, average cut 8 feet at 30 cents per cubic yard	· 744	00
Ten catch basins at \$25 each	. 250	00
Two man-holes at \$45 each	. 90	00
Total	.\$2,847	75
	<u></u>	

JOHN H. HOLL, City Civil Engineer.

This report was approved by Major Humphreys, who added the following suggestion:

"But I am of the opinion that the low ground in this basin should be raised by filling to some extent, by which both the drainage and sewerage of the area would be greatly facilitated. Respectfully submitted,

"J. H. HUMPHREYS."

The above was approved by the Sewer Commissioners and certified to the City Council, as follows:

"It is the opinion of this Board that the plan proposed by Engineers Humphreys and Holl will afford entire relief and, if carried out, will avert all danger of flooding in the Second Ward in the future. Respectfully submitted,

WM. DANNEMILLER, President. JOSIAH HARTZELL, Clerk of the Board.

THE WALNUT STREET STORM-WATER SEWER.

The Pennsylvania Avenue sewer was constructed in accordance with the above plan and has proven to be an ample remedy for the vexations arising from collections of storm water in the low lying grounds of the Second ward.

In regard to the storm-water sewer on Walnut street, the estimate of City Engineer Holl has already been given. A farther investigation of the subject led Mr. Holl to reduce his first estimate to the extent of \$1,500. This report was received Nov. 27th, 1882.

After the arrival of Major Humphreys his opinion on this subject was

Our ordinance says that soil-pipe in the house, as well as under the house, must be of iron well leaded at the joints, and it prohibits double traps. If these provisions are neglected dangers may be set loose to fly about as freely as the arrows in the picture. obtained, and is contained in the report submitted by him June 18, 1883. It was as follows :

"For the disposition of the surface water of Walnut street and Shriver's run it would seem best to take the water from the run at Saxton street and Pennsylvania avenue to Cherry street; thence along Cherry street to North street, thence along Rex street to Rex street, thence along Rex street to Shriver's run, south of the P., Ft. W. & C. R. R., a distance of 4,000 feet. This sewer should be six feet in diameter at the upper end, and 7 feet at North street and 7½ feet south of Tuscarawas street. It is proposed in connection with this to deepen and widen Shriver's run from Pennsylvania avenue to Washington avenue. Estimated cost of above: 4,000 feet of brick sewer at \$8..\$32,000 1,000 feet of Shriver's run deep-

ened and walled at \$5.50 . 5,500 Add for contingencies 10 per ct. 3,750

Total \$41,200 Respectfully submitted, J. H. HUMPHREYS."

The feasibility of a third plan had been considered by the Board, viz: making the sewer last named of sufficient depth to receive house sewage, making it a combined sewer so far as the main sewer was concerned. Maj. Humphreys' report, in response to the request of the Sewer Commissioners. was as foilows :

CANTON, OHIO, June 4th, 1883.

To the Sewer Commissioners of the City of Canton :

GENTLEMEN:—In compliance with your request I submit the following report with reference to a combined sewer which shall provide for the storm water of Shriver's run reference to a combined sewer which shall provide for the storm water of Shriver's run and Walnut street, and the house sewerage of the territory tributary to them. This plan would combine in a single work a provision for sewerage and storm water, and would be less objectionable than such sewers usually are in consequence of the continual flow through it of the waters of Shriver's run. It would however cost more than a sewer for storm water only, in consequence of the lower grade neceesary, and the increased amount of sub-soll water encountered in its construction. Should it be found necessary to dis-charge the sewage into the creek below Raynolds' dam it would entail the necessity of in-creasing the section of a sewer for this purpose at least as much as would provide for the ordinary flow of Shriver's run, the storm water being provided for by overflow into the creek. This plan would, I think, eventually cost more than that by which the storm water sewerage would be provided for separately. The following is an estimate of the cost of the combined sewer from the Fort Wayne railroad to the creek:

4,000 feet of section equal to a circle 8 feeet in diameter, cost \$14 a foot \$56,000.00 Previous estimate for part above Ft. W. R. R. 41,000.00

..... \$97,000.00 Total **.** . Respectfully submitted, J. H. HUMPHREYS.

It will be observed that this report by Major Humphreys confirms the correctness of the principle adopted by the Sewer Board, viz: Sewage to separate sewers, and rain water to special storm-water conduits. It was decided to build the Walnut street storm-water conduit as planned by City Engineer Holl, viz: A round sewer of brick having a diameter of 44 inches where it enters Shriver's Run and 3 feet at North street. Its length is about 3,500 feet. This work was accordingly recommended to the City Council at a meeting held May 4, 1884, and after preliminary steps had been taken, the following ordinance was passed:

"SECTION I. Be it ordained by the City Council of the city of Canton (two-thirds of all the members elected thereto concurring), That Walnut street, in Central Sewer District No. r, of said city, be improved and drained, between North street and the Pitts-burgh, Ft. Wayne & Chicago Railway in said city, by locating and constructing therein in and along the gutter on the west side thereof a good, substantial brick storm water sewer in such manner as to drain that part of said street and its abutting lots, of surface water. The same to be located, established and constructed in accordance with the plans and specifications on file in the office of the City Civil Engineer. SEC. II. The cost and expense to be incurred in making the contemplated improve-ment mentioned in Section 1 of this ordinance, shall be paid for and the means therefor provided in the manner stated in the next succeeding section of this ordinance. SEC. III. That the sum of \$2.500, now in the city treasury and certified to by the clerk and entered on the journal of this Council, be and the same is hereby appropriated toward the payment of the sewer out of the sewer fund now in the treasury; the estimated cost of such sewer being \$12,000, which amount of \$2,500 hereby appropriated shall be and is set apart for that purpose and shall be used for no other. SEC. IV. That the sum of \$3,000, which in the opinion of this Council would be re-quired to construct an ordinary street storm water sewer to drain the lots bounding and abutting upon said sewer in said district, be assessed per foot front upon the lots and lands bounding and abutting upon such proposed sewer by an assessing ordinance to be passed by the City Council in accordance with the laws and ordinances relating to the subject.

subject.

Subject. SEC. V. That to pay the remainder of the estimated cost of said sewer, viz: \$6,500, the Council shall provide by ordinance at the time of making their next annual levy for all purposes by levying by special levy a sufficient amount on all the real and personal property in Sewer District No. 1 of said city, whereby to realize a sum sufficient to pay the residue of the cost, viz: \$6,500.

Plan and Section of Man-Hole on Storm-Water Sewer. Sewer of single ring of brick.

provided for in the assessing ordinance, then the City Clerk shall certify the same to the County Auditor to be entered on the tax duplicate and collected by the Treasurer as other taxes are collected with the lawful penalty. SEC. VIII. That this ordinance shall take effect and be in force from and after its

passage and legal publication.

Passed September 15, 1884."

POWERS OF THE SEWER BOARD DEFINED.

Upon the creation of the Board of Sewer Commissioners it was generally supposed that the Board would have direct control of the erection of the works authorized by it, and approved by the Council; that in fact the same methods would be observed, and the same powers exercised, as by the Water Board and Health Board. The duties of the Sewer Board, in these respects are, however, limited by a State law, in these terms :

(FROM THE OHIO STATUTES.)

An Act to Provide for the Construction and Repair of Severs in Cities of the Second Closs.

SECTION 8251-2. "The Council, on recommendation of the Board, shall cause such sewer or sewers, specified in the plan, as may be designated by the Board, to be constructed.

By the terms of the law, therefore, the duties of the Board of Sewer Commissioners are ended when maps, plans and methods of construction have been specified and authorized. All contracts and expenditures are made directly under the supervision of the City Council.

FINANCIAL ENTANGLEMENTS.

In the course of construction of the Walnut street storm-water conduit several unlooked for embarrassments were encountered.

SEC. VI. That as soon as the levy has been made, as authorized by law and section 5 of this ordinance, the Council shall and is hereby empowered to provide by ordinance for the issuing and sale of the city's bonds in anticipation of the revenue to be derived from the levy on all property in said Sewer District, and the assessment so made upon such abutting property. The proceeds realized from the sale of such bonds, and the \$2,500 hereby appropriated, shall be used and applied to the payment of the contract price of said sewer and to no other purpose. And the amounts realized by said levy and the said assessments shall be applied in payment of the bonds issued therefor as the same become due.

SEC. VII. That the assessments herein provided for shall be a lien on the abutting property of the respective owners, and on failing to pay their said assessment at the time

STORM-WATER SEWER. Plan and Section of Man-Hole of Storm-Water Pipe Sewer.

The first of these was an injunction. obtained upon the application of the Whitman & Barnes Manufacturing Company, restraining the city from building the sewer through that company's premises. The route of the sewer, as planned by the Engineer, followed the old water course of the Walnut street open drain. This route took the sewer, by a curve, from the centre of Walnut street, eastwardly, through the Whitman & Barnes' grounds, and under the Fort Wayne tracks, directly into Shriver's Run. After a hearing of the case in the Court of Common Pleas the injunction was made perpetual.

The course of the sewer was then projected southward on Walnut street to, and across the Fort Wayne railroad tracks, and thence south-eastwardly across the premises of C. Aultman & Co., to Shriver's Run.

C. Aultman & Co. donated the right of way. The additional cost to the city, over that of the proposed outlet through the Whitman & Barnes' property, was \$1,482.80. This extension was formally authorized by the action of the Sewer Board, August 3, 1885, and the work was completed in conformity with this amended plan.

It will be seen that in this ordinance, as passed, "Sewer District No. 1" is mentioned as the district in which the sewer was located. This should have been "Sewer District No. 3," and the ordinance was accordingly also rectified in this respect.

A more serious objection to the ordinance was its taxing feature. That there should have been some bungling legislation in the commencement of this work is not surprising. Before the completion of the sewer, however, the justice and injustice of the taxing clauses of the ordinance had been well canvassed both in and out of the Council. The movement in the Council took shape by the introduction, on November 17, 1885, of the following resolution:

"RESOLVED, That the City Solicitor be and is hereby instructed to prepare and pre-sent to the City Council an ordinance providing that bonds issued for the construction of the Walnut street storm water be paid when due from the general sewer fund, raised by general taxation, and repealing existing ordinances providing that the cost of constructing the same be assessed upon sewer district No. 3 and upon property fronting on Walnut street."

Concerning the reasons for the proposed change we quote the language of Councilman Roberts, who spoke in support of the resolution introduced by him as follows:

"The Walnut street storm water sewer is now substantially completed, the expense of the same having been about \$13,000, of which there is yet due Mr. Adams in round numbers \$2,600. Under the ordinance providing for the construction of this sewer, and subsequent resolutions of the Council, this amount is raised by a special assessment of \$3,000 on the Walnut street property fronting on the sewer, \$6,500 by special assessment upon the property of Sewer District No. 3, and \$4,000 by appropriation from the sewer fund, raised by general taxation. A levy of one and two-tenths mills has been made upon all the property in sewer district No. 3, which is now due upon the tax duplicate at the Treasurer's office; the assessing ordinance raising \$3,000 from Walnut street property owners will soon have to be passed; and the balance of \$4,000 has already been appropri-ated and paid out of the general sewer fund. Bonds have been issued, running two years, in anticipation of the collection of \$6,500 from Sewer District No. 3, and this amount has been paid over to Contractor Adams. The collection of the \$3,000 special assessment would leave a balance of \$4,000 be returned to the general sewer fund, after paying the contractor the balance of \$2,000 yet due him. This in a nutshell shows the expense and financial status of the Walnut street sewer. "And now to return to the resolution introduced last evening. I have all along been

contractor the balance of \$2,000 yet due him. This in a nutshell shows the expense and financial status of the Walnut street sewer. "And now to return to the resolution introduced last evening. I have all along been of the opinion that the taxing of the people of Walnut street and Sewer District No. 3, for the construction of a purely storm-water sewer or drain was a rank injustice, the more so when it is considered that a year or two ago the city constructed exactly the same kind of a sewer on Pennsylvania avenue, and paid for the same by taxing every dollar of taxable property in the city. There was no suggestion of assessing the property owners upon that street so much per foot front, or that the cost should be saddled upon some sewer district; but it was very properly paid by the entire city. It was not designed expressly for the relief of Pennsylvania avenue, but for half a score of tributary streets draining into it, and was in every way a public necessity and a general improvement. "Now I take the same ground concerning Walnut street. If it was necessary to build a storm water sewer it certainly was not to merely dispose of the rain water falling on that street, but because it is used to drain a very large portion of the city. Surface and underground drains are constructed at the city's expense to carry water from distant streets into Walnut street, and then we levy an enormous assessment upon property owners of that street to carry it away. We use their streets as a natural drain or water course, and then charge them a good, round sum for the privilege we enjoy. But this is not the only injustice. A special levy to raise \$6,500 is made upon Sewer District No. 3, which largely comprises property and thoroughfares which can never by any system of engineering be drained into Walnut street. The boundaries of this district have been frequently published, and every citizen who is familiar with the sewerage question knows how unjust it is to tax all the property owners included in the district to construct a many of them can never expect to use.
"If it was right to tax the entire city for the construction of the Pennsylvania avenue sewer, regardless of the district drained, it is just as right that the Walnut street sewer should be paid for by general taxation. Of course in the case of a house sewer the premises are entirely different, and the same conclusions cannot be drawn. It is but right that each street should be assessed for house sewers constructed thereon, as they are more in the nature of local improvements, the entire city of course bearing a portion of the expense of main sewers.

the nature of local improvements, the entire dry of course beams - remaining -

The repeal of the existing ordinances would work no hardship to any property holder. In addition to the \$4,000 already appropriated from the sewer fund the city at large would be called upon to pay \$0,500 now provided for by special assessments, but this will not necessitate any increased levy upon any property in the city, as the bonds outstanding can be paid as they mature out of the general tax collection."

The view of the case taken by Mr. Roberts prevailed and the resolution above quoted, passed by the Council November 23, 1885, was carried into effect.

SMALLER STORM WATER DRAINS.

One of the arguments used in favor of a change of the taxing feature of the Walnut street ordinance, as first passed, was that quite a number of drains had already been built, the payment, in each instance, having been made from the general fund. The principal drains to which reference was thus made were as follows:

The Pennsylvania avenue sewer, 1,515 feet long and 3 feet in diameter, built in 1883, of which mention has been made on a previous page:

A 24-inch drain 520 feet long, from the Valley tracks to the creek, on West Tuscarawas street.

A 24-inch drain 250 feet long, draining a portion of East Tuscarawas street into East Creek.

An 18-inch drain on East Fifth street from Market to Walnut streets.

Also drains on East Seventh and East Eighth, from Market to Walnut.

A 24-inch drain on West Tuscarawas street, from High to Newton, a distance of 1,150 feet.

Drain pipes on North street, from Cleveland avenue to Walnut; also 18-inch drains 400 feet long on North Plum and Elizabeth streets.

As will be seen by the table printed on page 36, the use of a portion of these drains has been abandoned, the need of them having been superseded by the construction of the storm-water drains known as the Northwest and Southwest systems. These sewers were authorized by action of the Sewer Board, July 29th, 1889. For the route of these sewers we refer the reader to the map accompanying this report. Material, name of contractor, and cost are given in the table on page 36.

Storm water drainage is a problem whose permanent solution is sometimes attended with considerable difficulty. City improvements deflect water from their natural channels. The grading of streets, and the paving of streets, increase activity of flow, and consequent quick collection of waters, inflicting damages over areas not previously liable to such visitations.

The inadequacy of the Walnut street storm-water drain after occasional rainfalls of exceptional abundance is partially due to the above named influ-

ences. Also partially to the quick influx into it of the waters from the side streets which are improved and frequently freshly dug up. These swift currents scour up the loose earth and, once delivered into the conduit with more sluggish grade, their heavier portions fall as sediment and choke up the sewer.

The frequent clogging and considerable repair bills which attend the maintenance of the Walnut street sewer furnish a sgnificant object-lesson to the advocates of combined sewers. For contrasts between present inconveniences, and the perplexing conditions that would be inevitable if the volume of sewage flow was contributed to the contents of the sewer, must readily present themselves. Increased diameters could afford only temporary relief, for the sewer never was built, with no greater fall than the ground over Walnut street admits of, in which sedimentation from the same causes which now afflict that sewer could fail to occasionally fill it up, and necessitate large expense in its maintenance.

NEED OF ADDITIONAL STORM WATER DRAINS.

Looking to further improvements in this direction, City Civil Engineer L. E. Chapin said in his last annual report to the Council on the subject that it was his intention to present a plan for permanent relief in the near future. The same was foreshadowed by his observations on the Schriver Run problem, in the following language:

"This valley should constitute a storm water sewer district, having a drainage area of about 800 acres. From Lawrence avenue to Charles street the bottom of the run is at most not over six feet below grades of crossing streets, and as the gradients of such streets are usually quite flat, high water in the run usually results in the backing up of storm waters over an extended area of closely built up and valuable property, causing

storm waters over an extended area of closely built up and valuable property, causing much damage. "The improvement of this run, either by straightening and deepening and walling up, or by constructing a covered-in sewer at a depth of say ten feet below grade of streets, would result in lowering the ground water to that extent, besides bettering the surface drainage of all the flat adjacent territory. This improvement 1 regard of much import-ance, and steps should be taken to begin such improvement. This would result in a free outlet to the Walnut street sewer and 1 think almost entirely relieve it from its oftentimes surcharged condition, due to obstructed outlet. A large proportion of the benefits of this improvement being local, it might be possible to provide for a portion of the total cost by assessments of property so benefitted."

PROPOSED CONDUIT FOR SHRIVER'S RUN DISTRICT.

The plan of Engineer Chapin was more fully outlined, and estimates given, in his report to the City Council on January 30, 1893, as follows:

In the early part of 1892, by resolution of the Council, I reported an estimate of cost for the brick conduit sewer, located on present route of the Shriver's Run, and extending for the brick conduit sewer, located on present route of the Shriver's Run, and extending from North street to Charles street. And during the past year, having had time to be-come better acquainted with the problem, I am of the opinion a better route can be had by following Saxton street from North street to the P. Ft. W. & C. Ry., thence across those tracks to Liberty street, and thence down Liberty street to the East Creek. The advantages of this route are:

The advantages of this route are: I. City owns entire right of way of ample width from North street to the creek except about 150 feet only, across the Ft. Wayne tracks. 2. Entire absence of trees, timber, bridges and other obstructions. 3. Avoidance of danger of injury to the main house sewer, which owing to its loca-tion close to run, would be endangered by the excavations and be expensive to protect. 4. A decreased length of sewer, the route being about 3,000 feet shorter from North Street to creek, saving about 600 lineal feet of work over former plan which ended at Charles street, while present route contemplates improvement running to the creek. 5. A better outlet to the sewer, it, on Liberty street, discharging in the direction with the flow of the creek.

A lower grade of the sewer, resulting in its adaptability for local drainage to a 6. much greater distance laterally and permitting the thorough drainage of the flat streets lying immediately east of the run.

WATER SHED.

The area of water shed contributing to flow of the run is approximately 1,000 acres, and the volume of water from it and reaching the stream in times of heaviest rainfall is 260 cubic feet per second, based on a rainfall of one inch per hour on the entire surface, assuming the future development, when built up, to result in an average of 24 per cent. of the area to be pavements, buildings and such other impervious surfaces.

GRADES AND DIMENSIONS.

Starting at south line of North street at elevation 67.30 for the bottom of sewer, a uniform fall of 25-100 feet per 100 feet can be secured for the entire distance of 5125 feet to the creek, resulting in elevation of invert at mouth of sewer of 54.50 or 7-10 feet above mean water level of the creek. With this grade, and to carry a maximum of 260 cubic feet of water per second a sewer $6\frac{1}{2}$ feet in diameter will be required. And its capacity by Kutter's formula will be 268 cubic feet per second, which is the size recommended.

WALNUT STREET SEWER.

The above dimension contemplates the extension of the present 3-foot sewer in North street by a 4-foot sewer from Walnut street to the new improvement in Saxton street, thus relieving the Walnut street sewer from all storm water on territory north of North street and also that reaching North street from North Market street and North Cleveland avenue.

Having removed this quantity of storm water from the Walnut street sewer, and diverted the Shriver Run water from its present course to the proposed route, would result in a free discharge of the Walnut street sewer into the bed of the run. But to effectually nut after any possible nuisance from this source, it is proposed to continue the present Wal-nut street sewer by a 4-foot sewer to a point below Charles street. This work requiring but little excavation and being of comparatively small diameter would not interfere with any existing improvements and be done at small expense. Provision has been made and allowed for the future construction of lateral sewers on Eighth threat and also the territory adjacent to the Mallachle Iron Warks.

Eighth street, and also for the territory adjacent to the Malleable Iron Works.

ESTIMATED COST.

Main sewer, $6\frac{1}{2}$ feet in diameter	\$59,137	50
Enter at North street, outlet and man-holes	. I,IOO	00
Extension of North Street sewer	. 3,510	00
necessary changes to existing house sewers	. 2,000	00
Painting, inspecting and contingent costs	. 1,252	50
Total Extension of Walnut street sewer	.\$67,000 . 8,000	00
Total estimated cost	.\$75,000	00

A long time bond at low interest rate could be floated, perhaps a 30-year at 4 per cent, which would make an annual interest charge of \$3,000, necessary to insure the complete drainage of this portion of Canton in which are located the many manufacturing plants, the success of which has contributed to the growth of our city, and which have been put to serious disadvantage and much annual expense by the lack of passable streets during one-third of the year, permanent street improvements being impossible without the essential of perfect drainage."

It was resolved to adopt the plan presented and to commence work on the sewer as soon as the needed legislation had been obtained and the legal preliminaries had been complied with.

COMMON S TRAP BACK VENTED.

STORM WATER SEWERS.

SHOWING LOCATION, SIZE AND COST OF ALL BUILT TO MARCH 17, 1893. PREPARED BY L. E. CHAPIN, C. E.

	COST,	\$1 337.12 2.4.5.645.71 2.4.6.645.71 3.5.6045.71 3.5.6045.71 3.5.6045.71 3.5.604.49 3.5.604.49 3.5.604.49 3.5.604.49 3.5.604.49 2.6773.68 2.6773.68 2.6773.68 2.6773.68 2.663.008 5.655.26 6.655.24 745.64	
	CONTRACTOR	Jae McKinney Jae. McKinney Ada Rotkinney Ada Brons Brosney Atams Brosney Frank Riley Frank Riley Frank Riley Berry & Davis, Berry & Davis, Berry & Davis, City City City	
HOTA.	No. U	∞45200∞5∞1−015 → 01− 001 40024∞55	171
SHIOL NO.	ON TNAM		5
	12	15 7712 7716 7716 7716 7716 7716 7716 7716	1866
PE. DIAN	15	8442 8442 644 8442 8442 8442 8442 8442 8	4012
PI	18	350 350 350 350 360 3000 3800 3800 3800 3800 3800 3800	3667
H	20		374
	134	452 15455 1016 1016	2334
	5	524 2387 5387 5387 5387 482 640 6500 6500 6500 6500 6500 6500	960 1
	$2_{3_{4}}$	800	1593
	21/2	1212 1212 1212 1212 1212 1212 1212 121	1389
.H	223	1104	2466
AMETR	23.	720	720
т D1/	ŝ	591 591 403 700 600	4975
-FRH	314	1904	2578
RICK.	3½	450	3708
E.	334	617 5876	2992
	4½	888	826
	5%	88	808
	9	1278	1278
	r3	1004	1664
		Second St., from Cleveland to Wahutt North St., from Cleveland to Wahutt Central. Southwest and Branches Werst Tuscarawas St., and Branches Werst Tuscarawas St., Young to Creek West Tus St., Creek to Linoon Muberry St., Liberty to Shriver's Run Sevonth St., Market to Wahut Eighth St., Market to Wahut Eighth St., Market to Wahut Bex St., South to Shriver's Run Walnutest, North to Shriver's Run * North St., Poplar to Wahut * West Tus. St., Creek Eastward * West Tus. St., Creek Eastward * West Tus. St., Creek Eastward * West Tus. St., Creek Bastward * Worth St., Market to Wahut * Worth St., Poplar to Wahut * Worth St., Poplar to Wahut Bighth St., Pleamont to Wahut * Worth St., Market to Wahut Bighth St., Cleek Bastward * Frifth St., Fledmont to Wahut Bighth St., Cleek Meant to Wahut Bighth St., Cleek Maant of Raynolds Biown Ave., Tus. to Collins and Fifth Tuscarawas St., Plum to High	TOTAL FEET.

* Abandon' d.

HOUSE SEWER SYSTEM.

Wishing to dispose of one branch of Canton's sewer system before taking up the other we have, in describing the city's storm-water drains, proceeded considerably beyond the practical inauguration of house sewers, in point of time.

As before stated, Major Humphreys, who had been engaged to prepare plans, reached Canton on May 16, 1883. After the necessary topographical examination had been made he and City Engineer Holl furnished the information in regard to storm water conduits which had been requested of them. He then gave his attention to the house sewer system. His first report was as follows:

To the Sewer Commissioners of the City of Canton:

GENTLEMEN:—In compliance with your request I have made some examination of your city with reference to a sewer system, especially as to the location and approximate estimate of the cost of a main sewer

In this case pretty much all is wrong. A vent pipe, in-stead of going above the roof, stops under a window. Another vent pipe is too small. No traps, no tight joints, no iron soil pipe under the house, no fall to the sewer. Rain water cisterns above and below communicate directly with the sewer. It is an extreme, and an extremely bad case. Yet all these things have occurred.

is herewith submitted. The main sewer is designed 20 inches in diameter from Nmishil-len Creek to Douglas street, 18 inches from Douglas to Ninth street, 15 inches from Ninth to Third street, and 12 inches from Third to North street. The construction of the sewer is estimated to cost \$16,000.

A profile for the preliminary survey for the extension of the main to a point below Raynold's dam on Nimishillen Creek is also submitted. This extension would cost about Respecectfully submitted, \$8,000.

which would remove the sewage from the business and most thickly popu-lated portions of the city. I find a route already suggested by Col. War-ing on Walnut and South Market streets which would discharge near the confluence of the two creeks. My es-timate of the cost of this sewer is \$17,500.

I have also partially examined a route down Walnut street to the Fort Wayne railroad, thence through pri-vate property, and near Shriver's Run to the East Creek. This I think may be built for about \$13,000. A further examination of the two routes is necessary before a choice between them should be made.

Respectfully, J. H. HUMPHREYS.

After making further surveys he reported again as follows:

To the Sewer Commissioners of the City of Canton:

GENTLEMEN:-In obedience to your instructions, the main sewer on Walnut street and along Shriver's Run, from North street to Nimishillen Creek, has been located.

A profile of this route, and specifications of the work required to construct the sewer, together with a map showing the location of the main sewer, and

CANTON, O.. June 30th, 1883.

The profile, specifications and maps referred to in the above report constitute the basis of the sewer system of Canton as it is in operation to-day. Very few deviations were made in the lateral sewers.

Succession 1 -

and an excel

The route of the main sewer proposed by Major Humphreys was changed. Instead of going directly south to the creek, its course is south only to a point just south of the C., C. & S. railroad track, thence southwestardly, along the railroad track to Allen street, thence south, on Allen street to a point near the creek, which is now the sewage farm. The route is shown on the map accompanying this report.

The diameters of the main sewer were adhered to, as specified, with the exception that the portion from Third to North streets was made 15 inches instead of 12 inches in diameter.

The specifications prepared by Major Humphreys also ultimately underwent some minor changes, owing to the change in diameters and the changed route of the main sewer. They will be presented later on.

Major Humphreys, at the request of the Sewer Commissioners, also presented a preliminary report on the subject of the disposal of the city's The plan did not, however, recommend itself suffisewage by absorption. ciently to warrant any action.

He also made a survey for the purpose of fixing the boundary of Sewer District No. 3 in compliance with the following ordinance:

SECTION NO. 324 OF THE REVISED ORDINANCES.

Ordering the Division of the City into three Sewer Districts.

For the purpose of draining the city of Canton with water and house sewerage, suitable For the purpose of draining the city of Canton with water and house sewerage, suitable and proper sewers shall be constructed from time to time whenever deemed expedient by the Council and in accordance with such general plan, to be adopted by the Commissioners of Sewers and approved by the Council of the city. And for the purpose of taxation to build, construct and maintain the same or any part or portion of it, the said city shall be, and the same is hereby divided into three (3) several and separate sewer districts, named and numbered respectively as follows: East Sewer District of the city of Canton, and numbered one (I); also West Sewer District of the city of Canton and numbered two (2); and Central Sewer District of the city of Canton and numbered three (3).

SECTION NO. 325 OF THE REVISED ORDINANCES.

Fixing the Boundaries of Sewer District Number Three.

The limits and boundaries of the sewer district to be known as the Central Sewer

District of the city of Canton No. 3, be and the same are hereby fixed as follows, to-wit: Beginning at the point where the main sewer crosses the Connotton Railroad near Shriver's Run; thence eastward with said track to Liberty street; thence northwardly with Liberty street, including the lots fronting on the east side of same to Mulberry street; Sinfver's run; thence eastward with said hack to Liberty street; thence northwarday with Liberty street, including the lots fronting on the east side of same to Mulberry street; thence in an eastwardly direction with Mulberry street (including the lots fronting on the south side of the street) to Ninth street; thence north to the Pittsburg, Ft. Wayne & Chicago Railroad; thence northeastwardly with track of said railroad to a point in the line with Herbruck street (produced); thence northward with said line and Herbruck street to Second street; thence westward with Second street, including lots fronting on north side of Second street to the line of Correll street (produced); thence northwardly with that line and Correll street, including the lots fronting on the east side of that street to Washington avenue; thence westwardly with that street, including lots fronting on the north side of that street, to Spring street; thence northward with Spring street including lots fronting on the east side of that street, and abutting thereon, to the north with said avenue including lots fronting on west side of same to Summit street; thence westward with Summit street to Plum street; thence southward with Plum street, includ-ing the lots fronting on the west side of the street to Third street; thence westward with Third street including the lots fronting and abutting on west side of same to Fifth street; thence westward with Fifth street including lots fronting on north side of same to the line between the lots Nos. 1598 and 1600; thence south with said line as

ŧ

feet above the top of sewer.

between lots Nos. 1617 and 1618, to Tuscarawas street; thence westward with said street including lots fronting on the south side of it to the alley on west side of out lot No. 101; thence southward with that alley to Eighth street; thence east on Eighth street including lots fronting on south side of same to Marion street; thence southward with Marion street lots fronting on south side of same to Marion street; thence southward with Marion street to Tenth street; thence eastwardly with Tenth street including lots fronting on south side of same to High street; thence south on High street including lots fronting on the west side of the street to South street; thence eastwardly with South street (south side of same) to Plum street; thence south with Plum street including lots fronting and abutting on west side of same to Cedar street; thence eastward with Cedar street including the lots fronting on south side of same to Market street; thence southward with Market street including the lots fronting on west side of said street to Valley Railroad track; thence southward with said track to the Connotton Valley Railroad; thence eastward with the last named track to the beginning. (Sept. 17, 1882.) last named track to the beginning. (Sept. 17, 1883.)

SECTION NO. 326 OF THE REVISED ORDINANCES.

Leaving Exact Boundaries of East and West Sewer Districts to be Established when deemed Expedient.

That the exact boundaries and limits of the east sewer district of the city of Canton numbered one (1), as well as that of the west sewer district of the city of Canton numbered two (2), shall be fixed and established by an ordinance to be passed by the Council for that purpose, whenever deemed expedient by the Council of that city.

With this report, fixing the boundary of Sewer District Number 3, Major Humphrey's term of service was brought to a close. The work done by him amply confirmed the recommendations that preceded his coming. In fact the controlling recommendations of our city sewer system are largely due, in part to him, and in part to his more distinguished predecessor, Col. George E. Waring.

The minutes of the Sewer Board, July 5, 1883, contain the following memorandum:

"It was deemed expedient to dismiss Major Humphreys for the present.

"First-Because he has fixed the route of the sewers, mapped and districted the area of the city, made necessary profiles and specifications, and done all that can and will be accomplished b-fore the actual work of building the sewers is commenced, and "Second-Because, in the opinion of the City Council, money for the purpose of building the sewers cannot be provided before September 1st; and perhaps a longer time will elapse before the required funds are provided."

THE SEWER PROJECT TAKES A FIVE YEARS' REST.

The outlook for the form of relief furnished by a system of sewers at this date was far from encouraging. The City Hall was in process of construction and absorbed all the attention and all the available money at the disposal of the municipal authorities. The Council did, however, go so far as to pass a resolution authorizing a popular vote on the question of sewers at the April election in 1864. The majority in opposition to sewers was 604.

Taken as an indication of the popular wish this result was meaningless, or at best misleading. The form of voting was simply, "Sewers, Yes," "Sewers, No." Not one hundred voters had informed themselves as to the plans proposed. When these plans, the cost and the advantages came to be understood there was a revulsion in feeling. As a stimulant to investigation the sewer election happily resulted in some benefit.

During the next three years there is little to report. The unrest increased. In 1884 the cholera invaded Europe and there was the general warning to clean up. The following memorial was presented to the Council:

To the Cily Council :

In view of the prevalence of contagious diseases, and of the possible spread of epidemics dangerous to life to this portion of the country, and of the well established fact that the danger from such epidemics is greatly increased by the retention of offensive waste matters in, or near the homes of the people, we would urge upon the City Council the necessity of immediate action for the construction of house sewers as a sanitary measure of the first importance. The health and general welfare of our city have already suffered much from want of sewers. In the presence of the danger that now threatens, any further delay will be inexcusable and suicidal.

WM. DANNEMILLER, WM. A. LYNCH, JOSIAH HARTZELL, Sewer Commissioners.

CANTON, July 28th, 1884.

The city Board of Health instructed a committee to report as to the best means of promoting the public health. An extract from said report is as follows :

Third—These drainage wastes may be hauled away in vehicles, or may be removed beyond the city limits by means of properly constructed drains or sewers. Owing to the imperfect working of the first-named method, and to the enormous expense it entails, if thoroughly done, we would recommend the construction of a house sewer system for the accomplishment of the purpose named in your resolution.

R. P. JOHNSON, J. H. DUMOULIN, Committee of the Board of Health.

May 27, 1886.

Grevious complaints were made by householders and business men. Public improvements were hindered. The public business suffered. Complaints about the condition of things at the county buildings became a matter of record. A few extracts will reveal their nature :

Extract from the report made by the Grand Jury to the Court of Common Pleas, October 26, 1883:

"The Grand Jury report the basement of the jail in a very unhealthy and filthy condition, caused by the filtration of water, more or less impregnated with refuse matter from the cesspool on the west side of the jail into the basement. They recommend steps to obviate this nuisance."

From the Grand Jury report, January term, 1884:

"We find the basement of the jail in a most filthy state. * * * The grand jury are of the opinion that nothing further can be done to abate the nuisance existing about the buildings, except what the commissioners are doing, until some good sewerage system is adopted and constructed."

During the same term of Court Judge Pease, after charging the Grand Jury, said:

"Last term the Grand Jury of this County in their report represented that the basement of the jail was in a horribly filthy state, arising from the overflow from the cesspools surrounding it; that this state of things was a matter over which the sheriff had no control and for which he was in no way responsible, and the commissioners in said report were asked to give it immediate attention and to purify it, as will be seen by their report which will be furnished you if you desire it. If you visit the jail early you will find a portion of the contents of the cesspools on the bottom of that jail cellar, which makes it in a terribly filthy condition. We get the horrible air arising from that filth, and not a term passes but what men are prostrated here before our very eyes from its effect; and the wonder is that every one of us are not sick. The officers complain, the inmates of the jail complain, and the Commissioner's attention has been called to it by the report I have mentioned, and by the Board of Health of the city. All public buildings are under the direct supervision of the Commissioners, and it is their duty to keep them all in a healthy condition. The visiting committee appointed one year ago has made a special report, which has been published and which, doubtless, many of you have read; this report will be presented to you and you will see by that that they call the attention of the Commissioners to this same thing. I have severnl times spoken to you in regard to it. It is insufferable and unbearable and delay in remedying this is dangerous and should be punished. As I said before, sickness of the persons whose duty it is to be around here is caused by it. The condition of our Sheriff to-day, I have no doubt, is more or less due to this. And now, I desire to recommend to you, as a Grand Jury, take this matter into your consideration, and I refer you to the section of the statute (Judge Pease read the section of the statute pertaining to a commissioner's neglect of duty being a cause for removal from office. (Here he read the section in full relating as above). Now, gentlemen, unless you are satisfied that measures are being taken to speedily remedy this matter, I recommend that the Commissioners be indicted."

DANGERS TO WELL WATER.

WELL.

Drainage area.

CESSPOOL.

Cone of pollution.

THE CITY COUNCIL OF 1887-1888 INAUGURATES ACTIVE WORK.

To be assured that the drainage area of the well, and the filtration, or pollution scope of the cesspool, are as portrayed elsewhere one has only to recognize the facts. The situation shown in the picture was discovered, and the well suppressed, only after a considerable number of persons had been sickened, some of whom died. A leaky sewer pipe is about as bad as a cesspool. At best, well water in a thickly settled place must be regarded with suspicion. The well here referred to was noted for the sparkling purity of its water.

With the advent of the City Council, which came into control in the spring of 1888, the Sewerage project assumed a more hopeful aspect. The danger of further delay was great, and the increasing irksomeness of the "odorless excavators" had become intolerable. The conviction that the inauguration of a wisely planned drainage system would be approved, and should be no longer deferred, was shared by every member of that body. The Sewer Commission and the Engineer made known that which they would recommend, with their reasons therefor, and the estimates which the proposed improvements would require. As the money would have to be furnished and the practical work done, by the Council, measures looking to the achieve-

ment of these purposes commenced to be canvassed.

SEWAGE DISPOSAL PRELIMINARIES.

Two questions remained to be disposed of before any positive action on the part of the Council would be vouchsafed. One was a stumbling-block of threatening proportions, viz.: the problem of sewage disposal.

The effluent of the proposed system, and of any system, would eventually have to flow into the creek, south of the city. Whether used for irrigation, or treated in any manner known to science, the resultant water would inevitably have to pass off by that route.

Persons having riparian interests that would be affected acknowledged this, but they made known their reasonable objections to the use of the creek by the city a as means of conveying away sewage in its crude form. Besides, the language of the State law leaves no doubt as to the attitude the courts would have to assume toward the party who would attempt such a wholesale pollution of a fresh water stream.

It is popularly known that the crude outflow of many city sewer systems is delivered directly into streams of considerable size, and is defended on the ground that the evil is cured by dilution. But the sanitary history of populations living contiguous to streams that are so employed does not confirm.

the correctness of any such theory. Exactly the contrary is true. The history of the Ohio River, in more recent years, is a case exactly in point. The scheme which has for its purpose the drainage of the sewage of Chicago through the Illinois River is also defended on the dilution theory. Such a proceeding is out of harmony with the scientific advancement of this age and, under the laws of Ohio, it would be impracticable of realization.

But granting that the evil of stream pollution may, to some extent at least, be modified by large dilution, the volume of water in the Nimishillen at the minimum stage is totally inadequate. The approximate average flow from the several tributaries which constitute its current are as follows:

	Per	Minute.	
Gallons per minute (at Tuscarawas street bridge)		1,400	
From springs between bridge and junction of creek		2,000	
From East Creek		3,000	
From other springs		600	
	-		
1 Otal	••	7,000	

The safe waste should not enter the trap in this manner, for any stoppage in the trap would force the sewage back, via the waste-pipe, into the house.

Neither should the safe-waste be connected to the soil pipe, for this would conduct sewer air into the house. To obtain a correct adjustment consult a good plumber.

Inasmuch as the effluent of crude sewage from the city sewers would probably reach one million gallons daily it becomes apparent that, certainly in our situation, all the dilution obtainable would be simply a farce.

This subject in many of its phases had already engaged the serious attention of the Sewer Commissioners and they were of the opinion that the city, in a matter of such a complex nature, and involved in so much difficulty and doubt, resort should be had to the safest and most successful engineer in this special Their choice fell upon Samuel M. field. Gray, of Providence, R. I. Mr. Gray was recommended and employed for the purpose stated. He reached Canton on January 22d, 1887.

Assisted by City Civil Engineer Holl, Mr. Gray spent the following three days in making an examination of our situation. His report, which was placed on file on March 8th, was as follows:

ENGINEER GRAY'S REPORT.

Messrs. William Dannemiller, President; Josiah Hartzell, Secretary; W. A. Lynch, Daniel Parr, Dr. E. O. Portmann, Sewer Commissioners :

GENTLEMEN :-- Having carefully considered the question submitted to me, viz : The disposal of the sewage of Canton, I respectfully present the following report: In order to make estimates and comparisons of cost it is necessary to assume some definite number of people to be provided for not only for the present, but also for the

future. Errors may be made by over estimating as well as by under estimating for the future, and there is a limit beyond which it is not wise to provide. I have based my estimates on a present population of 12,000 inhabitants connected with sewers, and for a future population of 50,000.

METHODS OF DISPOSAL.

The principal methods for disposal of sewage are as follows: Crude disposal, disposal by broad irrigation, by intermittent filtration, and by chemical precipitation; the latter sometimes is supplemented by filtration through land.

We will consider these in the order named.

CRUDE DISPOSAL.

In crude disposal the sewage is collected at one or more convenient points, and there discharged in its crude state directly into the ocean, lake or running stream. This system is admissable when the currents are sufficiently strong, and the volume of water sufficiently large, in proportion to the quantity of sewage discharged, so that no nuisance is caused thereby. Exceptions may be taken to this disposing of the sewage where the water from the stream is taken for domestic supply below the point of sewage discharge.

BROAD IRRIGATION.

In this method of disposal the sewage is turned upon the land for the purpose of irrigation, as well as for the purification of the sewage, the earth acting as a purifier of the foul liquid by first arresting upon its surface the coarser substances; the particles sufficiently minute to pass into the earth are next caught; the water thus freed from insoluable matter descends into the earth and is absorbed by the soil, and oxydized by the air in the ground. It is quite essential for the successful working of irrigation, that the land be so underdrained that the purified water may be readily taken from the ground. Soils differ in their powers of purification, but it has been found by experience that on an average one acre of land is required for the disposal of the sewage of one hundred people.

INTERMITTENT FILTRATION.

This system of disposal is in some respects not unlike broad irrigation; the main difference being that the ground is more thoroughly underdrained, more care taken in preparing the surface, which is brought to a level. The solids are allowed to settle in tanks, after which the sewage is intermittently applied in much greater quantities than in broad irrigation. It is not unusual to apply the sewage of eight hundred or one thousand people to the acre.

In intermittent filtration it is necessary to remove the solids from the sewage before applying it to the land, which is done in single tanks by sedimentation only (no chemicals being used) while in broad irrigation only so much sewage is applied as the crops are able to receive without injury.

CHEMICAL PRECIPITATION.

Chemical precipitation consists in mixing with the sewage certain chemicals which precipitate all solids held in suspension. The mixture of chemicals and sewage being allowed to flow into tanks where it comes to an absolute or comparative rest, and the precipitated matter settles to the bottom of the tanks and is called sludge, the effluent or clarified liquid being allowed to flow off into the nearest stream. The sludge contains about ninety per cent. of water and is in a semi-fluid state, and is best treated by the use of hydraulic filter presses by which the amount of water is reduced to about fifty per cent. of the weight of the sludge. As it comes from the presses the sludge is nearly devoid of odor and is of such compactness that it can be readily handled. The general features of precipitation works may be briefly stated as follows: Mechanical arrangements for separating the grosser solids from the sewage, and for dissolving the chemicals and mixing them with the sewage; tanks of the proper size for the precipitation of the impurities; channels for the escape of the effluent; pumping machinery for removing and handling the sludge from the tanks; presses and conveniences for the removal of the pressed sludge ; buildings for the protection of the machinery; store houses, etc.

channers for the escape of the effluent; pumping machinery for removing and handling the sludge from the tanks; presses and conveniences for the removal of the pressed sludge; buildings for the protection of the machinery; store houses, etc. From the information furnished me, I am of the opinion that you can safely practice crude disposal for a part of the year for some time to come, emptying the sewage into the Nimishillen creek, at a point west of Mr. Miller's house, below the dam. There would, however, probably be times during the season when crude disposal would not be satisfactory; and the time will doubtless come when, as the city grows, such disposal will cause a nuisance. Your authorities inform me that if crude disposal should be practiced during the entire year action would be taken to prevent the same during the low stage of the creek; and it is therefore necessary to provide some other mode of disposal. The most suitable tracts of land for irrigation or intermittent filtration within reasonable distance of the city are the Sarver fields and the Carnes land. If irrigation or intermittent filtration be adopted, it will be wise to secure, if possible, the amount of land required for future use, preparing only so much as is needed at the present. If precipitation be adopted, the works should be of proper size to treat the sewage for the present, and at the same time be capable of extension to meet further needs.

ESTIMATES FOR BROAD IRRIGATION.

SARVER FIELDS.

Extending sewer	. \$ 5,500	00
Engine and pump, house and land for same, force main, etc.	105.000	00
reparing 120 acres	. 30,000	00
Tetal	.\$146,600	00
Contingencies	21,990	00
Sum total	\$ 168,590	00
Interest on cost of 4 per cent	. \$ 6,743	60
Cost of pumping per annum	. 2, 042	00
Total expenses per annum	. \$ 8,789	00

CARNES LAND.

Extending sewer Engine and pump, house and land for same, force main, etc. 300 acres of land at \$300 per acre	\$ 9,660 6,100 90,000	00 00 00
Preparing 120 acres		
Total	135,760	00
Contingencies	20,354	00
Sum total	\$ 155,123	00
Interest on cost	\$ 6,244	96
Cost of pumping per annum	1,942	40
Total expenses per annum	\$ 8,187	46

ESTIMATE OF INTERMITTENT FILTRATION.

SARVER FIELDS.

Extending sewer. Engine and pump, house and land for same, force main, etc	. 1	\$ 5,500 6,1000	00
Preparing 13 acres of land, sludge tanks, etc		10,450	00
Total Contingencies	\$	39 ,65 6 5,932	00 50
Sum total	\$	45,482	50
Interest on cost Cost of pumping per annum	. ;	\$ 1,819 2,420	30 00
Total expenses per annum	\$	3,861	30

CARNES LAND.

Extending sewer Engine and pump, house and land for same, force main, etc.	\$ 9,660 6,100	00
50 acres of land at \$300 per acre	15,000	00
Preparing 12 acres of land, sludge tanks, etc	10,450	00
Total Contingencies	\$ 41,210 6,181	00 50
Sum total	\$ 47,391	50
Interest on cost	\$ 1.805	66
Cost of pumping per annum	1,942	50
Total expenses per annum	\$ 3.838	16

ESTIMATE OF PRECIPITATION.

RAYNOLD'S BOTTOM LANDS.

Filter presses, chemical mixers, etc	. \$	10,500	00
nouse, tanks, connections, etc.		6,200	00
20 acres of fand at \$350 per acre	•	7,000	00
Total	\$	23,700	-00
Contingencies	•	3,555	00
Sum total	\$	27,255	00
Interest on cost		\$ 1,090	20
Cost of treating sewage 4 months in the year		2,000	00
Total expenses per year	. \$	3.000	20

BRILLHART BOTTOM LANDS.

Extension of sewer Filter presses, chemical mixers, etc House, tanks, connections, etc 20 acres of land at \$160 per acre	. :	\$ 6,440 10,500 6,200	00
Total	. \$	26,340	00
Conungencies		3,752	00
Sum total	.\$	30,201	00
Interest on cost		\$ 1.211	64
Cost of treating sewage 4 months in the year	•	2,000	00
Total expense per year	.\$	3,211	64

From the data furnished me neither the Sarver fields nor the Carnes land seems to contain more than 300 acres, an insufficient quantity of land for broad irrigation, having regard for future needs. Aside from the deficiency of land, a glance at the estimates will show the impractability of broad irrigation at either of these locations. A comparison of the estimates for intermittent filtration at the Sarver fields and the Carnes land shows the first cost of the former to be slightly less than that of the latter, while the annual ex-pense of operating the farm is slightly in favor of the Carnes land. For this reason and from the fact that the Carnes land is more remote from the city and the Sarver fields lie in the track of the proveniling summer winds to the city. the Sarver fields may be available in the track of the prevailing summer winds to the city, the Sarver fields may be excluded from further consideration. It will be noticed that for crude disposal, or for precipitation, pumping is not required, while for irrigation or filtration at either locations pumping would be necessary. Neither the estimates for irrigation nor for filtration includes the cost for taking care of the sewage after it had been delivered on the ground, it being assumed that

THE INCOME FROM THE CROPS

will meet this expense. The estimates for precipitation are based on a location at the Raynold's bottom land, and the Brillhart bottom land, either of which locations is suitable Raynold's bottom land, and the Brillhart bottom land, either of which locations is suitable for such work, the Raynolds bottom land being the most desirable from the nature of the soil and the lay of the land. As sewage is more fully purified by irrigation or filtration than by precipitation I have included in the estimates for precipitation the purchase of twenty acres of land; this amount of land is not necessary at present and will not proba-bly be so for some time to come, but if in the future, towns below should take water from the creek for domestic purposes it may be necessary to filter the effluent through the earth, and it would be well to have land for that purpose. It is difficult to estimate the annual cost of chemical precipitation, for much will de-pend upon the required purity of the effluent and upon the portion of the year it will be necessary to treat the sewage. For the purpose of comparison of the cost of operating the different methods. I have assumed the expense of precipitation as

different methods, I have assumed the expense of precipitation as

FIFTY CENTS PER HEAD PER ANNUM,

which I believe in your case is quite enough, and this is intended to cover the cost of treating the sewage twelve months in the year. After carefully considering all the existing conditions in your case I recommend chemical precipitation to supplement crude disposal, so far as it shall be found necessary, and this I believe will prove the most applicable to your needs. As before stated it will be well to secure land for the filtration of the effluent should it become necessary in the future. There will probably be much of

the time to come when crude disposal may be made of the sewage or to say the least, the chemical treatment need not be carried to a high degree of perfection. I am informed that some parties are ready to contract with your city to take the sludge from the tanks free of expense to you, and while I cannot encourage the expectation that such arrange-ments will prove lasting or satisfactory, still it may not be unwise to consider such an offer from responsible parties, and should you be able to make such arrangements perma-nently the cost of the works would be much reduced, for you would thereby be able to do without the filter presses and other parts of the plant included in the estimate. I desire to acknowledge my indebtedness to Mr. John H. Holl, City Engineer, for much valuable information furnished me in a very concise and comprehensible form. SAMUEL, M. GRAY.

SAMUEL M. GRAY.

On July 28th, 1887, the following projects were recommended by action of the Board of Sewer Commissioners :

"First—The adoption of the plan of sewage disposal recommended for Canton by Samuel M. Gray in his report to the Commissioners, viz.: by precipitation, and

"Second-The purchase by the city of twenty-seven and fifty-eighths one hundredths (27 58-100) acres of land near the intersection of Allen and Kimball streets, now owned by Louisa Staufer, for the purpose of carrying the plan above recommended into effect."

The tract of land above named was bought by the city on January 30th, 1888, for the price of \$4,000.

Concerning the reasons which actuated the Sewer Board in taking this step a very few words will have to suffice. The present report aims to present that which has been accomplished, and the latitude that is permissible for sustaining argument and testimony is necessarily very restricted. lt will easily be believed that a detail of the considerations which had more or less bearing on our decision in this matter would, of itself, require more space than 'several entire documents as large as this report.

What will you do with the sewage ? had been a grave conundrum with the sewers' friends ; it was also a favorite flippancy of the sewers' enemies. For non-professionals the proper answer was :

We do not know. We do, however, know that sewage disposal problems far more vexatious than ours have been satisfactorily and permanently solved. We also know that the services of the engineers who have planned sewers and sewage disposal under similar and even more intricate conditions, can be had to answer this important question satisfactorily and with scientific and mathematical correctness. Until such answer is made by an engineer whose record of success justifies entire faith in his conclusions, it is nearly, idle for persons without knowledge or experience to speculate as to the best method of disposing of the drainage wastes of our city.

Such were the opinions which had been formed by the members of the Board of Sewer Commissioners after a somewhat careful study of the available printed literature bearing on this vexed problem.

Mr. Gray was, himself, the largest contributor to published knowledge He had visited, and made a study of all the sewage in this field. disposal plants in Europe, and his report on that subject was recognized as that of the highest value. His character and qualifications were known to be such as would confer upon his recommendation for Canton the greatest authority.

As has already been stated, the Sewer Commissioners felt justified in adopting the plan recommended by Mr. Gray for Canton, namely, the precipitation method.

It may be added, paranthetically, that sufficient time has elapsed since the above action was taken to permit a personal inspection of several disposal plants, situated at various points in the eastern part of this country, with the result that we are fully confirmed in the wisdom of our action. This inspection was conducted by a committee appointed by the City Council for that purpose, consisting of L. E. Chapin, City Engineer; J. M. Campbell, on the part of the Council, and Josiah Hartzell, on the part of the Sewer Commissioners. This committee's report, prepared by Engineer Chapin, and presented to the Council on February 16th, 1892, was as follows :

REPORT OF SPECIAL COMMITTEE ON SEWAGE DISPOSAL.

REPORT OF SPECIAL COMMITTEE ON SEWAGE DISPOSAL. Following is the report of the special committee appointed under the resolution of Council to investigate sewage disposal works in the east with especial reference to the best method to adopt for the city of Canton, Ohio. This committee having visited such eastern works made the following report and recommendations to the Council meeting of last night. The most successful method of sewage purification as practiced at home and abroad are: First, chemical precipitation; second, Filtration; third, irrigation. In irriga-tion the sewage is applied to the surface of a sandy or loose soil in continuous sheets or by means of carriers and trenches and when suitable soil is had in proper condition and in sufficient areas it can be cultivated and at the same time so purify sewage that the effluent will be quite satisfactory and sale of crops materially reduce working expenses. The area of land required varies largely with character of soil and sewage—probably one acre for treatment of the present sewage. Second: Filtration as practiced generally consists of preparing ground by grading and underdraining and distributing sewage by surface carriers passing sewage over a portion of land for a time, and then allowing this portion to rest, turning flow on next area, and so on. When land is cropped much larger areas are required than when o attempt is made to realize from cultivation. Sewage, say from thirty to sixtly thousand gallons per day, can be purified by filtration without cropping, requiring for present needs of Canton say about thirty acres of land. In both filtration and irrigation the land must be especially prepared for the reception of sewage and such channels dug repeatedly to distribute same, requiring an outlay for preliminary preparation of form one to four hun-mer, as being best adapted to the needs and means of Canton. This method consists in mixing certain chemical solutions with the sewage, passe into a series of larger masonry tanks from which the effluent

should be had for such. The chemical precipitation plant seen at Worcester had little or no odor in connection with any part of the buildings or grounds. They treating the sludge by spreading on sandy or gravelly soil, while the East Orange, New Jersey works, being located in the midst of a thickly settled community, used the filter process to condense sludge, after which it was used as fertilizers or burned. At Worcester the change from sewage to purified effiuent was rather surprising. Crude sewage entering the tanks being black, foul looking and filled with every conceiva-ble matter in suspension, was at the outlet of the tanks transformed into sparkling enringlike water

springlike water.

At East Orange the effluent from tanks was first passed over a small area prepared for filtration, from which the effluent entered into the waters of Second river of sufficient

purity to satisfy the local health boards of the abutters on the line of the stream. The cost of a complete plant in working order will be approximately \$38,000, and be of such capacity as to buildings, tanks and principal machinery that will suffice for possible increase on present flow by adding future tanks and minor machinery and without materially increasing the operating expenses. The annual cost of operating the plant will not be far from \$5,000 per million gallons of sewage treated per day, requiring in addition of lime, chemicals, fuel, oil, etc., probably the service of three men, two by day and one by night. The present flow of sewage in outfall sewer is not far from 800,000 gallons per day, coming entirely from sewer district No. 3. In this district, however, are many houses not yet connected with the sewer. About 30 per cent of improved property abutting on house sewers are still using vaults and cesspools. The completion of the disposal works will place the city in position to enforce section 357, codified ordinances relating to sewer connections. On a careful consideration of the problem and with ideas and results gained and had from various disposal works visited, this committee is of the opinion that the method of chemical precipitation as recommended by Mr. Gray to be the best and most practicable for our needs. And we therefore recommend that immediate steps be taken to carry out his plans, making some modifications in constructing the works, believing in their ultimate success, and that effluent reaching the creek will be in no manner objectionable to owners and residents along and in the lower creek valley. Lerk Sewer Commission. J. M. CAMPBELL, Chair. Council Com. on Sewage. L. E. CHAPIN, City Engineer.

City Engineer. Committee.

It need be only added here that inasmuch as the City Engineer has consented to prepare a supplementary statement fully explicative of our sewage disposal works, to be added to, and constitute a part of this report, that branch of the subject will now be dropped.

THE COUNTY COMMISSIONERS APPROPRIATE \$10,000.

There still remained a feature of the question of taxation which members of the Council resolved should be settled before other action was taken, viz.: the status of the county in regard thereto. It was reasoned that while the county seat property would be by far the largest single beneficiary of the sewer system, the county property could not be taxed in the regular way to assist in paying for the same. Even if the per foot front tax, by the proceeds of which it was intended to pay for the lateral sewers, was allowed, there still remained the main sewers, right of way, the disposal works, the sewer farm, and more important than all else, the perpetual maintenance of both the sewers and disposal works; all these would have to be paid for by a general tax on city property from which the county would escape entirely.

Inasmuch as the taxpayers of the city of Canton already pay nearly one-third (about 12-38ths) of the entire county tax, and as only a very small proportion of the sum so contributed is expended within the boundaries of the municipality, it was deemed wholly inadmissable that these sewer immunities, for perpetuity, should be conceded, in the absence of a substantial consideration. In regard to the sum that should be contributed by the county \$20,000 was deemed not unreasonable, inasmuch as the county was already paying \$1,200 a year to have the Court House sewage hauled away; and with the result, as appears by the charge of Judge Pease to the Grand Jury, that a large share of it was not hauled away at all, but leaked under the foundations of both Court House and jail, to the great disgust and injury of

the inmates and contiguous property interests. From these evils there was no escape except by means of sewers. The County Commissioners had repeatedly uttered this opinion. The following is an extract from the report of the jail physician to the judge of the court:

"It is my opinion that this evil cannot be remedied except by some general plan of sewerage, and it would seem to me to be advisable that the County Commissioners act in concert with the city authorities and agree on some plan which would relieve the jail and the court house of this offensive odor."

At a session of the County Commissioners, held on October 10, 1887, the Board of County Commissioners agreed to allow the city the sum of \$10,000, to be paid in three installments, as follows: One-third when sewer is properly connected with the county premises; one-third in one year thereafter, and one-third in two years thereafter.

Late in the fall of 1889 the county premises were connected with the sewer. On the 3d of January, 1890, the first part of the county's installment, being \$3,333.33, was paid over to the city as agreed.

(On February 6th of the following year, and before the second installment had been paid, Messrs. Zachary Shoemaker, John C. Dielhenn, C. Frank Schorm and Joseph Oppenheimer, representing the Board of Trade of the city of Massillon, applied for and obtained from the judge of the court of Common Pleas a temporary injunction restraining the County Treasurer from making further payments on the ground that the act of the County Commissioners was not legal.

Subsequently the case came up for hearing before Judge McCarthy, by whose decision the injunction restraining the county from paying the remaining **\$6,666.66** was made perpetual.

The judge expressed the opinion that the action on the part of the County Commissioners could rightfully be considered in the light of a judicious investment by the county, but if no power was vested in them to make such a contract, then the latter could not be ratified. He said that taxing schemes must be uniform, that the city could not discriminate against the county, that the statutes do not authorize such a contract, and that therefore there was no power to order the payment of money on such a contract. This decision was rendered April 6, 1893. The City Solicitor gave notice of appeal.)

ACTS OF THE CITY COUNCIL AND STATE LEGISTATURE TO PROVIDE MONEY FOR BUILDING THE MAIN SEWER.

A remedy for the anticipated evils liable to result from stream pollution having now been provided, and a satisfactory contract made with the county authorities, all impediments in the way of concerted practical action had been removed. The need of sewers was too pressing to permit the delay exacted in waiting for money to be raised by a tax levy. Therefore, at a meeting of the City Council held on April 30, 1888, the following action was taken:

WHEREAS, The city of Canton, Ohio, has a population of 25,000 people, which is rapidly increasing, and has no means of drainage, either natural or artificial, for the disposal of house sewage, and its citizens are suffering for lack thereof, and a due regard for their health and convenience demands the construction of a general sewerage system without further delay, and,

HOUSE SEWER LATERAL JUNCTION MAN-HOLE.

In the man-hole bottoms the channel is in the shape of a split pipe, the top half being removed. By removing the man-hole lid the con-duct of the sewer and branches is instantly obvious.

WHEREAS, There is no money in the sewer fund and there will not be for several years to come under the present restricted method of taxation, a sum sufficient to provide

years to come under the present restricted method of taxaton, a sum sumtent to provide a proper and adequate system of sewerage to meet the growing wants of the people, and there is no other mode of raising the amount except by the issuing and sale of bonds of the said city in anticipation of a tax hereafter to be levied. Therefore be it RESOLVED, That we, the City Council of the city of Canton, Ohio, heartily ap-prove and endorse the bill entitled an "Act authorizing the City Council of the city of Canton, Ohio, to issue and sell bonds for sewer purposes," and rsepectfully petition and urge the General Assembly of the State of Ohio to enact the same without unnecessary delay. delav.

The following is a copy of the sewer bill as passed:

A BILL

Authorizing the City Council of the City of Canton, Ohio, to issue and sell bonds for sewer purposes:

SECTION 1. Be it enacted by the General Assembly of the State of Ohio, that the City Council of the city of Canton, Ohio, be and is hereby authorized to issue and sell bonds of the city in the sum of fifty thousand dollars, bearing interest not exceeding six per centum per annum, payable annually, and of denominations not less than one thousand dollars each, made payable at such times as said Council may, by resolution, prescribe, but not less than three nor more than twelve years from date. Said bonds shall not be sold for less than par, and the proceeds therefrom shall be used for the

SEWER AND MAN-HOLE.

This sectional view of a man-hole on the house sewer system shows how the main and lateral sewers enter through the wall of man-hole.

purpose of constructing a main or trunk sewer, between such points and along such line as the Council may direct, and procuring the right of way therefor; and for the purpose of purchasing such land and providing such apparatus as in the opinion of the Council may be necessary for the disposal of sewage by chemical precipitation, or such other plan as the Council may adopt.

SEC. 2. If there be any balance from the proceeds of the sale of said bonds over and above what is necessary for the purposes set forth in section 1 of this act, the same shall be paid over into the sewer fund of said city and shall be used for such sewer purposes as the Council may from time to time direct.

SEC. 3. For the purpose of paying said bonds and the interest thereon as they may become due, the City Council of said city is hereby authorized to levy a tax not exceeding one mill per annum on all taxable property, both real and personal, of said city, in addition to the amount otherwise allowed by law, to be collected as other taxes, and the money so collected shall be used for the payment of said bonds and the interest thereon, and shall not be used for any other purpose.

SEC. 4. This act shall take effect and be in force from and after its passage.

A copy of the above was placed in charge of Senator T. C. Snyder, who procured its prompt passage without opposition.

Upon learning of the passage of the bill, the Board of Sewer Commis sioners met, on March 9, 1888, and took the following action, basing the same on the belief that \$25,000 would suffice to build the main sewer, thus leaving \$25,000 to be employed in paying for the sewage disposal plant, when that work should be undertaken. WHEREAS, This board is advised that the Legislature of Ohio has passed a law authorizing the City Council to issue bonds to the amount of \$50,000 for the purpose of constructing a main sewer and proper disposal works for sewage; therefore be it

constructing a main sewer and proper disposal works for sewage; therefore be it RESOLVED, That as soon as the Council has sold \$25,000 of said bonds, so that there is money in the treasury for the purpose above stated, this board proceed to adopt plans as required by the statute for the said sewer, and that the secretary of the board advise the City Council of the action.

ROUTE AND RIGHTS OF WAY.

By reference to the sewer map it will be seen that the lower end of the main sewer is built on Allen street, from the sewer farm to the intersection of the C., C. & S. Railroad with that street. So far the city owned the right of way. From Allen street the course of the sewer, for a distance of about 1,000 feet, is along the south line of the railroad track, to Shriver's Run. This part was over the property of the Saxton heirs, and the right of way for the sewer and the needed drains was conceded for a consideration to which reference will be made further on.

The course of the sewer from the last named point to the foot of Walnut street is through private property. Portions of the way, south of the premises of C. Aultman & Co., had to be paid for, and were bought by the city. C. Aultman & Co. donated the right of way through their premises. The balance of the route to North street being on Walnut street the right of way belonged to the city.

The surface grade over the entire route was quite uniform and favorable, the entire fall being over 40 feet. A short fill was required south of Allen street bridge; also a longer fill south of the Valley Railway track;

The column of air in chimneys reaches the living rooms by pipeholes or fire-place. If the closel is vented into the chimney sewer air may enter the house in the manner shown in the cut. Therefore our ordinance forbids venting into chimneys.

also a fill about 600 feet long north of the bridge. As portions of the street surface at these points were nearly two feet below the bottom of the proposed sewer a fill of about seven feet had to be made over the greatest depressions. The earth to make these fills was obtained from the higher ground on Allen street, south of the Valley Railroad track. Fortunately for the interests of that street the excavations and fill, taken together, brought the surface to an almost perfect grade.

That part of the fill lying north of the bridge adjoined the Saxton heirs' tract. In conceding to the city rights of way over said tract the condition was made that the fill on Allen street should be extended 12 feet on the Saxton land side so as to comprise the area of a sidewalk.

As required by law, specifications of the main sewer had been prepared by the engineer. For convenience the sewer was divided into two parts, number one comprising the sewers north of the Allen street bridge, and number two the sewers south of the bridge. Following are the specifications:

SPECIFICATIONS

OF THE MATERIAL AND WORK REQUIRED FOR THE CONSTRUCTION OF MAIN SEWER NUMBER ONE, IN THE CITY OF CATNON, OHIO.

ENGINEER'S OFFICE. 1888.

Beginning at the intersection of the south line of North street with the middle of Walnut street; thence southwardly with the middle of Walnut street and the valley of Shriver's Run to the south side of the Cleveland & Canton Railroad; thence southwesterly seven and one-half feet from said railroad to the middle of Allen street; thence south wardly with said street to the east branch of the Nimishillen creek.

DIAMETERS OF SEWER.

The sewer from North street to Ninth street will be fifteen inches in diameter, from Ninth to Douglas street eighteen inches in diameter, and from Douglas street to the Allen street bridge, twenty inches in diameter.

TRENCHING.

The trenches shall not be less than four feet wide on the bottom, clear of shoring or bracing, all shoring or bracing will be furnished and placed by the contractor, and will be retained in position until so much of the back fill is made as will in the opinion of the engineer of the work, be sufficient to secure the sewer from disturbance when it is re-The contractor will furnish all pipe and fittings or branches which may be moved. required, and lay the same.

SEWER PIPE.

The pipe shall be of the best quality of vitrified socket sewer pipe, and for twenty-inch pipe shall have one and three-eighth inches thickness, eighteen-inch pipe one and one-fourth inches, and fifteen-inch pipe one and one-eighth inches; and no diameter of will be laid truly to the grade and line furnished by the engineer, so as to form when laid a continuous concentric tube.

LAYING TO GRADE.

The grade for each pipe will be ascertained by measuring down from a line stretched parallel to grade, by a straight edge used in connection with grade stakes set in the bot-

tom of the trench, or other methods satisfactory to the engineer. Great care will be taken to avoid excavating below the grade, and the trench will generally first be taken out to a line about four inches above grade, and the remainder removed immediately in advance of the pipe layers, by men skilled in following a grade. When the pipes are laid on a curve, the ends will be cut to correspond to the radius of the curve.

CEMENTING PIPE JOINTS.

In all cases before the joints of the pipe are cemented, a gasket of oakum of suffi-cient size to prevent the entrance of the cement to the interior of the pipe, will be tamped into each joint. The cement joint of the pipes shall be made with the hand and not with the trowel. The cement shall be first pressed into the sockets with the fingers, so as to entirely fill the same, and the joint then completed by adding a small ring of cement on the outside of the sockets. The branches will be closed with a vitrified stopper and lime mostar, finished with a skim coat of cement.

DRAIN TILE.

The ditch will be freed from water while the pipe is being laid and until the back fill is made as high as the top of the pipe, and for that purpose a drain pipe shall be laid as near the side of the trench as possible and below the grade of the sever. This should be a six-inch pipe at the lower end, and may be reduced to a four inch tile whenever the vol-ume of water, in the opinion of the engineer, indicates that it will be of sufficient capacity to drain the trench.

PUMPING.

The contractor will be required to use pumps also, if they are found necessary. Excavations shall be made in the bottom for the sockets, and the pipes laid with an even bearing along their entire length. The socket holes will be of such dimensions as will permit the under side of the pipe joint to be well made. If water accumulates rapidly in the socket holes, the engineer may require them to be filled with concrete, otherwise they may be filled immediately with suitable material from the trenches.

CEMENT.

The cement used will be of such quality as shall be satisfactory to the engineer, and shall be fresh, finely ground and quick setting, and shall be equal in every respect to the the best quality of Louisville cement. It shall be mixed with clear, sharp sand, in the proportion for pipe joints of not less than one of cement to one of sand; for brick work, one of cement to two of sand. It shall be mixed in suitable mortar boxes in small quantities as it may be required, and shall not be used after it begins to set.

MAN-HOLES.

The contractor will be required to construct man-holos at such intervals as may be determined by the engineer, they will be built in accordance with the plans accompanying these specifications, of smooth hard burned brick laid in cement with full mortar and pressing the brick into it and not by filling in the joint after the brick is laid. They will be finished at the surface with a cast iron cover made according to plan, to be furnished by the engineer, to weigh not less than two hundred and twenty-five pounds, and shall be provided with four angles.

long with four angles. The engineer may dispense with man-holes on such portions of the lines as he may deem proper, or may substitute for them vertical T branches of vitrified pipe.

PLATFORMS FOR FOUNDATIONS.

Should it be necessary for any part of the trench, in the opinion of the engineer, to construct a sewer on a platform, the contractor will excavate the trench to the required depth, provide and put in place the platform and fill to grade on the same with such of the material taken from the trench as may be directed by the engineer.

CONCRETE.

The concrete used in the work shall be of one part cement, two parts sand and three of clean broken stone or gravel.

The sewer when completed shall be turned over to the city, clean and free from all rubbish or any deposits of any kind.

DAMAGE TO GAS OR WATER PIPE.

The contractor will be required to provide against the injury of any gas or water pipe encountered in the work, and will be required to restore to their proper grade and line or repair any which may be moved or injured.

ENGINEER TO INSPECT MATERIAL.

All the work done under these specifications shall be satisfactory to the engineer, and the material furnished shall be subject to inspection by himself, assistant or inspector, and he shall determine all questions as to quality or quantity of materials and work.

All condemned material shall be removed from the work immediately after inspection, and if not taken away in twenty-four hours after notice to do so by the Engineer, may be removed by the city, and the cost of the removal deducted from any money due to the contractor.

The return of the engineer shall be the account by which the value of the work, stone and materials furnished shall be computed.

DANGER LIGHTS.

The contractor will be required to set up and maintain such lights and barricades on the work as will be sufficient to warn passers of dangerous places, and the streets will not be obstructed more than is necessary for the proper prosecution of the work. All losses or damages resulting from the nature of the work or from the action of the elements, or from unforseen obstructions or from encumberences on the line of the work shall be sustained by the contractor.

RAILROAD TRACKS.

All railroad tracks crossing the line of the sewer shall be supported by the contractor during the construction under and near them, so as not to interrupt the use of the tracks or endanger the traffic on them, and such tracks shall be fully restored to their original condition.

ENGINEER.

Whenever the word engineer occurs in these specifications, it is understood to refer to the City Civil Engineer of the city of Canton, who shall superintend the construction of the sewer, but he may be represented on the work by assistants or inspectors; he may give instructions to foremen or other persons in charge of the work.

DAMAGES TO PRIVATE PROPERTY.

The contractor shall be responsible for all unnecessary damages to private property through which the sewer may pass, and will be required to fully restore all fences or other improvements which it may be necessary to remove or disturb during the progress of the work, and through the property of C. Aultman & Co. the contractor will be required without extra compensation to remove and replace all lumber and leave the premises when the work is completed in a satisfactory condition to the proprietors.

When required to do so by the engineer, the contractor shall discharge from the work any employe who shall fail or refuse to perform his work according to these specifications or directions of the engineer, or shall act in a disorderly or insubordinate manner on the work.

PROPOSALS, HOW DETAILED.

The proposals for the work shall contain prices for the following items which will be considered full compensation for furnishing all of the material and labor required to complete the work herein described, including all of the work and material necessary or incidental to the work priced.

For trenching per lineal foot, for cutting of eight feet or less depth, for cutting be-tween eight and twelve feet, for cutting over twelve feet in depth. For furnishing and laying pipe of each size named and for the branch pipes of the

same diameters.

For each man-hole.

For each man-hole cover placed in position per pound.

For furnishing and laying down foundation platform, including nails, per 1,000 feet B. M

The bottom width of the trenches shall not be less than two feet greater than the outside diameter of the pipe or sewer, clear of shoring.

THE BACK FILL.

The back fill must be done with such care as will not disturb the pipe and shall be free from stones of larger diameter than one and one-half inches, to such height as may be necessary to cover the top of the pipe to a depth of not less than eight inches. The filling shall be rammed if required by the engineer, in such manner as he may direct.

WHAT EXCAVATION OR TRENCHING INCLUDES.

The excavation is intended to mean all the work, both excavation and backfilling, trimming and shaping the bottom of the trench to grade and the shape of the sewer shor-ing and bracing wherever necessary, ramming and packing the earth along the sides of the sewer and settling the earth in the new filled trench by saturating with water and cleaning away all rubbish after the completion of the work, for the street shall be left in as good condition by the contractor as it existed before ground was broken.

FILLING AND GRADING ALLEN STREET.

Before constructing the sewer the contractor shall fill the depression in Allen street, between the Cleveland & Canton Railroad and the east branch of the Nimishillen creek, by excavating that part of said street lying between Center street and said railroad, and depositing the material into said depression so as to make a roadway thirty feet wide when the embankment is brought up to grade. The fill must be made to such a height

that there will not be less than four feet covering on the sever at any place. The excavation north of said railroad will be made for a roadway thirty feet wide, and in depth of cutting must correspond to the grade as established by ordinance on Allen street, and the engineer will set stakes to indicate the lines and grade, the gutters shall be nine inches deep below the curb grade.

If the excavation north of the said railroad is not sufficient to make the necessary fill, the contractor must furnish ground from the high land on Allen street, south of the Valley Railroad, or else from some other place. In the middle of the roadway the fill will be made in layers of not more than one foot at one time, and must be well solidified to the satisfaction of the engineer, by saturating the same with water, ramming, or turning the travel of the street on the same, before depositing another layer. The fill must be made at least two feet higher than the top of the sewer before the sewer is constructed, and the balance of the filling may be done after the sewer work is completed and the cement has well set.

The contractor will state in his bid the price per cubic yard for filling, which will be measured in the fill or embankment.

MANNER OF MAKING PAYMENTS.

Payment will be made monthly as long as the work makes a reasonable progress to the amount of eighty per cent. of all work done, upon the estimates of the engineer, the remaining twenty per cent, will be paid when the work is completed and accepted by the City Council. The work shall be completed within three months of the time of entering into a contract for the same.

APPROXIMATE QUANTITIES.

The quantities by which bids will be compared, are approximately as follows: Trenching less than eight feet, 700 lineal feet. Trenching from eight to twelve feet, 7000 lineal feet. Trenching over twelve feet, 700 lineal feet. Fifteen inch sewer pipe, 2,050 lineal feet. Fighteen inch sewer pipe, 1,850 lineal feet. Twenty inch sewer pipe, 3,850 lineal feet. Fifteen inch Y branches, 100. Eighteen inch Y branches, 40. Twenty inch Y branches, 20. Man-holes, 25. Cast-iron in man-hole covers, 5,700 pounds. Lumber in foundations, 6,000 feet B. M. Filling in Allen street, 5,000 cubic yards. Twelve hundred lineal feet of 6 inch drain tile. Twelve hundred lineal feet of 4 inch drain tile. One thousand lineal feet of 3 inch drain tile.

Fifty cubic yards of concrete.

FOR MAIN SEWER NUMBER TWO.

The specifications were the same as for number one, with the exception of the following details:

PROPOSALS, HOW DETAILED.

The proposals for the work shall contain prices for the following items, which shall be considered full compensation for furnishing all the material and labor required to com-plete the work herein described, including all the work and material necessary or incidental to the work priced.

For trenching per lineal foot, for cutting of eight feet or less depth, for cutting between eight and twelve feet in depth, for cutting over twelve feet in depth.

For furnishing and laying pipe of each size named and for the branch pipes of the same diameter. For each man-hole complete.

For each man-hole cover placed in position. For furnishing and laying down foundation platforms, including nails per 1,000 feet B. M.

For furnishing and laying brick in egg shaped sewer per thousand.

For furnishing and constructing frame of white oak plank, for foundation of brick sewer per 1,000 feet B. M.

WIDTH OF TRENCHES.

The bottom width of the trenches shall not be less than two feet greater than the ide diameter of the pipe or sewer, clear of shoring. The fill must be done with such The bottom width of the trenches shall not be less than two test groups outside diameter of the pipe or sewer, clear of shoring. The fill must be done with such care as will not disturb the pipe, and shall be free from stones of larger diameter than one and one-half inches, to such height as may be necessary to cover the top of the pipe to a depth of not less than eight inches. The filling shall be rammed if required by the engineer, in such manner as he may direct.

BRICK SEWER.

An egg shaped brick sewer, two feet, two inches by three feet, three inches, will be built with a four inch wall, from the south end of Allen street bridge to the northeast corner of the city's sewage disposal property.

After the trench for the brick sewer is excavated to the proper depth, the contractor will lay to grade a cradle or frame made of white oak plank, one and one-half inch by four inches, spiked to cross ribs three inches by two inches, placed not more than seven feet apart so as to conform accurately to the outside of the brick work of the sewer and as shown on the plans.

BRICK WORK.

None but the best hard burned, perfect shaped brick shall be used, which are also subject to the inspection and acceptance by the engineer. The contractor may be required to wet the brick before using them, if it is considered necessary by the engineer; every course of brick must be laid by a line perfectly straight in the direction of the sewer and parallel to it.

Every brick will be laid in a full, close joint of mortar, and surrounded by it at one operation, the bottom and top courses shall be thoroughly grouted after being laid, and the top of the outside of the sewer shall be well plastered to the spring lines with cement mortar.

The center or frame upon which the arch is built must be strong and according to size and shape required, and must not be removed until the work upon it has well set and the refilling of the trench has progressed above the crown. The center must be struck and drawn with care so as not to crack or injure the work. All work must be properly protected and injuries repaired by the contractor without extra charge.

WHAT EXCAVATION OR TRENCHING INCLUDES.

The excavation is intended to mean all the work, both excavation and backfilling, trimming and shaping the bottom of the trench to grade and shape of the sewer, shoring and bracing wherever necessary, ramming and packing the earth along the sides of the sewer, and settling the earth in the new filled trench by saturating with water, and cleaning away all rubbish after the completion of the work, for the streets shall be left in as good condition by the contractor as it existed before the ground was broken.

FILLING AND GRADING ALLEN STREET.

Before constructing the sewer, the contractor shall fill the depression in Allen street, south of the east branch of Nimishillen Creek, by removing the earth above grade on the high land in Allen street, south of said depression, and build an embankment so as to make a roadway thirty feet wide, when the embankment is brought up to grade. The fill must be made to such a height that there will not be less than four feet of covering on the sewer at any one place. The excavation in said high land south of the Valley Railroad, will be made first for a thirty foot roadway, and if that does not furnish enough material to make the necessary fills, the sidewalk on each side of the street shall also be included; and the depth of the cutting must correspond to the grade as established by ordinance on Allen street. The engineer will set stakes to indicate the lines and grade; the gutters shall be nine inches deep below the curb grade; if the excavations including sidewalks are not sufficient to make the necessary fills, the some price per yard as the rest of the filling.

additional material from other places at the same price per yard as the rest of the filling. In the middle of the roadway the fill will be made in layers of not more than one foot at one time, and must be well solidfied to the satisfaction of the engineer, by saturating with water, ramming or turning the travel of the street on the same before depositing another layer. The fill must be made at least two feet higher than the top of the sewer before commencing the construction, and the balance of the filling may be done after the sewer work is completed and the cement has well set.

The contractor will state in his bid the price per cubic yard for filling, which will be measured in the fill or embankment.

MANNER OF MAKING PAYMENTS.

Payment will be made monthly as long as the work makes a reasonable progress to the amount of eighty per cent. of all the work done, upon the estimates of the engineer, the remaining twenty per cent. will be paid when the work is completed and accepted by the City Council. The work shall be completed within three months of the time of entering into a contract for the same.

APPROXIMATE QUANTITIES.

The approximate quantities by which the bids will be compared, are as follows. Trenching less than eight feet deep, 2,000 lineal feet.

Trenching from eight to twelve feet deep, 1,800 lineal feet. Trenching over twelve feet deep, 400 lineal feet. Brick in brick sewer, 240,000. Twenty inch sewer pipe, 710 lineal feet. Six ten inch slants. Seven man-holes. Cast iron in man-hole covers, 1,600 pounds. Oak lumber in foundations, 20,000 feet board measure. Grading and filling 10,000 cubic yards. Fifty cubic yards of concrete.

Sewer Number Two is 4,200 feet in length. For 3,490 feet of this length the sewer is of brick, egg-shaped, small end down. Its greatest diameters are 2 feet, 2 inches by 3 feet, 3 inches. This sewer is capable of carrying a volume equal to more than three times the effluent of the 20-inch main which drains Sewer District Number Three.

The reasons for this greater capacity are, first, that all sewage from the city will have to pass through the Disposal Works; and, second, this brick main is large enough to carry away the added volumes from the mains draining Districts One and Two which will converge, and connect with the brick sewer at Allen street bridge.

The 710 feet of 20-inch sewer pipe on the course of Sewer Number Two would convey the crude sewage temporarily from Allen street to the creek, over the sewer farm. It will be used permanently to carry the purified effluent from the Sewage Disposal Works to the creek.

The situation now warranted the publication of the following preliminary notice, as required by the statute:

SEWER NOTICE.

At a meeting of the Sewer Commissioners held at the office of the City Engineer, Monday evening, April oth, 1888, the following notice was ordered to be published in the Repository, Democrat and Volks Zeitung: Notice is hereby given that plans, maps, profiles and specifications for a main sewer to be built from the intersection of Walnut and North streets southward on Walnut street to the terminus, as shown by the plan, have been prepared, and are now on file in the office of the City Engineer for examination and inspection by parties interested. This main sewer (and laterals,) is designed to furnish sewer facilities for the central sewer dis-trict of the city of Canton, comprising within its boundaries so much of the city's area as is properly tributary to said main sewer. An adjourned meeting of the Board of Sewer Commissioners will be held at the office of the City Engineer on Saturday, April 21st, at 7;30 p. m., when parties interested having suggestions to make, will be heard. JOSIAH HARTZELL,

April 10, 1888.

JOSIAH HARTZELL, Clerk of Board of Sewer Commissioners.

(This notice, the preliminary resolution, the bond notice and ordinance, the sewer ordinance, and notice to contractors, printed on the next few pages constitute the formalities of publicity required by law for all sewers. These preliminaries will be omitted from our mention of the other sewers referred to in this report.)

At a meeting of the Sewer Commissioners held April 21st, 1888, the following action was taken:

"WHEREAS, The notice ordered to be published at our last meeting has been pub-

WHEREAS, The notice ordered to be published at our last methods in the lished as ordered, and, WHEREAS, No objection, suggestion, or remonstrance to sewer plans on file in the office of the City Engineer have been presented before us, therefore, *Resolved*, That said plans, profile and specifications be adopted by this Board, and that the same be evidenced by the attachment of the signature of the President and Secretary of this Board thereto in approval of the same."

Following as promptly as possible after this action, and a Resolution declaring the necessity of the improvement, the steps indicated by these several published articles, and required by the State law on the subject of Sewer Construction, were taken by the City Council:

AN ORDINANCE

Issuing Bonds for Sewer Purposes.

SECTION 1. Be it ordained by the Council of the City of Canton, Ohio, that, by virtue of "An act authorizing the City Council of the City of Canton, to issue and sell bonds for sewer purposes," in anticipation of a tax hereafter to be levied upon all taxable property, real and personal, of the said city, bonds be issued for the purpose of constructing a main or trunk sewer between such points and along such line as the Council may direct, and providing such apparatus as in the opinion of the Council may be necessary for the disposal of the seware.

for the disposal of the sewage. SEC. 2. The said bonds shall he issued in denominations of not less than one thou-

sand dollars each, shall be ar interest not exceeding five per cent. per annum, payable semi-annually, and shall be redeemable as follows, to-wit: Six thousand dollars shall be due and payable four years from the date of issue; six thousand dollars due and payable five years from date of issue; six thousand dollars due and payable seven years from date of issue, and seven thousand dollars due and payable olicity are for date of issue.

eight years from date of issue. SEC. 3. The said bonds shall be signed by the Mayor and the City Clerk, and be sealed with the corporate seal and have interest coupons attached.

SEC. 4. The committee on ways and means of the City Council is herewith authorized, empowered and instructed to negotiate the sale of the said bonds. SEC. 5. That this ordinance shall take effect and be in force

That this ordinance shall take effect and be in force from and after its passage and legal publication.

Passed May 7, 1888.

L. A. LOICHOT, Vice President of the Council.

Attest: HENRY G. SCHAUB, Clerk.

SALE OF SEWER BONDS.

\$25,000 of Coupon Bonds.

OFFICE OF THE CITY CLERK, CANTON, O., May 22, 1888.

Sealed bids are invited at the above named office until Friday, June 22, 1888, at 2 o'clock p. m., for the purchase of the bonds of the city of Canton.

o'clock p. m., for the purchase of the bonds of the city of Canton. The bonds to be in denominations of \$1,000 each in the aggregate sum of \$25,000, and to be on interest at the rate of 5 per cent. per annum, payable semi-annually; and both principal and interest payable at the Chase National Bank, New York City, or the Treasurer's office, Canton, Ohio. The bonds to be dated July I, 1888, and redeemable as follows: \$6,000 July I, 1892; \$6,000 July I, 1893; \$6,000 July I, 1895, and \$7,000 July I, 1896. Bidders should specify the number of bonds bid for and the premium offered, and the aggregate amount, interest and premium, for all the bonds proposed to be purchased. The Ways and Means Committee reserves the right to accept any or reject all bids. The same to be delivered in Canton. Ohio.

The same to be delivered in Canton, Ohio.

L. A. LOICHOT, W. L. ALEXANDER, J. H. DUMOULIN,

Committee Ways and Means.

AN ORDINANCE

To Improve Central Sewer District Number 3, in the City of Canton, by Sewering.

SECTION 1. Be it ordained by the Council of the City of Canton, Ohio, That the Central Sewer District number 3, in the said City of Canton, be improved, by constructing a main sewer, with the necessary appurtenances thereto, along the following described line:

Beginning at the intersection of the south line of North street, with the middle of Walnut street, and extending thence south, 16 degrees west, along the middle line of Walnut street, three thousand two hundred and two feet; thence on a curve to the left, with a radius of one hundred and fifty feet, crossing the Pittsburgh, Fort Wayne and Chicago Railroad, one hundred and thirteen and four-tenths feet; thence south, 27 degrees and 32 minutes east, through out-lot number twenty-nine, two hundred and thirty-two and seventenths feet; thence on a curve to the right, with a radius of one hundred and fifty feet, a distance of one hundred and fourteen and six-tenths feet; thence south, 16 degrees and 14 minutes west, along the west side of Shriver's Run, and continuing through said out-lot twenty-nine, one thousand and eighty-seven and three-tenths feet; thence south, 16 de-grees and 37 minutes west, through out-lot number thirty-one and city lot number two thousand five hundred and sixty-three, six hundred and fifty-eight and eight-tenths feet; thence on a curve to the left, with a radius of two hundred feet, a distance of one hundred and three there are three three three the units let method be and the seven destines and the seven destines are the seven destines and the seven destine the seven destines are the seven destines and the seven destines are the seven destines and the seven destines are th and thirteen and two-tenths feet, with a radius of two indicate feet, a distance of one muldred and thirteen and two-tenths feet, passing through city lot number one thousand, seven hundred and forty-five; thence south, 15 degrees and 49 minutes east, through city lots numbers one thousand, seven hundred and forty-four, and one thousand, seven hundred and forty-nine and out-lot number thirty-eight, three hundred and twenty-eight feet to the middle of Center street; thence south, 14 degrees and 39 minutes east, through out-lots numbers thirty-nine and forty-one, two hundred and sixty-five and seven-tenths feet; thence on a curve to the right, with a radius of two hundred feet, crossing the Cleveland thence on a curve to the right, with a radius of two hundred feet, crossing the Cleveland and Canton railroad, a distance of two hundred and thirty-two and two-tenths feet; thence south, 51 degrees and 51 minutes west, and seven and one-half feet from the south line of the said Cleveland and Canton railroad, passing through out-lot number forty-one, city lot number two thousand, eight hundred and thirty-five, and out-lot number forty-five, one thousand, two hundred and twenty-four feet; thence on a curve to the left, with a radius of two hundred feet, a distance of one hundred and sixty-seven and nine-tenths feet to the middle of Allen street; thence south, 3 degrees and 45 minutes west, six hundred and sixty feet to the east branch of the Nimishillen creek, in accordance with the plans, profiles and specifications on file in the City Civil Engineer's office.

SECTION 2. That fifty-eight (58) cents shall be assessed per front foot upon all lots or land bounding or abutting thereon, according to the laws and ordinances upon the subject of assessments; provided that no assessment shall be made upon lots or land which do not need local drainage or are provided therewith. SECTION 3. That the expenses of the said improvement which are to be borne by

SECTION 3. That the expenses of the said improvement which are to be borne by the city, shall be paid out of the proceeds derived from the sale of bonds, made under and by virtue of the act of the Legislature, entitled "An act authorizing the City Council of the city of Canton, Ohio, to issue and sell bonds for sewer purposes." SECTION 4. That this ordinance shall take effect and be in force from and after its passage and legal publication. Passed June 18, 1888.

Attest: H. G. SCHAUB, City Clerk.

L. A. LOICHOT, Vice President of the Council.

AN ORDINANCE

To improve the City of Canton, Ohio, by constructing a main trunk sewer.

SECTION 1. Be it ordained by the City Council of the City of Canton, Ohio, that the improvement of the City of Canton, Ohio, by constructing a main trunk sewer with the necessary appurtenances thereto, for the disposal of house sewage, beginning for the same at the point where the east branch of the Nimishillen Creek intersects with the middle line of Allen street and extending southwardly along the middle line of Allen street to the northeast corner of a tract of land containing twenty-seven and fifty-three hundredths acres owned by the City of Canton, and thence southwardly through the same land to Nimishillen creek, be proceeded with in accordance with the preliminary resolution adopted

May 7, A. D. 1888. SECTION 2. The expenses of the said improvement shall be paid out of the proceeds derived from the sale of bonds made under and by virtue of the act of the Legislature entitled "An act authorizing the City Council of the City of Canton, Ohio, to issue and sell bonds for sewer purposes."

SECTION 3. This ordinance shall take effect and be in force from and after its pas-sage and legal publication. Passed May 22, 1888.

Attest: H. G. SCHAUB, Clerk.

L. A. LOICHOT, Vice Pres't.

All the preliminary steps required by the statutes having been taken the following notices were now published:

SEWER NUMBER ONE.

Notice to Sewer Contractors.

Sealed proposals will be received at the office of the City Civil Engineer of the city of Canton, Ohio, until 12 o'clock noon of Friday, July 27, 1888, for the furnishing of the materials and the construction of a Main Sewer, beginning at the intersection of Walnut and North streets; thence southwardly along Walnut street and the valley of Shriver's Run to the Cleveland and Canton Railroad; thence southwestwardly along said railroad to Allen street; thence south on Allen street to the East Branch of the Nimishillen Creek. The work shall be done according to plans and specifications on file in said office.

The approximate quantities are as follows:

15 inch pipe, sewer 2,050 feet in length. 18 inch pipe, sewer 1,850 feet in length. 20 inch pipe, sewer 4,500 feet in length.

8,400

25 Man-holes. Filling embankment in Allen street, 5,000 cubic yards. 160 15x18 inch Y branches.

Each proposal shall be signed by the bidder, or all bidders interested in the same, and must be accompanied by a bond of \$500, conditioned for the execution of the contract in case the bid is accepted.

Proposals must be made on blank forms which will be furnished on application. The right is reserved to reject any or all bids.

By order of the City Council.

JULES PY, A. O. ESSIG, C. H. HENDERSON,

Committee on Sidewalks and Sewers.

JOHN H. HOLL, City Civil Engineer.

SEWER NUMBER TWO.

Notice to Sewer Contractors.

Sealed proposals will be received at the office of City Civil Engineer of the City of Canton, Ohio, until 12 o'clock noon of Friday, July 27th, 1888, for the furnishing of the materials and the construction of a Main Sewer in Allen street, from the East Branch of the Nimishillen Creek to the city sewage disposal lands; thence southwestwardly through said lands to the Nimishillen Creek. The work shall be done according to plans and specifications on file in said office.

The approximate quantities are as follows :

3,450 lineal feet of brick sewer, 3 feet, 3 inches by 2 feet, 2 inches. Jio lineal feet of pipe sewer, 20 inches diameter. Seven man-holes. Filling an embankment, 10,000 cubic yards.

Each proposal shall be signed by the bidder or all bidders interested in the same, and must be accompanied by a bond of \$500, conditioned for the execution of the contract in case the bid is accepted.

Proposals must be made on blank forms which will be furnished on application.

The right is reserved to reject any or all bids.

any of an olds. By order of the City Council, JULES PY, A. O. ESSIG, C. H. HENDERSON, Committee on Sidewalks and Sewers.

JOHN H. HOLL, City Civil Engineer.

On the day named in the above notices, July 27, 1888, the bids on the work that had been received were opened. A few of the bids were on Sewer Number One, only; most of the bids covering the work on both jobs. The bids, in detail, were as follows:

	SEWER NO. I.	SEWER NO. 2.	TOTAL.
 H. C. Babbit, Cleveland, O. Coyle & Boren, Steubenville, O. Hadley & McKinney, Canton, O. Thomas Connell, Youngstown, O. W. J. Irwin, Greenville, O. Thomas J. Peter & Co., Cincinnati, O. J. C. Muria & H. C. House, Newark and Norwalk, O. Thomas B. Keating, Mansfield, O. C. H. Voute, Toledo, O. John Nauman, Canton, O. John Nauman, Canton, O. J. H. Doyle, Akron, O. J. Everson, Akron, O. James Wilds, Akron, O. James Wilds, Akron, O. Stanton & Barber, Canton, O. Clements Bros., Cleveland, O. K. Turnbull, Canton, O. R. H. Adams, Canton, O. Annon, Canton, O. James Fors., Cleveland, O. K. Turnbull, Canton, O. R. H. Adams, Canton, O. Daniel F. Minahan, Springfield, O. 	NO. 1. \$15,093.91 19,972.50 16,568.50 16,577.58 17,561.50 16,528.00 11,816.91 12,641.40 12,480.78 11,158.53 24,829.50 16,592.23 13,476.10 13,664.90 14,428.00 13,746.75 14,577.78 11,178.35 12,971.50 20,340.23 10,544.18 14,391.00	NO. 2. \$10,602.90 11,989.50 10,450.50 10,912.57 12,255.50 11,787.90 7,030.03 11,132.80 11,606.43 10,249.80 14,200.00 10,468.50 15,779.20 10,714.95 9,628.00 10,272.00 8,145.97 12,651.00	\$25,696.81 31,962.00 27,019.00 27,490.15

BIDS ON SECTIONS OF MAIN SEWER NOS. 1 AND 2.

As will be seen by the above table there were plenty of bidders, and the names in the list comprised those of experienced sewer builders of excellent reputation who came amply recommended. The lowest bid, that of John Nauman, was vitiated by non-compliance with the advertised conditions. The next lowest bidder was R. H. Adams, a citizen of Canton, whose measure of qualifications for this special work also left much to be desired.

Wishing to have the construction of the sewer as nearly perfect as possible, and distrusting Mr. Adams' adequacy, the Sewer Commissioners used such influence as they could bring to bear to prevent the acceptance of his proposal. The City Solicitor, however, expressed the opinion that, under the statutory requirement that such work should be given to the lowest responsible bidder, there was no legal way to escape from the claims of Adams. He was also of the opinion that, although Adams himself was wholly irresponsible, valid bondsmen would cure this infirmity in the eye of the law.

The majority of the Council gave to this opinion a very reluctant assent and ordered a contract to be made with Adams, who had been able to obtain as bondsmen, the names of three citizens of irreproachable financial standing, viz.: Jacob Miller, Andrew Schwertner and W. A. Strayer.

BUILDING THE MAIN SEWER.

Adams immediately sub-let his contract for Sewer Number Two to John Skeels, who commenced work in September and had the same completed by January. No water was encountered and the work met no other impedi-

View taken from the northeast corner of tanks when the same were partially built. The men in the foreground are laying the floor of brick and concrete in the northeast tank. For particulars see description by L. E. Chapin, G. E., at end of this report.

SEWAGE DISPOSAL WORKS.

ment than a section of rock. This incident not having been anticipated in the specifications, an extra allowance of \$250 was made to the contractor. The fall of the sewer is one and one-quarter inches per 100 feet, being purposely made small in order that the sewage might be delivered at the higher level necessitated by the interposition of the disposal works between Allen street and the creek.

The brick part of Main Sewer Number Two was a work which gave a high degree of satisfaction. Descending into the man-hole at the north end the full outline of the mouth at the south end, 3,500 feet distant, was clearly perceptible, the walls of the conduit appearing to be entirely without deviation from a straight line.

The fill north of the bridge having been made, Mr. Adams started laying the 20 inch pipe main at the bridge about August 15. The first 600 feet, on Allen street, being in a dry ditch, the work proceeded without interruption. Immediately after starting east, on the higher ground bordering on the track of the C., C. and S. Railroad, water was encountered.

Before leaving the lower ground on Allen street the precaution had been taken to carry along in the bottom of the trench, as the work advanced, a six-inch pipe, for drainage purposes in case water was struck. Before fifty feet of wet ditch had been excavated this pipe was overtaxed. Inasmuch as a bottom free from water was imperatively required in order that the cement setting of the joints might have time to harden, another drain pipe for the water, nine inches in diameter, was put down. After advancing about 200 feet farther it was found that both pipes were entirely inadequate. In fact, with both pipes running full, the sewer itself was forced to carry off a large An inferior steam outfit was placed in operation, but share of the water. failed to furnish any perceptible relief.

The excavation at, and east of, the point that had been reached, was the deepest on the entire line, the depth being about twenty feet. This fact caused additional embarrassment. The City Engineer strove to have the contractor lay the sewer in accordance with the specifications, which the latter seemed helpless to do.

The subject came up in the City Council, where a special committee for purposes of investigation made the following report on October 2d:

"Your committee, to whom was referred the matter of investigating the work now in

"Your committee, to whom was referred the matter of investigating the work now in progress upon the main house sewer in the southern portion of the city, would respectfully report that the entire committee, together with the civil engineer, visited the work this morning and found everything, with the exception of the trench-digging, at a stanstill, as the pumping engine was undergoing some needed repairs. Only about one-half dozen lengths of sewer pipe partly prepared for covering were still in view, there being about eight inches of water in the bottom of the trench. We were informed by Mr. Adams, the contractor, and Mr. Adolphus Neu, the expert employed by the city to see that the letter and spirit of the contract and specifications are not violat-ed, that the few lengths still in view were a fair sample of the twelve or fifteen hundred feet already laid and buried out of sight. The manner of joining the pipe together was minutely described to us and the exposed samples used to illustrate; in this manner we were informed just how the work is done. To say that it is a very unsatisfactory way of doing is drawing it rather mild, as it is in nowise in accord with the plan laid down in the contract and specification and will never do unless, perhaps, the builders propose to preserve inviolate the virgin soil of the sewer farm from the contaminating touch of everything and anything foul, which in course of human events may find its way into the main sewer or laterals within the city. We find that clay has been substituted for cement in making joints, that the pipe is not properly placed together and packed or "yarned" before cementing, that the opening

calculated to receive the cement is filled with packing at the mouth, so that there is no room left for cement or clay either, if clay would answer. The consequence is that instead of the joint being properly connected there is only a thin rim of cement on top, one-half way around the pipe and the remaining half, or the under side is simply daubed with clay, and this too while the bottom of the pipe is four or five lnches under water. We are probably safe in saying that there are not one dozen perfect joints in the entire job. In our humble opinion the work so far is very unsatisfactory and we leave it with the Council

entire job. In our with the Council.

But in the interest of a complete system of sewerage, the fair fame and name of our goodly city, the health and prosperty of our fellow citizens and the strangers within our gates, we insist that a practical sewer builder be employed to exact of and from the contractor a complete piece of work such as the plans and specifications now on file in the Civil Engineer's office call for.

This is a serious matter and one calling for prompt action. If we fail to do this we fail to do our simple duty as public officials.

Respectfully submitted,

PAUL FIELD, CHARLES W. HENDERSON, H. VOGELGESANG.

The report of the proceedings of the meeting concludes with the following paragraph:

"The report was then adopted, and on motion of Dumoulin, Field and Volkmann and the Engineer were appointed a committee to go to Cleveland or Toledo at once and secure a practical sewer builder to oversee the construction of the sewer."

The committee named employed Mr. A. Garfield as expert inspector and assistant to the Engineer.

After the useless experiment with the pump, above mentioned, Contractor Adams disappeared from the work. The Council delegated William Work on Volkmann to verify the accounts of the men and pay them off. the sewer stopped.

Thus were realized the apprehensions which had been expressed, prior to the contract, in regard to entrusting the work to one whose fitness and aptitude for such an undertaking were very questionable.

Several defects in the construction of the main sewer are directly attributable to this inauspicious beginning. As shown by markings taken recently there is a considerable infiltration of ground water above the inter-When it is considered that the section of the sewer with Allen street. stretch of cemented joint is about two and one-half times longer than that of the sewer, being about 5 feet to every 2 feet of pipe, it can hardly be regarded as surprising that a perfect barrier against the ingress of water was That the leakages are too abundant cannot be doubted. not obtained.

Another defect has made itself manifest by the settling of the sewer on the made ground north of the Allen street bridge; and there has also been a slight settling of the sewer south of the bridge, both arising from the same causes, viz: the made ground under the sewer was not effectievly compacted.

These defects in no wise interfere with the practical successful working of the sewer, and may never do so, but they nevertheless constitute deviations from that perfection of work which we ardently desired should characterize the entire work.

The bondsmen of Mr. Adams were now officially apprised of the situa-These gentlemen at once held a conference, "faced the music," and tion. as the result of their deliberations they employed John Skeels to complete the contract with the city. On the part of the city A. Garfield had been employed as inspector on the ground to see that the sewer specifications as to grade, pipe-laying, joint-connecting, &c., were complied with. With the co-operation of Messrs. Skeels and Garfield, operating under the superintendence of City Engineer Holl, the main sewer was completed to its terminus on North Street about May 1st, 1889.

Upon taking charge of the work for the bondsmen Mr. Skeels encountered a continually increasing influx of water until he reached the point near Shriver's Run where the course of the sewer is deflected to the north. Relief from this water was obtained, first, by constructing a relief-drain from a point about 650 feet east of Allen street, south to the creek; and, second, by draining the water from the point where the sewer crosses the C., C. & S. R. R. track south, into Shriver's Run. From the C., C. S. R. R. track north as far as Eighth street water was still found to some extent, but not in quantity to cause any serious embarrassment in the advancement of the work.

In crossing a strip of land, also the property of the Saxton heirs, about 200 feet south of the lands of C. Aultman & Co., a patch of quicksand, about 150 feet in width had to be passed. The excavation to the proper

SECTION TRUNK HOUSE SEWER.

The cut shows the plan of the main house sewer from Allen street bridge to the sewer farm. The advantage gained by this shape is in the accelerated flow and the greater scouring effect of a small flow in the small end over that which would obtain over the larger diameter. depth was attended with much d i ffi c u l t y. At length the Engineer sucin flooring the bottom with heavy oak plank and in laying the sewer thereon with its proper alignment.

The back fill at the sides of the sewer over this place was made of the quicksand which had been thrown out, and the clayey top-soil was restored as before. A little more than a year later it was found that the part of the back-fill made by the quicksand had sunken or escaped. With the supporting pressure at the sides of the pipe removed, the top soil pressed down on the top of the pipe so heavily as to break it. By direction of the Council the pipe lying in the quicksand was removed, a solid flooring of brick
and cement was laid down, and a brick sewer built over the distance which had caused the trouble. Danger of further annoyance seems to have thus been entirely obviated.

At the foot of Walnut street the tracks of the P., F. W. & C. Railroad cross the street. Beneath the tracks, and covered with about five feet of ground, passes the Walnut street storm water drain, crossing the tracks at an oblique angle. The course of the house sewer was about two feet below the bottom of the storm water sewer, and the point of crossing was directly below the intersection above mentioned.

The brick drain, five feet in diameter, was first entirely removed from under the railroad. A foundation of hard burned brick was then put down and the main sewer pipe placed in position thereon. A brick arch was then thrown over the latter, and a fill made to the bottom line of the storm water drain and the earth well packed and rammed. The broken section of the storm water drain was then rebuilt and the re-fill completed to surface grade. The job was attended with considerable difficulty and delay.

The fall indicated by the profile of the main sewer is two and one-half inches per 100 feet on that part of the line north of the Allen street bridge, and, as before mentioned, one and one-quarter inches per 100 feet on the sewer south of the bridge. While a more rapid fall might have been obtained, had it been deemed essential, it was decided, owing to the intervention of sewage disposal works, to deliver the output at as high a level as was safely practicable.

The bridge is spanned by a wooden trough suspended to the bridge itself. The outward aspect of this device would perhaps be improved by substituting an iron pipe. The latter would, however, have the disadvantage of entailing considerable expense. In addition to this it is believed that high floods at the breaking up of winter occasionally reach a stage when an ice blockade, and consequent destruction of the work, would be inevitable. The wooden conduit answers every purpose, and if carried away by the ice can be replaced with slight expense.

On the course of the sewer through the city streets there are man-holes at all intersections. Below the platted part the man-holes are 250 feet apart. These afford access at all times for inspection, and for repairs if any should ever be found necessary. With the single exception of the broken pipe at the quicksand patch, already mentioned, there has been no need of repairs or change of any kind.

On the occasion of the inspection of the sewer, and its acceptance by the Sewer Commissioners and the City Council, there was found to be only a trace, not more than half an inch, of water at the bottom of the sewer at the third man-hole, east of Allen street. In the man-hole nearest Allen street there was one and one-half inches of water by measurement. Above the first named man-hole, and south of the bridge, the sewer was dry.

With these observations we dismiss the subject of the main sewer of District Number Three. The works have now been in use for four years. Its operation has been watched with all that keen interest and careful attention which hostile criticism and predictions of failure would naturally induce in the minds of its sponsors. The result has been most satisfactory. With

800 house connections (including those of most importance) and 52 flush tanks already in operation, and these with a depth of not more than eight inches in the bottom of the 20-inch pipe at the hour of largest flow, there can no longer remain any doubt as to the capacity of the work for the drainage of all the sewage that may be derived from the Central Sewer District. The ventilation is perfect. There are no odors. There are no repairs. In short. there is every reason to believe that if the maintenance of the sewer shall always be in harmony with the principles upon which it was recommended and constructed, viz.: no connection larger than four inches, no rain-water, no street water, no improper use of the sewer, unobstructed four-inch ventilation to the tops of the houses; it will continue in the perpetual discharge of the functions for which it was designed, and that without money and without price so far as repairs are concerned.

THE LATERAL SEWERS.

The main sewer having been completed, the next step was to construct tributary, or lateral sewers, by means of which all parts of the sewer district might be reached, and the assemblage of the wastes of the city into the main sewer effected. With the main sewer, built by a general tax, in readiness, there was no obstacle in the way to the commencement of the work, inasmuch as the State law empowers cities to construct lateral sewers at the expense of abutting property.

The location and diameters of the lateral sewers will be seen by reference to the sewer map. Since the map was drawn two additions to the system have been made as follows: One starting at the intersection of Seventh and Court streets and extending 175 feet south on Court street, and another starting at the intersection of Lake and North Market streets and extending 600 feet east on Lake street. It should be the policy of the authorities to afford to all newly settled areas tributary to the central system the advantages of the system on the same terms as to those originally abutting on the sewers. Other additions to the system on newly opened streets are now under contemplation.

Although we were in possession of the sewer map and plans prepared by Major Humphreys, it was deemed best to offer to Engineer Holl the needed facilities for some comparative examination. He visited Pullman, Ill., and Kalamazoo, Mich., both of which cities were noted for the excellence of their sewer systems. Subsequently he also inspected the sewers of Norfolk, Va. The latter city had been sewered by Major Humphreys, and Mr. Holl's visit there was partially predicated on a desire to know more in regard to the value which should rightfully be attached to the recommendations made to us by that gentleman. His report on that head was very satisfactory. In regard to the Norfolk system of sewers his report was as follows:

To the City Council :

To the City Council: GENTLEMEN:—I visited the city of Norfolk, Va., on the 11th, 12th and 13th days of June, and found the Waring or separate system of sewerage in successful operation there, consisting of 15 miles of 18, 15, 12, 8 and 6 inch pipe sewerage in successful operation there, connection pipes laid in the street between the curb lines, also 43 man-holes and 123 flush tanks and a number of stand pipes or hand holes. The grades on the main and lateral sewers are generally one in three hundred, but in their construction it was found necessary to deviate from this rule, and there are some sewers with a fall of 1 in 4, 1 in 450 and 1 in 600. On account of the very flat surface over the whole city, no point being over 12 feet above low tide water, the sewers discharge into a well 12 feet in diameter and 25 feet deep, the sewers discharge into this well about 10 feet below low tide water. The sewage is pumped from the well with two Davidson pumps, each 2,000,000 gallons capacity in 24 hours, into a cast iron pipe 18 in diameter and 1,600 feet long, which discharges the sew-age into the Elizabeth River at a point where the current and tide carry the sewage away from the city. from the city.

rrom the city. The sizes of the sewers are calculated to carry five gallons per hour for each person, six persons for each house and twenty-five feet of street frontage for each house. A Fields automatic flush tank of 140 or 150 gallons capacity is placed at the head of every lateral sewer, and is regulated so as to discharge two or three times in twenty-four hours. This is found to give sufficient flushing to keep the sewers clean; the flush tanks cost from \$50 to \$60 each, complete. When the system was adopted five years ago, the city paid a royalty for each tank shown on the plan, and the city has not yet exceeded

that number. By experiments the details of the flush tanks have been perfected so that the time and frequency of their discharge can be relied upon, a 140 gallon discharge in one minute.

minute.
The lateral sewers are usually constructed with six inch pipe for the first ten or twelve hundred feet, and experience shows that the capacity of a six inch pipe is ample to carry all the sewage accumulating on that length of street, but stoppages are found to be more frequent in six inch than in any other sized pipe; and the City Engineer of Norfolk has almost concluded not to use any more six inch pipe on lateral sewers in the future. On the whole stoppages are not frequent, and are invariably caused by improper construction or abuse and neglect on the part of those using them.
In observing the flow of the sewer at various times and places in the afternoon from 1 to 5 o'clock no pipes were running more than one-third full. The first two years after the introduction of sewers, people were yery slow in making connections and the sewers

the introduction of sewers, people were very slow in making connections and the sewers were little used, but during the last three years the sewer system has been greatly appre-ciated and has come into general use over the city. The entire cost of constructing sewers was paid by the city by general taxation. I taxation. Respectfully submitted, JOHN H. HOLL,

City Civil Engineer.

MAN-HOLES.

The only departure made from Humphrey's plans was in style of

Sewer air can reach the house through an overflow from bath-tubs, wash-stands or other fix-tures, if connected as above. By connecting as shown approxi-mately by the dotted line the difficulity would be remedied. man-holes, and the number, which was considerably increased.

From Mr. Holl's observations it was decided that man-holes should be made at every intersection or junction of the sewers. The section of the sewer passing through the man-hole is a trough, or split pipe, with upper half removed, of the same diameter as the sewer. The sewer junction, whether made with sewers entering in from one or both sides, is made in the bottom of the man-hole. This renders easy the satisfactory inspection of all the sewers in the city. By simply removing the man-hole lid one sees at a glance the conduct of the main or lateral sewer passing through it, also of the tributaries that pass into the same from the sides through

their open sections at the junction. The advantage that would be afforded by these man-holes, only 200 to 250 feet apart in a straight line, in case of possible stoppage, is too obvious to need comment. Digging up streets for sewer repairs is a spectacle which will probably never be seen in Canton.

The form of the man-holes will be readily apprehended from the cut on An iron ladder gives easy access to the bottom of the sewer. page 53. The lid, which is tlush with the surface of the street, is made strong enough to withstand heavy shocks. It is also perforated to admit air for the ventilation of the sewers. Through these perforations is fed that fresh air current which is constantly ascending the entire length of our entire system, finding its exit at the extreme upper ends, through the stand-pipes, or vent-pipes, which are required, at every connection with the sewer, to pass up through and out of the tops of the houses. Just beneath, and attached to every manhole lid is a pan to catch dirt and prevent the same from falling into the sewer. There are, in all, 295 man-holes.

In many cities the practice has been to place a running trap on the course of the house connection with the sewer. The possible utility of this

yard trap has been largely discussed by engineers. Its advocates claim that it protects houses from sewer-gas. This claim may possibly have some validity where combined sewers are in use. As Col. Waring's system does not admit of the formation of sewer gas no such obstruction was needed. Besides, this form of trap has been shown to be of doubtful value in any event. On the other hand it would be difficult to conceive of a more perfect assurance against gas pressure, sufficient to rupture the water seals in our house traps, than is afforded by the always present stand-pipe, open, full bore, to the top of the house.

FLUSH TANKS.

One of those devices which is most eminently in harmony with the growing intelligence of this age, and with the spirit of the maxim that "cleanliness is next to godliness," is the automatic flush tank. The wastes from our houses pass into the sewers and are lost sight of. But, thanks to the flush tank, we know that, twice a day, and before any hurtful decomposition can possibly take the place, these wastes are all swept away beyond the boundaries of our habitations. It is the silent, underground, unseen, self-acting, but thorough scavenger whose operation leaves no footing for the slightest criticism or reproach.

The tank part of the flushing apparatus is made of hard-burned brick and cement. The siphoning part is of cast iron. A flush tank is built, well underground, at the extreme end, or dead end, of every lateral sewer. Thus is secured the effective cleansing and scouring of every foot of sewer drain in the city as often as the siphon is brought into action, and this is timed to take place about twice a day.

The first seven tanks placed in position were of the Field-Waring pattern, and were obtained from the foundry, at Norfolk, Va., which had supplied the tanks for that city. An illustration is shown on page 75. Its work has been satisfactory.

In the meantime the merits of other tanks were pressed upon our attention, with the result that it was deemed best to adopt the Rhodes-Williams tank, made by the Flush Tank Company, of Chicago, for general use. A diagram of this tank is printed on page 74.

The operation of the Rhodes-Williams tank, or siphon, is described as follows: It consists of an angular intaking limb, and a discharging limb terminating in a deep trap below the level of the sewer. Below the permanent water line in the discharging limb, is connected one end of a small blowoff, or relief trap, having a less depth of seal than the main trap, the other end of which joins the main trap on the opposite side, at its entrance to the sewer and above the water line of the trap. At the same point is connected an upright vent pipe which rises through the tank to a point above the high water line and is turned down through the top of and into the intaking limb of the siphon, terminating at a given point above its bottom.

As the tank fills (the main and blow-off traps being full) the water rises in the intaking limb, even with the level of the water in the tank, until reaching the end of the vent pipe, a volume of air is confined in the two

SECTION OF FLUSH TANK-RHODES-WILLIAMS SIPHON.

This cut shows the way in which most of the flush-tanks in Canton are built. Supply-pipe enters at top. Vent pipe communicating with sewer enters tank about the middle. The warmer sewer air guarantees the water in flush-tank against freezing in winter.

limbs of the siphon between the water in the intaking limb and the water in the main trap. As the water rises higher in the tank the confined volume of air is compressed, and the water is depressed in the main trap and in the blow-off trap. This process goes on until the water in the tank reaches its highest level above the top of the intaking limb, at which time the water is depressed in the blow-off trap to the lowest point and the confined air breaks through the seal, carrying the water with it out of the trap, thus releasing the confined air and allowing an inflow from the tank, putting the siphon into operation.

On the tank being discharged to the bottom of the intaking limb the flow is checked, and the siphon is vented by the admission of air to it through the vent pipe.

The first sewer flush-tanks used in Canton were of this pattern. They have operated successfully.

There are no moving parts about the mechanism of this device. Everything is fixed, stationary, and it will continue to perform its functions indefinitely. Its operation is regulated exactly by the amount of water admitted in a given time. The rise of the water to a given height causes a degree of air pressure in the upper end of an inverted iron dome sufficient to break through a trap, or seal, when the entire contents of the tank are sent rushing through the sewer, sweeping away whatsoever matters may have been too weighty for the normal, lazy, ordinary flow of the sewer. The number of flush-tanks on the entire system is 71.

It is worthy of remark, in passing, that the city was greatly favored, in the prosecution of the sewer work, by several incidents. Labor was obtainable on very low terms. Competitive influences also made the best quality of sewer pipe available at unheard of prices. The manner in which these facts enured to the advantage of the city will be obvious from a glance at the following table. In March, 1889, there were ten sewers to be let. The Engineer's estimate on these was based on the prices ordinarily ruling. The estimates and the bids which obtained the work were as follows:

ENGINEER'S ESTIMATE AND LOWEST BID ON TEN LATERAL SEWERS, MARCH 21, 1889.

	Gribben & Riley's Bid, (Cleveland, O.)	Engineer's Estimate.
Market	••••• \$ 4,033 37	\$ 5,100 00
Poplar	3,620 30	4,800 00
North	1,541 81	1,500 00
Third	2,150 79	3,000 00
Fourth	2,042 25	2,700 00
Fifth	····· 1,234 I3	2,700 00
Seventh	1,290 53	2,700 00
Eighth	2,195 81	3,000 00
Ninth	2,088 46	3,000 00
I enth	1,695 <u>5</u> 6	2,700 00
Totals Deduct total of bids	\$21,586 75	\$31,200 00 21,586 75
Excess of estimate over bids	••••	\$9,613,25

It is not our purpose to enter into larger detail in regard to the work on the lateral sewers. The legal method of getting the main sewer under way was given at some length. The same method preceded the inauguration of the laterals. So far as route and diameters are concerned the map will give all needed information. The material, cost and names of contractors are given in the table on page 77, prepared by City Engineer Chapin.

THE OPPOSITION TO SEPARATE SEWERS.

The period immediately preceding the inauguration of our sewers was characterized by great activity in this field. Urban populations were interested as never before. The printed literature on the subject of sewers received a wide extension. The opinions and extracts presented in the preliminary pages of this report exhibit the practical tendencies, and the direction in which enlightened experiment was leading the way. These testimonies were not engrated into this report for the sake of argument, as

76

SANITARY SEWERS.

SHOWING LOCATION, SIZE, MATERIAL AND COST OF ALL SEWERS BUILT TO DATE, MARCH 17, 1893.

OK Distribution Distributio		OCATION.	-	ILEN	GTH 1	N FE	ET. I	IAME	TER I	N INC	HES,	BRICK,	01'ES' 0Ł	SMA HSOL		
Allen Street. Multisliken Creek, North Street. Multisliken Creek,	8 '0N	BR	TWEEN	-#	 9	 · 00	6	01	12	18		IN.	HNVW ON	I.ON IAT	UONTHACTOR	LSO .
 Malturi Street. Punn Street. Pu	1 Allen Street 2 Allen Street	Nimishillen Creek. Nimishillen Creek.	North Street Sewer Farm							15 21	05 574	7	12:		H. Adams.	\$18.779.63
6 Frank Rily & GO. 2784 Frank Rily & GO. 2786	3 North Street	Walnut Street.	Plum Street.		186	260			014			0.266	<u></u>		rank Riley & Co.	1,565 93
With Street. Clerry Street. Clerry Street. Clerry Street. Clerry Street. Clerry Street. Clerry Street. Strank Riley & Co. 3,249 Street. Nativon Street. Clerry Street. Street. Street. Street. Street. Street. Street. Street. 3,00 3,437 1,1 Street. Nativon Street. Street. Street. 3,00 3,44 4,4 1,1	Fourth Street.	Plum Street	Herbruck Street		5 <u>5</u> 9	1993 2490			482				1 2	40	rank Riley & Co rank Rilev & Co	2,764.67
9 Nucleichtik Street. Martion Street. Storty	7 Seventh Street	Plum Street	Cherry Street	483	360	1515					_	-	99	E	ank Riley & Co.	1.980.30
10. Nuclear Marion Street. Str	⁸ Eighth Street	Marion Street	Cherry Street		355	1537			-	1			10 :	5 8 8	ank Riley & Co	2,014.12
In Matuki Streek Outru Streek Cherry Streek Teach Riley & CO. 2336 44 In Matuki Streek South Streek Lake Streek 2001 100 Frank Riley & CO. 2336 44 Chervaland Arenne South Streek Lake Streek 2001 100 100 Frank Riley & CO. 2396 10 Chervaland Arenne South Streek 100 100 Streek 2001 100 100 Streek 2496 13 2496 13 2496 13 2496 13 2496 13 2496 13 2496 13 2496 13 2496 13 2496 13 2496 13 2496 13 2496 13 2496 13 2496 13 2496 13 240 13 240 13 <td>⁹ Ninth Street</td> <td>Marion Street</td> <td>Saxton Street</td> <td></td> <td>436</td> <td>1717</td> <td></td> <td></td> <td>494</td> <td></td> <td></td> <td></td> <td>ಗೆ ರ</td> <td></td> <td>ank Riley & Co</td> <td>3,473.11 2,009.07</td>	⁹ Ninth Street	Marion Street	Saxton Street		436	1717			494				ಗೆ ರ		ank Riley & Co	3,473.11 2,009.07
36 Cherry Street. 2010 3010 3010 310 4435 5 37 Cherry Street. 2010 310 4436 1	II Market and Piadmont Streets	Marlon Street	Cherry Street		189	1784							ŝ	4	ank Riley & Co	2,348.44
13 Cherry Street 13 Cherry Street 14 Cherry Street 15 Cherry Street 16 Ches Street 16 Ches Street 10 Cherry Street 10 Cherry Street 10 Cherry Street 11 Fight Street 11 Fight Street 11 Fight Street 12 Cherry Street 12 Cherry Street 13 Cherry Street 13 Cherry Street 14 Cherry Street 16 Cherry Street 17 Fight Street 17 Fight Street 17 Fight Street 17 Fight Street 18 Cherry Street 18 Cherry Street 18 Cherry Street 19 Cherry Street 19 Cherry Street 10 Cherry Street 10 Cherry Street 10 Cherry Street 10 Cherry Street 11 Fight Street 11 Fight Street 11 Fight Street 12 Cherry Street 12 Cherry Street 13 Cherry Street 14 Cherry Street<	12 Cleveland Avenue	South Street.	Lake Street		1084			646	-			-	00	19	ank Riley & Co	4.527.65
In Walturs Street.North Street.North Street.On the Waltor's Street.	13 Cherry Street	South Street	Cross Street		526	1062	466	1046	169				24		hn Skeels	4,006,84
In the start was been wort. With Street. 1000 1000 Steels. 5200 3416 444 5200 3416 441 5000 500	Walnut Street	North Street	500 ft. N. Wash. Ave.			924	832						4	or I	hn Skeels	2,415.03
Native Street. Market Street. 2000 970 970 970 970 970 1500.05 1500.05 Newton Street. Norwin Street. 2001 Street. 2001 Street. 1600.05 1200.05 Newt Firth Street. Newton Street. 2001 Street. 2001 Street. 1600.05 Newton Street. Newton Street. 2001 541 641 700 1500.05 Street. Newton Street. 2001 541 641 7497 1000 Street. Newton Street. 200 160 541 641 1118 Street. North Street. 200 200 260 11018 260 Street. 11018 Street. 200 260 11018 260 Street. 200 260 260 260 260 11018 Street. 200 760 260 260 260 260 Street. 200 260 260 260 260 260 Street. 260 260 260 260 260 260 Street. 260 260 260 260 1000001 Street. <td>16 Mulb-rry, Cherry and Douglas Ste</td> <td>- Heruruck Street.</td> <td>400 II. W. Shorb Street Ninth Street</td> <td>418</td> <td>926</td> <td>3416</td> <td>44</td> <td></td> <td></td> <td>;</td> <td></td> <td></td> <td>H</td> <td><u> </u></td> <td>irnbull & Hadley</td> <td>5,200.26</td>	16 Mulb-rry, Cherry and Douglas Ste	- Heruruck Street.	400 II. W. Shorb Street Ninth Street	418	926	3416	44			;			H	<u> </u>	irnbull & Hadley	5,200.26
la Gleraland Avenue Street Netter Street Constraint Street Netter Street Street Netter Street Street Street Netter Street Street Netter Street Street Street Netter Street Street Street Netter Street	17 Jackson Street	Main Sewer	Market Street			CROT	1191		070				ñ,		din Skeels	2,066.03
Mest Rutu Street. New Young Street. 354 1103 541 1165 541	18 Cleveland Avenue	South Street	Cedar Street	-	232	959							+ + C	E.	ank Rilev & Co	1.680.32
Milliam Street Waturt Street Nume 26 H. Comell 7,497.32 Steat West Fourth Street Num Street Num Street 1006 516 340 56 H. Comell 1,666.81 28 West Fourth Street Pinth Street Ninth Street Ninth Street 1008 566 106 7,497.32 200 1,166.81 330 1,116.81 <td< td=""><td>20 Plum Street</td><td>- Pluin Street</td><td>Newton Street</td><td></td><td>354</td><td>1162</td><td></td><td></td><td></td><td>-</td><td></td><td></td><td>9</td><td>2 FT</td><td>ank Riley & Co</td><td>1,599.99</td></td<>	20 Plum Street	- Pluin Street	Newton Street		354	1162				-			9	2 FT	ank Riley & Co	1,599.99
22 (Cedar Street. Market Street. Pium Street. Pium Street. 1,000-05 28 West Fourth Street. Pium Street. Pium Street. Pium Street. 1,105-95 24 West Fourth Street. Pium Street. Pium Street. Pium Street. 1,107-95 28 West Fourth Street. Pium Street. Pium Street. Pium Street. 1,107-95 28 West Fourth Street. Jackson Street. Pium Street. Pium Street. 1,103-95 28 West Thurd. Jackson Street. Jackson Street. Jackson Street. 1,103-95 28 South Market Street. Jackson Street. Jackson Street. Jackson Street. 1,118-95 28 South Street. Pium Street. Jackson Street. Jackson Street. 3,102-65 29 High and Casslip Street. Pium Street. Jack Street. 1,177-91 3,102-65 29 High and Casslip Street. Jack Street. Jack Street. Jack Street. 1,177-91 20 Second Street. Jack Street. Jack Street. Jack Street. 3,102-65 3,102-65 20 Second Street. Jack Street. Jack Street. Jack Street. Jack Street. 2,177-91 <	21 William Street	Walunt Street	Cleveland Avenue		226	4166	541	644	-	-	<u>}</u>		18	00 87	H. Connell	7,497.32
24West Furth StreetFlort North StreetTlore StreetTlore StreetTlore StreetTlore StreetTlore StreetStreetTlore StreetStreetTlore StreetStreetTlore Street <td>22 Cedar Street</td> <td>Market Street</td> <td>Plum Street</td> <td></td> <td></td> <td></td> <td></td> <td>516</td> <td>340</td> <td></td> <td></td> <td></td> <td></td> <td><u>50</u> </td> <td>H Connell</td> <td>1,600.6/</td>	22 Cedar Street	Market Street	Plum Street					516	340					<u>50</u> 	H Connell	1,600.6/
Sandary Street Fully Street Fully Street 106 480 256 10 103	23 West Fourth Street	Plum Street	Shorb Street		338	508							, , , ,	<u>2</u> C.	H. Connell.	1.165.93
88 Souri) Market Street. Jackson Street. Williams Street. 237 673 89 Sourib Street. Jackson Street. Jackson Street. 227 673 80 Sourib Street. Jackson Street. 2000 McKinney. 2002 80 80 Nest Third Street. Jackson McKinney. 2002 80 80 Sourib Street. 2000 McKinney. 2003 20 80 Sourib Street. 2000 McKinney. 2003 20 80 Sourib Street. 2000 McKinney. 2003 20 80 Street. 2000 McKinney. 2003 86 80 Street. 2000 McKinney. 2003 86 80 Street. 2000 McKinney. 2003 46 80 Street. 2000 McKinney. 2000 40 80 Street. 2000 McKinney. 2000 40 80 Street. 2000 McKinney. 2003 40 80 Street. 200	25 Wells Street and Flaim Alley	Rourth Street	Fifth Street	-	-	196	480	256		1				0	H. Connell	1,018.91
 West Third Street Substitues Plum Street Substitues Plum Street Substitues Plum Street Substitues Plum Street Substitues Substi	26 South Market Street	Jackson Street	Williams Street		237	673		-	769	1		-	-i 4	<u>.</u>	H. Connell	331.63
WeiseTitterShort StreetShort StreetShort StreetStreetStreetTitter StreetTitter Street20 Second StreetFland Castily StreetFland Castily StreetStreetStreetStreetTitter StreetTitter Street20 Second StreetFland Castily StreetFland Castily StreetStreetStreetStreetTitter StreetTitter Street20 Second StreetFland Castily StreetFland Castily StreetStreetStreetStreetTitter StreetTitter Street20 Second StreetLake StreetStreetStreetStreetStreetStreetStreetStreet20 Cleveland AvenueN. Corporation Line1540StreetStreetStreetStreetStreet21 Cleveland AvenueN. Corporation Line1540StreetStreetStreetStreetStreet22 StreetEast Lake StreetN. Corporation Line114StreetStreetStreetStreet31 StreetCouncil StreetStreetStreetStreetStreetStreetStreet32 StreetCouncil StreetStreetStreetStreetStreetStreetStreet32 StreetCouncil StreetStreetStreetStreetStreetStreetStreet33 StreetStreetStreetStreetStreetStreetStreetStreetStreet34 South StreetStreetStreetStreetStreetStreetStreetStreet <td< td=""><td>27 South Street</td><td>Cherry Street</td><td>High Street</td><td></td><td>345</td><td>2010</td><td></td><td>-</td><td></td><td></td><td></td><td></td><td>00</td><td>120</td><td>cob McKinney</td><td>3,102.50</td></td<>	27 South Street	Cherry Street	High Street		345	2010		-					00	120	cob McKinney	3,102.50
30) Second Street Plum Street Flerbruck Street 550 254 255 254 255 254 255 254 255 254 255 </td <td>20 West Liurd Dereet. 20 High and Cassilly Streets</td> <td>- Flum Street</td> <td>Shorb Street</td> <td></td> <td>629</td> <td>210</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2</td> <td>3 Ja</td> <td>cob McKinney</td> <td>763.50</td>	20 West Liurd Dereet. 20 High and Cassilly Streets	- Flum Street	Shorb Street		629	210							2	3 Ja	cob McKinney	763.50
al Lake Street	30 Second Street.	Plum Street	Herbruck Street		620	260	-	184	247		-		2	3 Ja	cob McKinney	1,777.91
Si Gleveland Avenue Lake Street. IN Corporation Line. 1546 281 09 1 Hadley & McNichols. 4687 09 1 Hadley & McNichols. 4687 09 1 Hadley & McNichols. 3685 20	31 Lake Street	- Cleveland Avenue.	Market Street	581	545	1007	969				<u> </u>		x) 7	20	con McKinney	2,811.95
al Gunt Street. In Warner Street. In Warner Street. 114 200 2830 40 1 1 1 200 2830 20 2830 20 2830 20 28 20 20 28 20 20 20 20 20 20 20 20 20 20 20 20 20	22 Cleveland Avenue	Lake Street	N. Corporation Line	1546		2970							1 0:	1 H	adlev & McNichols.	4.687.64
Si Fitth Street. 11.00mel & Grabben 554, 00 41 East Lake Street. Walnut Street. 225 700 552 40 855 3	34 Court Street	Seventh Street	Theorem Street			2821							6	1 HE	adley & McNichols.	3,685.20
41 East Take Street. Market Street. Walnut Street. Walnut Street. 900 - 90 - 90 - 90 - 90 - 90 - 90 - 90	35 Fifth Street	Cherry Street	Herbruck Street	32.	191	700	:		-	-					nnell & Gribben	534.00
- Franklin Street.	41 East Lake Street	Market Street	Walnut Street.		663								n en		hn Skeels	505.48
	Franklin Street	- Eighti biree	Deventa Street		008	-	:					-		0	J.	
					- 077			<u> </u>	-	-		-	-	of	hn Skeels	76.50

argument. The time for that has passed by. As a matter of fact this presentation of authorities had no other object than that of placing the action of the Board of Sewer Commissioners in a proper light before the public.

Some of the reports above printed show that the introduction of the separate system was met with violent opposition. Such was not the case on the part of the Canton City Council. On the other hand, every recommendation of the Sewer Board received the approval of the Council. But very many citizens predicted inadequacy and speedy failure. The small pipe network that was put into the streets was ridiculed as an expensive toy arrangement that would in a few days or weeks at most be clogged with house refuse. The judgment of the Sewer Board was freely and gravely impugned.

Impelled by the desire to convince our citizens and taxpayers that the public money was not being injudiciously misapplied, the following statement was published:

"Inasmuch as many of our citizens have expressed doubts in regard to the sufficiency of the sewer system that is being introduced, a brief review of the subject is deemed ad-

of the sewer system that is being introduced, a brief review of the subject is deemed ad-visable. "The main sewer on Walnut street has the following diameters: fifteen inches from North to third streets; eighteen inches from Third to South streets, and twenty inches from South street to the creek. The main sewer from the creek to the city tract and dis-posal grounds, is about two by three feet in diameter, egg-shaped and built of brick. This brick main extension is made of the larger capacity indicated in order to provide for the removal of the sewage from a city double the size of Canton, even in case every house was connected with the system. Its capacity is sufficient to admit of its receiving the outflow of several other mains as large as that on Walnut street. "The main on Walnut street is of stoneware sewer pipe. It has, on its course, the needed man-holes and lateral openings for the connection of the lateral or collecting sew-ers. It is, however, in regard to the diameters and the system adopted that explanation is most essential. As a rule skepticism on this point vanishes just in the proportion that investigation advances. Those who have seen only the larger combined sewers in the older cities, naturally imagine that our safety would be best assured by following these precedents. It must, however, be borne in mind that modern achievement is due to changed

It must, however, be borne in mind that modern achievement is due to changed methods in nearly all departments of human activity. And, as a matter of fact, changes and improvements have been a notable feature of recent sanitary works. The operation of new principles in sewer construction is seen, not only in our own country, but in all the more enlightened cities of the world. That principle which has modified sewer build-ing more than any other may be expressed in these words: Make your sewers to remove sewage and nothing else. A glance at this subject will show the radical change of diam-

ing more than any other may be expressed in these words: Make your sewers to remove sewage, and nothing else. A glance at this subject will show the radical change of diam-ters or capacity that would ensue from adhesion to this principle. If only sewage is admitted, the current flowing through the pipe will have a depth of from four inches to ten inches during the several hours of the day. If rain water is admitted this flow may have a depth varying from four inches to six feet during the several hours of the same day. "The cost of the extra capacity required if rain water is to be admitted is enormous. It is often, in fact, sufficient to render sewerage an impossibility, and always entailed municipal burdens. Recent experience shows that this burden may be avoided. Not only so, but that the practice is radically wrong; that collecting sewers always and main sew-ers generally, should exclude storm water, even if the sewers of large character could be had for the same prices as the separate sewers of smaller, but sufficient capacity. Permit me to enumerate a few of the reasons in favor of sewers of the smaller diameter required for the removal of sewage only:

me to enumerate a few of the reasons in favor of sewers of the smaller diameter required for the removal of sewage only: "A maxim of sanitation is: Keep storm water on the surface and allow it to flow away in open gutters as long as no harm arises from overflow. Everyone is familiar with the cleansing power of a dashing rain on streets and gutters. In our city the danger from guick collections of storm water has mainly been provided for by the conduits built on Pennsylvania avenue, West Tuscarawas and Walnut streets. There is need of sewers of increased size in order to dispose of storm water. "Another very forcible argument in favor of separate sewers is their greatly dimin-ished cost, which has already been referred to. The cost of the Walnut street sewer from North street to the creek was \$10,544. The most favorable estimate for a sewer of equal length of sufficient capacity to carry storm water, was \$97,000. "In the combined sewer the ordinary flow of sewage would have a depth of only a few inches and the comparatively rough cement or brick bottom would be foul with the

precipitation of the more solid parts, presenting, in this respect, a marked contrast with the self-cleansing properties of smooth, vitrified sewer pipe. When storm water is added the volume fills the sewer more or less full of sewage contaminated water. As this volume subsides and the surface falls, sewage in greater or less quantities clings to the sides, leaving the sewer in a very foul and objectionable condition. On the score of cleanliness the advantage of pipe sewers is most decided, for they are also the only kind of sewers that can be perfectly and frequently flushed with a comparatively small expenditure of water.

water. "As sewers are connected with houses in which people live their ventilation is very important. A sewer without proper ventilation favors fermentation, and the production of gases inimical to health. The safe ventilation of large sewers is almost an impossibility. The separate sewers, having house connections open to the tops of the houses, are the best ventilated sewers in existence. The air in them is in constant motion. There is no room or time in them for the growth and maturing of those unwholesome products which find their most favoring conditions in the stagnated air spaces of the large sewers.

"If the out-flow of the sewer is into a very large river, or into the sea, it makes no difference in that respect whether the sewer is a combined or separate one. But if the sewage must pass through some process of purification before the effluent is delivered into a smaller stream, then the advantages of the separate system, carrying sewage only, are very great. In fact, the handling and treatment of a storm wafer flow are so great that it might be set down as a practical impossibility. No settling tanks or filter beds could effect its detention, or prevent the sewage laden water from finding its way to the lowest level. In fact, it was owing to difficulties of this nature that certain English cities were forced into the adoption of the separate system of sewerage for the first time that the experiment was ever tried. Where sewage has to be in any manner purified, the employment of the separate system is now the rule.

"It must be concerded that so far as economy in first cost, cleanliness, ventilation and final disposal are concerned, the advantages of the separate system for Canton are overwhelming. The only remaining question about which there can be any doubt is: Has the sewer which has been adopted for Canton sufficient capacity to carry away the waste products of the city? Happily for the conclusion arrived at by the Sewer Commissioners this question can be answered affirmatively with the most positive assurance. "The proof of this rests upon observation and experience. The system has been in

"The proof of this rests upon observation and experience. The system has been in use many years, and in cities where a greater carrying capacity is required than will be needed in Canton for many years to come—in Memphis, for example, which is a much larger city, and were attachment to sewers is compulsory as fast as they are laid, the cesspools being filled up under municipal direction as the sewer attachments are made. Both in Memphis, Omaha, Kalamazoo, Pullman, Norfolk and other cities employing the separate system, has the depth of flow in the main sewer been observed and recorded at all hours of the day. Engineer Holl recently returned from an inspection of the sewers of Norfolk, Va., where eight miles of sewers are drained through one eighteen-inch main, and he reports that the latter was never so much as half-full even in the early and middle forenoon, the period of highest water-mark.

forenoon, the period of highest water-mark. "The carrying capacity of the sewer is a problem for the engineer. The amount of sewage per capita to be delivered to the sewer is not difficult to estimate approximately. Its maximum is about two barrels a day. Knowing this, and having the inner shape and surface, and the grade of the sewer, the engineer easily estimates its carrying capacity. The result of such a calculation confirms actual observation, and shows that a twelve-inch main sewer would probably carry away all the waste products that will be collected in the Canton sewers for some time to come.

It is asked why the combined system is still in use in so many cities if the advantages of the separate system are so apparent. The answer to this is that these advantages were not always so apparent. Had this been the case the large sewers—excepting for intercepting purposes—would be a rarity.

Not only so, but ancient usage and engineering precedent carry great weight. A venerable error is hard to put down. For these reasons large combined sewers are still occasionally adopted. It may also be said that many cities with big-bore sewers, and a big debt in consequence, now deeply regret the course they adopted. We shall make no such costly and useless blunder. We have great respect for precedents, and we are fortunate in having as precedents the work constructed by many of the most enlightened and successful sewer builders in the country, and I am sure it will secure the approval of every unprejudiced person who, divesting his mind of preconceived notions will give the subject a careful examination."

THE LATERAL SEWERS—COMPARATIVE COST.

The preceding remarks have general reference to the main sewer. It has been shown, from actual estimates made by competent engineers, that a main sewer of sufficient capacity to carry off storm water would have cost five times as much as the house-waste sewer which has been built, and which will be fully adequate to our needs when the present population of Canton shall have been doubled.

When we come to the laterals the saving will be much greater, owing both to their greater length and to their average depth. In order to receive outflow from cellars these laterals must have a minimum depth of nine feet, and in order to have sufficient fall this depth ranges from nine to sixteen feet. Certainly the carrying of rain water at such a depth below the surface, is unnecessary. The merest glance will satisfy anyone of the great economy of the pipes now being laid over the building of brick conduits large enough to admit the passage of storm water at such a depth under ground. On the score of economy then it may be taken for granted that argument is not needed. If the removal of sewage only, not accompanied by storm water, is the object aimed at, then the advantages of the plan now being carried out in Canton are as four or five to one over a system that would be adequate to the safe removal of the heaviest rainfalls. system that would be adequate to the safe removal of the heaviest rainfalls. Very many persons freely express

SECTION SHOWING PIPE JOINT.

the opinion that the diameters being used in Canton are too small. The natural and quick explanation is that these sewers are for the removal of house wastes only. This exlpanation does not always Predictions are remove doubt. freely made that the pipes will become clogged, that they are inadequate. It is sufficiently well known, the facts having frequently been printed, that the main sewer is two by three feet in diameter at the outlet, and fifteen inches in diameter at its smallest

end. Its diameter gradually increases as the laterals contribute to its proposed volume. The laterals range in diameter from one foot down to six inches, depending on the area to be drained. No course ranging divide the time time time time to be drained as the second second

The laterals range in diameter from one foot down to six inches, depending on the area to be drained. No sewer remains six inches in diameter for a greater distance than one block, or 200 feet, from the dead end, or highest point of that sewer. The reasons for believing that these diameters will be amply sufficient may be gen-erally summed up by the statement that such has been the experience of other cities. The opinions of practically all the cities using the separate system were obtained and the approval of the plan was without exception. Since the adoption of this plan by Canton, sewer-building has taken a very large extension. Nine-tenths of the new systems are upon the same plan. In the larger cities intercepting sewers have to be built, but even in such cases the collecting or lateral sewers are generally on the small pipe system.*

Naturally in such an engineering work, nothing is left to chance or Our separate sewers are designed on certain formula, the result of caprice. large experiment. These take into account the number of persons living on a given area, and assume that each person will furnish 100 gallons of liquid waste in 24 hours, also that one-half of this amount will be furnished in six hours.

It thus becomes apparent why those in control of the sewers feel compelled to refuse their use for the drainage of elevator water and other forms of overflow than the hurtful wastes of the city.

In the planning of storm water drains a different formula is used in fixing the capacity which is predicated on the acreage areas drained, on maximum rainfall, activity of flow, etc.

SEWER GAS.

Sewer gas stands as a general term expressive of the unwholesome volatile products of sewers. In regard to its composition a competent authority says:

^{*} Since the sewers of Canton were built a great many cities have introduced the separate system of sewers, comprising, among others, Chelsea, Lenov and Pittsfield, Mass.; Stanford, Conn.; Round Lake, Schenectady and Corning, N. Y.; Mt. Holly, East Orange, Long Branch and Englewood, N. J.; New Castle and Wilkesbarre, Pa., Pensacola, Fla.; Birmingham and Decatur, Ala.; East Liverpool, O.; Lincoln, Neb.; Wichita, Kan.; Pueblo, Col.; Ft. Worth and Little Rock, Ark.; San Bernardino and Riverside, Cal.; El Paso, Tex.; Leavenworth, Kan.; Laco-nia, N. H.; Athol and Westboro, Mass.; Hoosiac, N. J.; Charleston, S. C.; Savannah, Ga.; Nashville, Tenn.; Owensboro, Ky.; Wyoming, O.; Danville, III.; Springtheld, Mo.; Kingston, I.a.; Emporia, Kan ; Sacramento and recall.

"Sewer gas, as is well known, is a composite substance which may be represented by no one chemical formula, various conditions of sewage producing different combinations of gases, which we indiscriminately call 'sewer gas.' Now the danger in sewer gas may be attributed to two separate and distinct causes: First, from components, such as sulphureted hydrogen, which are actually poisonous. To this cause we may ascribe such fatalities as one which occurred in Kansas City some three or four years ago. Some men in digging a sewer trench opened an old vault which had been closed for some years. The men were almost instantaneously

Pipes resting on their full length.—The proper way to lay the vitrified pipe.

Pipes resting on their shoulders.—The improper way to lay the vitrified pipe.

were almost instantaneously overcome, and at least one of them died. Similar cases are not rare, but the promptness with which the poison acted was remarkable. Such gases are intolerably offensive. Secondly, air carrying germs of disease which, having become detached from the liquid body of sewage, generally by bubbles from, or air currents passing over the sewage, are borne along with the other gases to the outlet.

the other gases to the outlet. "These two sources of danger are quite distinct, but either may prove fatal. The first, acting more quickly on the system, usually warns us by an odor, the offensiveness of which is greatest when most dangerous. Inhalation produces headache, torpor, nausea, giddiness or unconsciousness, as the case may

consciousness, as the case may be, or it may act merely as a slight depressent. The second is odorless, but may eventually produce endemic disease and death. Ventilation is the simplest and often the most effective preventive in either case."

With separate sewers complete, regular and automatic flushing is an integral part of the system. Owing to the small volume of contained air, the house connections, carried full bore to the roofs, ventilate the sewer thoroughly. Sewer gas cannot be formed, and if formed cannot enter the house. In a concluding paragraph of a recent report of Dr. James T. Gardner, director of the New York State Survey, and a sanitary engineer of national repute, the following statement is made: "Those cities which have already spent large sums in completing sewers must either continue to suffer from the evils of sewer poison, or incur the further expense of a separate small system for carrying sewage only, retaining the large sewers for storm-water."

In the item of keeping the sewers in effective working order the proportionate saving to the city effected by separate sewers is even greater than the saving in first cost. In this we do not include expenses incurred in the treatment of sewage at the outfall. That is a separate matter. The removal of street debris, washed into large sewers by storm, entails heavy expenses which are almost entirely avoided by separate sewers, while the sewage is removed with very much greater rapidity and facility. In a report on this very subject, made to his own city, C. H. Latrobe, the distinguished engineer of Baltimore says that "Separate sewers fully answer the purpose for which they are intended, and which I conceive to be, primarily the object of all sewerage, viz.: 'To carry off all human and industrial waste with rapidity and cleanliness to its ultimate destination.'' We have purposely cited a few opinions from engineers who are recognized authorities

We have purposely cited a few opinions from engineers who are recognized authorities on this subject, and could present many more to the same effect; and we would prefer to do that if they occurred so condensed, and in form adapted to our situation. But enough has been said—leaving our own observations out of the count—to convince the fair inquirer that the flippant dictum of the passer-by, whose only knowledge of sewers is limited to that which he has seen in some of the older cities, is not based on any proper examination of the subject.

With no more light before him than the testimony and opinions that have been presented, it is believed that the impartial reader will say that no other course was advisable for the Sewer Board than the one which they actually pursued. Happily there is now at hand more convincing proof of the soundness of the decisions arrived at by the Board. The sewers have been in operation nearly four years. They have performed their functions perfectly. There has been no complaint, and no cause of complaint. In the presence of these facts opposition has been silenced, and evil predictions and reproaches have given place to hearty approbation.

It is with great satisfaction that we are able to state that although much skepticism and dissent was avowed, and legal obstructing processes were threatened, the sewer system of District Number Three was carried forward without interruption and was practically completed in the spring of 1890.

•

SEWER CONNECTIONS ON PAVED STREETS.

At a meeting of the Sewer Board held on July 1, 1889, the following was passed:

WHEREAS, The work of paving certain streets is in contemplation, therefore,

"*Resolved*, That the Sewer Commissioners hereby recommend that the house connections be put in to the curb line on all streets that are to be paved a sufficient time before said paving is done."

The City Council took action in compliance with the above recommendation and with one exception (in which the provision was overlooked in preparing specifications) the paved streets are provided with sewer connections, under the paved areas, in the manner indicated.

THE USE OF THE SEWERS.

As soon as the sewer construction was sufficiently advanced the applications for permission to use the sewers became very pressing. The first permit was issued December 31, 1889. Up to the present date 825 permits have been issued, though a considerable number of those to whom permits have been conceded have not yet built their proposed connections. A register of the name, date and name of sewer-builder is kept in the office of the City Engineer, also a list of the licensed plumbers in the city. The form of application and the permit is as follows :

APPLICATION FOR A PERMIT.

No.....

CITY CIVIL ENGINEER'S OFFICE.

Owner.....Address.....

View taken from southwest corner of tanks when the same were partially built. The floor of the tank in the foreground is completed, showing inward slope and sludge channel and drain which carries sludge to the sludge-well. See description in report of L. E. Chapin, C. E., at end of this report.

No.....

CITY CIVIL ENGINEER'S OFFICE.

CANTON, OHIO 189
WHEREAS, Permission is to be given to the undersigned, a duly licensed
to connect premises, house Noonlot No on the side
ofstreet, between
and street, with sewer in
street; subject at all times to the provisions of Ordinance No. 77, regulating the use and
construction of sewers, etc., passed December 16th, 1889;

THEREFORE,.....hereby bind.....heirs, executors, administrators and assigns, to become responsible to the City of Canton for any damage whatsoever that may result to said city, or to any person or property in said city by reason of the construction of said connection, and within three days after the commencement of the work.... hereby agree to have said.....restored to as good condition as it was before said connection was made. If not replaced by..... in the required time, the City of Canton is hereby empowered to have said work done at expense.

PERMIT.

No	CITY CIVIL ENGINEER'S OFFICE.
	CANTON, OHIO,189
Permission is here	by given to duly licensed
	to connect premises of
house Noon	lot No on theside of
	Street, betweenStreet
and	Street, with Sewer in
Street, subject at all tin construction of Sewers	nes to the provisions of Ordinance No. 77, regulating the use and , etc., passed December 16, 1889, and application for
this permit.	

	City Civil Engineer.

The method of using the sewers and the restrictions to be placed on those connecting with them, immediately required attention, and the whole subject was very properly referred to the Sewer Board. Having assumed the responsibility for the plan of sewers as built, it was eminently proper that the views of the Board in regard to the manner of utilizing the sewers should be heeded. The Board framed and submitted the following ordinance, which was passed, as reported, May 6th, 1889:

AN ORDINANCE

Regulating the Use and Construction of Sewers, and the Disposal of Sewage.

SECTION I. Be it ordained by the Council of the City of Canton, Ohio, That no person shall be authorized or permitted to do the work of making connections with any of the public sewers or drains or their lateral connections, until he shall have first registered his name and place of business in the office of the City Civil Engineer, and received a license from the Mayor. In case any change in his place of business, or his business connection, notice of the same shall be immediately given to the City Civil Engineer. No person shall be licensed to do any of the aforesaid work until he has furnished the Mayor with a satisfactory certificate, signed by at least two reputable plumbers, if he be a plumber, to the effect that the applicant is a person regularly educated to the business and qualified for the duties he undertakes; and previous to being so authorized or licensed by the said Mayor, he shall file a bond with the Mayor in the sum of fifteen hundred dollars, with two or more sureties, to the approval of the Mayor, conditioned that he will indemnify and save harmless the City of Canton from all loss or damage that may be occasioned in any wise, by accident, or the want of care or skill on his part in the prosecution of such work, or that may be occasioned by reason of any opening by him or caused to be made in any street, lane, alley, avenue, market space or common, as the case may be, and to restore such opening, to as good a state and condition as he found it previous to opening the from time to time, established by the Board of Sewer Commissioners or City Council, in relation to the construction, repair or regulation of any of the public sewers or drains. SEC. 2. All sewers shall be designated by consecutive numbers in the order of the

date of passage of the ordinance providing for their construction. SEC. 3. Whenever the word "street" is used singly, it shall be understood to em-SEC. 3. Whenever the word "street" is used singly, it shan be understood to brace streets, lanes, alleys and other public grounds, the same as though named in each case. All sewers and drains of every kind within the lines of any street, lane, alley, or other public grounds or right of way, shall be under the control of the City Civil Engineer.

SEC. 4. Every plumber or sewer builder before doing any work connected with any sewer, shall file with the Engineer a notice and drawing of the work to be performed, and no such work shall be done without the approval of the Engineer, or one of his assistants. Application for permits shall be made, in each special case, to the Engineer by the owner, agent, or person in whose interest the work is to be done, and he shall issue the permit to the plumber or sewer builder in the name of the owner or person in whose interest the work is to be done before the work is commenced, and in no case shall such work be prosecuted unless such permit is on the grounds and in the possession of the person doing the work; each certificate shall designate the street and number of the house and lot, and shall include such definite description of the premises as to clearly define the location of the same on the map.

Applications so filed shall be approved or rejected without unreasonable delay. After a plan has been approved no alteration of the same will be allowed except on a written application of the owner. SEC. 5. The Engineer shall keep a daily record of the permits applied for and allowed

or rejected, as well as all violations of this ordinance.

A fee of twenty-five cents must be paid as a permit fee for each connection to the sewer, which money shall be paid into the sewer fund.

Each plumber or sewer builder will be held responsible for any injury he may cause to any main or lateral sewer in the prosecution of his work.

SEC. 6. Drawing and descriptions of the plumbing and drainage of buildings done prior to the passage of the ordinance may be placed on file with the Engineer. The latter may, at his discretion, require such plans to be so filed. The City Civil Engineer and Health Officer shall, at proper times, have access to all plumbing fixtures connected with the sewer. In all cases where private sewers have been constructed the owners or occupants of the premises shall, at their own expense, maintain and keep such sewers in good working order and repair.

All house connections shall be of the uniform size of four inches in internal SEC. 7. diameter. All sewer pipes, except those which enter buildings, shall be of the best quality of vitrified socket pipe, of the kind or kinds acceptable to the Engineer or his assistants.

Where soil pipes enter a building under the foundation thereof, the Engineer, or his ssistant, may require the pipe to be of cast-iron. At such place the wall shall leave two inches clear space over the top of the pipe or it shall be arched so as to prevent injury to the pipe by setting. The ventilating pipe shall also be of cast-iron, and of same bore as soil pipe to the top of same. All iron pipes used in the construction of drains or house connections shall be coated inside and outside with coal or tar applied hot, or rustless material acceptable to the Engineer, and the joints thereof shall be made with gaskets of oakum, thoroughly caulked in with hot lead at one pouring so as to render them impermeable to gases; but wrought iron pipe may also be used with thread and screw joints.

The nearly horizontal portions of iron soil pipe, used under ground, shall in no case weigh less than—

For 4 inch pipe, 13 lbs. per lineal foot.

For 3 inch pipe, $9\frac{1}{2}$ lbs. per lineal foot. For 2 inch pipe, $5\frac{1}{2}$ lbs. per lineal foot.

Waste pipes or lateral drains from bath tubs, basins, or other fixtures (with the exception of water closets), may be of two inch diameter pipe.

When it is practicable the soil pipe must run on a cellar or other wall and be securely fastened thereto. When it is impracticable the soil pipe may be laid in a trench beneath rastened inereto. When it is impracticable the solipipe may be laid in a trench beneath the cellar floor; and, in that case, may be of iron, or, except under walls or other heavy pressure, of sewer pipe. If of sewer pipe, the latter must be of perfect quality, the joints must be made of Portland cement, iron filings and sand thoroughly mixed with a weak sal-amoniac solution. Whether of iron or stone ware, said pipes must be shown to the Engineer or one of his assistants, in open trench filled with water, and subject to his approval or rejection.

Said soil pipes placed in the ground shall be supplied with an accessable clean-out either inside or outside the walls of the building

SEC. 8. All connections with the main branch sewers shall be made at the regular connections, or junctions built in the same, except by special permit from the City Civil Engineer, who shall give such information as the city may possess relative to the location of such junctions, depth of sewer, etc., on application, and all reasonable care will be taken to insure the correctness of such information; but the city shall not be liable for any errors arising therefrom.

All openings made within the street lines for the purpose of laying any such SEC. 9. sewer, except under the tracks of street or other railways shall be in open trench. All material for flaging, curb or ballasting, to be carefully removed and preserved, and after the connection is properly made, the trench shall be refilled and puddled, (in puddling the earth must be put in layers not more than one foot in depth, and each such layer shall be thoroughly puddled or rammed before another layer is put in), and the paving and other material that had been removed shall be properly replaced by the sewer builder, and if not replaced within three days after the same has been removed, then the same shall be replaced by the city at his expense.

The course of drain pipes shall be laid not nearer than eighteen inches to any water pipe: at crossings, the latter shall be protected from corrosion by a cement covering. All sewers and drains beyond the street lines may be laid in open trench, or in trench

and tunnel, as may be directed, but in the latter case no tunnel shall enclose more than

two joints of pipe. SEC. 10. When sides of the trench will not stand vertical, sheeting and braces shall be used to prevent unnecessary caving. The sewer builder must erect proper safe guards and maintain danger signals wherever and whenever necessary. He will be liable for all

damages to persons and property caused by his acts of negligence. All water pipe shall be protected from injury to the satisfaction of the water works superintendent, and gas pipe to the satisfaction of the City Civil Engineer. SEC. 11. The sewer builder will also be held responsible for any subsequent settle-

ment of the ground and pavement, and must on notification make the same as good as before he began the work.

SEC. 12. All house connections shall be made straight, or in as direct line as possible to the "Y" branches in the sewers into which the premises are drained and shall be at least four feet below the surface of the ground. All pipes shall be laid to a proper fall of not less than one-half inch to every two feet, where practicable, by the use of the spirit level.

The joints shall be made oakum gaskets well caulked in, and finished with the best hydraulic cement, and clean sand placed in and around each joint, so that the same shall be used at all angles in the house connections greater than three inches deviation from a straight line in the length of one joint of pipe.

SEC. 13. Whenever it is necessary to make a connection with any main or lateral sewer where no "Y" has been placed, the junction pipe will be furnished by the sewer builder, and the same will be inserted under the supervision of the City Civil Engineer or one of his assistants.

No sewer builder shall cut or break into the sewer unless the City Civil Engineer or

SEC. 14. All "Y" branches or junctions not intended for immediate use shall have their ends closed water tight with brick or stone and cement. Care should be taken that the interior of the pipes are free from rough mortar and that the whole house connection and count be left close and in grand condition. and sewer be left clean and in good condition.

SEC. 15. Sewer builders shall in no case use water from street hydrants without a permit from the superintendent of the water works. All joints in waste pipes, except where screw joints are used, must be with oakum gaskets and lead or cement, well caulked so as to render them water and gas tight.

SEC. 16. All connections of lead with iron pipes must be made with brass sleeve or ferrule of the same size as the lead pipe, and thoroughly caulked with lead, and the lead pipe to be attached to the sleeve or ferule by a wiped lead joint.

All connections of lead pipe must be by wiped joints. Putty joints will not be permitted. SEC. 17. The drain, soil and waste pipes, and the traps must, if practicable, be exposed to view for ready inspection at all times, and for convenience in repairing. When necessarily placed within partitions or recesses in the wall, soil and waste pipes must be covered with wood work so fastened with screws as to be readily removed. In no case shall they be absolutely inaccessible.

Absolutely horizontal waste pipes shall be prohibited. Drips or overflow SEC. 18. pipes from safes under water closets or other fixtures, or from tanks or cisterns, shall be run to some place in open sight, and in no case shall any such pipes be connected directly with a drain, waste or soil pipe. Waste pipes from refrigerators, or other receptacles in which such provisions are stored, shall not be connected with a drain soil pipe, or other waste pipe, unless such waste pipes are provided with traps, suitably ventilated, and in every case there shall be an open tray between the trap and the refrigerator. SEC. 19. All pipes exposed to frost should be covered with mineral wool or other

substance equally good, and they shall be cased to the satisfaction of the Engineer.

SEC. 20. When the soil pipe enters a building, a ventilating pipe shall enter said soil pipe, and shall pass in undiminished bore, by the wall, inside of same extending at least two feet above the roof or top of the highest window.

SEC. 21. Soil, waste or vent pipes in an extension must be extended above the roof of the main building, when otherwise they would open within twenty feet of the windows of the main house or the adjoining house. It must not open below a window nor an air

shaft which ventilates living rooms, nor nearer to same in any direction than eight feet. SEC. 22. No trap or any manner of obstruction to the complete or perfectly free flow of air throughout the entire course of the drain or house connection will be permitted. Every room having a water closet, urinal, bath tub or any drainage connected with the sewer must have a window or shaft of an area of at least two square feet communicating directly with the outer air.

SEC. 23. Every water closet trap must be separately ventilated and protected from syphonage by a special vent pipe of not less than two inches in diameter. If traps for above fixtures are vented the pipes used must have diameters of not less than one and one-fourth inches. If the pipes exceed fifteen feet in length they shall be one and onehalf inches in diameter.

These vent or air pipes shall extend at least two feet above the roof. If they are branched into the soil pipe, it must be eight feet above the inlet pipe of the highest fixture.

They may be continuous by branching those which serve several traps, provided they are branched into a vent pipe of not less than two inches in interior diameter. These vent or air pipes must always have a continuous slope to avoid collecting water by condensa-tion. No trap vent pipe shall be used as a waste or soil pipe.

SEC. 24. No butcher's offal or garbage, dead animals, wood, stone, straw, rags or other articles or obstructions of any kind whatever, of a tougher or harder texture than newspaper or closet paper, shall be placed, thrown or deposited in any catch basin, sewer, ditch or drain in the city, and any person so offending or causing any such obstruction to be placed so as to be carried into such sewer or basin, shall be subject to the penalty hereinafter prescribed for such an offense, also any person breaking, injuring or removing any portion of any catch basin, man-hole cover or any part of any sewer or appurtenances thereto, or obstructing in any manner the inlet or outlet of any sewer or drain.

SEC. 25. Elevator waste water, roof water, overflows from cisterns, etc., shall not be connected with the sewers. The waste water which shall enter the sewers shall comrise only: I-Waste water from kitchen sinks.

-Waste water from water closets.

-Waste water from wash stands and bath tubs. 3-

4-Waste water from urinals.

-Waste water from slop hoppers.

6-Such waste waters from factories, laundries, restaurants or other buildings as the Engineer may consider admissible without detriment to the sewer.

SEC. 26. All exits from kitchen sinks, wash stands, slop hoppers, and other recepta-cles except water closets, shall be provided with strong and permanently attached metal strainers; except in case of urinals and wash bowls already provided with good earthenware strainers.

SEC. 27. No steam exhaust or blow off pipe from a steam boiler will be allowed to They should discharge into connect with any soil pipe, or directly with the house drain. a tank or condenser, the waste from which after being condensed and suitably trapped

may enter the sewer. Sub-soil drains from cellars may be connected with the sewer, but the connection must be made with the approval and under the personal supervision of the City Civil Every such connection must be provided with a trap; Engineer or one of his assistants. also with a good metal strainer, with perforations not more than one-fourth of an inch in

diameter, and exposed to plain view. SEC. 28. No trap nor any manner of obstruction to the complete and perfectly free flow of air throughout the entire course of the drain or soil pipe will be permitted. No brick sheet metal or earthenware flue shall be used for this purpose.

SEC. 29. Every wash basin, bath tub, sink, urinal, water-closet or other fixture connected with the sewer pipe of any building shall be separately trapped as close to the fixtures as possible, except in the case of syphon water closets. Water sealing traps of any pattern may be used when separate air pipe connections from the top of the same are provided; where separate air pipe connections are not provided traps which will not unseal must be used.

Overflow plpes from fixtures must in each case be connected on the inlet side of the The sediment pipe from kitchen boiler, if there is any, must be connected on the trap. inlet side of the sink trap.

SEC. 30. All closets, basins and urinals shall be provided with a sufficient supply of water to insure the cleaning of the same after each time of use; and in no case shall any such closet, basin, or urinal be used longer than one hour without such water supply, if from any cause the same be cut off, unless water is supplied from other sources. valves of cisterns must be so fitted and adjusted as to prevent wasting of water. Ball cock

SEC. 31. No sewer or kitchen drain from any building or premises shall discharge into any cesspool, vault or other like receptacle where such building or premises abut on streets provided with proper sewerage accommodations with which the same can be connected; and if at any future time such premises are provided with the said sewerage accommoda-tions, within thirty days thereafter the further use of such cesspools, vaults or other receptacles for the disposal of sewage shall be discontinued and the proper connections made with the main or lateral sewer. And the said cesspools, vaults, or other receptacles shall be cleaned out and filled up under the direction of the health officer.

SEC. 32. When a privy vault or cesspool must necessarily be used, it shall be abso-lutely water tight; shall be at least ten feet from any well or cistern of which the water is used for household purposes, and must not be allowed to fill within four feet of the top. Whoever violates any provision of this section shall be fined not more than one hundred dollars; and for the second offense not less than one hundred nor more than two hundred

SEC. 33. Water closets may be of any approved pattern, except pan closets, which are prohibited.

SEC. 34. No waste pipe from any kitchen, sink, urinal, closets or other instures snau discharge into the soil beneath any floor or building. No privy vaults or cesspools shall be connected with private or public sewerage. No privies or cesspools shall be allowed in connected with private or public sewerage. No privies or cesspools shall be allowed in No waste pipe from any kitchen, sink, urinal, closets or other fixtures shall the basement of any cellar. All private sewers connecting with packing or butcher shops, laundries, hotels, eating houses, restaurants, or other public cooking establishments, shall be provided with grease traps of such design as the Engineer may approve.

SEC. 35. All sewers, drains, urinals, sewer gas and waste traps and pipes, and everything pertaining to house drainage beyond the lines of any street, lane, alley orother public grounds shall be accessible to the City Civil Engineer, his assistants and Health Officer, and shall, except where otherwise provided, be under the care and control of the Health Officer.

Pipes and other fixtures shall not be covered or concealed from view until SEC. 36. after the work has been examined by the Engineer or one of his assistants, who shall be notified when the work is sufficiently advanced for inspection.

SEC. 37. Any house drain or sewer put in and covered without due notice to the Engineer or one of his assistants must be uncovered for inspection, at the discretion of the Engineer.

Whoever shall violate or fail to comply with any of the provisions of this SEC. 38. ordinance, except where another penalty is especially provided, shall upon conviction thereof, be fined not less than \$5 nor more than \$50 and the costs of the prosecution. SEC. 39. This ordinance shall take effect and be in force from and after its passage

and legal publication. J. H. DUMOULIN

Vice President of the Council.

ATTEST : H. G. SCHAUB, City Clerk.

REMARKS ON THE ORDINANCE.

Compliance with the provisions of the ordinance, which has been in effect nearly four years, has resulted in a very decided improvement in the

Safety in the house demands that the traps be kept full. In the case shown above a rag lapping over the S kept the seal open by capillary at-attraction.

attraction. If people leave the house unused for a considerable period the water may be evaporated out of the traps. Before taking such a step a good pumber should be consulted as to the best method of insuring a con-stant water scal in all the traps. stant water seal in all the traps.

character of the appliances and methods used in removing house wastes. In some minor matters the ordinance is still susceptible of improvement.

Up to the present time no effort has been made to enforce the provisions of Section 31. Parties most in need of the sewers were quick to connect their premises. On the other hand there existed, on the part of the city, a desire to trespass as gently as the nature of the case permitted, on the forbearance of property owners whose interests would be affected by the sewage pollution of the creek.

Coincident with the completion of the sewage purification plant it will become the duty of the Health Board to see to it that the requirements of this section of the ordinance are enforced, to the end that Sewer District Number Three may reap the sanitary benefits which this improvement has made available.

While the city builds the main and lateral sewers, when it comes to connecting with the same a good deal of discretion is necessarily left with the Blunders in plumbing connections and fixtures would seem to householder. be inevitable—such are the varied requirements and conditions that are certain to be encountered, a state of things which is made yet more unsatisfactory by the varying degree of intelligence, honesty and capacity possessed by the plumber himself. And mistakes, when they do occur, bring discomfort, and possibly disease, into the house, and discredit upon the sanitary system.

SIMPLE FORMS OF CLOSETS.

Short Hopper Section Showing Seal.

Short Hopper, Earthenware Bowl.

Long Hopper Section, Showing Seal.

All the forms of closets above shown are admissible and safe, providing the connec-tions are properly made. The iron hopper is made somewhat undesirable by the greater difficulty there is in keeping it clean. White earthenware

PAN CLOSET.

hoppers are best in this respect.

Because of the use to which these fixtures are put it is Because of the use to which these fixtures are put it is a mistake, and a very common one, to suppose that they require no cleaning. They should be cleaned daily. Deposits left to cling induce chemical action and discolora-tion, and by and by the surface that should look white and clean becomes permanently stained and unsightly. We do not feel called upon to speak of the higher priced closets, specimens of which may be seen in any plumher's outfit. Many of these are brought to a high point of excellence, and even elegance, and render excel-lent service.

lent service.

But inasmuch as it is desirable that all the residents of Sewer District No. 3 should connect with the sewers, and as the expense of fixtures may be urged as an excuse for neglecting to do so, it has been deemed advisable to state that the simple and cheap hopper closet, properly connected and cared for, will answer every purpose that can be required of a closet.

The use of the "pan closet" was formerly almost universal. An outline of this style is here shown.

It is a self-fouling affair, and cannot be cleaned. Its use is prohibited by section 33 of the Canton ordinance.

THE ILLUSTRATIONS IN THIS REPORT.

For obvious reasons the printer of this report has been instructed to present, in various pages, some illustrations, which will indicate how certain features of plain pipe-laying and plumbing should be done, or should not be done. No attempt is made in these to present any substitute for the plumber's art. Persons wishing plumbing work should employ and rely on the advice of a plumber of good reputation.

It is nevertheless true that there are certain plain principles upon which depend the safety or danger of these house connections which everybody should understand, and upon these only do the illustrations presented have any bearing. In addition to this there are certain requirements in the ordinance, the reasons for which can be made plainer by printed cuts than by any amount of printed description.

If some of our illustrations commend themselves as appertaining rather to the domain of the Health Board, we may be pardoned for suggesting that the subjects which engage the attention of both these boards have many common points of contact. As a matter of fact, during the earlier history of the Canton Sewer Board, the sanitary feature was diligently canvassed in the effort to impress upon householders the private and personal advantages which would accrue to them from a good sewer system. On the other hand the damages that menaced the victims of bad drainage, defective plumbing, and cesspool storage, furnished object lessons that were not entirely neglected.

THE COST OF THE LATERAL SEWERS.

It has already been stated that the laws of Ohio place the construction and taxing features of sewer enterprises in the authority of the municipal councils. It will, however, contribute to the completeness of this report if the ratio of cost, and the reasons for the method of assessment, are briefly stated.

The cost of the lateral sewers to householders has been one dollar per foot of frontage liable to assessment. If the lot had frontages on two streets, the tax was assessed only on the shortest of these frontages; only one tax was allowed to be imposed on any single piece of property. The clauses of the statute bearing upon this subject were cited to the City Council by the City Solicitor as follows:

ASSESSING COST.

SECTION 2370. [Assessment of Cost of Main Sewers.] The Council shall provide for assessing the cost and expenses of constructing main sewers upon the lots and lands bounding or abutting upon the streets, lawns, alleys, highways, market spaces, public buildings and commons, in or along which the same shall pass, by the front foot, or according to the valuation of the same on the tax list, or according to benefits as it shall determine.

LIMITING ASSESSMENTS.

SEC. 2380.' [Limit of such Assessment.] The assessment shall not exceed the sum that would in the opinion of the Council be required to construct an ordinary street sewer or drain, of sufficient capacity to drain or sewer such lots or lands; nor shall any lots or lands be assessed that do not need local drainage, or which are then provided therewith, and the excess of the cost over the assessment herein authorized, shall be paid out of the street fund of the corporation.

VALUATION OR STREET FRONTAGS.

SEC. 2381. [Assessment of Cost of Local Sewerage.] The Council shall also provide for assessing the expenses of local sewerage, upon the feet front of lots and lands, by or through which any portion of the main sewer may pass, or according to the valuation of the same upon the tax list or in proportion to the benefits, as it may determine in each case.

IF THE COUNCIL MAKES IT FRONTAGE.

SEC. 2382. [Rules of Assessment Act.] If the assessment is upon the feet front, the basis shall be determined by taking the total cost of constructing the main and lateral sewers and drains and the necessary apparatus and inlets and then dividing the gross amount by the number of feet front, subject to assessment, as herein provided for, on each side of the street, lane, alley, highway, common, market place or public landing, through or in which such sewers and drains may be laid, the quotient forming the amount to be assessed per foot front on each street, lane, alley, highway, common, market place or public landing, as a charge for the cost of expenses of constructing the sewers and drains, and their necessary appurtenances.

WHAT MAY BE EXEMPTED.

SEC. 2383. [Discrimination in Assessment in Certain Cases.] The Council may exempt from assessment such portion of the frontage of any lot having a greater frontage than its average depth and as much of any frontage or corner lots, as it may seem equitable, and charge the deficiency caused by such exemption on the whole frontage taxed pro rata; but in so doing it shall specially set forth, in the ordinance making such assessment, each lot so exempted, which ordinance, when passed, shall be binding upon the parties interested.

The method of assessment was generally satisfactory; though exceptions were taken to entire exemption of the long frontage, on one street, of lots having a comparatively short frontage on another street, the latter only being taxed.

City, church, and other properties generally exempt from taxes, were all assessed, there being no exemption made by law.

The bonds upon which the money for the lateral sewers was obtained was made payable in three annual installments, and they have all been paid.

RECENT RESUME BY THE CITY ENGINEER.

In a recent report to the City Council the length and cost of our city sewers to date are given as follows:

17.88 miles house sewers, cost	\$114,082.15 127,293.88
25.43 miles in all, costing	241,376.03

The cost of the house sewers has been about \$6,300 per mile, while that of the storm water sewers was about \$17,000 per mile.

In a previous page of this report the comparative cost of separate and combined sewers was given as about one to five. When it is considered that combined sewers, carrying sewage, must be a much greater depth and width than sewers draining storm water only, the reasons for this increased discrepancy will be obvious.

The concluding paragraph of Engineer Chapin's last annual report of the sewers, after four year's use, is an indication of the most satisfactory character. It is as follows:

"A total of 880 permits for house sewer connections has been issued to date, of which 178 were issued during the past year. The expense in maintaining the separate system is almost entirely the salary paid to inspector to examine the connections when laid, besides occasionally clearing the dirt pans in man holes." The world might be challenged to produce a report on current expenses on so large a work which would be more pointed and significant than that.

SEWER DISTRICTS 1 AND 2.

Many residents in both the east and west sewer districts are already looking to the city for drainage relief. These districts will have to be reached by separate mains which will, in their courses, necessarily conform more or less, with the channel of the east and west creeks which furnish the surface drainage of their several areas. As has previously been stated, the problems presented by these sewer districts have already engaged some attention on the part of the City Engineer, and will be seriously considered in the near future.

For the sake of illustration two stand pipes are shown. In both cases the venting connections enter pipe eight feet above highest fixture, as the ordinance requires. Traps are as near as possible to fixtures. The branch vent from trap enters vent pipe at a point as high as the fixture. This is important, as otherwise the sewage or waste water might escape through the branch vent in case the trap became choked. Choking should be made instantly perceptible by the fixture itself, so that the cause of it can be removed.

THIS REPORT.

It is possible that, in some features, this report may seem liable to the charge of redundancy. It ought, however, to be borne in mind, that this is the first and only statement that has been made covering the period of operations extending over ten years. A more or less general familiarity with the features of this enterprise does not absolve us from the necessity of stating material facts incident to its history and development. After all, the most has to be left unsaid. But we trust that it is sufficiently complete to give to our fellow citizens an intelligent comprehension of Canton's Sewer System, and of the principal events which attended and characterized its construction, so that, taken with the map, every query that could reasonably have been anticipated may have been fairly answered.

THIS BOARD AND THE CITY COUNCILS.

The fact has already been noted that, with a single exception, the personnel of the Board of Sewer Commissioners has been the same from its creation to the date of this report. It has also come to the attention of the reader that, prior to the spring of 1885, the methods and necessity of action were urged upon successive Councils without effect. There was a want of interest and a dearth of funds. But from the date when active operations were inaugurated to the present time every recommendation of this Board has been carried into effect.

While this fact justly implies that the responsibility, so far as principles

There is nothing in our ordinance against the use of a fresh air inlet, or a "foot vent," as it is called in the picture. With our system of sewers it is believed to be a needless precaution. The use of an extra vent pipe passing out through the roof stands in the same category. Good plumbers do not always agree about such matters, but the best class of plumbers now-a-days are not liable to make mis-takes that endanger health and comfort If extra vent pipe is used it should be made of imperishable material, and not of tin or sheet iron to leak and rust out in a short time. And the branch vent should always have a sharp rise which will in-

leak and rustout in a short time. And the branch vent should always have a sharp rise which will in-sure its freedom from obstructions.

involved are concerned, rests entirely with the Sewer Board, it is nevertheless the dictate of propriety that we should place on record our thanks to the several Councils having discretion in this matter for the courtesy and confidence which have uniformly been extended to us in the prosecution of this work.

CONCLUSION.

After more than four years of practical use of our sewers, the plans and methods employed, and the merits of the system itself, can be intelligently As may rightfully be supcriticized. posed, we have, ourselves, carefully observed the conduct of the system with a feeling of liveliest interest from the beginning. The humiliations and the disappointments that would have overtaken us had the predictions of our hostile critics been verified have failed On the contrary we feel to arrive. the utmost satisfaction in being able to present this most important work to the City of Canton with the entire assurance that it is as free from faults and as perfect in detail as the most modern methods in sanitary engineering admits of.

It was most economically built. lt The cost has not been is paid for. has been There no oppressive.

It entails no repair bills. It is accombreath of jobbery and no waste. It brings to our homes no dangers, no taxes, no panied by no nuisances. bill collectors-nothing but blessings.

Side by side with those works which rise up before the view and fascinate the eye, this underground, unseen city-plat of narrow channels presents The grateful conveniences afforded by it become itself at a disadvantage. an everyday matter and fail of appreciation.

But by recalling the days when the hideously suggestive "excavators" frequented our principal thoroughfares; when the foulest of wastes, ever ready to rise up armed with the darts of contagion, had to be stored and kept even in the most thickly settled parts of the city; when permanent street improvements and enterprises of solid worth requiring drainage could no longer be undertaken; the contrast strikingly emphasizes the wise prudence which inaugurated and carried forward this important work to its present state of completeness.

* Measured by the experience of other cities, in both the old and new worlds, employing similar methods, as well as by the observed working of our system thus far, there is every reason to believe that the benefits made available to our householders will be perpetual, and that citizens may continue indefinitely to point to the sewer system of Canton with a feeling of unabated confidence and pride.

> WILLIAM DANNEMILLER, PRESIDENT. DANIEL PAAR, E. O. PORTMAN, W. R. DAY, JOSIAH HARTZELL, CLERK.

SEWAGE DISPOSAL WORKS.

REPORT OF

L. E. CHAPIN, CITY CIVIL ENGINEER,

44 ·

Associate M. Am. Soc. C. E.

SEWAGE DISPOSAL WORKS.

To the Honorable Board of Sewer Commissioners, Canton, Ohio :

GENTLEMEN :—I herewith present for your consideration the following report and description of the Sewage Disposal Works now in operation :

METHODS OF TREATMENT.

The works have been designed and built for purification of our house sewage by chemical precipitation, the precipitating agents, lime and sulphate of alumnia, being added to the crude sewage in certain specified quantities and the whole thoroughly commingled, after which the sewage so treated is allowed to pass slowly through the precipitating tanks, where the heavier matters tall to the bottom and the clarified effluent, passing off over a series of steps in the effluent chamber to the main effluent sewer and then to the creek.

LOCATION OF PLANT.

The works are located in the northeast part of the 28 acre tract of land purchased in 1888 for a sewage farm, the sewage being carried into the works by a by-pass known as the "inlet sewer," and from the works by an effluent sewer back to the main sewer and thence to the Nimishillen Creek.

The plant consists of a building for machinery, an inlet screen chamber for removing papers and bulky matters, an inlet channel, leading from screen chambers, the four precipitation tanks, an effluent chamber and sewer and a sludge well.

The building is a two story frame structure with slate roof and divided into a mixing and press room, 30 by 40 feet and 12 feet high in the clear, with a chemical storeroom of the same size above, and into which the chemicals are delivered by a bridge from the bank drive, also a boiler room 28 by 35 feet which is lined with brick, and under the floor of the boiler room and next to mixing room is located the screen chamber. The building is constructed of 2 by 6 studding with 6 inch drop siding outside and ceiled inside, having double floors carried by 2 by 12 joists spaced 12 inches centers, and is provided with large double and single doors, all fitted with transoms; all doors are arranged to slide instead of swing. Large windows are provided in each room so as to allow an abundance of light and ventilation. The second floor ot mixing room and the main roof is supported by heavy trusses designed to support a weight equal to 50 tons of chemical, a span of horses and wagon, as well as a 2,000 gallon overhead water tank in which is stored the water for steam and mixing uses.

28 Acres.

PLAN OF DISPOSAL WORKS.

The gate and screen chamber is 3 feet deep, $8\frac{1}{2}$ feet wide, and about 14 feet long, divided by a longitudinal partition into two compartments, each having an iron screen, through which the flow of sewage is regulated by sliding flume gates, the rear of the gate chamber narrowing down to 4 feet in width and forming the inlet channel. The sides of inlet channel and gate chamber are of 12 inch brick masonry resting on an 8 by 20 inch brick footing course, the bottom of the channel having a pavement of 5 inches concrete, then one inch sand, then paving brick on edge, the joints and spaces being grouted with Portland cement.

The tanks are four in number, with provision made for future require. ments by opportunity to extend to the west. They are each 50 by 96 feet inside dimensions, and walls ranging from 5.75 to 7.58 feet high above the bottom pavement. These walls are all 26 inches thick under the coping (except the center walls separating each pair of tanks which are 28 inches thick), and by offsets on outside, and a batter of $1\frac{1}{2}$ inches to the foot on the inside, increase to, from 44 to 48 inches thick at the base, all resting on footing courses 8 by 60 inches. These walls are built of hard burned shale sewer brick, laid up in Buckeye Portland cement mortar, mixed one part cement to three parts coarse sharp sand. All walls have a coping of 4 inch thick sawed Berea sand stone, projecting one inch over face of wall and showing quarry face edges.

The bottom of each tank has a slope of I in 40 from rear to front, and also from sides to central sludge channel which is 2 feet wide, being 2 inches deep at upper end, and 14 inches deep at lower end, below bottom of paving. This paving is hard burned shale paving brick on a I inch sand cushion with a 5 inch concrete foundation, the brick being well grouted with neat Portland cement grout and forms a practically smooth surface.

All brick masonry has been thoroughly cleaned of loose mortar and treated with three coats of Portland cement wash, which makes a clean hard surface impervious to moisture and has endured the frosts of the winter without scaling.

The effluent chamber is 5 feet wide and 12 feet long, of brick masonry laid in the same manner and with same final treatment. The steps in this chamber are Berea sand stone sawed to exact dimensions and imbeded in the side walls. The sludge pump well is 10 feet inside diameter and 18 feet deep, having 16 inch brick walls and bottom. This well has a capacity of 700 cubic feet sludge to its flow line, the admission of which is controlled by an 18 inch sluice gate with hand wheel and standard and operated from above.

SLUDGE AND CLEAR WATER DRAINS.

Midway between the two pairs of tanks, and under the central channel wall is located an 18 inch diameter sludge drain connecting with the sludge well and having a 12 inch branch to each tank, and controlled by a 12 inch gate valve. At one side of this drain, but at a level, 24 inches higher, is an 18 inch clear water drain connected to the tanks by 8 inch branches, this drain delivering the supernatant water of each tank, at such times as they may be cleaned, to the effluent chamber discharging under the stone steps by means

SEWAGE DISPOSAL WORKS. Photo-View of Tanks and Machinery House. of 8 inch connections, and at the lower end of the sludge channel in the tanks and to these is attached an 8 inch valve, and an 8 inch swing joint together with two elbows and 8 feet of galvanized iron pipes with floats, forming a tloating skimmer pipe, to draw of the supernatant water of each tank from the surface till the sludge is reached. The floating skimmer pipes, with their valves, and also the sludge valves are operated by hand wheels from a platform overhanging the tank walls.

Ready inspection can be had at ail times for the drain sewers and their connections by means of two double man-holes over them, and forming part of the dividing wall of the central channel, and having wrought iron rims and covers opening from the top of coping of the wall.

MACHINERY.

The necessary machinery to prepare the chemicals and press the sludge consists of a boiler, engine, pressure pump, filter press, and two agitating chemical mixers. The boiler is a return tubular, 54 inches in diameter and 12 feet long, having 40 four inch tubes and set up in a substantial brick setting, with smokestack 28 inches in diameter and 53 feet high above the grates. The boiler is provided with both feed pump and an injector The engine is an 18 h. p. vertical automatic slide valve engine, of simple construction and requiring but little room. It was built by C. Aultman & Co., of Canton. The main engine shaft is provided with fly wheel pully which can be used to drive an electric light dynamo for lighting purposes on grounds and in the building.

The pressure pump is a horizontal direct-acting duplex plunger pump, having 8-inch steam cylinder, 5-inch water plungers and both 10-inch stroke, lt rests on a stone foundation, and is provided with double suction and discharge connections. One suction pipe takes sludge from sludge pump well, and the other water from a supply well, both being so connected that either can be used at a moment's notice, also one discharge goes to an overhead clear water tank, and by means of a gravity governor, is so controlled as to automatically start and stop, thus keeping a constant supply of water in this tank. The other discharge connection is the sludge pipe to the filter press, and has a relief valve with pipe connected back to the sludge well. The pump was built by the Voisard Steam Pump Co., of Canton.

THE FILTER PRESS.

The filter press is a 60 chamber Bonnot press, provided with all necessary appurtenances and built to withstand a pressure of 150 pounds per square inch. The exuded water from the drip cocks falls into a trough built into the floor beneath the press, from which it runs into a hopper and then back into the inlet channel. The chemical mixers are two elliptical tanks of wood, 5 by 9 feet diameters, and 6 feet high, each provided with two sets of beater arms, each on a vertical shaft. The chemicals are mixed and slacked separately in desired amounts of water on the chemical storeroom floor and from there flow into the chemical mixers below and continually agitated while the mixture is added to the crude sewage in inlet channel.

FILTER PRESS.

WROUGHT IRON MANHOLE TOP.

METHOD OF OPERATION.

The chemicals from the chemical mixers flow into two flat cast iron pans, suspended over the inlet channel, each pan has one edge serrated so as to allow the mixture to dribble in small streams into the flowing sewage below. Outside of building and in the inlet channel are placed deflecting dams of wood which serve to break up the current and thoroughly mix the chemicals with the crude sewage before it reaches the tanks. And after the sewage so treated reaches the tanks, by reason of their capacity, the velocity becomes so checked that precipitation immediately takes place, the effluent being quite clear after having passed through the first two tanks.

After using the first tank in the series for about two days, it becomes

SEWAGE DISPOSAL.

Chemical mixers, from the works of the Bonnot Company, used in the preparation of the precipitation salts before passing the same into the sewage. necessary to cut this tank out of the series, for the purpose of removing the accumulated sludge. This is done by closing the flash board gates separating this tank from the main channel and opening channel gate, allowing sewage to pass by the tank so cut out and into the next tank and thence through the remaining tanks to the effluent chamber. When the tank is so cut out the water remaining therein is allowed to stand for a time to allow floating matter to precipitate, after which the floating skimmer pipe is lowered, the valve opened and the surface water drawn off to near the

sludge, when the skimmer is raised, valve closed, and sludge valve opened, which allows the sludge to pass into the sludge well. After the sludge is so drawn off the sludge gate is closed, weir gates opened and sew-age allowed to re-enter the tank.

From the sludge well the sludge is pumped into the filter press, which retains the solid matters and allows the water to flow back into the inlet channel. To facilitate the separation of the solid matter a strong lime water is added to the sludge in the well before pumping into the press.

SEWER DISCHARGES.

For the purpose of obtaining the exact daily amount of sewage to be treated at present, measurements were taken of flow in main sewer at two points, one at Jackson street below the last sewer connection or lateral sewer, and the other on the Saxton farm, 2,400 feet from Jackson street. These measurements were by means of weirs, inserted in the main sewers, and at which hourly readings were taken for a period or 24 hours. These weirs were of correct form, and were fitted tightly to the bore of the 20-inch pipe sewer so that no loss of water resulted. The hourly flow of the sewer at each of these points is given in the following table:

SEWER	GAUGINGS	IN	MAIN	SEWER	TWENTY	INCHES	DIAME-
	TER, CA	NTC	DN, OH	IIO, SEPA	ARATE SYS	STEM.	

MAN-HOLE AT JACKSON STREET.		MAN-HOLE IN SAXTON LAND.					
TIME.	GALLONS IN ONE HOUR	GALLONS IN FOUR HOURS.		TIME,	GALLONS IN ONE HOUR,	GALLONS IN FOUR HOURS.	REMARKS.
7:15 A. M. 8:00 9:00 10:00 11:00	25,423 27,705 30,054 30,054 25,423	113.236	{Maximum.	7:30 A. M. 8:15 9:15 10:15 11:15	27,123 28,854 30,643 31,240 27,123	117,860	-
12:00 1:00 P. M. 2:00	24,314 25,423 27.123	102.283		12:15 1:15 P. M. 2:15	27,705 28,553 28,281	109,662	
3:00 4:00 5:00 6:00	26,553 26,553 25,423 24,544	103.073		3:15 4:15 5:15 6:15	27,705 27,705 27,705 27,705 27,123	110.238	
7:00 8:00 9:00 10:00	23,670 22,881 22,130 21.074	89.755		7:15 8:15 9:15 10:15	24,314 23 670 23,670 22,130	93.784	Sewage becoming clearer.
11:00 12:00 1:00 A. M. 2:00	20,016 15,055 15,055 13,233	63,359		11:15 12:15 A. M. 1:15 2:15	21,074 15.270 16,135 14,190	66,669	Clear water mostly from 19 m. to 6 a. m., and but little odor and occasional scrap of paper.
3 :00 4 :00 5 :00 6 :00	8,985 8,985 13,233 13,233	44,436	{ Minimum.	3:15 4:15 5:15 6:15	11,469 9,792 14,190 14,190	49,641	Foor light at night rendered the reading difficult and not so accurate as n day- time.
Total	516,142	516,142		Total	547,854	547,854	

Or an excess for the 24 hours of 31,712 gallons in the lower man-hole over that of the upper one, being about six per cent of the total sewage flow.

Of this 516,142 gallons, probably 45,846 gallons are due from flush tank water. As measurements by meter of water used show about 772 gallons per flush tank per day, and the 63 flush tanks now connected at 772 gallons each, give the above total, or about nine per cent. of total sewage flow is flushing water.

From an inspection of the quantities discharged each four hours it is seen that during the period of from 12 m. to 6 a. m. the flow is only 14 6-10 per cent of the total daily quantity or 14 6-10 per cent. of sewage is then to be treated in 25 per cent of the day. Also during this time the flow is quite clear, showing it results from leaking fixtures, flush tanks and infiltration water.

The result of this series of discharge measurements is such that 1 think it possible to shut down the machinery during this time. And by having partly drawn off one of the tanks could have abundant storage capacity to hold this sewage till the machinery is started in the morning. By this method we may be able to reduce our operating expenses by quite a considerable sum. Taking the flow at upper man-hole at Jackson street as a total of 516,142 gallons per day, and deducting the tank water, 45,846 gallons per day, results in a net flow of sewage of 470,656 gallons per day from an average of 800 sewer connections or 583 gallons per connection per day. Inasmuch as most of the present connections are from the larger residences, large stores, hotels, etc., and it is probable that as the connections are added the average discharge per connection will be reduced to perhaps 500 gallons per day, or assuming five people per family would result in 100 gallons of sewage per capita per day.

The distance from the Saxton farm weir to the sewer farm is about 4,800 feet, and on a portion of which the sewer lies in very wet ground, from which a good deal of infiltration water no doubt makes its way into the sewer so that, probably, 800,000 gallons of sewage per day will be the amount to be treated at present.

The cost of completed works has been as follows :

For plans, drawings, photographs and printing	268	70
For grading for tanks, buildings and about grounds	1,831	28
For masonry tanks, inlet chamber and sludge well	13,845	70
For cement wash on masonry walls approximate	286	70
For foundations for machinery and supply well	236	83
For building complete except boiler room floor with tanks	3,236	64
For boiler room floor and deck of screen chamber	80	00
For iron gates, valves, weir guides, platform frames and iron pipe	885	24
For machinery and boiler set up complete	4,500	00
For sodding and fencing	244	00
For riprapping slopes at driveway and drainage	421	55
For plumbing, pipe fittings and miscellaneous	158	12
For inspection and superintendence.	489	00
Total cost of works in running order	26,483	76

Respectfully submitted,

L. E. CHAPIN, Chief Engineer.

⁶ Canton, O., May 5, 1893.

The following firms and individuals have been connected with the work :

ENGINEERING AND SUPERINTENDENCE.

L. E. CHAPIN, Associate M. Am. Soc. C. E	Chief Engineer.
W. L. BENDER	Assistant Engineer.
O. W. PFOUTS	Assistant Engineer.
THOMAS BLAKESuperinte	endent of construction.
GUY TILDEN	Architect of Building.

CONTRACTORS.

L. C. DRESBACH	Grading for tanks.
MCKINNEY & MCNICHOLS	Grading about grounds.
MCKINNEY & MCNICHOLS	Masonry work.
MR. CHAS. CASSELL	Building.
THE WROUGHT IRON BRIDGE CO	For guide frames and platforms.
THE BONNOT Co	For machinery and boiler.
THE LUDLOW VALVE CO	For valves and standards.
THE LAKE SHORE FOUNDRY	For cast iron pipe.
THE BERGER MFG. CO	For Galvanized iron pipe.
THE STANDARD COAL CO	For sewer pipe.

Report

on

Sewage Experimental Investigations

at

West New Brighton, Staten Island, N.Y.

WARREN R. BORST

Issued by

President of the Borough of Richmond, City of New York,

1919

Report

١

1

on

• \

Sewage Experimental Investigations

at

West New Brighton, Staten Island, N. Y.

WARREN R. BORST

Issued by President of the Borough of Richmond, City of New York,

1919

TABLE OF CONTENTS

PAGE

Absorption of Dissolved Oxygen (see tables)	10 - 12
Analytical Work	4
Biological Oxygen Demand	4
Disinfection by Chlorine Gas	7, 30–39
Disinfection by Hypochlorite of Lime	7, 8, 40
Experiments, Description of	5
Experimental Plant, Description of, etc	3, 14–16
Oxygen Absorbed (see tables)	10 - 12
Oxygen Consumed (see tables)	23, 25–26
Oxygen Demand.	4
Oxygen Dissolved	4-10
Reaeration	10-11
Sedimentation Plain (see tables)	6, 27–29
Sedimentation. Imhoff Tank with Colloidors	6, 41–43
Sedimentation. Imhoff Tank Without Colloidors	6, 44–46
Sedimentation. Syphon Tank	7, 47-49
Sewage, Character of, etc	-5, 17-22
Suspended Solids	4, 24–26
Sludge, Separate Digestion.	. 9
Sludge, Drying in Vacuum Dryer.	9
Sludge, Laboratory Experiment	10
Tanks Arrangement and Description of etc.	-5. 14-16
Tanks, Synhon	16. 47-49
Tamo, Oppion	20, 2, 20

TABLES CONTAINING RESULTS OF CHEMICAL ANALYSIS

Table Number

1.	Crude Sewage	17 - 22
2 .	Oxygen Consumed	3, 25, 26
3.	Suspended Solids2	4, 25, 26
4.	Analyses of Typical Outlets in Borough of Richmond	26
5.	Plain Sedimentation	27 - 29
6.	Disinfection by Chlorine Gas	30-39
7.	Disinfection by Hypochlorite of Lime	40
8.	Sedimentation in 19-Foot Imhoff Tank with Colloidors	41 - 43
9.	Sedimentation in 19-Foot Imhoff Tank without Colloidors	44 - 46
10.	Sedimentation in Syphon Tank	47 - 49
11.	Absorption of Oxygen by Unagitated Fresh Water	50 - 56
12.	Absorption of Oxygen by Fresh Water Having One-half Inch Ripple	57 - 62
13.	Absorption of Oxygen; One Part Fresh Water, Twenty Parts Sewage, One-half Inch Ripple	63–78
14.	Absorption of Oxygen; One Part Fresh Water, Thirty Parts Sewage, One- half-inch Ripple	79-81
15.	Absorption of Oxygen; One Part Fresh Water, Thirty Parts Sewage, Four- inch Wave	82
16.	Absorption of Oxygen; One Part Fresh Water, Forty Parts Sewage, One- half Inch Ripple	83
17.	Absorption of Oxygen; Salt Water from Kill van Kull, One-half Inch Ripple	84-106
18.	Absorption of Oxygen; One Part Salt Water, Twenty Parts Sewage, One- half Inch Ripple	107-129
19.	Absorption of Oxygen: Salt Water with Four-inch Wave	130-131
20.	Absorption of Oxygen; Salt Water and Septic Sewage, Four-inch Wave	132

HON. CALVIN D. VAN NAME, President of the Borough of Richmond, Borough Hall, Staten Island, N.Y.

DEAR SIR:

Following a resolution of The Board of Estimate and Apportionment of The City of New York, on July 17, 1911, authorizing the construction and maintenance of an Experimental Sewage Disposal Plant at West New Brighton, in the Borough of Richmond, the President of the Borough directed the Bureau of Engineering, T. S. Oxholm, Engineer in Charge, to proceed with the construction and equipment of a suitable plant and to have the necessary investigations made.

The following is a report setting forth the methods employed and results obtained:

PURPOSE OF INVESTIGATION.

The purpose of the investigations was

First:—To secure data relative to methods of sewage treatment and develop them to apply to the existing conditions in the Borough of Richmond.

Second:—To obtain such other data as might be serviceable in the study of sewage disposal of Greater New York.

DESCRIPTION OF EXPERIMENTAL STATION.

In order to carry on the investigation an experimental plant was established at the foot of Taylor Street, West New Brighton, in the rear of the Destructor on the shore of the Kill Van Kull. The sewage was brought to the plant through a special gravity line of 8-inch cast-iron pipe.

The plant consisted of a frame building 50×84 feet in plan with a finished extension 15×50 feet. The experimental tanks and other appliances were housed in the main building. This building afforded protection from the weather as well as obviating any danger of nuisance in the neighborhood. The extension was divided into four rooms of equal size. One of the rooms was used for small scale laboratory investigations of treatment processes, another as an office, while the third and fourth were for chemical and bacteriological laboratories, respectively.

The following is a list of the experimental tanks installed:

- 2 wooden tanks 6 ft. wide, 20 ft. long and 10 ft. deep.
- 2 wooden tanks 6 ft. wide, 11 ft. long and 12 ft. deep.
- 2 steel tanks 6 ft. wide, 11 ft. long and 19 ft. deep.
- 4 wooden tanks 6 ft. wide, 25 ft. long and 6 ft. deep.
- 1 steel "syphon" tank, 4 ft. diameter, 12 ft. high, with cone shaped bottom.

The details of these tanks will be seen on the appended drawings, Nos. 1, 2 and 3. Two tanks of each kind were provided in order that investigation could be made in duplicate, so that any new arrangements, modification or changes in operation could be made with one tank without interference with the original investigation.

TABLE OF CONTENTS

PAGE

Absorption of Dissolved Oxygen (see tables)	10 - 12
Analytical Work	4
Biological Oxygen Demand	4
Disinfection by Chlorine Gas	7, 30-39
Disinfection by Hypochlorite of Lime	7, 8, 40
Experiments Description of	5
Experimental Plant Description of etc.	3. 14–16
Oxygen Absorbed (see tables)	10-12
Oxygen Consumed (see tables)	3. 25-26
Oxygen Demand	4
Oxygen Dissolved	4-10
Poperation	10-11
Sedimentation Disin (see tables)	6 27-20
Sedimentation Fram (see tables)	6 11 12
Sedimentation, Imnon Fank with Conordors	6 44 46
Sedimentation, Imnon Tank without Colloidors	0,44-40
Sedimentation, Syphon Tank	7,47-49
Sewage, Character of, etc4-	5, 17-22
Suspended Solids	4, 24–26
Sludge, Separate Digestion	9
Sludge, Drying in Vacuum Dryer.	9
Sludge, Laboratory Experiment	10
Tanks, Arrangement and Description of, etc	5, 14–16
Tanks, Syphon	6, 47–49

TABLES CONTAINING RESULTS OF CHEMICAL ANALYSIS

Table Number

1.	Crude Sewage	17 - 22
2 .	Oxygen Consumed	3, 25, 26
3.	Suspended Solids	4, 25, 26
4.	Analyses of Typical Outlets in Borough of Richmond	26
5.	Plain Sedimentation	27 - 29
6.	Disinfection by Chlorine Gas	30-39
7.	Disinfection by Hypochlorite of Lime	40
8.	Sedimentation in 19-Foot Imhoff Tank with Colloidors	41–43
9.	Sedimentation in 19-Foot Imhoff Tank without Colloidors	44 - 46
10.	Sedimentation in Syphon Tank	47 - 49
11.	Absorption of Oxygen by Unagitated Fresh Water	50 - 56
12.	Absorption of Oxygen by Fresh Water Having One-half Inch Ripple	57 - 62
13.	Absorption of Oxygen; One Part Fresh Water, Twenty Parts Sewage, One-half Inch Ripple	63-78
14.	Absorption of Oxygen; One Part Fresh Water, Thirty Parts Sewage, One- half-inch Ripple	79-81
15.	Absorption of Oxygen; One Part Fresh Water, Thirty Parts Sewage, Four- inch Wave	82
16.	Absorption of Oxygen; One Part Fresh Water, Forty Parts Sewage, One- half Inch Ripple	83
17.	Absorption of Oxygen; Salt Water from Kill van Kull, One-half Inch Ripple	84-106
18.	Absorption of Oxygen; One Part Salt Water, Twenty Parts Sewage, One- half Inch Ripple	107-129
19.	Absorption of Oxygen; Salt Water with Four-inch Wave	130-131
20.	Absorption of Oxygen; Salt Water and Septic Sewage, Four-inch Wave	130 131

HON. CALVIN D. VAN NAME, President of the Borough of P.

President of the Borough of Richmond,

Borough Hall, Staten Island, N.Y.

DEAR SIR:

Following a resolution of The Board of Estimate and Apportionment of The City of New York, on July 17, 1911, authorizing the construction and maintenance of an Experimental Sewage Disposal Plant at West New Brighton, in the Borough of Richmond, the President of the Borough directed the Bureau of Engineering, T. S. Oxholm, Engineer in Charge, to proceed with the construction and equipment of a suitable plant and to have the necessary investigations made.

The following is a report setting forth the methods employed and results obtained:

PURPOSE OF INVESTIGATION.

The purpose of the investigations was

First:—To secure data relative to methods of sewage treatment and develop them to apply to the existing conditions in the Borough of Richmond.

Second:—To obtain such other data as might be serviceable in the study of sewage disposal of Greater New York.

DESCRIPTION OF EXPERIMENTAL STATION.

In order to carry on the investigation an experimental plant was established at the foot of Taylor Street, West New Brighton, in the rear of the Destructor on the shore of the Kill Van Kull. The sewage was brought to the plant through a special gravity line of 8-inch cast-iron pipe.

The plant consisted of a frame building 50×84 feet in plan with a finished extension 15×50 feet. The experimental tanks and other appliances were housed in the main building. This building afforded protection from the weather as well as obviating any danger of nuisance in the neighborhood. The extension was divided into four rooms of equal size. One of the rooms was used for small scale laboratory investigations of treatment processes, another as an office, while the third and fourth were for chemical and bacteriological laboratories, respectively.

The following is a list of the experimental tanks installed:

- 2 wooden tanks 6 ft. wide, 20 ft. long and 10 ft. deep.
- 2 wooden tanks 6 ft. wide, 11 ft. long and 12 ft. deep.
- 2 steel tanks 6 ft. wide, 11 ft. long and 19 ft. deep.
- 4 wooden tanks 6 ft. wide, 25 ft. long and 6 ft. deep.
- 1 steel "syphon" tank, 4 ft. diameter, 12 ft. high, with cone shaped bottom.

The details of these tanks will be seen on the appended drawings, Nos. 1, 2 and 3. Two tanks of each kind were provided in order that investigation could be made in duplicate, so that any new arrangements, modification or changes in operation could be made with one tank without interference with the original investigation.

SEWAGE.

The sewage brought to the station through the 8-inch pipe line was wholly domestic in character, as the district served was strictly residential with no factories contributing. The records of flow through the various tanks were obtained by Fox Boro recording gauges placed in rectangular These gauges were checked periodically by taking readings on a weirs. graduated glass attached to the sides of the weir boxes.

GENERAL PRINCIPLES OF SEWAGE TREATMENT.

Processes of sewage treatment may be grouped under three general headings, namely:

(1) Removal of suspended solids.

(2) Oxidation of dissolved solids.

(3) Removal of Bacteria.

Methods Employed:

1. Removal of suspended solids.

(b) sedimentation $\}$ with and without precipitation.

2. Intermittent sand filtration treatment, contact beds, sprinkling filters and the activated sludge process.

3. Sterilization with chemicals.

ANALYTICAL WORK.

In making the investigations, the foundation of the experiments was based upon the well recognized fact that the essential agents of sewage purification are employed by nature.

The slow action of bacteria aided by the oxygen from the air or water eventually converts into harmless mineral particles, all organic matter that comes within the sphere of its activity, the process being similar to that of combustion. In other words, the chemical composition of the sewage has been so altered that it is no longer capable of undergoing putrefactive decom-The amount of oxidation attained is the most useful measure of position. the work accomplished. The laboratory determinations of the samples of sewage and effluents were selected with the object of demonstrating the effectiveness of the methods employed.

The laboratory determinations selected were:

Suspended solids (Gooch crucible).

Oxygen consumed (10 minutes boiling acidified sample with permanganate).

Biological oxygen demand (absorption of dissolved oxygen upon incubation at 20° Centigrade).

Dissolved oxygen (Winkler method).

Suspended solids show the efficiency of the sedimentation processes and give information as to the amount of sludge to be cared for.

Oxygen consumed values indicate the amount of oxidizable organic matter present and by comparison show the removal of such organic matter by the process under observation.

Biological oxygen demand indicates the probable amount of oxygen required to oxidize the unstable organic matter in a sewage or sewage effluent when discharged into a natural body of water.

Dissolved oxygen determinations show the amount of atmospheric oxygen dissolved in a sewage effluent or in a receiving body of water.

Knowing, therefore, the oxygen demand of a sewage or effluent, the amount of oxygen dissolved in the effluent and also in the receiving body of water, means are available to compute with a fair degree of accuracy the permissible ratio of dilution. In other words, the maximum amount of sewage or effluent which may be discharged into a given volume of diluting water without causing putrefactive odors or too great depletion of oxygen in the receiving water can be obtained.

CHARACTER OF SEWAGE.

Hourly chemical analyses of sewage was made for seven consecutive days during the summer months of June, July and August, 1913, to determine the amount of suspended solids and oxygen consumed.

The results of these tests are shown in appended tables, No. 2 and 3, Diagram 4 and 5. These results showed a sewage with a maximum strength on Mondays gradually decreasing during the week to Saturday, when it shows a slight increase, the minimum strength appearing on Sunday.

The hourly tests showed that the maximum strength during the 24 hours was reached between 10 A.M. and 12 M., while the minimum strength was found between midnight and 5 A. M.

Analyses were also made of composite samples, collected every 15 minutes from six other representative sewer outlets in the Borough and the results of these analyses showed that the sewage delivered to the station was about the average strength of the sewage throughout the Borough.

For results of analyses of Raw Sewage, see Appended Table No. 1.

FLOW OF SEWAGE.

The total amount of sewage reaching the station averaged about 150,000 gallons per 24 hours.

The maximum flow occurred on Monday and Tuesday and the minimum on Sunday.

The maximum hourly flow occurred about 11 A.M. and the minimum from 12 P.M. to 5 A.M.

DESCRIPTION OF EXPERIMENTS.

In deciding what investigations would be of the most value to this Borough, taking into consideration its geographical position, it was decided that inasmuch as the sewage would be fresh and would be discharged into a large body of salt water subject to tidal current, the principal studies should be made to determine the size and type of tank, which, with the smallest velocity of flow, would give the shortest retention period consistent with a satisfactory removal of settling solids. In view of the fact that certain localities would be adjacent to bathing beaches and oyster beds, studies were made with respect to disinfection.

Series of experiments were made also to determine the rate of reaeration of fresh and salt water polluted with sewage.

Methods of sludge treatment were given considerable study.

These experiments may be summarized as follows:

1. Sedimentation.

- (a) Plain settling tanks.
 - (b) Imhoff tanks without colloidors.
 - (c) Imhoff tanks with colloidors.
- (d) Syphon tank.

- 2. Disinfection of raw sewage.
 - (a) With hypochlorite of lime.
 - (b) With chlorine gas.
- 3. Sludge Treatment.

 - (a) Drying in vacuum.(b) Digesting in separate tanks.
- 4. Rate of reaeration of sewage.
 - (a) Diluted with fresh water.
 - (b) Diluted with salt water.

(1) SEDIMENTATION,

(a) The operation of the plain sedimentation tanks was carried on principally with the object of securing data for comparison with that obtained in the operation of other types of sedimentation tanks. The plain sedimentation experiments were carried on for six months in the tanks 11 ft. long, 6 ft. wide and 12 ft. deep. The average results for these months were: flow through velocity .012 ft. per second, reduction Bacteria on Agar 37.5°, 19%, reduction Bacteria on Gelatin 20°, 29%, reduction suspended solids 47%, reduction oxygen consumed 26%. For detail, see appended Table No. 4.

(b) (c) The two steel tanks 11 ft. long, 6 ft. wide and 19 ft. deep were operated as two-story or Imhoff tanks. One was provided with furring strips, extending 4 ft. into the upper compartments, spaced 6 inches center to center and so staggered that the sewage passing through the compartment would have opportunity to come in contact with the surface of the The other tank was operated without the use of strips. strips.

These furring strips were used in an endeavor to combine the principles embodied in the Imhoff tank with those of the Hampton tank. The strips serving as colloidors furnishing surfaces upon which it was possible to obtain a growth of aerobic bacteria, which receiving the oxygen from the fresh sewage would give a more stable effluent than that obtained from the Imhoff tank without the colloidors.

The aeration of the sewage by forcing air through carborundum diffusers placed under each colloidor was considered, but no opportunity occurred to carry out this experiment. The time of retention in both of these tanks was 11/2 hours. In a series of investigations running from November to March the results were practically the same, showing a reduction of 59%in suspended solids, 30% of oxygen consumed. Bacteria on Agar 37.5°, 28% and Bacteria on Gelatin 20°, 38%. For results see appended Tables, Nos. 8 and 9.

In order to determine the effect upon these effluents by standing at room temperature, samples of crude sewage and of each of the effluents were placed in one-galf-gallon wide-mouthed, unstoppered bottles and allowed to remain at room temperature for a period of 17 days. The crude sewage and the effluent from the Imhoff tanks became septic while only a slight sewage odor could be observed in the effluent taken from the tank provided with the colloidors; after 24 hours even this slight odor disappeared, leaving a musty odor, while the samples in other bottles remain septic. Analyses of these samples at the end of 17 days gave the following results:

,	Nitrites,	Nitrates,	Dissolved Oxygen,
	Parts per Million	Parts per Million	Per Cent Saturation
Raw Sewage Plain Imhoff Effluent Imhoff with Colloidors	$\begin{array}{r} 2.8\\23.0\\26.0\end{array}$	$0.0 \\ 0.075 \\ 0.11$	$0.0 \\ 14.83 \\ 16.60$

(d) Syphon Tank.—Many of the sewer outfalls in the Borough are located in populated sections where it would not be desirable to have odors from a sewage-treatment plant. In such instances, where the sewer outlets are sufficiently above high water to allow a free outfall, it was considered advisable to study the action of a closed settling tank operated on the principle of a syphon for treatment by sedimentation alone.

For this purpose a cylindrical steel tank, with a conical bottom (similar to the type described under the title of "The Kessel" on page 201 in the Proceedings of the Institution of Municipal and County Engineers, volume XXXVI, 1909) was constructed.

The tank at this Experimental Station was 12 ft. high and 4 ft. diameter, with 6-inch inlet and 2-inch outlet (for details see drawing No. 3). Before entering the tank the sewage passed through a small grit chamber constructed of a 30-inch tile pipe set vertically, from which the 6-inch inlet, submerged about 14 inches in the grit chamber for a water seal, extended into the tank. This chamber also prevented floating materials, such as matches, corks, grease, etc., from entering the tank.

The outlet of the tank, located near the top, consisted of an inverted conical funnel of sheet metal 2 ft. 6 ins. in diameter at the base, to which was connected the 2-inch outlet pipe; this outlet extending into the outlet chamber the same distance as the inlet pipe of the grit chamber. A valve provided on this 2-inch outlet line permitted control of the sewage flow through the tanks.

From the conical bottom of the settling tank a vertical 4-inch cast-iron pipe with a gate valve, extended into a sludge receiving tank which was 2 ft. 6 ins. deep and 2 ft. diameter.

The ends of the inlet, sludge and outlet pipes were all of the same elevation and therefore all had the same water seal. The difference in head was about 5 inches.

To start the operation of the syphon tank all valves were closed and the tank filled with water. After filling, the valves of the inlet, outlet and sludge pipes were opened, the syphon action caused the sewage to flow. The "flow through velocity" in the syphon tank being very low, the solids settled through the sludge pipe into the sludge chamber under the tank. This tank and its method of operation provided for immediate separation of the settled solids from the sewage and prevented septic action interfering with the sedimentation process. This tank was operated continuously for three months, treating approximately 12,000 gallons per day, with results as given in the following table:

		Corresponding Feet per	rresponding Velocities, Feet per Second		Reduction, Suspended
	Storage	6-in. Inlet	Tank	Solids	Solids
Maximum Minimum Average	$2\frac{3}{4}$ hrs. 50 min. $1\frac{1}{2}$ hrs.	$\begin{array}{c} 11.2\\ 2.44\\ 6.22\end{array}$. 175 . 039 . 098	81 57 70	$\begin{array}{c} 42\\ 34\\ 49\end{array}$

RESULTS OF OPERATION OF SYPHON TANK FROM NOVEMBER TO FEBRUARY 1ST

For details of these results see appended Table No. 10.

(2) DISINFECTION

Investigation of the disinfection of sewage was undertaken for the purpose of determining the most economical and satisfactory method of protecting bathing beaches and shell-fish beds on the seaward side of the Borough. In these experiments studies were made of the relative efficiency of hypochlorite of lime compared with that of chlorine gas.

The chlorine gas was applied to the raw sewage by means of an apparatus furnished through the courtesy of the firm of Leavitt & Jackson, the diffusion of the gas in the sewage being accomplished through carborundum discs supplied by Wallace and Tiernan Company.

CHLORINE GAS

Bacteria per c.c.

Chlorine, P.P.M.	Raw Sewage	Tank Effluent	Per Cent. Reduction
5	744.000	640.000	14
7	225,000	27,000	88
8	940,000	47,000	95
10	1.000.000	20,000	98
12	1.060.000		100
15	972,000		100

DESCRIPTION-HYPOCHLORITE OF LIME TREATMENT.

Two barrels, each having a capacity of 54 gallons, were used as solution tanks. These barrels were connected by galvanized iron pipes to an automatic electrical bleach orifice box, through which the desired amount of solution was fed into the raw sewage.

Method.

The bleach was weighed and mixed by hand to an approximate proper proportion of water, allowed to stand for about 12 hours to permit insoluble matter to settle. Chemical analysis was made of the solution and water added to dilute to proper strength.

Constant head was maintained in the orifice box and variation in the rate was made by increasing or diminishing the size of orifice in the bottom of the box.

Hypochlorite of Lime.

Bacteria per c.c.

Chlorine,	Raw	Tank	Per Cent.
P.P.M.	Sewage	Effluent	Reduction
14 20 30 34 49	840,000 950,000 800,000 870,000 1,072,000	781,000446,000280,000125,00095,000	$7 \\ 53 \\ 65 \\ 85 \\ 91$

As a result of these experiments it was found that the raw sewage could be satisfactorily disinfected by the application of about 10 P.P.M. of chlorine gas, while about 17 P.P.M. of available chlorine in the form of hypochlorite were required to produce equal results.

The results would indicate the desirability of adopting chlorine gas as a disinfecting agent.

From these experiments it was found that the application of 10 to 12 P.P.M. of chlorine gas to raw sewage caused a reduction in bacterial count varying from 88 to 100 per cent. at 20° C. and 37.5° C. See appended Tables Nos. 6 and 7.

(3) SLUDGE TREATMENT.

The treatment and disposal of sludge is one of the most difficult problems connected with sewage disposal and, on this account, considerable time was devoted to this phase of experimental work.

Sludge is particularly difficult to handle due to its high moisture content, and, on account of its extremely putrescible character soon becomes objectionable if allowed to remain exposed without suitable treatment.

Two methods of disposing of the sludge were studied, namely: separate digestion and drying in vacuum. Separate Digestion.—Wet sludge was discharged into one of the tanks

Separate Digestion.—Wet sludge was discharged into one of the tanks (20 ft. long, 6 ft. wide and 10 ft. deep) and allowed to digest. As septic action progressed, the gas formation brought all of the sludge to the surface, producing a thick leathery scum or mat 18 inches thick. Under this scum a highly septic liquid remained, however, the volume of the sludge had decreased about 40% while its moisture content was reduced from about 98% to 70%. The upper half of this scum was removed and burned at the destructor plant. Fresh sludge was placed in the tank below the scum that remained by means of a wooden hopper 12 inches square. As the gases due to septic action formed, the fresh sludge rose in turn in the form of scum, lifting the old scum, which, while it had absorbed considerable moisture from the fresh sludge, prevented the escape of noxious gases. In time it dried and, as before, was removed and burned.

This method of disposal of sludge was successful from about May to the latter part of September when the temperature was from 65° to 70° . During the winter months the top became frozen and could not be dried, although there was no odor perceptible from the sludge in the tank.

Drying in Vacuum.—By courtesy of the John Fuller Engineering Co. practical experiments were made in the drying of sludge in a vacuum drying machine, such as is used to remove moisture from linseed oil in the manufacture of linoleum. This drier consisted of a cylindrical steel chamber revolving within a steam jacket. This machine was 20 ft. long by 18 inches in diameter over all. The inlet and outlet consisted of 6-inch pipes, each provided with valves. This machine would easily reduce the volume of sludge, leaving a residue free from disagreeable odors with a moisture content of 73%.

Such a machine can only be operated economically if the heat required for drying can be obtained from exhaust steam otherwise wasted.

The following table illustrates the drying effect accomplished by this method:

Num- ber of Times in Dryer	Weig Slu Before Drying	ht of dge After Drying	Per Cent by Weight of Water Removed	Per Cent by Ar Wet Sludge	Moisture nalysis Dried Sludge	e of Vacuum Mer- cury	Pounds of Steam in Jacket	Temper- ature of Exhaust Vapors Degrees Fahr.	Time of Sludge Passing through Dryer
First	1276	243	81	88.5	83.6	20	52	120	2 hrs.
Second	206	165	15	83.6	79.4	22	20	120	45 min.
Third	138	30	78	79.4	73.0	20	20	120	45 min.

By laboratory studies a method was discovered by which the noxious liquid under the scum of the sludge tank could be made non-putrescible and, while the methods and results do not seem to accord with scientific principles, nevertheless, the results obtained were from three separate experiments made from samples taken two or three months apart, which gave results that seemed to verify each other.

Test.—60 c.c. of the liquid taken from under the scum of the sludge tank was added to 40 c.c. of the liquid taken from the open-mouthed bottle containing the sample from the Imhoff tank with colloidors which had been allowed to stand for 17 days as previously described on page 6. This mixture after standing 24 hours in a beaker at room temperature, about 70° F., was free from disagreeable odors and found to be non-putrescible by the methylene blue test at 37.5° C.

It would seem that this process could be continuous and rapid oxidation would take place, particularly if agitation is employed.

Absorption of Dissolved Oxygen by Sewage from Diluting Waters and Rate of Reaeration of Diluted Sewage.

Experiments for determining the amount of dissolved oxygen absorbed by sewage from fresh water and sea water as well as the rate of reaeration of a water with its dissolved oxygen content depleted by sewage, were made in the four tanks, each of which had dimensions 25 ft. long, 6 ft. wide and 6 ft. deep.

These experiments may be subdivided as follows:

- Dissolved oxygen absorbed in dilutions of sewage with fresh water.
 (a) Without surface agitation.
 - (b) With slight surface agitation by two electric fans.

2. Dissolved oxygen absorbed in dilution of sewage with sea water.

- (a) Without agitation.
- (b) With slight surface agitation by electric fans.
- (c) With the surface agitated, making a wave, without splashing, about 4 inches high.
- 3. Rate of reaeration produced by surface agitation in a mixture of sewage and sea water containing no dissolved oxygen.

The methods for carrying out these experiments were as follows: During the winter months when the weather was too cold to keep the temperature up to about 20° C., the water was heated by exhaust steam from the garbage destructor nearby, and allowed to stand from 16 to 18 hours; then the sewage was added to the proper proportion and thoroughly mixed.

At the beginning of each experiment samples were analyzed for dissolved oxygen and the dissolved oxygen demand (biological oxygen demand) by the Hoover method of incubation at 20° C. Simultaneous samples were collected at regular intervals and at different depths. Bottles of the dilution collected before the agitation of the tank contents were submerged, tightly stoppered. The decrease of dissolved oxygen in these submerged bottles at the end of any period indicated the amount of dissolved oxygen demand upon the diluting water.

The increase in dissolved oxygen in the dilution in the tank itself, plus the decrease in dissolved oxygen in the submerged bottles, minus the original dissolved oxygen gave the amount of oxygen taken from the air. For convenience this may be expressed in the following formula: O = R - I + D;

where O=oxygen absorbed from air in P.P.M.;

I-initial dissolved oxygen in dilution;

R=residual dissolved oxygen in dilution;

D=decrease in dissolved oxygen in stoppered bottles or biological oxygen demand.

Samples were collected from the tanks at different depths through 1/4-inch galvanized pipes projecting through the sides of the tanks at 1 ft. intervals.

Experiments with unagitated or quiescent tanks showed that very little absorption of atmospheric oxygen took place, except that due to change in temperature.

This is shown by appended Table No. 11.

On the other hand, the slight ripple of the surface of the liquid produced by two electric fans was sufficient to produce considerable absorption of atmospheric oxygen. The results of these experiments are shown in Tables Nos. 12, 13, 14 and 15.

A still greater absorption was produced by the disturbance of the tank surface with an agitator composed of a furring strip extending across the full 6 ft. width of the tank and moved up and down, by a small electric motor. The wave produced by the agitator was about 4 inches in height. The effect of this comparatively violent agitation of the surface is shown in the Table No. 16.

In the case of the dilution of 1 part of sewage to 20 parts of fresh water with $\frac{1}{2}$ inch ripple, it was found that after the fourth hour the rate of absorption of atmospheric oxygen was about 0.18 parts per million per hour. With salt water the rate was .085 P.P.M. per hour.

Another experiment was made with a mixture of sewage and salt water which was devoid of oxygen. The surface was agitated with a 4-inch wave as described above, at the end of four hours it was found that the dissolved oxygen at all depths had increased from 0 to 6.56 P.P.M. or at the rate of 1.64 P.P.M. per hour. At the end of the fourth hour the agitation was stopped and the mixture allowed to remain quiet for 20 hours.

At the end of this period the dissolved oxygen had decreased to 4.50 P.P.M. or at a rate of 0.1 P.P.M. per hour. See appended Tables Nos. 19 and 20.

As a result of the above-described experiments and in view of the local condition in the Borough of Richmond the following conclusions may be drawn:

1. That the experimental results with respect to tank treatment may be summarized as follows:

(a) Tanks having a detention period of from 1 to 2 hours and velocities of flow of from .007 ft. per second to .015 ft. per second will remove from 50% to 60% of suspended solids and from 30% to 40% of oxidizable organic matter.

(b) Imhoff tanks provided with colloidors in the settling compartment with the sewage at this station gave a more stable effluent than the ordinary Imhoff tank.

(c) The syphon tank gave very satisfactory results and from our experience at this station it has shown considerable advantage over other sedimentation tanks, in that the settling solids are entirely separated from the flowing through chamber and can be treated or removed while in a fresh state and free from the disagreeable odors usually attending the disposal of sludge.

(2) That in the disinfection of sewage, chlorine gas is more efficacious than hypochlorite of lime, although either when applied in sufficient amount gives satisfactory bacterial purification.

(3) That the experiments in sludge drying although not carried through to conclusive results, indicate that the sludge may be treated without creating a nuisance by separate digestion, by vacuum drying or may be made non-putrescible by aeration.

(4) Much work in the laboratories had been done on the effect of dilution of sewage in bottles. The investigations made in the large tanks at this experiment station gives the resulting effects of what may be expected from a minimum disturbance upon the surface of a body of fresh water, salt water and sewage dilutions in various proportions, as well as what may be expected when the surface is more violently agitated. These results show that the reaeration is decidedly rapid and uniform throughout the body of water.

The rate at which the reaeration of the foul liquid sewage (devoid of all oxygen) took place was very rapid and the results show what may be expected from the agitation of the sludge compartments of two-story tanks in assisting the digestion of the sludge and prevention of the accumulation of noxious gases.

RECOMMENDATIONS.

(1) That tank treatment of the sewage of the Borough of Richmond be accepted as a means to produce effluents of such a character as to preclude the probability of local nuisances in the vicinity of the outfall sewers, but only on those outlets for which the flow of sewage is uniform throughout the year and which can be located at sufficient distance from any neighborhood so that any odor from the plant will not give cause for complaint.

(2) That, all effluents should be discharged into the waters surrounding the Borough at such points as to avoid stagnation and where agitation by wind and other agencies will provide for rapid absorption of atmospheric oxygen.

(3) That, in the vicinity of bathing beaches and shell-fish beds, the tank effluent should be treated with liquid chlorine at the rate of approximately 10 P.P.M.

(4) That, the syphon tank is thoroughly practicable and should be used in localities where covered tanks will be necessary. The sludge can be either removed from the lower sludge chambers before it has had an opportunity to become septic or they can be so arranged and equipped that the contents of the sludge chambers may alternately be thoroughly agitated for from four to six hours or such time that may be found sufficient to furnish oxygen to oxidize the organic matter. This tank is much more adaptable to locations where the population is not of a permanent character, such as summer resorts, where the variation of flow of sewage has a wide seasonable range.

 $\overline{(5)}$ In the disposal of sludge in the Borough of Richmond, it would seem that by using the waste steam and heat from the destructors the sludge can be economically dried and burned with the garbage.

The Borough of Richmond is indebted to the following gentlemen for kindly advice and interest taken in the work of the experimental station: Prof. D. D. Jackson, C.E.; Kenneth Allen, C.E.; Chas. E. Gregory, C.E.; Robert Brown, C.E.; E. Sherman Chase, C.E.; John D. Fuller Engineer Co., the firm of Leavitt & Jackson, Wallace & Tiernan, Samuel R. Brick, Archt., to whom we are indebted for valuable aid in preparation of plans for the building, and to Louis L. Tribus, C.E., formerly Consulting Engineer and Commissioner of Public Works of the Borough of Richmond, whose interest in work of the above nature made the exeptimental station possible. I wish to express my appreciation to L. W. Freeman, Assistant Engineer, under whose advice and supervision the plant was constructed and equipment installed, and to Theodore S. Oxholm, Engineer in Charge, Bureau of Engineering, for their personal interest in all matters pertaining to the work of the station.

ŧ

Respectfully,

WARREN R. BORST, Assistant Engineer.

Dated: Borough Hall, S. I., June 24, 1919.

APPROVED:

THEODOR S. OXHOLM, Engineer in Charge.

١

President Borough of Richmond Drawing Nº 2 Bureau of Engineering; Serioge Experiment Station computer prom MADE IN CONNECTION WITH CHECKER DATE 1913-1915_11 ١

Plan showing elevation of tanks

For syphon tank see sketch

.

President Borough of Richmond	Drawing	N <u></u> . 3
Bureau of Engineering Servage Experiment	ACC	
Station COMPUTER	FROM	то
MADE IN CONNECTION WITH Sediment of 104 . 14 Vacuum CHECKER	DATE EL	6 1015

/

April, 1914	Tempera- ture Sewage	Bacteria 37.5° C.	Bacteria 20° C.	Suspended Solids, P.P.M.	Oxygen Consumed, P.P.M.	Dissolved Oxygen, P.P.M.	Relative Stability (Phelps)
$\begin{array}{c} 1. \\ 2. \\ 3. \\ 4. \\ 5. \\ 6. \\ 7. \\ 8. \\ 9. \\ 10. \\ 11. \\ \end{array}$	$\begin{array}{c} 9.5\\ 10\\ 10.5\\ 9.5\\ 9.5\\ 10\\ 10\\ 10.5\\ 10\\ 10\\ 10\\ 10\\ 10\\ \end{array}$	$\begin{array}{c} 243,000\\628,000\\131,000\\ \hline \\ 24,000\\720,000\\189,000\\836,000\\600,000\\740,000\\660,000\end{array}$	$584,000 \\ 580,000 \\ 472,000 \\ \dots \\ 19,000 \\ 992,000 \\ 47,000 \\ 1,164,000 \\ 472,000 \\ 940,000 \\ 840,000$	$186 \\ 210 \\ 196 \\ 170 \\ 232 \\ 350 \\ 250 \\ 156 \\ 288 \\ 182 \\ 244$	65 69 73 86 97 77 69 89 76 83	$\begin{array}{c} 0.27\\ 1.83\\ 1.19\\ 0.18\\ 2.10\\ 0.95\\ 0.96\\ 0.10\\ 1.74\\ 1.02\\ 0.10\\ \end{array}$	$29 \\ 26 \\ 13 \\ 15 \\ 21 \\ 11 \\ 17 \\ 20 \\ 21 \\ 21 \\ 21 \\ 11$
$\begin{array}{c} 12. \\ 13. \\ 14. \\ 15. \\ 16. \\ 17. \\ 18. \\ 19. \\ 20. \\ 21. \\ 22. \\ 23. \\ 24. \\ 25. \\ 26. \\ 27. \\ 26. \\ 27. \\ 28. \\ 29. \\ 30. \\ \end{array}$	$\begin{array}{c} 11\\ 11\\ 10.5\\ 10.5\\ 11\\ 12\\ 13\\ 13\\ 13\\ 13\\ 11.5\\ 11.5\\ 11.5\\ 11.5\\ 11.5\\ 11.5\\ 11.5\\ 11.5\\ 11.5\\ 12.5\\ 12.5\\ 12.5\\ 12.5\\ 12.5\\ 12\end{array}$	$\begin{array}{c} 181,000\\ 848,000\\ 512,000\\ 400,000\\ 500,000\\ 504,000\\ 1,260,000\\ 226,000\\ 412,000\\ 640,000\\ 860,000\\ 510,000\\ 278,000\\ 784,000\\ 784,000\\ 784,000\\ 24,000\\ 183,000\\ 212,000\\ \end{array}$	$\begin{array}{c} 452,000\\ 482,000\\ 1,200,000\\ 620,000\\ 908,000\\ 868,000\\ 1,575,000\\ 644,000\\ 864,000\\ 844,000\\ 1,300,000\\ 1,248,000\\ 824,000\\ 1,300,000\\ 1,248,000\\ 832,000\\ 772,000\\ 412,000\\ 782,000\\ 83$	$\begin{array}{c} 170\\ 460\\ 188\\ 76\\ 232\\ 260\\ 152\\ 348\\ 252\\ 210\\ 292\\ 205\\ 240\\ 322\\ 278\\ 158\\ 220\\ 166\\ 166\\ \end{array}$	$\begin{array}{c} \cdot & \cdot \\ 0 \\ 96 \\ 71 \\ 70 \\ 79 \\ 70 \\ 77 \\ 111 \\ 96 \\ 81 \\ 83 \\ 72 \\ 62 \\ 77 \\ 89 \\ 73 \\ 72 \\ 73 \\ \hline \end{array}$	$\begin{array}{c} 1.56\\ 1.01\\ 0.17\\ 1.05\\ 0.16\\ 0.0\\ 0.0\\ 0.18\\ 1.07\\ .76\\ .85\\ 0.00\\ 0.00\\ 1.85\\ 0.77\\ 0.77\\ 0.77\\ 0.77\\ 0.0\\ 0.15\\ \hline 0.51\end{array}$	$ \begin{array}{c} 11\\ 20\\ 76\\ 21\\ 13\\ 11\\ 13\\ 19\\ 17\\ 13\\ 15\\ 24\\ 25\\ 19\\ 19\\ 15\\ 17\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12$
Average	. 10	497,000	807,000	233	82	0.74	19
$\begin{array}{c} May \\ 1, \dots, 2\\ 2, \dots, 3\\ 3, \dots, 4\\ 5, \dots, 6\\ 5, \dots, 6\\ 6, \dots, 7\\ 7, \dots, 8\\ 9, \dots, 10\\ 10, \dots, 11\\ 10, \dots, 11\\ 11, \dots, 12\\ 13, \dots, 14\\ 13, \dots, 14\\ 14, \dots, 15\\ 14, \dots, 16\\ 14$	$\begin{array}{c} 12 \\ 12.5 \\ 13.5 \\ 13.5 \\ 13.5 \\ 13.5 \\ 13.5 \\ 13 \\ 13 \\ 13 \\ 13 \\ 14 \\ 14 \\ 14 \\ 14$	$\begin{array}{c} 700,000\\ 420,000\\ 792,000\\ 1,120,000\\ 408,000\\ 347,000\\ 472,000\\ 275,000\\ 300,000\\ 2,232,000\\ 760,000\\ 512,000\\ 868,000\\ 548,000\\ 460,000\\ 684,000\\ 992,000\\ 412,000\\ 460,000\\ 684,000\\ 992,000\\ 412,000\\ 450,000\\ 1,500,000\\ 332,000\\ 450,000\\ 1,008,000\\ 1,008,000\\ 1,070,000\\ 510,000\\ 510,000\\ 1,320,000\\ 1,200,00\\ 1,200,000\\ 1,200,00\\ 1,200,000\\ 1,200,000\\ 1$	1,500,000 1,000,000 1,688,000 1,146,000 Liquifiers "	$\begin{array}{c} 244\\ 282\\ 105\\ 134\\ 254\\ 196\\ 186\\ 278\\ 70\\ 184\\ 312\\ 222\\ 208\\ 172\\ 138\\ 204\\ 328\\ 282\\ 115\\ 148\\ 112\\ 150\\ 162\\ 146\\ 360\\ 184\\ 170\\ 124\\ 156\\ \dots\end{array}$	$\begin{array}{c} 78\\ 88\\ 70\\ 102\\ 78\\ 83\\ 67\\ 71\\ 71\\ 78\\ 107\\ 88\\ 80\\ 67\\ 70\\ 78\\ 91\\ 110\\ 91\\ 71\\ 63\\ 72\\ 78\\ 62\\ 103\\ 63\\ 80\\ 61\\ 74\\ \end{array}$	$\begin{array}{c} 0.00\\ 0.15\\ 0.00\\ 0.00\\ 0.73\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.19\\ 0.62\\ 0.46\\ 0.00\\ 0.46\\ 0.00\\ 0.00\\ 0.46\\ 0.00\\$	$\begin{array}{c} 21\\ 13\\ 18\\ 19\\ 11\\ 18\\ 19\\ 17\\ 20\\ 11\\ 15\\ 13\\ 23\\ 19\\ 11\\ 15\\ 11\\ 11\\ 23\\ 19\\ 19\\ 15\\ 23\\ 11\\ 11\\ 11\\ 21\\ 16\\ \cdots \end{array}$
31	$\frac{1}{14}$	747,300	1,259,000	<u></u> 194	$\frac{1}{79}$		$\frac{1}{16}$

TABLE NO. 1-CRUDE SEWAGE

June, 1914	Tempera- ture Sewage	Bacteria 37.5° C.	Bacteria 20° C.	Suspended Solids, P.P.M.	Oxygen Consumed, P.P.M.	Dissolved Oxygen, P.P.M.	Relative Stability (Phelps)
$\begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 4 \\ 22 \\ 23 \\ 24 \\ 25 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 26 \\ 27 \\ 28 \\ 20 \\ 20 \\ 20 \\ 20 \\ 20 \\ 20 \\ 20$	$\begin{array}{c} 16\\ 15.5\\ 16\\ 16\\ 16\\ 16\\ 16\\ 16\\ 17\\ 16\\ 17\\ 17\\ 17\\ 17\\ 17\\ 17\\ 17\\ 17\\ 17\\ 16\\ 2\\ 16\\ 2\\ 16\\ 2\\ 16\\ 2\\ 16\\ 2\\ 16\\ 2\\ 17\\ 17\\ 2\\ 17\\ 2\\ 17\\ 2\\ 2\\ 17\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\$	$\begin{array}{c} 948,000\\ 560,000\\ 350,000\\ 320,000\\ 875,000\\ 875,000\\ 864,000\\ 1,880,000\\ 1,088,000\\ 1,088,000\\ 1,028,000\\ 716,000\\ 1,028,000\\ 712,000\\ 1,008,000\\ 1,008,000\\ 1,008,000\\ 1,008,000\\ 1,008,000\\ 1,216,000\\ 1,216,000\\ 1,216,000\\ 1,24,000\\ 1,400,000\\ 1,400,000\\ 920,000\\ 624,000\\ 1,400,000\\ 975,000\\ 975,000\\ \end{array}$	$\begin{array}{c} 1,624,000\\ 1,136,000\\ 632,000\\ 664,000\\ 1,200,000\\ 992,000\\ 2,156,000\\ 1,800,000\\ 1,800,000\\ 1,040,000\\ 1,040,000\\ 1,040,000\\ 1,040,000\\ 1,040,000\\ 1,440,000\\ 1,432,000\\ 1,392,000\\ 1,392,000\\ 1,392,000\\ 1,392,000\\ 1,392,000\\ 1,392,000\\ 1,384,000\\ 1,572,000\\ 1,384,000\\ 1,572,000\\ 1,384,000\\ 1,583,000\\ 1,800,000\\ 1,840,000\\ 2,000,000\\ 2,000,000\\ 2,000,000\\ 2,000,000\\ 2,000,000\\ 2,000,000\\ 2,000,000\\ 1,000\\ 2,000,000\\ 1,000\\ 2,000,000\\ 1,000\\ 2,000,000\\ 0,$	$\begin{array}{c} 164\\ 183\\ 112\\ 110\\ 144\\ 264\\ 132\\ 302\\ 196\\ 130\\ 138\\ 218\\ 120\\ 132\\ 236\\ 180\\ 148\\ 140\\ 64\\ 190\\ 104\\ 202\\ 268\\ 162\\ 188\\ 104\\ 128\\ 134\\ 128\\ 134\\ 134\\ 134\\ 134\\ 134\\ 134\\ 134\\ 134$	$\begin{array}{c} 97\\ 81\\ 72\\ 61\\ 69\\ 74\\ 68\\ 107\\ 90\\ 64\\ 72\\ 73\\ 69\\ 56\\ 87\\ 78\\ 72\\ 69\\ 56\\ 87\\ 78\\ 72\\ 67\\ 51\\ 81\\ 56\\ 70\\ 87\\ 73\\ 72\\ 59\\ 60\\ 60\\ 60\\ \end{array}$		$15 \\ 17 \\ 11 \\ 28 \\ 20 \\ 25 \\ 30 \\ 11 \\ 14 \\ 14 \\ 14 \\ 16 \\ 15 \\ 24 \\ 16 \\ 22 \\ 19 \\ 23 \\ 28 \\ 13 \\ \\ 15 \\ 15 \\ 11 \\ 11 \\ 21 \\ 21 \\ 18 \\ \\ 18 \\ \\ 18 \\ \\ 18 \\ \\ 18 \\ \\ 18 \\ \\ 18 \\ \\ 18 \\ \\ 18 \\ \\ 18 \\ \\ 10 \\ $
30	$\frac{17\frac{2}{17}}{17\frac{1}{2}}$	800,000	1,005,000	$\frac{336}{229}$	103 78 	· · · · · · · · ·	$ \frac{13}{11} \frac{11}{12} $
July 1 3	$ \begin{array}{c} 17 \\ 17 \\ 17 \\ 17 \\ 17 \\ 17 \\ 17 \\ \end{array} $	1,462,000 1,056,000 1,702,000	1,354,000 1,784,000 1,280,000 1,520,000	172 160 126 208	74 78 68 71	·····	18 11 18 21
$\begin{array}{c} 4 \\ 5 \\ 6 \\ 7 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 19 \\ 20 \\ 21 \\ \end{array}$	$\begin{array}{c} 1772\\ 1772\\ 1772\\ 1772\\ 1772\\ 18\\ 1734\\ 1734\\ 1734\\ 18\\ 18\\ 18\\ 18\\ 18\\ 18\\ 18\\ 2\\ 18\\ 18\\ 18\\ 2\\ 18\\ 18\\ 2\\ 18\\ 2\\ 18\\ 2\\ 18\\ 2\\ 2\\ 18\\ 2\\ 2\\ 18\\ 2\\ 2\\ 18\\ 2\\ 2\\ 18\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\$	1,160,000 752,000 1,224,000 1,080,000 1,080,000 1,530,000 800,000 800,000 800,000 720,000 1,602,000 716,000 1,250,000	1,664,000 912,000 952,000 1,504,000 1,080,000 1,248,000 1,120,000 972,000 720,000 1,600,000 	$\begin{array}{c} .53\\ .54\\ .502\\ 176\\ .86\\ 172\\ .100\\ .340\\ .186\\ .312\\ .224\\ .150\\ .48\\ .83\\ .64\\ .140\\ .276\end{array}$	$\begin{array}{c} . \\ . \\ . \\ . \\ . \\ . \\ . \\ . \\ . \\ . $		20 21 27 15 19 21 30 21 16 15 29 11 13 15
22 23 24 25 26 27 28	· · · · · · · · · · · · · · · · · · ·	Cleaning " " "	Tanks " " " "	• • • • • • • • • • • • •	· · · · · · · · ·	· · · · · · · · · · · · · · · ·	· · · · · · · · ·
29 30 31 Average	 18	" " 1,089,000	" " 1,240,000	···· ···· 204	 85	· · · · · · · · · · · · ·	 19

August, 1914	Tempera ture Sewage	- Bacteria 37.5° C.	Bacteria 20° C.	Suspended Solids, P.P.M.	l Oxygen Consumed, P.P.M.	Dissolved Oxygen P.P.M.	Relative Stability (Phelps)
1				•••	77		
2	1012	F00.000			<u>::</u>		••
J	191/2	520,000	• • • • • • • •	238	77		• •
5	1072	956,000	• • • • • • • •	100	47		• •
6	19	408 000	•••••	69	45		••
7	191/4	348,000		114	49		
8	$19\frac{1}{2}$	1,020,000		95	58		
9	$19\frac{1}{2}$	652,000		108	39		
10	$19\frac{1}{4}$	1,176,000		166	64		
11	20	• • • • • • • •	· · · <i>·</i> · · · ·	_88	55	• • • •	• •
12	20	•••••	· · · · · · ·	101	49		• •
13	101/			100	07 55		
15	1914			130	60		••
16	10/4			100	00		
17							
18				190	77		
19			• · · · · · · ·	165	70		• •
20		· · · · · · · · · · · · · · · · · · ·	´• • • • • • •	202	58	· • · · ·	
21	• • • •	· · · · · · ·		88	52		• •
22		<i></i>	• · · <i>•</i> • • •	96	· ·	• • • •	• •
23	20	· · · · · · ·	• • • • • • • •	222	101	• • • • •	• •
24	10		· · · · · · · ·	333 108	78	• • • •	• •
26	19			119	59		•••
27	19			$\hat{1}\hat{2}\hat{2}$	70		
28	19			97	61		
29	19			166	58		
30	19						
31	20	· · · · · · ·		111	• •	· · · ·	
Average	19	780,000		139	56	 	<u> </u>
Carta 1						/	
September	- 			146	60		
2	$\frac{20}{20}$ 5	1 664 000	2 120 000	105	72		• •
3	20	1.680.000	1.656.000	116	63		
4	20	542,000	856,000	105	63		
5	$19\frac{3}{4}$	1,580,000	2,000,000	84	62		
6	$19\frac{1}{2}$			59	56		
7	20		1 400 000	.99	77		
8	18½	1,524,000	1,632,000	125	79		• •
9	••••		• • • • • • • • •		• •		
11.					••		
12							-
13							
14							
15							
16					• •	• • • •	
17	· · · ·			• • •	• •		
18				• • • •			• •
19					• •		
20	• • • • •						
22.							
23							
24			(
25	17	· · · · · · · · /		30			• •
26	17			34		· · · ·	• •
27	17		· · · · · · ·		• •		• •
28	17/2						••
49 30	17				• •		
	11				· · ·		
Average	18.5	1,398,000	1,653,000	90	68		

TABLE NO. 1-CRUDE SEWAGE

TABLE NO. 1-CRUDE SEWAGE

October, 1914	Tempera- ture Sewage	Bacter 37.5°	ria E C.	Bacteria 20 °C.	Suspended Solids, P.P.M.	Oxygen Consumed, P.P.M.	Dissolved Oxygen, P.P.M.	Relative Stability (Phelps)
1	17	400,0	000	520,000		76		• •
$\frac{2}{2}$	17_{17}	1,000,0	000	808,000		••	• • • •	•••
3 4	17	1,300,0	000	950,000		••		••
5	17	688,0		800,000				
6	17	1,216,0	000 1	720,000		• •		
7	17	1,152,0	1,000 1	336,000				• •
9 9	18	1,048,0 936 (000	360,000		•••		
10	18	1,488,0	100 1	520,000				
11	18				98	77		
12	18	1,000,0		260.000	133	119		• •
10	$17 \\ 17$	1,200,0	1,00 1,	500,000	$172 \\ 107$	22		••
15	17	832,0	100 1	280,000	123	$\overline{69}$		
16	$17\frac{1}{2}$	606,0	1, 000	200,000	90	61		
17	$17^{1}\frac{1}{2}$ 171	1,148,0	000 1,	648,000	180	93 70		
19	17^{-2} 17	1.312.0	$\frac{1}{100}$ 2	680.000	329	102		
20	17	488,0	000	800,000	210	92		
21	17	808,0	000 1,	520,000	91	71		• •
22	17	1,032,0	100 1	504,000	119	66		••
24	16	748.0	100 1	328.000	120	69		
25	16				137	77		
26	16		1,	780,000	223	92		
27	15	• • • • •		320,000	123	78		• •
29	14^{1}_{2}		1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	400.000	128	63		
30	$14^1{}_2$				123	75		
Average	17	940,0)00 1,	332,000	127	73	<u> </u>	
November, 1914	Temper- ature, Cent.	Bact (1,00 37.5° C.	eria 00) 20° C.	Settle Solids c.c. per l	d Suspend , Solids, iter P.P.M	ed Oxyger Consume	Oxygen n 5 da. In ed, at 2 [. P.]	Demand, neubation 20° C. P.M.
November, 1914	Temper- ature, Cent. 14½	Bact (1,00 37.5° C. 1,320	eria 00) 20° C.	Settle Solids c.c. per l	d Suspend Solids, iter P.P.M 97	ed Oxyger Consume . P.P.M	Oxygen n 5 da. In ed, at 2 [. P.]	Demand, neubation 20° C. P.M.
November, 1914	Temper- ature, Cent. 14 ¹ ⁄ ₂ 14 ¹ ⁄ ₂	Bact (1,00 37.5° C. 1,320 1,320	ceria 00) 20° C. 1,432	Settle Solids c.c. per 1	d Suspend Solids, iter P.P.M 97 197	ed Oxyger Consume . P.P.M 61 82	Oxygen n 5 da. In ed, at 2 I. P.J	Demand, neubation 20° C. P.M.
November, 1914 1 2 3	Temper- ature, Cent. 14 ¹ / ₂ 14 ¹ / ₂ 15	Bact (1,00 37.5° C. 1,320 1,320	zeria 00) 20° C. 1,432	Settle Solids c.c. per 1	d Suspend Solids, iter P.P.M 97 197 89	ed Oxyger Consume . P.P.M 61 82 71 70	Oxygen n 5 da. In ed, at 2 [. P.]	Demand, neubation 20° C. P.M.
November, 1914 1 2 3 4 5	Temper- ature, Cent. 14 ¹ ⁄ ₂ 14 ¹ ⁄ ₂ 15 15 15 14 ¹ ⁄ ₂	Bact (1,00 37.5° C. 1,320 1,320 1,240 870	ceria 20° C. 1,432 1,615 1,584	Settle Solids c.c. per 1	d Suspend Solids, iter P.P.M 97 197 89 155 134	ed Oxyger Consum . P.P.M 61 82 71 79 75	Oxygen n 5 da. In ed, at 2 [. P.]	Demand, neubation 20° C. P.M.
November, 1914 1 3 4 6	$\begin{array}{c} Temper-\\ ature, \\ Cent. \\ 14\frac{1}{2} \\ 14\frac{1}{2} \\ 15 \\ 15 \\ 14\frac{1}{2} \\ 14 \\ 14 \\ 14 \\ \end{array}$	Bact (1,00 37.5° C. 1,320 1,320 1,240 870 1,010	zeria 20° C. 1,432 1,615 1,584 1,408	Settle Solids c.c. per 1	d Suspend , Solids, iter P.P.M 97 197 89 155 134 144	ed Oxyger Consum- . P.P.M 61 82 71 79 75 69	Oxygen n 5 da. Ir ed, at 2 [. P.]	Demand, neubation 20° C. P.M.
November, <u>1914</u> 1 2 3 4 5 6 7 8 9.	$\begin{array}{c} \text{Temper-}\\ \text{ature,}\\ \text{Cent.} \\ 14\frac{1}{2} \\ 14\frac{1}{2} \\ 15 \\ 15 \\ 14\frac{1}{2} \\ 14 \\ 13\frac{1}{2} \\ 121 \end{array}$	Bact (1,00 37.5° C. 1,320 1,320 1,240 870 1,010	ceria 00) 20° C. 1,432 1,615 1,584 1,408 1,601	Settle Solids c.c. per l	d Suspend Solids, iter P.P.M 97 197 89 155 134 144 135	ed Oxyget Consume 61 82 71 79 75 69 75	Oxygen n 5 da. In ed, at 2 [. P.]	Demand, neubation 0° C. P.M.
November, <u>1914</u> 1 2 3 4 5 6 7 9.	Temper- ature, Cent. 14 ¹ / ₂ 14 ¹ / ₂ 15 15 14 ¹ / ₂ 14 ¹ / ₂ 14 ¹ / ₂ 14 ¹ / ₂ 14 ¹ / ₂ 13 ¹ / ₂ 13 ¹ / ₂	Bact (1,00 37.5° C. 1,320 1,320 1,240 870 1,010	ceria 00) 20° C. 1,432 1,615 1,584 1,408 1,601 1,595	Settle Solids c.c. per 1	d Suspend Solids, iter P.P.M 97 197 89 155 134 144 135 114 218	ed Oxyge: Consum . P.P.M 61 82 71 79 75 69 75 88 88 78	Oxygen n 5 da. Iı ed, at 2 [. P.]	Demand, neubation 20° C. P.N. Sill
November, <u>1914</u> 1 2 3 4 5 6 7 8 9. 10	Temper- ature, Cent. 14 ¹ / ₂ 15 15 14 ¹ / ₂ 15 14 ¹ / ₂ 13 ¹ / ₂ 13 ¹ / ₂ 13 ¹ / ₂ 13 ¹ / ₄	Bact (1,00 37.5° C. 1,320 1,320 1,240 870 1,010 1,072 2,100	eria 20° C. 1,432 1,615 1,584 1,408 1,601 1,595 1,608	Settle Solids c.c. per 1	d Suspend Solids, iter P.P.M 97 197 89 155 134 144 135 114 218 130	ed Oxyge: Consum- 61 82 71 75 69 75 88 88 85	Oxygen n 5 da. Iı ed, at 2 [. P.]	Demand, noubation 20° C. P.N. 811 227 009
November, <u>1914</u> 12	$\begin{array}{c} Temper-\\ ature, \\ Cent. \\ 14\frac{1}{2} \\ 14\frac{1}{2} \\ 15 \\ 15 \\ 14\frac{1}{2} \\ 14\frac{1}{2} \\ 13\frac{1}{2} \\ 13\frac{1}{2} \\ 13\frac{1}{4} \\ 13\frac{1}{4} \\ 13\frac{1}{4} \end{array}$	Bact (1,00 37.5° C. 1,320 1,320 1,240 870 1,010 1,072 2,100 1,120 1,120	zeria 20° C. 1,432 1,615 1,584 1,408 1,601 1,595 1,608 1,408 1,408	Settle Solids c.c. per 1	d Suspend Solids, iter P.P.M 97 197 89 155 134 144 135 114 218 130 126	ed Oxyge: Consum 61 82 71 75 69 75 88 88 78 85 72	Oxygen n 5 da. Iı ed, at 2 [. P.]	Demand, noubation 20° C. P.N1.
November, <u>1914</u> 1 2 3 4 5 6 7 8 9 10 11 13 13 1914	$\begin{array}{c} Temper-\\ ature, \\ Cent. \\ 14\frac{1}{2} \\ 14\frac{1}{2} \\ 15 \\ 15 \\ 14\frac{1}{2} \\ 13\frac{1}{2} \\ 13\frac{1}{2} \\ 13\frac{1}{4} \\ 13\frac{1}{4} \\ 13\frac{1}{4} \\ 13\frac{1}{2} \\ 11 \\ \end{array}$	Bact (1,00 37.5° C. 1,320 1,320 1,240 870 1,010 1,072 2,100 1,120 1,230	zeria 20° C. 1,432 1,615 1,584 1,408 1,601 1,595 1,608 1,460 1,720	Settle Solids c.c. per 1	d Suspend Solids, iter P.P.M 97 197 89 155 134 144 135 114 218 130 126 113	ed Oxyge: Consum . P.P.M 61 82 71 75 69 75 88 88 78 85 72 77 77	Oxygen n 5 da. Iı ed, at 2 [. P.]	Demand, neubation 20° C. P.N. 811 227 .09 858 .09
November, <u>1914</u> 1234567	$\begin{array}{c} Temper-\\ ature, \\ Cent. \\ 14\frac{1}{2} \\ 14\frac{1}{2} \\ 15 \\ 15 \\ 14\frac{1}{2} \\ 13\frac{1}{2} \\ 13\frac{1}{2} \\ 13\frac{1}{4} \\ 13\frac{1}{4} \\ 13\frac{1}{4} \\ 14 \\ \end{array}$	Bact (1,00 37.5° C. 1,320 1,320 1,240 870 1,010 1,072 2,100 1,120 1,230 1,010	zeria 00) 20° C. 1,432 1,615 1,584 1,408 1,601 1,608 1,460 1,720 1,800 1,720 	Settle Solids c.c. per 1	d Suspend Solids, iter P.P.M 97 197 89 155 134 144 135 114 218 130 126 113 108 146	ed Oxyge: Consum- 82 71 79 75 69 75 88 78 85 72 77 67 71	Oxygen n 5 da. Iı ed, at 2 [. P.]	Demand, neubation 20° C. P.N. 811 227 .09 158 808 153 114
November, <u>1914</u> 1234567	$\begin{array}{c} Temper-\\ ature, \\ Cent. \\ 14\frac{1}{2} \\ 14\frac{1}{2} \\ 15 \\ 15 \\ 14\frac{1}{2} \\ 14\frac{1}{2} \\ 13\frac{1}{2} \\ 13\frac{1}{2} \\ 13\frac{1}{4} \\ 13\frac{1}{4} \\ 13\frac{1}{4} \\ 14\frac{1}{5} \\ 14 \\ 15 \\ \end{array}$	Bact (1,00 37.5° C. 1,320 1,320 1,240 870 1,010 1,072 2,100 1,120 1,230 1,010 	zeria 20° C. 1,432 1,615 1,584 1,408 1,601 1,595 1,608 1,460 1,720 1,800 	Settle Solids c.c. per 1	d Suspend Solids, iter P.P.M 97 197 89 155 134 144 135 114 218 130 126 113 108 146 131	ed Oxyge: Consum 82 71 79 75 69 75 88 75 88 75 88 75 77 67 77 71 77	Oxygen n 5 da. Iı ed, at 2 i. P.1	Demand, neubation 20° C. P.N.
November, <u>1914</u> 1234567	$\begin{array}{c} Temper-ature, \\ Cent. \\ 14\frac{1}{2} \\ 14\frac{1}{2} \\ 15 \\ 15 \\ 14\frac{1}{2} \\ 14\frac{1}{2} \\ 13\frac{1}{2} \\ 13\frac{1}{2} \\ 13\frac{1}{4} \\ 13\frac{1}{4} \\ 13\frac{1}{4} \\ 13\frac{1}{4} \\ 14 \\ 15 \\ 14\frac{3}{4} \end{array}$	Bact (1,00 37.5° C. 1,320 1,320 1,240 870 1,010 1,072 2,100 1,120 1,230 1,010 664	zeria 20° C. 1,432 1,615 1,584 1,408 1,601 1,595 1,608 1,460 1,720 1,800 728	Settle Solids c.c. per 1	d Suspend Solids, iter P.P.M 97 197 89 155 134 144 135 114 218 130 126 113 108 146 131	ed Oxyge: Consum 82 71 79 75 88 75 88 75 88 75 88 75 77 67 71 77 67 71 77 93	Oxygen n 5 da. Iı ed, at 2 i. P.1	Demand, neubation 20° C. P.N1.
November, <u>1914</u> 12	$\begin{array}{c} Temper-ature, \\ Cent. \\ 14\frac{1}{2} \\ 14\frac{1}{2} \\ 15 \\ 15 \\ 14\frac{1}{2} \\ 14\frac{1}{2} \\ 13\frac{1}{2} \\ 13\frac{1}{2} \\ 13\frac{1}{4} \\ 13\frac{1}{4} \\ 13\frac{1}{4} \\ 13\frac{1}{4} \\ 14\frac{1}{5} \\ 14\frac{3}{4} \\ 12\frac{1}{2} \\ 11\frac{1}{6} \end{array}$	Bact (1,00 37.5° C. 1,320 1,320 1,240 870 1,010 1,072 2,100 1,120 1,230 1,010 664 	zeria 20° C. 1,432 1,615 1,584 1,408 1,601 1,595 1,608 1,460 1,720 1,800 728 1,560	Settle Solids c.c. per 1	d Suspend Solids, iter P.P.M 97 197 89 155 134 144 135 114 218 130 126 113 108 146 131 157 194	ed Oxyge: Consum 82 71 79 75 88 75 88 75 88 75 88 75 77 67 77 67 71 77 93 87	Oxygen n 5 da. Iı ed, at 2 i. P.1	Demand, neubation 20° C. P.N1.
November, 1914 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 15 16 17 18 19 19 19 19 10 11 11 12 13 14 14 15 10 15 16 17 19 19 19 19 19 10 11 15 16 17 19	$\begin{array}{c} Temper-ature, \\ Cent. \\ 14\frac{1}{2} \\ 14\frac{1}{2} \\ 15 \\ 15 \\ 14\frac{1}{2} \\ 14\frac{1}{2} \\ 13\frac{1}{2} \\ 13\frac{1}{2} \\ 13\frac{1}{4} \\ 13\frac{1}{4} \\ 13\frac{1}{4} \\ 13\frac{1}{4} \\ 13\frac{1}{4} \\ 14\frac{1}{5} \\ 14\frac{3}{4} \\ 12\frac{1}{2} \\ 1$	Bact (1,00 37.5° C. 1,320 1,320 1,240 870 1,010 1,072 2,100 1,120 1,230 1,230 1,010 664 1,168 1,160	zeria 00) 20° C. 1,432 1,615 1,584 1,408 1,601 1,595 1,608 1,460 1,720 728 1,560 1,320	Settle Solids c.c. per 1	d Suspend Solids, iter P.P.M 97 197 89 155 134 144 135 114 218 130 126 113 108 146 131 157 194 125 108	ed Oxyge: Consum 82 71 79 75 88 75 88 75 88 75 88 75 88 75 87 87 67 77 67 71 77 93 87 80 67	Oxygen n 5 da. Iı ed, at 2 i. P.1	Demand, neubation 20° C. P.N1.
November, 1914 1 3 5 6 7 8 9 10 11 12 13 14 15 16 17 19 19 20.	$\begin{array}{c} Temperature, Cent. \\ 14\frac{1}{2} \\ 14\frac{1}{2} \\ 15 \\ 15 \\ 14\frac{1}{2} \\ 14\frac{1}{2} \\ 13\frac{1}{2} \\ 13\frac{1}{2} \\ 13\frac{1}{4} \\ 13\frac{1}{4} \\ 13\frac{1}{4} \\ 13\frac{1}{4} \\ 13\frac{1}{4} \\ 14\frac{1}{5} \\ 14\frac{3}{4} \\ 12\frac{1}{2} \\ 11\frac{2} \\ 11\frac{2} \\ 11\frac{2} \\ 11\frac{1}{2} \\ 1$	Bact (1,00 37.5° C. 1,320 1,320 1,240 870 1,010 1,072 2,100 1,120 1,230 1,230 1,010 664 1,168 1,160 1,250	zeria 00) 20° C. 1,432 1,615 1,584 1,408 1,601 1,595 1,608 1,400 1,720 728 1,560 1,320 1,280	Settle Solids c.c. per 1	d Suspend Solids, iter P.P.M 97 197 89 155 134 144 135 114 218 130 126 113 108 146 131 157 194 125 108 115	ed Oxyge: Consum 82 71 79 75 88 75 88 75 88 75 88 75 87 77 67 71 77 67 71 77 93 87 80 67 72	Oxygen n 5 da. Iı ed, at 2 [. P.]	Demand, neubation 20° C. P.N1.
November, 1914 1 3 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 20 21 22 22 22 23 24 25 25 25 25 25 25 26 27	$\begin{array}{c} Temper-ature, \\ Cent. \\ 14\frac{1}{2} \\ 14\frac{1}{2} \\ 15 \\ 15 \\ 14\frac{1}{2} \\ 13\frac{1}{2} \\ 13\frac{1}{2} \\ 13\frac{1}{4} \\ 13\frac{1}{4} \\ 13\frac{1}{4} \\ 13\frac{1}{4} \\ 13\frac{1}{4} \\ 14\frac{1}{5} \\ 14\frac{3}{4} \\ 12\frac{1}{2} \\ 11\frac{1}{2} \\ 1$	Bact (1,00 37.5° C. 1,320 1,320 1,240 870 1,010 1,072 2,100 1,120 1,230 1,230 1,230 1,664 1,168 1,160 1,250 1,680	zeria 20° C. 1,432 1,615 1,584 1,408 1,601 1,595 1,608 1,460 1,720 728 1,560 1,320 1,280 2,140	Settle Solids c.c. per 1	d Suspend Solids, iter P.P.M 97 197 89 155 134 144 135 114 218 130 126 113 108 146 131 157 194 125 108 115 158	ed Oxyge: Consum 81 82 71 79 75 88 75 88 75 88 75 88 75 87 77 67 71 71 77 93 87 80 67 72 80 67	Oxygen n 5 da. Iı ed, at 2 i. P.1 	Demand, neubation 20° C. P.N1.
November, 1914 1 3 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	$\begin{array}{c} Temperature, Cent. \\ 1412 \\ 1412 \\ 15 \\ 15 \\ 1412 \\ 13 \\ 13 \\ 13 \\ 13 \\ 13 \\ 13 \\ 13 \\ $	Bact (1,00 37.5° C. 1,320 1,320 1,240 870 1,010 1,072 2,100 1,120 1,230 1,020 1,230 664 1,688 1,160 1,250 1,680 	zeria 20° C. 1,432 1,615 1,584 1,408 1,601 1,595 1,608 1,460 1,720 728 1,560 1,320 1,280 2,140 1,375	Settle Solids c.c. per 1	d Suspend Solids, iter P.P.M 97 197 89 155 134 144 135 114 218 130 126 113 108 146 131 157 194 125 108 115 158 120	ed Oxyge: Consum 81 82 71 79 75 88 75 88 75 88 75 88 75 87 67 77 67 71 71 77 93 87 80 67 72 80 80 90 90	Oxygen n 5 da. Iı ed, at 2 1. P.1 	Demand, neubation 20° C. P.N1.
November, 1914 1 3 4 5 6 7 9 10 11 12 13 14 15 16 17 18 19 20 21 23 24 24 24 21 24 23 24 24 25 24 25 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 24 23 24 24 24 23 24 24 24 24 23 24 25 25 26 27	$\begin{array}{c} Temperature, Cent. \\ 1412 \\ 1412 \\ 15 \\ 15 \\ 1412 \\ 13 \\ 13 \\ 13 \\ 2 \\ 13 \\ 13 \\ 13 \\ 1$	Bact (1,00 37.5° C. 1,320 1,320 1,240 870 1,010 1,072 2,100 1,120 1,230 1,230 1,010 664 1,680 1,250 1,680 1,088	zeria 20° C. 1,432 1,615 1,584 1,408 1,601 1,595 1,608 1,460 1,720 728 1,560 1,320 1,280 2,140 1,424	Settle Solids c.c. per 1	d Suspend Solids, iter P.P.M 97 197 97 197 197 89 155 134 144 135 114 218 130 126 113 108 146 131 157 194 125 108 115 158 21 130 69	ed Oxyge: Consum 81 82 71 79 75 88 75 88 75 88 75 88 75 87 67 77 67 71 71 77 93 87 80 67 72 80 80 89 5 72	Oxygen n 5 da. Iı ed, at 2 1. P.1 	Demand, neubation 20° C. P.N1.
November, 1914 1 3 4 5 6 7 8 9 10 11 13 14 15 16 17 18 19 20 21 23 24 24 25 24 25 24 25 24 25 26 27 27 27 28 28 29 20 20 20 21 23 24 23 24 23 24 23 24 25 26 27 2	$\begin{array}{c} Temperature, Cent. \\ 1412 \\ 1412 \\ 15 \\ 15 \\ 1412 \\ 13 \\ 13 \\ 2 \\ 1312 \\ 1312 \\ 1314 \\ 1312 \\ 1314 \\ 1312 \\ 14 \\ 14 \\ 15 \\ 1434 \\ 1212 \\ 1112 \\ 12 \\ 12 \\ 1112 \\ 12 \\ $	Bact (1,00 37.5° C. 1,320 1,320 1,240 870 1,010 1,072 2,100 1,120 1,230 1,020 1,230 1,068 1,160 1,250 1,680 1,088 1,024	zeria 20° C. 20° C. 1,432 1,615 1,584 1,408 1,601 1,595 1,604 1,720 728 1,560 1,320 1,280 2,140 1,424 1,610 1,595 1,424 1,610 1,400 1,595 1,610 1,595 1,595 1,595 1,601 1,595 1,602 1,602 1,602 1,602 1,602 1,605 1,605 1,605 1,605 1,605 1,605 1,605 1,605 1,605 1,605 1,605 1,605 1,605 1,605 1,600 1,720 1,505 1,505 1,605 1,600 1,720 1,505 1,505 1,505 1,600 1,505 1,600 1,200 1,200 1,200 1,200 1,200 1,200 1,200 1,404 1,200 1,200 1,200 1,200 1,200 1,424 1,610	Settle Solids c.c. per 1	d Suspend Solids, iter P.P.M 97 197 89 155 134 144 135 114 218 130 126 113 108 146 131 157 194 125 108 145 158 108 145 158 108 115 158 21 130 69 219	ed Oxyge: Consum 81 82 71 79 75 88 75 88 75 88 75 88 75 87 67 77 67 71 71 77 93 87 80 67 72 80 80 80 95 72 97	Oxygen n 5 da. Iı ed, at 2 [. P.]	Demand, neubation 20° C. P.M. 811 811 8308 558 608 558 608 558 608 558 608 558 608 558 608 558 608 558 608 558 608 553 614 552 810 820
November, 1914 1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 23 24 25 26 27 23 24 25 27	$\begin{array}{c} Temper-ature, \\ Cent. \\ 1412 \\ 1412 \\ 15 \\ 15 \\ 1412 \\ 1312 \\ 1312 \\ 1312 \\ 1314 \\ 1312 \\ 1314 \\ 1312 \\ 1414 \\ 155 \\ 1434 \\ 1212 \\ 1112 \\ 12 \\ 12 \\ 1112 \\ 12 \\ $	Bact (1,00 37.5° C. 1,320 1,320 1,320 1,010 1,010 1,072 2,100 1,120 1,230 1,010 1,010 1,072 2,100 1,120 1,230 1,20 1,20 1,20 1,240 870 1,010 1,010 1,010 1,010 1,20 1,20 1,010 1,000 1,010 1,010 1,010 1,010 1,010 1,010 1,010 1,010 1,010 1,010 1,010 1,010 1,000 	zeria 20° C. 20° C. 1,432 1,615 1,584 1,408 1,601 1,595 1,601 1,595 1,600 728 1,800 728 1,800 1,800 1,800 1,280 2,140 1,280 1,280 1,280 1,280 1,421 1,595 1,595 1,595 1,595 1,595 	Settle Solids c.c. per 1	d Suspend Solids, iter P.P.M 97 197 89 155 134 144 135 114 218 130 126 113 108 146 131 157 194 125 108 145 158 21 130 69 219 161	ed Oxyge: Consum 81 82 71 79 75 88 75 88 75 88 75 88 75 87 67 77 67 71 77 67 71 77 80 80 80 80 95 72 97 85	Oxygen n 5 da. Iı ed, at 2 1. P.1 	Demand, neubation 20° C. P.M. 811 811 8308 558 808 558 808 558 808 558 808 553 614 25 1994 299 299 299 299 299 299 299 299 299
November, 1914 1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 23 24 25 26 27 28 27 28 27 28 27 28 27 28 27 23 24 25 27 28 27 28 27 28 27 28 27 28 27 28 29 20 21 23 24 27 28 28 27 28 28 28 28 27 28 28 27 28 28 27 28 28 27 28 28 28 28 28 28 28 28 28 27 28	$\begin{array}{c} Temper-ature, \\ Cent. \\ 1412 \\ 1412 \\ 15 \\ 15 \\ 1412 \\ 1312 \\ 1312 \\ 1314 \\ 1312 \\ 1314 \\ 1312 \\ 1414 \\ 15 \\ 1434 \\ 1212 \\ 1112 \\ 12 \\ 12 \\ 1112 \\ 12 \\ $	Bact (1,00 37.5° C. 1,320 1,320 1,320 1,010 1,010 1,072 2,100 1,120 1,230 1,010 1,010 1,010 1,010 1,010 1,010 1,002 1,230 1,230 1,230 1,230 1,230 1,230 1,230 1,230 1,230 1,230 1,230 1,230 1,230 1,230 1,230 1,240 1,240 1,250 1,210 1,220 1,255 1,255 1	zeria 20° C. 20° C. 1,432 1,615 1,584 1,601 1,595 1,601 1,595 1,601 1,595 1,460 1,720 728 1,500 1,320 1,280 2,140 1,280 2,140 1,424 1,615 1,595 1,424 1,610 1,595 1,424 1,610 1,515 1,595 1,424 1,610 1,515 1,	Settle Solids c.c. per 1	d Suspend Solids, iter P.P.M 97 197 97 197 197 197 197 194 135 114 135 114 135 114 135 114 136 126 113 108 146 131 157 194 125 108 115 158 21 130 69 219 161 131	ed Oxyge: Consum 81 82 71 79 75 88 75 88 75 88 75 88 75 87 67 77 67 71 77 67 71 77 80 80 80 80 95 52 72 97 85 53	Oxygen n 5 da. Iı ed, at 2 1. P.1 	Demand, neubation 20° C. P.M. 811 811 8308 558 608 558 608 558 608 558 608 558 608 558 608 558 608 558 608 553 614 552 600 625 625 625 625 625 625 625 625 625 625
November, 1914 1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 24 25 26 27 28 29 29 29 29 29 29 29 21 22 23 24 23 24 23 24 23 24 25 26 27 28 29 21 22 23 24 23 24 25 26 27 27 28 29 21 22 23 24 25 27 28 29 21 22 23 24 25 27 28 29 29 21 22 23 24 29 29 29 21 22 23 24 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 20 29 29 20 29 20 29 20 21 29 20 21 29 29 20 21 29 21 21 29 21 21 29 21 21 21 21 23 24 29 21 21 21 29 21 21 21 21 21 23 24 25 27 29 21 21 21 21 21 23 24 25 27 29 21 21 21 21 21 23 24 25 25 25 27	$\begin{array}{c} Temperature, Cent. \\ 1412 \\ 1412 \\ 15 \\ 15 \\ 1412 \\ 15 \\ 1412 \\ 1312 \\ 1312 \\ 1314 \\ 1312 \\ 1314 \\ 1314 \\ 1314 \\ 1312 \\ 14 \\ 14 \\ 15 \\ 1434 \\ 1212 \\ 1112 \\ 12 \\ 1112 \\ 12 \\ 12 \\ $	Bact (1,00 37.5° C. 1,320 1,320 1,320 1,010 1,010 1,072 2,100 1,120 1,230 1,230 1,010 664 1,168 1,160 1,250 1,680 1,003 1,003 1,008 1,003 1,008 1,004 	$\begin{array}{c} \text{eria} \\ \text{000} \\ 20^{\circ} \text{ C}. \\ 1,432 \\ \dots \\ 1,432 \\ 1,615 \\ 1,584 \\ 1,408 \\ 1,601 \\ \dots \\ 1,595 \\ 1,608 \\ 1,460 \\ 1,720 \\ \dots \\ 1,800 \\ \dots \\ 1,800 \\ 2,140 \\ 1,320 \\ 1,280 \\ 2,140 \\ 1,375 \\ 1,424 \\ 1,610 \\ \dots \\ 1,520 \\ 1,520 \\ 1,520 \\ \dots \\ 1,520 \\ 1,610 \\ \dots \end{array}$	Settle Solids c.c. per 1	d Suspend Solids, iter P.P.M 97 197 89 155 134 144 135 114 218 130 126 113 108 146 131 157 158 158 21 130 69 219 161 131 180	ed Oxyge: Consum. P.P.M 61 82 71 75 69 75 88 85 72 77 77 67 71 77 93 85 72 77 77 67 71 77 93 80 67 72 93 80 67 72 93 80 80 95 72 75 52 278	Oxygen n 5 da. Iı ed, at 2 1. P.1 	Demand, neubation 20° C. P.M.
November, 1914 1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 23 24 23 24 25 26 27 28 29 30 29 30 21 23 24 25 27 28 29 30 21 23 24 23 24 25 27 28 29 30 21 23 24 25 27 28 29 30 21 23 24 25 27 28 29 30 21 23 24 27 28 29 30	$\begin{array}{c} \text{Temper-ature,}\\ \text{Cent.}\\ 14\frac{1}{2}\\ 14\frac{1}{2}\\ 15\\ 14\frac{1}{2}\\ 15\\ 14\frac{1}{2}\\ 13\frac{1}{2}\\ 13\frac{1}{2}\\ 13\frac{1}{4}\\ 13\frac{1}{2}\\ 13\frac{1}{4}\\ 13\frac{1}{4}\\ 13\frac{1}{4}\\ 12\frac{1}{2}\\ 11\frac{1}{2}\\ 12\frac{1}{2}\\ 11\frac{1}{2}\\ 12\frac{1}{2}\\ 12\frac{3}{4}\\ 1$	Bact (1,00 37.5° C. 1,320 1,320 1,320 1,010 1,010 1,230 1,120 1,230 1,120 1,230 1,120 1,230 1,120 1,230 1,120 1,230 1,680 1,250 1,680 1,058 1,003 1,088 1,024 985 	zeria 20° C. 20° C. 1,432 1,615 1,584 1,408 1,601 1,595 1,608 1,400 1,720 728 1,560 1,320 1,280 2,140 1,520	Settle Solids c.c. per 1	d Suspend Solids, iter P.P.M 97 197 97 197 197 197 197 197 194 135 114 130 126 113 108 146 131 157 194 125 108 145 158 108 145 158 108 115 158 21 130 69 219 161 131 180 121 231	ed Oxyge: Consumi 82 71 79 75 88 78 85 72 77 67 71 77 67 71 77 93 87 80 67 72 80 80 80 95 72 85 72 72 80 80 85 72 80 80 85 72 80 80 85 72 80 80 85 72 80 80 85 72 80 85 72 72 80 80 85 72 72 73 80 80 85 72 75 80 80 80 87 75 80 80 87 75 80 87 75 80 87 75 88 85 75 75 88 85 75 75 88 85 75 75 88 85 75 75 88 85 75 75 88 85 75 75 88 85 75 77 77 77 77 77 77 77 77 77 77 77 77	Oxygen n 5 da. II ed, at 2 [. P.]	Demand, neubation 20° C. P.N1. 811 8311 199 158 808 153 808 153 808 153 808 153 808 153 808 153 808 153 808 153 808 153 800 194 25 1 1 25 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

. .

TABLE NO. 1-CRUDE SEWAGE

December, 1914	Temper- ature, Cent.	Bact (1,0 37.5° C.	teria 000) 20° C.	Settled Solids, c.c. per liter	Suspended Solids, P.P.M.	Oxygen Consumed, P.P.M.	Oxygen Demand, 5 da. Incubation at 20° C. P.P.M.
1 2 3 4	13 13 13 12	726 925 875	1,016 1,240 1,000 1,256	••••	$127 \\ 148 \\ 156 \\ 20$	74 64 59	680 637 436
5 6 7	$ \begin{array}{r} 111 \\ 101 \\ 101 \\ 101 \\ 101 \\ 10 \end{array} $	768	1,048	• • • • • • • • • • • • •	186 132 187	80 61 57	425 241 260
9 10 11	9^{3}_{2}	848 800 400	968 1,136 480	· · · · · · · · · · · · ·	129 189 242 132	50 66 75 51	290 142 79 263
12 13 14 15		1,104 840 768	1,320 1,000 800	••••• •••• ••••	158 168 202 109	56 54 66 64	510 647 879
10 17 18 19	$9\frac{1}{4}$ $9\frac{1}{2}$ $9\frac{1}{4}$ $8\frac{3}{4}$	915 672	1,110 1,240	· · · · · · · · · · · · ·	$137 \\ 155 \\ 161 \\ 117 \\ 127 \\ 117 $	49 39 53 49	814 420 565
20 21 22 23	9 91/4 81/2 83/4	920 821 1,208	1,110 985 1,552	· · · · · · · · · · · · ·	$ 150 \\ 132 \\ 213 \\ 122 \\ 122 $	41 66 67 51	326 335 320
24 25 26 27	8½ 9¼ 9	1,120	1,368	· · · · · · · · ·	128 172 177	54 60 56	265
29 30 31	$8\frac{94}{2}$ $8\frac{1}{2}$ $9\frac{3}{4}$	792 820 710	841	• • • • • • • • • • • • •	$305 \\ 415 \\ 182 \\ 177$	$56 \\ 51 \\ 55$	 343
Average	9.7	843	1,057	····	168	59	422
January, 19	15						
2 3 4	$\begin{array}{c} 8^{3}_{4} \\ 9^{1}_{4} \\ 9^{1}_{2} \end{array}$	656	1,288		182 145 178	55 60 78	561
5 6 7 8	8 91/2 91/2 91/2 9	856 864 658 792	976 1,648 1,200 920	· · · · · · · · ·	$120 \\ 173 \\ 147 \\ 92$	$46 \\ 47 \\ 44 \\ 46$	$510 \\ 266 \\ 328 \\ 542$
9 10 11		904 875 472	1,310 1,021 480	 4 2.4	176 135 178 132	$50 \\ 46 \\ 74 \\ 35$	501 252 519
13 14 15 16	$7\frac{1}{2}$ $7\frac{1}{2}$ $8\frac{3}{4}$ $8\frac{1}{2}$	688 800 850 810	1,040 912 1,110 910	$ \begin{array}{c} 1.6 \\ 4 \\ 2.6 \\ 4.1 \\ \end{array} $	90 195 106 138	24 41 35 48	188 547 253 224
17 18 19 20	9 9 9 ¹ ⁄2 9	575 1,192 920	600 760 920	2.7 2.7 5.2 5.2 4 4	155 92 119 128 149	$46 \\ 24 \\ 42 \\ 43 \\ 55$	529 360 457 378
22222324225	83/4 871/2	542 875	910 975		108 128 86 199	55 49 58 59	360 517
26 27 28	73/4 71/2 73/4 73/4 73/	832 624	1,325 336 376 520	10.3 1.6 1.4 1.6	159 89 94 104	66 44 41 46	907 538 • 657
30 31	7 7	616	1,212	2.6 2.4	123 79	55 49	538
Average	8	747	938	2.02	133	49	454

21

i

TABLE NO. 1-CRUDE SEWAGE

February, 1915	Temper- ature, Cent.	Bac (1,0 37.5° C.	teria 000) 20° C.	Settled Solids, c.c. per liter	Suspended Solids, P.P.M.	Oxygen Consumed, P.P.M.	Dxygen Demand, 5 da. Incubation at 20° C. P.P.M.
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 9 \\ 10 \\ \end{array} $	$7 \\ 6 \\ 1 \\ 2 \\ 6 \\ 1 \\ 4 \\ 8 \\ 7 \\ 3 \\ 4 \\ 8 \\ 7 \\ 1 \\ 2 \\ 7 \\ 7 \\ 1 \\ 2 \\ 7 \\ 7 \\ 1 \\ 2 \\ 7 \\ 7 \\ 1 \\ 2 \\ 7 \\ 7 \\ 1 \\ 2 \\ 7 \\ 7 \\ 1 \\ 2 \\ 7 \\ 7 \\ 1 \\ 2 \\ 7 \\ 1 \\ 2 \\ 7 \\ 1 \\ 2 \\ 1 \\ 1$	1,640 600 640 920 472 652 736 810 720	795 674 1,720 984 1,656 1,420 672 712 960	2.4 1.2 2.2 1.8 1.6 .8 .7 3.7 2.7 1.7	$116 \\ 43 \\ 69 \\ 110 \\ 95 \\ 78 \\ 81 \\ 173 \\ 93 \\ 100 \\ 00 \\ 00 \\ 00 \\ 00 \\ 00 \\ 00 \\ $	35393547382426543940	549 853 880 897 448 331 222 191 52
$\begin{array}{c} 11. \\ 12. \\ 13. \\ 14. \\ 15. \\ 16. \\ 17. \\ 18. \\ 19. \\ 20. \\ 21. \\ 22. \\ 23. \\ 24. \\ 24. \\ 24. \\ 24. \\ 25. \\ 24. \\ 24. \\ 25. \\ 24. \\ 25. \\ 24. \\ 25. \\ 24. \\ 25. \\ 24. \\ 25. \\ 25. \\ 24. \\ 25. \\ 25. \\ 24. \\ 25. \\ 25. \\ 25. \\ 24. \\ 25. \\$	$\begin{array}{c} 734\\ 78\\ 814\\ 898\\ 9\\ 9\\ 812\\ 9\\ 9\\ 9\\ 9\\ 9\\ 9\\ 9\\ 9\\ 9\\ 9\\ 9\\ 9\\ 9\\$	776 1,048 1,651 920 480 780	936 1,064 1,096 1,680 744 704 896 915	2.4 2.6 1.7 9.6 5.42 2.5 4.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.6 4.4 2.4	999 108 98 73 163 113 163 97 80 105 133 220 197 216	$\begin{array}{c} 41\\ 43\\ 56\\ 41\\ 44\\ 41\\ 50\\ 41\\ 35\\ 45\\ 41\\ 44\\ 41\\ 50\\ 50\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 1$	573 199 813 482 564
25 26 27 28 Average	$9 \\ 9 \\ 8^{1/2} \\ 8^{1/2} \\ - \\ 8 \\ - \\ 8 \\ - \\ - \\ - \\ - \\ - \\ -$	536 904 816	762 1,474 1,045	$ \begin{array}{r} 2.0 \\ 2.3 \\ 2.6 \\ 1.4 \\ \hline 3.1 \\ \hline \end{array} $	98 102 115 106 116 116 1	$ \begin{array}{c} 41 \\ 35 \\ 45 \\ 37 \\ -41 \\ 41 \end{array} $	714 591 483 587
March 12 34 56 67 89 1011 1213 1415 1617 1516 1718 19 2021 2223 2425 2627 2829 3031 	$8\frac{1}{2}$ $9\frac{3}{4}$ $9\frac{1}{2}$ $9\frac{3}{4}$ $9\frac{1}{2}$ 10	$\begin{array}{c} 680\\ 872\\ 672\\ 1,952\\ \dots\\ 920\\ 920\\ 920\\ 1,952\\ 1,120\\ 800\\ 1,032\\ 528\\ \dots\\ 992\\ 832\\ 912\\ 808\\ 1,080\\ 720\\ \dots\\ 1,376\\ \dots\\ 1,160\\ 800\\ 585\\ 628\\ \dots\\ \dots\\ 1,344\\ \dots\\ 1,344\\ \end{array}$	$\begin{array}{c} 840\\ 880\\ 1,156\\ 1,472\\ \dots\\ 960\\ 1,448\\ 1,528\\ 1,240\\ 1,240\\ 1,240\\ 1,240\\ 1,312\\ \dots\\ 1,472\\ 1,768\\ 1,400\\ 1,455\\ 1,620\\ 1,525\\ \dots\\ 1,600\\ 1,424\\ 1,456\\ 1,088\\ 728\\ 1,440\\ \dots\\ 1,448\\ \dots\\ 1,448\\ \end{array}$	$12.9 \\ 5.6 \\ 3.8 \\ 3.5 \\ 4.8 \\ 3.6 \\ 2.9 \\ 7.4 \\ 8.7 \\ 2.8 \\ 3.1 \\ 2.7 \\ 2.0 \\ 14.0 \\ 8.0 \\ 5.0 \\ 4.8 \\ 3.8 \\ 3.3 \\ 1.3 \\ 7.5 \\ 2.8 \\ 3.6 \\ 10.3 \\ 4.4 \\ 3.1 \\ 12.7 \\ 6.2 \\ 7.7 \\ 12.7 \\ 6.2 \\ 7.7 \\ 12.7 \\$	$\begin{array}{c} 125\\ 113\\ 134\\ 117\\ 162\\ 205\\ 135\\ 209\\ 225\\ 132\\ 130\\ 65\\ 149\\ 152\\ 282\\ 222\\ 184\\ 152\\ 282\\ 222\\ 184\\ 152\\ 169\\ 177\\ 169\\ 261\\ 134\\ 115\\ 172\\ 156\\ 131\\ 172\\ 194\\ 144\\ 162 \end{array}$	$\begin{array}{c} 52\\ 48\\ 36\\ 45\\ 49\\ 43\\ 41\\ 67\\ 60\\ 387\\ 33\\ 45\\ 972\\ 64\\ 607\\ 58\\ 37\\ 52\\ 53\\ 47\\ 52\\ 53\\ 64\\ 69\\ 79\\ 58\\ 66\\ \end{array}$	$\begin{array}{c} 514\\ 616\\ 714\\ 531\\ 905\\ 498\\ \cdots\\ 797\\ \cdots\\ 598\\ 797\\ \cdots\\ 598\\ 797\\ \cdots\\ 598\\ 797\\ \cdots\\ 634\\ 476\\ 546\\ 817\\ 576\\ 583\\ \cdots\\ 658\\ 559\\ 528\\ 887\\ 650\\ 726\\ \cdots\\ \cdots\\ 501\\ \end{array}$
Average	10	941	1,324	5.52	164	53.5	641

4
		Average 21 days	0 1 28222555555555666727256729 0 1 2822555555555555555555555555555555555
		Aver., Aver.,	$\begin{array}{c} 11\\ 12\\ 12\\ 22\\ 22\\ 22\\ 22\\ 22\\ 22\\ 22\\$
		.bəW	8 33885645222251055286454667586675 8 338856452525105525874246756
	ust 21	.sənT	4 18223835555555888888889999999
WAGE	o Aug	.noM	54 2383836685058611254688325566860112
v Se	t 14 to	.unS	24 12260 338885 844 848 333 11 5 ° 3 13 5 7 4 2 4 5 1 2 2 10 3 3 2 4 5 1 2 4 5 4 5 3 3 3 1 1 2 2 3 3 2 1 2 2 3 3 3 3 1 2 2 3 3 3 3
RAV	Augus	.teS	8 8312483358858858858858858888 ^{6,6,6,2} 785
S OF	H	Fri.	2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
MPLE	L.	Thurs.	* 5103************************************
y SA		Aver., 7 days	2421,00,02,22,22,22,22,22,22,22,22,22,22,22,
DURL		.bəW	6 \$1,223538355353555555555555555555555555555
N HC	24	.sənT	4128885555555555555555555555555555555555
•п *П	July	.noM	$\begin{smallmatrix} 52 \\ 52 \\ 52 \\ 52 \\ 52 \\ 52 \\ 52 \\ 52 $
SUME	7 17 to	.ung	822222833333344822284822889898989898989898 31 883238833334488328488989898989898989898
Con	Jul	Sat.	$\begin{array}{c} 123\\ 33\\ 33\\ 33\\ 33\\ 33\\ 33\\ 33\\ 33\\ 33\\ $
GEN		Fri.	29 23132 3347 53 23 23 23 23 23 20 20 20 20 20 20 20 20 20 20 20 20 20
Оху		(.studT	$\begin{array}{c} 113\\ 113\\ 33\\ 33\\ 33\\ 33\\ 33\\ 33\\ 33\\ 3$
0 OF		7 days	13333458833352693835776666833357766666333455883334558833545846464444444444
ECORI		.bəW	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
⊢R₁	y 3	.sənT	$\begin{array}{c} 1000 \\ 10$
Vo. 2	Inf of	Mon.	$\begin{smallmatrix} & & & & & & & & & & & & & & & & & & &$
LE N	le 26 1	.unS	$\begin{array}{c} 100 \\$
T_{AB}	Jur	Sat.	$\begin{array}{c} 122\\ 122\\ 222\\ 223\\ 232\\ 232\\ 232\\ 232\\$
		Fri.	$\begin{array}{c} 162\\ 162\\ 162\\ 162\\ 162\\ 162\\ 162\\ 162\\$
		Thurs.	$\begin{smallmatrix} & & 25\\ & & & 25\\ & & & & & & \\ & & & & & & \\ & & & & &$
		Hour •of Day	12 A.M. 12 A.M. 2 2 8 5 5 8 6 6 8 8 11 0 12 NOON 12 NOON 12 NOON 12 NOON 12 8 8 8 8 8 8 8 10 8 11 8 11 8 11 8 8 7 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8

* Oxygen consumed determined by 10 minutes' boiling of acidified sample with permanganate. Results are expressed in parts per 1,000,000.

TABLE NO. 3-RECORD OF SUSPENDED SOLIDS IN HOURLY SAMPLES OF RAW SEWAGE.

	Average 21 days	$\begin{smallmatrix} 53\\ 23\\ 23\\ 23\\ 23\\ 23\\ 22\\ 22\\ 22\\ 22\\ 2$
[Aver., 7 days	$\begin{smallmatrix} & & & & & & & & & & & & & & & & & & &$
	.bəW	$\begin{array}{c} 12\\12\\12\\12\\12\\12\\12\\12\\12\\12\\12\\12\\12\\1$
ust 21	.sənT	$\begin{array}{c} 36\\ 36\\ 30\\ 30\\ 30\\ 30\\ 30\\ 30\\ 30\\ 30\\ 30\\ 30$
Augi	.noM	$\begin{array}{c} & 33\\ 15\\ 15\\ 15\\ 15\\ 15\\ 15\\ 16\\ 16\\ 10\\ 13\\ 10\\ 13\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10$
t 14 to	·unS	80 157 157 157 157 117 117 1175 1175 1175
August	.1sZ	$\begin{array}{c} 22\\ 223\\ 223\\ 223\\ 223\\ 223\\ 223\\ 223\\$
4	.irA	$\begin{array}{c} 3.4\\ 1.7\\ 1.7\\ 1.7\\ 2.1\\ 2.2\\ 2.2\\ 2.2\\ 2.2\\ 2.2\\ 2.2\\ 2.2$
	.sindT	$\begin{array}{c} 23\\ 23\\ 23\\ 23\\ 23\\ 23\\ 23\\ 23\\ 23\\ 23\\$
	Aver., Ruer,	$\begin{array}{c} 66\\ 68\\ 118\\ 118\\ 118\\ 118\\ 118\\ 118\\ 1$
	.bəW	$\begin{array}{c} 68\\ 26\\ 26\\ 25\\ 25\\ 25\\ 25\\ 25\\ 25\\ 25\\ 25\\ 25\\ 25$
24	.zənT	$\begin{array}{c} 79\\ 79\\ 15\\ 15\\ 15\\ 16\\ 16\\ 16\\ 11\\ 16\\ 11\\ 12\\ 11\\ 12\\ 11\\ 12\\ 11\\ 12\\ 11\\ 12\\ 11\\ 12\\ 11\\ 12\\ 11\\ 12\\ 11\\ 12\\ 11\\ 12\\ 11\\ 12\\ 11\\ 12\\ 11\\ 12\\ 11\\ 12\\ 11\\ 12\\ 11\\ 12\\ 12$
) July	, noM	$\begin{array}{c} 33\\ 54\\ 54\\ 30\\ 30\\ 30\\ 25\\ 25\\ 331\\ 131\\ 131\\ 133\\ 333\\ 333\\ 333\\ 33$
r 17 to	.unS	$\begin{array}{c} 75\\ 565\\ 51\\ 124\\ 112\\ 8\\ 8\\ 8\\ 85\\ 112\\ 402\\ 8\\ 85\\ 82\\ 112\\ 124\\ 124\\ 124\\ 124\\ 124\\ 124\\ 12$
Jul	.tsZ	$\begin{array}{c} 106 \\ 500 \\ 510 \\ 520 \\$
	.i-A	$\begin{array}{c} 4.4\\ 1.4\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ 1.5$
	Thurs.	$ \begin{array}{c} 60\\ 60\\ 157\\ 158\\ 158\\ 158\\ 158\\ 158\\ 158\\ 158\\ 158$
	Aver., Aver.,	$\begin{array}{c} 53\\ 52\\ 52\\ 52\\ 52\\ 52\\ 52\\ 52\\ 52\\ 52\\ 52$
	.b ₉ W	$\begin{array}{c} & & & & & & & & & & & & & & & & & & &$
y 3	.zsuT	$\begin{smallmatrix} & 3.2\\ & 3.2$
to Jul	.noM	$\begin{array}{c} 72\\ 72\\ 117\\ 117\\ 117\\ 117\\ 117\\ 117\\ 1$
ne 26	·unS	96 1134 1136 1136 1137 1137 1137 1137 1137 1137
] nſ	Sat.	$\begin{array}{c} & & & & & & & & & & & & & & & & & & &$
	.irA	$\begin{smallmatrix} 48\\15\\15\\16\\16\\16\\16\\16\\16\\16\\16\\16\\16\\16\\16\\16\\$
	Thurs.	$\begin{array}{c} 466\\ 466\\ 466\\ 666\\ 668\\ 668\\ 108\\ 108\\ 108\\ 108\\ 108\\ 108\\ 108\\ 10$
	Hour of Day	12 A.M. 12 A.M. 33 5 5 5 6 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6

Results are in parts per 1,000,000.

PILE M 11 - 5 President Baraugh of Richmand . Bureau of Engineering , Sewage - --- COMPUTER -FROM то -- DATE JUNE, July 1913-940 August

Hourly Diagram of Flow of Row Sewage Average of Three weeks analyses

President Borough of Richmond	Drawing Nº 4
Burrou of Engineering; Seringe	ACC
Experiment Station COMPUTER	PROMTO
MADE IN WITH TO bulotion of 3 Weeks analyses CHECKER	DATE JUNE, Tuly 100 8
	August

TABLE NO. 4-SHOWING THE AVERAGE OF SEVEN-DAY ANALYSES OF SEW-AGE, TAKEN FROM SEVEN DIFFERENT OUTLETS IN BOROUGH OF RICHMOND.

£	lin.) iter	So	uspend	ed	Oxygen Consumed Permanganate in ½ hour at 100° C.			Oxygen Demand					
Sewer Outle Number	Settled 60 M Vol.=c.c./h	Raw Sewage	Settled 60 Min.	Per Cent Reduction	Raw Sewage	Settled 60 Min.	Per Cent Reduction	Raw Sewag	Settled 60 M	Per Cent Reduction	Chlorine	Alkalinity, (Fats
	$\begin{array}{r} 4.9 \\ 4.0 \\ 2.8 \\ 2.6 \\ 7.9 \\ 4.2 \\ 2.8 \end{array}$	$217 \\ 279 \\ 221 \\ 120 \\ 253 \\ 389 \\ 201$	$79\\117\\54\\72\\95\\63$	$ \begin{array}{r} 64 \\ \\ 47 \\ 55 \\ 72 \\ 76 \\ 69 \\ \end{array} $	55 69 54 31 74 70 53	$ \begin{array}{r} 40 \\ 47 \\ 39 \\ 23 \\ 50 \\ 44 \\ 35 \\ \end{array} $	$27 \\ 32 \\ 28 \\ 26 \\ 32 \\ 37 \\ 34$	339 436 345 188 228 298 298 228	179 272 115 149 210 165 165	$ \begin{array}{r} 47 \\ \\ 20 \\ 39 \\ 35 \\ 30 \\ 28 \\ \end{array} $	$\begin{array}{r} 321\\ 345\\ 482\\ 181\\ 169\\ 159\\ 138 \end{array}$	$\begin{array}{c} 251 \\ 229 \\ 270 \\ 190 \\ 225 \\ 198 \\ 202 \end{array}$	115 54 87 81 33

March	Veloc-	37.5	EFI Bacteria 5° C.	FLUENT . (1,000) 20°	FROM 7	CANK NO Susper Solie). 2. nded ds	Oxyg Cons	en umed	Dis-	
1914	Feet per Second	Num- ber	% Re- duc- tion	Num- ber	% Re- duc- tion	P.P.M.	% Re- duc- tion	P.P.M	% Re- . duc- tion	Oxygen, P.P.M.	Putres bility
1	.0012					201	22	59	53		
2	.0021		· · ·			120	48	68	47		• •
a	.0010		• • •	• • •		101	03	00 60	45		• •
5	.0006					102	43	61	27		•••
6	.0021					78	$\tilde{60}$	$\tilde{55}$	56		
7	. 0021					107	43	63	51		41
8	.0021				• • •	231		70	45	· · · ·	
9	0012		• • •	• • •		211	24	92 58	3 56	• • • •	39
11	.0021					121	43	70	41		43
12	. 0012					136	30	61	56		32
13	. 0033					127	44	53	58	• • • •	45
14	.0033	• • •		• • •		125	53	59	55 79		58
16	0033	• • •	• • •			226	40 5	49	43		••
17	.0021					124	7	$5\overline{4}$	69		$\dot{49}$
18	.0012					90	35	44	23		61
19	.0012					93	27	42	77		51
20	.0033		• • •	• • •		75	37	44 57	70	· · · ·	08 56
$\frac{21}{22}$.0012	• • •				87	29	54	68		00
23	.0012					189	$\overline{41}$	81	17		32
24	.0012					168	13	65	48		28
$25.\ldots$. 0012	353		576	18	155	$\frac{12}{75}$	48	63		42
20	0012	290	22 125	088	37 23	128	70 76	04 55	08 72	• • • •	30
28		530		500	25	124	78	54	65		53
29	.0012	850	60	1,120	+3	100	99	51	67		
30	0012	150	70	226	50	133	37	$65 \\ -50 \\$	46		31
31	0012	528	14	292	2	100	39	70	5	• • • •	10
Aver	0017	411	···-	549		131	34	60	9	<u>.</u>	43
April								40	05	* 00	
1	0027	240	1	628	+8	116	33	49 62	25 10	2 36	••
2 3	00012	268	+18	300	40	84	20 57	50	31	1.74	
4	0009					84	50	53	$\overline{28}$	1.05	
5	0012	612		828		200	14	59	31	2.08	31
6	0012	1,216	+68	1,144	+15	166	47	77	20	1.65	21
7 Q	0012	105	47 60	20	47	138	40 24	51	15 26	0.65	33
9	0012	360	40	396	16	122	57	64	$\overline{23}$	2.63	19
10	0012	1,248	+68	1,408	+50	128	30	63	17	1.50	19
11	0003	420	37	557	34	140	42	51	39	0.56	32
12	0019	559	± 20	604	33	178	+5	89	18	2 42	20
13	0012	720	+20 + 85	996	+104	174	62	71	$\overline{26}$	1.79	$\tilde{20}$
15	.0006	592	+15	480	60	90	52	58	18	1.38	78
16	. 0006	258	35	320	48	98	29	51	27	2.03	36
17	0012	456	10	848	14	154	34 54	01 54	23	0.49	21
18	00012	400	23	1 384	+12 12	112	26	50	35	0.34 0.19	17
20	.0009	380	53	580	10	130	63	80	28	0.54	20
21	. 0006	173	57	928	+8	128	49	66	31	1.23	25_{10}
22:	.0009	884	+38	1,092	+29	108	49	56 79	32	0.54	19 10
23	.0012	105	88	1,520	+1/	112	00 45	51	29	0.21	33
24	0012	414	100	010	100	150	58	44	$\tilde{29}$	0.00	$\tilde{21}$
26	.0021	700	21	1,020	68	88	73	41	47	2.71	39
27	.0012	553	29	680	12	96	65	67	25	0.99	21
28	.0006	19	20	520	+46	92	42 59	61 59	16 99	0.34	21
29	.0012	366	+50 ± 14	030 619	19 17	92 76	00 52	54	$\frac{20}{26}$	0,46	19
30		<u>441</u>					<u> </u>				
Aver	.0010	491	2	713	12	123	47	59	28	1.10	26

TABLE NO. 5-PLAIN SEDIMENTATION.

Table	No.	5—Plain	SEDIMENTATION
-------	-----	---------	---------------

			E	FFLUENT	FROM 7	'ank N	o. 2.				
	\$7.1	07.0	Bacteri	a (1,000)	Suspe	ended	Oxyg	en	D'.	
Morr	Veloc-	37.3	s° C.	20	° C.	Sol	1ds	Cons	umed	Dis-	·5
1914	Feet	Num-	% Re-	Num-	% Re-		% Re-		% Re-	Oxygen	y
1011	per	ber	duc-	ber	duc-	P.P.M	. duc-	P.P.M	duc-	P.P.M.	litt
	Second	1	tion		tion		tion		tion		പ്ര
1	.0002					90	63	47	40		26
$2\ldots\ldots$. 0011					164	44	63	$\overline{28}$	1.06	17
3	. 0012	775	3	1,520	10	152	+5	58	17	1.23	21
4	0012	269	98	588	49	82	39	86	16	0.38	13
0 6	0012	200	+15	740	49	200	- 00 - 1- 2	- 00 - 61	29	0.3	3U 10
7	.0009	664	+40		10	158	15	68	+1	0.08	19
8	.0003					122	$\overline{56}$	54	24	1.53	$\overline{27}$
9	.0009	360	+12			80	+1	55	23	0.26	20
10	.0009	1,520	33			108	41	57	27	0.19	30
11	.0007	460	20	• • •		144	54 20	88 72	18	0.23	11
13	.0012	1.052	+22			150	31	71	10	1.30 1.42	15
14	.0009	620	+13	760	19	104	40	66	1	0.23	19
15	. 0006	840	+85			118	15	56	20	0.15	21
16	.0012	824	+20			132	35	59	24	0.00	11
17	.0005	1,330	+33		• • •	96	71	65	29	0.08	19
10	0009	1 240	20 16	2 000	25	60	51 48	80 74	22	1 66	18
20	.0012	628	+84	796	+5	36	76	58	18	0.41	19
21	.0016	520	+16	750	10	36	68	51	1 9	0.16	19
22	.0009	310	+33	760	+81	50	67	41	43	0.00	25
23	. 0003	724	19	1,200	+102	92	43	53	32	0.00	19
24 25	0009	900 500	53	2,000	14	104	38	40	26	0.00	23
26	.0012	800	+57	700	+6	60	29 67	00 57	19	0.24	11
27	.0006	450	26	370	82	164	4	66	17	0.02	11
28	. 0006	930	29	1,360	16	44	61	55	-9		16
29	. 0006	1,040	13	1,600	17	80	49	56	25		13
30		• • •	• • •	• • •	• • •	• • •	• •	••	• •	• • • •	• •
51				· · · ·	<u> </u>		· · ·	· ·	· · ·	· · · · ·	
Aver	.00087	7 708	5	1,042	17	106	45	62	22	. 4	18
Lune				_			_:*				
1	.0012	588	38	960	41	122	26	79	10		18
2	.0012	480	15	1,000	$\hat{12}$	102	46	57	30	0.08	24
3	. 0016	420	+20	890	+40	80	29	60	17		11
4	.0021	440	$+40_{\tilde{2}}$	884	+33	78	29	50	18	0.24	13
5 6	.0012	792	17	990	16	120	44	55	20	0.24	22
7	0012	1 536	28	1 160	10 	138	47	60 49	19	0.00	18
8	.0009	912	10	1.040	39	126		73	49 32	0.09	01 15
9	.0012	612	24	1,304	18	86	56	66	. 27		21
10	.0012	744	+13	812	22	102	22	63	2^{-1}		11
11	.0012	912	12	975	10	102	26	58	19		20
12	0012	040 976	+11	1,000	42	124	65	51	30	• • • •	19
14	.0012	730	27	888	12^{-12}	108	18	53	20 5	• • • •	21
15	.0012	750	13	880	$\overline{39}$	78	67	67	23	••••	18
16	.0012	1,072	+6	800	44	102	41	73	8		11
17	.0009	896	3	1,136	19	36	76	47	35		31
10	.0009	1 200	•••	2,750	i i i	100	30	49	27	• • • •	23
20	.0006	1.328	20	1.720		02 - 74	+28	40 57	30	• • • •	29
21	.0006	928	$\overline{14}$	1,048	42	36	56	45	20	• • • •	11
22	.0006	800	43	968	38	140	30	60	$\tilde{15}$		13
23	.0003	1,002	14	1,136	8	80	70	57	35		ĩĭ
24	.0003	950	+32	1,256	9	78	52	53	28		15
20 26	0000	00U 480	4 22	1,040	39	82	40	53	27	· · · •	15
27	.0012			2.560	09	70	19	し び 53	10	• • • •	15
28	.0012	960	2	1,527	27	66	51	55 44	27	• • • •	17
29	.0012	1,072	+25	1,104	5	166	51	$\hat{63}$	39		15
30	.0012	832	+4	880	13	80	65	60	23		19
Aver	0010	852	12	1 130	16	05	45				
		004	10	1,109	10	90	45	57	23	· · · ·	18

TABLE NO. 5-PLAIN SEDIMENTATION.

			EF	FLUENT	FROM T	ANK NO	5. 2.				
	Veloo	27 F	Bacteria	i (1,000)	C	Suspe	nded	Oxyge	en Imod	Dia	
July.	itv in		· · · · · · · · · · · · · · · · · · ·	<u></u>	<u> </u>	501	.as	Const		solved	ċ;
1914	Feet	Num-	% Re-	Num-	% Re-		% Re-		% Re-	Oxygen,	ty is
	per	ber	duc-	ber	duc-	P.P.M.	duc-	P.P.M.	duc-	P.P.M.	2 tr
	Second		tion		tion		tion		tion		
1	.0007	1,040	29	1,300	27	98	39	48	39	· · • •	10
2	.0006	752	29	1,000	22	47	63	51	20	• • • •	11
3	.001	792	54	648	58	, 89	58	45	37		20
5	0012	896	22	1 160	30	48	ii	46	30		$\dot{2}\dot{2}$
6	.0012	576	23	812	11	109	80	$\tilde{72}$	25		$\overline{22}$
7	.0012	800	17	760	20	50	72	39 .	40		33
8	.001	856	30	800	47	78	10	54	32		13
9	.001	864	15	720	34	63	63	50	60	· · · ·	15
10	0005	1 1 20	23	1 120	30	121	65	47	36		30
12	.001	480	40	1,024	9	56	69	. 44	36		15
13	. 0009	920	+40	720	26	190	39	60	43		28
14	. 0012	528	13	672	7	183	19	48	45	• • • •	13
15	0016	1,064	+46	1,120	30	79	47	45	30 48	18 M 1	20 18
10	0012	720	10		• • •	31	63	35	43		$\frac{10}{29}$
18	. 0009	900	18	1.200		43	-33	40	35		30
19	0012					33	76	41	34		
20	0009					94	33	54	45		• •
21		• • •	Cleann	ng Tank	• • •	• • •	• •	• •	• •	••	• •
23	• • • • • • •	• •	"	"	• • •			•••			
24			"	"							
25		· · · ·	"	"				• •			• •
26			"	u			• •	• •	• •		• •
27	• • • • • •	• • •	"	"	• • •	• • •		• •	••		•••
28			"	"	•••						
30	· · · · · · ·		u	"							
		055		004				19	27		
Aver	001	855	22	924	23		00	= 40			
August	5										
1								• •	• •		••
2						210	20	49	36		••
3 4	0012					75	55	33	39		
5	. 001					55	47	37	35		
6	0012					17	75	33	27		• •
7	0012		• • •	• • •		23 20	03 58	30	29 40		• •
8	0014	• • •		• • • •	/	53	50	29	26		
10	0012					81	51	49	27		••
11	0009					55	38	40	27		• •
12	0012			•••		43	52	34	30		• •
13	001		• • • •	• • •		64 64	04 53	40	20		
14	001		• • •	• • •		98	25	$\overline{43}$	$\overline{29}$		
16									• •		
17	0007							÷		• • • •	• •
18	0012		• • •			106	46	59	23		• •
$19\ldots$	0012	• • •	• • •	•		150	26	43	26		••
20	001	• • •	• • • •			49	44	33	$\overline{37}$		
22	0012					66	31				
23									25		••
24	001					42	88	00 56	30 28		• •
25	001			•••	• • •	62	48	47	20		••
20 27	0012					72	41	53	24		
28	001					68	30	50	18		
29	0009					118	39	45	23		•••
30						76	30	• •	•••		••
31	0007	<u></u>	· · · ·		· · ·						<u> </u>
Aver	.0011					74	47	44	41		

MARCH, 1914. EFFLUENT NO. 4

Relativ	8 36: 988331555999999; : : : 28888; : : : : : : : : : : : : : : : : :
Dissolved Oxygen 1 Per Cent Solution	1 1
Per Cent Reduc- tion	
Oxygen Consumed, P.P.M.	&%222222222222222222222222222222222222
Per Cent Reduc- tion	442266866666666666666666666666666666666
Suspended Solids, P.P.M.	77 77 75 75 75 75 75 75 75 75 75 75 75 7
Per Cent Reduc- tion	4 880 880 880 880 880 880 880 880 880 880
Bacteria on Geletin at 20°	Sterile 120,000 1,5220,000 366,000
Per Cent Reduc- tion	20 30 30 30 30 30 30 30 30 30 3
Bacteria on Agar at 37.5°	Sterile 520,000 33,000
Parts per Million	14 0 14 0
Lbs. of Chlorine Gas per Million Gallons	$\begin{array}{c} 118 \\ 102 \\ 303 \\$
Tem- pera- ture	4 1 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Date	A Ver.

* Free Chlorine, 12.63 P.P.M.

CHLORINE TANK NO.

APRIL, 1914.

Relative Stability Oxygen 1 1 Per Cent 8 Solution Dissolved : : : : 3 2022882333 ŝ ŝ Per Cent Reduc- $\begin{array}{c}-19\\-14\\-28\\-27\end{array}$ tion -10 -15-39 33 Ζ, Consumed, Oxygen P.P.M. Per Cent Suspended Per Cent Reduc- Solids, Reduction $\begin{array}{c} \cdot \cdot \cdot \\ \cdot \cdot \cdot \\ \cdot \\ \cdot \cdot \\ \cdot$ 485 882 56 Solids, P.P.M. $\begin{array}{c} 11168\\ 111668\\ 11160\\ 1116\\ 1$ 102 $^{+1100}_{-100}$ tion 82 IO +43 - 4 12 :00 Bacteria on Geletin at 20° Sterile " Sterile 173,000 173,000 768,000 484,000 84,000 5,000 596,000 50,000 50,000 50,000 50,000 51,000 1115,000 Sterile Sterile Sterile 17,000 Sterile Sterile 57,000 67,000 842,000 842,000 9,000 Sterile " Per Cent Reduc-tion $^{100}_{+18}$ 2565 Bacteria on Agar at 37.5° Sterile 107,000 155,000 112,000 Sterile 912,000 15,000 69,000 39,000 640,000 65,000 564,000 199,000 1,000 Sterile 4,000 27,000 52,000 52,000 52,000 52,000 52,000 42,000 9,000 9,000 9,000 87 erile 9,000 87 erile 87 crile 87 cri 87 cri 87 cri 87 cri 87 co 87 co 87 co 87 co 87 co 87 co 87 c t ä Parts per Million 4280440048 7.0 Lbs. of Chlorine Gas per Million Gallons 50.5 $\begin{array}{c} 31.5\\ 36.9\\ 68.1\\ 81.4\end{array}$ 40.7 60 60 77 68.1 68.1 0 62. 2222211111122221000 222422222222222000 pera-ture Tem-2 Date Aver. 0.0

 $\mathbf{31}$

MAY, 1914, CHLORINE TANK NO. 4.

Relative Stability	8 : : 431213132825222222222323332134: : : 8
Dissolved Oygen 1 Per Cent Solution	4001001001001001001001001001001001001001
Per Cent Reduc- tion	$\begin{smallmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $
Oxygen Consumed, P.P.M.	\$\$\\ 2882328232823222222222222222222222222
Per Cent Reduc- tion	55 · · · · · · · · · · · · · · · · · ·
Suspended Solids, P.P.M.	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Per Cent Reduc- tion	$\begin{bmatrix} 100 \\ -27 \\ -2$
Bacteria on Gelatin at 20°	Sterile 584,000 588,000 90,000 90,000 90,000 90,000 101,000 840,000 920,000 920,000 940,000 988,000 688,000 688,000 60,000 888,000 1,000,000 920,000 940,000 940,000 920,000 940,0000 940,0000 940,0000000000
Per Cent Reduc- tion	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Bacteria on Agar at 37.5°	Sterile 7,000 260,000 270,000 270,000 2270,000 2270,000 2270,000 3225,000 3225,000 548,000 5548,000 5548,000 5548,000 5548,000 5548,000 5568,000 5568,000 5568,000 5568,000 5568,000 5568,000 575,000 576,000 577,0000 577,000
Parts per Million	8804
Lbs. of Chlorine Gas per Million Gallons	558%
Tem- pera- ture	25555555555555555555555555555555555555
Date	Aver.

GAS.
CHLORINE (
ВΥ
6-DISINFECTION
No.
TABLE

JUNE, 1914, CHLORINE TANK NO. 4.

Relative Stability	2 33133255555: 334283212511675888855553230 28 331338555555: 334888225125155588882332
Dissolved Oxygen 1 Per Cent Solution	22 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Per Cent Reduc- tion	8 1133320441225 ² 8 113320441225 ² 8 113320441225 ² 8 11332044125 ² 8 11325 ² 8 11355 ² 8 1135
Oxygen Consumed, P.P.M.	8223952282225282222222222222222222222222
Per Cent Reduc- tion	844882828382848448888888888888888888888
Suspended Solids, P.P.M.	888228528828282828282828282828282828282
Per Cent Reduc- tion	$\left \begin{array}{c}100\\100\\100\\100\\100\\100\\100\\100\\100\\100$
Bacteria on Gelatin at 20°	Sterile 68,000 68,000 68,000 68,000 576,000 104,000 576,000 576,000 544,000 544,000 544,000 544,000 518,000
Per Cent Reduc- tion	$\begin{bmatrix} 100\\ 552\\ 552\\ 552\\ 552\\ 552\\ 552\\ 552\\ 5$
Bacteria on Agar at 37.5°	Sterile
Parts per Million	13 13 13 13 13 13 13 13 13 13 13 13 13 1
Lbs. of Chlorine Gas per Million Gallons	10 1328555 1328555 1328555 13285 13 13 13 13 13 13 13 13 13 13 13 13 13 1
Tem- pera- ture	1
Date	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2

JULY, 1914. CHLORINE TANK NO. 4.

Relative Stability	30 44 30	30 30 30	88	808	30 37	5 °C	21 30	30		44	6	:	•	•	•	:	:	:	•	:	:	:	29
Dissolved Oxygen 1 Per Cent Solution	$\begin{array}{c} 0.55\\ 2.1\\ 2.0\\ 2.0\end{array}$	2.5	1.5	$1.7 \\ 1.3$	$\frac{1.2}{5}$, 200	0. 6	9 CI	2.1 1.6	1.1	1.7	:	:	•	•		• • •	•		•	•	•	1.5
Per Cent Reduc- tion	30 37 37	 17	133	$11 \\ 25$	23	25	20 20 20	80	16 ه	20	16	:	:	:	:	•	•	•	:	:		:	32
, Oxygen Consumed, P.P.M.	55 51 45	80 50 80	51 65	55 55 8	57 40	61	61	99 99	51	30	72	:	:	:	:	:	:	•	•	:	:	•	58
Per Cent Reduc- tion	55 84 58	42 82	32 51	41 59	56	69	59	12	48 5	12	63	:	:	:	•	:	;	:	:	:	:	:	8
Suspended Solids, P.P.M.	65 42 80	09	67 73	86 65	$162 \\ 62$	156	79 40	145	43 26	90°	86	•	•			:		•		:	•	•	81
Per Cent Reduc- tion	57 100 100	100 100 53	$^{92}_{100}$	$^{100}_{98}$	100 100	45	99 100	22	100	64	100	:	•	•••••	• • • •	•	:	:	:	•	:	•	88
Bacteria on Gelatin at 20°	776,000 Sterile	Sterile 432,000	76,000 Sterile	25,000	250,600 Sterile	536,000	5,000 Sterile	586,000	Sterile	250,000	Sterile	:		:	•••••	:	:				:	:	155,000
Per Cent Reduc- tion	-47 100 100	100	100	100 98	81	55	95 100	· ·	:		66		•	:	•			:	:	:	:		84
Bacteria on Agar at 37.5°	760,000 Sterile	Sterile 800,000	47,000 Sterile	20,000	200,000	400,000	29,000 Sterile	••••	:	150,000	3,000		•		:	n lanks	:	•	•	:	•	• • • •	162,000
Parts per Million	$ \begin{array}{c} 18.2 \\ 18.2 \\ 22.9 \\ \end{array} $	22.9 38.4	20.2 20.5	12.7 10.1	18.2 15.2	18.2	10.8 10.8	00 00 00 00	10.8	15.2	9.8	• • •	•			Sludge Iroi	•	•	:	:	•••••		15
Lbs. of Chlorine Gas per Million Gallons	152 152 190.8	190.8 320	68.6	106	151.7	151.7	06	68.8	06	127	82.1	•	•	••••		Kemoving		:	:	•••••	•		132
Tem- pera- ture	$\frac{18}{81}$:18	18 8 8 9	18 8	<u>x</u> x	19	19	19	10	19	19	:	:	:	:	:	:	:	:	:	:	:	18
Date	3.21	6	8	9	11	13	14	16	17	19.	20	21	22	23	24	20	20.2			29	30	31	Aver

•

AUGUST, 1914. CHLORINE TANK No. 4.

I

Relative Stability	:::::::::::::::::::::::::::::::::::::::
Dissolved Oxygen 1 Per Cent Solution	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
Per Cent Reduc- tion	· · · · · · · · · · · · · · · · · · ·
Oxygen Consumed, P.P.M.	: :8282424684444 : :82864 : :585696 : : %
Per Cent Reduc- tion	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Suspended Solids, P.P.M.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Per Cent Reduc- tion	
Bacteria on Gelatin at 20°	
Per Cent Reduc- tion	
Bacteria on Agar at 37.5°	296,000 Sterile " " " " " " " " " " " " " " " " " " "
Parts per Million	14 13: 13: 13: 13: 13: 13: 13: 14: 15: 14: 15: 14: 15: 14: 15: 14: 15: 14: 15: 14: 15: 14: 15: 14: 15: 14: 15: 14: 15: 14: 15: 14: 15: 14: 15: 14: 15: 14: 15: 14: 14: 15: 14: 15: 14: 15: 14: 15: 14: 15: 14: 14: 15: 14: 14: 15: 14: 14: 15: 14
Lbs. of Chlorine Gas per Million Gallons	$\begin{array}{c} 126\\ 126\\ 126\\ 126\\ 126\\ 126\\ 126\\ 126\\$
Tem- pera- ture	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Date	$\mathbb{A}^{\mathrm{Ver}}_{\mathrm{Ver}}$

SEPTEMBER, 1914. CHLORINE TANK NO. 4.

Relative Stability	•	:	:	:	•	•	•	:	:			•	:	:	•	:	•	:	:	:	:	•	•					:		:	•
Dissolved Oxygen 1 Per Cent Solution	•						• • • •			• • •			•	•	•	•	•	•	•	•	:	•••••					•	•	•	•	•
Per Cent Reduc- tion	:	:				•	•		1	:			•	•	•	•	•	• • • •	•••••	:					22	010 			24		•
Oxygen Consumed, P.P.M.	:	:	:	:	•	•		:					• • •			:	•		•••••	•				00	70	04 06	002	10	2		99
Per Cent Reduc- tion		•	•				:		:						• • • •	•••••	••••		•		•		•	:		:			:	:	18
Suspended Solids, P.P.M.	74	45	$\overline{51}$	67	50	144	65 05	95	•••••					:	• • • •			:						•••••		•			:	:	74
Per Cent Reduc- tion	:	82	64	25	81		49	:		•		:		:	:		:		•		•	•••••	• • • •	:		•••••		:	•	:	68
Bacteria on Gelatin at 20°	396,000	356,000	640,000	375,000	:		840,000				:	• • • •	•••••		:							:		•		:		•	•	•	521,000
Per Cent Reduc- tion	:	68	68	19			43		• • • •													• • • •	•		•	••••	:			:	55
Bacteria on Agar at 37.5°	660,000	552,000	440,000	620,000			872,000	•		:	:	•				:	:	• • • •	• • • •			• • • •	•••••		•••••		• • • •	:	/ 	•	628,000
Parts per Million	18.5	18.5	18.5	15.2	18.5	15.2	12.0	12.0	•	•	• • • •	•••••	Tanks	• • • •		•••••	• • • •			••••	••••							:	•		16
Lbs. of Chlorine Gas per Million Gallons	154	154	154	126	154	126	100	100		• • •		•	Cleaning			•												:			134
Tem- pera- ture	20	20	20	20	20	202	202	19	:	:	:	:			:		:				:	:	:		17	17	17	17	17	17	$19\frac{1}{2}$
Date	-	2		4	12		7	80	99	10	11	12	13.	14	15	16.	17	18	19	20.	21	22.	23	24	25.	26	27	28	29	30	Aver

OCTOBER, 1914. CHLORINE TANK NO. 4.

Relative Stability	
Dissolved Oxygen 1 Per Cent Solution	D.33 0.33 14 14 14 14 14 14 14 14 14 14 14 14 14
Per Cent Reduc- tion	2; 11282; 258; 258; 258; 258; 258; 258; 258;
- Oxygen Consumed, P.P.M.	2222822282828282828282828282828282828282
Per Cent Reduc- tion	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Suspended Solids, P.P.M.	
Per Cent Reduc- tion	
Bacteria on Gelatin at 20°	$\begin{array}{c} 1,296,000\\ 736,000\\ 736,000\\ 1,064,000\\ 1,352,000\\ 1,016,000\\ 1,260,000\\ 950,000\\ 950,000\\ 950,000\\ 1,424,000\\ 1,224,000\\ 1,224,000\\ 1,224,000\\ 1,264,000\\ 1,264,000\\ 1,264,000\\ 1,264,000\\ 1,264,000\\ 1,260,000\\ 1,2$
Per Cent Reduc- tion	$\begin{bmatrix} + & + & + & + \\ 2323 & - & - & - & - & - \\ 242612 & - & - & - & - & - & - & - \\ 242612 & - & - & - & - & - & - & - \\ 2512 & - & - & - & - & - & - & - & - \\ 2512 & - & - & - & - & - & - & - & - \\ 2512 & - & - & - & - & - & - & - & - \\ 2512 & - & - & - & - & - & - & - & - \\ 2512 & - & - & - & - & - & - & - & - \\ 2512 & - & - & - & - & - & - & - & - \\ 2512 & - & - & - & - & - & - & - & - \\ 2512 & - & - & - & - & - & - & - & - \\ 2512 & - & - & - & - & - & - & - \\ 251$
Bacteria on Agar at 37.5°	688,000 528,000 528,000 7720,000 968,000 968,000 968,000 7720,000 1,128,000 774,000 1,128,000 774,000 640,000 584,000 584,000 640,000 584,000 584,000 584,000 584,000 584,000 546,000 546,000 546,000 546,000 546,000 558,000 550,0000 550,0000 550,000 550,0000 550,0000 550,0000 550,00000000
Parts per Million	
Lbs. of Chlorine Gas per Million Gallons	3 3
Tem- pera- ture	e - 5555556666575555555555555555555555555
Date	Aver.

Missing Page

Missing Page

	Hypochlo Lim	orite of ne	On	Bacteria Agar	(1,000 On ()) Gelatin	Suspe	ended lids	Oxy Cons	vgen umed
October, 1914	Pounds pe Million Gallons	r P.P.M.	37.5°	% Re- duction	20°	% Re- duction	P.P.M.	% Re- duction	P.P.M.	% Re- duction
$\begin{array}{c} 1.\ldots.2 \\ 3.\ldots.\end{array}$	48 35 37	$\begin{array}{r}57.5\\42\\44\end{array}$	$280 \\ 984 \\ 676$	$\begin{array}{r} 30\\1.6\\47\end{array}$	584 1,160 800	$+12 +43 \\ 14$	· · · · ·	 	$45 \\ 64 \\ 45 \\ 40$	 - · · - ·
$\begin{array}{c} 4 \\ 5 \\ 6 \\ 7 \end{array}$	36 44 36	$\begin{array}{c} 43\\53\\43\end{array}$	840 1,096 1 056	$+22 \\ 99 \\ 7$	960 1,708 1.296	$+20 \\ -18 \\ -30$	 	•••	62 67 66	•••
8 9 10	56 56 65	67 67 78	760 792 1,008	28 15 32	920 1,240 992	$-33 \\ -9 \\ -34$	$\begin{array}{c} 14\\ 53\\ 57\end{array}$	75 80 42	52 45 55	
11121213141111111111111	$\begin{array}{c} \dots \\ 42 \\ 54 \end{array}$	50 65	1,288 1,140	 6 5	1,480 1,576	$^{+9}_{+5}$	78 87 63		$ \begin{array}{r} 40 \\ 74 \\ 64 \\ 67 \\ \end{array} $	38 65
15 16 17 18	$\begin{array}{c} 56 \\ 62 \\ 62 \end{array}$	67 74 74	$784 \\ 512 \\ 1,240$		984 895 1,472	23 25 11	67 56 66 60	$46 \\ 38 \\ 70 \\ 52$	$50 \\ 52 \\ 48 \\ 56$	-27 15 48 20
19 20 21	50 50 52	60 60 62	608 712 480	$54 + 46 \\ 37 \\ 40$	1,208 1,032 1,464	$54 + 18 \\ 37 \\ 37 \\ 31$	$ \begin{array}{r} 125 \\ 60 \\ 25 \\ 41 \end{array} $	58 71 75	83 58 57 40	19 37 20 26
22232324242525252525	49	59 	340 720	15 40 15 4 \cdots	1,320 1,248	30 6	56 65 70	$ \begin{array}{r} 20 \\ 46 \\ 49 \end{array} $	55 51 55	19 16 29
26 27 28 29	51	61 	 	· · · · · · ·	1,320 795 1,010 1,210	26 5 23 13	69 54 57 59	$ \begin{array}{r} 69 \\ 56 \\ 53 \\ 54 \end{array} $	$ \begin{array}{r} 66 \\ 60 \\ 51 \\ 49 \\ \end{array} $	$28 \\ 23 \\ 22 \\ 22 \\ 22$
30 31		····	700			···· 	67 65		57 54	$\frac{24}{7}$
Aver	50	60	796		1,161	13	63	50	50	
Novemb 1 2	143	170	650	51	 140	 83	$\begin{array}{c} 61 \\ 65 \\ 59 \end{array}$	$37 \\ 15 \\ 25$	$\begin{array}{c} 46 \\ 64 \\ 60 \end{array}$	$24\frac{1}{2}$
$\begin{array}{c} 3 \dots . \\ 4 \dots . \\ 5 \dots . \\ 6 \dots . \end{array}$	118 87 87 90	$142 \\ 102 \\ 102 \\ 108$	254 125	76 85	$90 \\ 125 \\ 784$	94 23 50	58 71 53 79	$53 \\ 54 \\ 60 \\ 48$	$56 \\ 54 \\ 60$	$16 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ $
7 8 9	90 124 124	$108 \\ 148 \\ 148 \\ 148 \\ 100 $		96	351 1,064	78 32	72 48 89	$47 \\ 58 \\ 59 \\ 47 \\ 59 \\ 47 \\ 47 \\ 47 \\ 47 \\ 47 \\ 47 \\ 47 \\ 4$	47 57 75	$\begin{array}{c} 37\\24\\4\\\end{array}$
10 11 12 13	$138 \\ 138 \\ 122 \\ 113$	$166 \\ 148 \\ 184$	1,280 800 750	74 28 39	752 720 325	53 51 88	$ \begin{array}{r} 69 \\ 76 \\ 54 \\ 66 \\ \end{array} $	$47 \\ 40 \\ 52 \\ 39$	76 65 57 60	$13 \\ 10 \\ 26 \\ 10$
14 15 16	$ \begin{array}{r} 116 \\ 92 \\ 116 \\ 121 \end{array} $	$138 \\ 110 \\ 138 \\ 138 \\ 150$	720 368	29 44	 504	 31	65 65 55	55 50 65	$56 \\ 54 \\ 66$	21 30 29
17 18 19 20	$131 \\ 128 \\ 100 \\ 73$	$150 \\ 151 \\ 120 \\ 86$	81 26	93 98	· · · · · · ·		$52 \\ 62 \\ 54 \\ 39$	73 50 50 67	67 67 52 50	$ \begin{array}{r} 23 \\ 16 \\ 22 \\ 30 \end{array} $
21 22 23	91 91 91	109 109 109	680 40	60 96	265	82	$56 \\ 15 \\ 60 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10$	65 29 54	62 51 68	22 36 28
24 25 26 27	51 110 91 110	$ 132 \\ 109 \\ 132 $	35 65 25	96 96 98	384 400	73 74	53 67 65 67	23 70 58 40	67 67 71 66	$ \begin{array}{r} 7 \\ 31 \\ 28 \\ 12 \end{array} $
28 29 30	$ \begin{array}{c} 110 \\ 91 \\ 79 \end{array} $	$132\\109\\95$		•••		98	84 57 78	$\begin{array}{c} 48\\53\\66\end{array}$		$+23 \\ 30 \\ 31 \\ 31$
Aver	105	127	359	91	308	80	62	55	61	29

TABLE No. 7-UNSETTLED SEWAGE TREATED WITH HYPOCHLORITE OF LIME

ţ

Novem	On	Bacteria Agar	(1,000 On C) Selatin	Suspe So	ended lids	Oxy Cons	gen umed	Oxygen A After 5	Absorbed days In-
ber, 1914	37.5°	% Re- duction	20°	% Re- duction	P.P.M.	% Re- duction	P.P.M.	% Re- ductio	n P.P.M.	% Re- duction
1 2	675	49	1,120	22	47 64	50 67	34 69	50 16		
4	952	33	1,500		64 54	28 66	$\begin{array}{c} 64 \\ 55 \end{array}$	$10 \\ 30$	•••	•••
5 6	308	58	384	65 62	62 77	54	52 56	30	• • •	••
7			795	50	70	48	44	41	• • •	•••
8 9	1 940		1 990	20	46	60	58	34	941	
10	1,752	17	1,352	14	113	13	63	26^{2}	290	29
11	1,380		1,220	17	64	49	61	16	199	57
12	950	23	1,320	23	81 63	28 42	60 54	22 19	445 355	\ 45 20
14	760	25	1,000	45	75	49	60	15	460	11
15	960	••	1 080	• •	70	46	52 66	32	207	40
17			1,000		40 65	66	65	$\frac{29}{25}$	297 910	-19
18	568	59	704	55	69	45	61	24	240	45
20	560 880	49 27	680 480	49 63	56 65	49 44	54 57	19	$\frac{240}{272}$	34 9
21	1,600	5	1,440	32	71	55	52	$\frac{1}{35}$		
22	1 040	••	òiò	24	11	49	39 62	51	572	••
24	1,040	•••	880	39	67	3	58	29	361	
25	1,021		824	49	$\frac{76}{78}$	65	66 67	70	348	58
26 27	950	••	1.120	26	78 49	53 63	67 53	59 60	352	26
28			875	46	60	67	57	69	429	• •
2 9 30	•••		$\dot{7}\dot{1}\dot{2}$	53	$\begin{array}{c} 62 \\ 70 \end{array}$	49 70	$\frac{49}{55}$	59 76	626	•••
Aver	1,019	13	965	36	63	$\overline{55}$	57	<u>49</u>	396	17
Decembe	er									
1	728	0	912	11	55	57	46	38	348	50
23	820 750	12 12	1,200	3 0	64 59	57 61	47 44	$\frac{27}{25}$	350 455	44
4	872	$\tilde{14}$	1,088	13	15	50	49	23	313	26
5	528	• •	624	• •	61	67 54	50 46	37 25	589	••
7	536	30	712	32	65	65	43	$\frac{23}{24}$	73	72
8	864		563	30	59	54	46	8	161	45
9	$\frac{280}{624}$	68 22	880 680	9 41	62 50	67 79	30 43	40 43	701	••
11	648		610		65	50	36	29	189	21
12	776	30	480	63	58 95	69 43	35 34	37 37	379	26
14	620	26	620	38	79	61	48	27	366	43
15	648	16	520	35	54	50 67	50	22	659 332	$\frac{25}{50}$
10	715	$\dot{22}$	675	40	оо 55	64	33 33	15	332 277	34
18	494	27	576	54	$54 \\ 44$	67 62	$\frac{32}{34}$	$\frac{40}{30}$	422	26
20	747		111		57	62	30	27		20
21 22	$630 \\ 585$	32 20	725 640	35 35	80 61	40 70	33 42	50 37	220	32 26
23	496	59	832	47	49	60	30	41	257	20
24	585	48	368	73	42	67	24	56	105	60
⁴ 0 26	•••	•••		•••	56	67	48	20	••••	••
27	590	90	560		53 60	70 80	35 42	$\frac{38}{44}$		• •
29	492	38 38		20 	115	72	35	$\overline{37}$	•••	•••
30	510	38			59	67 67	36	30	260	
31	430	39	621	26	59		56		200	20
Aver	612	27	713	23	60	64	39	34	329	22

TABLE NO. 8-EFFLUENT FROM IMHOFF TANK NO. 6 WITH COLLOIDORS

Ianu-	On	Bacteria Agar	(1,000 On C) Selatin	Suspe	ended lids	Oxy Cons	gen umed	Oxygen A After 5 I cubation	Absorbed Days In- 1 at 20°
ary, 1915	37.5°	% Re- duction	20°	% Re- duction	P.P.M.	% Re- duction	P.P.M.	% Re- duction	P.P.M.	% Re- duction
1			• • •			64	26	24		••
2		• •	• • •	• •	53	63	33	45		••
4	616	7	632	51	39	78	37	52	485	14
5	520	39	544	44	58	52	35	24	487	5
<u>6</u> 7	728	16	752	34 40	79	54 67	31	$\frac{34}{27}$	350 408	••
8	472	40	600	35	16	83	$3\overline{4}$	$\tilde{26}$	492	9
9	448	50	576	36	56	68	35	30	367	29
10	701		 640		55	59 50	28	39	188	25
12	496	20	392	29	75	43	30	14	252	51^{20}
13	496	29	504	$\overline{52}$	45	$\overline{50}$	23	5	529	
14	568	29	560	39	89	54	30	27	350	36
15	504 560	41 31	648 575	$\frac{42}{37}$	62 68	41 50	31 44	12	494	
17					41	73	$\hat{26}$	$4\ddot{3}$		
18	600		360	40	40	57	19	21_{-}	378	29
19	168	86	141	81	56	53	29	55 37	378	26
20	256	41	490 615	49	47	68	38	31	441	20
22	320	$\tilde{40}$	413	$\overline{55}$	49	55	44	20	683	• •
23	441	49	475	46	58	55	28	43	459	11
24 25	320	44	512	10	104	50 48	30 44	40 25	365	28
26	520	38	417	69	46	71	42	37	935 +	
27	630	• •	264	22	42	53	32	27	628	31
28	624 640	0	10	73	48	49 50	34	17	388	28
30	408	34	464	62	40	67	30 34	39	309 467	13
31					48	39	36	$\overline{25}$		
Aver	506	$\overline{32}$	745	$\overline{21}$	$\frac{1}{55}$	$\overline{59}$	33	<u> </u>	$\frac{-}{461}$ +	$-1\frac{1}{2}$
February	, .									
1			320	58	42	64	26	26		
2	328	80	488	28	$\frac{24}{24}$	44	24	38		• •
3	$\frac{480}{704}$	20	510 620	71	38	44 56	30	14	• • •	• •
5	432	53	431	74	40	50 56	$\frac{29}{24}$	30 37	• • •	• •
6	480		652	$\overline{54}$	38	64	18	25		
7					30	63	18	31		
8 9	$\frac{488}{505}$	34 38	344 410	49 42	42	76 50	29 28	40 28		• •
10	664	8	528	$\overline{45}$	34	65	$\frac{26}{26}$	35		
11	560	38	328	65	62	37	29	29		
12	240	67	304		50	53	31	28	• • •	
14	240	07	304	71	44	54 45	32 44	43 20	• • •	••
15	512	51	499	54	59	$\tilde{63}$	$\hat{36}$	13		
16	600	64	504	70	53	53	32	27		
17	200	61	444	43	60 42	63 57	32	22 50		
19	680	29	608	14	14	92	30	$\frac{50}{27}$		• •
20					56	56	36	00		
21	• • •	••	• • •	• •	46	65	28	38		
23	688		640	29	03 100	49	29	34 94	• • •	• •
24	624	20	528	$\overline{42}$	118	46	28	44		• •
25	408	24	368	52	48	50	22	46		
26 27	648	29	824	44	52	49	$\frac{26}{26}$	26		••
28		•••	•••	••	54	48 49	20 27	42 27	• • •	••
		_							<u> </u>	<u> </u>
	519	37	401	52	40	50	00	20		

TABLE NO. 8-EFFLUENT FROM IMHOFF TANK NO. 6 WITH COLLOIDORS

March, -	On	Bacteria Agar	(1,000 On C) Felatin	Suspe	ended lids	Oxy Cons	vgen umed	Oxygen A After 5 o cubation	bsorbed lays In- 1 at 20°
1915	37.5°	% Re- duction	20°	% Re- duction	P.P.M.	% Re- duction	P.P.M.	% Re- duction	P.P.M.	% Re- duction
1	384	43	560	33	59	53	39	25	409	21
2	464	47	360	59	36	68	35	27	490	20
3	604	10	560	52	52	61	29	19	508	29
4	424	78	624	58	58	50	31	30	691	
5	544		480		77	59	34	30	889	2
6	636	31	640	50	87	58	31	28	209	58
7					54	60	29	30		
8	288	70	568	41	70	66	40	40	873 +	
9	672	23	584	60	57	75	37	39	857	
10	542	52	640	58	58	56	31	29	915 +	• •
11	480	40	768	38	57	56	26	30	881 +	
12	815	21	912	27	69		34	00	604	
13	416	21	816	38	67	55	35	22	672	11
14					61	60	29	26		
15	780	21	824	44	85	70	49	30	450	30
16	696	16	1,078	39	91	59	59	18	400	16
17	776	15-	632	55	58	68	54	16	459	16
18	648	20	820	46	64	58	45	75	574	30
19	784	28	915	43	90	. 47	38	33	559	3
20	360	50	1,080	29	84	52	46	20	808	• •
21					88	48	42	20		::
22	896	35	798	50	76	71	60	• •	550	17
23	800	31	1,016	29	56	58	46	12	476	15
24	856	26	1,004	30	59	49	44	14	476	10
25	520	35	504	54	65	62	44	15	836	6
26	370	37	604	17	76	51	43	19	511	20
27	480	24	416	71	76	42	56	12	380	48
$28.\ldots$					69	60	46	33		
29					82	58	67	15		••
30		• •			70	52	45	24		• •
31	760	44	960	33	72	56	49	17		· ·
Aver	600	$\overline{36}$	725	$\overline{45}$	68	58	$\overline{42}$	$\overline{12}$	603	6

TABLE NO. 8-EFFLUENT FROM IMHOFF TANK NO. 6 WITH COLLOIDORS

١.

Novem-	On	Bacteria Agar	(1,000 On ()) Gelatin	Susp So	ended lids	Oxy Cons	vgen umed	Oxygen After 5 cubatio	Absorbed Days In- on at 20°
ber, 1914	37.5°	% Re- ' duction	20°	% Re- duction	P.P.M.	% Re- duction	P.P.M.	% Re- duction	P.P.M.	% Re- duction
1 2	1,200	.9	1,520	•••••••••••••••••••••••••••••••••••••••	$\begin{array}{c} 54 \\ 63 \\ \end{array}$	44 68	$\begin{array}{c} 34 \\ 56 \\ 57 \end{array}$	$\begin{array}{c} 44\\ 32\\ \end{array}$	 	
3 4	1,130		1,415	12	$\begin{array}{c} 66\\ 46\\ \overline{}\end{array}$	26 70	56 48	21 39	• • •	· · · ·
5 6	$\frac{880}{975}$		1,865	20	59 75	56 48	50 46	25 33		
7			985	38	80	48	39	48		
8 9	1,440		1,264	$\dot{22}$	$\frac{41}{49}$	64 77	39 71	9 9	329	55
10	1 105	· .	1,350	16	73	44	61 52	28	343	16
12	1,125 940	24	1,475	11	42	62	55 54	30	$\frac{233}{161}$	20
13	004	10	1 056	65	40	55	55	18	605 520	••
15	904		1,050	42	76	36 36	$55 \\ 51$	$\frac{25}{34}$		•••
16	824	• •	1,008		66	58	74	20	182	63
18	560	51	606	61	58	54	58	29	255	40
19 20	1,144 1 320	2	720	45	67 58	38 50	53	20 24	627 174	
$\overline{21}$	1,625	$\mathbf{\hat{2}}$	1,406	34^{12}	41	50 74	47	41 41		$\overline{42}$
22 23	1 110	• •	1 340	· · 2	10 60	50 54	59 70	26	• • •	• •
24	1,080	0	1,340 1,124	21	73		56	$\frac{20}{22}$	•••	
25 26	920	10	960	40	$\frac{69}{77}$	69 52	$61 \\ 57$	37	• • •	
27	1,001		990	35	65	50	56	26		
$\frac{28}{29}$	•••		1,200	26	65 55	64_{55}	$52 \\ 55$	0 30	• • •	
30		•••	912	40	64	72^{-55}	50	47	401	
Aver	1,069	9	1,189	22	60	57	55	33	396	$\overline{16}$
Decembe	er									
1	75 920	89 00	1,200 1,100	$12 \\ 11$	59 51	$55 \\ 65$	46 33	38 49		
3	850	10	856	14	62	60	40	32^{10}	•••	
$\frac{4}{5}$	712 810	30	1,032 1.010	12	15	50	45	30		
6					70	47	55	10	•••	• •
8	616	$\frac{15}{28}$	576 760	46 5	73 57	66 56	43 40 /	$\frac{26}{20}$		• •
9	456	43	880	10	57	70	42	36	• • •	
11	504	•••	616	46	62 69	75 48	$\frac{43}{34}$	43 34	•••	• •
12	17	84			65	59	36	$3\overline{6}$	• • •	
14	495	47	815	19	90 ·	55 56	34 42	37 36	• • •	• •
15	552	30	768	4	53	50	48	25		
17	412	55	790	29	58 56	58 64	$\frac{41}{35}$	16 10		
18	368		480	61	43	$\frac{74}{72}$	31	40		
20		±0	400		$\frac{32}{48}$	68	$\frac{28}{26}$	$\frac{40}{34}$	• • •	• •
2122	$850 \\ 710$	7 14	942 920	$16 \\ 0.7$	$92 \\ 77$	30	39	40		
23	696	47	800	48	43	65	$\frac{41}{29}$	ა9 43		• •
2425	721	36	424	73	34	74	25	44		• • •
26		•••	•••		62	64	$\dot{41}$	 30		•••
27	824	2	832	• •	47	73	29	49		•••
29	816	11		• •	116	72	40 35	34 37		
30 31	$\frac{740}{705}$	10	791	 6	57 40	69 . 79	31	39	• • •	
A						10		40	· · · ·	· · ·
Aver	014	27	820	22	58	65	37	36		

TABLE NO. 9-EFFLUENT FROM IMHOFF TANK NO. 8 WITHOUT COLLOIDORS.

Janu	On .	Bacteria Agar	(1,000 On G) elatin	Suspe	ended lids	Oxy Cons	vgen umed	Oxygen A After 5 cubatio	Absorbed days In- n at 20°
ary, 1915	37.5°	% Re- duction	20°	% Re- duction	Р.Р.М.	% Re- duction [Р.Р.М.	% Re- duction	P.P.M.	%,Re- duction
1										
2		• •	• • •	••	47	74	30	46		
3 1	504		596		41	72	33	45	0.07	 0.5
5.	568	20 39	530 640	20 34	74 52	28 57	44 36	44 20	307	35 98
6	696	28	704	58	66	62	31	34	571	20
7	296	55	344	31	46	69	$\tilde{27}$	39	295	10
8	744	6	632	31	29	68	33	28	322	40
9	370 -	58	432	67	74	58 70	36	28 42	362	28
11:	604	39	560	45	64	64	35	53	368	
12	640		544		63	$\overline{52}$	$\overline{27}$	22	667	
13	20	97		100	37	60	21	10	250	
14	520 30	35	800	23	45	15	29	29	636 854	• •
16	512	37	384	65	74	46	37	23	546	••
17		• •			$\dot{22}$	$\tilde{86}$	26	$\overline{43}$		
18	560	3	768		51	45	23	1	447	15
19	528 416	55	526	20 49	54 37	55 71	32	24 20	565 270	40
20	400	10	510	57	25	83	32	42	557	
$22.\ldots$	350	36	490	46	49	55	37	33	539	
$23.\ldots$	410	53	512	31	65	49	34	30	352	32
24	302	21	520	99	52 100	40 50	52 100	1	440	ii
26	600	28	415	69	49	68	49	26		
27	592		328	3	30	66	30	30		
$28.\ldots$	Sterile	e 100	595		45	$52 \\ 54$	45		440	51
29	674 102	60	520 480	00 60	48 36	54 74	48 36	35	502 502	10 34
31			1 00		32^{-30}	60	32	67		
Aver	443	41	497	47	$\overline{50}$	38	36	$\overline{26}$	466	
		<u> </u>								
February	7 464	71	392	50	50	57	24	. 31		
2	404	32	640	5	48		24^{1}	38		
3	480	25	360	78	53	23	22	37		
4	568	39	592	39	48	56	33	30	•••	• •
5 6	410 352	12	425	73 66	39 38	59 50	28 18	$\frac{20}{25}$	• • •	• •
7					22	73	17	$\overline{27}$		
8	312	58	400	40	40	77	28	50		••
9	395	51	391	45	31	67	29	26		••
10	336	57	464	50	41	63	18	56		••
12					52	52	36	16		۰.
13	332	53	260	76	44	54	$\frac{40}{26}$	29 19	• • •	•• .
14	699	34	560	50	41 69	44 58	30	16	• • •	·· · ·
10	712	57	440	50 74	83	27	36	12		••
17					52	69	35	30		
18	414	19	370	50	46	$\frac{52}{75}$	29	29		••
19	520	43	472	చేచ	20 35	10 67	40 32	20 29		• •
20 21	• • •	•••		••	52	60	$\tilde{26}$	$\overline{27}$		
22					57	74	32	27		
23	536		480	46	102	48	33 26	/ 19	• • •	••
24 25	495 679	31	510 520	40 32	91 47	50	20	49	•••	•••
20 26.	716	21	696	$5\overline{4}$	$\overline{54}$	48	$\overline{30}$	14		
27					52	55	24	47	• • •	••
28.\					65	38 —	25	30	···-	
Aver	502	38	473	55	50	57	28	30	• • • •	

TABLE NO. 9-EFFLUENT FROM IMHOFF TANK NO. 8 WITHOUT COLLOIDORS.

On March,	Bacteri Agar	a (1,000 On () Gelatin	Susp So	ended lids	Oxy Cons	vgen umed	Oxygen After 5 : cubatio	Absorbed Days In- n at 20°	
1915	37.5°	% Re- duction	n 20°	% Re- duction	P.P.M.	% Re- duction	P.P.M.	% Re- duction	P.P.M.	% Re- duction
1	520	24	688	18	67	48	40	23	483	6
2	392	55	440	50	42	63	35	22	557	6
3	368	45	640	44	75	44	41		524	27
4	232	98	360	75	61	48	$\tilde{28}$	38	225	58
5	632		352		82	49	30	39	889	2
6	621	32	652	49	97	53	35	19	451	ā
7					67	51	29	30	101	U
8	512	47	672	30	82	60	38	43	881+	• •
9	496	43	720	50	59	34	37	39	648	19
10	528	53	672	56	62	53	28	26	905 +	10
11	680	15	552	55	54	59	$\overline{28}$	25	572	••
12	872	15	848	40	52	20	32	$\overline{00}$	539	10
13	544		680	48	62	58	37	11	907	
14					65	57	29	21		
15	704	29	885	40	98	65	45	36	566	11
16	704	16	1,168	34	84	62	55	24	442	- 8
17	665	27	915	35	78	58	56	13	632	0
18	536	34	840	42	74	51	42	. 30	558	32
19	592	45	1,040	31	118	30	41	28	526	10
20	480	34	1,120	27	78	56	46	20	759	
21					79	53	35	34		
22	1,144	17	1,168	27	102	60	60		600	9
23	784		1,156	29	65	52	43	18	557	Ō
$24.\ldots$	968	16	1,004	8	82	29	44	14	484	9
25	544	32	640	41	76	56	42	19	900	
26	375	36	574	23	62	60	44	17	624	1
27	332	47	420	31	81	38	47	27	707	ā
28					71	59	40	42		
29	• • •				76	61	62	21		
30	• • •				69	52	46	20		
31	880	35	1,040	28	89	••	51	23	650	
Aver	604	36	770	42	75	54	41	24	623	3

.

TABLE NO. 9-EFFLUENT FROM IMHOFF TANK NO. 8 WITHOUT COLLOIDORS.

Novom	Tem-	Suspe Sol	ended ids	Oxy Cons	rgen umed	Sett Sol	ling ids	Hours	Gallons	Gallons
ber, 1915	ture, Centi- grade	P.P.M. In- fluent,	P.P.M. Ef- fluent,	P.P.M. In- fluent,	P.P.M. Ef- fluent,	In- fluent,	Ef- fluent,	Run- ning	24 Hours	Hours, 8 A.M. to 4 P.M.
5 6 7 8 9 10 11 12 13 14 15 16	$15\\15\\15\\15\\15\\15\\15\\15\\15\\15\\15\\15\\15\\1$	$157 \\ 160 \\ 148 \\ 370 \\ 358 \\ 214 \\ 196 \\ 148 \\ 194 \\ 222 \\ 245 \\ 240$	$132 \\ 110 \\ 74 \\ 198 \\ 238 \\ 136 \\ 124 \\ 136 \\ 134 \\ 184 \\ 176 \\ 174$	50 59 62 61 65 58 53 48 58 57 71 58	$\begin{array}{r} 48\\ 53\\ 44\\ 68\\ 62\\ 54\\ 52\\ 41\\ 51\\ 54\\ 62\\ 52\\ 52\\ \end{array}$	$\begin{array}{c} \dots \\ 7.0 \\ 6.0 \\ 2.2 \\ 2.5 \\ 2.5 \\ 3.0 \\ 3.0 \\ 2.0 \\ 2.3 \end{array}$	$\begin{array}{c} \dots \\ 1.0 \\ 2.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 0.7 \\ 2.0 \\ 1.0 \\ 1.0 \\ 1.0 \end{array}$	$24\\24\\24\\24\\12\\21\\24\\8\\11\\24\\8\\11\\24\\24$	$\begin{array}{c} 19,123\\ 10,910\\ 3,111\\ 16,527\\ 9,306\\ 8,355\\ 4,829\\ 15,910\\ 5,112\\ 5,653\\ 5,385\\ 13,183\\ \end{array}$	5,844 6,188 2,406 7,056 4,554 4,874 4,097 5,690 5,112 4,513 4,205 4,692
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$15\\ 14\\ 14\\ 14\\ 14\\ 14\\ 13\\ 13\\ 13$	230 238 208 324 210 174	$ 132 \\ 174 \\ 148 \\ 192 \\ 112 \\ 114 $	59 ··· 74 49 82 63 46	53 57 37 58 45 33	$ \begin{array}{c} 1.2\\\\ 2.5\\ 2.0\\ 5.0\\ 3.0\\ 3.0\\ 3.0\\ \end{array} $	$\begin{array}{c} 0.4 \\ \\ 1.0 \\ 1.0 \\ 1.5 \\ 0.7 \\ 0.3 \\ \end{array}$	$8 \\ 24 \\ 22 \\ 22 \\ 24 \\ 24 \\ 24 \\ 24 \\ 2$	3,585 1,926 15,162 9,489 6,888 5,579 5,408 7,344	3,585 1,926 4,149 3,242 2,161 2,296 2,326 4,227 4,227
25 26 27 28 29 30	$ \begin{array}{r} 13 \\ 13 \\ 13 \\ 14 \\ 14 \\ $	$ \begin{array}{r} 306 \\ 212 \\ 250 \\ 172 \\ 376 \\ 286 \\ \hline 235 \end{array} $	$ \begin{array}{r} 130 \\ 116 \\ 161 \\ 114 \\ 218 \\ 176 \\ \\ 150 \end{array} $	$ \begin{array}{r} 49 \\ 45 \\ 43 \\ 45 \\ 76 \\ 59 \\ \overline{} $	$ \begin{array}{r} 33 \\ 40 \\ 37 \\ 38 \\ 67 \\ 52 \\ \overline{} \\ 49 \end{array} $	3.5 3.0 3.0 3.0 8.5 4.8 	$0.5 \\ 1.2 \\ 1.0 \\ 1.0 \\ 1.5 \\ 1.8 \\ \\ 1.1$	$24 \\ 24 \\ 24 \\ 24 \\ 24 \\ 24 \\ 17 \\$	$ \begin{array}{r} 11,594\\ 19,340\\ 16,622\\ 13,281\\ 3,926\\ 5,360\\ \hline 11,840\\ \end{array} $	$\begin{array}{r} 4,933\\ 7,056\\ 6,004\\ 4,568\\ 2,173\\ 4,381\\ \hline 5,475\end{array}$
Reductio	 m	<u> </u>	$\frac{100}{36\%}$		17%	<u></u>	<u>69%</u>	 		

TABLE NO. 10-RESULTS OF SYPHON TANK.

....E. • •

Tem-	Suspe Sol	ended lids	Oxy Cons	/gen umed	Sett Sol	tling ids	Hours	Gallons	Gallons
ber, ture, 1915 Centi- grade	P.P.M. In- fluent,	P.P.M. Ef- fluent,	P.P.M. In- fluent,	P.P.M. Ef- fluent,	In- fluent,	Ef- fluent,	Sewage Run- ning	Total Time Running	In Eight Hours, 8 A.M. to 4 P.M.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$192 \\ 160 \\ 190 \\ 214 \\ 162 \\ 672 \\ 184 \\ 176 \\ 186$	$166 \\ 142 \\ 138 \\ 158 \\ 150 \\ 188 \\ 144 \\ 144 \\ 124$	$\begin{array}{r} 46\\ 54\\ 62\\ 57\\ 60\\ 147\\ 50\\ 54\\ 61\end{array}$	$30 \\ 51 \\ 57 \\ 47 \\ 50 \\ 68 \\ 43 \\ 40 \\ 55$	$\begin{array}{c} 2.2 \\ 1.5 \\ 2.0 \\ 2.0 \\ 1.7 \\ 19.0 \\ 2.0 \\ 1.5 \\ 2.0 \end{array}$	$0.8 \\ .7 \\ .7 \\ .8 \\ .7 \\ 1.5 \\ .8 \\ .5 \\ .5$	$24\\23\\22\\18\\24\\24\\24\\24\\24\\24\\24\\24\\24\\24$	$13,684 \\ 9,223 \\ 14,321 \\ 9,936 \\ 6,276 \\ 6,630 \\ 10,722 \\ 14,338 \\ 10,082$	$\begin{array}{r} 4,756\\ 3,724\\ 6,084\\ 4,579\\ 3,556\\ 3,852\\ 5,259\\ 5,259\\ 5,259\\ 5,297\end{array}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	184 316 282 178 378 226 280 200 200 200 238 292 246 220 238 292 246 220 238 292 246 220 238 292 246 220 238 292 246 220 238 292 246 200 404 200 200 404 200 200 200 200 200	$\begin{array}{c} \dots \\ 156 \\ 160 \\ 142 \\ 142 \\ 174 \\ 190 \\ 148 \\ 148 \\ 148 \\ 148 \\ 148 \\ 122 \\ 176 \\ 180 \\ 138 \\ 192 \\ 170 \\ 200 \\ 204 \\ 170 \\ 206 \\ 204 \\ 172 \\ \hline 172 \\ \hline 42\% \\ \end{array}$	$\begin{array}{c} & & \\$	$\begin{array}{c} \cdot \cdot \cdot \\ 65 \\ 64 \\ 70 \\ 63 \\ 65 \\ 58 \\ 48 \\ 54 \\ 107 \\ 79 \\ 71 \\ 60 \\ 65 \\ 59 \\ 80 \\ 105 \\ 81 \\ 74 \\ 89 \\ 67 \\ - \\ 64 \\ - \\ 23 \\ \% \end{array}$	$\begin{array}{c} \dots \\ 1.5 \\ 4.0 \\ 3.8 \\ 3.0 \\ 2.0 \\ 5.0 \\ 2.3 \\ 10.0 \\ 4.0 \\ 3.5 \\ 6.5 \\ 3.5 \\ 2.8 \\ 36.0 \\ 3.0 \\ 3.0 \\ 3.0 \\ 4.9 \\ \hline \end{array}$	$\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & $	$\begin{array}{c} \cdot \cdot \\ 19 \\ 24 \\ 24 \\ 24 \\ 24 \\ 24 \\ 24 \\ 24 \\ 2$	$\begin{array}{c} 6,614\\ 13,293\\ 16,918\\ 19,735\\ 9,863\\ 14,378\\ 14,013\\ 19,094\\ 12,109\\ 8,300\\ 9,267\\ 6,896\\ 3,286\\ 9,573\\ 10,605\\ 12,197\\ 6,851\\ 16,865\\ 13,296\\ 8,185\\ 8,924\\ \hline 11,860\\ \end{array}$	$\begin{array}{c} 1,438\\5,829\\6,308\\5,310\\5,262\\4,026\\5,395\\7,104\\3,811\\2,672\\3,400\\1,896\\4,377\\3,718\\5,383\\4,972\\4,680\\4,452\\4,292\\4,240\\4,609\\\hline4,808\\\hline\end{array}$

<

TABLE NO. 10-RESULTS OF SYPHON TANK.

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Janu- ary, 1916	Tem- pera- ture, Centi- grade	Suspe Soli P.P In- fluent	ended ids, .M. Ef- fluent	Vola Sol P.P In- fluent	atile ids, .M. Ef- fluent	Sett Sol: P.P In- fluent	ling ids, .M. Ef- fluent	Oxy Const P.P In- fluent	gen umed, .M. Ef- fluent	Hours Sew- age Run- ning	Gal- lons, Total Time Run- ning	Gal- lons in 8 Hours 8 A.M. to 4 P.M.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12	10 11 10 11	$\begin{array}{c} 256\\ 264\\ 386\\ 278\\ 172\\ 242\\ 252\\ 220\\ 282\\ 280\\ 272\\ 180\\ 178\\ 174\\ 172\\ 196\\ 334\\ 254\\ 638\\ \dots\\ 292\\ 192\\ 196\\ 232\\ 178\\ 346\\ 224\\ 276\\ 232\\ \dots\\ 406\\ 296\\ 267\\ \dots\\ 267\\ \end{array}$	$\begin{array}{c} 170\\ 150\\ 218\\ 156\\ 152\\ 172\\ 204\\ 162\\ 156\\ 244\\ 174\\ 138\\ 136\\ 120\\ 138\\ 146\\ 210\\ 138\\ 146\\ 210\\ 194\\ 202\\ \dots\\ 172\\ 154\\ 130\\ 196\\ 140\\ 236\\ \dots\\ 2206\\ 206\\ 174\\ 174\\ 34\%\end{array}$	···· ···· ···· ···· ··· ··· ··· ··· ··	$\begin{array}{c} \cdots \\ \cdots $	$\begin{array}{c} 3.7\\ 2.3\\ 7.5\\ 4.8\\ 1.0\\ 3.0\\ 6.0\\ 9.0\\ 2.7\\ 3.0\\ 3.5\\ 7.0\\ 4.0\\ 4.8\\ 3.5\\\\ 7.0\\ 4.6\\ 4.8\\ 3.5\\\\ 7.0\\ 4.6\\\\ 4.6\\\\ \end{array}$	$\begin{array}{c} 1.2\\ 0.6\\ 1.5\\ 0.8\\ 1.0\\ 1.5\\ 1.0\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ 1.5$	$\begin{array}{c} 81\\ 79\\ 112\\ 89\\ 555\\ 77\\ 68\\ 70\\ 99\\ 90\\ 79\\ 64\\ 59\\ 84\\ 79\\ 73\\ 117\\ 77\\ 75\\ 65\\ 67\\ 119\\ 722\\ 67\\ 64\\ \cdots\\ 84\\ 91\\ 84\\ \cdots\\ 84\\ \cdots\\ 84\\ \end{array}$	$\begin{array}{c} 68\\ 70\\ 95\\ 74\\ 50\\ 65\\ 67\\ 64\\ 73\\ 86\\ 71\\ 62\\ 59\\ 70\\ 65\\ 70\\ 84\\ 105\\ 555\\ 48\\ 88\\ 54\\ 88\\ 54\\ 64\\ 53\\ 78\\ 75\\ 70\\ 70\\ 17\%\\ \end{array}$	$\begin{array}{c} 23\\ 24\\ 24\\ 24\\ 24\\ 24\\ 24\\ 24\\ 24\\ 24\\ 24$	$\begin{array}{c} 6,417\\ 5,755\\ 4,492\\ 11,475\\ 10,487\\ 11,384\\ 7,268\\ 11,770\\ 17,454\\ 12,514\\ 13,695\\ 14,132\\ 11,527\\ 6,316\\ 15,439\\ 15,280\\ 8,364\\ 15,439\\ 15,280\\ 8,364\\ 15,439\\ 15,280\\ 8,364\\ 10,904\\ 6,865\\ 12,602\\ 13,890\\ 3,704\\ \dots\\ 7,920\\ 14,015\\ 14,697\\ \hline 14,550\\ \hline \end{array}$	$\begin{array}{c} 3,725\\ 3,725\\ 1,969\\ 2,305\\ 3,623\\ 3,064\\ 4,744\\ 3,287\\ 4,686\\ 6,362\\ 5,330\\ 6,314\\ 4,6969\\ 4,9694\\ 4,969\\ 2,674\\ 4,579\\ 5,0566\\ 3,657\\ 3,657\\ 3,5112\\ 5,154\\ 4,004\\ 9,576\\ 3,704\\ \dots\\ 3,791\\ 3,613\\ \hline 5,594\\ \end{array}$

TABLE NO. 10-RESULTS OF SYPHON TANK.

Dilution 1 in 30

i

Tap Water

Calm Surface

				Tank	No. 7	Bot	tles	
Date	Time	Temper- ature	Nitrites	Dissolved Oxygen, P.P.M.	Oxygen Demand, P.P.M.	Dissolved Oxygen, P.P.M.	Oxygen Demand, P.P.M.	Oxygen Absorbed
February 2 2 2 2 2 3 3	10.30 A.1 11.30 1.30 3.30 5.30 7.30 9.30 11.30 8.30 10.30	°C. M. 21 21 20.75 20 19.5 19 19 17 16.5	0.06 0.07 0.12 	5.79 5.79 5.47 5.22 4.98 4.69 4.57 4.49 4.08 4.08	0 .32 .57 .81 1.10 1.22 1.30 1.71 1.71	5.79 5.79 5.39 5.14 4.90 4.49 4.37 4.08 3.51 3.39	0 .40 .65 .89 1.30 1.42 1.71 2.28 2.40	0 .08 .08 .08 .20 .20 .41 .57 .69
	Settled S 0 98 Oxygen co	Solids Total uspended 8 P.P.M. 8 nsumed, 8	Organic 84 P.P.M. 94 P.P.M.		Day Int 2	Dissolved Oxygen 7.18 6.00	0xygen Demand 1.18	

Semage Experiment. Station at West Brighton <u>Exp. Nº 50</u> Daygeo absorbed by semage ailuted with Fresh Water Note: 88 Suctace undisturbed computer ADD Toble Nº 11 momenter in Oxygen absorption tests <u>CHECKER</u> DATE Feb. 2^d 116

Tank Nº 7 No Fan Tank IV - 1 Dilution 1:30 Frosh Water. Depth 4ºft. Suspended Solids 98 F.F.M. Oxygen consumed 57 P.P.M. Femperature 21.0°to 16.5°C.

TABLE NO. 11-ASORPTION OF OXYGEN.-EXPERIMENT NO. 52.

Dilution 1 in 30 Fresh Water Undisturbed Surface Depth 3 ft.

)				
				Tank	No. 7	Bot	tles	
Date	Time	Temper- ature	Nitrites	Dissolved Oxygen, P.P.M.	Oxygen Demand, P.P.M.	Dissolved Oxygen, P.P.M.	Oxygen Demand, P.P.M.	Oxygen Absorbed
February 14 14 14 14 14 14 14 14 15 15	$\begin{array}{cccccccc} 11 & \text{A.} \\ 11.50 \\ 1.30 \\ 3.30 \\ 5.30 \\ 7.30 \\ 9.30 \\ 11.30 \\ 8.30 \\ 10.30 \end{array}$	°C. 19 19 18.5 17.5 15.5 15 13.5 12 12	0.09 0.10 0.15	5.71 5.63 5.39 4.90 4.16 3.35 2.94 2.61 1.63 1.47	$\begin{array}{c}\\ .08\\ .32\\ .81\\ 1.55\\ 2.36\\ 2.77\\ 3.10\\ 4.08\\ 4.24\end{array}$	$5.71 \\ 5.63 \\ 5.39 \\ 4.90 \\ 4.16 \\ 3.18 \\ 2.53 \\ 2.12 \\ 0.29 \\ 0.08$	$\begin{array}{c} & 0.08 \\ & 0.32 \\ & 0.81 \\ & 1.55 \\ & 2.53 \\ & 3.18 \\ & 3.59 \\ & 5.42 \\ & 5.63 \end{array}$	$\begin{array}{c} & & & \\$
Oxygen Dil	Demand ution 1 in	l at 37.5° n 100				Solids		
I Day	Dissolved Oxygen, P.P.M.	Oxygen Demand P.P.M.	1,	Suspen 154 P.F	ded Vo P.M. 136	olatile P.P.M.	Ash 18 P.P.M.	Settling 0.8 c.c.
$\begin{array}{c} {\rm Int}\\ 1\\ 2\\ 3\\ 4\\ 5\end{array}$	$7.14 \\ 5.10 \\ 4.86 \\ 4.24 \\ 4.16 \\ 4.16 \\ 4.16$	2.04 2.28 2.90 2.98 2.98		(Oxygen co:	nsumed, 8	I P.P.M.	
6			Se dia a	+ West Brick	ta	Experi	iment Nº 52	2.
	ewage 1x	(L. meni	diluted wit	th Fresh Wate	r	A.C.C.	93	
وتومين	Une	listurbed	surface		MPUTER AM	2 7	able Nº 1	<u>/ · · · · · · · · · · · · · · · · · · ·</u>
MADE	TION WITH O	cygen_ab:	ortion Tes	/s	ECKER		Fab. 14th	. 191 6.
							- No Ford -	
			Dilution I: Suspend Oxygen co Temp. 19	30 Fresh V ed Solids I nsumed B/ V to I2° C.	Nater Dep 54 P. P. M. P. P. M.	th 3.0 ft.	- No Fan	
	~							
	4			P	Jerles	K a a		
	8				0. P.			
	ď. 3		0			1		
	2	-				air	,	
	/		/		from			

15

20

25

absorbed

Oxy

10 Time in hours

Dilution	1 in 3	30	F	resh Wat	er	Calm	Surface	D	epth 4 ft.
-					Tank	No. 7	Bot	tles	
Date	Tim	T ie	emper- ature	Nitrites	Dissolved Oxygen, P.P.M.	Oxygen Demand, P.P.M.	Dissolved Oxygen, P.P.M.	Oxygen Demand, P.P.M.	Oxygen Absorbed
February	•	C.							
29*	11	A.M.	25.0	0.08	5.68		5.68		
29	1	P.M.	24.5		5.52	.16	5.52	. 16	0
29	3		24.0		5.28	. 40	5.28	. 40	0
29	5.3	30	23.0		4.87	. 81	4.87	.81	0
29	7		22.5		4.59	1.09	4.63	1.05	04
29	9		22.0		4.22	1.46	4.22	1.46	0
29	11		21.5		3.90	1.78	3.94	1.74	—. Õ4
March									
1	9		18.5		3.57	2.11	2.60	3.08	+.97
1	11		18.0	0.12	3.49	2.19	2.52	3.16	+.97

TABLE NO. 11-ABSORPTION OF OXYGEN.-EXPERIMENT NO. 56.

* Agitator broke down.

Oxygen demand at 37.5° C. Total Solids Dissolved Solids

	UA.	8011 donna	ind at 01.0	<i>C</i> .				1
	Total	Solids	Dissolve	d Solids		So1	ids	
Day	Dissolved Oxygen, P.P.M.	l Oxygen Demand, P.P.M.	Dissolved Oxygen, P.P.M.	Oxygen Demand, P.P.M.	Total 714	Dissolved 652	Suspended 62	l Settling 0.1 c.c.
Int 1 2 3	$7.15 \\ 5.97 \\ 5.77 \\ 5.68 $	$1.18 \\ 1.38 \\ 1.47$	$7.11 \\ 6.50 \\ 6.09 \\ 5.97$.61 1.02 1.14	Total 444	Organic Disso 39 Oxygen C	Matter olved Su 6 Consumed	1spended 48
4 5	$5.28 \\ 5.20$	$\frac{1.87}{1.95}$	5.89 5.89	$egin{array}{c} 1.22 \\ 1.22 \end{array}$	Total 48	Disso 3	olved Su 2	uspended 16

President Borough of Richmond 5 FXP Nº 58 Bureau of Engineering; Sewage toble Nº 11 Experiment Stotion COMPUTER CONNECTION WITH ALSOLATION OF OLY 9. C.D. CNECKER _____ DATE FLD 29 INS. Depth 4ft

Dilution 1:30 fresh Water Suspended Solids 62 P.P.M. Orygen Consumed 48 P.P.M. Temp. 25°C to 18°C \mathbf{N}

Colm surface

Missing Page

Dilution	1 in 40	F1	esh Wat	er	Calm	Surface	D	epth 3 ft.
				Tank	No. 7	Bot	tles	
Date	Time	Temper- ature	Nitrites	Dissolved Oxygen, P.P.M.	Oxygen Demand, P.P.M.	Dissolved Oxygen, P.P.M.	Oxygen Demand, P.P.M.	Oxygen Absorbed
March							,	
3 3 3 3	10.30 A 12.30 2.30 4.30 6.30	.м. 19.0 19.0 18.5 18.0 17.0	0.10	$7.63 \\ 7.51 \\ 7.39 \\ 7.15 \\ 7.06$.12 .24 .48 57	$7.63 \\ 7.51 \\ 7.27 \\ 7.15 \\ 6.86 $.12 .36 .48 77	$\begin{array}{c} 0\\ .12\\ 0\\ .20\end{array}$
3 3 4 4	$8.30 \\ 10.30 \\ 8.30 \\ 10.30 \\ 10.30 $	$16.5 \\ 16.0 \\ 13.0 \\ 13.0$	 0.12		.81 .93 .24 1.38		$.85 \\ 1.09 \\ 1.70 \\ 1.86$.04 .16 1.48 .48
	Oxygen Total	Demand a Solids	t 37.5° C Dissolv). ed Solids		So	lids	
Day	Dissolved Oxygen, P.P.M.	l Oxygen Demand, P.P.M.	Dissolved Oxygen, P.P.M.	1 Oxygen Demand, P.P.M.	Total 732	Dissolved 640	Suspendee 92	1 Settling 0.5 c.c.
Int 1 2 3 4	$\begin{array}{r} 6.82 \\ 5.89 \\ 5.52 \\ 5.36 \\ 5.30 \end{array}$	$.93 \\ 1.30 \\ 1.46 \\ 1.52$	$\begin{array}{c} 6.90 \\ 6.21 \\ 6.09 \\ 5.93 \\ 5.77 \end{array}$.69 .81 .97 1.13	Total 410 Total	Organic Diss Oxygen (Diss	Matter olved Si 40 Consumed olved Si	uspended 70 uspended
	Burcal	of En mant Absorb Dilutid Suspe Oxygen Temp Colm	station Station tion of Consul 19°C	1 of Min ing Se Augene Auge	HAQ.C MAQ.C MITUTER ECKER A. AVOTC. 2. P. P. M.		96/2 1 March 3. Depth 3 A	
	\$		Line					
	4							
	A							
	2			0 <u>P</u> .85	Tonk			
	` 	5		- x Orygen 15 Hours	Absorbed 20	From air	r	

TABLE NO. 11-ABSORPTION OF OXYGEN.-EXPERIMENT NO. 58.

TAI	BLE No	o. 11—Ai	SORPTIC	n of Ox	YGEN.—	Experim	ENT NO.	60. Jenth 4 ft
	in.20		ap wate					
				Tank	No. 7	,Bot	tles	
Date	Time	Temper- ature	Nitrites	Dissolved Oxygen, P.P.M.	Oxygen Demand, P.P.M.	Dissolved Oxygen, P.P.M.	Oxygen Demand, P.P.M.	Oxygen Absorbed
March	10.20		0.07	5 07		5.07		
8	12.30 1.30	Р.м. 23.5 23.5	0.07	$5.97 \\ 5.77$.20	5.77	.20	0
8	3.30	23		5.28	. 69	5.28	.69	$-\frac{0}{20}$
8	$\frac{5.30}{7.30}$	$\frac{22.5}{21.5}$		$\frac{4.59}{4.10}$	$1.30 \\ 1.87$	4.19	$1.18 \\ 1.87$	20
8	9.30	20		3.82	2.15	3.98	1.99	16
8 9	8.30	18		$3.40 \\ 3.00$	2.92	2.19	3.78	.81
9	11.30	17.5		2.64	3.33	1.83	4.14	.81
Oxyg	en Dem Tota	and, Dilut 1 Solids	ion 1:100, Dissolve	37.5° ed Solids	١	Sol	lids	
:	Dissolve	d Oxvoen	Dissolver	0xvgen	Total	Dissolved	Suspender	1 Settling
Day	Oxygen P.P.M.	, Demand, P.P.M.	Oxygen, P.P.M.	Demand, P.P.M.	852	798	54	0
Int	$\begin{array}{c} 6.74 \\ 5.79 \end{array}$. 95	6.82 6.11		Total	Organic Disso	Matter olved Si	uspended
2	5.63	1.11	5.95	$0.8\hat{7}$	490	44	14 14	46
3	5.47 5.39	1.27 1.35	5.63 5.47	$1.19 \\ 1.35$	Total	Oxygen C Disso	onsumed olved Si	ispended
5	5.26	1.48	5.43	1.39	29	2	9	0.0
LE MADE	235	Dilutio Suspe Temp	Station of G ion of G nded 3 in Con 1 2350	1119. ,	W.9 9.2 MPUTER Wotcr 54 P.P.M. 29 P. P.M. C	FROM	1012 11-11 Narch 8 10 14 4 1	un 6. 47.
	24	£ ^e ₁	<u>`</u>	Temp	Grature			,
					2.1	ine 175	۵.	
	4.					,0		
					18	9		
					Ten			
	z			Bottle	3/	•		
	-	*		0.0	at at Att	•		
		4		0.0 10				
	2	¢.	1					
	2	ď.	9,10		i.			
	,	/e	\$					
	,	di li		د <u>م</u>	rbed from	¥″*		
	a	4	-*	01 4 9 cm				
		, A	H	, no j	5 î	20 2	ı5	

TABLE NO. 12-ABSORPTION OF OXYGEN.-EXPERIMENT NO. 62.

Undiluted Tap Water

۱

Two Electric Fans Blowing on Surface. Samples Syphoned through Rubbe

Samples Syphoned through Rubber Tubing Attached to End of Rod.

	Tempe	srature			Bot	tles		92	urface		1	Foot		2 F	feet		3 Fe	et		4 Feet		5	Feet	(
τ		ט' נ	8	Tai	h	20° Inc	ubator	. '' p;	"F	p:	l i	'I	p; p;		a a	pa pa	ι τ τ	pa t	τ pa	ə τ	} pa	t pa	ə	pe
ЭлгО ЮлгвМ Этітей	qoT	notto£	ətittiN	D, O, D, O,	P.P.M. D. D.	D. O.,	P.P.M.	ovlossi M.Y.g.a M.A.A	охуден Dетало Deтало	Absorbe	M. J. J.	Demand Demand	193yzU 9drosdA 9vlossiU	192VxO 192VxO	aseronI Oxyger	Absorbe	Oxyger Oxyger	192VXO AtosdA	ovlossi 192yxO	охуден евэтопІ	odrosdA	Diesolve Oxygen	Oxygen Increase Uxygen	Absorb
1311 A.M.	. 17.5	17	0.07	6.79	:	:	.1	6.79			6.79		6.	83			87		6.87			6.87		:
131	17	16	:	6.79	0.0	:	-	(0.95)	+.16 -	16	6.95	16	.16 6.	95 —.	12 —.	12 6.2	95 — .08	3 08	6.95	- 80	08	6.95	.08 -	.08
13 3	17	16%	:	6.75	.04	÷	÷	6.95 -	16	-20	6.95 —	16	.20 6.	95	12 —.	16 6.	90 36	312	6.95-	- 80	-,12	6.95 —	.08 –	.12
135	16%	16%	:	6.71	.08	:	i	7.03	+.24	32	7.03 —	24 —	.32 7.	03	20 —.	28 7.	031(; —.24	6.99 .	12 -	20	6.99 —	. 12	.16
13 7.	16	16	:	6.71	.08	:	÷	7.11	+.32 -	40	7.11	32 —	.40 7.	11	28 —.	36 7	1124	32	7.11 -	- 24 -	32	- 11.7	.24	32
139	16	16		6.71	.08	:	:	7.15	+.36	- 44	7.15 —	36	.44 7.	15	32	40 7	1528	3 36	7.15 -	28 -	36	7.15 —	. 28	36
1311	15%	15%	:	6.71	.08	:	:	7.23	44	52	7.23 —	44 —	.52 7.	23	40 —.	48 7.3	3 36	; — .44	7.23 -	- 36 -	44	7.07 -	.20 —.	28
149	$13 \frac{13}{2}$	$13 \frac{13}{2}$:	6.71	.08		:	7.68 -	- 68	97	7.68	- 89	.7 79.	68	85	33 7.4	8. – 8	89	7.68 -	- 18	93	7.52 —	.65 —.	73
1411	13	13	:	6.67	.12	:	:	7.76 -	971	1.09	7.76 —		.09 7.	76 —.	93—1.1	05 7.	·6 — .86	-1.01	7.76 -	- 80	1.01	7.76 —	.89—1.	01
141	$12\frac{1}{2}$	12^{1}_{2}	0.04	6.59	.20	:	:	7.76 -		1.17	7.76 —	97—1	.17 7.	76 — .	93-1.	13 7.3	°6 — .86	-1.19	7.76 -	89	1.09	7.76 —	.89—1.	60
14 3	12	12	:	6.59	.20	:	÷	7.84 -	-1.051	25	7.84—1	1.05—1	.25 7.	84-1.1	011.	21 7.8	14 — .07	-1.17	7.84 -		1.17	7.84 —	.97—1	17
14 5	12	12	:	6.63	.13	÷	:	-88-	-1.09—1	1.22	7.84—1	1.05-1	.18 7.	84—1.	011.	14 7.5	3497	1.10	7.84 -		1.10	7.84 —	.97—1.	10

Fresh Water to be used for dilution in Exp 63 Temperature 17°-12°C Twis Electric fons Ripple abt 1/2"

69.
No.
NEXPERIMENT
OXYGEI
OF
12ABSORPTION
No.
TABLE

Fresh Water for Diluting Sewage on April 6.

Two Electric Fans.

	pa u	93yxO drosdA	:	.32	.80	(1.23)	1.43	1.87	1.95	2.89	2.93			
5 Feet	er u	Oxyges Increas	:	.32	.76	1.19	1.43	1.83	1.91	2.83	2.87			
	י זי נק	vlosei 1920xO M.Y.Y	5.81	6.13	6.57	7.00	7.24	7.64	7.72	8.64	8.68			
	pe u	Oxyger		.34	82.	1.05	1.37	1.73	1.85	2.83	2.91			
4 Feet	θ	Oxygen Increas		.34	.74	1.01	1.37	1.69	1.81	2.77	2.85			
	"τ pe	vlossiU 192 yzO M. J. J	5.83	6.17	6.57	6.84	7.20	7.52	7.64	8.60	8.68			P.M.
	pe t	agyzO drosdA		.34	.74	1.09	1.37	1.73	1.85	2.71	2.87			648 P 280 P
3 Feet	θ	Oxygen Increae		.34	.70	1.05	1.37	1.69	1.81	2.65	2.81			
	י זי פק	vlossiU 192 yxO M.A.A	5.87	6.21	6.57	6.92	7.24	7.56	7.68	8.52	8.68			50
	pa t	orvedA OrosdA		.34	.74	1.01	1.33	1.65	1.81	2.71	2.87			Solids c Solid
2 Feet	β T	Охудея Ілстеяя		.34	.70	26.	1.33	1.61	1.77	2.65	2.81			Total { Organi
	יו יו ףפ	vlossi Dissolve M.J.J	5.87	6.21	6.57	6.84	7.20	7.48	7.64	8.52	8.68			
	pa T	Absorb AdroadA		.34	.74	1.09	1.37	1.73	1.81	2.71	2.87			
1 Foot	ə t	Oxygen Increas		.34	.70	1.05	1.37	1.69	1.77	2.65	2.81			
	י יז קק	vlozziU 1920x0 M.J.J	5.87	6.21	6.57	6.92	7.24	7.56	7.64	8.52	8.68			1
0	pa T	agyxO drosdA		.42	.86	1.13	1.49	1.73	1.89	2.79	2.87			
Surfac	ə t	Oxyges Increas		.42	.82	1.09	1.49	1.69	1.85	2.73	2.81		/gen land, .M.	. : 86 92
	"τ Ρθ	vlossiC 193yxO M.T.T	5.87	6.29	6.69	6.96	8.36	7.56	7.72	8.60	8.68	, 37.5°	Oxy Den P.F	
	cubator	P.P.M. 0. D.	:	0	0	0	0	.04	.04	90'	.14	emand	olved "gen, "M.	85 99 93
ttles	20° In	D. O.	5.85	5.85	5.85	5.85	5.85	5.81	5.81	5.79	5.71	/gen D	Diss Oxy P.I	5 4 4 4
Bo	unk	0. D.	:	0	.04	.04	0	.04	.04	.06	90.	0×	ay	
	Ĩ	D. O.	5.85	5.85	5.81	5.81	5.85	5.81	5.81	5.79	5.79		A	Int 1 3
2	8	Nitrite	:	:	:	:	÷	÷	:	i	÷			
peratu	u	Botton	22	5 21.2	20	19	18.5	18	17	14.5	14			
Tem		qoT	м. 21.5	20.7	20	19	18.5	18	17	14	14			
		əmiT	0.30 A.1	2.30	2.30	4.30	6.30	8.30	0.30	8.30	0.30			
		Date Date	31	31	3	3	3	3	31	4	41			

Fresident Borough of Richmond Exp Nº 69 Bureau of Engineering Sewage Experiment see Toble Nº 12 Station DATE April 3 1016 CONNECTION WITH Absarbtion of Qx4 gen CHECKER Depth Sft. Fresh Water from top for diluting senage on April 6, 1916

1

Treo Electric fors blowing an surface making ripple abt 1/2"

Suspended Solids 0.0 Temperature 22°C-14°C

TABLE NO. 12-ABSORPTION OF OXYGEN.-EXPERIMENT NO. 71.

,

Undiluted Fresh Water to be Used in Dilution of Sewage on April 12

	Tem	peratur	op /		Bot	tles		ß	urface		I	Foot		7	Feet		3]	Teet		4 F	set		5 Fee	د.
I	;	u	8	Tar	ak	30° Incu	bator,	, '/ Da	ο τ	ייין { p; ד		อ	pi pi) ə	pi pi			p p		q	, p		p
Date Date	amiT qoT	Bottor	Nitrite	М. ч. ч.	ь.р.м. 0. D.	. ^{М.ч.ч}	D. D.	M. J. J.	Oxyger Increas	Oxyger Absorbe	M, H. H.	Oxygen Increase	nsgyzO sdrosdA wlossiQ	M. T. H.	Охудев Плегеава	edioedA evlossiC	M, T, M M, T, T M, T, T	Increase Oxygen	ediosdA evlossiU neavxO	.M.Å.q n93yxO vesstad	n93720	əvlossi .M.A.A	охуgen Глегеазе	пэзухО өdтоеdА
10. 9.	l5 а.м. 20	30	:	5.73	:	5.73		5.73			5.63			5.69		5	69		5.6			5.69		
10. 11.	15 19	19	:	5.69	.04	5.69	.04	6.18	.45	.49	6.06	.43	.47 6	6.10	.41	45 6	.10	41	45 6.1	10 .4	1 .45	6.18	.49	. 53
10 1.	15 18	18.5	:	5.69	.04	$5.69 \neg$.04	6.58	.85	- 89	3.50	.87	.91 É	3.54	.85	89 6	.54	85 .	39 6.5	8.	5.89	6.58	.89	.93
10. 3.	15 17.	5 18	÷	5.69	.04	5.69	.04	6.94	1.21	1.25	3.90	1.27	1.31 6	3.90	1.21 1.	25 6	.90 1.	21 1.5	25 6.6	4 1.2	5 1.29	6.94	1.25	1.29
10 5.	15 17.	5 17.5	÷	5.65	.08	5.65	.08	7.18	1.45	1.53	7.14	1.51	1.59 7	7.22]	1.53 1.	61 7	.14 1.	45 1.6	53 7.1	8 1.4	9 1.57	7.22	1.53	1.61
10 7.	15 16	16.5	:	5.69	.04	5.61	.12	7.50	1.77	1.81	7.54	1.91	1.95 7	7.46]	1.77 1.	81 7	.50 1.	81 1.5	35 7.5	0 1.8	1 1.85	7.50	1.81	1.85
10. 9.	15 15	15.5	:	5.69	.04	5.61	.12	7.78	2.05	2.09	7.78	2.15 2	2.19 7	7.78 2	3.09 2.	13 7	.78 2.0	08 2.1	12 7.8	2 2.1	3 2.17	7.86	2.17	2.21
10.~ 11.	15 15	15	:	5.61	.12	5.53	.20	7.94	2.21	2.33	2.90	2.27 2	2,39 7	7.94 2	2.25 2.	37 7	.94 2.	25 2.5	37 7.9	4 2.2	5 2.47	7.94	2.25	2.37
11 9.	15 13	13	0.06	5.45	.28	5.37	.36	8.90	3.17	3.45	3.86	3.23 8	3.51 8	3.82 5	3.13 3.	41 8	.86 3.	17 3.4	L5 8.8	2 3.15	3 3.41	8.90	3.21	3.49
			0	xygen l	Deman	d Dilut.	ion 1	in 100	at 37.5	C.														
				Ĕ	otal So	lids		Ä	ssolved	Solids														
			D_{ay}	Dissol	D ~	Dxygen emand.	,	l			í				Tota	<u>م</u>	icolyad	Shener	polod	Polting				
				P.P.V	Ч.	P.P.M.										1		ordenice	nann	namnac				
			Int	5.75		:					ſ	Solids.	• • • • • •		632	<i></i>								
			1	4.81	-	.92						Organi	ic Solid	ls	2.75									
				4.30	_	1.43						Oxyge	n Const	umed	.72									
				1.5	. .	2.03																		
			5	4.10		1.63 1.63																		

I

President Borough of Richmond ____ Exp Nº 71 Burray of Engineering ' Servage no Table Nº 12 Experimental Station COMPUTER FROM ADDE IN WITH ABSORDTION OF OBY GLID CHECKER _____ DATE April 10, ING

Fresh Water to be used for diluting servage in Exp. 72

Suspended solids 0.0 Oxygen Consumed 0.72 P.P.M. Temperature 20°C to 13°C

1

Two electric fons making ripple abt 1/2"

Missing Page

Surface I Foot 2 Feet 3 Feet	Ruface Nurface Nurface <th< th=""><th>Burtace Burtace I Poot 2 Peet 3 Peet 4 Peet 5 Pee</th><th>Preta Burtace 1 Foot 2 Feet 3 Feet 4 Feet 5 7 10</th><th></th></th<>	Burtace Burtace I Poot 2 Peet 3 Peet 4 Peet 5 Pee	Preta Burtace 1 Foot 2 Feet 3 Feet 4 Feet 5 7 10	
Surface 1 Foot 2 Feet 3 Feet 4 Feet 5 Feet 3 Feet 0 STYgern diamond 0 STYgern diamond 4 Feet 5 Feet	Sunface 1 Foot 2 Feet 3 7 <	Surface 1 Foot 2 Feet 3 Feet 5 Feet	Surface I Foot 2 Feet 3 Feet 4 Feet 5 Feet Surface 1 Foot 2 Feet 3 Feet 4 Feet 5 Feet Surface 0 Styggen, 1 Foot 0 Stygen, 1 Foot 4 Feet 5 Feet 5 Feet Style 1 Foot 2 Feet 3 Feet 4 Feet 5 Feet 5 Feet Lissolved 0 Style 1 Coverse 1 S S S 1 S S S 1 S S S S S S S S S S S S S S S S S S S	20
36 7.77 χετι	M.4.9 36	ЭР. Р. К. К. ЭР. В. К. ЭР. В. К. ЭР. В. К. ЭР. В. К. ЭР. Р. К. К. ЭР. В. К. В П. В. К. ЭР. В. К. В П. В. К. ЭР. В. К. В П. В. К. Э. К. ЭР. В. К. ЭР. К. ЭР. В.	Политический Политический (Политический) Политический Политический Политический Политический Политический Политический Политический Политический Политический Политический Политический Политический Политический Политический Политический Политический Политический Политическ	Bottles
M. H. G. Correction M. G. M. G. M. G. M. G. M. G. M. G. M. G. M. G.<	M. P.P. M. 0 Xy Yes D. D. Sovy Kes 0 Xy Yes D. D. M. 0 Xy Yes D. P. P. M. 0 Xy Yes D. D. M. 0 Xy Yes D. D. M. 0 Xy Yes D. P. P. M. 0 Xy Yes	Эр. Руукен Пор. Руукен О. Пр. Руукен О. 10 О. 10 O. 10 O	Пор. Пор. Пор. Пор. Пор. Пор. Пор. Пор.	Tank 20° Incubator
85 4.85 4.85 4.81 4.81 69 16 0 4.61 .16 0 4.69 .16 0 4.69 .08 4.81 0 .1 65 .20 -04 4.45 .32 -16 4.53 .32 -16 4.45 .38 73 .12 .65 4.36 .40 .37 40 4.40 .45 .32 -16 4.53 .32 -16 4.54 .57 .38 -1 73 .12 .65 4.36 .49 .37 40 4.40 .45 .32 -16 4.53 .38 -1 7 28 .424 .57 .2 4.20 .65 .72 4.20 .65 .72 4.20 .61 .77 20 .45 .16 .77 20 .57 .49 .45 .45 .72 23 .45 1.6 .45 .17 73 .45 .15 .45 .16 .	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	85 4.85 4.85 4.81 4.81 4.81 4.81 4.81 4.81 4.81 4.81 4.81 4.81 4.81 4.81 4.81 4.81 0 10 1 10 1		Botton Nitrite M. P. O. M. P. P. M. P. P. P. M. P. P. P. M. P.
69 16 0 4.61 116 0 4.69 16 0 4.69 08 0.8 4.81 0 1 65 .20 -04 4.45 .32 -16 4.53 .32 -16 4.45 .32 -16 4.53 .38 -11 73 .12 .65 4.36 .40 .37 .40 4.40 .45 .32 -16 4.55 .38 -11 73 .12 .65 4.36 .40 .37 .40 4.40 .45 .32 4.11 .36 4.24 .57 .2 .2 .21 .41 .36 .42 .57 .2	90 .16 0 4.69 .16 0 4.69 .16 0 4.69 .08 .08 4.81 0 .1 15 .20 .04 4.45 .32 .16 4.53 .32 .16 4.53 .32 .16 4.53 .38 .10 .1 35 .12 .65 4.36 .49 .28 .44 .20 .37 .40 45 .32 .16 4.55 .32 .32 .16 4.53 .38 .17 .55 4.9 .28 4.40 .37 .40 .45 .32 .41 .36 4.24 .57 .32 4.36 .41 .36 4.24 .57 .32 4.36 .41 .36 .42 .57 .57 .42 .57 .14 .45 .57 .16 .45 .57 .16 .45 .57 .16 .45 .57 .16 .45 .57 .16 .45 .16 .45 .16 .45 .16 .45 .16 .45 .16 <td< td=""><td>69 16 0 4.61 $.16$ 0 4.69 $.16$ 0 4.69 $.08$ $.08$ 4.81 0 $.1$ 65 $.20$ $.04$ 4.45 $.32$ $.16$ 4.45 $.32$ $.16$ 4.5 $.57$ $.20$ $.61$ $.7$ $.28$ 4.40 $.37$ $.40$ $.45$ $.16$ $.42$ $.57$ $.20$ $.61$ $.7$ $.20$ $.57$ $.20$ $.57$ $.20$ $.57$ $.20$ $.51$ $.10$ $.10$ $.10$</td><td></td><td>23 0.10 4.85 4.85</td></td<>	69 16 0 4.61 $.16$ 0 4.69 $.16$ 0 4.69 $.08$ $.08$ 4.81 0 $.1$ 65 $.20$ $.04$ 4.45 $.32$ $.16$ 4.45 $.32$ $.16$ 4.5 $.32$ $.16$ 4.5 $.32$ $.16$ 4.5 $.32$ $.16$ 4.5 $.32$ $.16$ 4.5 $.32$ $.16$ 4.5 $.32$ $.16$ 4.5 $.32$ $.16$ 4.5 $.57$ $.20$ $.61$ $.7$ $.28$ 4.40 $.37$ $.40$ $.45$ $.16$ $.42$ $.57$ $.20$ $.61$ $.7$ $.20$ $.61$ $.7$ $.20$ $.61$ $.7$ $.20$ $.61$ $.7$ $.20$ $.61$ $.7$ $.20$ $.61$ $.7$ $.20$ $.61$ $.7$ $.20$ $.61$ $.7$ $.20$ $.61$ $.7$ $.20$ $.57$ $.20$ $.57$ $.20$ $.57$ $.20$ $.51$ $.10$ $.10$ $.10$		23 0.10 4.85 4.85
65 .20 -04 4.45 .40 16 4.53 .32 16 4.55 .32 16 4.53 .38 11 73 .12 .65 4.96 .49 .37 .40 4.40 .45 .32 .41 .36 .41 .56 4.24 .57 .21 73 .12 .65 4.36 .49 .37 .40 4.40 .45 .32 .41 .36 4.24 .57 .21 08 .77 .60 4.20 .65 .72 4.20 .65 .72 4.20 .61 .7 36 .49 1.57 4.28 .57 1.49 4.24 .57 .16 .7 .80 .4.20 .61 .7 36 .49 1.57 4.28 .57 1.49 4.24 .53 1.58 .57 1.45 .61 .7 36 .49 1.57 4.28 .57 1.49 .65 1.49 .65 1.65 .7 .65 <t< td=""><td>5 .20 04 4.45 .40 .24 4.45 .32 .16 4.45 .32 .16 4.53 .38 1 3 .12 .65 4.36 .49 .28 4.40 .37 .40 .45 .32 4.1 .36 4.24 .57 .2 8 .77 .60 4.20 .65 .72 4.20 .65 .72 4.20 .61 .7 6 .49 .57 1.49 4.40 .45 .65 .72 4.20 .61 .7 6 .49 1.57 4.28 .57 1.49 4.29 .65 .12 .80 4.20 .61 .7 6 .49 1.57 4.28 .57 1.49 4.20 .65 4.36 .45 1.6 .60 4.28 .57 1.49 4.24 .53 1.49 4.36 .45 1.6 .77 .60 4.28 .57 1.49 <!--</td--><td>65 $.2004 + 4.45$ $.4024 + 4.45$ $.3216 + 4.55$ $.3216 + 4.55$ $.3216 + 4.5$ $.331$ 73 $.1265 + 3.36$ $.4928 + 4.40$ $.37 - 4.0 - 4.532 + 4.36$ $.4136 + 4.24572$ 08 $.7760 - 4.20$ $.6572 - 3.849344 + 4.20$ $.6572 + 4.205780 - 4.20617$ 36 $.49 - 1.57 + 4.2857 - 1.49 + 4.2453 - 1.53 + 4.2857 - 1.40 4.3645 - 1.6$ </td><td>I. 65 $2004 + 4.5$ $4024 + 4.5$ $3216 + 4.5$ $3216 + 4.5$ $3216 + 4.5$ 331 I. 73 $1265 + 4.36$ 4928 4.4037 4045 $3216 + 4.5$ 5726 I. 08 $7760 + 4.20$ $.6572 - 3.8493$ $44 + 4.206572 - 4.20617$ $1.6 - 4.20617$ I. 36 $49 - 1.57 + 4.28$ <math>.57 - 1.49 - 4.2453 - 1.53 - 4.2857 - 1.40 $4.36 - 4.20617$ I. 36 <math>49 - 1.57 + 4.2857 - 1.49 - 4.2453 - 1.53 - 4.2857 - 1.40 $4.36 - 4.20617$ I. 36 <math>49 - 1.57 + 4.2857 - 1.49 - 4.2453 - 1.53 - 4.2857 - 1.40 $4.30 - 4.20617$ I. 100 at 37.5° <math>11.40 $1.00 \text{ at } 37.5°$ Dissolved Oxygen Demand. $1.00 \text{ at } 37.5°$ Dissolved Solida <math>0.780000 supended Supended Supended Settled <math>7.03 <math>0.780000 \text{ supended Settled <math>5.94 - 1.09050505 <math>0.400 <math>5.74 - 1.29 <math>5.7400 - 0.1 <math>0.1 <math>5.74 - 1.29 0.5</math></math></math></math></math></math></math></math></math></math></math></math></math></td><td>22 4.69 .16 4.77 .08</td></td></t<>	5 .20 04 4.45 .40 .24 4.45 .32 .16 4.45 .32 .16 4.53 .38 1 3 .12 .65 4.36 .49 .28 4.40 .37 .40 .45 .32 4.1 .36 4.24 .57 .2 8 .77 .60 4.20 .65 .72 4.20 .65 .72 4.20 .61 .7 6 .49 .57 1.49 4.40 .45 .65 .72 4.20 .61 .7 6 .49 1.57 4.28 .57 1.49 4.29 .65 .12 .80 4.20 .61 .7 6 .49 1.57 4.28 .57 1.49 4.20 .65 4.36 .45 1.6 .60 4.28 .57 1.49 4.24 .53 1.49 4.36 .45 1.6 .77 .60 4.28 .57 1.49 </td <td>65 $.2004 + 4.45$ $.4024 + 4.45$ $.3216 + 4.55$ $.3216 + 4.55$ $.3216 + 4.5$ $.331$ 73 $.1265 + 3.36$ $.4928 + 4.40$ $.37 - 4.0 - 4.532 + 4.36$ $.4136 + 4.24572$ 08 $.7760 - 4.20$ $.6572 - 3.849344 + 4.20$ $.6572 + 4.205780 - 4.20617$ 36 $.49 - 1.57 + 4.2857 - 1.49 + 4.2453 - 1.53 + 4.2857 - 1.40 4.3645 - 1.6$ </td> <td>I. 65 $2004 + 4.5$ $4024 + 4.5$ $3216 + 4.5$ $3216 + 4.5$ $3216 + 4.5$ 331 I. 73 $1265 + 4.36$ 4928 4.4037 4045 $3216 + 4.5$ 5726 I. 08 $7760 + 4.20$ $.6572 - 3.8493$ $44 + 4.206572 - 4.20617$ $1.6 - 4.20617$ I. 36 $49 - 1.57 + 4.28$ <math>.57 - 1.49 - 4.2453 - 1.53 - 4.2857 - 1.40 $4.36 - 4.20617$ I. 36 <math>49 - 1.57 + 4.2857 - 1.49 - 4.2453 - 1.53 - 4.2857 - 1.40 $4.36 - 4.20617$ I. 36 <math>49 - 1.57 + 4.2857 - 1.49 - 4.2453 - 1.53 - 4.2857 - 1.40 $4.30 - 4.20617$ I. 100 at 37.5° <math>11.40 $1.00 \text{ at } 37.5°$ Dissolved Oxygen Demand. $1.00 \text{ at } 37.5°$ Dissolved Solida <math>0.780000 supended Supended Supended Settled <math>7.03 <math>0.780000 \text{ supended Settled <math>5.94 - 1.09050505 <math>0.400 <math>5.74 - 1.29 <math>5.7400 - 0.1 <math>0.1 <math>5.74 - 1.29 0.5</math></math></math></math></math></math></math></math></math></math></math></math></math></td> <td>22 4.69 .16 4.77 .08</td>	65 $.2004 + 4.45$ $.4024 + 4.45$ $.3216 + 4.55$ $.3216 + 4.55$ $.3216 + 4.5$ $.331$ 73 $.1265 + 3.36$ $.4928 + 4.40$ $.37 - 4.0 - 4.532 + 4.36$ $.4136 + 4.24572$ 08 $.7760 - 4.20$ $.6572 - 3.849344 + 4.20$ $.6572 + 4.205780 - 4.20617$ 36 $.49 - 1.57 + 4.2857 - 1.49 + 4.2453 - 1.53 + 4.2857 - 1.40 4.3645 - 1.6$ 	I. 65 $2004 + 4.5$ $4024 + 4.5$ $3216 + 4.5$ $3216 + 4.5$ $3216 + 4.5$ 331 I. 73 $1265 + 4.36$ 4928 4.4037 4045 $3216 + 4.5$ 5726 I. 08 $7760 + 4.20$ $.6572 - 3.8493$ $44 + 4.206572 - 4.20617$ $1.6 - 4.20617$ I. 36 $49 - 1.57 + 4.28$ $.57 - 1.49 - 4.2453 - 1.53 - 4.2857 - 1.40 4.36 - 4.20617 I. 36 49 - 1.57 + 4.2857 - 1.49 - 4.2453 - 1.53 - 4.2857 - 1.40 4.36 - 4.20617 I. 36 49 - 1.57 + 4.2857 - 1.49 - 4.2453 - 1.53 - 4.2857 - 1.40 4.30 - 4.20617 I. 100 at 37.5° 11.40 1.00 \text{ at } 37.5° Dissolved Oxygen Demand. 1.00 \text{ at } 37.5° Dissolved Solida 0.780000 supended Supended Supended Settled 7.03 0.780000 \text{ supended Settled 5.94 - 1.09050505 0.400 5.74 - 1.29 5.7400 - 0.1 0.1 5.74 - 1.29 0.5 $	22 4.69 .16 4.77 .08
73 .12 .65 4.36 .49 .28 .4.40 .37 .40 4.40 .45 .32 4.36 .41 .57 .57 .54 .57 .50 4.20 .61 .77 08 .77 .60 4.20 .65 .72 3.84 .93 .44 4.20 .65 .72 4.20 .67 .80 4.20 .61 .7 36 .49 1.57 4.28 .57 1.49 4.24 .53 1.53 4.28 .57 1.40 .4.36 .45 1.6 .16 .49 1.57 4.28 .57 1.49 4.24 .53 1.53 4.28 .57 1.40 4.36 .45 1.6 .17 .18 .17 .19 .11 .19 .41 .45 .45 1.6 .45 1.6 .45 1.6 .45 1.6 .45 1.6 .45 1.6 .45 .45 1.6 .45 .45 1.6 .45	3 .12 .65 4.36 .49 .28 4.40 .37 .40 4.40 .45 .32 4.36 .41 .57 .36 4.24 .57 .3 8 .77 .60 4.20 .65 .72 3.84 .93 .44 4.20 .65 .72 4.20 .57 .80 4.20 .61 .7 16 .49 1.57 4.28 .57 1.49 4.24 .53 1.53 4.28 .57 1.49 4.54 .57 1.49 4.5 1.6 4.5 1.6 4.5 4.5 4.5 4.5 4.5 4.5 1.6 4.5 1.6 4.5 1.6 4.24 .53 1.53 4.28 .57 1.49 4.36 .45 1.6 4.28	73 .12 .65 4.36 .49 .28 4.40 .37 .40 4.5 .32 4.36 .41 .57 .36 4.29 .57 .30 4.20 .61 .7 36 .49 1.57 4.20 .65 .72 3.84 .93 .44 4.20 .65 .72 4.20 .61 .7 36 .49 1.57 4.28 .57 1.49 4.24 .53 1.53 4.28 .57 1.40 .10 .11 .1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	y_2 21 4.69 .16 4.49 .36
08 .77 .60 4.20 .65 .72 3.84 .93 .44 4.20 .65 .72 4.20 .57 .80 4.20 .61 .7 36 .49 1.57 4.28 .57 1.49 4.24 .53 1.53 4.28 .57 1.49 4.36 .45 1.6 	8 .77 .60 4.20 .65 .72 3.84 .93 .44 4.20 .65 .72 4.20 .57 .80 4.20 .61 .7 6 .49 1.57 4.28 .57 1.49 4.24 .53 1.53 4.28 .57 1.49 4.36 .45 1.6 	08 77 00 4.20 65 72 3.84 93 44 4.20 65 72 4.20 57 80 4.20 61 7 36 49 1.57 4.28 57 1.49 4.24 53 1.53 4.28 57 1.49 4.36 45 1.6 11 4.36 45 1.6 12 12 4.36 45 1.6 12 12 4.36 45 1.6 13 4.36 45 1.6 14 14 14 15 14 15 14 14 14 14 14 15 14 15 14 15 14 14 14 14 15 14 14 15 14 15 14 15 14 15 14 14 15 14 15 14 14 15 14 14 15 14 16 14 16 14 16 14 16 14 16 14 16 14 16 14 16 14 16 14 16 16 16 16 16 16 17 16 17 16 16 16 16 16 17 16 16 17 16 16 16 17 17 17 16 16 16 16 16 17 17 17 17 17 17 17 17 17 17 16 17 17 17 17 17 17 17 17 17 17 17 17 17 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 17 1	I. 08 77 60 4.20 65 72 4.20 57 1.49 4.20 61 7 I. 36 49 1.57 4.28 57 1.49 4.24 53 1.53 4.28 57 1.49 4.50 65 72 4.30 61 7 I. 36 49 1.57 4.28 57 1.49 4.24 53 1.53 4.28 57 1.49 4.5 1.6 4.36 .45 1.6 4.36 .45 1.6 4.36 .45 1.6 4.4 4.4 4.45 1.6	$y_2 \ 19 \ y_2 \ \dots \ 4.08 \ .77 \ 4.28 \ .57 \ 4$
36 .49 1.57 4.28 .57 1.49 4.36 .45 1.63 4.24 .53 1.53 4.28 .57 1.49 4.36 .45 1.6 4.26 .57 1.49 4.36 .45 1.6 4.36 .45 1.6 4.36 .45 1.6 <	16 .49 1.57 4.28 .53 1.53 4.28 .57 1.49 4.36 .45 1.6 4.36 .45 1.6 4.36 .45 1.6 4.36	36 49 1.57 4.28 .57 1.49 4.36 .45 1.6		19 3.48 1.37 3.71 1.14 4
	00 at 37.5°	100 at 37.5° Dissolved Solids Dissolved Solids Dissolved Solids Oxyem, Demand, A.P.M. P.P.M. P.P.M. Solids. 5.98 5.94 1.09 Oxyem Consumed. 4.1 7	100 at 37.5° 100 at 37.5° Dissolved Solids Dissolved Solids Dyssolved Solids Cyrgen, Demand, P.P.M. P.P.M. Solids	17 2.79 2.06 3.48 1.37 4
	00 at 37.5°	100 at 37.5° Dissolved Solids Dissolved Solids Oxygen, Demand, Syrgen Oxygen, Demand, T.03 7.03 5.94 1.09 Oxygen Consumed. 48 4.1 7	100 at 37.5° Dissolved Solids Dissolved Solids Oxygen, Demand, Oxygen, Demand, TOB TOB TOB Oxygen, Demand, TOB Dissolved Suspended Suspended Settled TOB TOB TOB Oxygen, Demand, TOB TOB Oxygen, Demand, TOB TOB Solids	1.94 2.91 1.86 2.99
	00 at 37.5°	137.5° Dissolved Solids Dissolved Solids Dissolved Solids Dissolved Superadic Dissolved Superadic P.P.M. P.P.M. Solids 94 5.98 1.09 Oxygen Consumed. 48 41	10 at 37.5° Dissolved Solids Dissolved Solids Dissolved Suspended Suspe	1.86 2.99 1.78 3.07
Dissolved Solids		P.F.M. P.P.M. Total Dissolved Suspended Settled 7.03 Solids	P.F.M. P.P.M. Total Dissolved Suspended Settled 7.03 Solids	Dissolved Oxygen Dav Oxvren. Demand. Dav O
Dissolved Solids hisolved Oxygen Yvrean. Demand.	hissolreed Oxygen Xxveen. Demand.	7.03 Solids 994 882 62 0 5.98 1.05 Organic Solids 376 322 54 5.94 1.09 Oxygen Consumed 48 41 7	7.03 Solids	P.P.M. P.P.M.
Dissolved Solids Dissolved Oxygen Dyrgen, Demand, P.P.M. P.P.M. Total Dissolved Suspended Settled	jissolved Oxygen Dxygen, Demand, P.P.M. P.P.M. Total Dissolved Suspended Settiled	5.98 1.05 Organic Solids 376 322 54 5.94 1.09 Oxygen Consumed 48 41 7	5.98 1.05 Organic Solids 376 322 54 5.94 1.09 Oxygen Consumed 48 41 7 5.74 1.29	$1 at 6.95 \dots Int$
Dissolved Solids Dissolved Oxygen Cyygen, Demand, P.P.M. P.P.M. 2014 Dissolved Suspended Settled 7.03 Solids	jissolved Oxygen Dxygen, Demand, . Total Dissolved Suspended Settled P.P.M. P.P.M. Solids	5.94 1.09 Oxygen Consumed 48 41 7	5.94 1.09 Oxygen Consumed 48 41 7 5.74 1.29 5.32 1.71	$1, \ldots, 5, 73, 1, 22, 1, \ldots$
Dissolved Solids Dissolved Oxygen Dissolved Oxygen Oxygen Oxygen, Demand, P.P.M. P.P.M. P.P.M. Solids 904 882 5.98 1.05 Organic Solids	 Dissolved Oxygen, Dynand, P.P.M. P.P.M. P.P.M. Solids		5.44 1.29 5.32 1.71	2 5.29 1.66 2

8

President Borough of Richmond File Bureau of Englacering, Sewage kor Table¹⁸13 Experiment Station computer From to MADE IN Obsorbtion of Oxygen checker onte Marich 12 1016

> Dilutión 1:20 fresh Water Suspended Salids 62 PPM. Oxygen Consumed ABRPM. Temperature 23°C - 14°C Two electric fons

5.

TABLE NO. 13-ABSORPTION OF OXYGEN-EXPERIMENT NO. 65.

_ Dilr	tion 1	i in 20	1									Fresh	n Wate.	ц									Two F	clectric	Fans	ł
		L'emnera	ture			Bott	les l			Inface			Foot		10	Feet		33	Feet		4	Feet	}	5	feet	ſ
	([τ	l s	Tan.	L N	0° Inci	pator	ft pa	ép	pə u	'' 'u pa	יץ, ים, ח	pə α	'I 'u		bec bay	ue 'J/ 'ue	 /J	рес рес	цэ , Гу , Гу	۲۷. pu	pəq	το) 10° 40°		pəq. aəi
Date Матећ	əmiT	qoT	Botton	witti	P. P. M.	ь. Р. М. О. D.	D. O.,	P.P.M. 0. D.,	vlossi IogyxO M.q.q	azyzo Demou M. T. T	Oxyge Absorb	vlossi O M. J. J. M. J. J.	92VzO nem9 U M.T.I	egyzO drosdA f:or	A DESECT	Demsu Demsu D.P.J	ogγz∪ droedA rloaniΩ	A.T.T. A.T.T. BVXO	Dema I.T.T	gyzO FrosdA fosaiG	avx0 I.q.q avx0	Dems D. T.	TosdA Toseid	avzO I.I.I Oxyg	Dema Dema	Absor
		0 /100		90	10 2		5 01		5 97			5.91		':	5.91	•	:	. 91	:		. 16.	:	<u>و</u> ر	. 10.	:	÷
211	. W.M.	7 0 7 7 7 0		80.0	12.0	06	5 70	13	5 79	18	02	5.71	.20	0	5.79	.12	2 80.	.75	.16	.04	.55	.36 —.	.16 5	.75	.16	.04
211		7 6	g -	:	5 40	3 19	5.47	44	5.55	42	60.	5.41	.51	0	5.43	.49	.02	.43	.49	.02	.32	. 59 —	.08 5	47	44	.07
5 T. C	.	13 6 7 6	1 5	:	4 92	66	5.28	23	5.31	.66	.33	5.20	.71	.28	5.20	.71	.28	6.28	.63	.36 5	.16	.75	.24 5	.28	.63	.36
	• •	10 00	; ç		44	1 47	4.64	1.27	5.08	83	.58	4.92	66.	.48	4.88	1.03	.44	L.92	66.	.48 4	.80 1	.11	.36 5	00.	.91	.56
21		, r 0, r	5 0		4 13	1.78	4.24	1.67	4.96	1.01	77.	4.84	1.07	.71	4.88	1.03	.75	£.88_1	.03	.75 4	.76 1	.15	.63 4	.92	66.	.79
· · · · · ·	- a	10	717		3 80	2.02	4.13	1.78	4.96	1.01	1.01	4.84	1.07	.95	4.84	1.07	.95	1.88	03	÷ 66.	L.76 1	.15	.87 4	.92	. 99	1.03
2112		9 ¥			2.82	3.09	2.78	3.13	6.03	06	3.15	5.79	.12	2.97	5.79	.12	2.97	5.87	.04	.05	5.71	.20	5 68.	- 66.	80.	3.17
22 11	. . .	14	4	0.14	2.62	3.29	2.62	3.29	6.27	—.30	3.59	6.11	20	3.49	6.07 -	-,16	3.45	6.15 -	24	. 53	- 06.9	08 3	.37 6	. 20	. 29	3.58
221	1	14 .	÷	:	2.54	3.37	2.54	3.37	÷	:	÷	:	:		:	÷	:	:		:		:	:	:	:	:
											i															
				õ	rygen	Demar	nd Dilt	ttion 1	in 10	0 at 37	2 2															
					Ť	otal Sc	shilo		-	Dissolve	d Soli	sb (
					Dissol	ved	Oxyger	(-	, Ö	solved	Oxyį	ten .														

 nd,
 Total
 Dissolved Suspended
 Settled

 M.
 Total
 Dissolved Suspended
 Settled

 i
 Solids.......
 1046
 994
 152
 0.2
 c.c.

 i
 Organic Solids.....
 430
 300
 130

 g
 Oxygen Consumed.
 57
 42
 15

Day	Oxygen, P.P.M.	Demand, P.P.M.	D_{ay}	Oxygen, P.P.M.	Demand P.P.M.
Int	7.06	:	Int	7.14	
11	5.87	1.19	1	6.43	.71
2	5.40	1.66	2	5.95	1.19
3	5.36	1.70	3	5.75	1.29
4	5.16	1.90	4	5.71	1.43
5	4.92	2.14	5	5.67	1.47

President Barough of Richmond Exp Nº 65 Bureau of Engineering, Sewage Table Nº 13 5ft Depth

Dilution 1.20 fresh Water Suspended Solids 152 P.P.M. Oxygen Consumed 57 P.P.M. Tempt 232°C - 14°C

Two Elect. fons.

Dilutior	n 1 in 2	02									Fresh	Water							Ĥ	wo Ele	setric F	ans Blo	owing
	Temn	erature			Bott	les		- Su	rface		1 H	oot		2 Feet		3	Feet		4 1	Feet		5 F	eet
			`	Tar	Ha	20° Incu	tbator,	1 .	, 'p	pə pə		рә и .''	ru 'u' pə.	՝ը ՝ը։ ս։	pəc u	'I' 'ua pəz	יד. יpu	pəv bəc us	пэ Л. Л.	. أم را.	pəq uə	uə: 'IV uə	'W
Тіте Магсћ Date	qoT	Bottom	Nitrite	P.P.M.	D. D.,	ъъ.М. Р. р. о.,	D. D.	M. J. J. M. J. J. M. J. J.	name M.q.q	Absolv	Oxyge P.P.M	P. P	vlossi U 92vxO M.T.T	Demyre Demyr Demyr	Арзогд Арзогд	AlossiU A.G.T.A.	Demail Demail	Dissi U Dissi U	avx0 I.q.q avx0	Dema P.P.I	avx0 102dA loszi U	Oxyg P.P.I Oxyg	L'T'I
11 4	96 M	23	0.09	5.04		5.04		5.08		2°	. 08		. 4.92		:	4.92	:		.86	:		.04	:
	16	22		4 68	.36	4.80	.24	4.96	.12	.2 4 4	.84	24 .15	2 4.80	.12	24	4.80	.12	.24 4	.68	.18	.18 4	08.	24
23 · · · 3	20	21		4.36	.68	4.52	.52	4.76	.32	.36 4	. 52	56 .1:	2 4.52	.40	.28	4.52	01-	.28 4	.44	다.	.26 4	. 09.	ŦŦ
235	17	20		3.85	1.19	4.08	1.06	4.88	.20	₹ 66.	. 76	32 .8'	7 4.72	.20	66.	4.80	.12	1.07	.78	.08	÷ 11.	.92	12
237	17	18%		3.52	1.52	3.73	1.31	5.43 -	35 1	.87 4	.82	24 1.2	8 4.80	.12	1.40	4.92	0	l.52 ∔	.60	.26 1	.26 4	. 96	08
23. 9	16	17	:	3.29	1.75	3.61	1.43	5.40 -	32 2	.07 5	.00	08 1.67	7 5.08	— 16	1.91	5.16 -	24	4 ()	.92 —	.06 1	.81 5	50 —	.16 1
11 20 0	15	17		3.17	1.87	3.41	1.63	5.55 -	47 2	.34 5	. 36 —.	28 2.1	5 5.00		1.95	5.43 -	51 2	2.38 5	5.12	26 2	.13 5	88	24 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 13	19.5	0.11	2.46	2.58	2.30	2.74	7.34—	2.26 4	.84 7	.22-2.	14 4.S.	2 7.30-	-2.38	4.96	7.30-	2.38	1.96 7	.26-2	.40	.98 7	.22-2.	18 4
1 11 F6	5 12.5	12		2.46	2.58	2.22	2.82	7.62-	2.54 5	.12 7	. 54—2.	46 5.0	4 7.50-	-2.58	5.16	7.50—	2.58	5.16 7	7.42—2	2.56 5	5.14 7	.50-2	.46 5
94 1	11.5	:		2.30	2.74	2.22	2.82	÷	:	:	:	:	:	:	:	:	:	:	:	:		•	:
2 1 3	11	:	:	2.14		:	:	:	:	:	•	:	:	:	:	:	:		:	:	:	:	:
25 11	10.5	:	:	:	÷	:	÷	-	:	:			:		:	:	:		:			•	
				xvgen	Demai	d Dilu	tion 1	in 100	at 37.5	Ŭ													
				E	'otal S(olids		Ä	ssolved	Solids													
			\mathbf{Day}	Dissol Oxyg P.P.	Ived Gen, 1	Oxygen Demand P.P.M.	D D D	y Oxy P.F	olved gen, M.	Oxyge Denian P.P.M	a ti			Ľ	otal	Dissolv	red Su	spender	d Sett	iled			
			Int	6.7	74	:;	Int	 	86 87			Solids.	Matter.	: :	882 314	822 258		60 56	: 0	<u> </u>			
			1	5.6 5.6	<u>n</u> 22	1.11	2	.:: 	29	1.07		Oxygen	Consum	ed.	37	28		6	:				
				5.1	5	1.62		ж. би	.47 47	1.39													
			4 5		96 36	1.78	5	. :	33	1.53													

ł

TABLE NO. 13-ABSORPTION OF OXYGEN.-EXPERIMENT NO. 66

•

President Borough of Richmond Exp Nº 66 Bureau of Engineering ; Sewage no Table Nº 13 Experiment Station computer PROM . CONNECTION WITH 26.5.0 C 6 100 OF Q1 4 9.00 CHECKER _____ DATE March 231016

Dilution 1:20 fresh Woter Suspended Solids 60 P.P.M. Oxygen Consumed 37 P.P.M Tempt 22°C to 12.5C

Two electric fons

TABLE NO. 13-ABSORPTION OF OXYGEN.-EXPERIMENT NO. 67.

Dilution 1 in 20

Two Electric Fans

Temperature Diating Bottiles Buttiles																				0						1
Дм. П. П. П. П. Ор. П. П. П.		L	empera	uture			Bottl	es		Surf	ace		1 Foot	د	.,	2 Feet		3	Feet	-	4 F	leet		5 Fe	et	
Phila Top 6000 Det of the head of the second bring by a second brind by a second brind by a second bring by a second	τ	l		6 u	(I	Tank	3)° Incul	Dator d	יים יד יד	ť	pe pe	י יף ד י	p; τ	יז יז קין	(F	} P	י ן יי ספון	, 'F	p€ pi			pa pa	ליך די די די די		(p
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Date DateM	əmiT	qoT	nottof	stirtiN 	P.P.M.	P.P.M.	E.F.M.	P.P.M.	OXYEEN P.P.M. OXYEEN OXEMO	P.P.M.	eriosor Dissolve Travere	INI. T.	тэзүхО Арзогре	əvlossiU Джадуго "М.Ч.Ч.Ч	Demano Demano D.P.M.	Absorbe Absorbe	angerungen M.T.A. M.T.A.	Demano Demano	adrosdA Absorbe Vlossi <u>U</u>	Drygen Drygen Oxygen	D.T.Ygen	Absorbe	Paven P. P. M. Demand	.M.T.G Dxygen	aatosaw
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	27 11	.30 A.M.	26	26.5 .	:	4.46		t.46 .	4	.46		4.4	6	:	4.46			4.46		4	46		4	16		1.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	27 1	.30	24	25 0	.11	1.14	.32 4	1.22	.24 4	1. 81.	. 9	16 4.18	3 .28	.04	4.18	.28	.04	4.22	.24	.08 4	22	24 .0	38 4.	22 .2	8. 4	00
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	27 3	30	24	24 .	:	3.62	.84 å	3.94	.52 3.	. 86 .4	14	10 3.8(. 60 09.	.24	3.86	.60	-24	3,90	.56	.28 3.	06	5. 55	28 3.	9. 95	. 24	4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	27 5	.30	23	23 .		3.79 1	.67 3	3.38 1	.08 3.	.62 .8	~. Q	37 3.62	3.84	.83	3.54	.92	.75	3.58	88	.79 3.	54	. ²⁰	75 3.	90 . 8	8	2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	277	.30	22	22 .		1.99 2	.47 2	3.87 1	.59 3.	.46 .5	34 1.(33 3.4(3 1.00	1.47	3.42	1.04	1.43	3.58	.88 1	.59 3.	50	96 I.£	51 3.	54 .9	2 1.5	ŝ
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	279	.30	20	21 .	:	1.59 2	.87 2	.79 1	.67 3.	. 50 . 5	0 2.(7 3.50	96. (1.91	3.50	96	1.91	3.58	. 88 1	.99 3.	54	92 1.9	95 3.	58 .8	3 1.99	6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	27 11	.30	16.5 2	30		1.15 3	.31 2	3.03 2	43 3	. 58	2 2.	10 3.5 <u>(</u>	3 .88	2.43°	3,58	- 88	2.43	3.66	.80 2	51 3	.62	84 2.4	ł7 3.	66 .8	0 2.5	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	289	.30	16.5]	16.5 .	:	0 4	.46* 0	.48 3	.98 4.	.93 —.6	3 5.()0 1 .9	347	4.93	4.93 -	47	4.93	5.01 -	. 55 5	.01 4.	93 — 4	1 7 4.9	33 5.	01 —.5	5 5.0	-
28 1.30	28 11	.30	16 1	16 0	.13	0 4	.46* 0	.24 4	.22 5.	.33-1.0	35.	19 5.35	387	5.33	5.33 -	87	5.33	5.41 —	.95 5	41 5.	338	87 5.8	33 5.	41 — .9	5 5.4	-
Nitrites, 0.25. *0.20. Axygen Demand Dilution I in 100 at 37.5° C. Oxygen Demand Dilution I in 100 at 37.5° C. Dissolved Solids Total Solids Day Oxygen, Demand, Day- Oxygen, Demand, P.P.M. P.P.M. Day Oxygen, Demand, Day- Oxygen, Demand, P.P.M. P.P.M. Day Oxygen, Demand, P.P.M. P.P.M. Day Oxygen, Demand, Day- Oxygen, Demand, P.P.M. P.P.M. Day Oxygen, Demand, P.P.M. P.P.M. Day Oxygen, Demand, Day- Oxygen, Demand, P.P.M. P.P.M. Tint. 6.09 .75 Day Oxygen, Commed, 5.7 1.20 Organic	28 1	30	:	÷	:	:	:).16 4	. 30	,	:	:	:	÷	:	:	:	:	:	•	:	i :	:	:		•
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Z	litrites,	0.25.		*0	.20,			i																	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					0x	tygen D	enand	l Diluti	on 1 in	100 at 5	37.5° C															
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						Dissol	ved Sc	sbild		Tot	al Soli	ds					,									
Int 6.84 Int 6.77 Solids 948 812 136 1 e.c. 1 6.09 .75 1 5.57 1.20 Organic 858 242 116 2 5.45 1.39 2 4.77 2.00 Oxygen Consumed. 57 35 22 3 5.37 1.47 3 4.62 2.15 4 5.13 1.71 4 4.46 2.31				н	I yay	Dissolve Oxygen, P.P.M.	P D O	tygen mand, P.M.	Day -	Dissolve Oxygen P.P.M.	D D O	rygen mand, P.M.				, To	tal 1	Dissolve	d Sus	papuad	Settler	-				
2 5.45 1.39 2 5.10 0xygen Consumed. 57 35 22 3 5.37 1.47 3 4.62 2.15 35 22 7 4 5.13 1.71 4 4.46 2.31 5 5.09 1.75 5 4.46 2.31				Int		6.84 6.00	•	 7.2	1nt	6.77		. 6	Solic	ds		94	<u>8</u> 8	812		.36 16	1 e.c.					
$3 \dots 5.37 1.47 3 \dots 4.62 2.15$ $4 \dots 5.13 1.71 4 \dots 4.46 2.31$ $5 \dots 5.09 1.75 5 \dots 4.46 2.31$				2		5.45	1	39	2	4.77	,	3.00	OxO	gen Co	nsumed	· . :	2 1-	35	•	52	: :	ŧ				
				с. С	÷	5.37		.47	3	4.62		2.15														
				4 v)	: :	5.09		12	5	4.46		31														

President Borough of Richmond Experiment Nº 67 CONNECTION WITH __ OBSOR B. FLORT .. Of OA 4: 9. CHECKEN ____ - DATE . March 27 1916 Dilution 1:20 fresh water Suspended motter Oxygen consumed 136 P.P.M. 57 P.P.M. Temperature 26°C to 16°C. Two Electric fons 5 4 absorbed 3 7 Ø. ¢. 2 ź 0 25 lö 15 Hours 54

TABLE NO. 13-ABSORPTION OF OXYGEN.-EXPERIMENT NO. 68.

Г	Dilution	1 in 20									Fresl	n Water	L								Two	Electri	c Fans	
		Temper	ature			tottles		0	urface		1	Foot		2 Fe	et		3 Feet		4	Feet		5	Feet	[
	`		б [т	l	Tank	20° Inc	ubator). "τ [pe	۰ ۴p	ba ha	40 1.1	4°	pə. Pə.	ʻp u j	рэ т יו	pə.	ים יףי עי	pə u	r, a, fa	יזי יףנ ענ	pac	U. U. Del	עי יףט עני	pəc uə
Date Матећ	əmiT	qoT	notto E etintiN	D. O.	P.P.M.	D. O. U.	P.P.M. P.P.M.	Dissid Dissid M.q.q	Deman Deman Deman Deman	Absorb Absorb	Property of the second	Deman Deman	vlosei U vlosei U	P.P.M. Deman	M	vlozzi Diszolv W 4 4	Oxyge Deman D. q. q	933yrO drosdA	vlossi O M. q. q	Demai Demai	Absorb	M.q.q	Demail Demail	Absorb
291	10.30 A.M	1. 22	22.5 0.(07 6.	25	. 6.25	÷	6.29		:	3.25 .	•	6.2	25	:	6.21	:	÷	6.21	:	÷	6.13	:	:
291	12.30	19.75	20	5.	93 .3	2 6.01	.24	6.17	.12	.20	5.97	.28	.04 5.9	97 .2	ю. 8	1 5.97	.24	.08	5.97	.24	.08	5.81	.32	0
29	2.30	19.75	20	: 5.	37 .8	8 5.49	.76	5.49	.80	.08	5.45	.80	.08 5.4	15 .8	õ. 0	3 5.41	.80	.08	5.41	.80	.08	5.45	.68	.20
29	4.30	19.0	19.5		3.1 07.	35 4.77	1.48	5.17	1.12	.73	5.05	1.20	.65 5.(05 1:2	. 6	5 5.10	1.11	.74	5.01	1.02	.83	5.01	1.02	.83
29.	6.30	19	18	4	.14 2.1	11 4.38	1.87	5.05	1.24	.87	1.97	1.28	,83 5.0	01 1.2	4 .8	7 5.01	1.20	.91	4.93	1.28	.83	4.93	1.20	.91
29	8.30	18	17.5	~~ :	82 2.4	t3 4.10	2.15	5.01	1.28	1.15	5.01	1.24 1	.19 4.9	33 1.3	2 1.1	1 4.97	1.24	1.19	4.97	1.14	1.27	4.97	1.16	1.27
29.	10.30	18	17		54 2.7	71 3.87	2.28	5.01	1.28	1.43	5.01	1.24 1	.47 4.9	93 1.3	2 1.3	9.4.97	1.24	1.47	4.97	1.14	1.57	4.97	1.16	1.55
30.	8.30	15	15.5		11 4.1	14 2.31	3.94	5.85	.44	3.70	5.73 (0.52 3	.62 5.	73 .5	2 3.6	2 5.77	.44	3.70	5.73	.48	3.66	5.77	.36	3.78
301	10.30	14.75	15 0	11 1.	87 4.3		i	÷	:			:	:	:	:	:	÷	÷	÷	:	:	:	:	• • • •
					Oxy	'gen Dem	and 1	in 100	at 37.5	C.														
					Total	Solids		Ä	issolved	Solids														
			ã	(A O H	issolved xygen,	Oxygen Demand P.P.M.	D ^B	V Oxi P.I.	solved vgen, j P.M.	Oxyge Deman P.P.M	(सर्व				Total	Diss	olved Sı	apende	ed Set	tled				
			Int.	:	6.77	:	lnt	6	.84	:		Solids.		:	870	F (36	104		07				
			1	÷	5.33	1.44	1	، 9 :	.05	0.79		Organi	Concilla		334 43	Ň	14	о С	:	:				
			57.0	÷	5.17	1.60	01 0	יי סי :	.73	1.11		Oxygei		•••••••	DF		2	2						
			й. 4	: :	5.03	1.76	• ₽	ານ : ;	33	1.51														
			5.	: :	4.66	2.11	5	. 5	.05	1.79														

CAPECIMENT Nº 68 President Borough of Richmond Content Nº 13 Bureau of Engineering, Searage Ko Table Nº 13 - Eaperment Station of Caygen CHECKER PROM TO MADE IN ROSorbtion of Caygen CHECKER DATE March 29 19 6400

ş

Dilution 1:20 fresh Woter Suspended Solids 104 P.P.M. Oxygen Consumed 45 P.P.M. Temperature 22°C to 15°C Two Electric fans 5 apierbed from the 4 p. Borric P.M.S 3 Q Ory gee 2 20 2.5 15 5 10 Hours

TABLE NO. 13-ABSORPTION OF OXYGEN.-EXPERIMENT NO. 70.

Dilut	ion 1 in	20							Ξ.	resh v	Vater	(see Re	cord of	April	3rd)							ľwo E	lectric	Fans	
	Tem	perature	n -		Bot	ttles		62	surface		-	Foot		5	Feet		3 H	feet		4 F	reet		1 5 F	eet	11
		σ	s	Tai	hk	20° Incu	ibator.	י יי דסק	"F) P		'F	P P 1		 '1	9 P] .	P P			F			ſ
Date LirqA Time	qoT	Botton	Nitrite	D. O., D. O.,	P.P.M. 0. D.,	D.O. D.O.	P.P.M.	M.T.Q.Y.C.	Demano Demano P.P.M.	agyxU 9d102dA Tossid	D.P.M.	Demand Demand P.P.M.	nsgyzO edrosdA evlossi U	nagyzO M.T.T Mayzen	Demand P.P.M.	adrosdA bissolve	Oxygen.	, M. J. J. M. J. J. M. J. M M. J. M. J	edroadA evloadid	Dxygen.	Pemana P.P.M.	evlozei GenuxO	Oxygen,	Penamical Dxygen	Absorbed
610.45 /	.м. 22.0	22.0	0.06	5.95	:	5.95	:	5.91			5.87		5	83					. 5.6	83 :		5.5			1 .
612.45	20.7	5 21.0	:	5.65	.30	5.65	.30	5.85	.06	.24	5.81	•06	.24 5	.81	.02	28 5	. 81	11	16 5.8	81	02 .2	80 20 20		20.22	
6.2.45	20.0	20.0	:	5.45	.50	5.49	.46	5.81	.10	.40	5.77	.10	.40 5	77.	.06	44 5		18 .	32 5.	77	06 .4	4 5.7)6 .4	4
6 4.45	19.5	19.5	:	5.09	.86	5.17	.78	5.65	.26	3 09.	5.61	.26	.60 5	.49	.34 .	52 5	. 57	38	48 5.4	49	34 .5	2 5.5	 8		9
6 6.45	18.7	5 18.75	:	4.02	1.93	4.22	1.73	4.85	1.06	.87	4.77	1.10	.83 4	.77 1	. 06	87 4	77 1.	18	75 4.	77 1.	3. 90	37 4.8	9. 92	96. 26	9
6 8.45	18.0	18.0	÷	3.10	2.85	3.38	2.57	4.66	1.25	1.60 4	4.63	1.14	1.71 4	.63 1	.20 1.	.65 4	63 1.	32 1.	53 4.(63 1.	20 1.6	5 4.6	33 1.5	20 1.6	22
610.45	17.5	17.5	:	2.79	3.16	2.86	3.09	4.66	1.25]	; 16.1	4.66	1.21	1.95 4	.66 1	.17 1.	99 4	.66 1.3	29 1.	87 4.(66 1.	17 1.9	9.4.(36 1 .	1.9	Ð
7 8.45	14.0	14.5	÷	1.11	4.84	1.15	4.80	6.29 -	38	5.22	6.21 -	34	5.18 6	.21	.38 5.	.22 6	.17 —.	22 5.	06 6.1	29	46 5.3	30 6.5	`. 63	10 5.3	8
7 10.45	14.0	14.0 -	0.11	1.15	4.80	0.80	5.15	6.49 -	58	5.38 (3.45 –	58	5.38 6	.45 —	.62 5.	42 6	.41	46 5.	26 6.4	49	66 5.4	l6 6.5	13	74 5.5	14
																									1
			0)xygen	\mathbf{Dema}	nd Dilu	tion 1	in 100) at 37.	5° C.															
				Diss	olved	Solids			Potal Sc	sbild						t									
			Ę	Dissolv	ved · (Oxygen	, C	Diss(plved	Oxygei	(97					,									
			nay	P.P.N	i i	P.P.M.	Luay	P.P.	M.	P.P.M	đ. •				Tota	Ū.	issolved	Susp	ended	Settle	70				
			Int	7.00	<u> </u>	:	Int	. 6.	84	:		Solids.			908		812	, õ	9	0					
			1	6.61		.39	1	5.	97	.87		Organ.	ic		362		276	ōŌ	9	:					
		• 1		5.85		1.15	2	4.	67	1.87		Oxyge.	n Consu	med.	42		27	1.	5	:					
				5.85		1,15	3	4	26	1.87									,						
		4, 41		5.55 7 07		1.45	4		67 e7	2.17															
				5.0		06.I			20	2.11															

President Boraugh of Richmond Fre Nº TO Bureau of Engineering, Sewage no Table 12-13 EAPCriment Station computer . .. MADE IN CONNECTION WITH 25.0.051100 .01 0.84 9.602 CHECKEN _____ DATE April 6 ING. Dilution 1:20 fresh Water April3 Exp Nº69 Suspended Solids 96 P.P.M Oxygen Consumed 42 P.P.M. Tempt. 22°C to 14°C Two electric fons 5 4 3 7 Ø 2 Ø. 25 5 10 15 20 Hours

TABLE NO. 13-ABSORPTION OF OXYGEN.-EXPERIMENT NO. 72.

Fresh Water of April 10.

Dilution 1 in 20.

Two Electric Fans.

ſ

		Tempe	srature			Bot	tles			inface			Foot		8	Feet		3	Feet	}	4	Feet	}	5	Feet	ſ
	•		ſ	Ę	Ľ	nk	20° Inc	ubator	י יו יו	ə t	pa t	r pe	99 U	pa u	u pə	99 0	pə u	ןי ים הפו	əs u	pə pə u	'] 'u	98 U	par par	ʻu	98	pəc uz
Date InqA	amiT	qoT	Botton	witrite	D.O.	D, D, M,	ъ. о., ј	D. D. N.	Dissid Dissolven M.A.A	oxygen Increas	193 YrO ArosdA	Dissolve M,9,9,0 M,9,9	юхуден көтэлІ	Absorb	vlossiU ByxrO M. J. J	Охуде: Іпстеа:	orved Absorb	Dissory Oxyge P.P.M	Oxyge Increa	Oxyge Absorb Vloseid	Oxyge M.q.q	атрада Глегея	Apseid Aloseid	A.T.T.	Increa	Absorb
19	10 A.M.	61	19.5	0.06	7.32		7.32		7.32		:	7.32			7.32			7,32 .		7	28		7	.30 .	:	÷
12	12	19	19		7.16	.16	7.16	.16	7.16	.16	0	7.16	.16	0	7.16	.16	0	7.16	.16	0 7	.08	.20 —	.04 7	.12	.18 —	.02
12	5	18	18.75		6.83	.49	6.83	.49	6.83	.49	0	6.83	.49	0	6.83	.49	0	6.83	.49	0 6	.83	.45	.04 6	.79	.51 —	02
12	4	18	18	-	6.51	.81	6.43	68.	6.43	- 68.	08	6.35	- 26.	16	6.35	- 26.	11	6.35	- 26.	11 6	.33	- 95	.14 6	.35	.95 —	.14
12	9	17	17.5	:	5.87	1.45	5.79	1.53	6.03	1.29	.16	6.03	1.29	.16	6.03	1.29	.16	6.03	1.29	.16 6	.03 1	.25	.20 6	.03 1	.27	.18
12	oc	17	17.0	-	5.31	2.01	5.31	2.01	5.87	1.45	.56	5.91	1.41	.60	5.79	1.53	.48	5.79	1.53	.48	1 67.9	49	.52 4	. 79	.51	.50
12	10	16.75	16.75	-	5.15	2.17	5.03	2.29	5.79	1.53	.64	5.75	1.57	.60	5.79	1.53	.54	5.79	1.53	.54 5	1 61.1	.49	.68	1 62.9	.51	.66
12.	12	16	16.5	:	4.78	2.54	4.78	2.54	5.67	1.65	.89	5.63	1.69	.85	5.63	1.69	.85	5.67	1,65	3 68.	.49 1	64.1	.75 8	6.63]	.67	.87
13	67	15.5	16	-	4.54	2.78	4.54	2.78	5.67	1.65	1.13	5.67	1.65	1.13	5.63	1,69	1.09	5.71	1.61	1.17 8	1 12.9	.57 1	.21	. 11 .	.59 1	1.19
13	4	15	15.5		4.22	3.10	4.02	3.30	5.87	1.45	1.65	5.83	1.49	1.61	5.71	1.61	1.49	5.79	1.53	1.57 £	.71 1	1.57 1	53	. 79	. 13.	1.59
13	9	15	15	:	3.86	3.46	3.70	3.62	5.79	1.53	1.93	5.79	1.53	1.93	5.79	1.53	1.93	5.71	1.61	1.85 {	. 79 1	1.49 1	3 26.	5.75	. 55]	1.91
13	80	14.5	14.5	:	3.86	3.46	3.54	3.78	5.83	1.49	1.97	5.79	1.53	1.93	5.79	1.53	1.93	5.87	1.45	2.01 {	.79 1	1.49 1	97	2.87	.43 2	2.03
13	10	14.5	14.5	0.12	3.66	3.66	3,38	3.94	5,95	1.37	2.29	5.95	1.37	2.29	5.95	1.37	2.29	5.95	1.37	2.29	5.95 1	1.33 2	33	5.95	. 35	2.31
									0																	

Settled	.5 cc	
Suspended	126 106 22	
Dissolved	916 316 40	
Total	, 422 62	
	Solids Organic Solids Oxygen Consumed	

	Total	Solids	Dissolved	Solids
	Dissolved	Oxygen	Dissolved	Oxygen
\mathbf{Day}	Oxygen	\mathbf{Demsnd}	Oxygen	Demand
Int	6.92	:	7.08	
1	5.31	1.61	6.11	.97
2	4.57	2.35	5.62	1.46
8	4.49	2.43	5.54	1.54
4	4.29	2.63	5.46	1.62
5	2.91	4.01	5.58	1.50

Fresident Borough of Richmond Exp 72 Bureau of Engineering Sewage ____ Kon Table 13____ Exp. C.F. LED. Lett. St. 9 + 10.12 COMPUTER. COMPUTER. CONNECTION WITH OKSORDITION 87 014 9 CM CHECKER ____ DATE April 12 106.

Dilutian 1:20 fresh water April 10 Exp 71 Suspended Solids 128 P.RM Oxygen Consumed 62 P.P.M. Tempt 196 to 1456

Two Electric fons

President of Borough of Richmond; Burcau Average of Nas	772
of Engineering; Sewage Experiment Station Toble No	2/3
	h
CONNECTION WITH Absarbtion of Oxygen checker DATE April 12	1016

Dilution 1:20 fresh water Two Electric fans blowing on surface making ripple obt. 1/2" Average Temperistare 1886at Six observations

Dilution 1	in 30	Taj	p Water	El	ectric Fan	Blowing	D	epth 4 ft.
				Tank	No. 9	Bot	tles	
Date, Febru- ary	Time	Temper- ature °C.	Nitrites	Dissolved Oxygen, P.P.M.	Oxygen Demand, P.P.M.	Dissolved Oxygen, P.P.M.	Oxygen Demand, P.P.M.	Oxygen Absorbed
2 2 2 2 2 2 2 2 2 2	$\begin{array}{c} 10.30\\ 11.30\\ 1.30\\ 6\\ 7.30\\ 9.30\\ 11.30\\ 8.30\\ 10.20\\ \end{array}$	$22\frac{1}{4}$ 22 $19\frac{1}{2}$ 19 18 17 17 16 13 12	0.06	$\begin{array}{c} 6.04 \\ 6.04 \\ 5.92 \\ 5.79 \\ 5.75 \\ 5.84 \\ 5.84 \\ 5.84 \\ 6.61 \\ 6.81 \end{array}$	$\begin{array}{c} & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$	$\begin{array}{c} 6.08 \\ 6.08 \\ 5.75 \\ 5.59 \\ 5.14 \\ 5.06 \\ 4.90 \\ 4.73 \\ 4.16 \\ 4.08 \end{array}$	$\begin{array}{c}\\ 0\\\\\\\\\\\\ 1.02\\ 1.18\\ 1.35\\ 1.92\\ 2.00 \end{array}$	$\begin{array}{c} 0 \\ .21 \\ .24 \\ .65 \\ .82 \\ .98 \\ 1.15 \\ 2.49 \\ 2.77 \end{array}$

TABLE NO. 14—Absorption of Oxygen.—Experiment No. 51.

	Solids	Oxygen Dema	and, Dilution	1 in 100 at
0-441-4	I Otal Currended - Weletile		Dissolved	Oxygen
	98 P.P.M. 84 P.P.M.	Day	Oxygen	Demand
Oxygen C	Consumed, 54 P.P.M.	$\begin{array}{c} \text{Int}\\ 1 \\ \end{array}$	$\begin{array}{c} 7.18 \\ 6.00 \end{array}$	$0.08 \\ 1.18$

Sewage Experiment Station at West Brighton	- Exp Nº 51
Oxygen absorbed by sewage diluted with Fresh Water	90 ACC Table Nº 14
Fan blowing an surface computer	FROM TO
CONNECTION WITH Oxygen absorption tests CHECKER	- DATE

Tank Nº9 Fan blowing Dilution 1:30 Fresh Water Depth 4ºft. Suspended Solids 98 P. P.M. Oxygen consumed 54 P. P.M. Temp. 224° to 13.0°C.

Dilution 1	1 in 30	Fr	esh Water	: Е	lectric Fa	n Blowing	D	epth 3 It
				Ta	nk	Bot	tles	
Date, Febru- ary	Time	Temper- ature ° C.	Nitrites	Dissolved Oxygen, P.P.M.	Oxygen Demand, P.P.M.	Dissolved Oxygen, P.P.M.	Oxygen Demand, P.P.M.	Oxygen Absorbed
14	10.30	19	0.07	5.92		5.92		
14	11.30	18.5		5.92	0	5.92	0	0
14	1.30	18		5.75	.17	• 5.71	. 21	0.04
14	3.30	16.5		5.55	. 37	5.39	. 53	. 16
14	5.30	15.5		5.22	.70	4.93	. 99	. 29
14	7.30	14.5	0.12	4.81	1.11	4.20	1.72	.61
14	9.30	14		4.69	1.23	3.79	2.13	. 90
14	11.30	13		4.69	1.23	3.59	2.33	1.10
15	8.30	9.5	0.17	5.22	. 70	2.53	3.39	2.69
15	10.30	8.5		5.22	.70	2.37	3.55	2.85
0	D	1 -4 97 50 0		<u> </u>				

TABLE NO. 14—Absorption of Oxygen.—Experiment' No. 53.

Oxygen Demand at 37.5° C. Dilution 1 in 100 Dissolved Oxygen Oxygen, P.P.M. 7.14 5.10 Day Demand, P.P.M. Int.... $2.04 \\ 2.28 \\ 2.90$ 1..... $4.86 \\ 4.24$ 2..... 3..... $2.98 \\ 2.98 \\ 2.98$ 4.164.... 5..... 4.16

Solids Suspended Volatile Ash Settling 154 P.P.M. 136 P.P.M. 18 P.P.M. 0.8 c.c. Oxygen Consumed, 81 P.P.M.

Sewage Experiment Station at West Brighton	4	، مربد : محمد	er/m	ent Nº 53	•
Oxygen absorbed by sewage diluted with Fresh Water	,	.cc	. x	95	
		FROM	Ta	blende 14	\$
CONNECTION WITH Oxygen absorption tests CHECKER-		DATE	F	eb. 14 1016	5

Fan blowing .

Dilution 1:30 Fresh Water Depth 3.0ft Suspended Solids 154 F. P. M. Oxygen consumed 136 P.P.M Temp 190° to 8.5°C.

	_:			Tank	No. 7	Bot	tles	
Date, Febru- ary	Time	Temper- ature °C.	Nitrites	Dissolved Oxygen, P.P.M.	Oxygen Demand, P.P.M.	Dissolved Oxygen, P.P.M.	Oxygen Demand, P.P.M.	Oxygen Absorbed
24	11 а.м.	22	0.09	6.49		6.49		
24 24	1 р.м. 2	$\frac{22}{21}$	••••	6.28	.21	6.28 5.84	.21	0
24	5	20 20		5.46	1.03	5.22	1.27	.24
24	7	19.5	• • • •	5.30	1.19	4.98	1.51	.32
24	11	19		$5.30 \\ 5.22$	$1.19 \\ 1.27$	4.05	1.04 2.16	. 89
25	9 а.м. 11	$15.5 \\ 15.5$		$5.71 \\ 5.79$.78	3.22 3.10	$3.27 \\ 3.39$	$\begin{array}{c} 2.49 \\ 2.69 \end{array}$

TABLE NO. 14—ABSORPTION OF OXYGEN.—EXPERIMENT NO. 54.

Dilution 1 in 30 Fresh Water Wind Blowing Directly on Surface Depth 5 ft.

	(Dxygen D	emand					
	Total at 3	Solids 7½°	Dissolve at 3	d Solids 7½°		Soli	ids	
	Dissolved	Oxygen	Dissolved	Oxygen	Total	Dissolved	Suspended	1 Settled
Day	Oxygen,	Demand,	Oxygen,	Demand,	822	710	112	0.3 c.c.
	P.P.M.	P.P.M.	P.P.M.	P.P.M.		Organic	Matter	
Int	6.73	: • : :	6.90	··::	Tota1	Disso	lved Su	spended
1	5.67	1.06	6.20	. 70	362	27	6	86
2	5.39	1.34	6.08	.82	002	21	ů.	00
3	4.98	1.75	5.87	1.03		Oxygen C	onsumed	
4	4.89	1.84	5.81	1.09	Total	Disso	lved Su	spended
5	4.51	2.22	5.77	1.13	52	40)	12

President. Borougn of Richmond Experiment H254 Bureau of Engineering, Semage Rec Table Nº 14 Experiment Station computer. IROM TO Dilution 1:30 fresh Water Suspended Solids 112 PPM Oxygen Consumed 52.8.PM Temp 22°C to 15.5C

Wind Blowing on Surface Waves 1/2"

TABLE NO. 15—ABSORPTION OF OXYGEN.—EXPERIMENT NO. 55. Wave Movement Depth 5 ft. Dilution 1 in 30 Fresh Water Tank No. 9 Bottles Nitrites Dissolved Oxygen Dissolved Oxygen Oxygen Temper-Date, Time Oxygen, Demand, Oxygen, Demand, Absorbed P.P.M. P.P.M. P.P.M. P.P.M. Februature °Ĉ. ary $\begin{array}{c} 21.5\\ 21.5 \end{array}$ 24..... 11 А.М. 0.0857.06 6.94-.04 .17.217.10 6.77 24..... 1 р.м.78 6.2824..... 3 21.07.18-.12.66 24. 20.57.02+.045.721.221.18 $\mathbf{5}$ 24..... 7 20.0 $\begin{array}{c} 7.02 \\ 7.92 \end{array}$ 5.46 $\begin{array}{c} 1.48 \\ 1.96 \end{array}$ $\begin{array}{c} 1.44 \\ 2.82 \end{array}$ +.04. . . . 4.9824..... 9 19.5—.86 -1.354.772.173.5224..... 19.08.4111 3.19 25.... 9 А.М. 16.50.14 7.51-.453.753.6425..... 3.274.3911 16.58.08 -1.023.67. . . . Oxygen Demand at 37.5°. Dilution 1 in 100 Total Solids Dissolved Solids Solids Dissolved Suspended Settled 710 112 0.3 c.c. Dissolved Oxygen Dissolved Oxygen Total Oxygen, Demand, Oxygen, Demand, P.P.M. P.P.M. P.P.M. P.P.M. 6.73 6.90 Day 822 Organic Matter Int.... Suspended Total Dissolved .70 1.065.676.201..... 36227686 $1.34 \\ 1.75 \\ 1.84$.822..... 5.396.08 Oxygen Consumed 3. 4.985.871.034..... 4.895.811.09**Total** Dissolved Suspended 5...... 4.512.225.775240 1.1312 EXP Nº 55 President Borough of Richmond Bureau of Engineering; Sewage no Table Nº 15 Experiment Station то DATE Feb 29 1016 CONNECTION WITH Absorbtion of Qxygen _CHECKER Dilution 1:30 fresh Water Suspended solids 112 P.R.M. Oxygen Consumed 52 P.R.M. BONIES IN Tank Nove about 4 2 6 agitator not running T Calm surface б, Ŕ 2 3 5 10 15 20 25

Hours

TA	ble No	. 16—Ав	SORPTIO	n of Ox	vgen.—]	Experimi	ENT NO.	59.
Dilution	1 in 40	Fres	h Water	Fan	Blowing	on Surface	e 'De	epth 3 ft.
				Tank	No. 9	Bot	tles	
Date, March	Time	Temper- ature ° C.	Nitrites	Dissolved Oxygen, P.P.M.	Oxygen Demand, P.P.M.	Dissolved Oxygen, P.P.M.	Oxygen Demand, P.P.M.	Oxygen Absorbed P.P.M.
3 3 3 3 3 3 4 4	$\begin{array}{c} 10.30\\ 12.30\\ 2.30\\ 4.30\\ 6.30\\ 8.30\\ 10.30\\ 8.30\\ 10.30\\ \end{array}$	$\begin{array}{c} 20\\ 19.5\\ 18.5\\ 17.0\\ 15.5\\ 15.5\\ 15.5\\ 15.5\\ 10.0\\ 9.5 \end{array}$	0.10	$\begin{array}{c} 7.39 \\ 7.39 \\ 7.39 \\ 7.35 \\ 7.47 \\ 7.55 \\ 7.43 \\ 8.65 \\ 8.93 \end{array}$	$\begin{array}{c} & & & \\$	$\begin{array}{c} 7.35\\ 7.15\\ 7.06\\ 6.94\\ 6.86\\ 6.82\\ 6.54\\ 6.09\\ 5.68\end{array}$	$\begin{array}{c} .20\\ .29\\ .41\\ .49\\ .53\\ .81\\ 1.26\\ 1.67\end{array}$	$\begin{array}{c} .20\\ .29\\ .37\\ .57\\ .69\\ .85\\ 2.52\\ 3.21 \end{array}$
Fan	stopped C Total	from 8.30 Dxygen Der Solids	to 10.30 : mand at Dissolve	р.м. 37.5° ed Solids		Sol	ids	
Day	Dissolve Oxygen, P.P.M.	d Oxygen Demand, P.P.M.	Dissolved Oxygen, P.P.M.	d Oxygen Demand, P.P.M.	Total 732	Dissolved 640 Organic	Suspended 92 Matter	I Settled 0.5 c.c.
Int 1 2 3 4 5	. 6.82 . 5.89 . 5.52 . 5.36 . 5.30 . 5.30	$\begin{array}{r} .93 \\ 1.30 \\ 1.46 \\ 1.52 \\ 1.52 \end{array}$	$egin{array}{c} 6.90 \\ 6.21 \\ 6.09 \\ 5.93 \\ 5.77 \\ 5.77 \end{array}$.69 .81 .97 1.13 1.13	Total 410 Total 50	Dissolv 34 Oxygen C Disso 3	ed Su 0 Consumed olved Su 7	spended 70 spended 13
MAL	BULLOU Tempt 26	Dilutio Suspense Oxygen One d	tation tation (an of) (an solution (and solution (and solution) (and solution) (L DI O. G. G.		able Nº. 10 Morch 3 Depth 3 /	5 10 6 <i>L f</i>
	4		Ten	*Berafure	41 7 2		/ 15°	
,	3 2 1		-0	to and grands 10-12	ap ³⁰ ^{obid} f ^{ro;} - Bogele 1 -		,10°	
			Hour	3 ~~~	Stat +			

April 19. Two Faus blowlie April 19. I Foot 2 Feet 3 Feet 4 Feet 5 Feet ace 1 Foot 2 Feet 3 Feet 4 Feet 5 Feet in Oxygended 0 xygended 1 norrease 4 Feet 5 Feet 5 Feet in Oxygended 0 xygended 0 xygended 1 norrease 6 Feet 5 Feet in Oxygended 0 xygended 0 xygended 1 norrease 1 norrease 5 Feet 5 Feet in Oxygended 0 xygended 0 xygended 1 norrease 1 norrease 5 Feet 5 Feet 5 Feet in Oxygended 0 xygended 0 xygended 1 norrease 1 norrease 5 Feet 5 F	читвос 1 Тоо. Гала Истевае Теец 3 Теец 3 Теец 5 5 Teet 5 5 Teet 5 5 Teet 5						(ABLE	No.	17	ABSC	RPTI	O NO	F O3	ХУGE	и.— Н	EXPE	RIME	NT N	0. 73.					i		
Action I Foot 2 Feet 3 Feet 4 Feet 5 Feet<	Titlee 1 Toot 2 Feet 3 Teet 4 Feet 5 Feet	Water from Kill Von Kull to be used for Diluting Sewag	rom Kill Von Kull to be used for Diluting Sewag	ll Von Kull to be used for Diluting Sewag	Kull to be used for Diluting Sewag	o be used for Diluting Sewag	ed for Diluting Sewag	Diluting Sewag	g Sewag		ce Apr	1 19.												Two F	ans Bl	owing	
Increase Increase Main Constraint Oxygen Main	Increase Oxygen 04 5.78 0.045 0.045 0.045 0.045 05 0.11 0.05 0.04 0.05 0.04 0.05 05 0.12 0.14 5.18 0.04 0.05 5.66 0.1 0.05 05 0.40 5.05 0.41 0.34 5.08 0.1 0.05 0.04 05 5.66 -112 0.4 5.05 5.74 0.05 5.66 0 0.05 0.04 0.05 5.66 0 0.05 0.04 0.05 5.66 0 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.05	Temperature Bottles Sur	berature Bottles Sur or	e Bottles Surf	Bottles Sur	Bottles Sur	ttles Surf	Surf	Surf	51	ace		ī	Foot		61	Feet		ŝ	Feet		41	reet		5 I	eet	
Interess CAYPERIA 0 Absorbe OxyVert 0 Dissolve OxyVert 0 Dissolve OxyVert 0 Dissolve OxyVert 0 OxyVert OxyVert 1 Increase OxyVert 0 OxyVert OxyVert 1 Increase OxyVert 1 OxyVert OxyVert 1 OxyVert OxyVert 1 OxyVert OxyVert 1 OxyVert OxyVert 1 32 5.85 1 32 5.86 1 0.50 5.74 5.66 1 0.58 5.56 OxyVert 1 0.59 5.66 OxyVert 1 0.59 5.74 0xVert <td< th=""><th>Absorber Oxygen Dissolved Dissolved Absorber Oxygen Dissolved Dissolved Dissolved Absorber Dissolved Dissolved Dissolved Dissolved Bissolved E B D Dissolved Dissolved Bissolved E</th><th>Tank 20° Incubator</th><th>mank 20° Incubator</th><th>" Tank 20° Incubator Tank 20° Incubator</th><th>Tank 20º Incubator</th><th>ank 20° Incubator</th><th>20° Incubator</th><th>tbator 2</th><th>נ יו יו</th><th>ίτ</th><th>ə</th><th>} pa t</th><th>י ו יי חי</th><th>ə t</th><th>γ γ</th><th>r, pe</th><th>Э т</th><th>p;</th><th>, pq</th><th>9 T</th><th>p: p:</th><th></th><th>a</th><th>pa p</th><th></th><th>า อ</th><th>1 -</th></td<>	Absorber Oxygen Dissolved Dissolved Absorber Oxygen Dissolved Dissolved Dissolved Absorber Dissolved Dissolved Dissolved Dissolved Bissolved E B D Dissolved Dissolved Bissolved E	Tank 20° Incubator	mank 20° Incubator	" Tank 20° Incubator Tank 20° Incubator	Tank 20º Incubator	ank 20° Incubator	20° Incubator	tbator 2	נ יו יו	ίτ	ə	} pa t	י ו יי חי	ə t	γ γ	r, pe	Э т	p;	, pq	9 T	p: p:		a	pa p		า อ	1 -
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Top port Bottom Bottom Nitrife N. 9. 0. N. 9. 0. P. P. M. P. P. M. D. 0. D. 0.	Bottom Bottom Nitrite P.P.M. D.O. D.O. D.D. D.Ssolut. Dissolut. Dissolut. D.N. D. D. D. D. D. D. D. D. D. D. D. D. D.	Nitrite P.P.M. P.P.M. P.P.M. P.P.M. D.O. D. D.Sesuld. P.P.M. P.P.M. P.P.M. P.P.M.	DXX80 DXX80	P.P.M. P.P.M. P.P.M. D.O. D.O. D.O. D.O. D.O. D.SYgei D.O. D.Sygei P.P.M.	D. O. D. O. D. P. M. Dissolvi Oxygen Oxygen P. P. M.	O. D. Dissolve Dissolve P.P.M. P.P.See	Uissolve Oxyger M.q.q M.g.d	Oxygen	Lncreas	Absorbe	M. J. S. M.	гэзүхО Глегеаз	Oxyger Absorbe	ovloseid 193yxO M.q.q	охуgен Глегеаз	193VXO Absorbe	M. q. q	Increas	odrozdA ovlozziO	M. T. T. M.	Increas	edroedA evloesiU	M.J.G. M.J.G	Increas Oxyger	
	04 20 5.66 12 .04 5.62 10 .06 5.74 06 2.5 5.86 .01 .20 5.74 .06 .22 5.86 .00 .13 16 .32 5.82 .04 .20 5.74 .02 .18 5.86 .04 .20 5.74 .06 .22 5.86 .20 .33 20 .40 5.90 .12 .32 5.86 .14 .34 5.94 .28 .4 .26 .24 .26 .28 .4 .28 .4 .28 .4 .28 .4 .28 .4 .28 .4 .28 .4 .28 .26 .30 .50 .50 .26 .38 .1 .28 .6 .1 .40 .59 .28 .41 .46 .78 .26 .31 .1 .51 .29 .56 .51 .26 .56 .21 .56 .56 .56 .56 .56 .56 .56 .56 .56 .56 .56 .56	0.A.M. 23 23 0.09 5.82 5.82 5.82	23 0.09 5.82 5.82 5.82 .	0.09 5.82 5.82 5.82 .	5.82 5.82 5.82 .	5.82 5.82 .	5.82 5.82 .	5.82 .	5.82 .	•	:		5.78		:	5.72			5.82 .		: 5	68		. 5.	99		
	16 .32 5.82 .04 .20 5.74 .02 18 5.86 .14 .34 5.94 .12 .32 5.86 .20 .3 20 .40 5.90 .12 .32 5.86 .14 .34 5.94 .12 .32 5.86 .20 .3 32 .52 5.94 .22 .40 5.94 .28 .14 .34 5.94 .28 .4 .33 .52 5.94 .22 .40 5.94 .28 .4 .40 .594 .28 .4 .594 .28 .4 .40 .594 .28 .4 .40 .594 .28 .4 .59 .58 .4 .40 .59 .50 .40 .51 .46 .78 .50 .56 .16	0 21.5 21.5 5.66 .16 5.74 .08 5.86	5 21.5 5.66 .16 5.74 .08 5.86	$5 \dots 5.66 \dots 16 \dots 5.74 \dots 08 \dots 5.86$	5.66 .16 5.74 .08 5.86	.16 5.74 .08 5.86	5.74 .08 5.86	.08 5.86	5.86		.04	.20	5.66 -	12	.04	5.62 -	10	.06	5.74 -	.08	08 5	58 —.	10	06 5.	. 99	0	_
20 .40 5.90 .12 .32 5.86 .14 .34 5.94 .12 .32 5.82 .14 .34 5.94 .28 .30 .50 .20 .36 .30 .50 .24 .28 .36 .37 .36 .37 .37	20 .40 5.90 .12 .32 5.86 .14 .34 5.94 .12 .32 5.82 .14 .34 5.94 .38 .4 32 .52 5.98 .20 .40 5.94 .22 .42 6.02 .20 .40 5.98 .30 .50 6.02 .36 .1 32 .64 6.14 .36 .68 6.02 .30 .62 6.10 .28 .60 0.14 .46 .78 6.22 .56 .1 48 .80 6.18 .50 .82 6.34 .68 1.0 1.54 6.63 .85 1.42 6.53 .81 1.38 6.47 79 1.36 6.63 .97 1.1 97 1.54 6.67 .89 1.66 6.63 .91 1.68 6.71 .89 1.66 6.63 .95 1.72 6.71 1.05 1.1 97 1.74 6.67 .89 1.66 6.63 .91 1.68 6.71 .89 1.66 6.63 .95 1.72 6.71 1.05 1.1 7.04al Supended Discolved Settled Solids 17,330 29 1.7,301 0.rganic 6.300 12 6.288 29 20 2.12 6.21 1.05 1.1 50 2.12 6.67 1.00 12	$0 21 21.5 \ \dots \ 5.66 .16 \ 5.66 .16 \ 5.98$	21.5 5.66 .16 5.66 .16 5.98	i 5.66 .16 5.66 .16 5.98 .	5.66 .16 5.66 .16 5.98	.16 5.66 .16 5.98	5.66 .16 5.98	.16 5.98	5.98		16	.32	5.82	.04	.20	5.74	.02	.18	5.86	.04	20 5	74	. 90	22 5.	86	20	. U U
23 52 5.98 .20 .40 5.94 .22 .42 6.02 .20 .40 5.93 .30 .50 6.02 .36 22 .64 6.14 .36 .68 6.02 .30 .42 6.10 .28 .60 6.14 .46 .78 6.22 .56 18 .80 6.30 .62 6.30 .43 .80 6.14 .46 .78 6.22 .56 17 1.54 6.63 .81 1.38 6.47 .79 1.36 6.63 .97 1 77 1.54 6.67 .89 1.66 6.63 .91 1.68 6.71 .89 1.72 6.71 1.05 1	.32 .52 5.98 .20 .40 5.94 .22 .42 6.02 .36 .16 .38 .64 6.14 .36 .68 6.02 .30 .62 6.14 .46 .78 6.22 .36 .8 .43 .80 6.14 .36 .02 .30 .62 6.10 .28 .60 6.14 .46 .78 6.22 .56 .8 1.0 .44 .80 6.30 .62 .83 1.40 6.63 .81 1.38 6.47 .79 1.36 6.63 .97 1.1 .97 1.54 6.63 .91 1.68 6.71 .89 1.66 6.63 .91 1.66 1.5 .57 .51 1.93 1.66 1.166 1.5 .50 1.72 6.71 1.05 1.1 .97 1.74 6.67 .89 1.66 6.63 .91 1.66 6.63 .97 1.26 1.1 1.05 1.1 .97 1.74 6.67 .89 <td< td=""><td>0 20.5 21 5.62 .20 5.62 .20 6.02</td><td>$5 \ 21 \ \dots \ 5.62 \ .20 \ 5.62 \ .20 \ 6.02$</td><td>$\dots 5.62 \dots 20 5.62 \dots 20 \dots$</td><td>5.62 . 20 5.62 . 20 6.02</td><td>.20 5.62 $.20$ 6.02</td><td>5.62 .20 6.02</td><td>.20 6.02</td><td>6.02</td><td></td><td>.20</td><td>.40</td><td>5.90</td><td>.12</td><td>.32</td><td>5.86</td><td>.14</td><td>.34</td><td>5.94</td><td>.12</td><td>32 5</td><td>. 82</td><td>14 .</td><td>34 5.</td><td>94 .</td><td>28</td><td>T</td></td<>	0 20.5 21 5.62 .20 5.62 .20 6.02	$5 \ 21 \ \dots \ 5.62 \ .20 \ 5.62 \ .20 \ 6.02$	$\dots 5.62 \dots 20 5.62 \dots 20 \dots$	5.62 . 20 5.62 . 20 6.02	.20 5.62 $.20$ 6.02	5.62 .20 6.02	.20 6.02	6.02		.20	.40	5.90	.12	.32	5.86	.14	.34	5.94	.12	32 5	. 82	14 .	34 5.	94 .	28	T
23 .64 6.14 .36 .68 6.02 .30 .62 6.10 .28 .60 6.14 .46 .78 6.22 .56 18 .80 6.30 .62 .80 .41 .46 .78 6.23 .56 17 1.54 6.63 .82 1.40 6.63 .81 1.38 6.47 .79 1.36 6.63 .97 1 17 1.54 6.67 .89 1.66 6.63 .91 1.66 6.63 .97 1.05 1 105 1 1.05 1	32 (4 6.14 36 68 6.02 30 (52 6.10 28 60 0.14 46 78 6.22 56 1 48 80 6.30 62 394 6.02 30 62 6.30 48 80 6.18 50 82 6.34 68 11 97 1.54 6.63 85 1.42 6.55 83 1.40 6.63 81 1.38 6.47 79 1.36 6.63 97 1. 97 1.74 6.67 89 1.66 6.63 91 1.68 6.71 89 1.66 6.63 95 1.72 6.71 1.05 1. 70 1.73 0.52 1.72 6.71 1.05 1. 71 1.05 1. 72 1.73 1.30 29 1.72 6.71 1.05 1. 73 1.73 1.73 1.73 1.73 1. 74 0.17 3.73 29 1.72 6.71 1.05 1. 74 0.17 3.73 29 1.72 6.71 1.05 1. 74 0.17 0.12 6.53 95 1.72 6.71 1.05 1. 74 0.11 5. 75 0.12 0.22 0.71 1.05 1. 75 0.12 0.22 0.52 0.52 0.52 0.52 0.52 0.52 0.5	0 20 20.5 5.62 .20 5.54 .28 6.14 .	$20.5 \ldots 5.62 \ldots 20 5.54 \ldots 28 6.14 \ldots$	· 5.62 .20 5.54 .28 6.14 .	5.62 . 20 5.54 . 28 6.14	.20 5.54 .28 6.14 .	5.54 .28 6.14 .	.28 6.14 .	6.14	•	32	.52	5.98	.20	.40	5.94	.22	.42	6.02	.20	40 5	. 98	30 .	50 6.	02 .	36	
8 .80 6.30 .62 .94 6.02 .30 .62 6.30 .48 .80 6.18 .50 .82 6.34 .68 1 7 1.54 6.63 .85 1.40 6.63 .81 1.38 6.47 .79 1.36 6.63 .97 1 7 1.74 6.67 .89 1.66 6.63 .91 1.68 6.71 .89 1.76 6.71 1.05 1	8 .80 6.30 .62 .94 6.02 .30 .62 6.30 .48 .80 6.18 .50 .82 6.34 .68 1. 7 1.54 6.63 .85 1.42 6.55 .83 1.40 6.63 .81 1.38 6.47 .79 1.36 6.63 .97 1. 7 1.74 6.67 .89 1.66 6.63 .91 1.68 6.71 .89 1.66 6.63 .95 1.72 6.71 1.05 1. 7 1.74 6.67 .89 1.66 6.63 .91 1.68 6.71 .89 1.66 6.63 .95 1.72 6.71 1.05 1. 7 0.13 Suspended Dissolved Settled Solids 17,330 29 17,301 0.rganic 6,300 29 17,301 0.xygen Consumed 12	0 19.5 20 5.50 .32 5.54 .28 6.14 .3	5 20 5.50 .32 5.54 .28 6.14 .3	\dots 5.50 $.32$ 5.54 $.28$ 6.14 $.3$	5.50 .32 5.54 .28 6.14 .3	.32 5.54 $.28$ 6.14 $.3$	5.54 .28 6.14 .3	.28 6.14 .3	6.14 .3:	ŝ	~	- 19	6.14	.36	.68	6.02	.30	.62	6.10	.28	9 09	14	46 .	78 6.	22	56 .	
7 1.54 6.63 .85 1.42 6.55 .83 1.40 6.63 .81 1.38 6.47 .79 1.36 6.63 .97 1 7 1.74 6.67 .89 1.66 6.63 .91 1.68 6.71 .89 1.66 6.63 .95 1.72 6.71 1.05 1	7 1.54 6.63 .85 1.42 6.55 .83 1.40 6.63 .81 1.38 6.47 .79 1.36 6.63 .97 1. 7 1.74 6.67 .89 1.66 6.63 .91 1.68 6.71 .89 1.66 6.63 .95 1.72 6.71 1.05 1. A 1.74 0.67 .89 1.66 6.63 .91 1.68 6.71 .89 1.66 1.65 1.72 6.71 1.05 1. Total Suspended Dissolved Settled Solids 17,330 29 17,301 Oxygen Consumed 12	0 19 19.5 5.50 .32 5.41 .41 6.30 .4	$19.5 \ldots 5.50 .32 5.41 .41 6.30 .41$	\dots 5.50 .32 5.41 .41 6.30 .4	5.50, 32 , 5.41 , 41 , 6.30 , 43	.32 5.41 $.41$ 6.30 $.41$	5.41 .41 6.30 .4	.41 6.30 .4	6.30 .4	Ŧ.	m	80	6.30	.62	.94	6.02	.30	.62	6.30	.48	80 6	.18	50 .	82 6.	34	68 1.	
37 1.74 6.67 .89 1.66 6.63 .91 1.68 6.71 .89 1.66 6.63 .95 1.72 6.71 1.05 1	37 1.74 6.67 .89 1.66 6.63 .91 1.68 6.71 .89 1.65 6.71 1.05 1. Total Suspended Dissolved Settled Settled Solids 17,30 29 17,301 Organic 6,300 12 6,288 Oxygen Consumed 12	0 16 16.5 5.25 .57 5.33 .49 6.79 .0	16.5 5.25 .57 5.33 .49 6.79 .0	5.25 .57 5.33 .49 6.79 .0	5.25 .57 5.33 .49 6.79 .9	57 5.33 49 6.79 .9	5.33 .49 6.79 .9	.49 6.79 .9	6.79	<u>.</u>	26	.54	6.63	.85	1.42	6.55	83	1.40	6.63	.81 1	38 6	47	79 1.	36 6	63	97 1.	
	TotalSuspendedDissolvedSettledSolids17,3302917,301Organic6,300126,288Oxygen Consumed12Chlorine, 6,200 P.P.M	0 16 16.5 0.12 5.05 .77 5.17 .65 6.79 .6	16.5 0.12 5.05 .77 5.17 .65 6.79 .6	0.12 5.05 .77 5.17 .65 6.79 .6	5.05 .77 5.17 .65 6.79 .9	.77 5.17 .65 6.79 .9	5.17 .65 6.79 .9	.65 6.79 .9	6.79	<u>.</u>	26	1.74	6.67	68.	1.66	6.63	16.	1.68	6.71	. 89	66 6	.63	95 1.	72 6	71 1	05 1.	
	TotalSuspendedDissolvedSettledSolids17,3302917,301Organic6,300126,288Oxygen Consumed12Chlorine, 6,200 P.P.M	Dissolved Oxygen	Dissolved Oxygen	Dissolved Oxygen	olved Oxygen	Oxygen	rgen.																				
	Solids	Day Oxygen Demand P.P.M. P.P.M.	Day Oxygen Demaud P.P.M. P.P.M.	Oxygen Demaud P.P.M. P.P.M.	ygen Demaud ?.M. P.P.M.	Demand P.P.M.	and .M.	*	٠	•								Tot_i	IJ	guspenc	ed	Dissolv	ed S.	ettled			
Total Suspended Dissolved Settled	Organic	Int 5.82	5.82	5.82			:							02	olids.		:	17,3	30	29		17,301	:				
Total Suspended Dissolved Settled Solids 17,330 29 17,301	Oxygen Consumed 12 Chlorine, 6,200 P.P.M.	14.28 1.54	\dots 4.28 1.54	4.28 1.54	28 1.54	1.54	54							Ű)rgani(6,3	00	12		6,285	:	:			
TotalSuspendedDissolvedSettledSolids17,3302917,301Organic6,300126,288	Chlorine, 6,200 P.P.M.	2 4.04 1.78	4.04 1.78	4.04 1.78	04 1.78	1.78	78							Ű)xygen	Consul	med		12	:			:				
TotalSuspendedDissolvedSettledSolids17,3302917,301Organic6,300126,288Oxygen Consumed12	Chlorine, 6,200 P.P.M.	33.64 2.18	$\dots 3.64 2.18$	3.64 2.18	64 2.18	2.18	18																				
TotalSuspendedDissolvedSettledSolids17,3302917,301Organic6,300126,288Oxygen Consumed12		$4, \ldots, 3.23 2.59$ $5, \ldots, 2.75 3.07$	3.23 2.59 2.75 3.07	. 3.23 2.59 2.75 3.07	23 2.59 75 3.07	2.59 3.07	59 07								ą	lorine,	6,200]	P.P.M.	1								

/

A-15 President Borough at Rich mond Exp 73 Bureau of Engineering; Servage Acc Table Nº17 Experiment Station computer CONNECTION WITH ABSORbtion of QAYGER CHECKEN DATE April 17 1016. Salt Water from Rill Van Kull for dilution Exp Nº 14 Suspended Solids 48 PPM Oxygen Consumed 32 PPM Chlorine 6500 PPM Temperature 23° - 16 pc 23. Two electric fans blowing making ripple 1/2 inch Temperature Line 200 16" 15 1.0 O.D Bottles in Tank P.P.M. ī 20 25 5 20 10 15 Hours

1.

ŀ

President Borough of Richmond Exp Nº 75. Bureau of Engineering, Sewage no Table Nº 17 Experiment Station -- TO CONNECTION WITH Absorbtion of Oxygenchecker _____ DATE April 24 116 Salt Mater from Hill Van Hull for Exp Nº 76

Suspended solids 34 P.P.M. Oxygen Consumed II P.P.M. Chlorine 6850 P.P.M. Temperature 21°C to 16°C

Two Electric fans making rupple abt. 1/2"

	Salt V	Water fro	m Kill	for Ex	perimen	nt No.	. 78.																Two	Electric	e Fans.	
ļ		Temp	berature			Bot	tles		02	urface		1	Foot		6	Feet		3	feet		4	Feet		5	Feet	
) ار	s	Tar	1 A	20° Inc	ubator	י יי pa	Э т	pi T	, , pa	อ	pa pa	- -) a	pe pe	, i , ,	ə	p; } p;		а т	ρ p	יי קרו	ə τ	p ι
Date Мау	əmiT	qoT	mottoH	Nitrite	ъ.о., 1.0, 0,	F.P.M.	D. O. J	D. D. N.	Dissolve Dissolve Dissolve	тэдүхО авэтолІ	192VxO Absorbe	Dissolve M.q.q M.q.d	Daygen Increase	nsgyzO edroadA eviossiC	M.q.q M.q.q	Increase	adrosdA PylosedA	M. T. T. M.	restonI	edrosdA evlossiU	M.J.J.	Dxyger Increas	192VxO AtosdA	Dissolve M, q, q M, q, q	Тлсгеда Илсгеда	192 VXO Absorbe
1	10 A.	м. 20.0	20.0	0.06	6.18		6.18		6.18		:	6.18		:	. 10		:	18		9	.18	:		6.18		:
1	12	20.0	20.0	:	6.18	0	6.18	0	6.31	.13	.13	6.26	.08	.08	6.18	.08	.08 6	26	08	08 6	.26	.08	.08	6.26	.08	.08
1	2	19.5	19.5	:	6.10	.08	6.10	.08	6.43	.25	.33	6.26	.08	.16	3.26	.16	.24 6	.31	13	21 6	.31	.13	.21	6.31	.13	21
1	4	19.0	19.25	÷	6.10	.08	6.10	.08	6.51	.33	.41	6.43	.25	.33	3.43	.33	.41 6	.43	25	33 6	.43	.25	.33	6.43	.25	.33
1	9	19.0	19.0	:	6.02	.16	6.10	.08	6.56	.38	.54	6.51	.33	.49 (5 51	.41	.57 6	.56	38	54 6	. 56	.38	.54	6.51	.33	.49
1	90	18.5	18.5	:	6.02	.16	6.06	.12	6.68	.50	.66	6.60	.42	.58	5.51	.41	.57 6	.64	46	62 6	.51	.33	.49	6.56	.38	.54
1	10	18.0	18.0	÷	6.02	.16	5.98	.20	6.76	.58	.74	6.68	.50	.66	9.60	.50	.66	.76	58	.74 6	.64	.46	.62	6.68	.50	.66
2	s	17.0	17.0	:	5.94	.24	5.85	.33	6.97	62.	1.03	6.84	.66	906.	3.84	.74	98 .	.84	.66	9 06.	.84	.66	. 90	6.84	.66	90
5	10	17.0	17.0	0.12	5.85	.33	5.85	.33	7.01	.83	1.16	6.89	1 12.	1.04	3.84	.74 1	9 20.	.89	.71 1	.04 6	68.9	11.	1.04	6.89	11.	1.04
			xygen	Deman	d at 3'	7.5° C]												
		Ď	ay	Dissol	ved	O xy Dem	gen and																			
				יר אר	М.		М.						1				T'ota	_	VISSOLV	ed	Suspen	nded				
		Int	:	9 U	30 1		: 2						й⊂	olids		:	13,71	4 -	13,691	,	83					
		2		.4	-	1.7	12						>0	xygen '	Consur		51.4 I	# 	2°44	<u> </u>	D -					
				4.0	त्त	2.1	14						Ö	hlorine			6,85	0			•					
		4		0.7 .0	.	2.2 2.6	39																			
		···· c		- · ·	2	0.1	0																			

President Borough of Richmond III EXP. Nº 77 Bureau of Engineering; Servage Noc Table 11º 17 Experiment Station commuter From To MARKING WITH Absorbtion of Oxygen CHERCER ONTE May 1 116

1

Salt Water from Kill Van Kull for Exp Nº 78

54spende	& solids E3 PPM.
Oxygen	Consumed 11 P.P.M.
Chlorine	6850 PPM.
Tempt	20°C to 17°C

1

Two electric fans manies supple abt. 1/2"

TABLE NO. 17-ABSORPTION OF OXYGEN.-EXPERIMENT NO. 79.

.

١,

/

Tompereture Bottles Surface I Foot 2 Feet 4 Foet 4 Foet 6 Fleet Tank 20° Inclusture Tank 20° Inclusture 2 Feet 4 Foet 4 Foet 4 Foet 4 Foet 6 Feet 1 Foot 6 Foot 1 Foot 6 Foot		Salt W	ater from Ki	ill Von	Kull fo	ır Expe	sriment	No. 8(Two]	Electric	Eans,	Waves	Z I	. .
Τμμι β Συ 1 Τμμι Γιμικ β Συ 1 Τμμι Γιμικοτο Γ Τμμι Γιμικοτο Γ Τμμι Γιμικοτο Γ Τμμι Γιμικοτο Γ Τμμι Γιμικοτο Γ Τμμι Γιμικοτο Γ Τμμι Γιμικοτο Γ Τμμι Γιμικοτο Γ Τμμι Γιμικοτο Γ Τμμικ Γ Τμμικ Γ Τμμικ Γ Τμμικ Γ Τμμικ Γ Τμμικοτο Γ Τμμκοτο Γ Τμμκοτο Γ Τμμκοτο Γ Τμμκοτο Γ Τμμκοτο Γ Τμμκοτο Γ Τματατα Γ Τματατα Γ Τμμκοτο Γ Τματατασα Γ Τμμκοτο Γ Τμμκοτο Γ Τμμκοτο Γ Τμμκοτο Γ Τμμκοτο Γ Τμμκοτο Γ Τμμκοτο Γ Τμμκοτο Γ			Temperatu	re		Bo	ttles		50	urface		-	Foot		2	Feet	}	3 Ĕ	iet	}	4 Fee	t.	ļ	5 Feet	
Πλή Τ			ů l	ء ا	Ţ	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	20° Inc	ubator	ft pə	99 10	pə. pə u	•"	əs	pə pə u	.1. .1	- ue əs	red bed bed	ua U	nac Dad	'uə pən	980 109 109	pəq uə	M. en, ved	п9; 96в	pəq uə:
	Date VaM	әшіТ	l Top Bottom	Nitrites	D. O. T.	р. D. D.	0. D.,	0. D.,	vlossi U 193VxO M. 	Dxyges Increas	agyzO drosdA vlossiC	Oxyge M.T.T	Increa	agyzU drosdA vloszi <u>U</u>	D TYRE	Oxyge Oxyge	froedA rlossi Dissi Disvi	P.F.A.	D ZYE	Dissol	P. T.	avxO 10sdA	losei DavrO L'A.A	Incre Oxyg	SvxO ToedA
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0		00 00	80 0	20 20 20		5.85		5.85			5.85			.85	:	5.8	55 		. 5.8		:	5.69	÷	÷
	: .	19	8, 22 25 99 99	5	5.85	0	5.69	.16	5.85	0	30	5.85	0	0 5	.85	0	0 5.5	55	0	0 5.8	5 C	0	5.77	.08	.08
	:	<u>1</u> °	91 75 91 7	75	2002		5.69	.16	5.93	.08	3 80.	5.85	0	0 5	.85	0	0 5.5	55	0	0 5.8	5	0	5.85	.16	.16
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$; ; ;	4 -	C 10 22 10	7	r 73	19	5 60	2.5	5.93	.08	20	5.93	.08	.20 5	89.	.04	16 5.8). 68	.1	6 5.8	⁵ 0' 6	4 .IC	5.85	.16	.28
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1 1 c	17 01 17		2012		5 60	25	6.01	.16	32	5.93	.08	.24 5	.93	. 80.	24 5.5). 56	38 .2	4 5.9	.0 0	S. 24	£ 5.93	.24	.40
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$: x a	0 0	0 16 26 10		2 2	16	5 60	25	6.05	.20	36	5.97	.12	.28 5	.97	.12	28 5.5		12 .2	\$ 5.9	7 .1:	2. 32.	\$ 5.97	32	4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$:	o 'ç	J 16 0 10		200 X	66	5.44	7	6.09	.24	.53	5.97	.12	5 IF.	.97	.12	41 5.4	. 26	12 .4	1 5.9	7 T	2	1 5.97	.25	.57
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$:	g 0	10 0 10		5.20	65	5.28	.57	6.21	.36	1.01	6.17	.32	.97 6	1.17	.32	97 6.	17	32 .9	7 6.1	7 .3.	6 0	7 6.17	.45	1.15
Day Day vygen Demand at 37.5° C. Dissolved Oxygen Demand at 37.5° C. Dissolved Oxygen Demand Dissolved Oxygen Demand Dissolved Oxygen Demand Dissolved Oxygen Demand Dissolved Demand Solids		° 01	19.0 19.5	5 0.10	5.20	.65	5.12	.73	6.25	01-	1.05	6.25	.40	1.05 6	.21	.36 1.	01 6.:	21	36 1.0	01 6.2	3	6 1.0	1 6.21	.5	1.1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																	1								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Ö	xygen	Demand	l at 37	7.5° C.																		
P.P.M. P.P.M. P.P.M. Total Dissolved Supended $P.P.M.$ $P.P.M.$ $P.P.M.$ Solids 24.54 24.707 67 1			Dave	Di	solved	Der Ox	ygen nand																		
Int 5.85 Solids 24,007 67 67 1 5.28 .57 0.rganic Solids 10,905 10,877 29 2 4.39 1.46 0.xygen Consumod 11 29 3 3.90 1.95 Chlorine 8,500 5 3.14 2.71 5.56			L ^a y	с ні	P.M.	P.1	P.M.										Total	Щ	Dissolve	d Su	ispende	d			
1 5.28 .57 Urganic pures 4.39 1.46 2 4.39 1.46 Oxygen Constantd 11 3 3.00 1.95 Chlorine 8,500 4 3.29 2.56 5 3.14 2.71			Int	ي. •	5.85	•	:						so c	olids	Colida	-	24,S34 10 006		24,767 10,877		67 50				
2			1	:	5.28		.57						ې ر	Jrganu	Concurs.		11 11		0.01		1				
43.90 1.50 43.29 2.56 53.14 2.71			2	ч (t.39		.46 0f						ں ر)hlorine	memory		8,500				:				
			3		5.90 2.90	- 6	. 90 56																		
			5	::	3.14	1 (1)	5. 17.																		

`

President Borough of Richmond _____Exp. Nº 79 Bureau of Engineering; Senage no Table Nº 17 Experimental Station COMPUTER MOM WADE IN WITH Absorbtion of Dxygen CHECKER_ DATE MOY 8, 1816 Salt Water from Kill Von Kull Used In Exp 80 Suspended Solids 67 PPM. Oxygen Consumed 11 PPM. Chlorine 5500 PPM. Temperature 22° c to 19:5° C One Electric fan making aripple over 3% area of Tont ļ ١ 0.0 Bottles in Tank -0 5 Q. Oxygen Increase 14 Tonk of 5 ff Ø. ×4.9en 100 2-0 5 15 20 25 10 Hours

÷			Absorbed Absorbed		: ;	-1.31	-1.47	-1.47	-1.47	-1.40	1.40	1.55	1		
½ incl	Ref		охудел Грегеаse		: 6	1.23	1.31	- C2- F	1.19 1.12			- 06.0			
Ripple		Ŷ	Dissolved Oxygen, P.P.M.	- -	0.12 10	1.30	1.43	1 .00.1	- 10. 1	- 17.1	01. 1	7.02			-
Fans,			пэзүхО РэdтогdA			21.0	8.0	8.8	8.8	8	6	8.00.			
ectric	Feet		Demand Demand			07.0		, 90 , 90	06.	04.	9 4 9	.65			ided
Two El			Dissolved, Oxygen, P.P.M.	7 67	5. 5	7 42	7 25	7 21	10.1	8 2	60.2	7.02		ł	Susper 32 17
			пэдүхО рэдтогдА			8	8	8	8	8.8		8.			ved 15
) 	3 Feet	ł	Demand Demand		- 91	- 76	39	- 98 99	04 1	49	129	.65		ř	Dissol 27,77 9,2%
•		ļ	Dissolveo Oxygen, .M.A.A	7 67	7 51	7 43	7 35	7.31	7.27	7.18	7.02	7.02		1	tai 762 262 200
		1	пэзүхО РэдтоздА		8	8	8	80	0.08	60.	00	0		Ê	27, 27, 11, 11, 11, 11, 11, 11, 11, 11, 11, 1
	Feet		Demand Demand		16	24	32	36	40	- 49 -	.65	.65			
		F	Dissolvesi , M. T. Y. K. M. J. T. M. J. T	7.67	7.51	7.43	7.35	7.31	7.27	7.18	7.02	7.02			Solids. Consur e
		F	пэзүхО Охудеп		+0 	-04	- 04	04	08	60.	0	0			olids.)rganic)xygen Jhlorin
ays.	l Foot		Охудеп Demand Demand		.12	.20	28	.32	- 40	.49	.65	.65			
'hree di		p	avlossi ,M.J.Y.g. ,M.J.J	7.67	7.55	7.47	7.39	7.35	7.27	7.18	7.02	7.02			
ettle T		(P	nsgyrO ediosdA		04	04	0	0	- 04	04	00	00			
ed to Se	Surface	 'I	охуден Demana . Р. Р. М.		- 12 -	- 20 -	- 24 -	- 28	- 36 -	- 44 -	.65 +	.65 +			
allow		, p	ovlossid mogyzo M.T.T	7.67	7.55	7.47	7.43	7.39	7.31	7.23	7.02	7.02			
No. 82		ubator	₽ .₽.₩. 0. D.,		.04	.16	.24	.28	.82	.40	.73	.81			
riment	ttles	20° Inc	Б. Р. М. [Д. О. О.	7.67	7.63	7.51	7.43	7.39	7.35	7.27	6.94	6.86	U U	gen and M.	· တက္ == ∞ -
n Kull for Experiment No. 82 allowed to Settle Three days.	Bo	h	P.P.M. 0. D.		.08	0.16	0.24	.28	.32	.40	.65	.65	37.5°	Oxy, Dem P.P.	3.16.6
inll for		E.	D. O.	7.67	7.59	7.51	7.43	7.39	7.35	7.27	7.02	7.02	und at	red 1.	
Von K		s	otittiN	0.02	÷	:	:	:	÷	:	:	0.02	$\mathbf{D}^{\mathbf{em}_{\mathbf{S}}}$	Dissol Oxyg P.P.	7 55 57 56 7 65 8 60 8 70 8 70
n Kill	srature		Bottom	17.7	17.7	17.7	17.5	17	17	16.5	16.0	16 0	Dxygen		
tter fro	Temp(qoT	18	17.5	17.25	17	17	16.5	16.5	16	16	Ŭ	Day	at
Salt Wa		4	əmiT	10 А.М.	12	2	4	9	ŝ	10	80	10			ମି ମ ରା ରି କି ଜ
			Date May	16.,	16	16	16	16.	16	16.	17	17			

TABLE NO. 17-ABSORPTION OF OXYGEN.-EXPERIMENT NO. 81.

.

President Borough of Richmand EXP Nº 81 Bureau of Engineering, Seriage no Table Nº 17 Experiment Station computer FROM TO MADE IN Absorbtion of Oxygen checker Dure May 16 116

Sait Water from Hill Van Hull for Exp. Nº 82

Suspended solids 32 P.P.M. 9849en Consumed 15 P.P.M Chlorine 11200 P.P.M. Jemperature 18°C to 16°C

η

Two electric fans making ripple about 1/2"

0 5 10 15 20 25 Hours TABLE NO. 17-ABSORPTION OF OXYGEN.-EXPERIMENT NO. 83.

8

fface 1 Foot 1	Iface 1 Foot 2 Feet 0.0 0.6 6.18 0 0.1 0xygen 1 Foot 2 Feet 0.1 0.6 6.18 0 2 Feet 1.1 0.0 0.6 6.18 0 2 Feet 1.1 0.0 0.6 6.18 0 0 1 0.4 0.10 6.22 0.4 10 6.23 0 1.2 1.3 6.28 0.3 14 6.28 0 0 2.7 0.4 10 6.22 0.4 10 0.23 0 2.12 0.38 14 6.26 0.8 0 0 0 0 0 0 0 0 0 0 0 0 1 0 <	Пасе 1 Foot 2 Feet 3 Feet 0.1 0xygen 0xygen 0xygen 1 2 Feet 3 Feet 0.1 0xygen 0xygen 1 0xygen 0xygen 0xygen 1 3 Feet 0.1 0xygen 0xygen 1 0.0 0 1.1 0.1 0.0 6.18 .0 0.6 1.8 0.1 0.0 6.18 .0 0.6 1.8 .0 0.2 0.4 1.0 6.22 .04 1.0 6.22 .04 1.2 1.3 6.26 .08 1.4 6.26 .08 .0 2.5 .31 6.38 .20 .26 6.38 .0 2.9 .37 .43 .26 .26 .04 .0 2.6 .38 .26 .31 6.43 .26 .0 2.7 .37 .23 .31 .24 .20 .26 2.7 .27.62 .31 .01 .0 .27.62 .27.62 <t< th=""><th>Tace 1 Foot 2 Feet 3 Feet 4 Feet 0 0.06 6.18 0 06 6.18 0 06 6.14 08 0 0.06 6.18 0 06 6.18 0 06 6.14 0 0 0.06 6.18 0 06 6.18 0 06 6.14 0 0 0.06 6.18 0 06 6.14 0 0 0 6 14 -08 12 0 0 6 18 0 0 6 14 -08 12 0 0 6 18 0 0 0 14 -08 12 0 0 6 18 0 0 14 -08 12 0 16 0 0 6 13 -0 10 07 07 07 07 07</th><th>Tace 1 Foot 2 Feet 3 Feet 3 Feet 4 Feet 4 Feet 0 Dr.P.P.M. 0 T.P.M. 2 Feet 3 Feet 4 Feet 4 Feet 4 Feet 0 Dr.P.P.M. 0 Dr.P.P.M. 0 Dr.P.P.M. 1 Foot 2 Feet 3 Feet 4 Feet 0 Dr.P.P.M. 0 Dr.P.P.M. 0 Dr.P.P.M. 1 footesase 3 Feet 4 Feet 1 D.D.P.P.M. 0 Dr.P.P.M. 0 Dr.P.P.M. 1 forcesase 4 Feet 1 D.D.D.B. 0 Dr.D.B. 0 Dr.D.B. 0 Dr.P.P.M. 1 forcesase 1 D.D.D.D.B. 0 Dr.D.B. 0 Dr.D.B. 0 Dr.P.P.M. 1 forcesase 1 D.D.D.D.B. 0 Dr.D.B. 0 Dr.D.B. 0 Dr.P.P.M. 1 forcesase 1 D.D.D.B. 0 Dr.D.B. 0 Dr.D.B. 0 Dr.D.B. 0 Dr.D.B. 2 D.D.D.B. 1 B.S.B. 0 Dr.D.B. 1 Hore 0 Dr.D.B. 2 D.D.D.B. 0 Dr.D.B. 0 Dr.D.B. 0 Dr.D.B. 0 Dr.D.B. 2 D.D.D.B. 0 Dr.D.B. 0 Dr.D.B. 0 Dr.D.B. 0 Dr.D.B. 2</th></t<>	Tace 1 Foot 2 Feet 3 Feet 4 Feet 0 0.06 6.18 0 06 6.18 0 06 6.14 08 0 0.06 6.18 0 06 6.18 0 06 6.14 0 0 0.06 6.18 0 06 6.18 0 06 6.14 0 0 0.06 6.18 0 06 6.14 0 0 0 6 14 -08 12 0 0 6 18 0 0 6 14 -08 12 0 0 6 18 0 0 0 14 -08 12 0 0 6 18 0 0 14 -08 12 0 16 0 0 6 13 -0 10 07 07 07 07 07	Tace 1 Foot 2 Feet 3 Feet 3 Feet 4 Feet 4 Feet 0 Dr.P.P.M. 0 T.P.M. 2 Feet 3 Feet 4 Feet 4 Feet 4 Feet 0 Dr.P.P.M. 0 Dr.P.P.M. 0 Dr.P.P.M. 1 Foot 2 Feet 3 Feet 4 Feet 0 Dr.P.P.M. 0 Dr.P.P.M. 0 Dr.P.P.M. 1 footesase 3 Feet 4 Feet 1 D.D.P.P.M. 0 Dr.P.P.M. 0 Dr.P.P.M. 1 forcesase 4 Feet 1 D.D.D.B. 0 Dr.D.B. 0 Dr.D.B. 0 Dr.P.P.M. 1 forcesase 1 D.D.D.D.B. 0 Dr.D.B. 0 Dr.D.B. 0 Dr.P.P.M. 1 forcesase 1 D.D.D.D.B. 0 Dr.D.B. 0 Dr.D.B. 0 Dr.P.P.M. 1 forcesase 1 D.D.D.B. 0 Dr.D.B. 0 Dr.D.B. 0 Dr.D.B. 0 Dr.D.B. 2 D.D.D.B. 1 B.S.B. 0 Dr.D.B. 1 Hore 0 Dr.D.B. 2 D.D.D.B. 0 Dr.D.B. 0 Dr.D.B. 0 Dr.D.B. 0 Dr.D.B. 2 D.D.D.B. 0 Dr.D.B. 0 Dr.D.B. 0 Dr.D.B. 0 Dr.D.B. 2
Зигание Презолувен 1 Роос Вигание Охудеян 1 Роос Вигание Охудеян 1 Роос Вигание Охудеян 1 Роос Вигание 0 Судеян 10 Судеян Воловон 0 Судеян 10 Судеян Волов 12 С.13 6.79 .61 Волов 12 С.23 1.05 .10 Волов 1.05 6.79 .61 .05 Волов 1.05 6.79 .61 .05	Surface 1 Foot 2 Surface 1 1 2 Surface 1 1 2 Surface 1 0 2 Daygen, 0 0 2 Daygen, 0 0 2 Daygen, 0 0 5 Daygen, 1 6 18 Daygen, 1 0 0 Daygen, 1 6 18 0 0 6 18 0 0 12 10 6 28 6.18 0 0 6 18 6.30 11 6 2 0 6.43 25 04 10 6 6.43 25 03 14 6 6.55 37 43 6.43 .29 6.79 61 1.05 6.79 .61 .01	Зигface 1 Foot 2 Feet 3 Feet Surface 1 Foot 2 Feet 3 Feet Daylgen, Oxygen 3 Feet 3 Feet Daylocibed Dissolved 0xygen 3 Feet Dayle Oxygen 1 Foot 2 Feet 3 Feet Dayle Oxygen 0xygen 3 Feet 3 Feet 6.18 0 06 6.18 0 06 6.18 0 6.18 0 06 6.18 0 06 6.18 0 6.18 0 06 6.18 0 06 6.18 0 6.18 0 06 6.18 0 06 6.18 0 6.18 0 06 6.18 0 06 8.14 6.18 0 6.13 0.25 0.4 10 6.28 0 0 0 0 6.13 0.20 0.12 0.12 0.12 0 0 0 0 0 6.47 29 35 6.47 29<	Surface 1 Foot 2 Feet 3 Feet 4 Feet Surface 1 Foot 2 Feet 3 Feet 4 Feet Surface 1 Foot 2 Feet 3 Feet 4 Feet DP.P.M. 0 T.P.P.M. 0 T.P.P.M. 3 Feet 4 Feet 0.18 0.06 6.18 0.06 6.18 0.06 6.18 0.05 6.18 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Surface 1 Foot 2 Feet 3 Feet 4 Feet 4 Feet Surface 1 Foot 2 Feet 3 Feet 4 Feet 4 Feet Surface 1 Foot 2 Feet 3 Feet 4 Feet 4 Feet Surface 1 Foot 2 Feet 3 Feet 4 Feet 4 Feet Dovptend, 0 Novgen, 0 Novgen, 4 Feet 4 Feet Dovptend, 0 Novgen, 0 Novgen, 4 Feet 4 Feet Dovptend, 0 Novgen, 0 Novgen, 4 Feet 4 Feet 0 Novgen, 0 Novgen, 0 Novgen, 4 Feet 4 Feet 0 Novgen, 0 Novgen, 0 Novgen, 4 Feet 4 Feet 0 Novgen, 0 Novgen, 0 Novgen, 10 Novgen, 4 Feet 6.18 0 No 06 6.18 0 No 06 6.18 0 Novgen, 10 Novgen, 6.18 0 No 06 6.18 0 Novgen, 10 Novgen, 10 Novgen, 10 Novgen, 6.23 04 10 6.22 04 10 6.22 10 1 1 0 7 0.20 12 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 Notice Absorbed 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 0 0 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 1 0 1 1 0 0 1 1 0 0 1 1 0 1 1 0 1 1 1 0 1 <	1 Foot 2 4et 1 Foot 2 2 4et 1 Foot 0 2 4et 1 Foot 0 2 4et 1 Foot 0 5 1 4et 1 Foot 0 6 1 2 4et 1 6 1 6 1 6 1 4 1 6 6 1 6 2 4et 4 1 6 6 1 6 2 4et 1 1 6 6 1 6 2 0 4 4 2 1 6 8 1 6 2 4et 1 1 6 4 4 4 2 4et 4 2 4et 4 4 4 4 4 4 4 4 4 2 4	1 Poot 2 Feet 3 Heat 1 Poot 2 Feet 3 Heat 1 Poot 0xygen 3 Heat 3 1 Foot 0xygen 1 3 Heat 1 Foot 0 0 0 1 1 1 Foot 0 0 6 18 0 0 10	I Foot 2 Feet 3 Feet 4 Feet 1 Foot 2 Feet 3 Feet 4 Feet 1 Foot 0 Navgen 3 Feet 4 Feet 1 Foot 0 Navgen 3 Feet 4 Feet 1 Foot 0 Navgen 1 Noorssee 4 Feet 1 Foot 0 Navgen 1 Noorssee 3 Feet 1 I Noot 0 Navgen 1 Noorssee 4 Feet 1 I Noot 0.0 06 6.18 0.0 0.06 6.18 0 Navgen 1 0 0 522 04 10 6.22 04 10 6.22 04 1 6.38 - 20 26 6.18 0 0.06 6.14 0 Navgen 1 6.38 - 20 26 6.18 0 0.06 6.14 0 Navgen 1 6.38 - 20 26 6.38 20 26 6.47 - 20 1 6.38 - 20 26 6.38 20 26 6.47 - 41 1 6.47 - 29 31 6.43 - 20 26 6.47 - 41 1 6.50 - 61 1.05 6.79 - 61 1.05 - 71 - 71	I Foot 2 Feet 3 Feet 4 Feet 4 Feet 1 Foot 2 Feet 3 Feet 4 Feet 4 Feet 1 Foot 0 Navgen 1 Noot 1 Foot 4 Feet 4 Feet 1 Foot 0 Navgen 0 Navgen 4 Feet 4 Feet 4 Feet 1 Bisolved 0 Navgen 6 18 0 06 6 18 0 00 Navgen 1 6 18 10 Oxygen 6 18 0 06 6 18 0 06 6 14 0 10 for trease 1 6 0.18 0 0 6 18 0 06 6 18 0 06 6 14 0 06 14 0 06 14 0 06 14 0 06 14 0 06 14 0 06 14 0 06 14 0
	ο ο	2 Feet 3 Heet 2 Feet 3 Heet 10 0 0 0 N 0 0 0 0 N 0 0 0 0 0 0 0 0 0 0 0 0 14 6 18 0 0 25 .04 .10 6 .18 0 .03 .25 .04 .10 0 .04 0 .06 6 .18 .0 .04 0 .03 .14 6 .2 .04 .01 0 .35 6 .47 .20 .01 .01 0 .79 .61 1 .05 .01 .01 .01 0 .06 .35 6 .47 .20 .02 .01 .01 .01 .01	2 Feet Bisolved Disrolved	Z Feet 3 Feet 4 Feet Aves 2 Feet 3 Feet 4 Feet 4 Feet 2 Feet 3 Feet 4 Feet 4 Feet 2 P.P.N. 050507ed 4 Feet 4 Feet 1 Disvgen 6.18 0 06 114 0.05 6.18 0 06 6.14 0.08 14 6.14 6.18 0 06 6.14 0.08 14 6.14 6.22 0.04 110 6.22 0.14 6.22 6.26 6.38 20 26 0.38 14 6.22 6.26 6.38 20 26 0.38 14 6.26 6.26 6.38 20 26 0.38 14 6.26 6.36 6.47 23 31 6.47 -23 338 6.38 6.79 .61 1.05 6.79 .74 .41 .47 6.47 6.79 .61 1.05<

•
President Borough of Buchmond No 83 Bureau of Engineering, Seniage no Table Nº 17_ EAPERINGENT Statlens COMPUTER CONNECTION WITH DAY gen abser billon CHECKER _____ DATE May 22 IN S.

Salt Water from Kill Von Kull for Exp 84

S.USP.Ended Solids 74 P.P.M. Oxygen Consumed 14 P.P.M. Chlorine. 9450 P.P.M. Tempt 196 to 17756

The fans Nove 1/2"

0 0.6.18 0.0 BoHles 0 0.6.123H 5H 004492n 2ncreose 0 5 10 15 20 25 Hours

TABLE NO. 17-ABSORPTION OF OXYGEN,-EXPERIMENT NO. 85.

Salt Water from Kill Von Kull for Experiment No. 86, Allowed to Stand 2 Days Undisturbed.

Two Fans, Ripple 1/2 inch.

IJ		Temp	erature			Bot	tles			Surface			[Foot		6	Feet		3	Feet		4	Feet		5 Fe	et
		') ز	s	Ē	nk	20° Inc	ubator	י יז וףפ	․ "ր Ծ	ρε τ	't ра	י יף ס	pe 10		ʻp	pa pa	 ינ חפו	ʻp	pə u	י םי פס	יי יף ע	eq u	יםי. עיי שיי יסי	рэ г Г Г
Date Date	əmiT	qoT	Bottom	Nitrite	ь.е.м. D. O.,	0. D.,	Б.Р.М. Д.О.,	Б.Р.М. О. D.,	Dissolves Dissolve M. q. q	Oxygen Demano P.P.M	odrosdA	Diasolve Dayzo M.T.T.	Dagman Demo M. T. T	odroadA	M.Q.Y.	Deman Deman	Absorbe	M. q. q	P.P.M.	Absorb	vlossi(1 1932xO M.q.q	Demsus Demsus M.P.A	Охуge	vlozzi CayyzO M.J.A BayzO SayzO	M.q.q 92yxO d108dA
26	. 10 A.1	м. 19.5	19.5	0.04	7.40		7.40		7.40		:	7.40	:	:	7.4		:	7.4		:	7.27	÷		5.90	:
26	. 12	19.2	5 19.0	:	7.27	.13	7.27	.13	7.35	.05	.08	7.31	60.	.04	7.27	.13	0	7.27	.13	0	7.27	0	.13	6.142	4 .37
26	67	19.0	19.0	:	7.27	.13	7.27	.13	7.27	.13	0	7.23	.17	Ŧ0	7.23	- 11	04	7.23	- 11 -	04	7.19	.08	.05	6.79 —.8	9 1.02
26	4	19.0	19.0	:	7.27	.13	7.23	.17	7.27	.13	0	7.27	.13	0	7.27	.13	0	7.27	.13	0	7.27	0	.13	7.27-1.3	7 1.50
26	9.	19.0	19.0	:	7.23	.17	7.19	.21	7.19	- 12.	—.04	7.23	.17	0	7.15	.25	08	7.19	- 12.	04	7.19	.08	60.	7.19—1.2	9 1.46
ः श्ल	∞	19.0	19.0	:	7.19	.21	7.19	.21	7.27	.13	.08	7.19	.21	0	7.19	.21	0	7.27	.13	.08	7.15	.12	60.	7.19-1.2	9 1.50
26	. 10	18.5	18.5	÷	7.15	.25	7.11	.29	7.27	.13	.12	7.27	.13	.12	7.03	- 37	12	7.19	.21	.04	7.19	.08	.17	7.27-1.3	7 1.62
27	∞	17.5	17.5	÷	6.87	.53	6.87	.53	7.35	.05	.48	7.27	.13	.40	7.27	.13	.40	7.27	.13	.40	7.27	0	.53	7.27-1.3	1.90
27	. 10	17.5	17.5	0.05	6.87	.53	6.87	.53	7.35	.05	.48	7.31	60.	.44	7.27	.13	.40	7.27	.13	.40	7.27	0	. 53	7.27-1.	87 1.9(
		0)xygen	Dema.	nd at	37.5° (ri																		
					Salt V	Vater																			
		D	ay	Diss Oxy P.P	olved 'gen 'M.	Den P.P	vgen nand .M.										Tot	laj	Disso	lved	Suspe	ended	Set	tled	

: :

55 26

18,695 5,470

18,750 5,496 13 8,000

Solids. Organie Solids. Oxygen Consumed. . Chlorine.

1.742.27 1.66 1.82 2.83

7.40 5.66 5.13 5.74 4.57

> 2 days..... 3 " 5 "

President Borough of Richmond PILE Exp. 85 Bureau of Engineering; Servage. Acc Table Nº 17 Experiment station computer. FROM TO MADE IN A bsorbtion of Qxy gen checker ONTE May 26. 116

> Salt Water from Kill Van Kull for Exp 86 ollowed to stand undisturbed Edays

> > Δ

Suspended Solids in Water 55 P.P.M Oxygen Consumed IS P.P.M Chlorine Bloo P.P.M Temperature 19.5° C to 17.8°C

Two Electric fons ripple ""

97

	Fans, Ripple ½ inch.	5 Feet	e v pr	Absorbe Absorbe Dissolve Oxygen Increase Increase Absorbe	4.12	.21 4.57 .45 .45	.46 4.77 .65 .70	.66 4.93 .81 .90	.82 5.13 1.01 1.10	.98 5.29 1.17 1.26	1.14 5.46 1.34 1.43	2.03 6.14 2.02 2.27				Settled	:	•	:	•		
	Two	4 Feet		Dissolve Oxygen P.P.M. Increase	4.36	4.57 .21	4.77 .41	4.93 .57	5.09 .73	5.25 .89	5.41 1.05	6.14 1.78				Suspended	13	9	:	:		
87.		et	p 1	asayarO adroadA adroadA		6 .16	2 .37	2 .61	4 .73	0 .89	6 1.05	9 1.94				ssolved	22,045	8,016				
NT NO.		3 Fe	r Pi	Dissolve Oxygen M.q.q Oxygen Searon I	4.45	4.61 .1	4.77 .3	4.97 .5	5.09 .6	5.25 .8	5.41 .9	6.14 1.6				tal Di	58 2	122	13 .	300 .		
TERIME		leet	p 1	азууго азууго аргоздА		16 .16	32 .37	52 .61	68 .77	80 .89	96 1.05	69 1.94				To	22,(8,(х d	8,1		
ENE3		2 1	pi	ovloseid Nygen M.T.T M.T.T	4.45	4.61	4.77 .	4.97	5.13	5.25	5.41 .	6.14 1.						ic Solids	n Consume	ле		
F OXYG		Foot	ין ני ני	Охудег Пастеяа Охудел Араогре		.16 .16	.32 .37	.48 .57	.64 .73	.80 .89	.96 1.05	1.69 1.94					Solids	Organ	Oxyge	Chlori		
TION O		1	, p	Dissolve M.q.d M.d.d	4.45	5 4.61	1 4.77	1 4.93	L 5.09	7 5.25	5.41	8 6.14										
ABSORF		urface	ים פ ז	Охудег Іпстеяа Охудег Охудег		.16 .1	.36 .4	.52 .6	.72 .8	.88	1.01 1.10	1.73 1.98										
o. 17—	88	δΩ	bor _{ta} ,	(4.45	5 4.61	5 4.81	9 4.97	9 5.17	9 5.33	9 5.46	1 6.18										
ABLE N	sriment No	ttles	20° Incuba	D. O. D.	4.45	4.40 .(4.40 .(4.36 .(4.36 .0	4.36 .0	4.36 .0	4.04 .4	IJ		rgen	.M.	:	41	81	50	38	
(H	l for Expe	Bo	Tank	P.P.M. 0. D.	.45	.45 0	40 .05	36 .09	.36 .09	36 .09	36 .09	20 .25	at 37.5°	lt Water	d Oxy	P.P.	:		•	1.	i.	-
	Von Kul		e	Nitrite	0.06 4	4	4	 4	4.	4.	4.	0.08 4.	Demand	Sa	Dissolve	P.P.M.	4.45	4.04	3.64	2.95	3.07	20
	ter from Kil	Temperatur	5 {	qoT motto£	м. 19.0 18.5	18.75 18.5	18.75 18.5	18.75 18 5	18.5 18.5	18.5 18.5	18.0 18.0	17.5 17.5	Oxyger		Day	Cay	[nt	l day	? days	3 "		
	Salt Wa			эшг	. 9.45 A.I	. 11.45	. 1.45	. 3.45	5.45	7.45	9.45	9.45					I	1	61	cr)	ъ.	•
	j,			Date	2	2	5	5	2	: ای	2.	°										

I

Sewage Experiment Station Fire Exp. Nº 87 President Borough of Richmond, Burcan of CTable Nº 17. Engineering, Sewage Experiment Station No Trable Nº 17. CONNECTION WITH Abserbties of Ony gen checker _____ DATE JUNC 2 1916. Salt Water from Kill Van Kull for Exp Nº 88 Suspended Solids 13 P.P.N. Oxygen Consumed 13 P.P.N. Chlorine 8,600 P.P.M. 8,600 PPM. 19° C Temperature ٠ 2 1 ---0 -0--0--0--0 0 Battles in Tonk 00 đ A B B Eagle Stor BAYJEN MICTERSE 2 3 10 Hours 5 15 20 25 q

TABLE NO. 17-ABSORPTION OF OXYGEN.-EXPERIMENT NO. 89.

Salt Water to be Used for Experiment No. 90.

Two Electric Fans Blowing on Surface Ripple about ½ inch.

Surface 1 Foot 2 Feet 3 Feet 3 Feet 4 Feet	Surface 1 Foot 2 Feet 3 Feet 4 Peed 0 Peed Peed 0 Peed Peed 0 Peed <th>Burface I Foot 2 Foot 3 Foot 3 Foot 4 Foot 9 Foot 5.50 OXPERATION 5.50 OXPERATION 4 Foot 4 Foot 9 FP.M. 5.50 DEPP.M. Dissolved Absorbed Absorbed Absorbed Absorbed 5.50 DEPP.M. 5.50 0 0 5.50 0 0 5.50 0 0 5.50 0 0 5.50 0 0 5.50 0 0 5.50 0 0 5.50 0 0 5.50 0 0 5.50 0 0 5.50 0 0 5.50 0 0 5.50 0 0 5.50 0 0 5.50 0 0 0 5.50 0<</th> <th>Burtace I Foot 2 Feet 3 Feet 4 Feet 0 Tep P.M. Dissolveding Hardt, Dissolveding Fight, 5.50 Dissolveding Hardt, Absorbeding Hardt, Absorbeding Hardt, 5.51 2 Feet 3 Feet 4 Feet 4 Feet 0 Tep P.M. 5.50 Dissolveding Hardt, Absorbeding Hardt, 5.51 Dissolveding Hardt, Absorbeding Hardt, Abso</th> <th>Burface I Foot 2 Feet 3 Feet</th> <th></th> <th>ц Ц</th> <th>4</th>	Burface I Foot 2 Foot 3 Foot 3 Foot 4 Foot 9 Foot 5.50 OXPERATION 5.50 OXPERATION 4 Foot 4 Foot 9 FP.M. 5.50 DEPP.M. Dissolved Absorbed Absorbed Absorbed Absorbed 5.50 DEPP.M. 5.50 0 0 5.50 0 0 5.50 0 0 5.50 0 0 5.50 0 0 5.50 0 0 5.50 0 0 5.50 0 0 5.50 0 0 5.50 0 0 5.50 0 0 5.50 0 0 5.50 0 0 5.50 0 0 5.50 0 0 0 5.50 0<	Burtace I Foot 2 Feet 3 Feet 4 Feet 0 Tep P.M. Dissolveding Hardt, Dissolveding Fight, 5.50 Dissolveding Hardt, Absorbeding Hardt, Absorbeding Hardt, 5.51 2 Feet 3 Feet 4 Feet 4 Feet 0 Tep P.M. 5.50 Dissolveding Hardt, Absorbeding Hardt, 5.51 Dissolveding Hardt, Absorbeding Hardt, Abso	Burface I Foot 2 Feet 3 Feet																		ц Ц	4
ÖP P. Weni, M. ÖP Oxygen M. ÖP Oxygen M. ÖP Oxygen M. <th>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</th> <th>Dissolved Dissolved 5.50 Охувель, 5.51 Охувель, 5.52 Охувель, 5.50 Охувель, 5.51 Охувель, 5.52 Охувель, 5.53 Охувель, 5.54 Охувель, 5.54 Охувель, 5.55 Охувель, 5.54 Охувель, 5.55 Охувель, 5.56 Охувель, 5.57 Охувель, 5.74 24 5.74 25 5.74 25 5.74 25 5.74 25</th> <th>Absorbed Dissolved Dissolved Oxygen Dissolved</th> <th>Discolved Discolve</th> <th>Bottles</th> <th>Bottles</th> <th>Bottles</th> <th></th> <th></th> <th>Su</th> <th>rface</th> <th></th> <th>1 Foot</th> <th></th> <th>21</th> <th>lect</th> <th></th> <th>3 Feet</th> <th>}</th> <th>4 Fee</th> <th>) </th> <th>0 H G</th> <th>αu</th>	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Dissolved Dissolved 5.50 Охувель, 5.51 Охувель, 5.52 Охувель, 5.50 Охувель, 5.51 Охувель, 5.52 Охувель, 5.53 Охувель, 5.54 Охувель, 5.54 Охувель, 5.55 Охувель, 5.54 Охувель, 5.55 Охувель, 5.56 Охувель, 5.57 Охувель, 5.74 24 5.74 25 5.74 25 5.74 25 5.74 25	Absorbed Dissolved Dissolved Oxygen Dissolved	Discolved Discolve	Bottles	Bottles	Bottles			Su	rface		1 Foot		21	lect		3 Feet	}	4 Fee) 	0 H G	αu
ÖR Australia ÖR Australia <td< th=""><th>0.0 0.0 0.5.0 0 0.5.54 0.0 0.5.50 0.0 0.0</th><th>0.00 0.00</th><th>Эророгистический Эророгистический Эророгистический Эророгистический Эророгистический Эророгистический Эророгистический Эророгистический Эророгистический Эророгистический Эророгистический Эророгистический Эророгистический Эророгистический Эророгистический Эророгистический Эророгистический Эророгистический Эророгистический Эроро</th><th>¹ Size ¹ Size ¹ Size ¹ Size ¹ Size ¹ Size ¹ Size ¹ Size ¹ Size ¹ Size ¹ Size ¹ Size ¹ Size ¹ Size</th><th>Tank 20° Incuba</th><th>Tank 20° Incubat</th><th>nk 20° Incubat</th><th>leubar</th><th></th><th>τ</th><th>- pe</th><th>rt pə</th><th>('p u</th><th>eq pə pə</th><th>น (บ (บ</th><th>τ pə (1</th><th>bed n, f.</th><th>.յ քե ու</th><th>τα pəc</th><th>'pu uə 'U' 'u;</th><th>αə pəq</th><th>en, en, M. ba, M.</th><th></th></td<>	0.0 0.0 0.5.0 0 0.5.54 0.0 0.5.50 0.0 0.0	0.00 0.00	Эророгистический Эророгистический Эророгистический Эророгистический Эророгистический Эророгистический Эророгистический Эророгистический Эророгистический Эророгистический Эророгистический Эророгистический Эророгистический Эророгистический Эророгистический Эророгистический Эророгистический Эророгистический Эророгистический Эроро	¹ Size	Tank 20° Incuba	Tank 20° Incubat	nk 20° Incubat	leubar		τ	- pe	rt pə	('p u	eq pə pə	น (บ (บ	τ pə (1	bed n, f.	.յ քե ու	τα pəc	'pu uə 'U' 'u;	αə pəq	en, en, M. ba, M.	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5.50 5.50 5.50 5.50 3.82 3.82 3.82 3.82 3.82 3.82 3.82 3.82 3.54	Bottom Mitrites P.P.M. P.P.M. D.O. D.O. D.O. D.O. D.O. D.O. D.O. D	P.P.M. P.P.M. P.P.M. P.P.M. P.P.M. P.P.M. P.O. P.O	P. P. M. P. D. O. P. D. O. P. D. J.	ο. D.,	· · · -	DissiU 192720 M.q.q M.ayre	Deman P.P.M Absorb	viossiU ViossiU M.q.q M.q.q	Oxyge Deman P.P.M	drosdA 93yxO vlossiC	P.Y.G. P.Y.G. Oxyge	Apsorb A.9.9.4 Apsorb Ayge	rlossi Davro A.A.A	Demar Demar	Absorb Oxyg	Dema Dema Dema Dema	1.1.1 TosdA ByxO	Dessi Dessi I.q.q Dems Dems	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	18 25 0 06 5 50 5.50	5 50 5 50	5.50			5.50		. 5.50			.50		5.50	i	:	5.50	:	3,82	•
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	18.25 5.50 0 5.50 0	5.50 0 5.50 0	0 5.50 0	0		5.54 -	.04	4 5.50	0	0	. 50	0	5.50	0	0	5.50 (°,	5.50 - 1.68	~
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	18.25 5.46 .04 5.46 .04	5.46 .04 5.46 .04	.04 5.46 .04	.04		5.58 -	.08	2 5.54	04	3 80.	.54 —	04 .0	3 5.54	04	.08	5.540	4 .08	5.54-1.75	_
5.7424 .45 5.7424 .45 5.7424 .45 5.7424 .45 5.7424 .45 5.7424 .45 5.7424 .45 5.7424 .45 5.7424 .45 5.7424 .45 5.7424 .45 5.7424 .45 5.8320 .40 5.83 - 2.0 .50 .20 .20 .21 .62 5.9141 .62 5.9141 .62 5.9141 .62 5.9141 .62 5.9141 .62 5.9141 .62 5.9141 .62 5.9141 .62 5.9141 .62 5.9141 .62 5.9141 .62 5.91 .20 .60757 1.15 6.0757 1.15 6.0757 1.15 6.0757 1.15 6.0757 1.15 6.0757 1.16 6.0751 1.19 6.1161	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$18.0 \dots 5.42 \dots 08 5.42 0$	5.42 .08 5.42 0	.08 5.42 0	0		5.66 -	.16	1 5.54	—.04	.12	. 66 —	.16 .2	± 5.66	16	.24	5.661(3 .24	5.58-1.70	~
$ 5.8232 .53 5.7828 .49 5.8333 .54 5.8333 .54 5.7828 .49 5.83 - 2.0 \\ 5.9141 .62 5.9151 1.15 6.0757 1.15 6.0757 1.15 6.0757 1.15 6.0757 1.15 6.0757 1.15 6.0151 1.19 6.1161 1.19 6.$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5.82 .33 5.78 .28 .40 5.83 .33 .54 5.78 .28 .49 5.83 .201 5.91 .41 .62 5.91 .41 .62 5.91 .41 .62 5.91 .41 .62 5.91 .41 .62 5.91 .41 .62 5.91 .41 .62 5.91 .41 .62 5.91 .41 .62 5.91 .41 .62 5.91 .41 .62 5.91 .41 .62 5.91 .41 .62 5.91 .41 .62 5.91 .41 .62 5.91 .41 .62 5.91 .41 .62 5.91 2.09 .6 .7 2.25 .6 .6 .7 2.25 .6 .15 6 .16 .11 .6 .11 .6 .11 .6 .1 .6 .7 2.25 .6 .1 .6 .1 .6 .1 .6 .1 .16 .11 .16 6 .1 .6 .1 .16 .11 .16 <td< td=""><td>17.5 5.29 .21 5.42 .08</td><td>5.29 .21 5.42 .08</td><td>.21 5.42 .08</td><td>30. 2</td><td></td><td>5.74 -</td><td>- 24</td><td>15 5.74</td><td>24</td><td>-45</td><td>. 74 —</td><td>.24 .4</td><td>5 5.74</td><td>24</td><td>.45</td><td>5.742</td><td>4.45</td><td>5.74 - 1.95</td><td>01</td></td<>	17.5 5.29 .21 5.42 .08	5.29 .21 5.42 .08	.21 5.42 .08	30. 2		5.74 -	- 24	15 5.74	24	-45	. 74 —	.24 .4	5 5.74	24	.45	5.742	4.45	5.74 - 1.95	01
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	17.5 5.29 .21 5.37 .13	5.29 .21 5.37 .13	.21 5.37 .13	7 .13		5.82 -	.32	53 5.78	—.28	£ 6 1	5.83 —	.33 .5	4 5.83	33	.54	5.782	8 .49	5.83-2.0	_
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6.0757 1.15 6.0757 1.15 6.0757 1 15 6.0757 1 1.15 6.07 2.25 6.0757 1.15 6.07 2.25 6.1565 1 23 6.1161 1.19 6.1161 1.19 6.11 2.29 6.1565 1 23 6.1161 1.19 6.1161 1.19 6.11 2.29 6.1565 1 2.39 6.1161 1.19 6.1161 1.19 6.11 2.29 6.1565 1 2.30 6.1161 1.19 6.1161 1.19 6.11 2.20 6.1565 1 2.30 6.1161 1.19 6.1161 1.19 6.11 2.30 6.1161 1.19 6.1161 1.19 6.11 2.30 6.1161 1.19 6.1161 1.10 6.1161	6.0757 1.15 6.0757 1.15 6.0757 1.15 6.0757 1.15 6.07 57 1.15 6.07 2.25 6.1565 1.23 6.1161 1.19 6.1161 1.19 6.11 2.29	6.0757 1.15 6.0757 1.15 6.0757 1.15 6.0757 1.15 6.07 2.25 6.1565 1 23 6.1161 1.19 6.1161 1.19 6.1161 1.19 6.11 2.29	6.0757 1.15 6.0757 1.15 6.0757 1.15 6.0757 1.15 6.07 2.25 6.1565 1 23 6.1161 1.19 6.1161 1.19 6.1161 1.19 6.11 2.29 .1261 1.19 6.1161 1.19 6.11 2.29	17.5 5.29 .21 5.29 .21	5.29 .21 5.29 .21	.21 5.29 .21	.21		5.91 -	41	32 5.91	- 41	.62	. 91 —	.41 .6	2 5.91	—.41	.62	5.91 —.4	1 .62	5.91 2.0	n
6.1565 1 23 6.1161 1.19 6.1161 1.19 6.1161 1.19 1.19 6.1161 1.19 6.11 2.5	6.1565 1 23 6.1161 1.19 6.1161 1.19 6.1161 1.19 6.11 2.22	6.1565 1 23 6.1161 1.19 6.1161 1.19 6.1161 1.19 6.1161 1.19 6.11 2.29	6.1565 1 23 6.11 61 1.19 6.11 61 1.19 6.11 2.29	6.1565 1 23 6.1161 1.19 6.1161 1.19 6.1161 1.19 6.11 2.29	16.0 4.92 .58 4.92 .58	4.92 .58 4.92 .58	.58 4.92 .58	2 .58		6.07 -	.57 1.	15 6.07	—.57	1.15 (.07	.57 1 1	5 6.07	57	1.15	6.075	7 1.15	6.07 2.2	ŝ
				Total Dissolved Suspended Settled	16.0 0.10 4.92 .58 4.76 .74	4.92 .58 4.76 .74	.58 4.76 .74	5 .74		6.15 -	65 1	23 6.11	61	1.19 (9.11 —	.61 1.1	9 6.11	61	1.19	6.116	1 1.19	6.11 2.2	6

Suspended $\frac{56}{31}$: :

Dissolved 19,3163,383

: : :

19,372 3,414 15 10,200

Solids..... Oxygen Consumed. . Chlorine.

5.50 4.76 3.94 3.36 3.12 3.04

2 days..... 3 "..... 1 day Int.... Day

/ /

President Barough of Richmand Exp N2 89 Bureau of Engineering; Seriage noc Table Nº 17 Experiment Station commence rom To MADE WITH Absorbtion of Oxygen checker DATE LUTZE 9 1156

Salt Water from Kill Van Hull for Exp Nº 90

Suspended Solids	in Water 56 P.P.M.
Oxygen Consumed	15 PPM
Chlorine	10200 P.P.M.
Temperature	18.5 C to 16.5 C

Two electric fans making a ripple about 1/2"

TABLE NO. 17-ABSORPTION OF OXYGEN.-EXPERIMENT NO. 91.

4

t Water from Kill Von Kull	Temperature Bottles	$Tank 20^{\circ}$ Incuba	Тіте Тор Воціон Поціон Воціон Воціон Г. О. Г. О. С. В. Р. Р. М. В. Р. Р. М.	45 A.M. 17.0 17.0 0.04 5.09 5.09	45 $16%$ $16%$ $16%$ 5.00 .09 5.00 .	45 16% 16% 16^3 , 4.92 .17 4.92 .	45 $16\frac{1}{2}$ $16\frac{1}{2}$ 4.92 .17 4.92 .	45 $16\frac{1}{2}$ $16\frac{1}{2}$ 4.88 .21 4.84 .	45 $16 \frac{1}{2}$ $10^{\frac{1}{2}}$ 4.84 .25 4.84 .	$45 16 \frac{1}{4} 16^{1} \frac{1}{4} \dots 4 70 .33 4 \cdot 51 .$	45 15 $\frac{15}{16}$ 15 $\frac{3}{16}$ 4.51 .58 4.47	Oxygen Demand of Sewage at 37.5° C.	Dilution 1 in 100	Tqtal Solids	Duy Oxygen Demand
	Surface	ator e 1,	P.P.M. Dissolvo Oxyger P.P.M Oxygel Denan	5.09	.09 5.21 .12	17 5.33 .24	17 5.37 .28	25 5.42 .33	25 5.58 .49	58 5.78 .09	62 5.99 .90				
Ţ	4	u "" pə pə u	Asyged Absolv Viosaid Viged Viged Viged M.q.q Avged	5.09	.21 5.17	.41 5.29	.45 5.37	.54 5.46	.74 5.58	1.02 5.66	1.48 5.95				
	oot	pə u 'P	Deman Oxyger Absorbe		08 .17	20 .37	28 .45	37 .58	49 .74	57 .90	86 1.44				
F C	2 Feet	с; т с; г, г, г,	Діазо]∨ Охуgел Р.Р.М. Остуgел Петал Петал	5.09	5.17 .08	5.29 .20	5.29 .20	5.50 .41	5.50 .41	5.66 .57	5.95 .86				
		ןי סי פק ש	93vrO droedA vlossiU vlossiU M.A.A	5.09	.17 5.17	.37 5.29	.37 5.42	.62 5.50	.66 5.54	.90 5.66	1.44 5.91				Total
	feet	թə ս (Դ պ	Охудее Петал Р.Р.М. Фтого Студее Арзого		.08 .17	.20 .37	.33 .50	.41 .62	.45 .70	.57 .90	.82 1.40				Dissolved
lectric Fans,	4 Feet	ני יים יים הי	Dissolv Deman Deman Deman	4.88	5.01 .13	5.09 .21	5.25 .37	5.46 .58	5.58 .70	5.66 .78	5.91 1.03				Suspended
Ripple A		ра. ц рә	dтовdА э⊒үхО и[овві(]		.22	.38	.54	64.	.95	1.11	1.61				Sett
bout ½ inch	199 I C	י, קי יי	охуден Р.Р.М. М.Ч.Ч М.Ч.Ч Метап Петап Петап Петап		.6416 -	.5129 -	L.0278 -	. 4 6 .66	5.58 .78	5.66 .SU	11.1 16.2				ba ba
_		pə u	Absorb droedA		-`01	12	61	.87	1.03	1.19	1.69				

ŧ

: : : :

73 27 27

32,28315,463•••••

32,356 15,490 15 10,100

Solids..... Organic Solids.... Oxygen Consumed.. Chlorine.....

 $\begin{array}{c} .00\\ ..82\\ 2.55\\ 3.00\\ 2.32\\ 2.32\\ \end{array}$

 $\begin{array}{c} 5.09\\ 4.27\\ 2.95\\ 2.54\\ 2.09\\ 2.77\end{array}$

Int.

ī

President Barough of Richmond Ins Exp. Nº 91 Burcau of Engineering; Servage ____ Table Nº 17 Experiment Station computer prom. To MADE IN CONNECTION WITH Absorbtian of Oxygen CHECKER _____ DATE JUMCIA IN 6

Salt Water from Kill Van Kull for Exp 92

Suspended solids	73 PPAN.
Oxygen Consumed	15 PPM
Chlorine	10100 PPM
Temperature	1,7° C To 16.5°C

Two electric fams ripple 1/2 inch

TABLE NO. 17-ABSORPTION OF OXYGEN.-EXPERIMENT NO. 93.

Salt Water from Kill Von Kull

inch
74
About
Ripple
Surface,
60
Blowing
Fans
Electric
Two

	Tem	perature			Bottle	8		Surface		1 F00	4	2 Fe	set	3 F	set	4 Fee	t.	5 Feet	
		}	8	Tan	k 20	° Incubi	ator d	יף יף נ יו	pe t	יף ד יז ףפ	pa T	יף ד יו ףפ	pe t	יף ד יו וף	pe U	יף ד יז יז א	pe T	"p υ "τ pe	pe u
Элге Јлие Тіте	qoT	mottoH	Nitrite	D. O. P. P. M.	D. D. J.	υ. D.,	P.P.M.	M.T.Y M.T.T M.T.T M.T.T M.T.T M.T.T M.T.T	eagyrO Absorbe	Digesologi DiggyzO M.q.q M.q.d M.g.g M.g.g M.q.d	eavro drozdA	ovlosei asyvxO M.J.J usyvxO asmed	M.Y.Y M.Y.Z Mayzed Maorda	ovlossi 193yxO M.J.J M.S.Ygen 193yxO 105m9U	M.T.T M.T.T M.T.T.T. M.T.T.T. M.T.T.T. M.T.T.T.T	Dissolvo Drayger M. T. T M. T. T M. T. T M. T M. T M. T	193 VXO 193 VXO 199 VXO	ovlossi DagvzO M. J. J M. J. J M. J. J M. J. J M. J. J	193YxO odrozdA
209.30 A	L.M. 21	20	.12	3.42		42	°°	42	:	3.38	:	3.38		3.42		3.26	:	1.49	
2010.30	:	:	:	3.42	0	.42	0 3	.46 —.04 -	04	3.38 0	:	3.38 0.0	0	3.42	0	3.3812	.12	1.01 .46 1.8536	.40 IUA.
2011.30	21	20.5	:	3.42	0	.42	0 3	.46 —.04	.04	3.4608	.08	3.46 —.0	80.08	3.46 —.0	4.04	3.4216	.16	2.41 —.92	.92
20 1.30	20.5	20.5	÷	3.30	.12 3	.30	.12 3	.61 19	.31	3.5416	.28	3.541	6 .28	3.54 —.1	2.24	3.5428	.40	3.46 - 1.97	2.09
20 3.30	20.5	20.5	÷	3.30	.12 3	.30	12 3	.8240	.52	3.7840	.52	3.78 —.4	0 .36	3.783	6 .45	3.7852	64	3.74 - 2.25	2.37
20 5.30	$20 \frac{1}{4}$	20 M	÷	3.26	.16 3	.26	.16 3	.98 —.56	.72	3.9456	.72	3.94 —.5	6 .72	3.94 .—5	2.68	3.90 64	.80	3.90 - 2.41	2.57
20 7.30	20	20	÷	3.22	.20 3	.22	20 4	.18 —.76	96.	4.1072	.92	4.107	2 .92	4.10 —.6	8. 8.	4.1084	1.04	4.10 - 2.61	2.81
20. 9.30	19%	19¾	:	3.18	.24 3	.22	20 4	.30 —.88	1.12	4.26 — 88	1.12	4.26 —.8	8 1.12	4.268	4 1.15	4.2296	1.20	4.22 - 2.73	2.97
21 9.30	18½	18½	.12	3.10	.32 3	.02	40 4	.95—1.53	1.85	4.91—1.53	1.85	4.91-1.5	3 1.85	4.91-1.4	9 1.8]	4.91-1.65	5 1.97	4.91 - 3.42	3.74
		Oxyg	gen De	mand a	t 37.5°	U.													
			Ц	bissolved	۴Ö	cygen		ŀ											
		Day		Oxygen P.P.M.	д ч	mand P.M.								Total	Dissol	ved Susper	pabu	Settled	
	Int		÷	3.41	·	:					x	lids		33,818	33,7	50 68		:	
	1	:	÷	2.73		.68					õ	rganic Solids		15,722	15,6	78 44		:	
	2		:	2.17	1	.24					Ő	xygen Consu	med	135	:	:		:	
	3		:	1.93	1	.48					Ö	nlorine	:	10,950	:	:		:	
	4.		:	1.77	1	.64													
	5		:	1.93	1	.48													

t t

-

President Baraugh of Richmond The Exp Nº 93. Bureau of Engineering; Servage toble Nº. 17. Experiment Station commune DOMESTICN WITH ALSOLDTON OF ORY GLARCKER _____ DATE LUMC20 1016

Salt Water from Hill Kan Hull for Exp Nº 94

\

Suspended solids Oxiggen Consumed Chlorine Temperature 68 P.P.M. 14 PPM 10 950 P.P.M. 20°C

1

Two electric fans blowing on surface ripple

President Borough of Richmond Arcrage of Exp. No. Bureau of Figure 18, 15, 77, 79, Bureau of Figure 181, 85, 85, 87 Bureau of Engineering; Servage - 89,91,93. Experiment Station computer FROM Table 7 21, 23. Made IN Connection with Absorbtion of Oxygen checken and the June 1914 Diagram of Average of Eleven Observations on Oxygen Absorbed by Salt Water from Kill Van Kull Surfo Two Electric fons blowing on surface making a ripple abt 1/2 inch 200-Average Temperature Line ----- 17°C

TABLE No. 18-ABSORPTION OF OXYGEN.-EXPERIMENT No. 74.

Dilution	1 in 2	0 with	Salt V	Vater	Used i	n Test	of Ap	ril 17.														Two	Fans]	Blowing	-
	Tempe	erature			Bot	tles			burface	/	1	Foot			E Feet		~~	Feet		4	Feet			Feet	
		υ	8	Tai	лk	20° Inct	lbator.	" pa	í F	pi T	, pa	íF T	Pi Pi	, pa	ŕF	pi 1	י וי וי	י יד ז) קין נ	י יז יז	۰ ۴۳	pe T	י זי יז	ʻp	pa u
Date lingA 9miT	qoT	aottoA	ətittiN	P.P. M.	Ъ.Р.М. 0. D.,	P.P.M. D. O.	P.P.M.	Dissolve M.T.G M.T.G	nsgyzO nem9U M.q.q	Absorbed Absorbe	evlossi msgyxO M. J. J.	Dayyzo Dasmed M.q.q	oxuger Abserbe	Dissolve Dissolve Dissolve	Terranger Dersmod M.T.T	Dsorbe	avlossiU asavxO M.A.A	Demano Demano P.P.M	Absorbe	Dissid Dissolve M.q.d	Demano Demano M.T.T.M	Oxygen Absorbe	Diesolve M. T. T. M. T. M M. T. T. T. M. T M. T. T. M. T. M M. T. T. M. T. M M. T. M. T. M	Б,Р,М Ветаал Окуден	отовdА ОтовdА
1910.30	20	20	0.10	5.61	:	5.61		5.71	:	:	5.61	:	:	5.57		:	5.61	:	:	5.53	:		5.57		
1912.30	19	19	÷	5.41	.20	5.29	.32	5.53	.18	.02	5.41	.20	0	5.37	.20	0	5.49	.12	.08	5.41	.12	.08	5.45	.12	.08
19 2.30	19	19	:	5.21	.40	5.05	.56	5.33	.38	.02	5.25	.36	·04	5.13	- 44 -	04	5.15	- 46 –	-,06	5.25	.28	.12	5.21	.36	.04
194.30	19	19	:	4.85	.76	4.77	.84	5.09	.62	.14	5.09	.52	.24	5.09	.48	.28	5.09	.52	.24	5.01	.52	.24	5.09	.48	.28
19 6.30	18	18	:	4.54	1.07	4.70	16.	5.09	.62	.45	5.01	.60	.47	5.01	.56	.51	5.01	.60	.47	4.93	.60	.47	5.01	.56	.51
19 8.30	17.75	17.75	:	4.46	1.15	4.62	66.	5.09	.62	.53	5.01	.60	.55	4.93	.64	.51	5.01	.60	.55	4.93	.60	.55	4.93	.64	.51
1910.30	17.5	17.5	:	4.30	1.31	4.38	1.23	5.01	.70	.61	4.93	.68	.63	4.93	.64	.67	4.93	.68	.63	4.93	.60	.71	4.93	.64	.67
20 8.30	15	15	:	3.18	2.43	3.26	2.35	4.85	.86	1.57	4.70	16.	1.52	4.62	.95	1.48	4.70	. 91	.52	4.70	.83	1.60	4.70	.87	1.56
2010.30	15	15	0.12	3.10	2.51	2.87	2.74	4.77	.94	1.57	4.70	16.	1.60	4.62	.95	1.56	4.70	16.	09	4.70	.83	1.68	4.70	.87	l.64
	0	xvæen	Deman	d Dilu	tion 1	in 100	at: 37	5° C.																	
	I]		Total	Solids		Ä	issolved	l Solida																
			Diss(bed	0x)	/gen	Dissc	lved	Oxyl	gen															
	р	ay ,	Oxy P.P	rgen. M.	Den P.F	nand .M.	Oxy P.P.	rgen .M.	Dem P.P.	and M.						Tot	al	Dissol	red	Susper	nded	Sett	led		
	Int		6.	61	:	:	6.9	92	:			<i>9</i> 2	solids.			85(_	792		58		0			
	1	•••••	δ.	77	•	84	6	21		11		J	Drganic	Solids.		255	~	210		48		:			
	2		ŗ,	65	•	96	6.	05	3.	37		Ĵ	Dxygen	Consu	med	ŝ	~	29		ŝ		:			
	3		5.	65	•	96	.9	05	~	37															
	4		5.	41	.	20	5.2	81	1.1	п															
	5		<u>о</u> .	25	Ι.	36	о.	65	1.2	27															

107

.

Exp. Nº 74 Exp. Nº 74 Bureau of Engineering; Servage Experiment Station Noc Table Nº 18 COMPUTER FROM TO COMPUTER FROM TO COMPUTER ON WITH Abserbition of Oxygen CHECKER ONTE April 19 - IME. 40.

> Dilution 1:20 <u>Salt Waterfrom</u> Exp N# 73 Suspended Salids 96 P.P.M Oxygen Consumed 38 P.P.M Chlarme 6800 P.P.M. Tempt 19°C to 155°C

Two Elec fans Waves 1/2"

TABLE NO. 18-ABSORPTION OF OXYGEN.-EXPERIMENT NO. 76.

•

Dilution	1 in 20	with {	salt Wa	tter of	April	24.																Two	Electr	ic Fan	<i>a</i>
r	Temper	ature.			Bottl	8		n S	rface		1	Foot		61	Feet		3	Feet		4	Feet		5	Feet	ĺ
	ł	ſτ	ر ء	Tank	10)° Incu	bator		- 	γ P	- 1 1	, 1 1	pe pe	1 1	ʻp	рэ рэ п	יי ני יים	ים' קי	pə u	l' u' .6a	ים. קו נים	pəq u	., т, рэл	'1/ 'pu ue	pəc uə
Date April Ame	qoT	Bottom	Nitrites (. ^{w.a.a}	D. D.	P.P.M.	D. O., M.T.T.	M.G.G. M.G.G.	M.T.G	1932VXU 9droedA wloosiU	M. J. J	P.P.M	egyzU Absorbe wlossiU	NAVEO M. J. J. J. M. J. M. J. J. M. J.	nsmoU M.T.T	Absorb Vlosei Vlosei	D'L'W	Deman Deman	Oxyge Absorb	Drygee	Deman Deman	Oxyge Absorb	vlossi Dissi V.q.q	P,P,N Demai	ogyzO froadA
2610.30	19.0	19.0	0.07 6	02		3.02		6.02			5.02			.02	:	9	.02	:	:	B.02	:	:	6.02	:	:
2612.30	19.0	19.0	5	69	.33	5.52	50	5.85	.17	.16	5.94	80.	.25 5	i. 94	.08	.25 5	.98	.04	.29	5.94	.08	.25	5.81	.21	.12
26. 2.30	19.0	19.0	5	.36	.66	5.36	.66	5.57	.45	.21	5.48	.54	.12 5	.48	.54	.12 5	.48	.54	.12	5.48	.54	.12	5.40	.62	.04
26 4.30	18.5	18.5	5	.03	66.	5.03	86.	5.28	.74	.25	5.11	16.	.08 5	111	.91	.08 5	1.19	.83	.16	5.19	.83	.16	5.15	.87	.12
266.30	18.0	18.0	4	78	1.24	4.78	1.24	5.11	.91	33	5.11	16.	.33 5	5.11	16	.33 5	111	.91	.33	5.11	.91	.33	5.11	.91	.33
26 8.30	17.25	17.75	4	54	1.48	4.54	1.48	5.11	.91	.57	5.03	66`	.49 4	1.95 1	.07	.41 4	.95 1	1.07	.41 4	1.95	1.07	.41	4.95	1.07	.41
26. 10.30	17.0	17.25	4	37	1.65	4.37	1.65	5.11	.91	74	4.95	1.07	.58 4	1.95 1	20.	.58 5	1.03	66.	· 66	5.03	66.	.66	5.03	66.	.66
27 8.30	14.75	15.5	ۍ	30	2.72	3.17	2.85	4.99	1.03	1.69	4.78	1.24 1	. 48	1.78 1	. 24 1	.48 4	. 78 1	1.24 1	.48 4	1.78	1.24 1	1.48	4.78	1.24	1.48
2710.30	14.75	15.5	0.14 2	. 97	3.05	2.89	3.13	4.87	1.15	1.90	4.78	1.24 1	81 4	1.78 1	24 1	.81 4	1.78	1.24 1	.81 4	4.78	1.24 1	. 81	4.78	1.24	1.81
																						ł			
		Oxygen	Demai	i I ba	in 100	at 37.	5° C.																		
			Н	otal E	Solids		ñ	ssolved	Solids																
			Dissolv	red	Oxy	gen)	Dissol	lved	Oxyg	GI												*			
	Õ	ay	Oxyg P.P.N	d.	Dem P.P.	and M.	Oxyf P.F.	gen. M.	Dcm ² P.P.1	M.						\mathbf{Tota}	Ţ	Dissolv	red	Suspen	papr	Settl	led	۰.	
	Int		6.7(0	:		6.7	.9	:			ŭ	sbilc		:	1,04(G	94	4	96 7		0			
	1		5.6		1.0	24	5.6	6	1.0	2		Ö	rganic	Solids.		ŝ	9	26	÷.	72		:			
	2		4.96		1.7	2	5.1	6	1.5	2		O I	xygen -	Consur	red.	ŝ	×0	21	5 2	13		:			
	3	:	4.9	_	3.1	55	4.9	6	1.7	r -		0	hlorine		:	6,80	5		:	:		:			
	4		4.8	~	3.1	68	4.6	72	ю. г,	6,										,	,				
	55		4.4		2.5	12	4.8	22	1.8	6															

President Borough of Richmond Fit Burcon of Engineering Sewage nec Toble Nº 18 Experiment Station COMPUTERто FROM CONNECTION WITH. OBSOR BTION OF OXY 9 CM CHECKER _____ DATE April 26 101.6. Dilution 1'20 Solt Water Exp Nº 75 Suspended Solids 96 P.P.M. Oxygen Consumed 38 P.P.M Chlorine 6800 P.P.M Tempt 19C to 15.5°C TWO Elec fans e de c Tempt Line 15% 3 5 ٩ 2 1 obsorbed fro -0x 49en 5 10 15 20 25 Haurs

TABLE No. 18-ABSORPTION OF OXYGEN.-EXPERIMENT NO. 78.

Dilution 1 in 20. Salt Water from Experiment No. 77.

Two Electric Fans, Wave ½ inch.

(pə u	охуде Арвогр		0	17	.17	.46	.65	.82	2.06	3.06	
Feet	ן יף ע	Deman Deman P.P.M		.21	- 29.	66.	1.32	1.41	1.45	1.90 2	3 06.1	
5	" u" pə	ViossiU DXVE D.P.M	5.86	5.65	5.19	4.87	4.54	4.45	4.41	3.96	3.96	
	pə u	адухО Арвогр	:	00.	08	.17	.38	.57	.74	2.02	1.98	
Feet	י יף ע	Охуде Петал Р.Р.М	:	.21	- 58 -	66.	1.40	1.49	1.53	1.94	1.98	
4	τ pə	vlosaiU 1920xO M.q.q	5.94	5.73	5.36	4.95	4.54	4.45	4.41	4.0	3.96	
	pa u	egyzO droedA	:	0	0	.17	.38	.57	.74	2.02	1.98	
Feet	ʻp u	Б.Р.М. Петика Петика	÷	.21	.50	66.	1.40	1.49	1.53	1.94	1.98	
3	τ pə	vicesia Dissolv M, T, Y	5.94	5.73	5.44	4.95	4.54	4.45	4.41	4.0	3.96	
	pe u	Absorb	:	0	0	.17	38	.57	.74	2.02	1.98	
Feet	۰ ۴р	Р.Р.М. Пеплеп М.Ч.Д		.21	.50	66.	1.40	1.49	1.53	1.94	1.98	
21	ית ית מק	DVI068iU TSAVXO M.T.A	5.94	5.73	5.44	4.95	4.54	4.45	4.41	4.0	3.96	
	pe t	Арвотре Арвотре	:	0	0	.17	.38	.57	.74	2.02	1.98	
Foot	ʻp t	Охудел Петапо		.21	.50	66.	1.40	1.49	1.53	1.94	1.98	2
	י יז קין	ovloasiU negyxO M.q.q	5.94	5.73	5.44	4.95	4.54	4.45	4.41	4.0	3.96	
	pa t	Absorbe	:	0	0	.25	.46	.66	.78	2.06	1.98	
urface	f t	Demano Oxyger	:	.21	.50	16.	1.32	1.40	1.49	1.90	1.98	ບ ເວ
α2	" "	ovlossiU nagyzO M.J.G	5.94	5.73	5.44	5.03	4.62	4.54	4.45	4.04	3.96	at 37.
	ubator	D. D.,		.21	.50	.91	1.69	1.98	2.15	3.71	3.80	emand
tles	20° 1nc	ь.е.м. D. O.	5.94	5.73	5.44	5.03	4.25	3.96	3.79	2.23	2.14	gen D
Bot	k	ь.р.й. 0. D.		.21	.50	1.16	1.78	2.06	2.27	3.96	3.96	of Oxy
	Ta	D. O. J	5.94	5.73	5.44	4.78	4.16	3.88	3.67	1.98	1.98	ш 100
	8	Nitrite	0.09	i	:	i	:	-	:		0.14	ion 1
erature	ſ	воњо	21.0	20.5	20.25	20.0	5 19.5	19.5	19.0	17.5	17.5	Dilut
Temp	ŀ	qoΥ	21.0	20.5	20.25	20.0	19.75	19.5	19.0	17.5	17.5	
		əmiT	10	12	63	4	9	00	10	00	10	
		$\mathbf{D}_{\mathbf{g} \mathbf{f} \mathbf{c}}^{\mathbf{c}}$	3	3	3	3	3	3	3	4	4	

0.3 c.c. Settled 1 : : Suspended 112 18 96 : Dissolved • 964 32 364 : Total1,076 50 460 6,600 Solids..... Oxygen Consumed.. Organic Solids..... Chlorine.... Oxygen Demand P.P.M. Dissolved Solids Dissolved Oxygen P.P.M. 5.69 5.61 5.36 7.17 6.27 5.94Oxygen Demand P.P.M. 2.06 2.06 2.06 2.35 Toltal Solids Dissolved Oxygen P.P.M. 6.84 5.52 4.78 4.78 4.78 4.78 1nt.... 1 day..... 2 days..... 3 days..... 4 days..... 5 days..... D_{ay}

Wome 1/ Such Plastic Pasa T.....

TABLE NO. 18—ABSORPTION OF OXYGEN.—EXPERIMENT NO. 80. Salt Water Experiment No. 79 Dilution 1 in 20.

																			•			6			1
	Tempe	rature		-	Bot	tles			Surface		-	Foot		2	Feet		ŝ	Feet		4	Feet		5	Feet	
		υ	8	Tar	Jk 2	20° Inc	ubator	, pe	י א'	γ ι p	, , , ,	f f) P	a l	'I	}		'I	p	i n	1	} [a a	• •]	(p
Дағе Мау ЭппіТ	qoT	Botton	93irJiN	P.P.M. D. O.	P.P.M. 0. D.,	P.P.M. D.O.	P.P.M. D. D.	Dissolve Dxygen M.q.q	лэзүхО Петер П.Ч.Ч.Ч	Absorbe Oxyger	M.J.G.	Demman Demman Dem	Absorbe Daygen Dissorte	DXISSOIVE OXYEED. M.T.T.	Demand Demand	adrosdA Osygen	M.T.T	Demanc	adrosdA nsgyzO arlossiO	M. H. H. M.	Demand	adroadA nagyzO najechiđ	Digsolve	Demand	adtosdA nagyzO
1010.30	22.0	22.0	0,14	5.73	:	5.73	i	5.73	:	:	5.73			5.73			5.73		2	.65		:	5.65		:
1012.30	21.0	21.0	÷	5.36	.37	5.44	.29	5.36	.37	0	5.36	.37	0	5.36	.37	0	5.36	.37	0	.28	.37	0	5.28	.37	0
10 2.30	20.5	20.5	:	5.04	69.	5.20	.53	5.04	69.	0	5,04	69.	0	5.04	69.	0	l.96	- 11.	.08 4	.96	, 69.	0	.96	69.	0
10 4.30	20.0	20.0	÷	4.55	1.18	4.83	.90	4.55	1.18	0	4.55	1.18	, 0	4.55	1.18	0	1.55 1	.18	0 4	.47 1	.18	0	.47]	.18	0
10 6.30	20.0	20.0	÷	3,98	1.75	4.18	1.55	4.14	1.59	.16	4.14	1.59	, 16	4.14	1.59	.16 4	1.14 1	.59	.16 4	.06 1	. 59	.16 4	.06	. 59	16
10 8.30	19.5	19.5	:	3.53	2.20	3.90	1.83	4.06	1.67	.53	4.02	1.71	, 49	4.02	1.71	.49 4	1.06 1	.67	.53 4	.06 1	. 59	.61 4	.06 1	. 59	61
1010.30	19.5	19.5	:	3.49	2.24	3.70	2.03	3,98	1.75	.49	3.98	1.75	.49	3.98	1.75	.49 3	1.98 1	.75	.49 3	.98 1	.67	.57 3	1 06.	. 75	49
11 8.30	18.5	18.5	0.14	1.58	4.15	2.56	3.17	3.05	2.68	1.47	3.05	2.68	1.47 8	3.05	2.68 1	.47 3	.05 2	.68 1	.47 3.	.01 2.	.64 1	.51 3	.01	.64 1.	51
1110.30	18.5	18.5	:	1.54	4.19	2.19	3.54	2.92	2.81	1.38	2.92	2.81	1.38 2	2.92	2.81	. 38	.92 2	.81 1	.38 2	.88 2	.77 1	.42 2	.76 2	.89 1.	30
			ĺ									1													1
		Oxygen	n Dem	and Di	ilution	1 in 1	00 at	37.5° (ಗ																
				Total	Solida		Ц)issolve	d Solids	<i>a</i> ñ															
	ů	2	Disso	lved	Ox0	gen	Disse	bed	Oxyg																
	i	2	P P	W.	P.P.	.M.	P.P.	.M.	P.P.]	M.						Tota	1	Dissolv	ed S	usnend	led	Settle	τ		
	Int.		6.	32	:	:	6.	82	:			α Ω	olida			992		922		20		c			
	1 day		5.	89	-	93	5.	89	6.	ço		0)rganic	Solids.		346		280		99					
	2 days.		5.	28	1.	54	ς. Ω	56	1.2	9		0	xygen (Consun	ned	37		30		7		: :			
	3 days.		ŝ	22	1.	60	5.	39	1.4	ŝ		C	Chlorine			8,200		:		:					
	4 days.	• • • • • • •	4.	49	2	33	4.	86	1.9	9															
	5 days.		4.	41	12	41	4.	74	2.0	90															

Dilution 1:20 Solt Water from Exp. Nº 79

Suspended Solids. 70 F.P.M. Oxygen Consumed 37 P.P.M. Chlorine B200 P.P.M. Temperoture 22° to 18.5° c ezec~ 20° c Two tens Hores 1/2" Temperature Linc 185°C

S.	
ö	
Ž	
PERIMENT	
НX	
GEL	
0x7	
OF (
NO	
ITI	
3501	
-AJ	
18^{-1}	
<u>V</u> 0.	1
г. Щ	
ABI	
Η	
	1

~

I Foot 2 Feet 3 Feet 4 Feet 5 Feet I Foot 2 Feet 3 Feet 4 Feet 5 Feet I Foot 2 Steet 4 Feet 5 Feet 5 Feet I Foot 2 Steet 4 Feet 5 Feet 5 Feet I Foot 0 Cuygen, Denna, 0 Cuygen, Denna, 6 Ou 0 Cuygen, Denna, I Dissolved 0 System, Denna, 0 System, Denna, 1 Secoved 6 Ou 0 System, Denna, I Dissolved 0 System, Denna, 0 System, Denna, 0 System, Denna, 0 System, Denna, I B Sissolved 0 Signoved 0 Signoved 0 Signoved 0 Signoved I S Signoved 0 Signoved 0 Signoved 0 Signoved 0 Signoved I S Signoved 0 Signoved 0 Signoved 0 Signoved 0 Signoved I S Signoved 1 Signoved 1 Signoved 0 Signoved 0 Signoved I S Signoved 1 Signoved 1 Signoved 0 Signoved 0 Signoved I S Signoved 1 Signoved 1 Signoved 0 Signoved	Water of Experiment No. 81.
Певанд. Певанд. Пер. М. Охуден М. Пр. Пр. Охуден М. Пр. Пр. Пр. Пр. Пр. Пр. Пр. Пр. <t< th=""><th>Bottles</th></t<>	Bottles
Πρη Ποριουρία Ποριουρία	Tank 20° Incubator a
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	047866 0. D. 0. D. 0. D. 0. D. 0. D. 0. D. 0. D. 0. D. 0. T. 0. D. 0. D.
08 5.80 20 0 5.8 20 0 5.80 20 0 5.80 20 0 5.80 20 0 5.80 20 0 5.80 20 0 5.80 20 0 5.80 20 0 5.80 20 20 23 23 .09 5.76 .24 .09 5.76 .24 .09 5.71 .29 .04 5.67 .33 .12 5.67 .33 .12 5.67 .33 .12 5.67 .33 .37 .08 5.63 .37 .23 5.31 .69 .33 5.31 .69 .33 5.31 .69 .33 5.1 .69 .33 5.31 .69 .33 5.31 .69 .37 .563 .574 .58 .574 .563 .574 .563 .574 .59 .543 .571 .69 .37 .503 .563 .573 .574<	.06 6.00 6.00
.00 5.76 .24 .00 5.76 .24 .00 5.71 .29 .04 5.67 .33 .12 5.67 .33 .12 5.67 .33 .12 5.67 .33 .12 5.67 .33 .12 5.67 .33 .12 5.67 .33 .37 .08 5.63 .37 .25 5.47 .53 .25 5.47 .53 .25 5.47 .53 .37 .08 5.63 .37 .37 .531 .69 .33 5.31 .69 .33 5.31 .69 .33 5.31 .69 .33 5.14 .53 .57 .57 .57 .57 .57 .57 .57 .53 .57 .53 .51 .69 .33 5.31 .69 .33 5.31 .69 .37 .57 .54 .57 .73 .51 .69 .33 .531 .69 .543 .	5.80 .20 5.8 .20 5.88
.12 5.67 .33 .12 5.67 .33 .12 5.67 .33 .12 5.67 .33 .37 .08 5.63 .37 .25 5.47 .53 .25 5.47 .53 .25 5.47 .53 .25 5.43 .57 .37 .531 .69 .33 5.31 .69 .33 5.31 .69 .33 5.31 .69 .41 5 .27 .73 .43 5 .27 .73 .27 .73 1.27 5 .27 .73 1.27 5 .27 .73 1.31 5 .27 .73 .73 .73 .73 .73 1.31 5 .27 .73 .73 .73 .73 1.31 5 .27 .73	5.67 .33 5.67 .33 5.76
25 5.47 53 25 5.47 53 25 5.47 53 25 5.47 53 25 5.43 57 37 5.31 69 33 5.31 69 33 5.31 69 33 5.31 69 33 5.31 69 33 5.31 69 33 5.31 69 33 5.31 69 33 5.31 69 33 5.31 69 .41 5.27 .73 .41 5.27 .73 .41 5.27 .73 .41 5.27 .73 .127 5.27 .73 1.27 5.27 .73 1.27 5.27 .73 1.27 5.27 .73 .131 5.27 .73 1.31 5.27 .73 1.31 5.27 .73 1.31 5.27 .73	5.55 .45 5.47 .53 5.67
.37 5.31 .69 .33 5.31 .69 .33 5.31 .69 .33 5.31 .69 .41 5.27 .73 .41 5.27 .73 .41 5.27 .73 .41 5.27 .73 .41 5.27 .73 .41 5.27 .73 .41 5.27 .73 .131 5.27 .73 1.27 5.27 .73 1.31 5.27 .73 .131 5.27 .73 1.31 5.27 .73 1.31 5.27 .73	5.22 .78 5.06 .94 5.47
.41 5.27 .73 .41 5.27 .73 .41 5.27 .73 .41 5.27 .78 .127 5.27 .73 1.27 5.27 .73 1.27 5.27 .73	4.98 1.02 4.82 1.18 5.35
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4.86 1.14 4.65 1.35 5.27
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4.00 2.00 3.51 2.49 5.27
	0.06 3.96 2.04 3.22 2.78 5.27
	nd of Sewage at 37.5° C. Dulution I in Ju Total Solids Dissolved Soli
	Dissolved Oxygen Dissolved
	P.P.M. P.P.M. P.P.M.
en ad M. Total Dissolved Suspended Settled	6.90 7.14
en nd .(. Total Dissolved Suspended Settled 	5.96 .94 6.41
en ad M. Total Dissolved Suspended Settled M. Solida	5.55 1.35 6.25
en nd M. Total Dissolved Suspended Settled M. Solida	4.64 2.26 5.71

.... .73 .89 1.43 1.43 1.43

7.14 6.41 6.25 5.71 5.71 5.33

6.90 5.96 5.55 4.04 4.04

Int. 1 2 3 .

President Baraugh of Richmond	Exp Nº 82
Barcau of Engineering, Sewaye	Acc Table Nº 18
Ezperiment Station computer	JTROM
CONNECTION WITH . 96505 Btion of ORY 9.25 CHECKEN	DATE May 18 1016

18 - ABSORPTION OF OXYGEN. - BXPE Surface 1 Foot 2 Feet Soon Depty gend Absorped 1 Opp Proves Absorped 1 Absorped Absorped 1 Absorped 1 Foot 2 Feet Absorped 0 5.65 24 0 5.66 5.50 40 0 5.66 24 0 5.66 5.17 73 32 5.01 39 51 5.09 37.5° C 31 1.45 1.45 4.61 1.29 9 81 24 5.01 37.5° C 37.5° C 501 39 21.14 1.45 6 1.13 0.20 1.45 1.45 1.45 7 1.13 0.20 1.45 1.45 6 1.14 1.45 1.45 1.45 1.13 1.22 4.45	I8-ABSORFTION OXYGENEXPERIMENT NO. Burface 1 Foot 2 Feet 3 Feet Sunface 1 Foot 2 Feet 3 Feet Sunface 1 Foot 2 Seet 3 Feet Sunface 1 Foot 2 Seet 3 Feet Soonbedn Dorp Provident Absorbedn 3 Feet Soonbedn 5 Soon 3 Foot 3 Feet Soonbedn 5 Soon 5 Soon 3 Foot Soonbedn 5 Soon 5 Soon 5 Soon 3 Foot Soonbedn 5 Soon 5 Soon 5 Soon 3 Foot Soonbedn 5 Soon 5 Soon 5 Soon 5 Soon 5 Soon Soonbedn 5 Soon 5 Soon 5 Soon 5 Soonbedn 5 Soon Soonbedn 5 Soon 5 Soon 5 Soon 5 Soon 5 Soon Soonbedn 5 Soon 5 Soon 5 Soon 5 Soon 5 Soon 5 Soon Soonbedn 5 Soon 5 Soon 5 Soon 5 Soon 5 Soon <td< th=""><th>IS - ABSORPTION OF OXYGEN EXPERIMENT NO. 84. I Foot 2 Feet 3 Feet 3 Feet 3 Feet 4 Fe Surface I Foot 2 Feet 3 Feet 3 Feet 3 Feet 4 Fe Surface I Foot 2 Feet 3 Feet 3 Feet 3 Feet 4 Fe Surface I Foot 2 Feet 3 Feet 3 Feet 3 Feet 4 Feet Surface I Foot 0 Stygent, Absorbed 0 Stygent, 4 Feet <</th><th>IS-ABSORPTION OF OXYGEN.—EXPERIMENT NO. 84. Two Faus. Hipp Surface 1 Foot 2 Feet 3 Feet 4 Feet Surface 1 Foot 2 Feet 3 Feet 4 Feet Surface 1 Foot 2 Feet 3 Feet 4 Feet Surface 1 Foot 2 Feet 3 Feet 4 Feet Surface 1 Foot 2 Feet 3 Feet 4 Feet Surface 1 Foot 2 Feet 3 Feet 4 Feet Surface 1 Foot 2 Superstand. 4 Feet 4 Feet Surface 1 Foot 5 Su 0 Superated. 4 Feet Supervent 5 Su 0 Superated. 4 Feet 4 Feet Supervent 5 Su 0 Superated. 4 Supervent 0 Superated. Supervent 5 Su 0 Supervent 1 Supervent 0 Supervent 1 Supervent Supervent 5 Supervent 1 Supervent 0 Supervent 1 Supervent 1 Supervent Supervent 2 Supervent 2 Supervent 1 Supervent</th></td<>	IS - ABSORPTION OF OXYGEN EXPERIMENT NO. 84. I Foot 2 Feet 3 Feet 3 Feet 3 Feet 4 Fe Surface I Foot 2 Feet 3 Feet 3 Feet 3 Feet 4 Fe Surface I Foot 2 Feet 3 Feet 3 Feet 3 Feet 4 Fe Surface I Foot 2 Feet 3 Feet 3 Feet 3 Feet 4 Feet Surface I Foot 0 Stygent, Absorbed 0 Stygent, 4 Feet <	IS-ABSORPTION OF OXYGEN.—EXPERIMENT NO. 84. Two Faus. Hipp Surface 1 Foot 2 Feet 3 Feet 4 Feet Surface 1 Foot 2 Feet 3 Feet 4 Feet Surface 1 Foot 2 Feet 3 Feet 4 Feet Surface 1 Foot 2 Feet 3 Feet 4 Feet Surface 1 Foot 2 Feet 3 Feet 4 Feet Surface 1 Foot 2 Feet 3 Feet 4 Feet Surface 1 Foot 2 Superstand. 4 Feet 4 Feet Surface 1 Foot 5 Su 0 Superated. 4 Feet Supervent 5 Su 0 Superated. 4 Feet 4 Feet Supervent 5 Su 0 Superated. 4 Supervent 0 Superated. Supervent 5 Su 0 Supervent 1 Supervent 0 Supervent 1 Supervent Supervent 5 Supervent 1 Supervent 0 Supervent 1 Supervent 1 Supervent Supervent 2 Supervent 2 Supervent 1 Supervent
ORPTION OF OXYGEN. EXPE ORPTION OF OXYGEN. 2 I Foot OXYGEN. 2 I 5.90 Inssolved 2 I 5.17 73 2 2 I 2 1.45 1.45 1.45 I 2 1.45 1.45 1.45 I 2 1.45 1.45 1.45 I 2 4.45 1.45 1.45 I 2 1.45 1.45 1.45 I 1.45 1.45<	ORPTION OF OXYGEN. EXPERIMENT NO. 0.01 0.01 0.01 0.01 0.01 0.01 1 1 1 1 1 1 1 0.01 1<	ORPTION OF OXYGEN. EXPERIMENT NO. 84. 1 Foot 2 Feet 3 Feet 4 Feet 1 Foot 0 5 90 1 8 4 Feet 4 6 4 Feet 4 6 4 6 4 6 5 90 11 4 4 6 4 6 4 6 4 6 4 6 4 6 4 6 4 1 4 6 6 1 4 6 4 1 4 6 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 <td< td=""><td>ORFTION OF OXYGEN.—EXPERIMENT NO. 84. Two Faas. Hipp 1 Foot 2 Feet 3 Feet 4 Feet 5 90 10 0</td></td<>	ORFTION OF OXYGEN.—EXPERIMENT NO. 84. Two Faas. Hipp 1 Foot 2 Feet 3 Feet 4 Feet 5 90 10 0
DXYGEN. — BXPE 1.5 YGEN. — BXPE P. P.P.M. 2 Feet Absorbed 2 Feet OXYgen 0 System OXYgen 0 System 105ssolred 1.45 0 5.66 24 5.01 24 5.01 24 5.01 24 5.01 24 5.01 24 5.01 24 5.01 24 5.01 24 5.01 24 5.01 24 5.01 24 5.01 24 5.01 24 5.01 24 5.01 24 5.01 24 5.01 24 5.01 24 5.01 25 1.145 1.14 4.36 1.54 1.54 0.57 0.57	Хтусски. — Бхирскимскит No 2 Реес 3 Реес 1 2 Гесс 3 Ресс 1 2 Сордена, 10 Сордена, 10 Сордена, 10 Сордена, 10 Сордена, 10 Сордена, 10 5 66 3 Ресс 1 2 Сордена, 10 5 66 24 1 2 5 90 5 80 1 2 6 0 24 1 2 7 8 1 49 1 2 7 8 2 7 9 1 2 7 8 2 41 1 2 7 0 2 8 1 2 8 2 41 1 2 4 5 0 2 2 8 24 5 2 1 44 0 2 1 44 1 54 2 1 45 1 43 2 1 44 1 54 3 8 3 86 3 86 3 0 400 0 400	XYGEN. — EXPERIMENT NO. 84. Tage 2 Peet 3 Aboorbed 3 Absorbed 4 Absorbed 3 Basolved 3 Absorbed 3 Absorbed 3 Absorbed 3 Absorbed 3 Basolved 3 Basolved 3 Basolved 3 Basolved 3	ХтубЕКN
	RIMENT No. bedrosdA Alborite	RIMENT NO. 84. Absorbed Oxygen 3 Feet 4 Fe 3 Feet 0 5.68 0 5.82 0 5.82 0 5.66 24 0 5.82 0 5.82 0 5.66 24 0 5.82 0 5.82 0 5.66 24 0 5.58 0 5.58 1.05 4.1 49 0 5.41 4 1.05 4.15 1.45 0 5.58 30 1.05 4.15 1.45 0 5.58 30 1.05 4.15 1.45 0 5.41 4 1.05 4.15 1.45 1.45 1.1 1.05 4.36 1.54 1.05 4.36 1.54 1.05 4.36 1.54 1.05 4.36 1.54 1.05 4.36 1.54 1.05 4.36 1.55 1.05 4.36 1.54 1.05 4.36 1.55 200 370 1.55 1.01 3 1.55 210 370 1.55	RIMENT NO. 84. Two Faas, Ripp 3 Feet 4 Feet 3 Feet 4 Feet 0 0 5 66 24 0 5 .66 24 0 5 .66 24 0 5 .66 24 0 5 .61 24 0 5 .64 0 5 .82 0 5 .64 0 5 .82 0 5 .61 24 0 5 .64 0 5 .81 0 5 .64 0 5 .41 0 5 .64 0 5 .41 0 5 .64 0 5 .41 0 5 .61 24 0 5 .41 49 0 5 .41 49 .08 5 .17 .08 5 .17 .08 5 .11 .08 5 .11 .16 3.12 .154 1.45 .16 4 4 5 .17 .73 .16 2.45 .17 .145 .16 4.45 .16 4.45 .16 4.45 .16<

President Barough of Richmond Exp. N.º 84 Burcan of Engineering Sewage watable Nº 18 CONNECTION WITH absorbtion of Osygen checker _____ DATE MOY 24 ING

Dilution 1:20 Solt Water from Exp.Nº. 83 Suspended Solids 92 P.P.M Oxygen Consumed 43 P.P.M Chlorine 9400 P.P.M. Tempt 1956 to 18°G TWO frons Wore of the

	inch.		set	P.P.M.	804 524 328 524 8 + .65 708 8 + .65	
	ipple ½	F		Oxygen, Oxygen,	82 54 .2 .54 .2 .17 .6 .12 1.7 .6 .12 1.6 .16 .1.6 .1.6 .1.6 .1.6 .1.6	
	ans, R		}	hearlosed DaylossiC	7	
	Two F	Root		Osygen, Demand, P.P.M.	. 16 . 41 . 69 . 69 . 05 . 1. 09 . 1. 13	led
				Dissolved, Oxygen, M.P.P.M.	5.82 5.66 5.41 5.13 5.13 4.77 3.92 3.92	Suspend 84 72 13
.9				Absorbed Absorbed	098 098 055 78 78	8
No. 8		3 Feet		Oxygen, Demand, Demand,	 .16 .32 .65 .65 1.05 1.05 1.13 1.18	Dissolv 990 270 28
IENT			}	Diesolved Oxygen, P.P.M.	5.82 5.66 5.50 5.17 4.77 4.77 3.96 3.96	a 11 12 0
ERÌM				bədrosdA nəgyzO	- 08 - 08 - 13 - 24 - 49 - 49 - 57 - 57 - 57 - 57 - 57 - 57 - 1.78	Tot 1,07 34 34 7,60
ExP		2 Feet		Охуgen, Юсляла, Р.Р.М.		
EN.			. 1	Dissolved M.A.G.	5.82 5.66 5.54 5.17 4.85 4.85 4.69 3.96	Solids Consun
5XX			-1	Absorbed	.12 .17 .32 .32 .49 .49 .49 .69 .69 .1.78	olids rganic xygen hlorine
OF C		1 Foot	{ .	Demsmad Demsmad P.P.M.		Ϋ́ΟΟΫ
ION		~	P	Dissolve Oxygen, .M. T. T	5.82 5.70 5.58 5.58 5.25 4.77 4.77 4.73 3.96 3.96	
ORPT	ł		۲ ا	абтоғдА Охудел		Ϋ́
-ABS		Surface	' 1	охудел Demanad M. Ч. Ч.		P.P.N. 1.121 1.121 1.13 1.4.1
<u>6</u>			, p	Dissolve M.T.G. M.T.G.	5.86 5.74 5.78 5.29 4.93 4.93 3.96 3.96 3.96 3.96 1 in a 1 in	
5 INO	8		ubator	P.P.M.		1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
ent No		ttles	20° In	ъ.е.М. В. О.	5.82 5.58 5.41 5.41 4.93 4.36 4.20 5° C. 5° C.	
r xperim	.	B	ank	0 D.		
ater E		Į	Ĥ	D. O.,	5.82 5.58 5.41 5.41 4.93 4.93 4.04 4.04 4.04 2.18 2.18 2.18 70tal	.m. 887 33 33 33 33 33 33 33 33 33
alt W		0.7	S	ətirti V	0.04 0.05 0.06 Diss	4 0 0 0 0 0 4
20.		erature	u	Botton	19.5 19.5 19.5 19.5 19.5 19.5 0xy	
1 in		Temp		qoT	19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5	nt day days days days days
hilution			ę	Time	9.45 11.45 3.45 5.45 5.45 7.45 9.45 9.45	
Ц	∥.		e	Dato VaM	29 29 29 29 30	

-TARLE NO 18. .

President Borough of Richmond Exp Nº 86 Bureau of Engineering; Sexinge nec Table Nº 18 Experimental Statian computer From TO MADE MITH Absorbtion of Oxy gen CHECKER ONTE MAG 429 116

Delution 1:20 with Salt Water used in Exp.85

0 5 10 15 20 25. Hours TABLE NO. 18-ABSORPTION OF OXYGEN -EXPERIMENT NO. 88.

Dilution 1 in 20 with Sait Water from Kill Von Kull, Used in Experiment No. 87.

	Bot	tles		Surfa	ġ		1 Foot		ſ	D _{ant}		°	F			P				
			ł			ļ			4	139 T			leer Leer	Ì	7	1 Feet		1	Feet	
an		20° Incu	bator 2	יף נ י	pa t	י ד קק	ʻF	p: T	r pi	ʻE	p	ı p:	ʻl	p	p	ʻļ	P	p		F
чu	P.P.M.	D. O.	Dissolv.	M.J.J. M.J.J. 1927xO 1927xO 102mano U.J. J.	M. T. T 192VTO odrosdA	evloesiU 1920xO M.J.Q.	Demana Demana M. T. G.	19gyzO Absorbe	Dissolve Dissolve M.T.Q.	Demano Demano P.P.M.	Арзотре Арзотре	M.T.G.T.	Demand Demand	пэзүхО өdтозdA	evlossid M.T.T.	Oxygen Densmod P.P.M.	пэзүхО өdтозdА	Dissolve Dissolve D.P.M.	Demand Demand D.P.M.	negyzo Absorbed
	:	5.01	5.	05	:	5.01			5.01			5.01			5.01			4.85		
	.16	4.85	.16 4.	90. 76	. 08	4.93	.08	.08	4.93	.08	80.	1.93	.08	80.	4.93	.08	.08	4.93 -	. 08	24
_	.32	4.69	.32 4.	85 .20	. 12	4.81	.20	.12	4.81	.20	.12	¥.81	.20	.12	4.81	.20	.12	4.81	170	58
	.48	4.53	.48 4.	73 .32	.16	4.73	.28	.20	4.73	.28	.20	£.73	.28	.20	4.73	.28	.20	4.65	.20	- 58 - 78
_	.81	4.28	.73 4.	61 .44	.37	4.57	.44	.37	4.61	.40	.41	Ł.61	.40	.41	4.61	.40	.41	4.57	.28	3
	.97	4.12	.89 4.	61 .44	. 53	4.57	.44	.53	4.61	.40	.57	1 .61	.40	.57	4.57	.44	.53	4.53	.32	.65
	1.05	3.96	1.05 4.	61 .44	61	4.53	.48	.57	4.53	.48	.57	L. 53	.48	.57	4.53	.48	.57	4.53	.32	.73
	2.06	2.95	2.06 4.	61 .44	1.62	4.53	.48	1.58	4.53	.48 1	.58	t. 53	.48]	58	4.53	.48	1.58	4.45	.40 1	1.66
	2.10	2.91	2.10 4.	61 .44	1.66	4.61	.40	1.70	4.61	.40 1	.70	19.1	.40	.70	4.57	.44 1	1.66	4.57	.28 1	L.82
08	nd at	37.5° C	. Dilut	ion 1 in	100.															
	7											,				`				
2 2 2		Demanc																		
Ę		P.F.M.										Total	A	issolve	d Su	spende	q			
9		:						Soli	ids		:	1,014		914		100				
N		1.17						Org	anic So	lids	:	362		282		80				
Ω,		1.50						Oxy	'gen Co	nsumed	_:	40		27		13				
= 1		1.78						Chl	orine		:	8,400								

•

2.032.20

4.76 4.59

4.....5

-

President Borough of Richmond	FILE Exp. No.88
Bureau of Engineering; Sewage	Toble Nº 18
Experiment Station COMPUTER	FROM
CONNECTION WITH Absorbtion of Oxyg. CM. CHECKER	DATE JUNC 5, 1816
Dilution 1:20	

.

Salt Water from Kill Van Kull used Exp. 87

~

Suspended solids	in	Servage	100 P.PM
Oxygen Consumed	• •	• • •	HOPPM
Chlorine			8400 PPM
Temperature	1	9.5° c to	190

Two electric fons ripple 1/2 inch

1

					T_{AB}	LE I	Vo. 1	8—A	BSOR	PTIO	N OF	Оху	GEN.	-Ex	PERI	MENT	No.	90.						
Dilution	1 in 20.	Salt	Water	Used	in Exp	erimen	tt No.	89											owT	Fans,	Ripple	about	1⁄2 inch	
	Tempera	ture			Bottle		-	Surf	ace		E I	oot		2 F.	set		3 Feet			4 Feet		5 1	feet	
	l	(u	(s	Tank	20	Incub	ator		. .	pe		- C 	pe pe	ים ס י		pe	۰ ۳	pa u	ti pə	ʻp u	be be	u pə	, p u	pa u
otaU onul omiT	qo'T	nottoll	ojittiV D.O.∐	P.P.M.	.ю.а. а.	P.P.M.	P.P.M.	M.T.T. M.T.T. 192VXO	M.T.T.	Absorbe	M.T.T. M.T.T 192yxO	M.T.T.	odroedA evloeeiQ reavxO	M.T.T M.Y.T. M.Y.Z.T. M. M. M	M.T.T.	oviosci Diesolve Diesolve Diesolve	nagyzO M.g.g.g M.g.g	agyzO Absorb	vloasi Dissolv M. T. T	отуден Истано М.Ч.Ч	ogyzo drosdA	vlossi M.q.q M.q.q	охуден М, Ч, Ч	egyzO drosdA
1210.30	18.5 18	8.5 0	.08 4.	55	4.	55	4.	55	:	4.	55		. 4.	Si		4.55			4.51	:	:	4.51		:
1212.30	18.5 18	8.5 .	4	39	.16 4.	39	.16 4.	. 51 . (04 .	12 4.	47 .(). 80	38 4 .'	13 .1	2.0	4 4.43	. 12	.04	4.43	.08	.08	4.43	.08	.08
12 2.30	18.5 15	s.5 .	4	27	.28 4.	18	.37 4.	.51 .(0 4	24 4.	47 .(38	20 4.4	17 .0	8	0 4.47	.08	.20	4.43	.08	.20	4.43	80.	.20
12 4.30	18.5 18	3.5 .	4.	10	45 4.	10	45 4.	4 3	12 .	33 4.	4 3]	12 .5	33 4.4	13 .1	2.3	3 4.39	.16	.29	4.39	.12	.33	4.39	.12	.33
12 6.30	18.5 15	s.5 .		86	.69 3.	86	.69 4.	.35	20	1 9 4 .	31	24 .4	15 4.2	37 .2	8	1 4.27	.28	.41	4.18	.33	.36	4.10	.41	.28
12 8.30	18.25 18	8.25 .	3.	53 1	.02 3.	45 1	.10 4.	·. 10	45 .	57 4.	10 .4	15 .:	57 4.1	10 .4	5.5	7 4.10	.45	.57	4.10	.41	.61	4.02	.49	.53
1210.30	18.25 18	8.25 .		36 1	.19 3.	20 1	.35 4.	.10	45 .	74 4.	10 .4	15 . j	74 4.() 6 .4	7. 6	0 4.06	.49	.70	4.08	.45	.74	4.02	.49	.70
13 8.30	17.75 1	7.75	1.	76 2	.79 1.	64 2	.91 3.	3. 69.	86 1.	33 3.	61 .4	34 1.8	35 3.(319	4 1.8	5 3.61	.94	1.85	3.61	.90	1.89	3.61	. 06	1.89
1310.30	17.75 1	7.75 0	.12 1.	72 2	.83 1.	.48 3	.07 3.	3. 69.	86 1.	97 3.	61 .(94 1.8	39 3.5	53 1.0	2 1.8	1 3.53	1.02	1.81	3.53	98	1.85	3.53	.98	.85
	0×y	rgen D	emand	of Sev	vage at	37.5°	Р С	lution	1 in 1	00														
			To	otal Sc	sbild																			
			Dissolve	ed	Oxyge	(a																		
	Day	:	Oxygei P.P.M	៨	Demai P.P.M	ខ្ម										[otal	Diss	olved	Suspe	nded	Sett	led		
	Int.,	:	6.97									Solic	ds		:	932	, r	34	14	oç	1.	5		
	1 day		6.36		.61							Orgi	anic So	lids	:	382	3	56	11	9	:			
	2 days	:	5.13		1.84							Oxy	gen Co	nsumed		51	~ 4	28	67	ŝ	-			
	3 days	:	4.72		2.25							CPI	orine.		6	,950	:	:	*		:	•		
	4 days 5 days		4.68 4.18		2.29																			

.

Dilutian 1:20 with Salt Water Used in Exp 89 Suspended solids 148 P.P.M. Oxygen Consumed 51 P.P.M Chlorine 9950 Temperature 18.5°

Two Electric fans making ripple abt 42"

J

۲

						H	ABLE	: No.	. 18–	-Abs	ORPT	ION C	JF O3	(AGE)	и. – Н	XPER	IMEN	T No	. 92.		-					
Sal	Wat	ter froi	m Kill	Топ	Kull,	Experi	iment 1	No. 91.	Diu	tion 1	in 20.								Two	Elect	ric Fan	ıs, Rip	ple A	bout 34	inch.	
		Temp	erature			B	ttles			Surface			[Foot	-	2	Feet		3 H	leet		4	Feet	-	5	Feet	{
			Ū	s	Ţ	ank	20° In	cubato	י יו יו די	ʻP	pa t	י יי pa	ʻP t	pe pe t	t D	ʻp	pe pe	ับ 	ים הי מי	eq eq	יי יי יי	ע יוי	pə. pə	u •] •u	'p'	рә
93£C 9au l	əmiT	qoT	Botton	Nitrite	D. O. P. O.	P.P.M. 0. D.,	D. O.	P.P.M. 0. D.,	vlossi 193yxO M.q.q	Deman	юдтогдА	vlozziU 192yzO M.Y.G) Deman	Absorbe Absorbe	Alosary Drygen M.q.q	Demend M.T.T	drosdA vlossi <u>U</u>	Oxyger P.P.M Oxyger	D.P.M.	drosdA	Daryge	DENTRE	droadA vlosaiQ	Oxyge P.J.A Oxyge	Temsu P.P.M	Absorb
16	10	22	21.75	0.22	4.66		4.66	:	4.66	:	:	4.66			4.66		4.	66	:	4	58	:	4	.54	•	:
16	11	21.5	21.5	i	4.00	:	:	:	÷	:	:	:	:	÷	:	:	:	:	:	:	: :	:	:	:	:	÷
16	12	21.5	21.5	:	4.62	0.04	4.42	.24	4.54	.12	08	4.50	.16 –	12	4.50	.16 —	.12 4.	58	. – 80	04 4.	54 .	04	0	.54	0	0
16	01	21	21	:	4.26	.40	4.26	,40	4.38	.28	.12	4.34	.32	.08	4.34	.32	.08 4	34 .	32 .	08 4.	30.	28	.12 4	.26	.28	.12
16	4	21	21	:	3.94	.72	4.22	.44	4.18	.48	.24	4.18	.48	.24	4.18	.48	.24 4.	. 10	56 .	16 4.	10	48	.24 4	.10	44	28
16	9	20.75	20.75		3.62	1.04	3.70	96.	3.94	.72	.32	3.78	88.	.16	3.78	.88	.16 3.	78	88	16 3.	. 07	88	.16 3	.70	.84	.20
16	\$	20.5	20.5	:	2.89	1.77	3.14	1.52	3.38	1.28	.49	3.42	1.24	.53	3.46	1.20	.57 3.	38 1.	28	49 3.	42 1.	16	.61 3	.38 1	.16	.61
16	10	20	20	:	2.53	2.13	2.89	1.77	3.34	1.32	.81	3.26	1.40	.73	3.30	L.36	.77 3.	30 1.	36 .	77 3.	26 1.	32	.81 3	.26 1	.28	.85
17	10	20	20	0.20	0.24	4.42	0.56	4.10	3.06	1.60	2.82	2.98	1.68	2.74	2.98	1.68 2	.74 2.	98 1.	68 2.	74 2.	93 1.	65 2.	77 2	.73 1	.81 2	61
		Oxygei	n Dem	and o	f Sewa	ge at 3	37.5° C	Dil	ution 1	i 10).															
					Total	l Solids	10																			
		Д	łay	Ois Ox	solved vgen	õõ	rygen mand											2								
				ų.	P.M.	Ч.	P.M.										Total	А	issolve	ğ	uspende	g	Settle	-15		
		Int		. 7	.00	•	:						αΩ.	olids		:	1,160		994		166		2.0 c.c	.:		

Solids...... Organic Solids..... Oxygen Consumed.. Chlorine..... ١ P.P.M. 1.891.89 2.58 3.46 2.74 P.P.M. 7.005.115.03 4.42 3.54 4.26 Int..... 4..... 5.....5 2

166 140 28 Ň

994 330 29 :

1,160 470 57 10,200

,

President Borough of Richmand Exp 1492 Bureau of Engineering; Sensage her Toble Nº 18 Experimental Station Computer From To CONNECTION WITH Absorbtion of Oxygen CHECKER DATE JUNC 16 1016

Dilution 1:20 with Salt Water used in Exp Nº 91

Suspended solid	ts 116 P.P.M.
Oxygen Consum	red STPPM
Chlorine	10 000 PPM
Temperature	21.5 to 20° C

Two electric fons blaning an surface making a ripple about 1/2 inch

0 5 10 15 20 25

TABLE No. 18-ABSORPTION OF OXYGEN.-EXPERIMENT NO. 94.

۱

`

Dilution 1 in 20.

.

IIG	ution	1 in 20															Salt W	'ater fr	om Kil	ll Van	Kull (Used in	t Expe	riment	No. 93	
		Temper	ature			Boti	tles		ű	urface		I	Foot		61	Feet		60	Feet		4	Feet		5	Feet	
			U	8	T_{an}	łk.	20° Inci	lbator.	, p	ŕĘ	יייז (ייין (ז	i Di	f F	9 9) [P	D	i i	P	,	í ľ	יאן אין אין אין אין אין אין אין אין אין	p;	ʻT	(p
Date Date	əmiT	qoT	Botton	93ir3iV	P.P.M.	ь. р. М.	D. O.	ь.р.М. 0. D.	Dissolve M.T.G M.T.G	Deman Deman	193VXO 9d10adA	M.J.G.A	Demand Demand	agyxO edrosdA micesiu	M. J. J.	Demand	agyxO 9d10adA	M. J. G	Demand Demand	a924x0 9drosdA	Director Oxygen A.A.A.	Demand Demand	Absorbe	M. T. T.	Demand Demand	Oxygen Absorbe
22	10	17.5]	18	.20	4.22	÷	4.22	:	4.30	:		4.18			4.22			4.22		:	4.18			4.18		
22	12	17.5	17.5 .	:	4.10	.12	4.10	.12	4.2°	.08	.04	4.18	0	.12	4.22	0	.12	4.22	0	.12 4	4.22 -	04	. 16	4.14	.04	.08
22	63	17.5]	18.5 .	:	4.02	.20	3.98	.24	4.22	.08	.12	4.18	0	.20	4.22	0	.20	4.22 *	0	.20 4	4.18	0	.20	4.18	0	.20
22	4	17% ;	1714 .	i	3.94	28	3.82	.40	4.18	.12	.16	4.14	.04	32	4.22	0	.28	4.18	.04	.24 4	1 .18	0	.28	4.10	.08	.20
22	9	17	17 .	:	3.70	.52	3.61	.61	4.22	.08	.44	4.22 -	04	• 56	4.18	.04	.48	4.18	.04	.48 4	1.18	0	.52	£.10	.08	.44
22	00	17	17 .	:	3.22	1.00	3.38	.84	4.18	.12	88.	4.18	0	1.00	4.10	.12	.82	4.14	.08	.92 4	1 .10	.08	.92	1.10	.08	.92
22	10	17	17 .	:	3.22	1.00	2.81	1.41	4.02	.28	.72	$^{1.02}$.16	84	4.02	.20	.80	4.02	.20	.80 4	1.02	.16	84	3.94	.24	.76
23	10	16	16	.15	88.	3.34	÷	:	2.73	1.57	1.77	2.73	1.45	1.89	2.73	1.49	1.85	2.73 1	49 1	85 2	2.73 1	.45 1	88	2.73 1	.45 1	80.
						64 97	02		1 1 1	100																
		VayBou	Terrar	5	T	otal S	olids		T TINT	-00T T																
				ίΗ	Dissolve	, d	Oxygei	(-																		
			Day		Oxyger P.P.M.	а.	Deman P.P.M	p.										Total	Ë	solved	Sus	mender	-			
		Int.		:	7 08									Solis	olo			1 084	à	079	3	119	4			
		1		: :	4.74		2.34							0 E	anic So	lids.	: :	552		468		84				•
		2	:	:	4.18		2.90							0xy	rgen Co	nsumet	J	64		11		53				
				:	3.78		3.30							CPI	orine.			10,100		:						
		5 4		: :	3.06		4.35																			

President Borough of Richmond _____ Exp No 94 Bureau of Engineering, Sewaye watable 10-18 CONNECTION WITH Absorbtian of CAYGER CHECKER _____ DATE JUN 225, 1016

Dilution 1:20 with Salt Water used in Exp Nº93

Suspended sol	ids 112 P.P.M
Oxygen Conso	med 64 PPM
Chlorine	10100 PPM
Temperature	17.5°C

1

Ripple of 1/2 inch made by two electric forms blowing on the surface

0 5 10 15 20 25 Hours

President Borough of Richmond North 18, 16, 18, 50, 82. Bureau of Engineering, Sextage 84, 86, 88, 90, 92 Experimental Station TOBLE Nº18 COMPUTER CONNECTION WITH _ A b.s.ar. b tion of OAY glowecker _____ DATE _____ DATE _____ 1016 1:20 Average of Eleven observations of dilution of Severage mith Salt Water from Hill Von Kull in proportion of Ipart servage to 20 parts Water used in previous investigations of absorbtion of Sall Water Without dilution. Two electric fams blowing on surface mode a ripple of about 1/2 inch --0.0 Bottles а P. P. 21. to bsor bed 0 - bxygen 15 5 14 20 25 ø Hours

TABLE NO. 19-ABSORPTION OF OXYGEN.-EXPERIMENT NO. 95.

Wave Movement about 4 inches.

Salt Water from Kill Van Kull.

at	na na	I.T.T. SVXO PiosdA	:	96. 96	36 1.44	93 2.17	17 2.54	17 2.74	17 2.98	17 3.22	28 3.37
5 Fee	.pu ua 'U'	Aryge A.T.G B.Y.G B.Y.S B.T.S B. B. B. B. B. B. B. B. B. B. B. B. B.		6.27 —.9	67-1.8	7.24—1.9	7.48—2.1	7.48-2.	7.48-2.	7.48—2.	6.59-1.
}	ped ped	Abserb Abserb TossiG	:	9 96 -	.44 6	3.17	2.54	5.79	5.98	3.22	28
4 Feet	Dissolved Oxygen, P.P.M. Drygen Demand, P.P.M.		:	- 96	-1.361	-1.93-2	-2.17-2	-2.222	-2.172	-2.17-8	122
			5.31	6.27	6.67 -	7.24 -	7.48-	7.52-	7.48	7.48	6 03.
Ì	nsavro bedroadA		:	88.	-1.44	-2.17	-2.54	-2.78	2.98	-3.22	11 6
3 Feet	ʻpt u	охуде Петал Л.Ч.Ч	÷	- 88	1.36 -	1.93 -	2.17-	2.21 -	2.17	2.17 -	1 25
	r, , a pə.	vlossiU VXVE® M. q. f	5.31	6.19	6.67	7.24	7.48	7.52	7.48	7.48	000
	pə u	9avxO Absorb	÷	.88 88.	1.44	2.17	2.54	2.82	2.98	3.22	11 0
2 Feet	ים ני ע	P.P.M. Demand, Demand,		88.	1.36	1.93	2.17	2.25	2.17	2.17	60
ŭ	P.P.M.		5.31	6.19	6.67	7.24	7.48	7.56	7.48	7.48	000
	рэ ц	92VXO d10sdA	:	96.	1.44	2.17	2.54	2.82	3.06	3.26	
Foot	Охувел Demand, Demand,			96.	1.36	1.93	2.17	2.25	2.25	2.21	00
-	o b, be	bevlossiu, ,M.J.Y.C. M.J.J.		6.27	6.67	7.24	7.48	7.56	7.56	7.52	-
	Absorbed			88.	1.40	2.09	2.46	2.90	2.98	3.18	
surface	ʻp u	азүхО пятэЦ М.Ч.Ч		88.	1.32	1.85	2.09	2.33	2.17	2.13	1
02	't pa	vlossi Oxygen M.A.A	5.39	6.27	6.71	7.24	7.48	7.72	7.56	7.52	1
	eubator	Б.Р.М. 0. D.	:	.08	.08	.24	.36	.57	.81	1,09	
tles	20° 1nc	D. O.	5.31	5.23	5.23	5.07	4.95	4.74	4.50	4.22	
Bot	Tank	0, D.,		0	.08	.24	.37	.57	.81	1.05	
		D, O, U	5.31	5.31	5.23	5.07	4.94	4.74	4.50	4.26	
	s	ətittiN	20					:	:	:	
erature	doT mottoH		22	52	66	52	22	22	21%	21	
Tempt			66	52	55	22	22	21%	21 1/2	21%	
		əmiT	5	11	6		1 4	9	x 0	10	
		лис Дяге	96	26	96	26 26	56	26	26	26	

Oxygen Demand at 37.5° C.

Total Solids

Oxygen Demand P.P.M.	1.59 4.16			
Dissolved Oxygen P.P.M.	5.21 3.62 1.05		• • • •	
$\mathbf{D}_{\mathbf{a}\mathbf{y}}$	Int	3	4	5

P.P.M. Dissolved Suspended 33 651 Total 684 11,000 Solids.....

TABLE NO. 20-ABSORPTION OF OXYGEN.-EXPERIMENT NO. 96.

Dilution of Sewage with Salt Water Used in Experiment No. 95. Sewage Run in Until no Dissolved Oxygen was present.

Day June	Time	Temp. Top	. Deg. C. Bottom	Dis- solved Oxygen at Surfac	Dis- solved Oxygen e at 1 Ft.	Dis- solved Oxygen at 2 Ft.	Dis- solved Oxygen at 3 Ft.	Dis- solved Oxygen at 4 Ft.	Dis- solved Oxygen at 5 Ft.
28 28 28 28 29	$9.30 \\10.30 \\11.30 \\1.30 \\9.30$	21 21 21 21 21 21 21	21 21 21 21 21 21	$0\\2.73\\4.82\\6.59\\4.50$	$\begin{array}{r} 0 \\ 3.14 \\ 4.78 \\ 6.59 \\ 4.46 \end{array}$	$0 \\ 2.89 \\ 4.82 \\ 6.43 \\ 4.38$	$0\\2.81\\4.83\\6.56\\4.46$	$\begin{array}{c} 0 \\ 2.89 \\ 4.66 \\ 6.59 \\ 4.06 \end{array}$	$0\\2.89\\4.74\\6.55*\\4.34$

Surface Agitated, Making a Wave Movement about 4 inches.

* Agitator stopped.

Chlorine, 10,000 P.P.M.

President Borough of Richmond Experiment. No 96 Bureau of Engineering; Sewage Experimeent Statian computer prom CONNECTION WITH Q b. SON B tign of CAY gelfecter _____ DATE JUME 28 1816 Servage added until no oxygen was present Satt Water from Hill Von Hull used exp No 95 Chlarme 10000 PP. N tor 6 hours Surface disturbed by an agitator , wave 4" No dissolved Oxygen at beginning 655 PPM, D.O. at end of 6th hour. ٥ 1 2 £.3 ٩ 5 6 7 2 4 10 ê 6 132

